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Preface

Recent advances in drug discovery have created new, powerful technolo-
gies that have a prominent bioinformatic component. One of the chief difficul-
ties in using these technologies is their requirement for interdisciplinary
expertise in the physical sciences, life sciences, and/or computer science. As a
result, these new methodologies can present a challenge when establishing a
research laboratory.

The purpose of Bioinformatics and Drug Discovery is to facilitate the
employment of these new, powerful technologies in the process of drug dis-
covery. This volume describes the pipeline of methods and techniques that are
used in modern drug discovery. These technologies prominently use
bioinformatics for analysis of their output. In Bioinformatics and Drug Dis-
covery, the systematic process of drug discovery—from gene identification to
protein modeling to identification of drug candidates—is described first. The
next part of the book focuses on target identification, including microarray
analysis and bioinformatic techniques used to analyze genes as potential drug
targets. In addition, examples of how this analysis can be used clinically are
also described. The latter part of the book discusses protein modeling and
cheminformatics, including virtual screening and in silico protein design for
identification of drug candidates. Because these technologies are just emerg-
ing, the authors of each chapter have provided an extended introduction that
describes the theory and application of the technology and techniques
described. In the second part of each chapter, every effort has been made to
incorporate detailed procedures, including software and its use, related to these
technologies.

Bioinformatics and Drug Discovery is directed to those interested in the
different aspects of drug design that include academicians (biologists, chem-
ists, and biochemists), clinicians, and scientists at pharmaceutical companies.
All the chapters in Bioinformatics and Drug Discovery have been written by
well-established investigators who use the methods on a regular basis. In all,
this book is designed to provide readers not only with the planned insightful
overview of key topics, but also with the customary ample supply of unfailing
reproducible step-by-step procedures for techniques described.

Richard S. Larson





vii

Contents

Preface ..............................................................................................................v

Contributors ..................................................................................................... ix

1 New Strategies in Drug Discovery ........................................................ 1
Eliot H. Ohlstein, Anthony G. Johnson, John D. Elliot,

and Anne M. Romanic
2 Basic Microarray Analysis: Strategies for Successful Experiments ....... 13

Scott A. Ness
3 From Microarray to Biological Networks:

Analysis of Gene Expression Profiles ............................................... 35
Xiwei Wu and T. Gregory Dewey

4 Microarray Analysis in Drug Discovery and Clinical Applications ........ 49
Siqun Wang and Qiong Cheng

5 Ontology-Driven Approaches to Analyzing Data
in Functional Genomics .................................................................. 67

Francisco Azuaje, Fatima Al-Shahrour, and Joaquin Dopazo
6 Gene Evolution and Drug Discovery................................................... 87

James O. McInerney, Caroline S. Finnerty, Jennifer M. Commins,
and Gayle K. Philip

7 Standardization of Microarray and Pharmacogenomics Data ........... 111
Casey S. Husser, Jeffrey R. Buchhalter, O. Scott Raffo,

Amnon Shabo, Steven H. Brown, Karen E. Lee,
and Peter L. Elkin

8 Clinical Applications of Bioinformatics, Genomics,
and Pharmacogenomics ................................................................ 159

Omer Iqbal and Jawed Fareed
9 Protein Interactions Probed With Mass Spectrometry ....................... 179

Suma Kaveti and John R. Engen
10 Discovering New Drug-Targeting Sites on Flexible Multidomain

Protein Kinases: Combining Segmental Isotopic and Site-Directed
Spin Labeling for Nuclear Magnetic Resonance Dectection
of Interfacial Clefts ......................................................................... 199

Thomas K. Harris
11 Nuclear Magnetic Resonance-Based Screening Methods

for Drug Discovery ........................................................................ 227
Laurel O. Sillerud and Richard S. Larson



viii Contents

12 Receptor-Binding Sites: Bioinformatic Approaches ........................... 291
Darren R. Flower

13 In Silico Protein Design: Fitting Sequence Onto Structure ................ 359
Bassil I. Dahiyat

14 Chemical Database Preparation for Compound Acquisition
or Virtual Screening ...................................................................... 375

Cristian G. Bologa, Marius M. Olah, and Tudor I. Oprea
15 Bioinformatics Platform Development:

From Gene to Lead Compound..................................................... 389
Alexis S. Ivanov, Alexander V. Veselovsky,

Alexander V. Dubanov, and Vladlen S. Skvortsov
Index ............................................................................................................ 433



ix

Contributors

FATIMA AL-SHAHROUR • Department of Bioinformatics, Centro de Investigacion
Principe Felipe, Valencia, Spain

FRANCISCO AZUAJE • Computer Science Research Institute, University
of Ulster, Northern Ireland, UK

STEVEN H. BROWN • Department of Veterans Affairs, Department of Biomedical
Informatics, Vanderbilt University, Nashville, TN

JEFFREY R. BUCHHALTER • Department of Child and Adolescent Neurology,
Mayo Clinic College of Medicine, Rochester, MN

CHRISTIAN G. BOLOGA • Division of Biocomputing, Department of Biochemistry
and Molecular Biology, University of New Mexico, Albuquerque, NM

QIONG CHENG • Biological and Chemical Sciences and Engineering, DuPont
Central Research and Development, Wilmington, DE

JENNIFER M. COMMINS • Bioinformatics and Pharmacogenomics Laboratory,
National University of Ireland, Maynooth, County Kildare, Ireland

BASSIL I. DAHIYAT • Xencor, Monrovia, CA
T. GREGORY DEWEY • Keck Graduate Institute of Applied Life Sciences,

Claremont, CA
JOAQUIN DOPAZO • Department of Bioinformatics, Centro de Investigacion

Principe Felipe, Valencia, Spain
ALEXANDER V. DUBANOV • Institute of Biomedial Chemistry, RAMS, Moscow, Russia
PETER L. ELKIN • Department of Internal Medicine, Mayo Clinic College

of Medicine, Rochester, MN
JOHN D. ELLIOTT • MMPD CEDD, GlaxoSmithKline, King of Prussia, PA
JOHN R. ENGEN • Department of Chemistry, University of New Mexico,

Albuquerque, NM
JAWED FAREED • Department of Pathology, Loyola University Medical

Center, Maywood, IL
CAROLINE S. FINNERTY • Bioinformatics and Pharmacogenomics Laboratory,

National University of Ireland, Maynooth, County Kildare, Ireland
DARREN R. FLOWER • Edward Jenner Institute for Vaccine Research,

Compton, Berkshire, UK
THOMAS K. HARRIS • Department of Biochemistry and Molecular Biology,

Miller School of Medicine, University of Miami, Miami, FL
CASEY S. HUSSER • Department of Anesthesiology, Mayo Clinic College

of Medicine, Rochester, MN
OMER IQBAL • Department of Pathology, Loyola University Medical Center,

Maywood, IL



ALEXIS S. IVANON • Institute of Biomedial Chemistry, RAMS, Moscow, Russia
ANTHONY G. JOHNSON • CVU CEDD, GlaxoSmithKline, King of Prussia, PA
SUMA KAVETI • Lerner Research Institute Proteomics Core, Cleveland Clinic

Foundation, Cleveland, OH
RICHARD S. LARSON • Department of Pathology, Cancer Research and Treatment

Center, University of New Mexico School of Medicine, Albuquerque, NM
KAREN E. LEE • Department of Facilities and Systems Support Services, Mayo

Clinic College of Medicine, Rochester, MN
JAMES O. MCINERNEY • Bioinformatics and Pharmacogenomics Laboratory,

National University of Ireland, Maynooth, County Kildare, Ireland
SCOTT A. NESS • Department of Molecular Genetics and Microbiology,

University of New Mexico School of Medicine, Albuquerque, NM
ELIOT H. OHLSTEIN • CVU CEDD, GlaxoSmithKline, King of Prussia, PA
MARIUS M. OLAH • Division of Biocomputing, Department of Biochemistry

and Molecular Biology, University of New Mexico, Albuquerque, NM
TUDOR I. OPREA • Division of Biocomputing, Department of Biochemistry

and Molecular Biology, University of New Mexico, Albuquerque, NM
GAYLE K. PHILIP • Bioinformatics and Pharmacogenomics Laboratory,

National University of Ireland, Maynooth, County Kildare, Ireland
O. SCOTT RAFFO • Department of Anesthesiology, Mayo Clinic College

of Medicine, Rochester, MN
ANNE M. ROMANIC • CVU CEDD, GlaxoSmithKline, King of Prussia, PA
AMNON SHABO • Healthcare and Life Sciences Group, IBM Research Lab,

Haifa, Israel
LAUREL O. SILLERUD • Department of Biochemistry and Molecular Biology,

University of New Mexico, Albuquerque, NM
VLADLEN S. SKVORTSOV • Institute of Biomedial Chemistry, RAMS,

Moscow, Russia
ALEXANDER V. VESELOVSKY • Institute of Biomedial Chemistry, RAMS,

Moscow, Russia
SIQUN WANG • Life Sciences and Chemical Analysis, Agilent Technologies

Inc., Wilmington, DE
XIWEI WU • Keck Graduate Institute of Applied Life Sciences, Claremont, CA

x          Contributors



New Strategies in Drug Discovery 1

1

From: Methods in Molecular Biology, vol. 316: Bioinformatics and Drug Discovery
Edited by: R. S. Larson © Humana Press Inc., Totowa, NJ

1

New Strategies in Drug Discovery

Eliot H. Ohlstein, Anthony G. Johnson, John D. Elliott,
and Anne M. Romanic

Summary
Gene identification followed by determination of the expression of genes in a given

disease and understanding of the function of the gene products is central to the drug dis-
covery process. The ability to associate a specific gene with a disease can be attributed
primarily to the extraordinary progress that has been made in the areas of gene sequenc-
ing and information technologies. Selection and validation of novel molecular targets have
become of great importance in light of the abundance of new potential therapeutic drug
targets that have emerged from human gene sequencing. In response to this revolution
within the pharmaceutical industry, the development of high-throughput methods in both
biology and chemistry has been necessitated. Further, the successful translation of basic
scientific discoveries into clinical experimental medicine and novel therapeutics is an
increasing challenge. As such, a new paradigm for drug discovery has emerged. This pro-
cess involves the integration of clinical, genetic, genomic, and molecular phenotype data
partnered with cheminformatics. Central to this process, the data generated are managed,
collated, and interpreted with the use of informatics. This review addresses the use of new
technologies that have arisen to deal with this new paradigm.

Key Words: Target validation; drug discovery; experimental medicine.

1. Introduction
The Human Genome Project was initiated on October 1, 1990, and the complete DNA

sequence of the human genome was completed in 2001 (www.nhgri.nih.gov [1,2]). Cen-
tral to the drug discovery process is gene identification followed by determination of the
expression of genes in a given disease and understanding of the function of the gene
products. It is of interest that the identification, in the early 1980s, of the gene believed
to be responsible for cystic fibrosis took researchers approx 9 yr to discover, whereas
the gene responsible for Parkinson’s disease was identified within a period of several

www.nhgri.nih.gov
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weeks (3). This quantum leap in the ability to associate a specific gene with a disease
can be attributed primarily to the extraordinary progress that has been made in the areas
of gene sequencing and information technologies.

Selection and validation of novel molecular targets have become paramount in light
of the abundance of new potential therapeutic drug targets that have emerged from
human gene sequencing. The development of high-throughput methods in both biology
and chemistry is therefore necessary. In addition, it has become increasingly challeng-
ing to translate successfully basic scientific discoveries into clinical experimental med-
icine and novel therapeutics. Consequently, a new paradigm for drug discovery has
emerged. The integration of clinical, genetic, genomic, and molecular phenotype data
partnered with cheminformatics is involved in this process. Central to this process, the
data that are generated are managed, collated, and interpreted with the use of informa-
tics. In this review, we address the use of new technologies that have arisen to deal with
this new paradigm.

2. Target Validation
Several thousand molecular targets have now been cloned and are available as poten-

tial novel drug discovery targets. These targets include G protein-coupled receptors,
ligand-gated ion channels, nuclear receptors, cytokines, and reuptake/transport proteins
(4). The sheer volume of information being produced has shifted the emphasis from the
generation of novel DNA sequences to the determination of which of these many new
targets offer the greatest opportunity for drug discovery. Thus, with several thousand
potential targets available, target selection and validation have become the most criti-
cal component of the drug discovery process and will continue to be so in the future.

An example of the new paradigm of target selection comes as a result of the pairing
of the orphan G protein-coupled receptor GPR-14 with its cognate neuropeptide ligand
urotensin II. Urotensin II is the most potent vasoconstrictor identified to date; it is approx-
imately one order of magnitude more potent than endothelin-1 (5). Thus, GPR-14/uro-
tensin II represents an attractive therapeutic target for the treatment of disorders related
to or associated with enhanced vasoconstriction, such as hypertension, congestive heart
failure, and coronary artery disease, to name but a few.

In general, most tissues express between 15,000 and 50,000 genes in different levels.
In diseased tissue, gene expression levels often differ from those observed in normal
tissues, with certain genes being over- or underexpressed, or new genes being expressed
or completely absent. Localization of this differential gene expression is one of the first
crucial steps in identifying an important potential molecular target for drug discovery.
In addition to the traditional techniques of Northern analysis, a number of newer meth-
ods are used to localize gene expression. The techniques that typically yield the highest
quality data are in situ hybridization (ISH) and immunocytochemistry, both of which
are labor intensive. For example, ISH or immunohistochemical localization of a pro-
spective molecular target to a particular tissue or subcellular region is likely to yield
valuable information concerning gene function. Examples of the success of this approach
include the case of the orexin peptides and receptors whose hypothalamic regional
localization suggested an involvement in feeding (6).
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Each of these localization techniques has its advantages and disadvantages. ISH can
be initiated immediately following gene sequencing and cloning; however, gene detec-
tion is only at the transcriptional mRNA level. Immunocytochemistry, on the other hand,
offers the ability to measure protein expression but requires the availability of antibodies
having the requisite affinity and selectivity, which may often take several months to
generate. With either of these techniques, target localization within the cell is possible
at the microscopic level but is dependent on the availability of high-quality normal and
diseased human tissues, which may often represent a limiting factor.

The localization of a gene in a particular tissue does not necessarily shed light on all
of the functions of that gene. As an example, the discovery of orexin as a putative regu-
lator of energy balance and feeding was initially concluded as a result of localization
in the dorsal and lateral hypothalamic regions of the brain (6). However, subsequently
this gene product was discovered to be a major sleep-modulating neurotransmitter that
may represent the gene responsible for narcolepsy (7).

Technologies, such as microarray gridding (GeneChip™) and TaqMan® polymerase
chain reaction (PCR) that would appear destined to play a more prominent role in the
high-throughput localization of genes, and the identification of their regulation in dis-
ease, have emerged (8). Microarray gridding and Spotfire® data analysis are already
evolving into procedures that allow the comprehensive evaluation of differences in gene
expression patterns in normal, diseased, or pharmacologically manipulated systems (8,
9). For genes expressed in low abundance, more sensitive techniques may be required,
and reverse transcriptase (RT)-PCR-based TaqMan technology offers the ability to detect
changes in gene expression with as little as two copies per cell. TaqMan technology also
has the potential to be developed into a robust methodology for high-throughput tissue
localization.

3. Functional Genomics
The term functional genomics is now being used to describe the post-Human Genome

Project era and encompasses the many efforts needed to elucidate gene function. Tradi-
tionally, functional genomics pertains to the use of genetically manipulated animals,
such as knockout or knockin mice or transgenic mice, to study a particular gene’s func-
tion in vivo. Although these traditional methods are still a valuable tool in understand-
ing gene function, more recently developed methods, such as RNA interference and
mRNA silencing, offer an alternative that allows relatively faster methods of gene mod-
ification and function analysis in vivo (10,11).

Indeed, the phenotyping of genetically manipulated animals is informative in deter-
mining the biological function of a particular gene. However, in reality, the discipline of
functional genomics has its foundation in the physiological and pharmacological sci-
ences. Although the evaluation of genetically manipulated animals requires a thorough
understanding of physiology and pharmacology, the experimental approach involves
many new technologies. These methods include in vivo imaging (i.e., magnetic reso-
nance imaging, micropositron emission tomography, ultrafast computed tomography,
infrared spectroscopy), mass spectrometry (MS), and microarray hybridization, all of
which enhance the speed and accuracy at which functional genomics is achieved.
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4. Proteomics, Metabolomics, and Lipomics
As high-throughput drug discovery has progressed through the genome, it is now

moving toward assessing the proteome and metabolome. It is recognized that mRNA
expression does not always correlate with protein expression (12), and many factors
such as alternative splicing, posttranslational modification (e.g., glycosylation, phos-
phorylation, oxidation, reduction), and mRNA turnover may account for this. Because
modified proteins can have different biological activities, research and new technolo-
gies are now more focused on protein expression.

The term proteome refers to all the proteins produced by a species, much as the
genome is the entire set of genes (13). However, unlike the genome, the proteome can
vary according to cell type and the functional state of the cell (14,15). Proteomic analy-
sis allows a point-in-time comparison of the protein profile, such as before and after
therapeutic intervention. It can also be used to compare protein profiles in diseased and
nondiseased tissues.

Microarrays are currently the major tool in the assessment of gene expression via
cDNA and RNA analysis; however, they are also used to screen libraries of proteins and
small molecules. Just as DNA microarrays allow the detection of changes in genes in
various diseases, protein, peptide, tissue, and cell microarrays can be used to detect
changes in proteins, phospholipids, or glycation of proteins in disease. Protein arrays
are also used to examine enzyme–substrate, DNA–protein, and protein–protein interac-
tions (16,17). The practical application of proteomics depends on the ability to identify
and analyze each protein product in a cell or tissue (18). Because proteins cannot be
amplified like DNA or RNA and proteins also tend to be degraded more readily, sensi-
tive and rapid analyses are necessary to account for the small sample sizes and instabil-
ity of proteins. Although this field is still developing, a MS and ProteinChip-surface-
enhanced laser desorption/ionization technologies using slides with various surface
properties (e.g., ion exchange, hydrophobic interaction, metal chelation) to bind and
selectively purify proteins from a complex biological sample are being utilized (18,19).
An important challenge encountered with protein microarrays is maintaining functional-
ity of the protein, such as posttranslational modifications and phosphorylation. Another
important consideration is the retention of both secondary and tertiary structures. The
use of immobilizing coatings, such as aluminum, gold, or hydrophilic polymers, on
slides or imprinting the proteins on porous polyacrylamide gels is being explored to
address these issues (17). For example, proteomic analysis has been used successfully
to identify serum biomarkers. ProteinChip-surface-enhanced laser desorption/ioniza-
tion technology, in conjunction with bioinformatics tools, has been utilized to identify
a proteomic pattern in serum that is diagnostic for ovarian cancer (20). It is anticipated
that proteomics and bioinformatics will facilitate the discovery of new and better bio-
markers of disease.

Metabolomics is the study of the metabolome, which is the entire metabolic con-
tent of the cell or organism at any given moment (21). Although metabolomics gener-
ally focuses on biofluids, such as serum and urine, investigators are now evaluating the
cell as well. Metabolic profiling has been used regularly to characterize toxicity and
disease states, such as inborn errors of metabolism. Additionally, blood and urine are
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screened routinely for metabolites such as cholesterol and glucose in patients to test for
cardiovascular disease and diabetes. However, a recent advance in metabolomics is the
analysis of small molecules within a sample to find new markers for disease or metabo-
lic patterns as indicators for drug toxicity. Techniques such as nuclear magnetic reso-
nance spectroscopy, MS, and chromatographic analysis of cell extracts are used in meta-
bolomic research (22,23). These techniques have been especially useful in generating
lipid metabolome data (i.e., lipomics) to study the effects of dietary fats and lipid-low-
ering drugs on cardiac, plasma, adipose, and liver phospholipid metabolism (22–27).
Metabolic changes during tumor proliferation have also been studied using metabolo-
mics. For example, the tumor metabolome is characterized by high glycolytic and gluta-
minolytic capacities and high phosphometabolite levels to allow tumor cells to prolifer-
ate over broad ranges in oxygen and glucose supply (28). It is anticipated that metabolics
will provide insight into the metabolism of tumor cells that might be helpful in under-
standing and modifying tumor cell proliferation.

5. High-Throughput Screening, Cheminformatics, and Medical Chemistry
During the last decade, the pharmaceutical industry has sought to expand its collec-

tions of compounds for the purpose of high-throughput screening (HTS) against novel
molecular targets (29). Many hit structures have been identified through HTS, and both
the average potency and quality of these molecules continue to improve (30). Although
it is possible that a sustainable chemical lead can be identified from HTS, it has been
more commonly the case that “hits” emerging from HTS require substantial chemical
optimization to provide molecules with the desired level of potency, selectivity, and
suitable pharmacokinetic (PK) properties (31) to support a fully fledged drug discovery
program. Furthermore, the data available from an HTS effort are still of limited utility
from the point of view of generating structure–activity relationships (SARs) capable of
directing medicinal chemistry efforts. Combinatorial chemistry in some of its earliest
incarnations was seen as a means of rapidly synthesizing massive numbers of molecules
for HTS. However, in recent years this has evolved into the synthesis of more focused,
smaller arrays of molecules directed both at enhancement of the properties of early hits
emerging from HTS and at optimization of lead molecules in the progression toward
development of candidates (32,33). This change of emphasis has been enabled by sig-
nificant developments in the areas of high-throughput purification and characterization.

In rising to the challenge of providing HTS data on collections of a million or more
compounds, the scientist involved in HTS has sought increasing use of automation, as
well as miniaturization, to reduce the demands on precious protein reagents and chemi-
cal supplies. Traditional radioligand-binding assays are giving way to more rapid and
easily miniaturizable homogeneous fluorescence-based methods. The increased effi-
ciency of ultra-HTS offers the potential to screen discrete collections of a million or
more single compounds, at multiple concentrations, and thereby generate SAR infor-
mation to “jump-start” a medicinal chemical lead optimization effort. Historically,
medicinal chemical endeavors have involved the analysis of detailed biological data
from hundreds or perhaps thousands of compounds. It is not surprising that the prospect
of such an explosive growth of information from both screening- and program-directed
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combinatorial chemistry has driven the evolution of cheminformatics (34), in much
the same way that genomic sequencing gave rise to the science of bioinformatics.

The successful medicinal chemical drug discovery effort of the future will rely on
a hybrid approach of parallel and iterative (single-molecule) synthesis. As HTS collec-
tions are built up through parallel synthesis, lead structures will be amenable to high-
throughput follow-up. Iterative analog preparation will, however, continue to play a
key role. In particular, as a research program nears candidate selection, a greater level
of iterative synthesis will likely become necessary to “fine-tune” the properties of the
lead molecules. The lead optimization phase of the drug discovery process also relies
heavily on SARs developed around absorption, distribution, metabolism, and excre-
tion data, and physiochemical properties that improve the overall developability of the
series (e.g., solubility, permeability, P450 activity, and human ether-a-go-go-related
gene potassium channel activity). It is anticipated that the greater attention given to
the evaluation of developability characteristics in candidate molecules will lead to
reduced attrition, improving the likelihood that a compound will enter clinical develop-
ment and be successful in getting to market in a time- and cost-effective manner.

6. Pharmacogenomics, Toxicogenomics, and Predictive Toxicology
Just as it is possible that a compound can affect gene expression in a positive man-

ner, so too can it affect gene expression in a negative, toxic manner. In addition, a drug
might not affect gene expression in a given subpopulation that is representative of the
larger group. In an attempt to identify how genes are expressed following drug treat-
ment or to determine toxicity issues associated with a compound, DNA arrays can be
used for what are termed pharmacogenomic and toxicogenomic studies (35). Pharma-
cogenomics refers to the identification of genes that are involved in determining drug
responsiveness and that may cause differential drug responses in different patients. These
studies include the evaluation of allelic differences in gene expression, and the evalu-
ation of genes responsible for drug resistance and sensitivity (35,36). Toxicogenomics
refers to the characterization of potential genes involved in toxicity and the adverse
effects of drugs (35,37). Toxicogenomics allows for a gene profile of candidate bio-
markers of toxicity and carcinogenicity. Predictive toxicology is a term used for the
application of toxicogenomics and the evaluation of compounds in silico against a panel
of genes associated with toxicity (38). Models of SAR are used to predict potential toxic
effects based on chemical structures and their properties (39). Predictive toxicology
also takes into account computer-based predictions of adsorption, distribution, metab-
olism, and excretion and PK properties in addition to toxicology, all of which contribute
to the lead optimization process.

7. Experimental Medicine
With the identification of many new targets for drug development, it is increasingly

important to test rapidly and accurately the effects of new chemical entities in the
early phase of development in relevant in vivo models, including humans. For exam-
ple, drug candidates aimed at inflammation can be tested in a human blister model (40,
41). In this model, suction is applied to the forearm of healthy volunteers following pre-
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exposure to ultraviolet-B light. The resulting blister is used to evaluate secreted inflam-
matory mediators and changes in gene expression within 48 h of insult. Cell counts, pro-
staglandin (PG)E2 (measured by enzyme-linked immunosorbent assay), PGD2 (mea-
sured by gas chromatography), and gene expression of cyclo-oxygenase-2, and PGE
and PGD synthases (measured by real-time PCR) are assessed. This model allows the
rapid analysis of effects of drugs on cellular infiltration, soluble mediator formation in
blister fluid, and steady-state gene expression in cellular infiltrates. These markers (e.g.,
new transcription factors, cytokines, and other mediators) can be followed in both the
inflammatory and resolution phases of human inflammation. In addition, coupled with
DNA array technology, this model may be useful in defining new targets for the treat-
ment of inflammation. Furthermore, toxicity and efficacy profiles of new and existing
drugs can be studied. For example, a gene chip of the subset of human genes identified
in blister fluid can be used to identify surrogate markers of toxicity and efficacy in mod-
ulating gene expression in drug evaluation.

Inflammation also plays an important role in the initiation and progression of athero-
sclerosis. To this end, identification of relevant signaling pathways that mediate plaque
inflammation may provide therapeutic targets for the improvement of clinical outcomes
in high-risk individuals. For example, inhibition of p38 mitogen-activated protein kin-
ase (MAPK) attenuates inflammatory responses and matrix-degrading activities in
human atherosclerotic plaque, suggesting a potential therapeutic strategy for the regres-
sion and stabilization of atherosclerosis. Signaling mechanisms involving p38 MAPK
as well as other inflammatory responses can be characterized by TaqMan real-time RT-
PCR in human carotid atherosclerotic plaques and nonatherosclerotic vessels. In addi-
tion, the biological effects of the p38 MAPK pathway can be assessed in an ex vivo
organ culture system (42). In these studies, a selective p38 MAPK inhibitor is added to
the organ culture system and a variety of analyses are conducted. Current analyses of
human plaque specimens include a panel of markers, such as interleukin (IL)-1β, IL-
6, IL-8, monocyte chemoattractant protein-1, tumor necrosis factor-α, and matrix metal-
loproteinases. Other analyses include the evaluation of phosphorylated p38 MAPK,
extracellular signal-regulated kinase 1/2, and c-Jun NH2-terminal kinase.

These and other in vivo and ex vivo human experimental platforms are of tremen-
dous value and can be used to validate the efficacy and assess the toxicity of drugs early
in development. Because these studies are conducted in the clinical setting, the field of
experimental medicine offers great potential in identifying new therapeutic targets par-
ticularly relevant to human disease.

Pharmacogenomics, also referred to as pharmacogenetics, involves the study of var-
iability in pharmacokinetics (absorption, distribution, metabolism, or elimination) or
pharmacodynamics (relationship between drug concentrations and pharmacological
effects or the time course of such effects) owing to hereditary factors in different pop-
ulations. There is evidence that genotype may impact the incidence of adverse events
for a given drug. The aim is to identify genetic polymorphic variants that represent risk
factors for the development of a particular clinical condition, or that predict a given
response to a specific therapeutic. More important, the rate-limiting step in revealing
biologically relevant phenotype–genotype associations is the collection of human DNA
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samples from carefully phenotyped individuals (43). Two general approaches may be
used to investigate genetic variation in drug handling or response: (1) the hypothesis-
driven method is based on a priori hypotheses and involves selecting specific sections
of DNA known to encode the drug target, drug-metabolizing enzymes, disease or gene-
tic regions associated with mechanisms of action, or adverse effects; and (2) the genome-
wide scan investigates a large number of single nucleotide polymorphisms (SNPs) cover-

Fig. 1. Progression of molecular targets to novel therapeutics under a new paradigm for
drug discovery.
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ing the entire genome with the aim of identifying a collection of SNPs that are associ-
ated with differential drug handling or response.

In addition to investigating variability in efficacy, pharmacogenetics allows detec-
tion of susceptibility to relatively uncommon but severe adverse events that otherwise
would not be detected until large numbers of patients had been exposed to a given drug.
For example, 4% of individuals with human immunodeficiency virus treated with the
antiretroviral Abacavir develop a specific hypersensitivity reaction (44). Lai et al. (45)
identified a 250,000-bp region of extended linkage disequilibrium that was associated
with this hypersensitivity reaction. Several SNPs were predictive in that individuals
with these SNPs (e.g., human leukocyte antigen B57) taking Abacavir had a 97% chance
of experiencing the adverse event, although only 50% of the individuals who experi-
enced the adverse event while taking Abacavir actually carried the variants (i.e., 97%
specific, 50% sensitive). More important, these approaches may generate a large amount
of data and statistical methods must adjust for multiple testing while attempting to tease
out gene–gene and gene–environment interactions from gene–disease or gene–response
to treatment associations.

8. Conclusion
The tremendous impact of unraveling the mysteries of the genome is currently being

felt across all areas of drug discovery, and major challenges for the pharmaceutical
industry are in the areas of drug target selection and validation. Figure 1 shows the pro-
gression of new molecular targets into novel drugs under this new paradigm for drug
discovery. One can already anticipate the future availability of genetic structure and
susceptibility to disease at the individual level. With such information available early
in a research program, the drug discovery scientist is faced with the unprecedented
opportunity to address the individual variability to drug therapy and safety prior to
advancing a compound into clinical trials. The exponential growth of attractive novel
molecular targets for potential drug therapy has heavily taxed the core disciplines of
drug discovery, and automated methods of compound synthesis and biological evalua-
tion will play an even more dominant role in the future of the pharmaceutical industry.
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Basic Microarray Analysis

Strategies for Successful Experiments

Scott A. Ness

Summary
Microarrays offer a powerful approach to the analysis of gene expression that can be

used for a wide variety of experimental purposes. However, several types of microarray
platforms are available. In addition, microarray experiments are expensive and generate
complicated data sets that can be difficult to interpret. Success with microarray approaches
requires a sound experimental design and a coordinated and appropriate use of statistical
tools. Here, the advantages and pitfalls of utilizing microarrays are discussed, as are prac-
tical strategies to help novice users succeed with this method that can empower them with
the ability to assay changes in gene expression at the whole-genome level.

Key Words: Microarrays; Affymetrix; GeneChips; genomics; gene expression; tran-
scription; clustering; normalization; data analysis; hybridization.

1. Introduction
The large-scale genome-sequencing projects have identified most or all of the genes

in humans, mice, rats, yeast, and a number of other commonly used experimental sys-
tems. At the time of this writing, the publicly available human genome information
available from the National Center for Biotechnology Information includes more than
2.8 ↔ 109 nucleotides of finished, annotated DNA sequence. Although the exact num-
ber of genes continually fluctuates as annotation and gene prediction programs change
and improve, the current number of human genes is nearly 43,000 (Human genome
build 34, version 3). (Information about the current human genome build is available at
www.ncbi.nlm.nih.gov.) Microarrays provide a means of measuring changes in expres-
sion of all the genes at once. This ability provides researchers with enormous potential
to perform experiments that were impossible just a few years ago and also offers unique
challenges in experimental design and data analysis.

www.ncbi.nlm.nih.gov.
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Microarray experiments and the laboratories that perform them can be divided into
several categories. First are the laboratories that specialize in microarray technology and
that perform experiments with hundreds of microarray samples. Such research groups
are often responsible for developing new methods of microarray data analysis and
include dedicated groups of biostatisticians and computer programmers working to
improve the statistical methods and computer programs for analyzing complex data sets
generated by very large microarray experiments. A second class of laboratories has per-
formed dozens of microarray experiments and has already become familiar with the data
analysis tools necessary to accomplish their goals. Such laboratories generally make
use of commercial software for data analysis or “freeware” packages written by the
aforementioned large groups. This chapter is geared toward the third group: the labora-
tories that are considering their first microarray experiments and that need help with
experimental design and data analysis. New users are most likely to rely on a core facil-
ity to actually perform the microarray experiments. For that reason, I do not discuss
the details of manufacturing, manipulating, hybridizing, and scanning the microarrays
here. Instead, the goal is to outline the potential benefits and pitfalls that arise with
microarray experiments in order to help new users avoid common mistakes and reap
the most benefit from experiments that can be very expensive and time-consuming. In
addition, the commercial microarray platform offered by Affymetrix (Santa Clara, CA)
is the most dominant and readily available means for new users to begin performing
microarray experiments. Consequently, this chapter focuses on the Affymetrix platform
and its use in the academic laboratory, although most or all of the discussion also applies
to custom spotted arrays produced by local microarray facilities. There is a wide vari-
ety of uses for microarrays, including detection of single nucleotide polymorphisms,
analysis of alternative RNA splicing, and analysis of transcription factors binding to
promoters (ChIP on a Chip). However, here the discussion is limited to the use of micro-
arrays for gene expression analysis, the most common use of the platform and the most
likely way that new users will be tempted to use microarray technology.

2. When Is a Microarray the Best Approach?
Microarray experiments are extremely powerful and provide researchers with a new

and exciting means of tackling important problems on a genomewide scale. Most micro-
arrays contain probes for 10,000–40,000 different genes, allowing researchers to assess
simultaneously changes in expression of nearly all the genes in the genome. However,
they are also complex, time-consuming, and often very expensive experiments, and
they generate large and complicated data sets that require substantial effort to analyze
and validate. For these reasons, researchers should not be lured into performing micro-
array experiments without spending some time considering other options or without
considerable thought regarding appropriate experimental design. New users should
consult extensively with their local microarray core facility before beginning to pre-
pare samples for microarray analysis. Every microarray facility can tell stories about
users who approached them with samples only to find out that unsuitable preparation
or storage had resulted in RNA that was too degraded for high-quality analysis. Proper
preparation and storage of the RNA is crucial to the success of microarray experiments.
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This is especially true for samples derived from patients or tissues that are difficult or
impossible to replace. The microarray facility should be able to guide users to the best
methods for preparing samples and storing the RNA to ensure that their experiments
will succeed. Because of these limitations, some experiments are better suited for micro-
array analysis than others.

2.1. For Better or Worse: What Can Microarrays Do?
Microarray technology has proven to be extremely powerful for following changes

in gene expression that occur as synchronized cells progress through the cell cycle (1,2)
or when tissue culture cells are treated with a drug (3,4) or are infected with a virus
expressing a recombinant transcription factor (5,6). In such situations, all the cells in
the population are responding in parallel and relatively synchronously, and the micro-
arrays, which measure the average change in gene expression in the population of cells
being studied, can detect changes in gene expression that occur simultaneously in all the
cells. Because of variations in measurements, microarrays are best at detecting changes
that are relatively robust—a twofold or greater change is a common benchmark—in
genes that are expressed at relatively high levels. Cells from different individuals, such
as different patients, can display markedly different gene expression patterns, so micro-
arrays perform best when the samples are closely related, such as tissue culture cells
or treated vs untreated cells from a single patient or animal. Because different cell types
display complex differences in gene expression patterns, heterogeneous samples, such
as solid tumors or tissue samples, give complex microarray results. Optimum results are
obtained from homogeneous samples, such as cell lines or purified cell populations,
when they are available.

Some experiments are poorly suited for microarray analysis or need a modified design
to make them work. For example, many researchers would like to transfect tissue cul-
ture cells with a plasmid expressing a molecule of interest and then use microarrays to
measure subsequent changes in gene expression. The problem with this approach is that
transfections are often inefficient and generally only yield 5–10% of cells expressing
the molecule of interest. Because microarrays measure the average changes in gene
expression in all the cells in the culture, a gene would have to be induced at least 20-
fold in the transfected cells to show up as twofold induced when averaged over the
entire cell population. A better design would be to transfect the cells with a plasmid that
expresses the protein of interest as well as green fluorescent protein or some other
marker that would allow the transfected (e.g., green fluorescent protein-positive) cells
to be purified by flow cytometry before performing the microarray analysis. Alterna-
tively, recombinant adenoviruses or some other method of expressing the protein of
interest in nearly 100% of the cells in the culture could be used in place of transfection
(5,6). The goal is to compare the changes in gene expression in one nearly homogene-
ous population with those in another.

Changes in gene expression patterns have been used to provide evidence that partic-
ular biochemical, signaling, or transcription factor pathways are activated or inhibited
in different cell types (7,8). Microarrays can detect subtle changes in gene expression
induced by a variety of extracellular or environmental stimuli (9,10). However, such
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results can be quite complicated. In general, microarray experiments should be designed
with some hypothesis in mind, rather than just as a “fishing” experiment. By testing a
hypothesis, it will be possible to design positive and negative controls that will greatly
facilitate the data analysis. This is discussed in more detail under Heading 4.

3. Choosing a Microarray Platform
The first choice a new user will have to make is which type of microarray to use.

Essentially, microarrays are thousands of spots or probes immobilized on a solid sur-
face such as glass or silicon that can be hybridized simultaneously to fluorescently
labeled experimental samples, referred to as targets. In the simplest scenario (Fig. 1),
mRNA from each sample is used as template in a complementary (c)DNA synthesis
reaction that includes dinucleotide triphosphates labeled with fluorescent tags, usually
Cy3 or Cy5. The resulting fluorescent target cDNA is hybridized to the microarray,
which contains cDNA or oligonucleotide probes for each gene of interest. Usually, a
separate microarray is used for each experimental sample. After washing, a laser scan-
ner is used to measure the fluorescence at each spot, and the data are converted into a
spreadsheet format showing the relative intensity or expression of each gene. Several
variations on this theme provide increased sensitivity or reproducibility. For example,
in the Affymetrix GeneChip system, the target samples are labeled with biotin and are
detected with fluorescent streptavidin. However, even from this simple description of
microarray technology, it is apparent that the most important parameters in the assay are
the quality of the samples, the efficiency of the labeling with fluorescent nucleotides,
and the quality and reproducibility of the gene-specific probes on the microarray.

3.1. Glass Slide Arrays
The first microarrays were produced by using modified writing pens to spot samples

of DNA directly onto glass microscope slides. After chemical or ultraviolet (UV) cross-
linking to fix the DNA to the glass, the fluorescently labeled cDNAs were applied in a
drop of hybridization buffer, covered with a standard cover slip, and allowed to hybrid-
ize overnight. This is still the basic process for most microarrays produced in core facil-
ities, although the machines that make the arrays have become highly automated and
new chemistries and surfaces have been developed to make the glass slides more effi-
cient at binding the DNA and to decrease the background in the hybridization. There are
also differences in what types of DNA probes are attached to the glass.

3.1.1. cDNA Arrays
The first laboratories that made extensive use of microarrays spotted libraries of

cDNA clones, either polymerase chain reaction (PCR)-amplified inserts or whole plas-
mids, directly onto glass slides. The use of relatively long (>300 bp) cDNAs has advan-
tages and disadvantages. The biggest advantage is that the hybridization is quite robust.
Thus, point mutations or even small deletions that might occur in some individuals will
have little or no impact on the results of the hybridization. This feature makes cDNA
arrays quite useful for studies of large sets of human patients who might have minor dif-
ferences in some of their genes. Another advantage of using cDNAs is the relatively low
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cost. A single miniprep or PCR reaction can generate enough purified DNA to produce
many thousand microarrays. Owing to their long lengths, the spotted cDNAs are likely
to detect all the transcripts, such as different versions produced through alternative

Fig. 1. Basic steps in microarray analysis. (A) Starting RNA. Purified mRNA is annealed
with a primer (oligo-dT), ready for the reverse transcription reaction. At this point, control RNAs
are often added (“spiked in”) to give an internal control for the efficiency of the following steps.
(B) Labeled cDNAs. In the simplest case, reverse transcription is performed using fluorescently
tagged (e.g., Cy3 or Cy5), dinucleotide triphosphates (dNTPs), resulting in the generation of
fluorescent cDNA. In the Affymetrix system, the dNTPs are biotinylated, and later detection is
performed with fluorescent streptavidin. (C) Target hybridization. The fluorescently labeled cDNAs,
referred to as “targets,” are hybridized to gene-specific “probes.” Each target anneals to its
corresponding probe spot on the microarray. The probes can be spotted cDNAs or oligonucleo-
tides, or oligonucleotides that were synthesized directly on the microarray surface. Although only
two spots are shown, a single microarray can have probes for up to 50,000 different genes and
more than a million spots per square inch. After hybridization, a laser scanner is used to detect
the specific fluorescence at each spot. If all goes well, fluorescence intensity is proportional to
the concentration of the relevant mRNA in the original sample.
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promoter use or alternative RNA splicing, which could be an advantage. Major disad-
vantages are the cost and effort required to assemble large libraries of purified cDNAs
or PCR products, all of which must be correctly identified, subjected to nucleotide sequenc-
ing, and annotated. There have been problems with collections of cDNAs provided by
commercial suppliers, which contain a large fraction of clones that are improperly iden-
tified or contaminated with other plasmids that interfere with PCR amplification. In
addition, cDNAs can contain repeated sequences and may hybridize to closely related
transcripts (gene families) and so may not provide enough specificity for many appli-
cations. Because cDNAs vary in length and G-C content, it is difficult to ensure that
all will hybridize equally well or give the same amount of background signal. These
disadvantages make cDNAs difficult to work with and have contributed to their waning
popularity.

3.1.2. Oligonucleotide Arrays
The most common type of glass slide microarrays use custom oligonucleotides,

usually 40 to 60 mer, instead of cDNAs. The oligonucleotides, if designed properly, can
overcome problems of specificity and G-C content associated with using cDNAs. There
are generally fewer problems with improper identification or labeling when ordering
custom oligonucleotides from commercial suppliers, although one must still trust the
supplier to synthesize and purify them correctly and to put the correct oligonucleotides
in each tube. The major drawbacks of using oligonucleotides are the relatively high cost
of purchasing 10,000 or more custom oligonucleotides and the huge amount of bio-
informatics support required to design all the necessary bits of DNA specific for each
gene with matched G-C content and free of hairpins that could affect hybridization effi-
ciency. Depending on how the oligonucleotides are designed, they might still suffer
from some of the specificity problems associated with cDNAs. Complete sets of oligo-
nucleotides are now available from commercial suppliers, greatly simplifying their use
by microarray core facilities producing homemade microarrays. Nevertheless, because
of the cost, it is rare for such collections to contain intentionally more than one oligo-
nucleotide representing each gene.

3.1.3. Advantages and Disadvantages of Glass Slide Microarrays
The biggest advantage of using homemade or in-house-produced glass slide micro-

arrays is the relatively low cost, generally less than $100 per array. However, such arrays
are limited to 20,000 or fewer spots per array, so more than one array is necessary to
screen an entire mammalian genome. It is also rare to have more than one spot for any
gene on each array. Thus, if there are any discrepancies in the production of the arrays,
such as some spots that get too little DNA or that are misshaped or smeared, there are
no backup spots from that gene to confirm the hybridization results. Unfortunately,
not all spots are identical on any spotted array, which makes the data subject to more
variability and also makes multiple hybridizations absolutely essential. As a conse-
quence, most users hybridize their samples to several identical arrays in order to have
multiple measurements and to be able to perform statistics for each spot. This increases
the cost substantially. Thus, if a single array costs $80, two arrays are necessary to rep-
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resent 40,000 human genes, and each sample is hybridized to three independent arrays
in order to generate statistically significant measurements, each biological sample would
require a total of six arrays, or a total cost of $480 just for the arrays. Thus, the apparent
cost savings by using homemade arrays often disappears when the problems associated
with such arrays are considered in the bigger picture (Table 1).

3.2. Affymetrix GeneChips
The most common commercial microarray platform is the GeneChip system from

Affymetrix. GeneChips are made by synthesizing matched sets of short oligonucleo-
tide pairs, one that matches perfectly (perfect match) and one with a single mismatch,
on a silicon-based substrate using a photolithographic process similar to methods used
in the computer chip industry. The newest GeneChips contain at least 12 pairs of probe
sets for each gene; contain probe sets for more than 50,000 human, mouse, or rat genes;
and generally cost academic users about $450 apiece. Having multiple probe sets for
each gene ensures that even if part of the GeneChip surface becomes damaged or
obscured by background, enough probe sets will still be readable to salvage the experi-
ment. Multiple probe sets also allow statistical analyses to be performed, so both an
expression level and a p value of expression can be reported for each gene. The Affy-
metrix system includes detailed protocols that rely on commercially available kits, auto-
mated fluidics stations for washing the arrays after hybridization, and an automated
scanner and software package for analyzing the arrays. The complete system is expen-
sive but produces very high-quality data and is relatively user-friendly, so it is the plat-
form of choice for mainstream microarray facilities and for novice microarray users.
The analysis kits from Affymetrix can be used with very small amounts of total RNA,
even less than 20 ng, and new kits and specially designed GeneChips offer the ability
to analyze samples extracted from paraffin-embedded clinical samples, making the anal-
ysis of gene expression in archived samples a possibility. The key feature of the Affyme-
trix system is the high-density GeneChips, which are available for several mammalian

Table 1
 Comparison of Microarray Platforms

Glass Affymetrix
slide arrays GeneChips

Typical cost per array $80 $450
Arrays per 40,000 genes 2 1
Measurements per gene on each array 1 12
Arrays needed per sample to achieve at least three 6 1

measurements per gene
Array cost per sample $480 $450
Typical amount of total RNA needed per array 10 µg 0.1–1 µg
Total amount of RNA needed from each sample >30 µg <1 µg
Total arrays needed for a three-sample experiment

(untreated, control-treated, experimental-treated) 36 6
performed in duplicate

Total array cost $2880 $2700
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species and several other common experimental organisms. Researchers studying gene
expression in unrepresented organisms will need an alternative approach or will have
to contract with Affymetrix (for a substantial fee) to produce customized GeneChips
for their unique needs.

As shown in Table 1, for users who wish to screen more than 20,000 genes (which
requires two spotted glass slide microarrays but only one Affymetrix GeneChip) and
to have high-quality data (which requires at least three glass slide microarrays but only
one GeneChip), experiments with Affymetrix GeneChips can be less expensive than
using glass slide microarrays.

4. Types of Microarray Experiments

Most microarray experiments can be classified as one of three types. The first is the
comparison of a single cell line, micro-organism, or animal strain before or after some
defined treatment. The second type is a comparison of organisms (micro-organisms, cell
lines, or inbred animals) that are isogenic except for one or a limited number of gene-
tic changes, such as a single overexpressed or mutated gene. The third type is the com-
parison of normal or tumor tissues from multiple individuals, such as breast tumors or
leukemia samples from different patients. Each of these types of experiments can be
addressed with great success using microarray assays, provided that certain pitfalls can
be avoided.

4.1. Treatment Comparisons
Treating a cell line or micro-organism with a specific treatment condition such as

UV light or a drug that blocks a signal transduction cascade generates immediate and
rapid changes in gene expression that can be detected with microarray assays. This is
the simplest type of microarray experiment to analyze, because all the cells should
behave similarly and relatively synchronously following the treatment. Nevertheless,
there are several things to consider about such an experiment, such as the time course or
duration of the treatment and the dose, etc., that can have dramatic effects. For exam-
ple, the gene expression changes that occur 2 h after UV treatment of a human tissue
culture cell line could be completely different from the changes observed 8 h after treat-
ment. In addition, cells that are synchronized in the cell cycle could show significant
differences compared with cells that are growing asynchronously or are density arrested.
Thus, new users are encouraged to spend some time thinking about exactly what type
of gene expression changes are expected, and in what type of cells those changes would
be best detected.

An example from our laboratory illustrates this point. We developed recombinant
adenovirus vectors expressing the c-Myb transcription factor. The c-Myb virus or a con-
trol virus was used to infect human MCF-7 mammary cells, primary lung epithelial cells,
or primary lung fibroblasts. After 16 h, microarray assays were used to detect changes in
gene expression. In each case, the c-Myb transcription factor caused specific changes in
gene expression. However, the genes that were affected were completely different in each
of the three cell types, suggesting that c-Myb transcriptional activity was strongly affected
by cellular context (5). In this case, if we were trying to identify genes that were regu-



Basic Microarray Analysis 21

lated by c-Myb, we would have obtained completely different results in each cell type.
Similarly, UV light or drug treatments could cause different gene expression changes in
different cell types. Thus, it is crucial to study induced gene expression changes in the
most relevant cell type available.

4.2. Analysis of Genetic Differences
A second type of experiment involves comparing otherwise isogenic organisms that

differ at a single genetic locus, through either overexpression or mutation. Such experi-
ments are especially common with yeast, cell lines, and genetically altered mice, or
with cell lines derived from mouse knockout strains. These experiments differ from
the ones described in Subheading 4.1. because the gene expression changes are at steady
state. For example, researchers might use microarrays to compare the gene expression
patterns in cells that differ by a mutation at a single genetic locus. However, if the
cells compensate for the loss of one gene by upregulating other genes, the observed
results could be quite complex. In this case, although the gene expression changes are
a result of the mutation, the genes that are affected may be regulated by pathways that
have nothing to do with the gene that was mutated, but are affected through secondary
compensatory pathways. A better design might be to reexpress transiently the wild-
type gene in the mutant cells to follow short-term changes in gene expression that are
more directly affected by the gene of interest. This example points out that interpreting
microarray data can be quite complicated, because gene expression pathways are influ-
enced by so many regulatory interactions. Microarray experiments are relatively easy
to perform, but poor experimental design may yield results that are difficult or impos-
sible to interpret.

4.3. Comparison of Patient Samples
Microarray assays offer a rapid and sensitive means of comparing the gene expres-

sion profiles in tumors from different individuals and offers the promise of being used
as a clinical tool to identify tumors that might respond better to a particular treatment
or for identifying patients with better or worse prognoses. Such information could
be extremely valuable for helping clinicians make decisions about which therapeutic
options are most appropriate. Many investigators have access to dozens or even hun-
dreds of clinical samples and see microarrays as a means of analyzing them for common
patterns of gene expression. Several laboratories have been successful at identifying pat-
terns of gene expression that correlate with clinical outcome or define classes of tumors,
similar to other cytogenetic markers (7,11,12). However, these studies invariably require
quite complex data and statistical analyses including methods, such as hierarchical clus-
tering, support vector machines, and other advanced approaches (13,14). For this rea-
son, novice users should consult with experts in complex data analysis before beginning
such a study. In addition, successful clinical studies require balanced cohorts designed
by qualified biostatisticians to avoid common pitfalls and artifacts (see Subheading 5.5.).

5. Planning and Experimental Design
Microarray experiments generate large and complicated data sets that pose special

problems for statistical analysis and researchers trying to interpret the results. This section
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discusses the most common problems faced by novice users beginning microarray experi-
ments and approaches for eliminating them.

5.1. The Problem With Statistics

Most statistical methods depend on the comparison of replicates to estimate experi-
mental variability in order to determine whether an observed difference is statistically
significant. In general, such methods work better as the number of replicates increases.
Thus, the best types of data for normal statistical analyses have relatively few variables
(rows) and many replicate measurements (columns). However, microarray experiments
generate data of exactly the opposite type, with many thousands of variables (genes)
and, because of the high cost, very few replicates. As a consequence, the usual statisti-
cal methods have trouble dealing with microarray data. For example, it is impossible to
use a t-test statistic on data that have fewer than three replicates. Yet, few researchers
can afford to perform more than two or three replicates of microarray experiments that
may cost $1000 per sample. Some specialized data analysis methods have been devel-
oped to get around the problems posed by microarray data. These methods often ana-
lyze the variation in other genes as pseudoreplicates in order to calculate the levels of
variation among the genes in a data set. An example of such a method is the Cross-Gene
Error Model used by the popular microarray analysis software program GeneSpring
(Silicon Genetics, Redwood City, CA), which calculates a trust score for each gene based
on its level of expression and the variation among other genes in the data set expressed
at similar levels. These specialized data analysis methods can be quite effective and
work best when the samples being compared are similar, such as from the same tissue
culture cell line. The cross-gene methods have more difficulty when the samples being
compared display more dramatic differences in gene expression patterns, such as when
tumors from different patients are compared.

One of the problems with microarray data analysis is that the results of the experi-
ments are generally reported only as fold change. This is necessary because different
genes are expressed at widely different levels. If one tried to analyze microarrays using
only raw expression-level scores, one would end up paying attention only to the genes
that were expressed at high levels. However, in biological terms, the most highly ex-
pressed genes are often the least interesting, sometimes called “housekeeping” genes.
The more interesting regulatory genes are often expressed at moderate or low levels.
Thus, fold change measurements are necessary in order to emphasize the changes in
gene expression, instead of the total abundance of individual transcripts. Unfortunately,
reporting only fold change measurements introduces serious problems when discuss-
ing genes that are expressed at low levels. For example, using Affymetrix GeneChips,
it is not uncommon for replicate measurements of a single gene in two identical sam-
ples to vary by as much as 1000 raw fluorescence units. An error of 1000 U is an inconse-
quential 5% change for a gene expressed at a level of 20,000 fluorescent units. However,
for a gene expressed at approx 200 U, a 1000-U variation represents a sixfold change.
Consequently, it is much more difficult to measure statistically significant changes in
gene expression for genes that are expressed at low levels. In publications, the raw fluo-
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rescence-level numbers for individual genes are almost never reported, making interpre-
tation of the fold change measurements difficult. However, the relative change in total
fluorescence units must be considered when determining the significance of an observed
fold change.

5.2. Why Replicates Are Absolutely, Positively Required
One of the most common questions raised by new users, especially after calculat-

ing the high cost of a proposed microarray experiment, is: are replicates really neces-
sary? After all, publications almost never show replicates of Northern or Western blots,
two conventional methods of analyzing changes in gene expression. Why are replicates
required for microarray experiments?

The differences are that Northern and Western blots seldom try to measure changes
in gene expression that are as low as twofold and do not use statistical filters to iden-
tify gene products of interest. When microarray assays are used to measure gene expres-
sion patterns in two independent samples that should be identical, the data usually have
a correlation coefficient higher than 0.97. This is a very high correlation coefficient for
biological studies. However, it means that for any filter used to analyze the microarray
data, up to 3% of the genes that pass through the filter will do so solely owing to appar-
ently random fluctuation in the measurements. For an experiment measuring 40,000
genes, this noise could contribute to the improper identification of up to 1200 genes, a
number far too large to be tolerated. However, if the fluctuation is random, different
genes should be improperly identified in each sample. Thus, by performing duplicate
analyses and requiring that genes pass through the filter in both replicates, the number
of genes improperly identified should be only 0.03 ↔ 0.03 = 0.009, or only 36 genes out
of 40,000. Applying the filters to independent triplicate samples should eliminate all
but one or two “false-positives,” or improperly identified genes. For these reasons, new
users should be counseled that replicate microarray assays are absolutely required. If
costs are a concern, duplicate assays will generally suffice, but independent triplicate
assays, if possible, are best.

5.3. Hybridization and Analysis Controls
Before starting a microarray experiment, it is important to consider the controls that

should be included. Microarrays should be designed to allow the inclusion of “spiked”
control mRNAs in the samples to be analyzed. These are most often a set of bacterial
or artificial mRNAs generated by in vitro transcription, and mixed in predefined ratios
representing low-, medium-, and high-abundance transcripts, that can be added to all
the experimental samples and that hybridize to their own special spots on the array.
Spiked controls are an excellent means of following the efficiency of the entire micro-
array analysis process, from reverse transcription through labeling to hybridization,
detection, and quantitation. For Affymetrix GeneChips, premade sets of control RNAs
are available as a kit. Including such controls is highly recommended because it requires
very little additional effort or cost and adds significantly to the quality of the data.
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5.4. The “Day Effect”
Microarrays are quite capable of detecting systematic problems in the analysis or

preparation of samples. This is sometimes referred to as the “day effect,” detected when
techniques, such as Principle Component Analysis, are applied to large data sets con-
taining samples that were analyzed on different days. The samples analyzed on the same
day often correlate with each other better than samples analyzed on different days. The
causes of the day effect are unknown but presumably have to do with batches of enzymes
or reagents that differed or other systematic variations. Whatever the reason, the impli-
cation is that the samples analyzed on the same day will appear to be more similar to
each other than they should, and the samples analyzed on different days will appear to
be more different than they should. This has important implications for experimental
design. For example, because of the day effect, it would be inappropriate to analyze all
the control and untreated samples on one day, and all the treated or experimental sam-
ples on a different day. Instead, if it is impossible to analyze all the samples together,
it is better to divide the samples into manageable groups, keeping both control and
experimental samples in each group. For example, for a small experiment with three
samples—untreated, vehicle alone, and drug-treated—it is recommended that the entire
experiment be performed in duplicate, but on different days. Each set of three micro-
arrays is analyzed together on different days, and then the data sets are compared and the
analyses performed. This practice will ensure that some controls and some experimental
samples are analyzed on different days, so any correlation observed between replicates
will be owing to the experimental manipulations, not the systematic variations that
cause the day effect.

5.5. Importance of Balanced Cohorts
A common use of microarrays is the analysis of clinical samples, with the intention

of identifying patterns of gene expression that are predictive of a particular outcome.
For example, researchers analyze a group of breast tumors in order to identify patterns
in the microarray data that correlate with and can predict poor prognosis. However,
this type of study is particularly prone to problems with experimental design related to
unbalanced cohorts. In a typical study, researchers might have access to 60 tumor sam-
ples, of which 80% have good prognosis and 20% have poor prognosis. They choose
two-thirds of the samples, or 40, to use as a training set and save the other 20 as the test
or validation set. Microarray analysis identifies genes whose expression patterns can
distinguish between the good and poor prognosis samples in the training set. When the
expression patterns of those genes are analyzed in the test samples, they predict the out-
come with 80% accuracy, so the experiment appears to be a success. However, if the
researchers failed to balance the cohorts, they may have been misled. Because 80% of
the original samples had good prognosis, a random selection of any sample would have
an 80% chance of being in the good prognosis group. If the microarray analysis fails
to perform better than random chance, it has not really worked. A better design would
be to choose a balanced cohort, 50% with good and 50% with poor prognosis, to use as
the training set. In this type of experiment, it is essential to get help from a qualified bio-
statistician before beginning, in order to obtain results that are valid and meaningful.
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6. Basics of Microarray Data Analysis
Microarray experiments can produce complex data sets, and analyzing them can

be difficult and time-consuming. The details of microarray data analysis methods are
beyond the scope of this chapter. However, even if an expert performs the actual data
analysis, it is important for the researchers to understand the basics of data analysis so
that they can interpret the analysis summaries provided to them and ask the right ques-
tions of the expert analyst.

The analysis of microarray results has three phases. The initial analysis checks qual-
ity scores and controls in order to judge whether the labeling, hybridization, and scan-
ning of the microarrays worked as planned and to identify problematic results that should
be eliminated from the larger data set used for the final analysis. The second step is
scaling and normalization, which adjusts the data obtained from individual arrays so
that they can be compared. The normalization step is particularly important and dra-
matically affects the outcome. Choosing the correct normalization method is critical to
obtaining the best results. Once the data are normalized, the third step, applying a vari-
ety of statistical tests and filters to identify genes whose expression change in the vari-
ous samples is employed. There are many methods for performing this analysis, which
indicates that there is no best or standard approach. Indeed, the statistical methods
used for microarray data analysis are a major area of biostatistics research. For novice
users, the experts in the core facility will likely choose the particular statistical methods
that they are comfortable with and prefer to use, so a description of all possible methods
or software packages currently in use is beyond the scope of this chapter. However, a
description of some of the types of filters that can be applied to simple microarray data
sets is useful to understand how the data are structured and to identify some of the pit-
falls that can occur in microarray data analysis.

6.1. Initial Data Analysis
The first steps in the analysis of microarray data are to check the quality of the data

obtained from each array or GeneChip; validate that all the wet-lab steps, such as reverse
transcription, probe labeling, hybridization, and scanning were successful and efficient;
and eliminate any data sets that are of low quality. For the novice user, these steps will
usually be carried out by the core facility, which should provide the user with a report
describing the overall quality of the data. The exact measurements used for judging data
quality will depend on the microarray platform used and the types of controls present
on the microarray. The Affymetrix GeneChip system includes a number of standard
controls and quality measures that provide excellent examples of how data quality can
be monitored.

6.1.1. Interpreting Affymetrix Quality Scores
Affymetrix GeneChips contain a number of control probe sets that measure the ex-

pression of housekeeping genes, such as β-actin and glyceraldehyde-3-phosphate dehy-
drogenase. Unlike most probe sets, which are skewed toward the 3'-end of the mRNA,
in order to be less dependent on the quality of the reverse transcription reaction, the
GeneChips contain several probe sets for the housekeeping controls, located at the 5'-
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end, -middle, and 3'-end of the transcripts. By comparing the hybridization signals from
these probe sets the researcher can get an excellent indication of the quality of the mRNA
and the reverse transcription reaction used during the labeling process. For example,
because the reverse transcription reaction begins at the 3'-end, if it was inefficient the
probe sets from the 3'-ends of the housekeeping genes would give much stronger hybrid-
ization signals than the probe sets from the 5'-ends. In general, the ratio of the signals
from the 3'-end to the 5'-end probe sets should be less than three. In addition, the house-
keeping gene probe sets should have robust signals, as expected for transcripts expressed
at high levels.

6.1.2. Percent Present
A second type of quality score provided by the Affymetrix system is the Percent

Present statistic. Affymetrix GeneChips contain 12 or more perfect match probes and
an equal number of mismatch probes for each gene. The analysis software measures
the difference in the hybridization signals for the perfect match and mismatch probe
pairs and then uses a statistical algorithm to determine whether the differences are
significant. Based on this calculation, each gene is labeled “Present,” “Marginal,” or
“Absent.” This statistical flag is independent of the expression level and depends only
on how much agreement there is among the individual probe sets for each gene. The
software also calculates the fraction of genes labeled “Present” and reports this fraction
as the Percent Present. In practice, the Percent Present can vary significantly, depend-
ing on the type of sample (e.g., primary cells vs transformed cell lines) being analyzed.
However, within one experiment analyzing similar samples, all of the GeneChips should
give a similar Percent Present. An abnormally low Percent Present is an indicator that
an RNA sample was of poor quality or that the labeling or hybridization reactions were
flawed.

6.1.3. Interpretation of Scaling Factors
Affymetrix also permits data from individual GeneChips to be scaled, which is simi-

lar to per-chip normalization (see Subheading 6.2.1.). Although scaling is not abso-
lutely necessary, it does provide an additional quality statistic, the scaling factor. Scaling
works by multiplying all the gene expression values by some constant, the scaling fac-
tor, which adjusts the average expression to some preset number, usually 500 or a simi-
lar integer. If scaling is used, the scaling factor provides an excellent quality measure.
Poor-quality data sets invariably have larger scaling factors, because the labeling or
hybridization was affected for all the genes represented on the GeneChip. Ideally, all the
samples being analyzed as a group should have similar scaling factors. If Affymetrix
scaling is used, there is no need to use additional per-chip normalization, discussed in
Subheading 6.2.1.

6.2. Scaling and Normalization
Proper scaling and normalization of microarray data is extremely important and dra-

matically affects the results of the analysis. The two basic types of normalization are
scaling, or per-chip normalization, which adjusts the average intensity of an entire micro-
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array sample, and per-gene normalization, which is used to compare the relative expres-
sion of a single gene within a group of samples.

6.2.1. Per-Chip Normalization
Scaling, or per-chip normalization, is a means of adjusting the overall fluorescence

of each microarray to the same average intensity, analogous to adjusting the sensitivity
of the scanner so that each sample has the same overall brightness. This type of adjust-
ment makes sense for samples that are similar, and that are expected to have similar
numbers of genes expressed, mostly at similar levels. However, it may not make sense
for samples that are dramatically different, such as a comparison of resting cells vs pro-
liferating cells, because the latter may have many more genes expressed. By default,
most samples are subjected to scaling or per-chip normalization. However, the details
of the experiment should be considered carefully to determine whether per-chip nor-
malization is appropriate. In particular, if samples have dramatically different levels
of expression of the housekeeping genes, which contribute greatly to the average fluo-
rescence, it might be better not to subject the samples to per-chip normalization.

6.2.2. Per-Gene Normalization
The absolute level of expression among different genes varies dramatically, from

thousands to less than one transcript per cell. As a result, it is difficult to compare changes
in the level of expression of specific genes among samples. As discussed in Subheading
5.1., a 1000-fluorescent unit change in expression of a high-abundance transcript may
represent a small change, as little as 5%, but could represent a manyfold change in
expression of a gene that is expressed at low levels. Per-gene normalization is used to
overcome this problem by comparing the relative expression of each gene across the
various samples in an experiment, expressed as fold change. As a consequence, genes
that display similar patterns of up or down changes in expression across samples can
be identified despite the absolute differences in their expression levels.

The big problem with per-gene normalization is deciding what to normalize each
sample to. By default, most microarray data analysis programs calculate the mean
expression level for each gene, then normalize each sample against that mean, or con-
trol value. This approach works but can result in some strange results. Take the exam-
ple described in Subheading 5.4. of a small microarray experiment containing just three
conditions—untreated, vehicle treated, and drug treated—performed in duplicate. The
entire experiment would consist of six microarrays, two independent measurements
for each condition (Fig. 2A). Now, consider a gene expressed at or near zero in the un-
treated and vehicle-treated conditions. The software never reports an expression value
of zero, so assume that the average value in the untreated and vehicle-treated samples is
a low number, e.g., 200. If this gene is strongly induced by the drug treatment its expres-
sion level could go up to an average of 2000 U. Using the default per-gene normaliza-
tion described above, the mean intensity across all six samples would be 800. The fold
change reported for the untreated and vehicle-treated samples would be 0.25 and the
fold change for the drug-treated samples would be 2.5. This gene would just barely pass
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a filter designed to find genes induced more than 2.5-fold by the drug. However, com-
parison of the raw scores shows that the average expression actually changed from
200 to 2000, which is a 10-fold change! In this case, the default normalization scheme

Fig. 2. Design and analysis strategy for a simple microarray experiment. (A) Simple micro-
array experiment design. A six-microarray experiment is designed to test the effect of drug treat-
ment on tissue culture cells. Duplicate samples of the drug-treated cells will be compared with
duplicates of vehicle-treated or mock-treated samples. Each sample will be analyzed with its
own microarray, making a total of six assays. (B) Flow chart of simple microarray experiment.
RNA samples from the two trials are collected and analyzed separately, and then the data are
combined for the analysis. Keeping the samples separate helps to avoid day effects and other sys-
tematic problems. The data are normalized to the mean of the four control samples (mock treated
or vehicle treated) to identify drug-induced changes in gene expression in the two treated samples.
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was inappropriate. The data should have been normalized to the untreated or the vehi-
cle-treated samples, rather than to the average of all the samples. As the example illu-
strates, choosing the correct normalization scheme is extremely important and affects
the results and the genes that will be identified by the analysis.

In general, if the experiment has true control samples, such as the untreated and
vehicle-treated samples in the example described in Fig. 2A, per-gene normalization
should use those samples as the controls. The result will be fold-change data that reflect
the change relative to the controls, a much more logical type of result than a fold change
relative to the mean of all the samples. On the other hand, when no true controls are
available, such as when comparing the gene expression profiles of a number of tumor
samples from different patients, normalization to the mean of all the samples may be
the only available choice. In either case, it is important for the researcher to understand
how the data were normalized in order to interpret the fold-change results.

6.3. The Simplest Analysis: Filtering to Identify Regulated Genes
After normalization, a variety of techniques can be used to identify genes with altered

expression in one or more of the experimental conditions. This section focuses on fil-
tering, the simplest method to identify interesting genes and one of the most useful for
novice microarray users. Filtering is direct and related to the experimental design, so it
is relatively easy to set up and understand. However, filtering is best used for address-
ing specific biological questions in relatively simple experiments. The filtering approach
rapidly becomes cumbersome as the experimental design becomes more complicated
and is not suitable for experiments with more than three or four types of experimental
conditions. Nevertheless, a basic discussion of data analysis using filtering can point
out the strengths and weaknesses in microarray data analysis and prepare users for adopt-
ing more advanced techniques, if they are necessary.

6.3.1. The Analysis Strategy
To illustrate the concepts and pitfalls of data analysis by filtering, consider the exam-

ple experiment described in Fig. 2A, with two biological replicates each for untreated,
vehicle-treated, and drug-treated samples, or a total of six microarrays. This experiment
has a simple experimental design (Fig. 2A). Nevertheless, it is important to predict what
types of results are expected in order to design the appropriate filters.

6.3.2. Filter on Flags
The first criterion is that only those genes that can actually be detected above back-

ground levels should be considered for further analysis. If a gene is expressed at such
low levels that it cannot be distinguished from background in any of the samples, there
is no sense in applying a filter to see whether its expression has increased. This may
seem obvious but it is actually a major concern in microarray experiments that utilize
normalized data, because once the data are normalized, all the information about abso-
lute expression levels are lost. Thus, it is a common error to identify genes that are up- or
downregulated based on fold change without paying attention to whether the genes are
actually expressed at a level that is significant and above background. For several rea-
sons, this problem is a special concern for users of glass spotted arrays. First, absolute
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background levels are difficult to measure using glass spotted arrays. This is because
the background hybridization in the areas spotted with DNA can be much greater than
in the areas without DNA, because background levels can vary from probe to probe,
depending on the G-C content, and because such arrays often suffer from high back-
ground and “smearing,” all of which complicate background measurements. Second,
glass spotted arrays often have only one spot per gene, so there is no way to do statisti-
cal calculations to determine whether an expression measurement is significantly differ-
ent from background. Finally, signals using glass spotted arrays are often weak, so most
spots are detected in the near-background range. Sometimes it is possible to increase
the sensitivity of the scanner to alleviate this problem, but detection of low- and even
medium-abundance mRNAs can nevertheless be quite difficult.

The Affymetrix GeneChip system has incorporated a number of measures to enable
more accurate background detection and to permit statistical measures to be applied to
determine whether each gene is expressed above background. On the Affymetrix arrays,
at least 12 perfect match probes and an equal number of corresponding single nucle-
otide mismatch probes represent each gene. By comparing the hybridization signals
for the perfect and mismatch probes, which in each case differ by only one nucleotide,
a fairly accurate estimate of the difference between specific and nonspecific signals can
be determined. The 12 or more independent measurements allow statistical tests to be
made, and the size of the corresponding p value is used to calculate a Present/Margi-
nal/Absent call. This “flag,” or qualitative measure that accompanies the raw expression
score, is a measure of whether the genes are statistically different from background.
The flag allows the data to be filtered to exclude genes that cannot be accurately mea-
sured. In general, it is advisable to filter Affymetrix data to exclude genes that are
flagged “Absent” in all the samples, which is often one-third or more of the genes on the
array. It is also possible to be more selective. In our example experiment (Fig. 2A), if
one was interested only in genes that were “off” in the controls and “on” in the drug-
treated samples, one could filter for genes that were flagged “Absent” in the untreated
and vehicle-treated samples and also flagged “Present” in the drug-treated samples.
However, such a specific use of flags is generally unwarranted because it could be too
selective.

6.3.3. Filter on Fold Change
The most basic type of filtering is the comparison of fold change. Microarray data

are generally filtered to identify genes that are at least twofold different in the experi-
mental conditions. In our example experiment, one would try to identify genes that were
at least twofold up- or downregulated in the drug-treated samples compared with both
the vehicle and the untreated samples.

The best approach is to combine filters to achieve the most specific result possible.
For example, to identify genes that are upregulated by the drug treatment, a filter should
be designed to find only genes that are flagged “Present” and also twofold or more up-
regulated in both of the drug-treated samples, because it makes no sense to study genes
that are apparently upregulated but cannot be detected in a statistically significant man-
ner. Whether the genes are flagged “Present” or “Absent” in the controls is irrelevant.
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For downregulated genes, the measurements must be flagged “Present” in all the con-
trols but expressed at 0.5-fold or less in both of the drug-treated samples. It is not log-
ical to find genes that appear to be downregulated unless they were actually expressed
above background in the controls.

6.3.4. Other Filters
Numerous additional filters can be applied to microarray data. To be most conser-

vative, some users will wish to limit their analysis only to genes that are most robustly
expressed, and that can be most easily detected by other methods, such as Northern
blots. For that purpose, it may be useful to filter on the raw expression level, essentially
setting a cutoff for minimum expression above which a gene must be expressed to be
considered further. The cutoff is somewhat arbitrary and depends on the data set and the
settings used for the scanners and for the normalization. Nevertheless, this approach can
help identify the genes that will be simplest to study in subsequent validation experi-
ments, at the expense of eliminating some of the most interesting genes that are expressed
at lower levels, closer to the background level.

6.4. More Advanced Analysis: Clustering
Microarray data can be extremely complex, and many methods of data analysis are

available. In fact, the development of new and improved methods for analyzing micro-
array data is a major area of research among bioinformatics specialists. The most com-
mon of these methods involves various supervised and unsupervised clustering methods
that have been developed primarily for the analysis of large data sets, especially those
that compare numerous samples from different individuals, such as a series of tumor
vs normal samples. These methods are generally not too useful for novice microarray
users performing simple experiments; their description is beyond the scope of this arti-
cle, but they are discussed in Chapter 4. Nearly all the advanced methods use statis-
tical tests to group genes or patients in clusters, based on their expression profiles, and
do better with larger numbers of samples. However, as a general rule, it is best to filter
the data first in order to limit the analysis to the smallest possible set of genes that are
informative. It makes little sense to include thousands of genes that cannot be detected
above background in the data set being subjected to statistical clustering. Once the data
are limited to the genes that are truly flagged “Present” and that change twofold or more
in the experimental samples, clustering methods may be able to divide the genes into
interesting groups, especially if the experiment includes several different types of sam-
ples, such as treatments with different drugs or a time course of drug treatments.

7. Conclusion
Microarray technologies have empowered novice users with the ability to assay

changes in gene expression at the whole-genome level. There is little doubt that micro-
array results will lead to new and entirely unexpected results, and pursuing such experi-
ments will be worthwhile for many investigators. However, there are several concerns
that should be heeded. Microarray experiments are expensive and they can be quite
labor-intensive. In addition, the data that they produce are quite complex. Novice users
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should seek out advice from their core facilities or collaborators to make sure that they
have designed the most efficient experiment that is compatible with microarray assays.
A poorly designed experiment is the most common reason that microarray experiments
fail to yield results that are interpretable. In most cases, clear thinking and a discussion
with an experienced microarray user, a core facility leader, or a biostatistician will lead
to much better experimental design and much better data.
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From Microarray to Biological Networks

Analysis of Gene Expression Profiles

Xiwei Wu and T. Gregory Dewey

Summary
Powerful new methods, such as expression profiles using cDNA arrays, have been used

to monitor changes in gene expression levels as a result of a variety of metabolic, xeno-
biotic, or pathogenic challenges. This potentially vast quantity of data enables, in princi-
ple, the dissection of the complex genetic networks that control the patterns and rhythms
of gene expression in the cell. Here we present a general approach to developing dynamic
models for analyzing time series of whole-genome expression. The parameters in the
model show the influence of one gene expression level on another and are calculated using
singular value decomposition as a means of inverting noisy and near-singular matrices.
Correlative networks can then be generated based on these parameters with a simple
threshold approach. We also demonstrate how dynamic models can be used in conjunction
with cluster analysis to analyze microarray time series. Using the parameters from the
dynamic model as a metric, two-way hierarchical clustering could be performed to visual-
ize how influencing genes affect the expression levels of responding genes. Application
of these approaches is demonstrated using gene expression data in yeast cell cycle.

Key Words: Gene expression; time series; gene network; linear dynamic model; singu-
lar value decomposition; clustering.

1. Introduction
An emerging problem in bioinformatics is identifying the relationships among the

various components of a system and inferring how one component influences another.
To do this, the detailed information about molecular species must not be considered in
isolation but, rather, in relation to all of the other components of the system. These rela-
tionships are often most easily represented by network structures or graphs. Thus, sys-
tems biology invariably means network analysis. To this end, systems-wide investigations
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have focused on specific functional network structures, such as metabolic, signaling,
and gene regulatory networks. These networks, when refined, will ultimately provide
predictive models of biological function. Other networks, such as protein–protein inter-
action maps or ortholog networks, are used to represent and cope with the correlations
and relationships inherent in these large data sets. In this chapter, we discuss how to ana-
lyze cDNA microarray data to obtain network models of gene expression. As discussed,
these methods are more akin to the correlative networks than to true gene regulatory
networks.

To infer gene expression networks from microarray data, we consider time-series
data taken on a population of cells at set time points after some stimulus. This stimulus
is often an environmental alteration that will elicit a cellular response. Examples might
be the addition of a drug or blocking agent or the change of media to alter growth condi-
tions. Systems-level gene expression profiles can be measured for each time point using
cDNA or oligomeric chips. The time progression of these gene profiles can then be ana-
lyzed using linear models to yield gene expression networks. These gene expression net-
works must be considered phenomenological, reflecting dynamic observations from the
data and an inherently incomplete modeling of the data. These networks describe how
the mRNA level of one gene influences the mRNA level of another. These are not true
gene regulatory networks in the strict sense because they are correlative, and not neces-
sarily causal, networks. This chapter describes how to proceed from data to linear model
to gene expression network. It also describes methods for visualizing these networks
and a clustering technique for classifying genes according to their network connectivity.

2. Methods

2.1. Source of Data
The Stanford Microarray Database (SMD; http://genome-www.stanford.edu/micro-

array/) serves as a microarray research database for the entire scientific community, by
making freely available all of its source codes and providing full public access to data
published by SMD users, along with many tools to explore and analyze those data (1).
Time-series expression data for cell cycle in yeast were downloaded from the SMD.

2.2. Calculation of λ -Matrix and Adjacency Matrix
All calculations were done in Matlab (Mathworks, Natick, MA). Λ Matrix was calcu-

lated as Λ = A (t) VE−1 UT (see Subheading 3.2. for details). Generalized matrix inver-
sion of the lead matrix was achieved with the singular value decomposition (SVD)
routine implemented in Matlab. Entries in the diagonal matrix E were examined and
entries with very small values (typically <10−2) were set to 0. Entries in the E−1 matrix
were calculated by inverting each of the nonzero diagonal entries in the E matrix and
leaving others as zero. The computation time is within minutes with a data set of about
6000 genes and 20 time points at a 16-CPU supercomputer running an IRIX operating
system. Choice of the thresholds ε (see Subheading 3.3. for a definition of this thresh-
old) is arbitrary at this time and depends only on the size of the network that one desires.
Large threshold results in a small network, and lowering the threshold “grows” the net-

http://genome-www.stanford.edu/microarray
http://genome-www.stanford.edu/microarray
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work. When a threshold is applied to the lambda matrix in Matlab, a logical matrix with
entries of 0 or 1 (called “adjacency matrix”) will be produced. The size of the network
N can be easily examined by summing over all the entries in the adjacency matrix.

2.3. Network Visualization
The adjacency matrix is transformed into a graph file with Graphviz format within

Matlab. Graphviz is a set of programs for graph visualization and editing developed by
AT&T Labs-Research. It is freely available at www.research.att.com/sw/tools/graphviz/
download.html. The dot program in Graphviz was used in the current study to gener-
ate gene networks. The networks produced are directed graphs with hierarchy layout,
which can be converted by the dot program into many common graphic formats for easy
visualization with the graphic viewer of one’s choice. Visualization of the networks
within Web browsers is also possible via the WebDot server (www.graphviz.org/web
dot/). Nodes in the network can contain hyperlinks to outside databases, such as gene
annotation databases, for easy exploration. Refer to the online documentations of these
tools for details.

2.4. Clustering of Dynamic Parameters
The elements of the Λ-matrix, λ ij, show the influence of the expression level of the

jth gene on the production of the ith gene. Positive entries suggest a positive influence
(either direct or indirect), and negative entries suggest an inhibition. We are interested in
those genes that influence other genes strongly and identifying these by applying a
threshold to the entries in the transition matrix. For λ ij entries whose absolute value is
above a fixed threshold, we identify the ith gene as the responding gene and the jth gene
as the influencing gene. The threshold values are chosen somewhat arbitrarily and will
dictate the number of influencing genes that will ultimately be identified. The new tran-
sition matrix Λ' consists of λ i,j for influencing genes vs all of the genes in the data set
(responding genes). Average linkage hierarchical clustering with Pearson correlation as
distance measurement was then applied to the Λ' matrix using J-Express v2.1 (Molmine
AS, Norway). Results of the cluster analysis are displayed using a color-coded dendro-
gram. As a convention, red indicates a positive entry in Λ' matrix, and green indicates
a negative entry. The brighter the color (red or green), the larger the absolute entry in
transition matrix.

3. Networks From Linear Models

3.1. Motivation for Linear Models
Dynamic linear models are ones in which the change in time of one of the variables

is linearly related to the other variables. In our example, the expression levels of a set
of genes at a given time will influence the production of a given gene at a later time.
The rate of production of the responding gene as measured by the mRNA level will be
linearly proportional to the amount of mRNA of the influencing genes. If one considers
the simple case of a transcription factor and its target genes, this model would predict

www.research.att.com/sw/tools/graphviz/download.html.
www.research.att.com/sw/tools/graphviz/download.html.
www.graphviz.org/webdot/
www.graphviz.org/webdot/
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that the rate of mRNA production of the target gene would be proportional to the mRNA
concentration of the transcription factor. In general, one does not know if the linear
model is an accurate one and, indeed, one would anticipate that some genes would show
very nonlinear responses with complex feedback loops.

Considering the complexity and inherent nonlinearity of biological phenomena, why
should one even consider simple linear models? There are several answers to this ques-
tion. First, linear models are appealing because they are simple and are computationally
easy to handle. Even though they may not represent the underlying phenomena, they
nevertheless are a good starting point. Before one moves to more complicated models, it
is important to establish where the simple models fail. This is especially true when deal-
ing with limited data with large statistical errors, as found in most microarray studies.
Second, the linear model may act as a first approximation to a more complicated non-
linear expression. Any nonlinear function can be “linearized” through a power series
expansion, and the linear model can be considered the first term in such an expansion.
At this stage of sophistication and data quality, we are primarily seeking phenomeno-
logical connections, rather than quantitative mathematical connections. For such “data-
mining” goals, linear models serve an extremely useful purpose. The initial goal is to
understand connections between genes rather than to establish a full-blown mathemati-
cal description of gene regulation, so linear models provide an excellent starting point.

There are many variations on linear models, and the choice of a specific model will
often depend on the experimental conditions or experimental design (2–7). In our work,
we used a form that is perhaps the simplest one. It is a linear finite difference model
and is described by Eq. 1:

ai (t) =   λ i ,j aj (t − 1) (1)

In Eq. 1, ai (t) is the experimentally measured mRNA concentration for the ith gene at
time t. Equation 1 relates the mRNA concentration at time t to the linear combination
of all other mRNA concentrations at the previous time, t – 1. The transition coeffi-
cients λ i ,j are the respective elements of the M ↔ M transition matrix (referred to as the
Λ matrix) and are the model parameter (5). These coefficients are unitless and show
how strongly weighted each contribution from the previous time will be to the produc-
tion of the ith gene. This model is sometimes referred to as an autoregression model
because all the variables at a later time are dependent only on the values of these same
variables at an early time.

The goal of the data analysis is to determine the values for λ i ,j. In Subheading 3.2.,
we show how to calculate λ i ,j and use these parameters to determine the gene expres-
sion network.

A second form of the linear model uses differential equations rather than difference
equations to analyze expression time series (3,7). The differential form follows a series
of coupled equations given by

ai (t) =  Wi,j aj (t) + bi (t) + ξ i (t) (2)

in which ai (t) is the expression level of the ith gene at time t after some exposure or
treatment, the overdot represents a time derivative, Wi,j is a matrix of first-order rate

j = 1

M

j = 1

M
•
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constants showing the influence of the jth gene on the production of the ith gene, bi (t)
is an external forcing function, ξi (t) and is a noise term. The sum is over all m different
genes that are measured.

Although these models may appear quite different, they can be directly related to
each other. Equation 2 can be solved in closed form using standard methods. Such solu-
tions can be substituted into Eq. 1 and a complicated relationship between λ i,j and Wi,j
is obtained. In our work, we chose to deal with the finite difference form because it
required no data manipulation such as calculation of time derivatives (see Heading 4.)
and no assumptions on the nature of the noise or the driving forces. Under the current
technology, the noise and driving forces are not experimentally accessible quantities.

3.2. Calculation of Parameters of Linear Model
Our data set consists of the measurement of M gene expression levels or concentra-

tions at N different times. A single measurement is expressed as ai (tk), indicating the
mRNA level of the ith gene at time tk in which the indices i can range from 1 to M and
k ranges from 1 to N (see Heading 4. for a discussion of units). The data are ordered in
an M ↔ N matrix as follows:

in which each column is the measured values of all the genes at a given time point, and
each row is the value of a given gene at all time points. Our goal is to use this data set
to calculate the λ i,j of the linear model in Eq. 1. Rather than use Eq. 1 directly, it is
easier to write it as the equivalent matrix equation of the following form:

in which the data matrix on the left-hand side of Eq. 3 has the column with the first time
point removed and is an M ↔ (N – 1) matrix called the lead matrix. The M ↔ (N − 1)
matrix on the right-hand side has the column with the last time point removed and is
called the lag matrix. The Λ matrix is an M ↔ M containing the elements λ i ,j as in Eq.
1. The Λ matrix is called the transition matrix because it is used to calculate the tran-
sition from the previous time to the next time point. It can also be said to “propagate”
the data matrix from the past to the present.

Equation 3 can be written more succinctly as
A (t) = Λ . A (t − 1) (4)

              N times ♦
a1 (t1) a1 (t2) . . . a1 (tN)
a2 (t1) a2 (t2) . . . a2 (tN)

M genes ⎠
aM (t1) aM (t2) . . . aM (tN)

a1 (t2) a1 (t3) . . . a1 (tN) a1 (t1) a1 (t2) . . . a1 (tN−1)
a2 (t2) a2 (t3) . . . a2 (tN) a2 (t1) a2 (t2) . . . a2 (tN−1)

 = Λ •

aM (t2) aM (t2) . . . aM (tN) aM (t1) aM (t2) . . . aM (tN−1)
(3)
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in which A (t) is the time lead matrix and A (t − 1) is the time lag matrix. The Λ-matrix
can be solved by inverting A (t − 1) and multiplying both sides of Eq. 4 by the inverse:

Λ = A (t) . A (t − 1)−1 (5)

Computationally, all that is needed to calculate the Λ-matrix is a matrix inversion rou-
tine, a common tool in any matrix algebra software package. However, standard meth-
ods cannot be used on this problem for two main reasons. First, most methods invert
square matrices. In our case, we have a very lopsided matrix with M being on the order
of thousands of genes and N being on the order of 10. A second problem is that A (t − 1)
is potentially a singular matrix. In any given experiment, it is conceivable that two genes
have identical profiles as a result of being under identical gene control. The conse-
quence of this is that two of the rows in the data matrix could be identical. Matrices
with identical columns or rows are called singular and their inverse is undefined. To
solve Eq. 5, methods described as “generalized matrix inversion” techniques must be
used (8).

We have used a matrix method known as SVD to calculate the matrix inverse in Eq.
5 (5). This is mathematically the same method used in the well-known tool of princi-
pal component analysis used in multivariate statistics. The SVD method is derived
from a theorem in matrix algebra that states that any matrix can be “decomposed” into
the product of three matrices. This gives

A (t − 1) = UEVT (6)

in which U is an M ↔ M orthogonal matrix of singular vectors, E is an M ↔ (N − 1) diag-
onal matrix of eigenvalues, and V is an (N − 1) ↔ (N − 1) orthogonal matrix of singular
vectors (see Heading 4. for a discussion of SVD). The singular vector matrices create
an abstract vector space in which the original data matrix is represented. There is often
a temptation to ascribe some biological significance to the vectors derived from SVD
of a data matrix. This is difficult because SVD is a mathematical device, not a scientific
theory, and there is no a priori reason that the matrices should have significance in bio-
logical terms. An SVD can be performed on any matrix regardless of its origin or the
type of data that it represents. However, one can get a very generic interpretation of
the singular vectors in terms of the eigenvectors of the correlation matrices. To calcu-
late correlations between genes averaged over the time series, one uses U and E. Cor-
relations in time points averaged over all genes can be calculated using V and E. Thus,
the eigenvectors in U capture gene correlations, and the eigenvectors in V capture time
correlations.

An SVD on the data matrix A (t − 1) is performed using a routine in MatLab giving
A (t − 1) = UEVT. The inverse of A (t − 1) is now given by

A (t − 1)−1 = VE−1 UT (7)

in which the properties of orthogonal matrices have been used. SVD provides a way
of handling the redundant data in singular matrices (see Heading 4.). When a singularity
occurs, one of the eigenvalues in E will be zero. When taking the inverse of E in Eq. 7,
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one truncates the eigenvalues to include only nonzero eigenvalues in E so that the inverse
of zero is never needed; that is, all zeros in E are set to zero in E−1. Because of experi-
mental error in the measurements, two rows are never exactly the same. Consequently,
E contains very small eigenvalues that are not exactly zero. Typically, to remove the
singularity, one still truncates E to eliminate the small eigenvalues. This procedure
acts as a filter and removes noise from the data set.

Figure 1 shows an example of eigenvalues calculated from an SVD of a microarray
data set. As can be seen, the first few eigenvalues are much larger than all of the other
ones. In our experience, only three to five eigenvalues are significant and the others
can be removed by truncation. A general rule of thumb is that when the eigenvalue is
comparable to the error in the measured quantity in the data matrix, it should be trun-
cated. For the case when E is truncated at two eigenvalues, designated Et, the inverse
is given by

in which all values in the matrix are zero except for the first two diagonal entries. Using
the truncated eigenvalue matrix, the calculated transition matrix Λ is then given by

Λ = A (t) VE−1 UT   (9)

Fig. 1. Bar plot showing eigenvalues from α-factor synchronized cell-cycle data set (1).
Singular value decomposition was conducted in Matlab. Note how the first two eigenvalues
dominate.

1
ε1 0 0 . . .

1
0 ε2 0 . . .E−1 =
0 0 0 . . . (8)t

 t

. .
 .

. .
 . . . .. .
 .
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This represents the first step in calculating a gene expression network from expression
time-series data. The next section describes how to construct a network from the calcu-
lated transition matrix.

3.3. Networks From Time-Series Data
Once Eq. 9 is calculated, phenomenological networks of gene interactions can be

derived from the transition matrix. The Λ transition matrix can be viewed as a weighted
graph showing the influence of one expression level on another. This is the starting point
for the description of the genetic circuitry. Rather than work with these weighted graphs,
we consider a simpler approach in which Λ is converted into an adjacency matrix for
digraphs, indicating the connectivity but not the strengths of the influence. We describe
the operation (adj) as

Γ (ε) = adj (Λ)  (10)

in which the entries in Λ are set equal to 1 if the absolute values are above a certain
threshold, ε, and are set equal to 0 below this threshold (this can be achieved with a
command “ADJ = abs(Λ) ⊕ ε” in Matlab, in which ADJ is the adjacency matrix). For
high values of the threshold, the resulting Γ (ε) matrix will be a sparse adjacency matrix
with a small network. As the value of ε is lowered, one can “grow” the network to include
more nodes (genes). This threshold parameter is an adjustable parameter of the model.
For example, for a yeast cell-cycle data set, the values in the transition matrix range
from −0.0543 to 0.2239. A threshold of 0.04 results in a network with 102 edges. Figure
2 gives an example of the type of network obtained with this methodology. This net-
work derived from the analysis of the α-factor synchronized cell-cycle data in yeast is
a network characterized by central hubs connecting a large number of nodes of low
connectivity.

3.4. Gene Expression Networks and Classification of Genes
These gene regulatory networks obtained in Subheading 3.3. can also be used as a

classification scheme by combining cluster analysis with dynamic modeling to show how
dynamic characteristics of a biological system, such as the cell cycle, can be explored
(9). By choosing a model parameter as a metric, one can extend the level of inference
of the cluster analysis to include inferences implicit in the model. Conversely, cluster
displays provide a facile method for visualizing genomewide parameters obtained from
specific models.

Using the linear model parameter λi ,j as a metric, two-way clustering can be per-
formed that shows how influencing genes affected the expression levels of responding
genes. The application of this unsupervised method to the cell-cycle data in yeast shows
strikingly strong clustering of cell-cycle-regulated genes. Figure 3 shows a two-way
clustering of λ i ,j obtained from an analysis of yeast cell-cycle data. The two-way clus-
tering is about j, the influencing genes, and about i, the response genes. The striking
observation is that the blocks crossing clusters in columns (influencing genes) and rows
(responding genes) can infer the relationship between cell-cycle phases. For example, if
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Fig. 2. Network generated from yeast cell-cycle data set. The nodes are genes labeled with
standard gene names, and the edges indicate the phenomenological influence of one gene on
another. Solid lines indicate positive influence (induction). Dashed lines indicate negative in-
fluence (inhibition). Bold solid lines indicate a strong influence (absolute value of entry of
⊕0.08). Dark gray nodes are genes with more than four edges coming into and going out from
them. Light gray nodes are genes with more than four edges going out from them. (Reprinted
with permission from ref. 9.)

one looks down the column representing S phase in Fig. 3, one can see that S phase
genes influence S and M phase genes positively (red in image) but influence genes in
M/G1 and G1 phase negatively (green in image).

A schematic presentation of interaction between genes among different cell cycles,
as well as alpha pheromone and heat-shock-activated genes, is shown in Fig. 4. The
influences are defined by the mean value of clustered blocks in Fig. 3. We found that
genes in one cell-cycle phase activate genes in the next phase (solid lines) and some-
times inhibit genes in the previous phase (dashed lines). Genes responding to α-phero-
mone activate genes in S/G2 and G2/M, driving the cells into the cell cycle. Similar
observations can be found with heat-shock-activated genes, which activate genes in
M/G1 phase to drive the cells into the cell cycle. Interestingly, it is well-known that α-
pheromone arrests cells in G1 phase, whereas low temperature arrests cdc-15 strains in
late mitosis. Cells tend to reenter the cell cycle in the next phase beyond which they are
arrested. The serial regulation of genes forms a connected regulatory network that is a
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Fig. 3. Hierarchical clustering of transition matrix: (A) α-data set; (B) cdc-15 data set. The
clustering result of the λ-matrix is shown on the left. Influencing genes are across the top and
responding genes are along the side. Expression profiles of genes in the same order as in clus-
tering are shown on the right. Genes with similar expression profiles are grouped together and
are labeled with the cell-cycle phases. α-Labels α-pheromone-regulated genes, and HSP labels
genes from heat-shock-activated proteins. (Reprinted with permission from ref. 9.)
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cycle, as discovered by Simon et al. (10). Note that our result was obtained in an un-
supervised fashion without any prior knowledge of chronological characteristics of the
cell cycle. These results show how linear models can be used not in a fully quantitative
capacity but, rather, in a qualitative, descriptive fashion. Considering the quality of the
data and the phenomenological nature of the model, this is perhaps a more appropriate
use of these models than as tools for quantitative prediction of expression levels.

4. Notes
Two main types of gene expression data are obtained from either two-colored cDNA

microarray or Affymetrix Genechips. We briefly describe how these data were handled
in our laboratory. The main analysis tools are libraries or packages within well-estab-
lished programming and analysis languages Matlab and R. This permits easy exploita-
tion of numerous data manipulation and statistical analysis tools available in these
environments and facilitates tailoring analysis methods to the particular question and
data collected to address it. Bioconductor is a collection of open-source R packages that
support extensive microarray analysis (11) and has been used primarily as the analysis
tool in our laboratory. Gene filtering and selection can greatly reduce the number of
parameters, hence the speed of calculation.

The preprocessing steps specific for two-colored cDNA microarray are as follows:

a. Format new data for two-colored cDNA microarray in tab-delimited text files or com-
parables. Spot intensity, background intensity, and spot quality are commonly reported
in these files, which can be imported into Matlab with the standard command importdata.

Fig. 4. Interaction of expression levels among cell-cycle phases: (A) α-Data set; (B) cdc-15
data set. Cell-cycle genes for different phases are shown, as well as α-pheromone-activated
genes (α) and heat-shock-activated genes (HSP). Solid lines indicate positive influence or induc-
tion, and dotted lines indicate negative influence or inhibition. Numbers along the edges are the
mean value of transition matrix entries of each clustered block and correspond to the influence
between cell-cycle phases. (Reprinted with permission from ref. 9.)
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b. Examine data set for poor-quality spots that cause incorrect ratio estimates. Quality
assurance methods consider spot shape, size, and uniformity; percentage of pixels with
intensity larger than local or global background intensity; signal-to-noise ratio, defined
by [Spotintensity – Backgroundintensity) / σbackground]); or a weighted combination of these
above. This quality-filtering step is sometimes included in the software packages for
image analysis such as QuantArray (Perkin-Elmer, Boston, MA) and GenePix (Axon,
Union Ciy, CA). Otherwise, it is straightforward to implement in Matlab or R.

c. Perform normalization to correct the possible bias or artifacts. Intensity-dependent
location normalization implemented in the marrayNorm package within Bioconductor
is probably a good choice for within-slide normalization. Normalization involving mul-
tiple slides is less developed, but scale normalization using the median absolute devia-
tion (MAD) has been proposed (12) and included in the marrayNorm package. We
recommend examining the MAD plot before and after normalization to ensure the effec-
tiveness of this step.

d. Combine results from replicates, such as replicated spots, replicated slides with the
same biological sample or different biological samples, and dye-swap slides. Averag-
ing is a common practical method to combine the results from replicates. However,
statistical evaluation of the replicates such as correlation or coefficient of variance
(CV) should be applied to exclude outliers.

e. Conduct filtering to remove genes that are “uninteresting” from the analysis. Com-
monly used filters include fixed cutoff of fold change at more than a certain number
of measurements, CV for replicated measurements, and statistical tests such as a t-test
and a nonparametric test. These methods are either built-in functions or easy to imple-
ment in Matlab and R. Multiple comparison issues need to be considered to control
the false-positive rate.

The preprocessing steps specific for Affymetrix GeneChips are as follows:
a. Conduct probe-level analysis. Affy package in Bioconductor implements a variety of

preprocessing algorithms for Affymetrix GeneChip data, including data importing,
background subtraction, normalization, photomultiplier correct, and summarization meth-
ods. Different algorithms have been compared to a benchmark developed by Cope et
al. (13). For the user’s convenience, commands mas5, li.wong, and justRMA include all
these preprocessing steps with some predefined parameters. Recent study indicates that
Robust Multi-Array Average has many advantages over other algorithms (14) and, hence,
is the choice in our laboratory.

b. Conduct gene filtering. Any gene with too low or too high intensity should not be con-
sidered as an acute measurement. A common practice is to reset any gene with inten-
sity lower than 100 to 100 and any gene with intensity higher than 16,000 to 16,000.

c. Conduct gene selection. Common selection criteria include max(intensity)/min(inten-
sity) with more threshold (>3), max(intensity)/min(intensity) with more threshold (>300),
and a certain percentage of genes with the largest CV. Note that the choice of thresh-
olds is very heuristic and depends on the properties of the data set.

With cDNA microarray data, the data are a ratio of expression levels. This ratio is
dictated by the choice of the “reference” sample in the hybridization reaction. For time-
series data, this reference is most often the sample at time t – 0, which is the mRNA
extract from the experimental population before any stimulus occurs. In this case, the
experimentally measured quantity is the ratio
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[mRNAi (tj)]

[mRNAi (0)]

in which the brackets stand for concentration and the subscript i indicates the gene.
This ratio is unitless, which means that the model parameters λi,j are also unitless. How-
ever, since all ratios have the same denominator, the zero time concentration, the change
in ratio over time will be proportional to the change in mRNA concentration. For
Affymetrix data, one does not measure a ratio but, rather, an average quantity that is
proportional to the concentration. If these concentrations are used directly instead of
ratios, the genes with high concentration tend to dominate the model. We have calcu-
lated ratios for the Affymetrix data to avoid this problem. We have also avoided linear
models that use the time derivative (i.e., the differential form of Eq. 2), because the
time points are so widely separated that the approximation daj (tk) / dt ∪ [aj (tk) − aj (tk−1)]
/ (tk − tk−1) will be extremely inaccurate.

