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Preface

Occupational epidemiology has emerged as a distinct subdiscipline
within the general fields of epidemiology and occupational medicine
during the past several decades. The impetus for this development
has been an increasing awareness by practitioners of occupational
epidemiology of the need to apply rigorous research methods to the
study of the frequency and causes of work-related diseases and inju-
ries. Moreover, the emergence of occupational epidemiology has
been accompanied by a broadened scope of injury. Observations by
workers and physicians of the occurrence of illness characteristic to
certain occupational groups, such as debilitating lung diseases
among underground miners, historically have motivated efforts by
epidemiologists to estimate the extent of the problem and to iden-
tify causative factors. Such efforts continue to be important and
necessary. Increasingly, occupational epidemiologists are address-
ing fundamental public health and scientific questions relating to
the specification of exposure—response relationships, assessment of
the adequacy of occupational exposure guidelines and extrapola-
tion of hazardous effects to other occupational and nonoccupa-
tional settings. Fortunately, methodological advances in epidemiol-
ogy and in the related sciences of toxicology, industrial hygiene,
health physics, and biostatistics can facilitate research into these
complex issues.

Our intent in writing this book is to synthesi/.e the principles and
methods that are used in occupational epidemiology. The principles
and methods that are described and illustrated in the book are
derived from general epidemiology and from the aforementioned
ancillary disciplines; it is the synthesis of methods from these fields,
as much as the substantive focus on health consequences of work-
place exposures, that makes occupational epidemiology distinctive
among other branches of epidemiology.

The book is divided into two main sections. The first section
(Chapters 1—7) contains material on the historical development of
occupational epidemiology, approaches for characterizing work-
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place exposures, and methods for designing and implementing cpi-
dcmiologic studies. We describe the types and sources of health and
exposure data required for epiderniologic studies and illustrate the
features of the various study designs and suitable methods for sta-
tistical data analysis. The relative advantages and limitations of the
different study design options, as they pertain to the investigation
of particular health outcomes, are important, and often debatable,
issues in occupational epidemiology. Accordingly, we emphasize this
topic in the discussion throughout the book. We consider the first
section of the book as a practical handbook for the design, imple-
mentation, and interpretation of research. Thus, this material
should be suitable for epidemiologists, industrial hygienists, indus-
trial medical officers, and others engaged in the practice of occu-
pational health. Chapters 1—7 also contain theoretical discussions
regarding study design, research validity, and data analysis; there-
fore, they should be useful teaching materials for introductory and
intermediate courses in occupational epidemiology.

The second section of the book (Chapters 8-10) is devoted to
more advanced topics. Here we elaborate on statistical techniques
that can be applied to complex data configurations that arise in
many occupational studies. Also contained in this section of the
book arc approaches for estimating doses to biological targets,
where the methods described incorporate pharmacokinetic and
metabolic models of exposure and effect. Chapters 8 and 9 were
written to assist the epidemiologist who is confronted with the task
of estimating dose—response relationships for exposures that may
occur in complex temporal patterns. Chapter 10 presents some spe-
cial applications of data derived from occupational epidemiology
research. The discussion focuses on disease modeling (e.g., multi-
stage models of carcinogenesis) and methods used in risk assess-
ment. Risk assessment is gaining popularity in epidemiology because
regulatory agencies increasingly are relying on data from occupa-
tional epidemiology studies as bases for environmental protection.
We attempt to indicate the most desirable situations for successful
risk assessment while highlighting the uncertainties that are inher-
ent in this type of exercise. The second section of the book will likely
be most appreciated by readers who already are familiar with occu-
pational epidemiology methods and can therefore be used in
advanced courses or seminars.

We should also point out what this book is not. We have not
attempted to compile a systematic review of occupational diseases
and associated risk factors. Readers are encouraged to consult avail-
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able texts and scientific journal publications on occupational medi-
cine and toxicology that are devoted to summarizing knowledge in
these areas. We do, however, illustrate epidemiologic principles and
methods with many real examples taken from the published litera-
ture, with the content spanning a range from acute toxicity resulting
from chemical exposures to models of carcinogencsis. Likewise, our
presentation of statistical and biomathcmatical modeling techniques
is not intended to be a comprehensive review. Instead, we have
focused on methods that we judge to be most informative and prac-
tical for common use.

Our interest in writing a textbook on occupational epidemiology
developed as the scientific and practical problems encountered in
our own research stimulated efforts to master existing methods and
derive new and modified approaches. We hope that this book pro-
vides similar impetus to other researchers.
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1. OVERVIEW

Epidemiology can be subdivided on two axes; subdisciplines, such
as cardiovascular or infectious disease epidemiology, are oriented
toward the disease outcomes, whereas others arc oriented toward
the study of causative exposures. Occupational epidemiology is the
study of the effects of workplace exposures on the frequency and
distribution of diseases and injuries in the population, and thus falls
into the latter category of exposure-oriented subdisciplines. How-
ever, there is considerable overlap between the substantive concerns
of various subdisciplines. For example, life-style and behavioral risk
factors are important determinants of some diseases that also have
occupational etiologies and therefore require consideration in
occupational epidemiology research. Moreover, the methods used
in occupational epidemiology are conceptually identical to those
used in the study of diseases unrelated to occupational factors. For
example, an epidemiologist studying the occurrence of respiratory
disease symptoms among factory workers following an acute acci-
dental exposure to an industrial chemical adopts investigative tech-
niques familiar to the epidemiologist studying a food-borne epi-
demic of enteric illness. Similar parallels can be drawn for research
methods used in studies of delayed effects of chronic exposures. In
fact, some of the epidemiologic, statistical, and toxicologic tech-
niques that have become standard methods in their respective fields
were initially motivated by research needs in occupational health.

There are specific features of occupational epidemiology that dif-
fer from other areas of general epidemiology. Some diseases and
their associated risk factors rarely, if ever, occur in nonoccupational
settings. The pneumoconioses, such as silicosis or asbestosis, for
example, are seen only among workers exposed to the causative
dusts. Also, the study of the health of worker populations requires
an appreciation of the peculiarities of occupational groups, such as
generally favorable health profiles of workers relative to those of the

3

1 Introduction
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population at large, and an awareness of the data sources and their
limitations for estimating occupational exposure levels.

2. HISTORICAL BACKGROUND

2.1. Recognition of Occupational Diseases

Concerns about adverse health consequences of hazardous occu-
pational exposures date back to Hippocrates' warnings to physicians
to explore patients' environmental, life-style, and vocational back-
grounds as determinants of etiology and treatment (Lilienfeld and
Lilienfcld, 1980). The Italian physician Bernardino Ramazzini is
often acknowledged as the father of occupational medicine. Ramaz-
zini described a number of occupational diseases and their causes
in his book De Morbis Artificum, which was published in 1700
(Wright, 1964). Included among his presentations are descriptions
of ocular disorders among glassblowers and neurologic toxicity
among tradesmen exposed to lead and mercury.

The recognition of occupational hazards quite often has been
prompted by anecdotal reports of debilitating and fatal conditions
occurring preferentially among workers in certain types of jobs. A
few historical examples, out of literally hundreds, serve to illustrate
the development of occupational epidemiology.

Pneumoconiosis among miners of gold and silver in Joachimsthal
and Schneeberg in the Erz Mountains at the border of Germany and
Czechoslovakia is a good place to start. Premature mortality among
these miners was reported by Agricola in the sixteenth century. The
prevailing view at the time was that the miners' disease was a form
of consumptive lung disease (Rom, 1983). In 1879 Hessing and
Hartung recognized that underground metal miners were experi-
encing seemingly excessive rates of respiratory cancers (Hunter,
1978). In the 1930s mortality surveys revealed that nearly half of
the miners' deaths were due to lung cancer and roughly 25 percent
were due to nonmalignant respiratory diseases (Pirchan and Sikl,
1932; Peller, 1939). The causative agent for lung cancer was sub-
sequently identified as ionizing radiation (radon daughters) emanat-
ing from uranium and radium deposits in these mines (Lorenz,
1944). Since then numerous epidcmiologic studies of underground
metal miners in Europe and North America have documented
dose-response relationships for radiation and lung cancer (Radford
and Renard, 1984).
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Pcrcival Pott (1775), who identified soot as the cause of scrotal
cancer in London chimney sweeps, is credited with providing the
first clearcut evidence of chemical carcinogenesis from an occupa-
tional exposure. Pott's detailed descriptions of the abysmal working
conditions of these young boys, who frequently climbed in the nude
up narrow, sharp-angled chimneys that at times were still hot, stim-
ulated social concerns. Reports of fires in chimneys delayed until
1 840 passage of legislation prohibiting young boys from climbing
up chimneys (Waldron, 1983). The carcinogenic potential of coal
tar products was noted in diverse industries by the end of the nine-
teenth century, and an experimental model of soot carcinogenesis
was first demonstrated in the 1920s (Decoufle, 1982).

The recognition of asbestos-related disease occupies an important
place in the history of occupational epidemiology. Asbestos had
been used for various artistic and ritualistic purposes for centuries
before it was exploited on a broad industrial scale. Pottery contain-
ing asbestos dating from 2500 B.C. found in Finland and Herodotus'
descriptions from 456 B.C. of the use of asbestos cloth to preserve
ashes of the dead during cremation attest to its long history (Lee
and Selikoff, 1979). Major industrial use of asbestos began follow-
ing the discovery of large deposits in Canada, South Africa, and
Italy during the last half of the nineteenth century. In 1907 Murray
described a case of pulmonary fibrosis, detected at autopsy, in a
British textile worker (Murray, 1907). The term asbestosis was first
used by Cooke in 1927. Intensive investigations of the magnitude
of asbestosis prevalence among exposed workers followed in the
1930s in the United Kingdom (Mcrewether and Price, 1930) and
the United States (Dreesen et al., 1938). Fatal and nonfatal forms
of asbestosis have subsequently been recognized in many exposed
worker populations (Becklakc, 1982). Seemingly excessive preva-
lences of lung cancer among asbestotics suggested a possible carci-
nogenic effect of asbestos fibers (Lee and Selikoff, 1979); these sus-
picions have received ample confirmation since the 1950s.

Studies of the mortality patterns of asbestos insulation workers by
Selikoff and his colleagues during the 1960s and 1970s contributed
greatly to the recognition of diseases related to asbestos exposure
(Selikoff et al., 1964; 1979). Malignant mesothclioma of the pleura
or peritoneum, first identified in 1960 (Wagner et al., 1960), has
not been associated consistently with any other environmental agent
(Craighead and Mossmari, 1982). In fact, the association of malig-
nant mesothclioma with occupational asbestos exposure is often
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cited as one of the most persuasive epidemiologic examples of an
unambiguous demonstration of causality.

Alice Hamilton's 1925 book Industrial Poisons in the United Stales
depicted a variety of occupational diseases, ranging from solvent-
induced narcosis to "phossy jaw" among matchmakers exposed to
phosphorus. Her work stimulated other physicians' concerns about
health hazards in uncontrolled workplaces. The following excerpt
from Adelaide Ross Smith's 1928 account of the work conditions
encountered by women workers exposed to benzene in a small san-
itary tin can factory in New York State is a vivid example:

There was no direct ventilation of coated can covers. They emerged
from the machine immediately after coating without having been
heated and smelling directly of benzol. . . . The eight coating
machines consumed 45 to 50 gallons daily of a compound containing
75 percent of benzol. Adjoining the coating room and connected with
it by a wide-open doorway was another room where paper gaskets
were made ... [A twenty-six-year-old woman] was employed for some
months in the room adjoining the coating machines. She had always
been well and was not bothered by the work until she became preg-
nant. Then she suffered from severe nausea and vomiting. . . . Severe
and prolonged nosebleeds were followed by bleeding from the gums
and rectum and into the skin. She stopped work and improved. ... A
premature child was born at seven months and three hours after deliv-
ery the mother died following severe uterine hemorrhage.

This example is pertinent to contemporary occupational epide-
miology for several reasons. The workplaces studied were small fac-
tories, where excessive exposures and adverse health sequelae con-
tinue to be underrecogni/cd. Moreover, risks to women workers,
especially those related to reproduction, increasingly have occupied
the attention of epidemiologists.

2.2. Development of Systematic Epidemiologic Methods

Investigations of characteristic occupationally related diseases that
are rare in the general population provided the impetus for epide-
miologic research into workplace hazards. In the 1950s several
important studies contributed to the methodology for studying less
rare conditions. Studies such as those of lung cancer among gas
workers (Doll, 1952) and bladder cancer among dyestuff factory
workers (Case et al., 1954; Mancuso and Coulter, 1959) laid the
groundwork for the historical cohort design that has since become
a standard approach in occupational epidemiology (Gardner, 1986).
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The history of occupationally related bladder cancer illustrates
the development of the field. A specific occupational etiology for
bladder cancer was first suggested by 1 895 by the German surgeon
Ludvvig Rehn, who observed three cases among workers from a
fuchsin dye factory. Bladder cancer was a recognized clinical entity
at the time, but the occurrence of these three cases in a small worker
population later proved to be excessive (Cole and Goldman, 1 975).
The misnomer aniline cancers was applied to these tumors for some
years until the specific ctiologic aromatic amine compounds were
identified. Experimental research in the 1930s on industrial aro-
rnatic amines established beta-naphthylamine as a potent carcinogen
(Hucper, 1938). In the 1950s Case and associates (1954) investi-
gated the risk for bladder cancer among workers from 21 chemical
factories in England arid Wales. They observed bladder cancer rates
30 times higher among workers exposed to beta-naphthylamine,
alpha-naphthylamine, bcnzidine, or a mixture of these chemicals.
Case's findings indicated that beta-naphthylamine was the most
potent human carcinogen. As a direct consequence of Case's
report, and abetted by advances in diagnostic techniques, a bladder
cancer cytodiagnosis and screening program was established in
1957 to serve the rubber industry in Birmingham (Parkes, 1969).
Case's study also revealed that bladder cancers occurred, on aver-
age, 15—20 years after first exposure to these carcinogens. A pro-
longed period of induction and latency for occupational carcino-
genesis is now a widely appreciated phenomenon (Armenian and
Lilicnfeld, 1974; Whittemore, 1977),

Numerous subsequent epidemiologic studies have confirmed
Case's reports of aromatic aminc carcinogenicity (Hucper, 1969).
Some noteworthy and dramatic examples are reports of bladder
cancer incidence risks ranging from 10 to 50 percent among work-
ers exposed to beta-naphthylamine or benzidine (Goldwater et al.,
1965; Veys, 1969; Wcndel et al., 1974). Since the identification and.
in some instances, prohibition of production and use of various
industrial aromatic amine carcinogens, there have been vigorous
efforts directed toward medical surveillance of workers with known
current or past exposures (Schulte, 1986; Meigs et al., 1986).

3. SCOPE OF OCCUPATIONAL EPIDEMIOLOGY

The emergence of occupational epidemiology has followed the same
course as that of other epidemiology subdisciplines; clinical obscr-
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vations of the occurrence of rare diseases among small groups have
motivated methodological advancements that can accommodate
investigations of both rare and more common health effects in large
populations. Research has generally proceeded from small-scale
investigations to studies of large populations of workers, often num-
bering in the thousands and tens of thousands of workers. Cohort
studies of the mortality patterns among U.S. steelworkers (Lloyd
and Ciocco, 1969; Redmond et al., 1975) and rubber industry work-
ers in the United States (McMichael et al., 1976; Monson and Nak-
ano, 1976) and England (Baxter and Werner, 1980) are important
examples of epidemiologic studies of large industrial populations.

Despite the shift in emphasis from the study of characteristic
occupational diseases to investigations of broader worker health
profiles, the underlying objectives have remained constant. The first
objectives are to determine the health consequences of workplace
exposures and to make or recommend remedial efforts when indi-
cated. Secondarily, occupational epidemiology provides data useful
for making future projections of risks to other workers and, more
generally, to members of the population at large who typically expe-
rience lower-intensity exposures than occur in the workplace.
Future projection and risk extrapolation are usually termed risk
assessment. Thus, there are both public health and scientific motiva-
tions for conducting research in occupational epidemiology. The
immediate public concerns obviously focus on the protection of
worker health. The identification of occupational causes of diseases
provides the necessary information for setting occupational (and in
some cases, nonoccupational) exposure standards so as to reduce
risks to "acceptable levels." Problems of a more scientific nature,
such as elucidating mechanisms of toxicity and dose—response rela-
tionships, can also be addressed in occupational epidemiology. The
public health and scientific domains are by no means mutually
exclusive, however, as both require observations of human health
effects and measurements of exposures, and in some instances, both
involve extrapolation of findings to other environments and popu-
lations. Furthermore, public health measures can be adopted with
more confidence when there is a clear understanding of etiologic
processes.

Exposure standard setting is a good example of the application
of occupational epidemiology research findings to address both
public health and scientific questions. Such findings are frequently
used to set exposure limits below which adverse health effects are
predicted to be minimal or nonexistent. Estimation of exposure
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standards involves assumptions about disease induction mechanisms
and predictions of dose—response relationships that are best
inferred from observations made on exposed human populations.

3.1. Identifying Occupational Hazards and Populations at Risk

Occupational epidemiology involves investigating the frequency of
occurrence and causal factors for health effects that have nonoc-
cupational as well as potential occupational etiologies. Lung cancer,
for example, can be induced by occupational and nonoccupational
exposures; in fact, in all industrialized countries the predominant
risk factor for lung cancer is cigarette smoking, not occupational
exposures. The practice of occupational epidemiology becomes
increasingly complex when the diseases of interest are delayed
effects of exposure that become manifest many years after first
exposure, or when the health outcomes arc subtle physiologic
responses rather than overt diseases.

Several decision-making routes can determine which occupa-
tional health problems are studied. As the foregoing historical
examples illustrate, a recognition of disease clusters among workers
from particular occupations or industries can instigate cpidemio-
logic research to identify causal factors. The investigations that
ensue may be tightly circumscribed to the particular health problem
at hand or may, depending on available resources and interest, bur-
geon into broader surveys of worker health. For example, the occur-
rence of aplastic anemia and other less severe forms of hematologic
dysfunction among workers exposed to organic solvents at a factory
might trigger a clinical and industrial hygiene survey to estimate the
magnitude of the problem in relation to measured environmental
concentrations of solvents. Knowledge of other consequences of
exposures to solvents, such as neurotoxicity and leukemia, indicates
the value of enlarging the scope of the study to include an assess-
ment of risks for these conditions.

Findings from other disciplines can also provide direction to
research in occupational epidemiology. A typical situation arises
when a substance is shown to be carcinogenic in animals or muta-
genic in cell culture assays. The logical next question is whether the
substance displays similar effects in humans. Occupational groups
exposed to the substance in question then become useful target
populations for study because workplace exposures are generally
greater than those occurring elsewhere. Governmental agencies
often adopt this strategy for deciding which research areas to pur-
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sue. The principal limiting factor is the identification of an exposed
worker population that is suitable for study. Research efforts often
are complicated when the substance of concern is ubiquitous in the
ambient environment and high-intensity workplace exposures occur
only intermittently among small groups of workers who may also
encounter other toxic substances. These difficulties have hindered
epidemiologic studies of the possible carcinogenic effects of for-
maldehyde (Hcrnberg et al., 1983; Hayes et al., 1986), which were
motivated by reports of cancer induction in laboratory animals
(Swenberg ct al., 1980).

Alternatively, one may choose to study workers exposed to a sub-
stance^) that has never received attention as a potential toxin in
either human or animal studies. Studies initiated on this basis are
uncommon, regrettably, because funding agencies tend to discour-
age proposed research where no prior evidence of health signifi-
cance exists.

Prior epidemiologic research can be a reasonable guide for
directing planned investigations. Excessive disease rates among
workers exposed to high intensities of certain substances can sug-
gest the utility of investigating similar effects among workers who
encounter low-level exposures. This approach to research planning
is especially justifiable when the investigators purport to character-
ize exposure thresholds and other components of dose—response
relationships. For example, reports of ben/.ene-iriduccd leukemia
among workers in Turkish shoe factories (Aksoy et al., 1962) have
provided the impetus for numerous epidemiologic studies of other
industries where benzene occurs at lower intensities (Thorpe, 1974;
Infante ct al., 1977; Arp et al., 1983; Rinsky et al., 1987).

Investigative leads sometimes emerge from epidemiologic studies
in which occupational risk factors arc not the primary focus. Geo-
graphical patterns of disease rates and their correlations with the
locations of various industries can sometimes indicate occupational
hazards. "Ecologic" correlation surveys of this type prove to be
most informative when the disease(s) is specifically related to a
clearly identifiable occupational exposure, such as malignant meso-
thelioma and asbestos. Epidemiologic studies in which information
concerning occupational exposures is obtained, even when these
data are secondary to the main research questions, can also guide
research. Efforts to screen hypotheses about occupational risk fac-
tors as contributors to the disease burden in the general population
are enhanced when the collection of occupational data becomes
routinely incorporated into population-based epidemiologic stud-
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ies. Case-control studies of cancer conducted among patients from
hospitals or disease registers are well suited to this approach (Sic-
miatycki et al., I 986). However, the need to avoid false positive asso-
ciations resulting from a large number of factors studied without a
priori evidence may complicate the analysis and interpretation of
such studies (Thomas et al., 1985).

In some situations an epidemiologic study is undertaken as a
means of assessing the health of workers with common exposures,
such as trade union members or workers at the same company.
Medical surveillance may be initiated in response to perceived
health ha/ards or as a way of alerting workers and management to
possible risks. Generally, surveillance studies encompass a wide
range of health outcomes and tend to provide more descriptive data
on baseline health characteristics than arc obtained from studies
focused on the etiologies of specific diseases. An efficient strategy
for conducting worker health surveillance is to combine the pro-
gram with ongoing environmental and biological monitoring sur-
veys, such as those performed routinely to assure compliance with
governmentally imposed exposure standards. Medical surveillance is
most effectively conducted prospectively, although retrospective
designs wherein past health events arc linked to occupational expo-
sures can also be used. Research into occupational causes of preg-
nancy loss among female workers is one area where prospective sur-
veillance is particularly valuable (Wilcox, 1983).

In every case, no matter how pressing a scientific or public health
issue may appear, the success of an occupational epidemiology study
will depend on access to worker populations, and hence on the avail-
ability of data. The forces that dictate data access are frequently out
of the investigator's control. Studies may be initiated at the request
of companies or unions that can provide access to data, thus sim-
plifying the epidemiologist's task. However, one may be forced to
forgo genuinely interesting research projects when access to data is
denied. This dilemma is by no means unique to occupational
epidemiology.

3.2. Estimation of Effects

Occupational epidemiology, like all research sciences, involves esti-
mating the magnitude of effect in the affected population. This
effect estimate may then be extrapolated to predicted magnitudes
of effects in other populations (i.e., risk assessment). A second use
of the effect estimate is to evaluate (or "test") previously developed



12 Research Methods in Occupational Epidemiology

etiologic hypotheses. Some ("hypothesis testing") studies concen-
trate on one or, at most, several hypotheses for which prior evi-
dence of causation is relatively strong. Other ("hypothesis screen-
ing") studies may evaluate a large number of hypotheses for which
prior evidence is relatively weak, in order to identify hypotheses that
merit further investigation.

For example, relative risks for some 30—50 different diseases may
be estimated in one cohort study. Some of these may agree or dis-
agree with prior expectations; others may lead to unprecedented
findings. The hypothesis testing purist would be concerned only
with those findings for which prior data and theory provide insight
and would ignore all other findings. The epidemiologist with more
liberal hypothesis screening tendencies would accept all findings as
potentially valid, citing the importance of the current results as
guideposts for further inquiry.

It is important to realize that hypotheses can seldom be tested
definitively in an epidemiologic study because the research settings
cannot be replicated closely. (Arguments about the observational
versus experimental nature of epidemiology are moot here because
occupational epidemiology nearly always requires observational
research.) However, this is not to say that hypotheses cannot be for-
mulated and evaluated against observations. Both the populations
to be studied and the end points chosen for consideration arc
directly determined by prior expectations, hunches, and implicit
predictions (i.e., hypotheses). Moreover, all hypotheses and their
theoretical underpinnings are ultimately derived from and modified
by observations.

In practice, then, the investigator, armed with a working knowl-
edge of prior findings from epidemiologic and experimental
research, is naturally attentive to the most relevant findings from his
own study and draws conclusions in light of prior expectation. In
addition, it is worthwhile to examine the data for other associations
and to report the results accordingly. A balanced presentation of
the findings includes a clear delineation of the results that relate to
prior evidence and those that are unanticipated or lack
corroboration.

A related issue concerns the role of statistical significance testing
and the presentation of probability statements (/^-values) denoting
the likelihood of chance vis-a-vis reporting the estimates of the likely
ranges of results, as exemplified by confidence intervals. Even when
a specific hypothesis is under consideration, a decision about caus-
ality usually cannot be reached on the basis of a single study. Rather,



Introduction 13

a hypothesis can only be assessed in light of all available data from
the relevant disciplines and theoretical predictions. Some investi-
gators have created considerable confusion by attempting to decide
the truth or falsity of a hypothesis with evidence obtained from a
single study. This problem is exacerbated when decisions are made
mechanically, as occurs when /;-values are invoked as bench marks
of causality. Both /^-values and confidence intervals offer some use-
ful information, although, given the long history in epidemiology of
misinterpretation of ^-values as distinguishing "significant" from
"nonsignificant" findings, it is probably wisest to present confi-
dence intervals if one or the other is to be selected. A refinement
of this approach is the use of ^-value functions to provide a more
comprehensive assessment of the stability of study findings (Poolc,
1986).

3.3. Causal Inference

Ultimately, the data derived from occupational epidemiology
research are used for decision making. Regulatory agencies rely
heavily on epidemiologic data when proposing occupational and
nonoccupational exposure limits. Other common uses for these
data include predictions about the future occurrence of disease in
exposed workers and attribution of risk in cases of litigation.

These decisions require evaluations of the composite of evidence
from epidemiologic and other research. An evaluation of scientific
evidence can, in a most elemental way, be reduced to a simple ques-
tion: "Does the exposure(s) cause the disease(s)?" Although this
question can seldom be answered conclusively, a tentative answer is
usually required for decision making. The issue of causal inference
is one that has received considerable attention by epidemiologists.
Criteria for causal inference in epidemiology have been developed
(Hill, 1965), qualified (Evans, 1978; Weiss, 1981), and discussed in
the context of inductive and deductive logic (Maclure, 1985).

Judgments about the value of an occupational epidemiology study
are influenced by such factors as the adequacy of study design, the
size of the study, the amount and precision of health and exposure
data, and the appropriateness of the data analysis. These judgments
are necessarily subjective, although research principles do exist that
serve as guides. In fact, we devote the greater part of this book to
an elaboration of such principles.

Attempts to codify guidelines for assessing research quality are
invariably detrimental to the practice and application of epidemio-
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logic methods. To illustrate, consider two studies of cancer among
workers exposed to a suspected carcinogen. The first study consists
of a case report of two workers with the same type of very rare can-
cer who both had been employed for 20 years in jobs routinely
involving intense exposures to the agent in question. The second
study uses a cohort design where 20,000 workers were each fol-
lowed for 1 0 or more years. In the second study all that is known
about workers' exposures is that the agent had been in the environ-
ment at various times, but there is no way to estimate exposure lev-
els or to distinguish heavily exposed workers from those with less
exposure. Comparisons with national and regional rates reveal
slight excesses of some types of cancer but depressed rates for other
cancers among the cohort. Using standard criteria for assessing the
adequacy of research design, one would probably conclude that the
second study is superior to the first. In fact, the first study does not
even satisfy the rudiments of a research design; it can be viewed best
as an anecdotal report. By contrast, the second study is large, rela-
tive to most epidemiology studies, and uses a well-recognized
design. If, in deciding whether the particular agent is a human car-
cinogen, we rely solely on the evidence from the methodologically
more sound second study, we would be forced to conclude that the
evidence is equivocal, if not altogether negative. Nevertheless, the
first study gives some apparently compelling evidence in support of
a carcinogenic effect; there is a specificity of response that follows
a prolonged, high level of exposure.

The preceding hypothetical example illustrates the type of ambi-
guity that can, and often does, arise in occupational epidemiology.
Both studies provide incomplete answers to the research question.
The best way to mitigate uncertainty in this case would be to seek
more information, either by enlarging the first study to include
more subjects or by obtaining more exposure data in the second
study. It may be necessary to conduct a new study in a third setting
if neither study can be improved satisfactorily.
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2 Characterizing the Workplace Environment

1. OVERVIEW

The informativencss of an occupational epidemiology study
depends in large measure on the amount, specificity, and precision
of exposure data. Ideally we would like to be able to measure disease
frequency in relation to quantitatively determined levels of expo-
sure that are specific for individual workers. This would allow for
estimation of dose—response relationships that can be generalized
to other exposure settings. In practice, however, exposure mea-
surement data often are either not available or do not exist because
of technological constraints (e.g., assays for particular substances
have not been devised) or because of limited resources. Instead,
exposure levels usually have to be inferred indirectly from other
data. This chapter summarizes some techniques for characterizing
occupational exposures. Most emphasis is placed on estimating
workers' exposure intensities and durations in an industrial setting.
We also discuss procedures for evaluating occupational exposures
for community- or registry-based studies, such as a case—control
study of a particular disease conducted among hospitalized patients.

2. GENERAL CONCEPTS OF EXPOSURE AND DOSE

Data availability invariably determines the extent to which an occu-
pational environment can be characterized. Before discussing the
approaches to exposure assessment, it is worthwhile to review some
of the basic concepts of exposure, burden, and dose. These terms have
a wide range of meanings in various fields (pharmacology, epide-
miology, risk analysis); therefore, we have chosen definitions that we
feel arc most useful in epidemiologic research. In this way we can
establish a common terminology and place the methods of estimat-
ing exposure in context with the ultimate goal of occupational epi-
demiology—to elucidate the specific circumstances of exposure

18
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that result in disease. These topics will be taken up again in Chapter
9, where a more mathematical treatment of these topics is
presented.

2.1. Definitions of Exposure and Dose Variables

A useful working definition of exposure is the "presence of a sub-
stance in the environment external to the worker." Exposure levels
are assessed in reference to the intensity of the substance in the
workplace environment and the duration of time during which the
substance is encountered. Another term for intensity is concentration,
which refers to the amount of the substance per unit of environ-
mental medium (e.g., milligrams of dust per cubic meter of air).
Concentration is a dynamic variable because it can change over
time, although frequently in occupational epidemiology a single
measure, such as the average concentration, is used to depict inten-
sity. To illustrate, consider a worker in a paint manufacturing plant
who works in an environment containing 50 parts per million (ppm)
of toluene in air at some point in time. We can say that he is exposed
to toluene at a concentration of 50 ppm at the time when the mea-
surement is made. If, however, we had no information on the air
concentration of toluene at this worker's location, we would still be
correct in saying that he is exposed to toluene (assuming, of course,
that toluene is present in air in at least detectable concentrations
throughout the plant), but our assessment of exposure would only
be qualitative.

Insofar as exposure is characterized by concentration and dura-
tion, it is possible to construct a time-integrated measure of expo-
sure, known as cumulative exposure, which is the summation of the
concentrations over time.

Exposure intensity and cumulative exposure both pertain to the
environment external to the body. We can define two other terms,
burden and dose, that refer to the amount of a substance that reaches
susceptible targets within the body. Burden is the amount of a sub-
stance that exists in the body, or more specifically, the target organ
or tissues, at a point in time. Burden can be expressed for the entire
body or for some particular target, such as an organ.

Like exposure concentration, burden is a dynamic measure that
changes over time. It is determined by prior cumulative exposure
and by the persistence of the substance in the body. Retention is the
general term used for persistence and is related to the body's ability
to absorb, metabolize, and clear environmental agents. As a result,
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burden is a function of both the temporal pattern of exposure and
retention. Burden is usually thought of in the context of exposure
to substances, such as dusts or fibers, that remain in solid form for
some time and that can lodge in body tissues. The concept also
applies to other agents, including volatile chemicals (e.g., vinyl chlo-
ride monomer), which have shorter retention times. With many
chemicals the notion of clearance encompasses actual physical
removal from organs [sometimes resulting in sequestration into
storage depots (e.g., adipose tissue in the case of fat-soluble com-
pounds)], detoxification, and normal chemical degradation to other
forms. Burden is an important factor in its own right in studies of
effects of substances that have relatively long retention times (on the
order of years), that remain biologically active in the body, and that,
if sequestered, can be mobilized to reach target sites for activity.

The term dose has been used to denote various meanings in epi-
demiologic research, ranging from the amount of material taken
into the body to the amount of biologically active material remain-
ing at a critical organ or tissue. We shall define dose as the "amount
of a substance that remains at the biological target during some
specified time interval." Dose thus has two components: the burden
arid the interval of time that the material is present at the target.
The dose rate is the analogue of exposure concentration and can
change over time. Thus, it is often convenient to consider some
summary indicator of dose rate, such as the average or peak, in an
epidemiologic analysis.

Dose and dose rate are the variables of greatest scientific value in
epidemiologic research; however, in most instances direct measure-
ments of doses or dose rates cannot be made. In some cases it is
useful to distinguish dose from the concept of biologically active dose,
where the latter arises when only some fraction of the burden can
produce an effect. Although it is possible to measure tissue levels of
some toxins at the sites of biological activity, it is generally impos-
sible to determine the amount that is or has been biologically active.
For example, asbestos fibers can be quantified in lung tissue and
related to the severity of pulmonary fibrosis (Whitwell et al., 1977;
Roggli et al., 1986). These measurements are actually measures of
organ burdens, rather than biologically active doses, because of the
uncertainty about which fibers were active at the times when the
disease process was initiated and, in some cases, exacerbated.

Because of the difficulties in obtaining reliable estimates of bur-
den and dose, occupational epidemiologists often must rely on sur-
rogates: exposure concentration, duration, and cumulative expo-
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sure. These variables are useful surrogates for dose, provided that
assumptions about their relationships with dose are justifiable. In
the simplest case, a linear relationship between cumulative exposure
and dose would provide confidence that the former is, in fact, a use-
ful surrogate measure. On the other hand, if the relationship is non-
linear, because of complex patterns of absorption, retention, and
detoxification, then metabolic models for environmental substances
may assist in approximating doses. These topics are discussed fur-
ther in Chapter 9.

3. TYPES AND SOURCES OF EXPOSURE DATA

Exposure data for occupational studies are obtained from a variety
of sources and can be of varying degrees of completeness and accu-
racy. The following section describes the types and sources of these
data, considering first data that are used in an industry-based study
and second those obtained from community-based studies, where
occupational exposure data are ordinarily less detailed.

3.1. Industry-Based Studies

Identifying Potentially Toxic Substances

The first step in characterizing the environment is to identify the
agents that are likely to be toxic. This can be a relatively simple pro-
cess when the study is motivated by concerns about a limited set of
substances of proven toxicity (e.g., asbestos in an asbestos products
plant). However, such an identification is complicated in industries
where exposures vary greatly by type and intensity and where expo-
sure may be to varying mixtures in which the pertinent chemical
forms associated with toxicity are only poorly understood (Ballan-
tyne, 1985). In the latter case, some judgment needs to be exercised
in restricting the set of agents for study to those that, based on prior
research, are likely to be toxic; that can be measured, or at least
localized to various parts of the industrial process; and that occur
in measurable concentrations. Such judgments typically require
information and opinions from industrial hygienists, health physi-
cists, safety officers, and toxicologists.

At times, symptoms or illness reported to plant medical officers
by workers can give direction to the process of toxin identification.
For example, reports of chest tightness or phlegm production sug-
gest the importance of identifying pulmonary irritants, whereas
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reported skin rashes or dermatitis indicate the need to identify irri-
tating or sensitizing chemicals that are handled. However, many
substances, including some carcinogens, may not induce symptoms
of early disease in either the ultimate target organs or other organs.
Ionizing radiation is one such agent. Thus, complaints of illness
should not serve as the only guide for environmental char-
acterization.

The second step in characterizing the environment is to establish
the most relevant routes of exposure for the agents of concern.
Here again input from the previously mentioned ancillary discip-
lines is valuable. All the important routes of exposure should be
identified. At a minimum, the routes considered should theoreti-
cally yield an exposure estimate that is proportional to the sum of
all exposure routes for a given substance.

Specifying Available Data Sources and Needs

The types of exposure data needed in an industry-based study
depend on the diseases of interest and the study design to be used.
For example, a study of acute respiratory symptoms among actively
employed workers exposed to formaldehyde might require only air
measurements obtained concurrently with the health survey to
establish an exposure gradient. However, a study of stomach cancer
mortality among coal miners would require exposure data that span
years or decades of employment because of the typically long induc-
tion time of the disease.

A list of the types of data that are useful for epidemiologic anal-
ysis is shown in Table 2—1. The entries are rank-ordered according
to how well the data could be used to estimate true doses. The best
situation occurs when we have quantified, personal exposure esti-
mates for the agents of interest; the least informative case occurs
when we have only knowledge of the fact of employment in a plant,
industry, or trade where exposure probability is high. Exposure

Table 2-1. Types of exposure data in occupational epidemiology studies

1.
2.
3.
4.
5.

Type of data

Quantified personal measurements
Quantified area- or job-specific data
Ordinally ranked jobs or tasks
Duration of employment in the industry at large
Ever employed in the industry

Approximation to

Be

Poo

st

rest

dose
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information for most industry-based studies falls somewhere
between these two extremes. In fact, the best case, quantitative per-
sonal exposure estimates, is uncommon in occupational studies.
Studies of radiation-exposed workers monitored with personal
dosimeters are an exception, but even these studies frequently suf-
fer from incomplete monitoring (Checkoway et al., 1985b; Fraser
et al., 1985). There is reason to question the value of a study in
which exposure information is limited to the mere fact of employ-
ment at some time in the industry. A study of this type would be
justifiable if it were known in advance that the characteristic agents
were quite likely to be toxic and that a sizable proportion of workers
actually had been exposed.

The next step in exposure characterization is to compile an inven-
tory of existing data and to determine which data are most complete
and usable for an epidemiologic analysis. In so doing we need to
identify the agents that can be assessed quantitatively and those that
must be evaluated qualitatively and ultimately what proportion of
the work force can be included in the analysis of health effects in
relation to exposure (i.e., how many workers will have "missing"
data). It is convenient to distinguish two general facets of environ-
mental characterization: historical exposure reconstruction and
concurrent and prospective exposure estimation. These activities
are discussed in turn, although it should be appreciated that an epi-
demiologic study may require one or both. The activities involved in
historical or concurrent—prospective exposure estimation are con-
ceptually identical, but differ in logistics.

Historical Exposure Reconstruction

In those unusual instances where past data on quantified, personal
exposures exist, the principal concerns are the completeness of data
and the ability to combine data obtained from different time periods
when measurement techniques may have differed. Data complete-
ness is of concern both for individual workers and for the study pop-
ulation as a whole.

For example, if in a study of nuclear workers, radiation film
badges had been used only at certain times for some workers (i.e.,
when they were assumed to be at risk for significant exposures),
then there will be periods for which the data will be absent. Such
gaps in the data must be evaluated individually. Some workers may
never have been monitored because they were considered "non-
exposed" by plant management, or alternatively, they may have



24 Research Methods in Occupational Epidemiology

begun and terminated employment before a routine monitoring
program was introduced. In the former case, it might be reasonable
to assign unmonitored exposure values of zero or to classify these
workers in a non-exposed category. Workers who were not moni-
tored because of employment before monitoring should be
included in an overall analysis of disease rates in the workforce but
should be deleted from an analysis of exposure-response relation-
ships (see Chapter 5).

In many studies personal monitoring data either do not exist or
are sparse. As a result, environmental characterization involves
developing an exposure classification scheme for the various work
areas, jobs, and tasks in the industry.

A matrix of jobs and exposure levels can be created for both
quantitative and qualitative exposure schemes (Gamble and Spirtas,
1976). A time dimension can be added if exposure concentrations
have changed over time. Thus, for example, a certain job may be
rated as having relatively high exposure levels in the earliest years
of plant operation but may be assigned a low exposure rating for
years after engineering controls were implemented.

The data sources useful for generating a job—exposure matrix are
listed in Table 2-2. Process descriptions, flow charts, and plant lay-
outs assist in the identification and localization of potential toxins.
Historical archives containing such information are more likely to
be maintained by large companies than in small industries. Walk-
through surveys of plant sites are recommended as a means of gain-
ing a firsthand view of current processes, work practices, use of pro-
tective equipment, and general environmental conditions.

Industrial hygiene or health physics sampling and monitoring
data offer the most detail for characterizing the workplace environ-
ment. Superficially, it may seem that direct measurement data are
the most useful for estimating workers' average exposures. How-
ever, the use of sampling data in this manner is not without pitfalls.
There arc some obvious shortcomings associated with measurement
uncertainty, such as sample timing, location, and equipment cali-

Table 2-2. Data sources useful for developing a job-exposure matrix

1. Industrial hygiene or health physics sampling data
2. Process descriptions and flow charts
3. Plant production records
4. Inspection and accident reports
5. Engineering control and protective equipment documentation
6. Biological monitoring results
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bration. Issues pertaining to measurement techniques are addressed
suitably in industrial hygiene and health physics texts (Cralley and
Cralley, 1982; Shapiro, 1981) and will not be discussed here.

The epidemiologist must be concerned with reasons why sampling
was performed. Industrial hygienists and health physicists ordinarily
devote their resources (often limited) to measuring exposures in
plant areas where they believe the concentrations are likely to be
highest. Similarly, the workers assumed to be most heavily exposed
within a job category tend to be included preferentially in sampling
surveys. Keeping in compliance with exposure limits (e.g., Permis-
sible Exposure Limits) is one primary reason for this approach to
sampling.

One result of compliance sampling is that assignment of exposure
concentrations to unmonitored work areas, jobs, or workers
becomes highly unreliable, if not impossible. The inability to con-
firm low-level concentrations is a weakness of many occupational
epidemiology studies. Also, if compliance sampling is not recog-
nized as such, average exposure concentrations will be overesti-
mated. Thus, mean values will be skewed to levels more represen-
tative of times when exposures were elevated rather than reflecting
true averages. The bias resulting from the overestimation of expo-
sure concentrations will be slight in an epidemiologic study when
the apparent mean values are directly proportional to the true
means and where the proportionality is constant across exposure
groups. (Proportionality is difficult to verify, however.) On the other
hand, if the data from the study ultimately will be used for extrap-
olation to other settings, then the results will be an underestimation
of the actual "risk per unit of exposure."

A feature that can lead to inaccurate estimation of exposure con-
centrations is the physical location of area measurement devices.
Some devices are cumbersome and may impede normal work activ-
ities. As a result, they may be placed in locations removed from work
stations. Miniaturization of measurement devices has made it pos-
sible to monitor exposures of individual workers, thus partially
obviating concerns about improper location, although for some
agents (e.g., cotton dust) area monitoring is the only available
method.

In principle, personal monitoring should yield more precise
exposure estimates than area monitoring, although personal moni-
toring is not without drawbacks. Wearing a monitoring device may
cause some workers to alter their work practices, either becoming
more careful to avoid unnecessary exposures or being less cautious
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than usual, depending on their perceptions of the reasons for mon-
itoring. Furthermore, personal monitoring is often limited to work-
ers considered to have the highest exposure potential; thus, results
can be skewed upward.

Records of plant production, schedules, and materials purchased
indicate when new materials are handled and produced at a plant
and can assist in determining times during the year or day when
exposures are likely to be highest. Ideally, industrial hygiene and
health physics sampling reports should contain information on the
specific dates and times during the day when sampling occurred. In
practice, however, the data generally are too limited to permit dis-
tinctions between annual or daily exposure patterns.

Inspection and accident reports arc especially valuable for docu-
menting unusual exposure circumstances and for identifying special
subgroups of workers that warrant further, more intensive follow-
up (Moses et al., 1984). Furthermore, it is important to distinguish
routine exposure monitoring from monitoring motivated by an epi-
sode of excessive exposure, such as a spill, leak, or radiation acci-
dent. For example, following an accident, industrial hygiene and
biological monitoring efforts may be increased, so that the time
between personal samples is reduced from the normal schedule. If
the accident causes some workers to receive large intakes of a sub-
stance, then closely spaced biological monitoring of these workers
will yield a higher average exposure estimate than would be seen if
the ordinary monitoring schedule had been in effect. Unless there
is some documentation that these particular measurements were
made in response to an unusual exposure situation, the average
exposure estimate would be elevated spuriously. Inspection of the
dates of monitoring records may provide indications about the like-
lihood of unusual circumstances when specific documentation is
lacking.

If they are properly applied and maintained, engineering controls
can reduce exposures profoundly. Thus, changes in agent concen-
trations should be reflected in area and personal monitoring data.
On the other hand, knowledge of the types and dates of engineering
controls is very influential in estimating quantitative or qualitative
exposure levels when industrial hygiene or health physics monitor-
ing data are limited. When used properly, personal protective
equipment, such as respirators, gloves, and hearing protection
devices, can also affect doses significantly. Thus, some work areas
may involve potentially intense exposures to specific substances, but
workers in those areas may receive substantially reduced doses if
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protective equipment is used routinely or during special circum-
stances when exposures are greatest (e.g., cleaning of machinery).
Therefore, use of protective equipment may invalidate an assump-
tion of proportionality between exposure and dose.

Scaling exposure concentrations downward to reflect the use of
protective equipment is one means of maintaining quantitative
exposure estimates. In fact, some personal monitoring devices col-
lect samples only when protective equipment (e.g., respirators) is
not in use, thus permitting more accurate exposure determinations
than are obtained from studies relying on area monitoring (Smith
et al., 1977). However, unless there are reliable models for reducing
exposure estimates when more typical monitoring devices are used,
numerical scaling of exposure concentrations may compromise the
accuracy of the data. It is generally better to incorporate informa-
tion on protective equipment use into an ordinal exposure ranking
scheme than to risk introducing more error into the data by apply-
ing "correction factors" to quantitative exposure estimates.

Biological monitoring has become more frequently used and reli-
able in occupational epidemiology in recent years (Lauwerys, 1983).
Results of blood, urine, breath, and other types of biological mon-
itoring can provide estimates of body burden, and by inference,
organ doses. Also, biological monitoring data may be used to esti-
mate environmental concentrations when the latter cannot be mea-
sured directly. Here again, workers selected for biological monitor-
ing frequently are individuals suspected of being most heavily
exposed. Consequently, care should be taken in applying biological
monitoring results to compute average exposure levels for the
worker population.

Example 2.1

Takahashi and co-workers (1983) compared mean levels of urinary arsenic in work-
ers exposed to arsenic-based wood preservatives with those of a group of volun-
teers without known arsenic exposures. The exposed workers were classified
according to the probable intensity of exposure, as inferred from job assignments.
Their findings (Table 2—3) suggest that urinary arsenic levels discriminate well
between the most highly exposed workers and the comparison group but are
poorer predictors of lower exposure concentrations.

The interpretation of biological sampling for toxic substances
depends on the properties of the agent in question, including its
half-life in the body, metabolic fate (e.g., conjugation and elimina-
tion patterns), and transport to the tissues sampled. Biological
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Table 2-3. Mean urinary arsenic levels among workers exposed to arsenic-based wood
preservatives and a non-exposed comparison group

Urinary arsenic

Group

Non-exposed
Possibly exposed
Low exposure
Moderate exposure
High exposure

No. of subjects

232
15
22
42
10

frig As/L)

Mean

74
44
98

117
148

(SO)"

(73)
(36)
(76)

(158)
(H2)

Source: Takahashi et al. (1983).
"Standard deviation.

assays of radioactivity have proved to be a valuable method for esti-
mating radiation doses from long-lived radionuclidcs (ICRP, 1972),
for example. For substances with short half-lives in the body, bio-
logical monitoring is most useful for studies of acute health effects
(e.g., carboxyhemoglobin or expired carbon monoxide and tran-
sient neurological deficits).

The mere fact that a worker has undergone biological monitoring
sometimes can be used to assign him to an exposure category, even
when the monitoring data cannot be expressed quantitatively. Thus,
for example, if only workers who come into contact with lead
undergo blood analysis, then a list of such workers could be isolated
as a special "lead-exposed" group to be compared with workers pre-
sumed to be non-exposed. Also, some industrial toxicology pro-
grams sample workers more frequently if they are believed to be
most heavily exposed. As a result, sampling frequency may serve as
a crude index for exposure intensity.

Another type of biological monitoring involves assays of biologi-
cal responses to toxins, rather than assays of the concentrations of
the substances in body tissues. Cytogenetic assays, such as sister
chromatid exchange (Vainio, 1985), fall into this category. The
underlying assumption of this approach to biological monitoring is
that the exposure concentration and/or duration (or dose) is pro-
portional to the observed response. Care needs to be taken in infer-
ring exposure levels from the results of biological response moni-
toring because individual susceptibility (and, hence, reactiveness)
can influence the findings, as can confounding effects from other
exposures, such as dietary factors and smoking.

Exposure ratings for particular jobs or tasks frequently rely on
rankings provided by industrial hygienists, safety engineers, or
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health physicists. The final ratings used for the analysis can be con-
sensus or average rankings provided by such personnel. Addition-
ally, workers' ratings of the levels of their own exposures can offer
valuable insight (Jarvholm and Sanden, 1987).

Linking Exposure Data to Individual Workers

The problem of assigning exposure values to workers in situations
where personal monitoring data arc not available is common in
occupational epidemiology. Worker personnel records constitute
the principal link between exposure data and individual workers.
These records typically contain the names of jobs held in a plant and
their associated dates of employment. The availability of detailed
work history records is virtually essential to the conduct of epide-
miologic research in industries where job mobility occurs fre-
quently. Figure 2-1 shows a sample work history record from a
cohort mortality study of phosphate industry workers (Checkoway
et al., 1985a). Each line entry denotes a job and/or pay change. In
this example, the worker began as "laborer" on May 29, 1962, and,
after several job changes, was assigned to "track helper" on Septem-
ber 6, 1963.'

Large-scale epidemiology studies can generate tremendous vol-
umes of work history data, sometimes hundreds of thousands of
lines of information. Summarizing the data involves reducing the
number of unique job or task codes to a manageable number,
thereby facilitating data editing for logic and transcription errors.
Care should be taken to avoid sacrificing information when coding
work history data; thus, obviously synonymous job descriptions
(e.g., "chemical operator" and "chem. oper.") can be combined,
but ambiguous job titles (e.g., "operator") should be kept distinct
from well-defined titles. Coding and editing work history informa-
tion can be quite time-consuming, but this work is essential to study
validity.

Classification of jobs and work areas according to exposure levels
is often complex. The final classification scheme can be devised
either on a quantitative or qualitative scale, or it may consist of
groupings of jobs that are relatively homogeneous in duties and
materials encountered (Wilkins and Reiches, 1983). The last scheme
requires no explicit assumptions about exposure gradients,
although environmental concentration differences may be inferred
(Gamble and Spirtas, 1976). The following examples illustrate these
approaches.



Figure 2-1. Sample work history from a personnel file for a worker in the Florida phosphate
industry. (Source: Checkoway et al., 1985a.)
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Table 2-4. Asbestos concentrations in carding operation job categories at an asbestos tex-
tile plant

Mean fiber concentration (fibers/cc)
Job category

General area personnel
Card operators
Clean-up personnel
Raw fiber handling

1930-35

10.8
13.3
18.1
22.8

1936-45

5.3
6.5
8.8

11.0

1946-65

2.4
2.9
4.0
5.0

1966-75

4.3
5.3
7.2
9.0

Source: Dement et al. (1983).

Example 2.2

In their study of the mortality experience of asbestos textile plant workers, Dement
et al. (1983) combined industrial hygiene sampling data with records of engineer-
ing control changes to estimate quantitative historical asbestos concentrations.
Summari/.ing the air-sampling data offered a particular challenge because the
results were expressed in million particles per cubic foot (mppcf) for the earliest
years and in fibers per cubic centimeter (f/cc) for the later years of the study. For
tunately, there had been a "side-by-side" sampling survey using the two methods
that permitted conversion factors to be derived expressing mppcf in units of f/cc
(on which the current occupational and nonoccupational standards are based). The
investigators next summari/ed the data according to Uniform Job Categories, an
approach suggested by Esmen (1979), and computed average exposure concentra-
tions for the component job categories of nine plant operations. The results for
one operation, Carding, are summarized in Table 2-4.

Example 2.3

Pifer ct al. (1986) conducted a historical cohort mortality study of workers in a
chemical manufacturing plant where there are exposures to numerous chemicals
and fibers. Because of the complexity of the workplace environment and the lack
of adequate measurement data to support a quantitative exposure reconstruction,
the investigators classifed workers into categories denned by chemical production
divisions. The production divisions and the predominant environmental agents,
indicating those that workers are most likely to encounter, are listed in Table 2-5.
The analysis of the mortality patterns of these workers ultimately did not reveal any
associations with process divisions or specific chemicals.

Example 2.2 illustrates the approach to reconstructing historical
exposures on a quantitative basis. Dement and colleagues (1983)
had the luxury of a relatively thorough set of measurement data
spanning several decades. Had they been less confident in the
numerical reliability of the data, they might have developed an ordi-
nal exposure classification scheme, as has been used in other studies
of asbestos-exposed workers (Achesori et al., 1984; Newhouse et al.
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Table 2-5. Exposure characterization of divisions at a chemical plant

Source: Pifcr ct al. (1986).

1985). In Example 2.3 the lack of environmental measurement data
necessitated a cruder classification scheme whereby exposure
potentials can only be inferred qualitatively.

Exposure classification systems often require the compilation and
synthesis of information from numerous sources. Lack of agree-
ment among sources can pose a dilemma for the epidemiologist

1.

2.

3.

4.

5.

6.

7.

8.

9.

Division

Research
laboratories

Acetate yarn

Acid

Cellulose esters

Filter products

Kodel fibers

Organic
chemicals

Polymers

Tcnitc plastics

Major chemicals

Multiple components

Cellulose acetate, acetone,
yarn lubricants, dyes

Organic acids, aldehydes,
anhydrides, solvents,
alcohols, plastici/ers,
dikctenc products,
terephthalic acid,
dimcthylterephthalatc,
acetic acid

Cellulose acetate, cellulose
acetate propionate,
cellulose acetate
butyratc, acetic,
propionic, and butyric
acids and anhydrides

Cellulose acetate, acetone,
yarn lubricants

Polyesters, modified
polyacrylates, yarn
lubricants

Multiple organic
chemicals, aniline,
sulfuric acid, dyes,
manganese oxide,
hydroquinine, aromatic
chemicals

Dimethyl terephthalate,
ethylcne glycol,
cyclohexane dimcthanol,
butylene glycol,
mcthanol

Cellulose esters,
polyethylene, polyesters,
plastidzers, pigments,
dyes

Primary employee
exposure

—

Acetone and
lubricants

Limited (i.e.,
closed
systems)

Acetic acid and
cellulose
dust

Acetone and
lubricants

Lubricants

Hydroquinine

Limited
(closed
system)

Cellulose
esters and
plastici/crs
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hoping to obtain a clearcut picture of the environment. To illus-
trate, Stewart et al. (1986) developed a formaldehyde exposure pro-
file for ten facilities using data from job descriptions, historical and
concurrently obtained air-sampling data, and ratings provided by
industrial hygienists. This work was in support of a study of cancer
risks in relation to formaldehyde exposure levels (Blair et al., 1986).
Specific jobs were ranked according to ordinally assigned categories
of intensity. The rating scheme incorporated historical air-sampling
data. In addition, a current air-sarnpling survey was conducted at
the facilities included in the study. The investigators found a poor
correlation between the exposure ratings and the air-sampling
results; roughly 35 percent of the original exposure estimates
required changing. The lack of correspondence among the various
sources of data in this study demonstrates how even seemingly unbi-
ased data sources, such as industrial hygiene monitoring and rank-
ings, can result in exposure misclassification unless special efforts
are made to establish reliability.

The job-exposure matrix that is generated and ultimately used in
the epidemiologic analysis should be carefully documented so as to
indicate the basis for exposure assignment. Thus, the industrial
hygienists or health physicists who produce the matrix should main-
tain a documented file that indicates each job, task, or work area
included in the matrix; the exposure value or ranking, by time
period; and the data sources that were used to derive the estimates.
The source information also should indicate whether a given esti-
mate was based on industrial hygiene or health physics monitoring
data, the types of monitoring data (area or personal), whether mon-
itoring was routine or for compliance, the number of samples taken,
the ranges and the means or medians, as well as the dates of sam-
pling, and whether the estimate was based on best judgment. Main-
taining such a file may seem burdensome, but it provides useful doc-
umentation of the study procedures that can facilitate future
analyses of the data.

The exposure matrix that can be applied to work history data for
the entire study population generally represents the lowest common
denominator of exposure data precision. For example, it may be
possible to estimate quantitative cumulative exposures for half of
the study population, and ordinal estimates can be derived for the
remainder. In this instance, an analysis including all workers would
be limited to an evaluation of disease rates with respect to ordinal
exposure levels. However, the exposure assessment inventory would
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permit secondary, more exacting analyses of exposure-effect rela-
tionships for the subset of workers with quantified exposure
estimates.

Prospective Exposure Monitoring

Prospective monitoring of the workplace environment is a logical
accompaniment to prospective health surveillance. The data sources
shown for historical exposure reconstruction in Table 2—2 are the
same as those for prospective monitoring. One valuable addition
would be data on previous employment, which is more easily
obtained in prospective than historical studies. The critical question
is, "How are the resources for prospective exposure monitoring to
be spent?" Some aspects of this question are settled automatically.
For example, updating personnel files is an ongoing, necessary pro-
cess in most industries, and periodic compliance sampling for des-
ignated toxic substances is mandated by governmental regulatory
agencies. These generalizations apply more to large than to small
facilities, however.

Decisions as to the types and quantities of additional exposure
data to be collected prospectively should be guided by judgments
about the health outcomes most likely to warrant epidemiologic
study and the possible causative agents. Feasibility of data collection
and storage and cost are also important considerations. It may be
tempting to devise an exposure monitoring program in which con-
centrations for a large number of potential toxins are measured
routinely, but the costs may be prohibitive, especially when the lab-
oratory assays are elaborate and time-consuming. Moreover, even
when existing resources permit a voluminous data collection effort,
data storage may become unwieldly, the availability of sophisticated
computer systems notwithstanding (Whyte, 1983). Invariably, one
has to adopt a compromise strategy that falls between the extremes
of "measure and record everything" and "start monitoring only
when a significant health hazard is noted." Sampling routinely for
a limited number of substances, and timing the sampling so that
unnecessary measurements are avoided, can prevent an information
overflow. (Some redundant measurements may be necessary for
determining reliability.) This minimalist approach may preclude
obtaining data on exposure concentrations for some substances that
may ultimately warrant study, but qualitative exposure estimation
may still be possible if job history, materials usage, and other plant
records are maintained carefully.
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Table 2-6. Sources of occupational expo-
sure data in community-based studies

1. Personal interviews
2. Hospital records
3. Disease registry records
4. Death certificates
5. Census data

3.2. Community-Based Studies

Occupational exposure effects can also be examined in studies con-
ducted in the general population. Case—control studies of hospital-
ized patients or of patients identified from disease registers and sur-
veys of occupations recorded on death certificates are some
examples of this type of investigation. (Community- and registry-
based studies are described further in Chapters 3 and 6.) Some of
the common exposure data sources are listed in Table 2—6. In gen-
eral, exposure data are less detailed in such studies than in industry-
based studies either because of a lack of exposure measurement or
because occupational exposures may be of secondary research inter-
est. Nonetheless, such studies can provide valuable leads for more
intensive investigations of specific occupational groups.

Perhaps the crudest approach to evaluating associations of dis-
ease risk with occupations in a community-based study is to compare
disease rates between geographic areas rated according to the
extent of industrial activities of various types. Data on industrial
location and production can be obtained from census or Labor
Department publications. This approach is known as an ecological
study because the units of "exposure" pertain to geographical areas
rather than to individuals. Ecological studies have well-recognized
shortcomings, such as lack of exposure specificity and biases due to
selective migration (Morgenstern, 1982). Ecological studies are
most informative when particular industries are highly concentrated
geographically, but such studies usually provide the weakest evi-
dence of causality. They will not be discussed further.

An alternative approach is the death certificate survey, in which
occupations recorded on death certificates are compared between
persons dying from specific diseases and all remaining deaths (Mil-
ham, 1983). This method is essentially a case-control study (see
Chapter 3). The occupations can be categorized simply by type (e.g.,
farmers, machinists, health care providers) or by specific exposures
(e.g., asbestos, arsenic, electrical fields). The principal limitation of
death certificate studies is that the occupation listed on a death cer-
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tificate often represents only the final or "usual" job and may be a
poor indicator of lifetime exposure. Also, reporting of occupation
by next of kin can be a source of error (Steenland and Beaumont,
1984).

In some U.S. cities commercial city directories provide informa-
tion on occupation and industry of employment for residents of
working age (18 years and older). Identification of specific employ-
ers is an improvement over death certificate data, which generally
provide only type of industry and occupation (Roush et al., 1982;
Steenland et al., 1987).

In England and Wales linking of census data with social class and
occupational data contained on death certificates permits the cal-
culation of disease rates for specific occupational groups. Rates can
be computed for over 200 occupation units, which distinguish such
jobs as firemen and policemen, or for 20—30 occupation orders, which
arc groupings of occupation units (Office of Population Censuses
and Surveys, 1978). This method of job categorization has been
adapted for use in other countries (Pearce and Howard, 1987).

Methods for categorizing occupations with respect to specific
agent exposures have been devised for use in community-based
case-control studies (Hoar et al., 1980; Pannett et al., 1985; Sie-
miatycki et al., 1986). These approaches involve compiling lists of
industries and component jobs and linkage with exposure ratings
for classes of agents or, in some cases, specific substances.

Example 2.4

Hoar and co-workers (1980) devised a system of exposure rating for use in com-
munity-based studies of cancer etiology. In this system, five-digit occupation codes
were generated, where the first two digits reflect Standard Industrial Codes
assigned by U.S. Department of Commerce (1970) and the last three digits desig-
nate tasks or industrial processes (U.S. Department of Labor, 1965). For example,
knitters and tailors in the textile industry would be assigned codes of 10—789,
where 10 indicates the textile industry and 789 designates knitting or tailoring
tasks. Known and suspected chemical carcinogens and related substances were then
linked to the five-digit occupation codes following a comprehensive literature
review of industrial processes and chemical carcinogens. Where possible, an ordi-
nal exposure rating indicating "heavy," "moderate," or "light" was assigned to an
occupation-agent combination. Table 2-7 presents an example of the exposure
rating for specific chemicals encountered in carpentry occupations in the construc-
tion industry. A computer file containing the exposure ratings, by occupation, was
ultimately generated and has since been used in several epidemiologic studies.
Hinds et al. (1985) applied an adapted version of this rating scheme in their study
of occupational risk factors for lung cancer. The rating was simplified to a 0,1,2
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Table 2-7. Linkage of occupations with exposure ratings for chemical car-
cinogens: carpentry in the construction industry

Agent

Azo compounds
Oil orange SS

Phenols
Creosote

Aromatic hydrocarbons
Coal tar and pitch
Petroleum, coke tar, and pitch

Aliphatic compounds
Water in soluble carbon polymers
Polysiloxancs

Metals
Chromium

Minerals
Asbestos

Physical agents
Wood dust
Ultraviolate radiation

Source: Hoar et al. (1980).

Exposure rating

Moderate

Moderate

Moderate
Moderate

light
Light

Heavy

Moderate

Heavy
Moderate

scale, denoting, respectively, "no," "light," and "heavy" exposure. Some results of
their analysis with respect to suspected lung carcinogens are presented in Table
2-8.

Exposure linkage systems of the type described earlier may not
provide sufficient detail when there are specific hypotheses to be
tested in a community- or registry-based study. Instead, questioning
study subjects about the frequency and duration of contact with cer-
tain substances may be more informative.

Table 2-8. Relative risks for lung cancer associated with exposure to specific substances:
example of exposure data in a community-based case-control study

Agent

Coal tar and pitch
Petroleum, coke pitch, and tar
Arsenic
Chromium
Asbestos
Nickel
Beryllium

Relative risk"

Low-moderate exposure

1.15
1.18
1.16
1.51
1.02
1.66
1.62

Heavy exposure

1.94
2.04
1.24
0.87

12.06
1.56
1.57

Source: Hinds et al. (1985).

"Odds ratio relative to non-exposed category, adjusted for smoking habits.



Example 2.5

In a case-control study by Hoar et al. (1986), non-Hodgkin's lymphoma cases and
controls selected from the community were questioned about the frequency and
duration of use of phenoxy herbicides as part of a series of questions regarding
farming practices. Subjects were asked also to identify names and locations of com-
panies where herbicides were purchased. The investigators contacted the suppliers
to verify reported herbicide purchases. Table 2-9 shows comparative data on the
duration and frequency of use of one herbicide, 2,4-dichlorophenoxyacetic acid.
Increasing gradients of risk for non-Hodgkin's lymphoma were detected with both
duration and frequency of use.

Exposure data obtained by self-reporting may be prone to report-
ing bias if the subjects have particular reasons to give erroneous
answers. (See Chapter 4 for a discussion of sources of bias.) Ques-
tionnaires and in-person interviews generally offer more detailed
exposure information in community-based studies than routinely
recorded data that may be abstracted from hospital records or death
certificates. In any case, it is nearly impossible to derive quantitative
estimates of intensity, cumulative exposure, or dose in community-
based studies. These objectives are more readily achieved in indus-
try-based studies.

4. CLASSIFICATION OF EXPOSURE LEVELS

The unifying concept of all occupational epidemiologic research is
the comparison of disease rates between groups of individuals clas-
sified according to exposure levels to estimate dose—response rela-
tionships. Methods for analyzing the data from various epidemio-
logic designs are described in Chapters 5-7. In this section we
consider briefly the approaches for summarizing exposure data to
be used in the analysis. We focus attention on the following topics:
(1) classifying exposures specifically for biological targets and (2)
combining exposure data from sources that differ in type and
quality.

4.1. Exposure Classification for Specific Biological Targets

Many toxic substances can enter the body by more than one route,
although typically one route is predominant. Thus, although we
might be interested in estimating a worker's potential exposure
delivered from all relevant routes, we are usually restricted in this

38 Research Methods in Occupational Epidemiology
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Table 2-9. Non-Hodgkin's lymphoma in relation to duration and fre-
quency of 2,4-dichlorophenoxyacetic acid use: example of community-
based study

Never farmed
Duration of use (years)

1-5
6-15
16-25
>25

Frequency of use (days/year)
1-2
3-5
6-10
11-20
>20

Cases

37

3
7
8
6

6
4
4
4
5

Controls

286

16
22
15
17

17
16
16
9
6

Relative riska

1.0

1.3
2.5
3.9
2.3

2.7
1.6
1.9
3.0
7.6

Source: Hoar et al. (1986).
"Odds ratio relative to "Never farmed" category.

effort because of incomplete knowledge of uptake and metabolism
or by meager measurement resources. As a result, body burden and
dose estimates suffer from imprecision. The imprecision is propor-
tional to the contribution of the unmeasured exposures (e.g., from
various routes not considered). Biological monitoring for exposures
is advantageous because it permits estimation of doses or budens
from exposures through all relevant portals of entry. If concentra-
tions measured in one environmental medium (e.g., air) are directly
proportional to those in the unmeasured media (e.g., liquid), then
the shape of the exposure—response relationship will be valid, but
the effect per unit concentration of the measured environmental
medium will be overestimated because total exposure is underesti-
mated. Thus, problems of exposure misclassification arise when
direct proportionality does not hold.

To illustrate, consider classification of trichloroethylene (TCE),
which is a solvent used for degreasing and cleaning. The principal
route of absorption from occupational exposures is inhalation of
vapors (Browning, 1965), although percutaneous absorption of the
liquid form also can occur, resulting in significant exposure (Sato
and Nakajima, 1978). Air concentrations of TCE can be readily
measured. However, without performing pharmacokinetic studies,
which are not practical in most instances, it is virtually impossible to
derive quantitative estimates of dermal uptake. An exposure classi-
fication scheme relying on airborne concentrations of TCE would
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be acceptable for an epidemiologic study of, say, neurotoxicity or
liver toxicity, if air concentrations and dermal concentrations were
directly proportional to each other. However, air and dermal expo-
sures are not always directly proportional. For example, dermal
exposures may exceed air levels for workers who come into contact
with liquid TCE, and the opposite may be true for workers who are
only in contact with TCE vapors. As a result, dose estimates based
on air concentration measurements would be incorrect for workers
handling the liquid form.

