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  Pref ace   

 Only recently have we come to ask what role the male might play in pregnancy loss 
and failure of embryo implantation. This volume of  Advances in Experimental 
Biology and Medicine  contains a series of articles that reviews what is currently 
known about this rapidly evolving area, placing information in a potentially clinically 
relevant context. There are two overarching themes: (1) The fertilizing spermato-
zoon might lead to an impaired chance of a successful pregnancy, through abnormali-
ties in its chromosomes, its epigenetic status, or via noncoding RNAs transported to 
the oocyte; (2) The composition of seminal plasma is highly complex. The female 
reproductive tract is exposed at coitus to these noncellular components of semen that 
could play important roles permissive of embryo implantation and trophectoderm 
outgrowth, leading to successful pregnancy, or might if perturbed be harmful. 

 Dimitrios Ioannou and Helen Tempest review the increasing evidence suggesting 
that spermatozoa of certain men have signifi cantly high levels of aneuploidy, which 
is mirrored in their embryos and offspring. They provide insights into the origin and 
clinical relevance of paternally derived aneuploidy and review the general mecha-
nisms through which aneuploidy arises and how numerical and sub-microscopic 
chromosome aberrations may result in pregnancy loss. Human spermatozoa are vul-
nerable to free radical attack and the generation of oxidative DNA damage. 
Disruptions of their genetic integrity might play a major role in determining the 
development of the embryo following fertilization. Dan Gavriliouk and John Aitken 
examine the links between DNA damage in human sperm and the appearance of 
mutations in the progeny leading to a variety of clinical conditions. Jason Ross and 
his associates focus on the role of posttranscriptional gene regulation via noncoding 
ribonucleic acid in the regulation of reproductive function. Douglas Carrell and his 
coauthors discuss the effect of paternal aging on the epigenome and its potential 
impact on fertility, embryonic development, and the health of offspring. 

 Under the second general theme of this volume of  Advances , Judith Bulmer and 
Gendie Lash characterize the variation of the leukocyte population within the human 
endometrium throughout the menstrual cycle, particularly focusing on the ontogeny 
and role of uterine natural killer (NK) cells in normal and abnormal pregnancy. John 
Schjenken and Sarah Robertson review studies demonstrating that seminal fl uid 



vi

entering the female reproductive tract during coitus initiates immune adaptive pro-
cesses promoting tolerance to male transplantation antigens and helps to shape sub-
sequent fetal development. The factors involved and mechanisms that mediate these 
effects are discussed. Deborah Anderson and Joseph Politch review the origins and 
concentrations of immunomodulatory/proinfl ammatory factors in human seminal 
plasma in health and disease. Their effects on immune defense in the female genital 
tract that may promote fertility and fetal well-being or may contribute to female 
reproductive failure are discussed. Thomas Hviid reviews recent studies demon-
strating the presence of immunoregulatory and tolerance- inducible human leuko-
cyte antigen (HLA)-G in the male reproductive organs as well as its distribution in 
the female and male reproductive tracts. He discusses the highly variable amounts 
of soluble HLA-G observed in seminal fl uid of different men, the genetics of its 
expression, and whether these differences may affect the chance of pregnancy. 
Gunnar Ronquist reviews the origins of prostasomes in semen and their biochemical 
characterization, presenting evidence that they may serve an immunomodulatory 
function within the female reproductive tract, perhaps through the mediation of 
small noncoding RNAs. Anne Schumacher and Ana Zenclussen address the contri-
bution of paternal-derived factors in semen to fetal tolerance induction during preg-
nancy, with a special focus on T regulatory cell (T reg ) biology.  

  Stony Brook, NY, USA     Richard     Bronson     

Preface
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    Chapter 1   
 Meiotic Nondisjunction: Insights into 
the Origin and Signifi cance of Aneuploidy 
in Human Spermatozoa 

             Dimitrios     Ioannou     and     Helen     G.     Tempest    

        D.   Ioannou    
  Department of Human and Molecular Genetics ,  Herbert Wertheim College 
of Medicine, Florida International University ,   Miami ,  FL ,  USA     
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 e-mail: htempest@fi u.edu  

    Abstract     Chromosome aneuploidy refers to changes in the chromosome complement 
of a genome and can include gain or loss of genetic material. The human genome is 
delicately balanced, and for the most part perturbations in the chromosome comple-
ment are often incompatible with embryonic development. The importance and 
clinical relevance of paternally derived aneuploidy is often overshadowed by the 
large maternal contribution; as a result, the paternal contribution to pregnancy loss 
due to chromosome aneuploidy is rarely considered within the clinic. However, 
there is increasing evidence to suggest that certain men have signifi cantly higher 
levels of sperm aneuploidy, which is mirrored by an increase in aneuploidy within 
their embryos and offspring. Therefore, the paternal contribution to aneuploidy at 
least for some individuals may have greater clinical signifi cance than is currently 
perceived. Thus, the main focus of this chapter is to provide insights into the origin 
and clinical relevance of paternally derived aneuploidy. Furthermore, this section will 
review the general mechanisms through which aneuploidy arises during spermatogen-
esis and how numerical (whole chromosome) and structural chromosome aberrations 
(cytogenetically visible or submicroscopic) may lead to clinically relevant aneuploidy 
potentially resulting in pregnancy loss, congenital malformations, and cognitive 
impairment.  

  Keywords     Spermatozoa   •   Chromosome aneuploidy   •   Nondisjunction   •   Meiosis   •   
Y microdeletions   •   Oligospermia   •   Chromosome disomy  
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1.1         Introduction 

 Within recent years the paternal infl uence on reproductive success has become an 
area of fervent research. Although it is clear that the sperm cell is required for fer-
tilization and embryogenesis, the importance and contribution of the sperm cell in 
this process remains poorly understood and is frequently overshadowed by the 
maternal oocyte. The oocyte plays critical roles in remodeling and repairing the 
paternal genome upon fertilization, replacing the paternal DNA-bound proteins 
(protamines) with maternally derived histones and by repairing DNA damage pres-
ent in the paternal genome (McLay and Clarke  2003 ). Additionally, the driving 
force for embryogenesis is often considered to be the maternal oocyte, given that it 
contributes the environment, energy source, enzymes, and the vast majority of sup-
port organelles required for the initial embryonic divisions (Carrell  2013 ). So the 
question remains how important is the sperm cell and the paternal genome con-
tained within, for the process of fertilization and embryogenesis? Given the afore-
mentioned reasons, the sperm cell is often perceived to be a silent vessel whose sole 
function is to safely deliver the haploid paternal genome to the maternal oocyte. 
However, recent studies challenge this widely held viewpoint suggesting that the 
sperm cell is far from a silent vessel, with the paternal genome playing an important 
role in reproductive outcomes.  

1.2     The Paternal Genome and Its Association with Infertility 

 Infertility affects approximately one in six couples wishing to start a family 
(de Kretser  1997 ). Frequently, the male contribution to infertility is overlooked with 
much of the diagnostic/clinical workup focusing on females. However, approxi-
mately 50 % of infertility is estimated to be due to male factors solely or in combi-
nation with female factors (Chandra et al.  2005 ). Typically, a routine fertility workup 
in males is limited to family history, physical examination, and assessment of the 
semen parameters as per the WHO guidelines (World Health Organization  2010 ). 
The results of the semen parameter assessment in conjunction with family and 
reproductive history may indicate additionally genetic testing to determine whether 
the etiology of the perturbation in semen parameters can be identifi ed. Such genetic 
tests may include Y chromosome microdeletion testing, single gene mutation test-
ing, and karyotyping. 

 Prior to the development of intracytoplasmic sperm injection (ICSI) and its 
rapid clinical implementation of ICSI worldwide in the early 1990s, men with male 
factor infertility were rarely able to have biological offspring. However, the utilization 
of ICSI in the treatment of male factor infertility has raised concerns, given that this 
technique may increase the risk of pregnancy loss and transmitting genetic defects 
to resultant embryos. Male factor infertility can be caused by perturbations in the 
paternal genome [e.g., chromosome aberrations (structural or numerical), DNA 
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damage, or single gene mutations]. If these aberrations are present in the sperm cell 
utilized for ICSI, they will be transmitted to the resultant embryo and may impact 
the process of embryogenesis and development. Prior to the development of ICSI, 
perturbations within the paternal genome were unlikely to be transmitted to future 
offspring if they resulted in infertility. However, ICSI bypasses the natural barriers 
in place enabling infertile men to reproduce. Given that a sperm cell carries a single 
copy of the paternal genome, any genetic alterations contained within a sperm that 
fertilizes an oocyte, be they de novo or inherited, will be directly transferred to the 
resulting embryo. To date, a handful of studies have associated perturbations within 
the paternal genome with an increased risk of failed fertilization, poor and/or 
arrested embryo development, fetal demise, and the birth of genetically abnormal 
offspring.  

1.3     Karyotyping, Indications, and Prevalence 
of Chromosomal Aberrations 

 Karyotyping is frequently offered to patients with multiple spontaneous abortions 
and men with oligozoospermia to identify whether these fi ndings are due to the 
presence of numerical or structural chromosome aberrations. Chromosome abnor-
malities are relatively rare in the general population arising in approximately 0.6 % 
of newborns (Berger  1975 ). However, they are among the most commonly identi-
fi ed cause of male infertility, with a higher incidence of chromosome aberrations 
observed in infertile men compared to the general population (McLachlan and 
O’Bryan  2010 ). Chromosome aberrations occur in 2 % in males presenting with 
infertility; however, the frequency of chromosome aberrations increases with the 
severity of the infertility with frequencies of 6 % and 14 % occurring in oligozoo-
spermic and nonobstructive azoospermic males, respectively (Shi and Martin 
 2000 ). These estimates are potentially much higher, given that not all infertile 
males are karyotyped and the size limit of aberrations detected by karyotyping 
(>3–5 Mb in size). It is important to note that chromosome aberrations are a clini-
cally signifi cant cause of pregnancy loss, congenital malformations, and cognitive 
impairment in humans. 

 Taken collectively, additional genetic tests (karyotyping, Y chromosome micro-
deletion, and single gene mutation testing) reveal the etiology of the male factor 
infertility in an estimated 20 % of cases. This is further compounded by the fact that 
semen parameters are not absolutely predictive of fertility, rather they are indicative 
of male factor infertility. It is important to note that the WHO semen parameter 
reference values should not be interpreted as the minimum values required for 
 conception. Moreover, despite widespread usage of standardized WHO guidelines, 
it remains a relatively subjective analysis (Lewis  2007 ). Therefore, despite our ability 
to measure altered semen parameters and extensive research to establish the genetic 
causes and identify clinically relevant biomarkers, the underlying etiology of the 
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vast majority of male factor infertility (up to 80 %) is classifi ed as idiopathic 
(Hotaling and Carrell  2014 ). Nevertheless, it seems plausible that the majority of 
idiopathic male factor infertility will be associated with as of yet unknown genetic 
factors; therefore, there is a requirement to identify these factors and develop clini-
cally relevant tests.  

1.4     Additional Genetic Tests That Could Identify Clinically 
Relevant Perturbations in the Paternal Genome That 
May Impact the Process of Embryogenesis 

 Within recent years, several important developments in the fi eld have demonstrated 
that DNA fragmentation, alterations in the sperm epigenome, and organization of 
the paternal genome may play vital roles in fertilization and embryogenesis. Given 
the inability of the mature sperm cell to repair DNA damage, patients with very high 
levels of sperm DNA fragmentation may overwhelm the maternal DNA repair pro-
cess leading to failed fertilization or poor embryogenesis. Furthermore, the sperm 
cell delivers a unique epigenetically poised genome to the oocyte, perturbations in 
which may lead to failed fertilization and perturbed embryogenesis (Carrell  2012 ; 
Hammoud et al.  2010 ; Jenkins and Carrell  2012 ; Kumar et al.  2013 ; Schagdarsurengin 
et al.  2012 ). Additionally, the paternal genome has a unique organization within the 
human sperm cell (Millan et al.  2012 ; Zalenskaya and Zalensky  2004 ; Zalensky and 
Zalenskaya  2007 ) which may function as an additional layer of epigenetic regula-
tion (Millan et al.  2012 ) and be critical for fertilization and embryogenesis. 
Currently, this research fi eld is in its infancy, but if specifi c epigenetic patterns and 
genome organization are critical for embryogenesis, identifi cation of perturbations 
may lead to the development of clinically relevant tests.  

1.5     The Clinical Consequence of Chromosome Aneuploidy 

 Chromosome aneuploidy (the presence of extra or missing chromosomes—trisomies 
and monosomies, respectively) is the leading cause of fetal demise and cognitive 
impairment in humans and is estimated to occur in up to 50–80 % of conceptions 
(Hassold and Hunt  2001 ; Hassold et al.  1993 ; Munne et al.  2004 ; Vanneste et al. 
 2009 ) and 5 % of clinically recognized pregnancies (Hassold and Hunt  2001 ). The 
vast majority of aneuploid conceptuses are spontaneously aborted prior to establish-
ment of a clinically recognized pregnancy. Full-blown (non-mosaic) aneuploidies 
are only viable in a monosomic state for the X chromosome (Turner syndrome) and 
for a handful of chromosomes in a trisomic state, chromosomes 13, 18, and 21 
(Patau, Edwards, and Down syndrome, respectively), and the sex chromosomes 
(e.g., XYY, XXX, and XXY [Klinefelter syndrome]). Although these aneuploidies 
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are clinically viable, it should be noted that the vast majority of these will be 
 spontaneously aborted often prior to establishment of a clinically recognized preg-
nancy. It is well established that the largest risk factor for chromosome aneuploidy 
is advancing maternal age (Hassold et al.  1993 ,  2007 ; Hassold and Hunt  2001 , 
 2009 ). The vast majority of chromosome aneuploidy involving chromosomes 1–22 
(autosomes) and trisomy X in the early embryo is predominantly maternal in origin 
(70–100 %) (Hassold et al.  2007 ); as a consequence the paternal contribution to 
chromosome aneuploidy is frequently overlooked. Nevertheless, the paternal 
 contribution for the sex chromosome aneuploidies is considerably higher account-
ing for between 50 and 100 % of cases (Hassold et al.  1993 ). This is of clinical 
relevance given that aneuploidies involving the sex chromosomes are clinically 
viable and more common than autosomal aneuploidies in both spontaneous abor-
tions and neonates (Templado et al.  2013 ). 

 The most common cause of chromosome aneuploidy is perturbed segregation 
of chromosomes during maternal or paternal meiosis. For the most part these are 
typically de novo events that arise in the gametes of individuals with a normal 
somatic karyotype. Individuals with an abnormal karyotype, be it numerical or 
structural in nature, may be at an increased risk to transmit chromosome aberra-
tions to their future offspring and will be considered in subsequent sections. Given 
a normal karyotype, meiosis in the male is initiated within primary spermatocytes; 
chromosomes pair and undergo meiotic recombination, followed by two successive 
rounds of cell division leading to the formation of four genetically unique haploid 
spermatids that undergo cytodifferentiation to form mature spermatozoa. Critical to 
ensuring the appropriate segregation of chromosomes in meiosis is the pairing and 
synapsis of homologous chromosomes and initiation of meiotic recombination prior 
to the fi rst meiotic division (meiosis I) (Fig.  1.1 ). In the normal situation the fi rst 
meiotic division results in homologous chromosomes segregating to the opposite 
poles to produce two daughter cells (each homologous chromosome consists of a 
pair of sister chromatids). In the second meiotic division (meiosis II), the two sister 
chromatids segregate to opposite poles to create four genetically diverse daughter 
cells (Fig.  1.2 ). Chromosome aneuploidy can arise following inappropriate seg-
regation of homologous chromosomes or chromatids (nondisjunction), anaphase 
lag, or due to an ineffective meiotic checkpoint control (Ramasamy et al.  2014 ). 
The main etiology through which chromosome aneuploidy is considered to arise 
is through nondisjunction (Griffi n  1996 ; Hassold et al.  1993 ; Marquez et al.  1996 ). 
There are several ways in which nondisjunction can occur: (1) both homologous 
chromosomes may travel to the same pole in meiosis I; (2) both sister chromatids 
may travel to the same pole in meiosis II; and (3) premature separation of the sister 
chromatids can occur in meiosis I or II potentially resulting in i nappropriate segre-
gation to the same pole. The net effect of these various nondisjunction events will 
be that of the four sperms produced; some will contain the normal haploid comple-
ment of  chromosomes, whereas some will be missing a  chromosome ( nullisomic) 
or possess an additional chromosome (disomy) (Fig.  1.2 ). If a nullisomic or disomic 
sperm were to fertilize a normal haploid oocyte, it would give rise to an embryo 
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that is monosomic or trisomic, respectively, for the involved chromosome(s). 
The process of  synapsis and meiotic recombination has been shown to be extremely 
important, not only to create genetic diversity but also to ensure the correct seg-
regation of chromosomes throughout meiosis. Perturbations in chromosome syn-
apsis and meiotic recombination (reduced/absent recombination and/or altered 
placement of recombination) have been associated with defective spermatogenesis 
(reduced sperm counts) and increased levels of aneuploidy within sperm (Ferguson 
et al.  2007 ; Martin  2008 ; Sun et al.  2008 ; Tempest  2011 ). In addition to meiotic 
nondisjunction, chromosome nondisjunction can also occur postzygotically during 
mitosis. If postzygotic mitotic nondisjunction occurs, the embryo will be mosaic, 
possessing a mixture of diploid and aneuploid cells; the proportion of aneuploid 
cells will depend on the stage of embryonic development the nondisjunction event 
occurred. An early nondisjunction event will affect a greater proportion of cells. 
A mosaic karyotype can also arise following a meiotic nondisjunction event, if one 
of the additional chromosomes fails to be incorporated in the daughter cell as the 
result of trisomy rescue or anaphase lag during the postzygotic mitotic cell divisions 

  Fig. 1.1    Human pachytene spermatocyte demonstrating synapsis of homologous chromosome 
pairs and sites of meiotic recombination (chiasmata). The protein complex (synaptonemal com-
plex) that forms the physical connection between homologous chromosomes is labeled in  red , 
chromosome centromeres in  blue , and sites of recombination in  yellow . Note, all bivalents possess 
multiple chiasmata, with the exception of chromosomes 21 and 22 ( arrowed ) and the sex body 
which only possess a single chiasma; thus, these particular bivalents have an increased risk of 
chromosome nondisjunction if recombination does not take place (achiasmate bivalents)       
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of a trisomic embryo (Conlin et al.  2010 ). In this situation, the earlier this occurs 
during development results in a lower proportion of trisomic cells. For the pur-
poses of this chapter, we will only consider further meiotic nondisjunction events 
and how chromosome aberrations may impact the process of meiosis and hence 
spermatogenesis.    

1.6     Assessment of the Levels of Chromosome Aneuploidy 
Within Sperm 

 Given that the vast majority of chromosome aneuploidies perish in utero, often prior 
to a clinical pregnancy being established, an accurate assessment of the frequency 
can only be obtained by studying its frequency in the gametes (Templado et al. 
 2013 ). Since the advent of fl uorescence in situ hybridization (FISH), chromosome 
aneuploidy has been relatively straightforward to assess within sperm (Fig.  1.3 ). 
FISH has been routinely utilized for decades in a wide range of clinical application; 
however, the majority of data on sperm aneuploidy is derived from research rather 

  Fig. 1.2    Examples of nondisjunction mechanisms. The image on the  left  illustrates the normal 
segregation of homologous chromosomes in meiosis I and sister chromatids in meiosis II and the 
resulting spermatozoa. Following which, nondisjunction events occurring in meiosis I or meiosis 
II are shown, in which homologues (meiosis I) or sister chromatids (meiosis II) travel to the same 
pole. Note, in meiosis I the nondisjunction event may be due to a “true” nondisjunction event or 
the result of an achiasmate bivalent. The segregation pattern shown on the  right  illustrates how 
nondisjunction can arise as the result of premature separation of the sister chromatids (depicted in 
meiosis I, this can also arise in meiosis II). The outcome of these various segregation patterns will 
result in spermatozoa that will be either haploid (correct copy number), disomic (gain of a chromo-
some), or nullisomic (loss of a chromosome) for the chromosome(s) involved       
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than clinical studies. To date, there are over 50 published studies examining the 
levels of sperm aneuploidy predominantly in normozoospermic and infertile men. 
These studies have revealed several important fi ndings: (1) all men have a propor-
tion of aneuploid sperm within their ejaculate, and (2) virtually all studies report 
signifi cantly higher levels of aneuploidy in infertile men compared to individuals 
with normal semen parameters (Hann et al.  2011 ; Harton and Tempest  2012 ; Shi 
and Martin  2000 ; Tempest  2011 ; Tempest and Griffi n  2004 ; Templado et al.  2011 ). 
From the published FISH studies, the lower estimates of sperm aneuploidy frequen-
cies in males with normal semen parameters have been estimated to be around 
3–5 % (Pang et al.  1999 ; Templado et al.  2011 ; Chatziparasidou et al.  2014 ). This 
aneuploidy estimate is based on extrapolated data given that only 2–5 chromosomes 
can be reliably scored in a single sperm cell due to the limited number of fl uoro-
chromes available. In addition, most studies have selected chromosomes that are 
clinically signifi cant, namely, those chromosomes that are viable in an aneuploid 
state (chromosomes 13, 18, 21, X, and Y). For the most part, studies report similar 
levels of disomy with an average of approximately 0.1 % for each chromosome (Shi 
and Martin  2000 ; Tempest and Griffi n  2004 ; Templado et al.  2011 ). These estimates 
are extrapolated from the data on investigated chromosomes; it is important to note 
that there are a number of chromosomes for which there is little or no aneuploidy 
FISH data available (Shi and Martin  2000 ; Tempest and Griffi n  2004 ; Templado 
et al.  2011 ). However, the vast majority of studies have observed that specifi c chro-
mosomes are more prone to chromosome nondisjunction with much higher frequen-
cies of disomy found within sperm. Aneuploidy for chromosomes 21 and 22 and the 
sex chromosomes is frequently reported to be approximately threefold higher than 
the other chromosomes (Shi and Martin  2000 ; Tempest and Griffi n  2004 ; Templado 
et al.  2011 ). In males, there is an average of 50 sites of recombination (chiasmata) 
in each pachytene spermatocyte; the chiasmata are distributed across chromosomes, 
and in the normal situation there is at least one chiasma located on the long and 
short arm of the chromosome (Hassold et al.  2000 ). Longer chromosomes such as 
chromosome 1 have a greater number of chiasmata (~5), whereas the smallest 
 chromosomes 21 and 22 and the sex chromosomes usually only possess a single 

  Fig. 1.3    Fluorescence in situ hybridization (FISH) for chromosomes 18, 21, X, and Y in sperm 
nuclei. The sperm nuclei are counterstained with DAPI (pseudo-colored  gray ) with chromosomes 
18, 21, X, and Y probed in  aqua ,  green ,  gold , and  red  fl uorochromes, respectively. Panels ( a – d ) 
provide examples of normal and abnormal sperm FISH results for the investigated chromosomes: 
Panel ( a ) normal haploid Y-bearing sperm, Panel ( b ) XY disomy, Panel ( c ) YY disomy, and Panel 
( d ) XY disomy and disomy 21       
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chiasma (Martin  2008 ; Sun et al.  2005 ,  2008 ). As discussed previously, meiotic 
recombination appears to play an important role in ensuring chromosomes disjoin 
correctly during meiosis. Therefore, the presence of multiple chiasmata along the 
length of a chromosome may function in part, as an insurance policy to prevent 
nondisjunction. Thus, smaller chromosomes possessing a single chiasma (e.g., 
chromosomes 21, 22, X, and Y) are more prone to be achiasmate (lacking a chi-
asma) (Sun et al.  2008 ), losing the insurance policy of additional chiasmata to 
reduce the risk of nondisjunction. Studies have demonstrated that some individuals 
have a higher proportion of achiasmate bivalents and that this translates to a signifi -
cantly higher level of sperm aneuploidy (Ferguson et al.  2007 ; Sun et al.  2008 ).  