Using SVD, any matrix can be decomposed into a product of three matrices giving
A = UEVT. The matrices U and V are orthogonal matrices. This means that the transpose
(created by exchanging rows and columns) is equal to the matrix inverse. Thus, U−1 =
UT and V−1 = VT. This gives UUT = VVT = 1, in which 1 is the unit matrix (diagonal 1s
and 0s elsewhere). This property of the SVD makes it very simple to do matrix inver-
sion. The matrix A is inverted by SVD according to

A−1 = (UEVT )−1 = (VT)−1 E−1 U−1 = VE−1 UT

in which the orthogonal property has been used to convert inverses into transposes.
The matrix E is not a unitary matrix. It is a diagonal matrix of eigenvalues:

The inverse of a diagonal matrix is

SVD can also be used to calculate the gene and time covariance. The gene covariance
matrix, Cg, is

Cg = AAT = (UEVT) (UEVT)T = UEVT VET UT = UEET UT

Thus, the gene covariances are contained in matrix U and E. The time covariance ma-
trix, Ct, is given by

Ct = ATA = (UEVT)T (UEVT) = VET UT UEVT = VET EVT

showing that the time covariance is contained in V and E.

ai (tj) =

ε1 0 . . . 0
0 ε2 0

E = 0 0
0      . . . 0 εN

ε−1 0 . . . 0
0 ε −1 0

0 0
0      . . . 0 ε−1

E−1 =
1

2

N
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Microarray Analysis in Drug Discovery
and Clinical Applications

Siqun Wang and Qiong Cheng

Summary
DNA microarray analyzes genome-wide gene expression patterns and is used in many

areas including drug discovery and clinical applications. This chapter summarizes some
of these applications such as identification and validation of anti-infective drug target, study
mechanisms of drug action and drug metabolism, classification of different types of tumors,
and use of molecular signatures for prediction of disease outcome. A step-by-step protocol
is provided for sample preparation, sample labeling and purification, hybridization and wash-
ing, feature extraction, and data analysis. Important considerations for a successful experi-
ment are also discussed with emphasis on drug discovery and clinical applications. Finally,
a clinical study is presented as an example to illustrate how DNA microarray technology
can be used to identify gene signatures, and to demonstrate the promise of DNA microarray
as a clinical tool.

Key Words: Microarray analysis; expression profiling; drug discovery; molecular sig-
nature; clinical diagnosis.

1. Introduction
Microarray refers to an analysis tool for biological molecules arrayed on a surface,

and later extended to nonsurface-based, such as the bead-based technique. Depending
on the type of biological molecules interrogated, microarrays can be classified as DNA
arrays, protein arrays, carbohydrate arrays, cell arrays, and tissue arrays. DNA micro-
arrays can be further categorized as olignonucleotide arrays, cDNA arrays, and bead-
based arrays. The first microarray was developed as a cDNA array (1) and cDNA arrays
are still widely used today. The majority of commercial array products on the market is
oligonucleotide based, and currently they provide probe densities up to a half million
per square inch. These oligonucleotide arrays can be manufactured by first synthesiz-
ing the oligonucleotides and then spotting them on surfaces. Alternatively, they can be
manufactured by in situ synthesis of oligonucleotides using Agilent’s SurePrint® inkjet
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technology, Affymetrix’s photolithographic technology, or NimbleGen’s digital mask
technology. Some specialized arrays are commercially available. Studying single nucle-
otide polymorphism of the human p53 tumor suppressor gene could be facilitated by
the high-density oligonucleotide array of the p53 gene (Affymetrix GeneChip P53 assay).
Studying regulation of p53 as a transcriptional factor could be facilitated by the cDNA-
based p53 target gene array (Panomics Human TranSignal™ p53 Target Gene Array).
Other commercial microarrays are designed for global gene expression profiling. They
are usually designed for organisms with biological, pharmaceutical, or economical signif-
icance. The whole-genome arrays of organisms such as human, rat, mouse, yeast, arabi-
dopsis, and rice will undoubtedly provide value and convenience to the pharmaceutical,
agricultural, as well as academic researchers.

Microarrays have found many applications in drug discovery and clinical diagnosis
and prognosis. DNA microarrays can be used to study pathogenesis to identify potential
new targets for anti-infective drugs. They were used to identify Group A Streptococcus
genes whose expression is specifically induced in a contact-mediated manner follow-
ing interaction with human cells (2). They were also used to identify bacterial virulence
factors by comparing strain-specific differences between pathogenic and nonpathogenic
strains (3) or strains of different serotypes (2). Microarrays can also be used to study
the mechanism of drug action and drug metabolism by examining the effect of drugs
on host gene expressions (4). Novel genes may be identified from the microarray that
are involved in mediating resistance to drugs (5). Such target genes might potentially
be therapeutically valuable, or be predictive biomarkers of drug response. Gene expres-
sion profiling was used to classify different types of diffuse large B-cell lymphoma (6).
It was also used to predict the clinical outcome of breast cancer (7,8). Molecular sig-
natures associated with tumor metastasis were identified by microarray analysis (9,10).
Pending regulatory approval, Roche plans to introduce AmpliChip™ CYP450 Array for
use in clinics to detect genetic variations in genes encoding P450 enzymes, which is
the main mechanism for the body to metabolize most drugs. It is hoped that one day by
examining variance in certain DNA markers, physicians will be able to predict patients’
responses to many common drugs.

This chapter describes methods for DNA microarray analysis with emphasis on drug
discovery and clinical applications. We provide step-by-step protocols for sample prep-
aration, sample labeling and purification, hybridization and washing, feature extrac-
tion, and data analysis. We also discuss important factors for a successful experiment.
Finally, we describe a clinical study as an example to illustrate how DNA microarray
technologies can be used to identify a group of gene signatures, which is a powerful pre-
dictor of disease outcome.

2. Materials
1. RNAlater™ (product no. 7020; Ambion).
2. Trizol® reagent (product no. 15596-026; Invitrogen).
3. Total RNA Isolation Mini Kit (product no. 5185-6000; Agilent).
4. Low RNA Input Fluorescent Linear Amplification Kit (product no. 5184-3523; Agilent).
5. RNeasy mini kit (cat. no. 74104 for 50 columns or 74106 for 250 columns; Qiagen).
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6. DNA microarrays, e.g., Agilent Human 1A(2) microarray (product number G4110B).
7. Hybridization rotator rack (product no. G2530-60020; Agilent).
8. Hybridization chamber (product no. G2534A; Agilent).
9. Hybridization oven (product no. G2505-80081 or G2505-80082; Agilent).

10. Wash solution 1 (6X saline sodium citrate [SSC], 0.005% Triton X-102).
11. Wash solution 2 (0.1X SSC, 0.005% Triton X-102).
12. 10X SSC: 87.6 g/L NaCl and 44 g/L Na citrate.
13. Cyanine 3-CTP (10 mM) (cat. no. NEL580; Perkin-Elmer/NEN), cyanine 5-CTP (10

mM) (cat. no. NEL 581; Perkin-Elmer/NEN), DNase/RNase-free distilled water (cat. no.
10977015; Invitrogen).

14. 100% Ethanol (cat. no. E193; Amresco).
15. Scanner, e.g., Agilent high-throughput high-sensitivity scanner (product no. G2565BA).
16. Data analysis softwares, e.g., Feature Extraction from Agilent (product no. G2567AA),

Rosetta Resolver gene expression analysis software platform, or Spotfire DecisionSite
platform.

3. Methods
Microarray analyzes genomewide gene expression levels under different conditions.

A microarray experimental work flow (Fig. 1) starts with the sample acquisition. Depend-
ing on the design of the experiments, the samples may be obtained from different sources
in different forms. RNA needs to be isolated from these samples. The RNA is amplified
and labeled for hybridization with probe DNAs on the microarray. Following hybridi-
zation and washing, the array is scanned and ready for data analysis. Analysis results
may lead to a variety of applications, such as selecting target genes for drug discovery
and identifying molecular signatures for clinical diagnosis.

Fig. 1. Schematic of microarray analysis.
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3.1. Sample Acquisition
Diverse biological samples have been used in microarray experiments and each may

require special considerations. One of the most critical objectives for sample acquisi-
tion is to maintain the integrity and ratio of the original RNA population. Addition of
reagents such as RNAlater can help minimize RNA degradation during sample acquis-
ition. RNAlater contains a high concentration of salt, which precipitates and inactivates
the RNase enzymes instantly. It has been shown to work with most types of cell lines
and tissues from humans or animals, as well as from plant and bacterial samples. Flash-
freezing samples in liquid nitrogen followed by storage at −70°C can also help main-
tain the integrity of the RNA population. Here we describe two types of samples that
are most prevalent in the drug discovery and clinical applications.

3.1.1. Solid Tissue Samples
Solid tissue samples are probably the most common samples used today in microarray

experiments for clinical applications. They can range from animal tissues of various dis-
ease models to human tissues from biopsies, pathological samples, and postmortem
dissections. Although relative pure samples can be obtained with surgical procedures,
this process is labor-intensive and requires experience and delicacy in execution. For
genomics and proteomics studies, it is increasingly important to obtain pure populations
of cells, such as cancer cells free from supporting stroma or neurons from a particular
nucleus in the brain. Introduction of the computer-guided laser microdissection (LMD)
technique makes the sample retrieval process easy for most laboratory personnel. A
specific cell or a group of morphologically similar cells can be selected and excised
from their surroundings under a microscope using the LMD technique. The extraction
process can be either positive, in which case the cells are “lifted” or “dropped” to a
microcentrifuge tube directly or with the help of an adhesive membrane, or negative,
in which case a laser is used to destroy the surrounding tissue and leave the interested
cells untouched. Several manufacturers offer products in this area, such as PixCell®

from Arcturus Engineering, P.A.L.M.® MicroBeam from PALM Microlaser Technolo-
gies, µCUT from Molecular Machines and Industries, Leica AS LMD from Leica Micro-
systems, LaserScissors® Pro300 Workstation from Cell Robotics, and Clonis™ from
Bio-Rad’s microscopy division. With the capability of obtaining cells in such small num-
bers, the next challenge is how to isolate and process a small amount of RNA for the sub-
sequent experiments. Advancements in sample preparation and labeling have enabled
scientists to look at the expression of a few hundred cells with total RNA quantities in
the nanogram or even subnanogram range.

3.1.2. Liquid Samples
Blood or other body fluids are commonly used liquid samples because they can be

obtained with less invasive procedures. These samples can usually be concentrated via a
procedure such as centrifugation or filtration. However, sometimes there is a need to
separate a subset of a cell population, such as CD8+ T-cells from CD4+ T-cells. This is
particularly relevant in drug development in monitoring drug response or disease pro-
cess. Fluorescence-activated cell sorting is the predominant method used to separate
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specific cell populations according to a specific cellular marker, when the monoclonal
antibodies are available. Separation methods based on magnetic beads provide another
way to achieve a similar goal with relatively lower cost. The desired cell types can also
be enriched by cell lysis such as antibody-dependent cell cytotoxicity to deplete a speci-
fic subset of a cell population. Cells in fluidic samples can also be applied to a surface
and extracted by LMD as described in Subheading 3.1.1.

3.2. Preparation of Samples
Generally, RNA extraction methods can be classified as liquid-phase extraction exem-

plified by the Trizol methodology or solid-phase extractions such as with many silica-
based column purification kits. Care should always be taken to minimize RNA degra-
dation during extraction of samples.

3.2.1. Liquid-Phase Extraction
The phenol-based liquid extraction method has been the classic method to isolate

biological molecules such as DNA and RNA. It is simple to use and requires minimum
investment. Following is a protocol using the phenol-based Trizol reagent from Invitro-
gen. It can be easily scaled up or down for various applications.

1. Conduct homogenization as follows:
a. Tissues: Homogenize tissue samples in 1 mL of Trizol reagent/50–100 mg of tissue

using a glass-Teflon® or power homogenizer (Polytron, or Tekmar’s Tissumizer®, or
equivalent). The sample volume should not exceed 10% of the volume of Trizol reagent
used for homogenization.

b. Cells grown in monolayer: Lyse the cells directly in a culture dish by adding 1 mL of
Trizol reagent to a 3.5-cm-diameter dish and passing the cell lysate several times
through a pipet. The amount of Trizol reagent added is based on the area of the culture
dish (1 mL/10 cm2) and not on the number of cells present. An insufficient amount of
Trizol reagent may result in contamination of the isolated RNA with DNA.

c. Cells grown in suspension: Pellet cells by centrifugation. Lyse the cells in Trizol re-
agent by repetitive pipetting. Use 1 mL of reagent per 5–10 ↔ 106 of animal, plant, or
yeast cells, or per 1 ↔ 107 bacterial cells. Washing cells before the addition of Trizol
reagent should be avoided because this increases the possibility of mRNA degradation.
Disruption of some yeast and bacterial cells may require the use of a homogenizer.

Optional: An additional isolation step may be required for samples with a high content
of proteins, fat, polysaccharides, or extracellular material, such as muscles, fat tissue, and
tuberous parts of plants. Following homogenization, remove insoluble material from the
homogenate by centrifuging at 12,000g for 10 min at 2–8°C. The resulting pellet contains
extracellular membranes, polysaccharides, and high-molecular-weight DNA, and the super-
natant contains RNA. In samples from fat tissue, an excess of fat collects as a top layer and
should be removed. In each case, transfer the cleared homogenate solution to a fresh tube
and proceed with chloroform addition and phase separation as described in step 2.

2. To perform phase separation, incubate the homogenized samples for 5 min at 15–30°C to
permit the complete dissociation of nucleoprotein complexes. Add 0.2 mL of chloroform/
1 mL of Trizol reagent. Cap the sample tubes securely. Shake the tubes vigorously by hand
for 15 s and incubate them at 15–30°C for 2–3 min. Centrifuge the samples at no more
than 12,000g for 15 min at 2–8°C. Following centrifugation, the mixture separates into a
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lower red, phenol-chloroform phase; an interphase; and a colorless upper aqueous phase.
RNA remains exclusively in the aqueous phase. The volume of the aqueous phase is
about 60% of the volume of Trizol reagent used for homogenization. To reduce viscosity,
shear the genomic DNA with two passes through a 26-gage needle prior to addition of
chloroform.

3. To perform RNA precipitation, transfer the aqueous phase to a fresh tube, and save the
organic phase if isolation of DNA or protein is desired. Precipitate the RNA from the
aqueous phase by mixing with isopropyl alcohol. Use 0.5 mL of isopropyl alcohol/1 mL
of Trizol reagent used for the initial homogenization. Incubate the samples at 15–30°C
for 10 min and centrifuge at no more than 12,000g for 10 min at 2–8°C. The RNA precip-
itate, often invisible before centrifugation, forms a gel-like pellet on the side and bottom
of the tube.

For isolation of RNA from small quantities of tissue (1–10 mg) or cell (102–104) sam-
ples, add 5–10 µg RNase-free glycogen (Invitrogen cat. no. 10814) as carrier to the aque-
ous phase prior to precipitating the RNA with isopropyl alcohol. The glycogen remains
in the aqueous phase and is coprecipitated with the RNA. It does not inhibit first-strand
synthesis at concentrations up to 4 mg/mL and does not inhibit PCR.

4. To perform the RNA wash, remove the supernatant. Wash the RNA pellet once with 75%
ethanol, adding at least 1 mL of 75% ethanol/1 mL of Trizol reagent used for the initial
homogenization. Mix the sample by vortexing and centrifuge at no more than 7500g for
5 min at 2–8°C.

5. To redissolving the RNA, at the end of the procedure, briefly dry the RNA pellet (air-dry
or vacuum dry for 5–10 min). Do not dry the RNA by centrifuging under vacuum. It is
important not to let the RNA pellet dry completely because this will greatly decrease its
solubility. Partially dissolved RNA samples have an A260/280 ratio less than 1.6. Dissolve
RNA in RNase-free water or 0.5% sodium dodecyl sulfate (SDS) solution by passing the
solution a few times through a pipet tip, and incubating for 10 min at 55–60°C. Avoid
SDS when RNA will be used in subsequent enzymatic reactions. RNA can also be redis-
solved in 100% formamide (deionized) and stored at −70°C.

3.2.2. Solid-Phase Extraction
Most of the columns on the market are based on either silica or membrane technol-

ogies. These technologies utilize the binding or insolubility of DNA or RNA in organic
solvents, such as ethanol or isopropanol. The precipitated nucleotides are then washed
and eluted with low-ionic-strength buffers or water for subsequent use. We describe
here the generation of very pure RNAs in a short time using a new membrane-based tech-
nology from Agilent (product cat. no. 5185-6000).

1. Collect the sample and then process it immediately or flash freeze it in liquid nitrogen.
Store the flash-frozen sample at −70°C.

2. Obtain a weight for the sample, and then place the sample (fresh or still frozen) in a
suitable tube containing prepared lysis solution. Use 20 µL of lysis solution/mg of sample
to be homogenized.

3. Immediately and vigorously homogenize using a conventional rotor-stator homogenizer
at 15,000 rpm (this is 50% of the speed for an Omni International TH homogenizer) for
30 s. To reduce foaming, move the probe from side to side rather than up and down.
Larger volumes (more than 10 mL) or fibrous tissues may require slightly longer homog-
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enization times. If the homogenate will not be processed immediately, store it at −70°C.
To process frozen homogenate, thaw it at 37°C for 15–20 min.

4. Centrifuge up to 600 µL of homogenate (equivalent to 30 mg of tissue) through a mini
prefiltration column (natural) for 3 min at full speed (for a typical microcentrifuge, approx
16,000g). This step ensures complete homogenization of the tissue and removes cellular
contaminants. Mini prefiltration columns cannot be reused. If processing more than 600
µL, use a new prefiltration column.

5. Add an equal volume of 70% ethanol to the filtrate and mix until the solution appears
homogeneous. For certain tissues, the resultant mixture may appear opalescent. This poses
no problem.

6. Add ethanol/lysis mixture (up to 700 µL) to the mini isolation column (blue), and then cen-
trifuge for 30 s at 16,000g. Discard the flow-through, and replace the RNA-loaded column
in the collection tube. If the homogenate/ethanol mixture volume exceeds 700 µL, add ali-
quots successively onto the mini isolation column, and then centrifuge and discard the
flow-through as just described.

7. Add 500 µL of the previously prepared wash solution (to which ethanol has been added)
to the mini isolation column, and then centrifuge for 30 s at 16,000g. Discard the flow-
through, and then replace the mini isolation column in the same collection tube.

8. Repeat step 7 one more time.
9. Spin the mini isolation column for 2 min at 16,000g. It is important to completely dry the

mini isolation column to ensure that residual ethanol is not carried over during the elution.
10. Transfer the mini isolation column into a new 1.5-mL RNase-free final collection tube.

Add 20–50 µL of nuclease-free water. Wait 1 min and then centrifuge for 1 min at 16,000g.
If more concentrated RNA samples are desired for downstream application, the elution
volume may be decreased (to as low as 10 µL). However, if the final RNA concentration
exceeds 3–5 µg/µL, quantitative recovery of the RNA may be compromised.

It is recommended that the quality and the quantity of the RNA samples be deter-
mined before moving on to the next steps. Methods such as ultraviolet (UV) spectroscopy,
gel electrophoresis, or capillary electrophoresis (e.g., Agilent’s Bioanalyzer lab-on-chip
system) can be applied for the determination. The RNAs purified with the Agilent Total
RNA Isolation Mini Kit (product no. 5185-6000) usually contain up to 1000-fold less
genomic DNA compared to silica-based column purification techniques.

3.3. Sample Labeling and Purification
RNA can be labeled directly or indirectly using fluorescent-based techniques. Direct

labeling using dye-coupled nucleotides can be performed during reverse transcription
or amplification into cDNA. The indirect labeling method incorporates modified nucleo-
tides first and then couples with dyes either covalently or noncovalently. Biotin strep-
tavidin interaction has been the choice for noncovalent coupling of a dye to the nucleo-
tides. Aminoallyl-modified nucleotides have been the choice for covalent linking to a
monofunctionalized NHS ester dye. Eukaryotic mRNAs with polyA tails can be prefer-
entially labeled with oligo dT primers. Prokaryotic mRNAs with no or very short polyAs
can be labeled with random primers such as random hexamers (11,12) or random nine-
mers (13). We describe next a direct labeling protocol, based on a method originally devel-
oped in Eberwine’s laboratory (14), to generate fluorescently labeled cRNA molecules
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by in vitro transcription. In this protocol, mRNA is first converted into cDNA by re-
verse transcription. A coliphage T7 promoter is incorporated into these cDNA mole-
cules via a poly-dT/T7 hybrid primer. The cDNA molecules can be transcribed in vitro
by T7 RNA polymerase with dye-coupled ribonucleotides (as either uracil triphosphate
or cytosine triphosphate [CTP]). This method can generate fluorescently labeled cRNA
molecules from limited samples such as biopsy or rare tissue source. It can use as little
as 50 ng total RNA to generate fluorescently labeled cRNA in 8–10 h.

3.3.1. Linear Amplification With Low-RNA Input
(Agilent Product No. 5184-3523)

1. Add 50–500 ng of total RNA in a volume of 10.3 µL or less to an Eppendorff tube. The total
concentration should be at least 5 ng/µL.

2. Add 1.2 µL of T7 promoter primer containing both the poly dT to bind to the mRNA and
the promoter sequence for the T7 RNA polymerase. If the total RNA input is greater than
500 ng, add 5 µL of T7 promoter primer.

3. Bring the total volume up to 11.5 µL using nuclease-free water.
4. Denature the primer and the template by incubating the reaction at 65°C in a heating block

for 10 min.
5. Place the tube on ice and incubate for 5 min.
6. Make a master mix as outlined in Table 1.
7. Add 8.5 µL of cDNA mix to each sample tube.
8. Incubate the samples at 40°C in a circulating water bath for 2 h for the reverse transcrip-

tion reaction.
9. Move the samples to a heating block or water bath set to 65°C, and incubate for 15 min to

inactivate the murine Moloney leukemia virus reverse transcriptase.
10. Move the samples to ice. Incubate on ice for 5 min.
11. Spin the samples briefly in a microcentrifuge to bring down the condensations.
12. Add either 2.4 µL of cyanine 3-CTP (10 mM) or 2.4 µL of cyanine 5-CTP (10 mM) to

each sample tube.
13. Immediately prior to use, gently mix the components in Table 2 by pipetting in the order

indicated at room temperature.
14. Add 57.6 µL of transcription master mix to each sample tube. Mix gently by pipetting.
15. Incubate the samples in a circulating water bath at 40°C for 2 h.

Table 1
Master Mix

Component Volume/reaction (µL) Volume for 6.5 reaction (µL)

5X First-strand buffer 4.0 26
0.1 M DTT 2.0 13
10 mM dNTP mix 1.0 6.5
MMLV RT 1.0 6.5
RNaseOUT 0.5 3.3
Total volume 8.5 55.3

DTT, dithiothreitol; MMLV RT, Moloney murine leukemia virus reverse transcriptase; dNTP, dinu-
cleotide phosphate.
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3.3.2. Purification of Amplified cRNA (Qiagen product no. 74104)
1. Add 20 µL of nuclease-free water to the cRNA sample, to obtain a total volume of 100 µL.
2. Add 350 µL of buffer RLT and mix thoroughly.
3. Add 250 µL of ethanol (96–100% purity) and mix thoroughly by pipetting.
4. Transfer 700 µL of cRNA sample to an RNeasy column in a new collection tube and add

500 µL to buffer RPE to the column. Centrifuge the sample for 30 s at 14,000g. Discard
the flow-through and the collection tube.

5. Transfer the RNeasy column to a new collection tube and add 500 µL of buffer RPE to the
column. Centrifuge the sample for 30 s at 14,000g. Discard the flow-through and the col-
lection tube.

6. Again, add 500 µL of buffer RPE to the column. Centrifuge the sample for 60 s at 14,000g.
Discard the flow-through and the collection tube.

7. Elute the cleaned cRNA sample by transferring the RNeasy column to a new 1.5-mL col-
lection tube. Add 30 µL of nuclease-free water directly onto the RNeasy filter membrane.
Wait 60 s before centrifuging for 30 s at 14,000g. The flow-through contains the purified
cRNA and needs to be saved in the collection tube.

8. Again, add 30 µL of nuclease-free water directly onto the RNeasy filter membrane. Wait
60 s before centrifuging for 30 s at 14,000g. The total final flow-through volume should be
approx 60 µL. Proceed immediately to hybridization or store the labeled target at −80°C
until needed. Discard the RNeasy column.

3.4. Hybridization and Washing
Hybridization and washing steps are prone to human handling and environmental

conditions, which would affect the quality of the microarray data. Manual hybridiza-
tion requires minimum investment and is suitable for most daily operations in labora-
tories where throughput is not very high. The use of cover slips has been the common
hybridization method for glass slide-based microarrays. It requires no specific setup
other than a well-sealed humidified chamber. However, the cover slip method is cum-
bersome and introduces large variations. Recent improvement has been made in the use
of a hybridization chamber, where it is possible to perform hybridization more evenly

Table 2
Linear Amplification Components

Component Volume/reaction (µL) Volume for 6.5 reaction (µL)

Nuclease-free water 15.3 99.4
4X Transcription buffer 20 130
1 M DTT 6.0 39
NTP mix 8.0 52
50% PEG 6.4 41.6
RNaseOUT 0.5 3.3
Inorganic pyrophosphatase 0.6 3.9
T7 RNA polymerase 0.8 5.2
Total volume 57.6 374.4

DTT, dithiothreitol; PEG, polyethylene glycol; NTP, neuclotide triphosphate.
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with a larger volume of hybridization buffer. To increase reproducibility and through-
put of the array experiments, automated hybridization and washing are recommended.

3.4.1. Manual Hybridization and Washing
Microarrays from Agilent (1 ↔ 3 in. glass slide-based) are used to illustrate the pro-

cedures for hybridization and washing. 11K microarrays contain 11,000 features/array
and two arrays/slide. 22K microarrays contain 22,000 features/array and one array/slide.
Many homemade arrays can be processed similarly.

3.4.1.1. STEP 1: HYBRIDIZATION MIX

1. Use 1.5-mL nuclease-free microcentrifuge tubes for this step. Either fluorescently labeled
cRNA or cDNA can be used for hybridization. Prepare a target solution following Table 3.

2. The 2X target solution can be quick frozen on dry ice and stored in the dark at −80°C for
up to 1 mo. When using frozen solution, thaw, vortex, and centrifuge for 5–10 s before
use. For each microarray, prepare 1X hybridization solution as shown in Table 4.

3. Mix well by careful pipetting. Take care to avoid introducing bubbles. Do not vortex. Spin
briefly in a microcentrifuge to drive the sample to the bottom of the tube. Use immediately;
do not store.

3.4.1.2. STEP 2: HYBRIDIZATION

An agilent hybridization chamber (cat. no. G2534A) was used for the hybridization
step.

1. Based on the type of Agilent oligonucleotide microarray being used, either 11K or 22K
formats, choose the appropriate gasket slide from the gasket slide kit. Only handle these
slides with powder-free gloves and by their edges when removing them from the packag-
ing. Load a clean gasket slide into the chamber base with the label facing up and aligned
in the rectangular section of the chamber base. Ensure that the gasket slide is flush with
the chamber base and is not ajar. Slowly draw up the entire amount of solution from one
tube, avoiding any bubbles in the solution. For each 11K microarray, approx 200 µL of
hybridization solution will be used. Remember that there are two microarrays per slide.
For each 22K microarray, approx 440 µL of hybridization solution will be used. Slowly
dispense the solution onto the microarray gasket slide in a “drag and dispense” manner as

Table 3
Hybridization Mix

22K Microarrays 11K Microarrays

0.75 µg of cyanine 3-labeled, 0.50 µg of cyanine 3-labeled,
linearly amplified cRNA linearly amplified cRNA

0.75 µg of cyanine 5-labeled, 0.50 µg of cyanine 5-labeled,
linearly amplified cRNA linearly amplified cRNA

50 µL of 10X control targets 50 µL of 10X control targets
Nuclease-free water to volume Nuclease-free water to volume

Total volume per tube: 215 µL Total volume per tube: 215 µL
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outlined in the Agilent microarray hybridization chamber user guide (G2534-90001). Do
not move the chamber base or the gasket slide once the hybridization solution has been
dispensed.

2. Remove the appropriate Agilent oligo microarray from its packaging using clean and
powder-free gloves. Handle the oligo microrray only by the ends of the slide, to avoid
damaging the microarray surface. Flip the oligo microarray so that the numeric side is
facing up as it is lowered onto the gasket slide. Lower carefully and align with the four
guideposts on the chamber base. Once aligned and slightly above the gasket slide, let the
oligo microarray slide drop to complete the sandwiched slide pair. Quickly assess that the
slides are completely aligned and that the oligo microarray is not ajar (ends/sides can get
caught on the upper part of the chamber base). Realign quickly if necessary.

3. Correctly place the chamber cover onto the sandwiched slides, and then slide on the clamp
assembly until it comes to a stopping point in the middle of the chamber base and cover
pair. Tighten the thumbscrew by turning it clockwise until it is fully hand-tight. Hold the
chamber assembly in your hand vertically, and slowly rotate it clockwise two to three
times to allow the hybridization solution to wet the gasket.

4. Inspect the sandwiched slides and note the bubble formation. A large mixing bubble
should have formed. If stray, small bubbles are present and do not move when the cham-
ber is rotated, gently tap one corner of the assembled chamber on a hard surface and rotate
it vertically again. Determine whether the stray or stationary bubble(s) moved. If not, repeat
by gently tapping another corner and proceed with vertical chamber rotation and inspection
again. It is critical that the stray or stationary bubbles be dislodged before loading into the
hybridization rotator rack and oven.

5. Continue loading and assembling the rest of the Agilent microarray hybridization cham-
bers as specified in the Agilent microarray hybridization chamber user guide or as briefly
detailed in steps 3 and 4.

6. Once all the chambers are fully assembled, load them into the hybridization rotator rack.
If all the available positions on the hybridization rotator rack are not being loaded, be sure
to balance the loaded hybridization chambers on the rack so that there are an equal number
of empty positions on each of the four rows on the rack. Set the hybridization rotator to

Table 4
1X Hybridization Solution

Per tube, for 22K Microarrays Per tube, for 11K Microarrays

1. Add 215 µL of 2X target solution. 1. Add 100 µL of 2X target solution.
2. Add 9 µL of 25X fragmentation buffer. 2. Add 4 µL of 25X fragmentation buffer.
3. Mix well by gentle vortexing. 3. Mix well by gentle vortexing.

Incubate at 60°C in a water bath in the Incubate at 60°C in a water bath in the
dark for 30 min. dark for 30 min.

4. To each tube, add the following 4. To each tube, add the following
volume of hybridization buffer to volume of hybridization buffer to
terminate the fragmentation reaction: terminate the fragmentation reaction:
225 µL of 2X hybridization buffer 100 µL of 2X hybridization buffer
(from in situ hybridization kit) (from in situ hybridization kit)

Total volume per microarray: 449 µL Total volume per microarray: 204 µL
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rotate at a speed setting of 4 on an Agilent–recommended hybridization oven (e.g.,
Agilent product no. G2505-80081 or G2505-80082). Hybridize at 60°C for 17 h.

3.4.1.3. Step 3: Washing
1. Before incubation has finished, prepare three staining dishes:

a. Add wash solution 1 (6X SSC, 0.005% Triton X-102) at room temperature to the first
wash staining dish (large volume, approx 250 mL, to facilitate disassembly of hybrid-
ization chambers).

b. Add a slide rack and a magnetic stir bar to the second wash staining dish. Cover the
rack with room temperature wash solution 1. Place this dish on a magnetic stir plate.

c. Place the third wash staining dish in another container filled with ice (a Pyrex loaf pan
is well-suited for this purpose). Add a magnetic stir bar. Add 4°C wash solution 2 (0.1X
SSC, 0.005% Triton X-102) to a depth sufficient to cover a slide rack. Be sure to
replenish the ice in the outer container, which will keep the solution as cold as possible.

Be sure to have all wash solution dishes prepared before hybridization chamber disassem-
bly. The washing steps should be done as efficiently as possible. Do not wash slides in
the slide rack immersed in wash solution by placing on an orbital rotator/shaker. This
does not provide adequate mixing to facilitate robust washing.

2. Remove a maximum of two hybridization chambers from the oven at a time to avoid
chamber cooldown before disassembly in the wash dish. Determine whether bubbles formed
during hybridization, and if all bubbles are rotating freely. Place the hybridization chamber
assembly on a flat surface and loosen the thumbscrew, turning counterclockwise. Slide
off the clamp assembly and remove the chamber cover. With gloved fingers, remove the
“sandwiched slides” from the chamber base by grabbing the slides from their ends. Keep
the oligo microarray slide (numeric bar code facing up) while quickly transferring the sand-
wiched slides to the first wash staining dish. Without letting go of the sandwiched slides,
submerge the slides into the first wash staining dish containing wash solution 1. With the
sandwiched slides completely submerged in the wash solution, pry the two slides apart
from only the bar code end. Do this by slipping one of the blunt ends of a pair of tweezers
between the slides and then gently turning the tweezers upward or downward. Let the gas-
ket slide drop to the bottom of the wash staining dish. Remove the oligo microarray slide
quickly, and place in the slide rack contained in the second wash staining dish containing
wash solution 1. Minimize exposure of the slide to air.

3. Complete the chamber disassembly and oligo microarray slide removal steps for the sec-
ond chamber assembly. Once the second chamber has been disassembled and the slide is
removed, proceed to retrieve a maximum of two more hybridization chambers from the
hybridization oven and repeat step 2.

4. After all the slides have been collected in the slide rack, set the magnetic stir plate to
medium speed. Wash the slides for 10 min at room temperature. Transfer the slide rack to
the third staining dish containing wash solution 2, which is on ice. Place the entire dish
on a magnetic stirring plate set to medium speed. Wash the slides for 5 min.

5. The slide rack containing slides must stay immersed in wash solution 2 during the indi-
vidual slide-drying process. Dry each slide, one slide at a time. Remove one slide from
the slide rack. Using a nitrogen-filled air gun, quickly blow drops of solution from the
slide surface. Repeat this procedure for each individual slide in the slide rack.

6. Take care to avoid allowing drops of solution to travel back over the slide once the micro-
array has been dried. To measure fluorescence intensities, load the slides into a microarray
scanner, or store in the dark under nitrogen until ready to scan.
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3.4.2. Automated Hybridization and Washing
Automation holds the promise of increasing the throughput and reproducibility of

microarray experiments, which are particularly important for applications such as molec-
ular diagnostics. Several instruments are currently available, such as, the HS series
hybridization station from Techan, the Ventana Discovery System from Amersham, and
the GenTAC Hybridization Station from Genomic Solutions. However, cost and vali-
dation of the technology could prevent easy integration into the laboratory work flow.

3.5. Scanning and Data Analysis
After hybridization and washing, the data for gene expression are collected with a

scanner and analyzed with the aid of bioinformatic software.

3.5.1. Image Scanning and Feature Extraction
Many different scanners are available. Depending on the requirement of the per-

formance and throughput, available models include Axon’s relatively low-cost “per-
sonal scanner” (GenePIX 4100A) or Agilent’s high-throughput, high-sensitivity scanner
(G2565BA). It is worthwhile to point out that the quality of the scanner, such as the
dynamic range as well as the signal to noise, can impact the sensitivity of the micro-
array experiment.

Scanners usually are equipped with software for extraction and conversion of fluores-
cence or chemiluminescence intensities to relative numbers. For example, the Agilent
Feature Extraction 7.1 can accurately determine the positions of each spot on the Agilent
microarrays based on auto-grid and auto-spotfinding algorithms. One can also interac-
tively position a grid and subgrids over non-Agilent or Agilent microarrays and locate
the spots based on the grids one defines. The software can efficiently and rapidly con-
vert data extracted from these features into quantitative log ratios. It also calculates the
error associated with each log ratio and p values for statistical analysis, which helps to
identify random and systematic errors during printing or processing.

3.5.2. Data Analysis and Hypothesis Building
One of the major bottlenecks for microarray experiments is the data analysis. Reduc-

tion of the vast amount of data generated from the microarrays to some biologically
meaningful results is very challenging. Although it is critical to design an experiment
correctly, postexperiment data analysis is also extremely important for a successful
experiment. Some software with more comprehensive and robust features, such as the
Resolver from Merck Rosetta, could help with the data analysis. Rosetta Resolver can
input data generated from different array platforms and compile large amounts of array
data. It can also include multivariables simultaneously for statistical analysis and allow
comparisons between samples, experiments, and laboratories after data normalization.
Although the simple “unsupervised” hierarchical clustering ranking can provide quite
useful information, more valuable insight is often obtained after a “supervised” rank-
ing process, i.e., combining the biological information with the statistical analysis. In
addition, Rosetta Resolver can map the expression data to biological pathways in other
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databases to facilitate the hypothesis-building process. The hypothesis needs to be tested
further with other experimental methods.

4. Notes
The procedures described here using the Agilent in situ-synthesized oligonucleo-

tide array could be applied with slight modifications to other types of arrays in a variety
of applications. The most critical factor in a successful array experiment is the sample
acquisition because most biological samples are limited and mRNA species are inher-
ently unstable. Care should be taken to minimize RNA degradation during sample acqui-
sition and extraction. RNA quality should be verified by methods such as UV spectro-
scopy or electrophoresis.

For study infectious diseases, the samples for the microarray experiment would usu-
ally be different microbes (virulent strain vs avirulent strain, wild-type strain vs mutant
strain). Care should be taken to grow the microbes under the same conditions to mini-
mize nonrelevant expression differences between the strains. Comparison of the gene
expression patterns between the different strains would facilitate identification of drug
targets, which may be used for development of antibiotics and vaccines. To identify
molecular signatures for a disease, the samples for the microarray experiment would
usually be different tissue samples (normal tissue vs abnormal tissue, or tissue samples
from different subgroups of patients). The differentially expressed genes between tis-
sue samples (molecular signatures) need to be validated with clinical phenotypes includ-
ing traditional pathological classification. These molecular signatures could be used
as prognostic markers to identify disease susceptibility for early treatment. To study
drug response and drug metabolism, the samples for the microarray experiment would
usually be cells that are treated or not treated with the drug. Expression analysis of these
samples would allow prediction of toxicity and side effects of the drug even prior to
clinical trials. In the future, personalized treatment could be applied based on the gene-
tic background of the individual and the predicted responses to the drugs.

Internal controls can be included through the entire work flow for normalization to
allow comparisons between samples, experiments, and data from different laboratories.
Internal controls, or spike-ins, are usually selected from sequences with minimum homol-
ogy to the genes being studied. For example, bacterial and viral genes have been used as
controls for human and other mammalian arrays. These controls provide useful infor-
mation on the reliability and sensitivity of the experiments and also a calibration for the
experimental data (15). Other types of controls include probe sets for manufacturing
quality control such as the eQC probe sets for Agilent arrays and the ICT-LIZ probe sets
for ABI arrays.

In a two-color hybridization system, bias may be introduced by differences of the
two fluorophores such as Cy3 and Cy5. The bias could be owing to the differences in
quantum yield, enzyme incorporation efficiency, as well as sensitivity to the environ-
mental factors. It is highly recommended that a dye-swap experiment (16), in which
duplicate microarrays are hybridized with reciprocal dye combinations, be carried out
to avoid bias and test the correlation between the two sets of dyes. Successful proto-
cols should give a high correlation (in our experience usually about 0.9), whereas lower
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correlation coefficients suggest that the amount of dye in the labeling reaction needs
to be balanced.

The statistical confidence of the data depends on the system’s noise, which includes
noise in the biological replicates (which is usually the largest); noise in the sample prep-
aration; noise in the labeling, amplification, and hybridization procedures; and noise
in scanning, such as laser stability of the scanner and array manufacturing. Noises or
errors in replicate samples, sample preparation, or processing are random errors. Noises
in array manufacturing or scanning are systematic errors. It is recommended that the
level of these noises be defined and incorporated into the analysis process. As a result
of this type of analysis (e.g., error modeling), a calculated confidence level could be
associated with the data.

Expression data obtained from DNA microarray experiments usually needs to be
validated by other experimental methods. Northern blot and real-time reverse transcrip-
tase polymerase chain reaction are alternative methods to measure transcriptional expres-
sion as the DNA microarrays. In some cases, mRNA levels do not directly correlate with
protein levels in the cell. Proteomics enabling simultaneous monitoring of all proteins
in a cell is complementary to DNA microarrays.

As an example to illustrate microarray applications, we describe here in more detail
two consecutive studies carried out by clinicians and scientists at Netherlands Cancer
Institute and Rosetta Inpharmatics (7,8). This example shows how the microarray tech-
nology described in this chapter was used to profile breast cancer patients and identify
gene signatures for prediction of disease outcome. A total of 98 breast cancer samples
were selected according to their original tumor size, metastasis, and patient age. Total
RNA was extracted first with phenol (RNAzolB) and subsequently treated with DNase
followed by purification with RNeasy columns. This two-step procedure usually yields
higher-quality RNA samples than the use of either phenol or the column alone. Individ-
ual tumor RNA samples were labeled with one fluorescent dye and mixed with the same
amount of reverse-colored Cy-labeled product from a pool consisting of an equal amount
of cRNA from each patient. The labeled cRNAs were fragmented and hybridized to an
oligonucleotide DNA array containing 25,000 human genes synthesized by Agilent’s
ink-jet technology. Two hybridizations were carried out using the swapped fluorescent
dyes for labeling RNA samples. Fluorescent intensities of the 25,000 genes were quanti-
fied and normalized. Approximately 5000 genes were significantly up- or downregu-
lated. An unsupervised hierarchical clustering algorithm allowed the investigators to
classify the 98 tumors into two distinct groups based on the expression profile of the
5000 genes. In group A, only 34% of the patients developed a distant metastasis within
5 yr (good-prognosis group), whereas in group B, 70% of patients developed progres-
sive disease (poor-prognosis group).

To search for a minimal set of genes to be used as prognostic signature, the investi-
gators performed a three-step supervised clustering for 78 sporatic lymph node-nega-
tive patients. First, they determined the correlation of the expression of each of these
5000 genes with the disease outcome. Two hundred thirty-one genes were selected as
significantly associated with the disease (correlation coefficient r value <−0.3 or >0.3).
Second, they ranked these 231 genes according to the magnitude of the correlation or
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the absolute value of the correlation coefficient. Third, they evaluated the contribution
of the 231 genes by adding a group of 5 genes at a time from the top of this rank list
and cross validated this new set of genes with a scheme of “leave one out.” Briefly, the
investigators generated the gene rank list from these 231 predictive genes using 77 of
the 78 tumor samples (left one out). The new list was used to predict the outcome of
the one cancer that was left out in the first place. They measured both false-positive
and false-negative rates for each of the set of the predictive genes by adding 5 genes at
a time until all 231 genes had been used. This exercise was carried out for each of the
78 tumors, and the investigators found that minimum false rates were achieved when
they used a group of 70 genes. With this set of 70 genes, 65 of the 78 tumors can be
correctly classified.

This set of 70-gene prognosis signature was applied to classify a larger group of 295
patients with primary breast cancer. It is gratifying that prediction of both long-term
survival and distal metastasis using this set of prognosis signature genes was more accu-
rate than using the standard classification methods based on clinical and histopatho-
logical criteria by the multivariable Cox regression analysis. This example not only
confirms the value of this 70-gene signature in predicting the outcome of breast can-
cer, but also demonstrates the promise of using gene expression profiling for clinical
diagnosis.
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Ontology-Driven Approaches
to Analyzing Data in Functional Genomics

Francisco Azuaje, Fatima Al-Shahrour, and Joaquin Dopazo

Summary
Ontologies are fundamental knowledge representations that provide not only standards

for annotating and indexing biological information, but also the basis for implementing
functional classification and interpretation models. This chapter discusses the application
of gene ontology (GO) for predictive tasks in functional genomics. It focuses on the prob-
lem of analyzing functional patterns associated with gene products. This chapter is divided
into two main parts. The first part overviews GO and its applications for the development
of functional classification models. The second part presents two methods for the char-
acterization of genomic information using GO. It discusses methods for measuring func-
tional similarity of gene products, and a tool for supporting gene expression clustering
analysis and validation.

Key Words: Gene ontology; clustering; expression data; similarity; functional genomics.

1. Introduction
One fundamental requirement of the drug discovery paradigm in the postgenome era

is the capacity to analyze and combine large amounts of data originating from geno-
mics and proteomics. Such a framework relies not only on the application of powerful
bioinformatics tools to classify data patterns, but also on the automated incorporation of
formal and usable knowledge representations for making data mining a more meaning-
ful process. Drug discovery requires advanced pattern discovery platforms for facilitat-
ing a better understanding of spatial and temporal properties of molecules and processes,
such as those observed in gene and protein expression and protein–protein interactions.
These technologies help scientists to understand how biological systems may be both
monitored and engineered. The former goal is concerned with the task of identifying
biomarkers. The latter is relevant to the problem of discovering potential drug targets.
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Outcomes originating from genomics and proteomics can now be accessed through
diverse data repositories, which may also provide annotations and vocabularies used to
describe the structure and function of genes and their products. This type of prior infor-
mation becomes an important source of background knowledge, which can be exploited
to facilitate cross-database queries and to support the validation of bioinformatics and
experimental results for drug discovery.

An ontology is a structured and controlled representation of background knowledge.
It consists of taxonomies and rules that define properties and relationships between con-
cepts. In a biological context, a concept may be represented as an annotation term. These
representations are designed to be understandable by both humans and computers.

Ontologies represent an important step in supporting the unification of databases.
They facilitate information search tasks across databases, because they offer a frame-
work to store and query different repositories using the same query terms. The most
relevant bioontologies may be accessed through the Open Biomedical Ontologies (OBO)
Web site. These ontologies have been created and accepted by the OBO group as author-
itative biological knowledge resources (http://obo.sourceforge.net/). It includes ontol-
ogies representing generic knowledge across different organisms, or associated with
several biological domains and specific model organisms.

Gene ontology (GO) (1) website is one of the Open Biomedical Ontologies resources
and offers controlled vocabularies and shared hierarchies for supporting the annotation
of molecular attributes across model organisms. However, the relevance of ontologies,
such as GO, goes beyond information search and retrieval applications. It has been sug-
gested that they may significantly facilitate large-scale applications for functional genom-
ics. For example, it has been suggested that the GO can be used for implementing advanced
functional prediction systems (1).

Assessment of gene or protein similarity is at the center of important tasks in func-
tional genomics. One key strategy to exploit the information encoded in an ontology
such as GO may consist of processing it to measure the similarity between gene prod-
ucts. This type of similarity information is sometimes referred to as semantic similar-
ity, because it takes into account information relevant to the definition of concepts and
their interrelationships within a specific problem domain. Another important problem
comprises the application of GO knowledge to automatically describe gene clusters in
terms of functional categories.

There are two major classification schemes for studying proteins (2). Structural classi-
fication measures similarity based on protein sequence and tertiary structure. Functional
classification assesses similarity in terms of functional features such as biochemical
pathways and cellular localization. Such a scheme does not comprise structural simi-
larity features or models. The methods discussed in this chapter emphasize the appli-
cation of ontology-driven information for functional classification applications.

This chapter introduces techniques for incorporating GO information into functional
classification tasks. It discusses the problem of measuring gene product similarity within
GO and describes a technique for functionally characterizing gene clusters using infor-
mation automatically extracted from GO. Heading 2 provides an overview of GO and
some of its applications in functional classification. Heading 3 introduces the problem

http://obo.sourceforge.net/
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of measuring semantic similarity in a taxonomy. It describes methods to measure simi-
larity based on GO annotations, as well as potential significant relationships with gene
expression correlation. Heading 4 introduces FatiGO, a data-mining tool for labeling
gene clusters on the basis of their most characteristic GO terms. Finally, Heading 5 dis-
cusses the advantages and limitations of the methods proposed.

2. GO for Functional Classification Applications
GO defines a structured and controlled vocabulary to annotate molecular attributes

across model organisms (1). It allows users to access annotation and specialized query
information resulting from different model organisms. For instance, different databases
such as the Saccharomyces Genome Database (SGD) and the Database of the Drosoph-
ila Genome (FlyBase) provide annotations defined by this ontology. Such annotation
files also offer useful information about the evidence for the knowledge represented.
This information is stored in the form of evidence codes. There are different types of
GO evidence codes, such as TAS (Traceable Author Statement) and IEA (Inferred from
Electronic Annotation). The evidence code TAS refers to annotations supported by arti-
cles or books written by experts in the field. By contrast, IEA annotations are based on
results automatically derived from sequence similarity searches, which have not been
reviewed by curators.

GO actually comprises three ontologies, sometimes referred to as “aspects” or “taxo-
nomies”: molecular function, biological process, and cellular component. The first taxo-
nomy refers to information on what a gene product does. Biological process is related
to a biological objective to which a gene product contributes. Cellular component refers
the cellular location of the gene product. Figure 1A depicts a partial view of the first
level of terms included under molecular function. The reader is referred to ref. 1 and its
Web site for further information on the design and implementation principles of GO
(www.geneontology.com).

GO vocabularies (one for each ontology) and their relationships are represented in
the form of directed acyclic graphs. Thus, a taxonomy in GO may be seen as a network
in which each term or concept may represent a “child node” of one or more “parent
nodes.” There are two types of child-to-parent relationships: is–a and part–of. The
first type is defined when a child is an instance of a parent. For example, from the molec-
ular function ontology, drug binding is a child of binding. The second type is used to
describe when a child node is a component of a parent. For example, from the biologi-
cal process ontology, cell aging is part of cell death. Figure 1B illustrates a partial
view of the type of directed acyclic graphs found in GO.

In the area of drug discovery, ontologies have been traditionally used to improve
database search applications owing to their ability to describe unambiguously molecules,
processes, and compounds. Pharmaceutical companies are developing joint projects
to integrate GO annotations and other relevant resources for analyzing genomic data,
including gene expression data (3). Some of them are also contributing to the develop-
ment of new ontologies, such as specialized tissue-type ontologies, which eventually
will become publicly available (3). For additional information on ontology design and
current collaborative projects in this area, the reader is referred to refs. 3 and 4.

www.geneontology.com
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Recent research advances go well beyond information annotation and retrieval appli-
cations. For example, King et al. (5) have predicted known and novel gene–phenotype
associations in yeast. Their model processes phenotypic annotations extracted from the
Munich Information Center for Protein Sequences database and gene annotations based
on more than 3000 GO terms. Decision trees and a cross-validation procedure are imple-
mented to infer these associations. Hvidsten et al. (6) have combined a series of gene
expression data with annotations originating from GO biological process ontology. They
propose a supervised classification system, based on rough set theory, to assign biolog-
ical process categories to genes represented by expression patterns. King et al. (7) have
applied decision trees and Bayesian networks to predict new GO terms–gene associa-
tions using existing annotations from the SGD and FlyBase. These models allow the
calculation of the probability that a gene, g, is annotated using a particular annotation
term, c, taking into account the known annotation profile of g and its similarity relation-
ship with other annotation patterns observed in the database. King et al. (7) processed
terms originating from all the GO taxonomies. An evaluation of these predictions showed
that 41 gene–annotation associations were accepted to be true, and 42 were both novel
and likely significant, out of 100 predictions semiautomatically validated. Laegreid et
al. (8) have also applied supervised learning methods to predict GO annotation terms.
However, they use temporal gene expression patterns as the inputs to the prediction
model. They also focus on the prediction of GO biological process terms. These investi-
gators established significant associations between these ontology categories and expres-
sion patterns extracted from a fibroblast serum response data set, which was generated

Fig. 1. Different views of Gene Ontology. (A) Partial view of first level of molecular func-
tion ontology; (B) typical example of a directed acyclic graph in GO. Dashed lines indicate the
presence of several terms not included here.
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by Iyer et al. (9). Validation based on literature search and homology information con-
firmed the relevance of some of the process roles assigned to uncharacterized genes.

The following section introduces the problem of measuring semantic similarity in a
taxonomy, as well as an application of GO-driven similarity assessment for gene expres-
sion data analysis, which is not addressed by the previously discussed research.

3. Gene Product Similarity Assessment and GO
To understand the problem of measuring semantic similarity between gene products

based on their annotations, it is first necessary to describe approaches to calculating the
similarity between annotation terms in an ontology. The similarity between ontology terms
may be calculated on the basis of different types of taxonomical interrelationships.

Given a pair of terms, c1 and c2, a method for measuring their similarity consists of
calculating the distance between the nodes associated with these terms in the ontology.
The shorter this distance, the higher the similarity. If there are multiple paths, one may
use the shortest or the average distance. This approach is commonly referred to as the
“edge” or “node counting” method. A variation of this method defines weights for the
links according to their position in the taxonomy (10). It stresses the idea that differ-
ences between upper-level terms are stronger than between lower-level terms. Artificial
intelligence researchers have studied the constraints exhibited by this type of model
(11). One of its major limitations is that it heavily relies on the idea that nodes and links
in an ontology are uniformly distributed. This is not an accurate assumption in ontolo-
gies exhibiting variable link densities.

An alternative approach to measuring semantic similarity applies information-theo-
retic principles (11). It has been demonstrated that this type of approach is less sensi-
tive and in some cases not sensitive to the problem of link density variability (12).

Let C be the set of terms in GO. One key approach to assessing the similarity between
terms, c ~ C, is to analyze the amount of information they share in common. In GO or
any other taxonomy this information may be represented by the set of parent nodes,
which subsume the terms under consideration. For example, in Fig. 1B the terms “Mor-
phogen activity” and “Receptor” are subsumed by the terms “Signal transducer activity”
and “Molecular function.” Thus, one may say that the terms “Morphogen activity” and
“Receptor” shared those attributes (parents) in common.

For each term, c ⎣ C, p(c) is the probability of finding a child of c in the taxonomy.
Thus, as one moves up to the root node of GO (i.e., the terms “molecular function,”
“biological process,” and “cellular component”) p(c) monotonically approaches a value
equal to 1. This together with the principle of information theory allows the quantifi-
cation of the information content of a term as equal to −log(p(c)).

Information content allows measurement of the semantic similarity between terms
based on the assumption that the more information two terms share in common, the
more similar they are. In this situation, the information shared by two terms may be
calculated using the information content of the terms subsuming them in the ontology.
Such a semantic similarity model was proposed by Resnik (12) and is mathematically
defined as follows:



72 Azuaje et al.

Sim(ci, cj) =  max   [−log(p(c))] (1)

in which S(ci,cj) comprises the set of parent terms shared by both terms ci and cj, and
max represents the maximum operator. The value of this metric can vary between 0 and
infinity. For example, in Fig. 1B “Signal transducer activity” and “Molecular function”
belong to S(c1,c2), in which c1 and c2 are “Morphogen activity” and “Receptor,” respec-
tively. Nevertheless, “Signal transducer activity,” which provides the minimum p(c)
and the maximum –log(p(c)), also represents the most informative term. Thus, Eq. 1
provides the information content of the lowest common ancestor of two terms.

Lin (13) proposed an alternative information-theoretical method. It takes into account
not only the parent commonality of two query terms, but also the information content
associated with them. Thus, given terms ci and cj, their similarity may be defined as
follows:

             2 ↔    max    [log(p(c))]

in which p(ci) and p(cj) are as previously defined. The values generated by Eq. 2 vary
between 0 and 1. This technique may be seen as a normalized version of Resnik’s method.
For additional information on these and related techniques for semantic similarity
assessment, the reader is referred to refs. 11 and 13.

Based on Eqs. 1 or 2 it is then possible to calculate the semantic similarity between
gene products based on their annotations. Given a pair of gene products, gi and gj, that
are annotated by a set of terms Ai and Aj, respectively, in which Ai and Aj comprise m and
n terms, respectively, the semantic similarity SIM(gi,gj) may be defined as the average
interset similarity between terms from Ai and Aj. Thus, this method allows integration of
similarity contributions originating from all of the terms used to describe gi and gj. This
is formally defined as follows:

SIM(gi,gj) =         ↔        sim (ck,cp)

Lord et al. (14) have investigated the relationship between semantic similarity and
protein sequence similarity. They have suggested that semantic similarity metrics, such
as those based on Eqs. 1–3, are correlated with sequence similarity. Such a relation-
ship seems to be stronger when similarity is computed using the molecular function
ontology. Their results are based on the analysis of the Swiss-Prot-Human database.
They conclude that semantic similarity may support more powerful gene sequence search
and retrieval tasks.

This chapter discusses the incorporation of ontology-driven similarity for functional
classification applications. The following section illustrates how this approach may be
applied to support gene expression analysis.

3.1. Linking GO-Driven Similarity and Expression Data
The results presented here aim to establish associations between GO terms and gene

products included in the SGD. One important goal is to formulate quantitative relation-
ships between the semantic similarity of pairs of gene products and gene expression

c⎣S(ci,cj )

c⎣S(ci,cj )

log(p(ci)) + log(p(cj))
sim(ci,cj) = (2)

(3)ck⎣Ai,cp⎣Aj

1
m ↔ n
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correlation. The analyses may consider only non-IEA annotations owing to their reli-
ability and quality, as explained under Heading 2. As a way of illustration, this inte-
gration process is based on data that characterize mRNA transcript levels during the
cell cycle of Saccharomyces cerevisiae (15). Semantic similarity analyses were per-
formed on 225 genes that show significant and periodic transcriptional fluctuations
during five cell-cycle phases: early G1, late G1, S, G2, and M phases (15). These phases
may also be seen as gene clusters on the basis of their expression patterns. Each gene
is described by 17 expression values, which are associated with 17 time points. The total
number of gene pairs generated by this data set is 25,200. Thus, 25,200 pairs of seman-
tic similarity values and 25,200 expression correlation values were calculated. Gene
expression correlation is calculated using the well-known Pearson correlation coeffi-
cient. Graphic analyses and analysis of variance (ANOVA) between groups of genes/
samples may be implemented to visualize potential relationships among semantic simi-
larity, expression correlation, and cell-cycle phases. Significant quantitative relation-
ships between ontology-driven similarity and expression correlation for a particular data
set may justify the application of this type of tool in predictive and evaluation tasks.

Figure 2 depicts mean expression correlation values between pairs of gene prod-
ucts against semantic similarity based on the molecular function ontology. The axis of
abscissas is divided into a number of similarity intervals, and the axis of ordinates shows
the mean expression correlation values for these intervals and their ±0.95 confidence
intervals. Graphs can be generated for the three GO taxonomies independently. The
similarity values included in Fig. 2 are based on Resnik’s similarity measure (Eq. 1).
In general, for different sizes of similarity intervals and types of ontology, high similar-
ity values are associated with high expression correlation values, and low expression
correlation is associated with weak semantic similarity. By augmenting or reducing the
number of similarity intervals, it is possible to observe this global trend in terms of
extreme values: lowest/highest similarity/correlation values for all types of ontologies.
However, on the basis of the data available and for different numbers of similarity
intervals, it is not possible to define a pattern to describe accurately the type and shape
of the possible existing relationship for all of the similarity–correlation intervals. In this
case, it is only possible to argue that there may exist a nonlinear relationship between
these two functional features, in which the strongest and weakest semantic similarities
may be linked to the highest and lowest expression correlation values, respectively. This
response is significantly stronger in the case of the lowest expression correlation values.

Figure 3 illustrates results based on the semantic similarity measure proposed by Lin
(Eq. 2) that were obtained for the molecular function ontology. These results are, in gen-
eral, consistent with the results produced by Resnik’s method. The results also suggest
that the strongest and weakest semantic similarities may be linked to the highest and
lowest expression correlation values, respectively. The same conclusion is obtained for
all three of the GO taxonomies under study, whose graphic representations have not
been included here owing to space constraints.

This type of analysis may be seen as an exploratory study of key functional proper-
ties reflected in GO. Once potential significant relationships have been identified, one
may apply this similarity approach to supporting functional genomics analyses, such
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as quality assessment of gene clusters. Fundamental descriptions may be implemented
by applying standard statistical tests such as ANOVA. Figure 4 summarizes an ANOVA
performed to describe relationships among semantic similarity, expression correlation,
and the five cell-cycle phases studied by Cho et al. (15). This one-way ANOVA proce-
dure was applied to semantic similarity data originating from each ontology using Res-
nik’s approach. The results suggest that there may exist significant differences among
cell-cycle phases on the basis of the semantic similarity exhibited by pairs of gene
products included in these categories. This type of assessment may also determine rele-
vant properties, which may provide the basis for further analyses. Figure 4 indicates,
e.g., that early G1 phase represents one of the most compact clusters in terms of seman-
tic similarity based on molecular function (Fig. 4A). This may suggest that many of
the genes involved in this cluster are strongly linked to similar molecular functions.
Phases G2 and M exhibited the lowest mean similarity values, which reflects a relatively
low degree of semantic compactness for all of the GO taxonomies. This indicates that

Fig. 2. Relationship between expression correlation and semantic similarity using gene ontol-
ogy molecular function taxonomy. The axis of abscissas is divided into similarity intervals. The
axis of ordinates shows the mean expression correlation values for each similarity interval and
their ±0.95 confidence intervals. Semantic similarity is based on Resnik’s measure (Eq. 1).



Gene Ontology in Functional Genomics 75

the genes assigned to these phases may be mostly associated with diverse molecular
roles, processes, and localization sites.

Semantic similarity methods may also provide the basis for predicting functional
attributes from patterns of GO annotations. This task may be particularly useful for gen-
erating hypotheses about uncharacterized genes. Figure 5 illustrates a framework for
predicting GO terms from annotation sets obtained from a database such as SGD. It
proposes a k-nearest neighbor method that applies semantic similarity to retrieve the
most relevant genes or annotation patterns for a given query gene product, gq. These
annotation sets may originate from one or different GO taxonomies. This approach
assumes that if two genes are functionally similar, then it is likely that they will share
a similar set of annotation terms. Thus, a gene is represented by a structure of anno-
tation terms, Ai. The maximum size, p, of such a list of possible annotations may be
restricted to a subset of relevant GO terms in order to allow the generation of estimates
with an adequate statistical confidence level. For example, a user may define a term as
relevant if such a term is linked to a significant number of genes in the database. Once
this selection has been performed, it is possible to construct a training data set, which
describes each gene with up to p annotation terms. Each element of Ai indicates whether
or not an annotation term has been used to characterize a gene, gi.

Fig. 3. Linking expression correlation and semantic similarity using gene ontology molec-
ular function taxonomy. Semantic similarity is based on Lin’s measure (Eq. 2).
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Fig. 4. Linking expression correlation and semantic similarity based on gene ontology. One-
way analysis of variance using Resnik’s semantic similarity as the dependent variable and cell-
cycle phase as categorical predictor (factor). (A) Results generated by molecular function tax-
onomy; (B) results generated by biological process taxonomy; (C) results generated by cellular
component taxonomy.
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The symbols “0” and “1” may depict the absence and presence of a term in each Ai,
respectively. The symbol “?” indicates undetermined annotations in the training data
set, or terms whose presence/absence in gq is to be estimated. In this hypothetical exam-
ple, each gene can be described by a maximum number of five terms. The query gene,
gq, has been associated with the first and third terms, and it is accepted that there are no
associations between this gene and the fifth term. Unknown or possible associations
exist between gq and the second and fourth terms. The semantic k-nearest neighbor model
may be applied to predict gene–term associations, which are considered as unknown or
plausible. The first step consists of calculating semantic similarity values between gq
and all of the genes included in the training data set of size m. The most similar k genes
are then retrieved and used to estimate the presence or absence of terms in Aq. This pre-
diction may be achieved by implementing, e.g., a voting strategy to calculate the prob-
ability, P, of correctly assigning a particular annotation term to gq. This value together
with other reliability indicators may be generated based on the annotation information
available in the set of k genes. A prediction will not, of course, take into account the
contribution of unknown annotations from the training data set. The value of k may be
manually chosen or automatically estimated using statistical or machine learning cri-
teria. In the example shown in Fig. 5, this method assigns the fourth term to gq with a
confidence P  value equal to 0.9.

4. A Statistical Framework for Finding
GO Terms Differentially Represented in Sets of Genes

Here we show how to use GO terms to transform data generated by means of differ-
ent high-throughput techniques in genome-scale experiments into biologically relevant
information. Results from functional genomics, such as DNA microarray data, allow
organization of genes in groups that coexpress across sets of experiments, or produc-
tion of lists of genes sorted on the basis of their differential expression in the different
experimental conditions. These arrangements are a consequence of the biological roles
that genes are playing in the cell. If a sufficient number of genes have GO annotations,
relevant information on the biological properties of the system studied can be obtained.

We use a procedure to extract relevant GO terms for a group of genes with respect
to a reference group. Terms are considered to be relevant by means of the application
of a test that takes into account the multiple-testing nature of the statistical contrast per-
formed. The procedure has been implemented as a Web-based application, FatiGO ([16];
http://fatigo.bioinfo.cnio.es/), which can deal with thousands of genes from different
organisms. The utility of these approaches is proven by the fact that after the publica-
tion of FatiGO in the GO consortium Web page, approx 1 yr ago, a number of tools
have been implemented based on the same idea of mapping biological knowledge on
sets of genes. For example, Onto-Express (17) generates tables that correlate groups of
genes to biochemical and molecular functions. MAPPFinder (18) is a searchable Web
interface that identifies GO terms overrepresented in the data. Other tools are available,
such as FunSpec (19), which evaluates groups of yeast genes in terms of their annota-
tions in diverse databases, or GoMiner (20), which performs a test on the distribution
of GO terms in groups of genes. Many of these tools are stand-alone applications with

http://fatigo.bioinfo.cnio.es/
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user-friendly interfaces. However, they exhibit scalability constraints as well as limita-
tions in processing large amounts of data. Moreover, important issues, such as the mul-
tiple-testing nature of the statistical contrasts, are not well addressed.

Here we show how GO information associated with genes can be used to check the
validity of their arrangements obtained by means of functional genomics experiments.
Moreover, it can be applied to gain insight into the biological roles that these genes are
playing in the cell. We show how to use GO terms to define biologically meaningful
clusters of genes.

4.1. Finding Significantly Over- and Underrepresented GO Terms
in a Set of Genes

After experimentally identifying a set of relevant genes, the question is: What makes
these genes different from the rest? The FatiGO tool can be used to find GO terms that
are over- and underrepresented in a set of genes with respect to a reference group. A GO
level first must be chosen taking into account that deeper terms in the GO hierarchy are
more precise. Nevertheless, the number of genes with annotations decreases at deeper

Fig. 5. A framework proposed for predicting gene-term associations based on a semantic
similarity k-nearest neighbor approach. Symbols “0” and “1” indicate the absence and presence
of a term, respectively, in an annotation set, Ai. The symbol “?” represents undetermined anno-
tations in the training data set, or terms whose association with gq is to be estimated. In this
hypothetical example, each gene can be described by a maximum number of five terms, and
associations between gq and the second and fourth terms are predicted.
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GO levels. GO level 3 constitutes a good compromise between information quality and
the number of genes annotated at this level (21), although in many cases, levels 4 and
5 may generate good results (for additional information, visit http://fatigo.bioinfo.ochoa.
fib.es/help/FatiGO.html). If a gene is annotated at deeper levels than the selected level,
FatiGO climbs up the GO hierarchy until the term for the selected level is reached. The
use of these parent terms reduces the number of terms to be tested and increases the
number of genes annotated with a given GO term (i.e., the sizes of the classes to be
tested), making it easier to find relevant differences in distributions of GO terms among
clusters of genes. The information is not lost and can be recovered later.

FatiGO collects two lists of GO terms at the defined level for the two sets of genes
to be compared. A Fisher’s exact test for 2 ↔ 2 contingency tables is applied in order
to find GO terms that are significantly over- or underrepresented in both data sets. A
p value, adjusted for multiple testing, is provided for each resulting term. Multiple test-
ing is an important issue that is not very often properly addressed (22). An increase in
the rate of false positives (i.e., terms identified as over- or underrepresented that, in real-
ity, are not significant) may occur if the multiple-testing nature of the statistical con-
trast is not taken into account.

FatiGO returns adjusted p values based on three different procedures that account
for multiple testing:

1. The step-down minP method of Westfall and Young (23), which provides control of the
familywise error rate (i.e., the probability of making a type I error rate over the family of
tests).

2. The False Discovery Rate (FDR) method of Benjamini and Hochberg (24), which offers
control of the FDR only under independence and specific types of positive dependence of
the test’s statistics.

3. The FDR method of Benjamini and Yekutieli (25), which offers strong control under arbi-
trary dependency of test statistics.

4.2. Using FatiGO for Validation
of Experimental Results of Functional Genomics

It has long been noted that genes coexpressing across different experimental condi-
tions may be playing related functional or biological roles in the cell (26). Finding bio-
logically relevant clusters can be a complex task when thousands of genes are involved
in the study. The distribution of GO annotations can be used to locate these clusters. A
large number of genes, which is a disadvantage with traditional one-gene-at-a-time
approaches, is in this case an advantage: the more genes available, the higher the pos-
sibility of obtaining GO terms showing a significant differential distribution.

As an example we have used the data obtained for the transcriptional program of
sporulation in yeast (27). After being processed and log2 transformed, gene expression
profiles were clustered using the SOTA (the Self-Organizing Tree Algorithm) method
(28), a hierarchical clustering procedure based on a neural network implemented in the
GEPAS (the Gene Expression Pattern Analysis Suite) package (http://gepas.bioinfo.
cnio.es) (29). After clustering them using correlation metrics with a resource thresh-
old of 90%, which ensures an accurate, low-resolution classification, 31 clusters were

http://fatigo.bioinfo.ochoa.fib.es/help/FatiGO.html
http://fatigo.bioinfo.ochoa.fib.es/help/FatiGO.html
http://gepas.bioinfo.cnio.es
http://gepas.bioinfo.cnio.es
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obtained; Figure 6 shows the results. The content of GO terms in the gene annotations
from the clusters obtained can be explored with FatiGO. In one of the clusters, 55.56%
of the genes were annotated in the GO as sporulation. This percentage is clearly higher
than the 13.82% observed for the distribution of this term in the rest of genes. Metabo-
lism is underrepresented, although the differences observed were not significant. Obvi-
ously, metabolism genes are not being activated during the sporulation of yeast. By
exploring deeper GO levels, it is possible to observe “sporulation (sensu fungi)” at level
4 and “sporulation (sensu saccharomyces)” at level 5. The rest of the clusters did not
present any significant GO terms. Despite the fact that other sporulation genes are present
in other clusters, FatiGO found the cluster in which the representation of this term is
significant.

4.3. GO-Driven Use of Experimental Results
to Define Relevant Groups of Genes

An important aim in data mining is to superimpose biological information (GO terms
in this case) over gene clusters in a similar manner to the example shown in the previ-
ous section. It is worth noting that data do not necessarily appear in the form of dis-
crete subsets, or clusters. For example, in the case of the study of genes differentially
expressed among experimental conditions, the data consist of lists of genes ranked by
differential expression. Thus, to understand which genes differ among tissues, diseases,
and so on, gene expression profiles are typically examined using an appropriate statisti-
cal model (and correcting for multiple testing), and only those genes that show signifi-
cant differences among the classes studied are selected. A threshold based on conven-
tional levels (e.g., type I error rate of 0.05), beyond which the genes can be considered
differentially expressed among classes, is fixed based exclusively on expression values.
Then, the GO terms associated with the genes differentially expressed are used to iden-
tify the biological processes that account at the molecular level for the differences
among the classes studied (Fig. 7). FatiGO can then be used to obtain the terms that
are significantly over- or underrepresented in these genes. The usual way of proceed-
ing is to select genes that, in the absence of information other than their gene expres-
sion levels, can be considered to be differentially expressed (beyond a level that can
be reached by chance, given a p value). Nevertheless, there is actually more information
available on the genes: a number of them do have GO annotations. Imagine that we are
comparing, for example, diabetic vs control patients. If after applying the proper statisti-

Fig. 6. (Opposite page) Clustering of gene expression profiles (27) obtained for transcriptional
program of sporulation in yeast. The hierarchical clustering obtained by the Self-Organizing Tree
Algorithm method using Pearson correlation coefficient and a 90% of variability threshold (28)
generated 31 clusters. Exploration with FatiGO shows that in one of the clusters 56% of the genes
were annotated in Gene Ontology as sporulation genes, a percentage that is clearly different
from the distribution of this term in the rest of the genes. Metabolism is clearly underrepresented,
although the differences observed were not significant. The p values are, from left to right, unad-
justed p value, stepdown min p adjusted p value, false discovery rate (FDR) (independent) adjusted
p value, and FDR (arbitrary dependent) adjusted p value.
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cal contrast a gene is found with an expression value slightly lower than the threshold
(e.g., with a p value of 0.06 and a threshold equal to 0.05), prior knowledge would also
represent a crucial factor to consider for making a decision. If the gene were involved
in a pathway of sugar processing, we probably would consider it to be differentially ex-
pressed, no matter that, strictly speaking, it did not reach the threshold. On the other
hand, if the gene had to do with a completely unrelated process, such as the formation
of microtubules, it will be immediately discarded.

Such an intuitive way of processing information may also be included in the algo-
rithm. Differences in the expression of genes across distinct experimental conditions
are owing to the fact that they are involved in distinct biological processes that are active
in the distinct classes studied. The information carried by GO annotations on biologi-
cal processes and molecular functions can be exploited to help in the selection of genes
differentially expressed (see right side of Fig. 7). The study of differential representa-
tion of GO terms across groups of genes, arranged by differential expression values, is
illustrated in ref. 30. Gene expression data from different organs were compared to
look for characteristic differences among them. The approach used here involves three

Fig. 7. Two forms of using biological information to describe a list of genes ranked by
differential expression between experimental conditions A and B (highly expressed in A on the
top and highly expressed in B on the bottom). (Left) Gene expression profiles are examined
and, using an appropriate statistical model, only those genes that show significant differences
(conventional levels, e.g., type I error rate of 0.05, are used for establishing a threshold) between
A and B are selected. The information associated with genes over the threshold is then analyzed
using, e.g., FatiGO. (Right) The arrangement of genes is used to study the distribution of gene
ontology terms that reflect the biological processes that account for the differences between
classes A and B.
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sequential steps. In the first step, the microarray data are analyzed to sort genes accord-
ing to their differences across organs using the following ANOVA model:

yijkl = µ + dyei + mousej + organk + errorijkl (4)

in which yijkl is the log2(Experimental/Control) ratio usually applied in microarray
data analysis, i is the dye index (i = 1, meaning Cy3, and i = 2, meaning Cy5 on the
experimental channel data), j is the index for mouse (i.e., j = {1, 2, 3, 4, 5, 6}), k is the
index for organ (e.g., k = 1 for kidney and k = 2 for testis), l is the index for replicate
(i.e., l = {1, 2, 3, 4} for each tissue within mouse), m is a common intercept term, and
errorijkl is the random error term. The greater the differences between the two organs
(testis and kidney in this example), the greater the organ coefficient (the t-statistic asso-
ciated with this coefficient, which is the coefficient divided by its standard error, was
used). Therefore, genes that are more expressed in the kidney will have a large positive
t-statistic, and those that are more expressed in the testis will have a very small (very
large in absolute value, but with negative sign) t-statistic. In the second step, a window
is used to define groups of genes: those within the window and the remaining set of
genes. Finally, in the third step, the relative frequency of GO terms between the two
groups obtained from the second step is examined. A Fisher exact test, with correction
for multiple testing, is used by FatiGO to assess which of the GO terms differs signifi-
cantly between the groups of genes (for details, see ref. 31). The arrangement of genes
is traversed by a sliding window to which steps two and three are sequentially applied.
For each sliding window, the frequency of GO terms in the genes included in the win-
dow vs the frequency of terms in the genes outside the window is compared. In other
words, whether there are significant differences (adjusted for multiple testing) in the
representation of GO terms in the two groups is determined (Fig. 8). Over- and under-
represented GO terms in genes are differentially expressed when comparing the testis
and kidney in mice. The left side of the x-axis in Fig. 8 corresponds to higher levels of
expression in testis, and the right side refers to the kidney, as measured by the statistics.
The y-axis represents the percentage of over- or underrepresentation of GO terms with
respect to the remaining genes. Terms in black correspond to the third GO level of bio-
logical process and those in gray to the fourth level.

5. Conclusion
This chapter described two techniques that incorporate GO information into func-

tional genomics data analysis. The automated integration of prior knowledge into a bio-
logical data-mining process is fundamental in order to achieve higher levels of validity
and understandability. It can support the assessment of outcomes through consistency
and significance procedures. Moreover, this type of procedure may be applied to predict
functional similarity and statistically characterize groups of genes. Although applica-
tions have been illustrated in gene expression analysis problems, these methods can also
be adapted to other types of ontologies and genomic data.

The method described under Heading 3 may allow the study of relationships between
GO-driven semantic similarity and gene expression correlation, which could be exploited,
e.g., to describe gene clusters in terms of their intracluster similarity. It can also be applied
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to estimate key functional properties of uncharacterized or partially characterized gene
products based on existing annotation patterns. Unlike predictive models based on
traditional machine learning techniques (6,7), which measure similarity purely on the
basis of the presence (or absence) of annotation terms, a GO-driven semantic similar-
ity approach explicitly takes into account taxonomical relationships among GO annota-
tion terms. Semantic similarity information could also be applied to support annotation
tasks. For instance, groups of gene products could be annotated using their lowest com-
mon ancestor rather than multiple annotations. These models may also contribute to
the assessment of differences in annotations across genes, within a database or across
multiple model organisms.

The method implemented in FatiGO constitutes a rigorous statistical framework for
the assessment of GO terms differentially represented by two sets of genes. This simple
but powerful tool can be used in different ways. The obvious, immediate use of this
framework is validation of experimental results in which two or more partitions (either
discrete or continuous) of genes can be obtained. In this case, experimental information
is used to define partitions, and the GO terms are used to understand the biological rea-
sons for which the genes in these partitions account for the differences in the experimen-
tal conditions studied.

Nevertheless, this rationale can be reversed, and biological information (GO terms)
can directly be used to define the partitions of genes and simultaneously explain the

Fig. 8. Over- and underrepresented gene ontology (GO) terms in genes differently expressed
when comparing testis and kidney in mice. The left side of the x-axis corresponds to higher
levels of expression in testis, and the right side to the kidney, as measured by the statistics. The
y-axis represents the percentage of over- or underrepresentation of GO terms with respect to
the remaining genes. Terms in black correspond to the third GO level and those in gray to the
fourth level.
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molecular basis of the differences among the experimental conditions studied. In addi-
tion to GO terms, other different types of information could be used in the proposed
framework to understand, from different points of view, phenotypic or experimental
differences.

The inclusion of information from different sources for studying functional geno-
mic data, as has been exemplified here, will most likely become an active research field
in the near future. Very recently, although with a different approach, information on
whether genes belong or not to metabolic pathways was used as additional evidence to
detect differentially expressed genes beyond the threshold defined using exclusively
gene expression measurements (32).
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Summary
Mutation and selection are the principle forces governing gene and protein sequence.

Mutation is the major source of variation, and selection removes variation. Although many
mutations are likely to be neutral with respect to natural selection, much of the extant
sequence that is functionally important has experienced selective pressures in the past.
By examining the history of DNA sequences, we can infer the functional importance of
particular residues and the selective pressures that have influenced their evolution. In
this chapter, we review the most interesting approaches for inferring the evolutionary
history of DNA and protein sequences and indicate how these analyses can be useful in
the drug discovery process.

Key Words: Orthologs; paralogs; maximum parsimony; phylogenetic tree; adaptive
evolution; transcription factors; purifying selection.

1. Introduction
Proteins do not have to be of the same sequence if they are to carry out the same

function. In fact, we have known for many years that there can be considerable varia-
tion in sequence among proteins with similar functions. However, given further con-
sideration, we might ask: Why shouldn’t this be the case? It might seem to make much
more sense for nature to have settled on a particular protein sequence when it had opti-
mized the desired function. What we see instead is a variety of related protein sequences
that are responsible for a variety of similar functions and activities. We call these pro-
teins “homologs.” The origin of the word homolog dates back to the British paleontol-
ogist and first director of the British Museum of Natural History, Richard Owen. He
defined homologs to be the “… same organ under every variety of form and function”
(1). This definition still holds today; we see that homologous proteins can differ in
their substrate specificities, specific activities, level of expression, or some other basic
property. Usually, however, homologs will have some residual similarity in their form
and function.



88 McInerney et al.

One of the issues that makes the task of understanding proteomic data difficult is the
problems associated with orthology and paralogy. Orthologs are those homologs that
have been created by speciation, whereas paralogs can trace their common ancestor to
a duplication event. Duplication events often result in functional specialization of the
paralogs. With two copies of a particular protein in the same genome, we may have
functional redundancy, in which the same function is carried out by both genes. How-
ever, analyses of gene and protein evolution can be a profitable exercise and can result
in quite a bit of insight. In this chapter, we introduce some of the methods that are used
to analyze gene evolution and emphasize the benefits of carrying out such analyses.

The majority of DNA sequence evolution is thought to occur in a way that is consis-
tent with the neutral theory of molecular evolution. That is to say that most mutations
do not have an appreciable impact on the fitness of the individual and, therefore, the
likelihood of these mutations becoming fixed in a population that is quite small. Recently,
however, this notion has been under siege (2). Developments in the methodology used
to measure selective pressures on genes have begun to reveal that positive selection for
change is quite a strong force.

1.1. Why Analyze Gene Evolution?
In their seminal paper, Zuckerkandl and Pauling (3) suggested that cellular macro-

molecules could be read as documents that have recorded the history of organisms.
The logic, therefore, was that these molecules could be used to infer the phylogenetic
relationships among organisms. In the intervening four decades, analyses of molecu-
lar evolution have been used to develop a much larger range of hypotheses. In particu-
lar, analyses of molecular evolution have been used to infer gene duplication events (4),
gene losses (5), and horizontal gene transfers (6). These are the some of the most impor-
tant mechanisms by which genomes evolve and, certainly, these events can result in
substantial differences among closely related genomes. The most important thing to get
right when making these inferences is the phylogenetic tree uniting the species of inter-
est. Unless this tree is correct, the inferences will not be robust.

1.2. Evolutionary Rate Variation and Its Meaning
The notion of a molecular clock goes back to the same article by Zuckerkandl and

Pauling (3), and it suggested that evolutionary change was more or less constant. This
suggestion was based on the observation that hemoglobin proteins appeared to have
changed over time in a way that seemed to calibrate well with the fossil record. There-
fore, it was suggested that it might follow a Poisson process. We now know that the
molecular clock is not universal and that the rate of sequence change can be different
for different sites in a molecule, different molecules in the same genome, different chro-
mosomes in the same cell (mitochondria, chloroplasts, and nuclear genes), and even
the same orthologs in different lineages. This does not mean that the molecular clock
idea is not a good one. We can often see that the rate of molecular evolution is rather
clocklike. It is simply the case that this is not a universal truth.

The significance of rate variation is that if we understand evolutionary rate variation,
we can make predictions concerning the causes of this variation. We suspect that the rate
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of mutation might be relatively constant in close relatives. However, selective pressures
on different regions of the genome or differences in long-term effective population size
or the generation time of the organism in which the molecule is found will ultimately
lead to differences in the rates at which we see substitutions accumulate.

2. Methods

2.1. Identification of Orthologs and Paralogs
Orthologous proteins are those that have arisen as a result of speciation events. Para-

logous proteins arise as a result of a duplication event. This should mean that identifica-
tion of orthologs should be easy. Unfortunately, this is not always the case. Gene dupli-
cation is often subsequently reversed by a loss of one of the paralogs. Indeed, gene loss
is quite common and differential gene loss in different lineages is also a relatively com-
mon event. Therefore, two sequences might appear to be orthologous, particularly when
there is only a single homolog in each of the species in the study (see Fig. 1).

There have been a number of studies in which ortholog identification has been car-
ried out using a database search algorithm such as BLAST (7) or FastA (8). The proce-
dure has been to use a “reciprocal best-hit” approach. Using this approach, two sequences
are deemed to be orthologous if they are each others’ top hit in two database searches
in which each one has been used as the query sequence. There are two problems with
this type of approach. The first problem relates to gene loss in different lineages, which
is outlined in Fig. 1. As can be seen, a duplication event has given rise to paralogous
genes. Subsequent loss of paralogs has meant that gene sequences that appear to be
orthologous are not.

The second problem is outlined in Fig. 2, where one can see differences in evolu-
tionary rates in different paralogs. The result of these differences in evolutionary rate
is that sequence A' and sequence C are quite similar to each other. They are not ortho-
logs (however, A' and C' are orthologs), but there is a strong possibility that the recipro-
cal best-hit method would identify these as orthologs. Therefore, it is our opinion that
orthology should always be inferred by the careful examination of phylogenetic trees
derived from multiple sequence alignments, rather than the analysis of pairwise align-
ments and simple database searches.

Fig. 1. On the left is the true evolutionary history of a homologous family of sequences. In
this family, there have been a duplication event and two subsequent speciation events. In addi-
tion, there have been three independent gene losses, indicated by the line with the crosses. The
resulting phylogenetic tree of the remaining sequences is shown on the right.
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2.2. Methods of Phylogenetic Tree Reconstruction
Unfortunately, as each software program was developed, the developers tended to

invent their own file formats or variants on existing formats. Sometimes this was neces-
sary and sometimes this was simply a matter of convenience. However, over time a
number of file formats have become much more common and some other formats have
almost disappeared. The most sophisticated of these formats is probably the NEXUS file
format (9). Basically, this format is infinitely extendable and uses a system of “blocks.”
Examples of commonly used blocks include the DATA block, the TAXA block, the
CHARACTERS block, and the TREE block. These sections of the input file always
begins with “#NEXUS.” An example of a NEXUS block is shown in Table 1.

As one can see, this file defines the number of taxa as 4 and the number of characters
(aligned positions) as 22. The datatype is described as protein, and two different sym-
bols should be used in the data set to indicate missing data (usually parts of the mole-
cule that have not been sequenced yet) and insertion/deletion events (or gaps). There
is only one block in this input file, a “data” block, which begins with the word begin
and ends with the word end.

As stated previously, there are a number of file formats commonly used by phylo-
genetic analysis software; however, they all have the same central requirement—an
alignment of homologous nucleotides or amino acids, with each position of the align-
ment being carefully checked to ensure that it is accurate. Correct alignment is not some-
thing that can be guaranteed with absolute certainty. Therefore, in those instances in

Fig. 2. Phylogenetic tree uniting a number of sequences that display evolutionary rate het-
erogeneity. In this case, the similarity between sequence C and its true ortholog, sequence A, is
much less than the similarity between sequences C and its paralog in species A, the sequence
denoted as A'.
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which there is no strong evidence that the alignment is correct, the researcher should
consider removing the unreliable positions.

2.3. Maximum Parsimony
Maximum parsimony is based on the assumption that the optimal tree (or trees) is

the one that requires the fewest evolutionary changes, i.e., has the minimum number
of inferred character state changes (10). In constructing the tree, the only sites consid-
ered parsimony-informative are those where at least two sequences have one character
state at a site, and at least two others have a different identical character state. All other
characters, whether variable or invariable, do not contain enough information to dis-
criminate between alternative tree topologies.

The objective of maximum parsimony is to identify the phylogenetic hypothesis that
minimizes the number of substitutions that need to be reconstructed in order to explain
the distribution of the character states in the given alignment. Usually, all substitutions
are treated equally; however, it is possible to reweight certain substitutions if there is
evidence that particular kinds of substitutions are more frequent than others or if partic-
ular sites in the alignment are more likely to change than others (say, e.g., the third posi-
tions of codons, where, on average, change is more rapid than at first or second positions).

Maximum parsimony is implemented in PAUP* by choosing the Parsimony crite-
rion. PAUP* can be purchased from http://paup.csit.fsu.edu (11).

2.4. Distance Matrix Methods
One may wish to construct a phylogenetic tree using a distance matrix approach.

In this type of situation, we usually make an observation of the degree of similarity
between two sequences and then estimate the number of substitutions that have occurred
since these two sequences last shared a common ancestor. The reason that the observed
distance between these two sequences is not the same as the actual number of substitu-
tions that have occurred since they shared a common ancestor is that there are superim-
posed substitutions or multiple substitutions at a single site. If there were no superimposed

Table 1
Example Data Block in NEXUS Format

#NEXUS
begin data;
dimensions ntax=4 nchar=22;
format datatype=protein missing=? gap=-;
matrix

Taxon_1 GARFIELDTHEFASTFA-TCAT
Taxon_2 GARFIELDTHEFASTCA-T---
Taxon_3 GARFIELDTHEVERYFASTCAT
Taxon_4 --------THE----FA-TCAT

;
end;

http://paup.csit.fsu.edu
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substitutions in any sequences in the analysis, then it would be possible to construct a
perfectly “additive” tree, where the distances based on the alignment could be accu-
rately mapped onto a unique phylogenetic tree. If we could accurately reconstruct all
the substitutions that have occurred in the evolutionary time frame under considera-
tion, then we could also construct an additive tree. Unfortunately, researchers are usu-
ally in a situation in which they do not know how many substitutions have occurred
and are usually trying to estimate this quantity.

The usual method of trying to estimate the number of substitutions since the com-
mon ancestor is to assume that superimposed substitutions are negligible initially, but
as sequences diverge, the probability of a superimposed substitution increases. As a
result, a log-normal correction is usually used in order to estimate the true extent of
substitution. The general form of the equation is

d = ln( f(D)) (1)

in which d is the estimated distance between two sequences, ln is the log-normal cor-
rection, f is some treatment of the various parts of the substitution process, and D is the
observed distance between the two sequences. An example of a distance matrix trans-
formation is the one devised by Jukes and Cantor (12):

d = −  ln (1 − D) (2)

This type of correction tends to have only a small effect on distances that are small,
but the correction becomes much more pronounced when distances become larger.

2.5. Maximum Likelihood
Maximum likelihood (ML) methods evaluate phylogenetic hypotheses in terms of

the probability that a proposed model of the evolutionary process and the proposed
unrooted tree will give rise to the observed data. The tree topology found to have the
highest ML value is considered to be the preferred tree, which is called the ML tree
(13). The likelihood function can be described by the following equation:

L = P (χ⎦ τ, υ, θ) (3)

in which, χ is the alignment, τ is the tree, υ is the branch lengths, and θ is the substitu-
tion process.

The ML method requires a probabilistic model for the process of nucleotide substi-
tution. For a given model of nucleotide evolution, formulae are derived that describe
the probability that an initial nucleotide will be transformed into a specified nucleo-
tide during an evolutionary time period. The likelihood for each nucleotide position is
then equal to the prior probability of finding the initial nucleotide at that position
multiplied by the probability of transformation. The likelihood of the divergence of two
sequences during the time period is then the product of the likelihoods at each posi-
tion, and the overall likelihood for a tree is the product of the likelihoods along the
branches. This procedure is essentially for finding the branch lengths that give the larg-

3
4

4
3
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est value for the likelihood function. Likelihood models generally tend to account for
variation in transition/transversion ratios, base composition, and substitution rate dif-
ferences among lineages and across sites.

Since ML methods compute the probabilities for all possible combinations of ances-
tral states, they are very time-consuming. ML is implemented by a number of programs
including the PAML package (14), PAUP* for DNA sequences alone, and TREE-PUZZLE
for creating ML trees from protein sequences (obtain from www.tree-puzzle.de/) (15).

2.6. Bayesian Inference
Bayesian analysis searches for the best set of trees based on the notion of posterior

probabilities. Thus, it seeks the tree that maximizes the probability of the trees given
the data and the model for evolution (16). The Bayesian approach is implemented by
the MrBayes program, available from http://morphbank.ebc.uu.se/mrbayes.html (17).

MrBayes requires an execution file to be created, which is simply a NEXUS-format-
ted alignment file with a block of MrBayes commands added after the data block. It
executes a series of statements, each ending with a semicolon between the commands
begin mrbayes; and end;.

Starting the MrBayes program and typing the word help will give a complete list of
the available commands. Typing help <command> explains the various commands
in more detail and allows one to include commands relevant for their data.

In Table 2, the mcmc command starts the Markov chain Monte Carlo analysis and
tells MrBayes to run for 500,000 generations, printing every 500th generation to the
screen, sampling every 100th Markov chain; to run four simultaneous Monte Carlo
chains; and to save the branch length information on the tree file. Setting autoclose
=yes; tells MrBayes to continue to the next statement by closing the chains after the
mcmc command.

2.7. Summarizing Results When Multiple Phylogenetic Trees
Are Recovered

It may be necessary to compare trees derived from different analyses, or from the
same sequences using different methods. Thus, consensus trees can be generated to
summarize the results. Strict consensus trees only report branching patterns that occur

Table 2
Example MrBayes Block

begin mrbayes;
set autoclose=yes;
  lset aamodel=jones;
  mcmc ngen=500000 printfreq=500 samplefreq=100 nchains=4
savebrlens=yes;
end;

www.tree-puzzle.de/
http://morphbank.ebc.uu.se/mrbayes.html
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in all trees, whereas majority consensus trees report branching patterns that are sup-
ported by a majority of input trees. Both methods are implemented in PAUP*.

2.8. Visualizing Trees
Once generated, trees can be displayed in TreeView, a program that runs on both

Apple MAC OS X computers and Microsoft Windows-compatible personal computers.
It is available free from http://taxonomy.zoology.gla.ac.uk/rod/treeview.html (18).

3. Adaptive Evolution of Proteins

3.1. Background
The source of all biological novelties is mutation. However, the likelihood of these

novelties becoming dominant in a population is dependent on two other issues: ran-
dom genetic drift and selection (19). Random genetic drift, in turn, is related to the
long-term effective population size of the species. Therefore, in populations with rela-
tively small long-term effective population sizes, the likelihood of a beneficial muta-
tion becoming fixed in the population is dependent on whether or not the novelty is
sufficiently advantageous to overcome random genetic drift. In sufficiently large popu-
lations, drift is negligible and, therefore, the novelty has a much better chance of becom-
ing fixed in the population.

For an organism to survive an environmental change, it is necessary for some muta-
tion to have already occurred. Still, the organism may be ill adapted, and the adaptation
must be fine-tuned for the subsequent survival of that genetic line. A mutation can be
fixed or reversed by the need to survive the pressures of the internal and external envi-
ronments, by way of positive and negative selection, respectively (19).

Positive selection is said to have occurred when a characteristic benefits the organism
so that the new genotype is fitter than the wild-type and is, therefore, more likely to con-
tribute to subsequent generations. Positive selection can be described as either direc-
tional or nondirectional (20). Nondirectional selection occurs when there is selection
for several genotypes in a population. This is observed where the environment is con-
stantly changing, allowing the organism to change its molecular traits relatively fre-
quently. This mutation is said to be variable, and an example can be seen in the major
histocompatibility complex (MHC) genes (21).

MHC is a multigene family that produces cell-surface glycoproteins that play a key
role in the immune system by presenting peptides to T-cells. Positive selection is known
to be driving the evolution of MHC genes. Within this gene family, the presence of
many variants is necessary so that MHC will be able to recognize the different antigens
that it presents to the T-cells. Directional selection describes selection in a single geno-
type; that is, if a mutation occurs and is found to be advantageous, it is actively pre-
served and remains invariable in the population (20). Examples of this are found in the
Adh loci of Drosophila (22) and Lysozyme genes of Colubine monkeys (23).

Until quite recently, the most convincing evidence of adaptive evolution has come
from the comparison of silent and replacement substitution rates in protein-coding genes
(24). Silent (synonymous) substitutions occur when a nucleotide substitution does not
result in an amino acid change, and replacement (nonsynonymous) substitutions occur

http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
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when the amino acid is changed. The respective rates of these substitutions are the num-
ber of silent substitutions per silent site (dS) and replacement substitutions per replace-
ment site (dN). The ratio of these two rates to each other (ω or dN/dS) defines the type,
if any, of selection that is occurring at the protein level (24). When the value of ω
exceeds unity, this may be because of positive selection for replacement substitutions;
when it is less than unity, this may be because of purifying selection on new mutations;
and when it is at unity, it may be because the molecule is evolving at the neutral rate.

There are problems that hamper the detection of adaptive evolution. The rates of
substitution differ among and between different proteins, and also different sites on
the same family of proteins may change at different rates and in different ways. Muta-
tion saturation is another problem, in which multiple changes have occurred at a par-
ticular site. In some severe cases, this can cause the data to become essentially random,
and all the information about any evolutionary history to be lost. Traditional methods
that average ω across entire alignments may be overlooking regions of hypervariability
that may be contained within a relatively conserved sequence. Therefore, methods of
analysis need to be able to deal with the complexities of sequence evolution and to
recover any underlying evolutionary signal. To identify proteins that may have been
influenced by positive selection, it is necessary to identify the amino acid changes that
are responsible for the adaptation of organisms to specific environments (24).

Many methods are available for the detection of adaptive evolution in proteins (Table
3). Only two such methods are discussed here. The first method is implemented in a
software program called CRANN (25). This method is based on the neutral mutation
substitution rate test proposed by Li (26) and the relative rate test (22). The second
method (2) uses a likelihood ratio test (LRT) for variable selective pressures at individ-
ual sites.

3.2. Relative Rate Ratio Test
The relative rate ratio test was developed in order to detect adaptive evolution in pro-

tein-coding DNA sequences (20). It is available to download in multiple formats from
http://bioinf.may.ie/crann. This program requires a set of protein-coding DNA sequences
aligned so that the first residue of the alignment corresponds to the first position of a
codon and a phylogenetic tree that can be read from a file or inferred using data from
the alignment; this tree is assumed to be correct. Hypothetical ancestral sequences are
reconstructed at the internal nodes of the submitted phylogenetic tree using the principal

Table 3
Some Available Methods for Use in Detection of Adaptive Evolution

Method Brief description Reference

Lineage variation Variation in dN/dS ratio between lineages 27
Site variation Variation in dN/dS ratio between sites 28
Relative rate test Comparison of ratio of dN/dS within and 22

between closely related species
Relative rate ratio test Deviation of dN/dS from neutrality 20

http://bioinf.may.ie/crann.
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of maximum parsimony (10) applied at the codon level. This program incorporates many
methods, of which only two are mentioned here.

Synonymous and nonsynonymous substitution rates are defined in the context of
comparing two DNA sequences, with dS and dN as the numbers of synonymous and
nonsynonymous substitutions per site, respectively (29). Therefore, their ratio mea-
sures the strength and nature of selective restraints. If a codon change is neutral, it will
be fixed at the same rate as a synonymous mutation. If the change is deleterious, purify-
ing selection will reduce its fixation rate. Only if the change offers a selective advan-
tage is it fixed at a higher rate than a synonymous mutation. With this in mind, we can
conclude that an ω value greater than 1 is convincing evidence for diversifying selec-
tion (2).

The relative rate ratio test works under the same principles as the relative rate test,
but with the exception that it considers whether the number of nonsynonymous substi-
tutions observed was greater than expected from the neutral model.

3.2.1. Materials
To carry out an analysis, it is necessary to download the platform-specific software

bundle from http://bioinf.nuim.ie/software/. The program requires a FastA formatted
protein-coding nucleotide sequence file, containing sequences of interest and an appro-
priate outgroup. The data set must be aligned and homologous. There is also the choice
of providing a tree file. This should be a nested parenthesis tree (PHYLIP format).

3.2.2. Method
The software reconstructs the phylogenetic relationships between the sequences in

the input file and uses this phylogenetic tree to reconstruct all the ancestral sequences
at every internal node on the tree. The alternative of forcing a particular tree topology
on the data is also a valid approach. The output from this analysis is a list of internal
branches on the tree and the number of substitutions that occurred in the clade circum-
scribed by this internal branch. The substitutions are divided into four categories: those
substitutions that caused an amino acid replacement that subsequently changed else-
where (replacement variable [RV]), those substitutions that caused an amino acid replace-
ment and nowhere else in the clade was this amino acid changed (replacement invariable
[RI]), those substitutions that were silent and subsequently changed elsewhere (silent
variable [SV]), and those substitutions that were silent and for which there was never
another change at that site (silent invariable [SI]). We expect that the ratio of SI to SV
should be the same as the ratio of RI to RV in the case of neutrality. Deviations from this
ratio (the significance of which can be judged according to a G-test) indicate the pres-
ence of selection on the replacement substitutions.

3.3. Likelihood Ratio Test for Codon Substitution Rate Heterogeneity
PAML is a package of programs used for phylogenetic analysis of DNA and protein

sequences using ML. It can be downloaded from http://abacus.gene.ucl.ac.uk/software/
paml.html. Within this package, the program that researchers are most interested in for
the purpose of detection of adaptive evolution is codeml. This program implements the

http://bioinf.nuim.ie/software/.
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
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codon substitution model of Goldman and Yang (30) for protein-coding DNA sequences,
and it also implements models for amino acid sequences (2). Continuous-time Markov
process models are used to describe substitutions between codons or amino acids, with
substitution rates assumed to be either constant or variable among sites.