Where possible, separate exposure ratings for jobs and tasks
within an industry should be constructed for each of the important
routes of exposure. As mentioned earlier, it is uncommon to have
measurements available for more than one exposure route. Conse-
quently, measurement data may have to be combined with ordinally
assigned ratings based on task descriptions and judgment. If an
overall exposure rating scheme is desired (e.g., to reflect "systemic
doses"), then the data can be combined into a crude overall classi-
fication scheme using ordinal rankings. Alternatively, the integrity
of the quantitative measurement data can be preserved by stratifi-
cation with respect to the ordinally ranked variables. To illustrate,
consider again the problem of assigning exposure ratings for tri-
chloroethylene where air concentrations are available but where
dermal exposures can only be ranked as "low," "moderate," and
"high." Workers would be classified first into categories of dermal
exposure and then assigned their average values of airborne TCE
intensity or cumulative exposure levels. Cross-classification of expo-
sure levels can become quite complicated when there are multiple
exposure routes or when workers move between levels over time.

4.2. Combining Exposure Data from Various Sources

The types and quality of exposure data often vary in epidemiologic
studies. Data may vary within one plant, especially when the study
spans long time periods. Data may also vary when combined from
multiple occupational settings, such as an industrywide analysis that
includes numerous facilities (Marsh, 1987).

There are several ways to handle diverse sets of exposure data.
The most extreme (purist) approach is to restrict the study to work-
ers with the most detailed measurement values. This is most justifi-
able when the study objective is to obtain the most valid estimate of
the effect per unit of exposure, as would be the case if the results
were to be used for risk assessment. In general, the precision of
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derived risk estimates is proportional to the number of subjects
studied; however, validity is also improved by reducing measure-
ment error in the exposure data. Thus, an analysis restricted to
workers with quantitative exposure data reduces measurement
error, but at the expense of study size. Therefore, the loss in num-
bers of subjects (and, hence, precision) from the exposure-
response analyses needs to be considered against the potential gain
in quantitative exposure information (and, hence, validity).

At the other extreme, one might include in the study all subjects
with the minimum usable exposure information. The hazard of this
approach is that exposure misclassification may result, thus compro-
mising the study's validity. For example, consider a study of coro-
nary heart disease incidence among workers exposed to carbon
disulfide in three plants producing viscose rayon. At one plant the
exposure data consist of measured concentrations of carbon disul-
fide from which cumulative exposures can be estimated. At the sec-
ond plant limited area sampling data permit workers to be classified
into "low," "moderate," and "high" exposure groupings, where
approximate estimates of average concentrations can be made for
the three categories. At the third plant no measurement data exist,
although workers could be assigned into ordinal exposure catego-
ries based on a subjective rating of job assignments. If we follow the
first approach, then the analysis would be limited to workers from
the first plant. The second approach would involve including work-
ers from all three plants and categorizing them according to a com-
mon scheme of ordinally ranked exposure strata. This second
method would diminish the precision of the study results if "low,"
"moderate," and "high" represent different true concentrations at
the three sites, although this approach would not introduce bias
into the study if the scaling of the ratings is the same at all facilities
(e.g., "moderate" is twice as intense as "low" at each plant). The
lack of measurement data for the third plant prevents a verification
of the appropriateness of pooling data across all facilities. A com-
promise strategy is to include all workers for whom exposure esti-
mates can be combined on at least a semiquantitative basis. In this
example, we would combine data from the first two plants because
some numerical scaling can be applied to both; workers from the
third plant would be excluded, however.

No universally accepted guidelines exist for data pooling. The
extent to which investigators are willing to combine diverse sets of
exposure data depends on how much variability exists in the data
and on the objectives of the research. In general, we recommend
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that the subset of subjects with the most detailed and accurate expo-
sure data be analyzed separately. The results will be informative and
will give some indication, albeit approximate, of the findings that
would have been seen if data of similar detail and scope had been
available for all study subjects.

5. SUMMARY

Estimation of exposure— or dose—response relationships between
occupational exposures and disease risks requires that the work-
place environment be characterized as thoroughly and precisely as
possible. Identification of the types, sources, and routes of exposure
is the first step in understanding potential health hazards. Next,
environmental concentrations for specific substances are estimated
from available data sources. Ultimately, these concentrations are
linked with workers' employment histories to derive dose estimates,
either on an overall (total body) basis or for individual biological
targets. Doses, which are the amounts of substances that reside
within target sites during specified time intervals, cannot be esti-
mated directly in most instances. Instead, we have to rely on expo-
sure concentrations as surrogates for dose rates. Cumulative expo-
sure, which combines concentrations with durations, is the most
commonly used surrogate for dose. Exposure concentration and
cumulative exposure are valid surrogate measures, provided that
they are directly proportional to dose rates and doses, respectively.

In industry-based studies, directly measured environmental con-
centrations obtained from industrial hygiene or health physics mon-
itoring surveys are the best sources for dose estimation. However,
monitoring data may not represent true average concentrations
when sampling is performed strictly to satisfy compliance testing
requirements; data from compliance sampling often overestimate
typical (average) exposure levels. Ordinal rankings of jobs, tasks, or
work areas are necessitated when measurement data are not availa-
ble. Employment personnel records are the most common link
between environmental data and estimates for individual workers.
Biological monitoring can provide ancillary information.

Community-based studies of occupational risk factors tend to
yield less accurate exposure data than industry-based studies.
Sources of data in these studies include death certificates, hospital
and disease registry records, and questionnaires. Questionnaires
generally offer the most detailed occupational history data in com-
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munity-based studies and are particularly useful when the responses
can be verified by other data sources, such as employment records.

Combining exposure data of varying degrees of detail and accu-
racy from multiple sources is an issue that must be confronted in
some studies. When the research objective is to derive valid approx-
imations of dose-response relationships for risk assessment, it is jus-
tifiable to restrict the analysis to workers for whom the most accu-
rately quantified data are available. The loss in study subjects would
have to be counterbalanced by at least a commensurate reduction
of measurement error in order for this approach to be worthwhile.
More permissive strategies allow for data pooling and an analysis
using less accurate exposure estimates. Data pooling should be
guided by judgments as to how likely exposure ratings from differ-
ing sources will be in agreement. Inappropriate pooling will result
in bias caused by exposure misclassification.

Glossary

burden Amount of a substance residing in the body (or organ) at a point in time.
concentration Amount of a substance per unit of environmental medium; also

termed intensity.
cumulative exposure Summation of products of concentrations and the time

intervals during which they occurred.
dose Amount of a substance that resides in a biological target during some spec-

ified time interval.
exposure Presence of a substance in the workplace environment.
job-exposure matrix Classification of substance concentrations or exposure rat-

ings for individual work areas, jobs, or tasks; often includes a time dimension.
retention Persistence of substances in the body; influenced by rates of uptake,

metabolism, and clearance.
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3 Overview of Study Designs

1. OVERVIEW

This chapter provides an overview of the various study designs used
in occupational epidemiology. Chapters 5-7 present in detail meth-
ods for planning, implementing, and interpreting the results of such
studies. This chapter describes the relative advantages and limita-
tions of the various design options in reference to the types of
health conditions to be investigated.

The discussion emphasizes the connections between various study
designs. These connections pertain primarily to the causal infer-
ences that can be drawn from occupational epidemiology studies
and secondarily to the temporal sequencing of data collection and
observation of health outcomes. As we will show, all occupational
epidemiology studies are conceptually the same insofar as the objec-
tive is to examine relationships between causal exposures and health
risks, where exposure necessarily precedes the health outcome. The
distinctions between study designs are primarily attributable to vari-
ations in the availability of data and the feasibility of study conduct.

2. CASE SERIES

Historically, the recognition of an apparently excessive number of
cases of disease among a worker population has been the motivation
for conducting formal epidemiologic investigations to assess
whether the excess is due to occupational hazards. When inquiry
goes no further than mere identification and reporting of a disease
cluster, the study is referred to as a case series report. Disease cluster
reporting frequently emanates from workers or physicians who per-
ceive an unusual occurrence of a certain disease or injury among
the workforce as a whole or among some segment of the workforce
(e.g., job category).

46
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Example 3.1

In 1974 two physicians (Creech and Johnson, 1974) noted three cases of hepatic
angiosarcoma among workers at a vinyl chloride polymerization factory. Angiosar-
coma of the liver is a very rare disease in the United States under any circumstance.
Thus, the occurrence of even a small number of cases provided reasonable evi-
dence to implicate the characteristic exposure, vinyl chloride, as the etiologic fac-
tor. Subsequent epidemiologic investigations of a more formal nature (Waxweiler
et al., 1976) confirmed the suspected association.

Case series reports are particularly informative in situations
where there are occurrences of very rare conditions for which there
are few, if any, established causal factors. When there is only one
clearly established risk factor for a disease, such as hepatic angio-
sarcoma and vinyl chloride (Example 3.1) or asbestos and malignant
mesothelioma (IARC, 1980), the occurrence of even one case can
sometimes be invoked as prima facie evidence of exposure to the
putative causal agent.

Apparent disease clusters can be misleading occasionally because
the frequency of occurrence of a rare disease is expected to follow
a random distribution in space and time, and a random distribution
necessarily includes clusters of events. This means that the fre-
quency of disease ordinarily does not follow a uniform pattern over
time. Enterlinc (1985) demonstrated very effectively with a table of
random digits that there are clusters embedded within the random
distribution. The implications of this phenomenon are that workers,
industrial medical staff, and epidemiologists need to be aware that
some apparent disease clusters may be unremarkable events that
may have little or nothing to do with hazardous exposures.

3. COHORT STUDIES

The study of diseases less rare than hepatic angiosarcoma or malig-
nant mesothelioma typically requires more formal epidemiologic
methods. Cohort studies, among all of the epidemiologic study
designs, are most accepted by the scientific community. This is
because cohort studies generally include the entire available study
population. Also, cohort studies most closely resemble the standard
experimental strategy of administration of a toxin to disease-free
subjects, follow-up over time, and observation of adverse health
effects among exposed and non-exposed groups.

Occupational cohort studies require the enumeration and follow-
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up of a population of workers, with the objective being to estimate
the risks of various diseases among the worker cohort relative to
background risks among persons not exposed to the same environ-
mental factors. The terminology for cohort studies regrettably has
become confusing, as epidemiologic nomenclature is not standard-
ized (Last, 1983). Throughout this book we distinguish between two
types of cohort studies, prospective and historical designs. Both types
of cohort study share common design characteristics of follow-up of
a cohort of workers selected on the basis of exposure status and
observation of disease frequency over time.

3.1. Prospective Cohort Studies

In a prospective cohort study the cohort is enumerated at the time
the study is being conducted (i.e., the present), and follow-up pro-
ceeds into the future. The rates of disease occurrence among the
cohort usually are compared with prevailing rates in the national or
regional (e.g., state or province) population to determine which dis-
eases are occurring more or less frequently among the workers.
Comparisons can also be made between subgroups of the cohort
classified according to exposure type or level. Often the compari-
sons of disease rates in the cohort with rates in the national or
regional population take the form of Standardized Mortality (Mor-
bidity) Ratios (SMRs), which express the ratio of the observed num-
ber of cases of a given disease among the cohort to the number of
cases expected among the cohort, where the latter is based on rates
among the reference population.

Example 3.2

Schottcnfcld and colleagues (1981) performed a prospective cohort study of the
incidence and mortality from cancer and other diseases among a cohort of petro-
leum industry workers from 1 9 companies in the United States. This investigation
was motivated by concerns about possible disease excesses related to exposures to
benzene, coke operation emissions, and chemicals associated with asphalt. A
worker population census was conducted in which actively employed workers and
living annuitants were enumerated. The cohort consisted of 76,336 white and
Spanish surname males who were employed at any time during January 1, 1977 to
December 31, 1979. Data on cancer incidence were obtained from a cancer report-
ing system developed for the study, and mortality data were obtained from death
certificates. SMRs for cancer incidence were derived from comparisons of site-spe-
cific cancer observed and expected numbers of cases, where the expected numbers
were estimated from rates published by the National Cancer Institute Surveillance,
Epidemiology and End Results program (Young et al., 1981).
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Table 3-1. Cancer incidence among U.S. petroleum industry workers

Refinery workers
Cancer site

All cancers
Colon
Rectum
Stomach
Larynx
Lung
Leukemia
Multiple myeloma
Hodgkin's disease
Non-Hodgkin's lymphoma
Kidney
Prostate
Bladder

Obs

240
28

7
5

12
55
11
2
4
7
8

21
10

Exp

278.7
24.1
14.0
8.6
9.4

67.6
7.6
3.1
3.6
9.6
8.5

24.8
17.7

RR"

0.86
1.16
0.50
0.58
1.28
0.81
1.45
0.64
1.10
0.73
0.94
0.85
0.57

Petrochemical
workers

Obs

44
6
3
0
3

11
0
3
1
0
2
5
3

Exp

50.9
4.3
2.4
1.5
1.6

11.7
1.5
0.5
0.9
1.9
1.6
3.9
3.1

RRa

0.86
1.40
1.23
0
1.83
0.94
0
5.52
1.06
0
1.28
1.28
0.96

Source: Schottenfeld et al. (1981).
aStandardized incidence ratio, based on U.S. incidence rates.

Prospective cohort studies, although theoretically desirable
approaches for studying cause-and-effect relationships, are infre-
quently used in occupational studies of cancer and other chronic
diseases. This is because prospective cohort studies of diseases that
have long induction and latency periods require very long periods
of follow-up of large populations, thus engendering substantial
costs of time, money, and effort. These costs become prohibitive
when the health outcome of interest is a "rare" disease. By rare, we
mean that less than 5 (or more typically less than 1) percent of the
population will develop the disease during the study period. For
example, most cancers, even the more common types, such as lung
or colon cancer, occur at rates on the order of 50-200 per 100,000
persons per year.

One means of avoiding the problem of excessively prolonged fol-
low-up of a cohort is to include a very large population in the study,
as Schottenfeld et al. (1981) did in their study of petroleum industry
workers (Example 3.2). The difficulty that arises here is that study-
ing a larger number of workers for a shorter time is costly.

Table 3-1 displays observed and expected cancer incidence for the years when
follow-up occurred, 1977-79. The results are presented separately for refinery and
petrochemical workers. The numbers of observed cases for many cancer sites are
small (<5), although there are suggestions of relative excesses of laryngeal cancer
and multiple myeloma among the petrochemical workers.



Example 3.3

Toluene diisocyanate (TDI) is rccognized as a respiratory irritant capable of caus-
ing pulmonary impairment and immunologic disturbances in exposed persons.
Diem et al. (1982) used the opportunity of the opening of a new TDI manufactur-
ing plant to obtain baseline measurements and subsequent determinations of
health status among workers at the plant. The investigators obtained health data
on respiratory symptoms, pulmonary function, and immunologic tests for 168
workers first hired in 1973, and they added similar data for these workers and 1 09
newly hired workers during the succeeding four years. Their study was accompa-
nied by an industrial hygiene monitoring survey that provided environmental mea-
surements of TDI. Health data were obtained from study subjects at annual
intervals.

Table 3-2 gives the results of the average annual change in forced expiratory
volume in one second (FEV,) for workers classified according to cumulative expo-
sure levels (ppb-months of TDI), and stratified by smoking categories and average
FEVa/height3 (in meters). The findings indicate a consistent effect of cumulative
TDI exposure, with the most pronounced differences occurring among
nonsmokcrs.

Table 3-2. Average annual change (mL/yr) in forced expiratory volume in 1 second (FEV,)
among workers exposed to toluene diisocyanate.

FEV,/hts > 550 FEV,/ht3 < 550
exposure (ppb- exposure (ppb-

months) months)
Smoking category

Never
Previous
Current

<68.2

1
~12
-26

>68.2

-37
-15
-37

<68.2

-18
-32
-46

>68.2

-57
-35
-57

Source: Diem et al. (1982).
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Sometimes, however, a prospective cohort study is the method of
choice. Perhaps the best example is the study of changes in health
status or physiologic functions that occur over a relatively brief span
of time and are consequences of occupational exposure. The time
span can be several years, as in a study of pulmonary function
decline among firefighters (Musk et al., 1979), or it can be as brief
as a single work shift, as in a study of pulmonary function changes
during the course of a day in relation to cotton dust exposure (Mer-
chant et al., 1973).

Example 3.3 illustrates the utility of a prospective cohort design
for examining effects of occupational exposures on physiologic

FEV, level
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changes during a reasonably short time period. (Five years may
appear to be a long time interval, but most epidemiologic studies,
irrespective of design, seldom can be completed in less than two
years.)

Medical surveillance of occupational populations is a special
application of the prospective cohort design. Here a currently enu-
merated cohort is followed into the future, and measurements of
health status and the occurrence of diseases of interest are
recorded. In fact, both Examples 3.2 and 3.3 are types of medical
surveillance; the former is concerned with cancer incidence and
mortality, and the latter focuses on specific physiologic responses.
Diem et al.'s study in Example 3.3 is an especially effective use of
prospective surveillance in that the cohort contained all workers
first hired at a new facility, thus permitting a clear picture of health
effects that probably could be ascribed to the workplace. More com-
monly, surveillance programs are initiated on a cohort of workers
with varying lengths of past employment and exposures (Pell et al.,
1978).

The focus of prospective surveillance can be very narrow, such as
the pulmonary effects of a particular substance, or it may be wide,
such as monitoring the morbidity and mortality patterns for a wide
range of health outcomes.

3.2. Historical Cohort Studies

The goal of many occupational epidemiology studies is to detect
altered rates of diseases of low incidence. Prospective cohort studies
are relatively inefficient for this purpose, whereas the historical
cohort design offers a very useful alternative for studying such con-
ditions. In a historical cohort study, a cohort of workers is enumer-
ated as of some time in the past, and the cohort is then followed
over historical time to estimate disease rates for comparative anal-
yses. Thus, the investigator is afforded the luxury of following and
making observations on a cohort for periods extending across dec-
ades without incurring the tremendous monetary and time expenses
usually involved in prospective studies.

The basic study design features of historical cohort studies are
identical to those of prospective cohort studies. The rates of disease
among a population initially free of disease are estimated for the
follow-up interval. Comparisons of these rates are then made
against prevailing rates in a non-exposed population, such as the
national or regional population, and secondarily, comparisons are
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made between subgroups of the cohort, classified according to
exposure type or level.

The advantage of the historical cohort design should be evident
from Example 3.4, where the investigators were able to study a
cohort of nearly 14,000 workers traced for some 40 years. Achiev-
ing similar results in a prospective design would be impossible.

Historical cohort studies do have drawbacks, however. The first
is that data required to reconstruct a historical cohort may not be
available or may be incomplete. For example, it might be desirable
to examine the mortality patterns of underground metals miners
employed during the early years of the twentieth century, when
exposures likely were poorly controlled, but employment records
necessary for cohort reconstruction may not have been archived
until the 1950s. Interviewing plant personnel or management can
provide information on relative exposure rankings for various jobs

Table 3-3. Observed and expected mortality among asbestos friction materials manufac-
turing workers

Cause of death

All causes
Lung and pleural cancer
Gastrointestinal cancer
Other cancers
Other causes

Obs

1339
151
103

77
1008

Men

Exp

1361.8
139.5
107.2
87.7

1027.4

Women

Obs/Exp

0.98
1.08
0.96
0.88
0.98

Obs

299
8

29
51

211

Exp

328.0
11.3
27.4
60.0

229.3

Obs/Exp

0.91
0.71
1.06
0.85
0.92

Source: Berry and Newhousc (1983).

Example 3.4

Berry and Newhouse (1983) assembled a historical cohort of 13,425 workers
employed during the years 1 941-80 in a factory that produces asbestos-containing
friction materials. The cohort consisted of 9,087 men and 4,338 women workers.
Follow-up was conducted for the years 1942-80, during which time 1,339 male
and 299 female workers died. Mortality comparisons were made on a cause-specific
basis by means of contrasts of observed numbers of deaths among the cohort
against expected numbers, based on death rates for England and Wales during the
years of follow-up.

Table 3-3 contains the observed and expected numbers of deaths for selected
diseases among workers who had achieved at least ten years of employment. These
results pertain to the time period of ten and more years after the ten years of expo-
sure were achieved. The findings reported for respiratory and gastrointestinal can-
cers arc particularly noteworthy insofar as they suggest no substantial hazards from
asbestos exposure in this particular setting.
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and tasks. However, use of interview information may introduce
bias into the study if exposure judgments are influenced by knowl-
edge of the occurrence of disease among workers in certain jobs.
Another limitation, which will be discussed at greater length in
Chapter 5, is that historical cohort studies usually are restricted to
the investigation of fatal diseases. Data on mortality are routinely
recorded in most countries, but data on nonfatal diseases are avail-
able only when special efforts have been made to document work-
ers' health; comparative morbidity data for non-exposed popula-
tions are seldom available.

3.3. Subcohort Analysis

Occupational cohort studies in which disease rate comparisons are
made with rates in an external comparison (non-exposed) popula-
tion, such as the national population, indicate which diseases occur
more or less frequently among the workforce. The next level of
analysis involves the identification of specific high-risk exposures or
jobs. This endeavor requires subdividing the cohort into groups
defined on the basis of commonality of exposure level or job type.
Comparisons of disease rates between component subgroups of a
cohort are referred to as subcohort analyses. A subcohort analysis can
be performed in either a prospective or historical cohort study.

Example 3.5

In 1962 Lloyd and Ciocco (1969) initiated a historical cohort mortality study of
59,072 steelworkers from seven plants in the United States. Follow-up was con-
ducted for the years 1953—62. Preliminary analyses revealed excess rates of lung
cancer among the cohort in comparison with the local county population, and a
roughly twofold excess among workers in the coke plant relative to the entire steel-
worker cohort (Lloyd et al., 1970).

Subcohort analyses were performed to identify further high-risk groups within
the cohort (Lloyd, 1971). Table 3-4 gives the lung cancer mortality results for sub-
cohorts of coke plant workers, defined on the basis of job assignment and duration
of employment. Relative risk estimates (SMRs) were computed using the rates
among all steelworkers for comparison. The greatest excesses occurred among
workers employed for five or more years in coke oven jobs (SMR = 3.55), and in
particular, among the subcohort of employees who worked for five or more years
at the topside of the coke ovens (SMR = 10.00). These findings suggest a strong
etiologic link with exposure to the emissions of combustion products from coke
ovens.

Subcohort analyses should be performed whenever the available
exposure data permit classification of workers into two or more
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Table 3-4. Lung cancer mortality among steelworkers in relation to job
category

Job category/duration (yr)

All coke plant/5 +
Noncoke oven/5 +
All coke oven/5 +
Coke oven, never topsidc/5 +
Coke oven, topside/<5
Coke oven, topsidc/5 +

Obs

29
1

27
6
6

15

Expa

13.6
5.3
7.6
4.1
2.1
1.5

Obs/Exp

2.13
0.19
3.55
1.46
2.86

10.00

Source: Lloyd (1971).

aExpected deaths based on rates for all steelworkers.

quantitative or qualitative categories. One may have to perform sub-
cohort analyses for selected diseases if resources are limited (e.g.,
computer costs may be a limiting factor). In this instance, subcohort
analyses should be conducted for diseases for which there are over-
all mortality or morbidity excesses, as well as for diseases that are of
a priori interest because of findings from previous research. A thor-
ough subcohort analysis with respect to job or exposure history
requires a large effort by the investigators and is usually costly. In
the steelworkers study from Example 3.5, the coding of work history
records for 59,000 cohort members involved a major investment of
money and personnel effort. Fortunately, there are alternative epi-
demiologic methods suitable for investigating associations between
diseases and specific exposures in an occupational setting. The
case-control design is the best developed of these and is considered
next.

4. CASE-CONTROL STUDIES

The main reason for the high cost of evaluating associations of dis-
ease with exposures in an occupational cohort study is that the
cohort design requires obtaining exposure data on a large number
of subjects of which only a small proportion typically develops the
disease(s) of interest. The case-control design reduces costs by lim-
iting exposure assessment to cases of disease and a sample of the
cohort that generated the cases.

Case—control studies provide estimates of relative risks (odds
ratios). This is accomplished by comparing the past exposure his-
tories of persons with the disease(s) of interest (cases) with those of
persons who were free of disease(s) at the times the cases occurred
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(controls). The case-control design was originally developed as a
convenient alternative to prospective cohort studies of chronic dis-
eases (Cornfield, 1951; Mantel and Haenszel, 1959). Thus, case-
control studies mitigate the difficulties of following a large cohort
(and obtaining exposure data for all subjects) by selecting persons
who already have developed the disease of concern. The cost effi-
ciency of the case—control approach is especially attractive because,
when used properly, case-control studies yield research findings
that are as valid as those obtained from cohort studies (Miettinen,
1976; Liddell et al., 1977; Cole, 1979).

4.1. Industry-Based (Nested) Case-Control Studies

Case-control studies have been particularly useful for investigations
of specific workplace hazards that cannot be studied efficiently with
cohort and subcohort analyses. For example, if we are interested in
studying the possible relationship between exposures to organic sol-
vents and leukemia among a cohort of 10,000 workers in the chem-
ical industry who were employed during a 30-year period, it might
be possible to reconstruct the exposure profiles for all 10,000
cohort members and then to conduct leukemia mortality rate com-
parisons between subcohorts classified with regard to exposure
level. A more efficient alternative would be to restrict the analysis
to the leukemia deaths, identified during follow-up of the cohort,
and a sample of other workers who were free of leukemia at the
times when the leukemia deaths occurred.

Example 3.6

From Example 3.4 we saw that the results of Berry and Newhousc's (1983) histor-
ical cohort mortality study of asbestos friction materials manufacturing workers
evidenced no overall suggestion of a lung cancer excess. The predominant type of
asbestos used in the plant was chrysotile, which is generally considered to have less
carcinogenic potential than the other two major commercial fiber types, amosite
and crocidolite (Craighead and Mossman, 1982). However, there were two brief
periods when crocidolite asbestos was used in the production of railway blocks,
although only a minority of the workforce was believed to have been exposed to
crocidolite. In order to determine whether there had been localized hazards result-
ing from crocidolite exposure, the investigators conducted a case—control study of
pleural mesothelioma. (The rnesotheliomas are the cancers most clearly linked to
asbestos exposure.) The ten cases of mesothelioma were each matched with four
worker controls with respect to gender, year started in the factory, birth year,
length of survival (as long as the case), and period of employment at the factory
when crocidolite was in use. The results of the case-control analysis are shown in
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Table 3-5. Case-control analysis of pleural mesothelioma
and crocidolite asbestos exposure in a friction materials plant

Exposure to crocidolite

Cases
Controls

Definite

8
3

Fringe

1
7

None known

1
80

Total

10
40

Source: Berry and Newhouse (1983).

Table 8—5. Eight of the ten cases, compared with three of the 40 controls, had had
"definite" contact with crocidolite asbestos. This finding has particular significance
in view of the lack of overall cancer mortality risks among the cohort. The specific
association with crocidolite would have gone undetected had the investigators not
performed an in-depth analysis.

Case-control studies of the type exemplified in Example 3.6 are
frequently referred to as "nested," in that they are embedded
within the framework of an occupational cohort (Kupper ct al.,
1975). Nested case-control studies have gained popularity in occu-
pational epidemiology, as the advantages of studying multiple work-
place exposures in an efficient manner have become better
recognized.

Example 3.7

Wilcosky and co-workers (1984) conducted a nested case—control study of rubber
industry solvent exposures in relation to a number of malignant diseases. A histor-
ical cohort study of 6,678 male rubber industry workers from one plant previously
had demonstrated mortality excesses of non-Hodgkin's lymphomas (lymphosar-
corna and reticulosarcoma), lymphocytic leukemia, stomach cancer, and prostate
cancer (McMichael et al., 1974). The cases in Wilcosky's study were deaths from
these diseases, and controls were a 20-percent random sample of the cohort. Jobs
within the industry were rated with respect to 20 different solvents, including ben-
/ene, which historically has been the most strongly suspected carcinogen (Aksoy,
1980). As shown in Table 3—6, several solvents bore strong statistical associations
with lymphosarcoma and lymphocytic leukemia, the most prominent of which were
carbon tetrachloride and carbon disulfide. No consistent associations emerged for
either stomach or prostate cancer.

4.2. Registry-Based Case-Control Studies

If a well-defined occupational cohort cannot be enumerated, a
case—control study may be based on a particular disease registry.
The "registry" could consist of a population-based disease registry
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Table 3-6. Case-control comparisons of solvent exposures among rubber industry
workers

Cancer site

Stomach

Solvent

Gasoline
Specialty

naphthas
Benzene
Ethanol
Carbon

tetrachloride
Xylene
Carbon disulfide
Ammonia
Ethyl acetate
Acetone
Hexane
Solvent "A"''
Isopropanol
Phenol
VM&P naphtha
Trichloroethylenc
Heptane
Toluene
Dipentene
Perchloroethylene

Obs

18

18
12
8

7
3
8
2
1
1

11
15
14
6
3
5
6
1
2
1

RR"

1.0

1.1
1.3
1.1

0.8
0.5
1.2
2.1
—
—
1.2
1.4
1.4
1.4
1.1
1.0
1.3
—
1.3
—

Prostate

Obs

20

18
11
8

12
8

11
1
5
4

13
13
12

2
4
3
3
3
0
1

RR

1.0

0.9
0.7
1.0

1.3
1.5
1.5
—
1.9
1.7
1.5
1.0
1.0
0.4
1.6
0.6
0.6
2.6
—
—

Lympho-
sarcoma

Obs

6

6
6
1

6
4
6
0
1
1
6
6
6
0
1
3
3
0
0
1

RR

1.2

1.4
3.0
—

4.2
3.7
5.6
—
—
—
4.0
2.6
2.9
—
—
2.4
2.3
—
—
—

Lymphocytic
leukemia

Obs

9

8
4
4

8
4
7
1
3
3
7
7
6
1
3
2
2
2
1
1

RR

5.3

2.8
2.5
2.0

15.3
3.2
8.9
—
5.3
6.8
4.0
2.8
1.8
—
2.9
0.8
0.9
3.0
—
—

Source: Wilcosky et al. (1984).
"Relative risk (odds ratio).
''Proprietary mixture of toluene and other solvents.

that includes all cases of specific disease categories, such as cancer
or birth defects. Alternatively, cases might be drawn from an ad hoc
registry based on records collected for other purposes, such as hos-
pital admissions, insurance claims, or disability pension awards.
Controls may be obtained from the source population for the reg-
istry. If the source population is difficult to enumerate or if there
are concerns about possible bias from selecting healthy controls,
controls may be sampled from registrants with other diseases. Stud-
ies of this general description can be thought of as registry based.

Example 3.8

Pearce et al. (1986) investigated the associations between occupational exposures
to agricultural chemicals and non-Hodgkin's lymphoma in New Zealand. The expo-s
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Table 3-7. Case-control study of non-Hodgkin's lymphoma and occupations and activities
involving potential exposure to chlorophenols

Occupation or
activity

Fencing as farmer
Fencing contractor
Sawmill or timber

merchant
Meat works

Pelt department
in meat works

Tannery

No. of
cases

exposed

33
4

10
19

4
2

Other cancer
controls

No. exposed

43
6

23
23

4
3

RR

1.9
1.4

0.9
1.9

2.3
1.3

General population
controls

No. exposed

71
5

32
39

6
9

RR

1.9
6.1

0.7
1.9

4.1
0.5

Source: Peartc ct al. (1986).

sures of greatest interest were the phcnoxyherbicides and chlorophenols, and
chemical and microbiological agents associated with meat works. The cases were 83
males aged 20-69 years when diagnosed with non-Hodgkin's lymphoma who were
identified from the files of the New Zealand Cancer Registry. Two sets of controls
were selected. The first consisted of 168 males with cancers of other types, also
identified from the cancer registry; the second set was made up of 228 males ran-
domly chosen from the New Zealand electoral roll. Cases and controls were similar
with respect to herbicide exposures, although strong associations with fencing and
meat works emerged (Table 3—7). The authors postulated that possible causative
exposures were arsenic and sodium pentachlorophenatc in fencing and 2,4,6-tri-
chlorophenol and/or zoonotic viruses in meat works.

Registry-based case-control studies of occupational exposures
are frequently performed when it is not possible or feasible to
assemble a cohort of workers in a particular occupation or profes-
sion (Houten et al., 1976). Farmers (as in Example 3.8) and auto
mechanics are two such examples. In most situations registry-based
case-control studies provide less detailed exposure data (often only
an industry or job title) and hence are less informative with respect
to characterizing exposure-response relationships than case-con-
trol studies nested within occupational cohorts. Often the best use
of registry-based studies is for screening hypotheses regarding occu-
pational exposures that may warrant more intensive inquiry in sub-
sequent industry-based studies.

5. PROPORTIONATE MORTALITY STUDIES

Sometimes it is impossible to enumerate a cohort either for pro-
spective or historical analysis but information exists on disease
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occurrence among members of the worker population. The most
common situation is when death certificates are available for
deceased company employees or union members but personnel
information that would be needed to conduct a cohort or nested
case-control study is incomplete. An indication of relative disease
frequencies among workers can be obtained by means of compari-
sons of the proportional distributions of causes of death among
workers with the corresponding proportions among a reference
population. This type of design is known as a proportionate mortality
study.

Example 3.9

Dalagcr and colleagues (1980) compared the distributions of cause of death
between 202 male painters who had been employed at two aircraft maintenance
bases, and the U.S. male population for the years 1 959-77. The motivation for this
study was a concern about possible carcinogenic effects of zinc chromates con-
tained in paint. The analysis involved contrasts of observed numbers of deaths from
specific causes among the painters with expected numbers, where the expected
numbers were derived by applying the proportional distribution of deaths, by
cause, among U.S. males to the total (202) deaths among the painters. These ratios
are termed Proportionate Mortality Ratios (PMRs). Additionally, the investigators
compared the distributions of site-specific cancer deaths as proportions of all can-
cer deaths in the painters and U.S. males, thus yielding Proportionate Cancer Mor-
tality Ratios (PCMRs). Dalager et al. observed an overall PMR of 1.84 and a PCMR
of 1.46 for respiratory cancer. Table 3-8 gives the results for respiratory cancer
according to length of employment in the painting trade.

PMR studies have the attractive feature of providing results rela-
tively quickly. However, the validity of a PMR study depends on
whether the deaths included are generally representative of all
deaths that would be identified if follow-up of the full cohort had
been conducted. For example, if deaths from a particular cause
were recorded preferentially because they were compensible or of

Table 3-8. Proportionate mortality from respiratory cancer among white male painters

Duration of
employment (yr)

<5
5-9
>10

Proportionate mortality
Obs

9
6
6

Exp

6.4
3.0
2.0

PMR

1.41
2.00
3.00

Proportionate
cancer mortality

Exp

7.2
4.0
3.2

PCMR

1.25
1.50
1.88

Source: Dalager ct al. (1980).
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particular concern, then the PMR for that cause would probably
appear to be elevated, even if the actual rate of disease in the cohort
were not excessive. In practice, there is seldom any way to deter-
mine if this type of bias is at play, apart from the observation of an
obviously anomalous result. A nonrepresentative sample of deaths
can also be a problem in cohort or nested case-control studies but
is potentially more prominent in proportionate mortality studies
because in the latter, mortality data typically are death certificates
that are readily available rather than those obtained from follow-up
of the cohort.

Even when there is complete ascertainment of deaths, a short-
coming of the PMR approach is that when the PMRs for some dis-
eases are elevated, counterbalancing proportionate mortality defi-
cits will occur for other causes. This occurs because, by definition,
the total number of observed deaths from all causes combined will
equal the expected number. Several authors have discussed the util-
ity of PMR studies (Kupper et al., 1978; Dccouflc et al., 1980; Wax-
weiler et al., 1981; Wong and Decoufle, 1982; Wong et al., 1985).
The commonly held view appears to be that PMRs are good approx-
imations to SMRs obtained from cohort studies when the cohort's
all-causes combined SMR is equal to 1.0 (i.e., observed is equal to
expected). It should be noted that SMR analyses can also be mis-
leading because of the typical pattern of a depressed all-causes com-
bined mortality in the cohort in comparison with an external (e.g.,
national) reference population. This phenomenon is known as the
Healthy Worker Effect. (We discuss the Healthy Worker Effect in
Chapter 4.)

Proportionate mortality studies can be used with greater confi-
dence when observed and expected distributions of specific diseases
arc compared within a disease category for which the Healthy
Worker Effect is weak or nonexistent. For example, cancer mortal-
ity is generally less affected by the Healthy Worker Effect than car-
diovascular disease mortality (McMichael, 1976). A commonly
applied approach is to compare observed and expected site-specific
cancer proportionate mortality, in which the mortality for a partic-
ular cancer site is expressed as a proportion of all cancer mortality.
Here the Proportionate Cancer Mortality Ratio (PCMR) is the esti-
mate of effect (see Example 3.9).

If the Healthy Worker Effect is of equal strength for the diseasc(s)
of interest and for all causes combined, then the PMR will not be
biased (although the SMR may still be biased). In practice, PMRs
arc computed for a large number of diseases, and mortality from
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some will be affected differentially by the Healthy Worker Effect.
Thus, a reasonable approach to proportionate mortality analysis is
to compute proportionate mortality ratios for specific diseases as
proportions of the broader disease categories in which they are
included (e.g., lung cancer as a proportion of all cancers, ischemic
heart disease as a proportion of all cardiovascular diseases).

With minor modifications in the analysis, proportionate mortality
studies can also be treated (more validly) as special types of the
case-control design. In this situation, the analysis is restricted to
deaths from the disease(s) of interest (i.e., cases) and other diseases
assumed to be unrelated to the exposure(s) under study (i.e., con-
trols). Additionally, it is required that the Healthy Worker Effect is
equally strong in the diseases compared (Miettinen and Wang,
1981). This situation is discussed in more detail in Chapter 6 in the
context of case—control studies using other diseases as controls.

On balance, PMR studies are most suitably used to explore for
disease excesses and deficits on preliminary analysis of the available
data. When the data are analyzed properly as a case—control study,
proportionate mortality analysis yields valid results, provided that
the control diseases are unrelated to the exposures of concern and
that the Healthy Worker Effect is equally strong in the study (case)
and control diseases.

6. CROSS-SECTIONAL STUDIES

Investigations of nonfatal diseases or physiologic responses to work-
place exposures necessitate special studies that may involve clinical
examinations, symptom surveys, or direct biological or physical
measurements. The cross-sectional design is a suitable method for
these purposes.

In an occupational cross-sectional study the prevalence of disease
or related symptoms is compared between groups of workers clas-
sified with respect to exposure status. (Comparisons with an exter-
nal reference population are made less frequently.) Prevalence
refers to the number of cases of disease or the level of impairment
existing at the time the study is being conducted.

Example 3.10

Smith et al. (1980) compared renal function, as estimated by urinary excretion of
beta2-microglobulin, among groups of workers exposed to varying levels of air-
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Table 3-9. Urinary excretion of Beta2-microglobulin according to exposure levels among
cadmium-exposed workers

Bcta2-microglobulin
(g/crcatinine)

Beta2-microglobulin
(g/24 hr)

Low exposure (N

geometric
mean

13.3

36.6

= 11)

(SD)a

(4.62)

(4.37)

High exposure

geometric
mean

64.8

168.8

(N = 16)

(SO)a

(6.05)

(5.46)

Source: Smith el al. (1980).
"Geometric standard deviation.

borne cadmium dust in a foundry. Two comparison groups were defined as a low-
exposure group of 1 1 supervisory and laboratory personnel and a highly exposed
group of 16 production workers. The findings in Table 3-9 show markedly elevated
excretion rates of beta2-microglobulin in the highly exposed group.

The particular advantage of cross-sectional studies is that they
permit the study of conditions (e.g., kidney function in Example
3.10) for which data would not ordinarily be collected on a routine
basis. Cohort and case-control studies usually focus on fatal dis-
eases or other severe, overt states of impaired health (e.g., cancer,
coronary heart disease, fatal accidents).

The most prominent shortcoming of many cross-sectional studies
is that they typically include only currently employed workers; thus,
retirees and other workers who were forced to terminate employ-
ment prematurely because of ill health, possibly attributable to their
occupational exposures, go unstudied. Such persons may be the
most relevant subjects for investigating delayed or progressive
health consequences of exposure.

7. CONNECTIONS BETWEEN STUDY DESIGNS

The unifying feature of all epidemiologic study designs is that in
each approach the investigator is examining the population's
(cohort's) disease occurrence experience over some specified time
interval (Miettinen, 1985). The cohort itself is termed the base pop-
ulation, and its experience over time forms the study base (Miettinen,
1982; Axelson, 1983). Person-years of observation are the familiar
units that comprise the study base. The particular segment of the
study base available for observation (e.g., from the cohort's incep-
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tion to the end of follow-up in a cohort study, or the prior exposure
patterns of cases and controls in a nested case-control study) is the
distinguishing characteristic of a study.

Figure 3-1 is a simple representation of the causal sequence of
exposure and subsequent health outcome. If we had the opportu-
nity to conduct a prospective cohort study on workers, with enu-
meration occurring at time A and follow-up extending to time B,
then data collection would start in the present and the health out-
come would occur at some point in the future. As we discussed ear-
lier, the historical cohort design offers a more cost- and time-effi-
cient method for accomplishing the same objectives as a prospective
cohort study. If a historical cohort study were to be conducted, then
we would begin data collection (cohort enumeration and exposure
assessment) at time B, but the follow-up interval would still be from
A to B, where A is some point in the past.

The perception of the timing of a study (prospective or historical)
is determined solely by when the investigator enters the picture. For
example, if point A in Figure 3-1 were January 1, 1960, and point
B were January 1, 1985, then whether the cohort study would be
considered as prospective or historical would depend on when the
investigator enumerated the cohort and began follow-up. If the
research activities began in 1960, then the study would be consid-
ered as prospective, whereas if data collection began in 1985, then
the study would be considered historical. In either case, the tem-
poral relationship of exposure and health outcome would be the
same. There might also be a situation where the cohort was enu-
merated at point A but for some reason (e.g., lack of funding) fol-
low-up was not done until point B. Here again the cohort's disease
experience and the inferences that could be drawn would be the

Figure 3-1. Temporal sequence of exposure and health outcomes.
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same as in the more typical prospective or historical cohort
approaches.

Perhaps more relevant than when follow-up is actually conducted
is the timing of collection of exposure data. For example, the plant
management may have begun exposure data collection in 1960 and
continued collection through 1985. In this instance, a historical
cohort study started in 1985 would be as valid as a prospective
cohort study initiated in 1960, provided that there were no differ-
ences in losses to follow-up. If, however, exposure data for the study
period (1960-85) were reconstructed in 1985, then a historical
cohort study would be inferior to the prospective cohort study if
exposure reconstruction was hindered by incomplete or missing
data. The important point is that the differences in these
approaches, with regard to their relative informativeness, depend
strictly on the amount and quality of data that can be obtained and
on feasibility.

The distinction between a cohort and a case—control design is one
of studying the entire cohort's experience over time versus sampling
from this experience. In a case—control study, the epidemiologist
studies cases that have already occurred and samples a comparison
group of workers who were free of disease at the times when the
cases' diseases were identified. The logical direction from exposure
to health outcome is the same for the case-control and cohort
designs. The reduced size of the case—control study will not com-
promise the validity of results unless there has been a biased selec-
tion of cases or controls.

As is discussed in Chapter 6, specific guidelines for control selec-
tion in case-control studies exist to ensure that the findings, theo-
retically, arc identical to those that would be derived from a cohort
study of the entire worker population. Moreover, there are suitable
methods (e.g., latency analysis) for determining the temporal rela-
tionships between exposure and disease; these methods are applic-
able to both cohort and case—control studies. Latency analysis is dis-
cussed in Chapters 5 and 6.

The proportionate mortality design, when analyzed appropri-
ately, is a case—control study (Miettinen and Wang, 1981). The main
distinction between proportionate mortality and nested case-con-
trol studies is that proportionate mortality studies ordinarily include
deaths from an external reference population, whereas in nested
case-control studies, controls are selected from the base cohort and
may include living workers. Nevertheless, the comparisons of expo-
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sure between cases and controls in both designs are conceptually
similar.

The case series is essentially a case-control study without con-
trols. Thus, although the case series is an incomplete design, causal
inference is not qualitatively different from that obtainable from
other, more rigorous methods.

Selection of subjects in a cross-sectional study generally is made
with respect to workers' exposure profiles, and health outcome is
determined at the time of the study. (As is discussed in Chapter 7,
subject selection can also be made with respect to current disease
status without changing the interpretation of the findings.) The
design of cross-sectional studies appears most likely to create dilem-
mas in distinguishing the timing of exposure and health outcome
because both are determined simultaneously. Again, we point out
that the timing of an epidemiologic study only has meaning in rela-
tion to when the investigator is conducting the research.

If we refer to Figure 3—1, the cross-sectional study would be rep-
resented adequately, with both exposure and outcome measured at
point B. The temporal relationship between exposure and disease is
the same as that in a cohort or case—control study. Any ambiguity
of exposure and outcome sequencing should, in principle, be
resolvable by carefully ascertaining the timing of occurrence of the
two. This issue is by no means unique to cross-sectional studies, as
valid inferences from cohort or case-control studies require similar
efforts to establish the timing of cause and effect. It should be noted
that cross-sectional studies measure disease prevalence rather than
incidence, as in the other designs. Thus, findings from cross-sec-
tional studies may be influenced by factors that affect disease dura-
tion. An example might be very intense dust exposure leading to
rapid progression and disability or death; in this case a cross-sec-
tional study would underestimate disease frequency.

We can therefore conclude that all of these study designs share a
common direction and that they are generally distinguished only by
the convenience of the sampling strategy. To illustrate, consider
Figure 3-2, which depicts the employment and health experiences
of two hypothetical workers. Both workers are hired at point A and
retire at point C. Worker 1 develops the disease under study at point
B and ultimately dies from this condition at point D. Worker 2
remains free from the disease throughout the period of the study
to point E. We can consider worker 1's condition at point B to be
the nonfatal form of his disease, which is not sufficiently severe to
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Figure 3-2. Employment and disease history for two hypothetical workers (• =
disease onset; x = death from disease of interest; o = free of disease of interest
at end of follow-up).

force retirement. These two workers arc further distinguished by
the fact that worker 1, but not worker 2, had experienced an expo-
sure that caused his disease.

If we were to adopt a cohort study approach, then it is evident
that worker 1 would be included in the "exposed" subcohort; he
would also be counted as a case in an incidence study or a death in
a mortality study. Worker 2 would be a member of the "non-
exposed" subcohort as a noncasc. Comparisons of incidence and/
or death rates between the two subcohorts would then be per-
formed accordingly.

In a case-control analysis, worker 1 would be a case and worker
2 would be eligible to be a control (i.e., he was free of disease at the
time when worker 1's case was detected, either at point B or D).
Here the comparisons would consist of contrasts of exposure to the
specific factor(s) that caused disease in worker ].

A cross-sectional study of disease including these two workers
would only demonstrate a difference in prevalence if the study were
conducted after point B; before the onset of worker 1 's disease
there would be equal disease prevalences among exposed and non-
exposed workers. After point B and up to point D, when worker 1
dies, there would be a demonstrable difference in prevalence. The
time sequencing of either a cohort or case-control study would be
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similarly influential. If a cohort study did not extend to point B,
then there would be an apparent lack of effect of exposure, as the
disease rates in the exposed and non-exposed workers would be
equal. Conducting a case-control study nested within a cohort study
that terminated before point B would, of course, be uninformative,
as no cases would be available for study.

The foregoing remarks about the conceptual (theoretical) equiv-
alences of each study design should not be construed to imply that
all approaches are equally suitable for the investigation of any
health outcome. Indeed, there are decided advantages and disad-
vantages to the various approaches that are determined largely by
logistical considerations.

8. SUMMARY

Formal epidemiologic research into occupational health hazards is
often motivated by observations of apparent clusters of disease that
are perceived to constitute excesses. Case series reports can be vir-
tually conclusive in their own right when the health outcome seen
is a very rare disease or an uncommon manifestation of a relatively
common condition. Disease clusters can be misleading, however,
because most diseases tend to follow a random occurrence distri-
bution in time and space (e.g., area within a plant) wherein clusters
of events are to be expected.

The "natural" epidemiologic study design is the cohort study.
Here a worker population, presumed free of disease at the outset,
is followed over time, and its disease rate patterns are contrasted
with those of non-exposed reference populations, such as the
national population. In addition, when data on exposures permit
classification of worker subcohorts, disease rate comparisons can be
made between these subcohorts in an effort to evaluate exposure-
response relationships. Cohort studies can be considered as either
prospective (follow-up begins at the time of the research and pro-
ceeds into the future) or historical (follow-up is conducted for time
periods before the research is conducted). The distinction between
prospective and historical cohort studies is not conceptual, as the
designs are identical. Instead, the timing of the conduct of the
research in relation to the actual occurrence of follow-up differen-
tiates the two strategies. Practical considerations will dictate which
of the two approaches is most suitable for a given situation. In gen-
eral, prospective cohort studies of chronic diseases with long indue-
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tion and latency intervals are too expensive and time-consuming for
routine use. Historical cohort studies have the advantage, typically,
of being more cost-efficient, but they can be limited by the absence
or sparseness of cohort enumeration (personnel) and exposure data
for times in the distant past.

Nested case—control studies involve comparisons of the exposure
profiles of workers who developed the disease of interest (cases)
with other workers who were apparently free of the disease at the
times when the cases were identified (controls). Case-control stud-
ies nested within cohort studies are especially valuable designs
because they can accomplish the same objectives as subcohort dis-
ease rate comparisons but have a reduced burden of data collection
and processing.

Another type of occupational case-control study is the registry-
based design, where cases—identified from hospitals, popula-
tion-based disease registers, or other community sources—are
compared with controls with respect to occupational factors. Reg-
istry-based studies generally are less informative with respect to spe-
cific exposure data than nested case-control studies. However, reg-
istry-based studies will be the option of choice for studies of
occupational groups that are difficult or impossible to enumerate as
cohorts (e.g., agricultural workers).

Nonfatal health effects or physiologic consequences of exposure
are frequently investigated by cross-sectional studies. In this design,
disease prevalence or physiologic status is compared between work-
ers classified on the basis of current or, in some circumstances, life-
time occupational exposure levels.

The common feature of all these study designs is that the direc-
tion of each study is from exposure (presumed cause) to health out-
come (effect). Study designs differ only with regard to the nature of
the sampling of subjects from the study base, which is the health
experience of workers over time. Logistical considerations, such as
disease induction and latency intervals, or the availability of past
exposure data, determine which design option is most suitable for
a particular epidemiologic study.

Glossary

base population The worker population (cohort) to be studied.
case-control study Comparison of exposure histories of workers with disease

(cases) with those of workers free of disease at the times when the cases
occurred (controls).
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case series Report of a number of cases of disease occurring in a worker
population.

cross-sectional study Comparison of disease prevalence among groups of work-
ers, or comparisons of exposures among prevalent cases and workers free of
disease.

disease cluster Occurrence of an apparently excessive number of cases of disease
in a worker population.

healthy worker effect A depressed mortality from all causes combined often
observed among occupational cohorts compared with national or regional
populations.

historical cohort study Follow-up of worker cohort from the past to the present,
and determination of disease rates during that time period.

nested case-control study Case-control study in which cases and controls are
selected from a defined occupational cohort.

proportionate mortality study Comparisons of distributions of specific diseases
(among all diseases) between the cohort and reference population.

prospective cohort study Follow-up of worker population from the present into
the future and determination of disease rates during that time period.

registry-based case-control study Case-control study in which cases arc selected
from hospitals or other disease registers and controls arc selected from the
same register or from the community at large.

reference population Population with which exposed cohort is compared; exter-
nal reference population usually the national or regional population; internal
reference population usually the least exposed segment of the cohort.

study base The person-time of observation and associated disease rates of the
study (base) cohort of workers.

subcohort A segment of the cohort, usually defined on the basis of exposure type
or level.
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4 Issues of Study Design and Analysis

1. OVERVIEW

General issues of the design and analysis of cpidemiologic studies
have been explored in several well-known texts (e.g., Kleinbaum et
al., 1982; Rothman, 1986). This chapter is intended not to substi-
tute for these texts but to give a brief overview of the most impor-
tant design and analysis issues in occupational epidemiology. Our
objective is to provide a basis for the more detailed discussion in the
chapters that follow. We start by outlining the distinction between
issues of precision, which involve random error, and issues of valid-
ity, which involve systematic error. The major validity issues—selec-
tion bias, information bias, and confounding—are then defined and
illustrated. Finally, we discuss the estimation of joint effects and the
related concept of effect modification.

2. PRECISION AND VALIDITY

2.1. Precision

Random error can occur in any epidemiologic study. It is often
referred to as "chance," although it can perhaps more reasonably
be regarded as ignorance. For example, suppose that 50 lung can-
cer deaths occurred among 10,000 asbestos-exposed workers aged
35-39 years during one year. If each worker had exactly the same
cumulative exposure to asbestos fibers, we might expect two
subgroups of 5,000 workers each to experience 25 deaths during
the one-year period. However, just as 50 tosses of a coin do not
usually produce exactly 25 heads and 25 tails, usually there will not
be exactly 25 deaths in each group. This occurs because of differ-
ences in exposure to other risk factors for lung cancer and differ-
ences in individual susceptibility between the two groups. Ideally,
we should attempt to gather information on all known risk factors

72
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and to adjust for them in the analysis. However, other, unknown or
unmeasurable risk factors will always occur; hence, the disease rates
in particular subgroups will fluctuate about the average. This will
occur even if each subgroup has exactly the same exposure history.

Even in an experimental study, in which subjects are randomized
into exposure groups, "random" differences in background risk will
occur between the compared groups. These differences will dimin-
ish in importance as the study size increases, however. In occupa-
tional epidemiology studies there is no guarantee that differences in
background risks between the exposure groups will balance each
other as the study size increases, but it is necessary to make this
assumption in order to proceed with the study (Greenland and
Robins, 1986). Hence, any occupational epidemiology study
involves the assumption that the background fluctuation in disease
rates is "random" in that it arises merely because a subgroup has
effectively been sampled "at random" from the overall cohort,
rather than because of systematic differences in unknown risk fac-
tors between subgroups of the cohort. If random error can be
reduced by increasing the study size, then the precision of the effect
estimate will be increased (i.e., its confidence limits will be
narrower).

A second factor that can affect precision is the size of the com-
parison group relative to the study group (i.e., the ratio of non-
exposed to exposed persons in a cohort study, or of controls to
cases in a case—control study). For example, a cohort study of
10,000 persons with 1 exposed and 9,999 non-exposed will not be
as informative as a study with 5,000 persons exposed and 5,000
non-exposed. When the study factor has no effect, a 1:1 ratio is
most efficient for a given total study size. When there is an effect, a
larger ratio may be more efficient. The optimal ratio is rarely
greater than 2:1 (Walter, 1977), but a larger average ratio across
strata may be desirable to ensure an adequate ratio in each stratum
of the analysis.

The ideal study would be infinitely large, but practical consider-
ations limit the number of subjects that can be included. Given
these limits, it is desirable to find out, before starting, whether the
study is large enough to be informative. One method is to calculate
the "power" of the study. This depends on five factors: (1) the
accepted level of statistical significance (e.g., p = .05), (2) the out-
come proportion in the study group (i.e., the disease rate in the
exposed group in a cohort study or the exposure prevalence among
cases in a case—control study), (3) the outcome proportion in the
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comparison group, (4) the number of study subjects, and (5) the
relative size of the two groups. Note that the outcome proportion
in the study group can be estimated using the outcome proportion
in the comparison group and the expected size of the effect. The
standard normal deviate corresponding to the power of the study
(derived from Rothman and Boice, 1982) is then

where ZB = standard normal deviate corresponding to a given statistical
power

Za = standard normal deviate corresponding to a p-value consid-
ered "statistically significant"

N2 = number of persons in the reference group (i.e., the non-
exposed group in a cohort study or the controls in a case-
control study)

P1 = outcome proportion in study group
P2 = outcome proportion in the reference group
A = allocation ratio of reference to study group (i.e., the relative

size of the two groups)
B = (1- P2)(P1 + (A - 1)P2) + P2(1 - P1)
C = (1 - P2)(AP1 - (A- 1)P2) + AP2(1 - P1)
K = BC - A(P1 - P2)

2

Related approaches are to estimate the minimum sample sizes
required to detect statistically significant effect estimates (e.g., rela-
tive risk) of specified magnitudes (Beaumont and Breslow, 198f)
and to estimate the minimum detectable statistically significant
effect estimate for a fixed study size (Armstrong, 1987).

Occasionally, the outcome is measured as a continuous rather
than a dichotomous variable (e.g., blood pressure). In this situation
the standard normal deviate corresponding to the study power is

where /*, = mean outcome measure in study group
/u2 = mean outcome measure in reference group

s = estimated standard deviation of outcome measure

The power is not the likelihood that the study will estimate the size
of the effect correctly. Rather, it is the likelihood that the study will
yield a statistically significant finding in the expected direction when
an effect of the postulated size exists. The observed effect could be
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greater or less than expected but still be statistically significant. The
overemphasis on statistical significance is the source of many of the
limitations of power calculations. One limitation is that the signifi-
cance level is an arbitrary boundary. Also, issues of confounding,
misclassification, and effect modification are frequently ignored in
power calculations (although appropriate methods are available;
see, e.g., Schlesselman, 1982; Greenland, 1983), and the size of the
expected effect is often just a guess. More information can be pro-
vided by calculating a family of power curves for various study sizes
and effect levels, but limitations remain nevertheless.

Estimating the expected precision can also be useful (Rothman,
1986). This can be done by "inventing" the results, based on the
same assumptions used in power calculations, and carrying out an
analysis by calculating effect estimates and confidence limits. This
approach has particular advantages when the exposure is expected
to have no effect, since the concept of power is not applicable, but
precision is still of concern. However, this approach should be used
with considerable caution, because the results may be misleading
unless they are interpreted carefully (Greenland, 1987). In partic-
ular, a study with an expected lower limit equal to a particular value
(e.g., 1.0) has only a 50-percent chance of yielding an observed
lower confidence limit above that value.

Example 4.1

Consider a proposed study of 5,000 exposed persons and 5,000 non-exposed per-
sons followed for a period of one year. Suppose that on the basis of mortality rates
in a comparable group of workers, the expected number of lung cancer deaths is
25 in the non-exposed group and 50 in the exposed group. Then

za — 1.645 (if a one-tailed significance test, for a jb-value of .05, is to be used)

N2 = 5,000

p1 = 0.010 ( = 50/5000)

P2 = 0.005 ( = 25/5000)

Using equation (4.1), the standard normal deviate corresponding to the power of
the study to detect a statistically significant lung cancer excess in the exposed group
is

From tables for the (one-sided) standard normal distribution, it can be seen that
this corresponds to a power of 91 percent. This means that if 100 similar studies
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of this size were performed, then we would expect 91 of them to show a statistically
significant (p < .05) lung cancer excess in the exposed group.

An alternative approach is to carry out a standard analysis of the hypothesized
results. If we make the preceding assumptions, then the relative risk would be 2.0,
with a 90-percent confidence interval of 1.4-3.0. This approach has only an indi-
rect relationship to the power calculations. For example, if the lower 90-percent
confidence limit is 1.0, then the power for a one-tailed test (of p < .05) would be
only 50 percent. Nevertheless, the confidence limit approach gives the same gen-
eral conclusion as the power calculation: that the study will have reasonably ade-
quate power if the true relative risk is 2.0. It also provides the additional infor-
mation that it is quite likely that the observed relative risk could be as large as 3.0
or as low as 1.4. This may be quite acceptable if the aim of the study is merely to
show an increased risk, but may not be acceptable if the aim is to measure the risk
precisely, such as for purposes of risk assessment. In the latter instance a larger
study would probably be required.

In practice, the study size is determined by the number of avail-
able subjects and by available resources. The former constraint is
particularly relevant in occupational studies because the number of
persons who have worked in a particular factory or industry usually
sets an upper limit on the number of available study subjects. Within
these limitations it is desirable to make the study as large as possible,
taking into account the trade-off between including more subjects
and gathering more detailed information about a smaller number
of subjects. Hence, power calculations can serve only as a rough
guide as to whether a study that is feasible is large enough to yield
precise information. Even if such calculations suggest that a partic-
ular study would have very low power, the study may still be worth-
while if exposure information is collected in a form that permits the
study to contribute to the broader pool of information concerning
a particular exposure—disease relationship. For example, one
important development has been the initiative of the International
Agency for Research on Cancer (IARC) in organizing international
collaborative studies such as that of occupational exposure to man-
made mineral fibers (Simonato et al., 1986). This study involved
pooling the findings from individual cohort studies of 13 European
factories. Most of the individual cohorts were too small to be infor-
mative in themselves, but each contributed to the overall pool of
data.

Once a study has been completed, there is little value in retro-
spectively performing power calculations, since the confidence lim-
its of the observed measure of effect provide the best indication of
the range of possible values within which the true effect may lie. In
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the remainder of this chapter, random error is ignored; the discus-
sion concentrates on avoiding systematic error.

2.2. Validity

Systematic error, or bias, occurs if there is a difference between what
the study is actually estimating and what it is intended to estimate.
Systematic error is thus distinguished from random error in that the
former would be present even with an infinitely large study, whereas
random error can be reduced by increasing the study size. There
are many different types of bias, but three general forms have been
distinguished: selection bias, information bias, and confounding.

3. SELECTION BIAS

3.1. Definition

Selection bias is any bias arising from the procedures by which the
study subjects were chosen from the entire population that theoret-
ically could be studied (Rothman, 1986). The potential total pool of
data includes every person who ever worked in a particular occu-
pation or industry, with each person followed to the end of life.
Most studies use a subset of this person-time experience, and hence
bias may occur. For example, if a national population registry (or
some surrogate for this, such as the United States Social Security
Administration) were not available, then it might be necessary to
attempt to contact each worker or his next of kin to verify vital sta-
tus. Bias could occur if the response rate was higher in the most
heavily exposed persons who had been diagnosed with disease than
in other persons.

Although we should recognize the possible biases arising from
subject selection, it is important to note that epidemiologic studies
need not be based on representative samples to avoid bias. For
example, in a cohort study persons who develop disease might be
more likely to be lost to follow-up than persons who did not develop
disease; however, this would not affect the relative risk estimate,
provided that loss to follow-up applied equally to the exposed and
non-exposed populations (Criqui, 1979). On the other hand, case-
control studies have differing selection probabilities as an integral
part of their design, in that the selection probability of diseased per-
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sons is usually close to 1 (provided that most persons with disease
are identified), whereas that for nondiseased persons is substantially
less.

3.2. The Healthy Worker Effect

The Healthy Worker Effect is perhaps the most common selection
bias in occupational studies. This phenomenon is characterized typ-
ically by lower relative mortality, from all causes combined, in an
occupational cohort (McMichael, 1976) and occurs because rela-
tively healthy individuals are likely to gain employment and to
remain employed. Including the person-time experience of every
person who ever worked in a particular factory or industry mini-
mizes bias because healthy persons remain in employment, but it
does not remove the bias resulting from initial selection of healthy
persons into employment. The same issues of bias apply to other
study designs (such as case-control and cross-sectional studies) that
involve sampling from the cohort's experience over time.

These effects were first described by William Ogle in 1885
(quoted in Fox and Collier, 1976), when he outlined the two major
difficulties encountered in studying the occupational distribution of
mortality. One is that "some occupations may repel, while others
attract, the unfit at the age of starting work." The other is the "con-
siderable standard of muscular strength and vigor to be main-
tained" by those who pursued various occupations. In 1902 Latham
(quoted in Alderson, 1972) discussed the effects of the demands of
the job on entry into and exit from occupations and described the
plight of a man compelled by ill health to change from skilled
worker to cabdriver to street hawker before becoming unemployed.

At least three factors are involved in the Healthy Worker Effect
(Fox and Collier, 1976): the selection of healthy members from the
source population, the survival in the industry of healthier men, and
the length of time the population has been followed. The Healthy
Worker Effect may also be exacerbated by various methodological
errors such as considering subjects lost to follow-up as alive at the
end of the study (Vena et al., 1987). Wilcosky and Wing (1987) have
suggested that other mechanisms may also play a role, including the
selection of economically advantaged workforces for epidemiologic
studies. Tola and Hernberg (1983) have commented that, because
of the multifaceted nature of the Healthy Worker Effect, it is doubt-
ful whether such a crude summary term is useful at all, and that one
should perhaps try to make distinctions between the different
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Table 4-1. Cause-specific relative risks for white male workers at an energy research lab-
oratory compared with U.S. white men, 1943-77

Cause of death

All cancers
Artcriosclerotic heart disease
Cerebrovascular disease
Diabetes mellitus
Nonmalignant respiratory diseases
Digestive system diseases
Genitourinary system diseases
Diseases of blood-forming organs
Motor vehicle accidents
Suicide

All causes

Obs

194
344

62
10
42
26
15

t>
36
39

966

Exp

250.0
459.9

76.9
18.3
69.2
72.0
18.2
3.1

60.2
40.2

1320.0

Relative risk"

0.78
0.75
0.81
0.55
0.61
0.36
0.82
0.65
0.60
0.97

0.73

Source: Checkoway ct al. (1985).
"Obs/Exp.

underlying factors. These issues are further discussed in Section 5.3
of this chapter, where we examine methods for minimizing the
Healthy Worker Effect.

Example 4.2

Table 4-1 gives the findings of a cohort study of mortality among 8,375 white
males who worked for at least one month during the period 1943-72 at an energy
research laboratory (Checkoway et al., 1985). Follow-up was conducted for the
period 1943-77. For every disease category the observed number of deaths was
less than that expected, on the basis of national mortality rates. In most studies the
Healthy Worker Effect is weaker for cancer than for other causes of death. For
example, Fox and Collier's (1976) study found a relative risk of 0.75 for all causes,
0.91 for all cancers, 0.77 for circulatory disease, and 0.63 for respiratory disease.
However, in this study the authors found that the Healthy Worker Effect was nearly
as strong for cancer (SMR = 0.78) as for all causes of death (SMR = 0.73).

3.3. Minimizing Selection Bias

If selection bias has occurred in the enumeration of the study
group, it may still be possible to avoid bias by choosing an appro-
priate comparison group. For example, if the study cohort consists
primarily of active or recently active workers, then it would not be
appropriate to use national mortality rates as a comparison because
of the Healthy Worker Effect. However, bias may be avoided, or at
least minimized, by choosing a more appropriate comparison
group, such as active or recently active workers from another indus-
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try who do not have the same exposures. The choice of comparison
groups is discussed in more detail in Chapter 5.

4. INFORMATION BIAS

Information bias involves misclassification of the study subjects with
respect to disease or exposure status. It is customary to consider two
types of misclassification: nondifferential and differential mis-
classification.

4.1. Nondifferential Information Bias

Nondifferential information bias occurs when the likelihood of mis-
classification is the same for both groups compared. This can occur if
exposed and non-exposed persons are equally likely to be misclas-
sified according to disease outcome or if diseased and nondiseascd
persons are equally likely to be misclassified according to exposure.

One special type of nondifferential information bias occurs when
the study outcome is not well defined and includes a wide range of
etiologically unrelated outcomes (e.g., all deaths). This may obscure
the effect of exposure on one specific disease since a large increase
in risk for this disease may only produce a small increase in risk for
the overall group of diseases under study. A similar bias can occur
when the exposures are incorrectly defined, sometimes due to the
inclusion of exposures that could not have caused the disease
because they occurred after or shortly before diagnosis. It could be
argued that these phenomena do not represent information bias
because these are not errors in measurement. However, they do
involve information bias in the sense that the etiologically relevant
exposure (or disease) has not been measured appropriately.

Nondifferential misclassification of exposure will bias the effect
estimate toward the null value (Copeland et al., 1977). Hence, it is
of particular concern in studies that show no association between
exposure and disease.