 The vast majority of sperm FISH studies have analyzed and compared the fre-
quencies of sperm aneuploidy between infertile men and either normozoospermic 
men, or men with proven fertility. All but a handful of these studies have identifi ed 
a signifi cant increase in sperm aneuploidy levels for at least one investigated chro-
mosome in men with reduced semen parameters compared to normozoospermic 
men (Shi and Martin  2000 ; Tempest et al.  2004 ; Templado et al.  2011 ; Chatziparasidou 
et al.  2014 ). Collectively these studies provide strong evidence that infertile men 
have a signifi cantly higher proportion of aneuploid sperm (approximately three-
fold), with severe oligoasthenoteratozoospermic and nonobstructive azoospermic 
individuals often having the highest levels (Shi and Martin  2000 ; Tempest et al. 
 2004 ; Templado et al.  2011 ; Chatziparasidou et al.  2014 ). From the published data, 
it is also clear that there are notable differences in the frequencies reported between 
studies; thus, baseline levels are diffi cult to establish. Differences between studies 
are likely due to technical differences including FISH probes utilized, number of 
cells scored, differences in scoring criteria, and subjective differences between scor-
ers. In addition, the differences could be due to interindividual differences in sperm 
aneuploidy frequencies. It would seem plausible that some individuals may be more 
prone to chromosome nondisjunction and anaphase lag and/or have a less effi cient 
meiotic checkpoint than others that may lead to increased levels of sperm aneu-
ploidy. Furthermore, exogenous factors may have the ability to increase or decrease 
sperm aneuploidy levels. To date, several studies have examined whether sperm 
aneuploidy levels are consistent over time and if interindividual differences in sperm 
aneuploidy exist. The general consensus of these studies reveals that sperm aneu-
ploidy levels remain remarkably consistent over time within individuals; neverthe-
less, there are stable variants who consistently produce higher levels of sperm 
aneuploidy (Rubes et al.  2005 ; Tempest et al.  2009 ). Preliminary data suggests that 
exogenous factors (e.g., diet, chemotherapy, or environment) may affect sperm 
aneuploidy levels resulting in a transient increase or potentially a decrease in aneu-
ploidy levels (Harkonen  2005 ; McAuliffe et al.  2012 ,  2014 ; Tempest et al.  2005 , 
 2009 ; Young et al.  2013 ). Despite the fi ndings of signifi cantly higher levels of chro-
mosome aneuploidy within the sperm or certain subsets of men, sperm aneuploidy 
is rarely examined clinically, with the test only available at a handful of reference 
laboratories worldwide (Carrell  2008 ; Ramasamy et al.  2014 ). The lack of robust 
clinical studies provides us with a relatively poor understanding of the role of sperm 
aneuploidy in embryogenesis. Given that certain individuals produce higher levels 
of sperm aneuploidy, perhaps the most important question to address is whether 
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these increased levels translate to an increased risk of paternally derived aneuploid 
embryos and offspring. This question is particularly diffi cult to address and is con-
founded by the signifi cant maternal contribution to chromosome aneuploidy and 
that the parental origin of trisomies is rarely identifi ed. Thus, if high sperm aneu-
ploidy levels are identifi ed, it is not yet clear how, or if, this should be utilized to 
counsel patients (Harton and Tempest  2012 ; Carrell  2008 ; Hann et al.  2011 ; Tempest 
 2011 ; Templado et al.  2011 ). To date, a handful of studies have tried to address 
whether sperm aneuploidy levels translate to embryo aneuploidies. Several studies 
have retrospectively identifi ed increased levels of sperm aneuploidy in the fathers of 
paternally derived aneuploid offspring (Arnedo et al.  2006 ; Blanco et al.  1998 ; 
Martinez-Pasarell et al.  1999 ; Soares et al.  2001 ; Moosani et al.  1999 ). These stud-
ies suggest that in almost all cases these individuals had signifi cantly higher levels 
of sperm aneuploidy for multiple chromosomes compared to fertile men with no 
history of aneuploid offspring (Harton and Tempest  2012 ). Other studies have pro-
vided preliminary evidence to suggest that higher levels of sperm aneuploidy are 
associated with recurrent ICSI failure (Nicopoullos et al.  2008 ; Petit et al.  2005 ), 
increased chromosome abnormalities in preimplantation embryos (Gianaroli et al. 
 2005 ), and lower pregnancy rates and live births (Nagvenkar et al.  2005 ). 
Furthermore, the approximate threefold increase in sperm aneuploidy observed in 
infertile men is mirrored by a threefold increase in de novo chromosome aberrations 
observed in children born after ICSI (Aboulghar et al.  2001 ; Bonduelle et al.  2002 ; 
Devroey and Van Steirteghem  2004 ; Van Steirteghem et al.  2002 ). Clearly, none of 
these studies provide direct evidence that sperm aneuploidy directly translates to 
embryo aneuploidy. However, albeit in a very small number of studies, there is 
compelling evidence to suggest that sperm aneuploidy may play a greater role in 
transmitting aneuploidy to embryos than previously perceived (Harton and Tempest 
 2012 ; Tempest  2011 ).  

1.7     How Do Chromosome Aberrations Affect Meiosis? 

1.7.1     Numerical Sex Chromosome Aneuploidies and Their 
Impact on Fertility and Meiosis 

 Sex chromosome aneuploidies are relatively common in the general population. 
The incidence of both Klinefelter syndrome (47,XXY) and 47,XYY syndrome is 
estimated to occur in 1 in 500 to 1 in 1,000 male live births (Morris et al.  2008 ). 
Individuals with Klinefelter syndrome typically present with nonobstructive azo-
ospermia (accounting for ~11 % of nonobstructive azoospermia) or potentially oli-
gozoospermia with a mosaic karyotype (Van Assche et al.  1996 ). Klinefelter 
syndrome is often perceived to have a classical phenotype (e.g., tall stature, gyneco-
mastia, and hypogonadism); however, many cases have a highly variable phenotype 
and may not be identifi ed until they present with infertility (Paduch et al.  2009 ). 
These men are born with spermatogonia, but during early puberty the 
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spermatogonia undergo a massive wave of apoptosis leading to azoospermia. In 
around 50 % of cases, sperm can be recovered following testicular sperm extraction 
and can be used with ICSI to allow patients to have biological offspring (Paduch 
et al.  2009 ). Individuals with a 47,XYY karyotype also present with a variable phe-
notype; the majority of cases may have no phenotypic abnormalities, whereas some 
individuals may have a greater risk for behavioral problems, mild learning disabili-
ties, and tall stature (Kim et al.  2013 ). Men with 47,XYY syndrome exhibit variable 
semen parameters ranging from normozoospermia to azoospermia (Kim et al.  2013 ) 
and hence, as with Klinefelter syndrome, may only be diagnosed if they present 
with fertility problems. In both of these cases, there is an additional sex chromo-
some that has to proceed and be segregated through meiosis; therefore, if sperm is 
present, there is a theoretical risk that 50 % of the sperm produced will be aneuploid 
for the sex chromosomes. Thus, in these situations there is a signifi cant risk of fetal 
demise and transmission of a sex chromosome aneuploidy in future offspring. FISH 
has been utilized to assess the levels of sex chromosome aneuploidy in the sperm 
from 47,XXY and 47,XYY males. The published studies are highly variable, but 
report signifi cantly lower sperm aneuploidy levels than the theoretical 50 %. In 
brief, the range of sperm aneuploidy for the sex chromosomes reported in Klinefelter 
syndrome (non-mosaic/mosaic) and 47,XYY men is between 1–25 %/0–7 % and 
0.1–14 %, respectively (Ferlin et al.  2005 ; Sarrate et al.  2005 ; Tempest  2011 ). These 
studies provide additional evidence of the presence of an as-of-yet unknown meiotic 
checkpoint that is relatively effi cient in eliminating a large proportion of aneuploid 
sperm cells (Harton and Tempest  2012 ; Burgoyne et al.  2009 ) and may contribute to 
the low sperm count observed in some 47,XYY males. Nonetheless, despite the 
presence of a meiotic checkpoint, there remains a considerable proportion of aneu-
ploid sperm that are capable of completing meiosis leading to signifi cantly higher 
levels of sperm aneuploidy compared to karyotypically normal men. To date, sev-
eral studies have reported that the increase in sperm aneuploidy observed is also 
mirrored by an equivalent increase in sex chromosome aneuploidies in preimplanta-
tion embryos (Gonzalez-Merino et al.  2007 ; Staessen et al.  2003 ). Additionally, 
approximately 10 % of cases in the literature have resulted in aneuploid offspring 
(two 47,XXY conceptuses) (Friedler et al.  2001 ; Ron-El et al.  2000 ). Therefore, 
couples should be offered genetic counseling to inform them of their potential 
increased risk of spontaneous abortions and aneuploid offspring.  

1.7.2     Structural Alterations in the Paternal Genome 
and Their Impact on Fertility and Meiosis 

 Structural chromosome aberrations can be classifi ed as cytogenetic aberrations or 
genomic structural variants and can include translocations, inversions, insertions, or 
deletions. Chromosome aberrations are considered balanced when all the DNA is 
present, but its order or location on a chromosome(s) has been rearranged or 
 unbalanced if there is gain or loss of genetic material. Cytogenetically visible 
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aberrations can be readily detected by karyotyping and are relatively large in size 
(>3–5 Mb) (Shaffer and Bejjani  2004 ), whereas genomic structural variants are not 
microscopically visible (typically, >1 kb) (Freeman et al.  2006 ).  

1.7.3     Karyotype Aberrations and Their Impact 
on Fertility and Meiosis 

 The incidence of cytogenetically visible chromosome aberrations is higher in males 
with fertility problems than that of the general population (Harton and Tempest 
 2012 ). Carriers of balanced structural chromosome rearrangements (e.g., transloca-
tions and inversions) are usually phenotypically normal; however, they often pres-
ent with infertility. Structural chromosome rearrangements pose problems during 
meiosis, requiring unique pairing structures to form and to facilitate homologous 
chromosome pairing (e.g., quadrivalents, trivalents and inversion loops for recipro-
cal translocations, Robertsonian translocations and inversions, respectively). The 
formation of these unique pairing structures imposes time constraints and/or may 
lead to failure of chromosome pairing, which could result in the activation of mei-
otic checkpoints potentially eliminating these cells (Shah et al.  2003 ). However, 
some cells are able to successfully form these unique pairing structures and com-
plete meiosis. In this situation, problems can arise when segregating chromosomes 
to daughter cells.  

1.7.4     The Impact of Chromosome Translocations 
on Fertility and Meiosis 

 In the case of chromosome translocations, several outcomes are possible: gametes 
may (1) contain the normal chromosome complement, (2) be balanced carrying the 
chromosome translocation, or (3) be unbalanced (containing segments that may be 
monosomic and/or trisomic for the chromosome regions involved in the transloca-
tion). Sperm cells that are chromosomally normal or balanced are unlikely to affect 
embryogenesis or development. However, a signifi cant proportion of sperm will be 
unbalanced. The phenotypic consequences of unbalanced segregation in chromo-
some translocations are often diffi cult to predict, given that most chromosomes  
translocations are unique to individual families. In these cases a careful review of 
the family history and assessment of the chromosomes involved and the size of the 
translocation can assist with counseling for the various possible outcomes. The vast 
majority of unbalanced sperm would result in early embryonic arrest or spontane-
ous abortions due to the incompatibility of partial trisomies and monosomies with 
embryogenesis. However, it is important to note that some unbalanced segregation 
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products may be clinically viable, potentially resulting in congenital malformations 
and cognitive impairment. This has an increased likelihood if the chromosome 
translocation involves gene-poor regions of the genome, is small in size, and/or is 
known to be tolerated in a monosomic (e.g., chromosome X) or trisomic state (e.g., 
chromosomes 13, 18, 21, X, and Y). Using FISH probes for the specifi c chromo-
somes involved in the translocation, it is possible to evaluate the proportion of 
unbalanced sperm produced. The published literature reports extremely variable 
levels of sperm aneuploidy, which likely refl ects patient-specifi c translocations. 
Studies evaluating the frequencies of unbalanced sperm from 30 reciprocal translo-
cation carriers report partial aneuploidy levels of 29–81 % (Ferlin et al.  2007 ; 
Sarrate et al.  2005 ; Tempest  2011 ), whereas studies from 20 Robertsonian translo-
cation carriers report aneuploidy levels of between 3 and 36 % (Ferlin et al.  2007 ; 
Sarrate et al.  2005 ; Tempest  2011 ).  

1.7.5     The Impact of Chromosome Inversions 
on Fertility and Meiosis 

 Meiotic segregation in carriers of balanced inversions usually results in normal or 
balanced gametes, unless meiotic recombination takes place within the inversion. If 
recombination takes place within the inversion, resulting gametes may be monoso-
mic and/or trisomic for the regions involved and potentially acentric or dicentric if 
the inversion involves the centromere (paracentric inversion). The clinical viability 
of unbalanced gametes is essentially the same as for translocations, in that, the vast 
majority will be spontaneously aborted often prior to a clinical pregnancy being 
established or potentially viable with risks of congenital abnormalities and/or cog-
nitive impairment depending on the chromosome region involved and size of the 
unbalanced segments. In the case of inversions, larger inversions have a higher like-
lihood of resulting in unbalanced gametes as there is an increased risk of recombi-
nation occurring within a larger segment. To date, a handful of studies have examined 
the proportion of unbalanced sperm using FISH. As with translocations, the per-
centage of unbalanced sperm produced in inversion carriers varies widely between 
studies (1–54 %) (Anton et al.  2002 ,  2005 ; Jaarola et al.  1998 ; Mikhaail-Philips 
et al.  2004 ,  2005 ; Yakut et al.  2003 ), with the highest levels most likely refl ecting 
larger inversions. 

 In the case of translocations and inversions, the estimates of sperm aneuploidy 
should be used with caution and are not generally applicable due to the fact that 
the vast majority of aberrations are unique. Therefore, individual assessment 
using personalized FISH probes for the chromosomal rearrangement can be read-
ily used to obtain patient-specifi c risks in conjunction with family history to 
determine  frequency of unbalanced sperm and whether unbalanced products may 
be clinically viable.  
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1.7.6     Genomic Structural Aberrations 

 It is clear that cytogenetically visible chromosome aberrations, numerical or 
s tructural in nature, can have a tremendous impact on embryogenesis resulting in 
embryonic arrest, fetal demise, and potentially live-born offspring with wide-ranging 
clinical phenotypes. Despite the clear association of abnormal karyotypes and 
embryogenesis, it is noteworthy that a signifi cant proportion of early failed pregnan-
cies with developmental defects are karyotypically normal. Studies suggest that up 
to ~20 % of morphologically abnormal embryos possess a normal karyotype 
(Philipp et al.  2003 ; Rajcan-Separovic et al.  2010 ). It seems plausible that many of 
these seemingly euploid developmentally abnormal embryos may be the result of 
submicroscopic perturbations that are not detectable by routine karyotyping. Recent 
technological advances that include chromosomal microarrays and sequencing now 
enable the routine detection of insertions, deletions, inversions, and duplications 
that are as small as 50 bp in size. These variants can arise through multiple mecha-
nisms; however, they frequently arise as a result of errors during meiotic recombina-
tion. The paternal and maternal transmission of de novo submicroscopic chromosome 
aberrations following errors in meiotic recombination is likely to be equal, given 
that both male and female gametes only progress through meiosis on a single occa-
sion. De novo submicroscopic chromosome aberrations can be benign or patho-
genic in nature depending on their location and genetic content (Wapner et al.  2012 ). 
The clinical utilization of chromosome microarrays has been extremely benefi cial 
in the evaluation of children with neurocognitive developmental delays and con-
genital structural malformations (Wapner et al.  2012 ). However, the consequence of 
these submicroscopic aberrations on fertilization, embryogenesis, and fetal devel-
opment remains poorly understood. To date, a handful of studies have reported that 
between 4 and 13 % of miscarriages may possess submicroscopic chromosome 
aberrations that would not be detectable by routine karyotyping (Rajcan-Separovic 
et al.  2010 ; Shaffer et al.  2008 ; Shimokawa et al.  2006 ). It is important to note that 
the majority of studies did not determine whether these submicroscopic alterations 
were de novo, benign, or potentially pathogenic. A recent large study compared the 
use of chromosomal microarray and karyotyping for prenatal diagnosis enrolling 
over 4,400 women with indications for prenatal diagnosis including advanced 
maternal age, abnormal Down syndrome screening result, and structural abnormali-
ties identifi ed on ultrasound. This study reported that 6 % of samples were found to 
have a submicroscopic clinically signifi cant unbalanced chromosome aberration 
(Wapner et al.  2012 ). The occurrence of submicroscopic aberrations in the prenatal 
diagnosis study is on the lower end compared to that reported in the miscarriage 
studies; this is most likely due to the fact that the prenatal diagnosis study evaluated 
gestationally older pregnancies than the miscarriage studies and only included 
potentially pathogenic alterations. The gestational age is critical when considering 
chromosome aberrations. As embryos develop a lower proportion of chromosom-
ally abnormal embryos will be identifi ed as the vast majority of aberrations result in 
spontaneous abortions, thus the prevalence of chromosome aberrations decreases 
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with gestational age. Another critical point to note is the inability of chromosome 
microarrays used by these studies to detect balanced chromosome aberrations or 
triploidy; therefore, prevalence of the chromosomal aberrations reported could be 
conceivably higher (Wapner et al.  2012 ).   

1.8     Conclusions 

 Chromosome aneuploidy, complete or partial in nature, can perturb embryogen-
esis and development. Somewhat surprisingly, the role of paternally derived chro-
mosome aneuploidy in embryogenesis and development remains questionable in 
the clinic. A survey administered to fertility clinics in the UK perceived there 
is to be an increased risk of transmitting paternal genetic abnormalities follow-
ing ICSI, but despite the concern most did not offer sperm aneuploidy screening 
(Griffi n et al.  2003 ). Published studies suggest sperm aneuploidy has the potential 
to be a clinically useful screening tool to identify individuals with an increased 
risk of transmitting chromosome aneuploidy to future offspring. However, the 
clinical implementation of widespread routine sperm aneuploidy screening has 
been hampered by a number of factors that include (1) large maternal contribu-
tion to aneuploidy, (2) various technical challenges (e.g., wide variations between 
studies, requirement to score large numbers of cells (>5,000), limited number 
of chromosomes tested (3–5 chromosomes) per cell, and the inability to test the 
individual sperm that will be used for ICSI), (3) identifi cation of individuals who 
may benefi t from sperm aneuploidy scoring, and (4) what is a clinically signifi -
cant level of sperm aneuploidy and how should patients with higher levels of 
aneuploidy be counseled. These important considerations have largely precluded 
the widespread clinical application of sperm aneuploidy screening, suggesting 
that at the moment the drawbacks outnumber the potential benefi ts. However, it is 
important to note that published studies have demonstrated chromosome aberra-
tions (numerical or structural) can initiate and complete meiosis. Furthermore, the 
levels of aneuploidy observed in the sperm of infertile men or men with karyotype 
aberrations are mirrored and translate to increased levels of aneuploidy in pre-
implantation embryos and offspring, with several potential outcomes including 
fetal demise and congenital and cognitive impairments. Nevertheless, these fi nd-
ings are fundamentally based on a handful of small studies, and the true clinical 
ramifi cations of such fi ndings will be diffi cult to determine until larger studies 
in a clinical setting are initiated. It seems unlikely that such studies will be initi-
ated until some of the technical issues are resolved allowing rapid, cost-effective 
assessment of sperm aneuploidy levels. Automated capture and analysis soft-
ware is currently available for FISH scoring and has been successfully applied to 
measure sperm aneuploidy and more commonly clinically for oncological FISH 
assays. However, automated approaches to assess sperm aneuploidy are not avail-
able in most clinics and have failed to signifi cantly reduce the cost of the test 
(Carrell and Emery  2008 ; Tempest et al.  2010 ), primarily due to the initial outlay 
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for capture system, software, and the relatively high cost of commercial FISH 
probes. Additionally, due to the lack of distinguishable fl uorochromes, scoring all 
24 chromosomes simultaneously in a single cell does not provide a genome-wide 
appreciation of the levels of aneuploidy within a single cell. The development and 
application of rapid multicolor FISH assays in combination with FISH reprobing 
and automation may allow all 24 chromosomes to be assessed in a single cell 
(Ioannou et al.  2011 ,  2012 ). Furthermore, it is also important to note that FISH as 
it is currently performed for aneuploidy assessments provides an extremely low 
resolution, typically only assessing a single chromosome region. Furthermore, 
FISH does not readily provide the possibility to screen for de novo structural 
aberrations or small genomic variants that may signifi cantly contribute to spon-
taneous abortions. Technologically, it is possible to assess genome-wide levels 
of nondisjunction, unbalanced rearrangements, and smaller genomic variants 
in a single sperm cell using higher-resolution methodologies (e.g., sequencing, 
chromosome microarrays, and SNP arrays). Currently this remains prohibitively 
expensive as a routine clinical test given the large number of sperm cells that 
would need to be screened due to the relatively low proportion of aneuploidy in 
sperm. Currently, estimates of the proportion of sperm with de novo structural 
aberrations and smaller genomic perturbations are unknown, but it is reasonable 
to suggest that these may be similar or lower than aneuploidy levels. Thus, glob-
ally the proportion of sperm that may be perturbed may be clinically signifi cant 
but still relatively low and hence not cost-effective to evaluate unless specifi c 
patient cohorts who may benefi t can be identifi ed. 