A model that employs a discrete approximation to the γ distribution is used to model
the rate variation among sites. The rates for sites come from several categories used to
approximate the continuous γ distribution. It is assumed in some cases that selective
pressures vary across different sites in protein sequences, and, therefore, models have
been developed that incorporate heterogeneous selective pressures at different sites (2).
Sites are given a probability of belonging to a particular site class. This probability is
permitted to vary across the tree. Heterogeneous models that allow the ω ratio to vary
among sites and/or among lineages are thus employed to cater for the variable pressures
being exerted on the protein.

Twice the difference of the log likelihood score is approximately χ2 distributed. There-
fore, nested models of sequence evolution can be compared with each other. The num-
ber of degrees of freedom is calculated as the difference in the number of free param-
eters. LRTs are carried out to aid in determining the significance of the positive selection
detected. The presence of a null hypothesis, which, in general, will have fewer free
variables than the alternative hypothesis, allows the use of LRTs to determine whether
any significant levels of positive selection are present, and the output will give the
exact sites in the sequences where the adaptive evolution has been detected (24).

The identification of amino acid sites or evolutionary lineages potentially under pos-
itive selection is carried out using the reconstruction of ancestral codon sequences (31).
This is completed using an empirical Bayes approach, which is used to estimate the
probability of a site being in a particular class (32). The sites placed in categories with
an estimated ω value greater than unity are most likely to be under positive selection.

3.4. Models That Are Available in Codeml
Four categories of analysis are available. The simplest model assumes that there is a

single, average ω value for all comparisons. Some models assume that there are branch-
specific differences in the ω value. Some models assume that there are site-specific dif-
ferences in the ω value, and some models assume that there are differences across sites
and across branches simultaneously.

Within these categories, there are further divisions or nesting of models. The null
hypothesis in each case is compared with the models, which represent the alternative
hypothesis, (by way of LRTs) to determine whether there are significances in the results
obtained. As with many other statistical tests, there are a number of degrees of freedom
that allow basic models to be compared with those that are more complex. Some of the
models that are available are presented next, along with a brief description of each, and
the comparisons that are permitted for use with LRTs.

3.4.1. Nonspecific Models
The simplest model of sequence evolution is the one-ratio model. In this scheme, one

ω value is assumed over the entire data set. This is equivalent to the model proposed by
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Goldman and Yang (30). The resulting output from this model is an estimated average
ω value for the entire data set.

The free-ratio model is a little-used model that allows for the consideration of all sites
and all branches individually rather than partitioning the data into more manageable
groupings. The model has many parameters that are free to vary and, therefore, there
may be a large number of degrees of freedom when comparing the model to simpler
models.

3.4.2. Branch-Specific Models
Branch-specific models allow ω to vary at different positions on the tree. These models

have been designed to address the issue of whether or not there are variable selective
pressures at different parts of the tree. One or more internal branches on the tree can be
labeled to identify where the partition is to be applied.

3.4.3. Site-Specific Models
One could envison a situation in which we assume in advance that all sites in the

alignment have their own ω value and it reflects the selective pressures that these sites
experience. However, this is unwieldy for several reasons, including the number of
degrees of freedom required if we were to compare such a model to a more restrained
model. In practice, we assume that there are a number of classes of sites in the align-
ment. The sites in a particular class have similar ω values. We manipulate the models
so that these ω values are either free to vary or we can constrain these ω values.

A model has been devised that implies that there are two categories of sites in the
alignments: those that are not allowed to change (i.e., their ω value is fixed at zero) and
those that are evolving according to the neutral theory of molecular evolution (i.e.,
their ω value is fixed at unity). A slightly more relaxed version of the preceding model
is one in which there is an allowance for an additional category of sites in which the ω
value is free to vary. In other words, this category of sites is assumed to exist but we
would nave no a priori assumption concerning their ω value. The least restrictive of
these kinds of discrete models is one in which there is an assumption that there are either
two or three categories of sites, but in no case is the assumption being made that the
values of ω for these categories are known. Each of the two or three categories within
this model are estimated from the data set.

A variety of other site-specific models can be used, and usually these models assume
that there are variable ω values at different sites and that the values of ω can be modeled
according to either a β or a γ distribution or a combination of these distributions instead
of using the continuous distribution. These models tend to use discrete approximations
to these distributions.

3.4.4. Branch-Site-Specific Models
Branch-site-specific models allow ω to vary among sites and also among the branches

of the input phylogenetic tree. The assumption for these models is that different evolu-
tionary pressures on different parts of the tree for different parts of the alignment might
be seen. There are two variants of this approach. One variant is to extend the neutral
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model in which the ω values are fixed to either one or zero, but this can vary over the
tree. This model can be compared with the neutral model using a χ2 test.

The second branch-site model is an extension of the discrete site-specific model in
which all ω values are free to vary and there are two categories of sites. The branch-site
extension allows for a “background” and a “foreground” ω value. The implication is that
the ω value can change in a site-specific manner from one lineage to the next. Again, the
significance of adding these additional parameters can be evaluated using a χ2 test.

3.5. Materials
The first step of this process is to download the platform-specific software bundle.

Install as directed by the author. The software requires a PHYLIP sequential format
sequence file in nucleotide format with the alignment being in frame, and when there are
alignment gaps, they are in groups of three (representing indel codons). A PHYLIP for-
mat-nested parenthesis tree file is also required (see Fig. 3). The codeml program is
executed with the assistance of a control file (see Table 4). The default name of this
file is codeml.ctl.

3.6. Method
The sequence and tree files must be placed together with the codeml control file in

a directory; this will be where any resulting output files will be created by the software.
Edit the control file to suit your needs. The control file defines which models are applied
to the data, how many site substitution categories are to be defined, and the initial start
values of ω and so on. It is important to note here that a variety of ω starting values be
used for any model involving estimations, because of the danger of multiple optima

Fig. 3. Graphic view of a phylogenetic tree. The labeled branch of interest is indicated in bold.

Table 4
Sample Nested Parenthesis Tree Filea

4 3 //4 species, 3 trees
(1,2,3,4) //tree 1
(((1,2)#1,3),4) //tree 2 ♦ This branch is labeled
(1,2,(3,4)) //tree 3

aUsed as standard input for codeml, tree 2 demonstrates how branches are labeled.
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during the calculation. The execution run that produces the highest likelihood value
should be chosen as the best estimate. Therefore, in these cases, codeml must be run
multiple times for the same model and data set (we recommend at least 5, but prefer-
ably 10 sequential runs using the same data but different starting values). The program
codeml is executed simply by having all the aforementioned in a directory. The soft-
ware will automatically detect the presence of the control file and use the user-defined
settings to carry out the analysis. Each data set should be analyzed under several dif-
ferent evolutionary models. These models can then be tested using an LRT.

4. Evolution of Regulatory Regions

4.1. Introduction to Eukaryotic Transcriptional Regulation
Eukaryotes employ diverse mechanisms to regulate gene expression, including chro-

matin condensation, transcriptional initiation, alternative splicing of RNA, mRNA sta-
bility, translational controls, and several forms of posttranslational modification. Only
some of the genes in a eukaryotic cell are expressed at any given moment. The propor-
tion and composition of transcribed genes change considerably during the life cycle,
among cell types, and in response to environmental conditions. This is why transcrip-
tional regulation is so vital to the function of a cell.

Promoters integrate multiple, diverse inputs and produce a single scalar output: the
rate of transcription initiation (33). There are no consistent sequence motifs that char-
acterize the promoters of protein-coding genes. However, two functional features are
always present although it can be difficult to recognize them by simply looking at the
DNA sequence. The first is the basal promoter (or core promoter), the site on which the
enzymatic machinery of transcription assembles. The second is a collection of transcrip-
tion factor-binding sites (TFBSs). Regulatory elements, which lie upstream of a gene,
are known as cis-elements because they are parallel with the coding sequence.

4.2. Core Promoters
Although necessary for transcription, the basal promoter is apparently not a com-

mon point of regulation, and it cannot by itself generate significant levels of mRNA
(34). Basal promoter sequences differ among genes. For many genes it is a TATA box,
usually located about 25–30 bp 5' of the transcription start site. However, some genes
lack a TATA box and instead contain an initiator element spanning the transcription
start site. A key step in transcriptional initiation is attachment of TATA-binding pro-
tein (TBP) to DNA (34). Transcription is carried out by the RNA polymerase II holo-
enzyme complex, which is composed of 10–12 proteins (35). Once TBP binds, several
TBP-associated factors guide the RNA polymerase II holoenzyme complex onto the DNA.
After the RNA polymerase II complex assembles onto the DNA, a second point of con-
tact is established approx 30 bp downstream. This site is the transcription start site (TSS).

4.3. Transcription Factor-Binding Sites
To produce significant levels of mRNA, the association of transcription factors

with DNA sequences outside the basal promoter is necessary. These sites are known as
“TFBSs.” TFBSs can interact with multiple transcription factors and, conversely, each
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transcription factor can interact with multiple TFBSs. Binding sites typically comprise a
minority of the nucleotides within a promoter region. These regions are often inter-
spersed with regions that contain no binding sites. Nucleotides that do not affect the
specificity of TFBSs are generally assumed to be nonfunctional with respect to tran-
scription. In some cases, however, these nucleotides may influence the local conforma-
tion of the DNA, with direct consequences for protein binding (36). Spacing between
binding sites varies enormously, from partial overlap to tens of kilobases. Functional
con-straints on binding site-spacing are often related to protein interactions that take
place during DNA binding.

Clusters of nearby TFBSs sometimes operate as modules (also known as enhancers).
A module is operationally defined as a cluster of binding sites that produces a discrete
aspect of the total transcription profile. A single module typically contains approx 6–15
binding sites (37).

4.4. Transcription Factors
Transcription factors bind to TFBSs and are known as trans-elements because they

can regulate a gene on any chromosome. The complement of active transcription factors
within the nucleus differs during the course of development in response to environmen-
tal conditions, across regions of the organism, and among cell types. This changing
array of transcription factors provides nearly all of the control over when, where, at what
level, and under what circumstances a particular gene is transcribed. Most transcription
factors contain several functional domains. DNA-binding domains (DBDs) allow the
transcription factor to bind to the TFBS. Protein–protein interaction domains allow tran-
scription factors to engage in a variety of interactions with other proteins. Many tran-
scription factors contain a nuclear localization signal. The activity of a transcription
factor may be regulated, by controlling the ratio of cytoplasmic-to-nuclear localization
of the transcription factor.

4.5. Promoter Evolution
Similar clusters of TFBSs are sometimes present in the promoters of orthologous

genes of species that diverged up to 107–108 yr ago. Long-term conservation suggests
constraints on promoter function. Promoter sequences can also diverge extensively
among relatively closely related species, and they may include gains or losses of mul-
tiple binding sites and changes in the position of regulatory sequences relative to the
TSS. Comparisons of 20 well-characterized regulatory regions in mammals revealed
that approximately one-third of binding sites in humans are probably not functional in
rodents (38).

Analyses have revealed that one or a few binding sites are absolutely necessary for
activating transcription and that others either modulate or have no impact on transcrip-
tion. Regressing from this, essential binding sites should evolve relatively slowly in
comparison with nonessential binding sites. In some cases, binding sites that occur sev-
eral times may be functionally redundant or each may have a minor impact on the over-
all transcription profile. Thus, selection may tolerate more nucleotide substitutions in
multiply represented sites than unique ones.
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The precise affinity of a binding site for a particular transcription factor is sometimes
functionally important. In cases in which high- and low-affinity variants of the binding
site sequence have different phenotypic consequences, purifying selection will elim-
inate variants that bind protein but result in lower fitness, and, conversely, specific
variants that confer a fitness advantage should be under positive selection.

The evolutionary history of transcription factor gene families includes many exam-
ples of “domain shuffling” and loss of specific domains. For example, a paralog may
retain a DBD but lose a protein–protein interaction domain responsible for transcrip-
tional activation; the resulting protein will function as a repressor if it competes for
binding sites with a paralog that contains an activation domain (e.g., Sp family [39]).
This is a plausible mode of evolution for some repressors.

Experiments often reveal that deleting a single module eliminates a specific aspect
of the expression profile without disrupting the remainder, and, conversely, predicta-
ble artificial expression profiles can be built by experimentally combining modules from
different promoters (40). The conclusion from these results is that the modularity of
promoters is a contributing factor to their evolution.

Point mutations can modulate or eliminate transcription factor binding, generate
binding sites de novo, or result in binding by a different transcription factor. Insertions
and deletions can change spacing between binding sites as well as eliminate binding sites
or generate new ones (41). In addition, new regulatory sequences can be inserted into
promoters through transposition. For example, some Alu elements in humans contain
binding sites for nuclear hormone receptors and exert influence on transcription (42).

4.6. Silent Substitutions
Sequence changes might be functionally silent for several reasons. For example,

they might not affect DNA–protein interactions, or perhaps because changes in spacing
between distant binding sites will be neutral in many cases because interactions among
proteins associated with binding sites more than approx 50 bp apart are mediated by
DNA bending or looping, which may, to a large degree, be insensitive to differences in
spacing. Furthermore, eliminating an entire binding site may be functionally neutral
because some promoters contain multiple copies of the same binding site, raising the
possibility of functional redundancy (38).

4.7. Mutations in trans
The genetic basis for an observed difference in the expression of a particular gene in

some cases does not reside in cis but within a mutation in the gene encoding a particu-
lar transcription factor. Mutations affecting the expression profile of an upstream tran-
scription factor may result in up- or downregulation of a gene. In addition, amino acid
substitutions in DBDs or protein-interaction domains of transcription factor can affect
the expression of downstream genes and produce phenotypic consequences. These
classes of trans effects are likely to have multiple phenotypic consequences because
of the large number of downstream target genes that would be affected. Such changes,
however, are rare because these domains are usually highly conserved.
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Gene duplication must also be considered. Although analyses of gene duplication
normally center on coding sequences, the associated promoters are clearly important
for gene function. If the break points do not include cis-regulatory sequences, then the
duplicated copy is likely to be transcriptionally inert in its new location and become a
pseudogene even before it accumulates stop codons or frameshifts. If only part of the
promoter is duplicated, the transcription profile of the new copy may differ from the
original (e.g., this has been observed in nitric oxide synthase genes [39,43]).

4.8. Purifying Selection
Purifying selection occurs when a mutation is deleterious to the fitness of the pro-

tein and, as a result, there is a reduced chance that this mutation will become frequent
in the population. Cases of long-term conservation of binding sites suggest persistent
purifying selection. A comparison of human–mouse orthologs found that sequence con-
servation generally decayed rapidly with distance from the TSS (44). This suggests
that distal regions are probably evolving faster than proximal regions, which are prob-
ably under purifying selection. Furthermore, because binding sites are small and impre-
cise and can bind many transcription factors, binding sites will appear through random
mutation at appreciable rates in large populations (45). Where new binding sites inter-
fere with transcription, purifying selection should eliminate them.

It is also suggested that purifying selection operates on the spacing between nearby
binding sites. This is because protein–protein interactions associated with adjacent bind-
ing sites often rely on precise spacing and small changes in spacing can dramatically
affect transcription.

There are many ways to repress transcription but relatively few ways to activate it.
Furthermore, the consequences of failing to repress transcription may generally be
less severe than failing to activate it. It follows that the binding sites within a promoter
that activate expression may experience stronger purifying selection than those that
bind repressors.

4.9. Positive Selection
There are examples of positive selection on some promoter alleles such as the cyto-

chrome p450 allele in Drosophila (46). This allele is associated with insecticide resis-
tance in Drosophila and, therefore, positive selection on this allele would confer a fitness
advantage to the organism. Additionally, Okuyama et al. (47) investigated possible pos-
itive selection acting on the subregion immediately upstream of the Amy coding region
to diverge regulatory elements of the paralogous genes.

4.10. Compensatory Selection
There are also examples of compensatory selection. One such case in humans involves

a hypomorphic allele within the coding sequence of CFTR that causes cystic fibrosis.
Some haplotypes contain a second mutation within the promoter that adds a third Sp1-
binding site, elevating transcription and resulting in improved prognosis (48,49). The
third Sp1 site never occurs in haplotypes that produce wild-type protein, suggesting that
it may be under positive selection as a result of its compensatory effect.
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4.11. Methods of Computational Regulatory Sequence Analysis
Empirical validation of binding sites is laborious. This has led to attempts to increase

the reliability of informatic approaches to binding-site identification.
Nucleotide sequences for genomic upstream regions may be obtained from several

sources, including the following:

1. Ensembl (www.ensembl.org/): This is a joint project between EMBL-EBI and the Sanger
Institute to develop a software system that produces and maintains automatic annotation
on eukaryotic genomes (50). Ensembl presents up-to-date sequence data as well as anno-
tation for metazoan genomes. A Web-based genome browser is provided, as well as a
data-mining tool known as EnsMart. Available now are human, mouse, rat, fugu, zebra-
fish, mosquito, Drosophila, Caenorhabditis elegans, and Caenorhabditis briggsae genome
sequences.

2. UCSC Genome Browser (http://genome.ucsc.edu/): This browser contains the reference
sequence for the human, C. elegans, and C. briggsae genomes and working drafts for the
mouse, rat, fugu, Drosophila, and SARS genomes. It also contains the CFTR (cystic fibro-
sis) region in 13 species. The Genome Browser zooms and scrolls over chromosomes show-
ing annotations. The Family Browser shows expression, homology, and other information
on groups of genes that can be related in many ways. The Table Browser provides conve-
nient access to the underlying database. The Blat (51) alignment tool (similar to BLAST
but structured differently), which quickly maps a sequence to the genome, is also avail-
able here.

An approach growing in popularity involves retrieving sequences from more than
one species. The rationale behind it is based on the preferential conservation of func-
tional sites over the course of evolution by selective pressure (52). It is commonly known
as phylogenetic footprinting.

4.12. Phylogenetic Footprinting
Phylogenetic footprinting dramatically improves the predictive reliability of bioin-

formatic approaches to the analysis of promoter sequences. By surveying more taxa,
rather than simply one species, and incorporating functional data, it becomes possible
to identify origins, losses, and turnover of binding sites. The fraction of human sequences
conserved in upstream regions in mouse is estimated to be 36% (44). As with all com-
parative analyses, dense phylogenetic sampling provides a more robust understanding
of evolutionary transformations within promoters, particularly in cases of rapid sequence
divergence. The effectiveness of this method is limited, however, because nucleotides
can be conserved by chance and also some aspects of transcription are sequence specific.
The first problem leads to false positives, whereas the second generates false negatives.

The following conserved regions in upstream sequences in human and mouse may
possibly be conserved owing to their functional importance.

GGGGCGCAAATTTGCGAGATACAATACCAAATAGAGCGTTCTC Human
CTAGCGCAAATTCGTAGCGTATGCGGGCAAATAGAGCGAGTAC Mouse
Potential TFBS Potential TFBS

www.ensembl.org/
http://genome.ucsc.edu/
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4.13. Databases
Myriad databases are available for locating putative cis-regulatory elements in sequence

data. TRANSFAC® and the Eukaryotic Promoter Database (EPD) are probably two of
the best known databases that fall into this category.

It is important to recognize that for a variety of reasons many potential binding sites
identified by these and other such programs do not bind protein in vivo and have no
influence on transcription. Identifying the potential binding sites that actually bind pro-
tein requires biochemical and experimental tests. Phylogenetic footprinting can also help
reduce the false-positive rate.

1. TRANSFAC (53) is a database on eukaryotic cis-acting regulatory DNA elements and
trans-acting factors. It covers many species from yeast to human. The TRANSFAC data
have been generally extracted from original literature. The user interface of TRANSFAC
contains several tables of data (Table 5). To search TRANSFAC one must first choose
the table to be searched (e.g., FACTOR). Then one must choose the search field (e.g.,
Species); enter the search term, e.g., “mouse” into the input field; and finish by pressing
the SUBMIT button. Using this example, all transcription factor entries that belong to
mouse or contain “mouse” in the species name will be retrieved.

TRANSFAC also contains two tools into which one can submit nucleotide sequences
and search for potential TFBSs in their sequence. These include MATCH, which uses a
library of TRANSFAC mononucleotide weight matrices, and PATCH, which is a pattern
search program based on TRANSFAC v6.0. TRANSFAC can be found at www.gene-reg-
ulation.com.

2. EPD (54) is an annotated, nonredundant collection of eukaryotic polymerase II promoters,
for which the TSS has been determined experimentally. The main purpose of the database
is to keep track of experimental data that define transcription initiation sites of eukaryotic
genes. This functional information is linked to promoter sequences and positions within
sequences of the EMBL nucleotide sequence database. EPD is a rigorously selected, curated,
and quality-controlled database. To be included in EPD, a promoter must have its TSS
mapped with accuracy and certainty, the corresponding gene must be functional, and the
corresponding sequence data must be available in the public databases. At present, EPD is
confined to promoters recognized by the RNA polymerase II system of higher eukaryotes.
Promoter sequences, documentation, and training sets for development of promoter predic-
tion algorithms can be downloaded from www.epd.isb-sib.ch.

Table 5
TRANSFAC, Data Tables

Table Description

Factor Contains transcription factors and their interacting proteins
Gene Contains genes which contain TFBS and genes which encode for TF
Site DNA sequences to which binding of a TF was shown
Matrix Nucleotide distribution matrices for the binding site of a TF.
Class Transcription factor classes
Cell Cellular source of the proteins that have been shown to interact with the sites.
Reference Publications associated with TRANSFAC entries with links to PubMed.

www.gene-regulation.com.
www.gene-regulation.com.
www.epd.isb-sib.ch.
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Several additional methods can be applied to identify unknown binding sites. These
approaches include identifying overrepresented sequence motifs (55,56) and examin-
ing expression data (57).

4.14. Searching for Statistically Overrepresented Motifs

Two regulatory regions that have a statistically significant overrepresentation of a
particular binding site may be coregulated or involved in the same pathway. Therefore,
searching for genes that have similar overrepresentation of a TFBS may allow the iden-
tification of new regulatory networks.

The full range of sequences that can bind a particular transcription factor with sig-
nificantly higher specificity than random DNA, under physiological conditions, is often
described by a position weight matrix (PWM). The probability that each position in the
binding site will be represented by a particular nucleotide is tabulated. The TRANSFAC
database has a range of PWM for various TFBSs.

4.14.1. Identifying Overrepresented Motifs

First of all, it is necessary to identify functionally related proteins. Then, it is neces-
sary to identify overrepresented motifs in the promoters of the proteins. Next, other genes
with a similar promoter profile are searched. Finally, results are confirmed with expres-
sion data and a search of coregulated genes is conducted.

Elkon et al. (55) employed a method using PWM to identify transcription factors
whose binding sites are significantly overrepresented in specific sets of promoters. They
identified eight transcription factors overrepresented in promoters of genes whose ex-
pression is cell-cycle dependent. They used gene expression data to verify their results.
Liu et al. (56) also examined overrepresentation of binding sites in immune gene pro-
moters. They identified nine novel nuclear factor-κB-regulated immune genes in humans
and confirmed their predictions with available expression data.

The use of DNA microarrays to study global gene expression profiles is emerging as
a pivotal technology in functional genomics. Comparison of gene expression profiles
under different biological conditions reveals the corresponding differences in the cellu-
lar transcriptional patterns. Recent studies have used microarray data and computational
promoter analysis to identify novel regulatory networks. These studies have shown that
genes that are coexpressed over multiple biological conditions are often regulated via
common mechanisms and, hence, share common cis-regulatory elements in their pro-
moters. For example, this approach has been used in Saccharomyces cerevisiae (57).
Using expression data to study cis-regulatory elements is often described as a reverse
engineering approach.

Databases such as Gene Expression Omnibus (GEO) (58) that contain expression
data for a variety of organisms are available to the public. GEO is a gene expression and
hybridization array data repository, as well as a curated, online resource for gene expres-
sion data browsing, query, and retrieval. GEO was the first fully public, high-throughput
gene expression data repository and can be accessed at http://www.ncbi.nlm.nih.gov/
geo/.

http://www.ncbi.nlm.nih.gov/geo/.
http://www.ncbi.nlm.nih.gov/geo/.
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5. Conclusion
Understanding the evolutionary mechanisms that shape DNA and protein sequences

will require a thorough appreciation of informatic approaches as well as the use of com-
parative data from promoter sequences, biochemical assays, and functional tests. The
insights into evolutionary history and mechanisms that will emerge from detailed anal-
yses of sequence evolution are potentially enormous. This information will be essential
for a complete understanding of the evolution of the genotype–phenotype relationship.

A comparative approach involving multiple species of varying degrees of diver-
gence and polymorphism analysis may enable the identification of genomic segments
that are responsible for differences in these species and differences in their reactions
to the same stimuli.
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Standardization of Microarray and Pharmacogenomics Data

Casey S. Husser, Jeffrey R. Buchhalter, O. Scott Raffo,
Amnon Shabo, Steven H. Brown, Karen E. Lee, and Peter L. Elkin

Summary
This chapter provides a bottom-up perspective on bioinformatics data standards, begin-

ning with a historical perspective on biochemical nomenclature standards. Various file for-
mat standards were soon developed to convey increasingly complex and voluminous data
that nomenclature alone could not effectively organize without additional structure and
annotation. As areas of biochemistry and molecular biology have become more integral to
the practice of modern medicine, broader data representation models have been created,
from corepresentation of genomic and clinical data as a framework for drug research and
discovery to the modeling of genotyping and pharmacogenomic therapy within the
broader process of the delivery of health care.

Key Words: Pharmacogenomics; clinical genomics; file format; microarray experi-
ment; linkage disequilibrium study; genotype model; storyboard.

1. Introduction
Like the Enigma code employed by the Germans in World War II, the genomic code

is proving to be a formidable cryptographic hurdle for the allied powers of modern sci-
ence to clear. Although the four-base, triplet reading-frame genetic code was cracked by
the mid-1960s (1–4), researchers almost immediately discovered that despite this break-
through, unlocking the mysteries of the genome itself would be a much bigger task. The
genome is multiply encrypted beyond the initial (but important) level of nucleotide
sequence. Differential expression, the governance of splicing, protein folding, post-
translational modification, and macromolecular interactions all play a role in conveyance
of genomic information transfer, and none of these are comprehensively understood.

Information coded in biological molecules and the reactions they play a role in adeptly
orchestrate the diverse yet highly ordered collection of everything that is collectively
known to be life—and a few things that arguably are not. This traffic of biological infor-
mation is pervasive, unrelenting, and nearly omnipresent on the surface of our planet,
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yet the key (or likely keys) to its code still escape the very finest intellectual efforts
that our collective society has put forth. However, progress is slowly being made. The
fruits of various genome-sequencing projects (most notably the human genome project)
have previewed a better perspective on one of the genome’s finest forms of obscuring
its underlying message: its monolithic scale. As of this writing, the human genome alone
contains some 3.2 billion bp, but just fewer than 24,000 known and speculated genes
(5). Now consider the fact that the presence of introns dictates that genes are not coded
discretely along a given sequence of DNA. The task of finding, deciphering, and assem-
bling the coding sequences that make up genes in the human genome amounts to a task
much more intimidating than finding a needle in a haystack. It is more along the lines
of finding and assembling a few handfuls of severed needles scattered across all of the
haystacks of the world. The advent of microarray experiments has been a great boon to
genome-sequencing projects, but their high-throughput nature adds more data to the
database than knowledge to the knowledge base (6). The need for mass computation has
never been greater. The management of this magnitude of raw data is unprecedented
in mankind’s history. Likewise, the need for data standards is equally critical, so that
both order and orderly commerce of information can be maintained within a pool of data
that is exploding at a rate in excess of historical rates of advancement of computer pro-
cessor speeds.

This chapter covers both established and emerging standards in the acquisition and
storage of sequence and microarray data, as well as standards for research and clinical
applications of genomic knowledge. Just as different types of information are stored at
different levels of the genome and its supporting cellular machinery, different formal-
isms are often necessary to represent adequately each level (e.g., formalisms for collec-
tion of nucleic acid sequence information are not necessarily sufficient for representation
of the three-dimensional conformational structures of the proteins for which they may
[or may not] code). Unfortunately, this line of reasoning can be inappropriately overex-
tended to justify multiple formalisms for the same area, which may often be useful for
the individual(s) who create and use the formalism, but serves to stifle the free exchange
of information between others in the greater scientific community conducting related
research who happen to use a different—and most likely incompatible—formalism. This
common problem frames the practical necessity that drives the establishment of bioin-
formatics standards. Although there are no current standards in the truest sense of the
definition, this chapter reviews some of the more prevalent data formalisms pertaining
to microarray data and pharmacogenomics.

2. Standards for Acquisition and Storage of Sequence Data

2.1. Raw or Free-Text Formats
Raw sequence data are still (and will likely remain) an accepted mode of data submis-

sion for sequence analysis applications and portals widely available on the Web. Raw
data, although convenient for immediate use by an individual researcher eager to mine
his or her newfound code, has its share of drawbacks and certainly cannot be considered
a standard for generalized use. Without markup or annotation of any kind, raw data
messages provide no information about a given sequence, be it identifiers of file source;
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sequence identity; or, more important, clear measures of beginning, end, and quantity
of data in between. Sequence formatting standards provide a measure of data integrity
insurance that is important to a field in which small omissions of chemical or recorded
data can lead to significant, if not fatal, changes to the original message. The raw data
format provides a string of characters representing a sequence without description or
annotation, as shown in Fig. 1.

Although raw data, by definition, is not formatted or annotated, its content must
adhere to the nomenclature standards (7–9) set forth by the International Union of Pure
and Applied Chemistry–International Union of Biochemistry and Molecular Biology
(IUPAC-IUBMB, or simply JCBN, the Joint Commission on Biochemical Nomencla-
ture) (10), in order to be recognized by almost any commonly used sequence analysis
software (Tables 1 and 2).

In a raw file format, every character is considered a sequence character, so care must
be taken to avoid adding spaces, carriage returns, and other nonprintable characters to
avoid errors made by applications that are instructed to read a raw file format. By con-
trast, the plain or free-text format only counts alphabetic characters as sequence char-
acters; punctuation, position numbers, spaces, and other nonprintable characters are
ignored.

Take care not to confuse “free-text format” with the “free format” used by the some-
what obscure FSAP programs (the Fristensky Sequence Analysis Package, formerly

Fig. 1. Amino acid sequence for mouse interleukin 1-β in raw data format, i.e., only amino
acid symbols.

Table 1
JCBN Conventions for Representation of Specific and Ambiguous Nucleic Acids

Symbol Meaning Origin of designation Complement

G G Guanine C
A A Adenine T
C C Cytosine G
T T Thymine A
U U Uracil A
R A or G Purine Y
Y C or T Pyrimidine R
M A or C Amino K
K G or T Keto M
S G or C Strong interaction (3H bonds) S
W A or T Weak interaction (2H bonds) W
H A, C, or T not-G; H follows G in alphabet D
B G, T, or C not-A; B follows A in alphabet V
V G, C, or A not-T or U; V follows U in alphabet B
D G, T, or A not-C; D follows C in alphabet H
N G, A, T, or C Any N
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known as the Cornell Sequence Analysis Package) (11,12). Despite the similarity in
names, the free format for FSAP is designed to be extensively annotated (to allow
researchers to enter free-text laboratory notes of specific sections of sequences), and,
thus, it is not at all synonymous with freetext formats. This distinction is made owing
to the fact that there is still some Web presence on utilizing free format for FSAP as of
this writing (13–15).

2.2. FASTA File/Pearson Format
In the early 1980s, William R. Pearson and David J. Lipman began some of the earliest

work on computerized nucleic and amino acid sequence analysis techniques via pair-
wise comparison (16,17). FASTA was not the first incarnation of their designs, but it
was the most successful, owing to its speed in use and its coverage of both nucleic and
amino acid sequences (18). These two attributes were used to coin the name FASTA
(pronounced fast-aye), for its speed (FAST) and its comprehensive biopolymer cover-

Table 2
JCBN Conventions for Representation
of Specific and Ambiguous Amino Acids

Amino acid Code Symbol

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V
Unspecified Xaa X
Asp or Asn Asx B
Gln, Glu, Glaa, or Glpb Glx Z
Gap —
Terminator .or*

a4-Carboxyglutamic acid.
b5-Oxoproline.
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age (both amino and nucleic acids = All) (19). Incidentally, FASTA has also been attri-
buted to standing for FAST-Alignment (20), but much less commonly.

FASTA has been so widely utilized over the last 20 yr, that it has become two sepa-
rate but related entities. The FASTA file format (also referred to as the Pearson format)
for sequences is a popular format for submission of sequence data to other, more sophis-
ticated sequence analysis tools, such as gapped-BLAST, PSI-BLAST, or WU-BLAST,
which, in turn, can report their results in FASTA format as well. The second entity is
simply the original FASTA paired alignment tool, although numerous subtle modifica-
tions have been made since its inception (21,22).

The FASTA file format, like the alignment tool that spawned it, can be used for either
nucleic acid or amino acid sequences. Its minimal annotation makes it the simplest file
format for sequences, adding nothing more than a header to raw sequence data. A
sequence recorded in the FASTA file format begins with a one-line header that begins
with a unicode “greater than” or “>” character. The header contains identifying infor-
mation, usually the accession number, and a brief description of the sequence source.
This information is entered by convention, but in truth, any content can be placed in
this line, for it exists only for human perusal, not for any computational reference.
There are several format conventions for header information, including simple FASTA,
Stack FASTA (23), and NCBI FASTA (24); see Table 3 for details on header differ-
ences for each. The sequence itself follows the header after a carriage return, and it is

Table 3
FASTA Header Conventions
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formatted to have no more than 80 JCBN amino or nucleic acid characters per line, as
shown in Fig. 2. The FASTA file format also has the capacity to store multiple sequences
in a single file. This is accomplished via concatenation of FASTA sequences; that is,
one sequence follows another with very little fanfare. At the end of a sequence, a car-
riage return is immediately followed by a “>,” which designates the header for the next
sequence; there are no intervening spaces or blank lines (see Fig. 3). All standard FASTA
conventions apply to each sequence in the file.

2.3. Genetics Computer Group Format
Also during the early 1980s, the Genetics Computer Group (GCG) developed a

sequence analysis package now commonly known as the “Wisconsin Package,” owing
to the group’s location at the University of Wisconsin Medical Center. The more than
140 programs that make up this software package allow the user to analyze and com-
pare protein and nucleotide sequences with those found in established databases such
as EMBL, GenEMBL, PIR-Protein, Restriction Enzyme Database, and GenBank (25).

In 1982, Oliver Smithies developed the initial programs for the Genetics Department
at the University of Wisconsin, Madison, as a research tool. By 1985, GCG was formed
in order to operate the software and develop new tools. The next decade brought GCG
to a new level with the formation of a private company in 1990 and the renaming of its
software to “Wisconsin Package,” the release of its first graphical interface (SeqLab) in
1994, its acquisition by Oxford Molecular in 1997, the release of a Web-based package
(SeqWeb) in 1998, and its acquisition by Pharmacopoeia in 2000. On June 1, 2001,
Pharmacopoeia combined its software businesses, which include GCG, Oxford Molec-
ular, Synomics, Synopsys, and MSI under the name Accelrys (26).

Much like FASTA, the GCG file format is derived from its widely used sequence
analysis package of the same name. It shares with the FASTA file format three other
attributes: utility in representation of both peptide and nucleic acid sequences, the capac-
ity to convey multiple sequences in a single file (GCG Multiple Sequence File, or GCG-

Fig. 2. Same amino acid sequence as in Fig. 1 but in FASTA file format. Note that the
source of this file is NCBI’s Entrez, as evidenced by its “>gi|” header.

Fig. 3. Example of concatenated simple FASTA nucleotide file containing three sequences.
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MSF), and a nonrigidly defined identification header. Header information in a GCG
file does have a conventional structure, and its content offers additional functionality
that FASTA does not (see Fig. 4). The simplest definition of a GCG header is any text
string or stings that precede two adjacent periods (..), also known as the dividing line
(27). The header content is not bounded by any firm rules other than that it cannot include
two adjacent periods (the dividing line can be eliminated if there is no content for a
header, but this presents an undesirable condition for clear data exchange). The sequence
follows the dividing line. Sequence characters are JCBN standard amino or nucleic acid
letter codes, as specified by the type of sequence. Position numbers are included for ease
of navigation but are ignored by applications reading GCG files for sequence data. A
double slash mark (//) can denote the end of a sequence, but most applications process
to the file’s end without error if it is omitted (28).

By convention, GCG headers begin with !!NA_SEQUENCE 1.0 for nucleic acid
sequences, or !!AA_SEQUENCE 1.0 for amino acid sequences. Characters between this
line and the dividing line are optional for further user specification about the sequence;
they may contain accession numbers and/or text descriptions of what the sequence that
follows codes for. The line ending with the dividing line typically includes: name_of_
file.seq, a numeric field for length of sequence (intuitively called “Length,” or “Len,”),
the date and time of file creation, and the type of sequence (N = nucleic acid, P = Pep-
tide). The final entry before the dividing line is “Check,” the checksum, which is cal-
culated from the sequence following the dividing line, and provides verification of the
integrity of its sequence data (a very important feature, considering that even a tiny data
omission or addition of data can lead to a frameshift “mutation” that is just as fatal to a
sequence file’s data as it would be to a cell’s proteomic complement). See the summary
in Table 4.

2.4. Flat-File Formats: GenBank, DDBJ, and EMBL
Flat files, by the strictest definition, are the simplest form of database, containing

all of their data in a single large table or string, without metadata, application-specific

Fig. 4. Example of nucleic acid sequence in GCG file format.
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formatting tags, or hierarchical data relationships. The advantages of working with flat
files relate to their lack of formatting: they can easily be moved between different appli-
cations and databases, and working with the information they contain is quite rapid
compared to relational databases. The disadvantages of working with flat files also stem
from their lack of formatting: all of the logic required to relate and manipulate data
within or across flat files must reside in another application. By this definition, any
of the previously discussed file formats (FASTA and GCG) could qualify as flat files;
however, colloquial use of the term flat file in the field of sequence formats is synony-
mous only with the much more richly documented file formats of the major genomic
sequence repositories: GenBank (run by the National Center for Biotechnology Informa-
tion [NCBI]), the DNA Data Bank of Japan ([DDBJ], in Mishima, Japan), and the Euro-
pean Molecular Biology Laboratory ([EMBL], in Heidelberg, Germany). These three
repositories share sequence information freely with the public, as well as with each other
under the auspices of their joint scientific effort: the International Nucleotide Sequence
Database Collaboration (INSDC) (29). These flat files are in fact human-friendly text
reports that are automatically generated from a source database encoded in cross-plat-
form data-interchange-friendly ASN.1 (30). ASN.1, or Abstract syntax notation one,
is a data specification language developed and adopted by the International Organiza-
tion for Standardization (ISO Standard #8824). It was selected by NCBI for its utility in
describing data types independent of particular computer structures and/or represen-
tation techniques, which allows interoperability between platforms (31). By adopting
ASN.1 as a standard for data specification, NCBI could accomplish two important steps
in streamlining exchange of genomic data: removal of scientists from the role of cre-
ating unique file formats for their research, and by virtue of accomplishing that, and
restriction of the creation of new unique file formats that are (likely) incompatible with
others (32).

Although the indexing of sequence information is standardized across these data-
bases, the formatting of data differs, almost indistinguishably between GenBank and
DDBJ, and more significantly between EMBL and the other two. We conducted a search
of each of the three sites for files on the sequence used in several previous examples,
i.e., mouse interleukin-1β (IL-1β). Figures 5–7 illustrate the similarities and differ-

Table 4
GCG Header Conventions
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ences among the file formats. Despite differences in appearance, significant efforts have
been made to standardize the information across all three databases. In 1986, the INSDC
set forth to adopt standards for recordable categories of sequence and sequence-related
information, as well as the terminology for those categories, for the purpose of making
sequence exchange seamless across GenBank and EMBL (33). DDBJ joined the collab-
oration 1 yr later, in 1987. Their efforts have been quite successful, in that the contents
of each database are synchronized and identical to within 24 h of any data submission

Fig. 5. Outline of structure of a GenBank file. (See Subheadings 2.4. and 2.4.2. for more
information.)
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Fig. 6. Outline of structure of an EMBL file. Significant differences from GenBank/DDBJ
files are highlighted. (See Subheadings 2.4. and 2.4.2. for more information.)

(Fig. 8) (34). To facilitate and maintain consistency among the three databases, the Euro-
pean Bioinformatics Institute (EBI) created the Feature Table (version 6.1, as of this writ-
ing), to specify an extensive set of rules on content and syntax of database entries (35).

Unlike previously discussed formats for sequence information, flat files (from any
of the three databases) provide context and perspective to the sequences that they record.
They contain references to the research that produced them; past sequence iterations;
and controlled vocabulary for taxonomy, chromosomal location, and translational infor-



Standardization of Microarray Data 121

Fig. 7. Same mouse of IL-1β sequence from previous examples in AGAVE, obtained from
XEMBL.

mation. The organization of GenBank files (and in almost every way DDBJ files as
well) is broken down into three general sections: a header, features, and the nucleotide
sequence itself (see Fig. 5).
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2.4.1. Header
The header begins with the LOCUS field and terminates at the first sequence posi-

tion number. GenBank/DDBJ files contain most of the information as the headers of
previously discussed formats, as well as additional information for more precise identi-
fication and reference to related research and sequences. The LOCUS line defines the
chromosomal sequence location, number of bases (bp) in the sequence, type of mole-
cule (mRNA), molecule configuration (linear), GenBank division (RODent), and date
that the sequence was recorded or last modified. The ACCESSION, VERSION, and GI
numbers provide a precise record of the sequence and its associated information, past
and present (see Table 5). The SOURCE field provides both scientific and common
names for the source organism, and the ORGANISM field names the organism in con-
text with its phylogeny via a controlled vocabulary maintained by the NCBI taxonomy
project (36). The REFERENCE field lists citations contributing to identification of the
sequence and knowledge about the sequence (the examples in Figs. 5 and 6 have only
one reference, but multiple references are listed by repeating the REFERENCE field
for each citation, oldest to most recent).

2.4.2. Features
Features are imbedded near the end of the header and are listed as indented items

under the FEATURES field. The FEATURES field contains a significant amount of
knowledge about sequences via sequence annotation and a controlled vocabulary. Fea-
ture keys define a category of knowledge about a sequence’s known function. A feature
is a specific attribute of a sequence defined by the following:

1. Its associated category (feature key).
2. Its numeric position along the sequence span.
3. Its qualifier(s), which are paired with a value to provide specific descriptive information

about a given feature.

Fig. 8. Data flow for synchronization between the three regional repositories of nucleotide
sequence data under INSDC.
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Table 5
DDBJ/EMBL/GenBank Record-Keeping Conventions

Type of record Description

Accession Unique identifier assigned at initial submission. This number never changes.
Version The number to the left of the decimal is the accession number. The number

of interest is the one to the right of the decimal. Each time a sequence
file is updated, the number increases by one (e.g., accession.version).

GIa GenInfo number. Unique identifier assigned at submission and changes to a
new, unique number for every change to the sequence. This allows users
to re-retrieve an exact sequence, even if it has been updated since the
initial search.

aCurrently used only in GenBank files.

There are rules on which feature keys are mandatory (e.g., source) or optional.
Feature keys are well defined not only in terms of semantics, but also in terms of their
hierarchical relationships to other feature keys, and contextual relationships to equally
well-defined qualifiers. Some qualifiers are required for certain feature keys, and there
are qualifiers that are specific to certain feature keys, required or not. For a comprehen-
sive list of feature keys, qualifiers, and their relationships, link to the most current ver-
sion of the Feature Table on any of the three data repositories. For GenBank, the current
URL is www.ncbi.nlm.nih.gov/projects/collab/FT/index.html#3, under section 7.3
Appendix III: Feature keys reference.

2.4.2.1. CONVENTIONS ON FEATURE LOCATION

Locations within sequences as they pertain to features are specified by simply listing
the base or base span’s position number or span of position numbers, respectively. From
the example in Fig. 5, the first listed location (from feature key “source”) is 1..1339.
Two numbers separated by two periods indicates that the location described is a span of
sequence from the first listed base number to the last inclusive. If two numbers are sepa-
rated by a single period, it indicates that the location is a single base somewhere between
the two given numbered positions. If there was only a single number is listed, for exam-
ple 368, the described location would simply be that specifically numbered base in the
sequence. If two numbers are separated by a carat (^), it indicates that the specified loca-
tion is between the two bases somewhere in the span (the two given numbers can be con-
secutive, because the location is likely to be a cleavage site, and this can only occur
between, and not on, nucleotide bases). There are more sophisticated variations on describ-
ing specific sequence locations that are uncertain, spliced, found on complementary
strands, and so forth in section 3 of the DDBJ/EMBL/GenBank feature table (37).

2.4.3. Sequence
The sequence section begins after the ORIGIN field at the first nucleotide sequence

position number and terminates at the double slash mark (//). Note that owing to the
nucleic acid-centric structure of DDBJ/EMBL/GenBank flat files, the translated amino
acid sequence(s) is always considered a feature and is thus included in the header, rather
than in the sequence-proper section.

www.ncbi.nlm.nih.gov/projects/collab/FT/index.html#3


124 Husser et al.

2.4.4. EMBL Format
EMBL files mostly contain the same information as DDBJ and GenBank files, but

their formatted appearance can appear quite different at first glance (Fig. 6). The most
obvious difference is the use of line codes in place of the fields used by GenBank and
DDBJ files. Although line codes represent many of the same fields as those in GenBank
and DDBJ, line codes also define blank lines, to avoid confusion with the sequence data
lines (38) (see Table 6). Note that EMBL employs slightly different nomenclature for
identifiers and dates. These differences seem trivial to the human eye, but they can be
fatal to an automated parser that is expecting to see data in GenBank format. Also note
that the file, albeit identical in sequence and accession to those from the other data repos-
itories, is cross-referenced to additional databases, in both the header and the feature
table. The feature table in the EMBL file is also missing a qualifier (gene) that is present
in both the GenBank and DDBJ files. These differences are not in violation of the rules
dictated by the INSDC feature table standards: the standards on the controlled vocabu-

Table 6
Line Code Definitions for an EMBL File

Line code Definition

ID IDentification line
AC ACcession
SV Sequence Version
DT DaTe
DE DEcription
KW Key Words
OS Organism Species
OC Organism Classification
OG OrGanelle
RN Reference Number
RC Reference Comment
RP Reference Position
RX Reference cross-reference
RG Reference Group
RA Reference Author
RT Reference Title
RL Reference Location
DR Database cross-Reference
AH Assembly Header
AS ASembly information
CO COn(structed) or COn(tig) sequences
FH Feature Header
FT Feature Table
CC Free text entry for miscellaneous info
SQ SeQuence
XX Spacer line
// Sequence terminator
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lary of feature keys, locations, qualifiers, and values remain unchanged across all three
files; omissions and additions of features, however, are not as strictly governed.

2.5. Open-Source XML Schemas for Representation of Genomic Data:
AGAVE and BSML

Owing to the inherent diversity, complexity, and scale of the collective biological
sciences, a substantial variety of data repositories and tools for data management has
been designed in support of research. Although the content and purpose of these data
tools may be related or even identical, as is often the case when different data tools have
different authors, these tools and repositories are incompatible in format and seman-
tics. Because eXtensible Markup Language (XML) is designed to define and transmit
data in a uniform and automatically parsed format, many in the computational biology
community have looked to XML as an open-source solution for transmission, valida-
tion, and interpretation of data across different applications and formats. There are sev-
eral emerging bioinformatics markup languages based on XML (e.g., AGAVE, BSML,
GAME, BIOML, MGED-ML), each representing its unique data structure by means
of a language-defining Document Type Definition (DTD). To properly utilize data in
any XML format, one must have access to the DTD that specifies it (e.g., to parse any
BSML document, one must have a browser that is XML aware and have a copy or link
to the BSML DTD, because all valid BSML documents are encoded to the single set of
data rules in the DTD). This section discusses AGAVE and BSML.

Despite evidence of endorsements from industry and standards bodies such as I3C
and HL7, representation of BSML and AGAVE in scientific literature thus far is nearly
nonexistent, as illustrated by the results of multiple literature searches specified in Table
7. The vast majority of publicly available information on both of these XML-based for-
mats comes from the creator’s or owner’s own Web site.

2.5.1. AGAVE
AGAVE is an open-source XML format that was developed in 1999 by the now

defunct DoubleTwist, for managing, visualizing, and sharing annotations of genomic
sequences (39). Its designer now maintains a modest site for LifeCode, to maintain the
AGAVE format and schema (the latter of which is impressively documented on the
site) (40).

The broadly stated functional goals for AGAVE are as follows (39):
• To encourage the development of tools that manipulate, visualize, and store genomic data.
• To facilitate exchange of genomic information.
• To support system and data interoperability.

AGAVE’s two chief components are a Java Object Model and a corresponding XML
DTD that facilitates data exchange, integration, and transformation between compo-
nents. The current AGAVE DTD includes elements that represent sequence assembly,
gene models, transcripts, and functional classifications (41). The AGAVE DTD itself
is parseable (42), so that an XML parser can use the DTD to verify that data match a
specification. The availability of data in AGAVE format has been quite substantial since
2001, when all INSDC nucleotide sequences became accessible through an EMBL por-
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Table 7
Results of Medline Queries on July 13, 2004, Reflecting Poor Representation of AGAVE and BSML in Scientific Literature

Keyword query string PubMed PubMed Central Ovid

Architecture for Genomic Annotation,
Visualization, Exchange 0 hits 3 hits, none relevant 0 hits

Architecture for Genomic Annotation Visualization 2 hits, none relevant 26 hits, none relevant 0 hits
Architecture for Genomic Annotation 11 hits, none relevant 143 hits, not reviewed 0 hits
AGAVE 128 hits, not reviewed 16 hits, none relevant 100 hits, not reviewed
AGAVE NOT tequilana NOT Tequila NOT 18 hits, none relevant 3 hits, none relevant 19 hits, none relevant

americana NOT attenuata NOT cerevisiae NOT
Agavaceae NOT lecheguilla NOT sisalana NOT
ferment NOT plant

AGAVE and XML 0 hits 0 hits 0 hits
Bioinformatic Sequence Markup Language 0 hits 3 hits, 2 relevant: 1 brief 0 hits

(2 sentence-long) review;
1 reference to another
application that imports/
exports BSML format

Bioinformatic Sequence Markup 0 hits 3 hits, 1 relevant: 0 hits
1 report of use

Sequence Markup Language 13 hits, none relevant 30 hits, 5 relevant: 0 hits
all redundant

BSML 14 hits, none relevant 11 hits, 4 relevant: 2 reports 16 hits, none relevant
of use: 2 references to
applications that import/
export BSML format

BSML and XML 0 hits 4 hits, identical to relevant 0 hits
hits above

Total nonredundant references on AGAVE 0
Total nonredundant references on BSML 5, none of which were dedicated reports on BSML

AGAVE, Architecture for Genomics Annotation, Visualization, and Exchange; BSML, Bioinformative Sequence Markup Language; XML,
eXtensible Markup Language.

126



Standardization of Microarray Data 127

tal (XEMBL) in AGAVE format; the portal currently only supports query by INSDC
accession number (43,44). This free service provides the advantage of avoiding a step
to initiate an automated conversion from a flat file to AGAVE on the client side.

The future of AGAVE is uncertain, given the closure of its founding company in
2002. It has never been described in peer-reviewed biomedical literature (Table 7),
nor is it easy to find published evidence of its widespread use in general print or even
on the Web (As of this writing, a Google search string, “AGAVE file” yields only four
irrelevant results. Other queries meet with comparable results.) Despite the fact that
visualization is part of the acronym and the mission of the schema, no viewer applica-
tion is available as of this writing, and, thus, visualization of genomic data is limited to
looking at the AGAVEXML file format (see Fig. 7).

2.5.2. BSML
BSML came into being in 1997, as the result of a grant from the National Human

Genome Research Institute (45). BSML is an open-source XML schema that was created
to communicate the fruits of genomic research by encoding (45)

• Molecular sequence data (nucleic and protein), and its features and annotations.
• Records of research on a sequence or collection of sequences: known or novel queries,

analysis, and research protocols.
• Platform-independent graphical representation of genomic data (termed widgets).

BSML documents possess all of the XML-bestowed attributes of cross-platform data
interoperability, automatic parsing with additional software, validation of documents
against rules specified in the DTD, and so on. Like AGAVE files, INSDC nucleotide
sequences are also available through XEMBL in BSML format, via the same accession
number query portal, an example of this is shown in Fig. 9 (47). This free service pro-
vides the advantage of avoiding a step to initiate an automated conversion from a flat
file to BSML on the client side.

As of this writing, the link to download the freestanding application for viewing
widgets (called the Genomic Workspace Viewer) is at www.rescentris.com, a company
made up of employees from LabBook, the original creators of the BSML language spe-
cification (46). The application is freely downloadable but requires a Rescentris-pro-
vided login to initiate its use. The free viewer allows the user to visualize and explore
sequence information with annotation, while the commercial browser adds the ability
to manipulate the data from this interface as well (Fig. 10A,B). Just as most computer
users prefer the graphical user interface (GUI) provided by Windows⎪ and Mac OS⎪

over the traditional command-line interface of DOS, one might safely assume that this
more user-friendly GUI will appeal to biological researchers who do not imagine them-
selves to be experienced computer professionals or hackers.

2.5.3. XML in Summary
XML’s future in data representation for the biological sciences is promising, but far

from predetermined. XML schemas for sequence data representation are attractive in
their cross-platform integrity and conceptual extensibility, but a clear standard has yet
to emerge. In fact, EBI plans to support additional types of exportable sequence formats

www.rescentris.com


128 Husser et al.

(GAME and BIOML) in the near future, widening the representation of easily accessed
XML sequence formats, as well as the roster of future candidates for data standards (47).
Bioperl, a suite of open-source PERL-based bioinformatics tools, provides varying
degrees of support in parsing and converting to, GAME, BSML, and AGAVE (48). Ignor-
ing supplemental GUI software, differing XML schemas are only as granular and adapt-
able as their respective DTDs. Because the DTDs of current schemas such as AGAVE
and BSML have never been systematically compared in an unbiased environment, it is
impossible to say which is more suitable to emerge as a true standard.

2.6. Format Summary
If the historical examples set by FASTA and GCG hold true, the DDBJ/EMBL/GenBank

flat-file formats have an advantage over the emerging, more dynamic XML schemas,

Fig. 9. Same mouse of IL-1β sequence as in previous examples in BSML, obtained from XEMBL.
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Fig. 10. Browser visualization of (A) genomic XML widgets, and (B) exploration of sequence information from BSML source data.
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because the flat files come directly from the source to which researchers submit their
work. That is to say, flat files have functional value to researchers in that they need to
format their work according to the standards reflected in flat files in order to share their
data with the international scientific community. Additionally, because GenBank, EMBL,
and DDBJ are primary databases (i.e., researchers submit the fruits of their sequence
work directly), as opposed to secondary or curated databases such as SWISS-PROT
and PDB (which catalog the works of researchers whose original work is based on the
sequences stored in primary databases), researchers who study existing sequences must
retrieve them in flat-file format. Of course, sequences can be (and are) converted into
whatever format the researcher decides to use, but because sequence repositories adhere
to ASN.1-derived flat-file formats, researchers who convert their sequence files for study
must reconvert or reannotate them back to a flat-file format to submit them (49). Given
this paradigm of flat files in/flat files out, competing formats, such as BSML and
AGAVE, must add enough functionality (including tools to make bidirectional conver-
sion seamless, if not invisible) to make such tools appealing to researchers.

Realistically, researchers are quite far from having a single standard for genomic
sequence representation, because there is currently no widely agreed on “gold standard”
of file formats to impose on the scientific community. This means that readers of this
chapter, and other students entering the fields of genomics, molecular biology, or bio-
informatics, are almost guaranteed to encounter multiple file types in their studies and
research. Deciphering an unknown file type might be vital to one’s research efforts, or
simply vital to one’s piece of mind. Whatever the case may be, given this inevitable
obstacle to productivity, Tables 8 and 9 may be of use in identifying files by their unique
data identifiers, or by their first line of text or file name extensions, respectively.

3. Microarray Experiments:
Standards for Acquisition and Storage of Genomic Data

The ability to independently replicate and, therefore, validate a reported result of an
experiment is a conceptual cornerstone of modern science. This is made possible by a

Table 8
Conventions on Identifier Syntax by Database

Database name Identifier syntax

Brookhaven Protein Data Bank pdb | entry | chain
DDBJ, DNA Database of Japan dbj | accession | locus
EMBL Data Library emb | accession | locus
GenBank gb | accession | locus
GenBank gi | unique-identifier
General database identifier gnl | database | identifier
GenInfo Backbone Id bbs | number
Local Sequence identifier lcl | identifier
NBRF PIR pir | entry
NCBI Reference Sequence ref | accession | locus
Patents pat | country | number
Protein Research Foundation prf | name
SWISS-PROT sp | accession | entry name
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detailed description of the methods by which the original experiment was performed. In
the biological sciences, these methods typically include the specific strain of the orga-
nism beginning tested; the type, source, and preparation of reagents; the perturbation
or exposure of the system to the experimental procedure; the type, source, and implemen-
tation of instrumentation; the control procedures; and the data analyses. The same rigor-
ous standards have been applied to the wealth of data produced by the description of the
human genome beginning in the 1990; the genes have been carefully sequenced, one-by-

Table 9
Guidelines on Identification of Unknown Files
by First Nonblank Character/Word in File, or by File Extension Type

File format First nonblank word or character in file File extentiona

AGAVE <!DOCTYPE sciobj
(second line of file) .xml

BSML <!DOCTYPE Bsml .xml
(third line of file)

CLUSTAL CLUSTAL .aln; multiple others,
as determined by
user’s choice of
output format

DDBJ LOCUS .txt, .html, or other
nonspecific

EMBL ID .txt, .html, or other
nonspecific

FASTA > .fasta, .wrp
FASTA (compressed format) Not applicable .Z, or .gz
GCG: multiple sequence file PILEUP .msf

(MSF)
GCG: single sequence file, !!AA_SEQUENCE 1.0 .seq

protein
GCG: single sequence file, !!NA_SEQUENCE 1.0 .seq

nucleotide
GDE nucleotide # .gde
GDE protein % .gde
GenBank LOCUS .txt, .html, .gbk, .gb,

or other nonspecific
PHYLIP one- or two-digit number, space .ph, .phy, or other

three- or four-digit number nonspecific
PIR >DL .pir
Plain text JCBN character .txt
Raw JCBN character .raw, .txt
SWISS ID .txt, .html, or other

nonspecific
aKeep in mind that a file may be misnamed. It may have an incorrect file extension or no extension

at all.
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one. To address the reality that the complexity of the biological process involved not one,
but hundreds or perhaps thousands, of genes, microarray technology was developed.
This powerful methodology allows the experimenter to assess gene expression in tens
of thousands of genes simultaneously. The original description of the use of comple-
mentary DNA (cDNA) hybridization techniques for microarrays in 1995 (50) followed
by the development of high-throughput technology in 1998 (51) has resulted in the exten-
sive application of this technology in other laboratories. A MEDLINE database search
using “microarray” as the keyword revealed 2350 publications on this technology in the
year 2003 alone. This methodology has been the subject of multiple extensive reviews
(51–53), some with specific applications to neoplastic (54), cardiac (55), renal (56),
psychiatric (57), and neurological (58) disorders. The fundamentals of microarray experi-
ments are outlined next so as to provide a basis for the standards that have been sug-
gested for this important area of research.

The primary application of this technology is in the measurement of gene expres-
sion. This is accomplished by the quantification of messenger RNA (mRNA), which is
the direct product of gene transcription. The methodology involves the hybridization of
labeled sample mRNA to cDNA or oligonucleotides on a microarray followed by detec-
tion of the bound label. Thus, a microarray gene expression experiment has several
components: selection of tissue/specimen, extraction of mRNA, and fluorescence label-
ing; as well as microarray construction, reading, and data analysis.

Virtually any source of mRNA is suitable for microarray experiments including whole-
tissue specimens, or RNA derived from human and animal tissues as well as cell lines.
To stabilize the mRNA, it is often necessary to create its cDNA using a reverse transcrip-
tase. Unfortunately, not all mRNAs convert easily; thus, there can be some bias, depend-
ing on which mRNAs are isolated. Quantification of message expression is achieved
by adding millions of copies of mRNA to each spot on the microarray. The subsequent
intensity of the signal generated by a fluorescence marker bound to the sample probe
(cDNA) will be proportional to the amount of the specific mRNA in the sample. Thus,
it is necessary to specify the type of tissue, amount of labeled mRNA or cDNA added to
each spot, and hybridization methodology and conditions; the type, intensity, and method
of exciting the fluorescence tag; the background levels of fluorescence; and the method
of quantification in order to be able to reproduce this portion of the experiment.

The microarray itself is constructed by two methods. The first is the so-called spotted
area in which cDNA is deposited in defined locations on a substrate (i.e., a glass slide)
by robotic methods. The cDNA is selected based on the specific experiment being per-
formed. The second technique utilizes methods derived from photolithography to synthe-
size the specific oligonucleotides in defined locations on the “chip.” It is thus possible
to detect mRNA expression from tens of thousands of genes simultaneously with this
technology. In theory, the techniques by which the microarray is constructed are required
to replicate the experiment. This has been limited owing to the proprietary nature of the
commercially available microarray chips. In addition, the results are only as meaningful
as the accuracy of the databases from which the sequences were derived. The sequences
deposited in some databases are not always peer reviewed and replicated, thus allow-
ing the possibility of error. Furthermore, random variations in the noise level owing to
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dust on the array, as well as variations in target placement and substrate composition,
introduce errors that are difficult to control for even when appreciated.

Analysis of these extremely large data sets provides a significant challenge. A wide
variety of analytical tools exists to extract meaningful conclusions from microarray data
(55,59). However, a multitude of potential situational errors exist regarding to differen-
tial expression of genes. Inconsistent results can be obtained from experiments on genes
from different sources, from the same source but sampled at different times, and even
from the same source when sampled simultaneously.

Additionally there is a lack of clear methods for determining what are “statistically
significant” differences in expression between samples.

3.1. Minimal Information About a Microarray Experiment (MIAME)
The complexity of reporting gene expression microarray experiments and the result-

ing data led to the formation of the Microarray Gene Expression Data Society. The first
meeting took place in 1999 and was attended by an international group of users and
developers of microarray technology. The mission statement of the organization included
“establishing standards for microarray data annotation and exchange, facilitating the
creation of microarray databases and related software implementing these standards,
and promoting the sharing of high quality, well annotated data within the life sciences
community.” The concept of establishing a public repository of gene microarray data
was published (60) and five workgroups were proposed. These workgroups are described
in detail on the society’s Web site (www.mged.org) and include MIAME (61), Micro-
array and Gene Expression (MAGE) (62), Ontology Workgroup (63), Data Transforma-
tion and Normalisation Working Group (64), and the Toxicogenomics Working Group
(TWG) (65).

The initial draft of MIAME was made public in 2001 (66) and has had multiple revi-
sions based on user input. The information that the MIAME standard would provide
was to be sufficient to interpret, compare, and replicate microarray experiments and
the data structure would allow efficient querying as well as automated data analysis
and mining. These goals reflect the multidisciplinary nature of microarray technology
as a combination of molecular biology, computer science, and informatics. The most
current draft of the MIAME standards in detail and in checklist form is available on
the society’s Web site (www.mged.org/Workgroups/MIAME) and breaks down the stan-
dards into five sections:

1. Experimental design.
2. Samples used, extract preparation and labeling.
3. Hybridization procedures and parameters.
4. Measurement data and specifications of data processing.
5. Array design.

The experimental design standard includes basic information regarding contact infor-
mation for who performed the experiment and goals of the experiment. The authors should
state the type of the experiment and specimens used such as healthy vs diseased or treated
vs untreated comparisons, time course, dose–response, or knockout or knock-in models.

www.mged.org
www.mged.org/Workgroups/MIAME
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The specific parameters of the hybridizations should be noted including the number of
hybridizations, the use of a common reference, and any control measures taken.

The description of the samples used to obtain the RNA or DNA is the same as that
used in any biological experiment and includes the type of organism and where it was
obtained; if relevant, the age, gender, and developmental stage; alternative cell type or
line; genetic variation (e.g., knock-in or knockout); and normal vs diseased. Similarly,
the laboratory methodologies relating to the samples should include specific growth
conditions and treatments (e.g., whole organism, cell culture), and separation techniques,
if utilized, should be described. Similarly, the precise extraction method, means of ampli-
fication and type of nucleic acid extracted (e.g., DNA, mRNA) should be specified.
Finally, the researchers need to describe the type and amount of labeling as well as the
controls utilized.

The hybridization procedures including the preparation of reagents, blocking pro-
cedures, types of wash, quantity of labeled target, incubation parameters, and instru-
mentation, should be provided in enough detail to allow replication.

The measurement data and specifications of data-processing standards are in many
ways the most challenging. Initially, the fluorescence is elicited by a laser scanning
device and the image recorded. The instrumentation that is utilized, scan parameters,
and associated software should be described. These raw data are then processed with
image analysis software, the type and parameters of which should be specified. Finally,
the image is normalized according to specified standards, and the data are converted into
a gene expression table. Because there are no absolute units of gene expression, each
step in how the values are derived needs to be precisely stated.

The array design is clearly a critical element in each experiment. One advantage of
using a commercially available array is that it is available for purchase to replicate a
reported experiment. However, the precise methodology of construction may be pro-
prietary and not described in enough detail to allow independent reconstruction. Ele-
ments of the array that should be described include the substrate, means by which
targets are positioned on the array, type of target (cDNA or oligonucleotide), how the
target was obtained, and reference information to the gene to which it maps.

3.2. Microarray and Gene Expression (MAGE)
MAGE represents a standard data model to capture, represent, and exchange infor-

mation from microarray data, specifically as outlined in MIAME (66,67). The Life Sci-
ence Research Committee of the Object Management Group (OMG-LSR; lsr.omg.org/)
along with MGED has produced a key industry specification that addresses the repre-
sentation of gene expression data and relevant annotations, as well as the mechanisms
for exchanging these data. It is called MAGE-ML (MAGE Markup Language) (68).

The MAGE group aims to provide a standard for the representation of microarray
expression data that would facilitate the exchange of microarray information between
different data systems. Currently, this is done through OMG by the establishment of a
data exchange model (MAGE Object Model [MAGE-OM] and data exchange format
[MAGE-ML]) for microarray expression experiments. MAGE-OM has been modeled
using the Unified Modeling Language (UML) and MAGE-ML has been implemented
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using XML. MAGE-stk (or MAGE Software Toolkit) is a collection of packages that act
as converters between MAGE-OM and MAGE-ML under various programming platforms.

3.2.1. MAGE-OM
MAGE-OM, based on UML, is a graphical way of representing complex data sets

such that it allows understanding by the human user. It is the primary model and the
basis for MAGE-ML, which is described in the subsequent section. One major draw-
back of this approach is its limited ability to support data analysis.

Because of its enormous size, MAGE-OM cannot be represented usefully by a single
diagram. To solve this problem data is broken up into 17 packages, including Common,
BQS, Measurement, AuditAndSecurity, Description, BioSequence, ArrayDesign, Design
Element, Array, BioMaterial, BioAssay, BioAssayData, Experiment, HigherLevelAnalysis,
Protocol, QuantitationType (see Fig. 11). These packages are further broken down into
132 classes with 123 attributes and 223 associations among classes (69). Lines repre-

Fig. 11. Relationships among the 17 packages in MAGE-OM. (See color image in ebook.)
(Adapted from ref. 68a.)
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sent relationships between classes. The first four packages listed (green/dark boxes in
the diagram) are specific for annotation. The other twelve (yellow/ light) boxes repre-
sent the natural separation of events and objects of gene expression data. Regarding
relationships and UML, further information can be gathered at http://www.uml.org/.

Based on six basic requirements, MAGE-OM allows the user to follow the natural
flow of a microarray experiment. This package is not designed as a laboratory informa-
tion management system, but the data are similarly organized. The six basic require-
ments are as follows:

1. Descriptions and protocols.
2. Array information.
3. Preparation of experimental materials, hybridizations, and scans.
4. Data model and storage.
5. Experiments.
6. Data analysis.

The work flow diagram in Fig. 12 illustrates this concept (69).

3.2.2. MAGE-ML
XML allows the definition of new vocabularies and formatting versatility. Because

of this great flexibility, XML was chosen as the markup language for encoding micro-
array data documents, which then refers to a DTD. The DTD is specified in MAGE-ML so
that XML documents designed to use MAGE-ML refer to the DTD (69). As mentioned
in Subheading 3.2.1., MAGE-OM is the primary model and MAGE-ML is derived from
it. This derivation occurs through the use of software tools such as those found in the
MAGE-STK. A sample of MAGE-ML code is displayed in Fig. 13.

The MAGE software toolkit can be found at www.mged.org/Workgroups/MAGE/
magestk.html. It is open source and available for use in an unrestricted fashion for any
academic or commercial purpose (69). The software toolkit not only allows the transla-
tion of MAGE-ML to and from MAGE-OM but also facilitates the development of new
software by the user (70). Figure 14 visualizes the basic functionality of the MAGE-STK.

3.3. Standards for Linkage Disequilibrium Studies
Linkages between genes and clinical disorders are increasingly becoming the focus

of translational research. Identification of the genetic basis for complex traits has still
eluded most research efforts. The category of investigation that aims to identify these
relationships is called linkage disequilibrium studies (71).

3.3.1. PedHunter
Linkage analysis uses defined pedigrees for a population exhibiting a specific trait

and verifies relationships within pedigrees. PedHunter (available from the NCBI), is a
software package that facilitates the creation and verification of pedigrees within large
genealogies (72). PedHunter uses conceptual graph theory to solve two versions of the
pedigree connection problem for genealogies. The pedigrees produced by PedHunter
are output as files in LINKAGE format ready for linkage analysis and for drawing with
PEDDRAW:

http://www.uml.org/
www.mged.org/Workgroups/MAGE/magestk.html.
www.mged.org/Workgroups/MAGE/magestk.html.
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Fig. 12. Work flow diagram for a microarray experiment.
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Fig. 13. Sample code for MAGE-ML.

• Testing relationships: is_ancestor, is_cousin, is_half_sib, is_mother, is_father,
is_sibling, is_child

• Finding people satisfying a certain relation: mother, father, children, cousins,
uncles_aunts, half_sibs, siblings, descendants, ancestors

• Complex queries: minimal_ancestors, inbreeding, kinship, subset, asp, all_shortest_
paths, minimal
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The various types of complex queries are as follows:

• minimal_ancestors: given a list of people, find all persons P such that P is an ancestor of
everyone in the list, but none of the children of P are ancestors of everyone in the list.

• inbreeding: compute the inbreeding coefficients of a list of people with respect to the
entire genealogy.

• kinship: compute the kinship coefficients of a list of pairs of people with respect to the
entire genealogy.

• subset: find a maximal subset of a list of people that has a common ancestor. The subset
returned is “maximal” in the sense that it cannot be enlarged, but not necessarily of “maxi-
mum” size.

• asp: find all shortest paths pedigree for a given list of people, if any exist. The prototypi-
cal use of asp is to find a pedigree to connect several persons with the same phenotype.

• all_shortest_paths: print all shortest paths from an ancestor to a descendant. This func-
tion can be used to help understand the output of asp.

• minimal: print minimal tree connecting the given list of people who have the given ‘asp’
pedigree. This function can be used to find a small pedigree when the asp pedigree is too
big for your purpose. Researchers have developed software for the general Steiner tree
problem in conceptual graphs (73).

Fig. 14. Functionality of MAGE-STK.
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The genealogy data to be used by PedHunter are stored as a relational database in
Sybase or as column-delimited ASCII text files. PedHunter has two required tables:
person information table and relationship table; it also has two optional tables: id table
and generation table.

• Person table: this table has information specific to a person. Fields such as program iden-
tifier (required), name (optional), birth date (optional), death date (optional), address (op-
tional), gender (required for married couples), special status (used to encode twins,
adoptions; optional), and other information (optional) have been specified.

• Relationship table: this table encodes parent–child relationships. Fields such as program
identifier of father (required), program identifier of mother (required), marriage date
(optional), and delimited program identifiers for children (with these two parents, required
but can be empty) have been specified.

• Id table: if a protocol design has a system of identifiers for its genealogy and these iden-
tifiers are not integers, then an id table with columns for program identifier and the user’s
identifier that expresses the 1-to-1 correspondence between them is required.

• Generation table: Pedhunter can generate this table automatically and is needed only if
the user implements the “inbreeding” and “kinship” queries.

3.3.2. CASPAR
CASPAR is being developed by NCBI as an exploratory program designed to study

the genetics of complex (polygenic) diseases. CASPAR takes as input the genetic infor-
mation at multiple loci regarding families. It facilitates the exploration of hypotheses
about how various genes may be involved in disease susceptibility of polygenic dis-
eases. It semiautomatically performs an extended affected sibling pair (ASP) test for
subsets of families defined by their features at one or more loci. The main advantage
of CASPAR over other ASP software packages is that CASPAR allows the user to do
linkage analysis at one locus, given the status of another locus. Utilizing CASPAR, one
can gain insight regarding how genes in different linked regions may interact, thus lead-
ing to disease susceptibility.

CASPAR has been described for nuclear families containing at most two children and
could not handle missing information (74). Since that study, CASPAR has been extended
the ASP test to handle pedigrees containing any number of affected sibs, multiple gen-
erations, and some missing information such as parents whose genetic information at
some loci is not known.

CASPAR can handle pedigrees with any size sibships, ungenotyped parents, ungeno-
typed sibs, and sibs that are not genotyped at sharing locus. CASPAR handles ungeno-
typed parents by looping over all possible genotypes that yield compatible sibships and
computing the likelihood of each choice using allele frequencies. The result is weighted
by the probability of that genotype being the correct genotype. CASPAR should not
be used if one of the regions of interest is on a sex-linked chromosome.

4. Clinical Genomics and Pharmacogenomics Standards
4.1. Pharmacogenomics Knowledge Base

The US Department of Health and Human Services National Institutes of Health is sup-
porting a multicenter research collaborative known as the Pharmacogenetics Research
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Network ([PGRN]; www.nigms.nih.gov/pharmacogenetics) to develop and dissemi-
nate knowledge about genetically determined variability of individuals’ responses to
medications. Such variability is manifest by broad swings in medication efficacy (or
lack thereof) and/or risk of adverse reactions (1–4). Genetically determined variation
in an individual’s response to medications may occur at any point while the drug is in
the body including absorption, distribution, interaction, metabolism, or excretion. To
date, most genetic variation has been detected in drug metabolism, and it has been hypoth-
esized that virtually all paths of drug metabolism are subject to genetic variation (2).
Increasingly, genetic variation is being detected in drug transport and targets (5). The
ultimate goal of PGRN and other pharmacogenetics research efforts is to help ensure that
individual patients get the correct drug at the correct dose. In the future, health care pro-
viders will increasingly include patient’s genetic fingerprints in the analysis of disease
states and in the choice of workup strategies and treatments. Pharmacological treat-
ments are one important type of therapy that lends itself particularly well to individual-
ized care. This type of understanding is essential if society is to move toward truly per-
sonalized medical care.

The primary purpose of the Pharmacogenetics and Pharmacogenomics Knowledge
Base (PharmGKB; www.pharmgkb.org) is to be a central repository for data produced
by PGRN members. However, PharmGKB has been designed to be more than a simple
storehouse for research data. From its inception in April 2000, PharmGKB has been
designed to be a collaborative work space for geographically distant laboratories by
providing electronic tools that support information submission, editing, and process-
ing (6,7). Furthermore, PharmGKB has been designed to facilitate the free sharing of
data among the wider scientific community while maintaining the necessary safeguards
for personally identifiable health information (8). Thus, although PharmGKB data are
largely contributed by the members of PGRN, the resulting data are available over the
Internet for use by others. PharmGKB was first online in February 2001, and the first
open scientific meeting about it was held in August 2001 (8).

PGRN researchers are able to submit several dozen types of data including details
about gene variants (e.g., single nucleotide polymorphisms [SNPs], insertions, dele-
tions, and repeats), gene products (i.e., proteins), and phenotypes (e.g., pharmacokine-
tics, enzyme kinetics, and clinical observations). The project has recently been extended
to identify metabolic pathways. Submissions are not limited to experimental data. Infor-
mation of potential significance that has been culled from the literature is also permitted.
Information can be submitted via a Web-based form or via specifically formatted files
containing XML-tagged elements (9).

As of February 2004, there were 69,261 polymorphism–phenotype pairs in PharmGKB
(a “pair” is defined as a single genotype, such as the identify of an SNP at a certain posi-
tion, for which there is a single phenotype, such as the value of a measured parameter).

PharmGKB researchers and developers have faced and addressed a number of chal-
lenges in data standardization and knowledge representation. The core of PharmGKB’s
approach to knowledge representation is an ontology of pharmacogenomic concepts and
their interrelationships (10). Protege 2000 (11), a frame-based knowledge representation
system, has been used for PharmGKB ontology development. PharmGKB ontology has

www.nigms.nih.gov/pharmacogenetics
www.pharmgkb.org
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five top-level concepts: clinical outcomes, pharmacodynamics and drug responses,
pharmacokinetics, molecular and cellular functional assays, and genotypes. Overall,
the ontology includes 120 total concepts and 90 leaf-level concepts and has a maximal
depth of three parent–child relationships.

Integrating heterogenous data from different independent laboratories poses signif-
icant data standardization challenges. Data models were developed and iteratively im-
proved to provide conceptual and logical frameworks for PGRN data. Data models were
necessary for pharmacokinetic and pharmacodynamic data; genomic sequence and struc-
tures; molecular, cellular, and clinical phenotype data; and other domains. PharmGKB
also captures the interrelations between data objects with a rich set of hundreds of seman-
tic relationships. For example, a particular drug may be related to a particular enzyme
via the semantic relationship “is metabolized by.” Extensive database and data-model-
ing documentation is publicly available (12,13).

Standardization of terminology is a second major challenge to PRGN data integra-
tion. PharmGKB researchers recognized this from the start and elected to reuse exist-
ing structured vocabularies when possible, and to create structured terminologies when
necessary (7). The use of well-formed, high-quality terminologies is critical for the goal
of data representation and integration. Terminologies with formal definitions, i.e., repre-
sented using symbolic logic, are important to support algorithmic inferencing. To date,
PharmGKB researchers have adopted a number of existing terminologies including the
National Library of Medicine’s Medical Subject Headings (MeSH) (14) for diseases, the
Hugo Gene Nomenclature Committee (HGNC) (15) for gene names and symbols, and the
Department of Veterans Affairs National Drug File Reference Terminology (NDFRT™)
(16). An ongoing challenge is the integration and correlation of SNP data in PharmGKB
with data in other compilation databases such as HGVbase and GeneSNP (17).

PharmGKB is implemented via a multitiered architecture. The top layer is a collec-
tion of knowledge manipulation and retrieval tools. The second layer is a frame-based
knowledge base implemented via protege. The third layer is a relational database. Pharm
GKB researchers and implementers are involved in a number of ongoing informatics
projects including integrating and cross-referencing information with other related data-
bases (18) such as dbSNP.

4.2. Putting It All Together: HL7 Clinical Genomics Standards
The Clinical Genomics Special Interest Group (CG-SIG) of HL7 (an American National

Standards Institute [ANSI]–Accredited Standards Developing Organization) addresses
requirements for the interrelation of clinical and genomic data at the individual level. Many
of the genomic data are still generic. The vision of “personalized medicine” is based on
those correlations that make use of personal genomic data such as the SNPs that differen-
tiate any two persons and occur about every thousand bases. Besides normal differences,
health conditions such as drug sensitivities, allergies, and others could be attributed to the
individual SNPs or to differences in gene expression and proteomics (such as posttran-
scriptional modification of proteins). The emphases in clinical genomics are personali-
zation of the genomic data and “intelligent” linking to relevant clinical information. These
links are probably the main source from which genomicists and clinicians could benefit.
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Cases in which genomic data are used in health care practice vary in complexity and
extent of the data used, because the current testing methods are still very expensive and
not widely used. We can see simple testing such as identification of genes and mutations
as well as full sequencing of alleles and use of microarrays to identify the expression of
a vast number of genes in each individual. The HL7 CG-SIG group has been focusing
on tests that are routinely done in health care, while preparing the information infrastruc-
ture standard for more futuristic cases.

At first sight it seems that genomic data are yet another type of observation. Although
this is true, of course, there are a few characteristics that might distinguish these data
from typical clinical observations such as blood pressure or potassium level:

1. Amount of data: potentially it could be the entire human genome along with associated data.
2. Personalization of the data: this is evolving as new discoveries are continually made.
3. Complexity of the data: not only the DNA sequences need to be represented, but also SNPs,

annotations (automatic and manual), gene expression, protein translation, and more.
4. Emerging standard formats being used by the bioinformatics community (e.g., BSML and

MAGE-ML).
5. Clinical genomic correlations are closely related to recent clinical research discoveries and

its clinical reliability needs to be carefully described.

The CG-SIG develops HL7 standards to enable the communication between inter-
ested parties of the clinical and personalized genomic data. In many cases, in this domain,
the exchange of genomic data is done between disparate organization (e.g., providers,
laboratories, research facilities), and acceptable standards are crucial for the usefulness
of the data in health care practice.

Several storyboards were explored where genomic data is actually used in health care
practice, such as tissue typing for bone-marrow transplantation, cystic fibrosis genetic
and BRCA testing, as well as pharmacogenomics-based clinical trials. At the same
time, the group has been trying to identify the commonalities of the various storyboards
resulting in the Genotype model intended to be a reusable standard component. This
design allows every HL7 group that develops messages or documents carrying geno-
mic data (e.g., lab order and results, clinical trials, patient care, public health) to make
use of the Genotype model and populate its various structures. The model consists of
data about a specific chromosomal locus, including alleles, variations (e.g., mutations,
SNPs), sequences, gene expression levels, proteins, and determinant peptides.

The HL7 CG-SIG is taking a first principled approach to genomic knowledge repre-
sentation. Figure 15 shows some of the core knowledge classes specified by the group.
These form the basis for all of the more complex knowledge structures. Figure 16
depicts the aggregations of these types of knowledge, which are important for specify-
ing the output or design of an experiment or some other important clinical genomics
topic. Figure 17 shows that these aggregations of concepts are useful in representing the
knowledge needed for systems such as clinical trial systems or personalized medicine.

4.2.1. Genotype Model
The HL7 Genotype model describes a variety of genomic data types relating to a chro-

mosomal locus, which is proposed to be the basic unit of genomic information exchange
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in health care. For data relating to several chromosomal loci (e.g., a clinical phenotype
associated with multiple genes) there is a higher-level model named Genetic Profile
that utilizes the Genotype model. The Genotype model is not meant to be a biological
model; rather it is aimed at the needs of health care with the vision of personalized
medicine in mind. In addition, it could facilitate the needs of clinical research con-
ducted within the health care enterprises.

Fig. 15. This diagram depicts some of the core classes of information that need to be repre-
sented unambiguously in order to satisfy the knowledge representation needs of the clinical
genomics community.

Fig. 16. Around the core one can now construct views of data that are useful data sets to
define consistently and also unambiguously.
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The Genotype model originally evolved from work on the bone marrow transplanta-
tion (BMT) and tissue-typing storyboard attempting to introduce modularity in this area.
The first module is about the messages and documents being exchanged in the BMT
use case between its major players (e.g., BMT wards, tissue-typing labs, donor banks).
The second module zooms in and describes in more detail the unique observations used
in tissue typing, i.e., the individual tissue-typing observation and the matching observa-
tion that indicates the level of matching between two individual tissue-typing obser-
vations (e.g., patient and donor, victim and suspect). The rationale for this modularity is
that the tissue-typing observation could be used in various cases such as fatherhood test-
ing and forensic cases. The third zoom-in is about a single human leukocyte antigen (HLA)
allele, and its representation is done using the Genotype model. Figure 18 describes
the containment of the modules. Similarly to the use case of tissue typing in BMT, the
Genotype model will be utilized in other use cases such as genetic testing and clinical
trials.

A similar development methodology was carried out in other storyboards until it
reached the level of the fine grain genomic data. As previously mentioned, the Genotype
model is the result of these processes. Figure 19 shows a bird’s eye view of the Geno-
type model. The model itself (along with its corresponding XML schema and sample
XML instances) is available from the HL7 web site (see www.hl7.org.)

4.2.1.1. MAIN FEATURES OF GENOTYPE MODEL

1. General notes:
• This model can be used as an HL7 CMET (Common Message Element Type) much like

Patient, Encounter and other CMETs that are being used in various HL7 specifications.
It can be used by any message or document spec that needs to convey genomic data
linked with clinical data residing either internally or externally.

Fig. 17. Around a growing core and set of aggregations, it is now possible to define unambig-
uously clinical genomics application data in such a way as to support interoperability.

www.hl7.org.
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• The basic data framework is a chromosomal locus, typically an allele pair, one from the
paternal chromosome and the other from the maternal chromosome. However, it is pos-
sible to represent a nonallelic data set, as is the typical case in gene expression, or only
one allele in cases of translocations or insufficient data. More than two alleles can be
also represented in cases of multiple somatic variations identified in the specimen or in
the rare cases of three chromosomes as in Down syndrome.

2. Features:
• Starting point: The starting point is the GenotypeLocus class, representing a locus or

a gene, associated with any number of IndividualAllele classes. Note that a class in
HL7 modeling refers to a refined class derived from one of the HL7 core classes, such
as Observation, Procedure, or Entity. Refinement of a core class mainly concerns the
characteristics of the class attributes, such as (a) which ones are chosen, (b) what vocab-
ularies they are associated with, (c) what cardinalities they have, and (d) with what HL7
data types they comply.

It is interesting to note that the result of this refinement process is sometimes called a
“clone” in the HL7 RIM documentation, which obviously is not a proper name in clini-
cal genomics and illustrates the situation where data models are developed by different
communities with no common terminology.

Instantiating the Genotype XML schema to represent two identified HLA alleles, for
example, could result in the following XML structure:
<GenotypeLocus>

<IndividualAllele>
<value code=”HLA00398" codeSystemName=”IMGT/HLA Database”
displayName=”HLA B*8101"/>

</IndividualAllele>

Fig. 18. Genotype model as a reusable genomic data module. HLA, human leukocyte antigen.
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<IndividualAllele>
<value code=”HLA01809" codeSystemName=”IMGT/HLA Database”
displayName=”HLA B*8102"/>

</IndividualAllele>
</GenotypeLocus>

Note that if a full sequencing procedure of the HLA genes is performed then the raw
sequence data will be encapsulated in nested classes nesting within the IndividualAllele
element.

The core genomic observations associated directly with each of the IndividualAllele
classes are optional and include data about sequences, sequence variations and expres-
sion levels. The Sequence class is recursive and enables the representation of sequences
of molecules, such as DNA, RNA, and protein. The SequenceVariation class allows the
representation of any type of variation, such as SNPs, mutations, polymorphisms, and
so forth. The Expression class allows the representation of gene expression and other
expression data.

Other genomic observations associated with the core classes include classes, such
as Haplotype and TagSNP which enable the indication of haplotype information, and
Polypeptide and DeterminantPeptide, which enable the representation of proteomic data.
In addition, each of the core classes is associated with a generic properties class that is
populated through vocabularies that are part of the Genotype model. For example, it is
possible to associate the zygosity of a gene with the GenotypeLocus class by populating
the LocusAssociatedObservation class. The code of that object will be “zygosity” and
the value could be heterozygous, homozygous, etc. The same mechanism is attached
to the Sequence, SequenceVariation, and Expression classes. In the Expression class,
for example, it is possible to associate properties, such as the normalized intensity of
the gene expression by populating the class ExpressionProperty. In principle, these
property classes could be populated as many times as needed to describe the data. The
vocabularies are being reviewed and updated as new concepts become useful.

 The essence of the model is in the linking mechanism of genomic data to clinical
phenotypes, such as sensitivities, allergies, diseases, and adverse drug events. These
phenotypes are best represented by HL7 classes, such as Observations. The phenotypes
are represented by the classes ObservedClinicalPhenotype, ExternalObservedClinical
Phenotype, and KnownAssociatedPhenotype.

The difference between the two first classes is that the former represents a pheno-
type that the creator of the genomic data chose to include within the genotype instance
itself, whereas the latter represents a phenotype residing outside of the genotype in-
stance, such as in the patient record’s problem list. In theses cases the HL7 id attribute
is being used to unambiguously identify the external phenotype. The id attribute is of
type II (Instance Identifier), which includes the root and extension child elements.
The root represents the OID (Object Identifier—an ISO standard) of the organization
where the object resides and the extension represents the local identifier of that object
within the scope of that organization. This combination allows information systems to
resolve the id value and link to the “remote” object, in this case the clinical observa-
tion representing a phenotype in the context of genomic data.
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As for the KnownAssociatedPhenotype class, it represents a potential phenotype
based on the current knowledge but does not represent a phenotype actually observed
in the patient.

4.2.1.2. BIOINFORMATICS FORMATS

Bioinformatics formats are utilized in the Genotype model to encapsulate raw geno-
mic data such as sequencing, expression, and proteomic data. To enable the embedding
of such data accepted from laboratories that work with bioinformatics formats, it is pos-
sible to assign specific XML portions into the Sequence and Expression class value
attributes. Use of the XML bioinformatics markups is restricted; that is, not all tags are
allowed, only a subset that relates to a specific chromosomal locus of a patient and
includes the information pertinent to health care.

4.2.1.3. VALIDATION

Validation requires a receiver of an HL7 instance that carries a Genotype instance,
a “double-validation” process: the first step is to validate the instance against the HL7
spec and the second is to validate the content of those value attributes against the respec-
tive content models. The content models of the Sequence and Expression class value
attributes will be an integral part of the entire Genotype spec.

4.2.2. COEXISTENCE OF HL7 OBJECTS AND BIOINFORMATICS MARKUP

When exploring the Genotype model, one can identify the use of bioinformatics markup
such as MAGE for gene expression and BSML for DNA sequencing. In addition, a few
of the HL7 classes, such as the SequenceVariation class, overlap the elements of the
bioinformatics markup. The question then arises: what are the relationships of the two
and how do they coexist? The following are a few points to note about this issue:

• HL7’s mission is to develop message/document specs that will be used in health care prac-
tice. The mission of the CG-SIG at HL7 is to develop message/document specs where geno-
mic data are involved (e.g., genetic testing, clinical trials).

• Bioinformatics communities develop models/markups and are usually not ANSI-accred-
ited Standard Developing Organizations and, thus, cannot sanction and maintain these
formats. Naturally, their orientation is more toward research and the needs of information
exchange among research facilities, data mining, and statistical analysis.

• HL7 CG-SIG attempts to constrain existing bioinformatics markups and embed them in the
HL7 model. The bioinformatics markups are a type of raw data that might not always get
into the HL7 CG-SIG actual instances; rather, they might be only referenced from the
HL7 instance as supporting evidences. When they do get into an HL7 instance, then there is
a blend of HL7 classes and embedded genomic markup.

• The approach taken by the HL7 CG- SIG can be described as “encapsulate and bubble-
up;” that is, allowing overlaps and exploring its benefits. The HL7 classes should be seen
as representing the digest of the raw genomic data that are most pertinent to the health care
practice itself. There is a room here for applications that might parse the bioinformatics
markup and intelligently populate the HL7 classes.

• The HL7 classes in the Genotype model have the advantage of being better tied with the
other HL7 objects in the patient record (e.g., in a problem/allergy list) and, thus, serve better
the ability to link individual genomic data to the clinical data of that individual. Note that
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bioinformatics models also include clinical data, so this poses an overlapping problem in
the other direction.

The integration mechanisms of bioinformatics markups could integrate various gen-
omic sources into health care standards used for patient care, so there may not be one
standard format. The issue should not be which bioinformatics model is the “best fit
with HL7 Reference Information Model;” rather, it should be how mechanisms can be
developed to digest data in various representations and link them to the HL7 RIM for
the benefit of personalized medicine.

For example, the BSML markup is fairly simple and the HL7 CG-SIG has done
some work on BSML in constraining it to be embedded in HL7 classes. For example,
within the <Bsml> tags, the document is divided into three major sections, each of which
is optional, but because one designs HL7 observation, it seems that there is room only
for the first type:

1. Definitions—encoding of genomes and sequences, data tables, sets, and networks.
2. Research—encoding of queries, searches, analyses, and experiments.
3. Display—encoding of display widgets that represent graphical representations of biological

objects.

As part of the Genotype specification package, XML samples are available to show
how XML fragments complying with BSML are embedded in HL7-compliant instances
in various uses cases, such as tissue typing observations, somatic mutations in small-cell
lung cancer tissues, and genomic data in public health. The constraining process of BSML
makes sure that data related to research and presentation elements are not included and
that the instance includes one and only one patient’s data and that this patient is uniquely
identified.

4.2.3. Pharmacogenomics-Based Clinical Trial and Submission:
A Sample Storyboard

Work on the pharmacogenomics storyboard is being carried out as part of the HL7
Clinical-Genomics group’s ongoing activities and also as part of its participation in
the Pharmacogenomics Submission Standards Initiative (joint CDISC and HL7 project
coordinated by the US Food and Drug Administration [FDA] initiative on Voluntary
Genomic Data Submission Guidelines).

The pharmacogenomics storyboard focuses on all clinical aspects of genomic-based
clinical trials and the exchange of information needed to move from any current phase to
a more advanced phase in the course of the clinical trials. It spans from patient recruit-
ment based on genomic criteria and goes through gene selection based on haplotype
information and the actual genomic testing up to the analysis of those data in conjunc-
tion with the clinical data and their reporting.

The storyboard describes a scenario that starts at clinical trial designs with Pharma-
cogenomics components. Institutional Review Board approval is obtained after the
patient case report form and informed consent form design are prepared. Next, patient
recruitment is carried out and DNA or tissue samples are received. Gene selection and
a variation marker discovery process are conducted as part of the clinical trial. Clini-
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cal genotyping should be compliant with the appropriate regulation. In parallel, clini-
cal demographics, clinical phenotype, and laboratory test results are received for each
patient who participates in the trial. Haplotype or other types of markers are assigned
to each patient. Statistical analysis is conducted to establish the association between the
genetic markers and clinical outcomes. A validation study is then performed. Finally,
reports are generated and communicated between pharmaceutical and biotechnology
partners; submission materials are compiled for submission to regulatory agencies.

Following the storyboard described here, the HL7 CG-SIG groups developed an
HL7 model that captures the information exchange in that storyboard. The nature of
development in HL7 is that one first starts with a domain information model, called
“DIM,” based on the domain experts’ initial input. One then derives specific message/
document models from the DIM and validates them against the storyboard scenarios. In
an iterative process, one refines the more specific models and updates the DIM accord-
ingly. The DIM model is supposed to be the container of everything that matters in the
domain. The more specific models are called R-MIM (refined message information
models) and are derived from the DIM in such a way that the HL7 tooling can serialize
them and eventually produce XML schemas for implementation purposes. Figure 20
shows a bird’s eye view of the pharmacogenomics DIM. The model itself can be obtained
from HL7 (see www.hl7.org).

4.2.3.1. MAIN FEATURES OF PHARMACOGENOMICS MODEL

The pharmacogenomics model is focused on genomic data in the clinical trial arena.
It is important to note at this point that all parts of this model that are not related to gen-
omic data could be replaced with models developed by the HL7 Regulated Clinical
Research Information Management (RCRIM) group that focuses on clinical trials. The
“nongenomic” parts of this model were developed to better understand the genomic-
based processes (e.g., gene selection and haplotype discovery), and for completeness
of the model that might make it more convenient to read. Both HL7 groups hold joint
meetings and try to harmonize their models. A dedicated mechanism in HL7 for sharing
parts of models across different groups (domains) is the CMET mechanism. A CMET
model is an HL7 model that can be incorporated into another model. The key for using
CMETs effectively is clean modularity. The pharmacogenomics DIM model utilizes the
HL7 Clinical Genomics Genotype model as a CMET for representing both design and
selection of genes for the clinical trial, as well as for the results of the genomic testing.

4.2.3.2. PHARMACOGENOMICS MODEL WALK-THROUGH

The left side of the Pharmacogenomics model has the main participants in this model:
the sponsor (Pharma), the CRO, and the Patient. There are a few participants in the
model, such as Collaborator and regulator, which are described below.

At the upper left corner, the patient class and its related information can be seen.
Note that this model follows the HL7 V3 RIM core classes and associations. For exam-
ple, there is a Person entity who plays the role of a Patient with participation of being
the subject of the PharmacogenomicsClinicalTrial act. At the middle left, one can see
the CRO recruiting patients—a process represented by receiving the consent form from

www.hl7.org
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the patient. At the lower left, the Pharma entity can be seen taking the role of Clinical
ResearchSponsor, which has the participation of Performer of the Pharmacogenomics
TrialDesign act. On the right side of the model and continuing to the bottom, the anal-
ysis and reporting process is found, starting from the pharmacogenomics trial results
and its analysis on to the CRO and further to the sponsor. That is the beginning of the
submission process to the regulator with validation and other necessary actions.

At the heart of the model are the genomic acts, starting from the top where one can
see the main act—the PharmacogenomicsClinicalTrial, associated with the Pharmaco-
genomicsTesting act (which is an attempt to generalize the storyboard UML class called
“Genotyping”). The PharmacogenomicsTesting act can have any number of instances
of the Genotype module (supposed to be a CMET) in two modes: downward Pharmaco-
genomicsTesting is the component association with the Genotype module, where the
actual genomic result data reside; to the left of PharmacogenomicsTesting is an associa-
tion with the GeneSelection act, which is a fundamental part of a pharmacogenomics
clinical trial. To represent the genes that were selected, use the Genotype model and
populate only the gene identifiers, whereas in the use of the Genotype model for testing
results, any part of the Genotype model can populate (e.g., sequencing, gene expres-
sion, SNPs, haplotypes). The PharmacogenomicsTesting is performed by a DNALab,
which is a role played by the Collaborator entity (these classes are shown to the right
of the act).

5. Conclusion
Standards for clinical genomic data were first forged by industry consortia and

now by ANSI standards development organizations such as HL7. The goal is to pro-
vide mechanisms for representing, storing, and exchanging interoperable clinical geno-
mics data. In this chapter, we have discussed formalisms for representing gene sequence
data, microarray data, and pharmacogenomic data. We have described the uses of these
kinds of data and the rationale for their use. Benefits stand to be gained in terms of per-
sonalized medicine, improved research into the basis for disease, and the education of
current and future clinicians in this area, which, incidentally, have not been tradition-
ally well covered by current medical education curriculums. The bioinformatics com-
munity is moving forward with standards in support of clinical genomics interoperability.
This work should form a firm basis for development of clinical genomics informatics
solutions of the future.

From a sequence analysis and communication standpoint, it is clear that there is a
long way to go before a single standard or a set of standards is adopted by the scienti-
fic community at large. Owing to their historical and utilitarian support in the research
community, raw, FASTA, and GCG file formats continue to enjoy widespread use. This
is unfortunate because their “sequence(s) in isolation” paradigm is more in line with
traditional genetics research than that of the much more expansive and interconnected
model of genomic research. Flat-file formats represent a step toward that broader goal in
the realm of data management for sequences. Not only are flat files more richly popu-
lated with biological information (both nucleotide sequence and translated reading
frames, taxonomy, locus, and so on), but the detailed indexing of a sequence as a func-
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tion of its discovery and its role in biology and medicine precisely positions this infor-
mation within a conceptual framework of the known genome: past, present, and peer
reviewed. Flat files, however, are not without failing, especially in the context of direct
exchange between researchers. A measure of data integrity would provide greater con-
fidence in working with codes that are impractical—if not impossible—to check manu-
ally, given the cryptic nature of reading a string of JCBN codes, often of overwhelming
length. Options to consider are numerous, from the simple checksum utility of GCG,
to more sophisticated solutions analogous to DICOM (Digital Imaging and Commu-
nications in Medicine) wrappers used in digital radiology images.

Many researchers still need to study gene and protein sequences in relative isolation,
(e.g., for discovery and sequencing of SNPs, determination of posttranslational variants.
For these focused areas of study, the use of simpler standards of data exchange might
appear to be superior, because historical, relational, and other broader context data are
less relevant to the task at hand. But does less relevant mean irrelevant? As even the
simple FASTA and GCG formats demonstrate, it is very easy to instruct a computer pro-
gram to ignore data in a file (e.g., headers, position numbers, blank spaces). Given this
fact, it may be more reasonable to instruct applications of specific function (e.g., homol-
ogy search) to ignore nonsequence data within flat files; however, having such data
immediately available (in the same file) serves to better facilitate the grander goal of
genomics, which is finding connections of information across entire genomes and
proteomes. Such connections are less likely to be made when sequences are studied in
isolation, as necessitated by raw, FASTA, and GCG formats (among others).