Example 4.3

In many occupational cohort studies some exposed persons are classified as non-
exposed, and vice versa, because of errors or deficiencies in routinely collected
employee records. Table 4—2 illustrates this situation with hypothetical data from
a study of lung cancer incidence in asbestos workers. Suppose the true incidence
rates are 100 per 100,000 person-years in the exposed group and 10 per 100,000



Deaths
Person-years
Incidence rate per

100,000
person-years

Rate ratio

Actual

Exposed Non-exposed

100 10
100,000 100,000

100 10

10.0

Observed

Exposed Non-exposed

85 + 1 = 86 9 + 15 =
85,000 + 10,000 = 95,000 90,000 + 15,000 =

91

4.0

24
105,000

23

Table 4-2. Hypothetical data from a cohort study in which 15 percent of exposed persons and 10 percent of non-exposed persons are incorrectly
classified
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person-years in the non-exposed group, and the relative risk is thus 10.0. If 15
percent of exposed persons are incorrectly classified, then 15 of every 100 deaths
and 15,000 of every 100,000 person-years will be incorrectly allocated to the non-
exposed group. Similarly, if 10 percent of non-exposed persons are incorrectly
classified, then 1 of every 10 deaths and 10,000 of every 100,000 person-years will
be incorrectly allocated to the non-exposed group. As a result, the observed inci-
dence rates per 100,000 person-years will be 91 and 23, respectively, and the
observed relative risk will be 4.0. Because of nondiffcrential misclassification, inci-
dence rates in the exposed group have been biased downward, and incidence rates
in the non-exposed group have been biased upward.

4.2. Differential Information Bias

Differential information bias occurs when the likelihood of misclas-
sification of exposure is different in diseased and nondiseased per-
sons or the likelihood of misclassification of disease is different in
exposed and non-exposed persons. This can bias the observed effect
estimate either toward or away from the null value. For example, in
a nested case-control study of lung cancer, with a control group
selected from among nondiseased members of the cohort, the recall
of occupational exposures in controls might be different from that
of the cases. In this situation, differential information bias would
occur, and it could bias the odds ratio toward or away from the null,
depending on whether members of the cohort who did not develop
lung cancer were more or less likely to recall such exposure than
the cases.

Example 4.4

Table 4—3 shows data from a hypothetical case—control study in which 70 of the
100 cases and 50 of the 100 controls have actually been exposed to some chemical.
The true odds ratio (Chapter 6) is thus (70/30)/(50/50) = 2.3. If 90 percent (63)
of the 70 exposed cases but only 60 percent (30) of the 50 exposed controls are
classified correctly, then the observed odds ratio would be (63/37)/(30/70) = 4.0.
This example provides a simple illustration of differential information bias. How-

Table 4-3. Hypothetical data from a case-control study in which 90 percent of exposed
cases and 60 percent of exposed controls are correctly classified

Cases
Controls
Odds ratio

Exposed

70
50

Actual
Non-exposed

30
50

2.3

Exposed

63
30

Observed

Non-exposed

37
70

4.0
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ever, it should be noted that there is inadequate information to indicate whether
differences in recall have been a source of serious bias in occupational studies
(Axelson, 1985).

As can be noted from Example 4.4, information bias can drasti-
cally affect the validity of a study. Given limited resources, it is often
more desirable to reduce information bias by obtaining more
detailed information on a limited number of subjects than to reduce
random error by including more subjects. However, a certain
amount of information bias is unavoidable, and it is usually desira-
ble to ensure that it is nondifferential, as the bias is then in a known
direction (toward the null value).

Example 4.5

In the case-control study of lung cancer in Example 4.4, the information bias
could be made nondifferential by selecting controls from cohort members with
other types of cancer, or other diseases, so that their recall of exposure would be
more similar to that of the cases. As before, 63 (90 percent) of the exposed cases
would recall exposure, but now 45 (90 percent) of the 50 exposed controls would
recall their exposure. The observed odds ratio would be (63/37)/(45/55) = 2.1.
This estimate is still biased in comparison with the correct value of 2.3. However,
the bias is nondifferential, is much smaller than before, and is in a predictable
direction toward the null. However, it should be noted that making a bias nondif-
ferential does not always make it smaller (see Example 4.3).

4.3. Assessment of Information Bias

Information bias is usually of most concern in historical cohort
studies or case-control studies when information is obtained by per-
sonal interview. Despite these concerns, relatively little information
is generally available on the accuracy of recall of exposures. Two
studies (Baumgarten et al., 1983; Brisson et al., 1988) showed good
accuracy of job history data obtained by interview. In both studies,
the subjects accurately identified employers for more than 80 per-
cent of the person-years considered, although Brisson et al. (1988)
found that recall was less accurate for the period 12-28 years (74
percent) than for the period 0-11 years (89 percent) prior to the
interview. In both studies, validity was poorer among persons who
had worked in numerous jobs, but the extent of concordance did
not differ substantially by age or education level. Furthermore, a
study of the association between pleural plaques and asbestos expo-
sure (Jarvholm and Sanden, 1987) suggests that subjects' own esti-
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mates of exposure may be more accurate than expert estimates
based on classification of occupational titles.

When possible, it is important to attempt to validate the classifi-
cation of exposure or disease (e.g., by comparing interview results
with other data sources, such as employer records) and to assess the
potential magnitude of bias due to misclassification of exposure.
These issues are discussed in more detail in the context of specific
study designs (sec Chapters 5-7).

5. CONFOUNDING

5.1. Definition

Confounding occurs when the exposed and non-exposed groups are
not comparable because of inherent differences in background dis-
ease risk (Greenland and Robins, 1986). This usually occurs because
of differences in exposures to other risk factors. Confounding can
thus be thought of as a mixing of the effect of the study factor with
the effects of other risk factors. In general terms, to be a confoun-
der a factor must be associated with both exposure and disease,
even in the absence of the study exposure.

More explicitly, if no other biases are present, three conditions
arc necessary for a factor to be a confounder (Rothman, 1986).
First, the factor must be associated with disease, even in the absence
of the exposure under study. It should be noted that even surro-
gates for causal factors, such as social class or age, may be regarded
as potential confounders, even though they are not direct causal
factors.

Second, a confounder must be associated with exposure in the
study base (the cohort's person-time experience), not merely among
the cases. In case-control studies this means that a confounder
must be associated with exposure among the controls. An associa-
tion can occur among the cases simply because the study factor and
a potential confounder are both risk factors for the disease, but this
does not cause confounding in itself.

Finally, the potential confounder must not be an intermediate
step in the causal pathway between exposure and disease. In this
situation there is no mixing of effects, but only one effect, and con-
trolling for such an intermediate factor will make it impossible to
measure this effect. For example, in a study of colon cancer among
clerical workers, it would be inappropriate to control for low phys-
ical activity if it was considered that reduced physical activity was a
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Table 4-4. Lung cancer mortality rates per 100,000 person-years at risk in a cohort of
asbestos insulation workers compared to those in other blue-collar occupations

Pooled rate if Pooled rate if
Rate in Rate in 30 percent 60 percent
smokers nonsmokers smoke smoke

Asbestos 590 58 218 377
Nonasbestos 120 11 44 76
Rate ratio 4.9 5.2 5.0 5.0
Rate difference 470 47 174 301

Source: Hammond et al. (1979).

consequence of being a clerical worker, and hence a part of the
causal chain leading from clerical work to colon cancer. On the
other hand, if low physical activity itself was of prime interest, then
this should be studied directly, and clerical work would be regarded
as a potential confounder if it also involved exposure to other risk
factors for colon cancer. Evaluating this type of possibility requires
information external to the study to determine whether a factor is
likely to be a part of the causal chain.

Example 4.6

Table 4—4 presents data from a cohort study of 12,051 North American male asbes-
tos insulators with at least 20 years of" exposure who were followed from 1967 to
1976 (Hammond et: al., 1979). The mortality pattern of these workers was com-
pared with that of 73,763 male blue-collar workers who were enrolled in a pro-
spective cohort study and followed from 1967 to 1972. It can be seen from Table
4—4 that for both smokers and nonsmokers, the lung cancer mortality rate in asbes-
tos insulators is approximately five times that in other blue-collar workers. Hence,
if the asbestos insulators and other blue-collar groups contain the same percentage
of smokers, then the overall relative risk (for asbestos exposure) will be approxi-
mately five times. Suppose, however, that only 30 percent of the insulators were
smokers compared with 60 percent of other blue-collar workers. Then the lung
cancer death rate in the asbestos workers would be 0.70 X 58 + 0.30 X 590 =
2 1 8 per 1 00,000 person-years, whereas the rate in other blue-collar workers would
be 0.40 X 11 + 0.60 X 1 20 = 76. The rate ratio would then be 218/76 = 2.9,
which is still elevated but much less than the correct figure of approximately 5.0.
Smoking operates as a confounder in this example, because it is predictive of dis-
ease in the absence of asbestos exposure (Table 4-4) and is associated with asbestos
exposure in the study base.

5.2. Relationship of Confounding to Selection and
Information Bias

Selection bias, information bias, and confounding are not always
clearly differentiated. In particular, selection bias and confounding
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can be viewed as separate aspects of the same phenomenon. One
approach is to consider any bias that can be controlled in the anal-
ysis as confounding (Rothman, 1986). Other biases can then be cat-
egorized according to whether they arise from the selection of study
subjects (selection bias) or their classification (information bias).

5.3. The Healthy Worker Effect Revisited

The relationship between selection bias and confounding is typified
by the Healthy Worker Effect, which was discussed in the context
of selection bias. An alternative viewpoint is offered by Monson
(1980), who argues that the Healthy Worker Effect occurs through
confounding by the factor of "good health status" that is associated
with the outcome (death) and with the exposure (employment in the
industry). Information on good health status is rarely obtainable,
but it is usually possible to characterize the Healthy Worker Effect
according to the timing of the events on which it operates: employ-
ment in the industry and termination of employment. Figure 4—1
illustrates the employment history of a hypothetical worker and
specifies four time-related factors that delimit the operation of the
Healthy Worker Effect: age at first employment, duration of
employment, length of follow-up, and age at risk. We will review the
relationship of these factors to the Healthy Worker Effect in order
to illustrate their importance as potential confounders in occupa-
tional studies.

Figure 4-1. Employment history of a hypothetical worker.
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Table 4-5. Relative risks for all causes of mortality by length of follow-up

Study

Fox and Collier (1976)
Gilbert" (1982)

Type of
comparison

External
Internal

Follow-up (yr)

0-4

0.37
0.63

5-9

0.63
0.93

10-14

0.75
1.01

>15

0.94
1.03

Total

0.75
1.00

"Follow-up groups do not exactly correspond to those in heading.

The mortality of employed persons, relative to the general pop-
ulation, is lowest during the period immediately after starting
employment (Table 4-5). In their cohort study of polyvinyl chloride
production workers, Fox and Collier (1976) found that the all-
causes mortality of men within five years of entering the industry
was as low as 37 percent of that expected. For circulatory disease
and respiratory disease it was as low as 21 percent whereas for can-
cer it was 45 percent. The effect decreased with length of time since
entry into the cohort and had almost disappeared after 15 years of
follow-up, and the relative risks were 0.94 for all causes mortality
and 1.12, 0.91, and 0.93 for cancer, circulatory disease, and respi-
ratory disease mortality, respectively. A study by Gilbert (1982) that
used an internal comparison group found a similar, but weaker, pat-
tern (Table 4-5). Many other studies have also found relatively low
relative risks for the early years of follow-up, with relative risks
slowly approaching 1.0 as follow-up continued (Pearce et al., 1986).

Although the relative mortality advantage of employed persons
diminishes with length of follow-up, it is most pronounced in work-
ers with the longest duration of employment. This latter association
is attributable to the survival in the industry of relatively healthier
persons. For example, Gilbert's (1982) study of workers at the Han-
ford nuclear facility found an elevated all-causes mortality in short-
term workers (see Table 4-6) and in terminated workers.

In Fox and Collier's (1976) study the survival effect was measured
by separating men who survived 15 years according to whether they
were still in the industry. The mortality rate among those who left
was approximately 50 percent higher than those still in the industry

Table 4-6. Relative risk for all causes of mortality by duration of employment

Study

Gilbert (1982)

Type of
comparison

Internal

Duration of employment (yr)
0-1

1.15

2-4

0.92

5-9

0.97

10-14

0.94

S±15

0.92

Total

1.00
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for all causes, cancer, circulatory disease, and respiratory disease
and was approximately three times higher for lung cancer. Vinni
and Hakama's (1980) study of a random sample of 20,000 persons
from the total Finnish population considered associations between
changes in occupations from 1960 to 1970 and mortality during
1971-75. Those staying in the same occupational category during
the period 1960—70 had 20 percent lower overall mortality than
those who did not. However, the latter group was not homoge-
neous; the investigators reported relative risks of 0.70 for persons
changing to another occupational category between 1960 and 1970,
1.00 for persons retiring at the usual age of 65 years during the
same period, and 1.30 for persons retiring early. Similarly, a study
in Denmark (Olsen and Sabroc, 1979) found mortality rates to be
65 percent higher in persons leaving the Danish carpenters' union
compared with persons entering the union, but mortality was much
lower for persons leaving for a higher-paid job compared with per-
sons leaving for other reasons. Delzell and Monson (1981) also
found excess risks among early retirees, particularly during the first
year following early retirement. Thus, the Healthy Worker Effect is
strongest during active employment and rapidly disappears follow-
ing the cessation of employment, particularly if this occurs before
the usual retirement age. Wen and Tsai (1982) have thus com-
mented that the Healthy Worker Effect is most characteristic of
actively employed workers and would be more accurately addressed
as the "active worker effect."

Table 4-7 shows data from several investigations that have exam-
ined the relative mortality advantage of employed persons at differ-
ent levels of age at risk (i.e., the age at any point in follow-up).
McMichacl (1976), in a study of male rubber industry workers,
found an all-causes relative risk of 0.81 at ages 40-54 years, whereas
the relative risk for the 75 years and over age group was 1.13. Sim
ilar patterns have also been observed by Fox and Collier (1976) and
Delzell and Monson (1981).

Table 4-7. Relative risks for all causes of mortality by age at risk

Study

Fox and Collier (1976)
McMichael et al. (1976)
Delzell and Monson (1981)

Type of
comparison

External
External
External

Age at risk (yr)

<55

0.64
0.81
0.8

55-64

0.79
0.89
0.9

65-74

0.96
0.95
0.9

>75

0.60
1.13
1.0

Total

0.75
0.98
0.9
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Table 4-8. Relative risks for all causes of mortality by age at hire

Type of Age at hire (yr)
Study comparison 25-44 45-54 55-64 65-74 Total

Fox and Collier (1976) External 0.45 0.37 0.32 0.23 0.37

Note: This paper docs not explicitly present risks by age at hire. These data represent relative risks by age
at death during the first five years of hire.

Two studies have presented relative risks according to age at hire.
Musk et al. (1978), in a study of mortality among firefighters, found
all-causes relative risks of 0.92 for persons hired before age 40 and
0.88 for persons aged 40 years or more at hire. Fox and Collier's
(1976) study presented data for the first five years after hire with
relative risks of 0.45 and 0.23 for the 25-44- and 65-74-year age
groups, respectively (Table 4-8). This suggests that the relative mor-
tality advantage of employed persons may be greater with increasing
age at hire—the opposite pattern to that for age at risk. This
hypothesis is plausible, since, if a certain level of health is required
to gain employment, then the proportion of persons attaining the
required level is likely to be smaller in the older age groups. There-
fore, gradients of health between workers and the general popula-
tion are likely to increase with increasing age at hire.

The association of the time-related factors depicted in Figure 4-
1 with various health outcomes has important implications for the
design and analysis of occupational epidemiology studies because it
suggests that the use of an internal comparison group will not elim-
inate bias if the exposure groups differ according to the time-
related factors under consideration. For example, if exposure
occurs in jobs assigned primarily to short-term, transient workers,
then bias may occur if the crude mortality rates for exposed persons
are compared with those for a non-exposed workforce with longer
average duration of employment because the transient workers may
have different background disease risks attributable to unfavorable
life-style factors. This phenomenon may be reflected in the findings
of a study by Peto et al. (1985) of lung cancer in asbestos textile
factory workers that show the highest relative risks in long-term
workers and in persons who had worked for less than one year. It
might be hypothesized that the excess in long-term workers is due
to asbestos exposure, whereas the latter effect might be due to life-
style-related confounding. Of course, if workers with adverse life-
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styles are preferentially assigned to the most heavily exposed jobs,
then a bias in an internal exposure—response analysis is present.
This bias will occur even if such workers are not short-term or tran-
sient workers. An analytic method to minimize this type of bias has
been developed (Robins, 1986; 1987), although it requires complex
computations.

Bias may also occur if exposure levels at a factory have been
reduced over time as a result of changes in control measures, work
practices, or changes in production. The more recently employed
workers, who would have a lower level of exposure, might have been
followed for a shorter period of time and hence have lower mortal-
ity rates than those employed in a previous period. In other words,
the time-related factors depicted in Figure 4-1 are predictive of dis-
ease in occupational cohorts and will be confounders if they are also
associated with exposure. Calendar year may also be a confounder
if disease incidence and exposure patterns vary over time.

Apart from age at risk, the strongest predictors of disease in occu-
pational studies appear to be calendar year and length of follow-up.
Furthermore, duration of employment is strongly correlated with
cumulative exposure, and it may be difficult to separate their
effects. In general, adjustment for duration of employment is not
warranted. Age at hire is a direct function of age at risk and length
of follow-up, and further adjustment for this factor is not
appropriate.

It should be stressed, however, that adjustment for factors such
as length of follow-up may minimize confounding due to the
Healthy Worker Effect but may not eliminate more complex biases
associated with it. In particular, Robins (1986) has shown that bias
may occur if risk factors for disease are also determinants of
employment status (and hence of subsequent exposure). For exam-
ple, if smokers terminate employment early (perhaps because of
smoking exacerbating the effects of the study exposure on disease
symptoms, such as respiratory tract irritation), then smokers who
have increased disease risks due to their smoking will have lower
cumulative exposures than nonsmokers. Such bias would be difficult
to detect if smoking information were not available. More generally,
when a confounding factor (such as termination of employment)
determines subsequent exposure and is determined by previous
exposure, then standard analyses that estimate disease incidence as
a function of cumulative exposure can underestimate the true expo-
sure effect, even when adjustment is made for the confounder.
However, the likelihood of such biases occurring is seldom clear,
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and adjustment for factors such as length of follow-up (but not
duration of employment) may still be warranted even if it will not
completely eliminate bias.

5.4. Other Confounders

Other confounders commonly addressed in occupational studies
include age, gender, and ethnicity. Cigarette smoking is the major
potential life-style confounder in studies of smoking-related dis-
eases. However, Axelson (1978) has shown that differences in smok-
ing status are unlikely to account for relative risks for lung cancer
of greater than 1.5 or less than 0.7 in studies involving a comparison
with national mortality rates. Furthermore, Siemiatycki et al. (1988)
have found that confounding by cigarette smoking is likely to be
minimal when an internal comparison group is used.

An indirect approach to controlling for life-style confounders is
to control for social class, which is strongly related to mortality
(Pearce et al., 1985; Pearce and Howard, 1986), in part because of
its association with such factors as smoking, diet, exercise, housing,
and access to health care. Appropriate information is often not
available in occupational studies, but it may be possible to construct
a social class scale based on education, income, or job category.
Such analyses should be conducted with caution, however, as
crudely constructed social class measures may be poor surrogates
for life-style factors. Moreover, other occupations in the same social
class may also involve occupational risk factors for the study disease,
Control for life-style is not appropriate if modification of life-style
is an intermediate step in the causal pathway leading from occupa-
tion to disease. For example, in a study of psychosocial aspects of
work and their relationships to disease, control for cigarette smok-
ing would not be appropriate if it was felt that the psychosocial
work-related factors caused disease through increased cigarette
smoking. In this context, it has been argued that "smoking behav-
iour cannot be taken as a fundamental cause of ill-health, it is rather
an epiphenomenon, a secondary symptom of deeper underlying fea-
tures of economic society" (DHSS, 1980).

Finally, most occupations involve exposure to more than one
potential risk factor, and the possibility of confounding by other
occupational exposures must be considered in the context of each
study. For example, studies of cancer and pesticide exposures in
farmers ideally should take into account the other potential carcin-
ogens to which farmers are exposed, such as solvents, oils, fuels,
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dusts, paints, welding fumes, zoonotic viruses, microbes, and fungi
(Blair, 1985). However, controlling for such exposures may be dif-
ficult when they are highly correlated, making it difficult to separate
their effects. Previous or subsequent employment in industries
other than the one under study likewise can be an important poten-
tial confounder.

5.5. Assessment of Confounding

The assessment of confounding involves the use of a priori knowl-
edge about the potential confounder, together with assessment of
the extent to which the effect estimate changes when the factor is
controlled in the analysis. Most epidemiologists prefer to make a
decision based on the latter criterion, although this approach can
be misleading, particularly if there is misclassification of exposure
(Greenland and Robins, 1985). The decision to control for a pre-
sumed confounder can certainly be made with more confidence if
there is supporting prior knowledge that the factor is generally pre-
dictive of disease.

When necessary information is not available to control confound-
ing directly, it is still desirable to assess its potential strength. For
example, the assessment of potential confounding by cigarette
smoking is of particular concern in occupational studies of cancer
because smoking information is rarely available for all study subjects
(although, as noted earlier, smoking is usually a relatively weak con-
founder in occupational studies). One approach is to conduct an
analysis of smoking-rclated diseases other than the disease of pri-
mary interest (Steenland et al., 1984). If mortality from such dis-
eases (e.g., nonmalignant respiratory disease) is not elevated, this
may suggest that any excess for the disease of interest is unlikely to
be due to smoking.

Axelson (1978) has presented a useful indirect approach to
assessing confounding in occupational cohort studies. This is based
on the relation

where 7 = overall incidence rate in the cohort
7( CF = incidence in those exposed to confounder
70 = incidence in those not exposed to confounder

PCF = proportion of cohort exposed to confounder

Equation (4.3) can be used to evaluate the possible confounding
effect of a factor such as smoking with regard to lung cancer by



where /, = incidence rate in the nonexposed category with "standard"
exposure to confounder

/2 = incidence rate in an exposed population with different expo-
sure to confounder

P, = proportion (among those whose confounding status is known)
of controls not exposed to the study factor but exposed to the
confounder

Py = proportion (among those whose confounding status is known)
of controls exposed to the study factor who are exposed to
the confounder

R = relative risk associated with exposure to the confounder
Rc = relative risk due to confounding

Example 4.7

Suppose that a cohort study of lung cancer involves a comparison with national
mortality rates in a country where 50 percent of the population are nonsmokers,
40 percent are moderate smokers with a ten-fold risk of lung cancer (compared to
nonsmokers), and 10 percent are heavy smokers with a twenty-fold risk of lung
cancer. Then, using equation (4.3), it can be calculated that the national lung can-
cer incidence rate will be 6.5 (= 0.50 X 1.0 + 0.40 X 10 + 0.10 X 20) times the
rate in nonsmokers. Suppose that it was considered most unlikely that the cohort
under study contained more than 50 percent moderate smokers and 20 percent
heavy smokers. Then the incidence rate in the study cohort would be 9.4 times the
rate in nonsmokers. Hence, the observed incidence rate would be biased upward
by a factor of 9.4/6.5 = 1 . 4 due to confounding by smoking. Table 4-9 gives a
range of such calculations presented by Axelson (1978) using data from Sweden.
The last column indicates the likely bias in the observed rate ratio due to confound-
ing by smoking. (A value of 1.00 indicates no bias.)

Table 4-10 illustrates Checkoway and Waldman's (1985) case-control extension
of this approach to a hypothetical study of 100 cases and 200 controls. Information
on exposure to the study factor can be determined for all subjects, but exposure
information for some confounding factor is incompletely ascertained. A relative
risk of 3.0 is assumed for the confounding factor from previous investigations. The
crude odds ratio (see Chapter 6) is (50 X 130)/(50 X 70) = 1.86. The estimated
odds ratio due to confounding associated with exposure to the study factor is

This suggests that the odds ratio estimate was biased upward by a factor of 1.1 6.
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assessing the range of overall incidence rates that could be obtained
with various smoking frequencies (see Example 4.7).

Checkoway and Waldman (1985) have presented an extension of
this method to case-control studies. This involves the relation
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Table 4-9. Estimated crude rate ratios in relation to fraction of smokers in various hypo-
thetical populations

Nonsmokers

100
80
70
60
50
40
30
20
10
—
—
—

Population fraction (%

Moderate smokers"

20
30
35
40
45
50
55
60
65
25
—

)
Heavy smokers"

—
—

5
10
15
20
25
30
35
75

100

Bias in relative
risk

0.15
0.43
0.57
0.78
1.00"
1.22
1.43
1.65
1.86
2.08
2.69
3.08

Source: Axelson (1978).
"Two different risk levels are assumed for smokers: 10 times for moderate smokers and 20 times for heavy
smokers.
''Reference population with rates similar to those in the general population in countries such as Sweden.

5.6. Control of Confounding

Two possible errors arise from confounding. These occur when no
attempt is made to control for a confounder, and when one controls
for a nonconfounder. The former error is potentially more serious
because it results in a biased effect estimate, whereas controlling for
a nonconfounder does not usually bias the effect estimate but may
reduce its precision.

Table 4-10. Hypothetical example of case-control distributions accord-
ing to exposure to a study factor and a confounding factor''

Exposure to
study factor

Cases
Yes
No

Controls
Yes
No

Exposure to confounding factor

Yes

20
20

30
40

No

20
10

20
50

Unknown

10
20

20
40

Total

50
50

70
130

Source: Checkoway and Waldman (1985).
"A rate ratio of 3.0 is assumed for the confounding factor, as determined from previous
investigations.



Issues of Study Design and Analysis 95

Misclassification of a confounder leads to a loss of ability to con-
trol confounding, although control may still be useful, provided
that misclassification of the confounder is nondifferential (Green-
land, 1980). Misclassification of exposure poses a greater problem
because factors that influence misclassification may appear to be
confounders, but control of these factors may increase the net bias
(Greenland and Robins, 1985). In general, control of confounding
requires careful use of prior knowledge, as well as inference from
the observed data.

Confounding can be controlled in the study design, in the analy-
sis, or both. Control at the design stage involves three main methods
(Rothman, 1986). The first is randomization (i.e., random allocation
to exposure categories), but this is not an option in occupational
studies. A second method of control at the design stage is to restrict
the study to narrow ranges of values of the potential confounders
(e.g., by restricting the study to white males aged 35-54 years). This
approach has a number of conceptual and computational advan-
tages but may severely restrict the number of potential study sub-
jects and the informativeness of the study, because effects in
younger or older workers will not be observable.

A third method of control involves matching study subjects on
potential confounders. For example, in a cohort study one would
match a white male non-exposed subject aged 35-39 years with an
exposed white male aged 35—39 years. This will remove confound-
ing in a cohort study but is seldom done, because it may be very
expensive. Matching can also be expensive in case-control studies.
Moreover, matching does not remove confounding, but merely
facilitates its control in the analysis. Matching may actually reduce
precision in a case-control study if it is done on a factor that is asso-
ciated with exposure, but the matching factor is not a risk factor for
the disease of interest. However, matching on a strong risk factor
usually increases the precision of effect estimates. Some of the prac-
tical advantages of matching in case—control studies are discussed
in Chapter 6.

Confounding can also be controlled in the analysis, although it
may be desirable to match on potential confounders in the design
to optimize the efficiency of the analysis. The analysis ideally should
control simultaneously for all confounding factors. Control of con-
founding in the analysis involves stratifying the data according to
the levels of the confounder(s) and calculating an effect estimate
that summarizes the information across strata of the confounder(s).
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For example, controlling for age (grouped into five categories) and
gender (with two categories) might involve grouping the data into
the 10 (= 5 X 2) confounder strata and calculating a summary
effect estimate which is a weighted average of the stratum-specific
effect estimates.

It is usually not possible to control simultaneously for more than
two or three confounders in a stratified analysis. For example, in a
cohort study, finer stratification often leads to many strata contain-
ing no exposed or no non-exposed persons. Such strata are unin-
formative; thus, fine stratification is wasteful of information. This
problem can be mitigated to some extent by the use of mathematical
modeling that allows for simultaneous control of more confounders
by "smoothing" the data across confounder strata. Mathematical
modeling is discussed in Chapter 8.

6. ESTIMATING JOINT EFFECTS

6.1. Joint Effects

Estimating the joint effect(s) of two or more factors is often an ana-
lytic goal. For example, Checkoway et al. (1988) estimated the joint
effect of exposure to alpha and gamma radiation on lung cancer
mortality among workers exposed to uranium at a nuclear materials
fabrication plant. They found a rate ratio of 4.60 for cumulative
exposure to more than 5 rem of both alpha and gamma radiation
compared to cumulative exposure to less than 1 rem of both radia-
tion types.

If two factors are independent (i.e., there arc no cases of disease
caused only by the joint effect of the two factors), then their effects
will be additive (Rothman, 1986). Most analyses of occupational
studies involve relative risk measures, which assume that the risk fac-
tors involved have multiplicative effects. However, it is still possible
to calculate the separate and joint effect(s) of two or more factors
and assess the findings on an additive scale.

Example 4.8

Consider the data in Table 4-4. The relative risks for each stratum, relative to per-
sons with no exposure to asbestos or cigarette smoke (obtained by dividing each
cell by 11), can be presented as follows:
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Smoking

Yes No

Asbestos Yes 53.6 5.2
No 10.9 1.0

The observed joint relative risk is 53.6, whereas it would be 1 + (5.2 — 1) + (10.9
— 1) = 15.1 if the effects of the two factors were additive. The fact that the joint
effect is more than additive has two important implications. In the public health
context, it indicates that it is more important to prevent asbestos exposure in smok-
ers than in nonsmokers, as intervention will prevent approximately 43 lung cancer
cases in smokers for every, four lung cancer cases prevented in nonsmokers. In
scientific terms, nonadditivity suggests that asbestos and smoking take part in at
least one common causal process.

It is difficult to learn much more from such data without using a specific causal
model. For example, the Armitagc—Doll multistage model of carcinogencsis (Armi-
tage and Doll, 1961) might be used to examine the interrelationships of asbestos
and smoking (Thomas, 1983). If smoking data were not available, then it might still
be desirable to examine the asbestos effect in light of this model. This latter
approach is illustrated in Chapter 10.

6.2. Effect Modification

It should also be noted that the examination of joint effects of two
or more factors often is discussed in the context of effect modification,
which occurs when the estimate of the effect of the study factor
depends on the level of another factor in the study base (Miettinen,
1974). The term statistical interaction denotes a similar phenomenon
in the observed data. We will use the term effect modification in the
subsequent discussion. However, both effect modification and sta-
tistical interaction are merely statistical concepts that depend on the
methods used. In fact, all secondary risk factors modify either the
rate ratio or the rate difference, and uniformity over one measure
implies nonuniformity over the other (Koopman, 1981; Steenland
and Thun, 1986); for example, an apparent additive joint effect
implies a departure from a multiplicative model.

Example 4.9

The data presented in Table 4-4 provide an example of effect modification. If the
rate difference is used, then smoking clearly modifies the effect of asbestos expo-
sure since the rate difference (for asbestos exposure) is 470 per 100,000 person-
years at risk in smokers and 47 per 100,000 person-years at risk in nonsmokers.
However, if the rate ratio is used, then the effect of asbestos exposure is about five
times in both smokers and nonsmokers. Asbestos exposure thus appears to multiply
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the lung cancer death rate by about five times, and this effect is not modified by
smoking if a multiplicative effect measure (such as the rate ratio) is used. However,
smoking does modify the effect of asbestos exposure if an additive effect measure
(such as the rate difference) is used. Another way of stating this is that there is no
interaction (i.e., departure from an assumed model) of smoking with asbestos expo-
sure on a multiplicative scale, but there is an interaction on an additive scale.

When the assessment of joint effects is a fundamental goal of the
study, it can be accomplished by calculating stratum-specific esti-
mates, as in Example 4.8. On the other hand, it is less clear how to
proceed when effect modification is occurring, but assessment of
joint effects is not an analytical goal. Some authors (e.g., Kleinbaum
et al., 1982) argue that it is not appropriate in this situation to cal-
culate an overall estimate of effect summarized across levels of the
effect modifier. However, it is common to ignore this stipulation if
the differences in effect estimates are not pronounced.

Glossary

allocation ratio Relative size of comparison group to study group.
bias See systematic error.
cohort The population to be followed.
comparison group Non-exposed group in a cohort study, or control group in a

case-control study; also known as the reference group or reference series.
confidence limits A range of values for the effect estimate within which the true

effect is thought to lie, with the specified level of confidence.
confounder A variable that, if not controlled, produces distortion in the esti-

mated effect of the study exposure; in the absence of misclassification, such a
variable will be associated with the study exposure and predictive of risk
among the non-exposed. A confounder must not be an intermediate step in
the causal pathway from exposure to disease.

effect estimate The estimate of the effect of the study factor on disease—for
example, the risk ratio, rate ratio, odds ratio, rate difference, or risk
difference.

expected number The number of cases or deaths that would have occurred in
the study cohort had the rates in the non-exposed population prevailed.

Healthy Worker Effect Lower mortality in occupational cohorts than external
comparison populations; usually attributed to selection for employment of fit-
test members of the population.

information bias Bias arising from the misclassification of disease or exposure
status.

odds The ratio of the proportion of a group experiencing an event to the pro-
portion not experiencing the event.

odds ratio The ratio of two odds.
power The likelihood that a study will yield a statistically significant finding in the

expected direction (when there is an actual effect).
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precision The stability of an estimate of effect, as reflected in its confidence
interval.

rate difference Difference in disease rates between two populations.
rate ratio Ratio of disease rates in two populations.
relative risk A general term to denote the rate ratio, risk ratio, or odds ratio.
response rate The proportion of intended study subjects for whom information

was obtained.
risk The average probability of developing disease during some specified time

interval.
risk difference Difference of disease risks in two populations.
risk Factor A factor that is associated with an increased likelihood of disease or

death.
risk ratio Ratio of risks in two populations.
selection bias Bias arising from the manner in which the study subjects were cho-

sen from the entire population that theoretically could be studied.
systematic error Error that occurs if there is a difference between what a study

is actually estimating and what it is intended to estimate.
variance A measure of the stability of the effect estimate that indicates the

amount of variation in the estimate that would be obtained if similar studies
were repeated a large number of times.

Notation

7,, Standard normal deviate corresponding to p-value that will be considered
statistically significant

/0 Standard normal deviate corresponding to study power
NI Number of persons in study group
N-2 Number of persons in comparison group
A Allocation ratio of comparison group to study group
P^ Outcome proportion in study group

p2 Outcome proportion in comparison group
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5 Cohort Studies

1. OVERVIEW

Cohort studies of occupational populations provide the most direct
approach for evaluating overall patterns of health and disease. This
chapter contains a description of the study design and analysis fea-
tures that are specific to occupational cohort studies.

As was shown in Chapter 3, every epidemiologic study is based on
a particular population's experience over time. The cohort design
has the advantage, relative to other study designs, that ideally it
includes all of the relevant person-time experience of the popula-
tion under study. In contrast, other study designs involve sampling
from that experience. However, problems pertaining to feasibility
constraints and validity of data are potentially as prominent in
cohort studies as in other designs.

The specific features of cohort studies to be presented in this
chapter include cohort definition, follow-up procedures, choice of
comparison populations, and methods of data analysis. Examples
from the published literature are used to illustrate issues of design
and analysis. In particular, a cohort study of mortality among asbes-
tos textile manufacturing workers, conducted by Dement and col-
leagues (1983a,b), is discussed in some detail in this and in subse-
quent chapters.

2. BASIC COHORT DESIGN

2.1. Design Options: Prospective and Historical

Cohort studies can be classified according to the temporal sequence
of conduct. The investigator may follow a currently enumerated
population into the future; this strategy is commonly referred to as
a prospective cohort study. Alternatively, one may follow a historical
cohort, enumerated as of some prior time, to the present. The latter
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Figure 5-1. Flow diagram of cohort study design.

approach is termed a historical cohort study. Historical cohort studies
have also been referred to as retrospective cohort studies (Last, 1983).
For purposes of clarity, we use the terms prospective and historical
cohort studies to denote, respectively, studies where follow-up pro-
ceeds into the future or where it has taken place from the past to
the present. Some studies combine features of both prospective and
historical designs.

The common elements of each of these types of cohort study are
(1) the identification of a study population, or cohort, of persons
exposed to the factors of interest, (2) the identification of a com-
parison (reference) population, (3) follow-up of the cohort over
time, and (4) comparisons of disease rates between the cohort and
a reference population. Figure 5—1 depicts schematically the basic
design of a cohort study. In a prospective cohort study, to would be
present and t1 would be some point in the future. In a historical
cohort study, towould be a point in the past, and t, would represent
the present or some time close to the present.

Historical cohort studies are far more common than prospective
studies in occupational epidemiology; therefore, we focus most
attention on the design and conduct of the former. However, the
basic methodological features of all cohort studies are the same.
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Thus, the discussion of historical cohort studies pertains also to the
other types of cohort study.

2.2. Defining and Following the Study Cohort

Cohort Definition

An occuptional cohort can be denned in several ways. The simplest
situation is when the investigator selects as cohort members all
workers ever employed in one factory or manufacturing complex.
A second option is to include in the cohort workers from multiple
plants operated by different companies but engaged in the same
industrial processes. International studies that combine occupa-
tional populations from similar facilities located in different coun-
tries are extensions of this approach. The European cohort study of
workers exposed to man-made mineral fibers is one such example
(Saracci, 1986). A third cohort definition is to study members of a
trade union or professional organization that includes workers from
numerous plants or worksites who share a common set of occupa-
tional exposures. Examples of the last type are cohort studies of
cancer mortality among meatworks union members (Johnson et al.,
1986) and reproductive hazards experienced by dental technicians
(Cohen et al., 1980). A fourth, special type of cohort consists of
registered cases of occupational diseases. Here interest would be in
studying mortality from the registered disease as well as the inci-
dence of and mortality from other diseases. Examples of the fourth
type of cohort are mortality studies among pncumoconiosis cases
registered in the Swedish Pneumoconiosis Register (Westerholm,
1980) and Canadian asbestosis cases receiving compensation awards
(Einkelstein et al., 1981).

The advantage of the first option, restricting the cohort to work-
ers from one facility, is that characterization of exposures may be
more consistent and precise when work history and environmental
data are obtained from a single source than when multiple sources
of varying levels of completeness and quality are used. However,
pooling cohort members from multiple facilities, as is done in the
second and third options, may be necessary to increase the study
size.

Selection of Study Populations

Eigure 5—2 illustrates the possible cohort selection options for a his-
torical cohort study with depictions of hypothetical individual work-
ers. This diagram shows the situation for studying workers from a
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Figure 5-2. Cohort membership inclusion options.

single plant, but the discussion that follows also applies to the other
cohort definition types described earlier. In the ideal case, one
would choose to study all workers employed from the beginning of
plant operation (i.e., workers A, B, C, D, and E in Figure 5-2). (By
analogy, for a study of union members, this date would correspond
to the beginning date of the union, which would not necessarily
coincide with the earliest beginning date of the companies and
trades included in the union.) Often records for workers that date
back to plant beginnings (t0) are not available, especially for very old
plants. As a compromise, one could choose some date (t'0) for which
a sufficiently large cohort can be reconstructed from personnel and
other records. In this situation, workers A, B, C, and D would qual-
ify for inclusion in the cohort; worker E would not be included
because a record of his employment would not exist.

Fixed and Dynamic Cohorts

A further consideration in defining a study population is whether
the cohort is fixed or dynamic. A fixed cohort is one in which the
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cohort is restricted to members employed on or hired as of some
given date, either the beginning of plant operations, in the ideal cir-
cumstance, or the earliest date for which employment records are
available. Thus, no workers hired subsequent to that date would be
included. By contrast, a dynamic cohort includes all workers who
would be enumerated in a fixed cohort as well as workers hired sub-
sequently. A dynamic cohort is sometimes referred to as an open pop-
ulation (Miettinen, 1985). In the context of Figure 5-2, if the ear-
liest date of available data is t'0, then worker D would not be included
in a fixed cohort defined as workers actively employed or hired on
t'0. Worker D would be included in a dynamic cohort, however.

The choice of a fixed or dynamic cohort may be dictated by the
availability of data or by special exposure circumstances that
occurred during some particular (usually brief) time period. Zack
and Suskind's (1980) study of a group of workers exposed to dioxin
during an industrial accident at a trichlorophenol manufacturing
plant provides an example of where a fixed cohort would be
preferred.

More commonly, fixed cohorts are enumerated when data are
available for a specified time interval, but not thereafter. Our rec-
ommendation is that one should enumerate a dynamic cohort when
employee data are available that span a broad time interval, includ-
ing information on workers hired after cohort inception (t'0). There
are several theoretical and practical reasons for this recommenda-
tion. First, human populations are naturally dynamic; births and
deaths, which are the analogues of hires and retirements in occu-
pational cohorts, occur continuously. A dynamic (rather than fixed)
cohort more closely mimics its source population, which is dynamic.
Second, dynamic cohorts usually include more study subjects than
fixed cohorts; thus, the effect of exposure on disease can be mea-
sured more accurately. However, one can isolate fixed cohorts that
are segments, or subcohorts, of a dynamic cohort by means of strati-
fication on year or age of hire. The topic of stratification is taken
up in some detail later in this chapter.

When the date of cohort inception, corresponding to the date of
follow-up commencement, is later than the date of a plant's first
operation (i.e., t'0 > t0), a cohort defined as workers active on that
date, t0' (and those hired subsequently in the case of a dynamic
cohort), will in most instances include workers hired at various times
between t() and t'o (viz, workers A and B in Figure 5-2). That is, the
workers active at t'0 will represent a heterogeneous mix of persons
employed for various lengths of time and who may have experi-
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enced varying exposure types and intensities if, as often occurs,
exposures had changed over time (Weiss, 1983). Stratification with
respect to length of employment and year of first hire should miti-
gate potential biases resulting from inappropriate pooling of cohort
members with dissimilar employment histories.

Cohort Enumeration

The enumeration of a historical cohort requires assembly of person-
nel employment records or membership listings for unions or
professional organizations, depending on the type of cohort under
study (Table 5—1). As mentioned previously, the completeness of
these data sources often determines the size of the cohort that can
be assembled and the length of time the cohort can be followed. For
prospective cohort studies, the data needed to enumerate a cohort
are obtained from personnel records of workers active on the start-
ing date of the study, as well as data for workers hired subsequently.
The cohort may be supplemented with data on retirees, if they are
to be included in the cohort.

Plant personnel records that contain dates of first and last
employment and the various jobs held, with their associated dates,
are the best source for cohort enumeration for plant- or industry-
based cohorts. These records are also a principal source of exposure
assignment data. Union membership listings and medical or insur-
ance claims records are ancillary data sources for enumeration;
these listings are better used for cross-checking plant personnel rec-
ords than as primary enumeration sources because they tend to be
less complete than personnel records.

Marsh and Enterline (1979) have described a procedure for ver-
ifying the completeness of cohort enumeration in the United States
using Internal Revenue Service quarterly earnings reports (Form
941 A). These earnings reports list all workers for whom social secu-
rity payments were made by the employees and employers for each

Table 5-1. Data sources for cohort enumeration and verification

Source Primary use

1. Plant personnel records Cohort enumeration
2. Union membership listings Cohort enumeration
3. Medical insurance claims Ancillary source of enumeration
4. Quarterly earnings reports Cohort verification

(IRS Form 941 A)
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quarter of a year. Thus, the method is relevant for workers who
achieved a minimum of three months continuous service in a com-
pany but is of limited utility for workers employed in defunct com-
panies or ones that have changed ownership, because requests for
the 941A forms must be submitted by the employer.

Cohort Restriction

When enumerating a cohort, the investigator should attempt ini-
tially to identify as many workers as possible without imposing arbi-
trary restrictions. Some restrictions, however, may simplify enumer-
ation. For example, it would be desirable to eliminate plant
construction workers under contract from another company so as
to focus the study on health effects related to the manufacturing
process. Arbitrary exclusions from enumeration of workers consid-
ered unlikely to be exposed to the agents of concern (e.g., plant
managers or office workers) can be wasteful of information insofar
as removal of the least exposed workers ultimately will diminish the
precision of observed exposure—response relationships. Decisions
regarding exposure status should be deferred until a thorough eval-
uation of employment and exposure history has been made. In some
instances, inspection of complete employment data will reveal that
office workers and other "salaried" personnel had held exposed
jobs at some time during employment.

Some investigators prefer to restrict dynamic cohorts to workers
first employed during a particular time interval (e.g., up until ten
years before the end of follow-up), thus allowing for a minimum
follow-up duration for all cohort members. This approach is usually
adopted to allow for minimum induction and latency times for
delayed exposure effects. Restrictions of this type are not necessary
at the stage of cohort enumeration if latency analyses are to be per-
formed on the data. We discuss disease latency and related methods
of analysis later, in Section 4.4.

Restrictions on gender or race are made ordinarily for conve-
nience. The majority of cohorts studied in the United States are lim-
ited to white males because white men tend to predominate in many
workforces and because vital status tracing is usually easiest for this
group. Changes in marital status and accompanying surname
changes complicate follow-up of women workers. In the United
States, census and vital statistics recording for nonwhites historically
has been less complete and accurate than for whites. In countries
where there is complete population registration, such as Sweden,
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Finland, and Denmark, these difficulties pose less of a problem for
vital status tracing. There is no scientific basis for limiting a cohort
to any particular gender or race group. Indeed, including all work-
ers for whom health and exposure data can be obtained enlarges
the study size and permits inspection for particular subgroups more
or less susceptible to adverse exposure effects (e.g., women in early
stages of pregnancy).

A minimum length-of-employmerit criterion may be imposed in
defining the study cohort. The choice is arbitrary, unless dictated by
constraints on data availability (e.g., personnel records maintained
only for workers employed ten years or longer). Judgments based
on the demographic characteristics of the workforce, the types and
toxicities of occupational exposures, and cost should guide this
decision. For example, if there is an agent in the industrial environ-
ment that may pose demonstrable health risks following even brief
periods of exposure and if exposures to this agent can occur at any
time during employment, then there is justification for not imposing
a minimum employment duration restriction on cohort member-
ship. There are real situations where the most intense occupational
exposures are most likely to occur during the early years of employ-
ment, such as during apprenticeship or on initial assignment to the
most heavily exposed work areas. Industrial accidents typically clus-
ter among the least experienced workers (Baker, 1975), for exam-
ple. However, a cost increment (often substantial) will result from
inclusion of all workers when short-term, transient workers, who are
difficult to trace, comprise a large proportion of the workforce. Fur-
thermore, as discussed in Chapter 4, short-term workers may have
atypical life-styles that make them noncomparable to longer-term
workers (Gilbert, 1982).

Minimum employment duration inclusion limits of one month,
twelve months, five years, or ten years are the most frequently used.
Improved likelihood of follow-up, compatibility of cohort definition
with those of other studies of cohorts with similar exposures, or the
availability of data for the so-called vested workers, who are eligible
for pensions (McMichael et al., 1976), are reasons often cited to
justify the selection of a particular minimum value for employment
duration. Restricting the study to vested workers may be advanta-
geous, because enumeration and follow-up of workers are facili-
tated (Collins and Redmond, 1976); however, health effects among
workers with short employment durations, and effects possibly
related to exposures in more recent years, would go undetected.
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Also, selection of vested workers becomes complicated in situations
where vestment requirements have changed over time.

There is no simple rule for choosing a minimum employment
duration. Decisions need to be made in light of the balance between
potential gains in information and study precision achievable by
including short-term workers, on the one hand, and the possible
introduction of bias and added costs, on the other.

When a minimum employment duration of x years is imposed in
a cohort study, follow-up for each worker should be started either
at the date at which x years of service has been attained or at t'0,
whichever occurs later. The reason for this shift in follow-up com-
mencement date is that, by virtue of the cohort inclusion criterion,
it is known that each worker survived for at least x years. Thus, his
first x years are effectively free from risk. Failure to account for
these x years as "risk-free" would tend to underestimate disease
rates in the cohort (Waxweiler, 1980). To illustrate, consider work-
ers A, C, and D in Figure 5-2. Assume that a minimum of one year
employment is required for inclusion in the cohort, and that t0 is
1930 and t'0 is 1945. Additionally, consider the situation where rec-
ords are available for cohort enumeration only as of t'0. Thus, follow-
up for workers A and B should begin on t'0 because they had
achieved one year of employment by that date. Follow-up for work-
ers C and D should begin at the corresponding one-year anniversary
dates of hire. Here again, we can see a characteristic feature of a
dynamic cohort in that follow-up begins at a time that is specific for
each worker.

Follow-up of the Cohort

Epidemiologic cohort studies of mortality are far more common
than those of nonfatal diseases; therefore, most of the discussion
focuses on mortality studies. It should be appreciated that the only
differences between mortality and morbidity cohort studies pertain
to the types and sources of health outcome information. The design
and analyses are otherwise identical.

The popularity of occupational mortality studies derives from sci-
entific and public health concerns (i.e., assessment of risks of fatal
diseases) and from convenience. The fact, location, and cause of
death are routinely recorded, and in some instances, computerized,
in most developed countries.

Figure 5-3 shows the follow-up and outcome of a historical
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Figure 5-3. Flow diagram of mortality follow-up of historical cohort.

cohort mortality study, beginning with selection of the study cohort
from the enumerated workforce and proceeding through to the
determination of living or dead status and ascertainment of cause
of death for identified deaths. Retirees typically constitute the
majority of deaths, but workers leaving the industry prematurely
(before age 65 or normal retirement age) can contribute significant
numbers of deaths, especially when occupational exposures result
in disabling morbidity.

Sources of Vital Status Data

In mortality studies vital status tracing is accomplished by linking
cohort members' personal identifiers (name, date of birth, registra-
tion number, etc.) with data compiled on a national or regional
basis. In the United States the Social Security Administration (SSA)
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is the most frequently used primary source of vital status data. The
SSA will provide information on vital status as of some target date
(t1) by comparing social security numbers of the cohort with those
of citizens who are either continuing to make social security pay-
ments or actively receiving benefits (i.e., still living) or whose survi-
vors are receiving death benefits. For identified deaths, the SSA will
indicate the state in which a death benefit claim was filed, which is
usually the state where the death occurred. Vital status tracing using
the SSA of course depends on the availability of workers' social
security numbers. Most industries maintain employees' social secu-
rity numbers because they are required to issue employer payments
to the SSA. A certain number of workers invariably cannot be traced
by this method because of inaccuracies in social security numbers,
employment in occupations exempt from SSA payments (e.g., fed-
eral government workers), or incompleteness in SSA registration,
which occurred most noticeably in the late 1930s, when the SSA
system began.

Some states and municipalities maintain death indexes that can
be searched for vital status data. Since 1979 a National Death Index
for the United States, which can be used for vital status tracing of
cohorts, has been compiled and computerized.

Several other sources can be used to verify that a former worker
is still alive. These include motor vehicle bureaus, voter registration
lists, and the Internal Revenue Service. Ostensibly, a person who
receives a motor vehicle license or traffic violation, registers to vote,
or files an income tax return is still living.

In Great Britain the Central Record Office of the Ministry of Pen-
sions and National Insurance is the analogous tracing source to the
SSA in the United States. Centralized population registers main-
tained throughout individuals' lives are quite valuable tracing
resources in Denmark, Sweden, and Finland (Riihimakii et al., 1982;
Lynge, 1985; Custafsson et al., 1986). Vital status tracing is consid-
erably more difficult in countries that lack national population reg-
isters or only maintain regional registers. For example, in their
study of workers from a German rock wool factory, Claude and
Frentzel-Beyme (1984) determined vital status from multiple inqui-
ries made to worker registration offices and from contacts made at
workers' last known addresses or places of birth.

A vital status ascertainment rate of 95 percent or greater is a
desirable target, although 90-95-percent tracing is acceptable in
large cohort studies. If, for example, tracing is especially poor for
workers who quit employment before the normal retirement age
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and if ill health attributable to the occupational environment is sus-
pected as a reason for early retirement, then an unacceptably low
vital status rate may result in an underestimation of disease risks.
Workers who terminate employment prematurely may include an
important segment of the workforce that experienced the heaviest
exposures.

Cause-of-Death Determination

Cause-of-death information for identified deaths can be obtained by
requesting copies of death certificates from state or municipal vital
statistics offices. Some company medical departments, unions, and
professional organizations also maintain copies of death certificates.
A 90-95-percent cause-of-death determination rate is a desirable
target.

Table 5-2 summarizes the various sources of data on vital status,
cause of death and disease incidence.

Coding the causes of death reported on death certificates should
be performed by a nosologist trained in the rules specified by the
International Classification of Diseases (ICD) volumes compiled by
the World Health Organization (WHO, 1967). Revisions to the ICD
are made roughly every 10 years, and changes in coding for some
causes may influence the mortality findings of the study. One pro-

Table 5-2. Sources of vital status data in cohort studies

Source Data supplied

1. Social Security Administration
(U.S.)

2. National and state death indexes
(U.S.)

3. Motor vehicle bureaus (U.S.)

4. Voter registration lists

5. National Office of Pensions and
Insurance (U.K.)

6. Population-based disease
registers (Sweden and Finland,
among others)

7. Vital statistics bureaus
8. Company medical departments

and insurance claims records
9. Unions and professional

organizations

Vital status, year and state of death,
if dead

Date, state, and cause of death

Alive status inferred from license
or citation issuance

Alive status inferred from
registration

Vital status, location, and year of
death, if dead

Vital status, cause of death,
incidence of specific diseases,
location, and year of occurrence

Death certificates
Death certificates, disease incidence

reports
Death certificates, disease incidence

reports
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cedure to circumvent problems caused by ICD revisions that occur
during the period of follow-up is to classify each cause of death
according to the ICD revision in effect at the time of death and then
to reassign these codes to the corresponding codes in effect at the
time when the study is being conducted. The alternative of coding
all deaths according to one ICD revision, usually the most recently
available one, may result in over- or underestimated mortality rates
for some diseases. In practice, the latter approach is most often
taken, primarily because there are few nosologists trained to per-
form coding with multiple revisions of the ICD. The extent of cod-
ing bias introduced is generally minimal, although some diseases
(e.g., the leukemias and cerebrovascular disease) have undergone
considerable coding revisions.

Data on disease incidence, rather than mortality, can be obtained,
provided that there are population-based disease registers or that
special incidence surveys have been conducted on the workforce.
Regional cancer registries in the United States (Young et al., 1981)
and national cancer registries in some other countries offer valuable
data sources for morbidity studies.

Missing Information

In a cohort mortality study there are two types of workers for whom
vital status information may be missing. The first are workers of
unknown vital status. Occupational epidemiologists use several
approaches to address this issue (Monson, 1980). One option is to
delete the untraced workers from the study. This choice is unnec-
essarily wasteful of information in that some person-time of obser-
vation would be excluded from the analysis. A second option is to
assume that all the unknowns remain alive at tt. This approach has
the disadvantage of artificially lowering the mortality rates of the
cohort if some of the unknowns had, in fact, died before the end of
the study. A third method is to assume that all unknowns had died
by the end of the study period. This approach inflates the death
rates spuriously. Finally, one can count person-years of observation
for unknowns up until the dates of last contact, typically the dates
of termination from the industry, and make no assumptions regard-
ing their vital status thereafter. The last approach is the most defen-
sible in that it requires no unverifiable assumptions about the
mortality experience of cohort members after they were lost to fol-
low-up (Vena et al., 1987). Furthermore, all the available informa-
tion (i.e., the person-years of observation) is included in the analysis.
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Thus, we recommend the last approach for reasons of validity and
simplicity.

The second category of workers with missing information is that
in which the cause of death is unknown. This situation usually arises
when death certificates cannot be located, but it may also occur
when cause-of-death information on some death certificates is
judged by the nosologist to be inadequate for coding. Two
approaches can be adopted for handling unknown cause of death.
The first is to leave the deaths in an "unknown" cause-of-death cat-
egory in the reporting of results. The second is to assume that the
distribution of deaths, by cause, among the unknowns is the same
as that for the deaths with known causes and to add deaths to the
various cause groupings on a proportional basis. Thus, if there are
100 deaths of unknown cause and if 5 percent of the known deaths
are from cerebrovascular disease, then one would add five deaths to
the observed number for the cerebrovascular disease category.
Sometimes this approach results in the addition of fractions of
deaths (i.e., when the percentage of deaths from a particular cause
among deaths with known causes multiplied by the total number of
deaths of unknown cause is not a integer). Fractions of deaths are
awkward to explain. We prefer creating an "unknown" cause-of-
death category because this approach docs not require unverifiable
assumptions about the distribution of cause of death among the
unknowns.

3. METHODS OF DATA ANALYSIS

This section contains a description of the procedures used to ana-
lyze data from cohort studies. We begin by devoting some attention
to the basic concepts of person-time, risks, and rates. We follow this
discussion with a description of statistical methods for analysis of
the data for the entire cohort and for subcohorts defined on the
basis of various demographic and exposure characteristics.

3.1. Risks and Rates

Distinctions and Uses

An understanding of the analytic techniques used in occupational
cohort studies requires an appreciation of the distinction between
disease risks and rates. A risk is the probability of developing or
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dying from a particular disease during a specified time interval.
Thus, if we conduct a ten-year follow-up on a cohort of 1,000 work-
ers enumerated at t0 (or t'0, depending on the availability of data),
and observe 30 deaths, then the ten-year risk of death is 30/1,000
workers.

A second approach to quantify the population disease frequency
during a specified time period is to compute the number of newly
occurring, or incident, cases during the time interval of follow-up
per number of person-years of observation. This quantity is a disease
rate. Other terms for a disease rate are incidence density, instantaneous
risk, and hazard rate. For simplicity, we use the term rate to denote
an expression of newly occurring cases per person-time units. A
more mathematical explanation of the distinction between risks and
rates is given by Elandt-Johnson (1975).

The value of computing disease rates, rather than risks, in occu-
pational cohort studies is that rates take into account the person-
time of observation, which is likely to vary between cohort members
when deaths (or cases) occur at variable points in time. Hence, this
approach considers not only whether disease occurred, but also
when it occurred (Clayton, 1982).

Rates are therefore especially applicable for studies of dynamic
cohorts, which are far more common than those of fixed cohorts.
In a dynamic cohort the person-time of observation (follow-up) will
vary as a function of both the time of entry into the cohort, usually
taken as t'0 or a worker's date of hire if later than t'0, and the duration
of follow-up for subjects remaining alive or free of the disease of
interest. By contrast, disease risks are most suitably computed for
fixed cohort studies and require certain restrictive assumptions
about follow-up time to be applicable for studies where follow-up
extends over long periods of time, such as decades (Kleinbaum et
al., 1982). In considering methods of data analysis for cohort stud-
ies, we limit the discussion to the analysis of disease rates, as illus-
trated with data from dynamic cohort studies. Methods for analyz-
ing disease risks among fixed cohorts are virtually identical to the
methods presented in Chapter 7 on cross-sectional studies.

Computing Person-time of Observation

Computation of person-time data has long been a routine proce-
dure in demography and has become standard practice in epidemi-
ologic studies of dynamic occupational cohorts since the 1950s
(Case and Lea, 1955; Doll, 1955). The procedure for computing
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Figure 5-4. Follow-up outcomes of eight hypothetical workers (• = cancer
death, • = other death, A = lost to follow-up, o = alive at end of follow-up).

rates with person-years (years are the time units used in most inves-
tigations of chronic diseases) as denominators is known as the mod-
ified life table method (Ederer et al., 1961; Berry, 1983).

The basic notion behind person-time calculations is that each sub-
ject alive at the beginning of follow-up is observed for some, usually
variable, length of time, and thus contributes person-years of obser-
vation until he or she either develops or dies from the disease of
interest, dies from another cause, or the end of follow-up occurs.
This description of person-time calculation pertains equally to pro-
spective and historical cohort studies.

Figure 5—4 shows schematic representations of eight workers in a
hypothetical cohort mortality study where follow-up is from 1950
(t0') through 1984 (t1)• Two workers, A and B, were first employed
on the date when the plant opened (£„); all others were hired either
on t'0 or subsequently. Workers A and C both contribute 20 person-
years of observation (1950-1970). However, as we will discuss later,

o
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their differences in employment duration and, possibly, age need to
be taken into account. Worker A will be counted as a death in the
numerator of the death rate. Worker C, who was lost to follow-up
after 20 years, also will contribute 20 person-years to the denomi-
nator. Workers B and D present situations similar to workers A and
C except that, because both B and D were alive at the end of the
study, each contributes 35 person-years of observation (1950—
1985). The other four workers, E, F, G, and H, were all hired sub-
sequent to t'0, and person-year counting proceeds in like fashion as
for workers A, B, C, and D.

It should be recognized that, to this point, we have considered
only length of follow-up and not length of employment. The two
are identical only for workers who either die while still actively
employed or are still working when the study ends (t1). (Of course,
interruptions in employment from layoffs, illness, or military service
create exceptions to this generalization.) If we assume that the fol-
low-up times for workers G and H in Figure 5-4 are also their peri-
ods of employment, and if a minimum of ten years of employment
is required for inclusion into the cohort, then both of these workers
would contribute 0 person-years of observation. Also, follow-up for
all other workers would begin at year t'n + 10 when a ten-year min-
imum employment duration is imposed.

Inspection of Figure 5—4 further reveals that person-years in a
dynamic cohort can be accrued at different calendar years, which
may also correspond to different ages for cohort members. Con-
sider workers C and E in Figure 5-4. Worker C was hired at age 30
years in 1950 and was followed to 1970 (20 person-years of obser-
vation). Worker E was hired at age 45 years in 1955 and died at age
65 in 1975; he also contributes 20 person-years of observation.
There are quite distinct differences in the 20-person-year intervals
for these two workers. Worker C's person-year at age 45 years
occurred in 1965, which is 15 years after his first employment. For
worker E, his person-year at age 45 years occurred in 1955 and was
only his first year of employment.

Stratification of Person-years

The epidemiologic method, borrowed from demography, for sum-
marizing person-years across age and calendar years is to stratify the
cohort's collective person-years into a cross-classified distribution
(Hill, 1972). Age and calendar year are the two most important
stratification variables because many diseases are strongly age
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related, and population rates (even within narrow age categories)
vary over time (Jarvholm, 1987). As discussed in Chapter 4, length
of employment, age at first employment, and time since first
employment also can influence disease rates, primarily as con-
founders or effect modifiers of the associations between disease and
the exposures of interest. Stratum widths for age and calendar year
can be as small as one year, although five-year stratum widths are
customary. Person-years accumulation is therefore accomplished by
summing each cohort member's contribution to every attained cat-
egory, where the categories are jointly specified by age and calendar
year strata.

To illustrate the method of stratification, consider again the hypo-
thetical workers in Figure 5-4. Age strata can be defined as ages
15-19, 20-24, . . . , 80-84; similarly, five-year calendar year strata
can be defined as 1950-54, 1955-59, . . . , 1980-84. Suppose that
both workers A and B were aged 30 years in 1950. Then each con-
tributes 5 person-years to the 30-34-year age and 1950-54 calen-
dar year jointly classified stratum. (It is convenient, though not nec-
essary, to specify equal widths for age and calendar year strata.)
During the interval 1955—59 both workers A and B were aged 35—
39 years, and therefore each contributes 5 person-years into the
corresponding stratum. For the group of eight workers in this
example there is a total of 20 person-years accrued in the 1950-54
calendar year stratum (from workers A, B, C and D), whereas in the
1965—69 period all but one worker (G) contributes 5 person-years
each, yielding a total of 35 person-years. In like manner, person-
years arc summed across age strata. Ultimately, the joint distribu-
tion of person-years, by age and calendar year, can be tallied.

This hypothetical example is intentionally simplified so that fol-
low-up times begin and end conveniently at five-year age and cal-
endar year junctures. In actual cohort studies workers will have
begun and ended follow-up times at any number of possible ages
and time points within calendar years. Fortunately, sophisticated
computer programs can accommodate person-years counting for
these more complex, yet typical, situations (Monson, 1974; Marsh
and Preininger, 1980; Waxwcilcr et al., 1983).

The process of stratification of person-years can be extended to
include these variables and other factors (e.g., race, socioeconomic
status, age at hire, duration of employment, cumulative exposure,
etc.) by apportioning person-years into a K-dimensional matrix,
where K represents the number of stratification variables. The num-
ber of person-years in any cell of such a matrix diminishes as the
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number of variables and associated categories increases. Also, close
correlations among variables, such as age at hire and year of hire,
will result in many cells with 0 person-years, and hence unstable or
incalculable rates, because there will be few workers with extreme
values opposite in magnitude (e.g., very old workers with short dura-
tions of follow-up).

Stratum-specific incidence or mortality rates are computed by
dividing the cohort's total number of cases (deaths) by the number
of person-years. Descriptions of appropriate analytic methods
follow.

3.2. Stratum-Specific Rates

From the discussion in Section 3.1., it should be clear that the
counting of person-years and computation of rates involving strati-
fication on relevant factors (e.g., age, calendar year) will generate a
large array of stratum-specific rates. When studying rates for many
different diseases among a cohort, the stratum-specific rates may be
highly unstable because of small numbers of cases or person-years
in individual strata. This type of problem can arise even when the
cohort is relatively large (e.g., thousands of workers collectively con-
tributing several hundred thousand person-years of observation),
the analysis is limited to broad disease groupings (e.g., all cancers)
or stratification is restricted to only two or three factors.

Table 5-3 gives the general layout for data from a cohort study.
This is the data layout for the crude table when there is no stratifi-
cation made on age, calendar year, or any other potentially con-
founding variable. The same basic data layout is used for each stra-
tum in a stratified data presentation; here the cell entries (a, b, N1,
N2, M, and T) would be indexed by subscripts such as i, j, k, and so
on, denoting levels of the various stratification factors. For example,
if stratification is performed on age at five levels and calendar year
at three levels, then there would be 5 X 3 = 15 age/calendar year-
specific strata. Age might be indexed by i = 1, 2, . . . , 5, and cal-
endar-year by j = 1 , 2 , 3. Thus, the data table for the second age

Table 5-3. Data layout for a cohort study using rates and
person-years

Exposed Non-exposed Total

Cases a b M
Person-years N1 NTV,, TN
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group and first calendar year stratum would be a2 l , b2 l , and so forth.
If particular strata contain very few person-years, then one solution
might be to broaden the widths of the strata, while still maintaining
the stratification. Earlier we mentioned that five-year stratum widths
for age and calendar year are commonly used, in part because
national death rates tabulated by vital statistics bureaus or cancer
incidence rates reported by disease registries typically are presented
on a quinquennial basis. The choice of the five-year stratum width
has become standard primarily because a period of five years usually
includes large enough numbers of cases and person-years to ensure
stability of rates, at least in a national or regional population. If one
widens the age strata to, say, 20 years, then, for example, a single
rate for workers aged 40 to 59 years is less likely to depict reliably
the disease experience in this age group than four age-specific rates
for workers aged 40-44, 45-49, 50-54, and 55-59 years.

3.3. Summary Measures of Effect

Standardization

Two approaches that can be taken to summarize rates across strata
of a confounder (e.g., age), while maintaining the unique informa-
tion contained within strata (stratum-specific rates), are to compute
either standardized rates or pooled rates. Several analytic options for
standardizing rates are available. These procedures are useful for
most analyses of occupational cohort data. More advanced mathe-
matical modeling techniques can be valuable adjuncts to the basic
methods described here and are discussed in Chapter 8.

The basic feature of a standardized, or summary, rate is that it is
a weighted average of stratum-specific rates. A general expression
for a standardized rate (SR) is

where i indexes the strata, the W, are the stratum-specific weights,
and the /, are the stratum-specific incidence (or mortality) rates.

As can be seen from expression (5.1), the choice of weights deter-
mines the type of summary measure. Ideally, one would choose
weights that result in the most precise summary estimate of effect.
When the rates in two (or more) populations are to be compared, it
is important that the rates be standardized using the same set of



The SMR is thus the ratio of the sum of the observed cases in the
exposed population, relative to the sum of the expected numbers in
the exposed population, where the expected numbers are based on
rates in the reference population.

The alternative method of taking weights from the confounder
distribution of the reference population (i.e., W, = TV,,,) is exempli-
fied by the standardized rate ratio (SRR) procedure described by
Miettinen (1972). When the SRR is used as the summary rate ratio,
expression (5.2) becomes
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weights so that the comparisons are not confounded by the strati-
fying variable (s). The choice of weights depends on the group to
which inferences are to be made. There are two common practical
alternatives. First, the rates can be standardized to the confounder
distribution of the study (exposed) population. This is done in an
SMR analysis (see the following discussion). Alternatively, the rates
may be standardized to the confounder distribution of the compar-
ison, or reference, population (assumed non-exposed). These two
approaches will be illustrated for the situation of confounding by
age at risk (indexed by i, as before). In either case, the ratio of stan-
dardized rates (RRS) is expressed as

Note that the numerator of expression (5.2) is the standardized rate
in the exposed population, and the denominator is the standardized
rate in the reference population.