 It is clear that the paternal genome plays an important role in embryogenesis 
and development and is capable of transmitting genetic defects to embryos and 
hence future offspring. Studies have demonstrated that perturbations of the pater-
nal epigenome and/or genome may have a tremendous impact on embryogenesis. 
While the maternal contribution to aneuploidy is considerable, there remains a 
clinically signifi cant paternal contribution, particularly in infertile men and men 
with karyotype abnormalities. Furthermore, the paternal genome has been shown 
to be more mutagenic leading to an increased risk of de novo mutations and 
potentially at least an equal contribution to the generation of de novo genomic 
variants which have recently been shown to be associated with fetal demise and 
congenital and cognitive impairments. These factors should be considered par-
ticularly in couples who have experienced recurrent pregnancy loss, failed fertil-
ization, and unexplained male factor infertility. Depending on the results of the 
semen parameter assessment and family history, additional genetic testing may 
be warranted including DNA fragmentation, karyotyping, Y chromosome micro-
deletions, single gene mutation testing, and potentially sperm aneuploidy assess-
ment, particularly in individuals with karyotype aberrations. This information 
should be used to carefully counsel patients and provide them with individual-
ized risk assessments to allow patients to make informed decisions regarding 
their reproductive future.     
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    Chapter 2   
 Damage to Sperm DNA Mediated by Reactive 
Oxygen Species: Its Impact on Human 
Reproduction and the Health Trajectory 
of Offspring 

             Dan     Gavriliouk     and        Robert     John     Aitken     

    Abstract     Disruptions to the genetic integrity of the mammalian spermatozoon play 
a major role in determining the subsequent developmental trajectory of the embryo. 
This chapter examines the causative links that connect DNA damage in human sper-
matozoa and the appearance of mutations in the progeny responsible for a variety of 
clinical conditions from autism to cancer. Integral to this discussion is an abundance 
of evidence indicating that human spermatozoa are vulnerable to free radical attack 
and the generation of oxidative DNA damage. The resolution of this damage appears 
to be initiated by the spermatozoa but is driven to completion by the oocyte in a 
round of DNA repair that follows fertilization. The persistence of unresolved oxida-
tive DNA damage following zygote formation has the potential to create mutations/
epimutations in the offspring that may have a profound impact on the health of the 
progeny. It is proposed that the creation of oxidative stress in the male germ line is 
a consequence of a wide variety of environmental/lifestyle factors that infl uence the 
health and well-being of the offspring as a consequence of mutational change 
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induced by the aberrant repair of oxidative DNA damage in the zygote. Factors such 
as paternal age, subfertility, smoking, obesity, and exposure to a range of environ-
mental infl uences, including radio-frequency electromagnetic radiation and xenobi-
otics, have all been implicated in this process. Identifying the contributors to 
oxidative stress in the germ line and resolving the mechanisms by which such 
stressors infl uence the mutational load carried by the progeny will be an important 
task for the future. This task is particularly pressing, given the extensive use of 
assisted reproductive technologies to achieve pregnancies in vitro that would have 
been prevented in vivo by the complex array of mechanisms that nature has put in 
place to ensure that only the fi ttest gametes participate in the generative process.  

  Keywords     Reactive oxygen species (ROS)   •   Oxidative stress   •   Sperm mitochondria   
•   DNA damage   •   Apoptosis   •   Histones   •   Protamines   •   Base excision repair  

2.1         Introduction 

 The integrity of DNA in the sperm nucleus is an important determinant of semen 
quality since it defi nes not only the success of fertilization but also the normality of 
embryonic development and the health trajectory of the offspring. As a conse-
quence, DNA damage in these cells is associated with the impairment of fertility, an 
increase in the incidence of miscarriage, and a variety of defects in the progeny 
ranging from neurological conditions such as autism to cancer (   Evenson et al.  1999 ; 
Larson et al.  2000 ; Aitken and Baker  2013 ; Aitken et al.  2013 ). The backbone of the 
DNA helix is frequently cleaved in spermatozoa resulting in either single (SSB)- or 
double-strand breaks (DSB), while oxidative attack leads to the formation of base 
adducts particularly 8-hydroxy-2′-deoxyguanosine (8OHdG) (De Iuliis et al.  2009 ). 
The sources of this DNA damage are complex and include age, genetic disposition, 
lifestyle, and exposure to various external factors including ionizing radiation and a 
wide range of xenobiotics including chemical carcinogens (Aitken and De Iuliis  2010 ). 

 While the induction of strand breaks and progressive accumulation of base 
adducts can eventually give rise to mutations, there is uncertainty as to when in the 
reproductive process such mutagenic change occurs. In some cases, such as Apert 
syndrome, there is good evidence to support a model whereby the mutation causing 
this disease arises in spermatogonial stem cells as a function of paternal age. The 
consensus view of this process asserts that as men age their germ cells experience 
multiple rounds of premeiotic replication, and with each cellular iteration the risk 
of a mutation occurring as a consequence of replication error correspondingly 
increases. Apert syndrome involves FGFR2 (fi broblast growth factor receptor 2) 
mutations, which are thought to become overrepresented in the sperm population as 
a consequence of age-dependent clonal expansion, mutant spermatogonial stem 
cells having a proliferative advantage over nonmutated cells (Goriely et al.  2003 ). 
Accordingly this mutation appears in clusters within the seminiferous tubules 
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 possibly as a consequence of failures of asymmetrical division within the germ line 
(Shinde et al.  2013 ). Such a germ line selection model may also explain the origin 
of other dominant genetic diseases such as achondroplasia, the incidence of which 
is also correlated with paternal age (Crow  2000 ). However, in this case, there 
appears to be a major discrepancy between the incidence of the causative mutation 
in spermatozoa and the appearance of the disease in the progeny of aging males 
(Hurst and Ellegren  2002 ). In order to explain this discrepancy, we have proposed 
an alternative hypothesis for the origin of such mutations whereby the latter are held 
to arise as a result of ineffi cient or aberrant repair of damaged sperm DNA within 
the oocyte, immediately after fertilization (Aitken et al.  2004 ). The fi rst cell division 
following fertilization is unarguably the most important. The zygote has one oppor-
tunity to repair the DNA damage brought into the oocyte by the fertilizing sperma-
tozoon before S-phase of the fi rst mitotic division is initiated. Any inadequacies in 
this repair and replication process could have major consequences for the embryo, 
since any infi delities in the transmission of genetic information through the fi rst cell 
division will subsequently be replicated throughout embryogenesis (Fig.  2.1 ).  

Fertilization
IVF or natural

DNA mutation load in the embryo increased 

DNA damage in the germ line

Paternal age, diet, infection, irradiation,
sperm cryopreservation, occupational,
environmental exposure to metals or

complex organics, genetics

Aberrant DNA repair
prior to S -phase

Miscarriage, dominant genetic disease,
complex neurological conditions,

cancer, metabolic disease

  Fig. 2.1    Potential origins of genetic and epigenetic changes in the germ line. The “aberrant repair 
hypothesis” essentially posits that a variety of clinical, biological, lifestyle, and environmental 
factors including paternal age, obesity, gamete cryopreservation, exposure to radiation, transition 
metals, or a wide range of small molecular mass xenobiotics can trigger mitochondrial ROS gen-
eration and oxidative DNA damage in spermatozoa. These cells then fertilize the oocyte, possibly 
with the help of ART techniques such as ICSI (intracytoplasmic sperm injection), and it is then up 
to the oocyte to affect repair of the damaged paternal genome. Any ineffi ciencies or mistakes 
resulting from this round of postfertilization DNA repair have the potential to create mutations or 
epimutations that will impact upon the normal development and health trajectory of the offspring 
(Aitken and Krausz  2001 )       
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 Since DNA damage is such a common feature of defective spermatozoa  generated 
by male-factor patients in an assisted reproductive technology (ART) setting (Lopes 
et al.  1998 ), it is inevitable that a signifi cant number of in vitro conceptions are 
achieved using DNA-damaged spermatozoa that would have been excluded from 
this process in vivo. Although the use of ART and particularly ICSI (intracytoplas-
mic sperm injection) to achieve fertilization in cases of severe male infertility has 
been extremely successful in improving conception rates, such apparent therapeutic 
advances might have been achieved at a cost, in terms of the health and well- being 
of the offspring. Of critical importance to this discussion is a clear understanding of 
the oocyte’s competence for DNA repair. Typically, SSB are repaired by the base 
excision repair (BER) and nucleotide excision repair (NER) pathways, while DSB 
are repaired by nonhomologous end join (NHEJ) and homologous recombination 
(HR). The signifi cance of these pathways in the oocyte has not been clearly articu-
lated, but for the reasons given below, the BER pathway is probably the single most 
important DNA repair strategy associated with the oocyte’s central task of tackling 
the DNA damage brought into the zygote by the fertilizing spermatozoon. 

 It is the purpose of this chapter to examine the source and nature of DNA damage 
in human spermatozoa, to examine how such damage is repaired following fertiliza-
tion, and to review how errors in this repair process impact on the health and well- 
being of the offspring. This discussion will begin with a consideration of the cause 
of DNA damage in human spermatozoa, and in this context, the spermatozoon’s 
susceptibility in oxidative stress is fundamental (Aitken and Clarkson  1987 ).  

2.2     Oxidative Stress and Spermatozoa 

2.2.1     The Perpetual Cycle of ROS Generation in Spermatozoa 

 A major cause of DNA damage in spermatozoa is oxidative stress mediated by a 
variety of reactive oxygen species (ROS) including free radicals such as superoxide 
anion (O 2  −• ), nitric oxide (NO • ), or the hydroxyl radical (OH • ) as well as powerful 
oxidants such as hydrogen peroxide (H 2 O 2 ) or peroxynitrite (ONOO _ ). Spermatozoa 
are particularly prone to oxidative stress because their antioxidant defensive capacity 
is limited, due to the removal of a majority of their cytoplasm during spermatogen-
esis and a consequential reduction in cytoplasmic antioxidants such as catalase or 
superoxide dismutase. Furthermore, these cells are professional generators of ROS, 
with a vast majority of these reactive oxygen metabolites being generated as a con-
sequence of electron leakage from the sperm mitochondria (Koppers et al.  2008 ). 

 The vulnerability of spermatozoa to oxidative stress also refl ects the abundance of 
substrates these cells offer up for free radical attack. Thus, the membranous constitu-
ents of spermatozoa contain high concentrations of polyunsaturated fatty acids, par-
ticularly docosahexaenoic acid, the double bonds of which are vulnerable to attack 
by ROS and the initiation of lipid peroxidation cascades. The hydrogen abstraction 
event that initiates lipid peroxidation is promoted because the carbon–hydrogen 
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 dissociation energies are lowest at the bis-allylic methylene position, generating 
carbon-centered lipid radicals that then combine with oxygen to generate peroxyl 
(ROO•) and alkoxyl (RO•) radicals that, in order to stabilize, abstract hydrogen 
atoms from adjacent carbons. These chemical reactions create additional lipid 
 radicals that then perpetuate the lipid peroxidation chain reaction, culminating in 
the generation of small molecular mass electrophilic lipid aldehydes such as 
4-hydroxynonenal (4HNE), acrolein, and malondialdehyde. 

 Further to this lipid-based vulnerability to free radical attack, we have also recently 
demonstrated that the lipid aldehydes generated as a result of lipid peroxidation actu-
ally trigger the generation of yet more free radicals from the sperm mitochondria in a 
self-perpetuating cycle (Fig.  2.2 ). According to this scheme, lipid aldehydes such as 
acrolein or 4HNE form adducts with proteins in the mitochondrial electron transport 
chain (ECT) that perturb the normal, controlled 4-electron reduction of oxygen to 
water. This results in the leakage of electrons from the ECT that affect the 1-electron 
reduction of nature’s universal electron acceptor, oxygen, to generate O 2  −• , which 
then rapidly dismutates to H 2 O 2  under the infl uence of  mitochondrial superoxide dis-
mutase (Aitken et al.  2013 ). Intriguingly, defective spermatozoa from subfertile 
males contain a superabundance of superoxide dismutase, possibly refl ecting the 
retention of excess residual cytoplasm during the terminal stages of spermiogenesis 
(Aitken et al.  1996 ; Gomez et al.  1996 ; Sanocka et al.  1997 ). The fact that correla-
tions have also been observed between superoxide dismutase and other cytoplasmic 
enzymes such as glucose-6-phophate dehydrogenase or creatine kinase supports this 
view (Aitken et al.  1996 ; Gomez et al.  1996 ). Normally the presence of excess super-
oxide dismutase would be considered an asset for any cell seeking to protect itself 
from oxidative stress. However, unless this enzyme is accompanied by a correspond-
ing increase in the presence of enzymes that can scavenge H 2 O 2  such as glutathione 
peroxidase or catalase (both of which are present in limited supply in human sperma-
tozoa; Storey et al.  1998 ; Sanocka et al.  1997 ), the presence of excess superoxide 
dismutase simply turns a short-lived, membrane-impermeant, relatively inert free 
radical in the form of O 2  −•  into a long- lived, membrane-permeant reactive oxidant, 
H 2 O 2 , that can attack a wide variety of substrates in spermatozoa. Such attacks not 
only target the polyunsaturated fats that abound in the sperm plasma membrane but 
also the DNA in the sperm nucleus and mitochondria.   

2.2.2     Primary Causes of Excess ROS Generation 
by Sperm Mitochondria 

 If oxidative stress stimulates a lipid peroxidation process characterized by the 
 generation of aldehydes that perpetuate the generation of ROS from the sperm mito-
chondria, then the question arises as to what triggers oxidative stress in the fi rst 
instance. In this context one of the most important activators of ROS generation by 
sperm mitochondria is the induction of apoptosis in response to senescence or other 
adverse circumstances. 
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2.2.2.1     The Intrinsic Apoptotic Cascade in Spermatozoa 

 One of the most important points to make about apoptosis in spermatozoa is that a 
regulated, apoptotic cell death is the default position for this cell type and is largely 
intrinsically induced. To the authors’ knowledge there are no extrinsic factors that will 
reliably and robustly trigger apoptosis in spermatozoa via a receptor-mediated mecha-
nism. Although powerful bacterially derived factors such as lipopolysaccharide (LPS) 
have been claimed to trigger apoptosis in human spermatozoa (Hakimi et al.  2006 ), 
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  Fig. 2.2    The self-propagating nature of ROS generation by spermatozoa. ( a ) Immunocytochemical 
analysis with an anti-4HNE antibody reveals that this electrophilic aldehyde binds to multiple 
proteins in spermatozoa, particularly in the sperm midpiece where the mitochondria are located. 
( b ) Western blot analysis confi rms that multiple proteins are adducted by 4HNE including major 
proteins from the mitochondrial electron transport chain (ETC) such as succinic acid dehydroge-
nase (SDHA). ( c ) The binding of 4HNE to the sperm mitochondria perturbs electron fl ow through 
the ETC leading to electron leakage and the generation of ROS; MSR describes the percentage of 
live cells (defi ned using SYTOX Green ® ) that are generating a positive signal with MitoSOX Red 
™, a probe for mitochondrial ROS generation, in a fl ow cytometer. The bell-shaped dose–response 
curve refl ects the ability of 4HNE to compromise cell viability at higher doses (Aitken et al.  2012a ,  b ). 
( d ) As a result of these fi ndings, we propose a self-perpetuating cycle of ROS-induced ROS gen-
eration wherein oxidative stress leads to the formation of lipid aldehydes that bind to proteins 
within the ETC and stimulate yet more ROS generation and lipid peroxidation       
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we have been unable to consistently replicate these fi ndings, despite many attempts. 
The one condition that will consistently trigger an apoptotic response in these cells is 
senescence, which is itself a refl ection of the oxidative stress created via the formation 
of lipid aldehydes as a consequence of cell metabolism. If these electrophilic alde-
hydes are scavenged by powerful nucleophiles such as the thiol, penicillamine (   Aitken 
et al.  2012a ,  b ), then the survival of spermatozoa in vitro is signifi cantly increased. 
The prolonged life span of mammalian spermatozoa in vivo contrasts dramatically 
with their limited survival in vitro and suggests that both the male and female repro-
ductive tracts must be capable of controlling the bioavailability of such lipid alde-
hydes via molecular mechanisms that are still poorly unresolved. 

 It is the fate of a great majority of spermatozoa to experience a senescence- 
induced apoptotic death in either the male or female reproductive tract. Whatever 
the location of this death, its manner is of critical importance. Spermatozoa are 
terminally differentiated cells that arise long after immunological tolerance has 
been generated and are potentially immunogenic in both males and females. Thus, 
when these cells die and are phagocytosed by neutrophils or macrophages, it is 
important that the phagocytic process responsible for their removal is “silent” and 
does not trigger a pro-infl ammatory, phlogistic response. Such silent phagocytosis 
occurs commonly in biological systems and is mediated by the phagocyte’s ability 
to recognize apoptotic markers such as phosphatidylserine and other “eat-me” sig-
nals on the exofacial surface of the cell being engulfed (Hochreiter-Hufford and 
Ravichandran  2013 ). In order for the massive phagocytic event that follows insemi-
nation to be truly silent, it is critical that the spermatozoa undergoing phagocytosis 
have undergone an apoptotic death. This apoptotic death is generally triggered by 
the oxidative stress that accompanies the physiological exertion needed to sustain 
high levels of sperm motility over prolonged periods of time. 

 It should also be recognized that oxidative stress is an inevitable consequence of 
the redox mechanisms that are needed to drive the capacitation process forward. 
“Capacitation” is a general term that covers a range of physiological changes that 
spermatozoa must undergo if they are to undergo a physiological acrosome reaction 
in the immediate vicinity of the oocyte. Preparation for acrosomal exocytosis involves 
a complex array of biochemical changes including cholesterol effl ux, a quantum 
increase in levels of tyrosine phosphorylation, and the expression of hyperactivated 
movement, all of which are known to be redox regulated (de Lamirande and Gagnon 
 1993 ; Aitken et al.  1998 ; Brouwers et al.  2011 ). It is theoretically possible for a vari-
ety of ROS to be responsible for the induction of these changes  associated with 
capacitation, but the constitutive generation of NO •  by spermatozoa suggests that 
the powerful oxidant, peroxynitrite (ONOO − ), is a major product of these cells with 
a proven capacity to stimulate capacitation (de Lamirande and Lamothe  2009 ; 
Rodriguez et al.  2011 ). If fertilization does not occur, it has been proposed that the 
continued generation of ONOO −  by capacitating spermatozoa leads to a state of 
“over-capacitation” whereby the ROS generation that drives capacitation eventually 
overwhelms the limited antioxidant capacity of these cells, leading to a state of oxi-
dative stress (Aitken  2011 ). The appearance of ONOO − -mediated oxidative stress 
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leads to a loss of sperm function (Uribe et al.  2015 ) and the generation of lipid 
 aldehydes that via the mechanisms described above, stimulate yet more ROS genera-
tion, ultimately precipitating a state of apoptosis characterized by rapid motility loss, 
mitochondrial ROS generation, caspase activation in the cytosol, annexin V binding 
to the cell surface, cytoplasmic vacuolization, and oxidative DNA damage (Koppers 
et al.  2011 ). During this intrinsic apoptotic cascade, it is only after the spermatozoa 
have become immobilized, and therefore prone to phagocytosis, that markers of apop-
tosis such as phosphatidylserine externalization start to appear (Koppers et al.  2011 ). 

 Sperm senescence and apoptosis is not normally induced by an external factor, 
but is an intrinsic process dependent on a fall in phosphoinositide 3-kinase (PI3K) 
activity. The latter is highly active in mammalian spermatozoa and generates the 
novel phosphoinositide, PtdIns(3,4,5)P3, which binds to the PH domain of kinases 
such as AKT1 causing the latter to translocate to the sperm surface where it becomes 
activated by phosphorylation under the infl uence of PDK-1. This pathway leads to 
the promotion of cell survival via a variety of mechanisms, particularly the phos-
phorylation and inactivation of proapoptotic proteins such as BAD (Koppers et al. 
 2011 ). If PI3K activity is suppressed with an inhibitor such as wortmannin, then 
AKT1 rapidly dephosphoryates, leading, in turn, to the dephosphorylation of BAD 
and the activation of sperm apoptosis (Koppers et al.  2011 ). Conversely, any pro- 
survival factor that stimulates PI3K activity leads to inhibition of apoptosis and 
prolongs the functional life span of the spermatozoa. There are, in all probability, 
many such pro-survival factors operating in vivo in order to achieve the prolonged 
survival of spermatozoa in both the male and female reproductive tracts. One of the 
fi rst such pro-survival factors to be identifi ed is prolactin (Pujianto et al.  2010 ). 
Spermatozoa possess several splice variants of the prolactin receptor, while addition 
of this hormone to human sperm suspensions has been found to prolong survival in 
association with an increase in AKT1 phosphorylation (Pujianto et al.  2010 ). 