Breaking the Enigma code in WWII was a pivotal event in turning the tides for the
Allies against the Axis powers. Sun Tzu recognized more than 2000 yr ago that a finely
coordinated, well-communicating army was a force to be reckoned with, if not avoided
altogether: “Do not engage an enemy advancing with well-ordered banners nor one
whose formations are in impressive array” (75). Keep in mind that all multicellular life
begins as a single cell, and its organization is clearly evident in its tightly regulated net-
work of gene expression, maintenance, and interaction with its surroundings. That level
of organization is evident (to the extreme) at the tissue and organ levels, where the
roaring din of 150 billion neurons finds a way to integrate into the discrete clarity of
consciousness in a single human brain. The banners of the genome are “well ordered”
indeed. When codes are broken, and unfettered access into vital communications is
secured, be it an enemy infrastructure or a cellular genome, the battle is already won:
obtaining the prize becomes a simple investment of time and labor.
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Clinical Applications of Bioinformatics,
Genomics, and Pharmacogenomics

Omer Iqbal and Jawed Fareed

Summary
Elucidation of the entire human genomic sequence is one of the greatest achieve-

ments of science. Understanding the functional role of 30,000 human genes and more than
2 million polymorphisms was possible through a multidisciplinary approach using micro-
arrays and bioinformatics. Polymorphisms, variations in DNA sequences, occur in 1% of
the population, and a vast majority of them are single nucleotide polymorphisms. Geno-
type analysis has identified genes important in thrombosis, cardiac defects, and risk of car-
diac disease. Many of the genes show a significant correlation with polymorphisms and
the incidence of coronary artery disease and heart failure. In this chapter, the application
of current state-of-the-art genomic analysis to a variety of these disorders is reviewed.

Key Words: Single nucleotide polymorphism; bioinformatics; gene expression; micro-
arrays; angiotensin-converting enzyme; activated protein C; coronary artery disease;
glycoprotein.

1. Introduction
According to 1998 mortality rates in the United States, cardiac diseases ranked first

on a list of 12 diseases, and the National Institutes of Health estimated the total cost of
treatment at $183.1 billion (1). Environmental and genetic risk factors play an impor-
tant role in the pathophysiology of most human diseases. Whereas some diseases may
have a primarily environmental influence, others may be purely genetically influenced
or influenced by a combination of the two. It has generally been thought that cardio-
vascular risk factors such as smoking, obesity, diet, and lack of exercise are environ-
mental in nature and play a most important role in disease process. However, premature
heart disease and the presence of diabetes and a definite genetic background have been
identified as risk factors for coronary artery disease. Because about half of the varia-
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bility of major risk factors for cardiovascular disease is genetic, pharmacogenomics
plays a major role in the diagnosis, treatment, and prevention of these disorders. Venous
thromboembolism (VTE) is a common disorder worldwide. The estimated annual inci-
dence of symptomatic thromboembolism is 117 cases per 100,000 people (2), or more
than 250,000 people each year in the United States. The incidence is age dependent,
increasing from 0 in children to less than 1 per 10,000 in young adults and 3–5 per 10,000
in individuals over the age of 60, with further increments with each additional decade
(3). With a large proportion of the US population entering the older age group, VTE
will become an increasingly important national health problem (2). Venous thrombo-
sis commonly develops in the deep veins of the leg (calf vein thrombosis and proximal
vein involving the popliteal, femoral, or iliac veins) or the arm. Pulmonary emboli are
sequelae from thrombi in the deep veins of the leg in 90% or more of patients. Deep
vein thrombosis (DVT) and/or pulmonary embolism are referred to as VTE.

The emergence of pharmacogenomics-guided anticoagulant drug development has
unraveled novel approaches in the management of patients and ensured individualized
therapy to everyone. Gene expression profiling will be useful in the diagnosis of various
diseases, in preclinical phases of drug development, and in the development of markers
of adverse drug reactions, which can be avoided by withdrawing a particular drug. Through
cheminformatics anticoagulant drug therapy can be tailored to the individual needs of
the patient at the correct dosage and time. Now that the human genome is completely
mapped, identification of gene-based single nucleotide polymorphisms (SNPs) will be
valuable in the diagnosis of diseases.

Pharmaceutical industries are focusing on applying pharmacogenomics not only to
develop new anticoagulant drugs but also to reduce the cost of and length of time of
clinical trials. Thus, new agents could be developed and therapy individualized, i.e.,
tailored to treat the right patient at the correct dosage. Although genetic association
studies are used to establish links between polymorphic variation in coagulation factor
V gene and DVT, this approach of “susceptibility genes” directly influencing an indi-
vidual’s likelihood of developing the disease (4) has been extended to the identification
of other gene variants. Variations in the drug-metabolizing enzyme gene thiopurine
methyl transferase have been linked to adverse drug reactions (5). Likewise, variants in
drug target (5-lipoxygenase, ALOX5) have been linked to variations in drug response
(6). Through linkage disequilibrium or nonrandom association between SNPs in prox-
imity to each other, tens of thousands of anonymous SNPs are identified and mapped.
These anonymous genes may fall either within genes (susceptibility genes) or in non-
coding DNA between genes. Through linkage disequilibrium the associations found
with these anonymous SNP markers can identify a region of the genome that may
harbor a particular susceptibility gene. Through positional cloning, the gene and SNP
can be discovered, conferring the underlying associated condition or disease (7).

The National Heart, Lung, and Blood Institute (NHLBI) has launched various pro-
grams for genomic applications (PGAs) with the goal of developing information, tools,
and resources to link genes to biological function. Some of the programs include Bay
Genomics (NHLBI, Bay Area Functional Genomics Consortium, http://baygenomics.
ucsf.edu/), Berkeley PGA (comparative genomic analysis of cardiovascular gene regula-

http://baygenomics.ucsf.edu/
http://baygenomics.ucsf.edu/
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tion, http://pga.lbl.gov/), CardioGenomics (genomics of cardiovascular development,
adaptation, and remodeling, www.cardiogenomics.org), and HOPGENE (applied gen-
omics in cardiopulmonary disease, www.hopkins-genomics.org). Berkeley PGA was
formed to facilitate the use of comparative genomics in the studies of heart, lung, and
blood disorders. This PGA consists of bioinformatics tools for comparative sequence
analysis that include VISTA server and tools (www-gsd.lbl.gov/VISTA/index.html),
VISTA whole genome browser (http://pipeline.lbl.gov/), MAVID alignment tools (http:
//baboon.math.berkeley.edu/mavid/), and LAGAN alignment tools (http://lagan.stan
ford.edu/). The cross-species sequencing resources needed include BAC libraries and
filters (www-gsd.lbl.gov/cheng/BAC.html, BACs containing cardiovascular genes and
unprocessed sequence contigs (http://pga.lbl.gov/seq/), and a comparative genomic data-
base for cardiovascular genes (http://pga.lbl.gov/cvcgd.html). Bioinformatics tools for
comparative sequence analysis and cross-species sequencing resources are very impor-
tant in facilitating the use of comparative genomics in the studies of heart, lung, and
blood disorders.

2. Materials and Methods
Most of the methods described here are covered elsewhere in this book and thus are

only briefly described. Detection of SNPs typically requires extraction of DNA from
leukocytes of whole-blood samples and amplification of the DNA using polymerase
chain reaction (PCR). From a known DNA sequence, using specific forward and reverse
primers, isolation of DNA sequence containing the gene of interest is possible. The ampli-
fied DNA is then incubated with specific restriction site endonucleases to degrade the
DNA into fragments. The DNA fragments are resolved using polyacrylamide gel elec-
trophoresis and visualized with ethidium bromide. QIAamp DNA Mini and QIAamp
DNA Blood Mini Kits are used for purification of total DNA. Whole blood, plasma,
serum, buffy coat, bone marrow body fluids, lymphocytes, cultured cells, and tissues
can be used to extract and purify the DNA. Fresh or frozen whole blood and blood treated
with citrate, EDTA, or heparin can be used in the QIAamp procedure. However, prior
separation of leukocytes is not a requisite. DNA is eluted in Buffer AE and phenol/chlor-
oform extraction or alcohol precipitation is not necessary. The purified DNA free of pro-
teins, nucleases, contaminants, and inhibitors may be stored at −20°C for later analysis.

2.1. Purification of DNA
The QIAamp procedure may be followed for purification of DNA. The QIAamp

Mini and QIAamp DNA Blood Mini Kits perform rapid purification of 6 µg of total
DNA from 200 µL of buffy coat.

2.2. RNA Extraction Using Trizol Reagent
1. Pipet out 250 µL of whole blood, and dilute 1:1 with diethylpyrocarbonate-treated water.

Add 750 µL of Trizol reagent (lyse by pipetting several times in the tip of the pipet).
2. Incubate and mix at 15–30°C for 15 min.
3. Add 200 µL of chloroform.
4. Cap and shake vigorously for 15 s by hand, and then incubate at 15–30°C for 15 min.

www.cardiogenomics.org
www.hopkins-genomics.org
http://pga.lbl.gov/
www-gsd.lbl.gov/VISTA/index.html
http://pipeline.lbl.gov/
http://baboon.math.berkeley.edu/mavid
http://baboon.math.berkeley.edu/mavid
http://lagan.stanford.edu/
http://lagan.stanford.edu/
www-gsd.lbl.gov/cheng/BAC.html
http://pga.lbl.gov/seq/
http://pga.lbl.gov/cvcgd.html
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5. Centrifuge at 18,659g for 15 min at 2–8°C. The mixture will separate into an upper color-
less aqueous phase and a lower phenol-chloroform phase (interphase). The RNA remains
in the upper colorless aqueous phase.

6. Transfer the aqueous phase to a clean tube and mix with 500 µL of isopropyl alcohol (do
not vortex; mix by pipetting).

7. Incubate at 15–30°C for 10 min.
8. Centrifuge at 18,659g for 10 min at 2–8°C. The RNA precipitate with form a gel-like

pellet on the sides and bottom of the tube.
9. Remove the supernatant and wash the RNA pellet for 5–10 min with 1 mL of 75% ethanol.

10. Vortex and centrifuge at 9520g for 5 min at 2–8°C.
11. Remove the supernatant and air-dry the RNA pellet for 5–10 min (do not let it dry com-

pletely because this will decrease the solubility of the pellet and decrease the A260/A280
ratio).

12. Dissolve the RNA in RNase-free water by passing a few times through a pipet tip, and
incubate for 10 min at 55–60°C.

13. Proceed with RNA purification using a Qiagen kit.

Generally approx 6–8 µg of total RNA Smaller quantities of RNA can be amplified
through different techniques, and as little as 10 ng of RNA can generate labeled cRNA
in a sufficient amount to obtain reliable and reproducible microarray data. Data analysis
is performed through supervised and unsupervised learning. Biological interpretation of
the data is very important, and future technologies will adopt ways of minimizing over-
interpretation of data. The samples are separately run in duplicates in order to validate
and confirm the analysis of microarray data.

2.3. Gene Expression Analysis
There are several techniques to monitor expression of myriad genes. Some of the

techniques include serial analysis of gene expression, differential display, representa-
tional differential analysis, and microarrays.

2.3.1. Microarray Analysis
The DNA microarray is a very commonly used technique and can generate quantita-

tive information about thousands of gene expressions in a reliable, rapid, convenient,
and economical manner. There are numerous Web sites from which information on
DNA microarrays can be obtained, including Stanford Genomic Resources (http://genome-
www.stanford.edu), Gene Expression Omnibus database (www.ncbi.nim.nih.gov/geo),
ArrayExpress database, (www.ebi.ac.uk/arrayexpress), National Human Genome Re-
search Institute (http://research.nhgri.nih.gov), Broad Institute (www.broad.mit.edu/
cancer), and The Jackson Laboratory (http://jax.org/staff/churchill/labsite).

Specifically designed microarrays to study angiogenesis and cell adhesion have been
developed. Pathway-focused microarrays can be used to perform project-related gene
expression instead of profiling the whole genome. Various available oligonucleotide
arrays include angiogenesis microarrays, endothelial cell biology microarrays, and ex-
tracellular matrix and adhesion microarrays. Some of the features of oligo microarrays
include pathway-focused design containing 100–500 well-characterized genes belong-
ing to relevant biological pathways, robust performance employing the most sensitive

http://genomewww.stanford.edu
http://genomewww.stanford.edu
www.ncbi.nim.nih.gov/geo
www.ebi.ac.uk/arrayexpress
www.broad.mit.edu/cancer
www.broad.mit.edu/cancer
http://research.nhgri.nih.gov
http://jax.org/staff/churchill/labsite
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proprietary labeling method to achieve reproducible data, and user-friendliness and
cost-effectiveness.

2.3.2. DNA Microarray Techniques
Microarrays differ with respect to the type of probe, manner in which they are arrayed

on the solid support, and method of target preparation. The support on which the probes
are arrayed can be made of glass slide, nylon membrane, or silicon wafer. The comple-
ment DNA or cRNA generated from sample RNA labeled with fluorescent dye is hybrid-
ized to the microarray. The scanner at the site of the probe measures fluorescence. PCR
amplification of cDNA generates the cDNA fragments, which are robotically spotted
onto the glass slide on which the probes are arrayed. To be consistent with the amount
of each probe spotted robotically onto the glass slide, sample RNA labeled with fluores-
cent dye is often hybridized to the array together with a fixed amount of reference RNA
labeled with a different fluorescence. Prior sequence information is not needed for DNA
microarrays. Further developments in the field of DNA microarrays will lead to the
development of additional oligonucleotide arrays. However, DNA microarrays are quite
ideal in situations in which the genomes of the organisms are not sequenced.

2.4. Microarray Bioinformatics
Microarray bioinformatics involves microarray experimental design and data analy-

sis involving statistical considerations and the collection, management, and analysis of
microarray data. Effective data analysis involves understanding and recording infor-
mation, collecting useful annotations for probes on the array, and tracking and manag-
ing data and materials in the laboratory. Data collection normalization techniques enable
comparison of data on gene expression from various arrays. Data-mining algorithms
help organize data and facilitate discovery of potential functional relationships. Vari-
ous statistical techniques such as t-tests, analysis of variance, or significance analysis
of microarrays may be used to identify groups of genes that distinguish different samples.
Resources for microarray bioinformatics include http://jax.org/staff/churchill/labsite/
index.html and http://pga.tigrr.org/PGASoftware.shtml.

3. Clinical Applications of Bioinformatics and Pharmacogenomic Analysis
Microarray analysis of different genes of interest that could be used in high-through-

put sequencing in a population to detect common or uncommon genetic variants have
been developed. These DNA microarrays have been accurate, high-throughput, repro-
ducible, and low cost. So far, Food and Drug Administration-approved microarrays are
on the market. Efforts should be made not only to improve the sensitivity but also to
reduce the costs of identifying polymorphisms by direct sequencing.

3.1. Disorders of Thrombophilia
The functional consequences of nonsynonymous SNPs can be predicted by a struc-

ture-based assessment of amino acid variation (8). The major defects associated with
thrombophilia are activated protein C resistance caused by Arg 506 to Gln mutation (fac-
tor V Leiden), prothrombin polymorphism (G20210A) causing an elevated prothrom-

http://jax.org/staff/churchill/labsite/index.html
http://jax.org/staff/churchill/labsite/index.html
http://pga.tigrr.org/PGASoftware.shtml.


164 Iqbal and Fareed

bin level, hyperhomocystenemia, protein C deficiency, protein S deficiency, antithrom-
bin deficiency, and elevated factor VIII levels. The various polymorphisms in coagula-
tion factors are discussed next.

3.1.1. Fibrinogen Abnormalities
Various polymorphisms have been identified in all the genes located on the long

arm of chromosome 4 (q23-32). However, the two dimorphisms in the β-chain gene, the
HaeIII polymorphism (a G♦A substitution at position –455 in the 5' promoter region
and the Bcl1 polymorphism in the 3' untranslated region, are of major importance and
are in linkage disequilibrium with each other. The –455G/A substitution in different
investigations was found to be a determinant of plasma fibrinogen levels (9,10) and
linked the fibrinogen gene variation to the risk of arterial disease. Because of conflict-
ing reports from different studies, this association between fibrinogen gene variation
and arterial disease is controversial. The α-chain Thr-312 Ala polymorphism has been
reported to increase clot stability (11). Specific factor XIIIa inhibitors may play an
important role in decreasing clot stability. Polymorphisms of the β-fibrinogen gene
affect plasma fibrinogen levels (12–15), the risk of peripheral arterial disease (10,15–
17), and the risk and extent of coronary artery disease (18–20).

3.1.2. Prothrombin G20210 Polymorphism
First reported by Poort et al. (21) in 1996, replacement of G by A at nucleotide 20210

in the 3'-untranslated region of the prothrombin gene increases translation without alter-
ing the transcription of the gene, resulting in elevated synthesis and secretion of pro-
thrombin by the liver. This increased synthesis and secretion of prothrombin contributes
to increased thrombotic risk by causing increased thrombin generation, which can
activate the thrombin activatable fibrinolytic inhibitor, resulting in fibrinolytic deficit.
The A20210 allele is present in 5–7% of VTE patients and is the second most common
genetic risk factor for VTE (21–23). A combined mutation of factor V Leiden and pro-
thrombin gene 20210 is associated with a higher risk of VTE (24–30).

3.1.3. Activated Protein C Resistance
Factor V Leiden R506Q mutation, occurring in 8% of the population and referring

to specific G♦A substitution at nucleotide 1691 in the gene for factor V, is cleaved less
efficiently (10%) by activated protein C. This results in DVT, recurrent miscarriages,
portal vein thrombosis in patients with cirrhosis, early kidney transplant loss, and other
forms of VTE (31–34). A dramatic increase in the incidence of thrombosis is seen in
women who are taking oral contraceptives. Both prothrombin G20210 and factor V
Leiden in the presence of major risk factors may contribute to atherothrombosis. The
factor V Leiden allele is common in Europe, with a population frequency of 4.4%. The
mutation is very rare outside of Europe, with a frequency of 0.6% in Asia Minor (35).

3.1.4. Factor VII
Polymorphisms in the factor VII gene, especially the Arg-355Gln mutation in exon

8 located in the catalytic domain of factor VII, influence plasma factor VIII levels.
The Gln-353 allele caused a strong protective effect against the occurrence of myocar-
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dial infarction (36). Further research in this area is warranted to understand the role of
factor VII in determining arterial thrombotic risk. Because the factor VIIa/tissue factor
(TF) is the initial coagulation pathway, much attention has been focused on blocking
this pathway by developing factor VIIa inhibitors and tissue factor pathway inhibitors
(TFPIs) (37). NAPc2 and NAP-5 are two of the anticoagulant proteins isolated from the
hookworm nematode Ancylostoma caninum. NAPc2 is currently undergoing phase II
clinical trials for prevention of VTE in patients with elective knee arthroplasty. NAPc2
binds to a noncatalytic site on factor X or Xa and inhibits factor VII. NAP-5 inhibits
factor Xa and factor VII/TF complex after prior binding to factor Xa.

3.1.5. Factor VIII
Increased factor VIII activity levels are associated with increased risk of arterial throm-

bosis. However, no specific polymorphisms in the factor VIII gene have been determined.

3.1.6. von Willebrand Factor
Although increased plasma von Willebrand factor (vWF) levels have been attributed

to increased risk of arterial thrombotic events, no gene polymorphisms in the vWF gene
have been identified.

3.1.7. Factor XIII
Factor XIII SNP G♦T in exon 2 causes a Val/Leu change at position 34. The Val34

Leu polymorphism increases the rate of thrombin activation of factor XIII and causes
increased and faster clot stabilization (38,39). The Leu34 allele has been shown to play
a protective role against arterial and venous thrombosis (40,41). Specific factor XIIIa
inhibitors, such as tridegin and others, may provide an interesting and novel approach to
preventing fibrin stabilization. It is important to identify this polymorphism because
the Leu34 variant associated with increased factor XIIIa activity reduces the activity
of thrombolytic therapy (38,39).

3.1.8. Thrombomodulin
Thrombomodulin mutations are more important in arterial diseases than in venous

diseases. The thrombomodulin polymorphism G♦A substitution at nucleotide position
127 in the gene has been studied regarding its relation to arterial disease. The 25Thr allele
has been reported to be more prevalent in male patients with myocardial infarction than the
control population (42). Polymorphism in the thrombomodulin gene promoter (−33 G/A)
influences plasma soluble thrombomodulin levels and causes increased risk of coronary
heart disease (43). Carriership of the −33A allele has also been reported to cause increased
occurrence of carotid atherosclerosis in patients younger than 60 yr of age (44).

3.1.9. Tissue Factor Pathway Inhibitor
Sequence variation of the TFPI gene has been reported. The four different polymor-

phisms reported are Pro-151Leu, Val-264Met, T384C exon 4, and C033T intron 7 (45,
46). The Val-264Met mutation caused decreased TFPI levels (46). It has been reported
that the Pro-151Leu replacement is a risk factor for venous thrombosis (47). A polymor-
phism in the 5' untranslated region of the TFPI gene (−287 T/C) did not alter the TFPI
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levels and did not influence the risk of coronary atherothrombosis (48). It has recently
been reported that the −33T♦C polymorphism in intron 7 of the TFPI gene influences
the risk of VTE independently of the factor V Leiden and prothrombin mutations, and
its effect is mediated by increased total TFPI levels (49).

3.1.10. Endothelial Protein C Receptor
A 23-bp insertion in exon 3 of the endothelial protein C receptor (EPCR) gene has

been reported to predispose patients to the risk of coronary atherothrombosis (50). Fur-
ther studies are needed to relate the polymorphisms in the EPCR gene to thrombotic
diseases.

3.1.11. Methylene Tetrahydrofolate Reductase
A common polymorphism, C677T, is seen in methylene tetrahydrofolate reductase

(MTHFR) gene, causing hyperhomocystenemia, and is considered to be a potential risk
factor for both venous and arterial diseases. Homocystenemia, most often associated
with folate deficiency or deficiency of cystathione β-synthetase deficiency (51,52), is
found in about 10% of families in which coronary artery disease presents before the
sixth decade (53). It is also associated with cerebrovascular disease (54). Hyperhomocy-
stenemia appears to be a risk factor for both arterial (55) and venous thrombosis (56,57)
and may cause endothelial injury. Folic acid supplementation corrects the vascular effects
of homocystenemia (58).

3.1.12. Platelet Surface Gene Polymorphisms
Various polymorphisms of the platelet surface proteins, such as glycoprotein (GP)

Ia-Iia, GPIb-V-IX, and GPIIb/IIIa have been reported. A gene polymorphism has recently
been reported in the kozac sequence of the GPIbα receptor (59). The role of these poly-
morphisms in arterial disease warrants further studies. The GPIIb/IIIa receptors bind
fibrinogen, crosslink platelets, initiate thrombus formation (60), and are considered to
be the final common pathway of platelet aggregation. A Leu/Pro polymorphism at posi-
tion 33 occurs in about one-fourth of the population and has been linked to coronary
artery stenosis (14,61), myocardial infarction (60), and risk of restenosis after coronary
stent placement (62).

3.2. Cardiac Malformations and Coronary Artery Disease

3.2.1. Congenital Cardiac Malformations
Deletions of chromosome 22q11 manifest as interrupted aortic arch in approx 50%

of patients, 35% of patients with truncus arteriosus, 33% of patients with ventricular
septal defect, and 16% of patients with tetralogy of Fallot, but none with transposition
of great vessels (63). This deletion is seen in 90% of patients with DiGeorge syndrome
(64). These deletions are also associated with pulmonary artery anomalies (65,66). Car-
diovascular malformations are frequently seen in association with various syndromes.
Patients with Down syndrome (trisomy 21) also have cardiovascular malformations
involving one or more loci on chromosome 21q22.2-q22.3 (67–69). Microdeletions at
7q11.23 are associated with Williams syndrome, which also manifests supravalvular
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aortic stenosis and pulmonary artery stenosis (70,71). Furthermore, Marfan syndrome
manifests mitral valve prolapse and aortic root enlargement as a result of mutations in
the fibrillin-1 gene (72).

3.2.2. Coronary Artery Disease: GENICA Study
The GENICA Study identified novel risk factors for coronary artery disease. It has

recently been reported that the C allele at the T-786C endothelial nitric oxide synthase
(eNOS) polymorphism is associated with a higher risk of multivessel coronary artery
disease in Caucasians (73). Although an impaired endothelium-dependent vasodilation
(74) is associated with accelerated atherosclerosis, such as arterial hypertension, ciga-
rette smoking, diabetes mellitus, hypercholesterolemia, hyperhomocysteinemia and
aging (75,76), a blunted nitric oxide (NO)-mediated endothelium-dependent vasodila-
tion was found to predict cardiovascular events independently of the common risk fac-
tors (77). NO is involved in atherogenesis (78–80), development of heart failure, and
congenital septal defects and vascular remodeling, as shown by data from mice lacking
the eNOS gene (79,81). NO, by blunting the activity of the nuclear factor-κB family of
transcription factors (82,83), can prevent the endothelial expression of adhesion mole-
cules and inflammatory cytokines that are responsible for atherogenesis (84).

3.2.3. Polymorphisms and Coronary Atherothrombosis
The T-786 eNOS genotype has recently been reported in the GENICA Study as a

novel risk factor for coronary artery disease in Caucasian patients (73). NO, a major
mediator of endothelium-dependent vasodilation made in the endothelium by eNOS,
not only plays a key role in the regulation of vascular tone (73,78) and blood pressure,
but is also involved in atherogenesis (73,79,80,85). Although the GENICA study was
limited—it was only conducted in male Caucasians—the findings in other populations
from other countries and in females might be different. The T-786 and Glu298Asp poly-
morphisms of the endothelial NO gene affect the forearm blood flow responses of Cau-
casian patients with hypertension (86).

3.2.3.1. INCREASED LOW-DENSITY LIPOPROTEIN CHOLESTEROL

AND CORONARY ARTERY DISEASE

Low-density lipoprotein (LDL), the major cholesterol-carrying lipoprotein in plasma,
is a causal agent in coronary heart disease. Hepatic LDL receptor (LDLR) activity nor-
mally clears the LDL from the plasma. Monogenic diseases may impair the activity of
LDLR, causing elevated plasma levels of LDL. Familial hypercholesterolemia, a mono-
genic disorder causing elevated plasma LDL, is a result of a deficit in the LDLRs. More
than 600 mutations have been identified in the LDLR gene in patients with familial
hypercholesterolemia (87). One in 500 patients with hypercholesterolemia are heter-
ozygous for at least one such mutation and produce half the normal number of LDLRs,
resulting in a two- to threefold increase in LDL levels. By contrast, one in a million
patients is homozygous at a single locus, resulting in 6–10 times normal LDL levels, and
develops severe coronary atherosclerosis and dies in childhood from acute myocardial
infarction.
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Other monogenic diseases that elevate plasma levels of LDL include familial ligand–
defective apolipoprotein B-100, autosomal recessive hypercholesterolemia, and sito-
sterolemia. Mutations in the APOB-100 gene encoding apolipoprotein B-100 slow the
clearance of plasma LDL by reducing the binding of apolipoprotein B-100 to LDLRs
and mutation is designated familial ligand-defective apolipoprotein B-100 (88). Sito-
sterolemia, an autosomal disorder, results from mutations in genes encoding two ade-
nosine triphosphate (ATP)-binding-cassette (ABC) transporters, ABC G5 and ABC G8,
that export cholesterol into the intestinal lumen and limit cholesterol absorption (89,
90). Various mutations of APOA1-CIII-A1V gene (locus 11q23), a few mutations of
cholesterol ester transfer protein (CETP) gene (locus 16q22), and mutations of lecithin
cholesteryl acyltransferase (LCAT) gene (locus 16q22) cause a decrease in high-density
lipoprotein levels. E2/E3/E4 polymorphism of ApoE (and C1, CII) gene (locus 19p13.3)
results in increased levels of LDL and very LDL. However, KIV repeats of Apo(a) gene
(locus 6q26) cause increased levels of Lipoprotein (a).

3.2.3.2. VASCULAR HOMEOSTASIS AND CORONARY ARTERY DISEASE

The A/b and Gln298Asp, I/D, C1166A, and M235T polymorphisms of ENOS, ACE,
AT1, and AGT genes, respectively, have been identified. Whereas the ACE (locus 17q23)
and AGT (locus 1q42) polymorphisms cause increased levels of ACE and (angioten-
sinogen) AGT, the functions of AT1 (locus 3q22) and ENOS (locus7q35-36) polymor-
phisms are unknown. Recent studies have shown an association between SNP in the pro-
moter region of ABC transporter (ABCA1) gene and increasing severity and progression
of coronary atherosclerosis (91). The CYB gene is involved in maintaining a balance
between oxidation and reduction in the vessel wall. CYBA gene codes for p22phox pro-
tein, a component of the plasma membrane–associated enzyme NADPH oxidase, a pre-
cursor to potent oxidants and an important source of superoxide anion. The P22 phox

protein with gp91 forms a membrane-bound flavocytochrome b558 and is essential for
NADPH-dependent oxygen free-radical production in the vessel wall. The Lipoprotein
Coronary Atherosclerosis Study evaluated the association between the 242C/T variant
of CYBA and the severity and progression of atherosclerosis and concluded that in the
placebo group, subjects with mutation had more promotion and less regression of athero-
sclerosis and a three- to fivefold greater loss in minimum lumen diameter. Furthermore,
variants of p22phos were involved in progression of coronary atherosclerosis (91,92).

3.2.4. Genomics and Hypertension
In the United States alone, there are approx 62 million people with cardiovascular

disease and 50 million with hypertension (93). Hypertension, a polygenic disease, is a
risk factor for cardiac morbidity and causes cardiac hypertrophy that results in sudden
cardiac death. The susceptibility genes for hypertension interact with the environment
and, because they are age dependent, manifest in 20–30% of the population in their elderly
years. Recently, a missense mutation (leucine substituted for serine at codon 810) was
identified in the mineralocorticoid receptor (MR) in a family with early onset of hyperten-
sion, decreased plasma renin activity, decreased serum aldosterone, and no other etiology
of hypertension (94). As a result, the receptor with the mutation activates itself with-
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out the need for 21-hydroxylase stimulation. Spironolactone instead of blocking the
mineralocorticoid activity further activates it. Pregnant patients who develop hyperten-
sion may experience a serious consequence of preeclampsia or eclampsia. Normally, pro-
gesterone does not activate the MR. However, in patients with this mutation, progesterone
activates the MR, resulting in increased levels of progesterone and hypertension. These
patients also have decreased serum potassium and aldosterone. Spironolactone in these
cases increases the hypertension-caused preeclampsia. Identification of the suscepti-
bility genes is very important and will help in the prevention and treatment of hyperten-
sion (94).

Other monogenic diseases that elevate blood pressure include glucocorticoid-remedi-
able aldosteronism, apparent mineralocorticoid excess, hypertension exacerbated by
pregnancy, and Liddle syndrome. Monogenic diseases that decrease blood pressure
include aldosterone synthase deficiency; 21-hydroxylase deficiency; and pseudohypo-
aldosteronism type 1, both autosomal dominant and recessive forms. Monogenic diseases
that cause normal or decreased blood pressure include Gitelman syndrome and Bartter
syndrome (95).

3.3. Familial Cardiovascular Disorders
 Several of the cardiovascular disorders are familial, and for most of them, the chro-

mosomal location has been mapped but the gene has not been identified. The broad cate-
gories of diseases in this group include the cardiomyopathies, cardiac septal defects,
aortic diseases, conduction disorders, ventricular arrhythmias, and atrial arrhythmias.

3.3.1. Cardiomyopathies
3.3.1.1. FAMILIAL HYPERTROPHIC CARDIOMYOPATHY

Familial hypertrophic cardiomyopathy (FHCM) is an autosomal dominant disease
characterized by an unexplained hypertrophy with minimum or no symptoms to severe
heart failure and sudden cardiac death. It is the most common cause of sudden cardiac
death in athletes, accounting for one-third of all sudden cardiac deaths (96). The salient
pathological features include myocyte hypertrophy, myocyte disarray, interstitial fibro-
sis, and thickening of the media of the coronary arteries (97). The causal genes involved
in FHCM are β-myosin heavy chain (MYH7, locus 14q12), myosin-binding protein C
(MYBPC3, locus 11p11.2), cardiac troponin T (TNNT2, locus 1q32), α-tropomyosin
(TPM1, locus 15q22.1), cardiac troponin I (TNN13, locus 19p13.2), essential myosin
light chain (MYL3, locus 3p21.3), regulatory myosin light chain (MYL2, locus 12q23-
24.3), cardiac α-actin (ACTC, locus 15q11), titin (TTN, locus 2q24.1), α-myosin heavy
chain (MYH6, locus 14q1), and cardiac-troponin C (TNNC1, locus 3p21.3-3p14.3).
Genetic animal models of FHCM treated with losartan or simvastatin have shown a
reversal of the fibrosis, hypertrophy, and phenotype. Tissue Doppler echocardiography
can diagnose FHCM in humans and in animal models before the development of car-
diac hypertrophy.

3.3.1.2. DILATED CARDIOMYOPATHY

Dilated cardiomyopathy (DCM) is a primary disease of the myocardium character-
ized by a decreased left ventricular ejection fraction and an increased left ventricular
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cavity. It is clinically manifested by heart failure, syncope cardiac arrhythmias, and sud-
den cardiac death. The etiology of DCM is both familial (autosomal dominant) and a
sporadic disease. Although in approximately half of all cases of familial DCM, the
chromosomal loci have been mapped, in a significant number of families the genes have
not been identified. DCM, with a diversity in causal genes and mutations, is a hetero-
geneous disease. The causal genes in most cases code for proteins that either are compo-
nents of the mitochondrial cytoskeleton or support it. The genetic causes of DCM include
genes such as cardiac α-actin (ACTC, locus 15q11-14), β-myosin heavy chain (MYH7,
locus 14q11-13), cardiac troponin T (TNNT2, locus 1q32), δ-sarcoglycan (SGCD, locus
5q33-34), dystrophin (DMD, locus Xp21), Lamin A/C (LMNA, locus 1p21.2), taffazin
(G4.5) (TAZ, locus Xq28), desmin (DES, locus 2q35), αβ-crystallin (CRYAB, locus
11q35), and desmoplakin (DSP, locus 6p23-25).

3.3.1.3. ARRHYTHMOGENIC RIGHT VENTRICULAR DYSPLASIA

Arrhythmogenic right ventricular dysplasia (ARVD), also known as arrhythmoge-
nic right ventricular hypertrophy, is a primary disorder of the myocardium with pro-
gressive loss of myocytes, fatty infiltration, and fibrosis in the right ventricle. The right
ventricle is arrhythmogenic and causes arrhythmias. In advanced cases, both ventricles
may be involved, resulting in heart failure. Mapped loci for ARVD include 14q23-q24
(ARVD1); 1q42-q43 (ARVD2), identified as the cardiac ryanodine receptor gene (RYR2)
(98); 14q12-q22 (ARVD3); 2q32-q32.3 (ARVD4); 3p23 (ARVD5); and 10p14-p12
(ARVD6).

3.3.2. Cardiac Septal Defects
 The genetic loci for cardiac septal defects such as Holt-Oram syndrome (12q2),

DiGeorge syndrome (22q), and Noonan syndrome (12q) have been mapped.

3.3.3. Aortic Diseases
The genetic loci for aneurysms (11q23-24), supravalvular aortic disease (9q), and

Marfan syndrome (15q) have been mapped.

3.3.4. Conduction Disorders
The genetic locus for familial heart block was mapped as 19q13, 1q32.

3.3.5. Ventricular Arrhythmias
The genetic loci for long QT syndrome (3p21, 4q24, 7q35, 11p15, 21q22), Brugada

syndrome (3p21), and idiopathic ventricular tachycardia (3p21) have been mapped. The
SCN5A gene encoding α-subunits that forms the sodium channels initiates cardiac
action potentials. Familial forms of ventricular arrhythmias such as long QT syndrome,
ventricular fibrillation, and cardiac-conduction disease result from mutations in SCN5A
(99–103). Mutations in KVLQT1, HERG, mink, and MiRP-1 result in long QT syndrome.
Polymorphisms associated with long QT syndrome may increase the risk of drug-induced
arrhythmias (104).
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3.3.6. Atrial Arrhythmias
The genetic loci for Wolf-Parkinson-White syndrome (7q3) and atrial fibrillation

(9q) have been mapped.

3.3.7. Genomics and Devices
Genomics, besides having a role in therapeutics, will also impact strategies to treat

patients with devices serving as endovascular therapies. Restenosis following percu-
taneous interventions is a major problem Identification of genetic markers of restenosis
would enable effective treatment strategies. Various clinically relevant genetic poly-
morphisms for restenosis include insertion/deletion polymorphism of angiotensin con-
verting enzyme (ACE) gene, apolipoprotein E gene, platelet glycoprotein receptor genes,
and interleukin-1 receptor antagonist gene. Strategies involving targeting of vascular
growth factors, transcription factors, cell-cycle regulators, and so on serve as experimen-
tal approaches in the treatment of restenosis and in-stent restenosis. Sirolimus-coated
stents have been shown to be safe and effective in inhibiting neointimal hyperplasia in
patients with stable and unstable angina (106). Sirolimus binds to its cytosolic recep-
tor, FK-binding protein-12, through an unknown pathway.

4. Conclusion
Implications of the mapping of the human genome involve identification of the genes

responsible for familial cardiac disorders. Given that genetic diagnosis and manage-
ment will be routinely incorporated into the cardiology practice by the end of the 2000s
(107), a better understanding of the etiology and pathogenesis of genetic disorders will
improve the prevention, diagnosis, and management of these disorders. Molecular
genetics will, therefore, provide a new paradigm in the diagnosis and management of
cardiovascular diseases. With 62 million people in the United States with cardiovascu-
lar disease and 50 million people with hypertension, there were approx 946,000 deaths
in the year 2000 owing to cardiovascular disease, accounting for 39% of all deaths (93,
108). The NHLBI has launched 11 PGAs to advance functional genomic research in
the disciplines of heart, lung, blood, and sleep disorders. The basic goal is to link genes
to structure, function, dysfunction, and structural abnormalities of the cardiovascular
system caused by genetic and environmental stimuli.
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Protein Interactions Probed With Mass Spectrometry

Suma Kaveti and John R. Engen

Summary
Understanding the interactions of proteins with other proteins and/or with drug mole-

cules is essential for understanding the progression of diseases. In this chapter, we present
several methods utilizing mass spectrometry (MS) for the analysis of protein–protein,
protein–drug, and protein–metal interactions. We describe the analysis of protein interac-
tions with hydrogen exchange MS methods. Hydrogen exchange methods can be used to
analyze conformational changes on binding, to estimate dissociation constants, and to
locate the sites of interaction/binding between binding partners. We also discuss more
direct MS methods, including the analysis of metal ion complexation with proteins.

Key Words: Hydrogen exchange; dissociation constant; conformational changes; mass
spectrometry; deuterium.

1. Introduction
Mass spectrometry (MS) is a powerful technique for studying protein interactions.

Only within the last 10 yr has its utility for this purpose been realized. Conventionally,
analytical techniques such as nuclear magnetic resonance (NMR), X-ray crystallogra-
phy, ultracentrifugation, and various spectroscopic techniques (fluorescence, circular
dichroism, light scattering, surface plasmon resonance) have been used to study such
interactions. Despite their specific advantages, most of these techniques require signif-
icant amounts of sample (greater than or equal to a few micromoles), which are gener-
ally difficult to obtain from real-life samples. MS, however, requires only small amounts
of sample (less than or equal to nanomoles), is highly selective, and can be faster than
other techniques. In this chapter, we provide examples of using MS for studying protein
interactions.

Cellular functions are often a result of protein interactions with target molecules.
Targets may be substrates, antibodies, other proteins, or drug molecules. For example,
many cellular machines and signaling events in vivo often involve significant protein-
protein interactions (1–3). It is essential to know not only what the individual components
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of protein complexes are but also their stoichiometry. It may also be necessary to deter-
mine the nature of interactions, the kinetics, and any resulting conformational changes
during complex formation. MS can be used to investigate all of these areas of protein
interactions (Fig. 1).

Many protein interactions are noncovalent interactions and can be investigated with
MS if the experimental conditions favor retention of noncovalent association (see Note
1). Mass spectral peaks characteristic of the individual constituents may be observed
along with those that represent complexes (Fig. 2A,B). The ligand in these cases may
either be another protein(s) or a small molecule such as a drug compound (see Subhead-
ing 3.3.). A number of noncovalent interactions (4–10) have been studied with electro-
spray MS. The effects of pH, heat, and salt concentrations on these noncovalent complexes
have also been probed (11,12), as well as the stoichiometry of noncovalent macromolec-
ular assemblies (12). Matrix-assisted laser desorption ionization (MALDI) MS has been
used to study noncovalent complexes as well (13).

Proteolysis by specific enzymes (see Note 2) when combined with MS can provide
information about interactions. The rationale behind this technique is that when a pro-
tein is bound to a ligand (Fig. 2, center), some of the sites or domains of the protein that
were accessible to protease may be blocked in the ligand-bound form. A chemical cross-
linking approach may also be used to link the interacting partners irreversibly and coval-
ently (14–16). After enzymatic digestion, peptides containing the crosslink may be
observed in mass spectra (Fig. 2E). Using an isotope-coded affinity tag as the cross-
linker, peptides can be purified selectively by biotin/avidin technology and analyzed
to locate the binding surfaces directly (17). A certain degree of luck is required in any
crosslinking experiment because if functional groups that react with the crosslinker are
not present in the interface between the protein and ligand, no meaningful crosslinking
will occur.

Binding between a protein and a ligand such as a drug molecule may alter the activity
of the protein such that it induces or prevents some disease condition. In addition, many

Fig. 1. Selected uses of MS for investigating protein interactions.
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protein–protein interactions that take part in cellular processes have interfaces that can
be potential sites of docking for novel drug molecules that interfere with complex for-
mation (18). Determining the details of protein–protein and protein–drug interactions
is important. With combinatorial chemical libraries for drug molecules being generated

Fig. 2. Noncovalent complex analysis, crosslinking studies, and proteolysis investigations
with MS. Two proteins (P and L) may associate and form a noncovalent complex (center). Direct
analysis of this noncovalent complex can be accomplished with electrospray methods (see Sub-
heading 3.1.). (A) Peaks corresponding to the combined mass (P + L) indicate formation of the
complex. (B) Subsequent dissociation into the individual components verifies that the peak of
P + L was indeed composed solely of P and L. In more complicated complexes involving multi-
ple partners, dissociation can help sort out the stoichiometry. (C, D) Binding may alter the enzy-
matic digestion pattern. P can be digested into peptides 1–5 and L into peptides a, b, and c (enzyme
cutting sites indicated by short, perpendicular lines). Analysis of P peptides after complex for-
mation (C) is compared with the peptides produced when P was alone before complex forma-
tion (D). Changes to the digestion pattern can indicate which enzyme sites are occluded by com-
plex formation. After complex formation, a chemical crosslinker may also be utilized to link
covalently the two proteins together. The resulting mass spectrum (E) will contain peptides with
m/z values of the combination of peptide(s) from P that were crosslinked to peptide(s) from L.
In this example, the diagnostic peak is 2 + 3 + 4 + b. With spectra of the peptides from each
protein without crosslinking, simple addition calculations of peptide masses indicates which
peptides have been linked together.
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instead of individual drug target molecules, rapid methods such as MS are necessary to
identify the potential compounds for further testing (19). Both electrospray and MALDI
MS have been used to study protein–drug interactions (20–23). MS can be used to probe
noncovalent interactions between a protein and a drug molecule, the stoichiometry of
such interactions, and the stability of the complex. Drug binding may interfere with
proteolysis as detected by MS. Drug molecules may be crosslinked to proteins, just as
a proteinaceous ligand would, and the regions of interaction identified with MS.

Drug binding to proteins may alter the structural dynamics of the protein or cause
conformational changes that inactivate regular protein function. Hydrogen exchange
(HX) when combined with MS (see Subheading 3.2). can provide information about
structural changes occurring in proteins on drug binding. Such information is difficult
to obtain with other methods. HX MS can also be used to investigate other aspects of
protein–protein interactions, including multimeric states that cannot be analyzed with
the previously described noncovalent methods.

A final area of protein interactions in which MS is important involves metal ion bind-
ing. Metal ions not only play many important roles in cellular processes but as part of
metalloenzymes are essential for catalytic activity. There are three important aspects of
studying protein interactions with metal ions, all of which can be accomplished with
MS: (1) the specificity of a protein for a given metal, (2) the protein:metal stoichiom-
etry, and (3) conformational changes of the protein on metal ion binding. Electrospray
MS has been used for studying the stoichiometry of protein-metal binding for a num-
ber of proteins (24–27). Conformational changes on complexation have been probed
in combination with HX MS (28,29), and cooperative binding has been studied (30).

2. Materials

2.1. Proteins
Proteins are usually overexpressed in Escherichia coli and purified with classic affin-

ity chromatography. They may also be obtained from overexpression in mammalian
cells (i.e., Sf 9-baculovirus) (see Note 3).

2.2. Proteases
1. Pepsin (cat. no. P6887; Sigma-Aldrich, St. Louis, MO) immobilized on POROS-20AL

beads (cat. no. 1-602906; Perseptive) (see Note 4 and Subheading 2.5., item 3).
2. Trypsin, sequencing grade (from Sigma-Aldrich, Promega, or Roche).

2.3. Chromatography
1. Acetonitrile and water (high-performance liquid chromatography [HPLC] grade).
2. Trifluoroacetic acid (99+ purity) (Sigma-Aldrich).
3. Formic acid (ACS reagent grade) (Sigma-Aldrich).

2.4. HX MS Buffers
1. Phosphate buffers (50:50 mixture of K2HPO4 and KH2PO4): these are recommended for

HX experiments because they offer good buffering capacity at the key pHs (7.0, 2.5). Citrate
buffers can also be used for quenching because they provide efficient buffering at pH 2.5.
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2. Deuterium chloride (DCl) and sodium deuteroxide (NaOD), obtained from Sigma-Aldrich
and MDS Isotopes (Montreal, Canada), respectively. These are used for moderating the
pD of labeling buffers (see Note 5).

2.5. Columns, Packing Materials,
and Other Materials for Chromatography

1. Stainless steel transfer lines: These are recommended over PEEK transfer lines for efficient
cooling and minimal deuterium loss in HX MS experiments (see Note 6).

2. POROS 10-R2 packing material (Perseptive Biosystems) packed into empty 254 µm id ↔
10 cm steel columns (Alltech, Deerfield, IL) for perfusion chromatography; MAGIC C18
(5 µ 200 Å; 1.0 ↔ 50 mm) microbore columns or similar for conventional reverse-phase
HPLC.

3. Empty stainless steel column (no. 65175; Alltech), to prepare immobilized pepsin digestion
columns (see Note 4).

4. Protein (no. 004/25108/03) or peptide (no. 004/25109/02) trap columns (Michrom, Auburn,
CA).

2.6. Matrices for MALDI
1. α-Hydroxy-4-cyano cinnamic acid (4HCCA), 2,5-dihydroxy benzoic acid from Sigma-

Aldrich, or HP-Agilent (see Note 7).

2.7. Software for Data Processing
The data-processing software provided with each mass spectrometer is used to deter-

mine the m/z values and deconvolute charged spectra from electrospray. To determine
the centroid m/z values in HX MS analyses, MagTran (31) can be used to calculate the
center of mass of any selected isotopic distribution.

3. Methods

3.1. Direct MS Methods
An outline for studying protein interactions with other molecules by direct MS meth-

ods is given next. This outline is not meant as an exact protocol but, rather, as a guide
for establishing a working method. Because each protein may behave differently, the
conditions often must be determined empirically.

1. Estimate the concentrations of individual protein(s) and ligand(s) (see Note 8).
2. Incubate stoichiometric ratios of protein and the target molecules first independently and

then together for 30 min at appropriate pH and in a buffer that retains protein–ligand com-
plexation (see Note 9).

3. Analyze protein–ligand complex with either electrospray or MALDI MS. For electrospray,
conditions that favor noncovalent complexes may be used. The complex may or may not
hold together under the more typical acidic electrospray conditions or during MADLI crys-
tallization (13), so complex retention should be checked.

4. Establish the effect of pH, temperature, and concentration of the various constituents on the
mass spectra.

5. Measure peak abundances and peak areas (particularly if an internal standard was added)
for quantification.
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3.2. Hydrogen Exchange Mass Spectrometry

3.2.1. General Protocol for Continuous Labeling HX
1. Estimate the concentration of the purified protein(s) (see Note 8).
2. Mix various molar ratios of protein A and protein B (or other ligands) for a final concen-

tration of ⊕150 pmol/sample after dilutions (depends on instrument sensitivity). Allow the
mixture to stand for at least 10–15 min for stabilization (see Note 10).

3. Start HX by diluting the protein–protein mixture 15-fold or more with labeling buffer (i.e.,
10 mM phosphate buffer, 99% D2O, pD 6.60).

4. Quench HX by transferring an aliquot of labeling mixture to a vial containing quench buf-
fer (i.e., 100 mM phosphate buffer, H2O, pH 2.6) and reduce the temperature (see Note 11).

5. As unbound controls, induce HX reactions following steps 1–4 for the protein (or pro-
teins if the complex involves multiple proteins) alone (see Note 12).

3.2.2. Intact Protein Analysis
1. Inject quenched sample (see Subheading 3.2.1.) onto a perfusion column (10 cm ↔ 0.254

mm id, packed with POROS 10-R2 material) or conventional reverse-phase microbore
HPLC column and desalt for at least 2 to 3 min (see Note 6).

2. Run a rapid gradient of acetonitrile (30–70% of acetonitrile over 3 min) to elute the
protein directly into an electrospray mass spectrometer.

3. Measure the relative deuterium uptake from the deconvoluted mass spectrum using
MagTran (31) or the software provided with the mass spectrometer. Where necessary,
only gently smooth raw data using a Savitkzy-Golay algorithm. Mass accuracy should be,
in general, ±1 Dalton.

3.2.3. Peptide Analysis
1. For an on-line proteolytic digestion, allow the protein from step 4 or 5 in Subheading

3.2.1. to pass through an immobilized pepsin column (see Note 6). Collect the resulting
peptides on an in-line peptide trap and wash for 2 to 3 min (see Note 13).

2. For an off-line digestion with pepsin, incubate quenched protein from step 4 or 5 in Sub-
heading 3.2.1. with pepsin (usually 1:1 [w/w] ratio) for a maximum of 5 min, and inject
the resulting peptides directly onto the separation column of the HPLC (see Note 14).

3. Separate the peptic peptides with a 4 to 5-min gradient of 5–60% acetonitrile. The pep-
tides are eluted directly into the mass spectrometer (see Note 15).

4. Analyze the deuterium uptake of each peptide with a method similar to that used for
intact protein in Subheading 3.2.2., step 3. Mass accuracy should be ±0.25 Daltons for
peptides.

3.2.4. HX MS for Titrations
1. Follow steps 1–5 in Subheading 3.2.1. to prepare proteins.
2. Analyze as in section Subheading 3.2.2. or 3.2.3.
3. Plot the relative deuterium uptake vs time.
4. Choose a time point at which the HX is maximally affected (see Subheading 3.4.2. and

Fig. 5A).
5. Using the time determined in step 4 as the labeling time, change the ratio of protein:ligand

and repeat steps 1–3. It is easiest to hold one protein concentration constant while chang-
ing the other.
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6. Observe the effect of changing the relative protein concentration(s) on the deuterium up-
take, and prepare a plot of the relative concentration vs deuterium level for the whole pro-
tein, or for a diagnostic peptide.

3.3. Protein–Drug Interactions
Studying protein–drug interactions using mass spectral techniques involves finding

lead drug molecules from a mixture of analogs or combinatorial libraries that bind to the
target protein, determining the affinity of the protein–drug complex, and analyzing the
conformational changes of the protein on drug binding. This information may provide a
better understanding of the interaction, leading to more efficient drug development.

3.3.1. Determination of Drug Binding to Target Proteins
A generalized approach of determining whether or not a small-molecule drug will

bind to a protein of interest includes a procedure similar to that in Subheading 3.1.
wherein the ligand is replaced with a drug molecule(s). The mass spectrometer can dif-
ferentiate components of mixtures by mass and, thus, is used to identify protein–drug
complexes simultaneously in both bound and unbound forms. The presence or absence
of peaks corresponding to protein–drug complexes under native conditions reflects the
affinity of drug molecule(s) for the given protein. As illustrated by the example in Fig.
3, protein P has the highest affinity for drug A and no affinity at all for drug D. MALDI,
with its high sensitivity and fast analysis time, can be used for quick screening of pro-
teins against combinatorial libraries containing thousands of potential drug molecules.
Such studies have been reported for affinity ranking of drug ligands for proteins (22). A
number of groups have also used separation and preconcentration of bound and un-
bound protein–drug molecules based on size; affinity; or ion mobility chromatographic
techniques such as size exclusion, gel filtration, and electrophoresis followed by mass
spectral analysis (22,23,32).

Fig. 3. Measuring binding of a protein to various ligands. The protein (P) is mixed with four
ligands (A, B, C, D). The ligands may be drug molecules, metal ions, peptides, or other proteins.
The affinities follow the order A > C > B >> D. The ligands may be either drug molecules or
metal ions. After mass spectrometric analysis, the peak intensity is a reflection of which ligand
has bound to the protein. In this example, the protein (P) showed highest affinity for ligand A,
followed by C and B, with no affinity for D. The peak corresponding to protein–ligand D com-
plex (PD) is negligible, and the arrow indicates where it is expected.
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3.3.2. Determination of Binding Affinity
In principle, binding constants for protein–drug (or any other ligand, including another

protein) complexes are measures of the strength of the complex and are generally ex-
pressed in terms of the molar concentration of drug/ligand with respect to the protein
(Kd = [P][L]/[C], in which P = is the protein concentration, L is the free ligand concen-
tration, and C is the concentration of the complex). Mass spectral peak areas of P, L,
and C give a rough estimate of the concentrations in solution. There are, however, pit-
falls associated with using these values to determine the Kd that should be considered
when making such a measurement. One important aspect is mutual ion suppression
effects in mixtures, especially in the case of electrospray (33,34). To combat this, it may
be necessary to screen each potential compound individually in addition to screening
mixtures of potential compounds. In addition, highly accurate mass spectral quantifica-
tion requires an internal standard. This point is usually minor because the interesting
information is the relative affinity of several compounds and not the absolute affinity
of one compound. Finally, concentration information alone does not provide any infor-
mation about the nature of interactions taking place, which is critical to improving the
binding ability of the molecule.

The affinity of a protein–ligand complex can also be estimated with HX methods. HX
MS can provide simultaneous information about where the interaction occurs on the pro-
tein and reveal any conformational changes taking place within the protein on binding.
Detailed aspects of these types of experiments are discussed further in the next section
for protein–protein complexes but are equally applicable to protein–drug interactions.

In summary, as applied to protein–drug interactions, the drug/ligand is titrated against
a constant amount of protein. For concentrations at which there is a change in the HX
behavior of the protein, the approximate Kd value can be extracted (35).

3.4. Protein Interactions Probed With HX MS
HX when used in combination with MS provides many details about the structural

changes of individual proteins as well as proteins in complex. As already mentioned,
it can be used to locate sites of drug–protein interaction and to investigate structural
changes on drug binding. The number of hydrogens, particularly the backbone amide
hydrogens, that can be exchanged with hydrogens from the solvent is related to the
structure of the protein. Two main parameters that alter the rate of the exchange reaction
are hydrogen bonding and solvent accessibility. If either of these are altered during pro-
tein–protein interactions or drug binding, the HX rate(s) will be changed.

Katta and Chait (36) showed that MS can be used to measure HX rates if the regular
H2O solvent is replaced with D2O (where deuterium is the first isotope of hydrogen with
a mass of two rather than a mass of one). The details of HX MS have been recently
reviewed (37–39). HX MS can be used to probe conformational changes, analyze pro-
tein–drug binding, and identify/characterize intermediates in protein folding and un-
folding (40–43). Although HX MS is dominated by electrospray methodology, MALDI
has also been used to measure HX. Mandell et al. (44) showed that MALDI can be used
for HX MS studies of protein–ligand interactions and for analysis of proteolytic digests
without separation.
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The use of HX MS to investigate the interaction(s) of two proteins, referred to as A
and B, respectively, is illustrated schematically in Fig. 4. These techniques can be applied
to any proteins or other ligands. HX into the intact protein or into short peptides created
after HX can be investigated. Deuterium incorporation into each of the proteins inde-
pendently (for the time course of 10 s to 8 h) is usually established first, followed by HX
MS for the two proteins mixed together. Figure 5A shows example data of deuterium
uptake reduction when two proteins bind to each other (35). These results can be attrib-
uted to conformational changes and occlusion of some exchangeable hydrogens in
protein A on interaction with protein B. However, the average mass of each protein after
HX provides an overview of only the extent of change, not the location of the changes.
Localization of the regions of change can be achieved after proteolytic digestion of
deuterium-labeled proteins, as discussed in the following section.

Fig. 4. General hydrogen exchange (HX) mass spectrometry (MS) methodology for protein
interaction studies. Two proteins are analyzed separately (A,B) to provide baseline information
and then together as a complex (C). In each case, the protein or protein mixture is incubated in
an equilibrium buffer at 25°C, pH 7.0 in H2O. D2O is then added (I) to initiate the HX reaction.
At various times after the introduction of D2O HX of an aliquot of the labeling sample is
quenched (II) by adjusting the pH to 2.5 and the temperature to 0°C. The quenched samples are
then analyzed individually by MS (III) either as whole proteins or after pepsin digestion (not
shown). The resulting mass spectra indicate the amount of deuterium incorporation at each
exchange time point. These results are plotted (IV) as deuterium level vs time. In this example,
the deuterium uptake of protein A when by itself and protein B when by itself were plotted. When
protein A was in the presence of protein B (indicated as A'), its deuterium uptake was less than
when it was alone. The deuterium level of protein B in the presence of protein A is not shown.
See Subheadings 3.2. and 3.4. for more details.
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3.4.1. Location Information Provided by HX MS
A combination of enzymatic digestion and HX MS (45) allows HX information to

be localized to short peptide segments, thereby increasing the spatial resolution. A num-
ber of groups have effectively used similar methodology in experiments to probe pro-
tein–ligand and protein–protein interactions (46–52). A general protocol is presented
Subheading 3.2.3.

For the example proteins illustrated here (Fig. 5), pepsin digestion of the HX-quenched
samples was performed to understand which regions of the proteins underwent inter-
action. It is important to note that pepsin digestion is carried out after HX is completed

Fig. 5. Protein–protein interactions by hydrogen exchange (HX) and determination of Kd.
Plots of deuterium incorporation with time (as in Fig. 4, lower right) were prepared for a protein
when incubated with a binding partner. (A) Relative deuterium uptake of protein A alone (●) and
in presence of protein B (�). Although not shown, HX into protein B was unaffected by the
presence of protein A. (B) Representative deuterium uptake of region of protein A where deuter-
ium exchange was altered on binding (symbols same as in [A]). (C) Peptic fragment from pro-
tein B that showed no difference in deuterium uptake as a result of interaction with protein A
(protein B alone [●] and in presence of protein A [�]). (D) Relative deuterium uptake of pro-
tein A plotted against different mixtures of proteins A and B ([B]/[A]): (—●—) wild-type pro-
tein A and (— —) mutant form a protein A (35) that cannot bind to protein B.
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and quenched. Hence, the structural information captured by deuterium incorporation is
present in the peptides. Some regions (or peptides) from protein A or B may have altered
exchange rates in a complex either because the domain or the region is blocked by the
other protein, or as a result of changes that led to a tighter or looser conformation. In
fact, in the present example, a peptide that showed reduced deuterium uptake (Fig. 5B)
comes from a region of protein A identified by NMR (53) as located in the interface
region between proteins A and B. According to the HX MS results, protein B structure
was not affected by the presence of protein A because there was no evidence for differ-
ences in deuterium uptake in protein B when incubated with protein A. To illustrate
this, HX MS data for a representative peptic fragment from protein B that is located at
the interface region between protein A and protein B is shown in Fig. 5C. Proteolytic
digestion in combination with HX MS gives a much more detailed picture of protein-
protein interactions. A similar approach can be used for studying protein interactions
with other molecules such as drugs and peptides.

3.4.2. Using HX MS to Estimate Kd Values
HX MS can be used to determine the dissociation constant (Kd) for complexes. The

concentration of one of the proteins is varied such that various amounts of binding occur
(between 0 and 100% bound). If deuterium uptake in one of the proteins is sensitive
to the percentage of protein molecules bound, a binding curve can be generated. The
deuterium uptake of the example protein A was determined when various amounts of
proteins B were incubated with it. Measuring HX into protein A was chosen because
its HX was sensitive to the presence of protein B, as indicated by the decreased amount
of deuterium that was incorporated into protein A at a 1:5 ratio of A:B (Fig. 5A). For the
titration illustrated here, an HX labeling time of 30 min was used because after 30 min in
deuterium, a maximal difference between free and complexed protein A deuterium
levels was observed. The experimental protocol remained the same (see Subheading
3.2.4.) except for varying the ratio of proteins. The mass of the full protein (or any given
charge state of the protein) was plotted against the relative concentration (Fig. 5D).
The concentrations of A and B at the halfway point in the titration curve were used
to estimate the Kd (see Note 16). Hence, the point of maximum slope corresponded to
B:A = 5:1, or approx 60–100 µM protein B. The Kd is, therefore, also in the same range.
To investigate the role of specific amino acids at the identified interface, mutants were
made that abolished binding. The absence of binding of one of the mutants, as deter-
mined by HX MS, is illustrated in Fig. 5D.

3.5. Using HX MS to Determine
Binding-Induced Conformational Changes

The conformation of proteins may be altered by the presence of other proteins or
other molecules. Conformational changes in proteins may cause alterations in the HX
within the protein. Using methods similar to those discussed for the analysis of protein–
protein complexes (see Subheading 3.2.), proteins can be analyzed individually. Confor-
mational changes occurring in the order of seconds to hours can be monitored by regular
manual sample preparation. Using automated techniques such as quench flow techniques,
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the exchange times can be reduced to milliseconds. These methods have been applied
to study various aspects of protein biophysics (54,55). The populations of different con-
formers or intermediates, if they exist at equilibrium, can be studied by pulse-labeling
experiments in combination with HX MS.

3.6. Protein–Metal Ion Interactions
Protein–metal ion interactions are highly specific to both the metal ion and the pro-

tein. Interaction depends on the selectivity of protein for a given metal ion, its topolog-
ical orientation, and also the nature of the metal ion. For example, a protein (P) with
affinity toward various metal ions (A, B, C, D) forms complexes with an order of affin-
ity of A > C > B >> D, the latter having almost negligible affinity for the protein (see
Fig. 3). Under such conditions, the ion abundances of mass spectra peaks of protein
and metal ions, when analyzed by MS using the general protocol discussed in Subhead-
ing 3.1., provide information about stoichiometry and the relative binding affinity. It
is important to maintain the physiological pH because acid-induced dissociation of
metal ions from substrate may occur (56). Using these kinds of methods, various MS
studies have determined the relative binding affinities and stoichiometry of protein-metal
complexes, mostly by electrospray (24–27,29,57–59). HX has also been used in conjunc-
tion with MS to study metal ion-induced conformational changes. The procedure for
studying these changes is practically the same as that described for drugs and protein-
protein (see Subheading 3.2.), but the ligand is replaced with a metal ion.

MS has been shown to be a very useful tool for detecting minor to moderate changes
in protein conformation on metal ion complexation (60) and also for identifying the
site(s) of metal ion binding (61). Because electrospray is sensitive to conformational dif-
ferences in solution (e.g., see refs. 47, 62, and 63), it can be used to assess metal ion
binding to proteins. A tightly folded protein conformer will have relatively fewer charges
in electrospray spectra compared with an unfolded or denatured form. Distinctly differ-
ent charge-state envelopes are therefore apparent in electrospray mass spectra (Fig. 6).
A change in conformation on the addition of metal ion (or other ligand) may lead to a
more tightly folded, metal-coordinated complex. The result of such complexation is a
shift in the bimodal distribution to the envelope with fewer charges (Fig. 6B). Metal-
bound ternary complexes can also be analyzed in the same fashion (29).

3.7. Conclusion
As illustrated with these few examples, MS is a very powerful tool for probing pro-

tein interactions with other molecules. The interacting molecules vary in size, nature,
and complexity. HX methods when combined with MS provide finer details in all of
these interactions as well as information difficult to obtain with other techniques. With
the development of more and more drugs targeted at proteins, MS should continue to
contribute extensive information, ultimately increasing the speed of drug discovery.

4. Notes
1. Instrumental parameters can have a drastic effect on the analysis of noncovalent interac-

tions with MS. Particularly important is tuning the pressure inside the mass spectrometer. If
there are large pressure changes at each pumping stage, the noncovalent complexes will not
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hold together during transit inside the mass spectrometer. Collisional cooling of the ions
by a gradual pressure gradient helps retain noncovalent interactions. Other variables that
need to be considered are the capillary and cone voltages; source temperature; pH; salt/buf-
fer concentration; and amount, if any, of organic solvent. In general, it is essential to retain
what are referred to as “native conditions” (mildly acidic conditions with pH 5.0–6.0, very
low or absence of organic solvent, low source temperature [≤20°C]) during electrospray.

2. Trypsin, normally active in the poststomach gut, is active at pH 7.5–8.5. It cleaves protein
C terminally to lysine and arginine. Other proteases have different specificities (e.g., V8
cleaves at acidic sites such as aspartic acid and glutamic acid). Choice of the protease is key
to producing partial digestion because different sites will be accessible for different pro-
teases owing to their unique specificities. Often, digestion with a battery of proteases (tryp-
sin, Asp-N, Glu-C, V8, carboxypeptidases) may be necessary.

3. Proteins A and B discussed here are both 6xHis-tagged proteins. Their overexpression
and purification using Ni-NTA agarose affinity column chromatography are discussed else-
where (48), but, generally, the directions provided by the supplier of the Ni-agarose beads
work well.

Fig. 6. Complexation and charge-state distributions in electrospray spectra. (A) A protein
exhibits a bimodal distribution of charge states, indicating the presence of two distinct confor-
mational forms in solution. The unfolded or higher charge-state distribution centered around +18
is the predominant form in the absence of “L” (where “L” is a ligand that could be a metal ion/
drug molecule/peptide or another protein), and so on. (B) Ligand complexation causes a con-
formational change in the protein leading to a more compact conformation that accommodates
relatively fewer charge states (+2 to +4) compared to uncomplexed form.
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4. Immobilized pepsin columns may be easily packed in-house. Pepsin is first, immobilized
on POROS-20AL beads from Perseptive according to the directions supplied with the POROS
beads. Then the beads are slurry packed with a normal HPLC into an empty stain-less steel
column (see Subheading 2.5., item 3). No special packing equipment is required. Pepsin
columns made in this fashion typically can be reused many times without significant loss
in enzyme efficiency. It is important, however, never to introduce samples or buffers above
pH 6.0 into the pepsin column because pepsin is irreversibly inactivated above this pH.
Detailed directions for pepsin-column packing have been published elsewhere (64).

5. pH Adjustment of deuterated solvents using DCl or NaOD is measured directly with a hydro-
gen electrode rather than a deuterium electrode. As such, the pH reading (pHread) must be
corrected according to the equation pD = pHread + 0.4 (65). The pD should never be adjusted
with HCl or NaOH for labeling buffers in which the deuterium level is to remain 99% or
greater.

6. PEEK tubing does not allow efficient cooling, especially when the mobile phase is flowing.
A premixer coil (placed before the A/B mobile phase mixing tee) of approx 40–50 cm of
stainless steel tubing is employed to ensure efficient mobile phase cooling before the mobile
phase reaches the injector and column. The cooling loop, all transfer lines, injector, traps,
and column are all immersed in an ice bath.

7. It is advisable to recrystallize 4HCCA and to use freshly prepared matrix solution for ana-
lyzing samples on MALDI (66).

8. A Bradford assay (67) is normally used to determine the protein concentration. This assay
is an estimate and may provide a concentration value significantly different from the true
protein concentration. However, if samples are prepared relative to each other based on a
Bradford estimate, it is in most cases not necessary to have an exact concentration value.
Alternatively, concentration may be determined more accurately using extinction coefficients.

9. Incubation time, concentration of protein and ligand, stoichiometry, pH, and so forth need
to be optimized for every protein–ligand combination. The conditions referred to in the text
are general recommendations. Good starting conditions are pH 5.0–7.0 in weak (10–25
mM) ammonium acetate or ammonium bicarbonate buffer. Spraying directly from water
has also been successful for some complexes.

10. It is not advisable to reconstitute proteins directly into D2O buffer for HX because resol-
vation may alter deuterium exchange rates at early time points. The proteins should be as
near to their native state as possible before the introduction of deuterium.

11. Quenching to a lower pH reduces the HX reaction by approx 104, and lowering the tem-
perature to 0°C further reduces exchange rates by another order of magnitude. Quenched
samples may be immediately frozen on dry ice and stored at −80°C until analysis. Because
deuterium losses may still occur at −80°C, our experience dictates that the time between
sample preparation and mass spectral analysis should be minimized as much as possible.

12. A potential problem with these studies is protein self-association or aggregation, particu-
larly at higher concentrations necessary for titration experiments. Control experiments should
be performed for each protein to determine whether concentration alters the HX properties
for that protein.

13. Pepsin is a nonspecific protease, meaning that its digestion products cannot be predicted
based on sequence. It is, however, very reproducible under identical conditions. Therefore,
each peptide observed in the mass spectra must be identified/sequenced with MS/MS
experiments before HX MS results can be fully interpreted.

14. Pepsin solutions are made in pure water (pH < 5.0) and placed at 0°C. Usually a small vol-
ume of pepsin solution is added to a much larger volume of protein solution. Therefore,
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the sample solution must be acidic (have been quenched) for digestion to proceed. Pepsin
is ideal for digestion in HX MS experiments because it is active at a quench pH of 2.5.

15. The time required for peptide separation should be reduced in order to minimize deute-
rium back-exchange. Poor chromatographic resolution is not problematic because the
mass spectrometer can provide additional resolution by mass.

16. Ion suppression, as was the case in this example, may prevent creation of the typical sig-
moidally shaped titration curve. At very high concentrations of protein B, all the signal
from protein A is suppressed by the overwhelming amount of protein B. Improvements in
chromatography can overcome this problem by separating signals from the binding partners.
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Discovering New Drug-Targeting Sites
on Flexible Multidomain Protein Kinases

Combining Segmental Isotopic and Site-Directed Spin Labeling
for Nuclear Magnetic Resonance Detection of Interfacial Clefts

Thomas K. Harris

Summary
A novel structure-based approach to study the structure and dynamics of flexible multi-

domain monomeric protein kinases, which otherwise do not yield diffraction quality crys-
tals, is described. A combination of segmental 15N-isotopic labeling of a regulatory domain
with site-directed paramagnetic nitroxide spin labeling of the kinase domain is employed.
Nuclear magnetic resonance studies of the enhancement of amide proton relaxation rates
of the 15N-isotopically labeled regulatory domain caused by insertion of the paramag-
netic nitroxide spin label on the kinase domain provide long-range distance restraints for
determination of both the average positional structure and the relative flexibility exhibited
between the two contiguous domains. Clefts and crevices detected around the dynamic
domain–domain interface provide new targeting sites for tethered-based extension of
current small-molecule lead compounds to produce more potent and selective pharmaceu-
tical agents.

Key Words: Structure-based drug discovery; fragment-based drug discovery; tether-
ing; protein engineering; segmental isotopic labeling; site-directed spin labeling; nuclear
magnetic resonance; nuclear spin relaxation; paramagnetic enhancement effect; protein
dynamics.

1. Introduction
Protein kinases are already the second largest group of drug targets after G protein-

coupled receptors, and they account for 20–30% of the drug discovery programs of many
companies (1). There is clearly no shortage of potential targets; protein kinases com-
prise the largest enzyme family, with approx 500 being encoded by the human genome.
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In addition, the availability of more cell-permeant protein kinase inhibitors would be
extremely useful in helping to delineate the physiological roles of these enzymes. Despite
the large amount of effort that has been directed toward the development of inhibitors
of protein kinases (2), only two compounds have been approved by the Food and Drug
Administration for clinical use: rapamycin (Wyeth-Ayerst) and Gleevec (Novartis).
Rapamycin has been shown to inhibit the mammalian serine–threonine protein kinase
target of rapamycin (mTOR). It is the primary drug of choice for use as an immunosup-
pressant for organ transplantation, because it effectively and specifically inhibits the
proliferation of T-cells (3). Similarly, Gleevec has been shown to effectively inhibit
the Abelson tyrosine kinase oncogene (ABL), found in nearly all patients with chronic
myelogenous leukemia (4). The success of these compounds has led to the develop-
ment of numerous other relatively selective inhibitors of protein kinases, which are now
in human clinical trials involving the treatment of a variety of other cancer-related ill-
nesses, in addition to several inflammatory and degenerative diseases (1,2).

The primary reason that so few protein kinase inhibitors have been approved for clin-
ical use is that the overwhelming majority of compounds that inhibit a targeted protein
kinase mimic adenosine triphosphate (ATP) and bind in the ATP-binding pocket, caus-
ing inhibition of numerous other kinases and adenosine triphosphatases (5,6). Although
SB203580 and Gleevec have been shown to be competitive with ATP, X-ray diffrac-
tion studies indicate that the relatively high affinity and specificity observed for these
compounds is owing to an additional hydrophobic moiety, which extends into a hydro-
phobic pocket near the ATP-binding site of only the inactive form of the kinase (7). The
extended hydrophobic moiety exemplifies the additive nature of binding free energies
of chemically linked molecular fragments (8). Thus, additive binding can facilitate the
search for drugs in fragments, which offers a tremendous combinatorial advantage over
discovery of drugs intact. However, the primary challenge of detecting weak interac-
tions of small molecular fragments with proteins continues to hinder fragment-based
drug design and development.

One of the most recent and promising methods of fragment-based drug discovery
entails Tethering™ (9). The basic method of Tethering is to engineer a single-site sur-
face-exposed cysteine residue within 5–10 Å of a potential binding pocket of interest.
Then, the protein is reacted with a library of disulfide-containing fragments under par-
tially reducing conditions. If one of the fragments has inherent affinity to a site near
the cysteine, the thioldisulfide equilibrium will be shifted in favor of the disulfide for
this fragment. Owing to the change in mass by the amount of the particular disulfide-
linked fragment, the predominant chemically modified protein species can be identified
by mass spectrometry (MS). Then selected fragments can be elaborated, combined with
other molecules, or combined with one another to provide high-affinity drug leads. The
primary advantage of Tethering is that it provides a site-directed basis for fragment-
based drug discovery based on low to moderate binding activities in contrast to selection
based on high-affinity inhibition of enzyme activity by intact drugs required of high-
throughput screening assays. One major limitation of the Tethering approach, as well
as of other structure-based drug discovery methods such as X-ray crystallography and
nuclear magnetic resonance (NMR), is the feasibility of obtaining three-dimensional
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(3D) models of all target proteins and detecting additional small-molecule binding sites
in flexible loop regions that may exist some distance from the active site.

Structure-based approaches represent the newest and most promising areas of focus
for drug discovery programs (10). Numerous companies have begun to automate the
structural biology process to rapidly crystallize gene products on a massive scale (e.g.,
Astex, Structural Genomix, and Syrrx). However, it is becoming evident that X-ray dif-
fraction quality crystals are difficult to obtain for many of the most important protein
targets, because they behave as flexible multidomain proteins (11). In such cases, X-ray
or NMR structures can be solved only for individual functional domains. For example,
Fig. 1 shows domain organizations of a number of well-characterized serine–threonine
protein kinases of pharmaceutical interest. Of these members, X-ray structures have
been reported only for isolated kinase domain constructs of phosphoinositide-depen-
dent protein kinase-1 (PDK1), protein kinase B/AKT (PKB), protein kinase A (PKA),
c-JUN NH2-terminal protein and 38-kDA protein kinases (JNK/p38), extracellular sig-
nal-regulated protein kinases (ERK1,2) cyclin-dependent protein kinases (CDK), and
checkpoint kinases (CHK); and X-ray or NMR structures have been reported only for
the corresponding isolated regulatory domain constructs of the pleckstrin homology
(PH) domain of PKB, the diacyclglycerol (DAG) and Ca2+ domains of PKC, the cyclic
adenosine monophosphate (cAMP)-regulatory subunit of PKA, the cyclin-regulatory
subunit of CDK, the conserved region 1 (CR1) domain of the first identified down-
stream effector kinases (RAF1,A,B), and the forkhead-associated (FHA) domain of
CHK. Fragment-based drug discovery methods such as Tethering™ could be better ex-
ploited if structures of the full-length multidomain protein kinases could be determined.
Then, chemically linked compounds could be developed that could simultaneously
interact with either known binding pockets of proximal domains or unknown potential
binding pockets that may exist within clefts or crevices near the interface between
contiguous domains.

In this chapter, a novel structure-based approach to study the structure and dynamics
of flexible multidomain monomeric protein kinase drug targets in which high-quality
3D models have been determined for the isolated domains but cannot be determined
for the full-length kinase is presented. Figure 2 illustrates site-directed spin labeling
of the N-terminal kinase domain and isotopic labeling of the C-terminal regulatory PH
domain of PDK1, and Fig. 3 illustrates isotopic labeling of the N-terminal regulatory
PH domain and site-directed spin labeling of the C-terminal kinase domain of PKB2.
By using intein-mediated protein ligation, the isotopic labeled regulatory domain is
chemically joined to the site-directed, spin-labeled kinase domain to generate the full-
length native protein with a native peptide bond. First, NMR is used to determine the
chemical shift assignments of the isotopic-labeled backbone amides of the regulatory
domain while in its intact position of the native kinase. Second, NMR relaxation studies
are performed to determine long-range distance restraints between the site-directed spin
label on the kinase domain and backbone amide protons of the regulatory domain.

Unpaired electrons of spin labels, such as the nitroxide spin label, produce local fluc-
tuating magnetic fields, which can influence the relaxation times of magnetic nuclei in
a distance-dependent manner. In general terms, the magnetic interaction between the
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Fig. 1. Domain organization of well-characterized serine–threonine protein kinases of phar-
maceutical interest. The isolated kinase domain constructs for which X-ray 3D structures have
been reported are indicated in black: phosphoinositide-dependent protein kinase-1 (PDK1); pro-
tein kinase B/Akt (PKB); cyclic adenosine monophosphate (cAMP)-dependent protein kinases
(PKA); c-JUN NH2-terminal protein and 38-kDa protein kinases (JNK/p38); extracellular sig-
nal-regulated protein kinases (ERK1,2); cyclin-dependent protein kinases (CDK); and check-
point kinases (CHK). The active kinase domains of each family member must be phosphorylated,
and the upstream protein kinase activator is indicated above each domain. Interestingly, PDK1
serves as the upstream activator of serum- and glucocorticoid-induced protein kinase (SGK),
40- and 90-kDa 40S ribosomal protein S6 kinase (p70 and p90 S6K), and Ca2+-activated pro-
tein kinase (PKC). No upstream activator has been clearly identified for phosphorylation of the
C-terminal hydrophobic motif (HM) domains of PKB, SGK, p70 S6K, PKC, and PKA. The reg-
ulatory domain constructs for which X-ray or NMR structures have been reported are indicated
in gray: pleckstrin homology (PH) domain of PKB; diacylglycerol (DAG) and Ca2+ domains of
PKC; cAMP-regulatory subunit of PKA; cyclin-regulatory subunit of CDK; the conserved region
1 (CR1) domain of the first identified downstream effector kinases (RAF1,A,B) of the mitogen-
activated G protein (RAS); the polo box domain (PBD) of polo-like kinase (PLK) and the fork-
head-associated (FHA) domain of CHK. Regulatory domains that bind either small-molecule
sec-ond messengers or regulatory proteins are indicated. PIP3, phosphatidylinositol 3,4,5-triphos-
phate; CAK, CDK-activating kinase; MEK, MAPK/ERK kinase; SH3, Src-homology 3 domain;
ATM/ATR, ataxia telangiectasia mutated kinase/ataxia- and Rad-related kinase; MAPK, mito-
gen-activated protein kinase.
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unpaired electron of a site-directed spin label and a proton in the same molecule is simi-
lar to the nuclear Overhauser effect (NOE) between pairs of protons. Unlike an NOE,
whose measurable effect is limited to distances ≤5.5 Å, the electron–proton interaction
extends over approx 20–35 Å, depending on the particular spin label. Finally, distance
geometry/simulated annealing protocols in CNS(XPLOR) are used to calculate the
average position of the known structure of the regulatory domain relative to the known
X-ray structure of the larger kinase domain.

The combined use of X-ray crystallography, segmental isotopic and site-directed spin
labeling, and NMR structural studies may prove to become a powerful method to study
other flexible multidomain proteins, which otherwise do not yield diffraction quality
crystals. The effects of ligand binding on the position of one domain with respect to the
other domain would provide firsthand accounts of how binding events regulate domain
organization and dynamics. Knowledge of the position of a ligand-binding site on one
domain with respect to the binding site on another proximal domain will be highly use-
ful toward the rational or structure-based design of bivalent inhibitors. If the ligand-
binding sites are reasonably close, then the free energies of binding of these two sites
could be chemically “linked.” Not only will this produce high-affinity inhibitors, but
specific linkage geometries will provide for highly selective binding. In addition, new-
found clefts and crevices leading to the interface between two contiguous protein domains
will provide tactical sites of interest to which small molecular fragments can be targeted
for binding interactions.

2. Materials

2.1. Molecular Biology
1. Human tissue Marathon-Ready™ cDNA library and Advantage 2 Polymerase Mix, for poly-

merase chain reaction (PCR) amplification of protein kinase genes from human cDNA
library (Clontech, Palo Alto, CA).

2. Oligonucleotide primers for all PCR reactions (Operon, Alameda, CA).
3. KOD proofreading polymerase for high-fidelity PCR reactions except PCR from human

cDNA library (Novagen, Madison, WI).
4. pCR®-Blunt II-TOPO® vector and One Shot® TOP10 Chemically Competent Escherichia

coli for initial cloning purposes (Invitrogen, Carlsbad, CA).
5. QIAquick® Gel Extraction Kit and QIAprep® Spin Miniprep Kit for DNA preparative pro-

cedures (Qiagen, Valencia, CA).
6. QuikChange® Single and Multi Site-Directed Mutagenesis kits (Stratagene, La Jolla, CA).
7. Restriction enzymes and DNA polymerization mix (deoxynucleotide 5'-triphosphates)

(Boehringer Mannheim, Indianapolis, IN)
8. All other chemicals, salts, and buffers (Sigma, St. Louis, MO).

2.2. Protein Expression and Purification
1. Bac-to-Bac® Baculovirus Expression System, pFastBac™1 cloning plasmid, DH10Bac™

competent cells of E. coli, S.N.A.P.™ MidiPrep Kit, Taq DNA polymerase High Fidelity,
M13 forward (−40) and M13 reverse primers, Cellfectin® Reagent, unsupplemented Grace’s
Medium, and Sf9 insect cells for expression of human protein kinases and their catalytic
kinase domain constructs (Invitrogen).
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2. BL21(DE3) competent cells of E. coli and pET protein expression vectors for bacterial
expression of 15N- and 13C-isotopic-labeled regulatory domains (Novagen).

3. Factor Xa protease and benzamidine column for His6 tag removal and generation of an NT-
Cys (Novagen).

4. ÄKTAbasic fast performance liquid chromatography (FPLC), Ni Sepharose High Perfor-
mance Resin, and Prepacked HisTrap HP columns for affinity tag purification and removal
of His6 tag (Amersham, Piscataway, NJ).

2.3. Segmental Isotopic and Paramagnetic Spin Labeling
1. Ammonium-15N chloride and D-Glucose-13C6, for isotopic labeling of regulatory domains

(Isotec, Miamisburg, OH).
2. MTSL, for site-directed paramagnetic spin labeling of kinase domains (Toronto Research

Chemicals, Canada).
3. MESNA, for generation of C-terminal thioester; ninhydrin (indane 1,2,3-trione), for NT-

Cys protection; and Ellman’s reagent (5,5'-dithio-bis[2-nitrobenzoic acid], or DTNB), for
thiol titration (Sigma).

4. 7-Diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), for thiol titration of
spin-labeled proteins (Molecular Probes, Eugene, OR).

5. BioGel 501 organomercurial thiol affinity column (Bio-Rad, Hercules, CA).

2.4. Determination of Structure

2.4.1. Hardware
1. High-field NMR instrumentation (⊕500 MHz) with cryoprobe, for high-sensitivity protein

structural and dynamic studies.
2. Standard EPR instrumentation with capability of containing a small-diameter capillary

for data collection on protein samples in aqueous solution.

Fig. 2. (Opposite page) Overall strategy utilized to combine site-directed nitroxide spin label-
ing of N-terminal kinase domain with uniform 15N-isotopic labeling of C-terminal regulatory
pleckstrin homology (PH) domain of phosphoinositide-dependent protein kinase-1 (PDK1). A
His6-tagged single-site cysteine mutant of the N-terminal kinase domain fused with a C-terminal
Mxe GyrA intein is expressed and affinity purified from Sf9 insect cells. Thiolytic cleavage of the
C-terminal Mxe GyrA intein with 2-mercaptoethanesulfonate (MESNA) generates a C-terminal
thioester on the N-terminal kinase domain. The C-terminal regulatory PH domain is expressed
as a fusion protein containing an N-terminal His6 tag with a factor Xa protease cleavage site
and affinity purified from Escherichia coli grown in minimal media supplemented with the
desired nuclear magnetic resonance (NMR) active isotopic label. Cleavage with factor Xa gen-
erates an N-terminal cysteine (NT-Cys). As a result of the chemical reactivity between the C-
terminal thioester and the NT-Cys, native peptide bond formation occurs on mixing the N-terminal
kinase domain with the C-terminal regulatory PH domain. Full-length PDK1 is affinity purified,
and the His6 tag is cleaved to form segmental isotopic-labeled PDK1 for NMR structural and
dynamic studies. To provide for site-directed spin labeling, the thioester derivative of the N-ter-
minal kinase is first reacted with (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)methanesulfo-
nate (MTSL), which modifies the single-site cysteine with the nitroxide (NO) spin label through
disulfide bond formation. NMR relaxation studies of the paramagnetic enhancement effect caused
by insertion of the spin label yield distances between the unpaired electron of the spin label and
the 15N-isotopic-labeled backbone amide protons of the regulatory PH domain.
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3. Either an Apple computer with Mac OS X operating system, any personal computer (PC) with
a Linux operating system, or a Unix-based computer (e.g., Silicon Graphics and Sun), to
perform the required NMR data processing and structural analysis. The Apple PowerBook lap-
top computer with Mac OS X operating system is portable and requires little modification
for installing all necessary software. Although several PC laptops (e.g., Dell, IBM, and Gate-
way) with Linux operating systems are available, some degree of modification is required.

2.4.2. Software
1. NMRPipe, NMRDraw, and NMRView for NMR data processing compatible with either

Mac OS X, Unix, or Linux operating systems (http://spin.niddk.nih.gov/bax/software/NMR
Pipe/info.html).

2. CNS for structure calculations (http://cns.csb.yale.edu/v1.1/).

3. Methods
To perform NMR structural studies of flexible multidomain protein kinases, two dif-

ferent arrangements of the kinase and regulatory domains must be considered: (1) site-
directed spin labeling of an N-terminal kinase domain and isotopic labeling of a C-termi-
nal regulatory domain (see Fig. 2), and (2) isotopic labeling of an N-terminal regulatory
domain and site-directed spin labeling of a C-terminal kinase domain (see Fig. 3). Sub-
heading 3.1. describes protein engineering strategies for generating protein kinases with
isotopic labeling of the regulatory domain present at either the N- or C-terminus. Sub-
heading 3.2. describes protein engineering strategies for generating protein kinases with
site-directed spin labeling of the kinase domain present at either the N- or C-terminus.
Finally, Subheading 3.3. describes the NMR experiments and structural calculations

Fig. 3. (Opposite page) Overall strategy utilized to combine uniform 15N-isotopic labeling of
N-terminal regulatory pleckstrin homology (PH) domain with site-directed nitroxide spin label-
ing of C-terminal kinase domain of PKB2. The N-terminal regulatory PH domain is expressed
as a fusion protein containing an N-terminal His6 tag and a C-terminal Mxe GyrA intein and
affinity purified from Escherichia coli grown in minimal media supplemented with the desired
nuclear magnetic resonance (NMR) active isotopic label. Thiolytic cleavage of the C-terminal
Mxe GyrA intein with 2-mercaptoethanesulfonate (MESNA) generates a C-terminal thioester on
the N-terminal regulatory PH domain. The C-terminal kinase domain is expressed as a fusion
protein containing an N-terminal His6 tag with a factor Xa protease cleavage site and affinity pur-
ified from Sf9 insect cells. Cleavage with factor Xa generates an N-terminal cysteine (NT-Cys).
As a result of the chemical reactivity between the C-terminal thioester and the NT-Cys, native
peptide bond formation occurs on mixing the two protein fragments. Full-length phosphoinos-
itide-dependent protein kinase-2 (PKB2) is affinity purified, and the His6 tag is cleaved to form
segmental isotopic-labeled PKB2 for NMR structural and dynamic studies. To provide for site-
directed spin labeled of the C-terminal kinase domain, the NT-Cys is first protected with nin-
hydrin before chemical modification of the internal single-site cysteine with the MTSL nitroxide
(NO) spin label. On deprotection of NT-Cys, the spin-labeled kinase domain is ligated to the thio-
ester derivative of the N-terminal isotopic-labeled regulatory PH domain. NMR relaxation stud-
ies of the paramagnetic enhancement effect caused by insertion of the spin label yield distances
between the unpaired electron of the spin label and the 15N-isotopic-labeled backbone amide pro-
tons of the regulatory PH domain.

http://cns.csb.yale.edu/v1.1/
http://spin.niddk.nih.gov/bax/software/NMRPipe/info.html
http://spin.niddk.nih.gov/bax/software/NMRPipe/info.html
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required for determining the overall structural dynamics of flexible multidomain pro-
tein kinase drug targets, which otherwise do not yield diffraction quality crystals.

3.1. Segmental Isotopic Labeling of Either
an N-Terminal or a C-Terminal Regulatory Domain

Because many protein kinases are already established drug targets (1,2), the proce-
dures for cloning, expression, and purification of numerous soluble and functional kin-
ase constructs are provided in the literature. To facilitate structural and dynamic studies
of yet-uncharacterized protein kinases, all general procedures necessary for generating
the required soluble and functional domain constructs from the full-length kinases are
described herein. It is first essential to identify soluble and functional “full-length”
kinase constructs that contain both the intact contiguous catalytic and regulatory domains
of interest. The “full-length” protein kinase should be tested for soluble expression in
a number of different organisms (e.g., bacteria, yeast, or insect cells). If no soluble
expression is observed, then amino acid sequence alignments should be performed with
sequences of related kinase and regulatory domains from other enzymes and proteins
for which 3D structures have been determined. Often, a slightly modified construct may
be identified in which a small fragment of the N- and/or C-terminal regions are deleted.
Then, sets of primers covering differing ranges of residues are used to generate differ-
ent constructs to test for soluble expression in the organism of choice. If a construct
that contains the contiguous domains of interest is identified, then soluble and func-
tional constructs of the two individual domains can be more easily identified by limited
proteolysis, which ultimately facilitates combined segmental isotopic and site-directed
spin labeling for NMR studies.

Subheadings 3.1.1.–3.1.6. describe protein engineering strategies for generating
segmental isotopic labeling of a C-terminal regulatory domain (e.g., the PH domain of
PDK1, as depicted in Fig. 2) and segmental isotopic labeling of an N-terminal regula-
tory domain (e.g., the PH domain of PKB2, as depicted in Fig. 3). This includes descrip-
tions for PCR amplification of full-length protein kinase genes from a human cDNA
library, expression and purification of soluble and functional human protein kinases
from Sf9 insect cells, identification of soluble and functional catalytic and regulatory
domain constructs for intein-mediated protein ligation, generation of an NT-Cys on a
C-terminal kinase domain or an isotopic-labeled C-terminal regulatory domain, gen-
eration of C-terminal thioesters on an N-terminal kinase domain or an isotopic labeled
N-terminal regulatory domain, and chemical ligation of the isotopic-labeled regulatory
domain to the kinase domain.

3.1.1. Molecular Cloning of Full-Length
Protein Kinase Genes From a Human cDNA Library

The most efficient method for obtaining the cDNA encoding a target protein kinase,
whether previously described or computer identified through bioinformatic analysis,
is by PCR amplification of the full-length gene from a cDNA library and subsequent
efficient ligation into a cloning vector as described in Subheadings 3.1.1.1. and 3.1.1.2.,
respectively. Alternatively, PCR-based gene synthesis provides a robust alternative
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approach for generating cDNA sequences for predicted genes/cDNA that either are dif-
ficult to clone or for which the corresponding mRNA sources are difficult to obtain.
Detailed protocols for PCR-based gene synthesis have been evaluated (12).

3.1.1.1. TOUCHDOWN PCR AMPLIFICATION FROM A CDNA LIBRARY

The cDNA coding sequence is obtained for the full-length target protein kinase (e.g.,
PDK1, accession no. NM002613; and PKB2, accession no. NM005163). PCR is used to
generate full-length copies of the human cDNA coding sequence. Human tissue Mara-
thon-Ready cDNA libraries (Clontech) serve as convenient templates. Advantage 2 Poly-
merase Mix (Clontech), which includes TaqStart Antibody for automatic hot-start PCR,
is found to be more effective than other polymerase mixes. To increase further the effi-
ciency of gene-specific PCR amplification from the cDNA library, it is best that the for-
ward and reverse primers complement the 5' and 3' termini of the coding sequence and
contain no flanking restriction sites. Each primer should have a GC content of 50–70%
and a Tm ⊕70°C. To increase the specificity of gene amplification, the following opti-
mized protocol for “touchdown” PCR may be employed: incubation at 94°C for 30 s,
5 cycles of 94°C for 30 s and 72°C for 3 min, 5 cycles of 94°C for 30 s and 70°C for 3
min, and 25 cycles of 94°C for 30 s and 68°C for 3 min. The resulting DNA products are
efficiently isolated by gel purification (1% agarose) using a QIAquick Gel Extraction
Kit (Qiagen).

3.1.1.2. EFFICIENT LIGATION AND CORRECTIVE MUTAGENESIS

The 3'-dA nucleotide overhangs generated by the Advantage 2 Polymerase Mix
(Clontech) must be removed by incubation with a blunt-ended pfu-type high-fidelity
polymerase mix (e.g., KOD proofreading polymerase; Novagen). The blunt-ended cDNA
PCR products can be efficiently cloned into pCR-Blunt II-TOPO plasmid vector (Invitro-
gen), which is supplied linearized with Vaccinia virus DNA topoisomerase I covalently
bound to the 3' end of each DNA strand (see Note 1). The products of the ligation reac-
tions are transformed into any number of strains of competent cells of E. coli (e.g., One
Shot TOP10 Chemically Competent E. coli; Invitrogen), and selected colonies are grown
in 10 mL of enriched media (e.g., Luria Broth) containing an appropriate antibiotic (e.g.,
ampicillin for the pCR-Blunt II-TOPO plasmid vector). High-quality plasmid prepara-
tions can be obtained using a QIAprep Spin Miniprep Kit (Qiagen) for sequence verifi-
cation. Plasmids shown to contain the fewest alterations in the cDNA sequence are saved
for further corrective mutagenesis using either QuikChange Single or Multi Site-Directed
Mutagenesis kits (Stratagene) to obtain the native full-length sequences for the target
proteins (see Note 2). The newly generated plasmid PCR products are transformed back
into competent cells of E. coli, and the plasmids are isolated and sequenced to verify
the corrective mutations.

3.1.2. Expression and Purification of Human Protein Kinases
To date, baculovirus-mediated protein expression in either Sf9 or Sf21 insect cells

is the most effective method for generating high levels of soluble and active human pro-
tein kinases for structural and drug-screening studies. It has been underreported but



210 Harris

overestablished that a majority of human protein kinases are poorly expressed and puri-
fied as inclusion bodies from both bacterial and yeast protein expression strains under a
wide variety of growth and induction conditions. Subheadings 3.1.2.1.–3.1.2.5. describe
procedures for high-level protein expression in Sf9 insect cells, affinity tag purification,
and PDK1 (residues 51–556) and PKB2 (full length, residues 1–481). Removal of the
first 50 amino acid residues of PDK1 significantly increases its stability in solution and
does not alter its catalytic and regulatory activities.

3.1.2.1. PCR SUBCLONING INTO PFASTBAC 1 AND GENERATION

OF RECOMBINANT BACMID FOR PRODUCING RECOMBINANT BACULOVIRUS

PCR is used to generate cDNA encoding for an N-terminal His6-tagged fusion pro-
tein of the “full-length” kinase (e.g., residues 51–556 of PDK1 and residues 1–481 of
PKB2) containing a PreScission protease recognition sequence for removal of the His6
tag and flanking restriction enzyme recognition sequences for directional ligation into
the pFastbac 1 vector (see Note 3). A sequence-verified restriction fragment is ligated
into the pFastBac 1 vector (Invitrogen), which is used to generate recombinant bacmid
for producing recombinant baculovirus using a Bac-to-Bac Baculovirus Expression
System (Invitrogen). The recombinant FastBac 1 plasmid is transformed into DH10Bac
competent cells of E. coli. When transformed DH10Bac cells are grown on Luria-Bertani
(LB) agar plates containing kanamycin (50 µg/mL), gentamicin (7 µg/mL), tetracycline
(10 µg/mL), Bluo-gal (100 µg/mL), and isopropyl-β-D-thiogalactoside (IPTG) (40 µg/
mL), colonies containing recombinant bacmid are white, whereas colonies containing
unaltered bacmid are blue (see Note 4). After selected white colonies are restreaked, a
single isolated large white colony is used to inoculate LB media containing kanamycin
(50 µg/mL), gentamicin (7 µg/mL), and tetracycline (10 µg/mL), and the high molecular
weight recombinant bacmid DNA is isolated using a S.N.A.P. MidiPrep Kit (Invitro-
gen). Because the recombinant bacmid DNA is greater than 135 kb in size, PCR analysis
must be used to verify the presence of the kinase construct using Taq DNA polymer-
ase High Fidelity, the M13 Forward (−40) and M13 Reverse primers, and the protocol
provided by Invitrogen.

3.1.2.2. PRODUCTION OF RECOMBINANT BACULOVIRUS IN SF9 INSECT CELLS

1. As suggested in the manufacturer’s protocol, dilute 1 µg of recombinant bacmid and 6 µL
of Cellfectin Reagent in 200 µL of unsupplemented Grace’s Medium, incubate for 45 min
at room temperature, and then further dilute with 0.8 mL of unsupplemented Grace’s
Medium (i.e., no antibiotics). Then add this mixture to individual wells of a 35-mm tissue
culture plate containing 9 ↔ 105 attached Sf9 cells/well (>97% viability), and incubate the
cells at 27°C for 5 h.

2. Replace the bacmid solution with 2 mL of complete growth media (i.e., Sf-900 II serum-
free media with antibiotics), and incubate the cells at 27°C for 72 h.

3. Collect the recombinant P1 viral stock as the clarified supernatant after centrifuging the
media containing the cells from which viral budding has been confirmed using an inverted
phase microscope at ↔250–400.

4. Amplify the recombinant P1 viral stock by infection of a 10-mL suspension culture at 2 ↔
106 cells/mL, and incubate the cells at 27°C for 48 h.
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5. After centrifugation, collect the recombinant P2 stock as the clarified supernatant; a titer
of ⊕1 ↔ 107 plaque-forming units/mL should be obtained. Store aliquots of the recombi-
nant P2 viral stock at either −80°C (long-term storage) or 4°C (immediate use).

3.1.2.3. HIGH-LEVEL PROTEIN KINASE EXPRESSION IN SF9 INSECT CELLS

1. Use recombinant P2 viral stocks to infect 500-mL spinner flask cultures of Sf9 cells in the
midlogarithmic phase of growth (1.5 ↔ 106 cells/mL) at a multiplicity of infection of 1,
yielding 1.5 ↔ 106/mL.

2. Incubate the infected cells at 27°C for 72 h, harvest by centrifuging at 200–400g for 10 min
at 4°C in a Sorvall centrifuge with a GS-3 rotor, and store the whole cell pellets at −80°C.

3. Allow the frozen pellets to thaw on ice before resuspending in 20 mL of lysis buffer (per
500-mL spinner flask) containing 50 mM Tris-HCl, pH 7.5; 300 mM NaCl; 5 mM ethyl-
enediaminetetraacetic acid (EDTA); 1 mM dithiothreitol (DTT); 1 mM sodium orthovan-
adate; 5 mM sodium fluoride; 1% (v/v) glycerol; 0.2% (v/v) Triton X-100; and complete
protease inhibitor cocktail (one tablet/50 mL). Lyse the cells by incubating for 20 min,
followed by freezing and thawing, and pellet the cell debris by centrifuging at ⊕1600g for
30 min at 4°C in a Sorvall centrifuge with an SS-34 rotor. Collect the supernatants con-
taining the soluble components of the cell lysate.