In computing an SMR, the W, are taken from the confounder dis-
tribution of the exposed population (i.e., W, = N1i), and expression
(5.2) reduces to

The SRR is therefore the ratio of the number of expected cases
in the reference population, based on rates in the exposed group,
to the number of observed cases in the reference population.
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Pooling Rates

Another general method of summary rate ratio estimation is pool-
ing, which involves computing a weighted average of the stratum-spe-
cific rate ratios [rather than the ratio of weighted averages of stratum-
specific rates, as in expression (5.2)]. In this case, RRS takes the
form

A related method for summary rate ratio estimation is the preci-
sion weighting approach, which involves using the inverses of the
variances of the stratum-specific rate ratios as the weights in expres-
sion (5.5) (Kleinbaum et al., 1982). However, the computations
required for precision weighting arc more complex than those for
RRM_H , and precsion weighting has the disadvantage of yielding
unstable summary rate ratios when there are zero cells in some of
the stratum-specific tables.

Several points should be made regarding these summary mea-
sures of effect. First, all are ratio estimates and therefore express
disease frequency on a multiplicative scale (Breslow et al., 1983).
Thus, their interpretation is made in reference to the null (no effect)
value of 1.0. One may prefer rate difference measures that yield
absolute estimates of effect, that is, on an additive scale. One con-
venient way of presenting absolute effect estimates is to compute
the difference in observed and expected numbers of cases or deaths
(e.g., from an SMR or SRR) divided by the person-time of obser-
vation (Monson, 1986). Summary measures of rate differences can
be derived in a fashion similar to that for rate ratios; however, we
will focus on ratio measures because they are more familiar in occu-
pational epidemiology.

The second point is that, for a particular stratum of the con-
founder, the SMR, SRR, and RRM _H all provide the same unbiased

The most common choice of weights is that given by the Mantel-
Haenszel (1959) method, which uses weights of biN1i/T, (Rothman
and Boice, 1979). With these weights, expression (5.5) becomes
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estimate of the rate ratio. This can be demonstrated by recasting
expressions (5.2) and (5.5) specifically for just the ith stratum by
eliminating the summation. When the rate ratio is constant across
all strata of the confounder, all three estimators give the same
result. This can be shown by assuming that the rate for the exposed
group is equal to some multiple M of the rate in the reference pop-
ulation, that is, ai/N1i = M(bj/N0l). Substitution into expression (5.2)
(for the SMR or SRR) or expression (5.5) (for RRM_H) yields RRS =
M, in each instance.

SMR Analysis

SMR analysis is the most widely employed and familiar technique
for rate adjustment in occupational cohort studies. In an SMR anal-
ysis, the nonexposed group is usually an external reference popu-
lation. National or regional (e.g., state or province) populations are
frequently chosen as reference populations. The advantage of using
a national or regional reference population is that the stratum-spe-
cific rates in such a population are generally stable, and thus the
expected numbers of the SMR can be considered as virtual con-
stants (Gardner, 1986).

The numerator of the SMR is obtained simply by summing the
number of cases (deaths) in the cohort across all strata of age, cal-
endar year, and other stratification variables. The denominator of
the SMR is then obtained by multiplying the stratum-specific rates
in the reference population by the corresponding numbers of per-
son-years in the cohort and then summing over all strata (Berry,
1983). It should be recognized that multiplying the expected rate
(cases/person-years) by person-years will yield the expected number
of cases. (Disease rates for national or regional reference popula-
tions are often reported as annual numbers of cases per 100,000
persons, rather than as person-years. Nonetheless, these quantities
are rates if it is assumed that, for any single year, each person in the
reference population contributes 1 person-year.) The denominator
of the SMR can be thought of as the number of cases that would
have occurred in the cohort had the cohort experienced the same
stratum-specific rates as the reference population during the spec-
ified time interval of the study.

A hypothetical example illustrating the computations for an SMR
is shown in Table 5—4. Only one stratification variable, age, at four
levels, is considered, so as to simplify the calculations, but the same
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Table 5-4. Hypothetical example illustrating calculation of the standardized mortality ratio
(SMR)

Study cohort

Age

40-49
50-59
60-69
70-79

Total

(1)

Obs

6
27
98
48

179

(2)
Person-
years

1,200
2,340
3,750

975

Reference population

(3)

Rate per 1,000

2.5
6.1

12.4
25.0

(4)
Exp =

(2) X (3)

3.00
14.27
46.50
24.38

88.15

SMR =
(1) ^ (4)

2.00
1.89
2.11
1.97

2.03

principles apply in analyses involving more than one factor. This
example shows that the SMR is 2.03, indicating a 103-percent dis-
ease excess in the cohort relative to the reference population.

The validity of the SMR as a summary measure of effect has been
the subject of debate among epidemiologists (Gaffey, 1976;
Chiazze, 1976; Wong, 1977; Syrnons and Taulbee, 1981; Breslow et
al., 1983). One criticism is that the SMR, like any summary measure,
obscures stratum-specific effects (Chiazze, 1976). For example, the
SMR will not reveal which age groups experienced the greatest rela-
tive disease excesses or deficits.

One often noted shortcoming of SMR analysis is that, if the study
involves several exposed groups, such as subcohorts of the main
cohort, then comparisons of SMRs between groups will not be
appropriate if their confounder distributions differ [i.e., the SMRs
do not share a common set of weights (Yule, 1934; Miettinen, 1972;
Breslow, 1984)]. For example, comparisons of SMRs between
subgroups of the cohort, classified according to duration of employ-
ment, may be confounded if the subgroups have different distribu-
tions of age or calendar year.

To illustrate the problem of noncomparable SMRs, consider the
hypothetical example in Table 5-5. Here SMRs for two cohorts, A
and B, are compared, where the SMRs are derived from age-specific
rates in the same external reference population. We can see that the
age-specific SMRs (and hence the underlying rate ratios) arc similar
for the two cohorts, whereas the summary SMRs are different. The
reason for this discrepancy is that cohort A has a preponderantly
older age structure (3,000 of 4,000 person-years in the >40-year
age stratum), whereas the age structure of cohort B is reversed.
Also, the rates in the reference population and in the two cohorts
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Table 5-5. Example of confounded comparisons of SMRs

Cohort A

Age

<40
2:40

Total

Person-
years

1,000
3,000

4,000

Obs

25
375

400

Exp

15
150

165

SMR

1.67
2.50

2.42

Person-
years

3,000
1,000

4,000

Cohort B

Obs

75
125

200

Exp

45
50

95

SMR

1.67
2.50

2.11

Reference
population,

rate per
1,000

15.0
50.0

increase with age. Thus, the higher summary SMR in cohort A is an
artifact of its older age composition.

Approximate confidence interval estimation for the SMR can be
obtained by setting limits for the numerator, the observed number
of cases, and assuming the denominator to be a constant (Rothman
and Boice, 1979). The formula for the lower limit of an SMR is

and the upper limit is given as

where Obs is the numerator of the SMR, Exp is the denominator of
the SMR, and Z is the standard normal deviate specifying the width
of the confidence interval (e.g., Z == 1.96 for a 95-percent interval).
Exact confidence intervals can be computed (especially when the
expected number is less than 2), but they require iterative calcula-
tions (see Rothman, 1986).

Several methods arc available for statistical significance testing
for departures of SMRs from 1.0. The simplest computational
method is to compute a chi-square test with 1 degree of freedom,
which takes the following form

It is commonly assumed that the observed number of cases or
deaths from a particular disease follows a random, or Poisson, dis-
tribution in time. Thus, under the null hypothesis, the expected



where P is the probability of observing an SMR as large or larger
than that detected, a is the total number of cases observed, and A is
the number of cases expected. Note that the summation is taken to
infinity. In practice, however, one would sum values beginning with
k = a, k = a + 1 , . . . , until the increment to p becomes virtually
zero.

SMRs based on expected values of less than 2 occur with consid-
erable regularity in occupational cohort studies that encompass
many disease outcomes. In most instances, the SMR for an entire
cohort for a particular disease should be regarded with caution
when the expected value (not the observed) is less than 2, because
such a result may be misleading, except when the disease is very rare
in non-exposed populations (e.g., malignant mesothelioma). In such
instances, the possibility of diagnostic error for rare diseases in both
the study cohort and the reference population should be borne in
mind.

SRR Analysis

Because of problems associated with the Healthy Worker Effect in
studies using an external reference population, investigators
increasingly have conducted analyses using internal reference groups
identified from within the cohort. SMR analysis can still be used for
comparisons with an internal reference group. However, the SRR
approach is better suited for analyses involving internal reference
groups because it avoids the noncomparability problems of SMRs.
Statistical aspects of SRR analysis are presented here, and practical
applications are demonstrated in Section 3.4 on subcohort analysis.

As noted earlier, the SRR is a summary rate ratio that involves
taking weights from the reference group. When there are several
"exposed" groups in the study (e.g., subcohorts of workers with
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value (Exp) for the total number of cases observed estimates the
variance of Obs (Armitage, 1971).

The chi-square test in expression (5.9) is most applicable when the
expected value (Exp) is 2 or greater (Bailar and Ederer, 1964). In
the example in Table 5-4 the chi-square value is 93.48 [= (179 —
88.20)2/88.20], and the associated Rvalue is less than 10-5.

When Exp is less than 2, an "exact" p-value can be computed
(Armitage, 1971) from the following formula:
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increasing exposure levels) and one reference group (i.e., "non-
exposed"), the SRRs computed for these groups can be compared
validly because they are based on a common set of weights, the con-
founder person-time distribution of the reference group.

There are several available methods for computing confidence
intervals for SRRs (Miettinen, 1976; Greenland, 1982; Flanders,
1984; Rothman, 1986). An approximate confidence interval for an
SRR can be calculated using a formula for the approximate variance
of the natural logarithm of the SRR [In(SRR)] (Rothman, 1986),
which is given as

Upper and lower confidence limits for an SRR are then obtained by
exponentiation as follows:

Mantel-Haenszel Analysis

Mantel-Haenszel summary rate ratios (RRM_Hs) are alternatives to
the SRR. The SRR can be unstable (thus resulting in imprecise
effect measures) when there are unstable stratum-specific rates in
the groups compared. In contrast, the stability of the RRM- H only
depends on the overall, rather than stratum-specific, number of
cases. However, when more than two groups are to be compared,
the RRM_H suffers from the same potential problem of noncompar-
ability that hinders SMR analysis. With the RRM ,,, the weights
depend on the confounder distributions of both groups compared;
thus, in an analysis of more than two groups, the weights change,
depending on which groups are compared. This problem is not as

A statistical test of the departure of the SRR from the null value
can be applied using the Mantel-Haenszel chi-square test, adapted
for use with person-time data (Shore et al., 1976; Rothman and
Boice, 1979). The test statistic, with one degree of freedom, is
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great as that with an SMR analysis of more than two groups if the
same reference group is included in every RRM-11 computation.

Confidence intervals for the RRM_H can be derived by using an
approximate variance formula of the natural logarithm of RRM_H

(Greenland and Robins, 1985), and exponentiating the upper and
lower limits as in expression (5.12). The approximate formula for
the variance of ln(RRM_H) is

Thus, the lower and upper confidence limits for RRM_H are

The "test-based" method of confidence interval estimation (Miet-
tinen, 1976) is a convenient alternative approach. The form of the
test-based confidence interval is given by

where x2 is the Mantel—Haenszel chi-square statistic given in expres-
sion (5.13).

The test-based confidence interval estimation method has the
advantage of ease of computation but is only applicable to R R M _ I I

and should not be used for the SMR or SRR (Greenland, 1984).
Even for R R M - H it is inaccurate when the rate ratio estimate is less
than 0.2 or greater than 5.0 (Greenland, 1984). Nonetheless, it per-
forms well within that range, especially closest to the null value,
where accuracy is most important (Miettinen, 1977).

4. STRATEGIES OF ANALYSIS

4.1. Overall Cohort Analysis

The first research question addressed in a cohort study is whether
the rates of various diseases observed for the study cohort are dif-
ferent from rates found in a comparison population that is pre-
sumed to be non-exposed to the workplace agent(s) of concern. In
this first level of analysis, the disease frequencies experienced by the
entire cohort throughout the study period are examined to provide
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a general picture of disease excesses and deficits. This type of over-
all analysis can therefore be viewed as a method of screening for
associations that ultimately will warrant more intensive and formal-
ized investigation. From a public health perspective, such an analy-
sis describes the cohort's health profile relative to the norm and sug-
gests areas for possible intervention.

Example 5.1

An example of an SMR mortality analysis on a cause-specific basis is shown in Table
5-6. These data were obtained in a historical cohort study of workers in the phos-
phate mining and fertilizer industry (Checkoway et al., 1985b). The reference pop-
ulation is U.S. white males, and SMRs were computed using age and calendar year
stratification, with stratum widths of five years for both variables. The numbers for
the major cause of death groupings (e.g., all causes, all cancers, cardiovascular dis-
eases) are sufficiently large, and thus yield stable SMRs. However, some of the site-
specific cancer SMRs (e.g., liver, larynx, Hodgkin's disease) are based on small
numbers and are therefore subject to wide fluctuations.

It should be appreciated that the absence of apparent disease
excesses in an overall SMR analysis can occur despite localized
excess risks in subgroups of the cohort. In some cases, etiologic

Table 5-6. Standardized mortality ratios, by cause of death, among white male phosphate
industry workers: 1949-78

Cause of death

All causes
Ischemic heart disease
Vascular lesions of CNS
Nonmalignant respiratory diseases
Motor vehicle accidents
All malignant neoplasms

Cancer of the oral cavity
Stomach cancer
Colon cancer
Liver cancer
Pancreas cancer
Lung cancer
Larynx cancer
Prostate cancer
Bladder cancer
Kidney cancer
Lymphosarcoma and reticulosarcoma
Hodgkin's disease
Leukemia and aleukemia

Obs

1,620
512

90
73

132
289

11
9

13
3

18
117

3
17
7
6
7
1

15

Exp

1,623.8
552.2
93.75
82.95
86.84
304.3
10.09
15.52
26.00

5.56
16.36
95.90

4.55
14.78
7.87
7.89
7.69
5.88

13.51

SMR

1.00
0.93
0.96
0.88
1.52
0.95
1.09
0.58
0.50
0.54
1.10
1.22
0.66
1.15
0.89
0.76
0.91
0.17
1 . 1 1

Source: Checkoway et al. (1985b).
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associations may only emerge upon more refined analyses.
Subgroup, or subcohort, analysis is discussed in Section 4.2.

Stratified Analysis

We have already stressed the importance of stratification on age and
calendar year in the discussion of statistical methods. Stratification
can be extended to include factors additional to age and calendar
year. The most important of these factors are (1) age at hire, (2) year
of hire, (3) year of birth, (4) length of employment, (5) time since
first exposure, and (6) length of follow-up (see Chapter 4). Accord-
ingly, we might compute separate SMRs for strata defined by one
or more of these factors, while also maintaining stratification with
respect to age and calendar year. The principles of SMR analysis,
including invalid comparisons of SMRs when there are dissimilar
distributions of confounders, described previously for the more
simple situations apply here as well. The objective of this type of
analysis is to examine disease frequency contrasts between
subgroups of the cohort, defined by stratification on one or more
of these variables.

When evaluating the effects of any one of these factors, ideally
one would like to control for the others, in addition to age (or age
at risk, as it is sometimes called) and calendar year. There are prac-
tical difficulties with this approach, however. First, these stratifica-
tion variables are highly intercorrelated. For example, if one knows
age at hire and age, then time since first exposure is also known,
because it is the difference of the two. Similarly, age at hire is deter-
mined by year of birth and year of hire. Interdependence of factors
therefore precludes simultaneous control. This problem is referred
to as multicollinearity in statistics (see Chapter 8).Furthermore,
simultaneous stratification on multiple factors in an SMR analysis
will result in many cells with few or no person-years, thus necessi-
tating a mathematical modeling approach.

A common strategy for assessing SMRs computed according to
these influential factors is to stratify on age, calendar year, and one
(or at most two) of the remaining variables. This approach has the
limitation of potentially confounded comparisons of SMRs but can
give informative results in some instances.

Example 5.2

Table 5—7 shows SMRs for lung cancer among phosphate industry workers (Check •
oway et al., 1985b), adjusted for age and calendar year, and stratified on each of
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Table 5-7. Standardized mortality ratios for lung cancer among white
male phosphate industry workers: 1949-78, according to selected strati-
fication variables

Source: Checkoway et al. (1985b).

four other factors: length of employment, years since first employment, age at hire,
and year of hire. The patterns of the SMRs stratified on these factors arc irregular.
Nevertheless, we can note that the largest SMRs for the longest strata of years since
first employment and the youngest age at hire strata are consistent in suggesting a
long lapse time between exposure onset and lung cancer mortality. The trend with
length of employment, however, does not indicate a strong exposure-response
association.

Example 5.3

Table 5-8 provides an example of cross-classification of SMRs according to two
factors (in addition to age and calendar year). These data are SMRs for lung cancer
from a historical cohort mortality study of metal tradesmen (Beaumont and Weiss,
1980). The SMRs, which are jointly stratified according to length of employment
and time since first employment, fill up only the top right half of the table because
length of employment cannot exceed time since first employment. The SMRs in the
margins of Table 5-8 arc similar to those presented in Table 5-7 from the prcced-

Variable

Length of employment (yr)
1-4
5-9
10-19
20-29
30-39
>40

Years since first employment
1-4
5-9
10-19
20-29
30-39
>40

Age at hire (yr)
<20
20-29
30-39
40-49
>50

Year of hire
Before 1930
1930-39
1940-49
1950-59
1960-69
1970 or later

Obs

29
17
29
25
15

2

8
7

36
35
21
10

4
29
45
32

7

7
11
49
29
19

2

SMR

1.36
1.18
1.09
1.05
1.88
0.80

1.48
0.76
1.28
0.96
1.71
2.08

1.29
1.23
1.38
1.18
0.71

1.19
1.67
1.23
1.03
1.57
0.59
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Table 5-8. Lung cancer SMRs according to length of employment and years since first
employment among metal trades union members

Source: Beaumont and Weiss (1980).
"Zero person-years in the stratum.

ing example. One particular feature of the data in Table 5-8 deserves comment.
The SMRs directly adjacent to the diagonal from top left to bottom right, which
are for workers who died shortly after employment, are somewhat higher than
those in the remainder of the table. One possible explanation for this result is that
illness, which may have led to excessive mortality, may also have resulted in pre-
mature retirement. Other authors have remarked on this phenomenon (Delzell and
Monson, 1981; Gilbert, 1982).

In an analysis comparing incidence or mortality between
subgroups of the cohort, classified by, say, age at hire or length of
employment, confounding of the type just described could occur
unless other predictors of disease are controlled. Thus, we are faced
with an apparent dilemma: multiway stratification may control for
confounding from a number of factors, but it may also yield unsta-
ble results because of small numbers. One obvious approach is to
examine the distributions of other potential confounders between
categories of the main stratification variable(s) before attempting to
compute a summary measure that takes into account these other
factors. For example, if we are going to compare SMRs between
strata of employment duration but are concerned about possible
confounding from year of hire, we could compare the distributions
of year of hire between the employment duration strata. Similarity
of distributions would give some assurance that the comparisons
would not be confounded, and we would then be justified in ignor-
ing year of hire in the analysis.

The situation becomes more complex as the number of potential
confounders increases. Thus, if we are concerned about age at hire
and time since first exposure, in addition to year of hire, then we
would need to compare the distributions of all three variables

Length of
employment

(yr) 3-9

3-9 0.59
10-19
20-29
30-39
>40

Total 0.59

Years since first employed

10-19

1.43
0.88

0.98

20-29

1.84
1.83
0.93

1.26

30-39

2.06
1.20
2.16
1.52

1.69

>40

— a

0
—

1.68
1.34

1.42

Total

0.98
1.16
1.18
1.55
1.34

1.17
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between employment duration strata. In fact, we might need to
compare the joint distributions of these factors between groups if
there were reason to suspect that confounding may occur because
of some complex pattern of variables. Furthermore, as mentioned
previously, simultaneous control of all potential confounders in a
cohort analysis is impossible because of the direct numerical depen-
dence between subsets of these variables.

Difficulties associated with the simultaneous control of multiple
potential confounders are by no means unique to occupational
cohort studies. A reasonable strategy to adopt is to decide in
advance which factors are of particular interest and which are less
important. The latter can be ignored in the analysis if their control
is likely to offer a limited gain in insight. This approach is a gamble
to some extent, as unanticipated confounding or effect modification
may be ignored to the detriment of the study.

Choice of Reference Populations

The Healthy Worker Effect poses a major problem with cohort stud-
ies involving comparisons with a national or regional external ref-
erence population. Several approaches for circumventing bias
caused by the Healthy Worker Effect are available. One strategy is
to compare disease rates among the cohort with rates in an external
reference population also consisting of employed (and retired)
workers. Such a reference population may be identified from
national census data when information on employment is recorded.
Data of this sort exist in Great Britain (Fox and Goldblatt, 1982)
but are available in few other countries.

Alternatively, the reference population might be selected from
among employees in an industry other than the one under study.
For example, Hernberg et al. (1970), in their study of cardiovascu-
lar diseases among viscose rayon factory workers, selected as a com-
parison group workers at a paper mill not exposed to the suspected
etiologic factor, carbon disulfide. Comparing disease rates between
two industrial populations has the potential advantages of minimiz-
ing bias from the Healthy Worker Effect and achieving control of
confounding from other factors, such as social class. However, rela-
tive excesses or deficits of disease among the study cohort may be
difficult to interpret if the reference worker cohort is exposed to
the same agents or to agents that cause the diseases of interest. To
illustrate, consider a cohort study of lung cancer incidence among
uranium miners in which asbestos insulation workers are chosen as
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the reference group. In this instance, an excess of lung cancer
among the uranium miners would be understated or might go unde-
tected. Furthermore, the use of an external worker reference pop-
ulation usually increases study costs.

Another approach is to use an internal reference population, con-
sisting of some segment of the full study cohort, usually assumed to
be non-exposed to the hazardous agents of concern (Gilbert, 1982).
This approach may not eliminate bias from the Healthy Worker
Effect, but will usually reduce it (Pearce et al., 1986). An additional
advantage of using an internal reference population is that similar-
ity of data quality is anticipated for all groups compared. In con-
trast, there are often disparities in the amounts and quality of data
between the study cohort and an external reference population.
The principal difficulty of choosing an internal reference popula-
tion is that it may not be possible to identify a "non-exposed"
group, and thus observed exposure-response relationships may be
diminished spuriously.

Previously, we discussed subcohort analysis, where subcohorts are
defined on the basis of employment duration, time since first expo-
sure, and so on, and rates from an external reference population
provide expected numbers. Use of an internal reference group is
typical of analyses that are primarily directed at exploring associa-
tions of disease rates with certain work areas, tasks, or exposure lev-
els within the workplace. Strategies of analysis focused on etiologic
questions are considered next.

4.2. Subcohort Analysis

The second level of cohort data analysis is a comparative examina-
tion of disease rates between subcohorts defined on the basis of
their exposure experience. This analysis, of course, requires that job
and/or exposure level data are available or can be reconstructed for
the cohort.

Classification with Respect to Job Categories

Exposure data in occupational epidemiology can be depicted in a
variety of ways. The crudest characterization is simply ever versus
never employed in the industry, and the relevant analysis consists of
comparisons of disease rates between the cohort and an external
reference population. This analysis can be accomplished with the
SMR approach, as described earlier.



Characterization of workers into groups defined on the basis of
process division in the plant or similarity of jobs and tasks is an
objective scheme that is especially valuable when exposure intensity
data are limited or nonexistent (see Chapter 2).

Example 5.4

The simplest way to apply a process division or job grouping scheme in an occu-
pational cohort study is to categorize each worker into only one grouping. Table
5-9 gives an example of mutually exclusive categorization with data adapted from
Beaumont and Weiss' (1980) cohort mortality study of metals tradesmen. Workers
sometimes changed job categories, usually from a "helper" to a skilled job cate-
gory. Because such workers often performed skilled work before their job desig-
nations were officially changed, the investigators assigned them to the skilled job
categories. The findings reveal evidence of disease clustering in various trades, yet
the role of specific causative agents is undetermined.

A simple classification system of the sort illustrated in Example
5.4 requires that all of the person-years for each worker and any
cases (deaths) be assigned to only one job category. Several options
are available for mutually exclusive job categorization. A worker can
be classified according to (1) the first job, (2) the last job, (3) the job
held longest, or (4) the presumed "most hazardous" job. Options 1
and 2 are the least desirable, although inadequate job history data
may necessitate one or the other. Options 1 and 2 will be wasteful
of job history and exposure information for workers who have
assumed more than one job in the plant. Option 3 is the most com-

Source: Beaumont and Weiss (1980).

Respiratory cancer

Job category

Welders
Shipfitters
Helpers
Riggers
Mechanics
Burners
Boilermakers
Others

Total

Obs

53
12
20
15
7

11
15
14

147

SMR

1.31
0.57
1.28
0.92
0.92
1.28
1.57
1.98

1.17

Nonmalignant
respiratory disease

Obs

40
28
19
14
5

16
15
9

146

SMR

1.25
1.44
1.01
0.85
0.74
2.21
1.63
1.28

1.25
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Table 5-9. Respiratory disease mortality in various job categories of metal trades
occupations
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mon method of worker categorization because the longest-held job
is most representative of a worker's occupational experience.
Option 4 requires investigator judgment about the types and con-
centrations of exposures in various jobs, based either on specific
knowledge of the industrial processes and job activities or on heu-
ristic evidence of toxic reactions among workers in various jobs in
the plant, for example, seemingly frequent reports of illness or
injury from one job type or work area. Option 4 becomes an ordinal
ranking scheme (see the following discussion) when judgment
regarding exposure potential is thought to be reliable. On balance,
then, categorizing workers into their longest-held jobs is the most
defensible strategy for a mutually exclusive exposure classification
scheme.

A simple mutually exclusive classification system is attractive from
the standpoint of ease of computation. However, there are prob-
lems associated with this approach. For example, in the study by
Beaumont and Weiss (1980) (Example 5.4), the investigators noted
that their method of assigning all the person-years and expected
deaths to the category including the last job held (option 2) "intro-
duced a small bias, in that person-years and expected deaths for the
helper experience were sometimes allocated to a skilled category.
The result was slightly conservative [underestimated] mortality
ratios for the skilled groups and slightly inflated ratios for the helper
category." Such bias can be substantial in more complex situations
of job mobility.

Bias of this type can be reduced by beginning counting of person-
years and case occurrences for a particular job category only at the
point in time that a worker enters that job category. In Example 5.4,
this method would avoid underestimating effect estimates (e.g.,
SMRs) for the skilled groups but would not rectify the problem of
inflated mortality ratios for the helper categories because they
would still not include the person-time for helpers who moved to
skilled jobs. Furthermore, this method is wasteful of information
because some person-years may be excluded from the analysis.

Similar problems can occur for other job assignment options
(e.g., categorizing workers into the longest-held job). These prob-
lems are compounded if workers change jobs frequently or if work-
ers spend equal amounts of time in two or more jobs (see Example
5.5). Thus, any analysis that does not take into account movement
between job categories may produce misleading results.

The solution is to make full use of all the person-time information
available. This is usually done in the context of an analysis involving
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Figure 5-5. Job category assignments for four hypothetical workers.

internal comparisons, but it can also be used with SMR comparisons
against an external reference population. Essentially, a separate anal-
ysis is carried out for each job category. The simplest such analysis is a
comparison of the disease rates of workers who have ever worked
in a particular job category with those of workers who have never
worked in that category. Each analysis thus involves all the person-
time experience and cases (or deaths) in the study.

Example 5.5

Figure 5—5 depicts the employment experience of four hypothetical workers who
moved between only two jobs, A and B. To simplify the problem, we can assume
that all four were hired in 1960 at age 40 years, terminated employment in 1980,
and died of the disease of interest in 1985. If one were to adopt a decision algo-
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rithm such that each worker is assigned to the job category containing the job held
longest, then workers 3 and 4 would present an unrcsolvable problem; worker 1
would be classified into category B, as would worker 2 because both had worked
for 15 of their 20 years of employment in job B, even though the temporal
sequencing of employment in these jobs is reversed for the two.

Considering further the four workers in Figure 5-5, we can sec that workers 1
and 2 will be indistinguishable if a mutually exclusive, longest-duration job cate-
gorization is used, yet differences in their temporal patterns of exposures in job B
will be obscured. The procedure that will account for these age and calendar year
differences, as well as for time spent in other jobs (in this example, job A), is to
carry out a separate analysis for each job category, with each analysis including all
the person-time and deaths in the study. For example, the analysis for job B would
consist of comparing the mortality among persons who ever worked in job B with
that of persons who never worked in job B. Thus, for workers 2 and 4, all 25 years
of follow-up and the subsequent death would be allocated to the "ever" category
for job B. On the other hand, the first five years of follow-up for worker 1 would
be allocated to the "never" category (because up to that point he had never worked
in job B). The subsequent 20 years of follow-up (and the death) for worker 1 would
be assigned to the "ever" category for job B. Hence, all the person-years and
deaths in the study would be allocated to one of two categories (ever/never) for
job B. The mortality experience of these two categories could then be compared
with one of the effect measure estimates described earlier in this chapter.

More generally, it is preferable to examine the effect of duration
of employment in each job category rather than a simple ever/never
comparison. When employment duration is incorporated into a job
category analysis, person-years are distributed, by age and calendar
year and other confounders, into employment duration strata
within job categories. The cases or deaths are then assigned to each
job category of employment, as before, but within a job category,
cases are placed in the longest achieved duration stratum. In Exam-
ple 5.5, when evaluating job A, the first five person-years for worker
3 would be allocated to the zero to four years' duration of employ-
ment stratum, and the next 20 years and the death to the five to
nine years duration stratum. Next, we would evaluate worker 3's
employment in job B. The years 1960-74 would be assigned to the
zero to four years' employment duration stratum for job B, and the
next 10 years (and the death) would be assigned to the five to nine
years' duration stratum. Thus, the approach described here involves
conducting multiple analyses, one for each job category, and no
arbitrary assumptions are made about the relative hazards of var-
ious job categories.

When only a few job categories are to be considered, it may be
possible to perform a separate analysis for each, while controlling
for duration in the others (e.g., the job A analysis might be stratified
on duration of employment in job B, as well as on age, calendar
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Table 5-10. Standardized rate ratios (SRRs) for lung cancer mortality among phosphate
industry workers, according to employment duration in job categories

Source: Checkoway et al. ( 1985a).

"Reference category, includes 0.

year, and other confounders). However, this can become unwieldly
when there are more than two or three job categories, especially
when the categories are not mutually exclusive, as occurs when cate-
gorization is made with respect to specific exposures that overlap
jobs. In this situation, the initial analyses should consider each job
category separately, such that each analysis includes all person-years
and events in the study. Simultaneous assessment of the effects of
multiple job categories can then be made selectively by focusing on
the job categories that arc related to disease.

Example 5.6

Table 5-10 displays data on lung cancer mortality from the cohort study of phos-
phate industry workers (Checkoway et al., 1 985a). A total of 116 lung cancer deaths
occurred during the 30 years of follow-up, and workers were classified into non-
overlapping job categories. It should be noted that each line of the table represents
a separate analysis, and therefore includes all 116 lung cancer deaths in the study.
The columns denote increasing employment duration strata within job categories.
Each worker contributes person-years into each employment duration stratum in
which he worked. Within a job category, person-years accumulation for the < 1,
1-9, and > 10-year duration strata begin, respectively, at the date of entry into the
cohort, the date at which one year of cumulative employment in the the job cate-
gory was achieved, and the date at which ten years cumulative employment in the
job category occurred. All person-years were further stratified according to age
and calendar year in this example. Increasing lung cancer mortality gradients with
employment duration were found for two job categories: Skilled Crafts and Plant
Services.

Another general strategy for conducting subcohort analysis is to
compare disease rates between subcohorts defined on the basis of
employment in job categories that are ranked with respect to expo-

Length of employment (yr)

Job category

Mining and separation
Rock processing
HySO,, and H3PO4 manufacturing
Fertilizer manufacturing
Skilled crafts
Plant services
Administration

Obs

74
92

105
111
94
86
92

<r
SRR

1.00
1.00
1.00
1.00
1.00
1.00
1.00

1-
Obs

27
17
8
5

10
20
15

-9

SRR

1.54
1.75
1.34
0.78
0.85
1.28
1.07

>

Obs

15
7
3
0

12
10
9

10

SRR

0.76
0.95
0.87

0
1.83
1.98
0.62
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Table 5-11. Standardized Rate Ratios (SRRs) for lung cancer mortality among white male
phosphate industry workers, according to employment duration in jobs grouped with
respect to exposure potential

Length of employment (yr)

Jobs grouped by exposure —
to: Obs SRR Obs SRR Obs SRR

Source: Checkoway et al. (1985a).

"Reference category, includes 0.

sure intensity for the agent(s) of interest. Ordinal rankings can be
made either on the basis of informed judgment or with reference
to exposure measurements. Ordinarily, if there are sufficient expo-
sure data to permit estimation of individual workers' exposures,
then one would attempt to reconstruct a quantitative profile for
each worker (see the following discussion). However, there are times
when the industrial hygiene or health physics data are incomplete
and only permit an ordinal ranking of jobs and work areas.

The simplest, and often most reliable, ranking system is a dichot-
omous yes—no rating of jobs with respect to exposure potential.
Under such a scheme, jobs are grouped according to the probability
of exposure.

Example 5.7

Table 5-11 shows lung cancer mortality data from the previously discussed study
of phosphate industry workers (Checkoway et al., 1985a). The results are expressed
as SRRs for employment duration in various job categories grouped on a dichot-
omous basis with respect to exposures to a number of suspected hazardous agents.
The job groupings are not mutually exclusive because many jobs entail exposures
to more than one substance. When job categories overlap in this way, as frequently
happens, it may be difficult to distinguish effects of individual agents. In this study
no regularly increasing gradient of lung cancer mortality was found for any of the
agents considered. In comparison with the lung cancer mortality data in Table 5-
10, these data are less informative.

A somewhat more refined scheme involves polychotomous ordi-
nal rankings, such as "low," "moderate," and "high." Rankings of

Alpha radiation
Phosphoric acid and soluble

phosphates
Sulfuric acid
Soluble fluorine compounds
Mineral dust
Fertilizer dust

85
99

103
99
92

104

1.00
1.00

1.00
1.00
1.00
1.00

22
14

10
13
19
10

1.82
1.04

1.25
1.13
1.64
1.04

6
3

3
4
5
2

1.08
0.49

0.66
0.73
1.05
0.60

<1 1-9 10
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Table 5-12. Lung cancer mortality among amosite asbestos
factory workers, according to ordinally ranked jobs

Source: Acheson ct al. (1984).

this type require more thorough exposure data than the simple
dichotomous scheme.

Example 5.8

Data from Acheson el al.'s (1984) historical cohort study of amosite asbestos fac-
tory workers illustrate the application of a polychotomous ordinal ranking of jobs
(Table 5-12). There is a striking lung cancer mortality gradient with increasing
exposure rank, although it should be mentioned that workers were assigned into
the highest exposure categories in which they worked. Thus, the points made pre-
viously about improper assignment of person-years and possible confounding from
job mobility patterns may apply in this study. Nonetheless, the impressive trend
demonstrated is unlikely to be an artifact of such bias.

Ordinal ranking can be further combined with a duration-of-
exposure dimension. Thus, we would classify workers into strata of
employment duration within ordinally ranked job categories. This
method approximates a cumulative exposure categorization scheme
as the exposure intensity and employment duration estimates
become more precise.

Example 5.9

Newhouse et al. (1985) conducted a historical cohort mortality study of asbestos
products manufacturing workers. The industrial hygiene data that were available
permitted an ordinal classification of jobs into "low-moderate" and "severe"
exposure categories. Workers were then classified into employment duration strata
within these exposure designations. The data on lung cancer mortality presented
in Table 5-13 reveal a pronounced effect of severe exposures for the greater than
two-year duration stratum; this effect is more accentuated among female than male
workers.

When quantified exposure data are available for all or most work-
ers, either by means of linkage of job and work area data to employ-
ment history information or, more rarely, from personal monitor-

Highest exposure category

Background
Low
Medium
Heavy

Obs

10
12
41
8

SMR

1.06
1.34
2.25
4.25
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Table 5-13. Lung cancer mortality among asbestos products
factory workers, followed 30 years or longer, according to
duration of employment in ordinally ranked jobs

Source: Ncwhousc ct al. (1985).

ing, it will be possible to define subcohorts on the basis of maximum
exposure intensity or with respect to cumulative exposure levels.
Maximum intensity can be considered either relative to each work-
er's experience or with reference to some predetermined level, such
as the Threshold Limit Value (Copes et al., 1985). In effect, expo-
sure intensity data form the basis of a more precise ranking scheme
than ordinal assignment, although the methods of analysis are sim-
ilar. Care should be given to the attribution of person-years when
stratifying on maximum intensity because similar peak intensities
occurring at different ages may have decidedly different health
consequences.

Some diseases are strongly related to cumulative exposure (CE),
where CE is simply the summed products of exposure intensities
and their associated durations (Chapter 2). Typical examples of CE
in occupational epidemiology are million particles of dust per cubic
foot X years, fibers per cc X years, and parts per million X years
for chemical exposures.

Example 5.10

An example of subcohort analysis of disease rates by CE levels is demonstrated with
data on asbestosis mortality among chrysotile asbestos textile workers (Dement et
al., 1983b) in Table 5—14. In this study (which is described in greater detail later
in this chapter), directly age- and calendar year-adjusted mortality rates were com-
puted for subcohorts classified into fibers per cc X days CE categories. The age
and calendar year distributions of person-years of the entire cohort served as the
reference category. The person-years were distributed into all achieved CE cate-
gories, and deaths were assigned to the highest category reached. These data evi-
dence a striking trend of asbestosis mortality with increasing CE levels, small num-
bers notwithstanding.

Exposure category and duration

Men
Low-moderate, <2 years
Low-moderate, >2 years
Severe, <2 years
Severe, >2 years

Women
Low— moderate
Severe, :<2 years
Severe, >2 years

Obs

10
6

17
16

0
10
10

SMR

2.2
2.1
2.3
4.8

0
5.4

14.7
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Table 5-14. Cumulative exposure-response relationship for asbestosis
mortality among chrysotile asbestos textile plant workers

Source: Dement et al. (1983b).

In an analysis of disease rates in relation to CE there is no ambi-
guity as to where a case or death should be assigned—the highest
aehieved CE level (as in Example 5.10). This situation is certainly
simpler and more intuitively appealing than the multiple counting
procedures involved in job category subcohort analysis. Use of CE
as an exposure index has the obvious advantage of a simplified anal-
ysis and relatively straightforward interpretation of results, yet strict
reliance on CE as the sole exposure variable may be wasteful of
information. Because CE incorporates intensity and duration of
exposure, only effects attributable to the absolute amount of expo-
sure will be apparent in a conventional analysis of CE and disease
rates. The relative importance of the components of CE, intensity
and duration, and temporal sequencing of a varying intensity sched-
ule may go unnoticed.

As an illustration, consider the hypothetical data on disease rates
in Table 5-15. Inspection of the rates reveals a strong effect of
intensity but no effect of duration of exposure. The bottom half of
this table shows rates according to CE levels. If we were to restrict

Table 5-15. Hypothetical example of disease rates according to exposure intensity, dura-
tion, and cumulative exposure

Duration of exposure (yr)

"Rale per 1,000.
'Three combinations of intensity and duration give cumulative exposures of 100.

Cumulative exposure category
(fibcrs/cc X days)

<1,000
1,000-9,999
10,000-39,999
40,000-100,000
>100,000

Obs

2
1
6
6
2

Deaths per 1 ,000
person-years

0.32
0.18
1.98
5.99

15.87

Intensity level

4
5

10

40

Disease rate 3°

10

3"
6

12

Cumulative
50 80 (100 100

6 3 (3 6

20

3
6

12

exposure
100)" 125 200

12) 6 12

25

3
6

12

250

12
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Table 5-16. Relative risks (SMRs) for respiratory cancer according to dura-
tion of employment and dust concentration in asbestos cement
manufacturing

Source: Weill et al. (1979).

"Millions of particles per cubic foot.

'JRefcrcnce category.

our attention to the association of disease with CE and ignore the
intensity- and duration-specific disease rates, then the difference in
effect of these two component parameters would go undetected.
Moreover, in this example the observed CE-response curve, which
suggests a positive, though irregular, trend will be greatly influ-
enced by the disease rate for the CE =100 category, which can vary
from 3 to 12, depending on the joint distribution of intensity and
duration.

Example 5.11

Data from the historical cohort study by Weill ct al. (1979) of respiratory cancer
among workers in the asbestos cement industry (Table 5-16) provide a good exam-
ple of an examination of the independent and joint effects of exposure intensity
and duration. By independent, we mean the effect of one factor in the absence, or
in this instance, at the lowest level(s), of another factor(s). These data indicate no
pronounced effects for either intensity or duration, as can be seen from the left-
most column and top row of the table, respectively. However, there is a marked
effect of CE that can be discerned from the trends in the rightmost column and
bottom row.

The temporal pattern of exposures may also have a bearing on
disease rates. To illustrate, consider the four hypothetical worker
exposure profiles depicted in Figure 5-6. In each instance, CE is
equal to 100 units, but the intensity schedule varies between work-
ers. The exposures for these four workers will have equivalent
effects only when the following conditions are met: (1) there is no
threshold intensity greater than the lowest value (in this example,
5); (2) similar exposure intensities at different ages have equivalent
consequences; and (3) prolonged, uninterrupted exposure is not
required for disease induction. In other words, CE will be the expo-

Average dust
concentration

(mppcf)"

<5
5-20
>20

Duration of employment (yr)

<2 2-10 >10

1.00* 1.30 0.76
1.00 0.51 3.30
1.34 1.71 4.54



Figure 5-6. Exposure intensity and duration profiles for four hypothetical work-
ers receiving equivalent cumulative exposures of 100 units.
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sure variable of sole interest when the probability of disease induc-
tion (and/or severity) depends on the total amount of exposure
received, irrespective of the rate of delivery of exposure.

Variability of exposure effects between the configurations in Fig-
ure 5-6 could arise if any of the preceding three criteria arc not
satisfied. For example, if cancer induction requires prolonged,
uninterrupted exposure, then configuration A would confer the
greatest risk, provided that there is no threshold above the given
constant intensity. Early or late carcinogenic effects for exposures
above some threshold intensity (e.g., 5) would preferentially result
from configurations B and C, respectively, whereas configuration D
might pose the greatest risk to workers exposed to a carcinogen that
causes both early- and late-stage changes but requires above-thresh-
old intensities. If, on the other hand, we consider a disease whose
severity is influenced profoundly by exposure intensity, then config-
urations B, C, and D might be more hazardous than A, and distinc-
tions between these three would depend on whether disease severity
is amplified by above-threshold exposures early or later in life (Axel-
son, 1985).

The foregoing discussion is offered to highlight some of the
potential problems associated with a conventional subcohort analy-
sis that is restricted to CE. The arguments illustrated in Figure 5-6
are based on simplified hypothetical situations. In most occupa-
tional cohort studies, exposure patterns are considerably more com-
plex than this; thus, CE may be the best method for summarizing
exposure data for a subcohort analysis. Also, disentangling peak
intensity, duration, and CE effects will often be complicated by a
high degree of correlation between these variables. For example,
workers with the highest CE values arc also those most likely to have
experienced the most intense or prolonged peak exposures. One
approach to assess the effects of these exposure factors is to attempt
stratification on two of the three variables while examining the
effects of the other. Thus, we might try to stratify on peak intensity
and CE in an analysis of exposure duration. Such stratification may
not be successful, although inspection of graphical displays of cases'
and noncases' exposure profiles over time may assist in understand-
ing the relationship between the exposure variables and disease.

4.3. Missing Exposure Data

Unavailability of work history or exposure data is a hindrance to
subcohort analysis in many occupational cohort studies. This situa-
tion may arise for several reasons. Data for workers employed dur-
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ing the earliest years of plant operations may have been discarded
or lost over the years, or exposure data may have been collected
only for workers thought to be most heavily exposed to presumed
toxins. The treatment of missing data in subcohort analyses will
depend on the types and amounts of data that are missing. Some
available data may be of such poor quality that they are useless, and
thus are effectively missing.

We can consider two types of missing exposure data. The first is
work history information from which job assignment data for
cohort members are compiled. Missing data on jobs for some work-
ers will necessitate the creation of an "unknown" job category. That
is, although there is documentation that certain workers were prob-
ably employed during particular time periods, there is insufficient
information to permit assignment into specific jobs or work areas
of the plant. Moreover, assignment into quantitative exposure cat-
egories will be impossible when exposure levels arc determined by
linking environmental measurements with jobs, tasks, or work loca-
tions. Subcohort analysis will then require that the "unknown" cat-
egory be treated as a separate designation, with cases (deaths) and
person-years assigned in the same manner as for the identifiable job
categories.

Example 5.12

Approximately 6 percent of workers in a historical cohort study of nuclear industry
workers had inadequate work history information for assignment into specific job
categories (Checkoway et al., 1985c), thus requiring the creation of an "unknown"
category. Table 5-17 shows cancer mortality data (SRRs) for the cohort of 8,371
male workers, classified according to employment duration in 1 2 separate job cat-
egories, including Unknown. The results of this subcohort analysis do not. indicate
any consistent patterns with respect to job assignment, although the elevated SRRs
for the 1—9 and > 10-year duration strata for the Unknown category arc provoc-
ative. Comparisons between workers assigned to this category and the remaining
cohort members did not reveal any differences in periods of employment or radia-
tion doses, however.

Alternative strategies, such as deleting the "unknowns" from sub-
cohort analyses or pooling them with other job categories of lesser
concern (e.g., those assumed to be non-exposed) into an "other"
category, are inappropriate and may introduce bias. Deleting the
"unknowns" is wasteful of information, whereas the latter approach
involves the unwarranted assumption that the "unknowns" share
common exposure profiles with workers in identifiable jobs.

Missing data on quantitative exposures can occur for two main
reasons. First, the data may simply be missing. For example, if per-
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Table 5-17. Cancer mortality (all sites combined) among nuclear workers, according to
employment duration in job categories

Duration of employment (yr)

Source: Checkoway et al. (1985c).

"Reference category, includes people who never worked in a particular job category.

sonal exposure monitoring in a plant began some years after the
facility opened, then there will be no data for workers employed
prior to the onset of monitoring. Second, some workers may have
been eligible for monitoring but were not entered into the moni-
toring program because they were considered unlikely to receive
significant exposures. In the first case, there is no justifiable alter-
native to deleting workers with missing exposure data from an expo-
sure—response subcohort analysis. The second situation of unmon-
itored workers presents several options (as discussed earlier in
Chapter 2). These include (1) exclusion from subcohort analysis, (2)
assignment of the cohort's average or median exposure levels for
the relevant time periods for which data are missing, and (3) assign-
ment of exposure levels of zero if there is ample evidence that mon-
itoring actually was restricted to exposed workers.

There seldom is one clearly superior choice for handling missing
exposure data. Consequently, it is often advisable to conduct sub-
cohort analyses using each of several reasonable options to deter-
mine the extent to which exposure—response relationships vary
under different approaches of treating missing data.

4.4. Disease Induction and Latency Analysis

For all diseases or injuries there are requisite time lags between
exposure to etiologic factors and clinical manifestation. In the

Job category

Radioisotopes
Chemical operations
Monitoring
Biology
Chemistry
Physics
Engineering
Administration
Maintenance
Shipping and receiving
Other
Unknown

Obs

191
198
188
192
182
183
170
178
124
189
161
176

<1"

SRR

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1-
Obs

2
0
4
1
6
7

14
14
47

1
23
11

-9

SRR

0.88
0

0.92
0.66
0.40
1.27
0.95
1.25
2.02
0.13
1.74
2.33

Obs

0
0
1
0
5
3
9
1

22
3
9
6

>10

SRR

0
0

0.38
0

0.50
1.06
1.26
0.22
1.06
1.65
1.04
1.14
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extreme case of an acute episode, such as an electrocution following
exposure to high voltage or eye irritation from a noxious gas, the
time lag is effectively nil because the response is virtually instanta-
neous. However, many occupationally related diseases are delayed
effects of exposure, where the time lag may range from hours or
days (e.g., pulmonary edema) to decades (e.g., cancer).

Latency is the term often applied to the time interval between
exposure and disease manifestation or recognition. The concept of
disease latency continues to be a topic of discussion among epide-
miologists who have offered various definitions. Rothman (1981)
provides a clear operative definition of latency as the period from
disease initiation to manifestation. This definition is consistent with
the idea that there is some period of time when the disease exists in
a "hidden" state in an individual.

A related concept is induction time, which can be defined as the
period from first exposure to an agent or collection of agents to
disease initiation (Rothman, 1981). There is no feasible way to
determine the exact point in time following exposure onset when
any disease has been induced in a person. Even if we had at our
disposal the technological means of determining precisely when,
say, the final malignant cell transformation occurred that pro-
gressed to a cancer, adopting such a procedure for an individual
worker or for a cohort of workers would not be practical.

Figure 5-7 illustrates the relationship between induction and

Figure 5-7. Disease induction and latency intervals.
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Table 5-18. Some common methods to address disease induction and latency intervals

1. Restrict study population to retirees
2. Begin follow-up after some minimum time period
3. Truncate exposures at some arbitrary time point and include only cases occur-

ring thereafter
4. Lag exposures

latency intervals. The induction time, although depicted here as a
fixed interval, will of course vary, depending on the nature of the
exposure and disease, as well as on individual responses to expo-
sure. Many occupational exposures can be considered to be
chronic, extending over periods of years or decades, but may also
be intermittent within the period of exposure. Intermittent expo-
sures, although relevant for induction of some diseases, will not be
discussed here so as to simplify matters. Thus, although we cannot
usually estimate induction time, we can determine the interval from
exposure onset to disease manifestation or recognition. Rothman
(1981) refers to this interval, which is the sum of induction and
latency times, as the empirical induction time.

Several methods for taking into account latency and induction
have been developed for occupational cohort studies (Table 5-18).
The first is to restrict the study population to retirees (Enterline,
1976; Collins and Redmond, 1976). However, including only retir-
ees in a cohort study excludes persons who developed disease and
died while still employed; hence, this strategy is potentially wasteful
of information. Also, retirees' exposure patterns may be atypical of
the experience of many members of the complete cohort. For exam-
ple, short-term workers in some occupations are assigned to the
most heavily exposed jobs and may terminate early for just that
reason.

A second approach is to begin follow-up after some minimum
elapsed time period. Thus, cases (deaths) and person-years of obser-
vation occurring during that interval are not included in the analy-
sis. This strategy should not be confused with the requirement for
beginning person-year counting after the time when the minimum
employment duration cohort inclusion criterion has been attained.

Example 5.13

The data in Table 5-19 from a historical cohort mortality study among workers at
a polyvinyl chloride polymerization factory (Waxweiler ct al., 1976) illustrate the
method of starting follow-up after a specified time interval following cohort incep-
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Table 5-19. Cancer mortal i ty among workers exposed to v iny l chloride, according to
latency period

Source: Waxwciler et al. (1976).

tion. SMRs were computed after deleting the first 1 0 or 15 years after entry into
the cohort. This technique incorporates an implicit assumption that any deaths that
occurred before the specified interval (10 or 15 years) were probably unrelated to
workplace exposures. It would also have been desirable had the authors presented
findings for a zero-ycar interval. Nonetheless, the increased SMRs for the 15-year,
compared to the 10-year, interval appear consistent with an occupational etiology
for these cancers.

A third approach that has been used for investigating exposure-
response relationships is to truncate exposures at cither a fixed age
or a fixed time interval since first exposure and to begin person-year
and case (death) tabulation thereafter. This method attempts to
avoid including "irrelevant" exposures, but its particular shortcom-
ing is the arbitrariness of the truncation boundary for age or time
since exposure onset.

Example 5.14

McDonald and colleagues (1980) used an exposure truncation technique to
account for induction time in their study of the association between cumulative
exposure to asbestos dust and cause-specific mortality among a cohort of miners
arid millers. In this study, only exposures received before age 45 years were
counted, and follow-up began at that age. The results (SMRs) are given in Table 5-
20. Positive gradients were seen for each of the diseases listed, especially for lung
cancer and pncumoconiosis mortality.

A fourth technique for avoiding exposure and follow-up overlap
is to lag exposures by some assumed latency interval (y), such that a
worker's current person-year at risk is assigned to the exposure level
(either intensity, duration, or, most commonly, cumulative expo-
sure) achieved^ years earlier. Consider an example using CE as the
exposure index. If by age 40 years a worker had accumulated 25 CE
units, and by age 50 years his CE was 45 units, then under an

Cancer cause of death

All cancers
Brain and CNS
Respiratory
Biliary and liver
Lymphopoietic

1 0-year latency

Obs SMR

35 1.49
3 3.29

12 1.56
7 11.55
4 1.59

1 5-year latency

Obs SMR

31 1.84
3 4.98

11 1.94
7 16.06
3 1.76



Source: McDonald ct al. (1980).

assumed latency interval of ten years, his person-year at risk for age
50 years would be assigned to the 25 CE unit level.

Example 5.15

An example of exposure lagging is provided in Table 5-21, which contains data
from Gilbert and Marks' (1979) analysis of multiple myeloma mortality in relation
to cumulative radiation doses received by workers at the Hanford Works nuclear
plant. Data are shown for analyses incorporating two- and ten-year lag intervals.
The mortality trends, although irregular, persist when a ten-year lag is imposed.

Exposure lagging has the particular advantage of including the
entire enumerated cohort and all members' complete exposure his-
tories, unlike the other methods described earlier, which sacrifice
information by either subject exclusion or exposure truncation. We
have described exposure lagging for situations where exposure data
can be expressed quantitatively. It is also possible to apply lagging
in an analysis of duration of employment, either considered in the
industry at large or in specific job categories. The latter can become
computationally cumbersome when there is a considerable degree
of mobility between job categories, however.

Table 5-21. Multiple myeloma mortality among nuclear workers, according to cumulative
radiation doses, lagged 2 and 10 years

Source: Gilbert and Marks (1979).

Cumulative exposure (mppcf X years)

<30

Cause of death

All causes
Pneumoconiosis
Lung cancer
Esophagus and stomach cancer
Colon and rectum cancer

Obs

1,668
5

91
68
34

SMR

1.02
2.98
0.93
1.22
0.62

30-299

Obs

1,138
12
81
42
28

SMR

1.04
10.81

1.18
1.14
0.77

>300

Obs

642
27
70
26
18

SMR

1.30
54.00

2.25
1.58
1.11
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Table 5-20. Cause-specific mortality among asbestos miners in relation to exposures to
dust accumulated to age 45

Dose category (rem)

0-<2

Lag interval

2 years
1 0 years

Obs

3
3

SMR

0.7
0.6

2-<5

Obs

0
0

SMR

0
0

5-15

Obs

0
2

SMR

0
4.0

>15

Obs

3
1

SMR

6.0
10.0

2 5
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Of the latency analysis methods reviewed here, exposure lagging
is the superior approach because it provides maximum use of the
data. It is possible to vary the assumed latency period by trying dif-
ferent lag periods and contrasting the results. The other methods
previously described do not involve clear and consistent assump-
tions about the empirical induction time. For example, truncating;
exposures after 20 years means that two workers exposed at the
same intensity for 20 years and 50 years respectively, are classified
into the same exposure category. Lagging exposures by ten years
for these two workers would place them (appropriately) in different
exposure categories.

5. PLANNING A COHORT STUDY

Decisions as to which occupational cohorts warrant epidemiologic
study should be made primarily on the bases of public health and
scientific concerns. The occupational groups that are exposed to
either known or suspected toxins are the obvious targets for study.
However, such decisions are seldom straightforward because one
needs to anticipate the likely study results and their interpretation
before embarking on a full-scale cohort study (Steenland et al.,
1987). The questions that arise most commonly are (1) Is the study
cohort sufficiently large to yield statistically reliable data? (2) Will
the cohort have an adequate length of follow-up for studying
delayed effects, some of which may be rare diseases? and (3) Are the
exposure data suitable for assessing exposure—response rela-
tionships?

The first two questions can be viewed from a purely statistical per-
spective as issues of study size requirements (see Chapter 4). We are
of the opinion that study size, or statistical power, considerations
should be given less weight in decision making than concerns about
worker health or scientific interest. Nonetheless, statistical instabil-
ity cannot be dismissed out of hand because the decision as to
whether a cohort should be studied is seldom clearcut, and statisti-
cal power can provide some guidance.

Specification of minimum induction or latency times requires
some judgment. Obviously, if we are planning to investigate cancer
mortality in an occupational cohort, where the vast majority of
workers had been hired recently (say, within the preceding five to
ten years), then the likelihood of an informative study would be
small. However, there may still be an interest on the part of the
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workers or management to enumerate the cohort, retrospectively
and prospectively, with the intention of conducting an ongoing can-
cer surveillance program.

Likewise, there would be a motivation for following a very small
group of workers who had experienced a dramatic or unique expo-
sure episode, such as an industrial accident entailing exposures to
high levels of recognized toxins.

The adequacy of exposure data is a critical determinant of a
study's value. In planning studies of cohorts exposed to agents pre-
viously documented as health hazards, one would like to have expo-
sure data at least as complete and accurate as those in the least
detailed of the previous studies. For example, another cohort study
of cancer mortality among radiation-exposed workers with no quan-
tified dose data is of questionable usefulness, given the vast body of
data on this topic. On the other hand, unique, previously unstudied
workplace environments provide ample reason for initiating a
cohort study, even when data on specific exposures cannot be
obtained.

6. EXAMPLE OF A COHORT STUDY: ASBESTOS TEXTILE
PLANT WORKERS

The example presented in this section is a historical cohort study of
the mortality experience of workers at an asbestos textile manufac-
turing plant. This study, conducted by Dement and colleagues
(1983a,b), was sponsored by the U.S. National Institute for Occu-
pational Safety and Health (NIOSH). This is an especially valuable
study for review because it illustrates a number of the study design
and data analysis issues that have been discussed in this chapter. We
will also use the data from this study to illustrate methods applicable
to case-control studies in Chapter 6 and to demonstrate advanced
statistical and exposure modeling procedures in Chapters 8 and 9.
The findings that we will present arc the result of our rcanalyses of
the data that were provided to us by NIOSH and Dr. Dement.
Minor discrepancies that may appear between ours and the pub-
lished data arc attributable to different analytic techniques and
computer algorithms used for the analyses.

6.1. Description of the Plant and Study Cohort

The plant, located in Charleston, South Carolina, began production
of asbestos products in 1896. Asbestos textiles used for fireproof
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fabrics and automotive parts (e.g., brake linings) were the main
products manufactured.

Personnel employment data needed to reconstruct the cohort
were available only for the years 1940 and later (although there are
exposure data collected since 1930). Thus, workers who terminated
employment prior to 1940 did not enter into the cohort. The cohort
was defined as white males who were employed for at least one
month in textile operations at any time between January 1, 1940,
and December 31, 1965. Mortality follow-up was performed for the
years 1940 to 1975 inclusive. The one-month minimum employ-
ment restriction was imposed to permit an evaluation of the mor-
tality patterns of workers who were exposed to asbestos for a rea-
sonable length of time. The restriction on hire date was made to
ensure that all workers would have had at least ten years of follow-
up beyond the date of hire (first exposure). Thus, this is a dynamic
cohort insofar as workers hired after the date of cohort inception
(January 1, 1940) were included.

6.2. Vital Status Tracing and Cause-of-Death Determination

The investigators used several sources to perform vital status follow-
up on the cohort. These included the Social Security Administra-
tion, the Internal Revenue Service (which used to provide infor-
mation on persons who made income tax payments for specific
years), state motor vehicle bureaus, and postal correction services.
For persons not traced by these methods, searches were conducted
among listings of city residence (Polk) directories, voter registration
lists, and funeral home records. Death certificates were obtained
from state vital statistics offices.

The results of the tracing arc shown in Table 5-22. Vital status
was determined for all but 2.1 percent of the cohort, and cause-of-
death information was obtained for 94.5 percent of identified

Table 5-22. Vital status and cause of death among 1,261
white male asbestos textile workers: 1 940-75

Vital status

Alive-
Dead

(with death certificate)
(without death certificate)

Unknown

Total

Number

927
308

(291)
(17)
26

1,261

Percent

73.5
24.4

(94.5)
(5.5)
2.1

100
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Table 5-23. Characteristics of the cohort of 1,261 white
male asbestos textile workers

Total person-years of observation 32,362.0
Mean length of follow-up (years) 25.7
Mean age at entry into cohort (years) 25.6
Mean year of entry into cohort 1,946.8
Mean age at death (years) 53.5

deaths. Nearly 25 percent of the cohort had died during the follow-
up interval. This is a somewhat high overall percentage of deaths
but is attributable primarily to the long follow-up period (36 years)
and, as we will see, to a pronounced occupational mortality hazard.

Some additional descriptive information on the cohort is pre-
sented in Table 5—23. The cohort contributed 32,362 person-years
of observation, with a mean duration of follow-up of 25.7 years. The
latter figure is important insofar as it indicates that there was a suf-
ficiently long period of observation for the study of cancer and
pneumoconiosis mortality, which were of major a priori interest.
Also shown in Table 5-23 are the mean age at entry into the cohort
(25.6 years), the mean year of entry (1946.8), and the mean age at
death (53.5 years). A table such as this provides valuable informa-
tion about the cohort's demographic and work experience history.
For example, the relatively young age at entry suggests that the mor-
tality patterns seen are unlikely to be attributable to previous
employment in other occupations, although a proper verification of
that assumption would require obtaining the additional relevant
data.

6.3. Results

Overall Patterns of Cause-Specific Mortality

SMRs were computed relative to prevailing rates for U.S. white
males for the years 1940-75 (Table 5-24). In our calculations,
workers with unknown vital status contributed person-years of
observation up to the date of last employment. In the original anal-
ysis Dement et al. (1983b) considered the unknowns to be alive as
of the end of the study (December 31, 1975). The difference in han-
dling the unknowns causes only trivial discrepancies in the results.

The SMR for all causes is elevated (1.50), although the SMR for
arteriosclerotic heart disease (0.76) is consistent with a Healthy
Worker Effect. The major contributors to the overall excessive mor-
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Table 5-24. Cause-specific SMRs for white male asbestos textile workers: 1940-75

"Based on rates for U.S. white males, 1940-75.

tality among the cohort are lung cancer (SMR = 3.21); nonmalig-
nant respiratory diseases, principally asbestosis (SMR = 2.87); and
accidents (SMR = 1.34).

Lung Cancer Mortality

We can focus our attention on lung cancer mortality because of its
frequently demonstrated association with asbestos and because the
number of deaths (35) is large enough for some stratified analyses.

Table 5-25 gives SMRs, again relative to rates for U.S. white
males, cross-classified according to age at risk and year of death.
What is particularly noticeable about these data is that the SMRs in
the body of the table are based on very small numbers, and there-
fore tend to be unstable. As we mentioned earlier, small numbers
frequently pose a problem in a stratified analysis where stratification
is done for more than one factor. Thus, the most reliable results
from these data are those given in the margins ("Total" column and
row). The lung cancer excesses were most pronounced among work-
ers during the sixth and seventh decades of life. Inspection of the
trend over time reveals the greatest excesses during the 1940s and
1950s, although these findings are especially influenced by lung
cancer deaths that occurred among persons aged 50—59 years dur-
ing 1940-49 (1) and 1950-59 (8). On balance, there appears to be
a fairly consistent lung cancer mortality excess that had not abated
by the end of follow-up.

Cause of death

All causes
All cancers

Digestive system
Trachea, lung, bronchus
All other cancers

Arteriosclcrotic heart disease
Nonmalignant respiratory disease

Pneumonia
Emphysema
Asthma
Other respiratory disease

Digestive system diseases
Genitourinary system diseases
All accidents

Motor vehicle accidents
Suicide

Obs

308
59
13
35
11
49
28

4
0
0

24
8
6

34
11
5

Exp"

205.33
36.20
10.00
10.90
15.28
64.47

9.77
3.97
2.25
0.50
3.05

11.84
3.42

25.42
12.35

7.12

SMR

1.50
1.63
1.30
3.21
0.72
0.76
2.87
1.01

0
0

7.87
0.68
1.75
1.34
0.89
0.70

0
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Table 5-25. Observed and expected lung cancer mortality according to age and year of
death among white male asbestos textile workers: 1940-75

Year of death

The lung cancer SMRs with respect to year of hire and age at hire
(Table 5—26) are consistent with an effect that requires a long induc-
tion and latency period; the SMRs are highest for persons hired
before 1940 at ages younger than 40 years. A detailed review of the
SMRs within the table reveals especially pronounced excesses for

Table 5-26. Observed and expected lung cancer mortality according to age and year of
hire among white male asbestos textile workers: 1940-75

"Obs/Exp.
''SMR, based on rates for U.S. white males 1940-75.

Age

<40

40-49

50-59

60-69

70-79

>80

Total

1940-49

(0/0.03)"
0"

(0/0.11)
0

(1/0.103)
19.42

(0/0.03)
0

(0/0)

(0/0)

(2/0.308)
6.49

1 950-59

(0/0.13)
0

(1/0.54)
1.87

(8/0.56)
14.39

(1/0.25)
4.02

(0/0.001)
0

(0/0)

(10/1.36)
7.35

1960-69

(0/0.15)
0

(3/1.49)
2.02

(5/1.75)
2.86

(2/1.12)
1.78

(2/0.04)
55.56

(0/0.004)
0

(12/4.17)
2.88

1970-75

(0/0.05)
0

(2/1.44)
1.39

(1/2.11)
0.47

(8/1.64)
4.88

(0/0.50)
0

(0/0.06)
0

(11/5.06)
2.17

Total

(0/0.35)
0

(6/3.58)
1.68

(16/4.52)
3.54

(11/3.05)
3.61

(2/0.73)
2.74

(0/0.06)
0

(35/10.90)
3.21

"Obs/Exp.
''SMR, based on rates for U.S. white males 1940-75.

Age at
hire

<20

20-29

30-39

40-49

>50

Total

Year of hire

1920-29

(2/0.16)"
12.20"

(1/0.15)
6.71

(0/0.002)
0

(0/0.005)
0

(0/0)

(3/0.32)
9.38

1930-39

(3/0.51)
(5.88)

(6/1.15)
5.22

(7/0.78)
9.02

(3/0.20)
15.00

(0/0.05)
0

(19/2.68)
7.08

1940-49

(1/1.08)
(0.93)

(2/2.30)
0.87

(7/1.86)
3.77

(1/1.17)
0.85

(0/0.24)
0

(11/6.65)
1.65

1950-59

(0/0.09)
0

(2/0.22)
8.93

(0/0.38)
0

(0/0.41)
0

(0/0.09)
0

(2/1.20)
1.67

1960-65

(0/0.35)
0

(0/0.01)
0

(0/0.02)
0

(0/0.02)
0

(0/0)

(0/0.05)
0

Total

(6/1.84)
3.26

(11/3.83)
2.87

(14/3.04)
4.61

(4/1.81)
2.22

(0/0.38)
0

(35/10.90)
3.21
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Table 5-27. Observed and expected lung cancer mortality according to length of follow-
up and duration of employment among white male asbestos textile workers: 1940-75

"Obs/Exp.
*SMR, based on rates for U.S. white males 1940-75.

workers hired at ages younger than 30 years during the 1920s and
1930s (i.e., workers with the longest durations of follow-up).

The effects of duration of employment and follow-up are pre-
sented in Table 5-27. The noteworthy findings arc the absence of
any lung cancer deaths during the first ten years of observation and
the increasing, albeit somewhat irregular, pattern with duration of
employment. The results with regard to duration of follow-up sup-
port the conclusions drawn from the preceding table.

The past exposure profiles of cohort members were estimated by
means of linking the workers' job history information from person-
nel records with environmental measurement data for specific work
areas and tasks within the textile plant. Exposure data were available
for the years 1930-75 and could be expressed in units of fibers
(longer than 5 fj.m) per cc of air (fibers/cc). Cumulative exposures
were estimated for all workers in the cohort as the summed prod-
ucts of air concentrations of asbestos and time (in days) spent in
various jobs (Dement et al., 1983a). The exposure reconstruction
thus permitted an analysis of lung cancer mortality in relation to
cumulative exposure level.