 From the foregoing, it should be clear that oxidative stress is a feature of sperm 
cell biology responsible for both the induction of sperm capacitation and the even-
tual demise of these cells as a consequence of a senescence process that is associ-
ated with activation of the intrinsic apoptotic cascade. In vitro, sperm senescence 
and apoptosis are generally promoted by the lack of pro-survival factors in the cul-
ture medium. In addition, any factors that promote oxidative stress in spermatozoa 
have the potential to accelerate the apoptotic process. For example, just exposing 
spermatozoa to H 2 O 2  will precipitate an apoptotic response (Lozano et al.  2009 ). 
Cryostorage of spermatozoa will also generate a high level of apoptosis associated 
with oxidative stress (Thomson et al.  2009 ) as will exposure to a number of free 
radical-generating xenobiotics (Aly  2013 ) including lifestyle factors such as ciga-
rette smoke and radio-frequency electromagnetic radiation (Fraga et al.  1996 ; De 
Iuliis et al.  2009 ; Liu et al.  2013 ). 

 In addition it has been observed that a superabundance of polyunsaturated fatty 
acids will also stimulate mitochondrial ROS generation and create a state of oxida-
tive stress in human spermatozoa; the greater the level of unsaturation, the greater 
the stimulatory effect (Koppers et al.  2010 ). Esterifi cation of the fatty acid counters 
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this prooxidant effect suggesting that it is the amphiphilic properties of these 
 molecules that are central to their ROS-inducing activity, possibly by defi ning the 
orientation of the fatty acids in relation to the mitochondrial electron transport 
chain. In this context, it is signifi cant that defective human spermatozoa generating 
excessive levels of ROS possess abnormally high cellular contents of free polyun-
saturated fatty acids, the levels of which are positively correlated with mitochon-
drial superoxide generation (Aitken et al.  2006 ). Why some men should possess 
spermatozoa generating particularly high levels of ROS in association with high 
cellular contents of polyunsaturated fatty acids is not currently known; however, 
such associations may refl ect the impact of diet or genetic factors on reproductive 
function.  

2.2.2.2     The Truncated Nature of Apoptosis on Spermatozoa 

 The reliance of spermatozoa on the intrinsic apoptotic cascade is a distinguishing 
characteristic of these cells that refl ects their status as terminally differentiated, dis-
posable cells. Another unique attribute of apoptosis in spermatozoa is that this pro-
cess is truncated (Koppers et al.  2011 ). The reason for such restriction lies in the 
unique architecture of these cells. Unique among all cell types, spermatozoa are 
distinguished by the fact that all of the mitochondria and most of the cytoplasm 
are physically separated from the sperm nucleus (Fig.  2.3 ). Thus, the conventional 
apoptosis paradigm, involving nucleases activated in the cytoplasm or released by 
the mitochondria that move into a centrally located sperm nucleus in order to destroy 
the DNA and create the cleaved DNA ladders that characterize this process, cannot 
apply to this cell type. Nucleases generated in the cytoplasm or mitochondria of the 
sperm midpiece are physically prevented from gaining access to the nuclear DNA 
located in the sperm head (Koppers et al.  2011 ). Since chemically, DNA fragmenta-
tion can only be induced by free radicals or nucleases, the above rationale explains 
why most DNA damage in spermatozoa is initially oxidative in nature.    

2.2.3     Oxidative Stress in Spermatozoa 

 High levels of oxidative DNA damage have been repeatedly observed in the 
 spermatozoa of subfertile males (Kodama et al.  1997 ; Irvine et al.  2000 ). Oxidative 
damage occurs primarily at the guanine bases and causes the formation of adducts, 
the most common of which are 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 
8–oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), which are commonly used as 
biomarkers for oxidative stress. Using a fl ow cytometric assay for 8OHdG, Aitken 
et al. ( 2010 ) demonstrated that the population of males attending an infertility clinic 
possessed signifi cantly elevated levels of 8OHdG in their spermatozoa compared 
with an unselected control donor population. The role of ROS in causing such 
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increases in oxidative DNA damage in spermatozoa is suggested by the benefi cial 
impact of antioxidants such as melatonin on the levels of 8OHdG formation 
observed in human spermatozoa (Bejarano et al.  2014 ). The source of the ROS 
responsible for the induction of oxidative DNA damage may be a refl ection of three 
factors: the activation of ROS-generating phagocytic leukocytes, the generation of 
ROS by the spermatozoa themselves, and a lack of ROS-scavenging enzymes and 
small molecular mass antioxidants. 
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  Fig. 2.3    The unique architecture of spermatozoa has an impact on the nature of apoptosis in these 
cells. ( a ) Unlike conventional somatic cells spermatozoa are designed in such a way that the sperm 
nucleus is in a separate physical compartment from all of the mitochondria and most of the cyto-
plasm. In this image of a mouse spermatozoon, the mitochondrial gyres have been highlighted 
black using a histochemical stain. ( b ) As a result of this unusual architecture, apoptosis can be 
induced with, for example, wortmannin, but nucleases that become activated during this process 
such as endonuclease G (EndoG) or apoptosis-inducing factor (AIF) remain resolutely locked in 
the midpiece of the cell and cannot penetrate into the sperm nucleus. This is why most DNA dam-
age in spermatozoa is initiated by oxidative stress rather than intracellular nucleases; the only 
product of apoptosis that can cross from the midpiece to the sperm head and attack the nuclear 
DNA is membrane-permeant ROS such as H 2 O 2 . ( c ) As a result of such factors, the release of ROS 
from the sperm mitochondria is highly correlated with the induction of oxidative DNA damage in 
these cells       
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2.2.3.1     Leukocytes as a Cause of Oxidative Stress 

 Infi ltrating phagocytic leukocytes are potentially capable of inducing oxidative 
stress in the male reproductive tract; however, there does not appear to be a strong 
direct relationship between leukocytospermia and DNA damage in spermatozoa, 
with data being presented to both support and refute this proposal (Saleh et al.  2002  
Moskovtsev et al.  2007 ). The situation is complex because the degree of oxidative 
stress experienced by the spermatozoa will depend on the number and type leuko-
cytes present in the ejaculate, when they entered the seminal compartment, whether 
the leukocytes are activated and, if so, when and how they are activated (Aitken and 
Baker  1995 ). Every human ejaculate contains a small number of leukocytes (in the 
order of 2–5 × 10 4 /ml) that appear to be in a free radical-generating, activated state 
(Aitken et al.  1995 ; Aitken and Baker  2013 ). However, the presence of such leuko-
cytes does not seem to have a powerful effect on sperm function or create particu-
larly high levels of oxidative stress. The reason for this may be that the leukocytes 
enter the seminal fl uid at the level of the secondary sexual glands, particularly when 
infection is involved. In such instances, the fi rst time the spermatozoa will come 
into contact with infi ltrating leukocytes will be at the moment of ejaculation. At this 
juncture, the spermatozoa will be protected from extracellular ROS by the powerful 
antioxidant properties of seminal plasma (Jones et al.  1979 ; Rhemrev et al.  2000 ; 
van Overveld et al.  2000 ), and the impact of the leukocyte-derived ROS will be 
minimal. However, quite a different picture emerges when the seminal plasma is 
removed in the context of preparing spermatozoa for assisted conception therapy. 
Under these circumstances the protective impact of seminal plasma is lost, and any 
activated phagocytes that are present in the sperm suspension will have free rein to 
launch an oxidative attack on the spermatozoa, curtailing the motility of these cells 
and compromising their DNA integrity. As a consequence of these relationships, 
negative impacts have been observed between levels of leukocyte contamination in 
washed sperm preparation and fertilization rates in IVF programs (Krausz et al.  1994 ). 

 In order to circumvent such damage occurring during IVF treatment cycles, it is 
imperative that high-quality spermatozoa are isolated from the ejaculate while these 
cells are still protected by the antioxidants present in seminal plasma (Aitken and 
Clarkson  1988 ). For this reason, procedures such as swim-up from a washed pellet 
are known to be associated with high levels of oxidative stress and the iatrogenic 
induction of DNA damage in the spermatozoa (Twigg et al.  1998 ). One of the best 
ways to minimize oxidative DNA damage during sperm preparation for IVF is to 
use a simple, swim-up-from-raw-semen approach (Twigg et al.  1998 ). Alternative 
strategies for preparing spermatozoa for assisted conception therapy include the 
centrifugation of spermatozoa through discontinuous colloidal silicon gradients 
that isolate the highest quality spermatozoa on the basis of their physical density. 
Although such techniques are clearly successful in isolating subpopulations of sper-
matozoa with high levels of motility and good morphology (Aitken and Clarkson 
 1988 ), they have been found to actually increase the levels of oxidative DNA dam-
age seen in the spermatozoa (Aitken et al.  2014 ). The reason for such DNA damage 
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in otherwise high-quality sperm populations has been a mystery until recently, when 
it was revealed that commercial sperm preparation media are commonly contami-
nated with metals, including iron and copper, at concentrations that induce high 
levels of oxidative DNA damage in human spermatozoa (Aitken et al.  2014 ). 
Fortunately, the chemical chelation of such metal contaminants is suffi cient to 
 eliminate this threat to sperm DNA integrity and render such media suitable for use 
in an IVF context (Aitken et al.  2014 ).  

2.2.3.2     ROS Generation by Spermatozoa 

 As indicated above, oxidative stress is commonly caused in spermatozoa by the 
excess generation of mitochondrial ROS as a consequence of their entry into the 
intrinsic apoptotic pathway. The induction of mitochondrial ROS generation with, 
for example, radio-frequency electromagnetic radiation leads to a marked increase 
in 8OHdG formation followed by DNA fragmentation (De Iuliis et al.  2009 ). There 
are many conditions that will trigger the entry of spermatozoa into this pathway 
including senescence, temperature, exposure to toxic chemicals, and aromatic 
amino acids (Tosic and Walton  1950 ; Aitken et al.  2012a ,  b ).  

2.2.3.3     Antioxidant Defi ciency 

 Conditions that lead to a loss of antioxidant protection for the spermatozoa such as 
smoking, poor diet, or prolonged incubation in culture medium lacking antioxidant 
supplementation can also lead to oxidative stress and oxidative DNA damage in pop-
ulations of spermatozoa (Fraga et al.  1996 ; Dalzell et al.  2003 ; Aitken et al.  2009 ).   

2.2.4     Oxidative DNA Damage in Spermatozoa 

 In order to explain the etiology of DNA damage in the male germ line, we recently 
proposed a two-step hypothesis according to which two conditions have to be met in 
order for such damage to appear: (1) a source of ROS and (2) a state of heightened 
vulnerability to free radical attack on the part of the spermatozoa. In addition to the 
presence of oxidizable substrates such as polyunsaturated fatty acids, another key 
factor defi ning the vulnerability of spermatozoa to oxidative attack is the status of 
sperm chromatin. During spermiogenesis there is an extensive remodeling of nuclear 
chromatin in order to compact the entire haploid genome into the volume of a sperm 
head. This is achieved by the progressive replacement of nuclear histones with small 
positively charge proteins known as protamines. In eutherian mammals the proteins 
have evolved to contain cysteine residues that participate in the creation of intermo-
lecular and intramolecular cross-links during epididymal transit that reinforce the 
compaction of the chromatin and render the DNA highly resistant to damage. 
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Interestingly, metatherian mammals do not possess cysteine-rich protamines, and as 
a result their spermatozoa do not undergo this post-testicular phase of nuclear 
remodeling. As a result, metatherian spermatozoa are much more vulnerable to oxi-
dative DNA damage than their eutherian counterparts (Bennetts and Aitken  2005 ). 

 Sperm nuclear DNA is organized into doughnut-shaped toroids linked by 
nuclease- sensitive interlinker regions, bound to the nuclear matrix, which connect 
the toroids together (Ward  2010 ). These interlinker regions are thought to be associ-
ated with the retention of histones and to be particularly vulnerable to oxidative 
attack. Treating sperm with DNase 1 has been found to break apart the toroid linker 
regions but leaves the DNA within the toroid undamaged. Destruction of the linker 
regions in this manner has been shown to delay the replication of paternal DNA 
postfertilization and to impair embryogenesis, suggesting that the DNA contained 
within these particular regions of sperm chromatin encodes genes that are of critical 
importance in orchestrating the early stages of embryonic development (Gawecka 
et al.  2013 ). Laboratory experiments have demonstrated it is possible to remove 
protamines and histone-bound nucleosomes by treatment with high salt and reduc-
ing agent. This leaves only the sperm nuclear matrix with associated loop domains 
attached and a resulting nuclear structure that is called a “sperm nuclear halo” 
(   Nadel et al.  1995 ; Kramer and Krawetz  1996 ). These halos are useful in giving us 
an idea as to which part of the chromatin is necessary for the fi rst few cell divisions 
following fertilization. When sperm halos were injected into oocytes, pronucleus 
formation was normal and DNA replication was initiated (Shaman et al.  2007 ). 
Replication would still occur even if 50 % of the DNA that was not attached to the 
matrix was removed. As replication will proceed as long as these nuclear matrix- 
associated regions are present, the interlinker domains must be where DNA replica-
tion begins. If this is the case, then oxidative damage to these non-protaminated 
vulnerable regions of sperm nuclear DNA would be expected to have a major impact 
on development. In the future, determining which particular genes are housed in 
these domains would be extremely helpful in understanding how oxidative DNA 
damage in spermatozoa can infl uence the developmental potential of the embryo. 

 Outside of these linker regions, the extent to which sperm DNA becomes 
 protaminated varies between species and between individuals within a species. 
Thus, in mouse spermatozoa around 95 % of histones are removed and replaced by 
 protamines, whereas in human spermatozoa the equivalent fi gure is around 15 % 
(Ward,  2010 ). Additional vulnerability is created in patient samples because of the 
ineffi cient protamination of sperm chromatin. Using the fl uorescent probe chromo-
mycin A3 (CMA3) to monitor the degree of sperm chromatin protamination, a very 
close correlation has been observed between levels of oxidative DNA damage in 
human spermatozoa and the effi ciency of protamine deposition during spermiogen-
esis; the more poorly protaminated the chromatin, the higher the CMA3 signal and 
the greater the risk of oxidative DNA damage (De Iuliis et al.  2009 ). 

 These observations are important because they add weight to the above men-
tioned two-step hypothesis of oxidative DNA damage in human spermatozoa. The 
fi rst step occurs during spermiogenesis and leads to poor protamination of the sperm 
chromatin, resulting in defective compaction of the DNA and an accompanying 
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increased risk of oxidative attack. The second step then involves the realization of this 
oxidative attack as a result of the mechanisms described above (Aitken et al.  2009 ). 

 Once an oxidative attack on sperm DNA occurs, there are two pathways open to 
the cell. First, if the oxidative attack is severe, it will initiate the intrinsic apoptotic 
cascade, culminating in a loss of motility, the appearance of apoptotic markers on 
the sperm surface, and ultimately cell death. When spermatozoa enter the perimor-
tem and the internal structure of these cells starts to break down, it is possible that 
sperm nuclear DNA fragmentation becomes accentuated via the activation of intra-
cellular nucleases or the entry of nucleases from the extracellular fl uids bathing the 
spermatozoa in the epididymis or vas deferens (Sotolongo et al.  2005 ; Boaz et al. 
 2008 ; Smith et al.  2013 ). The purpose of this last-gasp perimortem attack on the 
sperm nucleus is to facilitate the complete destruction of the sperm genome prior to 
the phagocytosis of these cells by the immune system. Second, if the spermatozoon 
is not badly damaged, the oxidative DNA damage may simply be repaired in readi-
ness for fertilization. Counterintuitively it is this process of DNA repair that poses 
the greatest threat to human health because it is errors in this process that are thought 
to underpin the connection between oxidative DNA damage in the spermatozoa and 
the mutational load subsequently carried by children, with important implications 
for their long-term health trajectory.   

2.3     Impacts of Oxidative DNA Damage in Sperm on Human 
Reproduction and Health 

 Despite the propensity for human spermatozoa to suffer from oxidative DNA dam-
age, there is relatively little data to confi rm that such damage has a major impact on 
male fertility. The most compelling evidence that this is the case comes from studies 
in which men exhibiting DNA damage or other evidence of oxidative stress in their 
spermatozoa have had their sperm DNA integrity or fertility improved by treatment 
with antioxidants. A study by Suleiman et al. ( 1996 ), for example, was distinguished 
by the careful selection of patients according to evidence of oxidative stress in their 
spermatozoa, as measured by a lipid peroxidation assay. This trial encouragingly 
recorded a decrease in lipid peroxidation and a resulting increase in sperm motility 
and fertility following treatment with vitamin E. Another study selected patients on 
the basis of DNA damage in their spermatozoa (measured with the TUNEL assay) 
and recorded a signifi cant improvement in this criterion following treatment with an 
antioxidant preparation containing vitamin E as well as an accompanying increase 
in fertility (Greco et al.  2005 ). These data are certainly promising, but the data sets 
are too small to draw defi nitive conclusions about antioxidant therapy and male 
fertility. There is an urgent need for defi nitive, randomized, double-blind cross-over 
trials on this topic to determine the true value of antioxidant therapy in the treatment 
of males exhibiting high levels of oxidative DNA damage in their spermatozoa 
(Aitken et al.  2010 ). The therapeutic effi cacy of male antioxidant treatment on the 

D. Gavriliouk and R.J. Aitken



37

maintenance of subsequent pregnancy has not yet been adequately examined, 
despite clear evidence linking DNA damage in spermatozoa with an increase in 
the incidence of miscarriage (Showell et al.  2011 ; Gharagozloo and Aitken  2011  
Robinson et al.  2012 ). 

 In order to understand the importance of oxidative DNA damage in spermatozoa 
on the developmental competence of the embryo and the maintenance of pregnancy, 
we fi rst need to understand how the 8OHdG lesions formed as a consequence of 
oxidative stress are repaired in spermatozoa and the zygote. 

2.3.1     DNA Repair in Spermatozoa and Early Zygote 

 Regardless of how well defended the DNA is in sperm chromatin, some form of 
oxidative damage is inevitable. The base excision repair (BER) pathway plays a 
vital role in repairing oxidized, alkylated, and deaminated DNA bases and removing 
small non-helix-distorting base lesions from the genome. In most cells the BER 
pathway can be broken down into fi ve major steps with each step being performed 
by a specifi c enzyme or class of enzymes. The process is highly regulated through 
individual protein to protein interactions and the formation of repair complexes. 
Incorporated into the subcellular structure of the sperm nucleus and mitochondria is 
the fi rst enzyme in the BER pathway, an 8-oxoguanine glycosylase, known as 
OGG1. When spermatozoa experience an oxidative attack, OGG1 immediately 
clips the 8OHdG residues out of the DNA generating an abasic site, releasing the 
oxidized base into the extracellular space (Smith et al.  2013 ). The next enzyme 
in the base excision repair pathway, APE1, incises DNA at the phosphate groups, 
3′ and 5′ to the baseless site, leaving 3′-OH and 5′-phosphate termini ready for the 
insertion of a new base. Spermatozoa do not possess this enzyme (Smith et al. 
 2013 ). As a result, they carry their abasic sites into the oocyte for continuation of the 
repair process. Fortunately, the oocyte possesses the remaining elements of the BER 
pathway including APE1 and XRCC1 (T. Lord and R.J. Aitken, unpublished obser-
vations) and is able to carry the repair process through to completion. The repair of 
oxidative DNA lesions in spermatozoa therefore involves a high level of collision 
between the male and female germ lines and will be impacted not just by the levels 
of oxidative stress and 8OHdG formation in the spermatozoa but also the compe-
tence of the oocyte to complete the repair process initiated by the spermatozoa. The 
capacity of the BER pathway in the latter is clearly limited because the spermatozoa 
of subfertile males are known to carry signifi cantly elevated levels of 8OHdG, 
which have not been excised by OGG1 (Aitken et al.  2010 ). It is the responsibility 
of the oocyte to detect these oxidized base lesions and engage in a round of DNA 
repair immediately after fertilization and put S-phase on hold until this activity has 
been completed (Gawecka et al.  2013 ). Interestingly, although the oocyte possesses 
an abundance of APE1 and XRCC1, it appears to exhibit a limited supply of OGG1 
(T. Lord and R.J. Aitken, unpublished observations). As a result, we can anticipate 
that 8OHdG adducts will be poorly repaired by the oocyte and may persist into the 
fi rst cleavage division of the embryo. 
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 The BER pathway is not the only mechanism for dealing with oxidative DNA 
damage; however, it is thought to be the most important. While the mature sperma-
tozoon has little alternative to OGG1 of the BER for repairing 8OHdG, oocytes are 
also known to possess alternative DNA repair pathways including nucleotide exci-
sion repair (NER) and mismatch repair (MMR) (Menezo et al.  2007 ); however, the 
role of these pathways in orchestrating the oocyte’s response to oxidative DNA 
damage has not yet been determined. 

 Whatever repair mechanisms are invoked, the ineffi cient or aberrant repair of 
these 8OHdG lesions by the oocyte is known to have a negative impact on embryo 
quality (Meseguer et al.  2008 ) and has the potential to create de novo mutations or 
epimutations in the offspring that could have a profound impact on their health and 
well-being.  

2.3.2     Consequences of Oxidatively Damaged DNA 
for Development 

2.3.2.1     DNA Repair in the Zygote 

 Following fertilization, the integrity of the decondensed maternal and paternal 
 chromatin is assessed by the zygote. The latter does not have transcription-coupled 
translation and relies on mRNA and proteins stored in the spermatozoon and oocyte 
for repair. There appears to be some cross-talk between the male and female pronu-
clei in effecting this repair, although the mechanisms are not yet understood. When 
irradiated mouse spermatozoa were used to fertilize oocytes,  both  pronuclei exhib-
ited p53 apoptotic responses and replicated only around half of their DNA. Some 
zygotes did manage to progress to more advanced stages of development including 
implantation, but none came to term (Shimura et al.  2002 ; Shaman et al.  2007 ). 