3.1.2.4. NICKEL SEPHAROSE HISTRAP HP AFFINITY

PURIFICATION OF N-TERMINAL HIS6-TAGGED PROTEIN KINASE

1. Directly load the soluble lysate by FPLC (1 mL/min) onto a 5-mL bed volume of Ni Sepha-
rose HisTrap HP affinity column (Amersham) equilibrated at 4°C in 50 mM Tris-HCl, pH
7.5; 300 mM NaCl; 50 mM imidazole; 5 mM EDTA; 1 mM DTT; and 1% (v/v) glycerol.
Subsequently wash the column until the absorbances at 260 and 280 nm return to baseline.

2. Elute the recombinant His6 affinity–tagged enzyme by increasing the imidazole concen-
tration from 50 to 500 mM. Analyze fractions by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE), and pool and concentrate fractions containing >85%
pure recombinant protein. If no soluble protein expression is obtained, then expression of
alternative “full-length” constructs should be attempted.

3.1.2.5. CHARACTERIZATION OF PURIFIED RECOMBINANT PROTEIN KINASES

When adequate amounts of soluble full-length kinase are obtained (e.g., ⊕20 mg of en-
zyme/L of culture), the basic structural and enzymatic properties should be characterized.

1. Confirm the identity of the purified enzyme by N-terminal Edman sequencing and also
by Western blotting if an antibody is available.

2. Determine the overall molecular weight of the purified kinase by electrospray ionization
mass spectrometry (ES-MS) on enzyme preparations that have been either treated or not
treated with a variety of protein phosphatases. A reduction in the apparent molecular weight
on treatment with phosphatase indicates that the purified kinase underwent phosphoryla-
tion during protein expression and/or purification. Conduct phosphopeptide mapping
studies to identify the precise sites of phosphorylation and those sites that are dephospho-
rylated by treatment with specific phosphatases.

3. Evaluate the activity of the protein kinase before and after treatment with specific phos-
phatases toward model synthetic peptide substrates.

4. Evaluate the stability of the purified enzyme regarding ionic strength, temperature, pH,
and freeze/thaw cycling. Whereas the enzymatic activity of most human protein kinases,
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which have been expressed and purified from Sf9 insect cells, is prolonged at lower tem-
peratures (4°C) in buffers of physiological ionic strength (⊕0.15 M) and mild pH, NMR
protein structural studies are optimally performed at higher temperatures (⊕20°C) in buff-
ers of lower ionic strength (⊕0.15 M) and slightly acidic pH.

3.1.3. Identification of Soluble and Functional Catalytic
and Regulatory Domain Constructs for Intein-Mediated Protein Ligation

The “full-length” kinase target construct (20–50 µg) is cleaved at 37°C with trypsin
(0.2–0.5 µg) in 50 mM Tris-HCl, pH 8.0, with 100 mM NaCl. Aliquots are taken every
min over 20 min, supplemented with 10 mM benzamidine, and analyzed by SDS-PAGE.
The protein fragments are purified from the gel and subjected to N-terminal Edman
sequencing and matrix-assisted laser desorption ionization analysis. From knowledge
of the N-terminal sequence, the molecular mass, and the trypsin cleavage sites, soluble
domain constructs can be identified. After identifying soluble domain constructs, the
first approach toward selection of a suitable ligation site is to identify an X-Cys pair
between the boundaries of the N- and C-terminal domains to be ligated. X will be the
C-terminal residue of the N-terminal domain, and Cys will be the N-terminal residue of
the C-terminal domain (see Note 5) (13,14). If no X-Cys pair (in which X is preferably
His, Cys, or Gly and preferably not Asp, Pro, Ile, or Val) exists between the boundaries,
then an X-Ser pair is chosen, because a Ser♦Cys mutation is both isosteric and iso-
electronic and often causes very little effects in protein activity and stability. If an X-
Ser pair does not exist, care must be taken to identify a pair of residues for which muta-
genesis to form an X-Cys pair is least likely to induce structural perturbations and
lower the stability of the enzyme.

3.1.4. Generation of NT-Cys on C-Terminal Kinase or Regulatory Domains
Proteolytic cleavage of an N-terminal affinity tag using the factor Xa protease is the

most convenient method for generating an NT-Cys, because factor Xa cleaves at the
C-terminus of arginine in the recognition sequence IEGR (13,14). Although the proce-
dure described next is for removal of an N-terminal His6 tag, any N-terminal affinity
tag may be substituted.

1. Because a C-terminal larger-sized kinase domain does not require isotopic label, high-level
and soluble protein expression is best achieved in Sf9 insect cells. Generate a fusion pro-
tein construct containing an N-terminal His6 tag with a factor Xa protease cleavage site
prior to an NT-Cys of the kinase domain construct in FastBac 1 vector (Invitrogen). Use
recombinant pFastBac 1 vector to generate recombinant baculovirus using the Bacto-Bac
Baculovirus Expression System (Invitrogen), and express and purify the His6-tagged kinase
domain from Sf9 insect cells (see Subheading 3.1.2.).

2. To facilitate uniform 15N and/or 13C-isotopic labeling, a C-terminal regulatory domain
must be expressed in either bacterial or yeast cells. Generate a protein expression vector
containing an N-terminal His6 tag with a factor Xa protease cleavage site prior to an NT-
Cys of the regulatory domain construct by PCR and transform into protein expression
strains of either E. coli bacteria or Pichia pastoris yeast. Optimize the temperature, time,
and chemical inducer (e.g., IPTG) concentration for high-level expression of a soluble His6-
tagged fusion regulatory domain construct. If no soluble protein can be generated, then
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consider alternative ligation sites. If high-level expression of soluble protein is achieved, then
carry out uniform 15N- and/or 13C-isotopic labeling by growing the cells in minimal media
containing 15NH4Cl as the sole source of nitrogen, either 13C- or 12C-glucose as the sole source
of carbon, and the appropriate selective antibiotic before His6 tag affinity purification.

3. Optimal conditions for factor Xa proteolytic cleavage of individual affinity tagged fusion
proteins must be established. Add varying amounts of factor Xa protease to the purified
His6-tagged C-terminal domain, and carry out digestion at varying temperatures for vary-
ing times. The extent of cleavage may be followed by high-performance liquid chroma-
tography (HPLC), ES-MS, or SDS-PAGE.

4. After the reaction is carried out under optimized conditions, remove factor Xa by passage
over a benzamidine column. Remove simultaneously the cleaved His6 tag and any remain-
ing uncleaved protein containing the His6 tag by incubating with nickel Sepharose HisTrap
HP (200 µL) resin (Amersham). After incubation for 15 min, centrifuge the mixture, and
concentrate (⊕0.05 mM) the supernatant containing the cleaved enzyme and store at −80°C.

3.1.5. Generation of C-Terminal Thioester
on N-Terminal Kinase and Regulatory Domains

A C-terminal thioester on either an N-terminal kinase domain or an N-terminal reg-
ulatory domain is generated by designing a construct in which a cleavable N-terminal
His6 tag preceding the domain construct is fused to a C-terminal Mxe GyrA intein (13,
14). Depending on whether the N-terminal construct is expressed in bacteria, yeast, or
insect cells, such fusion protein constructs are generated by PCR and subsequent liga-
tion into any number of protein expression vectors. Addition of the thiol reagent MESNA
to the purified fusion protein causes cleavage of the C-terminal Mxe GyrA intein and
formation of a C-terminal thioester derivative of MESNA with the N-terminal domain.
MESNA is particularly advantageous over other thiolytic reagents (e.g., ethanethiol or
thiophenol), because it is significantly more soluble and is completely odorless.

1. Since an N-terminal kinase domain requires expression in Sf9 insect cells, generate an N-
terminal His6 tag with a PreScission protease cleavage site preceding the kinase domain
construct fused to the C-terminal Mxe GyrA intein in FastBac 1 vector (see Note 6). Use
recombinant pFastBac 1 vector to generate recombinant baculovirus using the Bac-to-Bac
Baculovirus Expression System (Invitrogen), and express the Mxe GyrA fusion construct
of the kinase domain is expressed in Sf9 insect cells and His6 tag affinity purify (see Sub-
heading 3.1.2.). If no soluble fusion construct can be obtained, then it is necessary to select
a new ligation site, and new domain constructs must be engineered.

2. Since an N-terminal regulatory domain requires uniform 15N- and/or 13C-isotopic label-
ing by E. coli expression in minimal media, generate a fusion protein construct contain-
ing a cleavable N-terminal His6 tag preceding the regulatory domain construct fused to a
C-terminal Mxe GyrA intein in a chosen bacterial protein expression vector (see Note 7).
Even if high levels of insoluble protein are produced, we find it often possible to obtain
the regulatory domain in soluble form after thiolytic cleavage with MESNA of the Mxe
GyrA intein under partially denaturing conditions (≤4 M guanidine HCl or urea). Smaller
regulatory domains can often be refolded to be soluble and functional. Once it has been
established that thiolytic cleavage can yield a soluble domain construct (see step 3), express
the His6-tagged regulatory domain–Mxe GyrA construct in minimal media for isotopic
labeling and His6 tag affinity purify (see Subheading 3.1.2.4.).
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3. Subject the N-terminal His6-tagged kinase–Mxe GyrA or isotopic-labeled regulatory domain–
Mxe GyrA construct to thiolytic cleavage in mild aqueous buffer (pH 6.0–8.0) by adding
MESNA in a fourfold excess molar ratio to the protein. The extent of the cleavage reac-
tion may be followed by subjecting small aliquots of the reaction mixture to HPLC, ES-
MS, or SDS-PAGE analysis. The reaction rate and extent of cleavage is increased under
slightly acidic conditions (pH 6.0–7.0). The MESNA thioester derivative of the N-termi-
nal domain may be stored under normal protein domain storage conditions until native
chemical ligation with the C-terminal domain is to be performed.

3.1.6. Native Chemical Ligation of Kinase and Regulatory Domains
Native chemical ligation between the N-terminal domain containing the C-terminal

thioester derivative of MESNA and the C-terminal domain containing an NT-Cys is
typically carried out in mild aqueous buffers (pH 6.0–8.0) at temperatures between 4
and 40°C, depending on the stability requirements of the protein components (13,14).
The reaction is further catalyzed by including 2% (w/v) MESNA as a “cofactor” in the
ligation buffer in the presence of the protein components at the highest possible con-
centration (⊕0.05 mM). The rates of native chemical ligation vary, depending on the
temperature, protein concentration, and the amino acid residues near the termini being
joined. The extent of the ligation reaction may be monitored by either HPLC, ES-MS,
or SDS-PAGE. Once it has been established that the reaction has proceeded to near com-
pletion, the ligated full-length kinase is His6 tag affinity purified, and the affinity tag
is proteolytically removed (see Subheading 3.1.4.). The enzymatic properties (e.g.,
activity, regulation, and stability) of the segmentally labeled full-length protein kinase
must be evaluated and compared with those determined for the native full-length pro-
tein kinase (see Subheading 3.1.2.5.). In addition, protein NMR spectra should be
obtained for the segmentally labeled full-length protein kinase and compared with spec-
tra of the isolated regulatory domain construct (see Subheading 3.3.1.).

3.2. Site-Directed Paramagnetic Spin Labeling
of Either an N-Terminal or a C-Terminal Kinase Domain

Once it has been established that a soluble isotopic-labeled regulatory domain may
be successfully ligated to a soluble kinase domain and that high-quality 1H–15N HSQC
NMR spectra (see Subheading 3.3.1.) can be obtained for the segmentally-labeled con-
struct, the final protein engineering step involves site-directed, paramagnetic nitroxide
spin labeling of the individual kinase domain. The site-directed, spin-labeled kinase
domain is ligated to the isotopic-labeled regulatory domain for ultimate determination
of long-range distance restraints between the two domains. Subheading 3.2.1. describes
methods for selecting and generating single-site cysteines in the kinase domain. Sub-
heading 3.2.2. describes a basic procedure for chemical modification with the nitroxide
spin label of a single cysteine residue in the case of an N-terminal kinase domain (e.g.,
PDK1, as depicted in Fig. 2). Subheading 3.2.3. describes additional procedures for
chemical protection and deprotection of the NT-Cys of a C-terminal kinase domain (e.g.,
PKB2, as depicted in Fig. 3) in order to provide site-directed spin labeling of a single
internal cysteine.



New Drug-Targeting Sites 215

3.2.1. Generation of Single-Site Cysteine Mutants of Kinase Domains
Alkylation of the thiolate of cysteine residues provides a highly site-specific method

for the introduction of spin labels on proteins (15). However, many of the kinase domains
contain numerous cysteine residues. If the number of cysteine residues in the kinase
domain construct is less than five, then it is practical to use the QuikChange Single or
Multi Site-Directed Mutagenesis kits (Stratagene) in order to mutate all of the cysteine
residues to serine residues (see Note 2). If the kinase domain contains more than five
cysteine residues, then it is preferable to generate a cysteine-free mutant by PCR-based
gene synthesis of an engineered kinase domain in which all of the cysteines have been
mutated to serines (12). With a cysteine-free kinase domain, site-directed mutagenesis
can be further used to substitute any amino acid residue with a single cysteine, allow-
ing a spin label to be introduced at any position in the kinase domain.

Using the known X-ray structure of a given kinase domain, four to six residues for
cysteine substitution should be chosen. Single-site cysteine mutant constructs should
be generated so that spin label modifications are obtained on both the N- and C-lobes
at positions both near and far from the kinase active site. Residues with highly solvent-
accessible side chains should be given preference, particularly the native cysteine and
serine residues. However, substitution of any charged residue will likely yield a stable
mutant.

3.2.2. Chemical Modification of Single Cysteine With Nitroxide Spin Label
1. Directly modify an N-terminal kinase domain (e.g., PDK1, as depicted in Fig. 2) with a C-

terminal thioester derivative of MESNA with the spin label reagent MTSL (Toronto Re-
search Chemicals) (see Note 8) (15). Dissolve the protein in the preferred buffer (pH 8.0),
and remove oxygen by flushing the solution with argon gas. Add a threefold molar excess
of MTSL from a 40 mM stock in acetonitrile to the protein (0.05–0.5 mM), and incubate
the reaction mixture in the dark at room temperature overnight. The reaction rate may be
increased by incubating with higher concentrations of MTSL (≤10-fold molar excess).

2. Remove excess MTSL reagent by gel filtration on a P4 column.
3. To remove any unlabeled protein with a free sulfhydryl group, pass the reaction product

over an organomercurial thiol-affinity column (Bio-Gel 501; Bio-Rad).
4. A sensitive method for determining the extent of modification is titration of an aliquot of

the reaction product with the thiol-specific fluorophore CPM (Molecular Probes) (see
Note 9). The nitroxide must be reduced prior to fluorescence measurements to prevent
paramagnetic quenching of the CPM fluorophore. Collect fluoresence emission spectra
using the ratio of corrected emission intensities at λmax = 480 nm on excitation at 340 nm.

5. Evaluate the efficiency of spin labeling by direct electron paramagnetic resonance (EPR)
measurements of the spin-labeled protein (see Subheading 3.3.3.).

6. Chemically ligate the N-terminal kinase domain containing both a C-terminal thioester and
a site-directed nitroxide spin label to the C-terminal isotopic-labeled regulatory domain
(see Subheading 3.1.6.).

3.2.3. Chemical Protection and Deprotection
of NT-Cys of a C-Terminal Kinase Domain

In the case in which a C-terminal kinase domain (e.g., PKB2, as depicted in Fig. 3)
requires a single-site cysteine to attach the spin label but also requires an N-terminal
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cysteine for intein-mediated ligation, the N-terminal cysteine must be chemically pro-
tected before chemical modification with the nitroxide spin label. NT-Cys residues
are distinguished from internal cysteine residues by the presence of two vicinal nu-
cleophiles, β-thiol and α-amine, which confer unique chemical reactivity with ninhy-
drin (indane-1,2,3-trione). It is known that ninhydrin reacts with uncharged primary
amines (–NH2) under mild aqueous conditions to form the chromophore Ruhman’s
purple, which has been greatly utilized for quantitative amino acid analysis. However,
the β-thiol of free cysteine or an NT-Cys further reacts with the Schiff’s base intermedi-
ate of ninhydrin bonded to the N-terminal amino group to form a cyclic five-membered
spiro-thiazolidine (Thz) ring (16). The Thz structure effectively protects the NT-Cys
so that the internal single-site Cys can be chemically modified with the nitroxide spin
label (see Note 10). Following attachment of the nitroxide spin label, ninhydrin is
removed to facilitate native chemical ligation of the C-terminal site-directed, spin-la-
beled kinase domain to the N-terminal regulatory domain.

1. Cleave the N-terminal His6 tag with factor Xa protease to generate the C-terminal kinase
domain with an NT-Cys and a single internal Cys (see Subheading 3.1.4.).

2. Add a 10-fold molar excess of ninhydrin (≤10 mM) from a concentrated stock solution to
the purified C-terminal kinase domain, and incubate in buffer (pH 5.0–7.0) at room tem-
perature for 2 h.

3. Remove excess ninhydrin by gel filtration on a P4 column, and evaluate the extent and
specificity of the ninhydrin reaction.

4. Assess the extent of possible lysine modification by observating of Ruhman’s purple color
formation. Ninhydrin can be prevented from reacting with lysine by lowering the pH of the
protection reaction.

5. Assess the extent of NT-Cys and internal cysteine modification by Ellman’s reaction.
Dilute 100-µL aliquots of the test reaction with 850 µL of phosphate buffer (pH 7.5) and
50 µL of 3 mM (DTNB or Ellman’s reagent) and measure the absorbance at 412 nm.
Under these conditions, the test reaction should show approximately half the titratable
sulfhydryl groups of an identical protein sample that did not undergo reaction with ninhy-
drin (corrected for protein concentration). If more than half of the sites are obtained, the
ninhydrin can be further removed from the internal cysteine by repassaging over the P4
gel filtration column. If less than half of the sites are obtained, the ninhydrin reaction
should be carried out for longer times.

6. React the ninhydrin-protected NT-Cys kinase domain with MTSL, and evaluate the extent
of modification by CPM titration and EPR (see Subheading 3.2.2.).

7. Remove ninhydrin from the NT-Cys of the spin-labeled domain by treating with a 10-fold
molar excess of free cysteine at pH 7.5–8.0 for 30 min at room temperature (see Note 11).

8. Remove free cysteine and the ninhydrin–cysteine compounds by gel filtration, and evalu-
ate the extent of the deprotection reaction by thiol titration with CPM.

9. Chemically ligate the C-terminal kinase domain containing both an NT-Cys and a site-
directed nitroxide spin label to the N-terminal isotopic-labeled regulatory domain (see Sub-
heading 3.1.6.).

3.3. NMR Structural Studies
Once it has been established that a soluble, isotopic-labeled regulatory domain can

be successfully ligated to a soluble kinase domain, which contains a single nitroxide
spin label, NMR experiments and structural calculations may be performed in order to



New Drug-Targeting Sites 217

determine the overall structural dynamics of a target multidomain protein kinase. Sub-
heading 3.3.1. describes the standard NMR approaches for determining the NMR solu-
tion structure of the regulatory domain, either in its isolated form or while ligated to its
kinase domain. Subheading 3.3.2. describes the NMR relaxation experiments for deter-
mining the effects that placing the paramagnetic nitroxide spin label on the kinase domain
has on the relaxation rates of the backbone amide protons of the regulatory domain, and
how these effects can be converted into distance restraints between the site-directed spin
label and each of the backbone amide protons. Subheading 3.3.3. describes methods
for calculating the effective rotational correlation times, τc, required for distance calcu-
lations. Subheading 3.3.4. describes methods for calculating the relative structures from
distance restraints derived from the paramagnetic relaxation enhancement effects and
assessing the relative degree of domain–domain flexibility.

3.3.1. NMR Structural Studies of Regulatory Domain
The solution structure of the isotopic-labeled regulatory domain while spliced and

intact with its kinase domain is determined by standard heteronuclear multidimensional
NMR methods (17). However, the overall rotational correlation times, τc, of segmental
isotopic-labeled full-length kinases will be greater than those of the equivalent isoto-
pic-labeled individual regulatory domains, which will cause broadening of the NMR
peaks and loss of resolution. By collecting NMR spectra at higher temperatures (e.g.,
37°C), effective rotational correlation times of larger proteins can be reduced, thus en-
hancing the spectral resolution. If the target full-length protein kinase is not stable at
higher temperatures for prolonged data collection times, then NMR peak broadening
can be reduced by selective incorporation of amino acids with aliphatic side chains
containing carbon-bound deuterium instead of hydrogen (e.g., Ala, Val, Leu, and Ile)
into the 15N- and 13C-isotopic-labeled domain (18). If deuterium labeling is necessary
to obtain NMR spectra, then advanced TROSY-modified forms of the NMR experi-
ments described in the following paragraphs will yield quality data on higher-field
NMR instruments (e.g., ⊕600 MHz) (19). Although this approach provides enhanced
ability to perform heteronuclear multidimensional NMR experiments for assignment
of backbone resonances and determination of backbone secondary structure, tertiary
structural information is compromised owing to the loss of NOE signals that would
otherwise indicate hydrophobic packing between side-chain methyls from residues
distant in residue sequence. In such cases, the structure of the isolated domain con-
struct should be determined and used with the X-ray structure of the kinase domain for
overall model calculations.

If the isolated regulatory domain construct or the segmentally labeled full-length
protein kinase is sufficiently stable in low-salt (≤0.15 M) buffer solutions for up to 3 d,
then sequential backbone assignments are initially obtained from 15N-edited NOESY
and TOCSY spectra and confirmed and completed by 15N- and 13C-edited HNCACB
and CBCA(CO)NH triple resonance spectra. Side-chain assignments are primarily
obtained from 15N- and 13C-edited HCCH-TOCSY, CC(CO)NH, and HC(CO)NH expe-
riments. Intramolecular distance constraints between protons of the regulatory domain
are obtained from 15N- and 13C-edited NOESY spectra. NOE signals to specific residues
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of the 13C-isotopically labeled regulatory domain from protons of the unlabeled kinase
domain are distinguished by performing a 12C/13C-isotope-edited NOESY experiment,
which detects NOEs to methyl protons on 13C-labeled residues only from 12C-bound
protons. Dihedral angle restraints are determined from 3JNHα values calculated from
HNCA-J and HNHA experiments. If an adequate number of NOE signals between amino
acid residues distant in primary sequence (long-range NOE) are determined, struc-
tures of the isolated or segmentally labeled regulatory domain can be calculated from
randomized initial structures using the hybrid distance geometry-simulated annealing
and protocol in the program CNS(XPLOR) (20). A set of substructures is selected to
undergo a simulated annealing refinement to select for a final ensemble of energy-
minimized structures that satisfy the criteria of no NOE violations of more than 0.5°
and no dihedral violations of more than 5° to be used to define the tertiary structures
of the regulatory domain construct.

To determine the position of the regulatory domain with respect to the kinase domain,
it is necessary to confirm or redetermine as many chemical shift assignments as possi-
ble for regulatory domain backbone amide cross peaks in two-dimensional (2D) 1H–
15N HSQC spectra of the full-length kinase. Backbone amide chemical shift assign-
ments of the intact regulatory domain ultimately facilitate the NMR relaxation experi-
ments combining segmental isotopic and site-directed spin labeling (see Subheadings
3.3.2.–3.3.4.).

3.3.2. Distance Restraints Between Backbone Amides
of Regulatory Domain and Site-Directed Spin Label of Kinase Domain

Distances between the unpaired electron of the nitroxide spin label on the kinase
domain and each of the backbone amide protons of the 15N-labeled regulatory domain
can be calculated from the amount that either the longitudinal (∆R1; Eq. 1) or transverse
(∆R2; Eq. 2) relaxation rates of the amide protons is increased in the presence of the spin
label according to a modified form of the Solomon-Bloembergen equation (15,21):

in which K is a constant (1.23 ↔ 10−32 cm6 s−2) for paramagnetic nitroxide, ωH is the
Larmor frequency of the amide proton (s−1), τc is the correlation time for the electron-
amide proton vector (s), and r is the vector distance between the electron and the pro-
ton (cm). The paramagnetic enhancement of the longitudinal (∆R1) and transverse (∆R2)
relaxation rates is calculated from Eqs. 3 and 4:

1/T1p = ∆R1 = R1para − R1dia (3)

1/T1p = ∆R2 = R2para − R2dia (4)

in which R1para and R2para are, respectively, the longitudinal and transverse relaxation
rates of the amide proton in the presence of oxidized paramagnetic nitroxide, and

(1)r = 6 ↔

r = 6 ↔ 4τc + (2)K
∆R2

2 K
∆R1

3τc

1 + ωH 2τ2
c

3τc

1 + ωH 2τ2
c
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R1dia and R2dia are, respectively, the longitudinal and transverse relaxation rates of the
amide proton in the presence of reduced diamagnetic nitroxide or no spin label at all.

With good approximations of τc and paramagnetic relaxation enhancement values
for either ∆R1 or ∆R2, long-range distance restraints for electron-amide proton vectors
are obtained from Eqs. 1 and 2, which can be used to evaluate the overall structural
dynamics of the contiguous regulatory and kinase domains. Although the distance re-
straints obtained from only one site-directed spin label will give a good indication of
the overall arrangement between the regulatory and kinase domains, additional dis-
tance restraints obtained from NMR studies of other engineered constructs in which the
spin label is positioned at different locations on the kinase domain will give a better
indication of the overall structural dynamics of the full-length protein kinase.

3.3.2.1. DISTANCE RESTRAINTS DERIVED FROM EITHER ∆R1 OR ∆R2

Longitudinal R1 and transverse R2 relaxation rates of the backbone amide protons
of a 15N-labeled regulatory domain are measured using standard 1H–15N HSQC pulse
sequences, which have been modified to include either an inversion recovery sequence
(R1) or a CPMG phase-cycled spin echo (R2) (22,23). Inversion recovery HSQC spec-
tra are collected with varying recovery delay times (e.g., 0, 25, 75, 150, 300, 500, 700,
1000, 1500, 2000, 2500, and 3000 ms), and CPMG HSQC spectra are collected with a
constant spin echo delay of 0.5 ms and with varying echo trains (e.g., 0, 5, 10, 20, 30,
50, 75, 100, and 150 echos).

Integrated peak volumes (V) are measured for each amide cross peak in the 2D spec-
tra and plotted as a function of either the inversion recovery delay time for R1 measure-
ments or the time in the transverse plane (number of echo trains ↔ constant echo delay
of 0.5 ms) for R2 measurements. To account for the small decrease in peak volume
that occurs during the HSQC pulse sequence (see Note 12), it is preferable that the
peak volumes be fitted to Eq. 5 (24):

V(τ) = VD[1 − B(1 − exp(−κR)) ↔ exp(−τR)] (5)

in which VD is the initial peak volume, κ is the sum of acquisition and preparation times
during the 1H–15N HSQC experimental pulse sequence, B is an adjustment parameter
for incomplete magnetization inversion, and R can be either the longitudinal (R1) or
transverse (R2) relaxation rate constant.

Longitudinal R1 or transverse R2 relaxation rates are determined for the amide pro-
ton relaxation rates under both diamagnetic and paramagnetic conditions, and the para-
magnetic enhancements (∆R1 or ∆R2) are calculated by either Eq. 3 or 4, respectively
(see Note 13).

3.3.2.2. RAPID DETERMINATION OF ∆R2 FOR UNSTABLE PROTEIN KINASES

The primary drawback of determining values of ∆R1 and ∆R2 is that successive
HSQC experiments must be carried out with varying inversion recovery or CPMG
periods. As these periods become longer, the data collection times of the experiments
become longer. With minimal sample concentrations (~0.3 mM), many transients must
be collected, and a complete R1 or R2 data set may require days to obtain good signal-
to-noise ratios (S/N ⊕ 10), which ultimately reduces propagated errors in distance calcu-
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lations. This can become a hindrance when extensive NMR time is not readily available
or when the stability of the engineered protein kinase construct is in question. In such
cases, it is possible to simply collect a standard HSQC spectrum of the protein kinase
in the presence (paramagnetic conditions) and absence (diamagnetic conditions) of the
spin label. Values of the paramagnetic relaxation enhancement effect on the transverse
relaxation rate (∆R2) for each amide proton are determined from the ratio of the inten-
sity (height) of the HSQC cross peak in the paramagnetic sample (Ipara) to the intensity
of HSQC cross peak in the diamagnetic sample (Idia) according to Eq. 6 (25,26):

in which t is the duration of the INEPT delays (~9 to 10 ms) in the HSQC pulse sequence
and R2dia is calculated from the line width at half height (R2dia = π ↔ LW) of the amide
cross peak in the proton dimension. Values of ∆R2 are obtained by computer fitting of
Ipara/Idia to Eq. 6 with substitution of known values of R2dia and t. These ∆R2 values
are substituted into Eq. 2 to obtain distances. Since intensity ratios (Ipara/Idia) are used
to calculate ∆R2, it is required that the two HSQC spectra be collected and processed
with identical parameters and that the sample conditions also be identical, especially
protein concentration.

3.3.3. Calculation of Electron-Amide Proton Vector Correlation Times, τc

The correlation time, τc, required for calculating distances in Eqs. 1 and 2 is described
by the sum of contributions from the relaxation of the electron plus motions of the
electron–proton vector according to Eq. 7 (15):

in which τS is the longitudinal relaxation time of the nitroxide free radical (⊕100 ns)
and τR is the effective rotational correlation time of the vector (~1–30 ns). Since the
effective rotational correlation times of the electron-amide proton vectors (τR) in pro-
tein kinase constructs containing a single catalytic kinase domain (~35–50 kDa) and a
small regulatory domain (~10–20 kDa) will always be significantly shorter than the
longitudinal relaxation time of the nitroxide free radical (τS), the value of τc can be
approximated from measurements of τR. Since the distance r depends on the sixth root
of τc, distance calculations will be relatively insensitive to errors in estimate values of
τc. Thus, typical errors of ±10% in ∆R and ±50% in τc measurements result in an error
of only ±8% in the distance. Subheadings 3.3.3.1.–3.3.3.3. describe three different meth-
ods for measuring τc values, which can be used as estimates for τc in Eq. 1 or 2.

3.3.3.1. ESTIMATE OF τC: NMR MEASUREMENTS OF ∆R1 AT TWO FIELD STRENGTHS

The correlation times, τc, for each of the individual electron-amide proton vectors
may be obtained by measuring ∆R1 at two different magnetic field strengths. For exam-
ple, τc for each of the electron-amide proton vectors is calculated from the frequency
dependence of the paramagnetic effects at 500 and 700 MHz according to Eq. 8 (21):

= (6)
Ipara

Idia

R2dia exp(−∆R2t)
R2dia + ∆R2

(7)1
τR

= +
1
τS

1
τc
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in which ω is the Larmor frequency of the proton and T1p = 1/∆R1 at either 500 or 700
MHz.

3.3.3.2. ESTIMATE OF τC: NMR MEASUREMENTS

OF ∆R1 AND ∆R2 AT ONE FIELD STRENGTH

The correlation times, τc, for each of the individual electron-amide proton vectors
may also be obtained by measuring both ∆R1 and ∆R2 at one magnetic field strength.
For example, τc for each of the electron-amide proton vectors is calculated from the
ratio of ∆R2 to ∆R1 using Eq. 9 (15):

in which ω is the Larmor frequency of the proton.

3.3.3.3. ESTIMATE OF τC: EPR MEASUREMENT AND SPECTRAL SIMULATION

The electronic rotational correlation time of the nitroxide unpaired electron can be
measured by generating simulated EPR spectral lines that reproduce the spectral lines
observed from direct EPR studies of the spin-labeled protein (21). Spectral simulations
can be performed with the available software provided by the EPR manufacturer, and
this τc can be used to calculate the distance for each individual electron-amide proton
vector. Although distances calculated in this manner have a larger uncertainty than
those calculated using individual correlation times, it can save considerable time and
provide reliable overall structures.

3.3.4. STRUCTURAL CALCULATIONS

Changes in the position of the isotopically labeled domain relative to the site-directed
spin-labeled domain can be calculated using distance geometry/simulated annealing
protocols in CNS(XPLOR) (21,26,27). First, the NMR solution structure of the isotopi-
cally labeled domain construct is chemically connected to the known X-ray structure of
the site-directed spin-labeled domain, and only the peptide bonds located in the loop
region of the junction between the two domains are allowed to sample different con-
formations. Distances between the site-specific spin label and the amide protons of the
15N-labeled domain are given the energy function normally used for NOE restraints in
CNS(XPLOR). This is possible because both NOE and paramagnetic distance restraints
have an r−6 distance dependence. For each construct, lower and upper bounds for dis-
tance restraints are initially derived by propagation of errors for taking the mathemati-
cal difference between relaxation rate constants measured under paramagnetic (Rpara)
and diamagnetic (Rdia) conditions, as well as the estimated error in τc. The most accurate
protocol is to generate an annealing process using distance restraints from the backbone
amides to the site-directed spin label. In such a case, the amino acid site in the X-ray
structure must be replaced with the disulfide-linked nitroxide molecule, and this

τc = (8)T1p700 −  T1p500

T1p500 ω2
500 − T1p500 ω2

700

τc = (9)6(∆R2/∆R1) − 7
4ω2

H
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modification must be parameterized for computer-simulated annealing calculations.
Owing to considerable error in distance calculations, much time can be saved if the ter-
minal heteroatom of the native amino acid is used for distance geometry location point
of the nitroxide ion while simply increasing the upper bound of the distance restraints.

The observation that no suitable crystals have been obtained for X-ray diffraction
studies of any full-length serine–threonine protein kinase with a regulatory domain strongly
suggests that multiple tertiary arrangements may exist between the two domains. There-
fore, it is unreasonable to quantify a degree of resolution for such dynamic structures.
For example, the sixth-power relationship between r and ∆R will cause the calculated
distances to be heavily biased in favor of the shortest distances attained by the regula-
tory domain amides to the spin label. Although this is not a concern for a well-defined
rigid domain–domain interaction, it can be misleading for highly flexible domains that
sample a wide variety of relative positioning. Nevertheless, the dynamic range of rela-
tive orientations between two domains can best be observed by performing distance
restraint calculations for numerous additional individual constructs containing the nitrox-
ide spin label on four opposite faces of the kinase. By comparing structures derived for
each of the individual constructs, the relative degree of domain–domain flexibility
will be determined. If the relative positions of the two domains are very similar for all
of the spin-labeled constructs, then structure calculations can be carried out using all
of the distance restraints.

4. Notes
1. The TOPO enzyme catalyzes ligation of the 3' ends of each vector strand to the 5' ends of

the PCR product, while releasing itself in an energy-conserved reaction. In addition, pCR-
Blunt II-TOPO allows direct selection of recombinants via disruption of the lethal E. coli
gene ccdB, permitting growth of only positive recombinants on transformation.

2. QuikChange Single or Multi Site-Directed Mutagenesis kits (Stratagene) use corrective
primers to generate full-length corrected copies of the entire plasmid containing the mutated
gene. The plasmid template containing the mutation is then digested away using DpnI
endonuclease.

3. The full-length protein kinase gene in the pCR-Blunt II-TOPO plasmid vector is used as
the template to generate the desired coding region. The nucleotide coding region must
not contain the restriction enzyme recognition sequences selected for directional ligation,
and the amino acid sequence must be checked for recognition sites for the protease selected
for removal of the His6 or other affinity tag. The reverse or downstream primer (kinase-R)
is designed complementary to the 3'-terminal coding region and extended to include the
desired restriction enzyme recognition sequence. Two forward or upstream 5' primers can
be used to extend the cDNA protein-coding region to include a His6 tag with a PreScission
protease cleavage site and a flanking restriction enzyme recognition sequence. The Pre-
Scission-kinase-F1 primer is designed complementary to the kinase-coding region and ex-
tended in the 5' direction to include nucleotides coding for the PreScission protease peptide
recognition sequence (LEVLFQGP). The His6-PreScission-F2 primer is designed comple-
mentary to the protease peptide recognition sequence (LEVLFQGP) and extended in the
5' direction to include the N-terminal His6 tag and the restriction enzyme recognition se-
quence. The Tm values for all of the overlapping regions should be temperature optimized
for the high-fidelity PCR polymerase mix. Standard PCR reaction conditions using 100 ng
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of plasmid template, 500 nM kinase-R reverse primer, 200 nM PreScission-kinase-F1 pri-
mer, and 300 nM His6-PreScission-F2 primer will yield the full-length cDNA with flanking
restriction enzyme cloning sites.

4. DH10Bac cells contain a baculovirus shuttle vector (bacmid) with a mini-attTn7 target
site and a helper plasmid. On transformation, transposition occurs between the mini-Tn7
element on the recombinant pFastBac 1 vector and the mini-attTn7 target site on the bac-
mid to generate a recombinant bacmid. The transposition reaction is catalyzed by transpos-
ition proteins supplied by the helper plasmid. Insertion of the mini-Tn7 into the mini-att
Tn7 attachment site on the bacmid disrupts expression of the LacZa peptide.

5. All 20 naturally occurring amino acids have been shown to support native chemical liga-
tion when placed at the C-terminus of a thioester peptide, but the kinetics of ligation can
be significantly different (13,14). For example, rapid ligation reactions are observed when
X is either His, Cys, or Gly and extremely slow ligation reactions are observed with Ile,
Val, and Pro. The nature of X also appears to influence the thiolytic cleavage of the intein
to yield the C-terminal thioester derivative of the N-terminal protein fragment. For exam-
ple, high levels of premature in vivo cleavage of the intein fusion protein may occur
when X is an Asp residue, and in vitro thiol-mediated cleavage of the intein is inhibited
when X is a Pro residue.

6. First, the cDNA encoding for the kinase domain construct with an N-terminal restriction
enzyme recognition sequence, His6 tag, and protease recognition sequence is obtained by
PCR using the recombinant pFastBac 1 vector containing the full-length kinase gene as
the template. Second, the cDNA encoding for the Mxe GyrA intein is obtained by PCR
using the pTWIN1 vector (New England Biolabs) as the template. The Mxe GyrA forward
primer is complementary to the N-terminus of the Mxe GyrA intein and extended in the 5'
direction to generate an overlapping region with the C-terminal residues of the kinase
domain construct. The Mxe GyrA reverse primer is complementary to the C-terminus of
the Mxe GyrA intein and extended in the 5' direction to include a stop codon and a restric-
tion enzyme recognition sequence. Finally, the cDNA PCR products encoding for the N-
terminal kinase domain and the Mxe GyrA intein are joined by further PCR, since both
fragments share the nucleotide-coding region coding for the C-terminus of the kinase
domain construct. Then, a sequence-verified restriction fragment of the His6-tagged kinase
domain fused at the C-terminus to the Mxe GyrA intein is ligated into the pFastBac 1
vector (Invitrogen).

7. First, the cDNA encoding for the regulatory domain with an N-terminal cloning recogni-
tion sequence is obtained by PCR. Second, the cDNA encoding for the MxeGyrA intein
is obtained by PCR and extended in the 5' direction to generate an overlapping region with
the C-terminal residues of the regulatory domain. The cDNA PCR products encoding for
the regulatory domain and the Mxe GyrA constructs are joined by further PCR, ligated to
a bacterial protein expression vector, and optimized for high-level bacterial expression.

8. The electrophilic thiosulfonate group of MTSL will not react favorably with the electro-
philic C-terminal thioester group. Rather, the MTSL reagent is very susceptible to nucleo-
philic attack by the sulfhydryl group of the single cysteine, resulting in disulfide bond
formation to the nitroxide spin label.

9. CPM has been found to be more sensitive than DTNB for quantifying residual amounts
of thiol in a large backgound of nitroxide-labeled protein (25).

10. The reaction of ninhydrin with NT-Cys is highly specific under slightly acidic conditions
(pH < 5.0), which eliminates the reaction of ninhydrin with the side-chain ε-amino group
of lysine residues more prevalent at pH > 7.0. While ninhydrin does react with the side-
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chain sulfhydryl group of the internal cysteine, the presumed hemithioketal is fascile and
decomposes on removal of free ninhydrin by gel filtration (16).

11. The exchange reaction of ninhydrin from NT-Cys to free cysteine is driven under mass
action and is much more rapid than the exchange of the nitroxide spin label from the inter-
nal cysteine to free cysteine.

12. Prior to signal acquisition, the coherence transfer pathway in the conventional HSQC pulse
sequence involves a total of ~9 to 10 ms of fixed delays during which the 15NH proton
magnetization resides in the transverse plane. During these delays the peak volume in the
HSQC spectrum decreases owing to transverse relaxation of the proton.

13. Traditionally, relaxation spectra are first collected with the spin label in its paramagnetic
or oxidized form; identical data are then collected on the same sample in which the spin
label has been reduced to its diamagnetic form. To reduce the nitroxide free radical to its
secondary amine, a threefold molar excess of ascorbate is added and the sample is allowed
to incubate at pH 5.3 and room temperature overnight (15). The pH must be readjusted
before collecting the HSQC on the reduced sample. If the protein sample is unstable toward
treatment with ascorbate, it is possible to determine the R1dia or R2dia values on a segmen-
tally labeled protein kinase that has not been chemically modified with the spin label under
identical solution conditions (e.g., buffer, temperature, and protein concentration) to the
samples that contain a spin label. Then, the R1dia and/or R2dia values can be subtracted from
R1para and/or R2para values determined for all of the different single-cysteine, site-directed
spin-labeled constructs, and values of ∆R1 and/or ∆R2 may be used to calculate distances
for each of the electron-amide proton vectors according to Eqs. 2 and/or 3, respectively.
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Nuclear Magnetic Resonance-Based
Screening Methods for Drug Discovery

Laurel O. Sillerud and Richard S. Larson

Summary
Nuclear magnetic resonance (NMR) techniques are widely used in the drug discovery

process. The primary feature exploited in these investigations is the large difference in
mass between drugs and receptors (usually proteins) and the effect that this has on the
rotational or translational correlation times for drugs bound to their targets. Many NMR
parameters, such as the diffusion coefficient, spin diffusion, nuclear Overhauser enhance-
ment, and transverse and longitudinal relaxation times, are strong functions of either the
overall tumbling or translation of molecules in solution. This has led to the development
of a wide variety of NMR techniques applicable to the elucidation of protein and nucleic
acid structure in solution, the screening of drug candidates for binding to a target of choice,
and the study of the conformational changes that occur in a target on drug binding. High-
throughput screening by NMR methods has recently received a boost from the introduction
of sophisticated computational techniques for reducing the time needed for the acquistion
of the primary NMR data for multidimensional studies.

Key Words: Nuclear magnetic resonance; diffusion; nuclear Overhauser enhancement;
chemical shift; nuclear spin; drug candidate; transferred nuclear Overhauser effect spec-
troscopy; saturation transfer difference; structure-activity relationships; residual dipolar
couplings.

1. Introduction to Nuclear Magnetic Resonance
Methods Used for Identification and Screening of Lead

Nuclear magnetic resonance (NMR) methods have such general applicability that
there is hardly a branch of modern science that has not been favorably impacted by
this technology. The basis for this broad scope of applications lies in the existence of
a magnetic isotope for almost every nucleus in the periodic table. Nuclear resonances
are exquisite magnetometers, revealing, through their frequencies, the local molecular
magnetic fields in great detail. The local molecular magnetic fields arise from the den-
sity, within the nucleus, of the very magnetic electrons whose role in covalent bonding
puts them right at the heart of molecular and chemical physics. For this reason, nuclear
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resonance frequencies reveal molecular structures and interactions, from both a static
and a dynamic point of view, from molecules in the gaseous, liquid, and solid state.
The dependence of nuclear resonance properties on the masses of the molecules enables
one to differentiate between large receptor proteins and small drug molecules. When
suitable external field gradients are applied to the sample, anatomical structures in liv-
ing systems can also be observed. It is no surprise, then, that NMR methods continue to
have a great impact on drug discovery, and this chapter seeks to review the most impor-
tant applications of current interest.

The properties of NMR signals are modulated by the dynamics of the chemical struc-
ture containing the nucleus of interest. Foremost among these dynamic effects is the
coupling between the nuclear spin and the surrounding radiation bath, which is mani-
fest in the rates of transverse (R1) and longitudinal (R2) nuclear magnetic relaxation.
This coupling is a very strong function of the rotational correlation time for the chemi-
cal framework. Because chemical exchange processes influence the lifetimes of the
excited nuclear states, exchange processes also modulate the observed properties of
nuclear resonances. In addition to tumbling and exchanging among differing environ-
ments, nuclei diffuse in solution locked to their chemical structures with a diffusion
coefficient that varies according to molecular mass. Each of these physical effects is
a rich source of spectroscopic information about a chemical species by itself, but for
our purposes, the emphasis is placed on the applications of these effects to the screening
of molecules for interactions with a given drug target. A spectral editing scheme has
been developed for each of these dynamic interactions, including relaxation, chemical
shift perturbations, translational diffusion, and magnetization transfer. NMR methods
can even reveal the metabolism of drugs in living systems and provide metabolite identi-
fication. Advances in solvent suppression, coherent and incoherent magnetization trans-
fer pathway selection, isotope editing and filtering, and diffusion filtering have made
it possible to examine the interactions between small molecules and proteins or nucleic
acids in great detail (1).

The main feature that is exploited in the use of NMR methods in screening for drug
candidates is the large difference in molecular masses between drugs (~500 Daltons)
and their targets (Mr > 25 kDa). This large mass difference leads to large disparities in
either the rotational correlation or diffusion times for these two classes of molecules,
which can then be used to filter the spectra. For example, the strength of the nuclear
Overhauser effect (NOE) depends on the rotational correlation time. The transferred
nuclear Overhauser effect (trNOE) has been employed to determine the bound con-
formations of carbohydrates and other bioactive molecules in complex with protein
receptors. The corresponding experiments in the rotating frame and selective editing
experiments (e.g., QUIET-NOESY [NOE spectroscopy]) are used to eliminate indirect
cross-relaxation pathways (spin diffusion), to minimize errors in the data used for calcu-
lation of conformations. Saturation transfer difference NMR experiments reveal detailed
information about intermolecular contacts between ligand and protein (2). An additional
advantage of these techniques is that low-affinity ligands, which might be missed by
high-throughput screening (HTS), can be detected and could serve as synthetic precur-
sors for higher-affinity ligands (3).
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In addition to editing schemes based on mass differences, another powerful filtration
technique involves the replacement of the nuclei in either the drug or the target with
isotopes that are either magnetic or nonmagnetic. The most common isotopes used are
2H, 13C, and 15N, which can replace 1H, 12C, and 14N, respectively, in biomolecules.
Because the NMR frequencies for the nuclei in a biomolecule are sensitive to molecu-
lar structure, isotopic labeling and NMR methods are used extensively to determine
macromolecular structure. Approximately 25% of the structures in the Protein Data Bank
(www.rcsb.org/pdb/) have been developed using NMR methods. Of particular interest
is the fact that these NMR structures were determined in solution, so no time-consum-
ing crystallization was necessary.

NMR methods also fit perfectly into the modern, structure-based drug design pro-
gram. The biological target is a macromolecule that is crucial for the biological activity
or process that is to be inhibited. For example, human immunodeficiency virus (HIV-1)
is expressed as a single polypeptide within an infected host cell. This polypeptide is
then processed by a virally encoded protease; the processed proteins are packaged and
the virus erupts from within the infected cell. The HIV protease was critical for virus
maturation and was an important biological target for drug discovery and development.
This has led to several highly effective therapeutics for HIV (4) based on the structure
of the binding site for proteins on the HIV protease.

A structure-based drug design program will have the following components. The
gene of the target of interest is cloned and the protein or macromolecule is expressed
and purified. The initial lead compound is then discovered by a variety of techniques
such as HTS, in which hundreds of thousands of compounds are examined en masse for
binding to the purified target. In a concurrent effort, the three-dimensional (3D) struc-
ture of the target macromolecule is determined using NMR or X-ray crystallography,
or the structure can be modeled using molecular modeling techniques. Once the struc-
ture of the target macromolecule has been determined or modeled, and a lead compound
has been isolated, the structure of the target-compound complex can be determined
using the same techniques. These target-compound structures can then be examined using
computational chemistry techniques and possible modifications to the compound can
be determined. Finally, all of the data are collated and used in designing the next series
of compounds, which are then synthesized. This cycle is repeated until a compound is
sufficiently potent (able to inhibit the biological target at extremely low, typically pico-
molar, concentrations), at which point it is sent to preclinical (animal testing) and clin-
ical (human) testing. In the current discovery cycle, an average time to reach preclinical
investigation is 3 yr. We present here a brief review and introduction to the role that
NMR techniques play in each of these components.

2. Materials

2.1. NMR Supplies

NMR tubes are available in all of the necessary shapes and sizes for the study of pro-
teins, drugs, and nucleic acids from the following sources:

www.rcsb.org/pdb/
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1. Aldrich (www.sigmaaldrich.com).
2. Wilmad (www.wilmad.com/index.html): maker of some of the very best NMR tubes, stan-

dards, and other NMR-related items.
3. Chemglass (www.nmrtubes.com): NMR tubes, caps, valves, and NMR tube cleaners.
4. RototecSpintec (www.rototec-spintec.com/): a distributor for Wilmad consumables in

Europe.
5. New Era Enterprises (http://newera-spectro.com/): NMR 5-mm sample tubes.
6. Shigemi (www.geocities.com/~shigemi/): makes magnetic-susceptibility matched plugs for

all types of solvents, as well as NMR tubes and other diposables.
7. Norell (www.nmrtubes.com): a supplier of NMR sample tubes, NMR solvents, Teflon

tubing, books, and a discussion forum for NMR professionals.
8. NMR pages from Kontes (www.kontes.com/html/NMR.html): Kontes has several useful

NMR consumables.
9. Deutero GmbH (http://home.t-online.de/home/deutero/): isotopes, solvents and consuma-

bles for NMR in Europe.
10. AmpolNMR.com/Europe (http://ampolnmr.com/): a supplier of NMR sample tubes and

accessories.
11. Worldwide Glass Resource Ltd. (www.wwglassresource.co.uk): UK suppliers of NMR

consumables.

2.2. Stable Isotopes for Labeling Drugs and Receptors,
and for NMR Solvents

1. Cambridge Isotope Laboratories (www.isotope.com/cil/index.html): a manufacturer of
stable isotope-labeled compounds, stable isotope separations, and some fine deuterated
solvents.

2. Silantes GmbH (www.silantes.com/): stable isotope-labeled biopolymers (2H, 13C, 15N).
3. Isotec (www.sigmaaldrich.com): a member of the Sigma-Aldrich family, manufacturer of

stable isotope-labeled compounds. It makes some of the most unique and novel labeled
compounds.

4. C/D/N ISOTOPES (www.cdniso.com/): a large listing of deuterated compounds and car-
bon 13- and nitrogen 15-labeled compounds; in English, German, or French.

5. Medical Isotopes (www.medicalisotopes.com/): nearly a complete line of enriched bio-
chemicals; nice selection of fatty acids enriched with C13.

6. NMR Shift Reagents (www.rareearthproducts.com/Prodnmr%20Shift%20Reagents.htm):
a supplier of NMR shift reagents.

7. Novachem Pty Ltd. (www.novachem.com.au/): stable isotopes in Australia.
8. U.S. Department of Energy (DOE) Isotope Programs (http://nuclear.gov/isotopes/default-

mine.asp): information about US DOE production of isotopes programs.
9. Spectra Gases (www.spectra-gases.com/): isotopic enrichment of gases for research.

10. International Isotope Society (www.intl-isotope-soc.org/): provides a forum for all chem-
ists involved in radiochemical synthesis and analysis to obtain and share information
outside of their immediate area of employment and expertise.

11. Martek Biosciences (www.martekbio.com/): isotopically enriched biochemicals and media
for the growth of microorganisms.

12. U.S. DOE Isotope Production & Distribution (www.ornl.gov/sci/isotopes/catalog.htm): US
DOE isotopes catalog.

13. Isoflex (www.isoflex.com/): stable isotopes for use in science, medicine, and industry from
Russian producers.
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14. Moravek Radiochemicals (www.moravek.com/): a manufacturer of tritium- and carbon
14-labeled radiochemicals for acquired immunodeficiency syndrome and cancer research.

15. The National Stable Isotope Resource at Los Alamos (http://sir.lanl.gov): advances bio-
medical applications of compounds labeled with the stable isotopes 13C, 15N, 17O, 18O, 33S,
34S, and 77Se.

16. STB Isotope Germany Gmbh (www.stb-isotope.com/): stable isotopes for science, medi-
cine, and industry, including some rare and unusual stable isotopes.

17. RITVERC GmbH (www.ritverc.com/): a producer and worldwide supplier of radioisotope
products for science, industry, and medicine. The product list includes radiation sources,
labeled compounds, stable isotopes, and radiopreparations.

18. Techsnabexport (www.tenex.ru/): a supplier of Russian-produced radioisotopes and labeled
compounds.

19. Advanced Materials Technologies Ltd. (www.isotope-amt.com): a supplier of stable iso-
topes, deuterated solvents, and high-purity materials for medical and chemical research.

20. PicoTrace (www.picotrace.de/): equipment for trace element and isotope analysis.
21. Chemgas (www.chemgas.com/): a supplier of high-purity rare gases and isotopically enriched

gases.
22. Omicron Biochemicals (www.omicronbio.com/): a supplier of single, multiple, and uni-

form stable isotope-labeled saccharides and nucleosides (13C, 2H, 15N, 18O).
23. Wellington Laboratories (www.well-labs.com/): a producer of 12C and 13C halogenated ref-

erence standards of environmental concern, including chlorinated and brominated dioxins,
furans, biphenyls, and diphenyl ethers.

24. IsoSciences (www.isosciences.com/pages/1/index.htm): custom stable isotope labeling and
small-scale organic synthesis including the preparation of metabolites and positron emis-
sion tomography precursors and standards.

25. Gas-Oil JSC (www.c13.ru): a manufacturer of [13C]-CO2 using lasers.
26. CNL Scientific Resources (www.cnlscientific.com/main.html): a supplier of isotopes, metals,

crystals, and other engineered materials to manufacturers of pharmaceuticals and instruments.

2.3. NMR Acquistion and Processing Software
1. Bruker Biospin (www.bruker-biospin.com/nmr/products/software.html): XWIN-NMR™

is the main software package for Bruker spectrometer control, data acquisition, and pro-
cessing, and XWIN Plot™ is an interactive graphical plot editor, which facilitates the manip-
ulation of plot layouts directly on the display so that the user can quickly tailor the results.
This software can be purchased for off-line processing on Silicon Graphics Incorporated
and PC-based computers.

2. Acorn NMR (www.acornnmr.com/): offers desktop NMR data-processing software and
operates a high-resolution NMR spectroscopy service in Fremont, CA.

3. VNMR (www.varianinc.com/cgi-bin/nav?products/nmr/software/vnmr&cid=OPOILPK
FP): Varian’s X Window packages (VNMRX for the Sun, VNMRSGI for Silicon Graphics
computers, and VNMRI for IBM RS/6000 workstations) provide full functionality in that
environment.

4. GoNMR (www.gonmr.com/): is a software package for data acquisition and processing. It
is supposed to make VNMR (Varian software) much easier to use for the beginner and the
expert, for routine day-to-day uses. GoNMR provides fully automated software for obtain-
ing NMR spectra.

5. NMRPipe (http://spin.niddk.nih.gov/bax/software/NMRPipe/): is a multidimensional
spectral processing system based on UNIX pipes.
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6. TRIAD (www.tripos.com/sciTech/inSilicoDisc/nmrAnalysis/triad.html): Spectra, spread-
sheets, and structure all in one time-saving program.

7. MestReC (www.mestrec.com/): is an advanced NMR data-processing package for Win-
dows. MestReC is a software package for WinNT/2K/XP systems that offers state-of-the-
art facilities for data processing, visualization, and analysis of high-resolution NMR data,
combined with a robust, user-friendly graphical interface.

8. MRUI (www.mrui.uab.es): is a graphical user interface that allows MR spectroscopists
to perform easily time-domain analysis of in vivo MR data.

9. FELIX (www.accelrys.com/pharma/target/nmr/dataproc.html): is an industry standard for
off-line data-processing software for all types of high-resolution, one- to four-dimensional
homonuclear and heteronuclear NMR data.

10. NUTS (www.acornnmr.com/nuts_price.htm): is a complete NMR data-processing pack-
age that runs on PCs under Windows (95, 98, NT, 2K, ME, and XP) and on PowerMacs.

11. Other specialized software can be found on the often-updated NMR Information Server
at www.spincore.com/nmrinfo/.

3. Methods
The theoretical basis for the use of various filters on the NMR spectra from drug can-

didates and protein targets rests on fundamental classical and quantum physics. We
examine here each of the filter techniques with the goal of providing an understanding
of the underlying physical phenomena, including a summary equation of the process
and often a graphical illustration of the strength of the effect as a function of the rele-
vant parameters.

3.1. Diffusion Filtering
Self-diffusion of a solute in a solvent can easily be measured using now-classic,

pulsed-gradient, spin-echo NMR techniques first proposed by Stejskal and Tanner (5)
in 1965, in which the nuclear signal, S, decays owing to the diffusion coefficient, D,
during the time, B, between two gradient pulses of amplitude, G, and duration, A,
according to

S(2τ) = S(0)exp(−γ2b2DG2)

in which γ is the nuclear gyromagnetic ratio (~4.23 kHz/G for protons); 2τ = t1 + t2 +
A + B is the total time from the π/2 pulse to the center of the echo in the acquisition
window; and b2 = A2B. Here, t1 is the time from the first π/2 pulse to the first gradient
pulse, and t2 is the time from the π pulse to the center of the acquisition window. This
exponential dependence of the NMR signal amplitude on the diffusion coefficient pro-
vides an efficient filter to discriminate the nuclear resonances from small molecules
free in solution from those bound to macromolecules. For example, the diffusion coeffi-
cient for a small molecule in water at 25°C is about 10−5 cm2/s, whereas that for a
30,000-Dalton protein is approx 6 ↔ 10−8 cm2/s. This large disparity leads to a 10- to
20-fold relative difference in the NMR signals of the two species (Fig. 1).

Use of diffusion filters in drug screening involves mixing a putative drug with its
receptor and examining the resulting NMR spectra taken in the presence and absence

www.tripos.com/sciTech/inSilicoDisc/nmrAnalysis/triad.html
www.mestrec.com/
www.mrui.uab.es
www.accelrys.com/pharma/target/nmr/dataproc.html
www.acornnmr.com/nuts_price.htm
www.spincore.com/nmrinfo/.
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of a pulsed magnetic field gradient (6). If the drug binds to the protein, then it will adopt
the diffusion coefficient of the larger molecule and the NMR signals will survive diffu-
sion editing with gradients that would otherwise remove the signals from a drug free
in solution (7). Often diffusion editing is applied through digital difference spectros-
copy on mixtures of small candidate molecules with their receptor. The resulting dif-
ference spectra will contain only signals from those (if any) small molecules that bind
to the macromolecule and can be readily identified from the mixture by their unique
chemical shifts. This editing scheme depends on exchange between the bound and free
forms of the drugs, so that if the association constants are too large, the bound form
of the drug(s) will not be observable owing to T2 relaxation from the macromolecule.
Diffusion coefficients can be miscalculated, however, owing to magnetization transfer
between the receptor and ligand. This trNOE disrupts the observed signal decay owing
to diffusion as a function of the experimental diffusion time (8).

3.2. Relaxation Editing
Much like a spinning gyroscope, which, owing to the conservation of classical angu-

lar momentum, resists realignment of its spin axis, a spinning nucleus prefers to remain
with its quantum-mechanical angular momentum (spin) aligned parallel to the applied
magnetic field in an NMR spectrometer magnet. And, just as a gyroscope requires a
large impulsive force to tip its spin vector away from its initial axis, a spinning nucleus
in a magnetic field requires a large, impulsive orthogonal field to tip its magnetization

Fig. 1. Example of decay of nuclear magnetic resonance (NMR) signals from two molecules
with differing molecular masses of 113 (solid circles = drug) and 30,000 Daltons (solid squares
= receptor) in a pulsed-field gradient of strength up to 95 G/cm. Note that at the highest gradient
strength, the NMR signal from the smaller molecule has decayed by a factor of 15 with respect
to the macromolecule.
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vector away from the static field direction. Once perturbed, both a spinning gyroscope
and a spinning nucleus tend to return to their original positions. The rate of return for
a nucleus is on the order of seconds for small molecules in aqueous solution because
nuclei are extremely weakly coupled to their environments. This return to equilibrium,
or relaxation, of the polarized nuclear spin is often dominated by dipolar interactions
with neighboring nuclei that have components of molecular motion at frequencies either
near zero (transverse relaxation) or at the Larmor (NMR) frequency (longitudinal relax-
ation). The longitudinal relaxation time (rate) is termed T1 (R1 = 1/T1), and the transverse
relaxation time (rate) is T2 (R2 = 1/T2). For rotational motion of a nucleus character-
ized by a correlation time, τ, in a fluid of low viscosity, such as water, the dipolar
relaxation rates are given by

in which γ is, again, the nuclear gyromagnetic ratio; h is Planck’s constant; I is the
nuclear spin quantum number (1/2 for protons); r is the internuclear distance; and ω is
the Larmor frequency (these are shown in Fig. 2 for two different NMR frequencies).
In the extreme narrowing limit, in which ωτ << 1 is satisfied, both R1 and R2 become
equal to

Now, since the rotational correlation time is proportional to the mass through Stoke’s
Law;

in which η is the viscosity, M is the molecular mass, and ρ is the density, the relaxation
rates for molecules in solution are a strong function of their masses. To illustrate this,
we have calculated the dipolar relaxation rates for the same two molecular masses
(113 Daltons and 30 kDa) used in the diffusion example shown in Fig. 1 (Table 1),
including the nuclear Overhauser enhancement, η (τ), as if an observed proton were
relaxed by an adjacent proton 1.75 Å away. The large difference in mass results in an
equally large difference in rotational correlation times and relaxation rates between
the drug and the receptor.

It is clear from the relaxation curves shown in Fig. 2 that the most efficient agent
that leads to transverse relaxation (R1) for a given proton is another proton nearby
with Fourier components of motion at the Larmor frequency; the relaxation rates peak
at correlation times approximately equal to the reciprocal of the Larmor frequency.
The physical basis for this results from Einstein’s work on the matrix elements for
stimulated emission of radiation in which a photon of the proper frequency can stimu-
late the decay of an excited quantum state. Since adjacent protons can cause the relax-
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Fig. 2. Relationship between the proton relaxation rates R1 and R2 and rotational correlation
time for two different nuclear magnetic resonance frequencies, 500 and 800 MHz.

Table 1
Comparison of NMR Relaxation Properties for a Drug and a Receptor

Mr (Daltons) ν (MHz) τ (s) R1 (Hz) R2 (Hz) η (τ) D (cm2/s)

113 500 1.2 ↔ 10−12 3.7 ↔ 10−4 3.7 ↔ 10−4 0.50 1 ↔ 10−5

113 800 1.2 ↔ 10−12 3.7 ↔ 10−4 3.7 ↔ 10−4 0.50 1 ↔ 10−5

30,000 500 2.1 ↔ 10−9 5.0 ↔ 10−3 2.2 ↔ 103 −1.00 6 ↔ 10−8

30,000 800 2.1 ↔ 10−9 2.1 ↔ 10−1 2.0 ↔ 101 −0.95 6 ↔ 10−8

ation of an observed polarized proton, it is then logical to suppose that nearby protons
can also influence the populations of excited states. This is indeed true and forms the
basis for another very important physical property of nuclear spins, the nuclear form
of the Overhauser effect (NOE).

3.3. Nuclear Overhauser Effect
Although most modern NOE experiments are performed as two-dimensional (2D)

acquisitions (NOESY), the theory of the NOE is most easily understood with reference
to the simplest one-dimensional (1D) experiment. For a pair of nuclei (e.g., protons)
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with distinct chemical shifts, irradiation of one nuclear resonance will result in changes
in the intensity of the other, as long as the second nucleus is within range (<6 Å) so that
dipolar coupling between the two will result in spin-lattice (T1) relaxation. The NOE
arises from the changes in populations of the nuclear spin states owing to enhanced
relaxation of the observed state as a result of irradiation of the dipolar-coupled state.
There is a strong dependence of the NOE on the rotational correlation time (Fig. 3). The
fractional enhancement for the resonance integral of one proton on saturation of the
resonance of a second, nearby proton is given by

The maximum enhancement for protons is 0.5 for the small correlation times appro-
priate for drugs in water, and for macromolecules with longer correlation times, the
NOE becomes negative (Fig. 3) with a limiting magnitude of −1.0. This serves as
another means by which drug interactions with receptors can be studied and used for
screening.

A drug in solution will acquire the NOE of the receptor if it binds, and this forms the
basis for the transferred-NOESY (trNOESY) method, which can be used to reveal the
structure of the bound ligand in solution. The other main use of the NOE is to derive

Fig. 3. Relationship between rotational correlation time of a molecule and maximum nuclear
Overhauser enhancement (NOE) for a proton relaxed by a neighboring proton for two different
proton resonance frequencies, 500 and 800 MHz. Note that there is also a 1/r6 distance depen-
dence of the NOE that attenuates this maximal interaction.

η (τ) = 5 + ω2τ2 − 4ω4τ4

10 + 23ω2τ2 + 4ω4τ4
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internuclear distances and, hence, molecular structures in solution. Because the NOE
is a dipole–dipole interaction, its amplitude decreases as the inverse sixth power of the
distance between the nuclei. Therefore, by measuring the NOEs for several nuclei in a
molecule, and by referring these to an internal, known calibration distance (e.g., a methy-
lene with nondegenerate resonances), one can generate accurate solution structures;
this is the basis for the thousands of protein structures determined by NMR and depos-
ited in the Protein Data Bank (www.rcsb.org/pdb/).

3.4. Transferred NOE Spectroscopy
The binding of molecules to receptors is an equilibrium process in which there is

chemical exchange between the free and bound forms of the ligand. Exchange results
in the drug adopting the different physical properties of the receptor with attendent
alterations in the correlation times and effective masses of the drugs. During the drug’s
residence in its receptor-binding site, it will adopt the bound configuration, which may
bring remote groups into proximity. The resulting intramolecular NOEs in the NMR
spectrum will give useful information about the distances between these groups in the
bound state. Chemical exchange with drug molecules free in solution will transfer the
bound NOE from the bound drug to the free drug, resulting in a trNOE. Protein-drug
interactions cause significant relaxation enhancement even when the drug concentra-
tion is in excess by 10- to 100-fold over that of the receptor. In this way, the trNOE is
amplified and visible in the narrow resonances of the drug in solution. trNOE methods
work particularly well for the very large receptor molecules traditionally thought to be
too massive for direct, conventional NMR methods.

The theoretical basis for the analysis of structures by trNOE methods is the subject
of an excellent review by Ni (9). In brief, a trNOE can be observed if the drug-receptor
dissociation is fast enough, which in NMR terms means that the drug must move on
and off the receptor a few times during the NOE mixing time (τm ~ 100–200 ms, or Kd
~5–10 s−1). For a drug interacting with a receptor, R, there are at least four separate
mechanisms by which magnetization can be transferred from one proton, A, on a drug
to another, nearby proton on the drug, B, or on the receptor. These can be summarized
by

Afree ♦ Abound ♦ Bbound (1)

Afree ♦ Abound ♦ Bbound ♦ B (2)

Afree ♦ Abound ♦ R (3)

Afree ♦ Abound ♦ R ♦ Bbound ♦ Bfree (4)

in which k and σ are the rate constants for chemical exchange and cross relaxation,
respectively. The cross-relaxation rate involves zero and double quantum transitions
for the A and B protons, which is the basis for the use of the NOE to determine inter-
nuclear distances by NMR, and is given by Eq. 5 for a pair of protons separated by a
distance r. Note that the cross-relaxation rate is a dipole–dipole interaction and, hence,
decreases as the inverse sixth power of the distance:
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In the motional narrowing limit, in which ω2τ2 <<1, σ is proportional to the correla-
tion time. For typical drugs and receptors, with correlation times of about 0.4 and 20
ns, respectively, the process outlined in Eq. 2 is the dominant mode of magnetization
transfer, in which cross relaxation occurs for the bound form of the drug, which is then
transferred, by chemical exchange, to the free form of the drug.

3.5. Saturation-Transfer Difference NMR
The foregoing discussion of NOE methods brought to light the concept of cross

relaxation in which a given polarized nucleus can transfer its magnetization to a nearby
nucleus, if the resonance frequencies for the two nuclei are similar. This leads to the
concept of spin diffusion in which magnetization of a given site in, say, a protein recep-
tor, would diffuse away from the initial site onto other adjacent protons. Spin diffu-
sion is a highly efficient mechanism for magnetization transfer in proteins because
there are large numbers of coresonant, nearby protons. Although this process must be
taken into account in any quantitative analysis of internuclear distances based on NOE
measurements, like many physical phenomena, it can also be exploited to provide use-
ful information in other contexts.

Because spin diffusion is so efficient, it is easy to saturate most (if not all) of the pro-
tons in a protein simply by irradiating the aliphatic resonance envelope. Saturation
then diffuses from the aliphatic protons onto the other classes of protons. If a drug is
bound to the protein, while the protein spins are magnetized, a portion of the magnetiza-
tion is transferred onto the drug as well. This can be used as a powerful screening method
in which mixtures of drugs are added to a protein solution and the protein proton reso-
nances are then irradiated. A control spectrum is also obtained in which the saturation
is moved off resonance for the protein. The difference between the on- and off-reso-
nance spectra will contain signals from any drug molecules that have bound to the pro-
tein and received magnetization from it. This has the added advantage that interpreta-
tion of the resulting spectra is very simple and contains data only on those drugs that
have interacted with the protein so that identifying these molecules is straightforward
in mixtures. One can also determine the drug functional groups involved in recogniz-
ing the receptor because these will be closest to the protein and will receive the largest
magnetization transfer, whereas more remote groups will receive less or none, owing
to the fact that spin diffusion is much less efficient for small molecules.

3.6. Heteronuclear Single Quantum Coherence
We have so far discussed drug-screening methods based on NMR observations of the

drug resonances in solution. The advantages of this approach reflect the fact that small
molecules tumble rapidly in solution, giving rise to narrow NMR signals that are easy
to detect. Of course, one can also take the other approach and monitor the NMR signals
from the receptor as well. Tremendous progress has been made along these lines, lead-
ing to the development of robust methods for resonance assignment and structural deter-

h2γ4
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mination of proteins with molecular masses up to approx 50 kDa. Direct observation
of the receptor gives valuable information about the nature of the drug-binding site
residues, and this can be compared with other structural information to develop modi-
fications of drugs to enhance binding. One of the most popular methods for protein
structural studies is to label the protein with 15N, a low natural abundance, spin half
of the nucleus present in the amides, and some side chains of amino acids. 15N is not
particularly expensive and can be incorporated into cloned proteins grown in microor-
ganisms using 15N-enriched nitrogen sources, such as ammonium nitrate, or sulfate.
The resulting 15N-labeled protein will have a single 15N at each amide, which can then
be detected at proton sensitivity using the 15N-1H J-coupling via 2D heteronuclear single
quantum coherence (HSQC) spectroscopy.

When a drug binds to a 15N-labeled protein, the resulting conformational change in
the protein, coupled with the juxtaposition of the drug, causes chemical shift changes
in those residues involved in drug binding and, sometimes, in remote residues that are
sensitive to the conformational changes but are not directly involved in binding. Inter-
pretation of these spectral changes requires knowledge of the resonance assignments
for the protein, which is not a trivial undertaking, but as long as one is confident that
the spectral changes are directly related to drug binding, one can use the magnitude of
these changes to assess the relative affinities of different drugs to the receptor and to
determine relative differences in binding modes, or for the involvement of different
residues in the binding of alternative drugs.

HSQC has, in this context, been given the misnomer structure-activity relationship
(SAR) by NMR in the literature. This is not an actual SAR method, unless one can con-
fidently use the chemical shift changes as a surrogate for affinities for different drug
molecules and then correlate the structures with other measures of their binding affin-
ities. However, the approach that has been taken is to bind drug fragments to two adja-
cent sites on 15N-labeled proteins and then to link chemically those most active fragments
to produce a more potent drug lead.

3.7. Transverse Relaxation Optimized Spectroscopy
The direct observation of protein resonances has been traditionally limited to mole-

cules with masses less than 50 kDa because the resonance line widths become too large
owing to T2 relaxation. The advent of higher-field (~21 T) superconducting magnets
has increased the sensitivity and spectral resolution of NMR, and the applications to
protein structure have followed in like fashion. Superconducting probes and pream-
plifiers have also been responsible for an additional increase in sensitivity. However,
neither of these welcome developments has solved the basic problem of line width for
large molecules.

The discussion in Subheading 3.2. has shown that the transverse relaxation rate of a
proton in a large protein is dominated, at moderate magnetic fields, by direct dipolar
interactions with adjacent protons. One method for lowering R2 for amide protons is to
deuterate all of the other hydrogen sites. The lower γ of deuterium will then markedly
lower R2 for the amide proton, and the resulting narrower resonances will allow NMR
structural studies of larger proteins. This will not address another problem that crops up
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at the higher magnetic field strengths useful for higher-sensitivity and spectral disper-
sion, that of the frequency dependence of chemical shift anisotropy (CSA).

Because the bonds in molecules are not spherically symmetric, the chemical shift
of a nucleus depends on the angle between the molecular principal axes and the applied
magnetic field. For protons, this CSA is measured by the difference between the chem-
ical shifts of a nucleus when the principal axis is parallel and perpendicular to the field;
the CSA assumes a value of approx 5–10 ppm, or a few kilohertz, at modest magnetic
fields. If molecules were static, the NMR signals would be this wide, and difficult to
detect, but rotation in solution at 109–1012 Hz effectively averages the CSA so that one
observes very narrow lines (<1 Hz) for small molecules. This rotation, however, also
modulates the chemical shifts of the nuclei and acts as a source of relaxation enhance-
ment. The contribution of CSA relaxation to R2 is given by

in which ∆s2 = s|| − s⊥ is the difference between the parallel and perpendicular compo-
nents of the chemical shift tensor. The fact that the CSA contribution to R2 is propor-
tional to the square of the Larmor frequency means that it becomes more important as
a relaxation mechanism at higher fields, such as 800 and 900 MHz.

The work of Wüthrich on transverse relaxation optimized spectroscopy (TROSY)
was therefore greeted with great enthusiasm because it demonstrated how to circum-
vent this basic limitation on direct NMR studies of larger proteins. For a system of two
protons in a protein, the relaxation matrix (10) can be written as

in which M is the magnetization matrix, and f is a function of the Larmor frequency,
ω; the relaxation times; and R, the transverse relaxation rates for the members of the
spin- coupled doublet, but not of the CSA. J(ω) is the now-familiar spectral density

and g(T1) = 1/2T1. The main feature of interest here is that the dipolar contribution to
relaxation, p, and the CSA contribution, δ, enter as their difference, so if these two
terms are comparable (p ~ δ; p ~ γ I γs / r3 , and δI ~ γ I Bo∆sI), then their contribution
vanishes and one may have slow transverse relaxation even for large molecules. The
result is that in combination with various isotope-labeling techniques, TROSY allows
one to observe narrow lines even for very large proteins, up to 1 million Daltons by
solution NMR, particularly at the highest fields now available (900 MHz).

Important recent applications of TROSY include the structure determination of mem-
brane proteins in detergent micelles, structural and functional studies of large proteins
in both monomeric form and macromolecular complexes, and investigations of inter-
molecular interactions in large complexes (11). TROSY improves the measurement of
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residual dipolar couplings and the detection of scalar couplings across hydrogen bonds
—techniques that promise to enhance further the determination of solution structures
of large proteins and oligonucleotides.

3.8. Solvent-Exposed Amide—TROSY
Solvent-exposed amide (SEA) TROSY (12) is an advanced NMR technique for spec-

tral simplification in very large molecules. It is based on the assumption that for drug
binding to a receptor, only the surface amino acid residues are of importance, because
the buried residues do not directly participate in binding. The technique uses a double
15N filter, which does not affect the water signal, to transfer magnetization only from
solvent H2O molecules to the surface amide protons in 15N-labeled, perdeuterated pro-
teins. Amides exposed to the water protons take up magnetization by hydrogen-deute-
rium exchange with water during the mixing time, and these amides can then be observed
in a TROSY experiment. The strength of the SEA-TROSY signal, I, from an amide pro-
ton in the 15N, 1H correlation spectra depends on the exchange rate, k, and the mixing
time, τm, according to I(k, τm) = I0(1 − e−kτm). Backbone amides vary markedly in their
exchange rates, depending on their position in the secondary structure of the protein,
with amides in surface loops exchanging rapidly and buried amides exchanging much
more slowly. Amide protons in direct contact with bound water molecules and in the
neighborhood of Thr, Ser, and Tyr hydroxyl groups may also exchange magnetization
with water. The spectral simplification associated with SEA-TROSY is evident in Fig.
4, where filtering of the surface amides reduced the spectral complexity of this 71-kDa
protein fragment by at least threefold. The SEA-TROSY method has now been modified
(13) to eliminate the need for deuteration of the observed proteins. SEA-TROSY spec-
tra may be contaminated with exchange-relayed NOE contributions from fast exchang-
ing protons on hydroxyl or amine groups, and T1 relaxation contributions. Furthermore,
for nondeuterated proteins or protein–ligand complexes, SEA-TROSY spectra may con-
tain NOE contributions from aliphatic protons. A modified version of the SEA element,
a Clean SEA element, has been introduced to eliminate these artifacts (13).

3.9. HTS by NMR
Companies and research institutes often generate thousands of compounds using

combinatorial chemistry, in hopes of finding one lead compound. Whether the com-
pounds are just off the shelf, purchased, or produced by synthetic means, all of these
potential candidates must be screened. The development of HTS assays gave scientists
the ability to test large numbers of molecules for a desired biochemical activity, includ-
ing binding and enzymatic catalysis. Designing such a specific assay is not always trivial;
the assays can be complicated and may require several components that can interfere
with the interaction of the drug candidate and the target protein. These assays also lend
themselves to other problems such as low sensitivity, in the case of a weak signal or
high background, and false positives.

Several recent developments support the development of NMR as a high- through-
put sampling technique so that the breadth and sophistication of the technique can be
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brought to bear as a key component of the drug discovery process. These include the
production of automated sample changers that read bar-coded samples; acquire spec-
tra automatically; and, with the addition of suitable software, can measure spectra and
produce reports from hundreds of proton samples per day.

The small value of the nuclear magnetic moments and the relatively weak polariz-
ing fields available combine to make NMR a rather insensitive method, compared with,
e.g., mass spectrometry. At room temperature, the NMR signal, S, is proportional to
the negative exponential of the ratio of the NMR transition energy, ∆ν (which is on the
order of a few Hertz) to that of the thermal background, given by kT (which is a few
megaHertz), in which k is Boltzmann’s constant:

S ∪ exp (−∆ν/kT)

For most situations, S is on the order of 10−6, which means that only one spin in a million
will give rise to an NMR signal. Clearly, cooling the sample to very low temperatures
would allow the fixed NMR transition energy to dominate over kT and improve the sen-

Fig. 4. Transverse relaxation optimized spectroscopy (TROSY) of P450 reductase (see Note
1) from rat liver (left) compared with solvent-exposed amide (SEA)-TROSY (right). The SEA-
TROSY spectrum is much simpler than the TROSY spectrum because the SEA element only
picks up resonances from amides exposed to the solvent water protons. (Adapted from ref. 12.)
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sitivity, but for biological samples involved in drug discovery, this is impractical owing
to the high freezing point of water. One possibility for sensitivity enhancement that
has been recently exploited, however, is to cool the NMR detector and preamplifier to
liquid helium temperatures to diminish their contribution to the electrical noise inher-
ent in any electronic system. This has the effect of improving the signal-to-noise ratio
for a given sample by about a factor of four, so that the acquisition time can be reduced
by 16-fold. These cryoprobes are now in use at several hundred sites worldwide.

Another facet of the push to speed up the NMR data collection is particularly useful
for the multidimensional experiments so important in drug discovery. Here, the data in
the directly detected dimension, typically protons, can be acquired in a few seconds to
minutes, but the indirectly detected dimension must be built up from large numbers
(256–1024) of phase-shifted directly detected signals, resulting in data acquisition times
that can be days or even weeks. There are two methods for speeding up data acquisi-
tion in multidimensional experiments, using G-matrices (14) and imaging-style gradi-
ents (15), but only the former is suitable for use in drug discovery. In G-matrix Fourier
transform (GFT) NMR, the data are obtained from several 1D scans simultaneously
in an experiment that generates multiplets instead of the traditional single peaks at a
given chemical shift. The multiplets occur as linear combinations of chemical shifts
that require a collection of linear equations (or G-matrices) and Fourier transforms to
resolve the spectrum into component frequencies. Here, the method results in signifi-
cant data compression as well, so the computational tasks are markedly reduced. The
GFT method can reduce the data acquistion time from weeks to hours for a five-dimen-
sional spectrum.

Data analysis can also be a bottleneck for the use of NMR in drug discovery. One
way to ease this problem is to preprocess the samples so that the resulting spectra are
simpler than those for the entire complex mixture. This was the approach taken by
Nicholson’s group at Imperial College (London), where they used liquid chromatogra-
phy (LC) to separate and assign the 1D NMR spectra from a randomly synthesized mix-
ture of 27 tripeptides containing Ala, Tyr, and Met in a single 30-min LC run (16). Along
these lines, the cost of producing hundreds or thousands of NMR samples can be prohibi-
tive if standard precision tubes (~$10 each) and deuterated solvents (~$0.50 each) are
required, but the development of flow probes and robust water suppression NMR pulse
sequences means that the cost of high-throughput NMR can still be reasonable.

NMR-based screening has become an important tool in the pharmaceutical indus-
try. Methods that provide information on the location of small-molecule-binding sites
on the surface of a drug target (e.g., SAR by NMR and related techniques) are of par-
ticular interest. To extend the applicability of such techniques to drug targets of higher
molecular weight, selective labeling strategies may be employed (16). Dual amino acid
selective labeling and site-directed nonnative amino acid replacement allow the selec-
tive detection of NMR signals of a specific amino acid residue. This results in signifi-
cantly reduced spectral complexity, which not only enables application to higher molec-
ular weight systems, but also eliminates the need for sequential resonance assignments
in order to identify the binding site. Regioselective (or segmental) labeling of an entire
protein domain of a multidomain protein may also be achieved. Labeling only a selected
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part of a multidomain protein (e.g., a catalytic or ligand-binding domain) is an attrac-
tive way to simplify spectral interpretation without disturbing the system under study.

3.10. Multiquantum NMR
The spin coupling among nuclei leads to the possibility of concerted transitions

involving two or more nuclear quantum states simultaneously, in addition to the clas-
sical transitions involving only two states. These concerted transitions have been called
multiquantum resonances in analogy with similar phenomena that occur in optical
spectroscopy. It may seem strange that essentially any order of transition is allowed,
as long as there are enough states to provide the requisite number of transitions, includ-
ing zero quantum transitions. A zero quantum transition is not one in which zero quanta
are absorbed, but one in which a simultaneous two-spin transition is made between a
pair of identical states distinguished only by the labels on spins. For example, in a
two-spin system of spin 1/2 particles, the states can be numbered according to the pro-
jections of each spin as |αα>, |αβ>, |βα>, and |ββ>, in which β is spin up and α is spin
down. A zero quantum transition involves the change |αβ> ♦ |βα>, in which both
spins flip simultaneously. A double quantum transition is |αα> ♦ |ββ>, and there are
two single quantum transitions, |αα> ♦ |αβ> and |αα> ♦ |βα>, in this manifold. It
should also be noted that the two spins do not necessarily need to be from a single
nuclide; for example, the first could be a proton, and the second could be from 15N.
Multiple quantum transitions are also possible for spins greater than  .

Of particular interest for drug development is the use of multiquantum techniques
for the filtering of spectra to remove signals from unwanted transitions, or to edit the
spectra for a specific order of multiquantum coherence. This has led to the widely used
HSQC experiments, which rely on the transfer of single quantum coherence between
13C or 15N and 1H for spectral editing of, e.g., the amide nitrogens in a protein, and for
sensitivity enhancement through the detection of proton signals instead of the signals
from the lower-sensitivity heteronuclei. The problem of spectral overlap and poor reso-
lution for large macromolecules has partially been solved by exploiting multiquantum
techniques in a multidimensional NMR approach.

3.11. Residual Dipolar Couplings
The first robust method for determination of protein structure, X-ray diffraction,

required crystallization of the macromolecule under consideration. This was often the
rate-limiting step in structural studies. NOE-based NMR methods were introduced in
the early 1980s to enable solution structures to be determined, but the accuracy of
these methods is limited by the small number of constraints observable owing to NOEs
from nuclei within about 5 Å of an observed proton, and particularly from long-range,
intrasubunit NOEs, which are valuable for establishing the overall folding pattern of
the protein. What has become clear in the past few years is that there exist other NMR
parameters that are sensitive to structure that can be used to develop the solution struc-
tures of macromolecules. These methods include the use of chemical shifts in concert
with refined models of the electromagnetic fields generated in the neighborhood of
amino acids to solve for the distances and orientations of chemical groups in proteins.
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The use of chemical shift data as the sole NMR data used for structural analysis is cur-
rently a topic of interest and has seen limited use, but the chemical shift index is a robust
method for parsing assigned resonance shifts into basic structural features (α-helix or
β-sheet). Further information is available from the spin–spin coupling constants, which
reveal restraints on the bond angles for certain portions of the protein, mainly the back-
bone φ angle. Many schemes have been introduced to measure these coupling constants,
both in natural-abundance molecules, where proton–proton splittings are the only param-
eters possible to determine, and in isotopically labeled molecules, where a much broader
range of couplings is measureable. Because the proton–proton coupling constants are
on the order of 5–10 Hz, one only observes them in spectra from smaller proteins whose
motion is characterized by correlation times of 10–30 ns, or molecular masses of 30–70
kDa. These coupling constants are independent of molecular motion, so they are visible
for rapidly tumbling molecules in solution and were the first couplings exploited for
structural studies.

Other couplings are present in molecular NMR spectra but were not exploited
because they are averaged out by the predominantly isotropic molecular motion in solu-
tion. From elementary chemical exchange NMR theory, it is known that two states
differing in frequency by 10 Hz will only be visible if the molecular motion is slower
than approx 30 Hz; otherwise, only an average line is observed centered on the average
frequency. However, a 30-kDa protein, with a 2.1-ns correlation time, will have motions
in solution with frequencies on the order of 500 MHz! In 1995, Tolman et al. (17)
pointed out that one could observe small residual dipolar couplings of this magnitude
(~10 Hz) if a molecule is partially oriented by, e.g., the intrinsic anisotropic magnetic
susceptibility of the heme group in a heme-containing protein, or through the use of an
anisotropic solvent, such as a liquid crystal or bicelle.

The dipolar coupling between two spin 1/2 nuclei I and K arising from partial align-
ment in an anisotropic environment is given by

DIK = DoAaS {[3 (cos θ)2 − 1] + R [(sin θ)2 cos2φ]}

in which Do = −(1/2π)(µo/8π2)hγIγKrIK
−3 is the dipolar interaction constant; S is the

order parameter, which reflects the isotropic averaging owing to rapid local motions;
Aa is the axial component of the molecular alignment tensor; R is its rhombicity; and θ
and φ are the polar angles of the IK internuclear vector in the molecular alignment
coordinate system (18). The Euler angles {α,β,γ} specify the orientation of the align-
ment frame with respect to a fixed molecular frame, e.g., the X-ray coordinate frame.
The equation for DIK shows that the residual dipolar couplings specify a position-
independent vector orientation and that they may be considered structural parameters
in a global sense. Because two parallel N-H vectors produce the same DNH values inde-
pendent of their position in the backbone of the protein, these residual dipolar couplings
are particularly useful for the determination of large-scale properties such as the rela-
tionship between domains in solution. Measurement of the residual dipolar couplings
is accomplished by examination of the splittings between, e.g., 15N-1H signals in an
HSQC experiment on a 15N-labeled protein partially oriented in solution; the nominal

3
2
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amide 1JNH is 94 ± 1 Hz and residual dipolar couplings will lower or raise this value by
5–10 Hz.

There are also practical advantages in measuring couplings from the 15N, 1H correla-
tion spectra. Several dipolar couplings measured conveniently from 2D 15N-1H corre-
lation spectra can give insight into conformational changes induced by ligand binding,
in a manner similar to that of the SAR by NMR studies in which binding epitopes can
be localized from changes in chemical shifts (19,20). Amide nitrogen and proton chem-
ical shifts are extremely sensitive to changes in chemical environment and conforma-
tion. It is therefore conceivable that changes in residual dipolar couplings induced by
ligand binding could also be observed concomitantly with chemical shift changes to
delineate conformational changes.

4. Applications of NMR Techniques
Given the previous introduction to the basic physics used in the various schemes for

filtering NMR spectra from drug–receptor interactions, we now turn to an examination
of applications of these techniques in specific examples applied to different classes of
drug discovery. We begin with diffusion, as we did in Heading 3., and follow in the
same order of presentation.

4.1. Applications of Diffusion Filtering
Combinatorial chemistry has been widely used for the synthesis of mixtures of large

numbers of compounds in the search for active drug leads. The resulting mixtures can
be separated and the compounds screened one at a time, but this is a difficult and time-
consuming step. Of more interest would be a method for screening the entire mixture in
a single NMR experiment. One way of studying such mixtures is with diffusion-weighted
total correlation spectroscopy (TOCSY) in which the superior resolution of 2D meth-
ods is combined with selection on the basis of diffusion coefficient (22). Differences in
molecular mass of only 14 Daltons from a single −CH2− were shown to produce mea-
sureable changes (5% decrease) in the diffusion coefficient in a series of low molecular
mass (102–172 Daltons) esters.

Larger changes in the diffusion coefficient are produced by the binding of small
molecules to proteins. This has served as the basis for a screening technique in which
mixtures of putative ligands are added to a protein solution and the resulting spectra
are diffusion filtered. Hajduk et al. (20,23) used this approach to isolate single, stromely-
sin-binding compounds from a mixture of nine molecules. Their results (Fig. 5) showed
that the 1D NMR spectrum of this mixture of compounds (Fig. 5A), even in the absence
of protein, produced severe spectral overlap. The use of field gradients in the presence
of protein (Fig. 5B) still produced a complex spectrum. However, the difference spec-
trum (Fig. 5C) showed only the signals from the molecule, 2-phenylimidazole (Fig.
5D), that bound to stromelysin. The absence of 2-phenylimidazole in the mixture pro-
duced no positive signals (Fig. 5E).

Many compounds of interest in drug development bind weakly to target proteins
but are nevertheless useful as leads on which to build additional substituents. Diffusion
NMR methods are useful for measuring the affinities of such weak binders to proteins.
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Fig. 5. Diffusion editing of a mixture of molecules to discover compounds that bind to stro-
melysin. (A) Nuclear magnetic resonance (NMR) spectrum of mix without protein; (B) spectrum
of mix in presence of stromelysin taken with gradients; (C) difference spectrum ([A] − [B]) show-
ing signals from single binding molecule, 2-phenylimidazole; (D) NMR spectrum of only 2-phe-
nylimidazole; (E) control difference spectrum like in (C) but without 2-phenylimidazole. (Adapted
from ref. 20.)

For example, one potential method for the sequestration of the Alzheimer’s amyloid
β-peptide (Aβ) is to bind it to cyclodextrins to prevent self-aggregation. Danielsson et
al. (24) used the changes in the diffusion coefficients of Aβ to determine the dissocia-
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Fig. 6. Measurement of dissociation constant for Aβ peptides for β-cyclodextrin by diffu-
sion-filtered nuclear magnetic resonance: (A) Aβ(1–40) and (B) Aβ(12–28) and Aβ(12–28)
Gly19Gly20. (Adapted from ref. 24.)

tion constants for the full-length Aβ (1–40) peptide, and for truncated Aβ (12–28) and
sequence-variant Aβ (12–28) Gly19Gly20 versions (Fig. 6). Aβ(1–40) and Aβ(12–28)
both bound to β-cyclodextrin with a Kd of 3.8 mM, whereas replacement of the hydro-
phobic phenylalanines at positions 19 and 20 with glycines to form Aβ(12–28)Gly19
Gly20 abolished binding (Fig. 6B). The phenylalanines at postions 19 and 20 are par-
tially responsible for self-aggregation of Aβ(1–40).
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The power of diffusion filtering is elegantly revealed in the diffusion ordered spec-
troscopy (DOSY) experiment. In this 2D scheme, the normal chemical shift dimension
is acquired at varying gradient strengths; these spectra form the basis for the second
dimension. The 2D data set consists of the spectra of molecules in a mixture ordered
according to their diffusion coefficients. Newer pulse sequences (25) allow the rapid
measurement of DOSY spectra using one-shot methods in a few minutes. These tech-
niques are well suited to the screening of mixtures and avoid the difference methods
used earlier. Results of DOSY on a mixture of polydimethylsiloxane, mesitylene, tri-
methoxybenzene, sucrose octaacetate, and quinine in CDCl3 (Fig. 7) show excellent
separation of the spectra on the basis of the constituents’ diffusion coefficients. Clearly,
the addition of a protein with a binding site for one of these molecules would drama-
tically alter the diffusion coefficient for one of the small molecules and shift its posi-
tion along the diffusion coefficient axis. The analytical dynamic range for the method
then is determined by the difference between the free and bound diffusion coefficients.
Derrick et al. (26) calculated this difference for tryptophan bound to human serum albu-
min (Fig. 8). Their calculation assumed an albumin concentration of 0.1 mM with a
dif-fusion coefficient of 0.63 ↔ 10−10 m2/s, and a free tryptophan diffusion coefficient

Fig. 7. Diffusion-ordered spectrum of a mixture of polydimethylsiloxane, mesitylene, tri-
methoxybenzene, sucrose octaacetate, and quinine. Sixteen transients were acquired for each of
20 gradient values ranging from 5 to 25 G/cm in a total time of 32 min. (Adapted from ref. 25.)
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of 6.1 ↔ 10−10 m2/s. For the experiment to produce useful data, the ligand must be in
fast exchange with the protein, and the ligand should be in excess. Curve E in Fig. 8
shows that the maximum change in curve D occurs if the ligand is completely bound
to the protein at a high-affinity site, but under these conditions the relaxation proper-
ties (R2) of the ligand are unfavorable for NMR detection, so one should raise the
ligand concentration to provide a free ligand signal for detection. 1D NMR measure-
ments of this type are not too useful because the protein background present at the opti-
mal low ligand-to-protein ratios skews measurements of the ligand diffusion coefficient.
The 2D DOSY experiment avoids these problems altogether. These techniques are also
useful for studying the interactions of small molecules with other small molecules (27).

Diffusion filters are profitably combined with other filters to provide even greater
control over the selectivity. One popular combination is to use a T2 filter to attenuate
protein resonances in combination with a diffusion filter to select resonances from
small molecules. In this way, NOEs could be observed between lysozyme and very
weakly binding solvent molecules, such as N,N-dimethyl-formamide (28). Isotope fil-
tration has also been used in combination with a diffusion filter. Many proteins are
labeled with either 13C or 15N, or both, in order to perform HSQC studies on the protein
structure in response to ligand binding. These proteins can also be used for binding
studies in which the protein proton signals are filtered out with the use of a heteronuclear
filter (29,30).

Fig. 8. Difference between free and bound diffusion coefficients for mixture of human serum
albumin and tryptophan (see text for parameters) for various dissociation constants, Kd, as func-
tion of ligand concentration. Kd = 0.01 M, 0.001 M, 0.1 mM, 10 µM, and 10 nM, for curves A, B,
C, D, and E, respectively.
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4.2. Applications of Relaxation Editing
The large differences in T1 and T2 relaxation times between small molecules and pro-

teins naturally leads one to suppose that relaxation editing can be an effective means
for filtering drug-binding spectra. The side chains involved in drug binding change
motional characteristics from the unliganded state (31). Relaxation editing has been
used to determine which component of a mixture bound to the FK506 binding protein
(20). The proton T2 for the protein was 40 ms, whereas those for the ligands in a mix-
ture were approx 2 s. This difference resulted in a 99% attentuation of the protein signals
in a spin-echo spectrum with a 400-ms echo time. An application of transverse relaxa-
tion editing is shown in Fig. 9. This technique can identify a molecule that binds to a
protein directly, without deconvolution of the mixture. For example, 2-phenylimida-
zole binds to the FK506 binding protein with an affinity of 200 µM. The NMR spec-
trum of this molecule (Fig. 9D) is identical to that of the spectrum of the compound
selected by transverse relaxation editing (Fig. 9C) and no other signals arise from this
mixture of nine compounds (Fig. 9C).

4.3. Applications of NOE and trNOE Editing
While diffusion and relaxation editing of NMR spectra are relatively straightfor-

ward techniques for the screening of drug candidates in the presence of macromole-
cules, more subtle NMR effects have also received attention. One of these is the trNOE
(see Subheading 3.4.) (9,32,33). This is useful for drug screening because the proton
NOE is a function of the rotational correlation time of a small molecule, and binding
to a macromolecule lengthens this time markedly. The NOE changes sign on binding
from positive for small values of τc to negative for larger values of τc when bound
(Fig. 3).

Mixtures of compounds can be screened for binding by examining the NOEs for the
mixture in the presence of the macromolecule. Transferred NOEs owing to binding
have the opposite sign from those owing to rapid rotation in solution, build up faster
than for the unbound molecules, and are larger than from unbound molecules. Meyer
et al. (34) used these facts to monitor the binding of α-L-Fuc(1 ♦ 6)-β-D-GlcNAc-OMe
to the agglutinin from Aleuria aurantia. A comparison of the NOEs for the free and
bound disaccharide (Fig. 10) showed that the transferred NOEs were negative, built
up faster, and were larger for the bound sugar.

The compound(s) that bind to a macromolecule can even be ascertained from mix-
tures of 6–15 separate compounds. Under favorable conditions, the structure of the
bound form of the ligand can also be deduced from the transferred NOEs. In attempt-
ing to use transferred NOEs to monitor binding, the NOE spectrum of the mixture must
first be obtained, and often weakly negative NOEs may be observed for a few resonances
at lower temperatures. These may be converted into positive NOEs at slightly higher
temperatures. The molar ratio of ligand to macromolecule will need to be adjusted for
the maximum trNOE, but often this ratio is in the range of 15–20:1 for ligands with
dissociation constants between 10−3 and 10−7 M. Thus, only small amounts of macro-
molecules are required (one-twentieth of the number of moles of the ligands), and these
can be recovered by dialysis after the NMR experiments.
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Because the interproton NOE changes sign for NMR frequencies and rotational
correlation times on the order of ωτ ~ 1 (Fig. 3), potential drug molecules with a mass
of approx 1000 Daltons (where τ ~ 1/ω) will only give weak NOEs by themselves.
These molecules in a mixture can readily be distinguished from genuine binders whose
NOEs become strongly negative. The NOE spectrum can also give significant clues as

Fig. 9. Transverse relaxation editing of ligand binding to FK506 binding protein: (A) T2-
edited 1H spectrum of a mix of nine compounds, one of which was the FKBP ligand, 2-phenyl-
imidazole; (B) T2-edited spectrum of same mix in presence of FKBP; (C) difference spectrum
(A − B); (D) reference spectrum of 2-phenylimidazole alone; (E) difference spectrum as in (C)
but without 2-phenylimidazole. (Adapted from ref. 21.)
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to the structure of the binders in a mixture without deconvolution because the unique
chemical shifts reflect the functional groups on a binder.

Spin diffusion is often an aid in the determination of the structure of the binder in
a mixture (35). If the spectrum of the mixture suffers from signal overlap even after
the trNOE filter step, additional dimensions of NMR space can be exploited to reveal
the structure of the binder. The addition of a TOCSY dimension to a trNOESY (36) can
often provide the extra information needed to identify unambiguously the binder from
a mixture.

Since peptides derived from interface peptides or from phage display are often used
as starting molecules in the drug discovery process, it is useful to consider how one
uses trNOESY data to derive the conformation of the bound drug by examining the
applications to the interactions between peptides and macromolecules. There also exist
a variety of native peptide hormones of interest that are potent physiological activa-
tors of G protein-coupled receptors (GPCRs). To utilize trNOESY the ligand must be
in fast exchange with the receptor; the exchange rate must be significantly larger than
the cross-relaxation rate so that the ligand residence time is small compared to the T1
for the free ligand. The molar ratio of ligand to receptor is often on the order of 10–
20:1 and can range as high as 5000:1 for macromolecular assemblies, such as ribosomes
(37). This ratio depends on the binding affinity and on the mass of the receptor, with
larger receptors serving as more efficient sources of cross relaxation to be transferred
to the ligand.