Three types of analysis were used to evaluate trends of lung can-
cer mortality with cumulative exposure levels (fibcrs/cc X days).
The first was an SMR analysis, where observed and expected num-
bers of deaths were computed for each cumulative exposure level
(Table 5—28). The expected numbers were derived by applying the

Duration of
employment

(yr)
0-4

5-9

10-19

20-29

>30

Total

Length of follow-up (yr)

0-4

(0/0.16)°
0"

(0/0.16)
0

5-9

(0/0.26)
0

(0/0.11)
0

(0/0.37)
0

10-19

(3/1.36)
2.21

(0/0.14)
0

(3/0.53)
11.32

(6/2.03)
2.96

20-29

(5/3.08)
1.62

(0/0.32)
0

(0/0.20)
0

(6/1.01)
5.92

(11/4.61)
2.39

>30

(6/2.00)
3.00

(1/0.29)
3.41

(2/0.27)
7.35

(6/0.33)
18.18

(3/0.82)
3.66

(18/3.73)
4.82

Total

(14/6.80)
2.04

(1/0.89)
1.13

(5/1.44)
3.48

(12/1.33)
9.06

(3/0.82)
3.66

(35/10.9)
3.21
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Table 5-28. Standardized mortality ratios (SMRs) for lung cancer according to cumulative
asbestos exposure levels and latency

"Based on rates for U.S. white males, 1940-75.

''95 percent confidence interval for SMR.

rates in the U.S. population to the numbers of person-years of
observation in each of the exposure categories, with adjustment
made for age and calendar year on a quinquennial basis. Separate
analyses were performed using exposure lag intervals of 0, 5, and
15 years.

As can be seen from Table 5-28, there is a strong gradient of
increasing lung cancer mortality with increasing exposure level,
which occurs irrespective of the lag interval assumed. (The SMR for
the highest exposure category under a 15-year lag interval is 0
because no lung cancer deaths achieved this level of cumulative
exposure 15 years prior to death.)

The second method of data analysis involved SRR calculations,
where the lowest cumulative exposure category (< 1,000 fibers/cc
X days) served as the reference (Table 5—29). The pattern of results
from the SRR analysis is quite similar to that obtained from the
SMR analysis (Table 5-28), which suggests that confounding by age
or calendar year did not distort the SMR comparisons. One note-
worthy feature of these tables is that there is an excess of lung can-
cer mortality at all levels of cumulative exposure; the SMR for the
lowest exposure category is between 1.30 and 1.51, depending on

Cumulative
exposure Q

cc X days) Obs Exp"

<1 5 3.76
(0.43;

1-9 10 3.72
(1.29

10-39 7 2.19
(1.28

40-99 11 1.10
(4.99,

>100 2 0.13
(1.68,

Latency (yr)

SMR

1.33
, 3.10)"

2.69
, 4.94)

3.20
, 6.59)

10.00
17.89)

14.93
53.89)

5

Obs Exp

5 3.86
(0.42

10 3.78
(1.27

10 2.25
(2.13

9 0.90
(4.56,

1 0.12
(0.11,

SMR

1.30
, 3.02)

2.65
,4.87)

4.45
, 8.17)

10.02
18.98)

8.27
45.98)

15

Obs Exp

7 4.62
(0.61,

13 3.68
(1.88,

9 2.08
(1.97,

6 0.42
(5.25,

0 0.10

SMR

1.51
3.12)

3.53
6.04)

4.33
8.21)

14.39
31.32)

0
(0, 36.68)

(1,000 fibers/
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Table 5-29. Standardized rate ratios (SRRs) for lung cancer according to cumulative
asbestos exposure levels and latency

"Reference category.
''95 percent confidence interval for SRR.

the lag interval chosen. (This excess, of course, is not discernible
from the SRR results because the SRR for that category is 1.00, by
definition.) The excess in the lowest exposure stratum may reflect
cither a greater cigarette smoking prevalence among the cohort
than the national population or a genuine increased risk at low
exposure levels.

Finally, Mantel-Haenszel analyses were carried out (Table 5-30).

Table 5-30. Mantel-Haenszel summary rate ratios (RRM^H) for lung cancer mortality
according to cumulative asbestos exposure levels and latency

"Reference category

''95 percent confidence interval for RR^-n

Cumulative
exposure
,OOU nbers/
cc X days)

<1"

1-9

1 0-39

40-99

>100

Obs

5

10

7

11

2

0

SRR

1.00
(-)"
2.12

(0.61, 7.71)
1.17

(0.25, 5.41)
4.39

(1.00, 19.26)
23.83

(2.89, 196.65)

L

Obs

5

10

10

9

1

atency (yr)

5

SRR

1.00
(— )
2.29

(0.62, 8.41)
2.18

(0.51,9.27)
4.94

(1.20,20.28)
23.24

(1.38, 390.83)

Obs

7

13

9

6

0

15

SRR

1.00
(— )
2.71

(0.78,9.37)
2.77

(0.60, 12.83)
8.00

(1.79, 37.75)
0

(— )

Cumulative
exposure

(1,000 fibers/
cc X days)

<r

1-9

10-39

40-99

>100

Obs

5

10

7

11

2

0

RRn- H

1.00
<— )'
1.81

(0.63, 5.43)
1.88

(0.82,4.91)
8.01

(2.61,32.02)
15.88

(3.70, 64.67)

L

Obs

5

10

10

9

1

atency (yr)

5

RRM_H

1.00
(— )
1.99

(0.68, 7.03)
3.13

(1.01, 14.89)
7.94

(2.47, 40.22)
9.13

(1.55,66.23)

Obs

7

13

9

6

0

15

RR\i -H

1.00
(— )
2.72

(1.08,8.02)
3.83

(1.35, 12.62)
12.96

(4.76,42.16)
0

(— )

(1

9

0
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As expected, these results are similar to both the SMR and SRR
findings.

7. SUMMARY OF ADVANTAGES AND LIMITATIONS OF
OCCUPATIONAL COHORT STUDIES

In this chapter we have described methods for assembling and fol-
lowing occupational cohorts and for making disease rate compari-
sons with external and internal reference populations. These com-
parisons permit evaluations of the cohort's overall disease
experience and associations with various jobs, work areas, and expo-
sures within the workplace. What may not be evident from the dis-
cussion is the scope of work required to conduct an occupational
cohort study successfully. These studies typically involve the efforts
of epidemiologists, industrial hygienists, statisticians, computer pro-
grammers, and clerical staff. The magnitude of the effort will
depend on the size of the cohort studied and on the volume and
complexity of the exposure data to be assimilated. For example,
vital status tracing and cause-of-dcath ascertainment for a cohort of
5,000 workers are seldom completed in less than one year, and a
thorough reconstruction of exposures and analysis of data might
require another one to two years. These comments pertain primarily
to historical cohort studies. Prospective cohort studies are usually
substantially more expensive and time-consuming.

However, cohort studies do have particular advantages. First, by
design, they include all or as many members of the occupational
(dynamic) cohort as can be identified and traced. There is a statis-
tical precision advantage to this approach, but more important,
cohort studies offer the broadest available picture of the health
experience of the workforce because rates for multiple health out-
comes can be examined. More intensive investigations of exposure-
response associations are best done for a selected subset of diseases
of a priori interest and those discovered to occur at an excessive rate
in the cohort.

The second, less obvious, advantage of cohort studies is that the
process of enumerating a cohort makes the investigator aware of the
particular characteristics of the workforce (e.g., the ethnic, gender,
and social class groups most heavily represented and the subgroups
of the cohort most completely traced). As we shall see in the follow-
ing chapters, other study designs that include only samples of the
cohort do not offer as complete a view of the entire worker popu-
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lation available for study. Finally, phenomena characteristic of occu-
pational populations, such as bias resulting from the Healthy
Worker Effect, are examined most directly in cohort studies.

Glossary

adjustment of rates Summarizing stratum-specific rates into single (summary)
estimates (e.g., standardized rates).

cohort The study population to be followed.
dynamic cohort A study population that includes workers who were hired, ter-

minated, or died at variable points in time.
expected number The number of cases or deaths that would have occurred in

the study cohort had rates in the reference population prevailed.
external reference group Comparison group of persons outside of the study

cohort; usually the national or regional population.
fixed cohort A study population that includes workers hired (or employed) only

at a single point in time or during some specified brief time interval.
historical cohort study Follow-up to the present of retrospectively enumerated

study population.
internal reference group Comparison group selected from within the study

cohort, usually the person-time experience and rates of the non-exposed or
least exposed workers.

person-years Time unit of follow-up; denominator of disease rate; number of
persons multiplied by associated durations of follow-up.

pooled rate ratio Weighted average of stratum-specific rate ratios.
prospective cohort study Follow-up into the future of cohort enumerated dur-

ing the present.
rate Number of newly occurring cases or deaths divided by the person-years of

observation.
rate ratio Ratio of rates in populations compared; usually an exposed group and

a non-exposed reference group.
risk The average probability of developing (or dying from) disease during some

specified time interval.
reference population Comparison population; usually assumed non-exposed.
standardized rate Weighted average of stratum-specific rates, where the rates can

be the person-time distribution of the exposed, reference, or some other
population.

standardized rate ratio Summary rate ratio, combined across strata of a
confounder(s).

subcohort Segment of the cohort, defined on the basis of age, year of hire, dura-
tion of employment, duration of follow-up, or exposure level.

Notation

a, Number of exposed cases (deaths) in stratum i
b, Number of non-exposed cases (deaths) in stratum i
N,, Number of person-years in the exposed group in stratum
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Noi Number of person-years in the non-exposed group in stratum i
M, Total number of cases (deaths) in stratum i
7, Total number of person-years in stratum z
SR Standardized rate
RRS General expression for standardized rate ratio estimator
SMR Standardized mortality (morbidity) ratio
SRR Standardized rate ratio
RR M _n Mantel—Haenszel summary rate ratio
Obs Total number of cases (deaths) in the exposed group
Exp Total number of cases (deaths) expected in the exposed group
X2 Mantel—Haenszel chi-square statistic (1 degree of freedom)
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6 Case-Control Studies

1. OVERVIEW

In Chapter 3 we argued that every occupational epidemiology study
is based on the experience of a particular population as it moves
over time. This population has been termed the base population and
its experience over time, the study base, although both concepts are
often loosely referred to as the cohort. The only conceptual differ-
ence between a full cohort study and a case—control study based on
the same cohort is that the latter involves a sample of the study base
rather than an analysis of the entire study base. There is usually little
loss of precision in a case—control study compared to a full cohort
study. Moreover, case-control studies offer considerable savings in
time and expense. The case-control approach is particularly valu-
able if the study disease is rare or has a long induction time.

A second situation in which the case—control approach may be
indicated is when an occupational cohort is difficult to enumerate
(e.g., farmers). In this instance, a case-control study may be based
on cases from a particular hospital, death registry, cancer registry,
or other disease registry that serves a stable population. Registry-
based occupational case—control studies will not be examined in
depth because the general principles are the same as for other reg-
istry-based case—control studies, and these have been covered in sev-
eral well-known texts (e.g., Schlesselman, 1982). Instead, the dis-
cussion will focus on case-control studies based on defined
occupational cohorts.

In the following section, the basic case—control study design is
presented. Issues in the selection of cases and controls are then
examined, including sampling strategies, matching, sources of con-
trols, and avoidance of bias. Sources and classification of exposure
data are then discussed briefly. Methods for analyzing case—control
data are then presented; these include overall (crude) analysis, strat-
ified analysis, matched analysis, and analyses considering multiple
exposure levels. (A discussion of mathematical modeling is deferred
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until Chapter 8.) Examples from the published literature are used
to illustrate issues of design and analysis. In particular, a case-con-
trol study nested in the cohort study of mortality among asbestos
textile manufacturing workers, conducted by Dement et al. (1983),
is discussed in some detail. Finally, the advantages and limitations
of the case—control design are summarized.

2. BASIC STUDY DESIGN

A cohort-based study, often termed a nested case-control study,
requires definition and enumeration of the cohort and its experi-
ence over time (see Chapter 5). The case group consists of all inci-
dent cases generated by the cohort or study base. Prevalent cases
are rarely used because their inclusion may introduce bias due to
differential prognosis. One exception is the study of congenital mal-
formations, where the case group consists of cases discovered at
birth (i.e., prevalent cases).

In a disease registry-based study, cases may be drawn from one or
more registries (e.g., hospital records). Thus, the distinguishing fea-
ture of a registry-based study is that the case group is defined first;
the tasks are then to ascertain the study base that generated the
cases and to sample controls from this study base. By contrast, in a
cohort-based study the study base is defined first.

Although case—control studies usually include one case group and
one control group, there are at least two common departures from
this situation. First, for purposes of efficiency, two or more case
groups may be selected simultaneously, and both compared to a
common control group. More frequently, more than one control
group may be chosen for a single case group if each of several avail-
able control groups has different specific deficiencies, but none is
clearly superior.

The purpose of selecting a control group is to estimate the
"expected" exposure history of the study base that generated the
cases. One obvious source of controls is a random sample of
the study base, but the sample may be restricted to a subset that is
more easily enumerable (if the entire study base is difficult to enu-
merate) or that is likely to yield exposure or confounder informa-
tion more comparable with that obtained for the cases.

Table 6-1 shows the basic data layout for a single stratum of a
case—control study, and Table 6—2 gives an example from a case-
control study of cancer of the nasal cavity and paranasal sinuses and
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Table 6-1. Data layout for a single stratum (/) of case-
control study data

formaldehyde exposure conducted by Hayes et al. (1986). The
effect measure in case-control studies is the odds ratio, which esti-
mates the risk ratio or rate ratio, depending on the method of con-
trol selection. From Table 6-2 we can see that the odds of a case
being exposed are 31/60 (= a/b), whereas the odds of a control
being exposed are 34/161 (= c/d). The exposure odds ratio is this
(31 X 161)/(60 X 34) (= ad/bc), or 2.45.

3. SELECTION OF CASES

In a cohort-based study, the first step in the selection of cases is to
attempt to ascertain all cases generated by the cohort. Complete
case ascertainment may not be achieved; however, the relative risk
estimate (odds ratio) will not be biased by incomplete ascertainment.
Bias may arise, for example, if heavily exposed workers receive more
medical screening, and hence are more likely to have nonfatal dis-
eases diagnosed (e.g., ischemic heart disease). Such bias is less likely
to occur in mortality studies. Many occupational cohort studies are
confined to mortality data; therefore, it may be necessary to use
additional data sources if living cases are to be included.

Table 6-2. Exposure of cases and controls in a study of nasal
cancer and formaldehyde exposure

Source: Hayes ct al. (1986).

Cases
Controls

Total

Exposed

a,
c,

A',,

Non-exposed

b,
A,

N0l

Total

Mn

M0,

T,

Cases
Controls

Total

Exposed

31
34

65

Non-exposed

60
161

221

Total

91
195

286
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Example 6.1

In a case-control study of bladder cancer in the U.S. rubber and tire industry
(Checkoway ct al., 1981), cases of bladder cancer were identified from two sources.
The first source was death certificates obtained for the cohort mortality study
(which covered the period 1964-73) on which the case-control study was based.
The second was hospital records for all bladder cancers newly diagnosed during
the period 1958-74 in the four major area hospitals. Cases among rubber industry
workers were identified by cross-checking the hospital record listings against the
lists of employees of the five companies included in the cohort.

In a registry-based study, the case group usually consists of all
incident cases appearing in the registry during a specified period of
time (usually no more than a few years). The case group ultimately
can be restricted to particular age, gender, or ethnic groups, or with
respect to other characteristics. Such restriction can be applied to
improve information quality, to control confounding, or to facilitate
the valid selection of controls. The "registry" could consist of a for-
mal population-based registry, which incorporates all cases of a par-
ticular disease grouping such as cancer, heart disease, congenital
malformations, or pneumoconiosis. Alternatively, cases might be
drawn from an ad hoc registry based on records collected for other
purposes, such as hospital admissions records, insurance claims, or
disability pension records.

Example 6.2

In a case-control study of neuropsychiatric disorders among Swedish workers
exposed to solvents (Axclson et al., 1976), a regional pension fund register was
used as the source of subjects for the study. The Swedish social security system
provides a disability pension to all disabled persons. Medical data including diag-
noses are available through the register, as are data on years of employment in
various occupations. In this study, all individuals considered for a disability pension
because of some type of mental disorder were selected as cases. Patients with
schizophrenia, manic-depressive psychosis of the circular type, and mental disease
of obvious somatic origin (e.g., dementia from a traumatic brain injury, encepha-
litis) were excluded from the case group. The investigators found an odds ratio of
1.8 for nonspecific psychiatric disorders among workers exposed to solvents.

Diagnostic criteria are important in the selection of cases because
the inclusion into the ease group of diseases that are unrelated to
the etiologic factor of interest will bias the odds ratio estimate
toward the null value of 1.0. The added efficiency of case—control
studies (relative to cohort studies) may permit the collection of addi-
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tional diagnostic data. The validation of diagnostic data is especially
important if some subtypes of a disease are more strongly related
than others to the exposures under study. The goal should be to
define a disease that is a homogeneous etiologic entity.

Example 6.3

Kauppinen et al. (1986) conducted a case-control study of respiratory cancer and
chemical exposures nested within a cohort of 3,805 men who had worked for at
least one year in the wood products industry. They requested histologic or cytologic
specimens for the 57 cases from hospitals and laboratories, and these were evalu-
ated by one pathologist. Necropsy and hospital protocols were studied for the 11
cases lacking histologic or cytologic samples. Two cases were rejected because of
false preliminary diagnoses of cancer, and one was rejected as having chronic lym-
phocytic leukemia. This example illustrates that the detection of false positive cases
is relatively straightforward. However, confirmation of the absence of disease in
presumed noncases is usually more difficult; in this example, this would have
required additional surveillance of all 3,748 "noncases" in the cohort.

4. SELECTION OF CONTROLS

4.1. Sampling Strategies

There are two main approaches to the selection of controls: cumu-
lative incidence sampling and incidence density sampling.

Cumulative incidence sampling involves selecting controls from
those free of the disease of interest at the end of the study period.
For example, in the study by Arp et al. (1983) of lymphocytic leu-
kemia and exposures to benzene and other solvents in the rubber
industry, controls were selected from all members of the cohort, who
did not die from lymphocytic leukemia during the mortality follow-
up period.

Figure 6-1 depicts a hypothetical cohort of eight initially disease-
free persons followed for a period of 35 years. A case—control study
of cancer involving cumulative incidence control sampling would
include subject A as a case, and controls would be selected from the
seven persons who did not develop cancer. If the study disease is
rare, this procedure produces an odds ratio estimate approximately
equal to the risk ratio. The deviation from the risk ratio only
becomes substantial (greater than 10 percent) when the cumulative
incidence over the study period is greater than 10 percent (Green-
land and Thomas, 1982).
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Figure 6-1. Hypothetical cohort of eight initially disease-free persons followed
for 35 years (• = cancer death, • = other death, A = lost to follow-up, o = alive
at end of follow-up).

In the past (e.g., Arp et al., 1983), controls frequently have been
sampled from persons free of the study disease at the end of the
study period. However, Kupper et al. (1975) and Miettincn (1982)
have pointed out that controls should be selected from persons free
of the study disease at the beginning of the study period (this is usu-
ally the entire cohort), because such a sample correctly estimates the
risk ratio without the need for a rare disease assumption. A sample
of the entire cohort has the added advantage that it can provide
controls for several simultaneous case-control studies of different
diseases (Kupper et al., 1975). This approach has also been referred
to as a "case—cohort" design (Prentice, 1986).

Example 6.4

Table 6—3 illustrates a hypothetical study of a cohort of 5,000 persons followed for
one year. One fifth of the cohort is exposed to the risk factor of interest, and this
subcohort has a doubled risk for the outcome under study. The cohort is distrib-
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uted in the ratio of 1:4 between the exposed and non-exposed subeohorts. If ran-
dom error is absent, a sample of the cohort (i.e., all persons free of disease at the
beginning of follow-up) will equal this ratio and thus yield a correct crude risk ratio
estimate of 2.00 ( = (20/40)/(1 000/4000)). The more traditional approach, with
a rare disease assumption, is to exclude those persons who developed the disease
of interest (i.c, to sample only from among persons free of disease at the end of
follow-up). This produces a risk ratio estimate of 2.02 ( = (20/40)/(980/3960)).
The bias resulting from cumulative incidence sampling is small in this example, but
a more severe bias would occur in a study of a less rare disease.

Despite its popularity, cumulative incidence sampling has a num-
ber of limitations. These are particularly pronounced in case-con-
trol studies based on dynamic cohorts, because persons may com-
mence employment (i.e., enter the cohort) at any time during the
follow-up period, and their follow-up may be terminated by deaths
from other causes or from losses to follow-up. One solution is to
stratify on length of follow-up and to carry out cumulative incidence
sampling within each stratum. Alternatively, for each case, or group
of cases, the set from which controls are sampled can be restricted
to subjects who have been followed for at least as long as the case(s).
For example, in Example 6.3 (Kauppinen et al., 1986), controls
were matched to each case on birth year and were further required
to have been alive and free from respiratory cancer at the date of
diagnosis of the corresponding case. Ideally, the exposure history
of each control should only be considered up to the time at which
the corresponding case became a case. This modified cumulative
incidence sampling is very similar to incidence density sampling
described in the following discussion, but it is more cumbersome to
perform.

Incidence density sampling involves selecting controls from the per-
son-time experience that generated the cases (i.e., the study base).
This usually involves selecting controls from the set of persons "at
risk" at the time of onset of each case (known as the risk sel). In a
cohort-based study, incidence density sampling involves considering
each case in turn, and selecting one or more controls from the set
of persons who were at risk at the time that the individual was iden-
tified as a case. In clinical trials, time is defined as follow-up time. In
cohort studies it is more appropriate to use age at risk as the time
dimension (Brcslow ct al., 1983) because age is a strong risk factor
for many diseases, and age effects should be controlled as precisely
as possible (although matching can, in theory, be done on any time-
related factor).

To illustrate, consider a worker who died from lung cancer at age
64 years. One or more controls would be selected from the group
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of all persons who were "at risk" (by being alive and members of
the cohort) at age 64. This "at-risk" group thus comprises all per-
sons who entered the cohort (started work) before age 64 and lived
to at least age 64. The cumulative exposures of the controls, and
their status for various confounding factors, would be evaluated at
age 64, rather than at the ages they subsequently attained. Suppose,
for purposes of illustration, that all eight workers depicted in Figure
6-1 were the same age at time t't (1/1/50). Then controls for case
A would be sampled without replacement from the set of six other
persons (all except H) who were at risk (i.e., members of the cohort
and free from the disease under study) at the time that A became a
case. Each control's exposure should only be considered up to the
time at which the corresponding case became a case. The risk set
that is sampled thus may include some persons who subsequently
became cases (Lubin and Gail, 1984).

Incidence density sampling can be regarded as a straightforward
extension of the person-time approach used in cohort studies. For
example, in a cohort study, if one person died at age 64 and 863
persons were "at risk" at age 64, then the incidence rate at age 64
would be 1 per 863 person-years. Note that the denominator may
include persons who also developed the disease of interest at some
later time. A case—control study with incidence density sampling
essentially involves using all the numerator data (cases) and sam-
pling from the denominator data. Incidence density sampling thus
permits the estimation of the incidence rate ratio without the need
for a rare disease assumption (Miettinen, 1976). Furthermore, it
also estimates the risk ratio more validly than cumulative incidence
sampling (Greenland and Thomas, 1982).

It should be noted that almost all registry-based studies inherently
use incidence density sampling. This is because cases are usually
drawn from disease registrations for a relatively short time period,
and controls are drawn from the source population of the registry
during the same time period. In other words, controls are selected
from among persons "at risk" of developing the study disease and
appearing in the registry at the times (usually in the same year) when
the cases occurred. Control selection thus inherently involves inci-
dence density matching on calendar year; matching on other fac-
tors, such as age, is also conducted in an incidence density
framework.

4.2. Matching

Matching involves pairing one or more controls to each case, or a
group of controls to a group of cases, with respect to one or more
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potential confounding factors. In incidence density sampling, con-
trols are automatically matched to cases on the basis of some time
variable, such as age at risk. However, matching may also be carried
out with respect to other factors by restricting the sampled "risk
set" to potential controls with the same status on the matching fac-
tor as the case. In cumulative incidence sampling, matching may be
carried out by restricting potential controls to specific categories of
various factors, such as age at risk, gender, ethnicity, age at hire,
length of follow-up, year of birth, or year of entry into the cohort.
However, each additional matching factor makes it more difficult to
achieve good matches.

Example 6.5

Karasck ct al. (1981) conducted a case—control study of job decision latitude, job
demands, and cardiovascular disease, nested within a prospective cohort study of
employed Swedish males. Each case of cardiovascular disease was identified from
the death certificate and matched as closely as possible with three controls with
respect to age (±2 years), tobacco smoking habit (± 5 cigarettes per day), educa-
tion, and self-reported symptoms of cardiovascular disease at the start of follow-
up. They found that low decision latitude (expressed as low intellectual discretion
and low personal schedule freedom) was associated with increased risk of cardio-
vascular disease, particularly in persons with the minimum statutory education (OR
= 6.6).

There are two potential advantages of matching: practical effi-
ciency and statistical efficiency. First, matching may be done for
practical efficiency. For example, when cases are identified from
hospital admission records, it may be more convenient to choose as
controls patients admitted on the same days as the cases, rather than
developing a roster of all patients and taking a random sample. Sec-
ond, matching may be done for statistical efficiency to ensure simi-
lar distributions of confounding factors in cases and controls. For
example, if most of the cases arc "old" and most of the controls are
"young," then fine stratification on age may result in very few con-
trols in the older age strata and very few cases in the younger age
strata. This does not bias the adjusted odds ratio, but it decreases
its precision: The odds ratio estimate is less stable, and its confi-
dence limits may be relatively wide. Hence, it may be desirable to
ensure that good confounder overlap is achieved by some form of
matching.

Several potential problems are associated with matching in case-
control studies. First, the association of disease with the matching
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factor is distorted and cannot be estimated validly. Second, in case-
control studies a matching factor may still be a confounder unless
it is controlled in the analysis. A related problem occurs when
matching is performed on a nonconfounder, particularly on a cor-
relate of exposure that is not an independent risk factor for the dis-
ease in question. The matching process effectively turns such a fac-
tor into a confounder, which must then be controlled in the analysis,
thus reducing precision and increasing analytical complexity. For
example, in a case-control study of radiation doses and leukemia
among nuclear industry workers, matching on work area in the
plant would be counterproductive if work area and radiation expo-
sure were associated but work area was not an independent risk fac-
tor for leukemia.

Finally, matching may be expensive and time-consuming. Finding
suitable controls becomes increasingly difficult as the number of
matching factors increases beyond two or three. Furthermore, the
increase in precision from matching is generally modest, typically
involving a 5- to 15-percent reduction in the variance of the effect
estimate (Schlesselman, 1982). Therefore, although most discus-
sions of matching stress issues of statistical efficiency, practical con-
siderations are usually more important.

4.3. Sources of Controls

The most obvious control selection procedure involves sampling
from the entire study base. There are, however, two situations
where it may be desirable to restrict the sample to a subset of the
study base. The first occurs in both cohort-based and registry-based
studies when it is thought that controls selected from a particular
subset of the study base are most likely to give exposure information
comparable to that obtained for the cases. The second occurs in a
registry-based study when it is not possible to identify explicitly the
source population for the registry (e.g., if cases are drawn from rec-
ords of an urban referral hospital with no clearly defined catchment
area). Both situations usually necessitate selecting controls from
among persons with other diseases who appeared in the same reg-
istry (or were generated by the same cohort) during the same time
period. This selection method generally improves comparability of
information between cases and controls and, unless the exposure
also causes some of the control diseases, identifies a control group
that reflects the exposure history of the source population for the
cases.
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One special instance of selecting controls from among other dis-
ease registrants occurs when controls are sampled from among
other deaths in a mortality study. This approach is valid when the
exposure experience of the other deaths is representative of the
entire at-risk population (the study base), that is, when the study
exposure does not cause mortality excesses (or deficits) from other
diseases. This procedure is commonly used in studies based on
national or state death registries (e.g., Blair and Thomas, 1979), but
it can also be used in cohort-based case-control studies in which
controls are sampled from other deaths in the cohort or from
national or state death registries. This approach is related to the
proportionate mortality ratio (PMR) method (Chapter 3), where the
proportion of deaths from a particular disease in the exposed pop-
ulation is compared to that expected on the basis of a non-exposed
population (Miettinen and Wang, 1981).

4.4. Issues in Control Selection

When control selection involves sampling from the entire cohort,
selection bias is a minor concern, although selection bias may still
occur if the strength of the Health Worker Effect differs according
to exposure level. When controls are selected from among persons
with other diseases, considerable care must be taken in specifying
the diseases that form the control group. In particular, a specific
disease may not correctly reflect the exposure pattern in the study
base, especially if it is caused by the study exposure. One approach
is to include only diseases that are thought to be unrelated to expo-
sure (Miettinen, 1985), but this requirement may be difficult to sat-
isfy in practice because adequate evidence for the absence of expo-
sure effects on many diseases is frequently not available (Axelson et
al., 1982). An alternative approach is to select as controls a sample
of all other diseases. This approach is generally more reliable
because there are few factors that markedly increase risks of numer-
ous diverse diseases. It has become common practice to exclude dis-
eases known to be related to exposure from the pool of potential
controls; however, even this restriction does not always eliminate
bias (Pearce and Checkoway, 1988).

Example 6.6

Pcarcc ct al. (1986) conducted a case-control study of rion-Hodgkin's lymphoma
and exposure to agricultural chemicals in New Zealand. Interviews were conducted
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with 83 male cases of non-Hodgkin'slymphorna or their next of kin. The cases were
identified from the New Zealand Cancer Registry during the period 1977-81. Con-
trols were selected from among other male cancer patients registered during the
same period and were matched on age (±2 years) and year of registration. How-
ever, there was concern that selection bias could occur if other cancers were caused
by agricultural chemicals. It was not possible to assess this selection bias directly.
Nonetheless, it was possible to assess selection bias with regard to employment in
farming, which is a surrogate for agricultural chemical exposure. The occupational
distribution of the other cancer controls was compared with that expected on the
basis of national census data, and the number of farmers in the control group was
found to be very close to that expected (Smith et al., 1 988). Furthermore, the over-
all cancer mortality rate in New Zealand farmers was found to be close to that for
all employed persons (Pcarce and Howard, 1986). These two findings suggested
that using the other cancer patients as controls was unlikely to have created selec-
tion bias with respect to employment in farming. Therefore, this approach was also
unlikely to have created selection bias with regard to agricultural chemical expo-
sure. Further evidence for an absence of serious selection bias was provided by
comparison with an additional control group chosen from the general population
that yielded very similar findings to the comparison with other cancer controls.

In some cohort-based studies, and most registry-based studies,
information about exposure, or about potential confounders such
as cigarette smoking, is obtained retrospectively by interviewing
cases and controls, or their relatives. In this situation there is poten-
tial lor information bias to occur. In particular, it has been argued
that recall bias may occur because patients with chronic diseases (or
their relatives) may ponder about the possible causes of their disease
and therefore may be more likely to recall some past exposures than
healthy controls. Furthermore, interviewer bias may occur if inter-
viewers are aware of subjects' health status. However, there is little
evidence that such bias has occurred frequently in occupational epi-
demiology (Axclson, 1 985). Cohort-based studies ordinarily rely on
routinely tabulated records (e.g., personnel records) rather than
personal interviews. Hence, recall bias and interviewer bias are
often not relevant, although nondifferential information bias due to
inaccuracies in available records may still be of concern.

Example 6.7

Consider a cohort-based case—control study of leukemia and exposure to benzene,
in which exposure classification was based on the areas of the plant, in which work-
ers were assigned. If personnel records contain detailed work history information
for all employees, then the selection of a control group is relatively straightforward.
The most obvious strategy would be to sample from the entire study base, prefer-
ably using incidence density sampling. Comparability of information would not be
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of concern in this instance because all exposure information was collected
prospectively.

If a registry-based study were conducted or if appropriate records were not avail-
able in a cohort-based study, then it might be necessary to interview cases and con-
trols (or proxy respondents) to ascertain past exposures to bcnzenc. In this situa-
tion, there might be concerns regarding the comparability of information between
the cases and controls, particularly if a larger proportion of cases than controls
were dead. One strategy would involve choosing separate control groups of living
and dead controls. A sample of the entire study base (in a cohort-based study)
would also yield a mix of living and dead controls, although the number of dead
controls might be too small for a separate analysis. When separate analyses by vital
status are possible, it is not clear which findings to accept if comparisons with the
living and dead controls give different results. On the other hand, if it were known
that benzenc had a minimal effect on overall cancer mortality, then there would be
considerable advantages to selecting a single control group of persons who had
developed other forms of cancer. This approach should provide the best compar-
ability of information between cases and controls, particularly since similar pro-
portions of cases and controls would be deceased.

It is important to attempt to validate the classification of expo-
sure, such as by comparing interview results with other data sources,
such as employer records, or by assessing interrater agreement
(Goldberg et al., 1986). Alternatively, recall bias may be assessed by
comparing the main exposure findings with those of other expo-
sures for which recall bias is equally likely but which are apparently
not risk factors for the study disease.

Example 6.8

Selevan et al. (1985) conducted a case-control study of occupational exposures to
antineoplastic drugs and fetal loss in nurses employed in 17 Finnish hospitals. The
pregnancies occurred during the period 1 973-80. Each nurse with a fetal loss was
matched with three nurses who gave birth. The odds ratio for occupational expo-
sure to antineoplastic drugs during the first trimester of pregnancy was 2.30. The
authors commented that "if the outcome of pregnancy produced a bias in recall of
pregnancy-related exposures ... an elevated odds ratio would be expected for
anesthetic gases, since several reports have linked this exposure to fetal loss." In
this study the odds ratio for anesthetic gases was 0.96; thus, they concluded that
recall bias was probably minor.

5. EXPOSURE DATA

Exposure data will be considered only briefly, as the key issues have
been discussed in Chapters 2 and 5, and more complex analyses of
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exposure effects will be discussed in Chapter 9. In a cohort-based
study, the types and sources of exposure data are identical to those
that would have been used for a full cohort analysis (e.g., Example
6.7). Registry-based studies most commonly use personal interviews
regarding occupational history (e.g., Example 6.6), although studies
may also be based solely on registry records if these contain occu-
pational information.

The classification of exposure data is conceptually identical to
that in cohort studies. Each case is classified exactly as it would have
been in a full cohort analysis. With incidence density matching, con-
trols are selected from the set of all persons "at risk" at the age at
which the case occurred. A control's exposure is only considered up
to the age when the corresponding case occurred, and all subse-
quent exposure history is ignored. Thus, controls are classified into
the same cumulative exposure and confounder categories as the rel-
evant person-year would have been in a cohort analysis.

As in a cohort study, cohort-based studies may involve job cate-
gory analyses. Once again, the simplest approach is to carry out sep-
arate analyses for each job category in which cases and controls are
classified as to whether they have "ever" or "never" worked in a
particular job category. Duration of employment in each job cate-
gory may also be considered. Eurther refinements include assigning
ordinal rankings of job categories and adjusting job category-spe-
cific effect estimates for employment in other job categories.

Registry-based studies usually involve less detailed exposure data
than cohort-based studies. Often subjects are classified only accord-
ing to whether they have ever worked in a particular industry, or
according to duration of employment in an industry. When a par-
ticular exposure is of primary concern, detailed questioning may
permit more valid exposure assessment, and the classification of
subjects according to factors such as number of days exposure per
year and duration of exposure (Hoar et al., 1986). Job-exposure
matrices may be used for screening multiple exposures. In its sim-
plest form, a job-exposure matrix is a table with occupational cat-
egories on one axis and exposures on the other. Occupations involv-
ing exposures to a particular substance can then be grouped. This
approach can be used both in studies based on routinely collected
occupational information (Coggon et al., 1984) and personal inter-
views (Hoar et al., 1980). A recent refinement has been the use of
intensive "detective work" by chemists and hygienists to translate a
job history into a set of potential exposures (Gerin et al., 1985).
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Example 6.9

Siemiatycki et al. (1986) undertook a multi—cancer site, case—control study to
screen hypotheses about possible associations between numerous occupational
exposures and various cancer sites. For each cancer site, controls were selected
from among the other cancer sites in the study. Detailed lifetime job histories were
obtained from subjects by personal interview. A team of chemists and hygienists
then considered the details and idiosyncrasies of each job description and assigned
exposure ratings in accordance with all the available information. Several associa-
tions emerged: wood dust and lung cancer (OR = 1.5), wood dust and stomach
cancer (OR = 1.5), synthetic fibers and colorectal cancer (OR = 1.8), synthetic
fibers and bladder cancer (OR = 1.8), cotton dust and non-Hodgkin's lymphorna
(OR = 1.9), grain dust and colon cancer (OR = 2.6), grain dust and prostate
cancer (OR = 2.2), and paper dust and prostate cancer (OR = 2.0).

For both cohort-based and registry-based studies, latency analyses
are conceptually identical to those in cohort studies. For example,
an analysis based on a latency interval assumption of ten years
involves ignoring exposures within the most recent ten years when
calculating exposures of cases and controls. This corresponds to lag-
ging the exposure data by ten years in a cohort study (see Chapter
5)/

6. ANALYSIS

In this section we describe the basic methods of analysis of occu-
pational case-control data. More comprehensive reviews arc given
by Breslow and Day (1980), Kleinbaum et al. (1982), and Rothman
(1986). First, the standard analytic methods are outlined for a single
stratum. The discussion is then extended to the control of con-
founding with stratified analysis and the analysis of multiple expo-
sure levels.

6.1. Crude Analysis

The basic effect measure in a case-control study is the odds ratio
(OR). In the one-stratum case this is

The Mantel-Haenszel chi-square (Mantel and Haenszel, 1959)
tests the null hypothesis that the odds ratio is equal to unity and
takes the form
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where Z is the appropriate standard normal deviate (e.g., Z = 1.96
for 95-percent limits), and x2 is the Mantel—Hacnszel chi-square.
The advantages and limitations of the test-based method (Miettinen,
1977; Greenland, 1984; Rothman, 1986) have been discussed in
Chapter 5.

An alternative approach is to calculate a direct estimate of the
variance of the log odds ratio (which is approximately normally dis-
tributed in large samples). In the one-stratum case the variance of
ln(OR) is approximately (Woolf, 1955):

Example 6.10

Consider the data given in Table 6-2 for a case-control study of cancer of the nasal
cavity and paranasal sinuses and formaldehyde exposure in which 31 of 91 cases
and 34 of 195 controls were exposed. The odds ratio is

where a = observed number of exposed cases

the expected number of exposed cases, assuming
there is no association between exposure and
disease

the variance of the number of exposed cases,
assuming there is no association between expo-
sure and disease

Miettinen's (1976) test-based method can be used to calculate a
confidence interval for the Mantcl-Haenszel odds ratio:

The square root of the variance is the standard deviation (SD), and
this yields (logit) confidence limits of

Ktt(A) = 20.68 and Var,,(A) = 10.93, arid the Mantel-Haenszel chi-square
[equation (6.2)] is
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The square root of the Mantel-Haenszel chi-square is 3.12; thus, the test-based 95-
pereent confidence interval for the odds ratio is

Alternatively, ln(OR) = 0.896, SD(ln(OR)) = 0.291 [from formula (6.4)], and the
95-percent logit confidence interval is

Expression (6.5) corresponds to a weighted average of the stra-
tum-specific odds ratio estimates, with weights of b,c,/TJ in each stra-
tum. [A minor modification of the weights is necessary when ana-
lyzing a so-called case-cohort study (Greenland, 1986).] The
Mantel—Haenszel method gives consistent estimates of the odds
ratio, even when many strata contain small numbers. Also, it can be
used without modification when there are zero frequencies within
the body of some stratum-specific tables, provided that the marginal
totals are nonzero.

A related method for summary odds ratio estimation is the pre-
cision weighting approach. This involves calculating a weighted

6.2. Stratified Analysis

The control of confounding involves the assembly of a separate
table for each level of the confounder, or for each combination of
levels if more than one confounder is being controlled. Table 6—1
denotes this situation by attaching the subscript i to each entry in
the table [i.e., the table represents just one stratum of the
confounder(s)].

Separate odds ratios can be calculated for each stratum, but it is
usually also desirable to calculate a summary odds ratio. The most
commonly used method is that of Mantel and Haenszel (1959):

Disease
outcome

Cases
Noncascs

Total

Exposed
population

20
980

1,000

Non-exposed
population

40
3,960

4,000

Total

60
4,940

5,000

Table 6-3. Number of hospitalized cases during a one-year
period for a hypothetical cohort

1



Miettinen's test-based method [equation (6.3)] can be used to cal-
culate approximate confidence limits for the adjusted odds ratio
using the summary Mantel-Haenszel chi square. Direct calculation
of a variance estimate for the log of the Mantel-Haenszel odds ratio
is relatively complex with stratified data. Many estimators have been
proposed, but the one that is easiest to compute without compro-
mising validity (in large samples) is that proposed by Robins et al.
(1986):

Example 6.11

Table 6—4 shows data from a study of cancer of the nasal cavity and paranasal
sinuses and formaldehyde exposures (Hayes ct al., 1986), stratified on the con-
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average of the stratum-specific odds ratios, using the inverses of
their variances as weights (Kleinbaum et al., 1982). However, pre-
cision weighting may yield unstable estimates when there are small
numbers in some strata and yields similar estimates to the Mantel-
Haenszel estimator when numbers are large.

The stratified form of the Mantel-Haenszel statistic is

where P = (a, + d,)/T,; Q = (bt + c,)/T,; R = a,d,/T-, S = b,c,/T,;
R+ = E/?; and 5+ = ZS. In the one-stratum case this reduces to
equation (6.4).

Exposure

Low wood dust exposure
Cases
Noncases

Total
High wood dust exposure

Cases
Noncases

Total

Exposed

15
18
33

16
16
32

Non-exposed

48
143
191

12
18
30

Total

63
161
224

28
34
62

Source: Hayes ct al. (1986).

Table 6-4. Exposures of cases and controls in a study of nasal cancer and
formaldehyde exposure



which has a square root of 0.370. The log of the odds ratio is 0.718, thus yielding
95-percent confidence limits of

6.3. Matched Analysis

As outlined earlier, matching on a confounder in a case—control
study does not ensure control of confounding; it merely ensures
similar distributions of the confounders for cases and controls. If
matching has only been done on factors such as age and gender,
then confounding can be controlled with a broadly stratified analy-
sis. A broadly stratified analysis is easier to conduct, and generally
is more efficient statistically, than an individually matched analysis.
However, an individually matched analysis will be necessary if gen-
uine "matched sets" exist. In the latter instance, each case and cor-
responding matched control(s) comprise a single stratum. The Man-
tel-Haens/el procedure for odds ratio estimation can be used in
both situations.

Table 6—5 shows the notation for a matched pairs analysis. When
only one control has been matched to each case (i.e., M = 1), the
Mantel—Haenszel estimate is simply the ratio of the number of pairs
where the case is exposed and the control is not, and the number
of pairs where the control is exposed arid the case is not
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founding factor of wood dust exposure. The overall Manlel-Haenszel odds ratio,
adjusted for wood dust exposure, is

and the Mantel—Haenszel chi-square is

The square root of 5.50 is 2.35, and the test-based 95-percent confidence interval
is thus

Using formula (6.7) for the variance of the log of the odds ratio yields
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The Mantel—Haenszel chi-square is

When the allocation ratio (M) is greater than 1:1, the calculations
become considerably more complex, particularly if the number of
controls per case varies. The Mantel-Haenszel estimate of the odds
ratio is (Rothman, 1 986)

and the test for association becomes

where K is the ratio of controls to cases, and the summations are
carried out over all possible values of K from K = 1 to K = M. For
example, suppose that it is decided to choose four controls per case
(i.e., M = 4), but that there are some matched sets where it was not
possible to obtain exposure information for all the cases and con-
trols. When the individual matching is maintained, any matched sets
containing either no case or no controls would have to be discarded.
(This is a major disadvantage of maintaining the individual matching
in the analysis). Using expressions (6.11) and (6.12), the summations
would be performed four times: first for the matched sets with only
one control (K = I, m = 1); second for the matched sets with two
controls (K = 2, m = 1,2); third for the matched sets with three
controls (K = 3, m = 1,2,3); and finally for the matched sets with
four controls (K = 4, m = 1,2,3,4). In a study with complete con-

Number of exposed controls

Cases

Exposed
Non-exposed

"Coding notation: 1

0 1 ... k

(1)" n, 0 ra,,  rau 
(0) n(1(1 n(l] ... nal,

= exposed; 0 = non-exposed.

 M

nlM

n>},u

Table 6-5. Notation for matched case -control study data
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Example 6.12

A simple matched analysis can be illustrated with data from a registry-based case-
control study (Smith et al., 1982) of soft tissue sarcoma and farming occupations
(Table 6-6). The odds ratio is

6.4. Extension to Multiple Exposure Levels

It is often desirable to extend the analysis to the consideration of
three or more exposure levels. The simplest approach is to treat the

Controls

Farmers Non-farmers

Cases:
Farmers 1 11
Nonfarmers 8 82

Total

12
90

Source: Smith ct al. (1982).

trol information, (i.e., with four controls for every case), only the
latter summation would be carried out.

Either Miettinen's (1976) test-based method or Robins' (1986)
method can be used to calculate the confidence interval for the odds
ratio. For matched pairs data, the latter yields a variance estimate
of

and the Mantel-Haens/cl chi-squarc is

Test-based confidence limits are

F.xpression (6.1 2) yields a variance estimate for ln(OR) of

which has a square root of 0.465; ln(OR) = 0.318, yielding 95-percent confidence
limits of

Table 6-6. Exposure of cases and controls in a matched
case-control study of soft tissue sarcoma and farming
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data as a series of 2 X 2 tables and to calculate odds ratios for each
level compared to the lowest level of exposure. However, caution is
needed when using the Mantel-Haenszel procedure because the
weights given to the various confounder strata will often be differ-
ent for each pairwise comparison of exposure levels (i.e., the Man-
tel-Haenszel estimates are not mutually standardized). Therefore,
the odds ratio estimates for the different levels will not be strictly
comparable if the odds ratios are not uniform across strata of con-
founders. (This problem was discussed in Chapter 5.) The solution
is to use a uniform set of weights, such as that used in an SRR anal-
ysis, in which the weights come from the lowest exposure category.
In a case—control analysis, the weights are proportional to the con-
founder distribution of the controls in the lowest exposure category
because these weights should represent the confounder distribution
of the lowest exposure category in the study base (Miettinen, 1972).
Like all directly weighted procedures, this approach is susceptible
to instability resulting from small numbers.

An extension of the Mantel-Haenszcl procedure (Mantel, 1963)
provides a chi-square trend statistic with one degree of freedom.
Table 6-7 shows the contingency table for stratum i. Scores (Y) are
assigned to each exposure level (j) (e.g., the scores can be 0, 1, 2,
etc., for increasing exposure levels). The chi-squarc with one degree
of freedom is based on the deviation of £A,F; from its expectation,
conditional on the null hypothesis, and subject to all the marginal
totals being fixed:

where E^Aft = (N^/T^M?-, Var.XEA,^) = (N,N0/T\T - I))
\TT.MYf — (EM;K;)

2], and j indexes the exposure category.
When there are two or more strata of the confounder or control

variable, the deviations of £A;Y; from its expectation are summed
separately across strata, and Var,,(EA;y/) is also summed separately

Cases
Controls

Total

Study

0
Yn

A,,
R<>

Mn

factor

1
X,

A,
/?i

Af,

level (j)

2
Y2

A,
B,

M,

and score (Y)
k - 1
n_,

A*_,
/**-,

Mt..t

Total

Nt
N0

T

Table 6-7. Notation for the Mantel-Haenszel extension test: contingency
table for stratum / of a specified set of confounders
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across strata in a manner analogous to that for the standard Man-
tcl-Hacnszcl statistic. The chi-square trend statistic relies on the
assignment of scores to each exposure level and is derived from a
linear regression. This statistic is still valid in the case of a nonlinear
trend, since the derivation of both the expectation and variance of
EA;Fy makes no assumption of linearity. For example, scores of 0,
1, 10, 100, and so on, can be assigned if there is prior evidence to
assume that the effect should be exponential rather than linear. A
major drawback of the Mantel extension procedure is that it does
not yield odds ratio estimates, but only provides a jb-value. Various
other methods are available for evaluating trends across multiple
exposure levels, but the most useful of those involve mathematical
modeling (see Chapter 8).

Example 6.13

Analysis of multiple exposure levels can be illustrated with data from the study by
Hayes et al. (1986) of caneer of the nasal cavity and paranasal sinuses and formal-
dehyde exposure (see Table 6-8). The method is illustrated for a single stratum of
wood dust exposure, with three formaldehyde exposure levels. Comparing expo-
sure level 1 to level 0 yields an odds ratio of 2.35 (95-percent confidence interval
1.10, 5.03), and comparing level 2 to level 0 yields an odds ratio of 2.53 (95-percent
confidence interval 1.24, 5.16). From expression (6.14), E/t,F, = 96, En(T.A,Y) =
63.64, and Var(l(E/l,X;) = 91.47. The Mantel extension trend chi-squarc (with 1
d.f.) is thus

7. EXAMPLE: NESTED CASE-CONTROL STUDY OF ASBESTOS
TEXTILE PLANT WORKERS

The following example illustrates some of the methods presented
earlier. It involves a nested case-control study of lung cancer and
asbestos exposure, based on the cohort of 1,261 white male asbestos
workers from one textile manufacturing plant (Dement et al., 1 983)
described in Chapter 5.

7.1. Study Design

The case group includes all 35 lung cancer deaths generated by the
cohort during the period 1940-75. All exposure information was
collected prospectively; thus, there were no potential problems with
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Source: Hayes ct al. (1986).

comparability of information between cases and controls. Hence,
controls were chosen by sampling from the entire cohort. Because
of the small number of cases, a 4:1 control-to-case matching ratio
was used, thus yielding 140 worker controls. Controls were selected
by incidence density matching ori age at risk. It was not considered
necessary to match on other factors.

7.2. Analysis: Dichotomous Exposure

The initial analysis used a dichotomous exposure classification.
Cases and controls were classified as to whether their cumulative
asbestos exposure was greater or less than 10,000 fibers/cc X days.
(A latency period of zero years was assumed in this initial analysis).
Table 6—9 shows the exposure distribution of cases and controls.
The crude odds ratio (equation 6.1) is

Study factor level

Score

Cases
Controls

Total

0

0

60
161

221

1

2

14
16

30

2

4

17
18

35

Total

91
195

286

The Mantel-Haenszel chi-square [equation (6.2)] is:

Asbestos exposure

Cases
Controls

Total

"Odds ratio =

<10

15
92

107

2.56.

>10

20
48

68

Total

35
140

175

Table 6-8. Exposure of cases and controls in a study of nasal
cancer and formaldehyde exposure

Table 6-9. Exposure of cases and controls:
1,000 fibers/cc X days3



194 Research Methods in Occupational Epidemiology

and x is 2.47. The approximate (test-based) 95-percent confidence
interval for the odds ratio is [expression (6.3)]:

Table 6—10 shows the exposure distribution of eases and controls
stratified by age. The adjusted Mantel-Haenszel odds ratio is 2.38,
and the Mantel-Haenszel chi-square is 6.08, yielding a 95-percent
confidence interval of 1.19, 4.74. The data in Table 6—10 suggest
that the odds ratio is not uniform across strata.

Table 6-11 gives the distribution of matched sets classified
according to asbestos exposure. For example, there were 15 cases
classified as "non-exposed" (cumulative exposure of less than
10,000 fibers/cc X days), each of which had four matched controls.
In one of these, all four matched controls were exposed, in six of
them two of the four matched controls were exposed, and so on.
Using formula (6.11) and a fixed matching ratio of K — 4 (since all
matched sets include four controls), the adjusted odds ratio is

Age group

45-49
50-54
55-59
60-64
65-69
70-74

Total

Cases' exposure

<10

5
3
0
1
4
2

15

>10

1
7
6
4
2
0

20

Controls'
exposure

<10

17
29
18
13
11
4

92

=±10

7
11
6
7

13
4

48

Odds
ratio

0.49
6.15
oo

7.43
0.42

0

2.38°

" Adjusted odds ratio

Number of controls with 10,000 or
more fibers/cc

(^ases:
> 1 0,000
< 1 0,000

0

3
4

1

7
4

2

9
6

X days
3

1
0

4

0
1

Table 6-10. Exposure distribution of cases and controls by age: 1,000 fibers/cc X days

Table 6-11. Distribution of matched sets according to
asbestos exposure: 10,000 or more versus less than 10,000
fibers/cc X days
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7.3. Analysis: Multiple Exposure Levels

For the analysis of multiple exposure levels cases and controls were
classified into the same five cumulative exposure categories used in
Chapter 5. Table 6-12 shows the exposure distribution of cases and
controls, and the crude odds ratio>s obtained comparing each level
with the lowest exposure level. The strong exposure—response trend
is similar to that found in the full cohort analysis (Table 5-29).

Table 6—13 gives the cumulative exposure distributions stratified
by age. Once again, pairwise comparisons have been made between
each level with the lowest exposure level. The crude (Table 6-12)
and adjusted (Table 6—13) odds ratios are generally similar, but
there are some discrepancies at the higher exposure levels, suggest-
ing that there is residual confounding in these categories. However,
the findings for the higher exposure categories are unstable because
of small numbers. Also, some age strata (e.g., 45-49 years) contain
no cases or controls in the highest exposure category. Two analytic

The Mantel-Haens/el chi-square [formula (6.12)] is

The corresponding test-based confidence interval is 1.23, 5.59.
These findings are very similar to those of the crude and stratified
analyses, suggesting that little confounding by age exists in the data.
The minor differences in the crude, age-stratified, and matched
analyses are due to minor variations in the grouping and weighting
of strata under the three analytic approaches.

Asbestos exposure

Cases
Controls

Odds ratio

<1

5
49

1.00

1-9

10
43

2.28

10-39

7
28

2.45

40-99

11
16

6.74

>100

2
4

4.90

Table 6-12. Exposure distribution of cases and controls:
1,000 fibers/cc X days
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"Reference category.

approaches can be adopted. One approach is simply to discard
strata that contain zero marginals, since they contribute nothing to
the analysis. For example, in the comparison of the highest and low-
est exposure categories, the 45—49-year age stratum contains no
cases or controls in the highest exposure category, and the 70-74-
year age stratum contains no cases at either of the two levels being
compared. Both of these strata could be excluded from the analysis.
The alternative approach, adopted here, is to pool such strata with
adjacent strata that do not have zero marginals (e.g., the 45-49-year
and the 50—54-year age strata were pooled for the comparison of
the highest and lowest exposure categories). This approach has the
advantage that all the data arc included in the analysis, but it is only
valid when the expanded stratum width does not introduce (resid-
ual) confounding.

Table 6-14 contrasts the findings for the crude and age-adjusted
analyses. The odds ratio estimates arc similar, suggesting again that
little confounding by age exists in the data.

7.4. Discussion

This example illustrates the efficiency of the case-control approach,
which provided effect estimates, based on 175 subjects, very similar
to those obtained with a full cohort analysis of 1,261 subjects

Age group

45-49

50-54

55-59

60-64

65-69

70-74

Total

Adjusted odds ratio

Cases
Controls
Cases
Controls
Cases
Controls
Cases
Controls
Cases
Controls
Cases
Controls
Cases
Controls

<1"

3
8
1

15
0

10
0
9
1
5
0
2
5

49

1.00

Asbestos

1-9

2
9
2

14
0
8
1
4
3
6
2
2

10
43

1.95

exposure

1 0-39

1
7
3
4
3
3
0
5
0
6
3
3
7

28

2.46

40-99

0
0
3
7
3
3
4
2
1
4
0
0

11
16

6.27

>100

0
0
1
0
0
0
1
0
1
3
0
1
2
4

8.78

Table 6-13. Exposure distribution of cases and controls by age: 1,000 fibers/cc X days
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described in Chapter 5. In this instance, exposure data had already
been assembled for all cohort members, and the case-control
approach was also used for illustration. There is a considerable
reduction in time and expense from a case—control analysis because
exposure data are assembled only for the cases and controls actually
chosen. However, it should be emphasized that, although the case--
control approach provides generally valid overall estimates of effect,
the findings may be less stable for particular subgroups.

8. SUMMARY OF ADVANTAGES AND LIMITATIONS OF CASE-
CONTROL STUDIES

The major advantage of case-control studies is that they save time
and expense relative to cohort studies, with little loss of precision.
For example, the difference in precision between selecting four con-
trols per case and doing a full cohort analysis (of a relatively com-
mon exposure) is generally very small (Miettinen, 1969). Registry-
based case-control studies have the additional advantage of
enabling the study of an exposure when an exposed cohort cannot
be enumerated feasibly. This is particularly valuable for studying
exposures that primarily occur in scattered small workplaces. A fur-
ther commonly ascribed advantage is that a case—control study per-
mits the evaluation of several different risk factors. In fact, cohort
studies can also evaluate effects of multiple exposures, although at
a greater cost. In many instances, the savings in time and cost from
the case—control approach may permit the collection of additional
exposure and confounder information.

Any case-control study is subject to the same biases as a full anal-
ysis of the study base. Additional problems of selection bias can

1

(

,000 fibcrs/cc X
days

<1
1-9
10-39
40-99
>100

"hi-squarc (trend)

Odds
ratio

1.00
2.28
2.45
6.74
4.90

8.86

Crude

95% confidence
interval

0.73, 7.08
0.72, 8.29

2.20, 20.68
0.81, 29.72

Odds
ratio

1.00
1.95
2.46
6.27
8.78

9.16

Stratified
95% confidence

interval

—
0.61, 6.27
0.83, 7.25

2.09, 18.86
1.17, 65.97

Table 6-14. Comparison of findings for crude analysis and stratified analysis
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occur but are usually not a major problem in cohort-based studies
because the study base is fully enumerable. Information bias is gen-
erally of lesser concern if the study includes data collected prior to
the occurrence of disease. Information bias is of more concern in
studies involving data collected after the occurrence of disease, but
this is relevant both to historical cohort studies and nested case-
control studies. A further problem with the case-control design is
that the medical community, and the wider public, is less familiar
with it than cohort studies. Thus case—control findings may be dif-
ficult to explain. Problems related to the interpretation and accep-
tance of findings from case—control studies can be mitigated by
stressing the inherent link between the case—control and cohort
approaches.

In summary, occupational case-control studies are commonly
depicted as being relatively fast and efficient, but being more sus-
ceptible to bias than cohort studies. The latter is generally true of
registry-based studies. Cohort-based case-control studies have the
former advantages but are no more prone to bias than cohort
studies.

Glossary

odds The ratio of the proportion of a group experiencing an event to the pro-
portion not experiencing the event.

odds ratio The ratio of two odds, used to estimate risk ratios or rate ratios.
relative risk A genera] term to denote the rate ratio, risk ratio, or odds ratio.
response rate The proportion of intended study subjects for whom appropriate

information was obtained.
study base The population—time experience of the base population.

Notation

a, Exposed cases in stratum z
b, Non-exposed cases in stratum i
c, Exposed controls in stratum i
d, Non-exposed controls in stratum i
E,,(A) Expected number of exposed cases under the null hypothesis
jV,, Number of exposed persons in stratum i
Nu, Number of non-exposed persons in stratum i
MI, Number of cases in stratum i
M(l, Number of controls in stratum i
OR Odds ratio effect measure
OR, Odds ratio in stratum i of confounder
OR Lower confidence limit for odds ratio
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OR Upper conficence limit for odds ratio
T, Total number of persons in stratum i
Var,,(/l) Variance of number of exposed cases under the null hypothesis
XM-H Mantel-Haens/cl chi-square
N, Total number of cases, summed across multiple exposure levels
A',, Total number of controls, summed across multiple exposure levels
At Cases at exposure level j
R] Controls at exposure level j
Y: Score assigned to exposure level j
n,; Number of matched sets where case is exposed and i controls arc

exposed
nn, Number of matched sets where case is non-exposed and i controls arc

exposed
M Allocation ratio of controls to cases
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7 Cross-Sectional Studies

1. OVERVIEW

Cross-sectional studies occupy an important place in occupational
epidemiology because of their applicability to the study of nonfatal
diseases, symptoms, and exposure effects on physiologic functions.
This chapter reviews the basic study design features and issues of
occupational cross-sectional studies. The topics to be covered
include one-time and repeated survey designs, subject selection
options, methods of data analysis for disease prevalence and physi-
ologic variable comparisons, and sources of bias to which cross-sec-
tional studies are most vulnerable. Finally, we summarize the prin-
cipal advantages and shortcomings of occupational cross-sectional
studies.

2. STUDY DESIGN FEATURES

There are two general designs of cross-sectional studies. The first is
a survey conducted to determine the prevalence of disease or phys-
iologic status of the worker population, or some subset thereof, at
one point in time. This type of cross-sectional study can be termed
a one-time survey. The second approach, the repealed survey, is an
extension of the one-time survey in which subsequent health (and
exposure) assessments are made on the workforce. The common
element of all cross-sectional studies is that the health outcome is
the number of cases of disease existing in the population at a point
in time. It should be recognized that the term disease is used loosely
here to encompass actual diseases (e.g., ischemic heart disease),
symptoms (e.g., numbness in the extremities), and physiologic states
(e.g., white blood cell differential counts).

Although cross-sectional studies can be regarded as variants of
other epidcmiologic designs, they have the distinguishing character-
istic: of always involving measurement of disease prevalence rather
than incidence. Disease prevalence denotes the number of cases

202
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existing in the population. Point prevalence refers to the prevalence
estimated at one point in time (e.g., the number of workers with
chronic bronchitis determined during a survey conducted in 1988).
Period prevalence denotes the number of cases that existed during
some time interval (e.g., the number of workers with carpal tunnel
syndrome during the years 1974-88). Period prevalence is seldom
estimable in occupational epidemiology. Moreover, the interpreta-
tion of period prevalence is not clear because it is a mixture of the
initial point prevalence and subsequent incidence rates. Thus, we
shall restrict our attention to point prevalence, henceforth referred
to simply as prevalence.

Prevalence is computed as the number of cases divided by the
number of workers in the study. Thus, prevalence is a proportion.
The term prevalence rate is sometimes used, although some authors
(e.g., Elandt-Johnson, 1975) reserve the term rate for the number
of new cases occurring over time. Prevalent, or existing, cases
include cases that developed during different time periods but
where the individuals were still alive and continued to mainfcst dis-
ease at the time of the cross-sectional study. There is a direct link
between disease incidence, duration of disease, and prevalence
(Freeman and Hutchison, 1980).

Prevalence studies are particularly valuable for nonfatal, degen-
erative diseases with no clear point of onset. Medical care for such
diseases (e.g., chronic bronchitis) is often not sought until disease
has become relatively advanced (Kelsey et al., 1986). Disease prev-
alence will be greatest for diseases that occur relatively frequently
in the workforce (i.e., high incidence rate) and persist for long peri-
ods of time. Disease persistence means that the disease is not rapidly
fatal in its own right, does not routinely lead to fatal complications,
and is not a transitory condition with only brief periods of activity.
Most prevalence studies are limited to active workers, and thus will
not detect diseases that result in rapid termination of employment.
Osteoarthritis is an example of a condition that is prevalent in some
occupations involving repetitive musculoskeletal stresses and that
would therefore be suitable for a cross-sectional study. Acute
myelogenous leukemia, by contrast, would be virtually impossible to
investigate in a cross-sectional study.

2.1. One-Time Surveys

The most common type of cross-sectional study is the one-time survey
in which disease prevalence in the worker population is measured.
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Figure 7-1. Classification of five hypothetical workers according to disease and
exposure status in a one-time cross-sectional study (5 = non-exposed and no
disease, • = non-exposed and disease, H = exposed and no disease, • =
exposed and disease).

at one point in time. Figure 7—1 shows how five hypothetical work-
ers would be classified in a cross-sectional study conducted in 1988.
Workers A, B, and C are in the "exposed" category, whereas work-
ers D and E are "non-exposed." In a cross-sectional study, all the
workers except C would be included because worker C had previ-
ously left employment. Among the exposed, worker B would be clas-
sified as a case, but worker A would not, because his disease was not
present at the time of the study. Among the non-exposed, worker
D would be a case. Thus, a simple comparison of exposed and non-
exposed would suggest equal prevalences, despite the fact that the
incidence of disease was greater among the exposed. We discuss
biases of this type later in the chapter.

Example 7.1

Sjogren and Ulfarvson (1985) conducted a cross-sectional study of the prevalence
of respiratory disease symptoms among welders exposed to aluminum, stainless
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steel, or chromium. The study included 59 aluminum welders, 44 stainless steel
welders, and 149 railroad track welders exposed to chromium compounds as
exposed groups, and 180 non-exposed workers with similar distributions of age
and smoking habits. The comparison group consists of nonwelding industrial work-
ers from the same companies as the welders. Table 7-1 shows the prevalence of
reported chronic bronchitis by exposure category. The prevalence of chronic bron-
chitis is elevated among the welders in each category.

2.2. Repeated Surveys

Repeated surveys, sometimes called panel studies, are series of cross-
sectional studies performed over time, usually on the same group of
workers. The objective of a repeated survey is to evaluate change in
health status in relation to change in exposure. The design of a
repeated survey is depicted in Figure 7—2. Because a repeated sur-
vey involves follow-up of worker groups, it can be considered as a
special case of prospective cohort study. Repeated surveys are espe-
cially useful for the study of physiologic variables, such as pulmo-

Figure 7-2. Design of repeated survey of physiological variable change.

Type of welding

Gas-shielded on
aluminum

Coated electrodes on
stainless steel

Railroad track

Source: Sjogren and Ulfvarson

Total

59

44
149

(1985).

Welders

No. with
bronchitis

4

4
7

Non-exposed

% Total

6.8 64

9.1 46
4.7 70

No. with
bronchitis

2

2
1

%

3.1

4.8
1.4

Table 7-1. Chronic bronchitis among welders and non-exposed workers
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nary function or blood pressure, for which changes over several
years may indicate early stages of disease processes.

Example 7.2

In a repeated survey of pulmonary function declines among firefighters, Peters and
associates (1974) made measurements at two points in time, 1970—71 and 1971 —
72. The changes in forced vital capacity (FVC) and forced expiratory volume in 1
second (FF.V,) were examined with respect to the numbers of fires fought during
the year between the two measurements. As shown in Table 7—2, there are marked
trends in ventilatory decline that coincide with the extent of firefighting activity
during the interval between measurements.

When physiologic change is the study outcome, the best approach
is to include the same subjects in a repeated survey. However, some
repeated surveys include new enrollees or may even be performed
on completely new groups of workers. In the latter instance, the
original cross-sectional study is replicated. One might choose to rep-
licate a cross-sectional study on a different group(s) of workers if
the study objective were to estimate disease prevalence or physio-
logic function under changed exposure circumstances. For exam-
ple, if in 1960 we had studied the prevalence of hypertension
among workers exposed to high levels of a cardiovascular toxin and
exposures had been reduced subsequently, then it might be desira-
ble to conduct a new prevalence survey in 1988 on a different group
of workers. Hypertension, if not treated, is a persistent condition;
thus, including workers from the original survey would prevent us
from determining the effects of lowered exposures.

When the health outcome is not thought to be persistent, includ-
ing the same subjects in a repeated survey generally is more valid
than selecting new subjects, because most confounding can be elim-
inated if individuals' measurements in the two (or more) surveys can
be linked. Studying the same subjects repeatedly may also be advan-

Number
of fires

1-40
41-99
>10()

Source: Peters et al

Forced vital
capacity (mL)

-51
-78

-135

. (1974).

Forced expiratory
volume 1 sec (ml.)

-49
-71

-109

Table 7-2. Pulmonary function decline among firefighters in
relation to number of fires fought

5 9
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tageous in terms of statistical efficiency because there usually is less
variability in measurements within individuals than between groups
(Berry, 1974).