 Fertilization with DNA-damaged spermatozoa may alter the expression of DNA 
repair genes in preimplantation embryos as early as the one-cell stage (Harrouk 
et al.  2000 ). Spermatozoa from rats subjected to cyclophosphamide resulted in 
zygotes with signifi cantly higher DNA damage and higher transcripts for proteins 
from the nucleotide excision repair family (XPC, XPE, and PCNA), mismatch 
repair family (PMS1), recombination repair family (RAD50), as well as BER 
family members (UNG1, UNG2) (Harrouk et al.  2000 ). Furthermore, other studies 
have reported increases in gene expression from the two-cell stage onward. A gene 
expression profi le analysis by Zeng et al. ( 2004 ) revealed that a small class of genes 
involved in the regulation of the cell cycle are overrepresented in two-cell mouse 
blastomeres compared to the zygotes. It is not currently understood why some DNA 
repair genes are highly expressed at particular stages of embryo development and 
not others. It is possible that different sources and types of DNA damage will elicit 
different DNA repair responses in the zygote. Regardless of which DNA repair 
mechanisms are involved, the time between fertilization and the fi rst cell division is 
thought to be linked to the amount of DNA damage that the zygote needs to repair. 
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A zygote that is slow to initiate cleavage is therefore more likely to possess higher 
levels of DNA damage and exhibit a poorer potential for normal development 
(Liu et al.  2014 ). 

 The newly formed zygote is thought to be reluctant to respond to DNA damage 
by undergoing apoptosis (Fear and Hansen  2011 ) and, instead, prefers indefi nite 
developmental arrest. It is not entirely certain if replication is arrested by the zygote 
to give it time to repair the DNA or because the DNA is too damaged for replication 
to proceed; much probably depends on the amount of DNA damage involved. 
Although some aspects of apoptosis, such as cytoplasmic fragmentation, will occur 
in the fi rst cell cycle in mice and the second in humans, in general, the zygote will 
resist proapoptotic signals until it is at the 8–16 cell stage. In keeping with this pro-
posal, Fear and Hansen ( 2011 ) found that bovine blastomeres have higher concen-
trations of mRNA for the antiapoptotic genes BCL2 and HSPA1A in two-cell 
embryos compared with their 16-cell counterparts. Thus, as the embryo develops 
through further cell divisions, the apoptosis pathway gradually becomes available; 
however, in early development it is DNA repair and developmental arrest that pre-
dominate. In a recent study of human development, for example, Burruel et al. 
( 2014 ) determined that the duration of the 2nd to 3rd mitoses was most sensitive 
to fertilization by oxidatively damaged spermatozoa. As a result, embryos that 
 displayed either too long or too short cytokineses at this stage of development dem-
onstrated an increased failure to reach blastocyst stage and commit to further 
development. 

 This notion that zygotes engage in a demanding round of DNA damage recogni-
tion and repair shortly after fertilization has been exploited to develop a system 
whereby an embryo’s status can be noninvasively assessed by monitoring its 
 metabolic status. With a particular focus on amino acid metabolism, Sturmey et al. 
( 2009 ) found that embryos with greater viability exhibited a lower or “quieter” 
amino acid metabolism than those that went into arrest. It was hypothesized that this 
relationship exists because embryos with greater DNA damage consume more 
nutrients to facilitate the internal repair processes. Such differences in amino acid 
metabolism are signifi cant since they could ultimately prove to be a useful marker 
of DNA damage when selecting embryos for transfer in an IVF context.  

2.3.2.2    Environmental Factors Cause Oxidative Stress 

 Given the vulnerability of spermatozoa to oxidative attack and the limited capacity 
of the oocyte to repair oxidized DNA base adducts, there is concern that the carriage 
of such base lesions into the zygote may compromise the developmental compe-
tence of the embryo. Evidence in support of such concerns has largely come from 
an analysis of the health consequences of paternal cigarette smoking. Smoking has 
a long list of associated health problems including reproductive impacts. Despite 
the efforts made to control tobacco consumption across the world, smoking is still 
common, and the highest prevalence of smoking is seen among young men between 
the ages of 20–39, when they are likely to be fathering a child (Li et al.  2011 ). 
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Paternal, rather than maternal, smoking is associated with a signifi cant increase in 
the incidence of childhood cancer in the offspring (Lee et al.  2009 ), implying that 
paternal DNA damage is the source of carcinogenic mutations. Given the heavy 
reliance on OGG1 to cleave out DNA base adducts prior to fertilization, any factor 
that impairs OGG1 has the potential to affect DNA repair in the germ line and, 
thence, reproductive function. The classic inhibitor of OGG1 is cadmium. Cadmium 
exposure has been shown to increase levels of DNA damage in spermatozoa 
(Oliveira et al.  2009 ), and a positive correlation has been found between 8OHdG in 
spermatozoa and cadmium concentration in seminal plasma (Xu et al.  2003 ). The 
impact of smoking on 8OHdG is also exacerbated by the presence of Ser326Cys 
polymorphism in the OGG1 gene (Ji et al.  2013 ). Individuals with variant Cys/Cys 
homozygosity for OGG1 had higher levels of sperm 8OHdG than wild-type homo-
zygote carriers (Ser/Ser). In addition to the impact of genetic constitution and 
 cadmium on OGG1, men who smoke heavily are also known to be defi cient in 
antioxidants such as vitamin C (Fraga et al.  1996 ). The net result of all these factors 
is that the spermatozoa of men who smoke heavily possess high levels of oxidative 
DNA damage. These lesions do not have a dramatic impact on fertility; however, 
they are associated with the abovementioned increase in the incidence of cancer in 
the progeny (Lee et al.  2009 ). Although causation has not been formally established 
between 8OHdG lesions in spermatozoa and cancer in the children of men who 
smoke heavily, the circumstantial evidence is compelling. 

 Of course, smoking is not the only lifestyle or environmental factor that can 
infl uence levels of oxidative DNA damage in spermatozoa—another is paternal age. 
As males age, there is a downregulation of DNA repair genes (particularly BER), 
and levels of oxidative DNA damage in spermatozoa increase (Paul et al.  2011 ) 
such that a man aged over 35 will have three times the levels of DNA damage in his 
spermatozoa as a male below this age (Singh et al.  2003 ). One of the major conse-
quences of this age-dependent increase in sperm DNA damage is a linear increase 
in the mutational load carried by the progeny over a paternal age range that stretches 
from 15 to 45 (Kong et al.  2012 ). As the mutational load carried by children 
increases, so does the incidence of diseases that are known to be associated with the 
age of the father at the moment of conception. Thus, paternal aging is known to be 
linked with many different kinds of adverse clinical conditions including elevated 
rates of miscarriage, increased incidences of dominant genetic disease such as 
achondroplasia and Apert syndrome, and an enhanced risk of neuropathology in 
the offspring including bipolar disease, autism, spontaneous schizophrenia, and 
 epilepsy (Aitken et al.  2013 ). 

 Of the other factors that might cause oxidative DNA damage in the male germ 
line, it has become very apparent that obesity negatively infl uences many biological 
functions, and gamete health is no exception. Recent studies have demonstrated that 
obesity is associated with decreased semen parameters (Chavarro et al.  2010 , Kort 
et al.  2006 ) and damage to germ cells in the testes. Several studies have shown a link 
between men with high BMI and decreased sperm DNA integrity due to oxidative 
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stress (Tunc et al.  2011 ; Bakos et al.  2011 ). Men who are classifi ed as overweight or 
obese are frequently relying on ART and ICSI to father children. Considering the 
plethora of health problems associated with obesity, it would be very benefi cial to 
understand if using ICSI to circumvent infertility passes health burdens onto succes-
sive generations. More studies, particularly from the perspective of ICSI progeny of 
obese fathers, are clearly required. 

 Spermatozoa of males seeking ART may be cryopreserved for various reasons 
such as the preservation of fertility as a prelude to the initiation of aggressive cancer 
chemotherapy. Cryopreservation has been revealed to both generate and exacerbate 
the extent of DNA damage in spermatozoa. The exact mechanism of cryoinjury is 
not yet fully understood although there appears to be a strong element of oxidative 
damage, as ROS generation is increased in cryopreserved sperm (Wang et al.  1997 ) 
and levels of oxidized DNA damage are similarly elevated under these conditions 
(Thomson et al.  2009 ). Importantly, the addition of antioxidants such as genistein 
and quercetin has been shown to ameliorate the amount of DNA damage in these 
cells, whereas caspase inhibitors have no effect (Thomson et al.  2009 ; Zribi et al. 
 2012 ). So, although cryopreservation can induce apoptosis in spermatozoa and 
 generate a concomitant increase in caspase activity (   Paasch et al.  2004 ; Wündrich 
et al.  2006 ), such changes are probably a consequence of oxidative stress and DNA 
damage, not a cause.    

2.4     Conclusions 

 The integrity of sperm DNA is vital for the subsequent health trajectory of the off-
spring. The most common cause of DNA damage in spermatozoa is oxidative stress 
induced by mitochondrial ROS. The spermatozoon has a limited range of antioxi-
dant strategies, but the tight packaging of the nuclear DNA with protamines is able 
to protect most of the spermatozoon’s nuclear genes from damage (Sawyer et al. 
 2003 ). However, certain regions of sperm chromatin, particularly the toroid inter-
linker domains, remain vulnerable (Ward  2010 ). After decondensation in the oocyte, 
these regions appear necessary for the initiation of DNA replication and successful 
cell division. The fi rst cleavage division of the newly formed embryo is particularly 
important as any DNA changes induced at this time will continue to be replicated in 
all subsequent divisions. The early zygote possesses protection against the initiation 
of apoptosis and instead tends to put cell division on hold and during this delay 
attempts to repair the DNA using the BER, NER, MMR, HNEJ, and HR pathways. 
Thus, while most oxidative DNA damage is contributed to the zygote by the fertil-
izing spermatozoon, most of the responsibility for effecting adequate repair rests 
with the oocyte. Any mistakes made by the oocyte at this vital stage of development 
have the potential to result in mutations or epimutations that will infl uence the entire 
course of embryonic development. 
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 Elucidating the mechanisms responsible for detecting and addressing DNA 
 damage in the early zygote is important for our understanding of the developmental 
origins of human disease. In this context, it is clearly imperative that we identify the 
range of environmental and lifestyle factors responsible for inducing high levels of 
oxidative DNA damage in the male germ line. We already know that cigarette smok-
ing, obesity, and advanced paternal age are associated with high levels of oxidative 
DNA damage in spermatozoa, and we strongly suspect that there are other factors 
capable of inducing such lesions, including radio-frequency electromagnetic radia-
tion and exposure to a range of environmental toxicants and chemotherapeutic 
agents. Categorizing these causative factors, resolving their impact on the genetic 
and epigenetic profi le of the progeny, and putting in place preventative measures to 
reduce risks to the genetic integrity of the progeny are signifi cant tasks for gamete 
biologists—now and in the future. This responsibility is particularly signifi cant 
given the current widespread use of ART to achieve conceptions in vitro that could 
not have occurred in vivo; until the genetic consequences of such trends are under-
stood, we may be inadvertently creating a health burden for our species that future 
generations will have to solve.    
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    Abstract     Posttranscriptional gene regulation is a regulatory mechanism which 
occurs “above the genome” and confers different phenotypes and functions within 
a cell. Transcript and protein abundance above the level of transcription can be 
regulated via noncoding ribonucleic acid (ncRNA) molecules, which potentially 
play substantial roles in the regulation of reproductive function. MicroRNA 
(miRNA), endogenous small interfering RNA (endo-siRNA), and PIWI-interacting 
RNA (piRNA) are three primary classes of small ncRNA. Similarities and distinc-
tions between their biogenesis and in the interacting protein machinery that facili-
tate their function distinguish these three classes. Characterization of the expression 
and importance of the critical components for the biogenesis of each class in dif-
ferent tissues contributes a clearer understanding of their contributions in specifi c 
reproductive tissues and their ability to infl uence fertility in both males and 
females. This chapter discusses the expression and potential roles of miRNA, 
endo-siRNA, and piRNA in the regulation of reproductive function. Additionally, 
this chapter elaborates on investigations aimed to address and characterize specifi c 
mechanisms through which miRNA may infl uence infertility and the use of miRNA 
as biomarkers associated with several reproductive calamities such as defective 
spermatogenesis in males, polycystic ovarian failure, endometriosis and obesity, 
and chemical-induced subfertility.  
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3.1         Introduction 

 Reproductive organs and cells therein are unique in that they continually undergo 
substantial reorganization of both their transcriptome and proteome during develop-
ment and eventually during female reproductive cycles. Understanding of the regu-
lation of ribonucleic acid (RNA) and protein abundance has dramatically improved 
in recent years. Discovery of several classes of small noncoding RNA (ncRNA) and 
elucidation of their biological roles with respect to cellular function have substan-
tially contributed to our biological understanding of reproductive function and fer-
tility. RNA classes are broadly broken into coding RNA, those that result in the 
synthesis and production of a protein, and ncRNA. Traditionally, ncRNA such as 
transfer RNA, ribosomal RNA, and small nuclear and small nucleolar RNA is con-
sidered non-regulatory and primarily supports cell function without impacting cel-
lular phenotype. However, identifi cation and characterization of noncoding classes 
such as small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), and 
microRNA (miRNA) have clearly demonstrated that ncRNA fulfi lls regulatory 
roles that substantially impact cellular phenotype and function. These ncRNAs dif-
fer in their origin, length, and Argonaute (AGO) protein partners through which 
they elicit their biological function (Babiarz and Blelloch  2008 ; Ishizu et al.  2012 ; 
Juliano et al.  2011 ; Kim et al.  2009 ; Thomson and Lin  2009 ). Knowledge of the 
biological roles of ncRNA, particularly miRNA, with respect to reproduction and 
fertility has dramatically increased over the past decade revealing numerous path-
ways and mechanisms through which fertility may be impacted.  

3.2     Biogenesis of Small RNA 

 The presence or absence of critical components required for ncRNA biogenesis is 
one manner through which specifi c classes of ncRNA differ and impact specifi c 
reproductive cell types. MiRNA and endo-siRNA are processed from double- 
stranded precursors in a stepwise manner and result in 20–22 nucleotide mature 
ncRNAs. In contrast, piRNA biogenesis utilizes long single-stranded precursors to 
produce 26–31 nucleotide functional ncRNAs (Aravin et al.  2006 ; Grivna et al. 
 2006 ; Juliano et al.  2011 ). MiRNA can be further separated into two groups distin-
guished through their synthesis pathway: canonical or noncanonical. Both canonical 
(Fig.  3.1 ) and noncanonical miRNAs are initially transcribed as primary miRNA 
(pri-miRNA) by RNA polymerase II and depending on sequence complementation 
within the RNA molecule then form secondary RNA structures which produce 
60–75 nucleotide (nt) hairpins which can also be found as clusters within a single 
pri-miRNA (Lee et al.  2002 ,  2004 ). In the canonical mechanism, DiGeorge syn-
drome critical region 8 (DGCR8) recognizes the miRNA hairpins and guides Drosha, 
an RNase III enzyme, to cleave the hairpin base resulting in a pre-miRNA (Denli 
et al.  2004 ; Gregory et al.  2004 ; Han et al.  2004 ). The pre-miRNA is composed of a 
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hairpin with a 3′ overhang and is exported from the nucleus via Exportin-5 (Lund 
et al.  2004 ; Yi et al.  2003 ). In contrast, during noncanonical miRNA biogenesis, 
processing by the DGCR8/Drosha microprocessing complex is absent, and cleav-
age of hairpins occurs via other cellular endonucleases or through transcription 
directly as a short hairpin (Miyoshi et al.  2010 ; Schwab and Voinnet  2009 ). 
Regardless of whether their production is directed through the canonical or nonca-
nonical pathway, all miRNAs reach the cytosol where they are cleaved by an RNase 
III enzyme, Dicer, resulting in a functionally mature miRNA (Castellano and 
Stebbing  2013 ; Lau et al.  2001 ; Lee et al.  2002 ). Mature miRNAs are capable of 

  Fig. 3.1    MicroRNA biogenesis is initiated via the activity of RNA polymerase II resulting in 
synthesis of a primary miRNA transcript (Pri-miRNA) that is both capped and polyadenylated. 
The appropriate spatial complementation of specifi c nucleotides within the transcript results in the 
formation of hairpin secondary structures that are recognized by the RNA processing complex 
consisting of DROSHA and DGCR8. The enzymatic activity of this protein complex results in 
cleavage and removal of the hairpin structure (now considered a pre-miRNA) from the primary 
transcript. Exportin 5 facilitates the transport of pre-miRNA from the nucleus into the cytoplasm 
of the cell where it is recognized by Dicer, and the loop is cleaved leaving a short duplex mature 
miRNA molecule. Upon dissociation, either strand from the duplex miRNA structure can be uti-
lized by the RNA-induced silencing complex to contribute to posttranscriptional gene regulation 
though impacting mRNA stability and/or translation effi ciency in addition to contributing to chro-
matin modifi cations to control gene expression       
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being loaded into an RNA-induced silencing complex (RISC) and contribute to 
posttranscriptional gene regulation (PTGR).  

 The endo-siRNA class is derived from long dsRNA, which can be either sense or 
antisense RNA pairs or long hairpins, and is also cleaved in the cytoplasm by Dicer 
(Ghildiyal et al.  2008 ; Okamura et al.  2008a ,  b ; Tam et al.  2008 ). Synthesis of both 
endo-siRNA and miRNA occurs via Dicer activity and has a fi nal mature product of 
an approximately 21 nucleotide single-stranded RNAs capable of association with 
members of the argonaute protein family (AGO 1–4) which enable the formation of 
the active RISC complex (Filipowicz  2005 ). 

 piRNA biogenesis is less well understood than miRNA and endo-siRNA, 
although they are produced from long single-stranded RNA precursors mediated 
through the action of Dicer (Houwing et al.  2007 ; Vagin et al.  2006 ). Mature piR-
NAs are approximately 26–31 nucleotides long and are expressed primarily in germ 
cells (Aravin et al.  2006 ; Houwing et al.  2007 ; Watanabe et al.  2006 ). Secondary 
processing of piRNA involves Miwi1, Miwi2, and Mili in mice (also known as 
Piwi1, Piwi2, and Pili) (Aravin et al.  2006 ,  2007 ; Klattenhoff and Theurkauf  2008 ). 
PiRNA action does not involve AGO protein association but is associated with 
transposon and repeat-associated siRNA inactivation (Brennecke et al.  2007 ; 
Gunawardane et al.  2007 ; Houwing et al.  2007 ; Vagin et al.  2006 ). The complex 
nature of piRNA sequences has been revealed via next-generation sequencing 
(Aravin et al.  2006 ; Girard et al.  2006 ). Class I piRNA are derived from clustered 
genomic loci in repeat sequences, indicating a role with respect to transposon 
defense (Houwing et al.  2008 ; Klattenhoff and Theurkauf  2008 ). Class II piRNAs 
are derived from transposon RNA cleavage, while the remainder of the piRNAs are 
thought to originate from diverse genomic regions perhaps including the 3′ untrans-
lated region (UTR) of some mRNA as is the case in  Drosophila , mouse, and  Xenopus  
(Robine et al.  2009 ). The variation in piRNA biogenesis and sequence suggests 
their biological involvement in PTGR in addition to transposon repression. 

 The “ping-pong” model has been proposed as a regulatory model coupling piRNA 
generation and transposon repression (Brennecke et al.  2007 ). In Drosophila, Piwi and 
Aub proteins bind the genomic piRNA cluster loci-derived antisense primary piRNA. 
The proteins are then guided by the antisense primary piRNA, which binds and cleaves 
transposon mRNA to generate the 5′ ends of the sense secondary piRNA. AGO3 pro-
tein then binds the sense secondary piRNA resulting in transcript cleavage to produce 
the 5′ end of new primary piRNA (Brennecke et al.  2007 ). How 3′ ends of new piRNA 
are generated in the ping-pong model is not clear. The proportion of piRNAs gener-
ated via the ping-pong mechanism represent only a fraction of the piRNA population; 
therefore, how other piRNAs are generated from complex intergenic regions also 
remains uncharacterized (Cook and Blelloch  2013 ). 

 In mice, expression of piRNA is developmentally regulated (Aravin et al.  2007 ). 
During the prepachytene stage prior to meiosis in spermatogenesis, expression of 
one subtype of piRNA (26–28 nucleotides) is favored, whereas another piRNA sub-
type (29–31 nucleotides) is predominantly expressed during the pachytene meiotic 
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stage. While piRNA expression is enriched in the mammalian and  Drosophila  
germline, piRNAs are also expressed in somatic cells of  Drosophila  (Lin and Yin 
 2008 ), differentiated somatic cells of jellyfi sh (Seipel et al.  2004 ), and porcine 
cumulus cells (Yang et al.  2012a ), suggesting additional piRNA roles in these cell 
types, which may be species dependent.  

3.3     Small RNA Mechanism of Action 

 Mature miRNA and endo-siRNA interact with AGO proteins (AGO 1–4; also 
known as EIF2C1-4) to enable the association of RISC machinery (Filipowicz 
 2005 ). AGO proteins associated with either a miRNA or endo-siRNA interact with 
target mRNA via complementarity between the ncRNA and the 3′UTR of the 
mRNA target. If complete complementarity exists, cleavage of the target mRNA 
can occur. If there is incomplete complementarity, the primary mechanism of PTGR 
occurs by translation suppression (Fabian et al.  2010 ; Hutvagner and Zamore  2002 ; 
Martinez et al.  2002 ). There are, however, examples of weak complementation 
between the 3′ end of the ncRNA and the 3′UTR of the target gene which can still 
result in PTGR via mRNA degradation (Bagga et al.  2005 ). 