Fig. 10. Nuclear Overhauser effect (NOEs) for two proton pairs of α-L-Fuc(1 ♦ 6)-β-D-
GlcNAc-OMe in absence (closed symbols) and presence (open symbols) of Aleuria aurantia
agglutinin. The transferred NOEs (open symbols) are larger, build up faster, and are negative
with respect to the NOEs for the disaccharide free in solution (closed symbols). (Based on data
from ref. 34.)
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The C-terminal peptide from neutrophil gp91phox (SNSESGPRGVHFIFNKEN) has been
found by trNOESY to bind to cytosolic p47phox in an extended conformation with immo-
bilization of all of the residue side chains in the RGVHFIF region except the histidine
(38). At a molar ratio of 10:1 (peptide:p47) 126 trNOESY cross peaks were found, which
led to the elucidation of the structure shown in Fig. 11. Immobilization of side chains
deduced from the NMR data was found to agree closely with biological data from ala-
nine replacement studies by Kleinberg et al. (39).

trNOESY effects are largest for the largest receptors, in contrast to those of most
other NMR experiments, in which increases in size are a hindrance. This fact has been
exploited to study the interactions of peptides with very large receptors, such as anti-
bodies. Myasthenia gravis is a disease caused by the production of autoantibodies against
the acetylcholine receptor. trNOESY methods are ideal for the study of the interaction
of the main immunogenic region peptide (WNPDDYGGVK) derived from the α-sub-
unit of the acetylcholine receptor with antiacetylcholine receptor autoantibodies (Fv198).
trNOESY data from a 50:1 molar ratio of peptide to Fv198 yielded 73 distance restraints
(40) and showed that the N-terminal loop of the peptide adopted a β-turn, imposed by

Fig. 11. Structure of SGPRGVHFIF region of gp91phox C-terminal peptide bound to p47phox.
Shown are the five lowest energy structures having the best agreement with the transferred
nuclear Overhauser effect spectroscopy data (Adapted from ref. 38.)
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the proline residue, and contained bulky hydrophobic groups (W67, Y72) that made
numerous contacts with the antibody (Fig. 12A,B).

Membrane proteins are the subject of intense interest owing to their role as trans-
ducers of extra- and intracellular signals, and they represent a difficult, but potentially
very rewarding, target for drug development. However, they are also difficult to work
with. Crystallography cannot be used to study their structures because the proteins often

Fig. 12. (A) Fit of peptide into recognition site of antibody Fv198; the width of the backbone
drawing is proportional to the root mean square deviation. (B) Conformation of main immunoge-
nic region peptide (WNPDDYGGVK) from α-subunit of acetylcholine receptor with antiacetyl-
choline receptor autoantibodies (Fv198). (Adapted from ref. 40.)
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are insoluble when taken out of the membrane, so the only fruitful course has been to
attempt to crystallize them in the presence of detergents. This has met with limited suc-
cess, at best. Solid-state NMR techniques are making significant inroads for the direct
structural elucidation of membrane proteins.

trNOESY studies are very favorable because one can prepare the proteins in deter-
gent or phospholipid micelles and study them in solution without crystallization. trNOESY
methods have therefore been applied to the elucidation of the structures of peptide
hormones bound to integral membrane receptors. The pituitary adenylate cyclase-activat-
ing peptide functions through a GPCR that is present in the membranes of target cells.
Inooka et al. (41) used the trNOESY approach to determine the conformation of a trun-
cated, 21-residue form of the pituitary adenylate cyclase-activating peptide (H1SDGI
FTDSYSRYRKQMAVKK21YLAAVL27) bound to the GPCR at a molar ratio of 42.5:1.
Binding to the receptor induced a unique β-coil structure (Fig. 13) in the N-terminus
(residues 3–7), which was not observed in the full-length, 27-residue peptide bound to
dodecylphosphocholine micelles. Several N-terminal residues (His-1, Phe-6, and Thr-7)
are conserved among a number of physiological peptide ligands for this GPCR, and ala-
nine replacement studies have shown the critical importance of Phe-6, Tyr-10, and Arg-
14 for binding activity. The α-helical C-terminal tail binds the peptide to the membrane,
from which subsequent lateral diffusion brings the peptide to the receptor. Although the
receptor–peptide complex could likely have been crystallized, it is difficult to imagine
the crystallization of the peptide–micelle complex; here, NMR methods in solution pro-
vided unique biophysical information.

Integrins are an important class of cell-adhesion molecules (42) that have been the
target for many drug design efforts (43). The crystal structure of the integrin heterodimer

Fig. 13. (A) Comparison of N-terminal β-coil conformation of 21-residue fragment of pitu-
itary adenylate cyclase-activating peptide (HSDGIFTDSYSRYRKQMAVKK) bound to G pro-
tein-coupled receptor (light gray) and full-length, 27-residue peptide (dary gray) bound to dodecyl-
phosphocholine micelles. (B) N-terminal β-coil structure and (C) its solvent-accessible surface.
(Adapted from ref. 41.)
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ανβ3 has recently been solved in complex with an Arg-Gly-Asp ligand (44). There are
many other important integrins whose structures have not been solved; among these is
α1β5, an integrin found on the surfaces of endothelial cells that binds to fibrinogen, and
is important in cancer metastasis. The integrins are very large integral membrane pro-
teins, with heterodimeric masses more than 200 kDa, making them prime candidates
for trNOESY studies of peptide-binding sites that mimic the binding to the extracellu-
lar matrix.

One of the pitfalls of any cross-relaxation NMR experiment (NOESY, trNOESY,
and so on) is that spin diffusion can bleed magnetization away from the polarized nucleus
and give rise to NOE-style cross peaks that are less intense than would be expected
solely on the basis of nearest-neighbor distances, and give internuclear distances larger
than actually exist. The earliest methods for dealing with spin diffusion used several
mixing times and extrapolated the NOE-derived distances to zero mixing time. Zwahlen
et al. (45) pioneered an even better approach in which doubly selective inversion pulses
were used to cancel spin diffusion effects to first order. This technique, called QUIET-
NOESY, was used, along with 15N labeling, to suppress spin diffusion and to determine
the conformation of an ArgGlyAsp (RGD) peptide (cyclo-[MpaRGDDVC]-NH2) bound
to the integrin α1β5 (Fig. 14). The RGD peptide changed conformation on binding. The
distance between the Arg-1(Cβ) and Asp-3(Cβ) decreased from 7.5 Å in the free form to
5.6 Å in the bound conformation, indicating that the binding pocket for α5β1 is narrower
than found for the related integrin αIIbβ3 (46).

Fig. 14. Conformations of free (left) and bound (right) forms of integrin α1β5 inhibitor c[Mpa
RGDDVC]-NH2 determined by means of 15N-edited QUIET-nuclear Overhauser effect spec-
troscopy (Adapted from ref. 54.)
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Peptides can mimic carbohydrates because peptides can recognize polysaccharide-
binding sites on antibodies. With masses on the order of 140 kDa, antibodies are too
large for the traditional NMR structural analyses but are excellent candidates for study
with trNOESY. Antibodies against carbohydrates have been used to isolate peptides
from phage display libraries to find peptide mimics of carbohydrate structures. The
hexapeptide DRPVPY is a functional molecular mimic of the Streptococcus group A
cell-wall-branched trisaccharide repeating unit, L-rhamnose-α-(1 ♦ 2)-(D-N-acetylglu-
cosamine-β-(1 ♦ 3))-α-L-rhamnose. QUIET-trNOESY NMR data show that this pep-
tide, at a molar ratio of 20:1, adopted a tight turn conformation (Fig. 15) with close
contacts observed between the side chains of Val and Tyr when bound to to the SA-3
monoclonal antibody (47). Even though this peptide contained only six residues, its
bound stucture was well defined by the extensive trNOEs, and QUIET-trNOESY showed
that spin diffusion effects could be ruled out.

As a final example of the application of trNOESY to extremely large macromolec-
ular ensembles, we show that these methods are applicable to studies of the binding of
antibiotic-resistance peptides to the bacterial ribosome, a topic of great importance for
the development of drugs to defeat the resistance that bacteria have evolved against

Fig. 15. QUIET-trNOESY of DRPVPY hexapeptide mimic of trisaccharide repeating unit,
L-rhamnose-α-(1 ♦ 2)-(D-N-acetylglucosamine-β-(1 ♦ 3))-α-L-rhamnose, of Streptococcus
group A cell-wall polysaccharide bound to SA-3 monoclonal antibody: (A) ensemble of 27
lowest-energy structures; (B) average of structures shown in (A). (Adapted from ref. 47.)
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many antibiotics. Two antibiotic-resistance peptides, the E-peptide (MRLFV) and the
K-peptide (MRFFV) from Staphylococcus aureus, were found to bind to bacterial ribo-
somes in a way similar to that found for macrolide and ketolide antibiotics (37). No

Fig. 16. Structures of ribosome-bound (A) K-peptide and (B) E-peptide, determined by means
of transferred NOESY data. These are superpositions of the 20 lowest energy structures deter-
mined by simulated annealing. (Adapted from ref. 37.)
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trNOEs were observed for these peptides free in solution, but at a molar ratio of 5000:1,
peptide:ribosomes, 52 trNOEs were measured, particularly between L3 Hδ and Hβ,
and between F4 Hδ1,δ2 and Hε1,ε2 for the E-peptide, and 87 NOEs were measured for
the K-peptide, including important interactions between the proton pairs: V5 Hγ ♦
F3,4 Hδ,ε; R2 Hβ ♦ F4 Hδ,ε; and M1 Hβ ♦ F3 Hδ,ε. These NOEs defined ribosome-
bound conformations of the peptides that mimicked those of the previously deter-
mined macrolide and ketolide antibiotics, erythromycin and telitromycin (Fig. 16).

4.4. Applications of Water-LOGSY
A related magnetization transfer technique for monitoring the binding of small mole-

cules to macromolecules is that of water-ligand observation with gradient spectroscopy
(water-LOGSY), which involves magnetization transfer from the protons in solvent
water to those of the ligand. In reality, this method is a trNOE-type experiment in which
water molecules bound with the ligand to the macromolecule have long residence times,
ranging from a few nanoseconds to hundreds of microseconds. At these residence times,
the water-protein NOEs change sign (Fig. 3), and a bound molecule picks up magne-
tization of the same sign as the protein. This technique has been used to discover which
molecules in a mixture of drugs interact with a given protein; the interacting mole-
cules give rise to positive NMR signals, and those that do not interact produce negative
signals. For a water molecule tightly buried at a protein–ligand interface, the intermolec-
ular NOE cross-relaxation rate, σwp, from the protein to water is given by (48)

in which τr and τp are the residence times for the water within the protein-binding site
and the rotational correlation time of the protein, respectively; rwp is the separation of
the protein and water protons; and ωo is the Larmor frequency. For a field of 14.1 T
(600 MHz) and a proton separation of 2.5 Å, we have calculated the intermolecular
NOE for various residence times (Fig. 17). It is seen that the NOEs change sign at 0.3
ns and that the magnetization transfer is more efficient for longer protein correlation
times.

4.5. Saturation Transfer
Application of the saturation transfer method to mixtures of compounds in the pres-

ence of a putative binding protein shows that one can discriminate between binders
and nonbinders. For example, Dalvit et al. (48) used this technique to monitor the
binding of a mixture of 10 putative cyclin-dependent kinase 2 inhibitors to their target
at a molar ratio of 20:1 (Fig. 18). Their results showed that binders displayed positive
magnetization transfer from water, whereas nonbinders gave rise to negative signals.
One can also use this method to measure binding constants and to perform competition
experiments (49) allowing high-affinity ligands to be identified. This has been a draw-
back of all the NMR screening methods developed to date in that only weak ligands
could be identified.
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4.6. Applications of Saturation Transfer Difference Spectroscopy
Along the lines of trNOESY and water-LOGSY is a method in which magnetization

is transferred, not from water or from cross relaxation in the bound state, but directly
from the protein spin reservoir to the ligand. This is known as saturation transfer dif-

Fig. 17. (A) Mechanisms for nuclear Overhauser effect magnetization transfer from water
(circles) bound with ligand at binding site of a macromolecule. Spin diffusion and exchange with
bulk water brings magnetization into the binding cavity. (B) Cross-relaxation rate for water mole-
cules at 600 MHz, 2.5 Å from protein proton as function of water residence time in binding site
and for values of protein correlation time. (Adapted from ref. 48.)
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ference (STD) spectroscopy, because one needs to subtract a spectrum in which the
protein resonances have been saturated from one where the saturating field is applied
far off resonance from the protein protons. The method works because the protein con-
tains protons that absorb radiofrequency radiation over a broad range of frequencies,
essentially a continuous envelope of absorption. Then, because spin diffusion is so effi-
cient in proteins, in a relatively small amount of time, the saturation spreads over the
entire protein molecule, eventually arriving at the ligand-binding site where this satura-
tion is transferred to the bound ligand. Exchange between the free and bound states for
the ligand then results in the appearance of magnetization in the free ligand resonances,
much like trNOESY and water-LOGSY. STD spectroscopy has the distinct advantage
that one can directly determine from a simple, 1D NMR spectrum those protons on the
ligand that directly interact with the protein, something of great interest for structure-
based drug design. This method also appears to work for higher-affinity ligands and in
cases in which trNOESY methods are no longer applicable. STD spectroscopy works
best for fast exchange. The saturation transfer difference method is applicable to mix-

Fig. 18. (A) Reference proton nuclear magnetic resonance spectrum of mixture of 10 com-
pounds in presence of 10 mM cdk2; (B) spectrum showing magnetization transfer from water
to the drugs. The methyl group resonances from the cdk2 binder ethyl-α-(ethoxycarbonyl)-3-
indoleacrylate are denoted by an asterisk. (Adapted from ref. 48.)
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tures. For large numbers of putative drugs, multidimensional methods are needed, but
the STD technique can be incorporated into many standard 2D and 3D sequences, so the
binding components can readily be identified.

These techniques have been applied to examine the binding epitopes of the Lewis-
B hexasaccharide (lacto-N-difucosylhexaose; 1 in Fig. 19) for the fucose-binding lectin,
A. aurantia agglutinin (50). STD TOCSY results (Fig. 19) indicate that only the fuco-
syl-V and -VI residues are in contact with the lectin and thereby obtained saturation
directly. Saturation progressed down the hexasaccharide chain, so the more remote
Gal-IV, GlcNAc-III, and Gal-II residues showed only 60% of the saturation of the fuco-
syl residues, and Glc-I showed even less (30%) saturation. STD NMR can even be applied
to proteins attached to controlled pore glass beads using magic angle spinning (51).
Membrane receptors can also be studied using this technique.

Cyclo(RGDfV) is a potent integrin antagonist, with an IC50 against fibrinogen bind-
ing to activated platelets of approx 20 µM (52), and a dissociation constant about the
same value (53). The epitopes for the binding of cyclo(RGDfV) to liposome-incorpo-
rated integrin αIIbβ3 have been determined (Fig. 20) to be the D-phe, the Val methyl
groups, the Arg α, β, and γ protons, one Hβ of Asp and one Hα of Gly (53). The structure
of the complex of cyclo(RGDfV) with the integrin ανβ3 was determined by X-ray crys-
tallography (44), and the complex of α5β1 with the closely related peptide cyclo[Mpa
RGDDVC]-NH2 was determined by 15N-edited trNOESY experiments (ref. 54 and Fig.
14). Data from the STD NMR determination of the binding epitopes for cyclo(RGDfV)
in its interaction with αIIbβ3 were in complete agreement with this related work (Fig.
20), and it is likely that the STD NMR data required only a fraction of the time and
expense of the other two methods. Other applications of the STD NMR method have
been made to determine the antibody-bound conformation of a carbohydrate-mimetic
peptide (47), to screen a collection of small molecules for binding to the active site of
human factor Xa protein (55) and for epitope mapping of the O-chain polysaccharide of
Legionella pneumophila serogroup 1 lipopolysaccharide (56). Finally, Wang et al. (57)
have recently shown how to use STD NMR spectroscopy to detect high-affinity ligands,
a problematic task for other NMR-based screening methods. They detected the presence
of a competing high-affinity ligand by monitoring the reduction or disappearance of
the STD signals from a lower-affinity indicator ligand.

A note of caution with respect to the use of STD NMR for epitope mapping was raised
by Yan et al. (58), who pointed out that T1 relaxation of the protons from the ligand can
interfere with the epitope map, particularly if there is a marked difference in T1s for
the different ligand protons. They suggest that measurement of the ligand T1s is essen-
tial prior to designing the STD NMR study and that saturation times less than T1 are to
be used to improve epitope mapping.

Because the STD NMR method is one that relies on the transfer of cross relaxation,
the theoretical methods that have been developed for the analysis of cross relaxation
can be applied. A complete relaxation and conformational exchange matrix analysis
(CORCEMA) has shown (59) that changes in the intensity of ligand resonance integrals
depended on a number of factors, including the spin saturation time, distance between
the saturated receptor protons and the ligand protons, structure of the ligand-binding
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Fig. 20. (Opposite page) (A) Structure of cyclo(RGDfV) peptide antagonist of αIIbβ3. (B)
Conventional nuclear magnetic resonance spectrum (a) of cyclo(RGDfV) and RGD peptides in
presence of αIIbβ3 and saturation transfer difference (STD) NMR spectrum (b) of cyclo(RGDfV)
and RGD peptides in presence of αIIbβ3 showing only signals from high-affinity peptide. The
inset shows an expanded region of the spectra from (a) and (b) and displays only the resonances
from the better binder, cyclo(RGDfV), and not from RGD. (C) Relative STD responses for
distinct protons of cyclo(RGDfV) peptide. Note the strong response of the phe δ, ε, ζ protons.
(D) Stereo view of a CPK model of cyclo(RGDfV) peptide with asterisks indicating medium
and strong STD responses of individual protons revealing the fact that these protons directly
interact with integrin. (Adapted from ref. 53.)

Fig. 19. Saturation transfer TOCSY nuclear magnetic resonance spectra of Lewis-B hexasac-
charide (1) in (A) absence and (B) presence of agglutinin from A. aurantia. In (B) only the fuco-
syl residues of 1 are seen to acquire saturation from the protein. The on-resonance (δ = 10 ppm)
and off-resonance (δ = 30 ppm) TOCSY spectra were taken at 300 K from 1 mmol of hexasac-
charide and 10 nmol of protein. (Adapted from ref. 50.)
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pocket, molecular rotational correlation times, exhange kinetics, and ratio of ligand to
receptor. A new method for refining approximate structures of ligands bound to pro-
teins has been developed (60) based on the use of STD NMR data on weak binding com-
plexes. The minimum energy bound conformation of the ligand is found by CORCEMA
calculation of intensities, with simulated annealing optimization of torsion angles of the
bound ligand, using STD-NMR intensities as experimental constraints and the NOE
R-factor as the pseudoenergy function to be minimized.

4.7. Applications of HSQC, Chemical Shift Mapping,
and Multiguantam NMR with Isotopic Labeling

One of the early methods that stimulated interest in NMR applications to drug dis-
covery was the development of 15N HSQC spectroscopy of 15N-labeled proteins in the
absence and presence of weakly binding potential ligand fragments. High-affinity ligands
were built up by linking together these weaker-binding fragments (19). The 15N chemi-
cal shifts of the backbone amides in a protein are sensitive to the global conformation
and folding characteristics of the protein, including the presence of nearby aromatic
rings, or charged residues, and to local perturbations arising from the binding of ligands.
Changes in the chemical shifts for specific assigned residues then can reveal the approx-
imate nature of the ligand-binding site. Because chemical shift changes arise at both
local and remote sites in a protein on substrate binding, interpretation of these effects
is not simple or straightforward (61). More precise information on the nature of the
binding site can be obtained if one compares the 1H 13C and 15N chemical shift changes
induced in a protein by a series of closely related compounds (62). For example, most
of the FK506 binding protein resonances shift on binding of the FK506 analog asco-
mycin, making it difficult to locate the binding pocket, and more difficult to orient the
analog (Fig. 21). However, when differential chemical shift changes are mapped onto
the protein structures, it is easy to pick out those residues involved in interactions with
specific modifications to the ligands.

A fragment-based approach was successfully applied to the development of nano-
molar ligands for the FK506-binding protein (19). Chemical shift changes of the pro-
tein on ligand binding were observed in HSQC spectra of 15N-labeled proteins (Fig. 22).
By examining these changes for the FK506-binding protein (63) in complex with small
molecules, a putative binding site for compound 2 (Fig. 23) could be determined. An
additional, nearby site for another compound (9; Figs. 23 and 24) was found by map-

Fig. 21. (Opposite page) Differential proton, carbon, and nitrogen chemical shifts of FK506-
binding protein in presence of ascomycin with respect to (A) free FK506-binding protein, (B)
31-keto-32-desoxy-ascomycin, (C) 24-desoxy-ascomycin, and (D) FK506. Similar data are shown
for the Bcl-XL complex with a Bak 16mer peptide compared with (E) free Bcl-XL, (F) a V307A
Bak mutant, (G) an R320A Bak mutant, and (H) a G315A Bak mutant. In each panel the nuclei
showing significant chemical shift changes (∆δ, ppm) are represented as spheres, with the size of
the sphere representing the magnitude of the changes (0.03 < ∆δ1H, 15N < 0.13; 0.15 < ∆δ13C <
0.65). Note that in (A) and (E) the ∆δ values are large for most of the nuclei, and in (B)–(D) and
(F)–(H) the only significant changes occur for nuclei at the site of the ligand modifications (circled).
(From ref. 62 with permission.)
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Fig. 21
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ping the chemical shift changes for the protein when 9 was added in the presence of 2.
Linkage of 2 and 9 to form compounds 10–13 (Fig. 23) and the synthesis of a related
compound 14 led to the attainment of compounds with nanomolar affinities for the
FK506-binding protein, which bind to the same site as the fragments (Fig. 25). In a sim-
ilar fashion, inhibitors that block DNA binding by the human papillomavirus E2 pro-
tein were produced (22). Here, biphenyl compounds were found to bind to a site close
to the DNA-binding site, and compounds with a benzophenone group were found to
bind to the β-barrel at the E2 dimer interface. These two separate fragments were then
combined to produce [5-(3'(3'',5''-dichlorophenoxy)-phenyl)-2,4-pentadienoic acid],
which had an IC50 of 10 µM.

Matrix metalloproteases (MMPs) are a group of zinc-requiring enzymes of impor-
tance in tissue remodeling and tumor metastases. Fragment-based screens of compounds
using 15N HSQC of the MMP stromelysin (64) produced two molecules that bound to

Fig. 22. Superposition of 15N heteronuclear single quantum conerence nuclear magnetic
resonance spectra of FK506-binding protein without (gray) and with (black) compound 3 (Fig.
23). The labeled amide signals display significant chemical shift changes on binding 3. Each
spectrum was taken in the presence of saturating amounts of compound 2, which bound to a site
on the protein adjacent to that occupied by 3. (Adapted from ref. 19.)
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Fig. 23. Structures of fragments used in assembly of a nanomolar inhibitor of FK506-binding
protein. (From ref. 19 with permission.)
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stromelysin (MMP-3) at distinct but adjacent sites, acetohydroxamate (site 1, KD = 17
mM) and 1-hydroxy,4'-cyano-biphenyl (site 2, KD = 0.02 mM). Linkage of these two
molecules produced a biarylhydroxamate with a KD of 57 nM, again illustrating the
power of fragment-based NMR screening and linkage to produce high-affinity ligands
from lower-affinity fragments. Compounds binding at site 1 interact with the active-
site zinc atom. Replacement of the hydroxamate with 1-naphthylhydroxamate gave a
compound which bound to site 1 (KD = 0.05 mM) with higher affinity than hydroxamate
itself and allowed the binding of other molecules at site 2. An NOE-based structure of
the complex between stromelysin and 1-naphthylhydroxamate using 13C-edited and 12C-
filtered NOESY data sets (Fig. 26) showed that the naphthyl group of 1-naphthylhydrox-
amate engaged in hydrophobic interactions with Tyr-155, Tyr-168, Phe- 86, His-205,
and Val-163 of stromelysin, and that there was still room for a biaryl compound to
bind at site 2. Linkage of 1-naphthylhydroxamate with 1-O-mesitylated-4'-cyano-biphe-
nyl produced 2-[2-[(4'-cyano[1,1'-biphenyl]-4-yl)oxy]ethoxy]-N-hydroxy-1- naphthalene-
carboxamide (KD = 340 nM), which bound to stromelysin and showed NOEs between
the biaryl moiety and Val-163, Leu-197, Val-198, and Leu-218, which were the same as

Fig. 24. Surface of FK506-binding protein showing binding sites of compounds 2 and 9
(Fig. 23), as determined from 15N-13C-filtered nuclear Overhauser effect data (see Note 2). Resi-
dues that exhibited the largest chemical shift changes on the binding of 2, 9, or both 2 and 9 are
D37, I90, Q53, R57, W59, I56, respectively. Chemical shift changes for 9 are those observed on
the addition of 9 to FKBP in the presence of saturating amounts of 2 (2.0 mM). Weighted aver-
aged chemical shifts were used (∆(1H, 15N) = |∆(1H)| + 0.2*|∆(15N)|), and indicated residues are
those for which ∆(1H, 15N) exceeded 0.15 and 0.05 ppm for 2 and 9, respectively. (From ref. 19
with permission.)
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observed for 1-hydroxy-4'-cyano-biphenyl at site 2, and the naphthyl moiety-induced
chemical shift changes at Tyr-155, Val-163, Ala-165, Ala-167, Tyr-168, and Ala-169 of
stromelysin at or near site 1. Finally, this compound was modified to pruduce N-hydroxy-
2-[2-[[3'-(cyanomethyl)[1,1'-biphenyl]-4-yl]sulfonyl]ethoxy]-1- naphthalenecarboxamide
(KD = 62 nM), which had the same KD (57 nM) as the original biarylhydroxamate, but
had superior oral availability, showing the robustness of the fragment-based screening
and linkage approach using HSQC to monitor the protein–ligand interaction sites. This
approach works well for proteins that bind two substrate molecules.

A final example of the use of HSQC is the fragment-based design of an inhibitor of
protein tyrosine phosphatase 1B, a molecule involved in insulin and leptin signal trans-
duction (65). N-Phenyloxamic acid is a nonphosphorus-containing phosphotyrosine
analog. Mimics of this oxamate structure could serve as ligands for site 1 on the phospha-
tase. One molecule synthesized was 5-(4-bromophenyl)-3-carboxy-5H-isoxazol-1-ium
(Fig. 27), which had a KD of 0.8 mM. The second site (66) bound salicylic acid (KD = 1.2
mM). Linkage of these produced 3-carboxy-5-{5-[(1E)-3-(2-carboxy-3-hydroxyphenoxy)
prop-1-enyl]-2-fluorophenyl}-5H-isoxazol-1-ium (Fig. 27). The X-ray crystal structure
of protein tyrosine phosphatase 1B complexed to 3-carboxy-5-{5-[(1E)-3-(2-carboxy-
3-hydroxy-phenoxy)prop-1-enyl]-2-fluorophenyl}-5H-isoxazol-1-ium (Fig. 27) showed

Fig. 25. Ribbon depiction of structure of FKBP (gray) when complexed to 14 (Fig. 23; un-
labeled carbon atoms). Labeled FKBP residues are those residues that have nuclear Overhauser
effects to the ligand. (From ref. 19 with permission.)
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that this molecule now spanned both sites with the isoxazole and phenyl rings occupy-
ing the hydrophobic pocket otherwise occupied by the phosphotyrosine ring. The use of
fragment-based HSQC NMR screening allowed the generation of a potent phosphatase
inhibitor without the need to screen blindly thousands of compounds because weak
binders for both sites could be identified based on simple ligands already known.

4.8. Applications of Residual Dipolar Couplings
One of the potential shortcomings of NMR-based determination of macromolecular

structure is that methods that rely on the observation of NOEs only give short-range (<6
Å) constraints on distances between nuclei. This is fine for determining local structure,
but often longer-range information on overall molecular folding and relative domain

Fig. 26. (Top) Structure of inhibitors bound to active site of stromelysin. (A) 1-naphthylhy-
droxamate. (B) 2-[2-[(4'-cyano[1,1'-biphenyl]-4-yl)oxy]ethoxy]-N-hydroxy-1-naphthalenecarbox-
amide. In both panels is the biaryl compound 1-hydroxy-4'-cyano-biphenyl. The labeled residues
engage in nuclear Overhauser effect magnetization exchange with the bound molecules, and
the ball represents the zinc atom. (Bottom) Structure of 2-[2-[(4'-cyano[1,1'-biphenyl]-4-yl)oxy]
ethoxy]-N-hydroxy-1-naphthalenecarboxamide. (Adapted from ref. 64.)
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Fig. 27. (Top) Stick drawing and X-ray structure of protein tyrosine phosphatase 1B com-
plexed with 3-carboxy-5-{5-[(1E)-3-(2-carboxy-3-hydroxyphenoxy)prop-1-enyl]-2-fluorophe-
nyl}-5H-isoxazol-1-ium (A). (B) Structure of 5-(4-bromophenyl)-3-carboxy-5H-isoxazol-1-ium,
a weak binder to site 2 of protein tyrosine phosphatase 1B (KD = 0.8 mM). (Adapted from ref. 65.)
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orientation is both necessary and important for an understanding of the functions of
new proteins obtained from genetics or molecular biological investigations. The mea-
surement of residual dipolar couplings (RDCs) provides data that nicely complement
those from NOE experiments (67) in that RDCs show the relative orientations of back-
bone vectors (17,68). For example, an extensive set of RDC measurements (18) showed
that packing of the maltodextrin-binding protein into a crystal lattice appeared to change
the relative orientation of its two domains by 11° from that found in solution. Several
algorithms now exist that can give the structure of a protein from RDC measurements
combined with sparse NOE and hydrogen bond restraints (69–71).

Our principal interest in RDC measurements is not only in the ability to use these as
additional data for the determination of macromolecular structure in solution, but in the
potential utility of the data for elucidating the structures of ligands in solution, bound
to receptors, and for determining conformational changes in proteins. In a study of the
structure of the catalytic fragment of human fibroblast collagenase (MMP-1), Huang et
al. (72) found that superposition of the active-site backbone atoms from both a high-
quality MMP-1 structure and a minimal-restraint MMP-1 structure yielded an RMSD of
0.68 Å. The size and shape of the S1' catalytic pocket were found to be nearly identical
in both structures. Additionally, the structure of an MMP-1-CGS-27023A complex based
on RDCs and a minimal set of NOE-based restraints reliably reproduced the structure
of the complex and established the usefulness of the structures for drug design.

Direct analysis of ligand binding using RDC data is beginning to appear in the lit-
erature. The ligand-binding properties of the 53-kDa mannose-binding protein (MBP)
have been investigated using RDCs. The determined geometry of the bound trimanno-
side ligand and orientational constraints allowed docking of the ligand in the binding
site of MBP and gave a structural model for MBP-oligosaccharide interactions (73). The
conformational and motional properties of flexible trisaccharides, such as methyl-3,6-
di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside, have been determined in solution
using RDCs (74). The conformation of the carbohydrate recognition domain of the galac-
tose-binding lectin Galectin-3 was studied in the presence and absence of the ligand
N-acetyllactosamine using residual dipolar couplings from NMR spectra (75) to deter-
mine the backbone structure of the protein and the binding geometry of the ligand, with
the result that the ligand-binding geometry was consistent with that found in a crystal
structure of the complexed state. As more research groups become familiar with the
orientational requirements of RDC measurements, an expansion of the use of this tech-
nique in structure-based drug design will be seen.

4.9. Applications of TROSY
The discovery of the cancellation between transverse relaxation time (T2) and CSA-

induced line broadening by Pervushin et al. (10) has opened the way for the study of very
large proteins, and, in particular, protein complexes, which were previously believed to
be too large for NMR study. The inhibition of protein–protein interactions constitutes
a new and important area of development in drug discovery (76), so knowledge of the
interaction sites for proteins with other proteins is now of critical importance. Many
bacteria infect their hosts by means of adhesive interactions between pili or fimbriae,
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which also act as virulence factors, and cell-surface proteins on host cells. Drugs that
interfere with either the assembly of the pili or their attachment to the host cell would
then be useful as alternative antibiotics different from the classic protein synthesis
inhibitors, to which bacteria are evolving resistance. Type 1 pili from Escherichia coli
are filamentous oligomers of the 28-kDa mannose-binding FimH monomer. The assem-
bly of the pilus involves the chaperone-mediated assembly of FimH monomers by the
23-kDa, two-domain periplasmic chaperone, FimC. TROSY-assisted chemical shift
mapping of the interaction sites between [15N, 2H]-FimC and FimH in the 51-kDa
complex (77) showed that the FimH-binding surface of FimC is formed almost en-
tirely by the N-terminal domain, and its extent and shape indicate that FimC binds a
folded form of the pilus subunits. Chemical shift changes were found to be large for
the solvent-exposed residues Trp-36 and Trp-84, and for Arg-8 and Arg-110 at a basic
site near Lys-112 (Fig. 28) when FimC bound to FimH. It is well known that Trp and
Arg residues function as critical residues at the sites of protein-protein interactions (76)
and that these residues can likely be incorporated into peptide mimics to form inhibitors
of pilus assembly.

Fig. 28. (A) Mapping of 15N and 1H chemical shift differences for FimC–FimH complex
onto 3D structure of FimC. Part (B) is the same as (A) after rotation by 90° about a horizontal
axis so that the two wings of the structure point toward the viewer. (From ref. 77. Copyright by
Nature Publishing Group. Used with permission.) Molecular surface of nuclear magnetic reso-
nance structure of FimC 3 showing binding surface for FimH. The residues with δ∆ > 0.1 ppm
are dark. Part (D) is the same as (C) after a 90° rotation of the molecule.
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TROSY methods are also of great interest for the study of membrane proteins. Genes
for these proteins make up approx 30% of the human genome. Membrane proteins are
great potential drug targets because these proteins are involoved in cell signaling and
cell–cell interactions. Studies of membrane proteins have lagged because most mem-
brane proteins are insoluble in water. To circumvent their insolubility, they are often
studied as large aggregates, with masses larger than 50 kDa, of mixed micelles with
detergents; therefore, they are not candidates for classic solution NMR techniques.
Larger proteins also give rise to severe spectral crowding, even in multidimensional
NMR experiments. The use of intein technology (78,79) can reduce the complexity
of the resulting NMR data sets by offering the means to label selectively only single
domains, or specific sequence regions. Nevertheless, labeling of membrane proteins
with 15N, 2H, and 13C enables NMR studies to progress even in the presence of deter-
gents or phospholipid micelles because only the labeled molecules are detected, and
the micellar background protons are filtered out of the spectrum.

Initial TROSY NMR studies of membrane proteins examined the well-characterized
outer-membrane proteins, OmpA (325 residues; 36.2 kDa) and OmpX (148 residues;
16.5 kDa) from E. coli (80,81) as approx 60-kDa aggregates with dihexanoylphos-
phatidylcholine micelles. For OmpX, complete sequence-specific NMR assignments
were obtained for the protein backbone. 13C chemical shifts and NOE data allowed the
identification of regular secondary structure elements of OmpX/dihexanoylphospha-
tidylcholine in solution and gave sufficient conformational constraints for the compu-
tation of the global fold of the protein. For OmpA, the NMR assignments were limited
to about 80% of the polypeptide chain, perhaps owing to different motional character-
istics of the reconstituted OmpA β-barrel from those of OmpX. Both of the intramem-
branous portions of these proteins formed a β-barrel structure of high regularity within
the lipid bilayer (Fig. 29). NMR data sets obtained by means of 3D [15N, 1H]-TROSY-
HNCA and [13C]-ct-[15N, 1H]-TROSY-HNCA experiments provided 13C chemical shifts
that enabled sequential backbone assignments to be made for Cα and Cβ carbons for
the first 171 of 176 residues. These assignments were used to generate an unambiguous
map of the eight membrane-spanning β strands (Fig. 29). The development of addi-
tional techniques will be required before the side-chain assignments necessary for a
complete structural analysis will be possible, but this study of the Omp proteins was a
significant beginning.

The applications of NMR to the study of large macromolecular systems are illus-
trated by the successful use of TROSY techniques to examine the control of tryptophan
biosynthesis genes in bacteria (82). Tryptophan synthesis is regulated by tryptophan-
dependent binding of the Trp RNA-binding attenuation protein (TRAP) to the leader
region of the Trp operon mRNA. TRAP is a 90.6-kDa protein composed of 11 identical
subunits, clearly too large for study by classic solution NMR techniques. However,
triple-resonance TROSY-based NMR spectra recorded at 55°C provided backbone res-
onance assignments for uniformly 2H,13C,15N-labeled TRAP from Bacillus stearother-
mophilus in the absence and presence of tryptophan (82). Trp binding to TRAP is tem-
perature dependent in this thermophile. Ligand-dependent differential line-broadening,
chemical shift perturbations (Fig. 30) and biochemical measurements suggested that
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tryptophan-modulated protein flexibility played a central role in the allosteric control of
TRAP function by altering its RNA-binding affinity.

TROSY techniques are now being applied to transient protein-protein interactions
between components of the respiratory chain. Wienk et al. (83) used chemical shift
mapping to investigate the molecular interaction between two components of the elec-
tron-transfer chain from Paracoccus denitrificans: a fragment of cytochrome-c552 and
the CuA domain from cytochrome-c oxidase. Comparison of [15N, 1H]-TROSY spectra
of the 15N-labeled cytochrome-c552 fragment in the absence and presence of the CuA
fragment led to the finding of chemical shift changes for the backbone amide groups
of several uncharged residues around the exposed heme edge in cytochrome-c552. The
contact areas on the cytochrome-c552 surface were found to be similar under both reduced
and oxidized conditions, implying that these chemical shift changes represented biolog-
ically relevant protein–protein interactions.

The development of effective anticancer drugs constitutes one of the great current
drug design challenges. TROSY NMR techniques have now been applied to the study
of interactions of drugs with targets and for the solution structures of oncoproteins
(e.g., gankyrin; [84]). Polyphenols found widely in nature are derived from plant struc-
tural lignins. Certain of these molecules have received wide attention because they have

Fig. 29. Transferse relaxation optimized spectroscopy nuclear magnetic resonance-derived back-
bone structure of the intramembranous portion of E. coli outer membrane proteins (A) OmpX
(residues 1–148) and (B) OmpA (residues 1–176) determined in micelles of dihexanoylphos-
phatidylcholine. The gray loops in (A) and (B) contain flexible residues not observed in prior
X-ray structures (80,81). The molecules are oriented with their peri-plasmic ends (containing
the N- and C-termini) down and the extracellular portions up. (Reproduced from ref. 80 with
permission.)
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Fig. 30
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demonstrated antitumor activity through the inhibition of protein-protein interactions
involved in the intrinsic apoptosis pathway. Two such molecules, gossypol and pur-
purogallin, have been found, by using TROSY NMR techniques, to bind to the hydro-
phobic crevice on Bcl-xL, which controls heterodimerization with BH3-containing pro-
teins (85), providing a mechanism to explain their ability to induce apoptosis even in
Bcl-2- or Bcl-xL-overexpressing cells. A pharmacophore model was developed that gave
an important foundation from which to design even more potent and selective antican-
cer drugs targeting Bcl-2 family proteins.

The development of vaccines has also been aided by TROSY NMR. MSP119, the
C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum, is a
leading candidate antigen for development of a vaccine against the blood stages of the
malaria parasite. Morgan et al. (86) used TROSY NMR spectroscopy to produce high-
quality spectra of Fab complexes that allow the mapping of epitopes by the chemical
shift perturbation technique on a complete, folded protein antigen MSP119. NMR chem-
ical shift changes were measured in the complexes of P. falciparum MSP119 with Fab
fragments from three MAbs, two of which had parasite-inhibitory activity in vitro, and
a third antibody that was noninhibitory. A close spatial relationship was found between
the binding sites for the two inhibitory antibodies, but the noninhibitory antibody bound
at a different location. The results revealed a surface on MSP119 where inhibitory anti-
bodies bound, information that will be valuable for optimizing the MSP11 antigen by
rational vaccine design.

4.10. Applications of HTS with NMR
It is clear that the enormous amount of information available from an NMR- spec-

troscopic approach to drug screening makes it a method of choice for all aspects of the
discovery process. However, NMR is an intrinsically low-sensitivity method that is also
slow and requires large amounts of difficult-to-produce materials. What can be done
to improve these shortcomings?

Sensitivity can be increased in several ways. The HSQC experiment uses the higher-
sensitivity proton for detection of spin-coupled 13C or 15N. The highest field magnets
can be used, currently 19 T, although these are the most expensive, costing in excess

Fig. 30. (Opposite page) Application of transverse relaxation optimized spectroscopy nuclear
magnetic resonance (NMR) spectroscopy to study the interaction of tryptophan with Trp RNA-
binding attenuation protein (TRAP) from the thermophilic bacterium Bacillus stearothermo-
philus. (A) The binding of Trp to TRAP is temperature dependent. 1H, 15N heteronuclear single
quantum coherence spectra of TRAP in the presence of Trp from 25 to 75°C show free Trp at low
temperature (signal at δH = 10.3 ppm, δN = 130.5 ppm, and lower right panel) changing to bound
Trp (signal at δH = 10.5 ppm, δN = 129 ppm) at 35°C. (B) Trp-induced NMR spectral changes
mapped onto the backbone of TRAP derived from the crystal structure (protein databank code
1CS9): (top) Proton line widths in absence of Trp. Darker gray residues indicate significant
line broadening. (Middle) Proton line widths in presence of Trp. The backbone is drawn with a
ribbon whose width is proportional to the line width. (Bottom) Trp-induced proton, carbon,
and nitrogen chemical shift changes are largest (darker gray) for strand C, indicating transmit-
tal of the Trp-binding information to the RNA-binding surface. (From ref. 82 with permission.)
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of $5 million. A less expensive approach is the retrofitting of existing spectrometers
with cryoprobe technology, which costs around $200,000, and gives a factor of 2–4
increase in signal-to-noise ratio for a given sample. This cuts the time needed per spec-
trum by up to an order of magnitude, so a 2D 15N/1H correlation spectrum on 50 µM pro-
tein samples using cryogenic NMR probe technology can be obtained in less than 10
min (87,88) and up to 200,000 compounds can be screened in less than 1 mo. Cryo-
probe technology coupled with the automated analysis of HSQC data, could dramati-
cally improve the throughput of NMR-based drug screenings.

An outgrowth of the development of TROSY methods is an increase in sensitivity
produced through line narrowing because the signal-to-noise ratio is defined in terms
of signal heights, rather than integrals. It is easier to detect narrow lines than broad
ones. Most of the HSQC NMR studies have used 15N labeling of the backbone amides
of the protein, but 13C-labeled methyl groups have more potential because they con-
tain three protons instead of the single proton in the amides, so they produce three times
the NMR signal for a given protein concentration (64). In addition, TROSY methods
have now been introduced for the observation of these labeled methyls in proteins (89)
as large as 810 kDa (lysine decarboxylase). Often the target protein is uniformly labeled
with isotopes, and for very large molecules, the resulting NMR spectra are extremely
complex. Studies of protein interaction sites have shown that only a few residues actu-
ally contribute the bulk of Gibb’s free energy of interaction; these residues include Tyr,
Trp, and Arg (76,90). Therefore, specific labeling of Trp can greatly simplfy the spec-
tra while preserving information about specific binding sites (91).

Another method for increasing the effectiveness of NMR arises from the unique
aspects of the technique. HSQC of a protein target in the presence of drugs indicates
where a drug binds to a protein and therefore gives clues to the functions of unknown
proteins derived from expression of new sequences from the human genome. Instead of
screening 200,000 compounds against an expressed protein of unknown function, it is
more efficient to use a mixture of a smaller number of compounds, but to include in this
mix examples of the broad spectrum of known protein ligands, such as kinase inhibitors,
saccharides, protease inhibitors, or nucleosides. (64). In this way the NMR data not only
reveal binders but give clues as to the protein’s function, with less time expended on the
data production phase. The mixture of compounds could also consist of molecular
fragments, which can then be optimized by linkage (19). A prescreen, such as MS, can
narrow the list of potential binders so that NMR can be applied where it has its great-
est strength and impact—in the identification of true ligands and their interaction sites.

HTS NMR methods that focus on the ligands have also been proposed. Dalvit et al.
(92) used the high relative sensitivity of 19F NMR spectroscopy (83% of the proton)
and the lack of background fluorine nuclei to perform enzyme assays using substrates
containing –CF3 groups. Enzyme inhibitors can then be detected at high sensitivity
using 19F cryoprobes. Applications of this technique to the screening of inhibitors of
the Ser/Thr kinase AKT1 and the protease trypsin were examined.

The DNA sequences generated through the Human Genome Project give rise to many
proteins of unknown function. NMR methods can greatly assist in functional genomic
studies of the nature of these molecules. To have a high-throughput impact, automated
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methods for the production of isotopically labeled cloned, expressed proteins must be
available. Major bottlenecks in high-throughput recombinant protein production with
the E. coli expression systems include low expression levels and the insolubility of
eukaryotic gene products. One way around these problems could be to focus on sepa-
rate protein domains. A fast, microtiter plate-based expression and solubility screen-
ing procedure has been developed that is capable of purifying 24 protein samples/wk
for the production of protein samples for NMR (93). Starting with 81 cloned human
protein domains, in vivo expression was detected in 54 cases, and from 28 of those,
milligram quantities of protein could be purified. An informative HSQC spectrum was
recorded for 18 proteins (22%), half of which were indicative of a folded protein. Sim-
ilar work by Scheich et al. (94) analyzed 88 different E. coli expression constructs for
17 human protein domains using high-throughput cloning, purification, and folding
analysis to obtain candidates suitable for structural analysis. Six constructs (represent-
ing two domains) were quickly identified as well folded and suitable for structural analy-
sis. This procedure was found to be especially effective as a rapid and inexpensive screen
for high-copy-number proteins from structural genomics. It is clear from these results
that NMR methods have a significant role to play in HTS.

4.11. Applications of Computational Methods
Just as NMR methods have impacted many areas of drug discovery, so have compu-

tational techniques impacted NMR spectroscopy. The very conduct of NMR experi-
ments is impossible today without the use of control software and computers. NMR data
analyses also depend on computers and software for storage, processing, and display
of multidimensional spectra. The construction of restrained molecular models is inte-
grated into NMR software, such as Felix (Accelrys, San Diego, CA) and its associated
modules, and the software produced by Tripos (St. Louis, MO). Numerous useful NMR
software is available free of charge on the Internet, or through contact with software
developers (see Subheading 2.3.). Good Web sites containing many links to NMR soft-
ware are www.spincore.com/nmrinfo/software_s.html and www.organik.uni-erlangen.
de/research/NMR/software.html.

Among several interesting new computational developments, the radical G-matrix
approach to data acquisition, GFT (95), ranks highly. Multidimensional Fourier trans-
form NMR spectroscopy suffers from the need to measure N-1 indirect dimensions in
an N- dimensional data set. These indirect dimensions require the accumulation of many
(e.g., 256–1024) separate spectra at differing time delays to build up adequate digital
resolution in the indirect dimensions. This makes the measurements time-consuming
and a constant compromise between digital resolution and measuring time. GFT NMR
uses phase-sensitive joint sampling of the indirect dimensions to produce chemical shift
multiplet subspectra, which are then linearly combined using a G-matrix prior to Fourier
transformation. The chemical shifts, which are multiply encoded in the multiplets, give
statistically indendent multiple measurements from which the shifts can be obtained
with high precision (14). The dramatic reduction in time (4- to 18-fold) needed to build
up the indirect dimensions means that determination of macromolecular structure can
achieve the high-throughput speed necessary for modern drug discovery schemes (96).

www.spincore.com/nmrinfo/software_s.html
www.organik.uni-erlangen.de/research/NMR/software.html.
www.organik.uni-erlangen.de/research/NMR/software.html.
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After the NMR data sets are measured, new computational methods are required to
deal with the massive amounts of spectral information produced. Even a simple HSQC
screen of a 15N-labeled protein in the presence of a mixture of compounts can easily
produce 500 data sets, which must be assigned and measured, and the relevant chemi-
cal shift changes must be sorted from irrelevant structural changes. Processing schemes
based on multivariate methods such as linear discriminant analysis, support vector
machines, or three-way decomposition have been developed to deal with the increased
data flow. One of these methods (three-way decomposition) has been incorporated into
the software MUNIN (multidimensional NMR spectral interpretation; [97–100]), which
can automatically process large groups of HSQC data sets and extract signals that change
chemical shifts owing to compound binding to a target molecule (101). Because this
technique is based on the extraction of orthogonal feature vectors (called “shapes” in
MUNIN) in three dimensions, it does not require full experimental sampling of all of
the indirect dimensions and can therefore reduce data acquisiton times by up to a fac-
tor of 4. Application of MUNIN to drug discovery treats a set of 2D HSQC spectra as a
3D object in which the third dimension is the spectrum number. The output appears to
distinguish clearly binding from nonbinding ligands in an automatic fashion.

Another method for compressing the large amounts of 3D structural information
found in protein–ligand complexes generated either with X-ray diffraction, NMR, or
computer-aided docking studies, is to generate 1D feature vectors (bit strings) based on
the interaction sites between ligands and macromolecules. These vectors can be clus-
tered and compared quickly, revealing common binding modes and interactions (102),
and can be used for data mining.

So far, we have concentrated on the use of experimental NMR data for the elucida-
tion of binding features of drug candidates, but computational methods can take this one
step further and use calculated molecular NMR properties in cases in which the mole-
cules may be difficult or expensive to synthesize or time factors preclude actual synthe-
sis. Such a scheme involves developing quantitative spectral activity relationships based
on empirical data for a class of related compounds binding to a given target, and then
using chemical shift prediction algorithms to provide input data for unsynthesized mole-
cules. This approach has been successfully used to model steroid inhibitor activity (103,
104) in relation to the aromatase enzyme, a cytochrome P450 complex that converts
androgens to estrogens, which is therapeutically significant with respect to control of
breast cancer. Further studies of 13C NMR spectral features were used to develop accu-
rate models of steroid binding to the corticosteroid-binding globulin (105) and of poly-
chlorinated dibenzodioxins, dibenzofurans, and biphenyls binding to the aryl hydro-
carbon receptor (106).

4.12. Conclusion
NMR methods have had an impact on all aspects of the drug discovery process. We

have not mentioned several other areas because they are outside the scope of this chap-
ter, but NMR is also an important player in metabolomics (107), which can reveal the
response of organisms to the presence of drugs, or to specific genetic manipulations.
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NMR imaging is also very useful in the discovery process but has been well covered
elsewhere. Other aspects of the use of NMR in drug discovery are provided in reviews
by Homans (108) and Pellecchia et al. (109), particularly the techniques of NMR-DOC
and NMR-SOLVE, two fragment-based methods (110) similar to HSQC (SAR by NMR;
[87,88]). Further applications of NMR in this area will only be limited by investigator’s
insights.

5. Notes
1. 15N, 1H correlation spectra of 0.5 mM 2H, 15N-labeled P450 reductase from rat liver ob-

tained in 95% H2O, 5% D2O; T = 303 K, pH 7.5.
2. The NMR samples of the ternary complex were composed of uniformly 15N-, 13C-labeled

FKBP (2.0 mM), 2 (2.0 mM), and 9 (5.0 mM) in a D2O or a mixture of H2O and D2O (9 to
1) phosphate-buffered solution (50 mM, pH 6.5) containing 100 mM NaCl and 0.05%
sodium azide. The 1H, 13C, and 15N backbone and side-chain resonances of FKBP in the
complex were assigned from an analysis of several 3D 5N- and 13C-edited NMR experi-
ments (111). A total of 17 intermolecular restraints were used to dock 9 to the known struc-
ture of FKBP (112–114). Compound 2 was placed in a location similar to that observed in
the ascomycin complex, which was consistent with the chemical shift changes observed
on binding of 2 (Fig. 22) (19).
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Receptor-Binding Sites

Bioinformatic Approaches

Darren R. Flower

Summary
It is increasingly clear that both transient and long-lasting interactions between bio-

macromolecules and their molecular partners are the most fundamental of all biological
mechanisms and lie at the conceptual heart of protein function. In particular, the protein-
binding site is the most fascinating and important mechanistic arbiter of protein function.
In this review, I examine the nature of protein-binding sites found in both ligand-binding
receptors and substrate-binding enzymes. I highlight two important concepts underlying
the identification and analysis of binding sites. The first is based on knowledge: when one
knows the location of a binding site in one protein, one can “inherit” the site from one
protein to another. The second approach involves the a priori prediction of a binding site
from a sequence or a structure. The full and complete analysis of binding sites will neces-
sarily involve the full range of informatic techniques ranging from sequence-based bioin-
formatic analysis through structural bioinformatics to computational chemistry and molec-
ular physics. Integration of both diverse experimental and diverse theoretical approaches
is thus a mandatory requirement in the evaluation of binding sites and the binding events
that occur within them.

Key Words: Ligand binding; binding site; protein–ligand interaction; computational
prediction; drug design; virtual screening; molecular dynamics; ligand docking.

1. Introduction
Whatever may be said of the origins of life, today we live in a protein universe. The

diversity of function exhibited by proteins is extraordinary. Enzymes, for example,
catalyze most, but not all (1,2), chemical reactions within biological systems. The
geometry and structural integrity of cells are maintained by fibrous and globular struc-
tural proteins (3). Cell-surface receptors maintain and marshal intercell communica-
tion and the interaction between cells and their immediate milieu, effecting signal
transduction (4).
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As the era of genomics falls before the proteomic and systems biology revolution, it
is becoming increasingly clear that both transient and long-lasting interactions between
proteins are, seemingly, the most fundamental of all biological mechanisms and that
such interactions lie at the conceptual heart of protein function (5). Couple this to the
interactions of proteins with small molecules, the province of metabolomics (6–8),
and with other biological macromolecules, such as DNA, and it becomes clear that the
protein-binding site is the most fascinating and important mechanistic arbiter of pro-
tein function (9,10).

It is perhaps easiest to think of the binding site as a very small part of a protein’s
surface that interacts with an equally small molecule, and, indeed, I focus on this aspect
at length herein, but the binding site is also the site of interaction with other proteins or
biomacromolecules. In this sense, the size of a binding site is in no way constrained.
Equally well, the nature of the molecule being bound, or bound to, will determine the
shape and physical properties of a site. This manifests itself in terms of both the amino
acids that form a binding site and the overall folding pattern underlying the structure
of an individual protein. The particular amino acids lining the binding site give rise to
its local, individual shape and, through their chemical interactions, to the site’s par-
ticular substrate or ligand specificity. The fold, on the other hand, is responsible for
the more general shape and size of a binding site. Observed at the level of a genome or
a population of genomes, the nature of a protein-binding site is in no way prescribed
and, thus, its identification and analysis remain key challenges for both experimental
and in silico science.

In this review, I examine the nature of binding sites found in both ligand-binding
receptors and substrate-binding enzymes. Moreover, I am obliged to focus and do, in
the course of my discussion, make reference to the three kinds of binding sites with
which I am best acquainted: the G protein-coupled receptor (GPCR), the major histo-
compatibility complex (MHC), and that of the lipocalins.

The GPCRs form a large and burgeoning set of integral membrane proteins that act
as cell-surface receptors responsible for the transduction of a wide array of extracellu-
lar signals into some kind of intracellular response (11). GPCRs activate so-called G
proteins, a group of ubiquitous guanine nucleotide-binding regulatory proteins. An
activated GPCR will associate with the trimeric G protein complex, causing exchange
of guanosine 5'-triphosphate for guanosine 5'-diphosphate bound to Gα, followed by
dissociation of Gα-guanosine 5'-triphosphate from Gβγ and of both subunits from the
receptor. Free Gα then couples to effector enzymes, such as adenylate or guanylate
cyclase or phospholipase A2 or C, inhibiting or stimulating production of second mes-
sengers, such as cyclic adenosine monophosphate, which, in turn, cause the downstream
generation of other messenger molecules, such as arachidonic and phosphatidic acid
(12). Moreover, many GPCRs also activate mitogen-activated protein kinases, a process
involving GPCR endocytosis and a G protein-mediated pathway involving tyrosine kin-
ase phosphorylation of a large collection of adapter proteins (13). The GPCR is often
taken to be the archetypal receptor in drug research and is thus presumed to possess the
archetypal binding site as well (11).
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GPCRs bind many different types of ligand: large proteins, peptides, and small mole-
cules of as little as a handful of atoms. Certain GPCRs, such as rhodopsin, even inter-
act with light, albeit mediated by a bound retinal molecule. Structurally (14), a GPCR
fold comprises seven sequences of 25–35 consecutive residues—typically with a high
level of overall hydrophobicity—each representing a transmembrane α-helix, which
together span the plasma membrane in an counterclockwise serpentine manner. As
shown in Fig. 1, within this quasisymmetrical structure—the N-terminus and three
loops are extracellular and the C-terminus and three loops are intracellular—evolution
has allowed the GPCR to develop a wide variety of binding sites and surfaces.

The products of the MHC play a fundamental part in regulating immune responses.
T-cells recognize antigen as peptide fragments complexed with MHC molecules, requir-
ing antigen degradation by proteolytic enzymes prior to complexation (15). The func-

Fig. 1. Diversity in G protein-coupled receptor (GPCR) ligand-binding. Beveled cylinders
linked by loops drawn as lines represent transmembrane helices. The membrane is shaded.
Solid arrows indicate specific contacts between receptor and ligand. Starting at 12 o’clock and
working clockwise, one sees a gradual increase in the size of bound ligands and the complexity
of ligand–receptor interactions: first, light interacting with a rhodopsin molecule; second, a
small molecule binding to an aminergic GPCR; third, a self-activating GPCR cleaved by a
protease; fourth, a peptide binding GPCR; fifth, a small protein, such as a chemokine, binding
to a GPCR, exhibiting a mixed binding mode, with interactions from both the transmembrane
region and external loops, which is intermediate between that of a peptide and a large protein;
sixth, a large protein binding to a GPCR.
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tional role of MHC proteins is thus to bind peptides and “present” these at the cell sur-
face for inspection by T-cell receptors. MHCs are grouped into two classes with related
structures (16,17): class I molecules are composed of a heavy chain complexed to β2-
microglobulin, and class II molecules consist of two chains (α and β) of similar size.
Both classes of MHC molecule have similar three-dimensional (3D) structures: each
has two domains, which come together to create a cleft- or groove-shaped peptide-
binding site formed from a β-sheet base with sides composed of two α-helices. The
principal difference between the two classes is the dimensions of the peptide-binding
groove, which, for class I, is constrained to bind 8–10 amino acid peptides but is open
at both ends in class II, allowing much larger peptides of varying length to be bound.
In most species, but especially clearly in humans, MHC proteins are highly polymor-
phic, with several hundred genetic variants, or alleles, at each genetic locus, many of
which are present at high frequency (18). Different alleles may differ by up to 30 amino
acid substitutions. Each class of MHC is represented at several loci: three for class I (in
humans, human leukocyte antigen [HLA]-A, B, and -C) and three for class II (in humans,
HLA-DR, -DQ, and -DP). The set of linked MHC alleles is called a haplotype. All MHC
loci are expressed codominantly: both maternally and paternally inherited sets of alle-
les are expressed by each cell. In approx 97% of individuals the entire linked MHC
complex is inherited without recombination (19). The MHC fold has also been adopted
by many other proteins of varying function. Such an example might include CD1, which
fulfills a similar role within antigen presentation, but binds lipid, rather than peptide,
molecules (20).

Lipocalins (21–24) are among the most remarkable of protein families, exhibiting
extraordinary diversity at the level of both sequence and function. The family was first
defined almost 20 yr ago. Since then, our knowledge of the lipocalins has expanded
enormously, with several new family members discovered each year. A typical lipo-
calin consists of a 160–180 amino acid peptide, folded into eight to nine β-strands,
which form a continuously hydrogen-bonded β-barrel with a hydrophobic interior. The
family comprises approx 40 distinct small extracellular proteins from a wide variety
of tissues with a wide phyletic spread encompassing vertebrate and invertebrate ani-
mals, plants, and bacteria. The plasma proteins retinol-binding protein, α-1-acid gly-
coprotein, and α1-microglobulin; the nasal odorant-binding proteins; the bilin-binding
proteins of butterflies; lobster crustacyanin; and temperature-induced lipocalins, which
confer a plant its resistance to cold, are all examples of lipocalins. Clinical studies
have shown the importance of lipocalins in health and disease; many of them are bio-
markers of pregnancy, acute systemic inflammation, renal disorders, nerve growth and
regeneration, and proliferation of cancerous cells or allergy. The family is characterized
by three molecular recognition properties: binding to cell-surface receptors, the forma-
tion of complexes with soluble biomacromolecules, and the binding of small hydro-
phobic molecules. Lipocalins have historically been regarded as primarily transporters
and, from crystallographic results, to possess an archetypal hydrophobic binding site.

From our quick peek at these three types of receptor, one thing is clear. A single
binding site can be adapted to fulfill many functional roles, both by adapting its prop-
erties and by extending it.
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However, the purpose of this work is not to undertake an exhaustive description of
binding sites throughout the entire, emerging world of proteins, but to concentrate on
their analysis through computational and bioinformatic methods. With a review as wide
ranging in scope as this, though, I am obliged to be somewhat restrictive. In particular, I
focus on protein-binding sites rather than the catalytic sites of enzyme or abzyme. There
are many contemporary reviews on the nature of enzyme-active sites (25,26); these are
conflicting, if not totally irreconcilable, views, affording nonetheless a picture of such
sites as possessing more similarities than differences. Furthermore, I cannot cite every
relevant text, and, to those authors whom I have unwittingly excluded, I apologize.

1.1. On the Nature of Receptor-Binding Sites
Before beginning a more detailed examination of bioinformatic approaches to the

analysis of binding sites, let us take the time to step back a little and view the area more
generally. What, exactly, is a binding site? As I have already said, there is no obvious
or simple definition, but clearly any region of interaction between a protein and some
other molecular entity—however small, however large—is a binding site, at least of a
sort. This point of interaction may, e.g., be a site of oligomerization, but one is more
usually apt to view a binding site as a small, discrete cavity within a much larger protein,
which interacts with a small molecule, be it an enzyme substrate or a receptor ligand.
The language of chemistry, this is often called host-guest complexation: the protein is
the host and the small molecule the guest. The rest of this section concentrates on pro-
tein–small molecule interactions, but the points made are easily generalized for other
types of interaction.

It is within depressions on the protein surface that the specific binding of small mole-
cules normally occurs; thus, binding sites are often referred to as pockets, cavities,
grooves, or clefts. The choice of name is typically dictated by their size: pockets lie at
the small end of the spectrum, clefts at the large. What discriminates between a bind-
ing site and other regions of a protein surface is a question of important, general interest
(27). Purely geometric criteria can be sufficient: enzyme-active sites are, for example,
often large, deep clefts (28,29). The size, shape, and burial of a cavity may dictate the
type of ligands that can be accommodated. The physicochemical properties of a cavity
will also give important insights. Small-molecule binding in surface depressions is
ultimately a consequence of the physical principles governing molecular recognition:
high affinity can only be gained by adequate steric complementarity and a sufficiently
large interaction interface, and specificity is more easily obtained within environments
that already impose geometric constraints. Yet, distinguishing a functionally relevant
binding site from a cavity without binding properties remains challenging.

A binding site is formed by the 3D arrangement of specific amino acids that confers
on a site both its geometrical characteristics—its size and shape—and its characteristic
physicochemical properties—how hydrophobic or polar it may be (30). Within such a
physicochemical background, a subset of binding site residues will make appropriate
amino acid–ligand contacts, whether those interactions are hydrophobic in nature, or
mediated by hydrogen bonding, or complementary charge-charge pairing (31). Although
these interactions are the property of a particular sequence, the overall geometry—in
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other words, the size and shape of a binding site—is, generally, a common property of
the fold for a given protein, albeit moderated by specific sequence features. The fold, or
folding pattern, of a protein is one shared both by close sequence homologs (i.e., pro-
teins that are clearly members of the same protein family) and by other proteins whose
sequences are so distant that obvious homology cannot easily be identified between
them (32). These so-called structural superfamilies were long ago found to be com-
mon, indeed very common. The GPCRs and the lipocalins are, for different reasons,
both good examples of this phenomenon. The lipocalins form part of a larger group of
proteins called the calycins (21,23,33,34), which also have similar internal ligand-
binding sites, but less than obvious sequence similiarity and very different functions,
phyletic spread, and cellular localization. Generic, or fold-determined, and specific,
or sequence-determined, features of a protein both contribute to the key features of a
binding site: on the one hand, its size and shape and, on the other, the nature and geom-
etry of its amino acid side-chain interactions. In this way, one sees that certain folds
are adapted to bind specific kinds of ligand; peptide binding by MHCs is a good exam-
ple of this phenomenon (17). Equally well, however, it is now becoming apparent that
as the size of a protein family grows so too does the perceived diversity of chemical
structures that it binds, something demonstrated clearly by GPCRs (35,36).

Why are scientists interested in binding sites? Apart from the natural intellectual
curiosity so characteristic of scientists, there are also key utilitarian objectives to their
study. These are manifest most notably in the discovery of drugs, whether they are
therapies to treat human pathologies or those of valued animals, such as farm livestock
or companion animals, or antimicrobials whose function is to clear pathogenic orga-
nisms without injuring their hosts (37). Drugs are “designed” molecules that bind to pro-
teins, inhibiting or exacerbating their function. I place the word designed in quotation
marks because many of the most successful, and famous, drugs are natural products:
molecules from plant, animal, or microbial sources. By natural products, or secondary
metabolites, I really mean compounds that have no explicit role in the internal meta-
bolic economy of the organism that biosynthesized them. There are several competing
arguments that offer putative explanations for the existence of such redundant mole-
cules. Arguably, the most appealing of these is evolutionary in nature (38): natural prod-
ucts may confer an augmented opportunity for survival in their producer organisms by
binding specifically to macromolecular receptors in other organisms with a resulting
physiological action. As a result of this innate capacity for making receptor interactions,
as manifest in their overall size and complexity, secondary metabolites will be gener-
ally predisposed to make biomacromolecular complexes. One might expect, then, that
natural products will perform well in random screening and possess a high probability
of high initial activity. Although secondary metabolites can, indeed, be highly potent,
their intrinsic complexity makes them synthetically intractable. Natural products will
often prove to be either very weak hits, which are seldom attractive for optimization,
or very potent and selective compounds that can, with little modification, move straight
into clinical trials; cyclosporin (39), FK506 (40), and taxol (41) have, for example, all
found clinical application.
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To understand a ligand-binding site is, in many ways, to understand the ligand. This
understanding provides a tool that helps greatly in the elucidation of ligand properties.
Although such understanding is no longer the sole pivot on which the success of pre-
clinical drug discovery rests (42), it is only by the proper use of this information that
drug design becomes, in any way, systematic and intellectually satisfying, as well as
efficient and effective. Of course, the reverse can be equally true: to understand the
structures of a set of ligand molecules is to understand, or, at least, to gain insight into
the nature of their binding site. This is the basis of pharmacophore mapping (43).

The pharmacophore is an important, unifying concept in drug discovery. It captures
the idea that molecules are active at a particular receptor because they possess a set of
key functional groups, interacting favorably with this receptor and possessing a geom-
etry complementary to it. A pharmacophore is most usefully defined as an ensemble of
interactive functional groups with a defined geometry. A pharmacophore may be derived
in several ways: by analogy to a natural substrate or known ligand, by inference from a
series of dissimilar biologically active molecules (the so-called active analogue approach),
or by direct analysis of the structure of a target protein. Most pharmacophores tend to be
fairly simple two-, three-, or four-point (i.e., functional group) pharmacophores, although
some incorporate more elaborate features such as best planes and regions of excluded
volume. Overspecifying a pharmacophoric pattern through the use of restrictive sub-
structure criteria will limit the overall diversity of identified active molecules. In an ideal
pharmacophore, the generality of functional groups does not restrict structural classes
while the pharmacophore geometry supplies discriminating power to the search.

Once a pharmacophore model has been derived, there are, in general, two ways to
identify molecules that share its features: by de novo design, which, at least in an ideal
world, generates chemically reasonable, novel hypothetical structures (44,45); and “3D
database searching,” in which large databases comprising 3D structures are searched for
those matching a pharmacophore (46). However, a single pharmacophore is unlikely
to recover all active compounds. This is especially true for antagonists and enzyme
inhibitors that bind in a number of different ways to block agonist or substrate bind-
ing. Each structurally distinct class may make its own individual subset of interactions
within the total available within a binding site. Single compounds may also bind to
more than one subsite or in several different binding
 modes. Given the more stringent
requirements of receptor activation, agonists may exhibit less diversity in binding (47).
Thus, to span the structural diversity and different binding modes exhibited by antag-
onists and other ligands, many pharmacophores may be required to characterize fully
the structural requirements of a given receptor or pharmacological activity. There is
always a need, therefore, to test a reasonable number of molecules that fit a pharmaco-
phore model. 3D database searching will ideally identify compounds with properties
outside those of the set of molecules used to define the pharmacophore. This allows for
the identification of novel chemical structures and molecular features leading to both
increased and decreased activity.

Drugs need to balance several competing objectives (see Fig. 2)—receptor affinity,
receptor selectivity, and lack of side effects, which are all mediated by receptors—together
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with other properties, such as lipophilicity and metabolic stability, which are generally
not approached from the perspective of a binding site but through physical chemical
methods that seek to control global molecular properties, such as lipophilicity (48).
However, biology, with which drugs must interact, is largely composed of a collection
—albeit a vast collection—of different binding sites. A problem such as plasma protein
binding is clearly something that could be addressed by examining drug-to-binding site
interaction but is more usually examined in terms of manipulating its global physical
properties. Receptor affinity is, however, clearly mediated through a drug’s interaction
with a binding site; receptor selectivity is mediated by interaction, or lack thereof, with
several similar binding sites; and lack of side effects is mediated by binding to both
essentially similar, yet functionally distinct, sites and also to dissimilar sites within quite
different and unrelated receptors. Of course, binding sites are not restricted to proteins;
many drugs bind selectively to other macromolecules, such as the major groove in DNA
(49), or, indeed, to supramolecular complexes, such as biological lipid membranes.

Ideas about the structure and physical properties of drug molecules converge in the
concept of “drugness” (50). What distinguishes drugs from other molecules, millions

Fig. 2. Fitting the pharmacophore. A molecule either will or will not fit a pharmacophore.
Although a particular compound may fit the pharmacophore, reflecting receptor complementar-
ity, its activity is not guaranteed. It may possess unfavorable properties, such as extreme lipo-
philicity. Likewise, it may penetrate excluded volumes or introduce the pairing of like charges.
Ranges of activity obtain unexpected enhancements as advantageous additional interactions are
made with the receptor. A nominal or toy pharmacophore is shown superposed into an example
binding site. Ligands found by the search are of three kinds: (1) molecules that place other groups
into excluded volumes and are, as a result, weak or inactive; (2) molecules that fit the minimal
requirements of the pharmacophore but introduce no extra interactions; and (3) molecules that
fulfill all the pharmacophore’s requirements and are complementary to the receptor introducing
new groups that make favorable interactions with the binding site.
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of which exist in compound repositories around the world? What determines “drug-
ness”? The set of desirable properties required in a candidate drug? Beyond straight-
forward physicochemical and, thus, readily evaluated criteria are properties, both struc-
tural and physicochemical, that determine a drug’s interaction with both the whole
organism and the binding site of its biological target (48). Interaction with the whole
organism—usually termed DMPK, or ADME/tox, problems—covers a range of biolog-
ical functions: absorption by the gut, nonspecific drug binding in the blood by human
serum albumin or α-1-acid glycoprotein, and the metabolic clearance of compounds.
The differing requirements of DMPK and receptor activity often seem in opposition, yet
both are required in order to achieve “quality” drugs that are active and can reach an
appropriate site of action in a reasonable amount of time and at nontoxic doses. The
solution to this dilemma is reaching a balance between potency, mediated through inter-
actions with the binding site, and pharmacokinetic properties. Lipophilicity, for exam-
ple, is an important physicochemical parameter that, when manipulated properly, can
effectively moderate oral absorption, plasma protein binding, and volume of distribu-
tion, and strongly influence processes such as pharmacokinetic properties and brain up-
take; however, excessive lipophilicity can also increase a compound’s vulnerablity to
P450 metabolism and clearance (51). One might imagine that binding site-mediated
activity is the more difficult problem, but, within pharmaceutical research, one can no
longer possibly attack it in isolation.

Increased understanding of the bulk properties of drugs has led to a concomitant
increase in the understanding of the types of binding site—so-called beautiful binding
sites—most compatible with binding druglike molecules (52). The human genome is
composed of both “druggable” receptors—proteins with binding sites that can be bound
easily by molecules with the characteristic size, shape, and physicochemical proper-
ties consistent with good drugs—and a larger set of receptors that are not “druggable.”
Thus, one can talk of the “druggable genome” (53), that subset of a genome that is likely
to produce ligands with druglike properties. What, then, is a druggable target? The aver-
age GPCR, with its small, hydrophobic, internal binding site and important physiolog-
ical role, is an archetypal druggable receptor (11). Tumor necrosis factor receptor would
not be judged such a target, despite its important physiological role, because it con-
tains no easily discernible drug-binding site (54). That is not to say that useful drugs,
such as therapeutic antibodies (55), cannot be designed to block its biological activity,
yet it remains not obviously druggable. Thus, druggable means proteins exhibiting a
hydrophobic binding site of defined proportions, leading to the development of drugs
with appropriate properties. As a term, it relates to the structure of the receptor yet also
has another component that relates to the provenance of a protein family as a source of
successful drug target. Or, put another way, how useful similar or related proteins have
been as drug targets. Estimates of the number of druggable receptors vary; whereas cur-
rent estimates of gene number are converging toward a value in the region of 40,000
(56), the number of “druggable” receptors may be in the region of 2000–4000 (57).
About 10% of these have been explored so far, leaving many, many receptors unexam-
ined. Beyond the human genome, other druggable receptors are now being examined.
Bacteria, fungi, viruses, and parasites all possess viable targets for drug intervention.
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As antibiotic resistance escalates, the search for new antimicrobial compounds, and
the number of druggable microbial receptors, will continue to expand.

2. A Primer on the Experimental Characterization of Binding Sites
The previous discussion has highlighted some important concepts that will, it is

hoped, illuminate this chapter’s discussion of the binding site, but what of binding
itself? Let us take a brief, quantitative look at the physical biochemistry of ligand bind-
ing to a biomolecular target. Consider a receptor–ligand (RL) complex formed from a
receptor (R) binding a ligand (L):

R + L ∩ RL

Such interactions frequently obey the law of mass action, which states that the rate
of reaction is proportional to the concentration of reactants. The rate of the forward reac-
tion is proportional to [L][R]. The rate of the reverse reaction is proportional to [RL]
since there is no other species involved in the dissociation. At equilibrium, the rate of
the forward reaction is equal to the rate of the reverse reactions, and, hence (using k1
and k−1 as the respective proportionality constants),

k1 [R] [L] = k−1 [RL]

Rearranging gives the equation:

in which KA is the equilibrium association constant and KD is the equilibrium dissoci-
ation constant, which also represents the concentration of ligand that occupies 50% of
the receptor population at equilibrium. The free energy of binding is related directly to
the equilibrium constant

∆Gbind = −RT ln(KD)

in which ∆Gbind is the Gibbs free energy of binding, R is the gas constant, and T is the
absolute temperature. The free energy (∆G) is related to enthalpy (∆H) and entropy (∆S)
via the well-known Gibbs-Helmhotz equation:

∆G = ∆H − T∆S

Assuming linearity, the enthalpy and entropy term can be obtained using the van’t
Hoff relation:

The potential usefulness of this is obvious: plotting ln(KD) vs 1/T should describe a
straight line with slope equal to (∆H/R) and y intercept of (∆S/R). van’t Hoff plots only
identify part of the binding enthalpy: that part directly related to the observed measure-
ment signal. This means that only for a direct transformation from a defined initial
state to a final state is the extracted enthalpy equivalent to ∆Hbind, as obtained by other
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methods, such as isothermal titration calorimetry (ITC). No intermediate states are
allowed nor should other steps be involved. ∆G typically has only moderate tempera-
ture dependence within biological systems; thus, a truly accurate and reliable estimate
of enthalpy and entropy is seldom possible using van’t Hoff plots.

Energy is that property of a system that invests it with the ability to do work or pro-
duce heat. Formally, enthalpy is defined by

H = U + PV

in which U is the total internal energy of a system, P is the pressure, and V is the vol-
ume. Under conditions of constant pressure, ∆H is the heat absorbed by a system from
its surroundings, and, for a molecular system, it is a function of both its kinetic and
potential energies. Entropy is often described as a measure of disorder within a molec-
ular system. Increasing entropy is better described as the partitioning of the energy of
a system into an increasing number of explicit microstates, which are themselves a func-
tion of the position and momentum of each constituent atom (58). It is often difficult
to decompose fully enthalpies and entropies into readily identifiable separate molecular
contributions. Favorable enthalpic contributions to the free energy can include comple-
mentary electrostatic contributions, such as salt bridges, hydrogen bonds, dipole–dipole
interactions, and interactions with metal ions; and van der Waals interactions between
ligand and receptor atoms. Entropic contributions can include global properties of the
system, such as the loss of three rotational and three vibrational degress of freedom on
binding, and local properties, such as conformational effects, including the loss of inter-
nal flexibility in both protein and ligand. Unfavorable entropic contributions from the
increased rigidity of backbone and side-chain residues on ligand binding within the
binding pocket are, in part, offset by favorable increases in conformational freedom at
nearby residues (59). Strictly, all protein–ligand binding also involves multiple interac-
tions with the solvent, typically a weakly ionic aqueous solution, and is a multicompo-
nent process, rather than a binary one such as dimerization. These solvent interactions
lead to solvation, desolvation, and hydrophobic effects, each with both an enthalpic
and an entropic component.

As affinity rises, the phenomenon of enthalpic cooperativity, or so-called enthalpy–
entropy compensation (60), becomes more important. Where multiple, weak noncova-
lent interactions hold a molecular complex together, the enthalpy of all of the individual
intermolecular bonding interactions is reduced by extensive intermolecular motion. As
additional interaction sites generate a complex that is more strongly bound, intermolec-
ular motion is dampened, with all individual interactions becoming more favorable.
The trade-off between intermolecular motion and enthalpic interactions accounts for
the way in which entropy and enthalpy compensate for each other.

2.1. Spectroscopic and Calorimetric Methods of Binding Analysis
Experimentally, the measurement of equilibrium dissociation constants has most

often been addressed using radioligand binding assays, although they are, in their turn,
beginning to give way to more sophisticated and convenient instrumental technology,
principally surface plasmon resonance (SPR) (61), but also a variety of other methods,
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such as ITC (62). Saturation analysis measures equilibrium binding at various radio-
ligand concentrations to determine receptor number (usually denoted Bmax) and affin-
ity (KD). Competitive binding experiments measure receptor-ligand binding at a single
concentration of labeled ligand in the presence of various concentrations of unlabeled
ligand. Competition experiments can be either homologous (in which the labeled and
unlabeled ligands are the same) or, more commonly, heterologous (in which labeled
and unlabeled ligands are different) inhibition assays.

IC50 values, as obtained from a competitive radioligand assay (63), are among the most
frequently reported affinity measures. The value given is the concentration required
for 50% inhibition of a labeled standard by the test ligand. Therefore, nominal binding
affinity is inversely proportional to the IC50 value. IC50 values may vary among experi-
ments, depending on the intrinsic affinity and concentration of the standard radiolabeled
reference compound, as well as the intrinsic affinity of the test molecule. The KD of
the test peptide can be obtained from the IC50 value using the relationship derived by
Cheng and Prusoff (64):

in which Ki
D is the dissociation constant for the inhibitor or test ligand, KS

D is the dis-
sociation constant for the radiolabeled standard, and [LS

tot] is the total concentration of
the radiolabel. This relation holds at the midpoint of the inhibition curve under two
principal constraints: the total amount of radiolabel is much greater than the concen-
tration of bound radiolabel, and the concentration of bound test compound is much less
than the IC50. This relation, although an approximation, holds well under many assay
conditions.

Although radioligand assays are well known, there are innumerable alternative meth-
odologies, able to offer both increased operator convenience and experimental tracta-
bility. In the case of enzyme reactions, the influence on enzyme kinetics is followed
by means of a readily detectable physical property (e.g., absorption, fluorescence, or
fluorescence polarization of one of the reaction partners). There are, however, also
methods that can deliver fuller insights into the underlying thermodynamics, kinetics,
and contributions made by different molecular components. The two key players here
are SPR (61) and ITC (62).

SPR is an important and increasingly widely used technique (65). It is able to mea-
sure biomolecular interactions in real time in a label-free environment (66). An inter-
actant is immobilized to the sensor surface while the other interactant is free in solution
and passed over the surface, allowing SPR to detect the binding of a ligand to a protein,
which is anchored to a solid support, or of a protein to a ligand, which is attached to
the support by a linker group. The technique allows all types of molecular interaction
to be measured, including protein–protein, DNA–protein, and lipid–protein. Moreover,
“on” and “off” rates can be accessed using this method. Other methods, such as densi-
metric and ultrasonic velocimetric titration measurements (67), are also important, giv-
ing insights into specific molecular events, such as hydration changes.

Ki
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Steady-state fluorescence spectroscopy (68) is also widely used in the study of bio-
molecular interactions and kinetics and relies on measuring fluorescence change at a
given wavelength. Time-resolved fluorescence spectroscopy measures the time depen-
dence of fluorescence intensity after excitation and is far more sensitive to alterations
in conformational changes or interactions made by fluorescent residues—tryptophan,
tyrosine, and phenylalanine—than steady-state intensity measurements. Using polar-
ized light allows time-resolved fluorescence anisotropy measurements, which can pro-
vide useful information about local residue freedom as well as global protein motion.
Mass spectrometry also offers some interesting insights into the nature of binding affin-
ity by investigating the dissociation of a protein–ligand complex as a function of, say,
acceleration voltage (69). Atomic force microscopy can determine the strength of inter-
molecular interactions by a controlled mechanical rupture of a particular protein–ligand
complex (70). Every relevant spectroscopic technique provides, to a greater or lesser
degree, valuable information complementary to that of other methods. It is only through
a full and complete combination of several such techniques that the intricate puzzle of
protein–ligand interaction can be carefully reconstructed.

However, if one seeks a single methodology for obtaining relevant thermodynamic
properties of binding reactions, the current leader is undoubtedly ITC, which is rapidly
becoming the method of choice for such studies (62,71–73). The main reason for this
is that ITC simultaneously generates global values for two parameters: the equilibrium
constant and, thus, the free energy of binding (∆G), which it computes from the shape
of the titration curve. However, ITC also measures enthalpy (∆H), which it derives from
the integrated heat of reaction; entropy (∆S), which is related to the difference in ∆G
and ∆H; and also the heat capacity (∆Cp) of the system. In ITC, a ligand is added step-
wise at constant temperature to a solution of receptor and the overall heat of the reaction
is recorded. ITC is an example of a variety of microcalorimetry methods, of which dif-
ferential scanning calorimetry (DSC) is another well-known example. What sets ITC
apart is its ability to measure both affinity and its thermodynamic contributions directly
from heat changes during the binding process. Because such changes are observed dur-
ing most binding reactions, ITC is broadly applicable, with applications ranging from
chemical and biochemical binding to enzyme kinetics. ITC is both rapid and sensitive,
but above all it is a direct method without the need for chemical modification or immo-
bilization. It is the only technique that measures enthalpy directly, eliminating the require-
ment for van’t Hoff analysis, which is often time-consuming and prone to error. However,
interpretation of derived parameters remains a pivotal challenge. Moreover, reliable
analysis of the titration curve requires dissociation constants more than 10−9 M. To mea-
sure more affine compounds, the detection range must be extended by displacing lower-
affinity ligands.

For most biological systems, multiple ITC measurements conducted over a range of
temperatures exhibit a pronounced temperature dependence for both ∆H and T∆S. How-
ever, ∆Cp is essentially temperature independent in the range associated with biological
reactions and is generally negative for protein–ligand complexes. Thus, the complex has
a lower heat capacity than the sum of free ligand and protein. As temperature increases,
ligand binding becomes both more exothermic and less entropically favorable.
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As already stated, ITC is well suited to the analysis of association between biomole-
cules, but it is complemented by DSC (74), which can provide a more comprehensive
description of the associated thermodynamics, enabling a better decomposition of dif-
ferent components of the enthalpy and entropy, such as those composed of contribu-
tions from the binding reaction proper, from conformational changes of the component
molecules during association, from changes in molecule/solvent interactions, and also
in the state of protonation. DSC also provides more information on heat capacity changes
and can give important insights into the conformational changes seen in biological
systems. In DSC, the system is heated at a uniform rate under nearly adiabatic condi-
tions and the resulting temperature change is recorded. Any deviation from constant
heat absorption usually demonstrates that intramolecular packing has altered or indi-
cates conformational rearrangements or structural fluctuations.

3. Sequence-Based Approaches to Prediction of Binding Sites
Evolution underlies modern-day biology in much the same way that God underpinned

medieval theology: it is now a concept that is accepted so universally that its veracity
is seldom, if ever, questioned, and what is true of biology is equally true of bioinforma-
tics. Evolution is fundamental to conceptual interpretations of macromolecular sequence
data and their place within the hierarchy of biological explanation. Increasingly, how-
ever, methods that are at least nominally based on evolutionary arguments are also
proving to be useful practically, rather than simply providing intellectually satisfying
retrodictive rationales. Thus, much of bioinformatics reduces to questions of detecting
the evolutionary conservation of functionally important sequence patterns: patterns that
determine and maintain the stability of a protein’s tertiary structure, patterns of inter-
acting residues that determine and constrain protein folding, or the identification of
important residues in a binding site.

Geometrical constraints or constraints imposed by fundamental limitations of chem-
ical reactivity may greatly restrict the way in which enzymes are able to undertake the
elementary steps of a particular reaction, requiring a strictly defined spatial arrange-
ment of the chemically unique reaction partners. This means that determinants of molec-
ular recognition must be highly conserved in their relative orientation. This can occur
through either convergent or divergent evolutionary processes (75). In divergent evo-
lution, an ancestral binding or catalytic site remains broadly fixed, while in the popula-
tion of descendent sequence, surrounding regions experience sequence drift or functional
specialization, which may or may not affect specificity. In convergent evolution, origi-
nally distinct sequences, without readily discernible homology, alter in time, ultimately
attaining a similar structure but via alternative routes and against an otherwise unrelated
sequence backdrop (see Fig. 3).

When patterns responsible for molecular recognition are conserved between the bind-
ing sites of proteins that are related in some way to each other, it is often possible to
localize binding sites by searching for similarities either in the primary sequence or in
their tertiary structure. This, of course, presupposes that one has knowledge of bind-
ing site localization. This may be obtained from analysis of mutants, either derived
intentionally by mutagenesis experiments or from natural mutants or sequence variants
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or from chemical labeling or some related experimental technique. In this way, it may
be possible to “inherit” a binding site from one sequence to another or from one struc-
ture to another. This is by far the most popular approach to binding site prediction. This
process is performed either at the level of sequence homology or by establishing struc-
tural similarities, such as searching for geometrically constrained constellations of cata-
lytic residues, requiring a sequence and/or a structural search to be preformed. Such
searches are often implicit in sequence searches or the formation of multiple sequence
alignments (MSAs), assuming, of course, that equivalent, or at least similar, residues
can be found at the correct alignment positions. However, more explicit methods are
beginning to emerge (76,77).

Traditionally, bioinformatics assigns functional data by searching for relatives in
sequence databases (78). Analysis, in any depth, of sequence searching is clearly well
beyond the scope of the current work. Nonetheless, operationally speaking at least, it
is fair to say that the MSA, the ultimate product of sequence searching, lies at the heart
of bioinformatics. The MSA is something that is at once practically useful and intellec-
tually powerful; it is conceptually unifying, and with it, one can achieve so much (see
Fig. 4).

When attempts are made to identify binding sites, one may search for either clearly
conserved individual sequence motifs, such as the sequence motifs that characterize
dehydrogenase sites (79), or sets of essentially isolated residues, such as the HIS-ASP-
SER catalytic triad of protease and so on (80). The first type of motif can be searched for
directly, whereas the second type of motif requires subsidiary data in order to identify
them properly. Proteins of related function often share a comparable binding site, and,
thus, the binding site of a new sequence or structure may be detected by comparison

Fig. 3. Convergent vs divergent evolution. Two binding sites undergo gene duplication and
then subsequent divergent evolution. Under different evolutionary pressures, two protein off-
spring converge on a common structure, while other duplicants face substantially different pres-
sures and arrive at distinctly different structures. Of course, such a simplified view of evolution,
although usefully illustrative, is highly simplistic. Evolutionary pressures are felt by the whole
organism, not by individual proteins. Moreover, proteins must balance functional constraints,
driving evolutionary change, with issues of stability, genetic drift, and the metabolic constraints
imposed by the organism in synthesizing them. Many of these conflicting constraints are resolved
by the innate functional degeneracy, at the level of metabolism, signaling, and so on, of the com-
plex organism.
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with other proteins of the same function. The first step in identifying a binding site by
homology is to identify the protein family to which a sequence belongs. The definition
of a protein family, the principal step in the annotation of macromolecular sequence
data, proceeds via an iterative process of similarity searching in sequence, structure, and
motif databases to generate a sequence corpus, which represents the whole sequence set
comprising the family (48). Motif databases, of which there are many, contain distilled
descriptions of protein families that can be used to classify other sequences in an auto-
mated fashion. There are several ways to characterize motifs: through human inspection
of sequence patterns, by using software to extract motifs from a multiple alignment, or
by using a program such as MEME to generate motifs directly from a set of unaligned
sequences (81). A motif or, more likely, a set of motifs defining the family can then be
deposited in one of the many motif databases, such as PRINTS (82), or secondary, or
derived, motif databases, such as INTERPRO (83).

With either convergent or highly divergent evolution, important structural and func-
tional relationships are only detectable from 3D structure, which is typically more con-
served than sequence similarity (84). Because function and binding typically exhibit
an intimate linkage, elucidating functionality and the identification of binding pockets
are often highly interrelated tasks. Various algorithms are available for comparing pro-
tein structures in 3D to recognize structurally related proteins (32). Such programs are
efficient enough to perform rapid searches of entire structural databases such as the

Fig. 4. Multiple Sequence Alignments allow one to predict 3D structure, either through
homology modeling or via de novo prediction of secondary structure; to undertake phylogene-
tic analysis; to identify functionally important residues; and to identify important motifs and,
thus, develop discriminators for the membership of protein families.
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Protein Data Bank (PDB). The results of mutual comparisons for all known protein
structures are themselves stored in databases that provide classifications of protein struc-
tures, in part with functional annotations. Likewise, a comparison of pockets on the sur-
face of different proteins may allow one to detect functional relationships. Accordingly,
comparisons based on similarity with well-characterized proteins of known structure
and function can provide an additional route to the identification of binding sites. It is,
therefore, often advisable to go beyond the comparison of protein folds or global struc-
tural motifs in order to look at local structural motifs, such as catalytic triads, which are
able to capture the essence of the biochemical function (85–87).

Thus, there are three main ways in which to obtain information about a binding site
when confronted by a newly determined sequence or structure. First, as already described,
the principal method of identifying the location of a binding site is by “inheriting” its
experimentally defined location in one structure or sequence to another structure of
sequence, modifying it as necessary. Secondly, one can use an artificial intelligence
technique to “predict” the location of a binding site (88). Third, one can use phylogene-
tic techniques to “infer” the location of function-critical residues (89).

Recently, there has been a move to adapt artificial intelligence techniques, such
as artificial neural networks (ANNs) or hidden Markov models, each a mainstay of
bioinformatic prediction methodology in other disciplines, to the search for binding
sites. The potential usefulness of this is becoming particularly important as genomics
efforts, both sequence and structural, begin to generate large numbers of unannotated
protein sequences and X-ray structures. Gutteridge et al. (88) trained an ANN to use
both sequence and structural data to identify catalytic residues in enzymes. The ANN
output and spatial clustering of highly scored residues then predicts the binding site
location. In a test set, more than 69% of sites were predicted accurately, and another
25% were partially correct, with failures mainly owing to poor automatic sequence
alignments. Gadiraju et al. (90) developed software that searches genomic sequences
with information theory-based weight matrices in order to identify binding sites. Scans
of human genome assemblies required 4–6 h for transcription factor-binding sites and
10–19 h for splice sites. Some of the sites identified were transcription factor-binding
sites, including PXR/RXRα, AHR, and nuclear factor-κB p50/p65, and RNA-binding
sites, including splice donor, acceptor, and SC35 recognition sites. Chou and Cai (91)
made use of a covariant discriminant algorithm to identify enzyme-active sites, using
the serine hydrolase family as an example. They report cross-validated accuracies of
99% for 88 enzymes and likewise for an independent test set of 50. Keil et al. (92) used
an ANN to predict binding site locations based on the physical and chemical properties
of overlapping molecular surface patches. Their ANN was able to categorize patches
as nonbinding, protein–ligand, protein–protein, or protein–DNA.

In the absence of experimental evidence for the location of a binding site, an ap-
proach alternative to either a search-based inheritance of binding site locations or an
artificial intelligence prediction is the use of evolutionary or phylogenetic methods to
identify function-critical residues. In this way, a set of residues is predicted to be key to
the correct function of the protein, presumably by participating in protein–ligand inter-
actions within the binding site. A multiple alignment is required, within which strictly
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conserved residues can be regarded as functional; however, conservation patterns are
often more complicated, necessitating the development of a tranche of sophisticated
techniques. The first such algorithm was developed by Casari et al. (89), who used a
simple yet powerful representation of both whole sequences and individual residues as
vectors in a general sequence space. Projections into a lower-dimensional space revealed
residue groups specific for individual subfamilies that were likely to be involved directly
in function. Lichtarge et al. (93) developed an evolutionary trace methodology and applied
it to Src homology (SH) 2 and SH3 domains, for which many relatively short sequences
are available. The method extracts functionally important residues from sequence con-
servation patterns in homologous proteins and maps them onto a protein surface to iden-
tify functional interfaces. Crowder et al. (94) subjected 330 aligned sequences of RNA-
binding domains to covariance analysis, which revealed a single network of covariant
amino acid pairs comprising the buried core of the protein and an important surface
patch. Mirny and Gelfand (95) used the concept of orthologs and paralogs to identify
residues determining specificity for protein–DNA and protein–ligand recognition. Li
et al. (96) extended this approach and used it to predict the specificity-determining resi-
dues that enable different protein kinases to recognize their substrates. Finally, Bradford
and Westhead (97) analyzed how conservation patterns at an interface differ from the
noninterface surface in seven pairs of proteases and inhibitors. For the proteases, an
interface could be distinguished from the noninterface region by its degree of conserva-
tion. However, the distinction between the interface and noninterface was not clear for
the inhibitors. Indeed, in five cases, the interface was more variable than the rest of the
molecule. This may cause problems for binding site prediction, which assumes that the
biggest cluster of conserved surface residues corresponds to an interface.

4. Structural Approaches
Protein function is often synonymous with processes of ligand recognition, which

usually occur in defined binding sites on the protein surface. Analysis of binding sites
in structural terms seeks to identify similarity of function that is broadly independent of
any homology apparent at the levels of sequence and fold and extends beyond the search
for conserved structural and/or sequence motifs. Although a full examination of the
many and varied approaches to either the experimental or theoretical determination of
binding sites is beyond the scope of this chapter, it is both informative and useful to
adumbrate certain salient points in this regard. Let us briefly examine three principal
approaches: experimental methods, focusing on X-ray crystallography; so-called homol-
ogy, or knowledge-based, modeling; and constraint-based de novo modeling.

X-ray crystallography has been around for a long time now. Although technical inno-
vations are constantly accelerating the process of producing fully refined crystal struc-
tures, crystallography has had a reputation for being inherently slow. This has discour-
aged many from using this technology. However, in a decade or two I am confident that
this situation will have changed out of all recognition with time, money, and talent pour-
ing into the newly emergent discipline of structural genomics. This clearly reflects the
general recognition of how important protein structures are within biomedical research
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(98). The genome sequences from a tranche of prokaryotic and eukaryotic organisms
are now available, including, most excitingly, the human genome. There are well in
excess of 150 completed genome sequences, with more appearing with frightening regu-
larity (99). This is clearly a huge quantity of information—a mountain, indeed a veri-
table Everest, to dwarf the informational molehills of preceding decades. With access
to the sequences of hundreds of complete genomes, the principal objective of struc-
tural genomics is to generate a comprehensive overview of the universe of protein folds.
Currently, more than 3000 distinct, solved protein structures are available in the public
domain (100). Within the next 5–10 yr, structural genomics, in the guise of high-through-
put multidimensional nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography, is expected to produce something on the order of 104 experimentally
determined protein structures, so one or more example experimental structures will be
available for every protein sequence family. Protein homology modeling could then
produce structural models for almost all proteins observed in nature. Whatever the real
success of such endeavors proves to be, they will greatly increase the total amount of
protein structural information available (101).

Any reasonable division of a genome into structurally distinct protein families will
necessitate many hundred protein structure determinations. Structural genomics will
require new ways to automate experimental structure determination. X-ray crystallog-
raphy has traditionally progressed through several stages, from the very biochemical
to the abstractly mathematical (102). Having identified a protein of interest, one needs
to produce sufficient pure protein to perform the search for appropriate crystallization
conditions. Once one has crystals of the protein, one needs to collect X-ray diffraction
data from these crystals and the “solve” structure. This involves solving the phase prob-
lem: recovering the electron density within the unique part of the lattice by combining
the intensities of diffracted X-rays with the phase, the other component of the Fourier
transform that links real molecular electron density and the experimentally determined
diffraction pattern. The final stage requires building and refining a protein model within
the electron density and ultimately refining this crude model to optimize its ability to
re-create the diffraction pattern. The production of protein is probably the most generic
aspect of structural genomics, although few people want quite such pure protein in such
large amounts. The development of many different high-throughput protein produc-
tion systems is currently under way in both academic and commercial organizations.
These include in vitro, or cell-free, systems as well as examples based on well-under-
stood microbial systems, such as Escherichia coli (103). Selenium incorporation allows
the phasing of the protein diffraction pattern using multiwavelength anomalous dif-
fraction, the so-called MAD technique, which offers a general approach for the elucida-
tion of atomic structures (104).

Once one has sufficient protein, the next stage in crystallography is obtaining crys-
tals. This is one of the two main problems remaining in X-ray crystallography. Although
the phase problem is slowly yielding to various different forms of attack, crystallization
remains very much a black art. The process of growing protein crystals is still poorly
understood and still requires a trial-and-error process to determine the relatively few
idiosyncratic conditions of pH, ionic strength, and precipitant and buffer concentrations
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necessary for the growth of diffraction-quality crystals. However, even this recalcitrant
discipline is yielding to the power of robotics and informatics (105). Robust multi-
variate statistics have been used to relate variations in experimental conditions, within
experimentally designed crystallization trials, to their results (106). Although these math-
ematical models cannot explain crystallization mechanisms, they do provide a power-
ful pragmatic tool allowing the setting up of crystallization trials in a more rational and
more confident manner.

Until recently, crystal mounting has seemed to be the aspect of crystallography least
suitable for automation. The process of mounting a protein crystal such that it can sit
comfortably in an X-ray beam is a highly interactive process requiring a prodigious
feat of manual manipulation, personal dexterity, and physical adroitness. Although one
may learn the techniques involved, it is by no means easy. However, the system devel-
oped by Muchmore et al. (107) addresses most of these issues through a combination
of cryogenic temperatures, intelligent software, and a high degree of robotic control.
Although the systems that they describe have a rather Heath Robinson appearance, they
are no worse than the setups used in other high-throughput regimes within the drug
industry.