3. SOURCES OF HEALTH AND EXPOSURE DATA

3.1. Health Outcome Data

A major advantage of cross-sectional studies is that a broad spec-
trum of health outcomes can be studied. These span the range from
clinical diseases (e.g., myocardial infarction) that might also be
included in cohort or case-control studies to subtle physiologic
changes (e.g., liver enzyme levels) that can only be detected by spe-
cialized laboratory techniques. Consequently, there are diverse
sources of and methods used to obtain health outcome information
(Table 7-3). Typical sources include physical examinations, radio-
graphic surveys, laboratory reports, medical records, insurance
claims, and questionnaires administered to workers. Data from
more than one of these sources are included in many cross-sectional
studies, particularly when there are multiple health outcomes of
interest or when the major health outcome requires confirmatory
data from several sources to establish diagnoses. Silicosis, for which
complementary evidence from radiographs, physical examinations,
and pulmonary function testing is needed to establish an unequiv-
ocal diagnosis, is one such example.

3.2. Exposure Data

The sources of exposure data useful for cross-sectional studies
depend on the nature of the health outcome under investigation.
For example, in a study of the concurrent relationship between lead

Source

1 . Physical examinations
2. Radiographic surveys
3. Laboratory reports
4. Medical records
5. Insurance claims
6. Questionnaires

Example

Dermatitis
X-ray survey for pulmonary fibrosis
Serum lipids
Hypertension history
Back injuries
Respiratory disease symptoms

Table 7-3. Sources of health data in occupational cross-sectional studies
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exposure and kidney function, air and perhaps urinary concentra-
tions of lead are the relevant exposure factors. By contrast, we
might be interested in knowing not only the "current" exposure of
the workers but also their cumulative exposures to lead. Accord-
ingly, we would supplement current exposure data with an index of
lifetime working lead exposure derived from a compilation of past
work history information.

Some of the most useful sources of exposure data are current and
past industrial hygiene measurements, job histories, biological sam-
ples of compounds or their metabolites, and questionnaires admin-
istered to workers or their supervisors (Table 7—4). When possible,
it is desirable to attempt to corroborate exposure measurements or
reports from more than one source.

4. SUBJECT SELECTION OPTIONS

There are several options for selecting workers for inclusion in a
cross-sectional study. The ideal approach is to study all active and
retired workers who have ever worked in the plant or industry, but
this is rarely practical. The most complete and feasible approach
usually is to include all active workers in the plant or industry.
Other, more restrictive strategies are to include subsets of workers
chosen on the basis of exposure characteristics or, less frequently,
to select workers with respect to health experience. The advantages
and drawbacks of the various selection options arc considered in the
following discussion.

4.1. Plant-or Industrywide Studies

Including all workers actively working in a plant or industry is anal-
ogous to conducting a cohort study on the entire workforce. This
approach is justified when health data arc recorded routinely for all
workers, such as from preemployment and subsequent examina-
tions. A plant- or industrywide survey generally is improved when

Table 7-4. Sources of exposure data in occupational cross-sectional studies

1 . Industrial hygiene measurements
2. Job histories
3. Biological samples
4. Questionnaires administered to workers and supervisors
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exposure data are also obtained arid tabulated for all employees
(e.g., radiation dosimetry in a nuclear plant). However, except in
small workforces of fewer than, say, 100 workers, this approach can
become prohibitively expensive, especially when elaborate and
costly diagnostic or laboratory procedures are required.

Another justification for including all workers, even when health
data are not readily available, is when the industry under study
involves exposures to known hazards. The cross-sectional study then
becomes potentially of immediate benefit to workers by serving as a
means of disease screening and referral for treatment for identified
cases.

Example 7.3

Sainet et al. (1984) conducted a cross-sectional study of respiratory disease and
spirometry among uranium miners from the Colorado Plateau who had achieved a
minimum of ten years experience. Previous research (Archer el al., 1973) had indi-
cated that dust and radiation exposures might be causally related to emphysema
among underground uranium miners. The study by Samet and co-workers included
192 workers from an eligible pool of 238 male miners (nonparticipants were either
ill, on vacation, or refused participation). Questionnaires eliciting symptom reports
and pulmonary function tests were administered to the workers. The symptom
results for workers, classified according to years worked in mining, are summarized
in Table 7-5. These data, which were adjusted for smoking habits, demonstrate
symptom excesses among the longest-tenured (>20 years) workers. The most pro-
nounced prevalence gradient was detected for dyspnea.

As with cohort studies, sometimes it may be advisable to restrict
the subjects in a cross-sectional study to workers with a minimum
employment duration if there is reason to believe that exposure
effects require minimum induction or latency times. Excluding
short-term workers with possibly atypical sociodemographic char-

Table 7-5. Prevalence of respiratory symptoms according to
years of underground uranium mining

"Prevalence per 1 00 workers, standardized by smoking habits.
Source: Samct ct al. (1984).

Symptom

Chronic cough
Chronic phlegm
Persistent wheeze
Dyspnea

<10 yr

(N = 47)

19.9"
32.5
19.7
5.3

10-19 yr

(N = 70)

. 14.1
31.9
26.1

9.6

>20 yr

(N = 70)

22.7
36.6
34.0
23.7
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acteristics is another reason for imposing a minimum employment
duration criterion in some studies. In the study described in Exam-
ple 7.3, the investigators chose a ten-year minimum employment in
mining inclusion criterion because it was presumed that the respi-
ratory effects considered required prolonged exposures.

4.2. Selection on Exposure Status

Most often, workers are selected for cross-sectional studies on the
basis of their exposure status. That is, workers with particular expo-
sure profiles within a plant or industry are targeted for study. In
Example 7.1 we saw that welders were chosen specifically because
of their exposures and were compared with other workers assumed
non-exposed to welding fumes. Isolation of exposure groups of par-
ticular interest, including non-exposed workers, can be more cost-
and time-efficient than studying an entire workforce. Alternatively,
subsets of exposed workers can be selected from a plant-wide survey
for more intensive medical investigation. In the latter instance the
overall survey would serve as a disease screening mechanism.

Example 7.4

The investigators in Example 7.1 (Sjogren and Ulfvarson, 1985) stratified the rail-
road welders with respect to exposure levels of chromium and total particulates.
Comparisons of respiratory symptoms (cough, phlegm, and irritation) prevalence
between the exposure groups and the non-exposed workers reveal an association
with higher levels of chromium, but not with total particulates (Table 7-6).

The design of a cross-sectional study, wherein samples of subjects
are selected on the basis of exposure level from a larger pool of

Table 7-6. Respiratory symptom prevalence among railroad track welders
in relation to exposures to chromium and total particulates

Exposure group

Non-exposed
Chromium

<20 Mg/m3

>20 Mg/mJ

Total particulates
<5 rng/m'1

>5 mg/m3

Total number

70

41
8

25
24

No. with
symptoms

3

11
4

8
7

Percent

4.3

26.8
50.0

32.0
29.2

Source: Sjogren and Ulfvarson (1985).
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Table 7-7. Mean hand-grip strength among forestry work-
ers, according to total hours of chain saw operation

Total hours chain
saw operation

Reference group"
0-2,499
2,500-4,999
5,000-7,499
>7,500

Number

36
28
40
25
41

Mean grip strength
(kg)

52.5
46.5
43.6
41.8
40.1

Source: Miyashita ct al. (1983).

"Forestry workers not operating chain saws.

workers, is an efficient strategy in that it facilitates evaluating expo-
sure—response gradients, especially when workers from the entire
range of exposures are sampled.

Example 7.5

Miyashita et al. (1983) selected 134 forestry workers who routinely use chain saws
from a pool of some 2,000 forestry workers. A comparison group of 36 forestry
workers not exposed to vibrations was also selected. Both the exposed and non-
exposed workers were men aged 40-59 years. The exposed workers were classified
into categories of cumulative chain saw operation experience, and various muscu-
loskeletal responses were compared between the groups. The results for hand grip
strength (Table 7—7) evidence a marked decrement with increasing cumulative
hours of operating chain saws.

Examples 7.4 and 7.5 also illustrate two methods of exposure
classification. In the study of welders (see Example 7.4), exposure
classification was made according to levels measured at the time of
the study, whereas in the study of forestry workers (see Example
7.5), cumulative exposure was used to categorize workers. In gen-
eral, current exposures are more pertinent than cumulative expo-
sure in studies of short-term sequelae, and cumulative exposures
are more appropriate for delayed or progressive effects.

4.3. Selection on Disease Status

Subject selection for a cross-sectional study can also be made with
respect to disease status. Here the study is a case-control design
that is limited to prevalent cases. In this situation, cases of disease
among the workforce are compared with noncases with respect to
exposure. For example, we might compare the exposure profiles of



1.

2.

3.

4.

Reference source

National surveys of general
population
Published normative values
for physiologic variables

Other non-exposed industry
workers

Internal reference groups

Example

National Health and Nutritional
Examination Survey in United States

Prediction equations for pulmonary
function, by age, gender, height, and
smoking status

Meat packing plant workers in a study of
lead toxicily among battery plant
workers

Workers with the lowest exposures in the
plant under study

a group of workers with peripheral neuropathy with a comparison
group of other workers free of the disease. As in a typical case-
control study, matching on confounders could be applied.

4.4. Comparison Populations

Considering only the most typical cross-sectional design, wherein
subject selection is based on exposure status, there are several selec-
tion options for comparison populations (Table 7-8). As with
cohort studies, we can classify the comparison groups as either
external or internal populations.

External Comparisons

Data from general population prevalence surveys can form the basis
for comparisons of disease prevalence or physiologic variable dis-
tributions with the study population. For example, the National
Health and Nutrition Examination Surveys conducted on samples
of the U.S. population (National Center for Health Statistics, 1973)
have generated a considerable amount of data on cardiovascular
diseases, blood pressure, diabetes, and other conditions. Compari-
sons against a general population can be made for the entire work-
force or for subsets of workers designated according to exposure
levels. Disease prevalence comparisons with a general population
may be biased by the Healthy Worker Effect in much the same way
that mortality comparisons with an external comparison population
frequently are biased in cohort studies. In fact, the same diseases
that usually occur less frequently in industrial cohorts in mortality
studies (e.g., chronic respiratory diseases) are also less common
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Table 7-8. Types of comparison groups in occupational cross-sectional studies
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among worker populations in prevalence studies (Sterling and
Weinkam, 1985). The Healthy Worker Effect may even be stronger
in prevalence studies because they typically include only actively
employed workers.

Another source of external comparison data is published labora-
tory values for physiologic variables. Examples include pulmonary
function values, blood cell counts arid differential white cell distri-
butions, serum lipid values, and various blood chemistries. These
data are used to represent "normative" values, providing cither
normal ranges or, in some instances, predicted values for individu-
als based on gender, ethnicity, anthropometric variables, or smok-
ing habits.

Example 7.6

In a study of pulmonary function loss among firefighters exposed to high concen-
trations of toluene diisocyanate (TDI) at one particular incident, Axford et al.
(1976) compared temporal changes in FEV, and FVC among 35 firefighters with
predicted changes determined from published values for men of the same age and
ethnic group (Cotes, 1975). Their findings are presented in Table 7-9. During the
first six months the firefighters experienced greater than predicted declines of both
FEV, and FVC; however, during the subsequent 37 months the firefighters' lung
function declines were slightly less than expected. These results suggest that the
effects of acute exposure to TDI arc greatest during the first six months following
exposure.

One should be cautious about relying on published normative
data for comparisons when the sources of the reference data arc not
specified explicitly. Often there is no way of knowing the character-
istics of the population from which such data were generated. Some
of the sources of these data include healthy volunteers (frequently,
medical students), blood donors, and patients receiving routine
medical examinations. Surveys conducted on randomly selected

Table 7-9. Average annual loss in FEV, and FVC among firefighters during
43-month period following acute exposure to toluene di-isocyanate

Average loss per year (L)

Period

First 6 months
Next 37 months
Entire period
Expected loss for normal men

FF:V,
0.066
0.014
0.019
0.031

FVC

0.216
-0.029 (gain)

0.010
0.021

Source: Axford et al. (1976).
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groups from the general population are a better source of" external
reference values than those previously described.

Workers from another industry also can be chosen as an external
comparison group. The most desirable strategy is to select the com-
parison group from an industry that employs workers with socio-
demographic characteristics similar to those of the exposed group
but free from the exposure of interest and from other exposures
that can cause the health outcomes under study. For example, if we
are studying neurobehavioral effects among workers exposed to
organic solvents in a paint manufacturing plant, then a suitable
external comparison group might be workers in some other factory
who were not exposed to solvents or neurotoxic metals (e.g., lead
battery plant workers would be eliminated from consideration).

Example 7.7

Sarto and co-workers (1984) conducted a cytogenetic survey among 22 workers
from a benzene manufacturing plant. As a comparison group, the investigators
selected an equal number of workers from among 100 volunteers at a nearby met-
allurgical factory where there were no known clastogenic exposures. The exposed
and non-exposed workers were matched individually with respect to age, gender,
smoking habits, and residential area. The exposed workers were divided into two
groups. The first consisted of nine manufacturing workers exposed to average ben-
zene concentrations less than 2 ppm; the second group included 13 other workers
(laboratory, maintenance personnel, and plant foremen) exposed to average ben-
zene concentrations of about 5 ppm. There arc no consistent differences in sister
chromatid exchange levels between exposed and non-exposed workers, although
the exposed groups had higher average numbers of cells with structural chromo-
somal aberrations (Table 7-10).

Table 7-10. Mean number of sister chromatid exchanges (SCE) per metaphaseand percent
metaphases with structural chromosomal aberrations (SCA) among workers exposed to
benzene

Group

Plant workers"
Reference group
Other workers'
Reference group

Number

9
9

13
13

SCE per metaphase

11.0
10.1
8.1
9.2

Percent metaphases
with SCA

1.7
0.5
1.4
0.8

Source: Sarlo et al (1984).
"Benzene manufacturing workers.
''Laboratory workers, workers involved in benzene tank filling, cmpyting, and rinsing, and plant foremen.
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Internal Comparisons

Internal comparison groups chosen from among the workforce
included in a cross-sectional study are used primarily to examine
prevalence gradients according to exposure levels. The methods for
subdividing the study population in a cross-sectional study are the
same as those described in Chapter 5 for cohort studies, and there-
fore will not be reiterated. The principal difference between sub-
cohort analysis and subgroup analysis in cross-sectional studies is
that, in the most general case, subcohort analysis requires attribu-
tion of person-time into each attained exposure stratum, whereas in
cross-sectional studies the exposure subgroups are treated as fixed
categories (as exposure is only assessed at one point in time), thus
simplifying the analysis considerably.

We have already seen examples of internal comparisons in the
studies by Sjogren and Ulfvarsori (1985) of welders (see Example
7.4) and Miyashita et al. (1983) of chain saw operators (see Example
7.5). In the latter study the comparison was with other forestry
workers without chain saw exposure, although we might also con-
sider the workers with 0-2,500 cumulative person-hours of chain
saw work as another internal reference category (see Table 7—7).

Usually, it is most desirable to select internal comparison groups
because prevalence comparisons with non-exposed workers tend to
be less influenced by the Healthy Worker Effect, other sources of
selection bias, and confounding. Small numbers of non-exposed
workers may necessitate the use of an external comparison,
however.

5, METHODS OF DATA ANALYSIS

In this section we describe methods for the analysis of cross-sec-
tional study data. Methods for comparing disease prevalence are
outlined first. Next, we consider the analytic techniques useful for
comparing distributions of physiologic variables, including changes
over time that would be measured in a repeated survey.

5.1. Comparisons of Prevalence

Table 7-11 displays the basic data layout for a cross-sectional study
comparing disease prevalence between exposure groups. This data
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Table 7-11. Data layout for ith stratum of a cross-sectional
study

Disease
No disease

Total

Exposed

a,
c,

Nu

Non-exposed

b,
d,

NUI

Total

Mh

M(ll

T,

format represents the fourfold table for the z'th stratum of some
confounder (e.g., age).

If we denote the prevalence of a particular disease in the study
population by P, then it can be shown (Rothman, 1986) that the
prevalence odds is equal to the incidence rate (/) times average dis-
ease duration (D) when the incidence rate is constant over time:

Thus, the prevalence odds [expression (7.1)] is the basic outcome
measure in a cross-sectional study because it is directly proportional
to the disease incidence that is of intrinsic interest. Hence, the prev-
alence odds ratio, which is the ratio of the prevalence odds in the
exposed to the prevalence odds in the non-exposed, is the basic
effect measure in a cross-sectional study. This means that the meth-
ods for estimating odds ratios in case—control studies (sec Chapter
6) can also be applied in cross-sectional studies. In particular, prev-
alence odds ratios can be calculated using the Mantel-Haenszel
method (Mantel and Haens/el, 1959) as given in expression (6.6).
Also, test-based confidence intervals (Miettinen, 1976) [expression
(6.3)], which uses the Mantel-Haenszel chi-square [formula (6.2)],
can be used. An alternative method for confidence interval estima-
tion, given by Robins et al. (1986) [expression (6.8)], can be used
instead of the test-based method. Since these procedures have been
discussed in Chapter 6, we concentrate here on methods involving
prevalence itself, which approximates the prevalence odds when the
disease is rare.

The prevalences among the exposed (T3,) and non-exposed (P0)
are, respectively,

and



To illustrate the calculations for this simplest case, consider the
data on chronic bronchitis prevalence among welders (Sjogren and
Ulf'varson, 1985) from Table 7-1. Among aluminum welders the
prevalence is 4/59, or 6.78 cases per 100 workers, and the preva-
lence among the non-exposed workers from the same industry is 2/
64, or 3.13 per 100. Thus, the prevalence difference is 6.78 — 3.13
== 3.65, and the prevalence ratio is 6.78/3.13 = 2.17.

Summary Measures of Effect

It is usually of interest to compute a single prevalence difference or
ratio across strata of a confounder so as to simplify the presentation
of results. One procedure for combining prevalence differences
across strata to obtain a summary measure is to compute a weighted
average of the differences, where the weights are the inverses of the
variances of the stratum-specific prevalence differences. An approx-
imation of the variance of a prevalence difference (Rothman, 1986)
is given as

where the notation follows that of Table 7—11. The summary preva-
lence difference (SPD) then becomes
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Prevalence comparisons can take the form of difference or ratio
measures. The prevalence difference (PD) is simply expression (7.2) —
expression (7.3), or

The prevalence ratio (PR) is the quotient of the two prevalences:

where the W, are the inverses of the variances of the stratum-specific
PD,. The confidence interval for an inverse variance-weighted prev-
alence difference (Kleinbaum et al., 1982) is given as



Example 7.8

The hypothetical data in Table 7-12 can be used to illustrate the computations
involved in summary estimates of the prevalence difference and prevalence ratio.
Data for only two age strata (<40 and >40 years) are presented to simplify the
calculations. For the <40 years age stratum, the prevalence among the exposed

Table 7-12. Hypothetical example of cross-sectional data
stratified according to age

Age group

<40
Disease
No disease

Total
>40

Disease
No disease

Total

Exposed

6
34
40

15
50
65

Non-exposed

2
28
30

10
90

100

Total

8
62
70

25
140
165
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where the W, are the stratum-specific inverses of the variances; and
Z is the standard normal deviate (e.g., Z = \ .96 for 95-percent con-
fidence interval).

One can compute a Mantel—Haenszel estimate of the SPR
(Greenland and Robins, 1985) according to the following
expression:

Confidence intervals for SPRM^H can be obtained by computing
the variance of ln(SPRM_H) and exponentiation. An approximate
formula for the variance of ln(SPRM_H) (Greenland and Robins,
1985) is

The confidence interval for SPRM H is then



Cross-Sectional Studies 219

and non-exposed are, respectively, 0.15 (== 6/40) and 0.07 (= 2/30), yielding a
prevalence difference of 0.08 and a prevalence ratio of 2.1. For the older (>40
years) stratum, the corresponding prevalences are 0.23 (= 15/65) for the exposed
and 0.10 (= 10/1 00) for the non-exposed. Thus, among the older workers the prev-
alence difference is 0.13 and the prevalence ratio is 2.3.

We can compute the SPD using expressions (7.6) and (7.7). From expression
(7.6), the variance for the <40 years stratum is (6)(34)/(40)3 + (2)(28)/(30f =
0.0053, and the variance for the >40 years stratum is (15)(50)/(65f + (1())(9())/
(100):i = 0.0036. Using the inverses of these variances as weights, SPD = ((!/
0.0053)(0.08) + (1/0.0036)(0.13))/((1/0.0053) + (1/0.0036)) = 0.110, which, as
expected, is intermediate between the two stratum-specific prevalence differences.
Applying expression (7.8) yields a 95-percent confidence interval of SPD = 0.019
and SPD = 0.201. The Mantel-Haenszel estimate for SPR [from expression (7.9)]
is 2.29, and the Mantel-Haenszel chi-square [expression (6.2)] is 6.32. From
expressions (7.10) and (7.11), the 95-percent confidence interval for SPRM_, , is
1.18, 4.64.

When there are more than two or three confounders, the strati-
fied analysis methods described here may be difficult to apply
because of small numbers in some strata. In this situation, mathe-
matical modeling may be used (see Chapter 8). The best approach
is to model the prevalence odds using logistic regression, as is done
for case—control data.

5.2. Comparisons of Physiologic Variable Distributions

In some cross-sectional studies the health outcomes are continu-
ously distributed physiologic variables rather than simply the pres-
ence or absence of disease or symptoms. Appropriate statistical
analysis procedures are described In standard textbooks on regres-
sion analysis (Snedecor and Cochran, 1967; Kleinbaum and Kup-
per, 1978; Draper and Smith, 1981). The reader is referred to these
texts to gain a comprehensive understanding of specific techniques
and their underlying mathematical properties. The following sec-
tion summarizes some practical methods for the analysis of data that
are obtained in occupational cross-sectional studies of physiologic
variability.

One-Time Survey Data

In the simplest situation one would compare distributions of phys-
iologic variables (e.g., pulmonary function) between exposed work-
ers and a comparison group. One common, and useful, first
approach is to compare mean values between the groups. If a sta-



where Y represents the outcome variable, the X, arc the exposure
and confounding variables, the R, are their coefficients, and e is the
random error term. Bn is an intercept term that is merely the aver-
age value for the outcome variable for the entire group that would
be seen if none of the exposure variables nor any of the confoun-
ders had any effect. The coefficients indicate the amount of change
in the outcome variable per unit change of the exposure or confoun-
der. Thus, the regression model estimates the effects of each inde-
pendent variable (X,) adjusted for the effects of all other variables
in the model.

The simplest form of expression (7.12) is Y = Bn + BtX, in which
X can take values of either 1 for exposed and 0 for non-exposed.
(We have omitted the error term here.) If X is treated as a contin-
uous variable (e.g., ppm of trichloroethylene), then the interpreta-
tion of B, is the incremental change to the outcome variable per unit
of exposure (in this case, per ppm of trichloroethylene). As we have
seen, it is sometimes only possible to assign ordinal exposure rank-
ings. If, for example, we were comparing health outcome values
between four exposure groups, then we would need three X vari-
ables (X,, X2, and X3), each assuming values of 0 or 1 for exposed or
non-exposed to a particular level. So, if we had four categories of
trichloroethylene—<1.0, 1.0-2.4, 2.5-4.9, and >5 ppm—we
would construct three exposure terms in the regression model as X,,
X2, and X:i. Thus, a worker in the lowest category would be assigned
values 0 for all three X terms, a worker in the second category (1.0-
2.4 ppm) would be assigned a value of 1 for X! and 0 for each of
the other X terms, and so forth. The coefficient for any one of the
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tistical test is desired, then Student's i-test for unmatched or
matched data, depending on whether exposed workers and the com-
parison group have been matched, can be computed. The extension
of the Z-test to multiple exposure categories is analysis of variance
(Draper and Smith, 1981), where an overall test of significance (F-
test) is performed between the means of all the groups.

The /-test and analysis of variance F-test are only strictly suitable
for normally distributed data. Some physiologic variables are not
normally distributed, but a logarithmic transformation of the data
may make the data more normally distributed.

The general method for examining the relationship between
exposure and continuous health outcome variables is multiple linear
regression analysis. The regression model takes the form
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Table 7-13. Multiple regression coefficients for pulmonary function variables in relation to
cigarette smoking and years of uranium mining

Independent variable

Pulmonary function variable"

Forced expiratory volume in 1 sec
Maximal rnidexpiratory flow

Current
smoking*

- 7.75
- 10.85

Years underground
mining

- 0.46
- 0.93

Source: Sanlct et al. (1984).

"Percent of predicted value for healthy rncn.
'""1" for current smokers, "0" for all others.

X terms would then indicate the mean difference between that level
and the lowest exposure level.

Example 7.9

In their study of respiratory disease among uranium miners, Samet et al. (1984)
obtained spirometry measurements and correlated the results with years of ura-
nium mining and cigarette smoking. A multiple regression analysis was used in
which years of mining was treated as a continuous variable and smoking was cate-
gorized into a binary variable (X = 1 for current smokers and 0 otherwise). The
results for two spirometry variables, FEV, and maximal mid-expiratory flow
(MMF.F), arc shown in Table 7-13. Both lung function variables are expressed as
percentages of predicted values derived from published standard equations for
healthy men (Knudson et al., 1976). The coefficients for current smoking for both
spirometry measures are larger in absolute value than the corresponding coeffi-
cients for exposure. The interpretation of the coefficient for years mining on FEV(
is that there is a decrement of 0.46 percent of the predicted value for each year;
thus, ten years of mining would be associated with a decrement of 4.6 percent of
predicted.

Repeated-Survey Data Analysis

The most straightforward type of repeated survey is when health
data are obtained from the same subjects at two points in time. This
design is most applicable to the measurement of physiologic vari-
ables (continuous data). It is also possible to obtain repeated binary
data (e.g., respiratory symptoms), but this is seldom done in occu-
pational epidemiology. Therefore, we will focus the discussion on
repeated surveys of physiologic variables.

Ordinarily, the repeated survey design assesses change in physi-
ologic function over time, as illustrated by Example 7.2 concerning
lung function in firefighters (Peters et al., 1974). The comparisons
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between two points in time require paired measurements in which
the difference is computed for each individual. The paired design,
wherein each subject serves as his own comparison, has the advan-
tage of controlling for confounding from personal factors (e.g.,
smoking habit). Furthermore, differences in physiologic variables
may be normally distributed even when the variables themselves are
not. For example, platelet counts may be log normally distributed
in a sample of workers, yet the difference between values measured
at two points in time would be expected to approximate a normal
distribution more closely. An exception to this generalization occurs
when the variable changes over time in a predictable direction, irre-
spective of exposure status. Pulmonary function, for example,
declines with age; thus, paired differences in pulmonary function
measurements taken at two points in time may not be more normally
distributed than values determined at one time.

A repeated measures survey may only include one exposed group
yet still provide valid change estimates, provided that the outcome
variable is not expected to change in a known direction. However,
if it is known that the variable may change over time, irrespective of
exposure (e.g., age or seasonal effects), then it is better to have a
true comparison group from whom repeated measurements are also
obtained at the same times as the exposed group. This is analogous
to choosing a placebo group in a controlled therapeutic clinical
trial. When only one exposed group is evaluated repeatedly, it must
be assumed that the expected change of the outcome variable is
zero. In general, a better estimate of the expected mean change can
be obtained from the mean change occurring among the compari-
son group. Published data on physiologic variables may be used to
generate predicted values when it is not possible to identify a suit-
able comparison group, in which case the changes can be expressed
as percentages of predicted.

It is well recognized that when repeated measurements are made
for physiologic variables, second and subsequent measurements for
persons with initially extreme values tend to converge toward the
group average. This phenomenon is known as regression to the mean
(Davis, 1976). Regression to the mean only poses a problem for data
interpretation in repeated surveys when subjects with extreme val-
ues are preferentially selected for repeated measurement. (This is
often done in disease screening and treatment referral programs,
such as blood pressure surveys.) Bias from regression to the mean
is effectively eliminated when repeated measurements are made
irrespective of initial values.
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A repeated survey incorporating measurements made at more
than two points in time requires more complicated computations
that can be achieved using regression analysis. In principle, this
analysis involves computing a regression slope for time on the out-
come variable for each worker, obtaining an average slope for the
group, and comparing this summary result with that of the refer-
ence group (Draper and Smith, 1981; Donner, 1984).

6. SOURCES OF BIAS IN CROSS-SECTIONAL STUDIES

In this section we discuss some of the biases that are most likely to
pose problems in cross-sectional studies. In particular, we focus on
the two main limitations of cross-sectional studies: the temporal
relationship of exposure to disease and problems of studying prev-
alence rather than incidence.

6.1. Temporal Relationship of Exposure to Disease

Perhaps the strongest objection to cross-sectional studies has been
the view that, relative to cohort and case—control studies, cross-sec-
tional studies offer weak evidence for causality because one cannot
be confident that the exposure preceded the disease. This objection
has been raised in reference to the typical one-time survey design.
The repeated-survey approach is really a form of cohort study, and
thus has not been criticized on the issue of temporality.

The difficulty of examining causal associations in cross-sectional
studies is illustrated in situations where it has been difficult to deter-
mine whether the exposure caused the disease or whether the asso-
ciation is spurious. A famous example of this is the study of the
prevalence of cardiovascular disease among London bus drivers and
conductors (Morris et al., 1953). The bus drivers, who were less
physically active on the job than the conductors, had a higher prev-
alence of heart disease. However, the drivers' cardiovascular disease
risk factors (e.g., obesity) and perhaps symptom manifestations were
probably influential in their seeking jobs as drivers rather than as
conductors, who have to maintain a greater level of physical exer-
tion. Bias of this type is always of concern in cross-sectional studies
that ascertain exposures simultaneously with disease. On the other-
hand, it is less important if prior exposure history can be obtained,
Nonetheless, current exposure information may still be useful if
there is reason to believe that current exposure is a reliable surro-
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gate for past exposure. This situation would occur in an industry
where there is little or no job mobility and exposure intensities or
relative rankings had remained fairly constant over time.

6.2. Studying Disease Prevalence

The second major source of bias in cross-sectional studies is that
they measure prevalence rather than incidence. Insofar as preva-
lence depends on both incidence and duration of disease, it is not
always clear whether observed effects on prevalence pertain to inci-
dence, duration, or both. For example, suppose that exposures in
section A of a plant cause fatal coronary heart disease, whereas
exposures in section B cause nonfatal coronary disease. A cross-sec-
tional study might reveal a higher prevalence of coronary disease
among workers in section B, even if the combined incidence of cor-
onary heart disease (fatal and nonfatal) were the same in both sec-
tions of the plant. This type of bias can be avoided by conducting a
full cohort study, which would involve a far greater cost than a
cross-sectional study. Alternatively, the potential for such bias in a
cross-sectional study may be reduced by restricting the study to non-
fatal yet persistent health conditions.

6.3. Selection Bias

In Sections 6.1 and 6.2 we have reviewed the main sources of bias
that are specific to cross-sectional studies. Other types of bias are
not unique to cross-sectional studies but are considered here briefly.
Selection bias is discussed first.

Figure 7—3 depicts a simple, hypothetical example of a cross-sec-
tional study comparing disease prevalence in exposed and non-
exposed workers. If the study were conducted in 1980 (tt), then the
prevalence among the exposed would be 0.3 (= 30/100) and the
prevalence among the non-exposed would be 0.10 (= 1 0/100), giv-
ing a prevalence difference of 0.20 and a prevalence ratio of 3.0.
Assume that the exposure is causally related to disease, as reflected
by the 1980 results, that the disease is a persistent condition (i.e.,
does not resolve on removal from exposure), and that the disease
becomes severe enough to force 20 percent of affected workers to
leave employment from the industry altogether. Now, if the study
had been conducted in 1985 (t2) instead of 1980, and the events
indicated for the intervening years had occurred, then an entirely
different picture arises. Specifically, 20 percent of diseased workers
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Figure 7-3. Hypothetical example of selection bias in a cross-sectional study.

in both the exposed and non-exposed had left employment, ten
cases from the exposed transferred to the non-exposed jobs, possi-
bly because their conditions were exacerbated by continued expo-
sure, and no new cases occurred in either group. (This last assump-
tion is a contrivance used to simplify the example.) Thus, in 1985
there would be no difference in the prevalences of the exposed and
non-exposed workers; the prevalence among the exposed and non-
exposed, respectively, would be 0.17 (= 14/84) and 0.17 (= 18/
108). The difference in results for these two cross-sectional studies
arises because there is selective migration among the diseased work-
ers out of the exposed to the non-exposed jobs, with the net effect
being an underestimated exposure effect at the second survey. It
could be argued that a cross-sectional study performed at any single
point in time is likely to suffer from selection bias of the type illus-
trated in Figure 7-3. This could go undetected unless the investi-
gator attempts to obtain both past and current exposure data.

From the foregoing it should be apparent that subject selection
in cross-sectional studies can pose major validity problems. Careful
characterization of workers' current and prior exposures to occu-
pational and nonoccupational factors can help to minimize bias
resulting from workers having changed job categories within the
industry but cannot remove bias due to workers having terminated
employment. Also, studies of actively employed workers usually suf-
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fer from the Healthy Worker Effect when comparisons are made
against an external reference population.

The most prominent shortcoming of many cross-sectional studies
is that they include only actively employed workers. Limiting the
study to active workers, although usually dictated by feasibility con-
straints, may produce misleading results when the disease of interest
is a delayed exposure effect that becomes more severe with the pas-
sage of time, even after exposure ceases, or when early disease
symptoms cause workers to terminate employment. As an example,
cross-sectional studies of the prevalence of silicosis are ordinarily
conducted on active workers (Rice et al., 1986); thus, the prevalence
and severity of the disease are likely to be underestimated. Contin-
ued surveillance of workers with occupational diseases is one
approach to obtain more complete data; however, maintaining con-
tact with terminated workers and monitoring their health status
tends to be a costly endeavor. Occupational disease registers [e.g.,
Westerholm's (1980) register of silicotics] are valuable in this
regard.

Self-selection into a cross-sectional study can also be a source of
bias if workers have special motivations for agreeing or refusing to
participate. Workers who are concerned about their health because
of disease symptoms or intense exposures may be more likely than
other workers to participate. Alternatively, workers who suspect
that they are experiencing job-related morbidity may be fearful of
participating if the detection of disease will force them to retire or
transfer to less desirable jobs. As a check on self-selection bias, one
should try to obtain data on demographic and occupational vari-
ables for workers who do and do not agree to participate in the
study. Comparisons between participants and nonparticipants may
reveal possible selection biases. Subtle motivational influences on
participation are likely to be undetectable, however.

6.4. Information Bias

As in other study designs, exposure and/or disease misclassification
can occur when the source of one or both is limited to reports pro-
vided by the workers included in the study. Obtaining exposure or
health data from what are hoped to be objective sources (e.g., urine
bioassays for exposure, laboratory tests for health outcome data)
and verifying data with alternative sources are advisable when prac-
tical. Over- or underreporting of disease symptoms or exposures on
questionnaires can be checked to some extent by including irrele-
vant questions. The pattern of responses to the "bogus" questions
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gives an indication of a worker's proclivity to exaggerate or under-
state his or her responses.

7. PLANNING A CROSS-SECTIONAL STUDY

7.1. Data Requirements

The decision to initiate a cross-sectional study, rather than another
type of epidemiologic design, is guided by the health outcome of
interest. As we have stated earlier, some health conditions can only
be studied using a cross-sectional design or a repeated-survey
approach. Nonfatal conditions that are relatively common (i.e., at
least 5-percent prevalence) and relatively persistent states are the
most suitable.

There can be several motivations for conducting cross-sectional
studies. First, there may be an interest on the part of management
or workers to conduct periodic or routine health and exposure
monitoring. In this case, a cross-sectional study may not necessarily
address questions of disease etiology, but may serve as a surveillance
program for excessive exposures and disease prevalence. Of course,
there will be a need for careful consideration of the types and
amounts of data that should be collected. In spite of the availability
of computer storage and data retrieval systems, indiscriminate col-
lection of data can yield diminishing returns if data systems become
overloaded with information that may never be used. A selective
data collection scheme should be adopted in a surveillance program,
so that data collection and storage are restricted to the most rele-
vant items. For example, if we are planning to implement a medical
and exposure monitoring system for workers in an automotive bat-
tery factory, then primary consideration should be given to the
exposures of greatest potential harm (e.g., lead, cadmium, acid
mists) and the most strongly suspected health outcomes (e.g., pul-
monary impairment, kidney dysfunction). Data on other health and
exposure factors can be collected as resources permit. This selective
approach permits subsequent cross-sectional studies to be con-
ducted in a cost- and time-efficient manner.

A second reason to conduct a cross-sectional study is to investi-
gate health problems suggested by workers' reports of discomfort
or morbidity. One should make special efforts to ensure that studies
performed in response to symptom or disease "outbreaks" are
designed and executed in an unbiased manner. This means that sub-
ject selection should be extended beyond inclusion of just the work-
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ers who report adverse exposure or health conditions or volunteers
with particular motivations. Also, suitable comparison subjects
should be obtained whenever possible.

The third reason to conduct a cross-sectional study is to address
questions of disease etiology. Previous epidemiologic or toxicologic
research may indicate deleterious consequences of exposure. Thus,
a cross-sectional study on a group of exposed workers may be an
attractive and logical next step. The informativeness of the study will
be determined by the presence of exposure gradients in the work-
place or the availability of appropriate external comparison groups,
the ability to characterize exposures, and the availability of sensitive
indicators of change in health status.

7.2. Subject Selection

We have stressed the value of including workers with the highest
exposures as well as a non-exposed comparison group in a cross-
sectional study. Worker participation is also an important consid-
eration when planning a study. Obviously, a study that involves inva-
sive medical maneuvers or lengthy questionnaires stands less chance
of worker acceptance than a clearly focused study that does not cre-
ate discomfort or inconvenience to workers. Ethical concerns also
come into play. Although all epidemiologic studies should assure
confidentiality of sensitive information, maintaining confidentiality
is especially significant in cross-sectional studies because they usu-
ally involve more intensive medical examination and personal data
collection than other study designs. Workers should also be
apprised at the outset of the purposes of the study. If the health
measurement to be made has no clear clinical implication, then this
should be so stated. For instance, sister chromatid exchange levels
are useful for detecting exposures to some mutagens, but an
increased level in a worker's lymphocytes does not necessarily pre-
dict an elevated cancer risk (Vainio, 1985). Studies that are purely
of research interest should be presented as such, even at the risk of
reducing subject participation.

8. SUMMARY OF ADVANTAGES AND LIMITATIONS OF
OCCUPATIONAL CROSS-SECTIONAL STUDIES

The principal advantage of cross-sectional studies is that they are
the most suitable epidemiologic means for studying nonfatal dis-
eases and effects on physiologic variables. Additionally, repeated
surveys, in which health and exposure data are determined for the
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same workers at various times, offer possibilities for assessing short-
and long-term physiologic changes.

Another important advantage of cross-sectional studies is that
they permit collection of data on confounders directly from work-
ers, rather than from proxy respondents, as often occurs in case-
control studies. Data on confounding variables, especially nonoc-
cupational risk factors, are seldom available in cohort mortality
studies. Finally, cross-sectional studies can be incorporated into
ongoing surveillance programs, thus permitting screening for
impaired health or excessive exposure.

The general perception of the main weakness of cross-sectional
studies is that this design is less appropriate for investigating causal
associations than cohort or case-control studies. One reason for
this view is that cross-sectional studies measure disease prevalence,
which is affected by determinants of incidence and disease duration.
Thus, inferences drawn from cross-sectional studies involve addi-
tional assumptions to those required in other epidemiologic designs
that measure incidence. Other limitations are not the result of an
intrinsic defect in the cross-sectional design; rather, they occur
because of incomplete exposure data or the failure to include all of
the workers who theoretically should be studied. Specifically, some
cross-sectional studies are restricted to correlating health and expo-
sure data where both are obtained at the time of the study. Proper
accounting of past exposures in the design and analysis should mit-
igate the problem of incomplete data.

The principal shortcoming of most cross-sectional studies is that
they are confined to actively employed workers. Consequently, dis-
ease prevalence or severity is underestimated, especially for diseases
that continue to progress after exposure cessation. Moreover, many
cross-sectional studies are subject to a Healthy Worker Effect bias,
again because they are limited to actively employed workers. These
problems arise because of the difficulties associated with tracing and
examining terminated workers, some of whom may be at greatest
risk for disease.

Repeated surveys can provide more conclusive evidence for
causal associations with exposures than one-time surveys, but the
gains in information need to be balanced against added costs and
logistical problems.

Glossary

one-time survey Cross-sectional study conducted at one point in time.
prevalence Number of cases in a population at one point in time (point preva-

lence) or during some specified time interval (period prevalence).
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prevalence difference Prevalence among exposed workers minus prevalence
among non-exposed comparison group.

prevalence odds The proportion of persons with disease divided by the propor-
tion without disease.

prevalence odds ratio The prevalence odds in the exposed divided by the prev-
alence odds in the non-exposed.

prevalence ratio Prevalence among exposed workers divided by the prevalence
among non-exposed workers.

repeated survey Study where health (and sometimes exposure) data are mea-
sured at multiple points in time, usually on the same group of workers.

Notation

D Average duration of disease
/ Incidence rate
Na, Number of non-exposed subjects in the z'th stratum
NI, Number of exposed subjects in the z'th stratum
/J

(l Prevalence among the non-exposed
Pt Prevalence among the exposed
PD, Prevalence difference in the z'th stratum
PR, Prevalence ratio in the z'th stratum
SPD Standardi/ed prevalence difference (e.g., inverse variance weighted

average of stratum-specific PD,).
SPR Standardized prevalence ratio (e.g., Mantel-Hacnszel weighted average of

PR,).
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8 Advanced Statistical Analysis

1. OVERVIEW

The analytic methods presented in Chapters 5-7 are adequate for
many occupational epidemiology studies, particularly those in which
a simple exposed versus non-exposed classification is used. How-
ever, stratified analyses may not be feasible if there are multiple
exposure categories or more than two or three confounders. This
chapter presents an overview of the mathematical models useful for
analyzing occupational cohort data. Readers requiring a more for-
mal and detailed statistical presentation are referred to standard
texts (e.g., Breslow and Day, 1980, 1987; Kalbfleisch and Prentice,
1980). Emphasis is placed on analyses involving time-related factors.
We begin by presenting an overview of the importance of consid-
ering the temporal relationship of exposure and disease. The gen-
eral form of the exponential model is introduced for the situation
where there are two levels of one main exposure variable and the
only potential confounder is age. The specific forms of Poisson
regression, the Cox proportional hazards model, and logistic regres-
sion are then defined and related to the corresponding stratified
methods presented in earlier chapters. Various aspects of model def-
inition are then considered, including variable specification, esti-
mation of joint effects, and regression diagnostics. These models are
illustrated with data from the asbestos textile workers study by
Dement et al. (1983). Finally, the advantages and limitations of
mathematical modeling are summarized.

2. IMPORTANCE OF TIME-RELATED ANALYSIS

The term time-related factors refers to important determinants of dis-
ease risk that vary as a person ages (Thomas, 1983). In many occu-
pational studies, one important time-related factor is cumulative
exposure that can change as a worker accumulates exposure over

232



Advanced Statistical Analysis 233

time. In Chapter 5 we noted the problems of analyses that do not
take the time pattern of exposure into account (e.g., when all the
person-time of a worker is allocated to the highest cumulative expo-
sure category attained). By incorrect attribution of person-years, the
fixed analysis results in a dampened exposure-response curve
(Enterline, 1976).

It is also important that confounders be analyzed in a time-related
manner (Pearce et al., 1986). The time-related confounders that
have been most frequently considered include age at risk, calendar
year, and length of follow-up. These all change as a worker is fol-
lowed over time. Age at hire is often considered together with these
factors, although it is a fixed rather than a time-related factor. Dura-
tion of employment can also be a confounder in occupational stud-
ies, although its inclusion in the model is of debatable value (see
Chapter 4). Employment duration is often used as a surrogate for
cumulative exposure when exposure intensity data are not available.
When such data are available, duration of employment often is
highly correlated with cumulative exposure. Thus, inclusion of both
variables in the model is redundant.

3. GENERAL LINEAR MODELS

The general analytical approach considered here involves modeling
some function of disease occurrence as a linear combination of var-
ious risk factors. The model takes the general form

where Y can represent the risk, rate, or odds of disease in persons
with characteristics X1, X2, . . . , Xj- and e is the random error term,
representing an assumed random departure from the value of f(Y).
For convenience, e is omitted from subsequent equations. One
option is to let f(y) = Y (i.e., to use the actual measure of disease
as the dependent variable). However, this approach is rarely used
because the risk, rate, or odds of disease cannot be less than zero,
and the disease risk cannot be greater than one.

Models of the type depicted in equation (8.1) theoretically can
give values much larger than 1.0 or much smaller than zero. Hence,
the model is usually restricted to estimating the rate or odds of dis-
ease, and a logarithmic transformation is used so that the dependent
variable in the model is ln(Y) . This transformation yields a function
that has a theoretical range of minus infinity to plus infinity. The
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family of models employing a logarithmic transformation is partic-
ularly suited to ratio, or multiplicative, measures of effect (Breslow
et al., 1983; Whittemore, 1985). We concentrate on this family of
models, since it is the one most commonly used in occupational epi-
demiology. It should also be noted that there are often good reasons
for using difference (additive) measures of effect (see Chapter 4).

3.1. The Exponential Model

The transformed model can be written in the form

Note that if all the Xi's are zero then y = exp(b0). Thus, exp(b0)
estimates the rate or odds of disease in persons with zero values for
each of the Xi's. (This situation is denoted as y0.) Thus, the model
can be formulated as

We will first examine the simple situation where exposure is
dichotomous and represented by X1 (Xl = 1 if exposed, X1 = 0 if
non-exposed), and the only confounder is age, which is stratified
into two levels and represented by X2 (e.g., X2 = 1 if age > 55 years;
X2 = 0 if age < 55 years). Thus, when age is included in the analysis,
the model for the exposed subgroup (X| = 1) is

and the model for the non-exposed group (X1, = 0) is

Dividing equation (8.5) into equation (8.4) yields the rate ratio (R)
or odds ratio of disease in exposed persons relative to non-exposed
persons:

The general term relative risk is used to denote such ratio effect
measures.

Just as one variable was needed to denote a factor with two levels,
k — 1 variables are needed to denote a factor with k levels. The
reference (non-exposed) category is assigned scores of zero for each
of the k — 1 indicator variables. The coefficient for a particular
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exposure category, when exponentiated, estimates the relative risk
for the category compared to the reference category. The model
does not distinguish between the main exposure(s) and confound-
ers; they are all modeled as "risk factors," and the coefficient for
any factor estimates its effect, controlling for all other factors in the
model. Hence, creating variables to specify multiple levels of con-
founders is similar to that for the main exposure.

3.2. Maximum Likelihood Estimation

The simple model presented here is analogous to the familiar meth-
ods for stratified data described in Chapter 5, in which stratum-spe-
cific estimates are combined as a weighted average, such as the stan-
dardized rate ratio (Miettinen, 1972) or the Mantel-Haenszel
summary odds ratio (Mantel and Haenszel, 1959). However, in this
instance a summary relative risk estimate is obtained by the method
of" maximum likelihood. (Maximum likelihood methods can also be
used in a stratified analysis, but the computations are complex.) This
method is based on the likelihood function, which represents the
probability of observing the data as a function of the unknown
parameters (b0, b1, . . . , bj). Initial estimates of the unknown param-
eters (usually, bi = 0 for each i) are made, and these are inserted
into the likelihood function to derive new estimates that increase the
value of the likelihood function. (For practical reasons the loga-
rithm of the likelihood function is generally used, but this does not
change the parameter estimates.) This process is repeated until the
values of bi (i = 1 . . . j) are found that maximize the likelihood
function. These are the maximum likelihood estimates of the
parameters.

In most situations maximum likelihood estimates can only be
obtained with a computer. They do not involve any directly
weighted average of the stratum-specific effect estimates (like the
Mantel—Haenszel estimator), but they are similar to weighted aver-
ages in the sense that more weight is effectively given to larger
strata. Maximum likelihood estimation also yields standard errors
for the parameters that can be used to calculate confidence inter-
vals. For example, if the exposure variable coefficient (b1) is 0.693,
then the relative risk estimate is exp(0.693) = 2.0. If the coefficient
has a standard error of 0.124, then the 90-percent confidence inter-
val is

where 1.645 is the appropriate standard normal deviate for 90-per-
cent confidence intervals.
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The maximized value of the logarithm of the likelihood can also
be used to obtain the log likelihood statistic, also known as the devi-
ance, by subtracting twice the maximized log likelihood from zero.
The log likelihood does not itself have a well-defined distribution,
but differences in the log likelihoods for different models may be
interpreted as chi-square values (Breslow and Day, 1980). Such like-
lihood inference usually involves a nested hierarchy of models. For
example, if one model contains age and another contains age and
cumulative exposure, then the contribution of cumulative exposure
to the model can be assessed by comparing the log likelihood statis-
tics for the two models. This is known as the likelihood ratio lest.

Maximum likelihood estimation can be performed with most stan-
dard statistical packages (Wallenstein and Bodian, 1987). Packages
commonly used for analyzing occupational epidemiology studies
include GLIM (Baker and Nelder, 1978) and various Statistical
Analysis System (SAS) programs (Harrell 1983a, 1983b).

3.3. Other Models

The exponential models discussed here are the most frequently used
in occupational epidemiology, but many alternatives are available.
A simple linear regression is frequently used when the outcome is
represented by a continuous variable (e.g., in cross-sectional stud-
ies). More generally, Thomas (1981), Guerrero and Johnson (1982),
and Breslow and Storer (1985) have proposed families of models
that include the linear (additive) and exponential (multiplicative)
models as special cases. For example, the model of Guerrero and
Johnson takes the form

where R is the relative risk and X is the mixture parameter that
determines the assumption regarding joint effects of exposures and
confounders. When X = 0 the model corresponds to multiplicative
relative risk [the exponential model in equation (8.3)]. When X = 1
the model corresponds to additive relative risk [equation (8.1) when
f(Y) = Y]. The model is applied separately for a range of values of
X to estimate the value of X that best reflects the pattern of joint
effects in the data. Although these models are generally fitted using
GLIM (Baker and Nelder, 1978), they can also be fitted using other
standard programs (Wallenstein and Bodian, 1987).
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These models are of considerable theoretical interest and have
the advantage of not requiring specific interaction terms for esti-
mating joint effects. However, this is usually only a minor advantage
(particularly if the assessment of interaction is not an analytic goal).
Also there are several problems with these families of models. First,
the models generate a global assessment of joint effect (i.e., they
assess the overall combined effects of all factors in the model rather
than just the specific factors of interest). Furthermore, the Breslow-
Storer and Guerrero—Johnson approaches combine models that dif-
fer both in the form of dose—response model (linear versus expo-
nential) and the form of joint effects (e.g., additive or multiplica-
tive). This makes the parameter A difficult to interpret for
continuous variables, but it is not a problem for categorical vari-
ables. By contrast, Thomas' (1981) model does allow for the sepa-
ration of the form of dose-response model and the form of joint
effects. A second problem with these models is that the findings can
be difficult to interpret without interpolating back to a categorical
table of separate and joint effects (such as Table 8—1). Finally, the
models of Thomas (1981) and Breslow and Storer (1985) may pro-
duce quite different results (and interpretations) as a result of minor
changes in the coding of the variables (Moolgavkar and Venzon,
1987). For these reasons, it is generally easier to use the simpler
exponential (or additive) models described here and to include one
or more interaction terms if it is desired to estimate the joint effects
of two or more factors.

4. SPECIFIC APPLICATIONS

4.1. Poisson Regression

Figure 8-1 illustrates eight hypothetical workers in an occupational
cohort. It differs from those depicted in Chapter 5 in that an age

Table 8-1. Separate and joint relative risks
of two factors

Factor 1

Factor 2
No Yes

No 1.0 3.0
(R00) (Ro1)

Yes 2.0 4.1
(R10) (R11)
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Figure 8-1. Follow-up outcomes of eight hypothetical workers (• = cancer
death, • = other death, A = lost to follow-up).

axis, rather than a calendar year axis, has been used to facilitate the
calculation of age-specific incidence rates. Thus, each worker is
depicted according to age at hire, age at termination, and age at
death. If the person-years are accumulated and grouped into age
strata, then an age-standardized rate ratio (SRR) can be obtained as

where A,, and A0l are the incidence rates in the exposed and non-
exposed groups, respectively, and N0i is the number of person-years
in the non-exposed subgroup of age stratum i.

Poisson regression is an extension of this simple analysis. Assume
that the rate ratio (R) is constant across strata. Then A,, = RXm in
each stratum i, and the standardized rate ratio (SRR) can be for-
mulated as
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It can be shown (Frome and Checkoway, 1985) that it is this quan-
tity (R) that is estimated in Poisson regression when the model fits
the data well. The observed number of deaths in each exposure-age
stratum is limited by the number of persons in the cohort, whereas
a true Poisson variate can theoretically assume very large values. In
the ideal situation where follow-up is complete, the total number of
deaths is fixed, since all cohort members eventually die. The uncer-
tainty (i.e., random variation) lies in the number of person-years
that each subject will contribute before death. However, the appro-
priate likelihood function is proportional to that obtained by treat-
ing the person-years as fixed and the observed deaths as a Poisson
variate. This latter approach is used for statistical convenience
(Berry et al., 1983; Whittemore, 1985). The model has the general
form

where A is the incidence rate for persons with specified values of X1,
X2, . . . , Xj and the baseline incidence rate is \0. Standard statistical
packages (e.g., GLIM) use unconditional maximum likelihood meth-
ods for Poisson regression. These yield identical estimates to those
that would have been obtained using the more computationally
complex conditional likelihood estimators, which assume that the
number of cases in each stratum is fixed (Anderson, 1970; Green-
land and Robins, 1985). Hence, unlike unconditional logistic
regression (see the following discussion), the rate ratio estimates
obtained by Poisson regression are not affected by small numbers in
particular strata.

Poisson regression can also be formulated as an extension of SMR
analyses (Breslow et al., 1983). In this instance the model takes the
form

where Obs is the observed number of events and Exp is the
expected number, based on some set of standard rates such as
national mortality or incidence rates. However, this approach can
be cumbersome computationally and may suffer from the noncom-
parability of SMRs, which lack a common standard (see Chapter 5).
Even when the SMRs are comparable, regression analyses of this
type may be biased because the outcome variable is age-adjusted,
whereas the predictor variables are not (Rosenbaum and Rubin,
1984). Hence, we do not discuss this approach further.
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4.2. The Proportional Hazards Model

Consider Figure 8—1 again and suppose that age is considered to be
a strong confounder. In order to obtain the greatest possible con-
trol over confounding by age, it might be considered desirable to
stratify very finely on age, using months or weeks rather than years.
Then each age stratum would contain at most one event: cither a
case of the disease of interest, a death from some other cause, or a
withdrawal due to loss to follow-up. Many strata would contain no
cases and thus would contribute no information to the analysis
(since the rate ratio is not calculable if no cases occur). Thus, if there
were 35 cases, then the analysis would involve 35 age strata, each
containing just one case and the person-time experience from which
it arose. Since all other persons "at risk" survived through the nar-
row age interval during which the corresponding case occurred, the
analysis involves comparing the exposure history of the case with
those of all persons who were "at risk" of becoming a case at the
age at which the case developed. As in the person-time approach,
each worker is classified according to his or her exposure history at
that particular age. Hence, the exposure history of a worker who
became a case at age 54 years and six months would be compared
to those of all workers who were "at risk" at age 54 years and six
months, and the comparison would not consider exposures received
at subsequent ages.

This is the type of comparison made in the most common variant
of the proportional hazards model (Cox, 1972). Thus, it can be noted
that the Poisson regression model converges to the proportional
hazards model as the age strata are made infinitely small. The term
proportional hazards model is sometimes confined to models in which
the baseline incidence rate has a specific functional form. However,
the most commonly used estimation procedure is that based on
Cox's (1975) partial likelihood function in which the baseline inci-
dence rate is treated as an unknown "nuisance" parameter. The
model has the general form

where t represents age; \(t) is the incidence rate at age I in persons
with specified values of X1, X2, . . . , Xj; and \u(f) is the unknown
baseline incidence rate at age t. The major difference between this
model and Poisson regression [expression (8.9)] is that Poisson
regression commonly involves only a few strata, whereas the pro-
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portional hazards model creates a stratum for each case. These age
strata are not explicitly included as terms in the proportional haz-
ards model. Instead, age is the "time" variable that is used to define
the set of persons "at risk" at the time (age) that each case became
a case. The underlying relationship of the incidence rate with age is
thus treated as an unknown nuisance function, and the rate ratio is
assumed to be independent of age [i.e., it is assumed that each risk
factor multiplies the (unknown) underlying age-specific rate].

This presentation of Cox's model differs from some others (e.g.,
Kalbfleisch and Prentice, 1980) in two main respects. First, Cox's
model has been presented as an extension of Poisson regression
rather than as a special case of survival analysis. In fact, Cox's esti-
mation procedure can be viewed from either perspective, but in
occupational studies it is more straightforward to view it as an
extension of simple incidence rate analysis. Second, because of its
original derivation from studies of survival of patients in clinical
trials, survival time (length of follow-up) is often used as the time
variable. However, Breslow et al. (1983) have argued that it is more
appropriate to use age as the time variable in cohort studies because
death rates rise rapidly with age, and age effects should be con-
trolled as precisely as possible. By contrast, length of follow-up is
generally highly correlated with duration of exposure and hence
with cumulative exposure. This recommendation has been followed
here.

4.3. Logistic Regression

The observation that the proportional hazards model requires cre-
ating a separate stratum for each case suggests that the model can
be conceptualized as a specific form of stratified analysis, analogous
to case—control analysis of matched data. In fact, the procedure for
defining the risk sets involved in each proportional hazards com-
parison is identical to that of incidence density matching in case-
control studies (Prentice and Breslow, 1978), where, for each case,
controls are selected at random from the set of all persons "at risk"
at the time (age) at which the case occurred. This readily suggests a
related model, known as logistic regression, where Y is the odds of a
person being a case (= P/ (1 — P), where P is the proportion of
persons who are cases, and the effect measure of interest is the odds
ratio. Logistic regression is thus the modeling analogue of the Man-
tel—Haenszel procedure (Mantel and Haenszel, 1959).

The logistic regression model takes the form
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where P0 is the proportion of non-exposed persons who are cases
and P1 is the proportion of exposed persons who are cases. It should
be noted that several texts present expression (8.13) in the alter-
native form

where P(X) is 'the proportion of persons with characteristics X ( =
X], X2, . . . ) who are cases.

When controls are sampled from the risk sets for each case and
this matching is retained in the analysis, the conditional logistic like-
lihood function is identical to that for the proportional hazards
model (Kalbfleisch and Prentice, 1980). This function is based on
the likelihood of the observed data, given the marginal totals in each
stratum. It can be used to analyze the entire risk set for each case
and gives identical results to the proportional hazards model. How-
ever, logistic regression is more commonly used when a case—con-
trol study has been designed by sampling from these risk sets. When
matching has been conducted on a number of factors and genuine
"pairs" exist (e.g., twins), a fully matched analysis, using conditional
logistic regression, is appropriate. However, when matching has
only been performed on general factors such as age and gender, an
individually matched analysis and a stratified analysis yield equally
valid findings, but the latter provides a more precise effect estimate
(McKinlay, 1977; Thomas and Greenland, 1983). The conditional
estimation procedure can still be used, but it is computationally dif
ficult and often is very expensive to perform when individual strata
include large numbers of cases and noncases. Hence, the uncondi-
tional estimation procedure is generally used when the strata are
large.

Logistic regression is most commonly used in case-control stud-
ies, but it originally was developed for cohort studies involving
cumulative incidence comparisons (Cornfield, 1962). Persons are
classified as to whether they experienced the event of interest, but
the time of the event is not considered. Additionally, each worker is
classified according to his or her final cumulative exposure, and
final values of confounders, such as age and length of follow-up.

In a cohort analysis, logistic regression should only be used for
the study of rare diseases in fixed cohorts, in which each worker has
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the same potential follow-up time and there are no time-related fac-
tors. However, as noted in Chapter 5, most occupational popula-
tions are dynamic, and the analysis should take that into account.
Even in studies of rare diseases in fixed cohorts, the logistic model
may yield effect estimates that are too large if the follow-up period
is relatively long (Abbott, 1985). This problem can be minimized by
dividing the follow-up period into discrete intervals and employing
Cox's (1972) discrete time proportional hazards model. This
approach can be applied using standard logistic regression pro-
grams (Breslow, 1986) and is closely related to the form of Mantel-
Haenszel analysis known as the log-rank test (Mantel, 1966).

5. DEFINING THE MODEL

5.1. Introduction

General approaches to data analysis—including the control of con-
founding, effect modification, and induction and latency analyses—
have been discussed in previous chapters in the context of stratified
analysis. The same considerations apply when using mathematical
modeling. However, the added complexity and analytical power of
mathematical modeling raises additional issues that may need to be
considered when defining the model. These include variable speci-
fication, estimation of joint effects, and regression diagnostics.

5.2. Exposure

It is generally preferable to use a categorical definition of the main
exposure variable (Rothman, 1986), although in some instances it is
also possible to use each individual's actual exposure value. The lat-
ter approach is not directly possible in inherently categorical
(grouped) data models (e.g., Poisson regression), but conversions of
categorical data to quasi-continuous data can be achieved by assign-
ing scores to each exposure group. Exposure is then represented by
a single variable, and exponentiating the coefficient for this variable
gives an estimate of the relative risk for one unit of exposure.

However, there are potential problems with using continuous
exposure variables. The continuous model assumes that exposure is
exponentially related to disease risk (Greenland, 1979). Thus, each
additional unit of exposure multiplies the relative risk by a constant
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value. For example, suppose that the coefficient for a particular fac-
tor is 0.693. Exponentiating this term yields a relative risk of 2.0 for
one unit of exposure, whereas a person with two units of exposure
(X, = 2) has an estimated relative risk of exp(2 X 0.693) = 4.0 ( =
2.02) compared to a person with no exposure. Such an exponential
exposure-response relationship is rarely observed in epidemiologic
data. Hence, it is generally preferable to use a categorical exposure
classification, since this involves no assumptions about the shape of
the exposure—response relationship and enables the detection o
relationships that do not fit an exponential pattern.

An objection that is often raised against the categorical approach
is that continuous exposure information is lost, and several terms
are required in the model rather than just one. Accordingly, it is
often argued that this approach has less statistical power than a con-
tinuous approach. Statistical power is lost, relative to the continu-
ous approach, if the exposure—response relationship follows a
smooth monotonic pattern throughout the exposure range. Never-
theless, statistical power is only a secondary consideration in epi-
demiologic studies. The main goal is to obtain valid estimates of the
actual exposure-response relationship. This objective is generally
achieved in a most straightforward manner with a categorical
analysis.

5.3. Exposure-Response Estimation

Once the categorical analysis of overall effects has been conducted,
it is possible to supplement this with a continuous analysis if this
seems warranted. For example, if the exposure-response curve
appears to be exponential (on the basis of prior knowledge and the
observed data), then a continuous analysis can be conducted with
the exponential model. If the exposure—response curve appears to
be linear, then the findings of the categorical analysis can be used
in a simple linear regression of the form (Rothman, 1986):

where R is the estimated relative risk for a particular exposure cat-
egory and X is the mean cumulative exposure of the persons, or
person-time, contributing to that category. (In a case—control study
the mean exposure of the controls in a particular category should
be used.)

It is appropriate to use the mean cumulative exposure level
because a linear exposure-response relationship is being assumed.
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The regression model is constrained to have an intercept of 1.0, so
that the model estimates the excess relative risk per unit exposure.
Each relative risk estimate is weighted by the inverse of its variance,
which can be estimated by

where SE(b) is the standard error of the b-coefficient estimated from
the exponential model and R = exp(b) (Rothman, 1986). For exam-
ple, suppose a particular cumulative asbestos exposure category has
a mean of 3,400 fibers/cc X days and that the coefficient for this
category is 0.693, with standard error of 0.332. Then the estimated
relative risk is exp(0.693) = 2.0, and its inverse variance is 1/(2.0
X 0.332)2 = 2.268. Hence, R = 2.0 and X = 3,400, and this data
point would be weighted by a factor of 2.268 in the linear regression
analysis.

It should be noted that the linear relative risk model presented
here is not the same as an additive model. The latter assumes that
all factors in the model arc additive and have linear exposure-
response relationships. The model considered here assumes that all
factors are multiplicative (e.g., that the rate ratio for exposure is
constant across age groups) but that the main exposure has a linear
exposure—response relationship.

5.4. Confounding

As for the main exposure, it is generally desirable to use a set of
categorical variables to denote levels of confounders. It is most
appropriate to use continuous confounder variables when the rela-
tionship with disease is known to be approximately exponential. For
example, an exponential relationship with age does appear to hold
approximately for certain diseases (e.g., solid tumors). However,
one should first carry out a categorical analysis and confirm that the
data do show an exponential relationship (or at least one that is
monotonically increasing) before using continuous variables. In
general, it is still preferable to use a categorical approach, but a con-
tinuous variable may be required if there are problems with small
numbers. It is usually desirable to adjust for all potential con-
founders when estimating the exposure effect. However, if there is
a strong correlation between some risk factors, then the model will
be unstable because of multicollinearity (see Section 5.6). In this
situation it may be necessary to eliminate some potential confoun-
ders from the model.
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5.5. Joint Effects

Estimating the joint effect(s) of two or more factors is often an
important analytic goal. If two factors are strictly independent (i.e.,
there are no cases of disease that are caused only by the joint effect
of the two factors), then their joint effect will not exceed additivity
(Miettinen, 1982). In other situations, joint effects can range from
less than additive to greater than multiplicative. Thus, one needs to
be careful about the assumptions involved in an analysis relying on
a particular model. In particular, the exponential models consid-
ered here assume that all risk factors have multiplicative effects.
However, it is still possible to calculate the separate and joint
effect(s) of two or more factors and assess the findings on an addi-
tive scale.

To illustrate, consider that X1 and X2 are dichotomous variables
representing two workplace exposures. An interaction term (X,)
may be defined as X3 = (X,)(X2). If a person is exposed to both fac-
tors, then X3 = 1; otherwise X3 = 0. The model is thus

The exponential model assumes that the relative risk for factor 1
does not depend on the presence or absence of factor 2. If this
assumption is correct, then there is no statistical interaction of the
two factors (i.e., b3 = 0). If the relative risk for factor 1 is greater
in persons exposed to factor 2 (i.e., the combined effect of the two
factors is greater than the product of their independent effects),
then b3 will be greater than zero. If the relative risk for factor 1 is
smaller in persons exposed to factor 2 (i.e., the combined effect of
the two factors is less than the product of their independent effects),
then b3 will be less than zero.

To estimate the separate and joint effects of the two factors, let
R10, be the relative risk for factor 1 alone and R01 be the relative ris
for factor 2 alone. Then if b1 = 0.693 (i.e., R10 = exp(0.693) = 2)
and b2 = 1.099 (i.e., ROI = exp(1.099) = 3.0), then the model
assumes that the joint effect of the two factors is 2.0 X 3.0 = 6.0.
Suppose the data actually deviate from this model, however, and b3

is estimated as -0.377. Then exp(—0.377) = 0.69. The joint effect
of factors 1 and 2 is estimated by summing all relevant coefficients.
In this case they are b1, b2, and b3, since a person exposed to both
factors has values of 1 for X1, X2, and X3, whereas a person exposed
to neither factor has values of 0 for all three variables. Thus, the
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relevant term is 0.693 + 1.099 - 0.377 = 1.415, which when
exponentiated yields an estimate of R11 = 4.12 (= 2.0 X 3.0 X
0.69). We can thus derive the information given in Table 8-1.
Under additivity, the joint effect of X1 and X2 (R11) would be 1.0 +
(2.0 - 1.0) + (3.0 - 1.0) = 4.0. The observed joint effect is 
suggesting that the effects of the two factors are approximately
additive. This supports the suggestion that the two factors operate
independently in the causation of the study disease, although the
data could also be consistent with a wide range of other models.

Confidence intervals for R10 and R01 can be calculated using the
standard errors for their coefficients (b1 and b2). Since the coefficient
for R11, is obtained by summing the coefficients b1, b2, and b3, its vari
ance (the square of its standard error) is given by

where Cov(Xi,Xj) is the covariance of factors Xi and Xj. (These data
are readily available from standard packaged programs.) Thus, if
Var(b1,) = 0.014, Var(b2) = 0.618, Var(b3) = 0.042, Cov(X1,X2) =
0.450, Cov(X1,X3) = -0.178, and Cov(X2,X3) = -0.189, then

and hence, SE(b1 + b2 + b3) = 0.917 (the square root of 0.840).