 PIWI    proteins are located in nuclear and/or perinuclear nuage (Brennecke et al. 
 2007 ; Carmell et al.  2007 ; Wang et al.  2009 ) where they repress genetic elements 
(Lim and Kai  2007 ). PIWI proteins have an N-terminal PAZ domain followed by an 
MID (middle) domain, which together recognize and bind the 3′ end of piRNAs 
(Jinek and Doudna  2009 ). The C-terminal domain of PIWI proteins has RNase H 
activity capable of recognizing the 5′ end of piRNA and facilitates the cleavage of 
the target sequence (Frank et al.  2010 ; Wang et al.  2009 ). In the germline, the PIWI- 
piRNA complex silences transposons both transcriptionally and posttranscription-
ally, through chromatin silencing of transposable elements via histone modifi cation 
and by altering the DNA epigenetic status (Klenov et al.  2007 ; Kuramochi- 
Miyagawa et al.  2008 ). Posttranscriptionally, transposable elements are repressed 
through their active RNA being cleaved by PIWI- and AUB-primary piRNA 
 complexes, thereby producing secondary piRNA through the aforementioned 
 “ping- pong” model (Brennecke et al.  2007 ). This mechanism is supported by the 
observation that transposon RNA is expressed at a higher level in the presence of 
PIWI protein mutations (Li et al.  2009 ). In  Drosophila , piRNAs are involved in 
telomere function, including telomere protection complex assembly, thereby main-
taining chromosome integrity (Khurana et al.  2010 ). Expression of PIWI proteins in 
human somatic stem cells (Sharma et al.  2001 ) and neoplastic cells (Lee et al.  2006 , 
 2010 ; Liu et al.  2006b ,  2010 ; Taubert et al.  2007 ) suggests that piRNA may also be 
involved in stem cell function regulation and carcinogenesis. However, the mecha-
nism, major functions, and pathways regulated by the Piwi-piRNA complex remain 
poorly understood.  
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3.4     Small RNA Expression and Function 
in Reproductive Tissues 

3.4.1     Germ Cell Development and Maintenance 

 PIWI proteins are expressed in germ cells, stem cells, and oocytes of multiple 
 species. In the female germline of  Xenopus laevis  (Xiwi and Xili),  Danio rerio  
(Ziwi and Zili), and  Drosophila melanogaster  (Aubergine, Piwi, and Ago2) 
(Houwing et al.  2007 ; Li et al.  2009 ; Wilczynska et al.  2009 ), several PIWI regula-
tory members have been identifi ed and characterized. In mice,  Miwi ,  Mili , and 
 Miwi-2  exist (Deng and Lin  2002 ; Kuramochi-Miyagawa et al.  2008 ), and in pigs 
three  Piwi  genes (Piwil1, Piwil2, and Piwil4) are expressed in the testes, ovaries, 
and oocytes (Kowalczykiewicz et al.  2012 ). Utilizing bioinformatic analysis, human 
Piwi proteins (Hiwi, Hili, and Hiwi-2) have been identifi ed (Gu et al.  2010 ), with 
 Hiwi  being expressed in hematopoietic stem cells and germ cells (Qiao et al.  2002 ; 
Sharma et al.  2001 ). During germ cell specifi cation in mice (Deng and Lin  2002 ) 
and gonad development of pigs (Kowalczykiewicz et al.  2012 ), expression patterns 
of individual PIWI proteins differ. Partial or complete loss of germ cells and trans-
poson derepression in the germline have been demonstrated in  Drosophila melano-
gaster  and mice (Carmell et al.  2007 ; Cox et al.  1998 ; Li et al.  2009 ; Vagin et al. 
 2006 ) due to the loss of PIWI proteins, suggesting a conserved role for PIWI 
 proteins in the maintenance of germ cell viability.  

3.4.2     Oocyte Development and Maturation 

 Mammals are born with a fi nite oocyte number that originates from the primordial 
germ cell pool following migration to the genital ridge during embryonic develop-
ment (Tingen et al.  2009 ). Following recruitment from the primordial follicle pool 
and selection for maturation, oocytes undergo germinal vesicle breakdown (GVBD) 
facilitating their progression through meiosis until subsequent arrest at metaphase 
II. The oocyte is transcriptionally quiescent following GVBD until after fertilization 
and subsequent activation of the embryonic genome, which occurs around the two- 
to eight-cell stage of development depending upon the species. The inability of the 
developing embryo to elicit a transcriptional response prior to genome activation 
suggests a potentially important role of ncRNA during this period of development. 
MiRNA, endo-siRNA, and piRNA are expressed in oocytes of multiple species at 
various stages of development (Abd El Naby et al.  2013 ; Golden et al.  2008 ; Tesfaye 
et al.  2009 ; Watanabe et al.  2006 ,  2008 ; Xu et al.  2011 ; Yang et al.  2012a ). 

 Conditional knockout mice have utility for deciphering functions and contribu-
tions of endo-siRNA and miRNA in both the maturing oocyte and developing 
embryo. Mice with a ZP3-driven conditional loss of Dgcr8 (responsible for canoni-
cal miRNA production) are fertile (Ma et al.  2010 ; Suh et al.  2010 ), but litter 
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size was substantially reduced, suggesting that some miRNA may contribute 
to  developmental competency of the subsequently produced embryo even if not 
required in the maturing oocyte (Suh et al.  2010 ). The observation that  Dgcr8  is not 
required for mouse oocyte maturation, since loss of  Dgcr8  has no noticeable effect 
on mRNA regulation, coupled with the observation that similarly deleting  Dicer  or 
 Ago2  does have a negative effect on maturing oocytes rendering them incompetent 
(Kaneda et al.  2009 ; Murchison et al.  2007 ; Suh et al.  2010 ; Tang et al.  2007 ), 
 suggests that small ncRNAs are needed for the production of oocytes capable of 
producing viable embryos. 

 The small RNA population of both the oocyte and cumulus cells during in vitro 
maturation (IVM) have been sequenced and the portfolio of endo-siRNA, miRNA, 
and piRNA demonstrated in pigs (Yang et al.  2012a ). During oocyte IVM and 
 progression through meiosis, few alterations were evident, with the exception of 
miR- 21 and miR-574-3p which were signifi cantly upregulated and downregulated 
during IVM, respectively. In mice, granulosa cell miR-21 expression is luteinizing 
hormone dependent, and the in vivo use of oligonucleotide inhibitors against miR-
21 suppressed ovulation rate but increased apoptosis, indicating a cell viability role 
for miR-21 (Carletti et al.  2010 ).  

3.4.3     Fertilization and Early Embryo Development 

 Sperm possess a diverse portfolio of ncRNA (Amanai et al.  2006 ; Krawetz et al. 
 2011 ), and their abundance of miRNA may be related to the biogenesis and expres-
sion of small RNA contributing to spermatogenesis (Maatouk et al.  2008 ). Interestingly, 
miR-34c, a miRNA associated with the differentiation of male germ cells (Bouhallier 
et al.  2010 ), has been shown to infl uence embryonic development in mice following 
fertilization (Liu et al.  2012 ). Liu et al. ( 2012 ) identifi ed six miRNAs, including miR-
34c, as absent in mature oocytes but present in mouse sperm and zygotes. The impact 
on development occurs via the ability of miR-34c to interact with BCL2, thereby 
contributing to regulation of the fi rst embryonic cleavage following oocyte activation 
(Liu et al.  2012 ). 

 Following fertilization and subsequent activation of the zygotic genome, the 
embryo begins to express RNA transcripts. Transcription of pri-miRNA has been 
observed in the mouse two-cell embryo, and mature transcripts are detectable at the 
four-cell stage (Tang et al.  2007 ; Zeng and Schultz  2005 ). Dicer and Dgcr8 activi-
ties are needed for epiblast formation (Kanellopoulou et al.  2005 ; Murchison et al. 
 2005 ; Wang et al.  2007 ,  2008 ), and in some organisms it is thought that miRNA 
contributes to maternal mRNA clearance before zygotic gene activation (ZGA) 
occurs (Giraldez et al.  2006 ; Hemberger et al.  2009 ; Sinkkonen et al.  2008 ; Svoboda 
and Flemr  2010 ). 

 Successful embryonic development requires broad transcriptional arrest and 
mRNA clearance to deplete maternally stored mRNA transcripts in coordination 
with both ZGA and subsequent mRNA and protein production. Some small RNAs, 
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including miRNA, are abundantly expressed during oocyte maturation and early 
embryonic development in  Xenopus laevis  (Watanabe et al.  2005 ),  Drosophila  
(Aboobaker et al.  2005 ; Biemar et al.  2005 ), zebra fi sh (Giraldez et al.  2006 ; 
Wienholds et al.  2005 ), mice (Tang et al.  2007 ), and pigs (Yang et al.  2012a ). 
Maternal mRNA depletion is, in part, controlled via the 3′UTR of the expressed 
transcripts (Brevini et al.  2007 ; Tadros and Lipshitz  2005 ); thus, there is opportunity 
for small RNA to infl uence the posttranscriptional outcome of the resultant embryo.  

3.4.4     Embryonic Stem Cells 

 Biogenesis of miRNA and the associated molecular machinery has been shown to 
be required for stem cell differentiation and the maintenance of pluripotency 
(Marson et al.  2008 ). The disruption of  Dicer  and  Dgcr8  leads to a defective capac-
ity of ES cells to be cultured in both mice and humans (Bernstein et al.  2003 ; Han 
et al.  2004 ; Kanellopoulou et al.  2005 ; Murchison et al.  2005 ). Embryonic lethality 
is the consequence of  Dicer  deletion in mice (Bernstein et al.  2003 ) while  Dicer - 
null  embryonic stem (ES) cells are defi cient in proper differentiation (Kanellopoulou 
et al.  2005 ).  Dgcr8  knockout mice ES cells show a phenotype similar to  Dicer - 
defi cient  ES cells, with reduced proliferation and a defective capacity for differen-
tiation (Wang et al.  2007 ). Taken together, these results support the requirement of 
canonical miRNA biogenesis for ES cell differentiation and proliferation. 

 There are a number of miRNA expression clusters that are likely to be involved 
in ES cell regulation including the let-7 family and the miR-290 and miR-17–92 
cluster. Let-7 miRNA family members are highly expressed in differentiating cells 
(Gu et al.  2008 ; Lakshmipathy et al.  2007 ), and Let-7 g can be regulated by LIN28, 
which is highly expressed in pluripotent cells (Viswanathan et al.  2008 ), suggesting 
that let-7/ LIN28  regulatory mechanism contributes to the maintenance of pluripo-
tency. Pluripotent factors such as  Oct4 ,  Sox2 ,  Nanog , and  Tcf4  activate  LIN28  gene 
expression, which in turn inhibits differentiation, and since the 3′UTR of  LIN28  
mRNA is targeted by Let-7, LIN28 inhibition of differentiation may be a result of 
let-7 g activity (Marson et al.  2008 ). 

 There are six miRNAs (miR-290 through miR-295) in the miR-290 cluster, all of 
which are transcribed in single polycistronic transcripts and regulated by a common 
promoter (Suh et al.  2004 ). All miR-290 members are expressed in undifferentiated 
mouse ES cells, but their abundance decreases after differentiation (Houbaviy et al. 
 2003 ). Embryonic lethality results in mice with a homozygous deletion of all six 
members of the miR-290 cluster (Ambros and Chen  2007 ), and exogenously deliv-
ered miR-290 cluster can partially rescue the self-renewal capacity of  Dicer -null 
cells (Benetti et al.  2008 ; Sinkkonen et al.  2008 ). 

 The miR-17–92 cluster is strongly expressed in undifferentiated ES cells and 
forms a polycistronic transcript which generates miR-17, miR-18a, miR-19a, miR- 
20a, miR-19b-1, and miR-92a-1 (Gu et al.  2008 ; Houbaviy et al.  2003 ; Morin et al. 
 2008 ). The miR-17–92 cluster is activated by the oncogene, c-Myc (Chen and 
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Daley  2008 ), which in combination with the pluripotency factors Oct4, Sox2, and 
Klf4 can induce pluripotency (iPS cells). Thus, it is suggested that the miR-17–92 
cluster plays roles in pluripotency and stem cell renewal (Melton et al.  2010 ).  

3.4.5     Embryo Implantation and Interaction 
with Maternal Endometrium 

 During the peri-implantation period of pregnancy, uterine epithelial cells and the 
conceptus trophectoderm develop adhesion competence in unison to initiate an 
adhesion cascade within the window of receptivity. Upregulation of 32 miRNA has 
been demonstrated in mouse endometrium during the window of implantation. Of 
the identifi ed miRNA, miR-101, miR-144, and miR-199a* are predicted to interact 
with cyclooxygenase-2 (Cox2) mRNA (Chakrabarty et al.  2007 ). Proinfl ammatory 
immune signaling is associated with uterine receptivity in multiple species (Cha 
et al.  2012 ), and miRNA with the potential to infl uence the expression of infl am-
matory and immune response mediators includes let7, miR-17-5p, miR-20a, miR- 
106a, miR-125b, miR-146, and miR-155 (Meng et al.  2007 ,  2008 ; O’Connell et al. 
 2007 ; Rodriguez et al.  2007 ; Tili et al.  2007 ). For example, both miR-125b and 
miR-155 are involved in the development of T, B, and dendritic cells, key cells of 
the immune system. Transcription of these miRNAs is proposed to be activated by 
the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) (Pan 
and Chegini  2008 ). The presence of numerous small RNAs has been identifi ed in 
the porcine uterine endometrium during the implantation window; however, the 
mechanism by which specifi c small RNAs contribute to uterine function and ulti-
mately facilitate embryo implantation remains largely unknown. Conditional dele-
tion of  Dicer  in mice driven by the progesterone receptor or anti-Müllerian hormone 
receptor type 2 promoters resulted in sterility, abnormal development, and altered 
signaling pathways in the uterus suggesting important biological contributions 
of small RNA to the function of the uterine endometrium (Hawkins et al.  2012 ; 
Nagaraja et al.  2008 ). 

 Postimplantation survival of a growing fetus is entirely dependent on the coordi-
nation of gas exchange, nutrient supply, and waste product removal via the placenta, 
while maintaining immunological protection of the embryo. Human placenta is 
abundant in miRNA, with distinctive expression profi le patterns (Barad et al.  2004 ; 
Landgraf et al.  2007 ; Liang et al.  2007 ). In addition, miRNA biogenesis protein 
machinery also seems to be essential for placental development and function 
(Cheloufi  et al.  2010 ). 

 Expression of chromosome 19 miRNA cluster (C19MC) and miR-371-3 cluster 
changes throughout pregnancy (Morales Prieto and Markert  2011 ) and differs in 
placental tissue from females who undergo preterm labor compared to normal term 
pregnancy (Mayor-Lynn et al.  2011 ). These clusters are located within imprinted 
genes that are known to be involved with embryonic development and cellular 
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 differentiation (Tsai et al.  2009 ). Interestingly, C19MC is one of the largest miRNA 
gene clusters in the human genome (Bentwich et al.  2005 ; Lin et al.  2010 ) and is 
expressed from the paternally inherited chromosome and controlled by upstream 
promoter region methylation (Noguer-Dance et al.  2010 ). Regulation of C19MC is 
not well characterized; however, the expression appears to be restricted to the repro-
ductive system and the placenta (Liang et al.  2007 ; Lin et al.  2010 ) though expres-
sion of miR-498, a component of the C19MC cluster, has been shown to be expressed 
in the fetal brain (Flor and Bullerdiek  2012 ). Interestingly, no homologues of this 
cluster have been found in rat, mouse, or dog (Zhang et al.  2008 ). The miR-371-3 
cluster consists mainly of three miRNAs (miR-371a-3p, miR-372, and miR-373-3p) 
sharing the same seed sequence, AAGUGC (Griffi ths-Jones  2006 ), and is predomi-
nantly placentally expressed (Bentwich et al.  2005 ).   

3.5     miRNA Regulation During Spermatogenesis 

 Spermatogenesis is the process by which diploid spermatogonium differentiates 
into motile spermatozoa. The process begins after birth when spermatogonial stem 
cells enter the differentiation pathway. The stages of spermatogenesis vary both 
in location within the seminiferous tubule and by morphological changes to the 
germ cell as stem cell-like spermatogonia near the basal lamina are recruited and 
undergo several rounds of mitotic divisions, followed by progression through meio-
sis, morphogenesis, and eventual release of mature spermatids into the lumen of the 
seminiferous tubule (Kotaja et al.  2004 ). MiRNA expression and function through-
out numerous stages of spermatogenesis has been observed by numerous investi-
gators (Fig.  3.2 ).  

3.5.1     miRNA Biogenesis During Spermatogenesis 

 The miRNA biogenesis and RISC-associated proteins Dicer, Drosha, AGO1, AGO2, 
AGO3, and AGO4 have all been detected in pachytene stage spermatocytes, round 
and elongated spermatids, and Sertoli cells (Gonzalez-Gonzalez et al.  2008 ). The 
importance of small RNA regulation within the maturing sperm cell has been exhib-
ited by extensive rodent knockout models. Primordial germ cells as well as sper-
matogonia from Dicer-defi cient mice exhibit poor proliferation (Hayashi et al.  2008 ). 
Furthermore selective knockout of Dicer driven by promoters for DEAD box poly-
peptide 4 ( Ddx4 ) or tissue-nonspecifi c alkaline phosphatase ( Tnap ) at the early onset 
of spermatogenesis also leads to infertility implying the importance of small RNA 
production and function to enable spermatogenesis. There is an observable loss of 
sperm differentiation, abnormal morphology, and loss of motility with the absence of 
Dicer (Maatouk et al.  2008 ; Romero et al.  2011 ). Neurogenin 3 ( Ngn3 ) promoter-
driven conditional knockout of Dicer results in reduced testis size and disruption of 
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spermatogenesis within the seminiferous tubules as well as the epididymis (Korhonen 
et al.  2011 ). Furthermore, selective knockout of Dicer in mice Sertoli cells driven by 
the  Mis  (anti- Müllerian hormone) promoter also leads to infertility due to complete 
absence of spermatozoa and progressive testicular degradation (Papaioannou et al. 
 2009 ). Other evidence that small RNA regulation is important in the maturing male 
gamete is the presence of chromatoid bodies. Chromatoid bodies are a unique cloud-
like structure found within spermatids that are thought to contain miRNA, RISC-
associated proteins, and potentially the mRNA targets of miRNA (Kotaja et al.  2006 ; 
Kotaja and Sassone-Corsi  2007 ; Meikar et al.  2011 ).  

3.5.2     miRNA Expression Patterns During Spermatogenesis 

 MiRNAs are differentially expressed during testicular development (Yu et al.  2005 ). 
High-throughput sequencing experiments have detected 141 miRNAs expressing in 
the mouse testis and 29 novel miRNAs in the human testis (Ro et al.  2007 ), and 
another study detected 770 known and fi ve novel miRNAs in the human testis (Yang 
et al.  2013a ). Immunohistochemistry detected miRNAs in the Sertoli cell nucleus 
and in the dense body of the pachytene spermatocytes (Marcon et al.  2008 ). 

Spermatogonium
MIR34c (Bouhallier et al. 2010)
MIR-17-92 Cluster (Tong et al. 2012)
MIR-106b-25 Cluster (Tong et al 2012)
MIR146 (Huszar and Payne 2013)
MIR221/222 (Yang et al. 2013b)
MIR-let7 Family (Tong et al 2011)
MIR21 (Niu et al. 2011)

Spermatocyte
MIR449 (Bao et al. 2012)

Round and Elongated Spermatid
MIR18 (Bjork et al. 2010)
MIR469 (Dai et al. 2011)
MIR122a (Yu et al. 2005)

Basal Lamina

Sertoli Cell

  Fig. 3.2    Schematic of microRNA associated with different stages of spermatogenesis (Niu et al. 
 2011 ; Bao et al.  2012 ; Dai et al.  2000 ; Yu et al.  2005 ; Bjork et al.  2010 )          
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Microarray experiments have shown dynamic changes in miRNA profi les when 
comparing immature and mature testis in mice, rhesus monkeys, and pigs (Luo et al. 
 2010 ; Yan et al.  2007 ,  2009 ). 

 When investigating specifi c miRNA or miRNA clusters, investigators have found 
changes in abundance of miRNA comparing stage of spermatogenesis (Fig.  3.2 ). 
There is high abundance of miR-34c in the spermatocyte and spermatid. There is 
also high abundance of miR-34c in the testis compared to the spleen, brain, or liver 
tissue (Bouhallier et al.  2010 ). When mouse embryonic stem cells (mESCs) are 
transfected with pri-miR-34c-GFP and combined with retinoic acid induction, miR- 
34c promotes mESCs to differentiate into spermatogenic-like cells (Zhang et al. 
 2012 ). However, in caprine germline stem cells, overexpression of miR-34c leads to 
apoptosis and suppressed proliferation (Li et al.  2013 ). The potential mechanisms of 
miR-34c during spermatogonial differentiation in mice are thought to be through 
targeting  Atf1  and inducing apoptosis (Liang et al.  2012 ) or by targeting  Nanos2  
mRNA (Yu et al.  2014 ). 

 Both the miR-17–92 and miR-106b-25 clusters are downregulated during reti-
noic acid-induced spermatogonial differentiation both in vivo and in vitro (Tong 
et al.  2012 ). A mouse loss-of-function model for miR-17–92 cluster in male germ 
cells causes smaller testis, decreased number of epididymal sperm, and mild defects 
in spermatogenesis (Tong et al.  2012 ). The abundance of miR-146 is highly 
increased in mice undifferentiated spermatogonia (Huszar and Payne  2013 ), sug-
gesting that miR-146 plays a role in differentiation. Impaired function of the X 
chromosome-clustered miR-221 and miR-222 in mouse undifferentiated spermato-
gonia induces loss of stem cell capacity to regenerate spermatogenesis and induces 
the transition from a KIT −  to a KIT +  state (or expressing the CD117 receptor), a 
hallmark of the transition into differentiation. In accordance with this, growth fac-
tors that promote maintenance of undifferentiated spermatogonia increase miR- 
221/miR-222 abundance (Yang et al.  2013b ). When comparing abundance of 
miR-135a in rat descended testis or undescended testis, abundance is greatest in 
descended testis. A specifi c example to PTGR occurring in the testis involves miR- 
135a and forkhead box protein O1 (FOXO1), both of which have been localized in 
spermatogonial stem cells. Transfection of miR-135a into spermatogonia in vitro 
resulted in decreased FOXO1 abundance (Moritoki et al.  2014 ). Another example 
of miRNA regulation during spermatogenesis is the signifi cant increase in the 
expression of the miR-let7 family of miRNAs during mouse spermatogonial dif-
ferentiation through suppression of  Lin28  (Tong et al.  2011 ).  