The diffraction pattern is obtained by allowing a focused beam of X-rays to pass
through a crystal. Each spot on the diffraction pattern represents an intensity and has
associated with it another quantity, the phase, that when combined with it through a
Fourier transform yields an electron density map. Unlike small-molecule crystals, in
which phases can be determined directly from relationships between intensities, pro-
teins require more approximate solutions. However, in the context of structural geno-
mics, most are undesirable. Molecular replacement requires an existing 3D model of a
homologous protein, whereas multiple isomorphous replacement requires a trial-and-
error search for heavy atom derivatives. MAD phasing, as mentioned, is a much better
alternative. Another approach is the development of so-called direct methods. Miao et
al. (108) developed an interesting approach. They propose the use of ultrashort, intense
X-ray pulses to record diffraction data in combination with direct phase retrieval. Their
approach relies on the production of femtosecond X-ray pulses generated by free elec-
tron X-ray lasers with a brilliance 108 times that of current synchrotons. They combine
these with clever manipulation of the diffraction data for single specimens to produce
an accurate, phased, and interpretable electron density map. As we have seen, many of
the advances in the biochemical and biophysical stages of the crystallographic process
—protein production and crystallization—will be greatly enhanced by automation. Other
technical advances will solve or side step many of the inherently intractable problems of
crystallography, such as the phase problem.

Thus far, I have discussed soluble, globular proteins, but what of membrane pro-
teins? Because they exist within a complex environment containing both a lipid and an
aqueous phase, such proteins present distinctly different problems for automation and
high-throughput crystallography. Integral membrane proteins are generally large and
often form multimeric complexes. Together with the practical problems associated with
preparing samples containing biological membranes, it has not proved possible to study
them successfully using multidimensional NMR. Consequently, most structural infor-
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mation has come from crystallographic techniques: X-ray crystallography for those cases
in which it has proved possible to produce true 3D crystals—for example, the photo-
synthetic reaction center (109) or porin (110)—and electron crystallography, which
combines image analysis from electron microscopy with electron diffraction data to
study two-dimensional (2D) crystalline arrays. This technique was used to solve the
structure of bacteriorhodopsin at 3.5 Å (111).

The greatest obstacles to the successful determination of membrane protein struc-
tures remain technical: problems with the overexpression, purification, and concentra-
tion of membrane proteins (112) and with the preparation of 3D crystals for X-ray studies
or 2D electron crystallography (113). For the time being, both remain daunting chal-
lenges, although continuing innovation (114,115) does offer hope for the future. Much
work still needs to be done to overcome the immense technical difficulties inherent in
the crystallographic study of membrane protein, but work is beginning.

For example, the semiacademic MePNeT initiative (www.mepnet.org/), which is sup-
ported commercially by more than 30 pharmaceutical, biotech, and startup companies
(including AstraZeneca, Boehringer Ingelheim, Glaxosmithkline, and Novo Nordisk),
has selected the best validated and most advanced methods to express 100 GPCRs in
three systems: E. coli, Pichia pastoris, and Semliki Forest Virus-infected cells. It is per-
haps worth drawing a parallel with X-ray crystallography: 20 yr ago solving the struc-
ture of a soluble protein was a rare and major event, the number of skilled macromolec-
ular crystallographers was limited, and the number of properly equipped laboratories
was small. Today, several X-ray crystal structures are solved every day in one of hun-
dreds of laboratories around the world staffed by a large community of trained crystal-
lographers. Notwithstanding the capricious nature of protein crystallization, structure
solution has become almost commonplace. As technical problems are solved and the
necessary skills become more widespread, the crystallographic study of membrane pro-
teins will become similarly routine.

The main alternative method to the experimental structural approaches of X-ray crys-
tallography and multidimensional NMR is protein homology modeling. It is now more
than 35 yr since the first published example of this much misunderstood discipline:
the modeling of the unknown structure of one protein based on the known structure of
another protein with a closely related sequence. Browne et al. (116) modeled the struc-
ture of lactalbumin on the known structure of lysozyme. In the intervening years, as
the number of known sequences and structures has increased exponentially, albeit at
different rates, homology modeling has increased dramatically in popularity.

Methods such as COMPOSER (117), and especially MODELER (118), have largely
automated the more routine aspects of homology modeling, freeing the seasoned prac-
titioner to concentrate on the science involved and not waste his or her time on tedious
and frustrating technicalities. However, other attempts at automation, particularly Web
servers, such as SWISS-MODEL (119), have created the impression that the whole pro-
cess can be completely automated without the need for human intellectual input of any
kind. Unfortunately, this is regrettably utterly untrue. Despite the belief that it is other-
wise, homology modeling, at least when undertaken by experts, is as rigorous and dif-
ficult an undertaking as any other aspect of science. Yet, like so many computational

www.mepnet.org/


312 Flower

methods, it is easy for the naïve user to generate models of pleasing veris-imilitude but
little rigorous value. Although it may sometimes still be useful to generate such models,
and it is always the case that a model need only answer the question that is asked, even
an approximate model generated for the purpose of visualization and illustration should
really be generated properly using robust methodology.

Complementary to the discipline of homology modeling, is the area of de novo
modeling, perhaps best typified by the modeling of GPCRs. Rather than base a model
on a known structure or structures, such methods use fundamental structural princi-
ples, such as the conformation of secondary structure elements (120,121), together with
a variety of physical, chemical, and biological data, such as chemical labeling and infor-
mation from mutagenesis experiments, to build a structural model constrained by these
data. Models of GPCRs have, for example, been constructed by taking the sequences
of the seven most hydrophobic sections of their sequences, which correspond to the
transmembrane regions of the receptor, and building them as ideal α-helices. This set
of amphipathic helices is then docked together, using the structure of bacteriorhodop-
sin as a scaffold, so that their hydrophobic faces are orientated into the membrane phase
and their hydrophilic faces—and functionally important residues—point into the lumen
of the protein. Bundle (122) and Panda (123) are programs devised to facilitate the auto-
mated or unsupervised construction of 3D models based on different kinds of experi-
mental constraints.

As the volume of available information about GPCRs, deriving from innumerable
experimental structure-function studies, has grown to include site-directed mutagene-
sis, chemical labeling, crosslinking studies, fluorescence quenching, and a wealth of
structure-activity data on congeneric series of ligands, to name but a few, there has
been a shift in emphasis away from the ad hoc modeling of early days to more rigorous
approaches based on the integration of many data sources and the satisfaction of con-
straints, used singly or in clever combinations, imposed directly and indirectly by the
data. The most widely used data come from site-directed mutagenesis of individual
receptors. Such information can be used, on the one hand, to validate a receptor model
and, on the other, to refine and improve it.

4.1. Binding Sites: Experimental and Theoretical Determination
As discussed, there are several approaches to identifying or predicting the location of

a binding site. One can search sequences for motifs or search structures for geometrically
defined patterns of residue, or one can use artificial intelligence techniques to predict de
novo putative active sites, or use evolutionary and related techniques to locate residues
critical to function. In this way, one can inherit or infer the position of a binding site. The
certainty, or rather lack of certainty, with which one can copy sites from one molecule to
another is currently a limiting factor in the large-scale use of structural genomics, and the
techniques of homology modeling implicit within it, in the identification of key biologi-
cal targets.

Having thus determined a binding site, confidently or not, one can then ask several
pertinent questions: How does one go on to characterize a binding site? Does the cur-
rent model represent the optimum structure? If not, how can it be optimized? Should
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one look at a static representation of the site or should one look at a dynamic represen-
tation? Certain of these aspects are discussed in much greater detail subsequently, but
first a brief diversion is necessary. This diversion is not a detour; however, it tracks through
a variety of important issues. Some of these other issues are perhaps more fundamental

Fig. 5. Nominal resolution of protein models. Low-resolution models are inherently fuzzy and
imprecise. As one gains more and more relevant information, the model becomes more accurate
and its resolution improves. Very low-resolution models correspond to predictions of a protein’s
secondary structure. Models produced by threading, although possessing a greater degree of
tertiary verisimilitude, can be little better. Likewise, the de novo modeling of membrane pro-
teins, based, in the main, on topological constraints imposed by the two-dimensional geometry
of the membrane phase and some understanding of interacting residues, can be equally impre-
cise. The highest resolution comes from models derived by X-ray. However, the prevalent view
assumes that experimental structures are not models but reality. Both X-ray and nuclear mag-
netic resonance attempt to model sets of constraints, such as the difference between observed
and calculated structure factors, and are prone to all manner of random and systematic errors.
Intermediate between these extremes is the area of comparative protein modeling. This improve-
ment in model quality gives rise to a corresponding improvement in its predictivity. The level of
detail one draws from one’s analysis should match the level of detail, the resolution, or the fuz-
ziness of the model—general and qualitative at early stages, highly specific and quantitative later
on. Using appropriate information in the appropriate way and at the appropriate time allows
one to get the most from one’s model. Overinterpretation at an early stage can be misleading; at
every stage, it is experimental validation that drives the process of model refinement.
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than others, at least in the sense that they are limiting; if they are not addressed properly,
then it is unlikely that other analytical or simulation methods will be able to compen-
sate effectively for their deficiencies.

An homology model typically represents one of a number—and this may be poten-
tially a large number—of alternative structures. The process of building a homology
model, irrespective of the precise technique employed, involves the identification of
one, and usually many more than one, related structures, which are then superposed in
three dimensions (124), so that as many as possible of the structures are aligned (125).
This effectively partitions the structural alignment into structurally conserved regions
with a low root-mean-squared deviation (RMSD) and variable regions—typically, but
not exclusively, loop regions outside elements of secondary structure—of different
length and conformation that cannot be appropriately superimposed. Structurally con-
served regions usually correspond to conserved sequence patterns or motifs, and varia-
ble regions to those parts of the sequence that show the greatest dissimilarity within an
MSA. An homology model will, more or less exclusively, share a common fold with a
conserved common core of secondary structure elements but otherwise may have radi-
cally different loop conformations and loop sizes. A model may show only a small
number of conserved residues, which will often be fixed in their conformation. The rest
of the model may contain a large set of residues for which a defined rotameric state can-
not be inherited from an existing structure or structures. It has long been known that
the positions of the set of Cα carbons, which is often referred to as the Cα trace, is suf-
ficient to define the position of the whole protein backbone and Cβ carbons (126–139).
However, the difficulty inherent in correctly positioning the rotamers of each amino
acid side chain is of a wholly different order, leading to the development of a large
number of different methods that address this issue (140–169).

The veracity of such prediction methods is usually benchmarked against crystal
structure data. However, as any thinking crystallographer will tell you, X-ray crystal-
lography produces structures that, despite a feeling of overwhelming verisimilitude,
are still only models. Although it is common for what Professor Sir Tom Blundell is
wont to call “lookers” (theoretical analysts of crystal structures) to assume, subconsci-
ously if not consciously, that a crystal structure lodged in the PDB is a fixed and immuta-
ble thing possessed of transcendent inerrancy, this is unfortunately far from the truth.
DePristo, one of crystallography’s young turks, incidentally working as an acolyte
within Blundell’s group, has shown—conclusively in my view—that even high-reso-
lution crystal structures can be modeled to equal accuracy by an ensemble of similar
but distinct structural models, exhibiting a spectrum of different side-chain conforma-
tions and a set of distinct backbone conformations (170–173).

Clearly, the need to identify the correct rotameric state is crucial to the accurate
description of a binding site and its potential interaction with a ligand, be that a small
molecule or a large protein. The exact geometry of side-chain interaction may be crucial
to ligand binding or to the stereospecificity of a reaction. Getting this step wrong may
lead one to identify the wrong ligand in a virtual screening experiment or to produce in-
correct and inaccurate simulations using molecular dynamics (MD). Highly accessible
residues are likely to suffer little constraint and are equally likely to be flexible, perhaps
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adopting a range of conformations. Many prediction methods will return a ranked list
of side-chain conformations and/or alternative sets of residues that represent different
solutions to the combinatorial problem of side-chain placement. Because the number of
solutions that possess equal or nearly equal likelihood is often large, it is often necessary
to cluster these solutions and, thus, select exemplar conformations. Although it may
be possible to reduce the total number of alternatives to such representative ensembles
(174–179) and, thus, allow the task of using such data to become tractable, no current
method is able to perform this identification with satisfactory accuracy. As described
subsequently, this problem is compounded by the fact that the conformation of the bind-
ing site, including, but not limited to, the rotameric state adopted by its side chains, may
be significantly affected, and in an unpredictable manner, by the presence of a ligand.

Assuming, for the moment at least, that it has proved possible both to recognize the
location or a binding site, in terms of its constituent amino acids, and to identify one or
a few rotameric states for each side chain within the binding site—equating to a limited
ensemble of receptor models—then it should also now become possible to examine,
and further optimize, the structure of the binding site in terms of its underlying physi-
cal and, thus, biological properties, such as hydrogen bonding and ionization state.

Except at very high resolution, protein crystallography does not routinely produce
electron density maps of sufficient quality to position accurately hydrogen atoms. More-
over, the scattering of X-rays by carbon, oxygen, and nitrogen atoms is essentially the
same at the resolutions and data quality typical of modern macromolecular crystallog-
raphy and, therefore, it is difficult to distinguish correctly among such atoms. This means
that it is difficult to orientate the side chains of Asn, Gln, and His properly. Indeed,
they appear symmetrical in the electron density and their rotameric state is often judged
solely on the basis of hydrogen-bonding patterns. In very well-resolved protein struc-
tures and those structures for which neutron diffraction data are available, it has been
observed that almost all buried hydrogen bond donors and acceptors are satisfied. On
this basis, several researchers, seeking to identify the most favorable set of residue
conformations in terms of the fulfillment of potential hydrogen bonding, have tried to
develop automated methods able to compare symmetry-related alternate rotameric states
within the binding site and place polar hydrogens optimally. This is particularly impor-
tant for any subsequent analysis of ligand–protein interaction.

The assignment of hydrogen bonds to a particular residue is most secure when sur-
rounding groups include either obligate hydrogen-bond donors (such as a peptide NH
group) or obligate acceptors (such as a carboxyl group). In most cases, however, the local
environment contains only ambiguous donors or acceptors, such as hydroxyl, histidine,
and nonpeptide amide groups, or water molecules. Histidine residues have a particular
assignment problem: a flip of the side-chain ring exchanges carbon and nitrogen at the
ortho- and metapositions, leading to a choice between a polar or charged NH and a car-
bon that does form a hydrogen bond. Nonetheless, the orientation of the ring can also
be ambiguous. This requires an analysis of the whole local network of hydrogen bonds.
Moreover, there may be several equally favorable solutions to the hydrogen placement
process, requiring extra ad hoc requirements, such as hydrogen bond energies, to dis-
tinguish them.
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A number of automated algorithms have been devised to address the issue of hydrogen
placement and ring flips. For example, Network (180) analyzes protein hydrogen-bond
networks, dividing potential interacting donors and acceptors pairs into groups, but does
not allow for amide or histidine flips. A search is performed on each such group to find
the arrangement with the greatest number of hydrogen bonds. The polar hydrogens of
histidine are treated specifically, and the polar hydrogens of serine, threonine, tyrosine,
and lysine, and the amino terminus are also considered. Protonation states are also allowed
to change if this results in the fulfillment of additional hydrogen bonds. HBPLUS (181)
swaps the symmetry-related states of histidine, glutamine, and asparagine residues, so
that the number of unsatisfied buried H-bonding groups is minimized. Although the pro-
gram fails to account for pairs or larger interacting groups, it classifies all alternative
orientations into a small set of categories ranging from highly favored to highly suspect.

A hydrogen placement procedure, which acts by optimizing the total hydrogen bond
energy of the network and deals with ring flips; hydrogen addition; and the prediction
of the ionization states of His, Asp, and Glu residues, has been implemented in the mul-
tifunctional graphics and modeling system WhatIf (182). Where appropriate, the method
also accounts for crystal symmetry. WhatIf also assigns hydrogen positions for all high-
occupancy water molecules, takes account of hydrogen bonds between subunits related
by crystal symmetry, and is biased against flips in marginal cases. Although the pro-
gram performs a thorough analysis of hydrogen-bond networks, reaching a decision for
every ambiguous polar group, its results are not easily evaluated because no estimates
of confidence are given. Moreover, the inclusion of hydrogens on water molecules,
which is required for accurate amide assignment, makes the problem explode combina-
torially, requiring an approximate solution using simulated annealing rather than a closed
form solution or one obtained by an exhaustive search of all possibilities.

The confident placement of water molecules is seldom a reliable feature of crystal
structures. Structural or bound waters are those solvent molecules that are resolved by
crystallography, are not readily exchanged with waters from the bulk solvent phase,
have a long measurable lifetime, and are typically conserved between similar struc-
tures. They can be distinguished from displaceable water molecules, which are often
artifacts of the crystallography model building; the R-factor, the fit between calculated
and observed X-ray intensities, can usually be improved by the liberal addition of water
molecules. Structural waters are also an important part of a binding site and can partic-
ipate in optimizable hydrogen-bonded networks. WaterScore is a recent program devel-
oped to identify such waters from the comparison of protein structures (183), but there
are many others (184–188). Various assumptions can be used to identify structural waters,
such as their conservation between different structures and the observation that they are
not easily displaced during MD simulations. The confident identification of bound water
molecules has led to the development of programs (189–195) that seek to solvate pro-
tein surfaces, including binding sites, using a knowledge-based approach. Such informed
solvation can be useful in attempts to accelerate solvent equilibration in MD simulations.

Most recently, Word et al. (196) have investigated this issue using contact dot meth-
odology (197) and produced the program reduce. The method is able to optimize the
hydrogen-bonding networks and assign glutamine, asparagine, and histidine flips. The
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use of programs such as reduce or WhatIf, would, in principal, improve assignments
for the majority of structures. Indeed, when treated in this way, the quality of the vast
majority of tested protein structures can be improved, and the degree of improvement
is inversely proportional to resolution. Together with the results of DePristo and col-
leagues, this suggests that the systematic, and perhaps automatic, reevaluation of most
protein structures within the PDB is an achievable objective, something that might yet
rank alongside the development of automated structure verification software (198–
200) as a positive and synergistic benefit of structural bioinformatics’ interaction with
X-ray crystallography.

Several reseachers have addressed explicitly the improvements in pKa calculations
that an optimized hydrogen bond network can offer. For example, Nielsen et al. (201)
have sought to use optimized hydrogen bond networks, including asparagine, gluta-
mine, and histidine flips, to improve the quality of pKa calculations performed by pro-
grams such as DelPhi and applied their method to certain well-characterized proteins,
such as superoxide dismutase, lysozyme, and bovine pancreatic trypsin inhibitor. They
found that optimized networks improved electrostatic calculations in or near enzyme-
active sites for about one-fourth of all enzymes in the PDB. This compares with WhatIf,
which found that about 85% of structures examined were improved by their calcula-
tions. More recently, Nielsen and Vriend (202) have performed pKa calculations using
finite difference solutions to the Poisson-Boltzmann (PB) equation, which require energy
calculations performed for many different protein protonation states. These are usually
modeled by altering the charges on certain atoms, or by adding or removing hydro-
gens, and occasionally by optimizing the local positions of protons. Nielsen and Vriend
(202) globally optimize the hydrogen-bond network for each protonation state used,
giving significant improvements in accuracy for calculated pKa values.

The ionization constant, Ka, is a measure of the acidity of a compound, i.e., its ability
to donate a proton. A more convenient way of expressing such a scale is to use pKa,
which equals –log10(Ka). For weak acids and bases, such as the 20 natural amino acids,
pKa values range from 4.5 for the side-chain carboxyl of aspartate to 12.0 for side-chain
guanidinium group of arginine. Side-chain residues within proteins have pKa values
that are moderated by their microenvironments, the nature of their near neighbors, the
extent of hydrogen bonding, and so forth and can take on a range of values quite dif-
ferent from those quoted in undergraduate textbooks. These values can be measured
experimentally using a variety of methods, such as NMR, or calculated from the 3D
structure of a protein using a variety of methods, such as the linearized PB equation.

Recently, Forsyth et al. (203) reviewed 212 experimental carboxyl pKa values (97
glutamate and 115 aspartate) from 24 structurally characterized proteins. Overall aver-
age pKa values for active-site point (ASP) were 3.4 ± 1.0; for basic (pI > 8) proteins, the
average pKa value was 3.9 ± 1.0; and for acidic (pI < 5) proteins, the average pKa was
3.1 ± 0.9. Overall average pKa values for GLU were 4.1 ± 0.8, and average pKa values
for glutamates are approx 4.2 in both acidic and basic proteins. Likewise, Edgcomb
and Murphy (204) recently reviewed the literature values of pKas for titratable histidines;
average pKa values for titratable HIS were 6.6 ± 0.9. There is no similar, systematic
survey for the basic amino acids, lysine and arginine, although Harris and Turner (205)
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have recently reviewed perturbed pKa values for all amino acids in enzyme-active
sites. However, there is anecdotal evidence, and a brief review of the literature would
suggest that lysine and arginine display a similar range and diversity of pKa values.

Solvent accessibility has long been thought to exert a profound influence on pKa
values. Exposed carboxyl group pKa values exhibit narrow distributions compared to
buried acidic residues, which range by up to 5 pH units. Likewise, the variability in
histidine pKa values also increases when the majority of its side chain is buried. Hydro-
gen bonding is also considered a key factor. Whereas pKa values for glutamates show
no real correlation with the degree of hydrogen bonding, mean pKa values for aspartates
are inversely proportional to the number of H-bonds. Interestingly, values for binding
site glutamates and aspartates are often well outside normal ranges; in a study by Forsyth
et al. (203), 10 pKa values greater than 5.5 were found, most involved in binding, and
these groups were buried and accepted, at most, one H-bond.

There is clearly no simple, ready explanation for the pKa values taken by ionizable
groups within proteins; it is presumably a subtle environmental effect, but no quantita-
tive relationships among the heterogeneous polar, apolar, and mixed environments expe-
rienced by different ionizable groups and their pKa values is apparent from available
data. However, the ionization or protonation of amino acid residues buried within pro-
teins is often rationalized on the contradictory basis of either a hydrophobic environ-
ment, which raise the ionization constant of both acidic and basic residues, or charge-
charge interactions, which raises the ionization constant for the pairing of like charges
but decrease it on the formation of intermolecular salt bridges. Salt bridges in proteins
occur when differently charged residues are close enough to experience strong electrosta-
tic attraction. Their net electrostatic free energy is divided among three components: cou-
lombic charge-charge interactions, charge–dipole interactions, and charge desolvation.
Favorable charge-charge interaction is often opposed by unfavorable charge desolvation.

In the case of carboxyls, calculated electrostatic potentials show only very modest
correlations with experimentally derived pKa values. Moreover, these correlations are
not improved by accounting for desolvation effects, such as terms accounting for acces-
sible surface areas. This has led to the deployment of much more sophisticated calcu-
lational strategies. During the past 25 yr, protein pKa calculations have generated much
interest and have improved in accuracy (202,206–210). Current pKa calculation pack-
ages usually calculate electrostatic energies using the PB equation, although different
approaches have been proposed (211,212). Implementations of various PB equation
solvers are available, including DelPhi II (213), UHBD (214), and APBS (215).

In pKa calculations, three kinds of energies are needed: background interaction ener-
gies, energies of desolvation, and site-to-site electrostatic interaction energies between
pairs of titratable groups. The first two terms, desolvation energies and background in-
teraction energies, allow calculation of how the protein environment affects the “intrin-
sic pKa”: the pKa value of a titratable group when all the other titratable groups are fixed
in their neutral state. Combining knowledge of intrinsic pKa values for each titratable
residue with site-to-site interaction energies allows calculation of the energy of every
protein protonation state at a particular pH. For proteins with greater than 35 titratable
groups, such calculations become intractable when using the Boltzmann formalism.
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Generally speaking, current computational methods are usually prone to significant
uncertainties resulting from both insufficiently accurate structural information and the
unwarranted use of various simplifying assumptions. With only a few exceptions, the
majority of articles report studies that look at one or a few proteins. They generally
report satisfactory results but use a heterogeneous population of parameter values and
assumptions. This makes a proper evaluation of their success very difficult. Larger-
scale, comparative analysis for many proteins has seldom, if ever, been attempted.

I have already had cause to mention the flexibility of binding sites as a limiting factor
in determining the constellation of residue conformations and rotameric states produced
by experimental or model building exercises. The mutual dependence of ligand and pro-
tein conformation is an important example of this. The structure of a ligand–receptor
complex is not the consequence of an inflexible docking of one rigid molecule with
another rigid molecule. Rather, both are flexible: the small molecule or peptide bound
by the protein does not necessarily bind in its minimum conformation as might be deter-
mined in solution. Neither is the conformation adopted by the bound ligand necessarily
that which might be seen in high-resolution small-molecule crystal structures. Like-
wise, the protein does not necessarily retain the same side-chain rotamers as in its apo
form, nor are these rotamers necessarily those of its lowest energy conformation. Rather,
the structure of the complex is close to the minimum energy conformation of the sys-
tem composed of the combined molecules. The small-molecule guest adapts to the con-
straints imposed by its macromolecular host, and, to some degree at least, vice versa.

A number of investigators have described this phenomenon. For example, Nicklaus
et al. (216) compared computationally generated small-molecule structures with their
conformations derived by crystallography and for the best performing structure gen-
eration method, which generated multiple conformers per molecule, identified only a
60% agreement. For single conformer generation, this value fell to 38%. In a later study,
Nicklaus et al. (217) compared the experimental conformation of 33 compounds present
in both the PDB and Cambridge Structural Database of small-molecule X-ray struc-
tures with the global energy minimum conformation generated by the molecular mech-
anics program CHARMm. The protein-bound conformation differed from the small-
molecule crystal structure and from the global energy minimum, with the amount of
difference roughly proportional to the number of freely rotatable bonds within the mole-
cule. For most compounds, the global minimum conformational energy is well below
that for both protein-bound and small-molecule crystal conformations. In an updated
and extended study, Bostrom et al. (218) examined the conformational energies needed
by ligands in 33 ligand–protein complexes to adopt their bioactive conformations. For
about 70% of the complexes, differences in calculated energies were ≤3 kcal/mol.

In a more specific study, Moodie and Thornton (219) examined the effect on nucle-
otide conformation of binding to protein, by comparing the X-ray crystal structures of
free and protein-bound nucleotides. Nucleotides were found to bind in low-energy
conformations, not significantly different from their “free” conformations except that
they adopted an extended conformation in preference to the “closed” structure predom-
inantly observed by free nucleotide. Most recently, Fradera et al. (220) analyzed how
the conformation of representative protein-binding sites is dependent on the bound
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ligand and found that the ligand induces small, but significant, structural alterations in
the site that can, in turn, lead to important changes in the molecular recognition prop-
erties of the protein.

4.2. Analyzing and Visualizing a Binding Site
How does one analyze and characterize the structure of a binding site, once a pro-

tein’s tertiary structure has been derived? We have already seen how such a question
might be approached when only sequence data are available to us. When 3D structural
information is available, however, there are two main alternatives: the location of the
binding site can be either known or unknown. When a site is known, one’s depth of
knowledge can still be very variable. One may only have some slight indication, per-
haps from other experimental evidence, such as mutagenesis, where the site is located,
or one may have a fully defined binding site with a set of cocrystal structures illuminat-
ing the nature of ligand binding. At one extreme, where one has a situation character-
ized by a paucity of information, one requires an analysis similar to that described in
the structural sequence-only case. Historically, the function of the target is likely to
be known, but, as noted, increasingly it can be seen that structural genomics generates
protein structures whose function remains unknown (221). Even for proteins that have
been well characterized biochemically, their function may not be understood in terms
of structure (222). At the other extreme, where binding is very well characterized, tech-
niques of virtual screening and/or MD, as discussed in subsequent sections, will be of
the greatest use. The most commonly encountered situation is an intermediate one:
enough is known to make analysis tractable and rewarding, but the system is not so fully
explored as to be characterized to death, though these older, rarer systems are none-
theless useful for the development and validation of new methodologies.

Such an intermediate situation requires a careful analysis of the protein structure,
because the principle prerequisite for tight binding between ligand and receptor is spe-
cific interactions formed between protein and ligand atoms in the binding site. These
contacts, as such interactions are often known, are typically noncovalent in nature and
are mediated by ionic interactions, hydrogen bonds, and van der Waals forces. Their
sum should exceed unfavorable contributions such as desolvation or the freezing out
of translational and rotational degrees of freedom. There is now a plethora of sophisti-
cated computational techniques that have been developed to address the issue of iden-
tifying areas able to make favorable interactions with potential ligands. These form
a spectrum that extends from the purely geometric, through the mapping of physical
problems, such as electrostatic or hydrophobic potentials; simple interaction potential
mappings with atoms or pseudoatoms, such as CoMFA (223); functional group map-
ping, as evidenced by GRID (224), to multicopy minimization of functional groups
(225), and, ultimately, to sophisticated docking algorithms (226,227).

Visualization of the surface of a protein molecule is one of the most basic and yet also
one of the most luculent approaches to binding site analysis: just as there are many ways
to calculate the quantitative solvent accessibility of a molecular surface (228), there are
many ways to generate and visualize alternative molecular representations. The simplest
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is to place spheres of appropriate van der Waals radii centered on each atom. This can
then be expanded by the radius of a solvent sphere to form the accessible surface. More
complex surfaces such as a Connolly surface, obtained by rolling a sphere over the sur-
face, are formed of both convex accessible patches and concave reentrant regions (229).
Various other methods have been devised to allow subtle variations of these types of
surface to be generated and triangulated (230,231).

Once a structural representation of an accessible or a Connolly surface has been
defined, texture mapping can be used to simultaneously reduce geometric complexity;
enhance realism, and allow significant quantities of molecular data to be visualized,
inspected, and interpreted. Texture mapping can produce highly accurate renderings
of complex isodensity contours and facilitate volume rendering of large, 3D density
distributions. A useful approach for visual analysis of a binding site is to map under-
lying physical properties onto a protein molecular surface representation (232). Popu-
lar properties for display would include hydrophobicity and electrostatic potentials.
An interesting alternative, available when one has access to multiple alignments linked
to a representative protein structure, is the projection of sequence variability on the sur-
face. Such visualization tools can allow one to identify a binding site from an unusual
concentration of extreme properties—whether they are hydrophobicity or hydrophi-
licity, positive or negative electrostatic potential, or high sequence variability—within
the average background surface distribution.

Electrostatic potential is a common display property often obtained by solving the
PB equation (233), for which, as I have said, many programs are now available (e.g.,
UHBD (214), DELPHI (215)). Several molecular graphics programs can then color code
appropriate protein surface representations. One of the most popular is GRASP (234),
which also contains a robust PB solver and can thus be used for electrostatic-potential
surface mapping. The online service GRASS preserves parts of its functionality enabl-
ing users to display electrostatic properties and hydrophobicity measures projected onto
surface representations. Other methods for generating hydrophobicity maps have also
been developed (235), in which the binding energy of a nonpolar probe sphere is cal-
culated using a combination of a Lennard-Jones potential and the electrostatic desol-
vation energy. A comparison using 10 diverse protein–ligand complexes revealed a high
predictive power with respect to nonpolar binding. Another well-used method for eval-
uating hydrophobic potential is the HINT methodology (236).

During potential mapping, a surface would, typically, be scanned for regions that
make significant interactions with a particular probe or set of probes, whether they are
simple atoms or pseudoatoms, larger fragments, functional groups, or even whole ligand
molecules. This will allow regions whose interaction with functional groups is ener-
getically favored to be identified. This will, in turn, allow a functional map character-
izing the binding site to be generated, which may also be able to guide the positioning
of potential ligands.

However, because binding sites are often located within surface depressions, many
computational strategies or algorithms have been developed that are able to detect geo-
metrical indentations, such as pockets, pits, or cavities, on the surface of proteins, as an
aid to the identification of putative binding sites. Many such programs have been devel-
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oped. LIGSITE (237) evolved from the earlier program POCKET (238). By placing a
protein into a grid, it evaluates the extent of burial for all lattice points outside the
protein. Burial at a given point is found by scanning all adjacent grid points for enclo-
sure by protein atoms, with highly buried lattice points clustered to identify cavities.
LIGSITE was tested with 10 complexes and in each case correctly identified the loca-
tion of the binding site (237).

The PROtein POcket Search, or APROPOS, method identifies pockets by comparing
surfaces generated at different levels of resolution, i.e., an envelope surface describing
the global shape of the protein and a suitably detailed surface reflecting the local struc-
ture. Based on tests with more than 300 proteins, the method was reported to locate
binding sites with high reliability (239). The program CAST is a further, more recent
example of a method that implements an α-shape description of a protein surface (240).

In the Putative Active Site with Spheres (PASS) algorithm, a protein is first coated
with a layer of spherical probes. After filtering probes to eliminate those that clash
with the protein, those not sufficiently buried, or those located too close to a more buried
probe, a new layer of probes is grown onto the scaffold of previous probes and filtered
again (241). Growing and filtering are repeated until no new probes survive the filters.
For all surviving spheres, probe weights are computed. These are proportional to the
number of local probe spheres and their extent of burial. Probes with high weights are
then clustered, identifying ASPs, which should represent the centers of potential bind-
ing sites. For 20 structures, PASS could identify binding sites in 12 cases as top-ranked
ASPs and in 16 cases as one of the top three (241).

Tools relying solely on geometrical criteria to locate binding sites are able to find all
significant surface depressions but cannot easily discriminate sites of functional signif-
icance from other cavities. To do so, one is obliged to “score” the various pockets and
depressions using some kind of interaction energy function. Various methods are avail-
able for this function. One of the simplest approaches uses an energy function to identify
regions favorable for interaction with particular ligand functional groups. Frequently,
methods of this kind use a discrete 3D lattice to position probe atoms or groups within
the binding site. The archetypal program of this class is GRID (224). It places probes
such as methyl, hydroxyl, ammonium, or carbonyl at regularly spaced grid points
within the active site. An energy function is used, at each grid point, to calculate the
interaction energy between the probe and the protein and from this a functional map of
the binding site is constructed. This indicates the most favorable regions for placing
ligand groups with similar properties to the probes. Visualization of the maps by con-
touring at appropriate energy levels can identify hot spots. Since the first introduction
of GRID, new types of probes and energy functions have been developed to enhance
further the reliability of the method (242–244). Similar methodology, such as CoMFA
(223), CoMSIA (245), or PIPSA (246), can be used to analyze binding sites. It is worth
noting, though, that in principle any scoring function could be applied to perform hot-
spot analysis.

An obvious extension of this methodology allows one to analyze and classify sets
of related molecules, including large protein families or proteins that exhibit signifi-
cant polymorphism. Molecular interaction fields, such as those generated by GRID,
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can be computed for each model and then analyzed using a chemometrical method,
such as principal component analysis and consensus principal component analysis
(CPCA). This classification does not rely on protein sequence similarities, because descrip-
tors are derived from 3D binding site information computed using molecular interac-
tion fields. In an initial study (247), the method was applied to nine structures of three
homologous serine proteases: thrombin, trypsin, and factor Xa. The regions identified
as being important for selectivity were in excellent agreement with available experi-
mental data and inhibitor structure–activity relationships. Subsequently, this method
has been refined and applied to a variety of protein groups. Ridderstrom et al. (248)
undertook a selectivity analysis using the GRID/CPCA strategy on four human cyto-
chrome P450 2C homology models: CYP2C8, 2C9, 2C18, and 2C19. Their analysis
identified CYP2C8 as the most distinct structure with function determining amino acids
at positions 114, 205, and 476. Terp et al. (249) used the method to investigate regions
of selectivity in matrix metalloproteinases. Ji et al. (250) used molecular interaction
fields to analyze selectivity differences between isoforms of nitric oxide synthase. Nau-
mann and Matter (251) clustered 26 X-ray structures of eukaryotic protein kinases into
subfamilies with similar protein-ligand interactions in the adenosine triphosphate-
binding site. Their classification, which they called a “target family landscape,” iden-
tified a common binding pattern and specific interaction sites for particular kinase
subfamilies. Myshkin and Wang (252) used the GRID/CPCA methodology to explore
selectivity issues in Eph receptor tyrosine kinases. Kurz et al. (253) used this approach
to explore specificity of interaction in fatty acid-binding proteins, a member of the caly-
cin superfamily, which also contains the lipocalins. Doytchinova et al. (254) extended
the technique combining GRID with CoMSIA and CPCA with hierarchical clustering to
generate a robust, consensus clustering of more than 1500 human class I MHC alleles.

One of the most interesting methodologies to emerge recently is the multicopy simul-
taneous search (MCSS) approach (255), originally developed by Miranker (256). MCSS
uses a molecular mechanics formalism to place large numbers of small functional groups
—simple ketones or hydroxyls—at favorable positions within a protein’s active site.
Instead of using probe atoms on a regular grid, several thousand probe groups are ran-
domly distributed over the binding site and then energy minimized. During these calcu-
lations, the protein interacts with the whole swarm of ligands while each of the functional
groups only sees the protein and not each other. The probes can thus cluster in local
minima, allowing identification of the most favorable interaction sites.

Dynamic Ligand Design is a truly elegant extension of this approach with powerful
conceptual appeal (257). The results of the MCSS are turned into molecules under the
influence of a pseudopotential function that joins atoms correctly accounting for stereo-
chemistry. Their potential energy function allows atoms to sample a parameter space
that includes both the Cartesian coordinates and atom type. Thus, atoms can mutate
into different element types and hybridizations. Subsequently, a modified version of
the method was developed that used a new potential energy function, optimization by
simulated annealing, and evaluation using a thermodynamic cycle (258). Other exten-
sions to the methodology include flexibility of the protein target, which contrasts with
standard MCSS, which has the protein kept rigid (259).
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DrugScore potentials can also be used in this way (260). Its ability to predict hot
spots was determined for 158 protein–ligand complexes. Depending on the atom-type
classification, overall prediction rates of 74 and 85% were obtained. However, a note
of warning for computational functional group mapping techniques comes from work
undertaken by crystallographers that addresses experimental solvent-like functional
group interaction with proteins. In one sense, this can be seen as an attempt to use an
experiment to benchmark computation, although from a teleonomic perspective, tech-
niques such as GRID are not intended to reproduce this kind of system but, rather, to
indicate likely points of favorable interaction within designed ligands.

Ringe and Mattos (261) represented different functional groups by different solvents
—benzene for aromatic groups, dimethyl formamide for peptides, and so on—with about
six probes locating most major binding regions on the protein surface. They analyzed
the surface of the enzyme elastase, finding three hot spots, including the active site.
English et al. (262,263) used X-ray crystallography to determine the high-resolution
crystal structures of thermolysin soaked in high concentrations of the cosolvents ace-
tone, acetonitrile, phenol, and isopropanol. Analysis of the solvent positions showed
little correlation with interaction energies computed using a molecular mechanics force
field or with favorable positions defined using GRID. However, the experimentally
determined solvent positions were consistent with the structures of known protein-ligand
complexes of thermolysin. Indeed, the structure of the protein complex was essenti-
ally the same as the native enzyme. Byerly et al. (264) used NMR to analyze the E. coli
peptide deformylase, identifying points of interaction with several simple organic sol-
vents (acetone, dimethyl sulfoxide, ethanol, isopropanol) from local perturbation of
amide chemical shifts. These groups map to the active site and an additional surface
pocket. Joseph-McCarthy et al. (265) used the structure of RNase A with two bound for-
mates (carboxyl mimics) to benchmark MCSS in terms of experimentally determined
formate and water positions. Together, these results suggest that existing potential energy
functions are not accurate enough to model correctly protein-ligand interactions even
for the simplest ligands. Yet this approach is, as we have seen, still widely used.

Rule- or knowledge-based approaches are a different class of methods that make use
of the directional information stored in accumulated crystallographic data through the
derivation of rules for preferred ligand–protein patterns of interaction. An example is
the so-called composite crystal-field approach (266). Here, small-molecule crystal data,
as exemplified by the Cambridge Structural Database, were analyzed statistically for
intermolecular contact geometries of various functional groups, producing scatter plots
of the experimental distributions. These plots can, in turn, be used to guide the place-
ment of functional groups within a binding site. LUDI, a program for de novo design,
has translated a statistical analysis of nonbonded interactions into rules for the calcu-
lation of “interaction sites” (267,268), which are discrete positions and vectors in space
suitable for forming hydrogen bonds or filling hydrophobic pockets.

SUPERSTAR has been developed to identify interaction sites in proteins using infor-
mation from the database ISOSTAR (269,270). A binding site is first decomposed into
structural fragments, and then the distribution of selected probes is superimposed around
these fragments. A 3D map then indicates the probability of probe placement at different
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positions. For a test set of 122 protein-ligand complexes, SUPERSTAR detects the cor-
rect atom type for solvent-inaccessible ligand atoms in 82–90% of cases. Similar con-
cepts, although based on data from 83 high-resolution protein structures from the PDB,
are used by X-SITE (271). Spatial contact distributions were derived from 163 triatomic
fragments to highlight favorable binding site interactions.

Several approaches have used docking to help identify potential binding sites. Bliznyuk
and Gready (272,273) performed a grid search of van der Waals energy surrounding a
protein and subsequently used Fast Fourier Transform techniques to scan the surface
for possible ligand orientations, which were then energy minimized. Top-ranked ori-
entations were evaluated using PB calculations. Ruppert et al. (274) used a function
parameterized on experimental ligand-binding energies to score probes coating their
protein for affinity at each position. The binding site was then detected by clustering
high-binding probes. The PROFEC (Pictorial Representation of Free-Energy Changes)
approach of Radmer and Kollman (275) or variants generated by Pearlman and
Charifson (276) (One-Window Free-Energy Grid [OWFEG]) are based on free-energy-
perturbation (FEP) calculations. Two molecular dynamic trajectories are used to deter-
mine free-enthalpy changes resulting from the placement of an atom or group at different
locations around an inhibitor, both in solution and at the protein-binding site.

4.3. Virtual Screening Approaches to Receptor–Ligand Interaction
Virtual screening is now becoming a technique of central importance within preclin-

ical drug discovery. Virtual screening, as the term is most often used and understood,
involves using a model of a protein-binding site to predict, quantitatively or qualita-
tively, some appropriate measure of receptor binding—in other words, to discriminate
between a small set of ligands with appreciable affinity for that binding site and the
bulk of organic molecules lacking affinity.

Two types of virtual screening are available. One derives directly from cheminfor-
matics applications within drug discovery and is based on empirical molecular mechan-
ics energies to score host-guest complexes. The other type originates from structural
bioinformatics. It uses a threading approach to estimate binding using an atomic pair
potential to score the complementarity of ligand–receptor interactions.

There are two linked and unsolved problems frustrating attempts to develop virtual
screening methodologies: the accurate automatic docking of ligands and the accurate
quantitative prediction of ligand affinity. Although many methods for automated ligand
docking have been suggested (277–279), and there have been some successful appli-
cations (280,281), their overall performance, although improving, remains capricious
and comparatively poor. Likewise, it remains difficult to predict binding affinities reli-
ably using protein–ligand complexes, even where experimental structures are avail-
able (282–284). Solving problems such as these remains a significant future challenge
for bioinformatics.

As a process, virtual screening can be divided into four stages (see Fig. 6). The first
stage is composed of two independent parts, which may be undertaken contemporane-
ously or sequentially. One of these parts concerns the preselection of potential ligand
molecules. Such molecules can be selected either by applying rigorous criteria to exist-
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ing compound collections or by applying complex and subtle rules in the design of new
combinatorial libaries. Such rules or selection criteria come in many guises. They may
reflect the properties of successful, marketed drugs or the known structural preferences
exhibited by the ligands of related receptors. A thorough discussion of such approaches
is beyond both the scope and purpose of the current work, but a brief adumbration
seems appropriate.

Selection criteria are often called Lipinski analysis (285): the use of upper and/or
lower bounds on quantities such as molecular weight (MW) or Log P to help tailor the
putative in vivo properties of drugs. Lipinski’s rule of 5 predicts that effective intesti-
nal absorption is more probable when there are fewer than five H-bond donors, less
than 10 H-bond acceptors, MW is less than 500, and the calculated Log P is lower than
5. A more careful experimental analysis of orally available marketed drugs indicates
slight differences to the Lipinski criteria, albeit for a set of small, relatively old drugs,
but this analysis certainly confirms similar overall property patterns (286). However,
these criteria are very focused on oral human drugs: the current “holy grail” of most pre-
clinical drug discovery. However, the properties of molecules can be very different. For
agrochemicals—pesticides and herbicides—plant bioavailability arises through potency,
stability, and passive transport. To achieve this for small-molecule agrochemicals,

Fig. 6. Simple schematic summarizing key subprocess in virtual screening. Small molecules
are screened and the best selected. At the same time, a binding site model is constructed. The
screened set of small molecules is docked to the target binding site. These are then scored and
ranked, and the top hits, or representatives thereof, are screened for activity.
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MW should be between 200 and 500, clog P should be less than 4, and the number of
H-bonding groups should be less than 3. Although these criteria do not differ greatly
from the rule of 5, the requirement for an acidic pKa is a significant difference. Orally
bioavailable human drugs are biased toward lipophilic basic amines, which as acidic
compounds, with their increased nonspecific binding by human serum albumin and
other plasma proteins, are significantly underrepresented. The desire to progress beyond
these relatively simple and eminently explicable selection thresholds has led many to
search for leadlikeness criteria. Leads must meet variable, project-dependent selection
criteria, which include validated biological activity in primary and secondary screens,
normally against known targets, for a series of related compounds; patentability; and a
promising initial DMPK profile. Historical analysis of leads is difficult, complicated
by the clear biases in the extant literature, and by the intrinsic complexity of the opti-
mization process itself. Although the two chemical spaces overlap, there seems to be
a real difference between lead and drug. Leadlike compounds typically have 1–5 rings,
2–15 rotatable bonds, MW less than 400, less than 9 acceptors, less than 3 donors, and
a log P range of 0.0–3.0. On average, drugs have 2 less rotatable bonds, MW 100 lower,
and a reduction in log P of 0.5–1.0 log units compared to leads. High-throughput
screening identifies lead compounds with higher MW, higher lipophilicity, and low-
ered solubility. Driven to enhance receptor affinity, medicinal chemistry optimization
tends to exacerbate all of these trends, as leads progress inexorably toward clinical
candidates. Thus, one of the main objectives in the identification of leadlike com-
pounds for screening is the need for smaller, less lipophilic compounds that, on optimi-
zation, will produce compounds that retain druglike properties.

The other part of this initial stage is the creation of a binding site model. Most virtual
screening efforts tend to focus on experimentally derived binding site models, but many
biologically important receptor targets do not yet have structures derived by X-ray crys-
tallography and multidimensional NMR. In particular, these include many membrane
proteins, such as GPCRs and ion channels. Overcoming the intrinsic problems of model-
ing GPCRs, or other membrane proteins, will not be straightforward. As we have seen,
there are attempts to address this through membrane protein structural genomics. Another
promising route is the development of methods for large-scale comparative modeling.
Several problems need to be solved:

1. The development of sensitive α-helical amino acid pair-potential functions that will enhance
the performance of structure–sequence matching when sequence-sequence matches is not
strong enough to guide homology modeling adequately.

2. The correlation of the size and shape of bound ligands with sequence variation within a
family, to predict more accurately the size and shape of particular GPCRs.

3. The obtainment of accurate predictions of nonmembrane-embedded structures, such as
interconnecting loops that link transmembrane helices.

Although the structure of rhodopsin, the only experimental GPCR structure, provides
a useful template for the small-molecule binding sites of a subset of GPCRs, it is a
poor model for the loops. Loop conformations vary greatly within and between GPCR
families, yet fulfill vital roles in the binding of large and medium ligands such as pro-
teins and peptides.
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Moreover, there is a general issue in modeling membrane receptors of which the
GPCR-binding site is the key exemplar. Generally, initial model generation for virtual
screening will need to identify both agonist-bound and antagonist-bound conforma-
tions against which to dock candidate ligands. Experience from pharmaceutical drug
discovery shows that it is easier to find antagonists, which block binding, than it is to
find agonists, which need to mimic precisely the requirements of endogenous ligand
binding. Even an inaccurate model will prove capable of identifying antagonists, but
an extremely more accurate model is required for an agonist-binding site. Recent work
has allowed a conserved helix bundle assembly to be identified for most GPCRs in
their antagonist-bound state (287,288).

The second stage of the conceptual virtual screening protocol involves docking a
limited number of “most different” conformations of each small molecule to an ensem-
ble of macromolecular models. The initial screening or design will have generated a
restricted list of more drug- or leadlike molecules. By using data on ligands from homo-
logous receptors, this list may also be tailored to be ligand-like. Solutions to the dock-
ing problem must take into account the flexibility of both ligand and protein, and if
one is docking against either a homology or an experimental model, then one must
also take into account errors and uncertainties in the binding site structure. For each of
the candidate molecules selected for docking, several ligand conformations will usu-
ally be searched against a limited number of receptor conformations. This leads to a
combinatorial explosion in the number of possible ways of docking an individual mole-
cule, each of which must be evaluated. Many sophisticated methods for conformational
searching are known, and many are implemented in most major proprietary molecular
modeling software. The goal here is to address the issue of “most different” conforma-
tions. Using ligands from 32 complex structures, Bostrom (289) assessed several pro-
grams (Catalyst, Confort, OMEGA, Flo99, and MacroModel) for their ability to find
bioactive conformations during the generation of conformational ensembles. MacroModel
outperformed the other methods, whereas Catalyst and Confort performed least well.
Omega, a new rule-based method, was orders of magnitude faster than the other meth-
ods, yet gave reasonable results. Very flexible ligands with 8+ rotatable bonds never
returned correct bioactive conformations. More recently, robust multivariate statistics,
in the form of D-optimal design, were used to evaluate OMEGA’s ability to generate
bioactive conformations (290). A data set of 36 high-resolution complexes was ana-
lyzed. Twenty-eight bioactive conformations were retrieved when using a low-energy
cutoff (5 kcal/mol), a low RMSD value (0.6 A) for duplicate removal, and a maximum
of 1000 output conformations. Again, bioactive conformers of highly flexible ligands
were not identified.

As a process, docking is a sampling exercise, and as such, it is necessary to cover as
much of the sample space as possible in as efficient a manner as one can achieve. It is
seldom possible to attack this problem in a satisfactory manner, leading to a trade-off
between time and combinations of conformation and orientation searched. To deal
with this, powerful computational optimization algorithms, such as Monte Carlo or gene-
tic algorithms, are now often employed. The work of Anderson et al. (291) is a recently
reported attempt to bypass some of these problems. They defined a minimum set of
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flexible residues within the active site, thus effectively increasing the docking site from
a single conformation to an ensemble with a concomitant decrease in the bias that is
inherent in the use of a single, rigid protein conformation. It is not the first, nor likely
to be the last, attempt to do something of this sort (174,175,292).

Likewise, probing of the active site can have a major impact on the quality of dock-
ings. There are two main approaches to this problem. One uses some type of pregen-
erated set of favorable interaction points within the binding site and tries to fit molecules
to this, in a way analogous to the fitting of molecules into an initial electron density
map in X-ray crystallography (293). As we have seen, there are many ways to identify
these points of interaction, such as GRID (224) or MCSS (225).

The alternative strategy is to evaluate a potential docking using some form of molec-
ular mechanics energy evaluated between docked ligand and receptor. In either case,
one would attempt to evaluate and score, for each molecule, several different docking
conformations and orientations. The potential energy function used to evaluate dock-
ing within a particular docking run need not be the same as that used to score different
dockings.

Each conformation of each candidate ligand can be docked against one or more pro-
tein models. The docking itself involves orientating, i.e., rotating and translating, the
small molecule relative to the larger molecule. Each orientation is sometimes referred
to as a pose. Were one to attempt a brute force solution to this problem, then one would
perform a grid search over the whole molecule or just a binding site if it has been defined.
At each grid point one would need to generate a large number of rotations of the mole-
cule, evaluating each one. A recent method developed in Graham Richards laboratory’s
(294,295) addresses this kind of brute force solution directly but makes use of an ele-
gant trick, so obvious yet so clever, to make it tractable. Using k-means clustering,
small-molecule structures are approximated by an ascending hierarchy of points, start-
ing with one point and progressing to the number of atoms in the molecule. At each clus-
tering level, this point set is translated and rotated at each grid point within the lattice
within which the protein is embedded. However, for each cycle only grid points at
which a negative energy was found in the previous cycle are analyzed. In this way, the
number of points diminishes in an exponential fashion, reducing the total number of
computations to a tiny fraction of those required by a naïve grid search. A later variant
of the method looked at searching for different conformations of the ligand, again mak-
ing use of a reduced representation: for low numbers of points, many different confor-
mations are represented by the same point set and, hence, the number of calculations
is reduced; it is only when the number of points approaches the number of atoms in the
molecule that the number of conformers becomes an issue. The approach is replete
with promise but clearly requires much more work before that promise is realized.

The third stage of virtual screening involves scoring and, thus, ranking the final docked
orientations of candidate molecules. There are several key advantages to virtual screen-
ing vs high-throughput screening: apart from the pecuniary advantage of computer
screening vs multi-million-dollar robotic assays, the relative celerity of the process tends
to drive its use. To that end, and in order to evaluate effectively thousands upon thou-
sand of compounds, screening methods tend to be fast and empirically based, rather than
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more time-consuming methods, such as MDD. Scoring functions are normally used in
the context of docking to estimate binding affinities (for a brief review of currently used
scoring functions, see ref. 296). Many docking methods, such as AutoDock (297,298),
ICM (299), DOCK (300,301), or ProDock (302), make use of grid representations to
speed up the energy evaluation during the docking process.

Developed by Bohm (303), the archetypal empirical scoring function (SCORE1),
which accounted for hydrogen bonds, ionic interactions, buried nonpolar surface regions,
and the loss of molecular mobility, produced a cross-validated standard deviation of
9.3 kJ/mol for an initial training set of 45 receptor–ligand complexes. A second scor-
ing function (SCORE2) (304), which added contributions from the burial of hydrogen
bonds and additional terms for aromatic and unfavorable electrostatic interactions,
reduced the standard deviation to 8.8 kJ/mol for a training set of 82 receptor–ligand
complexes. Eldridge et al. (305) described a similar approach that uses 82 complexes
and a different description of intramolecular flexibility.

Many virtual screening methodologies are currently in use, all with their own advan-
tages and disadvantages. Most attempt to overcome the limitations of computer time
by using very simple methodologies that allow each virtual small-molecule structure to
be docked and scored very quickly. Examples of these include GOLD (306) and DOCK
(301). Of course, virtual screening methods exhibit a wide range of alternative method-
ologies of increasing complexity, from simple rule-based scoring to what are essentially
forms of relatively time-consuming atomistic MD simulations such as Linear Interac-
tion Energies (LIE) (307).

The relative success of FRESNO (308,309) in the prediction of binding affinities for
MHC-peptide interactions suggests that optimization of the screening function, within
a chemical area or protein family, rather than the use of totally generic screening func-
tions, may be a better route to success. The authors of FRESNO used a training set com-
prising five experimentally determined HLA-A* 0201 peptide complexes and 37 modeled
H-2Kk complexes to reparameterize Eldridge et al.’s (305) scoring function. McMartin
and Bohacek (310) used nine thermolysin-inhibitor complexes to parameterize a simple
scoring function composed of hydrogen bond number and hydrophobic contacts. Kasper
et al. (311) used a training set of 11 peptide–chaperone DnaK complexes to parameter-
ize their scoring function.

The inability to predict quantitative binding constants using simulation approaches
has led many to combine calculations with some type of statistics in order to leverage
model predictivity. Regression-based empirical scoring functions assume that the total
∆G can be approximated by a summation of individual contributions, with the weights
or coefficients in the regression equation being determined by multiple linear regres-
sion, partial least squares regression, or an artificial intelligence approach, such as an
ANN, using an initial training set of receptor–ligand crystal complexes and correspond-
ing experimental binding affinities. All regression-based methods, their transferability
to new congeneric series, and the accuracy of any results obtained are thus highly con-
tingent on the initial choice of training set. Because of their derivation, regression-based
methods favor particular types of interaction, typically the most frequently observed
in crystal structures.
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The VALIDATE methodology of Head et al. (312) uses terms accounting for steric
and electrostatic energies from AMBER, a calculated Log P term, polar and nonpolar
surface surfaces, and an intramolecular flexibility term, with weights obtained using
a training set of 55 receptor-ligand complexes. One of the most interesting of these
approaches is PrGen (313,314). This approach uses correlation-coupled minimization
to optimize the receptor–ligand interactions for a series of ligands of known affinity so
that the model becomes predictive both within and, it is hoped, beyond the training set.

The development of atomic-level knowledge-based scoring functions is based on
observed frequency distributions of typical interactions: in any system, only those inter-
actions close to the frequency maxima in the data set will be considered favorable. This
approach is well known in the field of protein-fold prediction. Using the “inverse Boltz-
mann law,” frequency distributions of interatomic interactions are converted into “knowl-
edge-based potentials” or “potentials of mean force.” An example of this approach is
the BLEEP scoring function (315), derived from 820 receptor–ligand atompair distri-
butions. For 90 complexes a correlation coefficient of 0.74 was achieved for experi-
mental binding affinities.

Finally, the fourth stage of virtual screening is to analyze and postprocess the results
of the scored and ranked docked candidate molecules. In an ideal world, a virtual screen-
ing effort would produce a tiny handful of extravagantly active molecules that can be
rapidly optimized for selectivity and bioavailability and other DMPK properties. Desir-
able as this situation may be, it is just as unlikely. More often, one has an array of weakly
active, yet equipotent, molecules. What can be done with these? If they are small enough
in number, or one’s screens have the necessary capacity, they can all be screened. Alter-
natively, one can cluster them into chemically similar groups and evaluate a sparse
sampling of molecules, and, for active compounds, retesting any structural relatives. One
can rank them in different ways using a wider range of criteria, selecting the best hits.

Clearly the more resources, in terms of both human and computer time, one is pre-
pared to employ in generating and evaluating possible dockings, the more likely a good
solution will be obtained. Likewise, the more sophisticated and, thus, generally, time-
consuming one’s methods are for evaluating the scoring phase of the virtual screening
process, the more likely screening will be accurate. If one wishes to dock a few dozen
small-molecule structures, then one can afford to expend a great deal of time on this
process, but if the goal is to dock a large virtual library, then the practical limitations
of computer time will reduce this to a minimum. Recently, Richards and colleagues
(316,317) have made use of Internet-based, peer-to-peer distributed computing tech-
nology or screensaver technology, of the type made famous by seti@home, to prosecute
virtual screening of a number of cancer targets and anthrax virulence factors. This is,
essentially, a PC compute farm, but on a truly massive scale. However, access to this
technology is unlikely to become widely available.

Consideration of several scoring functions simultaneously, consensus screening, is
a practical strategy for improving the quality of the discrimination between ligands and
nonligands. There have been some attempts recently to combine the results of these dif-
ferent approaches, of which CScore, distributed by Tripos, is perhaps the best known.
My own experience with such software suggests that any improvement that might come
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from using data fusion methodologies such as this are strongly tempered by the nature
of the problem one is trying to solve. It may increase the gain of true positives in a par-
ticular screening experiment, but it has much less success in producing an improved
quantitative correlation with experimental data. So and Karplus (318) have described
a somewhat similar approach, that is specifically designed to produce more accurate quan-
titative data. They evaluated a variety of different methods using 30 glycogen phospho-
rylase inhibitors as their test set. The methods that they employed covered a variety of
2D and 3D quantitative structure activity relationship methodologies, as well as struc-
ture-based design tools such as LUDI. A jury method used to combine the different inde-
pendent predictions led to a significant increase in predictivity. Their averaged pre-
dictions indicated that combining different methods was superior to individual results.

Charifson et al. (319) used a logical AND to combine scores from ChemScore (305),
DOCK (301), and the “piecewise linear potential” function (320). In a test using three
target enzymes, their consensus scoring allowed recovery of known inhibitors with
improved accuracy. Using seven different target proteins for virtual screening, Stahl and
Rarey (321) combined terms from PLP score (319) and SCORE1 (303), implementing
this within FlexX to achieve robust enrichment. Terp et al. (322) correlated eight scor-
ing functions with experimental binding affinities for 120 protein–ligand complexes
using partial least squares, yielding quantitative affinity predictions.

4.4. MD Approaches to Receptor–Ligand Docking
One can use a quite different approach to predict ligand–receptor binding through

the use of atomistic MD simulations, which can calculate the ∆Gbind for a given molec-
ular system. It has the advantage that, in principal, there is no reliance on known bind-
ing data, because it attempts the de novo prediction of all relevant parameters given
knowledge of the system’s starting structure, be that an experimental structure or a con-
vincing homology model of ligand–receptor complex. Unlike other methods, such as
virtual screening, MD can, in principal at least, account for both explicit solvation and
the intrinsic flexibility of both receptor and ligand. Thus, and in contrast to virtual
screening, molecular dynamics addresses a dynamic, rather than static, picture of bio-
molecular systems.

The underlying physics, or physical chemistry, of molecular interactions is, of course,
a vast, and somewhat impenetrable, subject, at least for the uninitiated. In statistical
mechanics terms, free energy (∆G) is defined in terms of the partition function. How-
ever, for most types of calculation such a “theoretical” definition has limited utility in
a practical sense. What is more easily calculated, however, is the free energy difference
between two states. Several simulation methods exist that can evaluate free energies. Each
method is based on different assumptions and offers differing levels of approximation.

Viewed from the standpoint of thermodynamics, the effective prediction of ∆Gbind
for receptor–ligand complexation is best obtained from either thermodynamic integra-
tion or FEP calculations. These approaches use the relationship between the free energy
of the system under consideration and the ensemble average of an energy function
describing that system. The energy of the system is described as a function of the coordi-
nates of the particles in configuration space.
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In an isobaric and isothermal reaction, the difference between enthalpy (∆H) and free
energy (∆G) is related to the product of changes in pressure (∆P) and volume (∆V),
which is negligible for processes in solution, so free enthalpies can also be obtained.
In FEP methodology, for example, the free energy is calculated at discrete intervals j
using the expressions

Gλ( j+1) − Gλ( j) = − RT ln < eVλ( j+1) − Vλ( j) > λ( j+1)

∆G = G1 − G0 =  Gλ( j+1) − Gλ( j)

in which G1 and G0 are the free energies of the two states and V is the potential energy of
the system. In thermodynamic integration, the free energy of the system is calculated by

∆G = G1 − G0 = 
1
 dλ dV/dλ

To solve this equation numerically, one must transform it, from a continuous inte-
gration over a

continuum of indivisible steps, to a discrete integration over a set of individual steps.
In slow growth methods, one assumes that steps are very close and one can approximate

∆G = Hλ = 0 − Hλ = 1

MD simulation is, itself, a technique to compute the equilibrium position of a clas-
sic multiple-body system. It is assumed that the atoms of the system are constrained
by an interatomic potential energy force field. Each of the N atoms in the simulation is
treated as a point mass and Newton’s equations are integrated to compute their motion.
This can be written in the formalism of Hamiltonian mechanics as

x = JdH (x)

in which J is the identity matrix of rank 2; and H = T + U, in which T is the kinetic
energy and U is the potential energy. One needs to provide the initial configuration of
the system at t = 0, i.e., the coordinates of all atoms in a six-dimensional hyperspace.
Thus, at regular time intervals, one resolves the classic equation of motion represented
by the N equations implicit here. The gradient of the potential energy function is used to
calculate the forces on the atoms while the initial velocities on the atoms are generated
randomly. At this point new positions and velocities are computed and the atoms
moved to these new positions. To measure an observable quantity, one must be able to
express this as the position in a phase space of dimension 6 ↔ N. The information within
the system is largely contained within the potential energy function, which takes the
form of a simple penalty function for most simulations of biomolecules.

For large molecular systems comprising thousands of atoms, many of the more sophis-
ticated modeling techniques, which often describe the potential energy surface in terms
of quantum mechanics, are too demanding of computer resources to be useful. The Born-
Oppenheimer approximation states that the Schrodinger Equation for a molecule can
be separated into a part describing the motions of the electrons and a part describing

j
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the motions of the nuclei and that these two motions can be studied independently. One
can then think of molecules as mechanical assemblies made up of simple elements
such as balls (atoms), rods or sticks (bonds), and flexible joints (bond angles and tor-
sion angles). Terms that describe the van der Waals, electrostatic, and possibly hydro-
gen-bonding interactions between atoms supplement molecular mechanics force fields.

Questions remain, however, regarding the general applicability of molecular dynamic
simulation techniques for studying the dizzying complexity of macromolecular sys-
tems of any size or biological interest. Obvious limitations are manifold: restricted sam-
pling of configuration space or the accuracy of current force fields or MD’s dependence
on particular simulation protocols, to name but a few. Long simulation runs are needed
and current techniques allow only small differences in structure of the ligands if relia-
ble predictions of ∆G are to be made. Broadly speaking, there are two main routes to
addressing the formidable problems associated with MD techniques. One is the use of
tightly coupled supercomputing to increase massively the computing resources avail-
able. This is required because distributed computing of the screen-saver type is not
applicable to this problem; distributed computing is discussed in more detail subse-
quently. The other approach is to introduce approximations. Approximations are of
two kinds: simplifying constraints within simulations themselves and more fundame-
ntal approximations in the underlying simulation methodology. Constrained simulations
take many forms but typically use constraints and/or restraints to reduce the effective
degrees of freedom within a system. This usually takes the form of “freezing” atoms,
either by dampening their movements or by making them immobile. Sometimes these
constraints and restraints are combined by creating concentric spheres centered on the
binding site, which is allowed to move freely, outside of which there is a zone where atom
movements are restrained, and outside of this is a properly frozen zone where atom posi-
tions are fixed. The problem with such strategies is obvious: how does one constrain a
system appropriately? If one knows the answer in advance, then one may choose, per-
haps by a process of trial and error, suitable constraints and restraints to obtain that answer.
Developing a truly predictive system using ad hoc constraints is much more difficult.

In terms of simulation methodology, many techniques that use approximations exist.
A notable example was introduced by Aqvist and co-workers (303). To circumvent the
inherent computing resource problems endured by thermodynamic integration or FEP,
Aqvist used large, diverse sets of ligand-receptor complexes to develop and refine a
semiempirical method, which is usually referred to as the LIE approach. Absolute ∆Gbind
values were calculated for two states: ligand and protein-ligand complex, both simu-
lated in water. Mean values for the electrostatic and van der Waals components of ∆Gbind
were then obtained from these simulations, and weighting parameters for these two con-
tributions were obtained by regression against known binding affinities. However, the
required scaling of the individual weights is contingent on the conditions used in the
simulation, which would seem to limit the universality of the method. Nonetheless, and
on a pragmatic level, the ability to train this method makes it appropriate to investigate
binding to a particular receptor. Liaison, a program distributed by Schrodinger, com-
bines molecular mechanics LIE methodology with a statistical model-building capacity
to generate models of ligand affinity within defined ligand receptor series.
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Another set of approaches assumes that ∆Gbind can be decomposed into a simple
sum of contributions, a so-called master equation, that can be defined physicochemi-
cally so as to avoid cross terms. All contributions to ∆Gbind are derived from one or a
few generic structures rather than average values from an ensemble. Electrostatic con-
tributions in the presence of water can be determined from a continuum solvent model
through a numerical solution of a linear PB equation. By considering a simple model,
including discrete atomic point charges, of the ligand, receptor, and receptor–ligand
complex as regions with a low dielectric constant embedded in a higher dielectric medium,
polar interaction energies can be calculated with respect to the solvent. A nonpolar
contribution to the desolvation energy is assumed to be proportional to the accessible
surface area lost from both molecules on complexation. Entropic contributions are
factored as the loss of overall molecular motion as well as intramolecular flexibility.
Many methods have used this approach to predict ∆Hbind (323–325). Similarly, Zou et
al. (326) used the “generalized Born Model” (GB) of Still et al. (327) for the calcula-
tion of polar interaction energies.

Molecular mechanics/GBSA (generalized Born surface area) is a widely used strat-
egy of this type for calculating the binding free energy (328,329). It combines molecu-
lar mechanical interaction energies with solvation terms based on implicit solvation
models, which can be obtained from the GB approach and a surface-dependent term or
using the PB equation. Both contributions are average values taken from a sampled MD
trajectory with explicit consideration of waters and counterions. Entropic contributions
are obtained from a normal mode or quasi-harmonic analysis of the trajectory. Recep-
tor–ligand complexes with significant structural differences may be studied effectively
using this technique. The free energies for the complex, isolated ligand, and isolated
receptor, are calculated for snapshot structures taken from the molecular dynamic tra-
jectory. The binding free energy is calculated as follows:

∆Gb = G(complex) − G(free receptor) − G(free ligand)

G(molecule) = EMM  + Gsol  − TS

in which ∆Gb is the binding free energy in water, EMM is the molecular mechanical
energy, Gsol is the solvation energy, and −TS is the entropy contribution to the solvation.
Angle brackets denote the average for a set of structures along a molecular dynamic tra-
jectory. The molecular mechanics energy, EMM, represents the internal bonded energy
(E bonded), electrostatic (E ), and van der Waals (E  ) interactions; and the solvation
energy, Gsol, is divided into two parts, the electrostatic (G ) and the hydrophobic
(G ) contributions:

EMM = E bonded + E + E

Gsol = G + G

The molecular mechanics energy, EMM, is calculated using an empirical force field.
The electrostatic contribution to the solvation free energy, G , is calculated by the
GB method (327). Studies have shown that there is a good correspondence between
GB and finite-difference PB calculations (330,331), although the latter has been used
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more frequently to calculate the electrostatic solvation free energy. The hydrophobic
contribution, G , is estimated empirically based on solvent-accessible surface area.
When calculating the binding free energy difference, it may be assumed that the stan-
dard entropy change is similar for both models and can therefore be assumed to cancel.

The growth of computer power during the last two decades has allowed the study
of biologically interesting systems including small and medium proteins using atom-
istic MD methodology. However, researchers are still faced with problems concern-
ing the validity of their models and the relatively short time scales that can be reached
on current serial machines. Many approaches have been tried to circumvent these prob-
lems, but only with limited success, because almost any attempt to reach longer time
scales will result in more approximations in the model. Previous attempts to utilize
MD and other atomistic simulation methods to investigate receptor–ligand interactions
have foundered on technical limitations within present computing methods. Although
many methods link thermodynamic properties to simulations, they take an unrealisti-
cally long time. A basic simulation yielding a free energy of binding requires something
like 10 ns of simulation. On the average desktop serial workstation, this requires a com-
pute time on the order of 300 h/ns. To simulate as few as a dozen flexible molecules
might entirely occupy a machine for several years. To circumvent these technical limi-
tations, one recourse might be to take advantage of high-performance, massively paral-
lel implementations of MD codes running on large supercomputers with 128, 256, or
512 nodes. Another, complementary way to circumvent this problem is to make use of
“grid computing.” This refers to an ambitious and exciting global effort to develop an
environment in which individual users can access computers, databases, and experi-
mental facilities simply and transparently, without having to consider where those
facilities are located.

Difficulties inherent in analyses of protein–ligand complex using simulation are dem-
onstrated well by the application of MD approaches to the MHC–peptide system. Small
in biomolecular terms, it is nonetheless prohibitively problematic in terms of comput-
ing methodology. Delisi and colleagues were among the first to apply molecular dynam-
ics to peptide–MHC binding, and have subsequently developed a series of different
methods (332–336). Part of this work has concentrated on accurate docking using molec-
ular dynamics and part on determining free energies from peptide–MHC complexes.
Rognan and colleagues have, over a long period, also made important contributions to
this area (337–342). In their work, dynamic properties of the solvated protein–peptide
complexes, such as atomic fluctuations, solvent-accessible surface areas, and hydro-
gen-bonding patterns, correlated well with available binding data. They have been
able to discriminate between binders that remain tightly anchored to the MHC mole-
cule from nonbinders that are significantly weaker. Other work by this group (343–345)
has concentrated on the design of nonnatural ligands for MHC molecules, demonstrat-
ing the generality of molecular dynamic approaches to problems of MHC binding. Other
work in the area has come from those interested in using the methodology to analyze
and predict features of peptide–MHC complexes. These methods have examined class
I (346,347) and class II (348), as well as investigated the effect of peptide identity on the
dynamics of T-cell interaction (349). Recently, Wan et al. (350) have applied massively
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parallel supercomputing technology to the simulation of the peptide–MHC complex
using an implementation of the AMBER force field within the LAMMPS program,
which was developed to scale well on multiprocessor machines. Unlike other attempts
to simulate MHCs, these investigators have performed long-duration unconstrained
simulations, in short turnaround times, demonstrating, beyond reasonable doubt, that
only full, rather than truncated, models can return accurate dynamic and time-averaged
properties.

5. Discussion
Generally speaking, currently available methods for the identification and analysis

of binding sites are useful computational tools able to exploit protein structural data in
order to facilitate the design of molecules. Whichever particular method is selected for
binding site analysis, the results typically support interactive design work and provide
suggestions for the modulation of ligand properties. The process—structure-based
drug design—seeks to identify or construct ligands that can bind with high affinity to
a structurally defined binding site of a target protein. It is thus important to analyze
properly a binding site by mapping those characteristics that are essential for molecular
recognition. Successful examples of structure-based design include ligands for carbonic
anhydrase (351) and DNA-gyrase (352). These and other examples provide compelling
evidence for the hierarchical, stepwise application of such techniques to be regarded
as a strategy of proven worth. Nevertheless, a considerable set of limiting factors still
precludes the development of a reliable, fully automated approach leading from a tar-
get structure all the way to a drug. Careful use of the methods and an equally careful
interpretation of the results are still required. Success is also still dependent on the
nature and quality of experimental data, whether structural or functional.

Many current limitations result from simplifications made to keep algorithms tracta-
ble given present-day computing resources, while others clearly reflect persisting prob-
lems in understanding and modeling fundamental processes of biomolecular recognition.
Problems of protein flexibility, solvent interactions, the dynamic synergism between
ligand and receptor, or the proper consideration of the cellular environment all remain
important stumbling blocks. Researchers are presently unable to quantify binding accu-
rately using theory alone. For this reason, knowledge-based methods may represent
the best approach for the foreseeable future, taking advantage, as they do, of the grow-
ing volume of experimental data and account, implicitly at least, for many effects that
are not yet properly understood. Yet different methods have different strengths and weak-
nesses, and it is often advisable to combine several methods when tackling a particular
system.

A combination of approaches, including both inheritance of locations and de novo
prediction, has allowed and fomented the development of databases that archive infor-
mation about binding sites. The first and arguably most important database of protein
ligand receptor complexes is the PDB (353,354), now run by the Research Collabora-
tive for Structural Biology. This stores the raw coordinates of almost all published pro-
tein structures. Other databases have taken the contents of the PDB and imposed manually
or automatically derived structural hierarchies aimed at simplifying and systematizing
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the ever-expanding structural universe of proteins. The two most important examples
of such databases are CATH (355,356) and SCOP (357). ISOSTAR (358) is a database
of nonbonded interaction geometries that contains approx 10,000 distributions of about
40 different types of contact groups (such as ammonium nitrogen atoms, carbonyl oxy-
gen atoms, and methyl carbon atoms) around about 300 central groups. Data mining for
protein-ligand complexes can be undertaken using RELIBASE (receptor–ligand data-
base) (359,360). It contains all structures in the PDB as well as additional data includ-
ing ligand atom and bond types, substructures, and crystal packing. CAVBASE (361)
is a recently developed database system focusing on the automated detection of simi-
lar binding site structure. It uses the LIGSITE methodology (237) to identify, excise,
and store protein surface cavities. For two example proteins, chorismate mutases and
serine proteases, CAVBASE returned proteins of similar function as the best ranked
hits even when they showed no significant sequence similarity (362). The eF-site (elec-
trostatic surface of functional site) is another molecular surface database (363), which
is composed of four subdatabases: eF-site/antibody (corresponding to the antigen-bind-
ing sites of antibodies with the same orientations), eF-site/prosite (corresponding to the
molecular surfaces for the individual motifs in the PROSITE database), eF-site/P-site
(corresponding to phosphate-binding sites), and eF-site/ActiveSite (corresponding to
active-site surfaces for the representatives of the individual protein family). Many other
databases, relevant in theme to the present discussion, are also available: other structural
databases (364–367), databases storing quantitative measures of receptor ligand affin-
ity (368–371), and also more qualitative databases containing data on protein-protein
interactions (372,373).

Although such databases may provide initial hints about function and binding site
location, the relationship between structure and function is by no means simple and
straightforward. A similar fold does not necessarily imply a similar biochemical func-
tion, and proteins with different folds can also show the same function and catalytic
mechanism; the lipocalins are an interesting example of a low-homology protein fam-
ily, notorious for the difficulty in assigning family membership, embedded in a larger
structural superfamily, the calycins, which seems even more tenuous at the sequence
level. As a starting point for the analysis of binding sites, it is often necessary to retrieve
all structural information that is available concerning the system of interest, requiring
databases supporting fast, flexible, and efficient user interfaces and tools for the retrie-
val, visualization, and analysis of data concerning protein–ligand complexes.

To understand the binding site is to understand binding, and to understand binding is
to understand the binding site. It is the binding site, after all, that specifies the struc-
tural and physicochemical constraints that must be met by any putative ligand (374),
yet within an evolutionary, teleonomic context, it is also the properties of the ligand
that determine the nature of the binding site. The purpose of this chapter has been to
examine the different methodologies that have been used to analyze, visualize, and pre-
dict binding sites, rather than to discuss in detail the nature of such analyses. However,
some things are clear. Ligand-binding sites are generally hydrophobic depressions,
ranging in size and concavity, depending on the nature of the molecule bound. More-
over, typically, yet not without exception, interfaces between subunits show distinct
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differences in their geometrical properties compared to ligand-binding sites. For exam-
ple, protein-protein interactions occur between flat areas of protein surface, whereas
specific interactions of smaller ligands take place in pockets in the surface.

6. Conclusion
There are two concepts that underlie our faltering steps to identify and analyze bind-

ing sites. The first is based on knowledge: when we know the location of a binding site
in one protein, then identifying that either the sequence or structure of another protein
is similar to it allows us to “inherit” the site from the first protein to the second. This
may involve a direct search for a clearly related sequence or structure, or a search for
more abstract motifs or geometric pattern of residues interacting in 3D. The second
approach involves the a priori prediction of a binding site from a sequence or a struc-
ture. This may involve an artificial intelligence or phylogenetic method operating on a
sequence or a structural analysis operating at the level of the physicochemical proper-
ties of the site and of potential interactions with ligands in 3D. Inherent uncertainty,
such as the dependence of binding site conformation on the presence of a ligand, can
be addressed either by dynamic methods able to predict these changes, such as high-per-
formance MD, or by trying to build this uncertainty into search models, so that ligands
are detected even when the binding site is represented by a suboptimal model. Thus,
the full and complete analysis of binding sites will necessarily involve the full range
of informatic techniques ranging from sequence-based bioinformatic analysis through
structural bioinformatics to computational chemistry and molecular physics. Integra-
tion of both diverse experimental and diverse theoretical approaches is thus a manda-
tory requirement in the evaluation of binding sites and the binding events that occur
within them.
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In Silico Protein Design

Fitting Sequence Onto Structure

Bassil I. Dahiyat

Summary
In the last 10 yr, efforts have begun to combine the goals and approaches of computa-

tional molecular design and protein sequence analysis to provide tools for the rational
mutagenesis and functional modification of proteins. These approaches use analysis of
the three-dimensional structure of a protein to guide the selection of appropriate amino
acid sequences to create desired properties or functions. The convergence of low-cost,
high-speed computers, a tremendous increase in protein structure information, and a grow-
ing understanding of the forces that control protein structure has resulted in dramatic
advances in the ability to control protein function and structure and to create the first truly
artificial proteins. Various academic software packages have been developed for in silico
protein design. The methods for selecting the protein structure, defining the portion to be
designed, and choosing the input parameters for the software are described in this chapter.

Key Words: Protein design; molecular modeling; computational design; protein engi-
neering; de novo protein design; protein stabilization; inverse protein folding; protein
stability; protein function design.

1. Introduction
In the early 1980s, Pabo (1) introduced the concept of screening protein sequences

for their compatibility with a protein structure as a way of designing novel proteins.
This idea is called inverse protein folding. The approach starts with a target protein
three-dimensional structure and attempts to find sequences that will fold into this struc-
ture. By contrast, protein folding attempts to predict the structure into which a particu-
lar sequence will fold. A key point of inverse protein folding is the large degeneracy
of solutions; a particular protein structure will have an enormous number of sequences
that are compatible with it, potentially providing a large set of proteins with different
properties that nevertheless take the same fold and perform the same function. This
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degeneracy makes inverse folding a much more tractable problem than protein folding,
for which the single conformation of a polypeptide has to be found from the vast num-
ber of possible chain configurations. Therefore, a complete solution of the inverse fold-
ing problem is not necessary because even a small subset of sequence solutions can pro-
duce improved proteins. Although discovery of the complete set of sequences for a
protein structure is not necessary to design proteins, finding more sequences offers a
broader set of protein properties and likely will enhance the performance of the pro-
tein against the design goal. Mutagenesis to manipulate protein properties has been
undertaken since the creation of tools for molecular cloning, but only in recent years
has the inverse protein-folding approach to protein design been tested (2–4). This chap-
ter describes the methods of in silico protein design and discusses the practical scope
for its use as a generic tool for protein optimization.

The process outline for in silico protein design consists of four steps:

1. Defining the design goal in a structural biology context.
2. Defining the structural and conformational variation that will be tested.
3. Applying scoring functions to differentiate the possible sequences.
4. Searching the sequence diversity defined in steps 1 and 2 for the optimally scoring sequences.

Figure 1 illustrates this process and also points out the critical role that experimental
testing of designed sequences plays, both in validating novel sequences and in improv-
ing the design methodology. Although feedback from laboratory experiments is nec-
essary for testing designed sequences, it has also been pivotal in development of design
methods over the last decade by allowing for the accurate parameterization of poten-
tial functions, and the improvement of sequence search techniques.

The first two steps of the process are the role of the user, and although they rely on
execution of the particular software package, the strategy for design changes little. All
of the in silico design packages are based on the same principles and operate very sim-
ilarly. Some design tasks are more suited to particular software, but availability of the
software is more important; there are no commercially available packages, and all in
silico design software is in a state of continual development in academic laboratories
(see Subheading 2.3.). The methods described in this chapter focus on those aspects that
are controlled by the software user attempting to design a protein, and some aspects of
the various software packages are described to assist in selecting a particular package.

2. Methods
The following methods outline how to set up in silico design calculations by cover-

ing design goal translation into desired structural perturbations, definition of the speci-
fic conformational and compositional diversity, and selection of the appropriate software
package.

2.1. Design Goal Definition
A protein design goal is usually a change in property, such as increased stability, or

a modulation of function, such as heightened signaling potency. The first step for in
silico design is relating this goal to a structural change. Simple examples are increas-
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ing the hydrophilicity of the protein surface to increase its solubility, or creating a more
selective receptor interaction by modifying the receptor-contacting residues. The struc-
tural strategy for design often draws heavily on insights from protein mutagenesis and
biophysical work on protein structure function, and often in silico design simply allows
the more comprehensive, more rapid, and more successful mutagenesis of a protein.
However, new frontiers, such as creating completely new protein folds, are possible,
(5) or introducing novel activities into a protein (6,7).

2.1.1. Structural Data
One of the challenges in creating effective protein design strategies is the variable,

and sometimes limited, structural data available for the protein of interest. The quality
of a structural model has a large impact on translation of the design goal into sequence
positions and amino acid diversity to be tested; poor structural quality or lack of data

Fig. 1. In silico protein design process flow. The functional design goal defines a region of
the protein to be manipulated, as well as a molecular context for the calculation such as receptor
or substrate complexes. The structure definition provides the details of the residue positions,
types of amino acids (AA), and the conformational variation considered for each side chain.
Sequence scoring is done by calculating side-chain interaction energies using the potential func-
tions specified for each region of the protein. The sequences with the best combination of inter-
action energies are then generated, followed by experimental testing. The success or failure of
the designed sequences is used not only to improve the particular protein design, but also to
improve the scoring functions and performance of optimization methods.
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on protein structure–function relationships makes it difficult to predict where a pro-
tein can be modified or even what structural features need to be changed. For example,
lack of knowledge of the binding site of a hormone can make it impossible to modify
its surface residues to improve solubility without disrupting its binding function. In
addition, the level of information on the structural context for the design is often poor;
for example, there are rarely structures of complexes between a protein of interest and
its receptor, or an enzyme with a substrate bound. This structural context serves as
important inputs to design software and can drive sequence selection. Limitations in the
quality of structural information challenge designers to select the appropriate struc-
tural regions and perturbation to the protein structure that will give a successful design.
A number of approaches have been tried to overcome this issue, but operator skill is
still the most important factor. An experienced designer can anticipate the inaccuracies
that might arise from imperfect structural information and set up the design calculations
to modify features of the structure that can be modeled more accurately or, alternatively,
to avoid situations in which there is too little information to proceed.

Aside from selecting design problems that have high-quality structural information
and structure–function data, there are two general approaches to dealing with low-qual-
ity structure–function and structure data: designing multiple protein sequences to, in
effect, check multiple hypotheses for how the structure might be designed (8); or using
information from homologous proteins to limit the amino acids considered, thereby
reducing the chance of error in the calculation. If designing multiple sequences, two to
three amino acid substitutions per position often need to be tested to provide a reason-
able chance of success. For 5 positions that results in on the order of 102 sequences;
for 10 positions, 104 sequences; and for 15 positions, 106 sequences (see Note 1). This
approach is workable for small structural regions, such as surface hydrophobic patches
of four or five residues that are being redesigned, or for problems for which protein
expression and experimental testing are very scalable, such as an enzyme optimization
in which a genetic selection assay can be used to test 106 sequences. Homology informa-
tion is most useful when large sets of homologous proteins are available to generate
probabilities of amino acid occurrences at each position in the homology family. The
most commonly occurring amino acids are then selected as the diversity (see Subhead-
ing 2.2.2.1.) at each position of the design.

2.1.2. Stability Design
Historically, the first design goals for automated protein design were improvement

of physical properties, such as stability and solubility (9,10). This choice was largely
driven by the use of molecular mechanics scoring functions that modeled energetic
interactions of amino acids, and that tried to find sequence arrangements that minimized
sequence energy on the protein backbone structure. Although not a prediction of free
energy of folding of a protein, this energy minimization approach was expected to, and
in fact did, find sequences that fit better on the protein backbone than the wild-type
sequence and, hence, resulted in more stable structures. The fitness of a sequence for
a structure is correlated to, although not identical to, the stability of the protein; a key
difference is that the design algorithm would need to consider whether the optimized
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sequence, although more stable on the target structure, would actually take a different
fold and confound the design altogether.

2.1.2.1. CORE AND BOUNDARY REGION

A variety of structural strategies are used to stabilize a protein. One of the most suc-
cessful is redesigning the hydrophobic core, which has been used to create stabilized
nonnative versions of proteins from numerous structural families (11–14). The hydro-
phobic core is typically selected to avoid modifying active sites or receptor-binding
sites, which are typically solvent exposed, and to increase the overall folding stabil-
ity of the protein by increasing the hydrophobic surface buried in the core and optimiz-
ing steric interactions. Core redesigns are typically well behaved and do not result in
modification of the protein backbone structure because of the tight steric constraints on
sequences. Expanding the region of design outward from the core, into the boundary
region between the core and the surface of the protein, has the potential for burial of
significantly more hydrophobic surface because of the greater flexibility of amino acid
side chains in the boundary, allowing more ways to pack and bury residues and to find
stabilizing interactions (Fig. 2). This approach has been used to create highly stable pro-
teins (10,15), but the terms in the scoring function must be balanced carefully to avoid
creating the potential for nonspecific interactions that can dominate the desired inter-
actions (14). This imbalance, possible because of the increased flexibility in the bound-
ary region, leads to poorly ordered proteins with ill-defined structures.

2.1.2.2. SURFACE REGION

Designs of the hydrophilic surface of proteins have also been successful at improving
physical properties; however, such designs must avoid disrupting functional interactions
or catalytic sites, which typically occur at the surface. Improved solubility can often be

Fig. 2. Core (light gray), boundary (dark gray), and surface (medium gray) residues in pro-
tein G β1 (Protein Data Bank identifier 1gb1). Region classification was by buried surface area
calculations.
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achieved by redesign of hydrophobic residues exposed on the protein surface, replac-
ing them with more soluble amino acids. Simple substitution with charged residues,
such as lysine or glutamic acid, however, is not always successful and can lead to non-
specific aggregation or destabilization of the protein fold. Selection of a design region
that encompasses the hydrophobic surface residues and includes proximal positions,
or selection of clusters with multiple hydrophobic residues, typically provides greater
enhancement of solubility while preserving structure and, indeed, often enhancing sta-
bility (9,16). Design of a region allows the algorithms to balance the solvation, hydro-
gen bond, and coulombic and steric forces; too much hydrophilicity can disrupt local
structure and often optimal designs have amphipathic or small charged residues. Fur-
ther, consideration of the secondary structure propensity of residues can often create
stabilizing designs on the surface, such as finding Thr substitutions in β sheets (17). In
silico designs, whether in the core or surface regions or a combination, are very success-
ful at optimizing stability because they perform simultaneous optimization of multi-
ple interacting residues and, hence, allow the addition of many small contributions to
enhanced stability.

2.1.3. Functional Designs
In silico design goals have expanded beyond stability and have included enzyme

catalysis, ligand-binding affinity, receptor selectivity, and pharmacokinetics. These are
widely varied goals, but the first step in defining the design strategy is similar. Either
a small structural region that mediates the function, such as an enzyme active site, is
selected or a large region, perhaps the entire protein, is selected to allow allosteric or
indirect structural modifications to affect function. Sometimes large regions are selected
because the functional site is not known, other times because indirect perturbations are
desired. It is possible to use both approaches simultaneously, but in any case the local
design vs large area strategies have very different structural change goals.

2.1.3.1. LOCAL DESIGNS AT FUNCTIONAL SITE

Local designs at functional sites have two general strategies. One is to preserve the
critical structural features of the site, such as ligand-binding residues, while creating
adjacent sequence diversity to modify protein performance. This strategy is used to mod-
ify an existing function, such as changing the substrate specificity of an enzyme (8).
The other strategy brings new amino acids into a specific functional geometry, such as
a catalytic triad, to create altogether new functions by fixing the new side-chain arrange-
ments and reengineering the surrounding residues (18–21). The inverse folding approach
to protein design ensures that any new amino acid sequences designed in these local
areas will conserve the structure of the protein and the local functional area. This expli-
cit preservation of structure allows focused designs to make unexpected and nonconser-
vative changes in the sequence at a functional site and, hence, large changes in function
with little risk of making mutations that ablate function. This ability to modify directly
the most conserved regions of a protein is in stark contrast to random mutagenesis and
evolution, which conserve residues in a functional site to avoid destroying the func-
tion. Controlling structure is pivotal for designs that attempt to create new functional
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sites and has enabled the de novo design of sensors and enzymes (20,22,23). One differ-
ence in strategy between de novo designs and functional site modification is that de novo
designs use highly detailed models of the desired functional site and target a very spe-
cific structural arrangement, whereas site reengineering typically does not have as much
detailed structural information. For example, an enzyme structure with substrate bound
might not be available. Therefore, several modifications that preserve the overall struc-
ture of the site would be sampled without a specific structural goal. Then experimental
testing of the candidates would be used to find the best designs.

2.1.3.2. LARGE STRUCTURAL REGION DESIGNS

Local designs are attempted when the functional site is clear even if complete detail
is not available. In many cases, there is no information about what part of the structure
is involved directly in activity. In particular, designs involving protein–protein inter-
actions often have no information about what residues are involved in binding. In such
cases, a large region, or perhaps the entire protein, is selected for design and broad
diversity is generated over a large part of the structure. Typical approaches are to rede-
sign the surface and adjacent boundary and core residues on a particular face of the pro-
tein suspected to be important (12,24). Alternatively, the entire protein surface can be
designed to assist in deducing where the functional site is while simultaneously opti-
mizing binding, by experimentally testing a large number of the designs. These large-
region designs act by the same mechanism as local designs: nonconservative diversity
that still preserves protein structure is created at multiple sites so that major improve-
ments in protein function are created without the risk of loss of function. The size of the
calculation can become a limiting factor, however, when the design region is more
than 50 residues, with both scoring function and optimization calculations becoming
intractable. Several approaches are used to control the calculation size, such as limit-
ing how many amino acids are considered at each position, but the most important fac-
tor is limiting the number of positions, so that there is always a balance between trying
to engage allosteric mechanisms and having practical design calculations. Typically,
assumptions are made about which regions of the protein are least likely to impact func-
tion or are most prone to deleterious changes, and those parts are left out of the design.
Furthermore, large, indirect design calculations can require experimental testing of a
large number of proteins, a very expensive proposition. A common approach is to select
a subset of the best designed sequences that cover a diverse set of amino acid sequence
changes, and test those sequences to build a structure–function relationship that guides
additional experimental testing.

2.1.3.3. COMBINING LOCAL AND LARGE-REGION DESIGNS IN PRACTICE

An interesting example of the combination of local site design and global sequence
diversity design is the engineering of dominant negative variants of tumor necrosis
factor (TNF)-α (24), an important cytokine in inflammation and autoimmune disease.
The design goal was to create variants of TNF-α that are incapable of binding receptor
but are still capable of trimerizing with other TNF-α molecules, thereby creating a dom-
inant negative agent that could be used as a therapeutic. In this case, a structure of the
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ligand was available, and the structure of a homologous protein bound to its receptor
was also available. The overall arrangement of the homology model of the ligand–recep-
tor complex was supported by mutagenesis data, but the presence of long, flexible loops
that had significantly different sequences between the homologous protein and TNF-α
made the details of the local structure suspect. Further, the ligand–receptor interface tar-
geted for disruption was largely overlapping with the TNF-α-TNF-α contacts that con-
trol trimerization. A large-region design was first undertaken along the whole of the
ligand–receptor interface, an area more than 30 residues, and mutations that disrupted
receptor interactions but preserved trimerization were found. The degree of receptor-
binding disruption was insufficient to create potent dominant negatives, however, and a
second phase of design that focused on sites identified in the first phase was done. These
sites were designed with more amino acid diversity and with greater inclusion of adja-
cent residues that were left out of the first phase. Additional dominant negative variants
were found that when combined created potent inhibitors. This design shows how initial
large-region design can be used to allow more detailed calculations of manageable size
in order to explore more sequence diversity and find superior performance.

2.2. Structural and Conformational Description
Following definition of the design goal and selection of a structural strategy, the pro-

tein structure and the amino acid diversity that will be considered in the design must be
defined quantitatively. The detailed structural description is an absolutely critical step
of the design and usually determines the success or failure of the design more strongly
than the details of the computational algorithms used. Because there are presently no
completely general objective methods for performing structure analysis and position/
amino acid assignment, operator care is important in successful protein design.

2.2.1. Selection of Backbone Scaffold Structure
The backbone structure is selected for the most accurate and complete representa-

tion of the region being modeled. The primary consideration is the quality of the struc-
ture in the design region. For example, if backbone or side-chain atoms are missing or
temperature factors are very high, then the model is not representative of the true situ-
ation and is likely to impact design results negatively. In addition, structures with atomic
resolution data result in superior designs because lower resolution means that atomic
coordinates are only weakly guided by experimental constraints. The most common
issue in backbone selection, however, is the lack of a three-dimensional structure for the
protein of interest, resulting in the need to construct a homology model from a related
structure. Advances in homology modeling and the explosion in the number of publicly
available structures has mitigated this issue in recent years, and adequate models can
typically be made from structures with as little as 50% sequence identity (see Note 2).
Sequence conservation in the design region is more important than overall identity,
and low-homology regions such as loops or receptor-binding sites can lead to inaccu-
rate structure models and poor design performance, whereas highly conserved motifs
such as cysteine knots or four-helix bundles can offer good structural models with as
low as 25% identity. The underlying model parameter that determines design accuracy
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is the deviation of the model structure from the true structure. A protein design study
that systematically perturbed the backbone coordinates of a structure demonstrated that
deviations less than 1.25 Å from the true structure did not degrade sequence designs,
but greater than 1.5 Å had a severe effect (11). Although no quantitative correlation
between sequence identity and structure deviation is known, these results generally cor-
relate with the successful use of homology models in protein design.

2.2.2. Position and Identity of Side-Chains
Once a structure for the protein backbone has been decided, there are two major tasks

in describing the protein structure and sequence diversity for design calculations: select-
ing the region of protein to design at the level of individual amino acid positions, and
defining the amino acid diversity that needs to be sampled. Selecting the structural pos-
itions to be designed, of course, is determined by the structural analysis of the design
strategy, but inclusion of specific residues particularly on the boundaries of the design
region can be ambiguous. The amino acids that are considered typically differ at the
different positions in the design and are determined by the structural and functional
role played by each residue. Limiting amino acid diversity from the full repertoire of
20 commonly occurring ones is desirable for two reasons: to reduce the number of
sequence combinations that must be considered during calculations and to avoid pre-
senting amino acids in contexts in which limitations in the scoring functions might result
in improper selection. In addition, the number of conformational states that will be tested
for each amino acid must be decided; too few will reduce accuracy and too many will
increase calculation time.

2.2.2.1. ASSIGNMENT OF AMINO ACID SET

Rules for deciding the amino acid identities to be considered in protein design should
be simple, general, and objective. The most common approach taken is to assign amino
acid sets based on whether a position is buried in the core of the protein, exposed on
the surface, or in the boundary between the two (Table 1). The rationale is that these
structural regions are each dominated by residues of particular types: the core is pre-
dominantly hydrophobic and the surface is predominantly hydrophilic, while the bound-
ary has both types of amino acid. Taking the simplest implementation of a core/surface/
boundary approach, there would be 8 hydrophobic amino acids at each core position,
10 hydrophilic amino acids at each surface position, and 17 amino acids at the boundary
positions (alanine is considered in both core and surface groups) (Table 1). Of course,
there are exceptions to these simple polarity rules in many proteins with either buried
polar residues or exposed nonpolar residues. Often, to account for these situations we
include the exceptional amino acid in the set for that position, and possibly similar resi-
dues; for example, a buried glutamine residue could be added to the hydrophobic amino
acid set, plus glutamic acid and asparagine. Additionally, homology-guided amino acid
set selection is also used (see Subheading 2.1.1.).

Other refinements of the basic considerations for amino acid diversity selection are
used to improve design accuracy or to create particular functionality. A common modi-
fication to improve the stability of core designs is to eliminate methionine from buried
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core amino acid sets. Methionine is the only hydrophobic residue that has more than
two rotatable side-chain dihedral angles and, therefore, loses the most entropy when
buried in the core. Elimination of methionine also speeds calculations. At times, amino
acid sets are selected in order to stabilize a secondary structure, such as picking amino
acids with high α-helix propensities (lysine, arginine, or glutamate) for helical regions
(9). Secondary structure biasing is only useful for surface designs, because the effects
of structural propensity are overwhelmed by tertiary structure packing in protein cores.
A very common modification to standard amino acid sets is to add functionality, such
as nonpolar residues to create a surface receptor-binding patch or specific hydrogen
bond donors to match to a ligand’s binding interface. In these cases, analysis of the
particular structural situation is used to guide a selection of an amino acid group. Three
amino acids, proline, glycine, and cysteine, are not used except in specific cases in which
their unusual properties are needed. Glycine, the only residue without an α carbon, has
a high degree of backbone flexibility and is used when extreme backbone dihedral angles
are needed, such as positive φ angles. Proline, by contrast, is very inflexible and is used
to terminate helical structures or to control backbone turn conformations. Cysteine is
used to create disulfide crosslinks, metal ligation sites, or, more recently, to introduce
nonnative chemical modification handles into specific locations in the protein.

2.2.2.2. RESIDUE POSITION DEFINITION OF DESIGN REGION

Selection of most structural positions to include in a design is quantitative. In the case
of functional designs, it is usually based on distance from the putative functional site,
and in the case of region designs (e.g., core or surface regions), it is usually based on
the fraction of a residue surface area that is buried from solvent. Distance criteria are
typically defined by measuring the distance between side-chain heavy atoms in the func-
tional site to side-chain heavy atoms in the backbone model structure of the surround-
ing protein. Alternatively, α carbon to α carbon or β carbon to β carbon distances are

Table 1
Typical Amino Acid Sets

Amino acid set Typical use

AVLIFYW(M) Hydrophobic core or binding patches (eliminate M for
lower entropy loss)

AVLF Minimal hydrophobic set to limit design size
ASTHDNEQKR Hydrophilic surface region
SEQK Minimal hydrophilic set to limit design size
AVLIFYWMSTHDNEQKR Boundary regions, functional sites, core
AVLFSEQK Minimal boundary set to limit design size
GND Unusual backbone conformation, e.g., positive backbone

φ angle
EQKR(N) Helical surface positions, for maximal stability

(N for amino-terminal capping)
TYQ β Sheet surface positions, for maximal stability



In Silico Protein Design 369

used, although there are no data on which of these definitions are best. Cutoff magni-
tudes of 4.5–5.5 Å select the first shell of residues around a site and result in 10–15
residues being selected. Ambiguity arises, however, because the side-chain placements
in the model structure are sometimes not predictive of those required for function and,
therefore, can be improperly left out or included by the strict application of distance
criteria. Similarly, calculations of solvent-accessible surface area of side chains usu-
ally assign residue positions unequivocally to the core or surface, but the somewhat
arbitrary thresholds used (typically >90% buried is core, <50% buried is surface, and
others are boundary) can lead to assignments that do not properly reflect the structural
disposition of residues (14). In these difficult cases, subjective analysis is necessary,
and design success depends on the experience of the user in understanding the behav-
ior of the design algorithm (see Note 3).