The 90-percent confidence interval for R11, is thus

5.6. Regression Diagnostics

The exponential models examined here were first developed for
analyzing experimental data, usually involving relatively "balanced"
designs. Maximum likelihood methods have good statistical prop-
erties in such ideal settings but may be unduly sensitive to imbal-
ances in epidemiologic data (Prebigon, 1981). Regression diagnostic
techniques have been developed to ascertain whether certain prob-
lems are occurring. We will discuss briefly three relevant issues: mul-
ticollinearity, influential data points, and goodness of fit.

Multicollinearity occurs when a variable is nearly a linear combi-
nation of other variables in the model. In particular, if there is a
strong correlation between a confounder(s) and the main exposure,
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then the exposure effect estimate will be unstable, and its standard
error will be large. For example, cumulative exposure is often
strongly correlated with duration of employment in occupational
studies. The attempt to include both factors in the same model may
thus lead to unstable effect estimates with large standard errors.
Multicollinearity is of particular concern when an interaction term
is included in the model, since it will be correlated with each of the
two or more component factors.

Although methods for assessing the presence of multicollinearity
are well developed for linear regression (Belsey et al., 1980), less
work has been done on assessing multicollinearity in exponential
models. Collinearity involving only two factors can be assessed by
examining the matrix of multiple correlation coefficients (that can
be generated by most packaged programs). If a confounder (e.g.,
duration of employment) is strongly correlated with the main expo-
sure variable (e.g., if the correlation is greater than 0.8), then mul-
ticollinearity problems may occur. These may be minimized by
increasing the size of the study (although this is rarely feasible) or
by "centering" continuous variables about the mean.

Another alternative is to delete the confounder(s) from the
model. The most desirable situation is when the factor(s) causing
multicollinearity problems is not a strong confounder and hence
can be deleted from the model without seriously affecting the valid-
ity of the exposure effect estimate. If deleting a confounder(s) leaves
the main effect estimate virtually unchanged, but greatly reduces its
standard error, this suggests that the "smaller" model provides
more precise estimates of the main effect without compromising
validity. However, it is less clear how to proceed when a strong con-
founder(s) is a source of multicollinearity, since the increase in pre-
cision due to deleting such a confounder(s) may be offset by an
increase in bias due to inadequate control of confounding (Robins
and Greenland, 1986).

Influential data points arc data points that profoundly influence
the maximum likelihood estimate. For example, if a worker with
very heavy exposure lives to an age of 100 years without developing
the study disease, then including or excluding this worker from an
analysis involving a continuous cumulative exposure variable may
result in markedly different effect estimates. Such longevity may be
merely a chance phenomenon, in which case one would not want it
to influence the effect estimates unduly. This problem is largely
avoided if only categorical variables arc used, particularly if fine
categorization is used to isolate extreme data points in separate cat-
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egories, where they will automatically be discarded if no comparison
data are available (Rothman, 1986). Influential data points are of
more concern in analyses using continuous variables. One assess-
ment procedure involves deleting each data point in turn to ascer-
tain whether the coefficient estimates are affected considerably by
whether a particular data point is included. Such methods can also
be used in exponential models (Pregibon, 1981; Storer and Crow-
ley, 1985) but are not, as yet, routinely done.

Most tests for goodness of fit involve grouping the data and com-
paring the observed number of cases in each group with that pre-
dicted by the model (usually with a chi-square statistic). Since Pois-
son regression involves grouped data (see the following discussion),
goodness of fit tests are relatively straightforward. In particular, it
is possible to calculate the deviance of the maximized likelihood for
a particular model from that of an unconstrained model (with one
parameter for each possible combination of risk factors). This devi-
ance follows a chi-square distribution when the predicted values in
each cell of a categorical analysis are reasonably large (at least
three). Thus, the deviance can be used to assess goodness of fit. Sim-
ilar methods are available for other exponential models, but the
data must first be grouped by the investigator. One common pro-
cedure is to group the data into deciles of risk (as predicted by the
model) and to compare the number of observed and expected cases
in each decile (Lemeshow and Hosmer, 1982).

Although the value of goodness of fit tests is clear in the statistical
context, where prediction is often a primary goal, their value is not
so clear in more purely etiologic studies. It may be reassuring to
know that a model fits well, but a poor-fitting model may still give
valid effect estimates. The lack of fit indicates that there is some
strong risk factor, or an interaction between risk factors already
included in the model, which has not been adequately controlled.
However, a poor fit does not indicate whether the uncontrolled fac-
tor is associated with exposure, and hence is a confounder. For
example, Frome and Checkoway (1985) give an example of skin can-
cer incidence (Scotto et al., 1974), where the inclusion of age in a
model reduces the goodness of fit chi-square from 2,569.7 with 14
d.f. to 8.2 with 7 d.f., thus clearly improving the fit of the model.
However, in this example, age is only a weak confounder, and the
rate ratio for exposure (the city of residence) only changes from
2.23 to 2.10 when age effects are controlled. Thus, although a poor
fit may raise concerns about uncontrolled confounding, it does not
show that it is actually occurring.
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6. EXAMPLE: STUDY OF ASBESTOS TEXTILE WORKERS

6.1. Introduction

The following example illustrates some of the principles discussed
earlier. It involves the study of lung cancer in 1,261 white ma
workers from one asbestos textile manufacturing plant (Dement et
al., 1983) described in Chapters 5 and 6. The analysis has been con-
fined to the following factors: cumulative exposure in thousands of
fibers/cc X days, age, calendar year, and length of follow-up. Dura-
tion of employment could have been included as a potential con-
founder, but a preliminary analysis revealed that this factor was not
a confounder and that its inclusion in the model created instability
resulting from collinearity with cumulative exposure. Age at hire
(first exposure) was not included in the model because it is a linear
function of age at risk and length of follow-up, which were already
included. However, age at hire is an important potential effect mod-
ifier; this possibility is explored in Chapter 10.

6.2. Computational Methods

Poisson regression was used as the primary analytic method because
it involved the lowest cost and provided the greatest flexibility and
simplicity of use. Table 8-2 lists the variables included in the anal-
ysis. Table 8-3 shows the records for a hypothetical worker for
whom follow-up started on January 1, 1954 (at age 26.1 years), an
finished on January 1, 1964. At the midpoint of the first year of
follow-up the value of calendar year was 1954.5, age at risk was
26.6 years, duration of employment was 0.5 years, and follow-up
time was 0.5 years. The worker accumulated 0.1 units of exposure

Table 8-2. Variables required to generate data for analyses involving time-related factors

Variable

YOB
YIN
YOUT
YRIN
YROUT
DEAD
ICD
GUM40— CUM75

Comments

Decimalized date of birth
Decimalized date of hire
Decimalized date of termination
Decimalized starting date of follow-up
Decimalized end date of follow-up
1 = dead, 0 = alive or unknown status
3-digit ICD code for cause of death
Cumulative exposure, one variable for each year

cohort has been followed (from 1940 to 1975
instance)

the overall
in this



Table 8-3. Records for a hypothetical worker for whom follow-up started on January 1, 1954 (at age 26.1 years), and finished on January 1, 1964

Variable

Age at risk
Calendar year
Year of follow-up
Cumulative exposure

1954

26.6
54.5

0.5
0.1

1955

27.6
55.5

1.5
0.2

1956

28.6
56.5

2.5
0.6

1957

29.6
57.5
3.5
1.2

1958

30.6
58.5

4.5
1.3

1959

31.6
59,5

5.5
2.6

1960

32.6
60.5

6.5
2.6

1961

33.6
61.5

7.5
2.6

1962

34.6
62.5

8.5
2.6

1963

35.6
63.5

9.5
2.6 



252 Research Methods in Occupational Epidemiology

during this first year of follow-up. The total follow-up time was ten
years.

Person-time data are created for each individual by considering
each year of follow-up in turn and generating a separate record with
values for the following variables: calendar year, in seven five-year
groupings (1940-44, 1945-49, . . . , 1970-75); age at risk, in 14
five-year groupings (20-24, 25-29, . . . , >85); length of follow-up,
in five-year groupings (0-4, 5-9, 10-14, 15-19, >20); and cumu-
lative exposure, in five groupings. The exposure data may be lagged
by a specified duration, such that a worker's person-time of obser-
vation for a given age, year, and follow-up time are classified accord-
ing to the cumulative exposure category achieved a certain number
of years previously. The lag period has been set to zero unless oth-
erwise indicated.

The program used here (Pearce and Checkoway, 1987) rounds off
the number of years of follow-up so that ten records are created for
a person who has been followed for 9.6 years but only nine are cre-
ated for a person followed for 9.4 years. Data for each worker were
classified in this manner, and the person-time contributions were
accumulated accordingly. Table 8-4 lists the deaths and person-
years in each exposure category, using various lag periods.

The Poisson likelihood can be calculated using an iteratively
reweighted least squares algorithm (Frome, 1983). GLIM (Baker
and Nelder, 1978) was used for the example presented here. Some
commonly used programs for Cox's partial likelihood estimation
procedure cannot handle time-related factors. A limited time-
related analysis can be performed using the BMDP program 2L
(BMDP, 1979), but a full-time related analysis required a FOR-
TRAN subroutine to augment the BMDP procedure (Hopkins and
Hornung, 1985). Harrell's (1983b) PHGLM procedure was used

Table 8-4. Person-years at risk and deaths in each cumulative exposure category for var-
ious lag periods

Cumulative
exposure

(1,000 fibers/cc
X days)

<1
1-9

1 0-39
40-99
>100

0-yr

Person-
years

13,146
12,823
4,976
1,270

139

lag

Deaths

5
10
7

11
2

5-yr lag

Person-
years Deaths

16,253 5
10,915 10
4,148 10

925 9
1 13 1

1 5-yr lag

Person-
years Deaths

23,126 7
6,554 13
2,262 9

362 6
0 0
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for conditional logistic regression, and his (1983a) LOGIST proce-
dure was used for unconditional logistic regression analysis.

6.3. Importance of Time-Related Analysis

Before denning the model, we first illustrate the importance of
time-related analyses. The proportional hazards model was used for
this purpose because programs for both time-related (Hopkins and
Hornung, 1985) and fixed (Harrell, 1983b) analyses are available.
Table 8-5 contrasts the findings. In the fixed (i.e., non-time-related)
analysis workers were classified according to their final cumulative
exposures and years at risk, rather than according to the values at
the appropriate ages involved in each risk set comparison. The two
analytic methods produced markedly different results. This occurs
partly because the fixed analysis involves comparing the cumulative
exposure of each case with the final cumulative exposure of persons
at risk at the age the case occurred. Thus, the exposure of each case
is estimated correctly, but that of the corresponding risk set is
inflated, since it includes exposure obtained during subsequent
periods. This problem was also discussed in Chapter 5, where we
indicated that incorrect person-years attribution in a fixed analysis
can result in a dampened exposure—response curve (Enterline,
1976).

6.4. Model Definition

The first decision in model construction is the definition of the main
exposure variable(s). In Section 5.2 of this chapter we argued that
it is preferable to use a categorical classification, since this best

Table 8-5. Relative risk estimates obtained using the Cox model with time-related and
fixed analyses, adjusted for calendar year, with age as the time variable

(1
Cumulative
exposure

,000 fibers/cc
X days)

<1a
1-9

10-39
40-99
>100

Time-related

1
1
1
6
8

R

.00

.83

.86

.82

.10

95%
confidence

interval

0.
0.
2.
1.

—
.63, 5.36
.58, 5.94
.34, 19.85
.52,43.21

1
1
1
3
4

R

.00

.69

.08

.24

.58

Fixed
95%

confidence
interval

0.
0.
1.
0.

—
.57, 4.98
.31, 3.71
.10, 9.52
.85, 24.70

"Reference category.
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Table 8-6. Relative risk estimates obtained using Poisson regression with continuous and
categorical exposure classifications, adjusted for age and calendar year

(1
Cumulative
exposure

,000 fibers/cc
X days)

<1a
1-9

10-39
40-99
>100

Mean level
of

cumulative
exposure

0.5
3.4

21.2
60.0

173.0

Continuous

R

1.00
1.04
1.32
2.20
9.83

95%
confidence

interval

1
1
1
3

.02, 1.06

.15, 1.51

.48,3.27

.12,30.98

1
1
1
6
8

Categorical

R

.00

.87

.96

.79

.81

95%
confidence

interval

0,
0.
2
1,

.64, 5.48

.61, 6.25

.33, 19.77

.64,47.25

"Reference category.

enables the estimation of the observed exposure-response curve.
We illustrate this with separate analyses using continuous and cate-
gorical classifications of cumulative asbestos exposure. It was ini-
tially intended to do these analyses with the Cox model so that each
worker's exact cumulative exposure data could be used. However,
it was found that the continuous analysis was unduly affected by two
influential data points, representing two noncases with cumulative
asbestos exposures of approximately 250,000 fibers/cc X days. To
circumvent this problem we categorized the exposure data from the
outset. The continuous analysis was then based on the mean scores
for the person-time data in each category. (This yielded a coefficient
for one unit of cumulative exposure of 0.0133, compared with a
coefficient of 0.0091 obtained using the Cox model with individual
exposure data.) The analyses were performed with Poisson regres-
sion, adjusting for age and calendar year. Table 8—6 and Figure 8
2 contrast the findings of the categorical and continuous analyses.

The continuous approach produced apparently better precision,
as indicated by narrower confidence intervals. However, the validity
of the confidence intervals generated by the continuous model is
suspect, since they do not include the observed effect estimates for
several exposure categories. For example, the cumulative exposure
category of 40,000 to 99,000 fibers/cc X days yields a relative risk
of 6.79 (Table 8-6) in the observed categorical data, but the contin-
uous model yields a predicted relative risk (based on the mean expo-
sure level for the category of 60,000 fibers/cc X days and com-
pared to the lowest exposure level that had a mean of 500 fibers/cc
X days) of 2.20 with a 95-percent confidence interval of 1.48, 3.27.

For very low or very high exposures, the continuous approach
gives effect estimates markedly different from the observed data.
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Figure 8-2. Findings obtained using continuous and categorical cumulative
exposure classifications (x = observed rate ratio).

For example, a cumulative exposure of 1,000 fibers/cc X days
yields a predicted relative risk of 1.0133 under the exponential
model, obtained by exponentiating the coefficient (0.01325) asso-
ciated with one unit (1,000 fibers/cc X days) of cumulative expo-
sure. The corresponding estimate under the linear model is 1.054
(see Figure 8-2), obtained by fitting an inverse variance weighted
linear regression to the categorical effect estimates. (A similar esti-
mate was obtained by fitting an additive Poisson regression model
using GLIM.) This small difference becomes magnified when
extrapolating the study findings to large, nonoccupational popula-
tions with low exposures. On the other hand, the exponential and
linear models, respectively, predict relative risks of 748.7 ( =
exp[0.01325 X 500]), and 27.0 (= 1 + 0.054 X 500) for a cumu-
lative exposure of 500,000 fibers/cc X days.
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Table 8-7. Effect estimates obtained with Poisson regression using various lag intervals,
adjusted for age and calendar year

(1
Cumulative
exposure

,000 fibers/cc
X days)

<la
1-9

10-39
40-99
>100

0-yr lag

1
1
1
6
8

R

.00

.87

.96

.79

.81

95%
confidence

interval

0.64, 5.48
0.61, 6.25
2.33, 19.77
1.64,47.25

1
1

5-yr lag

R

.00'

.97
2.85
7
5

.31

.03

95%
confidence

interval

0.67, 5.78
0.96, 8.40
2.42, 22.08
0.68, 37.38

1 5-yr lag

R

1.00
2.89
3.40

11.19
—

95%
confidence

interval

1
1
3

_

.08, 7.72

.19,9.70

.54, 35.40
—

"Reference category.

If the exposure—response relationship is linear, as it often
appears to be for asbestos exposure and lung cancer (Liddell and
Hanley, 1985), then the exponential model using continuous data
produces a distorted exposure—response curve. This problem is
avoided in a categorical analysis because the model is permitted to
fit the data pattern actually observed, and, if desired, a linear expo
sure-response relationship can be estimated subsequently. Hence,
the main exposure variable was defined categorically in all subse-
quent analyses.

Another decision in the definition of the main effect variable is
the choice of an appropriate lag period for exposure. Occupation-
ally-related lung cancer mortality usually does not occur until at
least 10—15 years after first exposure to asbestos (Selikoff et al.,
1979). Therefore, it might be expected that the rate ratios for asbes-
tos exposure would be greater if "irrelevant" exposures during
more recent years were ignored. Table 8—7 shows the findings fo
lag periods of 0, 5, and 15 years. Except for the highest exposure
category, which involves very small numbers, the relative risk for
each exposure category increases with lag time. Thus, there would
be some justification for using a 15-year lag period throughout the
analysis. However, the zero-year lag provides the largest numbers of
person-years and deaths in the higher cumulative exposure catego-
ries, and for purposes of illustration, a zero-year lag has been used
here.

Confounders were also defined categorically. These were age at
risk, calendar year, and length of follow-up. Table 8-8 summarizes
the confounder assessment. Model 2 is the full model involving
cumulative exposure, age, year and follow-up duration. Models 3
5 show the effects of deleting any one of the latter three factors



1.
2.

3.
4.
5.

Cumulative
Cumulative
follow-up
Cumulative
Cumulative
Cumulative

Model

exposure
exposure,

exposure,
exposure,
exposure,

age,

age.
age,
year

year,

year
follow-up
, follow-up

Rate

<1a

1.00
1.00

1.00
1.00
1.00

ratio for each exposure category
(1,000 fibers/cc X days)
1-9

2.05
1.75

1.77
1.93
1.98

1 0-39

3
1

1
2
2

.70

.62

.96

.17

.75

40-99

22,
5

6,
7

11

.77

.21

.79

.17

.34

>100

37.83
6.36

8.81
9.57

21.36

"Reference category.

from the full model. The effect estimates change markedly if age is
deleted from the model, suggesting that age is a strong confounder.
The changes in risk estimates are smaller if calendar year or follow-
up duration were deleted from the full model, but these changes
are still large enough to suggest that the full model is preferable.
However, follow-up duration had the smallest effect on the expo-
sure risk estimates, and thus is the prime candidate for deletion.

There was no a priori reason to investigate the joint effects of
asbestos exposure with any of the other factors included in the
model; therefore, no interaction terms were denned. However, we
did examine the asbestos exposure effect in the context of the Armi-
tage-Doll multistage model of carcinogenesis (Armitage and Doll,
1961); these findings are presented in Chapter 10.

6.5. Comparison of Modeling Methods

These initial analyses suggested that the final model should contain
the following factors: cumulative exposure, age, year, and length of
follow-up. Unfortunately, it was found that the proportional haz-
ards model failed to converge when all four factors were modeled.
Consequently, the comparative analysis was restricted to cumulative
exposure, age, and year.

Poisson regression and the proportional hazards model yield very
similar findings (Table 8-9), the only discrepancy being for the high-
est exposure category that contains very small numbers. The minor
discrepancies for the other exposure levels arise from the different
degree of control of confounding by age, since there are 14 age
strata with Poisson regression, whereas the proportional hazards
model effectively required creating 35 age strata (one for each lung
cancer death). Logistic regression analysis yielded effect estimates
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Table 8-8. Assessment of confounding in Poisson regression analysis

ods
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Table 8-9. Effect estimates for various methods of analysis of cohort data, adjusted for age
and calendar year

Cumulative
exposure

(1,000 fibers/cc
X days)

<1°
1-9

10-39
40-99
>100

Poisson regression

R

1.00
1.87
1.96
6.79
8.81

95%
confidence

interval

0.64, 5.48
0.61, 6.25
2.33, 19.77
1.64, 47.25

Proportional
hazards model

R

1.00
1.83
1.86
6.82
8.10

95%
confidence

interval

0.63, 5.36
0.58, 5.94
2.34, 19.85
1.52, 43.21

Unconditional
logistic regression

R

1.00
2.03
2.40
7.85

12.50

95%
confidence

interval

0.67, 6.14
0.71, 8.05
2.42, 25.44
1.51, 103.83

"Reference category.

that were larger and less precise. This commonly occurs in logistic
regression analyses of cohort studies when the follow-up period is
relatively long (Green and Symons, 1983; Abbott, 1985).

The case-control findings using conditional and unconditional
logistic regression (Table 8-10) differ from the cohort study find-
ings because of sampling error, but once again, similar results were
obtained with the different analytic methods (except for the highest
exposure category). The findings in Table 8-10, obtained using
maximum likelihood estimation (conditional and unconditional), dif-
fer to some extent from those obtained with the adjusted Mantel—
Haenszel estimates (Table 6-14). These minor differences are pre-
sumably due to differences in weightings given to the stratum-spe-
cific odds ratios by these estimation procedures.

Table 8-10. Effect estimates for various methods of analysis of case-con-
trol data, adjusted for age and calendar year

Cumulative
exposure

(1,000 fibers/cc
X days)

<1a
1-9

10-39
40-99
>100

Conditional logistic
regression

R

1.00
2.24
2.19
6.86
5.55

95%
confidence

interval

0.70, 7.23
0.59, 8.08
1.74, 27.04
0.62, 49.39

Unconditional
logistic regression

R

1.00
2.36
2.12
6.86
6.88

95%
confidence

interval

0.72, 7.72
0.58, 7.79
1.84, 25.61
0.80, 60.68

"Reference category.
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6.6. Discussion

This example has illustrated the interrelationships between Poisson
regression, the proportional hazards model, and logistic regression
on the same data set. Poisson regression and the proportional haz-
ards model yielded very similar findings, whereas logistic regression
tended to yield effect estimates that were too large. Case-control
sampling from the risk sets used in proportional hazards analysis has
been recommended as an inexpensive alternative analytic method
(Liddell et al., 1977). However, in the preceding example compu-
tational simplicity was gained at the expense of some loss of
precision.

The proportional hazards model is rarely used in occupational
cohort studies because of its computational complexity. Computer
time itself is no longer of major importance with the advent of high-
speed microcomputers, but the practical complexities of running
the proportional hazards model with time-related factors are still of
concern. However, theoretical analyses have shown the inherent
link between Poisson regression and the proportional hazards
model, and this has been illustrated in the analyses presented here.
Poisson regression was found to have computational advantages
with costs of approximately $10 (U.S.) for an initial run (the gen-
eration of the person-time data) and just a few dollars for each
CLIM analysis. These analyses were only marginally more expensive
than the case-control analyses. In contrast, the proportional haz-
ards analyses were more expensive, costing approximately $50 per
model when time-related factors were analyzed appropriately. Fur-
thermore, Poisson regression follows directly from elementary per-
son-time analyses; time-related factors can be handled relatively eas-
ily, and incidence rate estimates can be generated directly. Hence,
these considerations suggest that Poisson regression may be an effi-
cient method for time-related analyses of occupational cohort data
when mathematical modeling is required.

7. SUMMARY OF ADVANTAGES AND DISADVANTAGES OF
MODELING

The major advantage of mathematical modeling is that it can handle
a larger number of confounders and effect modifiers than conven-
tional stratified analysis (e.g., SMRs or SRRs). Even with categorical
variables, mathematical models smooth the data and permit adjust-
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ment for a larger number of factors than in a stratified analysis. In
particular, it is possible to adjust for the various time-related con-
founders that are common in occupational studies. Furthermore,
modeling permits straightforward calculation of effect estimates for
each factor in the model.

The advantages of mathematical modeling are also sources of
potential disadvantages. Inappropriate use of continuous variables
may lead to incomplete control of confounding and may distort the
exposure-disease relationship. Furthermore, mathematical model-
ing may obscure relationships within the data (e.g., the influence of
just one or two strata with small cell sizes). Thus, mathematical mod-
eling can be a very powerful tool, but it should always be preceded
by the simpler stratified analyses presented in Chapters 5-7.

Glossary

Cox model A specific form of the proportional hazards model in which the
underlying time-dependent incidence rate is treated as an unknown nuisance
parameter.

goodness of fit A statistic that reflects the extent to which the model correctly
predicts the observed data.

hazard rate Incidence rate.
influential data point A data point whose inclusion or exclusion changes the

effect estimate "considerably."
likelihood statistic Minus twice the log of the maximized likelihood.
logistic regression A mathematical model in which the log odds is modeled as a

linear combination of a set of risk factors.
maximum likelihood estimate A method for calculating parameters that maxi-

mizes the probability of obtaining the data actually observed.
multicollinearity Instability in an effect estimate(s) resulting from a strong cor-

relation between one or more risk factors.
Poisson regression A mathematical model in which the log of the incidence rate

is modeled as a linear combination of a set of risk factors.
proportional hazards model A mathematical model in which specified risk fac-

tors arc assumed to affect the incidence rate in a multiplicative manner.
risk set The set of all persons included in follow-up and free of the disease of

interest at a particular "time."
time-related factor A risk factor or effect modifier that varies as a person ages.

Notation

b, The coefficient associated with risk factor i in the exponential model
Cov(X1, X2) The covariance of X1 and X2
Exp Number of expected events
N02 Number of person-years in the non-exposed group of stratum i
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Obs Number of observed events
P0 The proportion of non-exposed persons who arc cases
Pl The proportion of exposed persons who are cases
R Relative risk
R00 The baseline relative risk (1.0) in the absence of exposure
R10 The relative risk for factor 1 in the absence of factor 2
R01 The relative risk for factor 2 in the absence of factor 1
R11 The relative risk for exposure to both factors 1 and 2, relative to

exposure to neither factor
t The "time" variable (usually age) used to define risk sets in the

proportional hazards model
Var(b2) The variance of the coefficient ((b1) for a variable (X)
X, A risk factor in a mathematical model
Y The rate or odds of disease
KK The rate or odds of disease in the exposed group
Yf The rate or odds of disease in the non-exposed group
Yo,, The rate or odds of disease in persons with 7,cro values for all

variables in the model
X The incidence rate in a group; or the mixture parameter in a

generalized relative risk model
\(t) The incidence rate at age t
Xoi The incidence rate in the non-exposed group in stratum i
X,, The incidence rate in the exposed group in stratum i
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9 Dose and Exposure Modeling

1. OVERVIEW

Estimation of dose-response relationships between occupational
exposures and human health effects is central to understanding dis-
ease induction mechanisms. Ultimately, dose—response relation-
ships are used to predict effects in populations other than those
studied, and therefore form the bases of occupational and nonoc-
cupational exposure guidelines.

In Chapter 2 we introduced some of the important concepts
involved in dose-response estimation and offered conceptual defi-
nitions of such parameters as exposure concentration, burden, and
dose. In this chapter we discuss these and related concepts more
formally. We then present mathematical expressions for calculating
the exposure and dose parameters required for modeling. The mod-
eling procedures are illustrated first with examples of radionuclides
that emit alpha radiation. In the second example we use data from
the asbestos textile workers cohort study.

2. FUNDAMENTAL DEFINITIONS OF EXPOSURE AND DOSE
PARAMETERS

The unifying notion of exposure and dose modeling that leads to
dose-response function estimation is that biological effects arise
from damage induced in specific targets, where the targets may be
particular organs, cells, or subcellular sites. Our ability to specify
precisely the ultimate target sites is limited by the state of knowledge
of disease pathogenesis. Thus, in some situations we may feel con-
fident that the biological targets are certain gene loci on DNA, as
might be the case for cancer induction, but in other situations we
may have to be content with identifying less specific targets, such as
bronchial epithelium or the central nervous system.

During some small time interval the damage caused by an envi-
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ronmental substance can be assumed to be related directly to the
amount of the substance present at the target during the same inter-
val. The observable effect of the damage, such as cell death, malig-
nant transformation, or metabolic disturbance, often is not appar-
ent until some later time. Predicting the probability or severity of
an effect requires estimation of the concentration of the substance
at the target as a function of time. For some substances, the con-
centration at the target at any time is proportional to the concen-
tration in the environment. As the speed with which a material is
removed from the body increases, the ratio of dose to exposure
intensity approaches a constant throughout the period of exposure.
However, this proportionality does not always hold true. Thus, we
would like to know what the concentrations at the target have been
at various times, rather than simply relying on environmental con-
centration data.

2.1. Exposure Variables

We can recall from Chapter 2 that exposure refers to the presence
of substances in the environment external to the body. By contrast,
doses and organ burdens are measures of the amount of the sub-
stance within the body. It is convenient to define exposures accord-
ing to two dimensions: intensity and duration. Intensity represents
the magnitude of the amount of a substance that potentially can
enter the body and be delivered to the biological target(s). (It should
be noted here that one substance can have multiple targets and
modes of activity.) The environmental concentration that can be
measured with sampling devices provides an observable estimate of
the intensity. More generally, intensity is the rate at which a sub-
stance is brought into contact with the body. The terms exposure
intensity and exposure rate therefore are synonymous. The second
exposure variable is duration, which is the length of time during
which a given intensity is maintained.

The cumulative exposure (E) accumulated during the time interval
for which a constant intensity (/) occurred is simply the product of
the intensity and duration (T), which can be expressed as

Expression (9.1) refers only to one particular time interval, dur-
ing which the intensity is assumed to be constant. More generally,
when / varies over time, cumulative exposure between times l1 and
L, is



where the duration of exposure is the interval (tl; t2). If all of the
important environmental and biological factors other than intensity
are assumed to be constant during the duration of exposure and if
the concentration in the environment remains directly proportional
to the concentration at the target, then either E or I will be a reliable
predictor of dose.

2.2. Dose Variables

Exposure variables may give imprecise and misleading estimates of
concentrations and cumulative amounts of substances reaching
body targets. This limitation arises because environmental concen-
trations are not the only determinants of the quantity of a substance
that reaches a biological target. Other factors such as particle size
and chemical forms of a substance are physical characteristics that
can influence bodily concentrations. Some of the biological factors
that determine target concentrations include characteristics of
retention, excretion, and metabolism. Thus, the temporal pattern
of dose may be different from the temporal pattern of exposure.
Also, exposure intensities may not reflect amounts reaching biolog-
ical targets when protective devices, such as filtering masks, are
used.

The concept of dose arises, then, because of the limitations of
exposure variables in quantifying the amount of a substance that
actually is delivered to a biological target and that remains there in
an active state. Dose (D) is defined as the amount of a substance that
reaches the biological target during some specified time interval.
This amount will be related to the concentration of the substance at
(or near) the target and to the time interval considered. The rate of
delivery is referred to as the dose rate, or dose intensity (ID). The dose
delivered to a target during some time interval (tt, t%) is given by

where 7D is given the subscript n to distinguish dose intensity from
exposure intensity. In general In(t) is considered to be proportional
to the concentration of the substance at the target. It should be
borne in mind that doses are not directly measurable, but instead
are estimated by mathematical models that include exposure vari-
ables as well as biological factors.
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Dose intensity is related closely to the concept of burden, where
we can consider burdens for the entire body, for individual organs,
or for specifically identified biological targets. For simplicity, we
shall consider only organ burdens. The organ burden, B(t), at time
t is defined as the concentration of the substance in the organ. We
can thus note that organ burden can vary over time. For many sub--
stances, including most chemicals and all radionuclides, the dose
rate is directly proportional to the burden, and the dose is propor-
tional to the integral of the burden over some time interval. This
relationship can be expressed as follows:

where K is the proportionality constant relating In(f) [from expres-
sion (9.3)] and B(i). In other words, K is the rate at which the sub-
stance "strikes" the target per unit burden. For radionuclides, K is
referred to as the "S-Factor." K is less easily specified for most
chemicals, dusts, and fibers and is typically left as an unknown con-
stant. The latter situation is not of concern in that all one needs is
some measure of the rate at which damage is produced, and this
measure only needs to be proportional to the actual (and generally
unknown) rate of damage.

Relationships between exposure and dose variables are perhaps
best understood for ionizing radiations; consequently, we illustrate
some of these concepts in that context. For ionizing radiations, dose
takes on a specialized meaning that is easily related to the more gen-
eral definition given earlier. It is reasonably well established in
radiobiology that the extent of biological damage in an organ, cell,
or subcellular site is related directly to the amount of radiation
energy absorbed per unit mass of biological material (i.e., the
energy density). Thus, the rate of damage is directly proportional to
the dose rate. As a result, radiation dose is defined as the energy
deposited in biological materials (usually cells) divided by the mass
of the material. The dose rate is the rate at which this energy is deliv-
ered. The unit of radiation dose is referred to as the rad (ICRP,
1977), which is defined rather arbitrarily as being equal to a density
of 100 ergs per gram of biological material (where ergs is a unit of
energy). In recent years the rad has been replaced by the gray as a
unit of dose, where 1 gray is equal to 100 rads.

The value of K in expression (9.4) thus has units of rads per unit
time per unit of organ burden. Thus, the product of K and the
organ burden equals the dose rate or dose intensity. No similar spe-
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cialized meanings for dose are available for chemicals or other phys-
ical agents, although it is conceivable that common systems of dose
units will be adopted as the mechanisms of action for such materials
become more clear. Again, this presents no problem, provided that
the rate of damage is proportional to the organ burden.

The organ burden at any time is a function of both the history of
past intakes and the biological retention of these intakes. Retention,
which includes metabolism, absorption, uptake, and clearance by
various organs and tissues, can be modeled collectively as retention
functions. Retention functions, denoted generally as R(t), specify the
fraction of a substance present in an organ after a time interval t
following entry into the organ. Related to the retention function is
the uptake rale, which is the amount of a substance entering an
organ per unit exposure per unit of time. The organ burden thus is
a function of both the uptake rate and the retention function.

The kinds of models that specify retention functions are known
generally as biokinetic (pharmacokinetic) models, or more specifically
for toxic substances, toxicokinetic models. These models describe the
relationships between exposures in environmental media and the
resulting concentrations in target organs and tissues. Biokinetic or
toxicokinetic models can be distinguished from pharmacodynamic
models, where the latter relate tissue concentrations to biological
responses (Smith, 1987). Biokinetic models treat the body as a series
of compartments, between which substances arc exchanged. These
compartments might, for instance, consist of organs, classes of cells,
or even complex physiologic entities (e.g., the immune system).

3. BIOMATHEMATICAL MODELS OF ORGAN BURDEN
AND DOSE

Biomathematical models permit prediction of doses to targets for a
given exposure. We can begin by depicting the models that are used
to estimate doses from exposure data. Figure 9-1 shows a schematic
representation of some bodily compartments through which mate-
rials enter the body, the bloodstream, and other organs that trans-
port or take up materials. This diagram is simplified so as to repre-
sent compartments by specific organs.

In general, we can let I(t) be the exposure intensity in an environ-
mental medium that is encountered by a worker at time t, where the
exposure intensity is given in units of concentration such as parts
per million of air. The substance then enters the skin, gastrointes-
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Figure 9-1. Schematic of inhalation, clearance, and excretion of internally
deposited substances.

tinal tract, or lungs. For substances entering through the skin, the
rate of deposition onto the skin usually can be characterized by a
deposition coefficient, \n, expressed in units of mass per unit envi-
ronmental concentration. The rate of movement from the environ-
ment onto the skin at some time I is equal to XD/(/). For movement
into the gastrointestinal tract from ingested materials, the rate of
entry is given as VJ(t), where V, is the rate at which material is
ingested and I(t) is the concentration of the substance in ingested
material.

The respiratory system offers a somewhat more complicated case
because substances in air that ultimately impart physiologic doses
enter, are deposited, and can be removed from the lung. Further-
more, the respiratory system can be divided into three distinct
subregions, which are characterized by separate retention functions



In expressions (9.5) through (9.9) the retention functions have
been indexed to indicate that they are specific to each organ or
respiratory system subregion, and it is assumed that exposure starts
at time equal to 0. Values for/N,,,/1B, and/,, for various persons' ages
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and amounts of deposited material. These subregions are the naso-
pharyngeal (NP), the trachcobronchial (TB), and the pulmonary (P)
regions (ICRP, 1966). Inhaled particles or other materials (except
gases) are deposited in the respiratory system subregions with dif-
ferent deposition fractions. The deposition fractions, in turn, are
determined by the physical properties of the inhaled material. We
can denote these fractions as/N1,,/TB, and/P for the nasopharyngeal,
tracheobronchial, and pulmonary subregions, respectively. The cor-
responding rates of deposition into the three subregions for a sub-
stance in air are ff^pVnI(t), ffnVRI(t), and ffPVRI(t). In these three
quantities the leading term f is the fraction of the substance inhaled
after managing to circumvent protective devices (e.g., masks), VH is
the volumetric breathing rate in liters per minute (averaged over the
period of exposure), and f(t) is the environmental concentration of
the substance, as before.

Once the material has entered the skin, gastrointestinal tract, or
respiratory system, it will be retained in each compartment with a
characteristic retention function R(t). As mentioned earlier, these
retention functions give estimates of the fractions of atoms or mol-
ecules of the substance remaining in the organ after time t following
intake. If we let Bs(t), BCA(t), BNr(t), Bn(t), and BP(t) represent the
organ burdens at time t in the skin, gastrointestinal tract, and the
three lung subregions, respectively, then these terms can be
expressed mathematically as follows:
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and for different sizes of solid particles can be found in papers by
Crawford-Brown (1982) and Crawford-Brown and Eckerman
(1983). The retention functions for the gastrointestinal tract and
the respiratory system subregions for particles (primarily radioac-
tive) of different sizes and solubilities in body fluids are given in
publications by the International Commission on Radiological Pro-
tection (1966; 1972).

For the five organ systems mentioned earlier, the dose of some
substance delivered between times t1 and t2 is proportional to the
integral of the corresponding organ burden for the same time inter-
val. Thus, using K as the proportionality constant, the doses for
these five organs and lung subregions can be expressed in general
forms as

The dose rate, and hence dose, at any time can then be assumed
to be directly proportional to the calculated organ burden. This
approach has been described for estimation of organ doses of alpha
radiation from inhaled radionuclides (Checkoway and Crawford-
Brown, 1987).
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Equations describing organ burdens and doses in systemic organs
(i.e., organs not in direct contact with the environment) are more
complicated than those given earlier for the skin, gastrointestinal
tract, and lungs. This complexity arises because some substances
continuously transfer materials back and forth between systemic
organs via the blood and the lymphatics. Biokinetic models that
allow for cycling of material between systemic organs are known as
mammilary models. These models are mathematically more complex
than the models described earlier and are thus not generally useful
in occupational epidemiology studies. The necessary equations for
mammilary models described by Bernard (1977) and Skrable et al.
(1980) could be developed for broader application.

Invocation of only a few assumptions reduces the complicated
mammilary models to a set of models referred to as catenary models
(Leggett, 1984). A catenary model describes the cascading move-
ment of substances from one organ to the next, where the direction
of movement is assumed to be only in one direction, terminating in
excretion of the substance from the body. Catenary models simplify
even further if it is assumed that the substance enters and is cleared
from each systemic organ on a time scale that is rapid compared
with the smallest time unit considered in the study. Since many
occupational epidemiology studies do not consider time intervals
smaller than single years, this second simplifying assumption will
apply whenever the substance is removed from an organ with a half-
life of a few months or less. If this assumption holds true, then the
systemic organ burden at any point in time is directly proportional
to the burden in the portal of entry (e.g., skin, gastrointestinal tract,
or respiratory system) at that time.

It should be noted that the time lag between intake at the portal
of entry and transport to a systemic organ is assumed to be negli-
gible, relative to the duration of exposure. When the interval
between intake and transport is delayed, as occurs when the sub-
stance is sequestered in adipose tissue or bone, a separate term for
the lag time will be required in the model. Fortunately, most sub-
stances that are not sequestered satisfy this assumption. If, in addi-
tion, the substances are cleared rapidly from the skin, gastrointes-
tinal tract, and lungs, then the systemic organ burdens are directly
proportional to the exposure intensity. It should be appreciated
that the numerical value of the proportionality between exposure
intensity and organ burden still depends on the presence of expo-
sure barriers and the physical properties of the environment that
control intake and deposition into organs that act as portals of
entry.
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Many substances encountered occupationally move rapidly from
the skin and gastrointestinal tract, and all but very insoluble sub-
stances (e.g., lead) are cleared rapidly from the lungs. Thus, in typ-
ical situations the rates at which substances enter the bloodstream
are proportional to the rates of movement into the skin, gastroin-
testinal tract, or lungs. A certain fraction of a substance that enters
the bloodstream will then be distributed to the systemic organs, with
each organ receiving a characteristic uptake fraction. The rate at
which material moves into a systemic organ can therefore be
expressed as the product of the rate of discharge from the portal of
entry organ into the blood (and lymphatics) and the uptake fraction.
When the substance also is removed rapidly from the skin, gastroin-
testinal tract, or lungs, the rate of movement into the bloodstream
from the portal organs will be proportional to the rates of intake by
these organs. As a result of this relationship, substances that pass
quickly through the skin, gastrointestinal tract, or lungs display a
systemic organ burden at time t given by the following expression:

where G is the proportionality constant relating exposure intensity
and the rate of deposition into either the skin, gastrointestinal, tract
or lungs; ftt is the fraction of the substance moving into the blood-
stream, given that it has deposited in the portal of entry organ;/, is
the fraction of the substance that is deposited into the kth systemic
organ, given that it has entered the bloodstream; and R/,(t) is the
retention function for the substance in the kth systemic organ. Val-
ues forfK,f,,, and R,t(t) for most radionuclides and many nonradioac-
tive elements can be found in the report by the ICRP (1979). Mod-
els useful for specifying G for the lung for dusts and other physical
substances are described by Cuddihy et al. (1979), Gerrity et al.
(1983), and Smith (1985). Pharmacokinetic models are also availa-
ble for solvents and other volatile chemicals (Fiserova-Bergerova ct
al., 1974; Perbellini et al., 1986), although these models tend to be
complicated because they incorporate considerations of transport
to and metabolism (e.g., biotransformation) in multiple body
compartments.

Expression (9.1 5) can be applied regardless of how long the sub-
stance in question remains in a systemic organ, provided that the
transport from the portal of entry organ is rapid. Retention times
in the pulmonary subregions of the lungs can be quite long (at
times, with half-lives extending to decades) for very insoluble sub-
stances, such as amphibole asbestos fibers. A slightly more compli-
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cated catenary model is required for very insoluble substances
because the rate of movement into the bloodstream no longer is
proportional to exposure intensity. Instead, the rate of entry into
the bloodstream is proportional to the burden in the portal of entry
organ. To illustrate, let fK be the fractional rate at which the sub-
stance leaves the portal of entry and enters the bloodstream. Thus,
the burden in the kth systemic organ at time t can be expressed as

where Be(T) is the burden for the portal of entry organ and the con-
stants are as defined earlier. Be(T) usually can be obtained from
expression (9.9) because equation (9.16) really is needed only for
substances that enter the pulmonary subregion of the respiratory
tract.

This completes our general discussion of organ burdens. Next, we
can turn our attention to dose estimation using organ burden
models.

Doses can be estimated from any of the preceding organ burden
models in conjunction with the relationship between burden and
dose given in expression (9.4). Thus, organ burdens are computed
first and then integrated to arrive at doses. To this point we have
merely mentioned how retention functions are incorporated into
organ burden models, without offering an explicit form for reten-
tion. Retention functions usually are assumed to be exponential or
series of exponential functions (the exponential form facilitates
integration). A typical exponential retention function is as follows:

where \m is the fractional rate at which the substance leaves the rath
compartment of an organ and Am is the fraction of the substance
reaching the organ in the mth compartment. Other, more compli-
cated retention functions are not discussed here because their use
in occupational epidemiology is restricted by their complexity.

Summary of Organ Burden and Dose Modeling

We have described four situations of organ burden and dose mod-
eling. In the interest of simplifying the discussion, we have consid-
ered body organs as the biological targets, although the presenta-
tion of modeling approaches also applies to more specific targets,
such as subpopulations of cells or intracellular sites. Another sim-
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plifying assumption is that the exposure or dose index to be esti-
mated is an average for a given year of exposure. Summaries of the
four modeling cases follow.

1. The first case is when all of the material moves out of all organs with
a half time that is short in comparison to one year (e.g., a few months
or less). Under this condition, the organ burden and, hence, the dose
are directly proportional to the average exposure intensity for the
year. This proportionality is a function of the physical and chemical
properties of the substance, the route of entry into the body, and the
uptake and metabolism of the target organ.

2. The second case arises when the material moves quickly out of the
portal of entry organs (e.g., skin, gastrointestinal tract, or lungs) but
is retained significantly in a systemic organ(s) for times longer than
one year. As in the first case, the burdens for the portal of entry
organs are proportional to exposure intensity. However, this pro-
portionality does not hold for systemic target organs; consequently,
equation (9.15) must be used.

3. The third situation is when the material moves slowly out of the por-
tal of entry organs but is rapidly cleared from systemic organs. This
case generally pertains to entry through the pulmonary subregion of
the lung. Here systemic organ burdens are directly proportional to
burdens in the portal of entry organs. The relationships are specified
adequately by equations (9.5) through (9.9). The necessary propor-
tionality constant also depends on the physical characteristics of the
substance.

4. Finally, there is the case in which substances are retained for long
periods of time in both the portal of entry and systemic organs.
When this situation arises, burdens and doses must be computed
using equation (9.16) in conjunction with expressions (9.5) through
(9.9). This situation is uncommon but may be encountered in occu-
pations involving inhalation of highly insoluble materials that are
deposited in the pulmonary subregion of the lungs and are trans-
ported to the bone. Examples are inhaled plutonium or lead.

One complicating feature that arises in estimating doses for many
chemicals is metabolic activation (or deactivation). By metabolic
activation we mean chemical alterations of the substance in the body
to a different chemical species. Conversions of polycyclic aromatic
hydrocarbons from precarcinogens to ultimate carcinogens, by
means of hydroxylation and epoxidation, is one such example (Har-
ris et al., 1985). Many substances not only cascade through the var-
ious body organs, but also undergo chemical transformations as
they move. We can therefore consider the biologically effective dose as
the integral of the target (organ) burden for the transformed sub-
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stance. If the substance is transformed rapidly upon entering the
body, then the biologically effective organ burden is directly pro-
portional to the organ burden calculated from the equations given
earlier. When this assumption is not valid, burden and dose esti-
mation becomes substantially more difficult. As a practical guide-
line, we suggest that variable rates of chemical activation can be
ignored in most epidemiologic analyses.

4. EXAMPLES OF DOSE MODELING

Thus far, we have been describing exposure and dose modeling in
abstract terms. Some examples should help to illustrate modeling
principles and techniques.

4.1. Example 1: Inhaled Soluble Uranium Compounds

The first example comes from ionizing radiation epidemiology and
concerns exposures to dusts of uranium compounds. Although this
example is hypothetical, the exposure levels arc similar in magni-
tude to those encountered in uranium processing facilities.

First, we can assume that workers at some facility arc exposed to
airborne uranium dust. The form is uranium hexafluoride, which is
very soluble in body fluids and leaves the lungs rapidly with a reten-
tion half-life on the order of 0.5 day. The uranium enters the blood-
stream after clearance from the lung and is deposited in bone with
a 22.3-percent efficiency (i.e., JK is 0.223 for uranium in bone)
(ICRP, 1979). The remainder is excreted promptly via the kidneys.
Once in the bone, the uranium remains with a retention function
(ICRP, 1979) equal to

where R(t) is the fraction of the substance remaining in the bone t
days after entry into the bone, 0.897 and 0.1 03 represent the frac-
tions of uranium deposited, respectively, in two separate compart-
ments of the bone, 20 and 5,000 are half-lives (in days) for uranium
in these compartments, and 0.693 is the natural logarithm of 2. The
retention function is the same for all forms of uranium because they
arc metabolized to a common form, hexavalent uranium, in the
bloodstream prior to bone deposition.

Assume that a worker is exposed only to the very soluble uranium
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(238U) fluoride at an air concentration of 10-4 juCi/m3, during the
years 1940 and 1941. [The microcuric (/uCi) is a unit of radioactivity
that is proportional to the number of atoms of uranium.] During
each of these years the worker is exposed for 2,000 hours, based on
employment for 40 hours per week for 50 weeks. The average
breathing rate of air VK is assumed to be a constant, 10 nr'/day,
which is typical for light activity (ICRP, 1975). Assume that the
worker wears a respirator that stops 75 percent of the uranium dust.
Our objective is to compute the organ burden for, and dose to, the
lungs for each year starting with 1940.

For soluble (and insoluble) uranium, deposition in the pulmonary
subregion of the respiratory tract is far greater than in either the
nasopharyngeal or tracheobronchial subregions. A typical deposi-
tion fraction for uranium dust particles in the pulmonary subregion
is 0.30 (ICRP, 1966). The value for/in equation (9.9) is 0.25, rep-
resenting the 25 percent of airborne dust reaching the lungs, I(t) is
10~4 juCi/m3 during both years of exposure, and VB is 10 m3/day.
The retention function for soluble uranium in the pulmonary subre-
gion of the lung is

where B(f) is in units of ^.Ci.
The dose delivered during the first year of exposure, 1940, can

be calculated using equation (9.4), with K equal to 0.24 rad/day/
iuCi (Dunning et al., 1980). Performing this integration yields

where t is in days. Inserting the known values into equation (9.9)
gives a pulmonary burden function of

or

The dose delivered during 1941 will also be 4.7 X 10 -3 rads.
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Exposure to soluble uranium stops at the end of 1941, and the
material is removed from the lungs very rapidly. As a result, soluble
uranium inhaled in 1940 and 1941 contributes a negligible dose
during the years after 1941. To see this, consider that the average
lung burden throughout 1940 is roughly the same as the burden at
the end of the year. Hence

which applies at the end of 1941 (or the beginning of 1942).
Thus, the burden approximation for soluble uranium in the lung

is nearly identical for both years of exposure. Also, the dose in each
year is proportional to exposure intensity. For years after 1941, the
contribution from material inhaled in 1940 and 1941 is negligible,
also because of the short half-life of soluble uranium in the lungs,
as indicated by the very rapidly decreasing exponential terms in the
two lung burden equations.

The dose in 1942 will be

It may be noted, therefore, that exposure intensity is directly pro-
portional to dose for these three years.

For the lung, exposure acts as an almost perfect surrogate for
dose. Consider now the case of organ burden and dose to bone. In
general, expression (9.16) for burden in a systemic organ can be
applied. However, expression (9.15) can also be used because sol-
uble uranium moves quickly through the lungs. In expression
(9.15), G is equal to/?Vn, which is equal to (0.25)(0.3)(10) = 0.75.
Equation (9.15) then yields

For 1941 the estimated lung burden is



Note that, unlike the lung where material is removed rapidly, the
dose to the bone in each year is no longer proportional to the expo-
sure intensity in that year. This is seen most dramatically for years
after 1941, when exposure had since stopped. Consider the year
1942, for example. The bone burden at the end of 1941 is 1.63 X
10~-1 fJ-Ci, which is divided between the two bone compartments,
with 4.3 X 1CT4 MCi in the 20-day compartment and 1.2 X 1(T3

/uCi in the 5,000-day compartment.
Hence, the bone dose for 1942 is
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which, after insertion of the expression for Rk(t) for bone, and set-
tine L = 0.223 and fn = 1.0, yields

or

This last expression holds for any time up to the end of 1941
because exposure intensity was constant during the period before
that year. Assuming an S-factor of 6.4 X 10~6 rads/day/juCi for ura-
nium in bone (Dunning et al., 1980) and assuming that the uranium
is located in cancellous bone, the bone dose for 1940 is

The dose in 1941 is
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In other words, the bone dose in 1942 is approximately the same
as that in 1941, despite the fact that exposure ceased in 1941. This
results from the long retention of even soluble uranium compounds
in bone. Dose delivery to the bone would persist for some years
after exposure ended. By contrast, the lung doses in 1942 and sub-
sequent years would be virtually nil because of rapid clearance from
that organ.

4.2. Example 2: Inhaled Asbestos Fibers

The second example involves an analysis of the data from the his-
torical cohort study of mortality among asbestos textile plant work-
ers (Dement et al., 1983). The objective here is to develop an index
of exposure that, in part, reflects the subsequent temporal pattern
of dose. Exposure modeling for asbestos presents a more typical sit-
uation than dose modeling for radionuclides (from the preceding
example) because estimation of the kinetics parameters for asbestos
is much more difficult than that for uranium compounds. As a
result, exposure modeling, rather than burden and dose modeling,
is more practical for studies of asbestos-exposed workers. Thus,
despite the large body of experimental evidence demonstrating the
fibrogenic and carcinogenic potential of the various types of asbes-
tos fibers in the lungs (and possibly some systemic organs in the case
of carcinogenesis), quantitative dose estimation remains an uncer-
tain proposition.

In general terms, exposure modeling consists of applying various
weighting schemes to exposure intensity data. Weighting is designed
to relate exposure in a given year to an effect (damage) produced
subsequently. The simplest approach is to compute a cumulative
exposure (E) index, which is merely the summed products of envi-
ronmental concentrations and the durations of time spent at those
concentrations. Cumulative exposure as of some point in time t is
given by expression (9.2).

Cumulative exposure is the most commonly used index in studies
of chronic diseases, and in fact, it was the index used by Dement et
al. (1983) in their original analysis. However, there are some short-
comings to cumulative exposure measures, as we pointed out in
Chapter 5. To review briefly, cumulative exposure often provides
little information about the temporal course of the rate of exposure
delivery, one result of which is that effects of peak exposures can go
unnoticed (Copes et al., 1985). Furthermore, the simple cumulative
exposure measure will not take into account retention in target



where /, are the yearly exposure concentrations and the w, are the
assigned weights. (Note that we are using yearly time intervals,
although smaller units may be required in studies of acute effects.)
Ideally, we would choose weights that account best for effect induc-
tion time and retention of the substance in the target organ or tis-
sues. Hence, exposures that theoretically are most etiologically
important should be weighted most heavily. One approach is to let
Wj equal the fraction of the substance inhaled or ingested in year i,
which is still present in year j (j > 1). In this instance, Ej will be
proportional to the dose rate in year j.

We can recognize that the latency analysis described in Chapter
5, where exposures are lagged by an assumed latency interval, is a
form of exposure weighting. In the simplest, most common case of
exposure lagging, the w, for exposures during the estimated latency
period are set to 0, whereas weights of 1.0 would be assigned for
exposures in all other years. Considerations of substance retention
are thus ignored in this approach. Another approach involves set-
ting weights equal to 1.0 for the assumed etiologically relevant
"time window" and assigning weights of 0 to all other years. This
second approach to latency analysis requires the assumption that
the most recent and the most distant exposures are unrelated to
disease induction (Rothman, 1981).

Conventional latency analysis does not address retention of the
substance explicitly. However, an exposure weighting method
described by Jahr (1974) was devised for this purpose. According to
this approach, each exposure is weighted in direct proportion to the
time since occurrence. Thus, the ry, in expression (9.18) become
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organs or tissues, and thus may be a poor surrogate for dose for
slowly cleared or metabolized substances. These problems can be
mitigated partially by weighting exposures to reflect the ultimate
dose that is delivered.

A general form for a weighted cumulative exposure (£,) at the end
of year j (K;) from exposures received in the preceding i years (i =
1,2, . . ., j) is given by

where Y, is the year of exposure, Y, is the year when damage is being
measured (F; > F,), and 0.5 allows for delivery of exposure through-
out year Y,, rather than all at once at the beginning of the year.
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Table 9-1. Hypothetical example of Jahr model of exposure weighting for a worker
exposed for three years and followed for ten years

Year

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

Exposure
intensity (I,)

10
5
2
0
0
0
0
0
0
0

E°
(1950)

5
15
25
35
45
55
65
75
85
95

E,
(1951)

2.5
7.5
12.5
17.5
22.5
27.5
32.5
37.5
42.5

E,
(1952)

—
1
3
5
7
9

11
13
15

K, = ££,

5
17.5
33.5
50.5
67.5
84.5

101.5
118.5
135.5
152.5

"Jahr model with no clearance: £; = I^(Yj — Y^ + 0.5).

Jahr's method theoretically is most useful for examining dose-
response relationships when the substance under study is tena-
ciously retained in the body (e.g., amphibole asbestos fibers).

The Jahr model of exposure weighting is illustrated in Table 9-1.
In this hypothetical example, a worker is exposed for three years to
environmental concentrations of 10, 5, and 2 units of some sub-
stance, and follow-up extends for a ten-year period from first expo-
sure. Thus, in 1950 the worker receives a total of 5 units of cumu-
lative exposure, and it is assumed that there is a constant
contribution of 10 units from this year's exposure in all successive
years. In other words, the burden resulting from the first year's
exposure is 5 at the end of that year and stays constant at 10 in all
subsequent years. It should be noted that this formulation of the
Jahr approach assumes no clearance of the substance (i.e., retention
time approaches the end of the worker's lifetime). The contribu-
tions from exposures occurring in 1950, 1951, and 1952 can be
computed using expression (9.18), as shown in the rightmost col-
umn of Table 9-1.

Expression (9.18) can be refined to allow for clearance of the sub-
stance, while still maintaining the Jahr scheme of weighting expo-
sures in proportion to time since occurrence. The equation is given
as

where k = In 2/T1/2, with Tl/z being the half-life in the target organ.
The main uncertainty of using a clearance model for many sub-
stances is that there are insufficient data to estimate values for half-



Dose and Exposure Modeling 283

lives in the body as a whole or in particular target organs. This dif-
ficulty has been noted by other investigators who have applied
approaches similar to Jahr's method (Berry et al., 1979; Finkelstein,
1985). Also, the clearance model depicted in expression (9.20)
assumes a constant rate of clearance, irrespective of the exposure
rate and the organ burden. More complex models that allow for
variable rates of clearance could be constructed, but estimation of
rate constants would be subject to great uncertainty. The problem
of half-life estimation becomes even more difficult for systemic
organs, particularly when the kinetics require a model with trans-
port to and from more than one organ (i.e., multicompartment
models).

Weighting exposures in the manner suggested by Jahr makes an
implicit assumption about the induction and latency periods for a
delayed effect of exposure. Thus, according to Jahr's scheme,
observed health effects are assumed to be most strongly related to
the earliest exposures during a worker's employment, and it is
assumed that the effect of these exposures becomes evident later in
life. We should point out that the weights need not be constrained
to be linear or necessarily in direct proportion to the time since
exposure occurred. Geometrical weights can be assigned, or one
might, for example, assign weights so that the most recent expo-
sures are weighted more heavily than those in the past if there is
reason to believe that recent exposures are more etiologically
important (Axelson, 1985). Another alternative would be to weight
exposures by the square of time since occurrence, if there were rea-
son to assume that the earliest exposures were substantially more
important than those received in later years. Complex weighting
schemes involving higher-order polynomials are seldom justified in
most practical applications, however.

Some approaches to exposure weighting are illustrated with data
from the asbestos textile plant workers cohort study (Dement et al.,
1983). Trends of lung cancer mortality were assessed in relation to
the following exposure indices: (1) simple cumulative exposure; (2)
cumulative exposure with a ten-year lag; (3) cumulative exposures
attained during the time period 10-25 years previously [i.e., trun-
cation of exposures more than 25 years before the year of evalua-
tion (year j), as well as a ten-year lag]; (4) the simplest case of the
Jahr model, with weights assigned in direct proportion to time since
occurrence and no clearance; and (5) the Jahr model, but with an
assumed ten-year half-life of asbestos in the lungs. The results are
summarized in Table 9-2.

For these analyses the cohort was divided into seven exposure
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Table 9-2. Exposure-response relationships for asbestos exposure and lung cancer mor-
tality using various exposure weighting models

Stratum"

1"
2
3
4
5
6
7

Xdf=6

(1)

Cumulative
exposure,

0-yr lag

1.00
2.08
1.46
3.35
4.28
5.70

11.17
17.9

(2)

Cumulative
exposure,
1 0-yr lag

1.00
2.31
2.41
5.24
4.03
6.92

15.27
19.5

(3)
Cumulative
exposure

time window,
10-25 yr

1.00
2.64
1.97
3.33
5.94
9.84

16.96
23.0

(4)
Jahr

model,
no

clearance

1.00
1.53
2.26
6.34
3.46
5.72

13.33
20.0

(5)
Jahr

model,
T1/2 =
10 yr

1.00
1.92
1 .96
4.32
3.76
6.68

13.57
19.0

"Each stratum contains five deaths.

''Reference category.

strata, where each stratum contains five lung cancer deaths. Thus,
the stratum boundaries were specified by the exposure levels
attained by the cases. This approach to exposure stratification was
used instead of a more customary procedure, such as setting expo-
sure boundaries on the basis of quartiles of the cohort's exposure
distribution, to assure maximum stability in the comparison of rates
between strata. Relative risk estimates (rate ratios) were computed
by means of Poisson rate regression (Fromc, 1983), and the mag-
nitude of the exposure-response association was evaluated with a
chi-square statistic with 6 degrees of freedom (one less than the
number of exposure categories). The relative risks were adjusted for
age, calendar year, and duration of follow-up, each in five-year
intervals.

There are marked gradients of lung cancer mortality with increas-
ing exposure level for all weighting schemes, which is consistent
with the originally reported findings (Dement et al., 1983). It can
also be noted that the chi-square results for an overall effect are all
similar in magnitude. Model 3, the 10-25-year cumulative exposure
window, yields the highest relative risks for the last two exposure
strata, although the trend is slightly dampened by a relatively high
rate ratio in the second stratum (2.64). We also performed an anal-
ysis similar to model 5, assuming a 30-year rather than a ten-year
retention half-life (data not shown); the results differ only slightly.

In this example it appears that each of these exposure weighting
schemes is consistent with a linear trend of relative risk. Had there
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been substantial differences in the patterns of the relative risks,
there might be some clear choice of the best model, at least on sta-
tistical grounds. In any event, the choice of a best model should be
made with regard not only to the data being analyzed, but also to
findings from previous epidemiologic and experimental research. It
should be appreciated that we have been using exposure rather than
dose modeling in this example; consequently, the conclusions drawn
from such an analysis need to be tempered with caveats about the
suitability of exposure variables as surrogates for dose parameters.

5. SUMMARY

Dose-response models for occupational exposures and disease risks
can provide insights into mechanisms of disease induction and are
necessary for predicting adverse health effects in populations with
varying exposure levels. In Chapter 2 we defined exposure and dose
variables in conceptual terms, stressing that exposure refers to the
presence of a substance in the environment external to the body,
whereas organ or body burdens and doses refer to the amount of a
substance within the body. In this chapter we have taken a more
mathematical approach to defining these terms in order to lay the
groundwork for deriving dose-response models.

Ultimately, we would like to know the concentrations of sub-
stances at specific biological targets that are sufficient to induce dis-
ease. Identifying specific biological targets and measuring concen-
trations that change over time at these targets impose practical
constraints in most instances. Instead, we are forced to use mathe-
matical models that depict first the relationships between environ-
mental exposure intensities and organ (or tissue) burdens, and sec-
ond the relationships between burdens and doses. Modeling
requires estimation of intake rates, retention in the portal-of-entry
organ(s), and transport to and retention in remote (systemic)
organs. An understanding of the metabolic fates of substances in
the body will assist in determining biologically effective doses. How-
ever, for most substances either the "active" metabolites are not
known or the predictors of individuals' metabolic responses are
unknown. Consequently, modeling usually ends with somewhat
uncertain dose estimation.

Ionizing radiation is a valuable paradigm for dose modeling
because there is a vast body of experimental and epidemiologic data
from which models have been developed depicting deposition and
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retention in various body organs. Our first example concerning ura-
nium compounds illustrates some methods for estimating organ
burdens and doses from exposure data.

This first example also illustrates some of the uncertainties that
arise in dose modeling. For example, an air concentration of ura-
nium dust (or alpha radiation activity) is measured with some error,
perhaps because of defects in instrumentation. Next, we need to be
concerned about whether the measurements made in various areas
of a facility adequately represent workers' actual exposure intensi-
ties. Poorly located sampling devices can result in exaggerated or
underestimated intensities. If we are confident that environmental
concentrations can be linked validly to individual workers, then we
must make a series of assumptions regarding the effectiveness of
protective devices, breathing rates, and deposition patterns in por-
tal-of-entry organs (e.g., all routes other than inhalation are irrele-
vant). Next, intake rates are estimated and are used in conjunction
with knowledge of the physical and chemical properties of the sub-
stances considered (e.g., solubility in body fluids) to estimate reten-
tion functions in the lungs. These retention functions are used to
model organ burdens and ultimately doses, which represent time-
integrated burdens. The modeling can be extended further to
include estimation of doses to systemic organs, such as the bones,
that have their own characteristic retention functions.

Thus, modeling provides average expected doses, and the validity
of the estimates depends on the validity of a number of assump-
tions. Misclassification of workers into dose categories occurs when
some of these assumptions are violated or when the study popula-
tion is small and expected average doses are likely to be inaccurate.
An alternative to modeling doses from exposure data is to obtain
direct biological measurements from which organ burdens can be
estimated for individual workers. This alternative, although desira-
ble, involves greatly added costs to a study and has its own short-
comings relating to uncertainty of the metabolic modeling that must
be performed to relate biological measurements to organ burdens.

Exposure modeling is required when biokinetic models are not
well specified or are fraught with extreme computational complex-
ities. In this situation, the time-dependent delivery of exposures is
modeled to provide dose surrogates.

The most common approach is to compute simple cumulative
exposure as the dose surrogate, where cumulative exposure is the
time-integrated exposure intensity. As we discussed in Chapter 5,
simple cumulative exposure is a valuable surrogate for dose when
the probability or severity of the disease of interest is directly pro-
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portional to the amount reaching biological targets. However,
cumulative exposure often does not reveal important temporal pat-
terns in the rates of exposure delivery. Exposure weighting is one
strategy for enhancing the informativeness of a cumulative expo-
sure index. For example, weights can be assigned to account for
disease latency, as is done when cumulative exposures are lagged or
restricted to particular time windows. Also, weighting schemes are
available to estimate retention half-times of substances in various
organs and tissues. We illustrated various weighting schemes with
data on lung cancer mortality from the asbestos textile plant cohort
study. In this example, similarly strong gradients of lung cancer risk
were seen for all exposure weighting schemes, as would be expected
given the strength of the association between asbestos exposure and
lung cancer. Consequently, we could not decide unequivocably
which of the exposure models best describes the underlying biolog-
ical process. In the absence of compelling prior reasons to use a
particular model, the simple cumulative exposure and lagged expo-
sure models appear to be preferable on the grounds of conceptual
and computational simplicity.

It is arguable whether dose modeling or exposure modeling is to
be preferred. The two approaches address related but somewhat dif-
ferent issues. Dose modeling is clearly preferable when the metab-
olism of substances is well understood, whereas exposure modeling
can serve as a substitute for dose modeling when biokinetic and met-
abolic models are less certain. There arc situations where exposure
modeling is not a good substitute for dose modeling. This was seen
in the example of estimating bone doses from soluble uranium,
where the proportionality between exposure and dose is nonlinear.
In addition, dose modeling will be important when conclusions
drawn from studies of workers experiencing one route of exposure
arc to be extrapolated to persons exposed by different routes.
Exposure modeling, however, is important in its own right because
protection standards for most substances are more easily based on
exposure levels that can be measured in the environment than on
doses that are estimated indirectly from mathematical models.
Increasingly, there is interest in developing and refining dose mod-
els for a wide range of substances, including radiations, dusts, and
chemicals.

Glossary

biologically effective dose Dose of the active metabolite of a chemical or physical
agent.
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biokinetic models Models that describe the relationships between exposures and
target concentrations.

burden The amount of" a substance in the body or in some particular target (e.g.,
organ) at time t.

catenary models Models describing the movement of substances between body
organs, where movement is assumed to be unidirectional.

cumulative exposure The integral of exposure intensity over time.
dose The amount of a substance that is delivered to a target during some speci-

fied time interval.
dose intensity The rate of delivery of a substance to the target.
dose rate A synonym for dose intensity.
exposure rate The rate at which a substance is brought into contact with the

body, estimated by the environmental concentration.
half-life The time required for half of the substance to be removed from the tar-

get organ or tissues.
intensity The concentration of a substance in the environment that potentially

can enter the body and be delivered to biological targets.
pharmacodynamic models Models relating target concentrations of substances

to biological responses.
portal-of-entry organs Organs through which substances enter the body.
retention function A model that specifies the amount of a substance remaining

in an organ or tissue as a function of time since uptake.
systemic organs Organs not in direct contact with the environment (i.e., remote

from portal-of-entry organs).
uptake fraction The fractional amount of a substance that enters an organ, given

prior entrance into the bloodstream.