3.5.3     miRNA Associated with Male Fertility 

 Infertility is estimated to affect 15 % of the couples worldwide, and male infertility 
is expected to be responsible for 50 % of this (Dohle et al.  2005 ; Hellani et al.  2006 ). 
Idiopathic, or spontaneously occurring, male infertility is accompanied by qualita-
tive and quantitative abnormalities (Ferlin et al.  2007 ; Hargreave  2000 ). This has 
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led research groups to be able to diagnose the molecular components and morphol-
ogy of infertile men or species and compare miRNA abundance between the two. 
Abu- Halima et al. (Abu-Halima et al.  2013 ) compared the miRNA profi les in 27 
diagnosed male patients: nine normozoospermia, nine asthenozoospermia, and nine 
oligoasthenozoospermia. When comparing the miRNA profi les of asthenozoosper-
mia to normozoospermia patients through miRNA microarray, 50 miRNAs were 
upregulated and 27 were downregulated. In comparing oligoasthenozoospermia to 
normozoospermia, 42 miRNAs were upregulated and 44 were downregulated. 
Interestingly, miR-34c was downregulated in oligoasthenozoospermia compared to 
normozoospermia. 

 More recently Abu-Halima et al. (Abu-Halima et al.  2014 ) have suggested the 
use of fi ve miRNAs, miR-34b*, miR-34b, miR-34c, miR-429, and miR-122, as 
potential biomarkers for the diagnosis and assessment of male infertility. In this 
study 80 semen samples from patients showing abnormal semen parameters were 
compared with 90 semen samples showing normal parameters. The abundance of 
the fi ve miRNAs was compared using qRT-PCR, and miR-449 was increased and 
the other four were decreased in the abnormal semen groups compared to normal 
control subjects. Using support vector machine classifi cation combined with these 
fi ve miRNAs, the study was able to discriminate individuals with subfertility from 
control subjects with accuracy of 98.65 %, specifi city of 98.83 %, and sensitivity of 
98.44 % (Abu-Halima et al.  2014 ).   

3.6     Small RNA and Female Reproductive Disorders 

3.6.1     Relationship Between Obesity and Infertility 
Mediated by miRNA  

 Obesity has detrimental effects on female reproductive function, including increas-
ing the likelihood for polycystic ovarian syndrome (PCOS), ovulation defects, 
reduced fecundity, and poor quality oocytes (Brewer and Balen  2010 ; Maheshwari 
et al.  2007 ; Rachon and Teede  2010 ). There is association between obesity and 
increased risk of birth defects, prematurity and stillbirths, and gestational diabetes 
(Bellver et al.  2007 ; Maheshwari et al.  2007 ). Obesity contributes to the develop-
ment of type 2 diabetes, characterized by hyperglycemia and impaired insulin sig-
naling (Akamine et al.  2010 ). In contrast to many peripheral tissues that display 
insulin resistance (Akamine et al.  2010 ; Kalra et al.  2006 ; Kashyap and Defronzo 
 2007 ), the ovary remains insulin sensitive during obesity-induced type 2 diabetes. 
Ovaries from female mice fed with a diet containing 60 % kcal of fat for 12 weeks 
maintained insulin sensitivity, despite that other classical tissues like the muscle and 
liver became insulin resistant (Wu et al.  2012 ). 

 The exact mechanism(s) by which obesity affects ovarian function remains 
poorly understood; however, systemic low-grade infl ammation has been  implicated 
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in the development of infertility and other obesity-associated adverse reproductive 
health outcomes (Blencowe et al.  2012 ; Carmichael et al.  2010 ; Nestler  2000 ; 
Pasquali and Gambineri  2006 ; Pasquali et al.  2003 ; Pettigrew and Hamilton-
Fairley  1997 ; Rubens et al.  2010 ). Chronic infl ammation alters miRNA levels in 
immune cells (Fernandez-Valverde et al.  2011 ; Williams and Mitchell  2012 ; Xie 
et al.  2009 ), and miRNAs have been shown to regulate the activity of key cellular 
processes, including insulin release in pancreatic  β  cells, adipocyte differentiation 
(Williams and Mitchell  2012 ; Xie et al.  2009 ), and insulin sensitivity (Trajkovski 
et al.  2011 ), and are therefore potentially involved in obesity-induced infertility in 
females. We have demonstrated elevated tumor necrosis factor alpha (Tnfa) mRNA 
expression in the ovaries from obese mice (Nteeba et al.  2013a ). miR-125b has 
been shown to negatively regulate  Tnfa  mRNA (Huang et al.  2012 ), while increased 
Tnfa itself downregulates miR-143 (Xie et al.  2009 ). Both miR-125b and miR-143 
were decreased in ovarian tissue during obesity supporting that miRNAs may 
mediate physiological alterations involving an infl ammatory mechanism (Nteeba 
et al.  2013a ). Further, decreased circulating miR-125b has also been associated 
with increased fat mass in morbidly obese men (Ortega et al.  2013 ), while miR-
143 is reported to be critical for the formation of the primordial follicle pool in 
utero (Zhang et al.  2013 ), raising concerns about the impact of obesity on the neo-
natal ovary. 

 Another mechanism by which miRNA can impact fertility may be through the 
phosphatidylinositol-3 kinases (PI3K) pathway. PI3K are lipid kinases that phos-
phorylate the 3′-OH group on the inositol ring of inositol phospholipids. Activation 
of PI3K results in conversion of the plasma membrane lipid phosphatidylinositol- 
4,5-bisphosphate (PIP 2 ) to phosphatidylinositol-3,4,5-triphosphate (PIP 3 ). PIP 3  can 
recruit proteins containing lipid-binding domains from the cytoplasm (Pawson and 
Nash  2000 ) such as the serine/threonine kinases 3′-phosphoinositide-dependent 
kinase-1 (PDK1) and AKT (Cantley  2002 ) to the plasma membrane where their 
proximity results in their phosphorylation. Once phosphorylated, AKT can translo-
cate to the nucleus, where it regulates a number of cellular responses such as growth, 
survival, and cell cycle entry (Datta et al.  1999 ). PI3K signaling has many ovarian 
roles, being involved in steroidogenesis, oocyte viability (Brown et al.  2010 ), and 
primordial follicle activation (Jagarlamudi et al.  2009 ; Liu et al.  2006a ), and can be 
regulated through PTGR via miRNA activity (Näär  2011 ; Trajkovski et al.  2011 ; Xu 
and Mo  2012 ; Yu et al.  2008 ). In order to evaluate if obesity has any effect on 
miRNA that could at least partially explain alterations observed with respect to 
PI3K signaling, levels of miR-103, miR-21, miR-184, and miR-205 in ovaries from 
obese female mice were investigated. Obese mice had decreased ovarian miR-21 
and miR-103. MiR-21 expression is important for the regulation of apoptosis 
(Donadeu et al.  2012 ; McBride et al.  2012 ), and decreased miR-21 abundance has 
been reported to increase cell apoptosis in a variety of cell culture systems including 
the granulosa cells from mouse preovulatory follicles both in vivo and in vitro 
(Carletti et al.  2010 ). In addition, miR-21 has been identifi ed as promoting follicular 
cell survival during ovulation, and miR-21 inhibition also has been reported to 
reduce ovulatory rates (Carletti et al.  2010 ). Although many different cell types 
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undergo apoptosis in response to inhibition of miR-21 action, the miR-21 targets 
implicated vary widely for different cells, and the mechanism by which miR-21 
suppresses apoptosis in granulosa cells remains to be identifi ed (Kim et al.  2012 ; 
Sirotkin et al.  2010 ; Yang et al.  2008 ). 

 MiR-184 has been shown to act as a physiological suppressor of general secre-
tory activity of progesterone and estradiol (Sirotkin et al.  2009 ,  2010 ). Obese 
females have increased levels of miR-184 (Nteeba et al.  2013b ), and miR-184 is 
believed to play a critical role in development in addition to being a mediator of 
apoptosis. Upregulation of miR-184 has been reported to interfere with the ability 
of miR-205 to repress PI3K signaling (Yu et al.  2008 ). Several studies from human 
and rodent models have reported obesity-induced miR-103 upregulation (Perri et al. 
 2012 ; Rottiers and Näär  2012 ; Trajkovski et al.  2011 ). We observed a trend for 
decreased ovarian miR-103 due to obesity (Nteeba et al.  2013b ). Importantly, 
silencing miR-103 has been proposed to improve insulin sensitivity in adipocytes 
mainly through increased caveolin-1 expression, which in turn leads to stabilization 
of the insulin receptor thus enhancing insulin signaling (Trajkovski et al.  2011 ). In 
contrast, miR-103 expression has been found to be downregulated in the mouse 
model of genetic insulin resistance and obesity (ob/ob mice) (Xie et al.  2009 ), con-
sistent with our observations using a diet-induced obesity model.  

3.6.2     Endometriosis 

 Endometriosis is a condition affecting approximately 10–15 % of females whereby 
cells of the endometrial lining of the uterus relocate via retrograde menstruation and 
localize to other regions outside of the endometrium. Recent studies investigating 
the miRNA profi les of endometriosis and associated tissues have shown that some 
miRNAs are associated with the induction and persistence of the disease. 
Transcriptional profi ling has previously been used to identify numerous candidate 
genes that may contribute to the etiology of the disease (Kao et al.  2003 ). The large 
number of endometrial mRNA being altered in endometriosis may be due to miRNA 
function infl uencing the transcriptome. 

 Among the multitude of miRNAs associated with endometriosis, several appear 
to be promising markers in both diagnosis and progression of the disease. Zhao et al. 
demonstrated that miR-20a is overexpressed in patients with ovarian endometriosis, 
being greatest in patients in advanced stages of the disease (Zhao et al.  2014 ). Using 
small RNA sequencing of both endometriotic lesions and adjacent tissues, Saare 
et al. ( 2014 ) demonstrated that miR-499a, miR-200a, miR-200b, miR-141, and 
miR-34c were in signifi cantly greater abundance in endometriotic lesions compared 
to neighboring healthy tissues (Saare et al.  2014 ). Using microarray analysis, 
Ohlsson Teague et al. ( 2009 ) were able to identify differential miRNA expression 
differences between ectopic and eutopic endometrial samples of women with endo-
metriosis (Ohlsson Teague et al.  2009 ). The authors identifi ed 14 miRNAs with 
elevated abundance and eight with reduced abundance in ectopic endometrium in 
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comparison to eutopic endometrial samples. The miRNAs observed to be dysregu-
lated in ectopic endometrium were predicted to interact with mRNA known to 
impact critical biological processes such as cell migration, invasion, and cell prolif-
eration which are all putative mechanisms contributing to the endometriotic tissue 
formation (Ohlsson Teague et al.  2009 ).  

3.6.3     Polycystic Ovarian Syndrome 

 Polycystic ovarian syndrome is an anovulatory disorder that is characterized by the 
pathological development of ovarian cysts. The underlying mechanisms resulting in 
PCOS have to this point been elusive; thus, multiple groups have worked towards 
the identifi cation of miRNA associated with PCOS (Sorensen et al.  2014 ). Using 
microarray and quantitative PCR, fi ve (let-7i-3 pm, miR-5706, miR-4463, miR- 
3665, miR-638) miRNAs were found in greater abundance in circulation of women 
with PCOS compared to healthy controls, while four (miR-124-3p, miR-128, miR-
29a- 3p, let-7c) were less abundant in women with PCOS (Ding et al.  2014 ). Others 
have taken similar approaches in the comparison of global miRNA expression pro-
fi ling in women with PCOS compared to healthy controls. Sang et al. ( 2013 ) utilized 
deep sequencing to characterize miRNA content in microvesicles isolated from the 
follicular fl uid of women with PCOS and identifi ed miR-132 and miR-320 as being 
suppressed in the follicular fl uid compared to control patients (Sang et al.  2013 ). In 
addition, the authors demonstrate the ability of miR-132 and miR-320 stimulation 
to increase estradiol production in a human granulosa-like tumor cell line, while 
inhibition of these miRNA had a suppressive effect on estradiol production. 

 Not only do aberrations in serum and follicular miRNA populations appear to be 
associated with women affl icted with PCOS, in some cases, differences are also 
observed in the developing embryo. Blastocysts derived from women affl icted with 
PCOS appear to have suppressed abundance of let-7a, miR-19a, miR-19b, miR-24, 
miR-92, and miR-93 (McCallie et al.  2010 ), suggesting that compromised embryos 
resulting from abnormalities during oocyte development may be a mechanism by 
which PCOS compromises fertility.  

3.6.4     Chemically Induced Infertility Mediated 
Through miRNA  

 Exposure to environmental or occupational chemicals can disrupt female reproductive 
function (   Mattison and Schulman  1980 ). Additionally, the reproductive age and 
status of an individual alter the susceptibility and the outcome following exposure 
to a reproductive toxicant (Fig.  3.3 ). A number of studies have shown that exposure 
to ovarian toxicants can lead to oocyte depletion [reviewed in Bhattacharya and 
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Keating ( 2012a ) and Hoyer and Keating ( 2014 )]. The stage of development at which 
the follicle is lost determines the reproductive impact; if large or antral follicles are 
depleted, temporary interruptions to reproductive function are observed since these 
follicles can be replaced by recruitment from the pool of primordial follicles (Hoyer 
and Keating  2014 ). Due to the irreplaceable nature of the ovarian reserve, chemicals 
that destroy oocytes contained in primordial follicles can lead to permanent infertil-
ity and premature ovarian failure (POF). Also, the level and duration of exposure to 
an environmental toxicant can infl uence the reproductive impact. Chronic, low-dose 
exposures, likely to be environmental in nature, are diffi cult to identify because 
their ovarian impact may go unrecognized for years. Ongoing selective damage of 
small preantral follicles may not initially raise concern until the onset of POF that 
will eventually result. Further, the age at which exposure occurs can impact the 
outcome. Prepubertal exposure may not cause the same extent of follicle loss as that 
postpubertal, due to the higher number of follicles present during childhood. 
However, damage to oocytes by chemical exposures in utero and/or during child-
hood presents a concern, which would not be detected until the reproductive years.  

 Ovotoxic chemicals can accelerate activation of primordial follicles from the 
ovarian reserve (Fernandez et al.  2008 ; Keating et al.  2009 ), leading to POF. Since 
this process is, at least partially, regulated by PI3K signaling, the involvement of 
miRNAs is plausible. It is known that miR-21 inhibits phosphatase and tensin 

  Fig. 3.3    Potential age-related effects of reproductive toxicants in females. The impact(s) of 
reproductive toxicants is partially dependent upon the reproductive status of the exposed individual. 
In most cases, direct ovarian toxicity can lead to premature ovarian failure and infertility (meno-
pause). From Keating and Hoyer, 2009 with copyright permission       
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homologue (PTEN), an antagonist of PI3K (Carletti et al.  2010 ; Ling et al.  2012 ). 
Also, increased abundance of miR-184 can interfere with AKT action, repressing 
PI3K action (Baley and Li  2012 ; Yu et al.  2008 ). Furthermore, miR-451 (Tian et al. 
 2011 ) and miR-7 (Fang et al.  2012 ) inhibit PI3K, while the miR-17–92 cluster (Ji 
et al.  2011 ) and miR-21 (Darido et al.  2011 ) activate PI3K. 

 It is important to note that the ovary has the capability to biotransform chemicals 
to more or less toxic metabolites, and these metabolic processes are highly active in 
ovarian tissues (Bhattacharya and Keating  2011 ,  2012b ; Bhattacharya et al.  2012 , 
 2013 ; Igawa et al.  2009 ; Keating et al.  2008a ,  b ,  2010 ; Madden and Keating  2014 ) 
and contribute to the extent of ovotoxicity observed. We have demonstrated that 
many genes encoding ovarian chemical biotransformation enzymes are regulated by 
PI3K signaling (Bhattacharya and Keating  2012b ; Bhattacharya et al.  2012 ), includ-
ing aryl hydrocarbon receptor ( AhR ) and nuclear erythroid-related factor ( Nrf2 ) 
(Bhattacharya and Keating  2012b ), transcription factors that regulate xenobiotic 
metabolism. MiRNA-mediated regulation of Nrf2 (Eades et al.  2011 ; Yang et al. 
 2011 ) and Ahr (Huang et al.  2011 ) has recently been demonstrated. Thus, taken 
together, the potential for miRNA to have major roles in mediating chemical- 
induced ovotoxicity is being realized and is likely to be deciphered in greater detail 
in the coming years.   

3.7     RNA-Binding Proteins Impact miRNA 
Function and Fertility 

 Despite their presence and activity in cells contributing to reproduction and devel-
opment, the ability of ncRNAs to impact the cellular phenotype can be tempered 
by a variety of molecular regulators, and RNA-binding proteins, such as dead end 
homologue 1 (DND1), may be involved. The 3′ UTR of mRNA in close proximity 
to potential miRNA-binding sites is frequently the location of AU-rich elements 
(ARE) which contribute to mRNA stability (Chen and Shyu  1995 ; Fan et al. 
 1997 ). Since DND1 is capable of binding to regions where miRNA-mediated 
PTGR is conferred, it is thought that DND1 interaction with specifi c mRNA near 
miRNA- binding sites could potentially alter miRNA-induced PTGR (Kedde and 
Agami  2008 ; Kedde et al.  2007 ). 

 Germ cell viability for both male and female and early embryonic development 
requires DND1 function (Bhattacharya et al.  2007 ; Saga  2008 ). We have also dem-
onstrated that DND1 abundance in the maturing pig oocyte and early embryo is 
greatest during the period of transcriptional quiescence following GVBD and prior 
ZGA (Yang et al.  2012b ). The ability of DND1 to bind specifi c mRNA transcripts 
associated with pluripotency (POU5F1 (aka OCT4), SOX2, and LIN28) was dem-
onstrated in the germinal vesicle stage oocyte (Yang et al.  2012b ). Considering the 
numbers of miRNA present in the developing oocyte and the period of oocyte tran-
scriptional quiescence following GVBD, it is possible that DND1 infl uences embry-
onic developmental competency by contributing to the mRNA and protein repertoire 
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maintenance in the oocyte and early embryo. The biological roles of DND1 in addi-
tion to other RNA-binding proteins, such as fragile X mental retardation syndrome- 
related protein 1 (FXR1) which is also capable of mediating miRNA PTGR 
(Vasudevan and Steitz  2007 ; Vasudevan et al.  2007 ), will likely be continued areas 
of investigation in determining the biological ability of small RNA to infl uence 
reproductive function and fertility.  

3.8     Conclusion 

 Computational and biochemical approaches have certainly improved the under-
standing of ncRNA regulation, and it is clear that ncRNA, in particular small RNA, 
impacts reproductive function. Advances in high-throughput sequencing technolo-
gies have rapidly amplifi ed the discovery and characterization of multiple RNA 
classes in relation to specifi c biological functions of specifi c reproductive tissues 
and in relation to reproductive dysfunction and infertility. Together with knockout 
models deciphering the specifi c contributions of RNA classes in reproductive tis-
sues, a more comprehensive understanding of small RNAs and their contribution to 
cellular function in reproductive tissues and fertility is being developed. Small 
RNAs, in particular endogenously produced miRNA, have distinct and critical bio-
logical roles contributing to fertility and reproductive success for both males and 
females. Additionally, RNA-binding proteins add biological complexity through 
their potential to also infl uence small RNA function in both a tissue-specifi c and 
target transcript-specifi c manner. As a result of the intricacies associated with small 
RNA biogenesis, the complexities of the interactions with specifi c transcripts, and 
to what degree those interactions result in PTGR based on what other contributing 
factors are present, bioinformatic predictions alone to characterize the role of small 
RNA in reproduction function are insuffi cient. Thus, there remains a dearth of infor-
mation on how small RNA directly and indirectly infl uences fertility, and future 
studies are required to focus on determining the specifi c mechanistic function of 
particular small RNA in reproductive tissues.   
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    Chapter 4   
 The Sperm Epigenome, Male Aging, 
and Potential Effects on the Embryo 

             Timothy     G.     Jenkins     ,     Kenneth     I.     Aston     ,     Tyson     Meyer    , and     Douglas     T.     Carrell     

    Abstract     The effect of paternal aging on fertility, embryo quality, and offspring 
health is an important area of study that has received far less attention than the age 
effect in women. This is, in part, due to the fact that in females there are dramatic 
alterations to fertility and pregnancy outcomes that abruptly occur as a female ages. 
Such abrupt alterations to pregnancy success and/or embryonic and offspring health 
are not seen in males. Instead, there are subtle alterations to pregnancy success and 
offspring phenotypes that occur as a man ages. It is believed that, at least in part, 
these alterations can be explained by perturbations to the sperm epigenome that 
occur over time. This chapter will explore the effect of aging on the sperm epig-
enome and the potential impacts these perturbations may have on embryonic devel-
opment and ultimately offspring health.  
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4.1         Introduction 

 The human sperm is a highly specialized cell, elegantly equipped with the minimum 
necessary to deliver a haploid genome through the female reproductive tract to the 
oocyte. Upon fusion with the oolemma, the sperm deposits not only half of the 
genetic material into the oocyte but also initiates signal transduction cascades 
responsible for completion of meiosis in the egg and the initiation of embryogene-
sis. The role of the sperm in delivering DNA and activating the oocyte has long been 
appreciated. In addition, a growing body of data indicates that the epigenetic, as 
well as the genetic, landscape of the sperm has direct effects on embryogenesis and 
offspring phenotypes and that paternal epigenetic contributions can, in some cases, 
confer transgenerational effects (Milekic et al.  2014 ; Govorko et al.  2012 ; Carone 
et al.  2010 ; Hammoud et al.  2009 ). 

 A variety of natural and extraneous infl uences can impact the sperm epigenome 
with potential downstream consequences (Guerrero-Bosagna et al.  2012 ; Hare and 
Moran  1979 ; Hemminki et al.  1999 ; Marczylo et al.  2012 ). This chapter will focus 
on the effects of male age on sperm epigenetics. Age has been shown to consistently 
and predictably affect the epigenetic profi les of numerous cell types (Richardson 
 2003 ; Christensen et al.  2009 ; Day et al.  2013 ). Remarkably, the age-induced epi-
genetic changes observed in sperm appear to be greater in magnitude and often 
more consistent than changes reported in other cell types (Jenkins et al.  2013 ). 
While much remains to be learned about the epigenetic contributions of the sperm 
to the early embryo, a growing body of evidence suggests that some alterations in 
the sperm epigenome escape the early waves of epigenetic reprogramming. These 
changes may explain some of the increased risks of certain diseases that are observed 
more frequently in the offspring of older fathers (Hemminki et al.  1999 ; Frans et al. 
 2008 ,  2013 ).  