An objective criterion that is based solely on the backbone atom coordinates has
been proposed (17). Calculations of a solvent-accessible pseudosurface of the protein
using just C α atoms and a large pseudosolvent probe were done to define a metric for
solvent accessibility independent of side-chain identity and conformation. The C α to
C β vector directions for each residue were calculated and the distances along this vec-
tor from the C α and C β atoms to the pseudosurface were used to determine whether a
residue was in the core, surface, or boundary region. The specific distance criteria were
derived by comparing predictions for core or surface identity with calculations of sol-
vent-accessible area in complete protein structures, and as such, the criteria do not have
meaningful physical interpretations. This technique has been used successfully and is
an example of a less subjective methodology.

2.2.2.3. AMINO ACID CONFORMATIONAL DIVERSITY: ROTAMER SET ASSIGNMENT

Definition of the conformational diversity that will be tested for amino acids is the
final component in defining the structural model. Because in silico design models the
interactions of amino acids at atomic resolution, a detailed conformational description
that defines the position of each atom in the side chain is required. Therefore, each
possible configuration of each amino acid side chain, defined by the torsion angles of
the rotatable bonds (χ angles), must be considered when testing the goodness of fit of
each sequence. Detailed surveys of the conformations of side chains in the Protein Data
Bank have generated lists of common side-chain conformations, which, unsurprisingly,
follow standard noneclipsed conformations of small organic molecules (25,26). Leu-
cine for example, can take three possible states (60°, −60°, and 180°) for each of its two
rotatable bonds (χ1 and χ2), resulting in 3 ↔ 3, or 9, possible conformations. These
discrete conformations are called rotamers and are grouped into rotamer libraries. The
true conformational diversity of a protein, however, is continuous, not a set of discrete
rotamers, which has led to the use of expanded rotamer sets in which each rotamer has
multiple additional rotamers with small angle deviations generated. For example, the
60° leucine rotamer would have a 50° and a 70° rotamer generated. This would lead to
9 ↔ 9, or 81, possible leucine conformations to consider, which is a considerable expan-
sion of the number of computations but often significantly improves design performance
by reducing the deviation of the model from the actual states that occur in the protein.
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Note that bond and bond angle stretches are not considered, nor are the rotations of
methyl groups.

Expansion of the rotamer set to improve the sampling of side-chain conformations is
important to improve the accuracy of the model, but the benefit is more pronounced in
some structural regions, allowing the selective use of rotamer expansion of certain pos-
itions to minimize computational cost. Most in silico design software packages allow
control of this aspect of the rotamer library but limit selection to a set of predefined
options. Core packing benefits significantly from the small changes in side-chain confor-
mation that come from expanded rotamer libraries because of the dominant role that
the very stiff steric force plays in defining protein cores. Rotamer expansion is espe-
cially critical for limiting spurious clashes of aromatic residues (phenylalanine, tyro-
sine, and trytophan) because of the large rigid ring structure that can move several
angstroms from minor deviations in rotamer angle (Fig. 3). Surface residues are much
less dependent on rotamer expansion because of the much lower packing density on the
protein surface and the softer nature of the energetic terms that control exposed resi-
dues, such as electrostatics and polar solvation. Limiting or eliminating rotamer expan-
sion for surface positions is therefore typical, because many hydrophilic residues are
large and have three or four rotatable bonds, such as lysine and arginine, so rotamer
expansion would cause an explosion in the number of conformations that must be con-
sidered. Boundary residues are, unfortunately, impacted strongly by steric constraints
but also have hydrophilic residues playing a key role. Therefore, calculations that
include boundary residues often require the use of expanded rotamer sets for hydrophi-
lic residues, and the number of amino acid types and residue positions must be limited,
or different calculations must be combined (see Subheading 2.1.3.3.), in order to pre-
vent enormous problem sizes and impractical calculation times. This costly approach
is necessary because inaccurate conformational modeling for boundary residues can

Fig. 3. Examples of different conformations of different rotamers for phenylalanine demon-
strating dramatically different positioning of rigid aromatic ring arising from rotations about χ
angles.
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result in spurious amino acid selection that destabilizes the protein. A common tactic
to limit the size of expanded rotamer sets for hydrophilic residues is to expand only the
first two χ angles, leaving the distal rotatable bonds unexpanded.

2.3. In Silico Design Software Packages
Several software packages have been developed for protein design. Each has been

used in multiple successful designs and has mostly overlapping functionality because
all were developed as general design tools. The most well-known packages are ORBIT
(2,17,27), DEZYMER/RECEPTORDESIGN (4,19,23), and RosettaDesign (28). No
software packages are commercially available; therefore, access is via direct contact
with the authors of the packages at their academic institutions. These three in silico
design software packages share very similar approaches and can be used in similar ways.
In particular, the strategies in Subheading 2.1. and 2.2. are applicable. Because all pack-
ages are undergoing continuing development and are constantly in flux, it is impos-
sible to provide detailed instructions on their operation, even though they all operate
on the same underlying principles. Although all are general tools, they have been
used and optimized by their authors for particular problems: DEZYMER/RECEPTOR
DESIGN has been very successful at de novo enzyme and subtrate binding design,
RosettaDesign has been used for de novo backbone and sequence design, and ORBIT
has been used for stability design and for improvement of binding affinity.

In silico design software has two main components: calculation of amino acid inter-
action energy based on the conformational diversity and positions specified by the user,
and searching of the defined sequences for those with the best scores. Little user con-
trol is afforded over the optimization routines in design software; therefore, no specifica-
tion by the user is required. The scoring functions used are also mostly defined but do
have some elements of user control, primarily in selecting which terms of the potential
function, each modeling a particular physical force, are used. It is not recommended
that the user manipulate the quantitative parameters of the potentials, such as van der
Waals radii or partial charge values. These parameters all impact each other and their
values have been balanced by laborious trial and error, like most potential functions,
and therefore should be viewed as a self-consistent set.

2.3.1. Selection of Potential Function Terms
The structural region that is being designed is the main factor in selecting potential

function components. The general principle is to use the terms appropriate for a region
and not to include other terms when not necessary, because additional terms can add
essentially random error to the calculation (see Note 4). The software packages men-
tioned in Subheading 2.3. all have developed potential functions that attempt to deal
with this issue by selecting parameter values to minimize these possible errors or by
allowing for selection of different potential functions at different positions. Core regions
are dominated by steric forces, with a contribution from hydrophobic solvation, because
nearly all residues are hydrophobic in the core. Electrostatics and hydrogen bonding
are usually not necessary in the core and, therefore, should be eliminated unless hydro-
philic amino acids are being considered, which is rare. Similarly, surface residues are
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not typically modeled using hydrophobic solvation because of the high conformational
flexibility of these residues and their highly polar nature. Electrostatics and hydrogen
bonding are critical, with sterics playing a less crucial role in scoring sequences. Boun-
dary residues again pose a problem, because they can be buried or exposed, depending
on the rotamer in question, and therefore usually require all potential function terms
because both polar and nonpolar residues are considered.

3. Notes
1. The combinatorial definition of the sequences that can arise during protein design is a

central feature to the problem. The number of amino acids possible at each position is
multiplied by the number possible at every other position. If each position has 5 possible
amino acids, then a 10-position calculation has 107 possible sequences, 15 positions have
1010 possible sequences, and 20 positions have 1013 possible sequences. Therefore, control
of the number of positions is the most important factor in limiting the size of the problem
and, hence, the speed of the calculation. Current software packages can readily deal with
problems of approx 50 amino acids on single central processing unit servers, and new
optimization methods are now allowing problems of 100 or more positions to be consid-
ered on multiprocessor machines.

2. Homology modeling methods in both commercial and academic software have been used
effectively in protein design, but several pitfalls need to be avoided. First, flexible loop
regions are extremely difficult to model and often do not provide reasonable results. These
regions often lack a fixed structure and therefore are not good candidates for design. Sec-
ond, regions of low sequence identity can make the overall sequence identity appear too
low for accurate modeling; however, if the design region has good identity (>70%), then
a successful design is usually possible. Finally, energy relaxation of the final structure,
typically via conjugate gradient energy minimization, is important because residual strain
in the packing or electrostatic energies can create very high energies in design calculations.

3. An important tactic to limit the negative impact of the somewhat arbitrary exclusion of a
residue position from the design is to allow some positions on the boundary of the design
to change conformation but to keep their identity fixed at the wild-type amino acid. This
approach allows flexibility in the conformational sampling of the design region, generally
improves accuracy, and increases the problem size only modestly. Usually, all residues that
contact a significant portion of any designed residue are modeled with this conforma-
tional flexibility.

4. Development of accurate scoring functions was crucial to enable in silico protein design.
Scoring functions are used to calculate the fitness of a sequence for the structure relative
to the other possible sequences being considered for the design. The goal is not to determine
an absolute energy for a sequence, which is a very difficult task, but, rather, to differentiate
accurately and rapidly among the usually very large number of alternatives. Although the
scoring functions in use today have been successful in a number of design problems, includ-
ing enzyme function, stability enhancement, and binding, there is still a need for improve-
ments in sequence scoring accuracy.

A significant decision in scoring function development was the emphasis on using bio-
physical potential functions, rather than informatics or sequence-based functions. The pri-
mary advantage of a biophysical strategy is that it is unbiased and not limited by which
protein structures happen to have been studied, or which sequences are present in a data-
base. Biophysical potentials, such as steric interactions, electrostatics, and solvation, are
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the same no matter which protein structure or function is being considered. This indepen-
dence from bias to known sequences and structures is crucial because there is no guaran-
tee that a new functional property or new structure is best achieved by sequences that are
related to natural proteins. In addition, methods based on sequence informatics are likely
not to be applicable to proteins that fall outside of the information data set. Of course, the
challenge in achieving the benefits of using biophysical potential functions is in accu-
rately modeling the highly complex and interrelated physical forces that govern protein
structure.

The dominant forces are steric interactions usually modeled by van der Waals potentials,
solvation usually modeled by surface area-based atomic solvation potentials, electrostatic
interactions usually modeled with a coulombic potential, and hydrogen bonding usually
modeled by specific potentials to account for polar hydrogen interactions. The forms of
these potential functions are very similar to standard molecular mechanics functions used
in force fields such as CHARMM, AMBER, or DRIEDING. Protein design algorithms
rebalance the emphasis of these forces, however, and often simplify the functional forms.
Simplification of the functional forms allows more rapid calculation, a key issue in pro-
tein design, as well as simplified interpretation; the more complex functional forms are
usually not more accurate at scoring sequences and can be seen as a source of “noise” in
interpreting results. The rebalancing of forces is driven by the need to differentiate accu-
rately among the many sequence choices that fit best in the protein structure, and the lack
of a need to calculate absolute energies. The inherent inaccuracies of the energy models,
especially for electrostatic energies, are such that an attempt at calculation of absolute
energy is rife with random error when viewed over the entire sequence set being considered.
Therefore, a rebalancing that tunes down the contribution of the electrostatic terms in par-
ticular creates more accurate results.
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Chemical Database Preparation
for Compound Acquisition or Virtual Screening

Cristian G. Bologa, Marius M. Olah, and Tudor I. Oprea

Summary
Virtual and high-throughput screening are time-saving techniques that have been suc-

cessfully applied to identify novel chemotypes in biologically active molecules. Both meth-
ods require the ability to aptly handle large numbers of chemicals prior to an experiment
or acquisition. We describe a step-by-step preparation procedure for handling large collec-
tions of existing or virtual compounds prior to virtual screening or acquisition.

Key Words: Cheminformatics; drug discovery; high-throughput screening; leadlike-
ness; property filtering; unwanted structures; virtual screening.

1. Introduction
Recently established (1,2), virtual screening is regarded as a complement to bioac-

tivity screening (3,4). The aim of virtual screening is to sift through a vast amount of
compounds, in order to identify rapidly structures of interest for biological screening.
Its experimental counterpart, high-throughput screening (HTS) is also aimed at sifting
through a large amount of structures, based (often) on single-point, single-experiment
results. Both procedures rely on the ability to process, using cheminformatics tools, a
large number of structures (5). However, post-HTS analyses (6) are often clouded by
the presence of reactive species or optically interfering components (which can be
the result of sample degradation) in biochemical assays (7) and the tendency of chemi-
cals to aggregate (8) or turn up as frequent hitters (9). Computational filters geared to
remove “unwanted” molecular species are now in place and are discussed in Section 3.
The progression HTS hits = > HTS actives = > lead series = > drug candidate = > launched
drug has shifted the focus from good-quality candidate drugs to good-quality leads (10).
A set of simple property filters known as the “rule of five” (Ro5) (11) is implemented
in the pharmaceutical industry to restrict small-molecule synthesis in the property
space defined by ClogP (octanol/water partition coefficient), molecular weight, HDO
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(number of hydrogen bond donors), and HAC (number of hydrogen bond acceptors).
The property distribution of chemical and drug databases in the Ro5 space is well char-
acterized (12). Many library design programs based on combinatorial chemistry or com-
pound acquisition are now Ro5 compliant. Smaller compounds are easier to optimize
(13) toward the drug candidate status, and leadlikeness has become an established con-
cept in drug discovery (14). Here we discuss compound databases in the context of both
“unwanted structure” removal (7) and property (leadlike) filtering (14). However, the
responsibility of implementing such criteria in database evaluation resides with the
end user and should be regarded as context dependent. Whether for compound acqui-
sition for HTS, or in preparation for a virtual screen, there is a clear need for database
cleanup and preparation. What follows is a step-by-step procedure on how an existing
or commercial collection of compounds should be processed prior to virtual screening
or acquisition. Its emphasis is on software from Daylight (www.daylight.com/), Open
Eye (www.eyesopen.com/), and MESA (www.mesaac.com). Similar software is avail-
able from Optive Research (www.optive.com; Optive products are also available from
Tripos, at www.tripos.com), Accelrys (www.accelrys.com/), Tripos (www.tripos.com),
SciTegic (http://scitegic.com), and Chemical ComputingGroup(www.chemcomp.com/).

2. Materials
1. Software to convert chemical structures based on standard file formats (e.g., SDF, mol2)

into canonical isomeric SMILES (15,16), or equivalent representations of chemical struc-
tures (e.g., refs. 17 and 18).

2. Software to handle canonical isomeric SMILES (or equivalent) and provide chemical
fingerprints, e.g., Daylight (19), Unity (20), Mesa Analytics and Computing (21), Barnard
Chemical Information ([22]; see also www.bci.gb.com/clusteranalysis.html), MDL Keys
[23]; see also www.mdli.com/), or Chemical Computing Group’s MOE (24).

3. Software to compute chemical properties from structures; e.g., to calculate the octanol/
water partition coefficient, LogP (25) with CLogP (26), KowWIN (27), or ALogPS ([28];
see also http://146.107.217.178/lab/alogps/index.html) among many LogP predictors.

4. Software to cluster chemical structures from fingerprints or from computed properties
(29–32).

5. Software to convert SMILES (or equivalent) into appropriate three-dimensional (3D)–
coordinate systems using CONCORD (www.optive.com or www.tripos.com), CORINA
(available from Molecular Networks GmbH, www.mol-net.de/), OMEGA (www.eyesopen.
com/).

6. Software to appropriately handle D-optimal design based on multidimensional spaces, e.g.,
MODDE 7 from Umetrics (www.umetrics.com/).

3. Methods

3.1. Assembling the Collection(s)
In time, and often via merges and acquisitions, large pharmaceutical companies have

acquired compound collections, Reals (14), that contain a significant number of mole-
cules, including marketed drugs and other high-activity compounds. The Reals are, by
themselves, a valuable resource that is routinely screened against novel targets. One can

www.daylight.com/
www.eyesopen.com/
www.mesaac.com
www.optive.com
www.tripos.com
www.accelrys.com/
www.tripos.com
http://scitegic.com
www.chemcomp.com/
www.bci.gb.com/clusteranalysis.html
www.mdli.com/
http://146.107.217.178/lab/alogps/index.html
www.optive.com
www.tripos.com
www.mol-net.de/
www.eyesopen.com/
www.eyesopen.com/
www.umetrics.com/
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argue that these collections reflect the chemistry used to address targets from the past,
and that novel targets require novel chemistry, because yesterday’s chemistry is by now
overpatented. These arguments do not exclude these molecules from being considered
for either HTS or virtual screening. By the same token, such collections of structures
must include existing sets of commercially available chemicals, or Tangibles—termed
this way because one can conceivably acquire them or synthesize them in-house using
tractable chemistry (14). Thus, any collection prepared for virtual or HTS would sam-
ple both the in-house and the “external” chemical spaces. In addition to the Reals and
the Tangibles, one can also define the Virtuals—an extremely large set of molecules
(1060–10200) that cannot all be made, at least with current chemistry, but that can essen-
tially be used as “resource” for virtual screening.

Having appropriate informatics systems to access these virtual and existing com-
pounds via fingerprints, two-dimensional (2D) or 3D descriptors, or other measured
or computed property spaces is key to the screening strategy. The largest collection of
Virtuals and Tangibles is represented by the ChemNavigator database (33). As of April
2005, this database contained more than 21 million samples, representing more than 13
million unique chemicals. This database is available on a subscription basis. If access
fees for this database are an issue, one can download other collections from chemical
vendors over the Internet; some are given in Table 1. ChemNavigator offers compounds
from more than 154 companies; therefore, the list in Table 1 is far from exhaustive. The
virtual space alternative is best represented by the ChemSpace™ technology, a patented
database/software approach from Tripos (www.tripos.com) that routinely explores 1014–
1015 Virtuals (34). ChemSpace is only available on a collaborative basis.

3.2. Cleaning Up the Collection
There is no “perfect” chemical database, unless it contains rather simple (e.g., NaCl,

H2O) or a rather small number of molecules. The user needs to spend a significant effort
in cleaning up the collection, whether it includes Virtuals, Reals, or Tangibles. Some
sites, such as ChemNavigator (33), provide their own solution to this problem. We pre-
fer FILTER (see Note 1), a program available from OpenEye (35), although you can
“wash” your collection in MOE (see www.chemcomp.com/) or pass it through SciTegic’s
Pipeline Pilot (http://scitegic.com/). Regardless of the method used, the user needs to
make some early decisions regarding the collection’s “makeup.” One obvious sugges-
tion is to remove “unwanted” chemical structures, such as those depicted in Fig. 1.

3.2.1. Removing Garbage From the Collection
Split covalent salts, remove small fragments (salts), and normalize charges. This is

clearly an instance in which the user is confronted with multiple choices. For typical
pharmaceutical screening, it is advisable to remove unwanted structures, such as those
depicted in Fig. 1. One should always consider “unwanted” structures in context; for
example, a large number of antineoplastic agents would be considered as “reactive spe-
cies” according to Fig. 1. Furthermore, the vast majority of flavor compounds are mono-
functional aldehydes. Therefore, when seeking actives in oncology or in flavor science,
substructure filters need to be reevaluated.

www.tripos.com
www.chemcomp.com/
http://scitegic.com/
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Table 1
Examples of Company Databases Available for Purchase

Number of
Company name Web address compounds Description

4SC www.4sc.de/ 5,000,000 Virtual library; small-molecule drug candidates
ACB BLOCKS www.acbblocks.com/acb/bblocks.html 90,000 Building blocks for combinatorial chemistry
Advanced ChemTech http://triton.peptide.com/index.php 18,000 OmniProbeTM: peptide libraries; 8000 tripeptide,

10,000 tetrapeptide
Advanced SynTech www.advsyntech.com/omnicore.htm 170,000 Targeted libraries: protease, protein kinase,

GPCR, steroid mimetics, antimicrobials
Ambinter http://ourworld.compuserve.com/ 1,750,000 Combinatorial and parallel chemistry, building

homepages/ambinter/Mole.htm blocks, HTS
Asinex www.asinex.com/prod/index.html 150,000 Platinum collection: drug-like compounds
Asinex 250,000 Gold collection: drug-like compounds
Asinex 5009 Targeted libraries: GPCR (16 different targets)
Asinex 4307 Kinase-targeted library (11 targets)
Asinex 1629 Ion-channel targeted (4 targets)
Asinex 2987 Protease-targeted library (5 targets)
Asinex 1,200,000 Combinatorial constructor
BioFocus www.biofocus.com/pages/drug__ 100,000 Diverse primary screening compounds

discovery.mhtml
BioFocus ~16,000 SoftFocus: kinase target-directed libraries
BioFocus ~10,000 SoftFocus: GPCR target-directed libraries
CEREP www.cerep.fr/cerep/users/pages/Products >16,000 Odyssey II library: diverse and unique discovery

Services/Odyssey.asp library; more than 350 chemical families
CEREP 5000 GPCR-focused library (21 targets)
Chemical Diversity www.chemdiv.com/discovery/downloads/ >750,000 Leadlike compounds for bioscreening

Labs, Inc.
ChemStar www.chemstar.ru/page4.htm 60,260 High-quality organic compounds for screening
ChemStar >500,000 Virtual database of organic compounds
COMBI-BLOCKS www.combi-blocks.com/ 908 Combinatorial building blocks
ComGenex www.comgenex.hu/cgi-bin/inside.php? 260,000 “Pharma relevant”, discrete structures for

in=products&l_id=compound multitarget screening purposes

www.4sc.de/
www.acbblocks.com/acb/bblocks.html
http://triton.peptide.com/index.php
www.advsyntech.com/omnicore.htm
http://ourworld.compuserve.com/homepages/ambinter/Mole.htm
www.asinex.com/prod/index.html
www.biofocus.com/pages/drug_discovery.mhtml
www.cerep.fr/cerep/users/pages/ProductsServices/Odyssey.asp
www.chemdiv.com/discovery/downloads/
www.chemstar.ru/page4.htm
www.combi-blocks.com/
www.comgenex.hu/cgi-bin/inside.php?in=products&l_id=compound
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ComGenex 240 GPCR library
ComGenex 2000 Cytotoxic discovery library: very toxic

compounds suitable for anticancer and antiviral
discovery research

ComGenex 5000 Low-Tox MeDiverse: druglike, diverse, nontoxic
discovery library

ComGenex 10,000 MeDiverse Natural: natural product–like
compounds

EMC microcolection www.microcollections.de/catalogue_
compunds.htm# 30,000 Highly diverse combinatorial compound collections

for lead discovery
InterBioScreen www.ibscreen.com/products.shtml 350,000 Synthetic compounds
InterBioScreen 40,000 Natural compounds
Maybridge plc www.maybridge.com/html/m_company.htm 60,000 Organic druglike compounds
Maybridge plc 13,000 Building blocks
MicroSource Discovery www.msdiscovery.com/download.html 2000 GenPlus: collection of known bioactive

 Systems, Inc. compounds
NatProd: collection of pure natural products

Nanosyn www.nanosyn.com/thankyou.shtml 46,715 Pharma library
Nanosyn 18,613 Explore library
Pharmacopeia www.pharmacopeia.com/dcs/order_ N/A Targeted library: GPCR and kinase

Drug Discovery, Inc. form.html
Polyphor www.polyphor.com/ 15,000 Diverse general screening library
Sigma-Aldrich http://www.sigmaaldrich.com/Area_of_ 90,000 Diverse library of drug-like compounds, selected

Interest/Chemistry/Drug_Discovery/ based on Lipinski’s Rule of Five
Assay_Dev_and_Screening/Compound_
Libraries/Screening_Compounds.html

Specs www.specs.net/ 240,000 Diverse library
Specs 10,000 World Diversity Set: pre-plateled library
Specs 6000 Building blocks
Specs 500 Natural products (diverse and unique)
TimTec www.timtec.net/ >160,000 Compound libraries and building blocks
Tranzyme® Pharma www.tranzyme.com/drug_discovery.html 25,000 HitCREATE library: macrocycles library
Tripos www.tripos.com/sciTech/researchCollab/ 80,000 LeadQuest compound libraries

chemCompLib/lqCompound/index.html

www.microcollections.de/cataloguecompunds.htm#
www.ibscreen.com/products.shtml
www.maybridge.com/html/m_company.htm
www.msdiscovery.com/download.htm
www.nanosyn.com/thankyou.shtm
www.pharmacopeia.com/dcs/order_form.html
www.polyphor.com/
http://www.sigmaaldrich.com/Area_of_Interest/Chemistry/Drug_Discovery/Assay_Dev_and_Screening/Compound_Libraries/Screening_Compounds.htm
www.specs.net/
www.timtec.net/
www.tranzyme.com/drug_discovery.html
www.tripos.com/sciTech/researchCollab/chemCompLib/lqCompound/index.html


380 Bologa et al.

Fig. 1. Examples of chemical substructures that can cause interference with biochemical assays
under high-throughput screening conditions.
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3.2.2. Verifying Integrity of Molecular Structure
To be correctly understood and processed by computer, the structures must be entered

in a “computer-friendly” format, which is not necessarily “human friendly.” A signifi-
cant amount of “wrong” molecules appear (36) because of incorrectly drawn chiral
centers, conformers, bridge compounds, and so forth. This can become a significant
source of errors in structure–activity relationship studies (37,38). Because visual inspec-
tion for all the structures is not an option in really large collections, one has to use
an automated procedure for detection (and perhaps correction) of some of the wrong
entries. If specialized software for this operation, such as CheD (39), is not available,
good results in detecting errors can be achieved after converting the original structural
files (usually in SDF format) into SMILES using two or more conversion tools (e.g.,
Daylight mol2smi, OpenEye babel2), followed by canonicalization (Daylight’s cansmi),
and then by comparing the resulting SMILES. The number of errors differs signifi-
cantly among chemical vendors, ranging from under 0.05 to 10%, or higher. A totally
automated method for error detection and removal of faulty structures needs to be imple-
mented prior to large-scale screening of any collection, be it Reals or Virtuals.

3.2.3. Generation of Unique, Normalized SMILES
Once canonical SMILES are derived, one should store just unique SMILES by veri-

fying structure identity while ignoring compound IDs or molnames. If the Virtuals or
Tangibles are compiled from a large number of software vendors, there is a good chance
that this will clean up 50% or more of the starting collection. At this step, it is advisa-
ble to use a list of “preferred” or “trusted” vendors first. Such lists are developed with
time, so first-time users must take some risks in this step. Whenever the budget is limited,
a script to keep low-price structures can be used.

3.3. Filtering for Lead-Likeness
After cleanup, the collection can be processed to remove compounds that do not

have leadlike properties (7,13,14). Compounds that pass this filter—between 10 and
80%, depending on the source of the compounds in the collection—are prioritized for
screening. It is advisable to cluster (see Subheading 3.7.) the remaining “nonleadlike”
set and to include a representative set of these compounds (up to 30%), because they are
likely to capture additional chemotypes. It remains the responsibility of the end user
to apply, or discard, the leadlike concept, or to adjust the parameters prior to acquir-
ing/screening compounds. Our suggestions for exclusions according to leadlikeness are
as follows:

• More than four rings.
• More than three fused aromatic rings (avoid polyaromatic rings, because they are likely to

be processed by cytochrome P450 enzymes and yield epoxides and other carcinogens).
• HDO more than 4; HDO ≤ 5 is one of the Ro5 criteria, but 80% of drugs have HDO less

than 3 (12).
• More than four halogens, except fluorine (avoid “pesticides”). A notable exception is the

crop-protectant business; in such situations, the collection must be processed with entirely
different criteria.

• More than two CF3 groups (avoid highly halogenated molecules).
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The “unwanted” list is likely to reflect a “cultural bias” that is particular to each com-
pany. For example, companies active in contraceptive research (e.g., Organon and
Wyeth) might regard steroids favorably at this stage, whereas other companies might
want to actively exclude them from the collection at an early stage. Similar arguments
could be made, e.g., for the lactam nucleus (penicillins, cephalosporins) and peptides.
An additional step may include removal of known frequent hitters (8) or promiscuous
binders (9), and the removal of compounds that contain fragments responsible for
cytotoxicity (see Fig. 1).

The collection could be regarded as an initial step, in which manipulation occurs
only once prior to all (virtual) screens (see Note 2), assuming that targets are similar
and that the drug discovery projects have similar goals, such as orally available drugs
that should not penetrate the blood–brain barrier. However, the screening set may be
just the Tangibles subset. The collection may therefore require different processing cri-
teria for different targets and discovery goals; targets located in the lung require a differ-
ent pharmacokinetic profile, e.g., for inhalation therapy, compared with targets located
in the urinary tract that may require good aqueous solubility at pH = 5.0, or on the skin
(LogP between 5 and 7 is ideal for such topical agents). Such biases should be intro-
duced as much as possible at the property filtering stage, because they reduce the size
of the chemical space that needs to be sampled.

3.4. Searching for Similarity If Known Active Molecules are Available
Whenever high-activity molecules are available from the literature, from patents or

in-house data, the user is advised to perform a similarity search on the entire Virtuals or
Tangibles for similar molecules (see Subheading 3.7.), and to seek actively to include
them in the (virtual) screening subset, even though they might have been removed dur-
ing the previous steps. These molecules should serve as positive controls; that is, they
should be retrieved at the end of the virtual or HTS as “hits,” if the similarity principle
holds.

3.5. Exploring Alternative Structures
The user should seek alternative structures by modifying (40) the canonical isomeric

SMILES, because these may occur in solution or at the ligand-receptor interface:

• Tautomerism, which shifts one hydrogen along a path of alternating single/double bonds,
mostly involving nitrogen and oxygen (e.g., imidazole).

• Acid/base equilibria, which explore different protonation states by assigning formal
charges to those chemical moieties that are likely to be charged (e.g., phosphate or guani-
dine) and by assigning charges to some of those moieties that are likely to be charged under
different microenvironmental conditions (“chargeable” moieties such as tetrazole and ali-
phatic amine).

• Exploration of alternate structures whenever chiral centers are not specified (Daylight’s
chiralify, OpenEye’s flipper)—because 3D structure conversion from SMILES in such cases
does not “explode” all possible states. Another example is pseudochiral centers such as
pyramidal (“flappy”) nitrogen inversions that explore noncharged, nonaromatic, pseudo-
chiral nitrogens (three substituents), because these are easily interconverted into three
dimensions.
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Exploring alternative structures is advisable prior to processing any collection with
computational means, such as for diversity analysis (see Note 3). The results will influ-
ence any “buy” decision, as well as the results of any virtual screen.

3.6. Generating 3D Structures
Perhaps more important for virtual screening, but equally relevant for selection

methods using 3D-based chemical descriptors, is the effort of exploring one or more
conformers per molecule. For example, in virtual screening, one or multiple conform-
ers per molecule are needed. Some docking software, such as FRED (41), can gener-
ate the 3D structures from SMILES prior to the actual docking step. Other docking
programs require a separate 3D conversion step (42), such as using CONCORD (www.
optive.com or www.tripos.com) or CORINA (www.mol-net.de). OpenEye’s SZYBKL
(www.eyesopen.com) has integrated force-field and solvation models, allowing the user
to explore multiple conformational spaces. Other conformational “exploders” are also
available: Catalyst (www.accelrys.com/), Confort (www.optive.com or www.tripos.com)
and OMEGA (www.eyesopen.com). To address the missing or improper chirality infor-
mation, CONCORD is now coupled with StereoPlex (www.optive.com or www.tripos.
com), a software that makes “educated guesses” about the chiral centers that require
systematic 3D exploration.

3.7. Selecting Chemical Structure Representatives
Screening compounds that are similar to known actives increases the likelihood of

finding new active compounds, but it may not lead to different chemotypes, a highly
desirable situation in the industrial context. The severity of this situation is increased
if the original actives are covered by third-party patents or if the lead chemotype is
toxic. Sometimes, the processed collection may simply be too large to be evaluated in
detail, or even to be submitted to a virtual screen. In such cases, a strategy based on
clustering and perhaps on statistical molecular design (SMD) is a better alternative,
compared to random selection. Clustering methods aim at grouping molecules into
“families” (clusters) of related structures that are perceived—at a given resolution—
to be different from other chemical families. With clustering, the end user has the ability
to select one or more representatives from each family. SMD methods aim at sampling
various areas of chemical space and selecting representatives from each area. Some soft-
ware is designed to select compounds from multidimensional spaces, such as Library
Explorer (43), which is based on the BCUT metric (44,45). The outcome of the selection
is likely to be influenced by several factors, as discussed next.

3.7.1. Chemical Descriptors
Chemical descriptors are used to encode chemical structures and properties of com-

pounds: 2D/3D binary fingerprints or counts of different substructural features, or per-
haps (computed) physicochemical properties (e.g., molecular weight, CLogP, HDO,
HAC), as well as other types of steric, electronic, electrostatic, topological, or hydro-
gen-bonding descriptors. The choice of what descriptors to use, and in what context,
depends on the size of the collection, the software and hardware available, as well as the
time constraints given for a particular selection process.

www.optive.com or www.tripos.com
www.optive.com or www.tripos.com
www.mol-net.de
www.eyesopen.com
www.accelrys.com/
www.optive.com
www.tripos.com
www.eyesopen.com
www.optive.com
www.tripos.com
www.tripos.com
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3.7.2. Similarity (Dissimilarity) Measure
Chemical similarity is used to quantify the “distance” between a pair of compounds

(dissimilarity, or 1 − similarity), or how related the two compounds are (similarity).
The basic tenet of chemical similarity is that molecules exhibiting similar features are
expected to have similar biological activity (46). Similarity is, by definition, related to
a particular framework: that of a descriptor system (a metric by which to judge similar-
ity), as well as that of an object, or class of objects, reference point with which objects
can be compared is needed (47). Similarity depends on the choice of molecular descrip-
tors (48), the choice of the weighting scheme(s), and the similarity coefficient itself.
The coefficient is typically based on Tanimoto’s symmetric distance-between-patterns
(49), and on Tversky’s asymmetric contrast model (50). Multiple types of methods are
available for evaluation of chemical similarity (46,51–54; see Note 4).

3.7.3. Clustering Algorithms
Clustering algorithms can be classified using many criteria and also implemented

in different ways (29–32). Hierarchical clustering methods have been traditionally used
to a greater extent, in part owing to computational simplicity. More recently, chemical
structure classifications are examining nonhierarchical methods. In practice, the indi-
vidual choice of different factors (descriptors, similarity measure, clustering algorithm)
depends also on the hardware and software resources available, the size and diversity of
the collection that must be clustered, and not ultimately on the user experience in pro-
ducing a useful classification that has the ability to predict property values. We prefer
Mesa’s clustering method (31) for its ability to provide assymetric clustering and to deal
with the “false singletons” (borderline compounds that are often assigned to one of at
least two equally distant chemical families).

3.7.4. Statistical Molecular Design
SMD can be applied to rationally select collection representatives, as illustrated for

building block selection in combinatorial synthesis planning (55). Various methods for
experimental design (56), such as fractional factorial or composite design, can be applied
for sampling large solution spaces, particularly if only a rather small screening deck can
be investigated in the first round.

3.8. Assembling List of Compounds for Acquisition or Virtual Screening
Once provided with an output from one or several methods for compound selection,

the now-selected collection representatives are almost ready to be submitted for acqui-
sition or for virtual screening. The end user is encouraged to allow nonleadlike mole-
cules (i.e., molecules that violate one or several criteria outlined in Subheading 3.3.)
to be reentered into the candidate pool. An additional random, perhaps nonleadlike selec-
tion (up to 30%) can, and should, be entered in the final list of compounds. This does
not imply that random selection is more successful compared to rational methods, or
that criteria for rational selection ought to be taken lightly. However, since serendipity
has played a major role in drug discovery (57), one should allow a certain degree of ran-
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domness in the final selection. If randomly selected compounds are included, the final
list of compounds should be verified, once more, for uniqueness—to avoid screening
duplicates.

4. Notes
1. In its current implementation, FILTER rewrites the canonical (Daylight) SMILES. One

cannot restore the canonical format post-FILTER by redirecting the output via cansmi,
because canonicalization using OELib (pre-OEChem product from OpenEye)–generated
SMILES can be erroneous for some structures. Instead, the user is advised to restore the
original, canonical Daylight SMILES from the input file (pre-FILTER). Future OEChem-
based versions of FILTER may not require this procedure.

2. For virtual screening, it is also advisable to eliminate molecules that contain more than
nine connected single bonds not in ring or more than eight connected unsubstituted single
bonds not in ring; and macrocycles with more than 22 atoms in a ring or macrocycles with
more than 14 flexible bonds, because high flexibility has been shown to decrease the
accuracy of the docking procedure (58).

3. If alternative structures are not explored prior to virtual screening, the method will explore
only a limited state of the “parent” compounds. These changes are likely to occur in real-
ity, because the receptor and the solvent environment, or simple Brownian motion will
influence the particular 3D and chemical state(s) that the parent molecule is sampling.
Their combinatorial explosion needs to be, within limits, explored at the SMILES level
before the 3D structure generation step.

4. If the 3D structure of the bioactive conformation is available (e.g., an active ligand crystal-
lized in the target binding site), then the user should perform both a 3D similarity search
and a 2D-based one, because they are likely to yield different results. Including represen-
tatives from both searches is preferred.

Conclusion
The procedure described herein can be summarized as follows:

1. Assemble the collection starting from in-house and on-line databases.
2. Clean up the collection by removing “garbage,” verifying structural integrity, and making

sure that only unique structures are screened.
3. Perform property filtering to remove unwanted structures based on substructures, property

profiling, or various scoring schemes; the collection can become the virtual screening set
at this stage, or it can be further subdivided in a target- and project-dependent manner.

4. Use similarity to given actives to seek compounds with related properties.
5. Explore the possible stereoisomers, tautomers, and protonation states.
6. Generate the 3D structures in preparation for virtual screening, or for computation of 3D

descriptors.
7. Use clustering or SMD to select compound representatives for acquisition.
8. Add a random subset to the final list of compounds. The final list can now be submitted

for compound acquisition or virtual screening.
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Bioinformatics Platform Development

From Gene to Lead Compound

Alexis S. Ivanov, Alexander V. Veselovsky,
Alexander V. Dubanov, and Vladlen S. Skvortsov

Summary
In the past 10 yr, the field of bioinformatics has been characterized by the mapping of

many genomes. These efforts have stimulated explosive development of novel bioinfor-
matics and experimental approaches to predict the functions and metabolic role of the new
proteins. The main application of the work is to search, validate, and prioritize new targets
for designing a new generation of drugs. Modern computer and experimental methods
for discovery of new lead compounds have also expanded and integrated into the process
referred to as rational drug design. They are directed to accelerate and optimize the drug
discovery process using experimental and virtual (computer-aided drug discovery) meth-
ods. Recently, these methods and approaches have merged into a “from gene to lead” plat-
form that includes the processes from new target discovery through obtaining highly effec-
tive lead compounds. This chapter describes the strategies as employed by the “From Gene
to Lead” platform, including the major computer and experimental approaches and their
interrelationship. The latter part of the chapter contains some examples of the steps required
for implementing this platform.

Key Words: Rational drug design; bioinformatics; lead compound; computer-aided
drug discovery; target discovery; database mining; target validation; structure-based drug
design; ligand-based drug design; de novo design.

1. Introduction
The pipeline of drug discovery from idea to market consists of seven basic steps:

disease selection, target selection, lead compound identification, lead optimization,
preclinical trial evaluation, clinical trials, and drug manufacturing. For a long time,
the principle sources of compounds for experimental testing were living organisms
(plants, animals, microorganisms) and “classic” chemical synthesis. During experimen-
tal testing, most of the compounds were rejected as unpromising owing to the absence
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of or low requested activity, the existence of toxicity or carcinogenity, the complexity
of synthesis, and so on. As a result, only one of several hundred thousand examined
compounds would become a drug and be available in the pharmaceutical market. Thus,
the time it takes new drugs to be developed may reach up to 12–15 yr at a total cost of
$800 million (1,2). The reduction of time- and money-consuming final stages of the
drug discovery pipeline (clinical trials and drug manufacturing) is practically impos-
sible owing to strict state standards and laws. Therefore, main efforts to increase the
efficiency of drug development are directed at the earlier stages of lead discovery and
optimization.

During the past 10 yr, researchers in the lead discovery area paid special attention
to modern approaches such as computer sciences, i.e., bioinformatics integrated with
new experimental methods, frequently called “rational drug design.” This methodol-
ogy is directed at accelerating and optimizing the discovery of new biologically active
compounds suitable as drug candidates (lead compounds). It includes two approaches:
experimental and virtual (computer-aided drug discovery [CADD]). Extensive genome
decoding of various organisms, including human, has also allowed bioinformatics ap-
proaches to predict several new potential targets.

Recently these methods and approaches have merged into a “from gene to lead”
platform that covers the principle part of the pipeline from new target discovery to
obtaining highly effective lead compounds that can be tested in preclinical and clini-
cal trials (Fig. 1). Several steps of this platform include computer modeling, virtual
screening, and properties predictions that decrease time- and money-consuming steps.
For instance, CADD methods can reduce the amount of compounds that are synthe-
sized and tested by up to two orders of magnitude. Nonetheless, these approaches can-
not completely replace the real experiments. The purpose of computer methods is to
generate highly probable hypotheses about new targets and/or ligands that must be
tested later in direct experiments.

This chapter describes the main strategies and methods of a from gene to lead plat-
form, employing computer and experimental approaches at different steps and in a com-
plementary manner. The last part of the chapter contains specific examples of the steps
in implementing this platform.

2. Materials

2.1. Genomic and Protein Databases
For automated target selection various databases can be employed:

1. Databases with primary genomic data (complete genomes, plasmids, and protein sequences):
National Center for Biotechnology Information (NCBI) GenBank (3), EBI-EMBL (4),
DNA Databank of Japan (DDBJ) (5).

2. Databases with annotated protein sequences, such as Swiss-Prot and TrEMBL (6) and Protein
Information Resource (PIR) (7).

3. Databases with results of cross-genome comparisons, such as COG/KOG (Clusters of Ortho-
logous groups of proteins) (8) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologies (9).
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4. Databases containing information on protein families and protein classification, such as
Pfam and SUPFAM (10), and TIGRFAMs (11).

5. Web services for cross-genome analysis (including tools for antimicrobial target selection),
such as TIGR Comprehensive Microbial Resource (CMR) (12) and Microbial Genome
Database for Comparative Analysis (MBGD) (13).

6. Databases on protein–protein interactions (both experimental and predicted data), such as
DIP (14), BIND (15), InterDom (16), and FusionDB (17).

7. Databases on metabolic and regulatory pathways, such as KEGG (9) and PathDB (18).
8. Databases with protein three-dimensional (3D) structures, such as Protein Data Bank (PDB)

(19) and satellite databases and their recompilations, e.g., PDB-REPRDB (20).
9. Integrated resources such as PEDANT (21).

Complete information on currently available collections of databases on the Internet
can be obtained from special issues of Nuclear Acid Research (22). A list of databases
suitable for novel antimicrobial target selection is provided in ref. 23.

2.2. Molecular Databases
It is crucial to have access to some databases that hold different structures of macro-

molecules and small compounds. The spatial structures of proteins are principally col-
lected in PDB (19). There are numerous different databases with structures of small
compounds. The crystallographic structures are collected in Cambridge Structural Data-
base (24). This database is currently the largest, unique collection of experimental data
on 3D structures of small compounds (about 300,000). Its enormous size, however, has
at least two weaknesses. First, it contains numerous structures that are not attractive
for drug design (e.g., organometallic compounds). Second, many compounds that are
not factual and must be synthesized are present. These compounds require consider-
able effort to synthesize. Pharmaceutical companies often prefer to use their own cor-
porative databases, collected from different open and corporate sources. Other molecu-
lar databases are commercially available ones, such as NCI (25), MDDR (26), and CMC
(27). The main disadvantage of these databases is that they have been extensively ana-
lyzed, so the chance of finding new lead compounds is very low. In practice, it is more
convenient to use specialized databases that collect the structures of commercially
available samples of small compounds from different chemical classes. These samples
can be promptly purchased for experimental testing and using such databases precludes
chemical synthesis. Examples of such databases are ASINEX (28), ChemBridge (29),
and MayBridge (30). In some cases, these databases can be replaced with personal data-
bases holding virtual structures of compounds generated by a special computer pro-
gram, such as CombiFlexX from the SYBYL suite (31).

2.3. Software and Hardware
Automated target selection for novel antimicrobial agents can be performed with the

help of specialized software tools:

1. “Homegrown” software developed by academic researchers in accordance with their partic-
ular target selection tasks. This approach is characteristic of the earlier phase of automated
target selection methods (32,33).
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2. Commercial software and databases designed for solution of routine bioinformatics tasks.
For example, GeneData Phylosopher suite (34) contains the module for antimicrobial tar-
get selection.

3. Custom scenarios (scripts, macros) that were written in interpretative programming lan-
guages (e.g., Perl [35] or Python [36]) using free libraries, classes, and functions for bioin-
formatics data processing (37), such as BioPerl (38) and BioPython (39). From our point
of view, this approach is more preferable because target selection may be performed in
strict accordance with project requirements. All calculations and target search can be per-
formed both locally and by using Web services, such as Entrez Utilities (40) and NCBI BLAST
(41). These services offer a good alternative to commercial software because they pro-
vide considerable flexibility in comparison to many approaches.

4. Web services for cross-genome analyses, such as Comprehensive Microbial Resource (12).
These services are mainly demonstrative but can be used for preliminary target searches.

Many cross-genome analyses can be carried out locally in cases in which unpub-
lished genomes are utilized in target selection. CADD requires various methods of cal-
culation by using specialized software and highly effective hardware. Recent CADD
investigations frequently employ multiprocessor servers and graphical stations under
UNIX management. Currently, PC clusters under LINUX are becoming more and more
popular for such calculation. Two major commercial software suites, SYBYL from Tripos
(31) and Insight II and Quanta from Accelrys (42), are suitable for CADD, implement-
ing nearly complete processing of drug design. We prefer to use SYBYL, and this chap-
ter is based on using the different modules from this suite (see Note 1). For some local
purposes, we also use several cheap academic programs, such as AMBER (43), and share-
ware or freeware programs (e.g., GROMACS [44], a very popular program for molec-
ular dynamics simulation).

3. Methods

3.1. Genome-Based Antiinfective Target Selection

3.1.1. Bioinformatics Approaches in Genome-Based Target Selection
Automated target selection is usually used as the first step in novel anti-infective

agent design, because most of the feature requirements for the target protein in patho-
genic microbes can be easily formalized. These requirements can be deduced from
desired features of “ideal” antiinfective drug (see Table 1) (33,45). In accordance with
the modern concept of target selection, all proteins encoded by target microbial genomes
should be examined for fitness to these requirements and the best candidates can be
selected as potential targets.

Target selection is usually divided into two steps: preliminary automated potential
target search, and the final manual target selection based on the data about protein func-
tion. The first step reduces the number of potential targets from thousands (typical
bacterial genome coding about 1500–4000 proteins) to about 10–20 put on the prelim-
inary hit list. In the second step, the perspective potential targets are selected and prior-
itized. We recommend using step-by-step selection (33) instead of the scoring scheme
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(32) because the significance of several criteria may vary in different studies. We believe
that serial semiautomated selection makes procedures more manageable.

3.1.2. Main Criteria of Target Selection for Antimicrobial Agents
3.1.2.1. SPECTRUM AND SELECTIVITY

Every protein in a microbial genome can be estimated for its compliance to the re-
quested biomedical requirements by examining homologous proteins (genes) in genomes
of other organisms. Usually one microbial genome (the most extensively studied) from
the microbial group of interest is selected as the target genome, while other genomes
are divided into genomes in which the presence of the target (or its homologs) is favor-
able. The contents of this group (different strains of target species and other pathogenic
species) reflect the requirements for the desired antimicrobial spectrum of a new drug
and genomes in which the presence of the target (or its homologs) is unfavorable, and
the contents of this group (human and other mammalian genomes, genomes of human
symbiont bacteria) reflect the requirements for selectivity of a new drug. The proteins
from target genome that have homologs from the first group and not from the second
group are selected as potential targets.

Cross-genome homology maps may be utilized for target selection in accordance
with the required spectrum and selectivity of a new drug. The use of gene orthology
databases seems to be optimal (23). However, detection of similar proteins in different
species cannot guarantee their identical drug specificity. There is no effective auto-
mated approach for overcoming this difficulty, because potential drug-binding sites are
not yet determined at the stage of target selection.

Table 1
Requirements of “Ideal” Antimicrobial Agent and Its Target

Drug Target

Biomedical requirements

Effective suppression of growth and reproduction
of micro-organism Important for growth and reproduction

Lethality to pathogen Essential for survival
Definite antimicrobial spectrum Occurs in all target microbial species

and strains
Selectivity: minimal host toxicity Absent in host (human)
Selectivity: minimal alteration of normal microflora Absent in host’s (human) symbiont

bacteria
Low risk of resistance Conserved in all target strains

Technological requirements

Target-based CADD Available 3D structure
Definite mechanism of action Known function

CADD, computer-aided drug discovery.
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3.1.2.2. 3D STRUCTURE OF TARGET

At present the most rational way to find the lead compound for a drug with a novel
mechanism of action is structure-based drug design (SBDD) using the 3D structure of
a new target. Naturally, spatial structure of the target protein (solved experimentally
or modeled) should be available. The possibility of homology modeling of the 3D struc-
ture of a target depends on the availability of close homologs (templates) with known
3D structures in PDB. Not less than 40% sequence identity of target and template pro-
teins is required for successful homology modeling (see Subheading 3.3.). It was shown
previously that the presence in PDB of the 3D structure of a target or close homolog is
a very strict requirement, which can eliminate the bulk of targets meeting other require-
ments (33). In this case the resulting hit list will contain potential targets that have
already been studied (or its homologs) for different reasons. On the other hand, such
selection makes subsequent computational and experimental steps simpler, faster, and
more cost-effective, because the main methods and rules of expression, purification,
crystallization, and so on have already been developed.

All criteria related to the spectrum, selectivity, and 3D structure of a target are well
formalized. They can be estimated directly from the sequence similarity. Therefore, these
criteria are used for automated screening in the first step of target selection.

3.1.2.3. PROTEIN–PROTEIN INTERACTIONS

Much attention is focused on the development of novel antimicrobial drugs acting
as inhibitors of protein–protein interactions (46,47). Protein–protein interfaces are
more conserved than enzymes’ active sites and other functional elements of protein
structures. Therefore, it is possible to decrease significantly the risk of drug resistance
caused by target protein mutations. It is expected that it is more preferable to select
enzymes acting in homo- or hetero-oligomeric forms as target. Mutations in the inter-
face areas of oligomeric complexes seem unlikely because two correlated mutations
must occur in order for the mutant complex to survive. Nevertheless, such improbable
correlated mutations apparently take place in molecular evolution, and this phenom-
enon was proposed for prediction of probable protein-protein interactions (48).

Many tools are now available for computational analysis of protein–protein inter-
actions as a first step of target selection. Examination of interacting proteins is based
on the results of cross-genome analysis and includes old established as well as com-
pletely new approaches:

1. Annotation by similarity: Several proteins from the target organism may exhibit significant
similarities with proteins involved in complex formation in other organisms. The major-
ity of annotations indicating that a protein is involved in a protein–protein complex were
obtained in this manner.

2. Phylogenetic patterns (genomic profiles, cooccurrence): The use of phylogenetic patterns
for finding the proteins involved in a common pathway or complex (i.e., functionally linked
proteins) is based on a suggestion that such proteins are jointly present or absent in several
organisms. Phylogenetic pattern describes an occurrence of a particular protein in several orga-
nisms. If two or more proteins have identical phylogenetic patterns, it can be suggested that
these proteins are functionally linked (48,49). This approach provides only general informa-
tion about functional dependencies between proteins and not discovered putative complexes.
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3. Chromosome neighbors: If in several genomes the genes coding particular proteins are
neighbors on the chromosome DNA sequence, these proteins tend to be functionally linked
(23,49). For example, it was shown that this method correctly identifies functional links
among eight enzymes involved in the pathway of arginine biosynthesis in Mycobacterium
tuberculosis (23). This method is considered to be more useful for prokaryoteic genome
analysis, in which operons are common; however, it can also be applied for eukaryotic
genomes (7,49).

4. Domain fusion (“Rosetta Stone”): Analysis of fused domains is based on the suggestion
that evolution results in fusion of neighboring functionally linked protein-coding genes.
The reverse situation is also possible: it has been suggested that two or more proteins in
one organism are functionally linked (most likely forming complex) and correspond to dif-
ferent domains of a single polypeptide chain in other species (48,49).

5. Correlated mutations: If a particular pair of residues in separate proteins is important for
protein-protein complex formation, cases of correlated mutations of these residues are ex-
pected. For example, if a negative-charged residue (−) in one protein interacts with a pos-
itive-charge residue (+) in another protein, the change of the first residue to (positive) should
be correlated with the change of the second residue to (negative). Therefore, the prediction
of complex formation may be based on finding examples of such mutations (48).

6. Interacting domains (sequence signatures): Sequence motifs of interacting domains can
be found in annotated proteins. The likelihood of interaction between every pair of motif
can be used to find the interacting pairs between other proteins in which these motifs are
present (48). Several of the aforementioned methods (Chromosome neighbors, Domain
fusion, and Correlated mutations) can predict the formation of heterooligomeric complexes.
The finding of interacting domains may also suggest the formation of homooligomeric com-
plexes. However, prediction of homo-oligomers is mostly done by sequence similarity.

The results of these methods employed for the analysis of several genomes are avail-
able via the Internet (see Subheading 2.1.).

The methods just discussed usually produce false-positive and negative-results. To
improve the reliability of predictions, it is recommended that these methods be em-
ployed simultaneously (49–53). The incompleteness of genome sequencing and errors
in gene recognition also may result in wrong predictions of protein–protein interactions.
The current state of the art requires that the results of computational prediction of pro-
tein–protein interactions be experimentally validated.

3.1.2.4. FINAL TARGET SELECTION AND PRIORITIZATION

Currently, the crucial step of final target selection and prioritization in modern drug
development requires considerable manual effort. Computation of probable expenses
and some not-well-formalized criteria are used at this step. In addition, protein function
and its metabolic role are principally considered. Enzymes of cell wall components,
vitamin biosynthesis, and proteins involved in transcription and/or translation are pref-
erable. Enzymes that catalyze “key” reactions are also preferable, whereas structural
transport proteins and enzymes from alternative metabolic pathways are not preferable
(32). The presence of mammalian enzyme with the same function as the target but with
different sequence may increase the complexity of selective drug creation.

From a technological point of view, the water-soluble proteins are more preferable
than membrane-bound ones. In the case of a published genome, the information about
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probable protein solubility and intracellular localization may also be found in annotated
protein databases (see Subheading 2.1.). There are also some approaches for predicting
a protein’s intracellular localization. The three principle approaches for predicting a
protein’s subcellular localization are as follows (48,54):

1. Direct prediction from sequence similarity with already annotated proteins;
2. Prediction using phylogeny (based on conception of the cell components’ evolution);
3. Prediction based on recognition of the sorting signal sequence motifs.

The third approach is the most accurate, but knowledge on sorting signals is not com-
plete. The combination of these approaches should be the optimal strategy (48). Recently,
high-throughput approaches for experimental target validation have been developed.
These technologies make it possible to validate approx 10% of proteins encoded by typ-
ical bacterial genomes (55).

3.2. Experimental Technologies for Target Validation
Currently, the number of known targets that respond to the action of known drugs

approaches several hundred, while the number of new perspective targets that can be
retrieved from genomic information is reaching the thousands. In this context, it is very
difficult to choose optimal targets. In the pharmaceutical and biotech industries, this
selection is vital to the reduction in cost and time needed to produce a drug (56). Expen-
sive failures might be avoided as early as possible by using experimental target valida-
tion—the process of deciding whether a probable target protein can be used for design-
ing new drugs. Thus, target validation is currently the bottleneck of “from gene to lead”
platform implementation. It is important to note that final target selection defines all
subsequent phases of the platform. When several targets are selected, the project will be
divided into several independent projects with a proportional increase in total expenses.
Thus, the main task of target validation is a maximal reduction in the number of poten-
tial targets (at least to 10) and obtainment of additional information for target prioriti-
zation. The existing experimental techniques for target validation are diverse and range
from in vitro approaches to animal models. It is stipulated by novelty of the given prob-
lem, which solution is only at the beginning. The final choice of the “right” or “best”
target can be made by the researchers once the target’s implementation has proven
successful and feasible.

3.2.1. Proteomic Methods
It is quite reasonable to utilize proteomic methods (57–61) for tentative target vali-

dation with the task of eliminating the “wrong” proteins, meaning those that do not
meet the right criteria.

3.2.1.1. EXAMINATION OF TARGET EXPRESSION

Initially, researchers must check whether the proteins of interest selected by genome-
driven methods are expressed in the target organism. For this purpose, standard proteomic
analysis has been used (Fig. 2). When researchers propose the creation of a new anti-
microbial agent with an extended spectrum of action, it is necessary to examine the ex-
pression of target proteins in all representatives of the selected micro-organism’s group.
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3.2.1.2. EXAMINATION OF TARGET EXPRESSION IN DIFFERENT STRAINS

Researchers should obtain proteomic maps for different strains of all target micro-
organisms and perform comparative analysis. If a variation in target expression is
detected, such a protein can be rejected from the list of potential targets for the reason
of possible drug resistance.

3.2.1.3. ANALYSIS OF PROTEIN–PROTEIN INTERACTIONS

Currently, the perspective of creating novel drugs that act on the level of molecular
ensembles has been discussed (47). More frequently, the inhibitors of protein-protein
interactions, especially the inhibitors of dimerization, have been considered (46,62).
Now the newest proteomic methods for analysis of protein–protein interactions can
give some functional description of protein-protein interaction (63–65). Using such
information as a basis, researchers can select proteins in molecular complexes as new
potential targets (66).

3.2.2. Genomic Methods of Target Validation
Further validation of targets, successfully passed through proteomic examination,

can be accomplished by using different genomic methods (66–69). The majority of such
approaches are based on one common idea—to verify the functional importance of
potential targets by stopping their expression at the different steps of the pathway “from
gene to protein” (Fig. 3). Certainly, genomic methods of blocking protein expression
are more preferable in fast-growing cells. In species in which the potential targets have
long half-lives and are renewed slowly, the methods of direct protein inactivation are
more subjective (see Subheading 3.2.3.).

Fig. 2. Standard proteomic analysis flow chart. MALDI-TOF MS, matrix-assisted laser
desorption ionization time-of-flight mass spectrometry.
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3.2.2.1. TARGET GENE INACTIVATION

3.2.2.1.1. Dominant Negative Mutants. The Dominant Negative Mutant approach
is based on engineering of such mutations that eliminate protein function and also inhibit
the function of simultaneously expressed wild-type protein (70). Dominant negative
mutants have already provided the understanding of molecular mechanisms of some
protein families’ action, such as hormones and growth factors. This method tends to be
most effective for proteins that need to assemble into multimers to be functional.

3.2.2.1.2. Gene Knockout. A genetically engineered mutant organism that carries
one or more genes whose function has been completely eliminated (a “null allele”) can
be produced. Knockouts (KOs) are mostly directed at learning about a gene that has
been sequenced but has an unknown or incompletely known function (69,71). Research-
ers draw inferences from how the KO differs from individuals in which the gene of
interest has not been made inoperative.

3.2.2.2. Transcription Suppression: Zinc-Finger Proteins. Zinc-finger proteins
belong to the group of transcription factors and constitute the largest individual family
of proteins (>1000 sequences) (72). Zinc-finger proteins are characterized by a short,
two-stranded antiparalled β-sheet followed by an α-helix. Two pairs of conserved histi-
dine and cysteine in the α-helix and second β-strand coordinate a single zinc ion. Proteins
contain multiple fingers that wrap round the DNA in a spiral manner (Fig. 4). Fingers
insert the α-helix in the major groove with a high level of recognition between the helix
and DNA. The selectivity of these proteins can be changed by mutations in finger amino
acid positions 1, 2, 3, and 6 relative to the start of α-helix (74–76) and by adjusting the
number of fingers. Using zinc-finger engineering methods, researchers are able to pro-
duce different zinc-finger transcription factors that specifically regulate any given gene
of interest. These features allow the use of zinc-finger proteins for target validation.

Fig. 4. Zinc-finger protein–DNA recognition. A designed consensus zinc-finger protein (in
white) bound to DNA (in gray), available from Protein Data Bank (PDB) (PDB index 1MEY),
is shown (73). (A) Schematic representation of complex; (B) Van der Waals representation.
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3.2.2.3. DESTRUCTION OF TARGET MRNA

3.2.2.3.1. Ribozymes. Ribozymes are specific RNA molecules (oligonucleotides)
that can catalyze specific biochemical reactions without the need for ancillary proteins.
Natural ribozyme-catalyzed reactions may be either intramolecular (autocatalytic), such
as self-splicing or self-cleaving, or intermolecular, using RNA or DNA as substrates (77).
Numerous ribozyme motifs have been found in nature, and additional catalytic motifs
have been identified via in vitro selection (78). Hammerhead motif (the smallest naturally
occurring ribozyme motif) can be engineered and chemically synthesized to serve as a
highly active agent of mRNA destruction (79). Such artificial ribozymes are a useful tool
for selective inhibition of specific mRNAs (80). Broad applications of this approach
in target validation are currently being discussed (81,82).

3.2.2.3.2. Small Interfering RNAs. RNA interference is a revolutionary new discov-
ery of the last 10 yr (83,84). This effect is based on the action of small interfering RNAs
(siRNAs) and presents the phenomenon of certain genes becoming silent. siRNAs are
double-chain RNAs composed of about 20 bases (85). The nucleotides of opposite chains
of siRNAs are paired according to the same laws of complementarity as DNA chains
in chromosomes. In addition, the boundaries of each siRNA chain always contain two
unpaired nucleotides. The principle of siRNA action is shown in Fig. 5. When siRNA
occurs in the cell, it binds with two enzymes (helicase and nuclease), forming the so-
called RNA-induced silencing complex. As the result of helicase action, the chains of
siRNA untwist and break up. Then the chain with bound nuclease interacts with the
complement site of the target mRNA, allowing nuclease to cut the last target mRNA.
After that the parts of mRNA are eliminated by the action of other cellular RNases.

Fig. 5. Action of small, interfering RNA on mRNA. ATP, adenosine triphosphate.
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Thus, the main specialty of siRNA is to knock down target gene expression effec-
tively and with high specificity. The use of siRNA makes it possible to validate targets
in a wide variety of cell types in culture in a cost-effective fashion. For these purposes,
chemically synthesized siRNA duplexes as well as expression vectors encoding siRNAs
can be utilized.

3.2.2.4. TRANSLATION SUPPRESSION

3.2.2.4.1. Antisense RNA. Antisense RNAs are oligonucleotides (about 20 bases long)
that are complementary to a portion of target mRNAs and repress the expression of
certain genes (86,87). Antisense binds to the mRNA and forms a DNA-like double-helix
complex (Fig. 6A). It prevents the reading of information from mRNA and, hence, stops
the synthesis of encoded protein. After this gene has been knocked out, the functional
effects of the gene can be studied. Using recombinant DNA methods, some synthetic
genes coding antisense RNAs can be brought into the organism. Thus, antisense RNA
can be utilized for experimental validation of potential target proteins (88–95).

3.2.2.4.2. RNA Lasso. In cells the duplex RNAs, including antisense/mRNA com-
plexes, are destroyed quickly by RNases. Alternatively, antisense can be displaced by
the helicase-like action of the ribosome during translation. As a result, the effect of anti-
sense action can be short. SomaGenic has created a gene-targeting approach, called the
RNA Lasso (96), based on special antisense RNAs forming very stable complexes with
mRNA, since the ends of this molecule can form the knot (Fig. 6B). Thus, RNA Lasso
may be a good choice for experimental target validation.

3.2.2.4.3. Peptide Nucleic Acids. Peptide nucleic acids (PNA) is an alternative to
antisense technology, i.e., artificial oligonucleotides analogously based on polyamide
backbone (such as peptides) with attached bases (97–100). PNAs hybridize to DNA
and RNA with high efficiency like conventional antisense and form highly stable PNA/
DNA and PNA/RNA duplexes that are more resistant to enzyme degradation and non-

Fig. 6. Principle of binding (A) antisense RNA and (B) RNA Lasso.
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toxic (101,102). Homopyrimidine PNAs and PNAs with a high ratio of pyrimidine/purine
can bind to DNA or RNA, forming highly stable triple helices (103). Therefore, PNAs
can be a good substitution for antisense RNA in target validation (104).

3.2.3. Inactivation of Target Proteins
3.2.3.1. MONOCLONAL ANTIBODIES

The use of monoclonal antibodies (MAbs) is one of the oldest approaches to targeting
proteins. It is known that antibodies can interact with target proteins with high specific-
ity (105). Unfortunately, only about 0.5% of target proteins to which they bind become
functionally inactive in bacteria (85,106). Therefore, new technologies based on a com-
bination of recombinant antibodies that have high specificity and affinity against their
targets coupled with neutralizing agents have been recently developed. For example, a
new method of using MAbs coupled with a chromophore group for irreversible inacti-
vation of target proteins with laser irradiation uptake is described next (85).

3.2.3.2. CHROMOPHORE-ASSISTED LASER INACTIVATION

The approach of chromophore-assisted laser inactivation (CALI) is based on a linked
complex of target-specific MAbs with chromophore (usually malachite green). This
complex can interact with target protein and inactivate it by photochemical reaction
initiated by laser irradiation. Depending on the type of chromophore, the average radius
of target damage is about 15–40 Å (107). This is sufficient for inactivation of target
proteins or single subunits within multimeric protein complexes but excludes effects on
neighboring proteins. CALI allows the conversion of more than 90% of the antibodies
into real inhibitory tools (85). Initially, CALI was used to study cell-surface phenomena
by inactivating the functions of single proteins on living cells (108), and later it was
used to assay protein function both in vivo and in vitro (109).

3.2.3.3. FLUOROPHORE-ASSISTED LIGHT INACTIVATION

The fluorophore-assisted light inactivation (FALI) method (110), which uses labeled
MAbs to target light-initiated destruction of the protein of interest, is analogous to
CALI. FALI uses coherent or diffuse light targeted by fluorescein-labeled probes. The
half-maximal radius of damage is approx 40 Å. The advantage of FALI is simultaneous
irradiation of multiwell plates; thus, it can be utilized in proteomics for high-through-
put screening (HTS) (111).

3.2.3.4. SINGLE-CHAIN FV ANTIBODIES

Single-chain Fv antibodies (scFvs) are rather small single-chain polypeptides (six
times smaller than intact MAbs) engineered from two regions of Fab fragment of com-
mon antibodies (112,113). The heavy and light variable regions are joined by a flexible
linker (e.g., Gly) sufficiently long to join the two domains (Fig. 7). The most popular
way to obtain scFvs is through phage display libraries (114) or by cloning in hybridoma
cells (115). The main advantages of scFvs over intact MAbs and Fab fragments are their
homogeneous, small size (about 30 kDa) and the absence of Fc domains, which makes
them more penetrating, less immunogenic responsive, and less capable of binding to
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Fc receptors distributed on normal cells. Thus, scFvs are a potentially useful substitution
for MAbs in all target validation approaches based on MAbs.

3.2.3.5. INTRABODIES

Recent advances in antibody engineering have raised the possibility of encoding
genes for the antigen-binding domain and expressing them as intracellular antibodies.
In fact, scFvs can be expressed within cells and directed against target proteins (116–
119). Intrabodies can interfere with and inhibit intracellular processes in several ways,
such as inhibiting the function of proteins directly and interfering with protein–protein
interactions or target-specific domains of the protein. These features make intrabodies
a great potential tool for target validation (120).

3.2.3.6. APTAMERS

Aptamers are synthetic RNA or DNA oligonucleotides (5–25 kDa), which are capa-
ble of highly specific binding to a wide variety of target proteins (121,122). They gen-
erally show an affinity in the nanomolar range and a high specificity of target recognition
(123). In contrast to antibodies conventionally selected in animals, aptamers are gen-
erated by an in vitro selection process and can be directed against almost every target,
including nonimmunogenic targets, against which conventional antibodies cannot be
raised (124). They can be synthesized in vitro in a random combinatorial library (up to

Fig. 7. Modular structure of IgG and single-chain Fv antibody. Immunoglobulins are com-
posed of two identical light (L) chains and two identical heavy (H) chains. Light chains are com-
posed of one constant and one variable domain, and heavy chains are composed of three constant
and one variable domain. The heavy chains are covalently linked to the hinge region, and the
light chains are covalently linked to the heavy chain. The variable domains of both H and L
compose the antigen-binding part of the molecule, termed Fv.
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1015 different molecules), rapidly isolated, and replicated by polymerase chain reaction.
The unique advantage of aptamers is the rapid automated generation of sophisticated
ligands against any targets. No immunogenicity or toxicity of aptamers was observed.
Their chemical stability and high inhibitory potential meet the criteria of a multifunc-
tional tool for the validation of targets (122). Aptamers have proven to be effective
ligands for modulating the function of endogenous cellular proteins in their natural envi-
ronment. They mimic the effect of a small-molecule drug in terms of binding and inacti-
vating target protein (Fig. 8). Some approaches have been developed to use aptamers
for the validation of potential drug targets in disease models. Currently, aptamers and
RNA interference are often used jointly, because these two technologies are highly com-
plementary. siRNAs can reduce the amount of target protein by decreasing the mRNA
concentration, and aptamers act directly at the protein level and can be utilized to inac-
tivate stable proteins with a slow biological turnover. The features of aptamers make
them very useful for lead identification, which links target validation with drug discov-
ery (122,126). Thus, aptamer technology can be exploited to address the functional prior-
itization of potential drug targets and can accelerate small-molecule lead identification.

3.2.4. High-Throughput Technologies
for Protein Target Search and Validation

In the last decade, many pharmaceutical companies focused on developing new high-
throughput technologies for searching new drug targets and their validation, based on
automatic multiparallel processes and analysis (127,128). Robotic systems are capable

Fig. 8. Complex of capsid protein (in white) from Bacteriophage MS2 with RNA aptamer
(in gray), available from Protein Data Bank (PDB) (PDB index 5MSF) (125). (A) Schematic
representation of complex; (B) solvent surface representation.
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of handling thousands of compounds per day. Many genomic, proteomic, and other
methods have been applied to high-throughput target validation approaches for studies
of novel potential targets retrieved from the whole genome. Such applications often
focus on “loss-of-function” tactics (129). Amid different approaches that provide high-
throughput and systematic drug target validation and gene function discovery, the most
popular are proteomics analysis (130); transgenic KOs (131); siRNA-based methods
(132); antisense technology (133); aptamers (122,126), which can link the process of
target validation directly with the search for lead compounds by HTS; CALI; and FALI
(109–111). Recently, the newest approaches utilizing DNA microarrays, DNA chips,
and microfluidic device technologies are revolutionizing screening for target validation
and lead discovery in the pharmaceutical industry (134–138); these topics are consid-
ered elsewhere in this book (see Chapters 2–4 and 7).

3.2.5. Target Validation In Vivo
Among different approaches to target validation, in vivo methods should not be neg-

lected. Recent advances in genomics research have shown that small, multicellular orga-
nisms, such as nematodes, fruitflies, and zebra fish share a high percentage of human
disease genes. Thus, diverse animal models (from invertebrates to humanized mice) can
be used for in vivo target validation directed at the different types of human diseases
(139). These include transgenic and KO systems based on mice (140–142); zebra fish
(Danio rerio) (143,144); nematodes (roundworms) (145), including the well-known
Caenorhabditis elegans (146,147); fruitfly (Drosophila melanogaster) (148); mouse-
based platform VITA (Validation In Vivo of Targets and Assays for Anti-infectives) (149,
150); and target validation in parasitic organisms (151).

3.3. 3D Structure of Target
It is apparent that the detailed 3D structure of a selected target plays a key role in

SBDD. These data can be obtained by utilizing experimental and/or bioinformatics
methods.

3.3.1. Experimental Approaches
Two basic methods of protein 3D investigation are X-ray crystallography (152) and

multidimensional nuclear magnetic resonance (NMR) (153). The main steps of these
experimental approaches need to obtain the necessary quantity of pure native protein
(Fig. 1). The majority of solved protein 3D structures are stored in PDB (19) and access
is free. As of June 2004, PDB held more than 26,000 structures (about 22,000 solved by
X-ray diffraction and about 4000 by NMR). Most of these structures are those of self-
same proteins (different mutants and complexes with diverse ligands). Thus, the number
of unique protein structures is only about 6000. Recent genomic explorations have radi-
cally increased the number of known protein sequences. Modern methods of protein 3D
investigation (X-ray crystallography and NMR) cannot keep pace with sequence deter-
mination. Moreover, both approaches are suitable mainly for water-soluble proteins
and, in addition, NMR cannot solve 3D structures of proteins larger than 30,000 Daltons.
At the same time, up to 40% of proteins in living organisms are membrane bound (154).
Nowadays only tens of membrane-bound protein structures are available from PDB
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because of the existing problems with their expression and crystallization (155). The
deficiency of known 3D structures therefore forces the researcher to use computer 3D
modeling.

3.3.2. 3D Modeling
Presently only one method of target 3D modeling is suitable for SBDD. It is homol-

ogy modeling (also known as comparative modeling), based on sequence and structural
similarity between a model protein and its homologs with known 3D structures (tem-
plates) (156). Currently, some computer programs provide the tools for knowledge-based
homology modeling of protein structure (e.g., SYBYL [31], Insight II [42], Quanta [42],
Modeller [157]). We prefer to use SYBYL software (Tripos), and this chapter is based
on using Composer (158) from the SYBYL suite (31).

3.3.2.1. CRITERIA FOR PROTEIN HOMOLOGY MODELING

Large-scale Internet-based experiments called CASP (critical assessment of pro-
tein structure prediction) (159,160) have shown that the accuracy of homology model-
ing strongly depends on the similarity between the sequences of the model and the
template. As a rule, the model is supposed to be good if the modeled sequence is more
than 40% identical to the template. In cases of sequence identity less than 30%, the
major factor that limits the use of this approach is the alignment problem. The fraction
of incorrectly aligned residues may reach 20%. This number rises sharply with further
decreases in sequence similarity. The low sequence identity limits the usefulness of
homology modeling, because no current modeling technique can compensate for the
errors coming from an incorrect input alignment.

3.3.2.2. MAIN STEPS OF PROTEIN HOMOLOGY MODELING (SEE FIG. 9)

The main steps of protein homology modeling are as follows:

1. Find homology proteins with known 3D structure in PDB. PDB is scanned for sequences
similar to the model sequence.

2. Identify “seed residues” based on sequence homology. Seeds are only used for an initial
structural alignment, and some errors or mismatches can be tolerated in the next step. For
this reason, it is not necessary to spend a lot of time on this step.

3. Generate structural alignment using seed residues for determination of structurally con-
served regions (SCRs). Composer uses seeds to generate the optimal structural alignment
for the set of homologs. Only 3D coordinates of Cα atoms of residues are used to fit the
structures to each other. If there are only two known homologs, fitting becomes a straight-
forward least-squares procedure. For three or more structures, multiple fitting is accom-
plished by performing a series of pairwise weighted least-squares fits. This determines
SCRs and derives an average structure of the conserved regions to use in constructing the
model protein.

4. Determine model SCRs. The procedure of pair sequence alignment for modeling and the
best homolog (template) is used to determine of model SCRs.

5. Construct model SCRs. The framework structure produced at the previous stage repre-
sents the overall 3D structure of the conserved regions of the protein family, but it lacks
real protein geometry because it is an average structure. The “Build SCRs” operation of
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Composer program (Sybyl) creates the backbone of each SCR in the model by fitting a
fragment from one of the known homologs to the appropriate region of the framework
structure. Then a knowledge-based approach is used to determine the side-chain confor-
mations, taking into account the backbone secondary structure and the side chains at the
corresponding residues in each of the homologs. Rule Database is used for this purpose.

6. Construct structurally variable regions of the model using loops from homologous or the
general protein database. The “Add Loops” operation completes the protein model by con-
structing the structurally variable regions (loop regions). For each loop, the Composer
program tries to find fragments of the known structures that are compatible with the rest
of the model. Then, the program uses sequence information to find the best single frag-
ment to be used in the final model. If any homolog of the known structure has a loop of the
same length in the corresponding region as a model, then this fragment is a good choice.

Fig. 9. Main steps of protein homology modeling.
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Alternative approaches include finding fragments whose geometry is compatible with the
geometry of the conserved regions flanking the loop in the model, and using geometric
and sequence information to select the best loop fragment. Modeling the extended loops
requires additional expert analysis and selection of suitable loops from the sets retrieved
from PDB. The mutual position and interaction of neighbor loops, as well as all known
experimental data about target structure, must be taken into account (see Note 2).

7. Refine the model. The model structure should be improved by solving bad Van der Waals
contacts, and by passing the procedures of energy minimization and molecular dynamics
simulation.

3.3.2.3. MODEL VALIDATION

The steps to model validation are as follows:

1. Structural and topological model validation: The model is examined on the absence of
the following mismatches:
a. The exposure of hydrophobic residues to the solvent.
b. The presence of charged or polar side chains in the model interior.
c. The positive free energy of solvation and so on.

2. Molecular dynamics simulation: The model is tested for the fold and secondary structure
stability during molecular dynamics simulation in water.

3. Statistics-based model validations: Various programs based on statistical data from PDB
can be used.
a. ProCheck (161) inspects the model structure using Ramachandran plots.
b. ProTable (162) is one of the modules from SYBYL (31) and was designed to analyze

the protein structure quality by various criteria (e.g., geometry and stereochemistry,
solvent-accessible surface area, conformations of side chains, backbone, secondary
structures); ProTable can be used as an analytical tool for 3D visualization of all cal-
culated parameters.

c. MatchMaker, also a SYBYL module (163) is based on the approach known as “inverse
folding” and can check the relative correctness of a protein model, by determining its
compatibility with sequence.

d. WHAT IF (164) checks the correspondence of model parameters to statistical data,
such as bond angles and lengths, buried hydrogen bond donor, peptide plane flip, side-
chain conformation and planarity, proline puckering, packing quality, side-chain rota-
mer, symmetry, torsion angles, water clusters, and atomic occupancy.

e. Prosa II (165) allows control of protein structure quality.
f. Profiles-3D (166) searches for databases of 3D profiles, looking for compatibility

using environmental classification of amino acids, and the model can be compared to
its own sequence to evaluate its quality.

4. Model validation by experimental data: Some indirect experimental data (e.g., chemical
modifications of surface residues, protease action sites, point mutations, antigenic determi-
nants) can be used for model verification: partial spectroscopic evidence, mapping surface
structure.

3.4. Strategy of CADD
Once a target is selected, CADD can be initiated. CADD methods are used only when

the 3D structure of a target or sets of known ligands to the target are available. Other-
wise, only experimental methods can be employed. The main experimental methods
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are combinatorial chemistry (167) and HTS (168,169). Identifying new compounds
by computer methods consists of several steps: (1) target structure analysis and find-
ing the binding site, (2) prediction of lead compounds and their experimental testing,
(3) optimization of lead structure with further experimental testing, and (4) preclinical
evaluation and clinical trials (Fig. 10). The purpose of CADD is to generate hypotheses
about probable new ligands and their interaction with targets. However, these approaches
cannot replace the experimental tests. Therefore, each step of CADD has to be finished
with experimental testing of selected compounds. All steps of computer prediction can
be repeated several times if negative results in the previous steps are obtained. If pre-
dicted lead compounds are inactive, a second cycle of computer modeling will be
carried out taking into account the obtained negative results, i.e., using another molec-
ular database for mining, remodeling pharmacophore or quantitative structure–activ-
ity relationships (QSAR) models, conducting additional analysis of the structure of
the active site (checking the ability of conformational change during ligand interaction,
involving water molecules in ligand binding, and so on). If the predicted lead com-
pound is identified, active optimization reiteration of the process for activity should be
carried out. Eventually, the set of related compounds with selected lead structure should
be synthesized and tested for biological (pharmacological) activity. If the optimized
structures of the lead compound exhibit high activity, preclinical tests (for activity in
vivo, toxicity, carcinogenity, and so on) can be performed. Further cycles of computer
structure optimization for improvement of pharmacokinetic properties (absorption, dis-
tribution, metabolism, and excretion [ADME]) (170) are also possible. It is considered
that CADD can reduce the amount of compounds that need to be synthesized and tested
for biological activity up to two orders. Thus, it is capable of decreasing time-consum-
ing and financial expenses for the development of drugs.

The key point of the choice of CADD methods is the availability of a 3D structure
of the target. The accessibility of target structure allows one to employ the methods con-
solidated in group SBDD (“direct methods”). In this case, compounds with properties
complementary to the target surface can be designed, based on the knowledge of prop-
erties and features of the spatial structure of the target. If target 3D structure remains
unknown, another group of methods, ligand-based drug design (LBDD) (“indirect meth-
ods”), should be applied. Under these circumstances, analysis of a set of known ligands
is carried out to reveal their common essential properties correlated with biological activ-
ity (see Note 3). The first successful result of SBDD was obtained with creation of the
antihypertensive drug captopril, based on the 3D structure of carboxypeptidase A (171).

3.4.1. Structure-Based Drug Design
The first step of SBDD consists of analysis of the 3D structure of a target and defini-

tion of its ligand-binding site. If the spatial structure of the complex of a target with
known ligand (substrate or competitive inhibitor) is available, the binding site is known
empirically. Alternatively, a putative binding site must be identified. This problem can
be approached in several ways. The rough approach determines the cavities in the
protein structure and assumes that the longest, biggest cavity is the active site. A more
elegant approach searches for key amino acids involved in catalysis (e.g., a triad of
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serine proteases) or cofactor, and the neighbor region is assumed to be the binding site.
However, the problem of uncertainty of spatial position of ligand in the active site still
remains. Docking of the known substrates and/or inhibitors to the whole surface of an
enzyme is the optimal approach for predicting a binding site based on using the position
of docked ligands (172) (see Subheading 3.4.3.).

A popular strategy for searching for new lead structures is virtual screening of small
compounds in molecular databases (database mining). This approach is based on the
assumption that compounds with requested activity were synthesized earlier, but not
tested for this activity. Presently, the data on several million structures of small com-
pounds are collected in different databases (see Subheading 2.2.). The main method
for database mining is molecular docking of small compounds into the binding site of
target. Several docking programs have been developed (see Subheading 3.4.3.). They
allow fast screening of databases containing large numbers of small compounds. All
docking programs generate hypotheses about probable spatial positions of ligands in the
active site of a target macromolecule. Assessment of these hypotheses is carried out
by using different types of scoring functions (e.g., binding energy, area of contacting
surfaces) (see Subheading 3.4.4.). Based on scoring results, the compounds with the
best correspondence to the binding site structure and properties are selected (173). The
obvious advantage of this method is its high rate of obtaining results and ability to test
the numerous compounds. However, this approach is usually unable to discover com-
pounds with high activity (the researcher should not expect to find any “hit” with a
dissociation constant better than 10−4). If database mining for lead compounds was
unsuccessful, de novo design methods can be employed. Several programs of ligand
de novo design have been developed (see Subheading 3.4.5.).

The efficiency of ligand binding with a target is estimated by values of virtual bind-
ing energy (see Subheading 3.4.4.). The major problem with all methods of SBDD is
the inability to predict the real binding energy and convert its calculated values into
experimentally determined parameters (Kd, IC50, Ki, and so on). Although in several cases
a reasonable correlation between structure and interaction energy was found for some
sets of compounds, these relationships are not generally transferable from one protein
system to another (174). If the lead compound with required activity has been discov-
ered or designed, it can be utilized for increasing activity by structural modifications.
The lead compound structure can be optimized with the same de novo methods (see
Subheading 3.4.5.). These methods are also employed in the next step of preclinical
evaluation for decreasing side effects and optimization of pharmacokinetic properties.

3.4.2. Ligand-Based Drug Design
LBDD methods are applied when the spatial structure of a target macromolecule is

unknown and it is not possible to design its reliable model. LBDD methods are based on
the analysis of sets of known ligands with the requested biological activity. Because
the structure of a binding site is unknown, it is necessary to design models that repro-
duce the character features of the target in the binding site. There are two major approaches:
the pharmacophore model (175,176) and various types of the “pseudoreceptor” model
(177–180). The pharmacophore model consists of a set of points in space with certain
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attributed properties and distances between them. These points and their positions define
the binding of given groups of ligands with target. The pseudoreceptor models describe
mainly the geometrical shape of a binding site in the spatial structure of the target.

In the first step of LBDD, as well as of SBDD, it is preferable to start with lead
searching using molecular database mining. The pharmacophore models or various
models of the cavity of the binding site can be used for this purpose. Database mining
using a pharmacophore model assumes the selection of such structures that contain a set
of chemical groups satisfying pharmacophore points. Another method of database min-
ing uses molecular docking of small compounds from a database into the model of spa-
tial structure of the binding site. When a target pharmacophore model contains only a
few pharmacophore points, the outcome of the database mining using such a pharmaco-
phore model may be a huge number of possible hit compounds that must be tested experi-
mentally. In this case, methods of database mining with the model of binding site cavity
are preferable.

For prediction of a requested activity of “hits” found in databases, as well as for
lead structure optimization, the methods of QSAR are used. The classic QSAR method
is based on the regression analysis of the relationship between the biological activity
of a set of homolog compounds and their description with various descriptors. The corre-
lation equations of this relationship predict the activity of new analogs from the same
homology group (181). At present, the method of 3D-QSAR is widely used. Special meth-
ods for description of 3D distribution of ligand properties (i.e., comparative molecu-
lar fields analysis [CoMFA] and comparative molecular similarity indices analysis
[CoMSIA]), are also applied (182,183). This approach characterizes the steric, electro-
static, and hydrophobic regions around molecules.

Recently, 3D-QSAR models have been designed for the subsequent prediction of the
activity of compounds found in molecular databases or designed de novo even when
target 3D structure is known (184,185). This approach is used because of significant dif-
ficulties in converting calculated virtual binding energies into real values (Kd, Ki, IC50,
and so on).

3.4.3. Database Mining for New Leads
There are three main groups of methods for database mining:

1. Searching by similarity or existence the required two-dimensional (2D) patterns.
2. Database mining using the pharmacophore model.
3. Database mining by molecular docking.

The first group of methods, searching by similarity, is frequently built-in tools of a
database’s interface, such as ISIS/BASE (MDL) (186), UNITY® (Tripos) (187), and
Quest (CSD) (24). The second group of methods, using the pharmacophore model, can
select structures that contain a set of chemical groups satisfying pharmacophore points.
DOCK (188,189) and FlexX (190), which utilize the molecular docking procedure, are
the frequently used programs from the third group. Many investigators employ their
own docking programs, such as the program DockSearch, for fast geometrical docking
developed in our laboratory (191).
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Before starting a docking procedure, several preliminary operations must be done.
The main one is preprocessing of the database (forming a reduced sample from the data-
base) by retrieving compounds based on some principles, such as the allowed range of
molecular weight, absence or existence of specific chemical groups, and physicochem-
ical properties of compounds (e.g., hydrophobicity, solubility, permeability). Some of
these properties can be calculated using numerous programs (SLIPPER [192], DISCON
[193], BALPS [193], and so on). Other preliminary operations are the generation of 3D
structures of compounds (e.g., databases with commercially available samples of small
compounds usually contain only 2D structures), the generation of their conformers, and
energy optimization of structures. The conversion of structures from 2D into 3D form
can be done by various programs, such as CORINA (194,195) and Concord (196,197).
Generation of conformers, which can be fulfilled by special programs, such as Confort
(198) and CONFLEX (199), is used for database updating when subsequent mining will
be carried out using pharmacophore models or a program of “rigid” docking, such as
DOCK (188,189) or DockSearch (191). Database mining allows the selection of com-
pounds with requested activity, but probably the value of activity will be low. How-
ever, these compounds can be used for further optimization of structure for increasing
activity or as structural blocks for de novo design.

3.4.4. Prediction of Affinity
Prediction of ligand affinity is a very important step in SBDD, yet current method-

ologies are indefinite and complex. The majority of docking programs have their own
procedures for estimation of affinity, but these values are very coarse, owing to the need
to increase the speed of the docking procedure. Thus, independent methods are pre-
ferred. The popular methods for prediction of ligand affinity are based on scoring func-
tions that use statistical relationships between numerous descriptors, which are calculated
from known 3D structures of protein–ligand complexes, and the corresponding experi-
mental data on affinity (200–203). A high rate of prediction and independence of type
of target is appealing. Examples of such scoring function are Validate (204), SCORE
(204), and NNC (205). These methods were developed for a wide range of protein-
ligand complexes. It is important to note that the scoring functions, which have been
optimized for strict targets, are always preferable owing to the increase in prediction
reliability. Another approach is simultaneous employment of some fast scoring func-
tions, such with the CScore program from the SYBYL suite (206). In this program, four
different scoring functions are calculated with subsequent selection of compounds based
on summarized rating.

The most precise method for predicting the affinity is certainly free energy perturba-
tion (FEP) (207). Unfortunately, its execution requires large-scale computations. This
method provides precise prediction of affinity in the case of a set of homologous  com-
pounds, whereas for heterogeneous sets the predictions are often ambiguous. The Gibbs
program from the AMBER suite (43) is an example of the FEP method. Thus, the pro-
cess of affinity prediction consists of serial scoring steps (from rough to precise predic-
tion) directed to decrease the number of probable hits step-by-step:

1. Preliminary selection of hypothetic complexes during the docking procedure.
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2. Estimation of affinity by fast scoring functions.
3. Affinity prediction by precise scoring functions.
4. Affinity prediction of complexes using molecular dynamics simulation and FEP methods.

The number of such steps depends on the size of the set of compounds that must be
experimentally tested.

3.4.5. Modification of Lead Compounds and De Novo Design
Methods for modification of lead compounds and de novo design are employed to

increase activity, to improve the physicochemical and pharmacokinetic properties of
leads, and to decrease side effects. If database mining does not identify the lead com-
pound, these methods remain the single way for further investigation. The advantage
of these methods is their ability to design compounds with high affinity, and their disad-
vantage is the necessity of chemical synthesis of designed compounds. The popular pro-
grams of de novo design are LUDI (208), CLIX (209), CAVEAT (210), and LeapFrog
(211). They all share similar principles that consist of virtual modeling of new mole-
cules, and optimization of their structures and their spatial position in the active site. The
first step of ligand design in these programs begins with searching the specific groups
capable of participating in noncovalent interactions with the target macromolecule. The
next step is to select the linkers for composition of these groups in one structure. Simul-
taneously conformation of designed ligands and their spatial positions are then opti-
mized. Binding energy is estimated after each step of design, and the compounds with
the highest values of energy are selected for further optimization. The program LeapFrog
has three alternatives for structure modification:

1. Mode “Guide” updates the structures by the procedures of addition, deletion, replace-
ment, cyclization of chemical groups, and so on, which are determined by the investigator.

2. Mode “Optimize” automatically generates the numerous modifications of lead compound
with subsequent selection by their scoring function.

3. Mode “Dream” generates the lead structures de novo without any starting ligand structure.

As in previous cases, the next step in these approaches is the prediction of affinity
by various methods (see Subheading 3.4.4.).

3.4.6. Prediction of Pharmacokinetic Properties
In addition, several programs can be used to predict various ADME properties that

must be tested later during preclinical evaluation to determine whether a hit from a
screening process is suitable for further development as a therapeutic agent (170). Such
prediction systems can be used for both selection of compounds for experimental testing
for requested activity and prediction of possible side effects (e.g., toxicity, carcinogen-
ity). These systems identify unwanted negative properties of the developing new drugs
at the earliest stages. The program PASS is a very good example of such a system (212).

3.5. Experimental Testing of Probable Lead Compounds
One of the crucial rate-limiting steps is experimental testing of probable lead com-

pounds (“hits”). Many different in vitro and in vivo bioassays can be utilized for this
purpose, depending on the type and function of target protein. The SBDD approach
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gives a list of hits obtained by virtual screening (database mining by molecular dock-
ing) or constructed de novo. All these hits are scored using calculated parameters such
as geometric complementarity, areas of contact surfaces, and binding energy (in relative
units). Thus, SBDD is oriented on discovery of hits selectively interacting and forming
the complex with a target based on steric and energetic reasons. No direct information
can be obtained at this stage of SBDD about possible modulation of target function.
Thus, in the first step of experimental testing of hits, it is preferable to use a simple in
vitro assay, which can directly measure the interaction of testing small compounds with
target protein. From our point of view, the optical biosensor analyzers Biacore 3000
(213) or Biacore S51 (214) are the perfect instruments for the initial evaluation of hits
and conversion into lead compounds. These instruments are specifically designed for
rapid and efficient high-throughput assessment of intermolecular interactions using
nonlabel surface plasmon resonance technology (215,216), enabling interactions to
be studied in near-native states. These instruments can detect the interaction of small
ligands (>200 Daltons) with immobilized target protein, record the real-time binding
kinetics, and determine the affinity and specificity of the interaction. Optical biosen-
sor assays are therefore adequate for preliminary experimental evaluation of hits.

3.6. Examples of Passing Execution
of Some Bioinformatics Steps of Platform “From Gene to Lead”

3.6.1. Target Selection in Genome of M. Tuberculosis
Recently, we have used bioinformatics approaches for predicting new potential targets

for antitubercular agents (33). GenMesh (33) was applied to the genome of M. tubercu-
losis H37Rv and compared by BLAST (217) with (1) the genome of M. tuberculosis
CDC1551, (2) the genome of Mycobacterium leprae, (3) all known human proteins, and
(4) proteins from PDB. Filtration of proteins encoded by the mycobacterial genome
was carried out as shown in Fig. 11. A preliminary hit list of targets is shown in Table
2. This set was analyzed in detail. Target prioritization, based on probable protein
functions, was also carried out. As a result, only eight proteins were selected as poten-

Fig. 11. Target selection in genome of Mycobacterium tuberculosis H37Rv (33).
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tial targets. Their genes are rpoA, rpsD, rpsE, prsH, kdtB, ruvA, and kdtB. Later, two of
them were also found by other investigators (by both experimental and computational
studies) as potential targets for wide-spectrum antibacterial agents: phosphopanteth-
eine adenylyltransferase kdtB (218) and Holliday junction DNA helicase ruvA (55).

Recently, we have also developed capabilities to identify targets for antibacterial
agents with a wide spectrum, including mycobacteria, but without influencing normal
human microflora. The genomes of B. subtilis, E. coli K12, and Bifidium longum NCC2705
represent human symbiont bacteria. The target selection flow chart is shown in Fig. 12A.
The preliminary target list consists of 41 proteins. Therefore, it can be suggested that
a drug with a relatively wide antibacterial spectrum and without effect on human sym-
biont bacteria can be designed.

It is known that antifungal azoles are active against M. tuberculosis, first of all owing
to the targets’ similarity. Therefore, we have also attempted to find mutual targets for
Mycobacteria and fungi. Saccharomyces cerevisiae genome was used as the model
genome of pathogenic fungi. A target selection flow chart is shown in Fig. 12B. The
preliminary target list consists of 14 proteins. Therefore, there are several targets that
can be used for both antitubercular and antifungal drug design. However, there was no
intersection between two sets of targets obtained in two searches, as shown in Fig. 12.

3.6.2. 3D Modeling of Cytochrome P450 1A2
and Database Mining for New Leads Using Docking Procedure

The main task of this work was the modeling of 3D structure of cytochrome P450
1A2 (CYP1A2) and searching for new inhibitors by database mining (219).

3.6.2.1. METHODS

All calculations were carried out using molecular modeling software suite SYBYL
(31), HINT® (220,221), and the original molecular docking program DockSearch (191)

Table 2
Potential Targets Found in Genome of Mycobacterium tuberculosis H37Rv

Target no. Gene Target protein

1. infA Translation initiation factor IF-1
2. hupB Histone-like protein
3. rpoA DNA-directed RNA polymerase (transcriptase) α-chain
4. rpsD 30S ribosomal protein S4
5. rpsE 30S ribosomal protein S5
6. rpsH 30S ribosomal protein S8
7. bfrA Bacterioferritin
8. kdtB Phosphopantetheine adenylyltransferase
9. glcB Malate synthase G

10. purE Phosphoribosylaminoimidazole carboxylase catalytic subunit
11. ruvA Holliday junction DNA helicase
12. trpB Tryptophan synthase β-chain
13. mscL Large-conductance mechanosensitive channel
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running on an SGI workstation. For mining, the databases Maybridge (30), ASINEX
(28), and CMC (27), which contain commercially available compounds, were used.

3.6.2.2. MODELING

The model of CYP1A2 was constructed by using the COMPOSER program from
SYBYL based on homology with P450s with known 3D structures available from PDB.
The obtained model was optimized using an energy minimization procedure. The model
was verified using special software, PROCHECK (161).

Attention was primarily focused on modeling the active site. To optimize the active
site’s structure, two models of CYP1A2 complexes with characteristic substrates (caf-
feine and 7-ethoxyresorufin) were designed. These complexes were optimized by molec-
ular dynamics simulation in water.

Fig. 12. Target selection in Mycobacterium tuberculosis H37Rv using broadened set of
genomes for analysis. (A) Selection of targets for antibacterial agents with a wide spectrum.
(B) Selection of mutual targets for Mycobacterium and fungi.
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3.6.2.3. PREDICTION OF AFFINITY

Models of 24 CYP1A2 complexes with 24 known ligands and with known corre-
sponding Kd values were designed using DockSearch and the LeapFrog program from
SYBYL. A 3D-QSAR model with good predictive force was created based on these
complexes.

3.6.2.4. DATABASE PREPROCESSING

The integral database was compiled from three databases with commercially avail-
able compounds. To test the efficiency of mining, 204 known CYP1A2 ligands were
included as the internal control.

3.6.2.5. SEARCHING FOR NEW LIGANDS FOR CYP1A2 BY DATABASE MINING

Database mining was carried out in three steps: (1) the program DockSearch was
used to generate hypotheses about ligand positions in the active site of CYP1A2; (2)
the structures of hypothetical molecular complexes were adjusted using the LeapFrog
program by energy optimization of protein-ligand binding; and (3) Kd values were esti-
mated using a 3D-QSAR equation. The final hit list contained 185 from the control
group of 204 known ligands (about 90%), which points to the high efficiency of mining.
An example of affinity prediction for some known ligands is given in Table 3. As the
result of database mining, 52 new potential ligands of CYP1A2 were selected for fur-
ther purchasing and experimental testing.

3.6.3. Monoamine Oxidases:
Lead Searching When 3D Structure of Target is Unknown

As it was mentioned in Subheading 3.4.2., when the target’s 3D structure is not known,
the main method of lead compound searching is molecular database mining with a
pharmacophore model. However, when such a model is too simple (consists of few
pharmacophore points), the use of this method leads to selection of a large number of
potential hits that must be experimentally tested. In this case, it is possible to employ
another approach based on searching the lead compounds in molecular databases by
the docking procedure with the model of binding site cavity. As an example, we give
here the results of using this method to search for new monoamine oxidase (MAO) A
inhibitors. The pharmacophore model of this enzyme consists of only two points (aro-
matic ring with nearby heteroatom). We designed the model of active site reflecting
geometrical features of the ligand-binding cavity (called “mold”) using superposition
of effective competitive inhibitors from a variety of chemical types (180). The mold
was used for molecular database mining to search for new MAO A inhibitors. The molec-
ular database, which contained about 8000 commercially available small compounds,
was precompiled by the generation of all possible conformers for all compounds and
gave about 50,000 structures. All these structures were docked into the mold of MAO A.
As a result of this step, about 7000 conformers able to fit in the binding cavity were
selected. The next step was prediction of MAO A inhibitory activity for selected struc-
tures using 3D-QSAR with CoMFA models of MAO A. Then, the four top compounds
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Table 3
Affinity Prediction for Some Known Ligands of CYP1A2
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Table 4
Results of Experimental Testing of Inhibitory Activity (IC50, µM) for MAO A and MAO
B of Selected Compounds

with highest predicted inhibitory activity were tested in direct experiments (Table 4).
All compounds exhibited selective MAO A inhibition. The best of them had an IC50 of
about 80 µM. Although the inhibitory activity of these lead compounds was not high, their
structures may be used in the next step for subsequent optimization by CADD methods.

4. Notes
1. For some limited purposes, other commercial programs can also be used, such as Hyper

Chem (222) and programs by ACD (223).
2. A novel method of de novo design can be used for loop building (224,225), but this also

requires careful expert judgment and structure refinement using energy minimization and
molecular dynamics simulation.

3. It is possible to use SBDD when an accurate 3D model of target protein can be designed
by homology 3D modeling (226,227) (see Subheading 3.3.2.). Such models also can be
used to search for new ligands (219,228,229).

MAO, monoamine oxidase.
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