Notation

Am The fraction of a substance reaching the rath part of an organ.
B(t) The organ burden at time t.
Be(t) The burden at the portal-of-cntry organ at time t (e.g., Kp(t) is the burden

in the pulmonary region of the lung).
Bk(t) The burden in the kth systemic organ at time t.
D Dose to a target organ or tissue.
E Cumulative exposure during the interval (t1,t2).
Ej Cumulative exposure at the end of year j from exposures delivered during

the preceding i(i < j) years.
/ The fraction of the substance that enters the body from the environment.
/„ The fraction of the substance moving from the portal-of-entry organ to the

bloodstream.
/, The fraction of the substance deposited in the Ath organ (e.g., /,, is the

fraction deposited in the pulmonary region of the lung).
G A proportionality constant relating exposure intensity and deposition into

a portal-of-entry organ.
Ia Dose intensity or dose rate.
/, Exposure intensity for year i.
1(1) Exposure intensity at time t.
k In2/jT1/2, where T|/2 is the half-life of the substance in the target organ.
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K A proportionality constant relating dose intensity and organ burden.
Rk(t) The retention function of a substance in the kth organ (e.g., Rr is the

retention function for the pulmonary region of the lung).
I Time.
T Duration of exposure.
VB Volumetric breathing rate in liters per minute.
V, Rate at which a substance is ingested.
w, Weight assigned to exposure delivered in year i.
Y, Year i, during which exposure occurred.
Yt The year in which damage is being measured.
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10 Special Applications of Occupational
Epidemiology Data

1. OVERVIEW

In the preceding chapters, the emphasis has been on ascertaining
whether a particular occupational exposure poses an increased risk
of disease. Complex mathematical models are not usually necessary
for this type of analysis, since the focus is more on detecting the
presence of an excess risk than extrapolating to other exposure lev-
els or populations. However, if an excess risk is found and assumed
to be causally related, then more complex analyses may be war-
ranted. As in other areas of epidemiology, these further studies
involve two main activities: scientific inference and public health
decision making. The use of occupational data in scientific inference
is intended to increase etiologic understanding by determining
which of the currently available biological models are consistent
with the observed data, or perhaps to formulate a new model. Such
etiologic considerations can also have important public health impli-
cations. For example, if a carcinogen appears to act at an early stage
of the disease process, then this suggests the possibility of prevent-
ing disease in previously exposed workers if an agent can be found
that prevents the later stage events from occurring. A further use
of occupational epidemiology data in public health decision making
is in the field of risk assessment, which may involve extrapolating
the available findings to other populations or other exposure levels.

The use of occupational data in both etiologic research and risk
assessment usually involves some form of biological model. It is
important to emphasize at the outset that epidemiologic or experi-
mental data alone cannot completely confirm or refute a biological
model. Epidemiologic data often are quite limited and subject to
large statistical fluctuations, whereas experimental data only pertain
to restricted environmental conditions. Most biological models are
derived deductively using theoretical considerations in conjunction
with findings from previous epidemiologic and experimental stud-
ies. The task is then to assess a particular theory, or group of theo-
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ries, in light of the observed epidemiologic data. Unfortunately, for
many diseases (e.g., cancer) current biological understanding of dis-
ease mechanisms is very crude. Few detailed biological models are
available, and the existing models all enjoy some degree of support.
Many applications of occupational epidemiologic data involve can-
cer research; hence, models of carcinogenesis are used here for
illustration.

Most biological models of cancer assume that exposure to more
than one factor is necessary for disease induction. This assumption
is appealing, since it is known that complete carcinogens are rare
(i.e., very few agents can cause cancer in all exposed subjects, even
at very high doses). This finding could be explained as arising from
the need for a single probabilistic "hit," but it does appear that
more than one factor is needed to produce most cancers. Rothman
(1976) has generalized this viewpoint with the concept of causal con-
stellations. These are combinations of "causes" that together are suf-
ficient for disease to occur. Each causal constellation is composed
of a number of component causes, each of which cannot cause dis-
ease by itself but is effective in combination with the other compo-
nent causes. A disease may have many different causal constella-
tions, and a particular factor may be a component of more than one
constellation.

Specific theories can be derived by introducing restrictions into
this general framework. In particular, if it is assumed that the dis-
ease process involves a certain number of distinct events, then the
various causal constellations may be viewed as different ways of pro-
ducing the same events. For example, one necessary event in a car-
cinogenic process might be the activation of a specific proto-onco-
gene (Franks and Teich, 1 986), and this might be achieved either by
a virus infection or by exposure to a chemical. Thus, the virus and
chemical would be components of separate causal constellations.
On the other hand, if each exposure activated a separate proto-
oncogene, each of which was necessary for carcinogenesis, then they
would be common components of at least one causal constellation.
Biological models, particularly those with a mathematical formula-
tion, usually are oriented toward elucidating necessary events rather
than specific causal constellations. For example, a theory might
assume that cancer occurs through a fixed number of sequential
events, and a particular factor might be assessed in terms of whether
it can cause one or more of the events.

The intention of this chapter is to illustrate the use of occupa-
tional epidemiologic data in models of this type. No attempt is made
to be comprehensive. Instead, some fundamental issues are illus-
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tratcd with several examples. We start with a discussion of the mul-
tistage model of carcinogenesis proposed by Armitage and Doll
(1961). We discuss this model in some detail because this form of
multistage model is assumed most commonly in occupational epi-
demiology. Also, the discussion of this relatively simple model lays
the groundwork for the more complex models that follow (and that
contain the Armitage—Doll model as a special case). Our intention
is not to review evidence supporting or against the validity of the
Armitage-Doll model, but rather to illustrate currently available
methods for examining such models with occupational epidemio-
logic data. In particular, these methods will be illustrated by apply-
ing the Armitage-Doll model in further analyses of data from the
cohort study of asbestos textile workers (Dement et al., 1983).

The second half of the chapter discusses the mathematical devel-
opment and use of various models of carcinogenesis in extrapolat-
ing the findings of occupational epidemiology studies to other pop-
ulations. This area is commonly referred to as risk assessment. Clearly
defined models of carcinogenesis are usually required for this task,
since the populations "at risk" may have quite different exposure
patterns from those examined in previous studies. For example, the
general population may experience a low level of exposure through-
out life, rather than the relatively high exposure levels during the
working years of life that characterize occupational populations. In
addition, it is necessary for risk assessments to show that a model
follows logically from a set of assumptions about the nature of the
disease process.

A brief introduction is followed by an outline of the mathematics
of risk assessment. Several models of carcinogenesis are presented,
and their applications to the calculation of lifetime risk and proba-
bility of causation are outlined. The application of these methods is
then illustrated with published risk assessments for exposures to
ionizing radiation and benzene. Finally, we discuss some of the qual-
itative and quantitative features required of occupational epide-
miology data if they are to be suitable for risk assessment.

2. THE ARMITAGE-DOLL MULTISTAGE MODEL OF
CARCINOGENESIS

2.1. Introduction

One of the most commonly used models for predicting cancer inci-
dence in a population exposed to a carcinogen is the Armitage-Doll
model. This model assumes that, for cancer ultimately to occur, at



where aj is the increase in transition rate j (relative to Rj) per unit
dose rate. The model can be simplified by assuming that the latency
interval (w) is zero and that the dose rate at a particular age is either
zero or a constant (ID). Note that Rt and at are both assumed to be
constant and not dependent on age. Thus, if an exposure occurs
throughout life, the incidence rate at aee t takes the form:

or
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least one cell must pass through k distinct, heritable changes in a
particular sequence. The simplest model assumes that the back-
ground rate for a particular transition j is constant, although in
more sophisticated models the background rate may vary with fac-
tors such as age, the condition of the neighboring cells, or the time
since that cell experienced a previous change(s). The underlying
theory thus assumes that cellular change j occurs with a background
rate Rj that is independent of age. It can be shown (Whittemore and
Keller, 1978) that at age t the background cancer incidence rate
(among non-exposed) B(f) satisfies the following condition in the
absence of confounding:

where w is the time for a fully transformed cell to develop into a
clinically detectable cancer (i.e., latency). This approximation may
be inaccurate if the transition rates are much larger than 10"4 per
cell per year (Moolgavkar, 1978), but a larger transition rate should
not alter the general patterns of effect modification and induction
time to be discussed here.

Usually it is further assumed that the cellular change / occurs in
excess with a carcinogen-induced R'jID(f) that is proportional to the
dose rate In(t) at age t. Note that the model is based on the dose rate
to the relevant target cells. The actual dose rate is indeterminable
but can be estimated either by bioassay methods (e.g., urinalysis) or
from modeling exposure monitoring data.

The transition rate in the exposed population of cells is

where E(t) is the excess incidence rate due to exposure. Hence, the
incidence rate at a particular age (t) is of the form:



Once again, the polynomial only contains terms of the order of /",
or less if a carcinogen affects exactly n stages (n < k).

Equation (10.6) is widely used in risk assessment (Anderson ct al.,
1983), which is discussed in the second part of this chapter. Next
we introduce the further simplifying assumption that only one of
the cellular changes (/) is affected by the exposure of interest and
examine various methods for assessing the temporal relationship
between exposure and subsequent disease risk. However, it should
be noted that some carcinogens (most notably, cigarette smoke)
appear to affect both an early and a later stage (Doll and Peto,
1978). Other agents, such as arsenic (Brown and Chu, 1983) and
nickel (Kaldor et al., 1986), may also affect more than one stage.

2.2. Lifetime Exposure

One special case is when exposure occurs throughout life. In this
situation it can be shown (Whittemore, 1977) that the excess inci-
dence rate E(t) at age t is proportional to tk~} for a\\j < k. (It should
be remembered that we are assuming that exposure affects only one
stage and that the transition rate coefficient at is constant with age
and is a linear function of the dose rate.) Since the background rate
B(t) is also proportional to tk~], it follows that the excess rate is pro-
portional to the background rate at all ages, and the rate ratio is
constant throughout life.

2.3. Exposure Commencing Subsequent to Birth

Occupational exposures generally begin at some age subsequent to
birth. (Exceptions are exposures to genetic material causing herit-
able changes or in utero exposure.) To derive the age-specific inci-
dence rate for an exposed individual we assume that the occupa-
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In general, if a carcinogen only affects n of the k stages (n < k),
then equation (10.5) is of order n, rather than k (i.e., b0, b}, . . . , bn

are all nonzero, whereas b n + ] , bn+2, . , . , bk are all zero). Thus, if a
carcinogen only affects one stage, then the incidence rate in the
exposed population is a linear function of the dose rate. (This is
implicit in the preceding assumption that each cellular change
occurs with an excess rate that is proportional to the dose rate.) In
general, it can be shown (Guess and Crump, 1976) that the lifetime
risk /"(/o) in an individual continuously exposed at a constant dose
rate (/„) is expressed as
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Figure 10-1. Exposure history of a hypothetical worker.

tional (additional) exposure begins at age tn, remains at a constant
level /D for a time period e until age t0 + e, and increases the cellular
event rates from Rt to Rj + R',JU. The individual is then observed
for a further period. At age t the individual has been followed for a
period/(= t — /„). This exposure pattern is represented in Figure
10-1.

Exposure duration (e) is important in at least two respects. At a
constant dose rate (7D), exposure duration is a surrogate measure of
the total dose. A longer duration also implies an increased likeli-
hood that exposure will occur at some time subsequent to the com-
pletion of the j — 1 necessary prior transitions. In this latter situa-
tion duration of exposure is acting as a surrogate for age at
exposure. For simplicity, duration of exposure initially is regarded
as fixed; the situation of continuing exposure is discussed later.

2.4. Fixed Duration of Exposure

When the stage affected is the last, then the excess rate is zero
immediately following cessation of exposure (assuming a zero
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latency period). When the stage affected is not the last, and a cell
receives an increment of exposure at age t(} + x (see Figure 10-1),
the likelihood that this will cause the cell to become fully trans-
formed at age t depends on four factors: (1) the likelihood that the
cell has undergone the j — 1 prior transitions by age /0 + x (pro-
portional to (ta + x)'~]) (2) the likelihood that the exposure will
cause transition j to occur (proportional to /„), (3) the likelihood
that the k — 1 — j subsequent transitions will occur by age t (pro-
portional to (t — (tn + x)*~1-'), arid (4) the likelihood that the final
transition will occur at age / (a constant). The excess cancer inci-
dence (derived from Whittemorc, 1977) is thus of the form

The implications of this formulation will be illustrated for the sit-
uations ; = 1 and j = k — 1.

When; = 1,

Hence, the excess rate increases markedly with length of follow-up
(/) and is independent of age at first exposure (<„). The excess rate
ratio (i.e., the ratio of the excess incidence rate to the background
incidence rate) is

The excess rate ratio decreases with increasing age at first exposure
(tn). It can be shown (Pearce et al., 1986) that E(i)/B(t) increases with
increasing length of follow-up (/) for a relatively long period of time
before eventually beginning to decrease.

When j = k - \,

The excess rate (E(t)) increases with increasing age at first exposure
(£„) and is independent of length of follow-up (/) for fixed duration
of exposure (e). The excess rate ratio is
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The excess rate ratio decreases with increasing length of follow-up
(/). The relationship with age at first exposure (t0) depends on the
relative lengths of follow-up and exposure. When the length of fol-
low-up is very much greater than the exposure duration, the excess
rate ratio increases with increasing age at first exposure, for fixed
length of follow-up. However, when exposure is still continuing or
has just been terminated (i.e., / = e), the excess rate ratio will
decrease with increasing age at first exposure (Pearce ct al., 1986).

2.5. Continuing Exposure

For exposures that continue until the end of follow-up, the length
of follow-up (/) is equal to the duration of exposure (e). Thus, the
latter term should be substituted for length of follow-up (/') in the
preceding formulas. This situation can occur when studying workers
who are still employed or workers who are exposed to a substance
with a long biological half-life. It can then be shown that, for fixed
duration of exposure, the genera] patterns for age at first exposure
are the same as the preceding. As would be expected, when duration
of exposure is permitted to vary, the excess rate and excess rate
ratio increase with duration of exposure. When a carcinogen acts at
an early stage, or exposure commences early in life, E(t) ~ ek~]. This
pattern was observed by Doll and Pcto (1978), who found the inci-
dence of lung cancer in cigarette smokers to be proportional to the
fourth or fifth power of duration of smoking, for a fixed level of
daily cigarette consumption.

2.6. Implications

Figures 10-2 and 10-3 illustrate the preceding findings for a hypo-
thetical five-stage carcinogenic process. Figure 10-2 illustrates the
relationship of the rate difference and excess rate ratio to age at first
exposure, given a fixed duration of employment (five years) and a
fixed length of follow-up (20 years). Figure 10—3 illustrates the rela-
tionship of the same two effect measures to length of follow-up,
given a fixed duration of employment (five years) and a fixed age at
first exposure (15 years). The patterns for carcinogens affecting
intermediate stages (not shown) are intermediate to those for first-
stage and penultimate-stage carcinogens.

Figure 10-2 demonstrates that age at first exposure is an impor-
tant potential effect modifier. In particular, if a carcinogen acts at
any stage other than the first, then the rate difference will increase
with increasing age at first exposure, since the necessary prior tran-
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Figure 10-2. Rate difference and excess ratio by age at first exposure, for a fixed
duration of exposure (five years) and length of follow-up (20 years), for a hypo-
thetical five-stage carcinogenic process.

sitions will be more likely to have occurred. This pattern has been
observed in studies of solid tumors in heavily irradiated organs
(Darby et al., 1985) and in a study of bladder cancer in dyestuff
workers (Case et al., 1954), although in the latter instance the
increase was relatively moderate.
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Figure 10-3. Rate difference and excess rate ratio by length of follow-up, for a
fixed duration of exposure (five years) and age at first exposure (15 years), for a
hypothetical five-stage carcinogenic process.

Figure 10—3 demonstrates that length of follow-up is also an
important potential effect modifier. The effect of exposure to an
early-stage carcinogen is small until sufficient time has elapsed for
the later-stage transitions to occur. For example, if the atomic bomb
survivor studies had been terminated after about 15 years, the leu-
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kemia excess would have been detected but not the increased risks
for solid tumors (Boice and Land, 1982). On the other hand, the
rate difference associated with a carcinogen affecting the penulti-
mate stage remains approximately constant after exposure stops.
This pattern has been observed in studies of cigarette smoking
(Peto, 1977). Thus, cigarette smoking appears to be both an early-
and a late-stage carcinogen (Doll arid Peto, 1978).

Although the factors of age at risk and duration of exposure do
not enter directly into the simple formulation of the Armitage-Doll
model, they may be effect modifiers if some of the simplifying
assumptions are relaxed. For example, the background transition
rate for a late-stage transition might be a function of age at risk
rather than constant. In particular, if a carcinogen acts at an early
or intermediate stage and one of the later-stage transitions generally
occurs at a specific age, then exposed persons will only develop dis-
ease when they become old enough for some target cells to have
undergone the relevant transitions, irrespective of the age at which
they were first exposed. Peto et al. (1975) have presented evidence
suggesting that cancer does not appear to be a natural consequence
of aging. However, other studies have suggested that transition
rates corresponding to a given exposure are higher in young per-
sons and may also depend on age-related endogenous factors, such
as hormone levels for certain cancers (Whittemore, 1977). Such a
phenomenon has been suggested for breast cancer, where radiation
appears to have an early-stage effect but operates in conjunction
with a strong hormonally mediated promoting action (Moolgavkar
et al., 1980). In other words, radiation appears to initiate cellular
changes that increase the likelihood that other, age-related events
later in life result in breast cancer, with excess incidence rates pro-
portional to the age-specific background incidence rates (Land and
Tokunaga, 1980).

Duration of exposure will be an effect modifier if the effect of a
given cumulative exposure depends on the delivery rate [i.e., if R*(t)
is not a linear function of /n(0]- F°r example, a given nonlethal
radiation dose may be less effective (due perhaps to different cel-
lular repair probabilities) if an equivalent dose is delivered in
smaller fractions over a lengthy period than if it is delivered over a
relatively short period. On the other hand, if the overall dose is very
large, then it will be less effective if it is delivered over a relatively
short period, as cell killing may occur (Beebe, 1982).

The findings for duration of exposure in the simpler model are
also of importance, as duration is predicted to be more important
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(in terms of excess cancer incidence) than exposure intensity for a
carcinogen that affects only one or two stages (Doll and Peto, 1978).
This suggests that the characterization of dose as some function
(usually assumed to be linear) of the simple product of intensity and
duration may not be optimal (Breslow and Day, 1980).

3. APPLICATION TO STUDY OF ASBESTOS
TEXTILE PLANT WORKERS

The implications of the Armitage-Doll model for asbestos-induced
lung cancer will be explored, using the cohort study of lung cancer
in 1,261 white male workers from an asbestos textile manufacturing
plant (Dement et al., 1983), described in Chapter 5. Three
approaches will be illustrated here: (1) induction time analyses, (2)
analysis of the relationship of the excess risk to age at first employ-
ment and length of follow-up, and (3) direct fitting of the Armitage-
Doll model.

3.1. Induction Time Analyses

One approach to considering induction time has been described by
Rothman (1981). This method involves taking the expected contri-
bution of exposure to be constant over some "window" of time and
zero outside of it. Thus, this approach only considers exposures
during some specified time interval, while ignoring other exposures.
This can be regarded as an extension of the exposure lagging
approach (see Chapter 5) in that not only are recent exposures con-
sidered to be etiologically irrelevant, but so are exposures that
occurred in the distant past. For example, we might consider expo-
sures 10-25 years prior to a particular person-year at risk as poten-
tially most relevant etiologically; as a result, exposures before and
after this time window would be assigned values of zero. Thus, Roth-
man's method does not attempt to evaluate total cumulative expo-
sure, but only the cumulative exposure delivered during the etio-
logically relevant period. Table 10-1 shows the rate ratio estimates
for lung cancer mortality for a cumulative exposure of >5,000
fibers/cc X days versus <5,000 fibers/cc X days, obtained using
various exposure time windows. Using a window of 15—19 years, a
particular person-year (or death) would be classified as "exposed"
if the individual accumulated > 5,000 fibers/cc X days during the
period 15-19 years previously. Note that the exposure windows are



Table 10-1. Rate ratios for lung cancer for >5,

Exposed

Exposure
"window"

0-4
5-9

10-14
15-19
20-24
25-29
>30

Deaths

13
16
19
17
14
10
5

Person-
years

4,341
4,123
3,375
2,609
1,871
1,186

725

000 versus <5,000 fibers/cc

Non-exposed

Person-
Deaths years

22 28,013
19 28,231
16 28.979
18 29,745
21 30,483
25 31,168
30 31,629

X days for various

Rate"
ratio

1.5
2.8
3.9
4.9
5.7
3.9
3.4

exposure "windows"

95%
Confidence

interval

0.5,3.9
1.3,6.0
1.9,7.9
2.5,9.7

2.9,11.3
2.0,7.5
1.7,6.3

Adjusted'
rate ratio

0.8
1.3
1.3
1.4
4.6
0.7
1.2

95%
Confidence

interval

0.3,2.3
0.5,3.6
0.5,3.9
0.4,4.8

1.3,16.3
0.2,2.5
0.4,3.5

" Adjusted for age and calendar year.

'' Adjusted for age, calendar year, and exposures occuriing in other exposure windows.
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not mutually exclusive but are treated as separate, independent
exposures [i.e., a particular person-year (or death) is assessed seven
times, once for each exposure window]. Thus, each line of Table
10-1 contains all the person-years and lung cancer deaths in the
cohort.

Table 10—1 gives two sets of rate ratio estimates. In the first, the
effect of exposure in a particular time window was assessed without
considering exposures in other time periods. The rate ratios are
particularly elevated for exposures occurring 10-29 years previ-
ously but are still elevated above the null value when considering
more recent exposures or those occurring more than 30 years pre-
viously. This pattern is consistent with other published reports of
relative risks for asbestos workers that declined but that are still ele-
vated more than 30 years after commencement of exposure
(Walker, 1984). However, this pattern can be misleading in that the
effect of exposure in a particular time window may be confounded
by the effects of exposures in other windows. Hence, the rate ratio
estimates for each window were also calculated with adjustment
made for the effects of exposures in other windows. The resulting
estimates are imprecise, because of the strong correlation between
exposures in the various windows. Nevertheless, Table 10—1 sug-
gests that the increase in the rate ratio is primarily due to exposures
occurring 15-24 years previously, whereas there is little effect from
exposures occurring 0-14 or >25 years previously. Intuitively this
suggests that asbestos may act at an intermediate stage, but many
alternative explanations are available. For example, the same pat-
tern might be observed if asbestos acted at an initial stage, but death
of the cancerous cells could occur because of immune surveillance
or from direct cell killing by the asbestos fibers, or if asbestos
affected a late stage with the long lag resulting from prolonged
retention.

3.2. Relationship of Risk with Age at First Employment and Length
of Follow-up

Induction time analyses can assist in determining whether a carcin-
ogen appears to operate at an early or late stage in the etiologic
process. However, if attention is being focused on a particular
model, such as that proposed by Armitage and Doll, then it is desir-
able to explore the exposure—disease relationship in more depth
and to determine which forms of the model are most consistent with
the relationship of incidence to age at first employment and time
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Table 10-2. Person-years and observed and expected numbers of lung cancer deaths
among asbestos textile workers

Variable

Age at first employment
'<20
20-24
25-29
30-34
>35

Time since first employment
<15
15-19
20-24
25-29
>30

Cumulative exposure"
<1
I -9
10-39
40-99
>1()0

Person-years
at risk

13,554
8,817
3,995
2,841
3,147

2 1 ,933
4,393
3,369
2,090

569

13,146
12,823
4,976
1,270

139

Observed

6
6
5
9
9

6
6
5

14
4

5
10

7
11

2

Expected

1.83
2.14
1.67
1.81
3.38

2.57
1.98
2.62
2.61
1.06

3.73
3.69
2.18
1.10
0.13

SMR

3.28
2.80
2.99
4.97
2.66

2.34
3.06
1.91
5.36
3.77

1.34
2.71
3.21

10.00
15.39

" ] ,000 fibcrs/cc X (lays.

since first employment (Brown and Chu, 1983; Kaldor et al., 1986).
The assessment should involve both relative and excess rate esti-
mates to explore fully the relationships predicted in Figures 10—2
and 10-3.

Since age at risk and calendar year are potential confounders, the
usual procedure is to calculate observed and expected deaths, with
adjustments made for these two factors. Thus, in our analysis of the
asbestos textile plant workers' cohort data, the numbers of person-
years at risk and observed lung cancer deaths were calculated
according to three factors: age at first employment in five five-year
age-groups, time since first employment in five five-year groupings,
and cumulative exposure in five groupings (Table 10-2). For each
of the 125 combinations of these factors, the expected numbers of
lung cancer deaths were calculated using rates for U.S. white males,
jointly stratified by age and calendar year, in five-year categories of
each.

Table 10-2 summarizes the observed and expected deaths for
each of the three study factors separately. However, the most
appropriate analysis involves calculating the effect estimates for
each factor, adjusted for the other two (as well as for age and cal-
endar year). This analysis was accomplished using Poisson regres-



where EMR is the excess mortality ratio, Obs is the observed num-
ber of deaths, Exp is the expected number on the basis of national
rates, PYRS is the person-years at risk, and X}, Xz, . . . , X; represent
various categories of age at first employment, time since first
employment, and cumulative exposure. If cumulative exposure data
had not been available, then separate terms for exposure duration
(in years) or exposure intensity (e.g., "high," "medium," and "low")
could have been substituted.

The findings from both models are displayed in Table 10-3. The
association of lung cancer mortality with cumulative asbestos expo-
sure is strong and consistent with that shown in Chapter 8. The

Table 10-3. Estimated adjusted rate ratios (SMRs) and excess rate ratios (EMRs) for lung
cancer among asbestos textile workers

Variable

Age at first employment
<20
20-24
25-29
30-34
>35

Time since first employment
<15
15-19
20-24
25-29
>30

Cumulative exposure
<1
1-9
1 0-39
40-99
>100

Rate ratio (SMR)

1.0"
0.9
0.8
1.5
1.1

1.0"
1.1
0.7
1.7
0.6

1.0°
2.0
2.4
7.6

18.0

Relative excess rate (EMR)

1.0"
1.6
0.8
7.4

11.7

1.0"
2.5
5.6

26.9
1 5.4

1.0"
10.3
13.0
48.6

163.5

" Reference category.

The second is the rate difference (excess rate) model suggested by
Kaldoretal. (1986):
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sion (see Chapter 8) implemented with GLIM (Baker and Nelder,
1978). Two models were fitted. The first is the rate ratio model
described in Chapter 8:
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excess rate appeared to increase with increasing age at first expo-
sure. If the Armitage-Doll model is applicable, then this finding
suggests that asbestos does not act solely at the first stage because
the excess rate should be constant across age at first exposure cat-
egories if that were the case, assuming that the rates for the addi-
tional transitions are not affected by age (see Figure 10-2). Simi-
larly, the excess rate appeared to increase with increasing time since
first employment, suggesting that asbestos does not act solely at the
penultimate stage (see Figure 10-3). Alternatively, asbestos might
affect an intermediate stage, rather than both an early and a late
stage.

3.3. Direct Fitting of the Armitage-Doll Model

The preceding methods for assessing the relationship of risk with
factors such as age at first employment and time since first employ-
ment are widely used. However, most results from analyses of this
type are inconclusive in that they typically only indicate that a par-
ticular agent does not act solely at the first or penultimate stages of
the carcinogenic process. Identifying specific intermediate stages
cannot be accomplished. Furthermore, such analyses do not allow
for changes in exposure intensity over time.

These problems can be mitigated to some extent when quantita-
tive exposure data are available to assess the relationship of each
increment of exposure to later increases in risk. The assessment is
carried out for each possible stage of the model in order to ascertain
which stages of action are consistent with the observed data. Thus,
for a particular person-year at risk occurring at age ta + x, the expo-
sure obtained in each preceding year is weighted by (f — x)''~l~'(tn

+ x)' ' [see equation (10.7)], and the contributions from each pre-
ceding year are summed. This procedure is analogous to that used
for calculating cumulative exposure, except that the exposure for
each year is weighted by its expected contribution to excess inci-
dence on the basis of the Armitage—Doll model. This weighted sum
is calculated a number of times, each time assuming that the carcin-
ogen acts at a different stage. Thus, the calculations are performed
for each possible value of; [e.g., from j = 1 to ;' = 6 (assuming a
six-stage process)]. These weighted exposure estimates are then
applied to the observed data.

Table 10-4 shows rate ratio estimates (standardized for age and
calendar year) obtained using both a categorical exposure classifi-
cation and those obtained with a continuous exposure classification.
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Table 10-4. Age-standardized rate ratios and chi-squares obtained by assuming that asbes-
tos acts at various stages of a six-stage carcinogenic process

Stage at
which

asbestos
acts

1
2
3
4
5
6

Categorical

Exposure category

1"

1.0
1.0
1.0
1.0
1.0
1.0

2

1.8
2.2
1.6
1.6
2.0
1.1

3

8.2
7.3
9.4
9.3
4.8
2.2

4

3.5
6.1
9.8
6.3
5.3
3.7

3

8.0
5.8
4.9
5.7
7.1
7.0

6

1 1.4
13.1
8.7

13.5
14.7
5.3

7

9.1
12.7
15.2
12.1
13.6
6.4

Chi-
square
(6 df)

19.4
19.8
24.9
24.0
20.1
16.1

Continuous

R"

1.27
1.37
1.39
1.44
1.50
1.23

Chi-
square
(1 df)

2.5
3.7
5.4
6.6
8.8
8.2

" Reference category.

'' Based on estimate for mean exposure level.

The categorical analysis involved grouping the values for each expo-
sure variable into seven categories, from lowest to highest, with each
containing five deaths. Equal allocation of deaths was used to yield
the greatest statistical precision. The continuous exposure classifi-
cation was achieved by assigning scores to each of the exposure cat-
egories, based on the mean exposure score for the person-time data
in the category. It should be noted that the rate ratio estimates for
the continuous analysis are based on the mean exposure levels for
the person-time data. These are considerably lower than the mean
exposure levels for the lung cancer cases, and the rate ratio esti-
mates for the categorical analysis (which grouped the exposure data
so as to ensure an adequate number of cases in each category) are
thus considerably higher.

The findings in Table 10—4 should be regarded with reservation
because of the relatively small number (35) of lung cancer deaths.
However, the chi-square values for the categorical analyses suggest
that the best fit to the data is obtained by assuming that asbestos
acts at stages 3, 4, or 5, whereas the continuous analyses suggest
that asbestos acts at stages 4 or 5. The continuous analysis is theo-
retically more valid, since it is assessing the strength of the linear
trend suggested by the Armitagc—Doll model. However, it should
be remembered that we used exposure rather than dose data and
that the relationship between an exposure and the resulting organ
dose may not be linear (Hoel et al., 1983). Hence, the observed
exposure-response relationship may be nonlinear, even though the
actual (unmeasurable) dose-response relationship is linear. The cat-
egorical analysis may therefore be more appropriate. In fact, all the
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different exposure classifications fitted the data well, and this small
data set does not contain enough deaths to differentiate between
the various models. However, if it is assumed that the Armitage—
Doll model is valid, then the data are generally consistent with
Thomas' (1983) finding that asbestos appears to act at the fourth
stage of a six-stage process of lung carcinogenesis.

3.4. Some Additional Comments on the Armitage-Doll Model

The preceding discussion has illustrated the application of the Armi-
tage-Doll model to occupational data and has demonstrated two
problems of such analyses. First, most occupational studies do not
generate enough cases of site-specific cancers to distinguish
between the various forms of the model. (This is also true for mod-
eling other diseases in many instances.) Second, the model has an
empirical derivation but lacks a biological foundation. It is of par-
ticular concern that the model does not allow for multiplication and
death of cells in any preneoplastic stage. Armitage and Doll (1957)
have also proposed a two-stage model in which cells that have
undergone the first transition grow exponentially, but this model
still cannot account for the age-specific incidence patterns for
embryonal cancers or leukemia (Peto, 1977). Additionally, no more
than two separate stages have been demonstrated experimentally
(Moolgavkar and Knudson, 1981), in apparent contradiction with
the suggestion of a five- or six-stage process obtained using the stan-
dard Armitage-Doll (1961) model. Furthermore, there is reason to
doubt the assumption that the transition rates do not depend on
age, at least for some cancers.

Despite concerns regarding the interpretation of the Armitage—
Doll model, analyses of the type presented above can at least suggest
whether a carcinogen appears to act at an early, intermediate, or
late stage. Furthermore, the general statistical methods illustrated
here will retain their usefulness as further models are developed.

4. INTRODUCTION TO RISK ASSESSMENT

In the second part of this chapter, we discuss the use of occupa-
tional data in risk assessment using multistage models. The task of
a risk assessment is to estimate the effects that might occur following
an exposure. This might be achieved using theories, extrapolations,
direct experience, judgments, or some combination of these. Thus,
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the focus is not limited to the predictions of a particular model, but
includes assessments of predictions from several competing models
and their relative degrees of support.

In some countries, such as the United States, the result of a risk
assessment is typified by criteria documents prepared in support of
regulatory standards. Such documents describe (1) existing expo-
sures to the substance of interest, (2) routes by which a population
is exposed, (3) how the substance behaves in the body, (4) the mech-
anism by which the substance produces health effects, (5) the kinds
of health effects likely to occur as a result of exposures at the levels
of interest, (6) the expected incidence of such effects in the popu-
lation, and (7) methods for controlling exposures. An epidemiolo-
gist is most likely to be involved in developing an understanding of
features 5 and 6, although cpidemiologic information might also be
sought for any of the other features.

Risk assessment often requires extrapolation of epidemiologic
findings to other age groups, to different levels or routes of expo-
sure, and to the end of the normal human lifespan. Ideally, infer-
ences of risk should be supported by a clearly detailed line of
reasoning, proceeding from empirical observations through devel-
opment and testing of theory and associated mathematical models
(Crawford-Brown and Pearce, 1989). It must then be shown how
other inferences might arise if a different choice of data, theory, or
model had been made. Finally, a degree of support should be
assigned to each step in the line of reasoning leading to each infer-
ence. The degree of support may be quantitative, but usually arises
from qualitative judgments.

5. THE MATHEMATICS OF RISK ASSESSMENT

Often risk assessments are performed in anticipation of regulatory
action, which can be based on either of two forms of inference. If
the regulatory action is designed to limit a risk below a prescribed
level, the regulatory approach is considered to be probability-based.
It is necessary then to develop the mathematical functions required
for calculating lifetime risk resulting from various patterns of expo-
sure. This approach will be illustrated with a detailed example of
risks associated with radon exposures. At other times, the relevant
information may not be of sufficient quality to warrant a detailed
calculation of the probability of an effect at exposure levels below
those encountered occupationally. In that case, cpidemiologic data
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may be used only to determine the lowest exposure level (or dose)
that has been associated with a consistent elevation in incidence in
an occupationally exposed population. Such an approach is said to
rely on the concept of a no observed effects level (NOEL). An example
of this approach concerning occupational exposures to benzene will
be presented briefly near the end of this chapter. In the meantime,
we will focus on probability-based risk assessments and look first at
some of the requisite mathematical functions.

The risk assessment process can be divided conceptually into two
distinct steps (Anderson et al., 1983). The first questions addressed
are, "Is there evidence that exposure to substance X produces effect
Y?" and, "What is the strength of this evidence?" The second step
asks, "If such evidence is firm, then what is the lifetime risk (i.e., the
cumulative incidence up to the end of the "normal" lifespan)
imposed by exposure to substance X at level D throughout life?" In
this section we explore how the lifetime risk is estimated in a risk
assessment. We focus on the form that the necessary mathematical
models might take in such an assessment. There are three questions
of principal interest:

1. What is the form of the dose—response curve for the substance?
2. What is the shape of the temporal function describing the appear-

ance of the effect after exposure?
3. What is the influence of age at exposure on questions 1 and 2?

5.1. Dose-Response Models

In an earlier section of this chapter, we discussed the application of
the Armitage—Doll model to epidemiologic studies. The Armitage—
Doll model is a special case of a more general category of models
known as hit-target models that specify that an organ or cell contains
some finite number of targets that must be hit in a prescribed
sequence. The present section develops the general mathematical
relations underlying the hit-target models and shows how the Armi-
tage—Doll model, linear model, and several other related mathe-
matical models are derived from a common conceptual framework.
This development should aid in demonstrating the assumptions (or
approximations) underlying such models and suggests the form
more general models would take if the approximations are deemed
inadequate. Other models, based on quite different assumptions
from those involved in hit-target models are available but are not
discussed here.
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Most risk assessments assume a linear dose-response model for
acute exposures. In addition, it is assumed that the dose delivered
during the course of each year (i.e., the integral of the dose rate
over the year) is the independent variable for predicting the lifetime
risk imposed by exposures in that year. A final important assump-
tion is that risks imposed by each year of exposure are additive and
independent. These assumptions are used because they simplify the
necessary mathematics and because they appear to be valid for many
carcinogenic substances.

The linear dose—response function is a special case of a more gen-
eral multistage model. We will derive the equations for a system in
which cells are believed to exist in one of three states, although any
number of states may be assumed. This general approach produces
the Armitage-Doll model as a special case. It is then possible to
describe the condition of an organ or tissue by specifying the frac-
tion of cells in each of the three states. The resulting model is
referred to generally as a state-vector model. The first state is assumed
to consist of cells that have received no damage from the substance.
The second state consists of cells that have had one of two necessary
targets damaged, but not the other. Such cells are considered to
have received subeffectual damage. The third state consists of those
cells in which each of the two targets has been damaged. Only cells
in the third state will manifest the effect; thus, the response of the
organ is assumed to be related functionally to the number of cells
in the third state.

Let D be the dose delivered to the organ in a given year. In gen-
eral, D is proportional to the integral of the organ burden through-
out the year. There are assumed to be rate constants, k l 2 , ka, and
& ] 3 , that describe the fraction of cells per unit dose transferring
from one state to the next. In other words, ktl is the fraction of cells
moving from state i to state j per unit dose, interpreted here as the
probability per unit dose that a chemical molecule, a fiber, or a
radiation unit strikes the target associated with the transition. At
times, a single molecule, fiber, or unit of radiation might strike sev-
eral targets simultaneously, resulting in a transition by more than
one state. This case probably is more relevant to radiation than
chemicals or other physical substances, so kn should be /ero for
most substances. In addition, there might be a repair process that
moves cells from a higher to a lower state (e.g., from state 2 to state
1), but this consideration can be ignored to simplify matters in this
discussion. The general model then looks like the following:
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Before reviewing the equations specifying this model, it will be
useful to examine various sets of biophysical assumptions that can
be made. Each set is part of the class of hit-target models, in which
the transitions arc assumed to occur as a result of distinct hits to
some cellular target, with the rate of hits assumed to be propor-
tional to the concentration (or density in the case of radiation) of a
substance (or its active metabolite) at the target. Organ or cell con-
centrations can serve as surrogates of subcellular target concentra-
tions. Thus, there are two ways to view the resulting model. Both
approaches assume that the model applies to individual cells; there-
fore, the probability of producing an effect in an organ is given
approximately by the product of the probability of producing an
effect in a cell times the number of cells.

In the first approach, transitions must occur in a specific tem-
poral sequence such that state 2 corresponds to cells sustaining a
hit to a very specific target. The rate constant kV2 then applies to this
particular transition, and the rate constant &23 applies to hitting the

next target in the sequence, given that the first has been hit. For
example, such a model might apply if a molecule can cause the tran-
sition from the second to third state only if a prior hit has changed
the shape of the target into a suitable form.

A second approach is to view the transitions as independent
events that can occur in any sequence. In this case, state 2 corre-
sponds to cells that have had any one transition, and state 3 corre-
sponds to cells that have had both necessary transitions. (Note that
this model can easily be extended to n states.) Therefore, the tran-
sition rate constant &12 in the model is the sum of the rate constants
for all transitions, whereas the transition rate constant kTi is equal
to this sum minus the rate constant associated with whichever tran-
sition occurred to place the cell in the second state. It is easier math-
ematically, however, to divide such a three-state model into two sep-
arate two-state models, with state I being common to each model.
In that case, kri is the transition rate for a particular transition, and
the number or fraction of cells in state 2 is found for each separate
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transition. The probability of both transitions occurring then is
equal to the product of the individual probabilities associated with
movement to the second state for each transition.

Consider first the case where the transitions must occur in a spe-
cific sequence (the assumption of the Armitage-Doll model). We
can now write differential equations describing the rate of change
of cells in each state as a function of the dose (D) as it accumulates
during a year. Assume that the first approach is adopted and that
the transitions must occur sequentially. These equations are

In these equations, N,(0) is the number of cells in the z'th state at
the beginning of exposure in the year, and N}(0) generally is a func-
tion of age as the various organs grow. The solution for any state
greater than three can be obtained through the repeated use of the
Bernoulli solution. When N}(0) remains constant, equation (10.19)
may be shown to reduce to equation (10.1) of the Armitage—Doll
model. This result has also been reported by Whittemore and Keller
(1978) and Moolgavkar (1978).

When all the transitions are assumed to be independent, so that
they need not occur in any sequence, the preceding model is partic-
ularly simple. Only states 1 and 2 exist, and if we focus on a partic-

Equations (10.14) to (10.16) may be solved serially using the Ber-
noulli formula (Kells, 1960) to yield
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ular transition, the fraction of cells with that transition will be given
by

where i refers to the z'th kind of transition and k, corresponds to the
rate constant associated with that transition. If there are two nec-
essary transitions, the fraction (/) of cells with the potential for yield-
ing the effect of interest is

This expression is easily generalized for n transitions. At low values
of D, it reduces to equation (10.6), which is specified by the Armi-
tagc-Doll model. In fact, equation (10.21) is identical to the Armi-
tage-Doll model if the latter is generalized to apply to any dose
regardless of magnitude.

Because of the complexity of the preceding equations, and the
scarcity of data usually available from occupational epidemiology
studies, essentially all risk assessments use a one-hit model that gives
rise to a linear dose—response curve at low doses. Under a one-hit
model, there are only two states (1 and 2), as discussed earlier, and
the equations are

The response then is proportional to N~Z(D), which for small values
of kvlD yields

which is the familiar linear model.

5.2. Lifetime Risk

Two forms of risk coefficients have been used frequently in epide-
miologic risk assessments. The first is the relative risk coefficient,
which specifies the fractional increase above the natural rate of an
effect produced by a given dose ((RR — l)//3). The relative risk coef-
ficient can be a function of age at exposure. If R(D) is the function
relating the relative risk coefficient and the dose, and if In(t) is the
natural incidence rate at a time t, after delivery of the dose, then
the excess incidence rate /, at time / is



Two modifications are necessary in equations (10.25) and (10.26).
Most effects are characterized by a latency (empirical induction)
period / and a plateau period p. The plateau period is the time dur-
ing which the excess incidence rate is assumed to hold and, for solid
tumors, usually is assumed to be infinite. For leukemia and bone
sarcomas, p may be in the range of 10—20 years. If a dose is deliv-
ered at t equal to zero, then the excess incidence rate rises to the
level given by equations (10.25) or (10.26) abruptly at t equal to /,
remains at these levels until t equal to I + p, and then immediately
drops back to zero.

These considerations can be combined to determine the lifetime
risk imposed by an environment or action that delivers an annual
dose D(A) as a function of age A. In other words, the dose may be
different at each age due to differences in exposure timing, metab-
olism, and so on. For the relative risk approach, the excess inci-
dence rate at any age X will be
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In most risk assessments, R(D) is assumed to be constant at all times
after dose delivery, with only a few modifications. It is also impor-
tant that R(D) be calculated from epidemiologic data using values
of assumed latency and risk plateau (see the following discussion).

A second approach is to estimate the absolute risk coefficient, which
assumes no explicit causal link between the excess incidence rate
and the natural incidence rate. Instead, this second approach
assumes a fixed excess incidence rate that remains constant in time
after delivery of the dose, at least until the end of some finite period
of disease expression. Let this absolute risk coefficient be given as
G(D), with units of excess incidence rate. The excess incidence rate
at time t after delivery of the dose (D) then is simply

where RA(D(A)) indicates the relative risk coefficient at age A (sub-
script) and for an annual dose at age A (D(A)). The lower bound of
the integral arises because a dose delivered at an age separated from
X by more than the plateau period cannot contribute to the excess
incidence rate at age X. The value of X — p cannot be less than zero.
The upper bound arises because a dose delivered at an age sepa-
rated from X by less than the latency period cannot contribute to
the excess incidence rate at age X. This approach is similar to the
use of exposure "windows" for induction time assessment, demon-
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strated in Section 3.1 of this chapter. It should be stressed that the
estimate of RA(D) should be obtained by analyzing the epidemiologic
data with the same assumptions about I and p as will be used in the
risk assessment. The analogous equation for an absolute risk model
is

The lifetime risk then may be calculated by integrating IC(X) from
age 0 to the end of life, given here as age E. (The value of E usually
is chosen as 70 or 75 years.) The lifetime risk L may then be shown
to be

for the relative risk approach, and

for the absolute risk approach.
Alternatively, competing risks can be incorporated, and the

model adapted to measure true lifetime risk (rather than risk to age
E), by using

where S(X) is the probability of surviving to age X, derived either
from the current general population lifetable or from modeled
death rates. Here we discuss only the simpler approach of calculat-
ing the lifetime risk using equations (10.29) or (10.30). Several func-
tions must be determined. First, it is necessary to calculate D(A), the
dose delivered during each year of life, through the use of equations
described in Chapter 9. The dose-response function at age A,
RA(D), is best determined through epidemiologic studies involving
short-term exposures at various ages. In practice, however, a linear
dose-response function usually is assumed a priori, and maximum
likelihood estimates of the parameters are determined from the cat-
egorical data. Determining the age dependence of R(D) requires
cither: (1) that doses in the study population in each age group
extend only over time periods that are short compared to the time
scale of significant changes in R(D) or (2) that R(D) be determined
from data obtained on chronic exposures by deconvolution of equa-
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tions (10.29) or (10.30) to yield RA(D) from the value of /, in differ-
ent exposure groups. Some simpler approaches will be examined in
the example of radiation exposures in Section 6.4, which will also
illustrate the use of the mathematical relations presented here.

5.3. Probability of Causation

The findings of a risk assessment may be brought to bear on a
loosely related question that typically arises in court cases (Shavell,
1980): "Given the fact that exposure X and effect Y occurred in an
individual, what is the probability that X caused Y?" Such a question
asks for a calculation of probability of causation. The simplest case of
probability of causation is when the effect only occurs after a par-
ticular form of exposure and never is produced otherwise. In that
case, the appearance of X and Y in the history of an individual
implies with certainty (or as close to certainty as can be obtained)
that X caused Y. The only remaining issue is whether a particular
source produced the exposure X. It should be appreciated that
apparent disease causation by one and only one exposure may sim-
ply reflect incomplete understanding of etiology. Moreover, some
diseases fit this description because of etiologic diagnoses (e.g.,
silicosis).

More generally, we arc concerned with studying the etiology of
diseases with multiple causative factors, some of which may operate
in combination. Two different sets of assumptions might then be
adopted for computing the probability of causation. The first is
where the sources of risk are mutually exclusive, often referred to
as the assumption of "disjoint" causes. In other words, there may
be n sources of exposure that could yield the effect, but it is believed
that only one source resulted in the effect that appeared in an indi-
vidual. This is conceptually analogous to assuming a single hit model
for the effect, with the effect occurring whenever the first stage is
produced. A second approach assumes that the effect occurs only
after several stages and that each of the sources can act at some
subset of these stages, with the various subsets perhaps being dif-
ferent. The more simple problem of disjoint causes is considered
first.

Let P(Y | X) be the excess probability of developing a disease at a
specific age as a result of an exposure X at another specific age or
during some past period of time. For disjoint causes, the probability
that X caused Y (Pc) is



where P(Y \ N) is the probability of developing cancer at the age of
interest from background sources (the "natural" incidence), and
P(Y | S,-) is the excess incidence from exposures to other substances
Si that might appear in the history of an individual. For example, let
the effect be lung cancer. If X is exposure to uranium and the indi-
vidual also smoked and was exposed to asbestos, then P(Y \ N)
would be the probability of a nonsmoker who had not experienced
exposures X or 5 developing lung cancer, P(Y \ S,) would be the
incremental risk associated with exposure to cigarettes of magni-
tude Si, and P(Y \ S2) would be added risk contributed by exposure
to asbestos at magnitude 52. This approach clearly assumes disjoint
causes since P(Y \ S\) is not a function of the exposures S2 or X, and
vice versa. This approach becomes conceptually flawed when the
various probabilities approach unity because the excess incidence
ceases to be an appropriate measure of the fraction of individuals
who develop disease from exposure X. In that case, the probability
of causation can be underestimated.

The situation is considerably more complex when at least two
exposures are not disjoint (i.e., when they are a part of at least one
common causal constellation). We will only examine the situation
where there is one main exposure (X) and one other exposure (S).
First consider the situation where exposure S is absent. Then from
equations (10.32) and (10.33),
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where P(Y \ X + U) is the probability of developing the effect at
the age of interest, given an exposure X and all other causes (IT) of
that effect (i.e., the cumulative incidence up to the age of interest
in persons exposed to X). For example, if the effect is cancer, P(Y \
X + U) is the probability of an individual developing cancer at a
particular age as a result of an exposure X or any other source. The
probability P(Y \ X + U) may be subdivided into the individual
probabilities (assuming all the probabilities are small):

where P(Y \ X,S) is the incremental probability (over background)
that an individual will develop the effect at the age of interest due
to exposure X, in the absence of S. If we then define Rx as the inci-
dence rate ratio (relative risk) at the age of interest associated with
exposure to X in the absence of S, then Rx satisfies the relation



Again, this relation is only valid when the individual probabilities are
small.

The relevant equations are more complex when S is present, and
we will only consider the case when X and 5 have a multiplicative
joint effect (i.e., when Rxs = RXRS). Here Rxs is the rate ratio due
to X and S in combination, relative to the background incidence; Rx

is the rate ratio, relative to the background incidence, in persons
exposed to X but not S; and Rs is the rate ratio, relative to the back-
ground incidence, in persons exposed to S but not X. This could
occur under the Armitage-Doll model (e.g., if X and S act at differ-
ent stages of the same multistage process). In this situation it can be
shown that the formula for Pc [equation (10.32)] reduces to equa-
tion (10.36). In other words, when the rate ratio for X and S com-
bined (relative to background) is simply the product of their inde-
pendent rate ratios, then the probability that disease Fwas caused
by exposure X only depends on the independent effect of X and
does not depend on whether the individual in question was exposed
to S.

When probability of causation calculations are developed, an epi-
demiologic study must be designed to give the values for the indi-
vidual conditional probabilities found in equation (10.32). There
are several problems that an epidemiologist might encounter in
specifying the necessary probabilities. The first problem is the reli-
ability and completeness of data. Specifying each of the probabilities
in equation (10.32) requires that the level of exposure to each sub-
stance be given for the individual of interest. This can prove diffi-
cult, particularly for an individual with a complicated work history.

Another problem concerns the dose-response model to be used
in specifying P(Y \ X) or P(Y \ S,). The choice of model can result
in a variation of as much as 104-105 when probabilities at low levels
of exposure are extrapolated from high levels. It has been typical in
the past to adopt the single-hit model [equation (10.20)], as the
basis for calculating the probabilities in equation (f 0.32), by simply
ignoring other models or at least arguing that the single hit is the
best available model.

A third problem concerns how the background probability P(Y \
N) should be assigned. The background incidence rates in
subgroups of reference populations can differ, depending upon fac-
tors such as diet, socioeconomic status, or quality of health care. For
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Inserting this into equation (10.34) yields
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any individual, the national incidence rate at any age might be used
as a baseline. However, there are potentially numerous modifiers to
background rates, and it never is clear how far one should carry the
adjustments for the modifiers on an individual basis (especially when
the uncertainties in these adjustments can be large). Furthermore,
individuals who differ from the average value of P(Y \ N) may also
differ in their susceptibility to incremental exposures. National aver-
ages provide values for P(Y \ N), and corrections can be made only
for important risk factors such as smoking. The task is simplified if
a relative risk model is adopted, since equation (10.32) reduces to
equation (10.36).

The classification of disease also can produce uncertainties. For
example, in some instances a diagnosis of leukemia should be
recategorized as one of the subtypes of leukemia. This process, in
turn, can affect the probability of causation calculation, since the
effect on P(Y \ X) can be quite different from the effect on P(Y \ N)
or P(Y S^. It is important to ensure that the level of specificity for
an effect is constant across each of the probabilities appearing in
equation (10.32).

6. EXAMPLES OF OCCUPATIONAL EPIDEMIOLOGY
IN RISK ASSESSMENT

This section illustrates some relatively straightforward methods that
have been used in past risk assessments. The example chosen is from
a risk assessment concerning the induction of lung cancer following
exposure to environmental levels of radon (222Rn), a radioactive gas
present in most buildings throughout the world. In a risk assessment
performed by the United States Environmental Protection Agency
(1986), a full range of mathematical models and sets of epidcmio-
logic data were examined for their influence on risk estimates. The
final risk estimate then was given as a probability distribution over
all possible inferences of risk identified in the risk assessment (Craw-
ford-Brown and Cothern, 1987). To simplify matters, only one
model for each of two central issues will be examined in the follow-
ing examples. These issues are (1) specification of the dose-
response function and (2) lifetime risk extrapolation.

6.1. The Dose-Response Curve

For the risk assessment of 222Rn, it was determined that the occu-
pational epidemiology data concerning uranium miners (e.g.,
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Archer et al., 1976; Kunz et al., 1979) were not sufficiently precise
to determine the shape of the dose-response curve at low doses (or
cumulative exposures). From a combination of theoretical radio-
biological arguments and experimental data (as well as purely legal
concerns), it was decided that a linear model was the most reason-
able option. The epidemiologic data thus determined the parame-
ters of the model, but the model itself was generated and supported
by a compilation of data from several fields of study.

A summary of the available dose-response data for the uranium
miners can be fit by a function of the form

Note that individuals in this study were simply placed into dose
categories based on total doses received over the course of employ-
ment. Thus, the function P(D) is given as the average excess inci-
dence rate in a group characterized by a dose D during the period
represented by follow-up. The units for P(D) are excess lung cancers
per year per 10b persons per unit dose (actually cumulative expo-
sure was used as a dose surrogate). This is assumed to be equal to
the probability of an individual dying in a given year per unit dose.
The best fit to the composite data (using a least-squares procedure)
was determined to be given by a value of k equal to 10 cases per 10"
person-years per working level month. [The working level month
(WLM) is a unit of cumulative exposure.]

A summary of the data for the U.S. uranium miners can be found
in Table 10-5, with follow-up extending until 1974. All lung cancer
deaths and person-years occurring within ten years of the start of

Table 10-5. A summary of epidemiologic data for U.S. uranium miners

Cumulative
exposure

(WI.M)

60
180
300
480
720

1,320
2,760
7,000

Person-
years

5,183
3,308
2,891
4,171
3,294
6,591
5,690
1,068

Lung
Observed

3
7
9

19
9

40
49
23

cancers
Expected

3.96
2.24
2.24
3.33
2.62
5.38
4.56
0.91

Absolute risk,
cases per
lO'TYpcr

WLM"

—
8.0
7.8
7.8
2.7
4.0
2.8
3.0

Relative risk,
% increased

risk per
WLM

—
1.2
1.0
1.0
0.3
0.5
0.4
0.3

Source: Derived from BEIR (1980).
a Working level month.



Special Applications of Occupational Epidemiology Data 323

mining were excluded because of considerations of latency. (A pref-
erable approach would have been to lag all exposures by ten years.)
To illustrate, consider only the group characterized by a mean expo-
sure of 180 WLM. The absolute risk coefficient derived for this
group is

6.2. Temporal Extrapolation

Most of the uranium miners had not yet reached the end of life
when the study ended. As a result, it was necessary to determine the
extent to which increasing the length of follow-up would influence
the coefficient k in equation (10.37). The simplest assumption, and
one that commonly is used in estimating lifetime risk, is that the
absolute risk coefficient remains constant in time during any plateau
period. Hence, the factor of 10 cases per 106 person-years per
WLM was assumed to continue to be constant at times after the end
of follow-up for the population of miners.

Such an assumption may be unwarranted for several reasons.
First, the period of follow-up in an epidemiologic study may not be
characterized by a constant excess incidence rate within any dose
group. This could occur if, for example, doses were accumulated
over a long period of time and, hence, yielded a continuously
increasing incidence rate during the period of follow-up. The aver-
age excess incidence rate during follow-up then would not be rep-
resentative of the excess incidence rate that will occur after follow-
up; the excess incidence rate may begin to rise as the natural rate
increases. This problem may be avoided by calculating a relative risk
coefficient instead of an absolute risk coefficient (see Table 10—5).
The excess relative risk then is assumed to apply until the end of
life. Some support for the validity of the relative risk approach can
be gained by noting that the excess incidence rate in the mining
population increased from 10 cases per 106 PY per WLM for the
age group 35—39 at diagnosis to 50 cases PY per WLM for those
older than age 65 at diagnosis (BEIR, 1980). This pattern is similar
to the increase in the natural rate of lung cancer. A third consid-
eration is that competing risks may change dramatically after the

For the uranium miner data, the data at exposures greater than 300
WLM were not used, since the dose—response curve begins to "turn
over" due to cell killing and competing causes of death.



where P(0) is the probability of death (from all causes) in a non-
exposed population. Equation (10.38) then is used both to calculate
the value of k from the study population during the period of fol-
low-up and to calculate P(D) in all years after the period of follow-
up. Since the natural death rate generally increases with age, it is
possible that P(D) will decrease for a population after the end of a
period of incomplete follow-up.

6.3. Lifetime Risk

It now is possible to combine the dose—response function and the
temporal pattern of risk into a single example. Suppose that we
want to estimate the lifetime risk of dying from lung cancer as a
result of radiation exposure for a ten-year-old child who is exposed
to 1 WLM of 222Rn during the course of a year. For this example we
will use the relative risk model and assume that the natural rate of
lung cancer is insignificant until age 20 but is given by the following
averages within the prescribed age groups: 5 X 10~5 per year for
ages 21-40 years, 5 X 10"4 per year for ages 41-60, and 1.2 X
10~s per year for ages 61—70. The use of such broad age groups is
designed only to make this example simpler.

From the data in Table 10-5, it will be assumed that the adult
relative risk coefficient indicates a 1-percent excess incidence per
WLM for adult exposures. An induction period of ten years will be
assumed, after which the relative risk rises instantaneously to a pla-
teau value and stays constant until age 70 (the end of time for the
risk assessment). The relative risk coefficient for a ten-year-old child
then will be 2.5 percent/WLM (Crawford-Brown, 1983a). Since the
assumed cumulative exposure is 1 WLM, the child in this example
will experience a 2.5-percent increase in lung cancer incidence at
all ages greater than 20 years (ten years of age at exposure plus a
latency period of ten years). The excess incidence rate for this child
from age 21 to age 40 will then be
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end of follow-up for a population. If competing risks are important,
equation (10.37) can be replaced by

The probability of death during this 20-year period will be



In the actual risk assessment for Z2ZRn (U.S. EPA, 1986), this
approach was used to calculate the lifetime risk imposed by each
year of exposure. The risks from each year then were summed to
predict the lifetime risk from exposure at a level of 1 WLM per year
throughout the lifetime.

6.4. Probability of Causation

We now will consider a probability of causation calculation. Assume
that a white male of age 45 years dies from leukemia. His work his-
tory indicates that he was exposed at age 35 to benzene at a con-
centration of 10 ppm for a period of one year. The baseline inci-
dence rate for this form of leukemia at age 45 is taken to be 69 per
10(l persons per year. What is the probability that his leukemia
resulted from the exposure to benzene? To answer this question it
is necessary to collect (or extrapolate) data on a group of persons
with the preceding characteristics and then to assume that the indi-
vidual under study has been chosen at random from this group.

Several risk assessments have been performed for occupational
benzene exposure and leukemia (Austin et al., 1988), and they have
yielded somewhat conflicting results. For purposes of illustration,
we consider only the risk assessment done by White et al. (1982),
who attempted to develop a probability-based standard for benzene
exposure. To perform this task, the authors collected data on expo-
sure to benzene in air for rubber industry workers (Infante et al.,
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For ages 41-60 years, the exposed child will experience an excess
incidence rate of

or a probability of death equal to

Finally, from ages 61-70 years the excess incidence rate will be

or a probability of death equal to

The total lifetime probability of death from the exposure at age ten
then is



or 29 percent. For the death at age 45, a court might consider ben-
zene to be the cause of death, or at least "more likely than not" to
be the cause. For the death at age 65, a different decision would be
reached.

6.5. The No-Observed-Effects Level

We now briefly consider regulatory standards based on an empirical
demonstration of an effect. This approach (no-observed-effects
level) is typified by the 1987 U.S. EPA standard for benzene, in
which it simply was argued that no effect had been observed below
100 ppm. Next, a safety factor of 10 was applied to produce a stan-
dard of 10 ppm. The safety factor used depended upon whether the
epidemiologic interferences are considered "strong" or "weak."
Strong studies are taken as an indication that a safety factor of 10
is warranted, whereas weak studies often require a safety factor of
100. What a regulatory agency considers strong or weak is judg-

or a 59-percent probability of causation.
If, however, the exposure had occurred at age 55 and the death

at age 65 (when the natural incidence rate is about 2.4 X 10~4/
year), the probability of causation would have been

Since the natural incidence rate at age 45 is 69 X 10"4, the proba-
bility of causation would be
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1977) and chemical manufacturing workers (Ott et al., 1978). These
data were used to obtain rough estimates of the average benzene
levels in air during distinct time periods. A single-hit model for leu-
kemia production by benzene then was assumed, and an excess risk
coefficient of about 0.0002 cases per ppm-yr was obtained, (ppm-yr
is the measure of cumulative exposure.) This excess risk is the life-
time risk. Assuming a plateau period of about 20 years in the study
population, the excess incidence rate would be 1 X 10~5 per year
per ppm-yr. Multiplying this by the preceding risk coefficient, the
probability of death from leukemia at age 45 due to benzene expo-
sure is
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mental and is dictated by the manner in which the risk assessor
assigns weight to various forms of evidence.

Some general guidelines for evaluating relative strength of epi-
demiologic studies for risk assessment are as follows:

1. There are numerous consistent epidemiologic studies of effects
related to exposure to the substance under a variety of conditions.

2. The epidemiologic results do not appear to change dramatically
under different competing assumptions of how to analyze the data
or assign exposure categories, and the uncertainties introduced by
analytic assumptions are understood.

3. The inferences do not rely heavily on a simple accumulation of case
histories, but rather involve formal epidemiologic studies.

4. The onset (decline) of a disorder can be shown to coincide with the
use (removal) of a substance by a study population.

5. The exposures or doses have been assigned accurately to all groups
displaying an elevated level of the health effect, and the potential
errors in assignment are understood in magnitude and direction.

6. Separate risk coefficients are available for a wide range of ages at
the start of exposure.

7. An internal comparison group has been included in a cohort study.
8. The estimates of exposure or dose allow grouping of workers into

relatively narrow categories.
9. The temporal course of appearance of the effect (particularly the

features of latency and plateau periods) has been determined and
found to be in keeping with prior expectations based on available
information, such as clinical and experimental studies or a knowl-
edge of the etiology of the disease.

10. There is little reason to suspect that factors not included in a par-
ticular epidemiologic study (such as socioeconomic status) would
compromise the applicability of results to other populations.

7. DISCUSSION

This chapter has illustrated some uses of occupational epidemio-
logic data in scientific inference arid public health decision making.
We have not attempted to be comprehensive in our review of avail-
able methods, but rather have focused on the central issues. The
emphasis in this chapter is on understanding the etiologic process
that produces the effect, both for scientific inference and valid
extrapolations of the findings to other populations. Such applica-
tions of epidemiologic data necessarily involve the use of particular
theories of disease processes. The importance of theory is that it
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involves the formalization of experience, permitting more abstract,
and therefore more general, principles to be developed.

It is important to emphasize that applications of the type pre-
sented in this chapter are often not the primary goal of an occupa-
tional epidemiology study. The goal of many studies is to measure
the excess disease incidence in persons employed in a particular
industry, or exposed to a particular substance. The resulting meth-
odologic considerations may be quite different from those of a study
intended to be used in risk assessment. For example, the age range
of the study subjects may be restricted for reasons of validity or sta-
tistical efficiency, whereas a study oriented toward risk assessment
would usually require the broadest possible age range among study
subjects.

The assumptions and reasoning underlying any models and the-
ories should be stated formally. For example, if an epidemiologic
observation at one facility, or among a particular group of workers,
is used as a predictor of expected results elsewhere, then extrapo-
lation is more justified when the same underlying processes are
believed to be occurring in each instance. Thus, most applications
of occupational epidemiologic data will require not just the epide-
miologic results, but also a description of (1) the assumptions used
in generating the results, (2) other assumptions that might have
been employed, and (3) the degree of support that can be offered
for any given assumption, relative to competitors. It is thus partic-
ularly valuable to conduct the analysis under several sets of assump-
tions (e.g., the relative risk and absolute risk models).

An epidemiologic study may find application in the assessment of
the effects of a route of exposure other than that found in the study
population. For example, a regulatory agency may require a stan-
dard for benzene in drinking water, but may be forced to rely on
the epidemiologic data from studies of benzene in the air of work-
places. It becomes necessary, therefore, to extrapolate risk coeffi-
cients from one route of exposure to another. This extrapolation is
facilitated when dose data, rather than exposure data, are available.
Epidemiologic studies are thus most widely applicable when they
yield risk coefficients that are as general as possible. This usually
requires that the measure of potential for causing damage is the
dose to specific biological targets, rather than the concentration in
an environmental medium (i.e., exposure intensity).

In the past, the lack of appropriate dose data has restricted the
applications of occupational epidemiologic data. Furthermore, even
when appropriate data were available, the lack of suitable statistical
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methods has limited their usefulness. However, as occupational epi-
demiology matures as a scientific discipline, better methods are
being developed both for gathering appropriate dose data and for
using such data in investigating broader scientific and public health
issues.

Glossary

absolute risk coefficient Excess incidence rate above background per unit dose
or exposure.

background incidence Incidence that would occur in the absence of exposure.
excess incidence Incidence due to exposure.
hit-target model An approach to biophysical modeling that assumes that an effect

is produced when a certain number of biologically distinct targets are "struck"
by a substance or its metabolite.

lifetime risk The cumulative probability of an individual dying, as a result of an
exposure, prior to the end of a normal lifespan.

multistage model A biological model that assumes that disease occurs as a result
of a fixed number of distinct sequential steps, which may or may not be
reversible.

plateau period The length of time during which a risk is found following an acute
exposure.

relative risk coefficient Percent increase above background incidence rale per
unit dose or exposure.

state vector model A model that conceives of a cell as existing in one of several
states that are reached by successive transitions.

transition rate The rate at which a particular stage of a multistage process occurs.

Notation

a, Age-dependent risk coefficient
B(i) Background incidence rate
C Cumulative exposure
/) Dose
D, Dose delivered during ith year of life
e Duration of exposure (= t1 — t0)
E(t) Excess incidence rate
/ Length of follow-up (= t — t0)
fi Fraction of cells with transition i
F(l) Relative fractional incidence rate any time t after delivery of dose
1D Dose rate
/D(£) Dose rate at age t
7n(0 Natural incidence rate at time t after delivery of dose
Ic(D,t) Excess incidence rate at time I after delivery of dose (D)
k Number of stages in a multistage process
k,t Fraction of cells moving from state z to state j per unit dose
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I Empirical induction time (latency period)
L Lifetime risk
N Normal lifespan
yV(, Number of cells in the organ or tissue prior to the onset of dose
Nf Number of cells that have produced the effect
A'(0) Number of cells in the z'th state at the beginning of exposure in a

particular state
Nt(D) Number of cells in the zth state as a function of dose (D)
P(0) Background disease risk
P(D) Excess disease risk
Pi(D) Probability that the target receives i hits at dose D
Pc Probability that exposure X caused disease Y
PL. Probability that the target receives n or more hits and produces the

effect
P(Y | N) Background probability of developing disease Fdue to "normal"

background exposure by the age of interest
P(Y | X) Incremental probability of developing disease Y by the age of interest

due to exposure X
K Relative risk
R(D) Relative risk coefficient
Rt Background transition rate of cellular change j
R'i Change in stage / transition rate induced by one unit of dose
Rx Rate ratio (compared to background) of disease in persons

independently exposed to X
t Age at risk (= /„ + /)
in Age at first exposure
f, Age at termination of exposure
w Latency period
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