4.2     The Sperm Epigenome 

 The sperm is morphologically and functionally distinct from any other cell type. 
Perhaps the greatest distinction between the sperm cell and other cell types is the 
nuclear structure. While the DNA of somatic cells is packaged around histones, 
the majority of sperm histones are displaced in a two-step process during sper-
miogenesis, fi rst by transition proteins, which are subsequently replaced by 
protamines 1 and 2 (P1 and P2) to form a tight toroidal structure that compresses 
the nucleus 6–20 times tighter than the somatic cell nucleus (Fig.  4.1 ) (Balhorn 
 2007 ; Ward and Coffey  1991 ). In normal fertile men, the ratio of P1:P2 is 
approximately 1:1. Importantly, infertile men often display an altered P1:P2 
ratio, and deviations from the normal ratio are associated with abnormal semen 
parameters, increased DNA damage, and reduced fertilization and implantation 
rates (Aoki et al.  2005 ,  2006 ).  
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 These observations were the fi rst to suggest that the epigenetic status of sperm 
might be important for early development. While the mature sperm nucleus is com-
prised primarily of protamine-bound DNA, about 5 % of the DNA remains bound to 
histones (Hammoud et al.  2009 ). Until recently, it was unclear whether the persistent 
histones were the result of incomplete histone replacement or whether they served a 
functional purpose. Several years ago, our lab demonstrated that histones are consis-
tently retained at specifi c loci including developmental gene promoters, genes encod-
ing microRNAs, and imprinted loci. In addition, it was found that the retained histones 
often display bivalency, the presence of both activating and silencing modifi cations 
within the same region, which is reminiscent of stem cell signatures (Hammoud et al. 
 2009 ). These fi ndings suggest that the epigenetic status of sperm is tightly regulated 
and likely mechanistically important for embryogenesis and early development. 
Following fertilization, the sperm nucleus undergoes decondensation and pronuclear 
development, and the protamines are replaced by oocyte- derived histones. During 
this process, the majority of DNA methylation marks are removed to restore totipo-
tency to the sperm and oocyte genomes (Fig.  4.1 ), which clearly raises questions 
regarding the importance of pre-fertilization epigenetic marks; however, two impor-

  Fig. 4.1    Illustration of epigenetic structure in the mature sperm and the dramatic organization that 
occurs in the early embryo immediately following fertilization. The  top panel  shows the protamine- 
bound mature sperm, undergoing chromatin decondensation marked by the removal of protamine 
proteins. The  bottom panel  shows the active demethylation that occurs in the paternal pronucleus, 
as well as the passive, replication-dependent demethylation that occurs in the maternal pronucleus       
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tant considerations are warranted. First, the identity of unmodifi ed loci remains uncer-
tain, raising the possibility that key sperm loci remain unchanged and functionally 
important during embryogenesis. Second, data suggest that epigenetic abnormalities 
in male gametes may affect embryo development, and there is evidence to suggest 
that these abnormalities can affect offspring phenotype. Even less data are available 
on the impacts of age-associated sperm epigenetic alterations and their impacts on the 
embryo. Despite this, there are many indications that age-associated epigenetic altera-
tions may play a role in both embryogenesis and offspring health.  

4.3     Delayed Parenthood 

 Advanced paternal age has recently become a heavily investigated topic as a result 
of multiple studies demonstrating ties between advanced paternal age and various 
offspring abnormalities. Additional trends contributing to the increasing interest in 
the role of advanced paternal age in reproduction is the trend in delayed parentage 
(Mills et al.  2011 ). Though this trend is justifi ed by increasing life expectancies in 
both sexes, advanced paternal age may affect general semen parameters and sperm 
quality ultimately altering fecundity and offspring health. While many couples con-
sider the risks associated with advanced maternal age in family planning decisions, 
very little thought has been given to the age of male partners. In recent history, 
paternal age has steadily increased, particularly in developed countries. This trend 
is believed to be associated with increased life expectancy, socioeconomic pres-
sures, and divorce rates with subsequent remarriage at older ages (Kuhnert and 
Nieschlag  2004 ). During a 10-year span (1993–2003) in Great Britain, the percent 
of fathers within the age range of 35–54 increased from 25 % of total births to 40 %. 
Associated with this trend was a decrease in the number of births to fathers less than 
35 years of age from 74 % of total births to only 60 % (Bray et al.  2006 ). Over two 
decades in Australia (1988–2008), the average age of fathers has increased by 
approximately 3 years (Australian Bureau of Statistics  2009 ). Similarly, the average 
age of fathers in Germany increased by 2 years over a 10-year period (Kuhnert and 
Nieschlag  2004 ). Congruent trends can be found in the United States and many 
other developed countries. As average paternal age continues to increase, it is 
becoming increasingly important to characterize the potential consequences of 
advanced paternal age on embryonic development and offspring health.  

4.4     Heritability of Epigenetic Alteration Through 
the Paternal Germline 

 Though poorly understood, there is clear evidence that demonstrates a unique 
mechanism of heritability through the paternal germline. This idea initially became 
of great interest to many different scientifi c fi elds as a result of fi ndings from growing 
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catalogs of epidemiologic data coupled with landmark studies in mouse models. 
Specifi cally, data collected during and following massive crop failures in Sweden in 
the late 1800s and early 1900s was used to perform large retrospective studies in 
human populations. From these studies, it was found that paternal diet, independent 
of other factors, contributes to offspring disease susceptibility and general health in 
ways never before identifi ed (Kaati et al.  2007 ; Pembrey et al.  2006 ). Though the 
nature of the data set made it impossible to understand any biological mechanisms 
that underlie these alterations, many believe it plausible that alterations of heritable 
epigenetic marks in gametes play some role in the process. In support of this idea is 
the work on the agouti viable yellow gene in mouse models, which demonstrated 
that nutrition can affect offspring phenotype through heritable altered epigenetic 
marks (Waterland and Jirtle  2003 ). This and other work have stimulated the study 
of transgenerational inheritance as we see it today. 

 Many intriguing studies have come as a result of the increased emphasis on 
transgenerational inheritance in the literature. One recent study found that male 
mice fed a low-protein diet, when mated with a normal female, sire offspring with 
altered expression of many genes important in metabolism and cholesterol synthesis 
(Carone et al.  2010 ). Similarly, metabolic alterations, specifi cally changes in insulin 
sensitivity, were also seen in the female offspring of male rats fed high-fat diets 
(Ng et al.  2010 ). 

 Although no concrete mechanism for inheritance of altered metabolic activity 
has been identifi ed or any other nongenetic inheritance from the male germline, 
there are intriguing candidates including epigenetic inheritance through altered 
sperm DNA methylation. A recent study strongly supports the idea of transgenera-
tional inheritance. Govorko et al. demonstrated that the offspring of male mice 
exposed in utero to alcohol had altered hypothalamic proopiomelanocortin (POMC) 
gene activity as a result of hypermethylation at the POMC promoter and that these 
defi cits were passed down through the F3 generation (Govorko et al.  2012 ). 
Interestingly, although the methylation marks at the POMC promoter were similar 
in the F1 female and male (both exposed to prenatal alcohol), the alterations were 
not inherited via the maternal germline, suggesting a unique mechanism of epigen-
etic inheritance through the paternal germline (Govorko et al.  2012 ). Taken together, 
these data demonstrate the likelihood that the sperm epigenome plays an essential 
role in embryogenesis and is capable of contributing to offspring health.  

4.5     Age-Associated Sperm Epigenetic Alterations 

 An important consideration in the role of paternal aging on embryo quality and 
offspring health is the degree to which the sperm is susceptible to genomic or epig-
enomic perturbation that could lead to embryonic or offspring dysfunction and 
disease. Because of the plastic nature of epigenetic marks in the sperm and the 
potential heritability of any perturbations, sperm epigenetics, in particular DNA 
methylation, has become one of the main candidates on which studies have focused. 
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Only recently has data become available to describe the epigenetic landscape of the 
aged sperm, and these have focused primarily on DNA methylation in both human 
and mouse models. It is informative to describe this in context of somatic cell 
alteration associated with age where it is known that DNA methylation is altered in 
many somatic cell types with age in relatively consistent patterns (Wilson and 
Jones  1983 ; Oakes et al.  2003 ). From the few studies that have been performed, it 
appears that sperm methylation patterns resultant from aging are far different and 
of greater magnitude than what is seen in somatic cells (Jenkins et al.  2013 ,  2014 ). 
In fact, these cells display a virtually opposite profi le of epigenetic change with age 
(Fig.  4.2 ). Although this may appear counterintuitive, it is important to note that 
other genomic alterations, such as telomere length, follow similar trends between 
these two tissue types (Eisenberg  2011 ). Furthermore, the idea that the magnitude 
of methylation alteration is greater in sperm as compared to somatic cells with 
aging is not without precedence. Work in support of this idea demonstrates that 
frequently dividing cells have more striking methylation changes associated with 
age than do cells that divide less frequently. As sperm undergo large amounts of 
division over the lifespan of an individual, it is not surprising that the magnitude of 
epigenetic change is greater in sperm over time than in other human tissues.  

 Two recent studies on human sperm from anonymous donors have revealed dis-
tinct patterns of methylation alteration with age (Jenkins et al.  2013 ,  2014 ). These 
studies utilized sperm donors who collected two samples many years apart (between 
10 and 20 years approximately). This allowed the authors to analyze paired data to 
determine the intraindividual impact of aging on the sperm methylome. It was dis-
covered that there is an increase in the global level of methylation in human sperm, 

  Fig. 4.2    General tissue-specifi c age-associated alterations that occur in sperm and other somatic 
tissues. Sperm tend to have slight increases in global methylation with age, while regionally there 
is a bias toward methylation loss. In somatic cells the opposite is true, as global methylation 
decreases and regional methylation increases with age       
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a surprising fi nding based on the baseline hypermethylation in the mature sperm 
and the contrasting global hypomethylation that occurs with age in somatic cells 
(Jenkins et al.  2013 ,  2014 ). A number of regional alterations (approximately 
1,000 bps in length) were also signifi cantly altered with age and displayed a strong 
bias toward demethylation. This fi nding is, again, in opposition to what has been 
described in somatic cells where there is a bias toward regional hypermethylation 
(Jenkins et al.  2014 ). Alterations at these sites were confi rmed with the use of tar-
geted bisulfi te sequencing in an independent cohort of unpaired general population 
sperm samples. These fi ndings were remarkably consistent at the identifi ed regions 
of alteration (Fig.  4.3 ). Intriguingly, it appeared that the age-associated regional 
alterations identifi ed were enriched at genes known to be associated with neuropsy-
chiatric disease. Similar results were identifi ed in mice where regional hypomethyl-
ation was common in the sperm of aged mice though no global changes were 
identifi ed (Milekic et al.  2014 ). Interestingly, all offspring of older males had simi-
lar alterations to methylation patterns in brain tissue coupled with alterations in 
social behaviors. Taken together, age-associated methylation perturbations repre-
sent a plausible mechanism by which the increased incidence of disease in the off-
spring of older fathers may be transmitted.   

  Fig. 4.3    An example of sperm-specifi c regional methylation. At this relatively small genomic win-
dow (approximate 250 bps), there is a signifi cant decrease in fraction methylation ( y  axis) at each 
CpG ( x  axis) that occurs within men over 50 ( n  = 9) when compared to men under 40 ( n  = 12). These 
data represent an example of one of many loci signifi cantly affected by age in (Jenkins et al.  2014 )       
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4.6     Embryo Quality, Pregnancy Outcomes, 
and Offspring Health 

 The effects of paternal age on pregnancy outcome and embryo quality are contro-
versial. This controversy is mainly a result of the scant data available on the subject. 
Some reports suggest that there is a signifi cant decline in fertility (as measured by 
time to pregnancy) with age, while others report no such associations (Hassan and 
Killick  2003 ; Begueria et al.  2014 ). Additional data does suggest that paternal age 
is a signifi cant factor when compounded with maternal age (de la Rochebrochard 
and Thonneau  2002 ). Other studies support these data by suggesting an increased 
frequency of fetal loss, increased time to pregnancy, and decreased probability of 
conception in older men (Selvin and Garfi nkel  1976 ; Ford et al.  2000 ; Dunson et al. 
 2002 ). However, there are confl icting data which suggest little to no effect of pater-
nal age on fertility in natural conception or with the use of assisted reproductive 
technologies (ART) (Begueria et al.  2014 ; Olsen  1990 ; Bellver et al.  2008 ). Similar 
controversy exists in the effect of paternal age on embryo quality with the use of 
ART with some studies showing no effect (Bellver et al.  2008 ; Ferreira et al.  2010 ) 
and some suggesting decreased quality of embryos sired by older fathers on day 3, 
4, and 5 (Luna et al.  2009 ; Frattarelli et al.  2008 ). The most compelling indication 
that paternal age may affect embryo quality is data on miscarriage. In general, the 
consensus from the available data is that advanced paternal age is a risk factor for 
miscarriage though no real mechanisms for this fi nding have been elucidated 
(Kleinhaus et al.  2006 ; Slama et al.  2005 ). Other studies evaluating ART with donor 
eggs (to completely remove the infl uence of maternal factors) found no associations 
between paternal age and risk of miscarriage (Begueria et al.  2014 ). Taken together, 
much work remains to determine what, if any, effect advanced paternal age has on 
male fertility and embryo quality. 

 The subtlety of the effect of age on male fertility, and particularly pregnancy out-
comes, is in striking contrast to the dramatic decline seen in female fertility. In fact, 
even men of advanced age are able to sire offspring with little diffi culty, though 
possibly with slightly reduced effi ciency which is why paternal age has largely been 
ignored and has received far less attention in the clinical setting than the age of the 
female partner. The fact that males are still fertile at advanced ages may present, and 
potentially complicate, another issue that, while subtle, is far more consistent, 
namely, the effect of paternal age on offspring health and disease susceptibility. 
It has been shown that the offspring of older fathers have increased incidence of 
various forms of cancer, including hematological and central nervous system tumors 
(Hemminki et al.  1999 ; Oksuzyan et al.  2012 ; Murray et al.  2002 ; Yip et al.  2006 ), 
though the data remains somewhat controversial. Furthermore, it has long been sug-
gested that advanced paternal age is a risk factor for schizophrenia (Hare and Moran 
 1979 ; Miller et al.  2011 ; Matheson et al.  2011 ; Wohl and Gorwood  2007 ). More 
recently, it has been suggested that advanced paternal age is signifi cantly associated 
with many forms of neuropsychiatric or neurocognitive diseases including autism 
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spectrum disorders (ASD) (Gardener et al.  2009 ; Hultman et al.  2011 ), bipolar dis-
order (Frans et al.  2008 ; Menezes et al.  2010 ), and general increases in behavioral 
issues (Kuja-Halkola et al.  2012 ; Saha et al.  2009a ) in children of older fathers 
though some controversy exists. In addition, some studies indicate that children of 
older fathers display slightly reduced IQ compared with children of younger fathers 
(Malaspina et al.  2005 ; Saha et al.  2009b ), although the differences are small, and 
confl icting reports exist (Svensson et al.  2011 ). 

 Taken together, it is clear that advanced paternal age does not have a dramatic 
affect on pregnancy outcomes, embryo quality, or fertility in general, but it may 
impact offspring health and disease susceptibility. While the lack of striking age- 
associated fertility declines in males has garnered it little attention in the study of 
fertility, it is this same maintenance of fertility that might require more study in the 
fi eld of transgenerational inheritance. Age-associated alterations to sperm, which 
appear to affect offspring health, do not seem to be catastrophic to spermatogenesis 
or cause declines in fertility. This, in turn, means that aged sperm are entirely com-
petent to fertilize an oocyte and produce viable offspring, while harboring altera-
tions that may potentially affect offspring health.  

4.7     Future Directions 

 To gain a more complete understanding of the epigenetic alterations in sperm that 
are capable of embryonic or offspring phenotype alterations, much work is still 
needed. A number of genomic regions have been identifi ed that have both methyla-
tion alterations with age and are important in various cell processes and diseases 
known to have increased occurrence in the offspring of older males. To determine if 
these marks can contribute to disease susceptibility in the offspring or affect events 
in the embryo, a number of unanswered questions must be addressed. 

  What is the impact of altered methylation profi les at our regions of interest ? To 
completely understand the alterations which have been identifi ed and their impact 
on offspring phenotype or embryo development, it must be determined if these 
alterations are associated with transcriptional changes. Future work can target 
genomic sites that are known to be altered with age in mouse models to determine 
if (1) there are changes to transcription in the embryo and (2) determine if there are 
altered transcript levels in various tissues in the offspring (should the sperm be 
competent to generate viable offspring). 

  Do the altered methylation marks seen in sperm escape, or impact in any way, 
embryonic epigenetic reprogramming ? This is an essential question to fully under-
stand the impact of an altered epigenetic profi le. It is feasible that an alteration could 
affect embryogenesis in one of two ways. First, it could directly affect transcription 
of an important developmental factor. Second, the epigenetic abnormality may 
result in not a targeted perturbation but in the global alteration of epigenetic repro-
gramming, effectively altering an important aspect of embryogenesis, likely to the 
point of embryonic arrest. 
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  Do methylation perturbations contribute to neuropsychiatric disorders in the 
offspring or perturbations to embryogenesis ? To date, there are many intriguing 
studies that have provided some small degree of insight into the effect of aging on 
the sperm epigenome. However, much of the potential impacts are simply extrapo-
lation of the available data without any real targeted studies to prove causative 
relationships. While the data is exciting, future targeted work is still required to 
enable us to reach these further conclusions.  

4.8     Conclusions 

 The role of the paternal epigenome in embryogenesis should not be downplayed. 
It appears from a growing body of evidence that the sperm epigenetic landscape is 
essential in facilitating gene poising and general transcription regulation at genes 
important in embryonic development (Hammoud et al.  2009 ). However, with our 
current understanding, we are unable to defi nitively determine that sperm epigene-
tic alterations associated with age are causative of any poor pregnancy outcomes or 
decreased embryo quality declines. In fact, the aged male remains remarkably fer-
tile with, at most, only modest declines in fecundity. When we consider this fact 
coupled with the data regarding known and consistent age-associated alterations to 
the paternal epigenome, it is easy to contemplate the implications of these altera-
tions beyond embryogenesis. Specifi cally, a great deal of focus has now been given 
to the increased incidence of diseases seen in the offspring of older fathers and the 
transgenerational impacts that they impose. This is of particular concern in devel-
oped countries where the age of paternity is steadily increasing. While the questions 
regarding paternal age and epigenetic alterations that may affect embryogenesis are 
essential and must be addressed further, the impact of these alterations on the off-
spring appears to be a more relevant question due to the fact that the alterations 
identifi ed with aging do not appear to affect (at least in a great degree) the compe-
tency of sperm to yield viable offspring. 

 Many important questions must still be addressed in regard to the epigenetic 
fi ndings associated with advanced paternal age. While we know that there are real 
alterations that occur with remarkable consistency, the impact of these alterations is 
unknown. Mouse data suggesting similar methylation patterns in the brain of off-
spring sired by older fathers is intriguing (particularly when coupled with the identi-
fi ed behavioral abnormalities), but this also requires a great degree of further study. 
We currently have a great deal of genomic targets that are known to be altered in the 
sperm of men with advanced age, and these can be used to analyze potential impli-
cations in the embryo and the offspring. Taken together, while having learned much 
about the impacts of advanced age in the recent past, there is still a great deal of 
work that needs to be performed to truly elucidate the impact of age-associated 
sperm epigenetic alterations on the embryo and beyond.     
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    Chapter 5   
 The Role of Uterine NK Cells in Normal 
Reproduction and Reproductive Disorders 

             Judith     N.     Bulmer      and     Gendie     E.     Lash    

    Abstract     The human endometrium contains a substantial population of leucocytes 
which vary in distribution during the menstrual cycle and pregnancy. An unusual 
population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most 
abundant of these cells in early pregnancy. The increase in number of uNK cells in 
the mid-secretory phase of the cycle with further increases in early pregnancy has 
focused attention on the role of uNK cells in early pregnancy. Despite many studies, 
the in vivo role of these cells is uncertain. This chapter reviews current information 
regarding the role of uNK cells in healthy human pregnancy and evidence indicating 
their importance in various reproductive and pregnancy problems. Studies in 
humans are limited by the availability of suitable tissues and the limitations of 
extrapolation from animal models.  

  Keywords     Endometrial leucocyte   •   Uterine NK cells   •   T lymphocytes   •   CD56   • 
  Cytokines   •   Chemokines   •   Extravillous trophoblast   •   Angiogenic growth factors   • 
  Miscarriage   •   Preeclampsia  

5.1         Introduction 

 The human uterus fulfi ls a unique role, allowing implantation of the semi-allogeneic 
fetoplacental unit and, in normal human pregnancy, survival in safety for 40 weeks 
of gestation. Outside of pregnancy, the endometrium lining the uterine cavity is 
exposed to spermatozoa and seminal fl uid on a regular basis and has to be able to 
resist infection potentially ascending through the cervix. The endometrium under-
goes profound morphological changes during each menstrual cycle under the con-
trol of ovarian steroid hormones. After epithelial and stromal proliferation in the 
oestrogen-dependent follicular phase, after ovulation, infl uenced by progesterone, 
the glands become secretory and the stroma shows predecidual change, initially 
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around spiral arterioles. In addition to epithelial and stromal cells, the endometrium 
contains a substantial leucocyte population (Bulmer et al.  1991 ), mainly within the 
stroma but with a small population of intraepithelial leucocytes (Pace et al.  1991 ). 
The endometrial stromal leucocyte population varies dramatically during the normal 
menstrual cycle and in pregnancy, and alterations in endometrial leucocyte popula-
tions have been described in various pathological situations, including recurrent 
miscarriage, recurrent implantation failure and pre-eclampsia (reviewed in Bulmer 
and Lash  2005 ; Lash and Bulmer  2011 ). In the 20–30 years since monoclonal anti-
bodies allowed phenotypic identifi cation of leucocyte populations within the endo-
metrium, these cells have been the subject of numerous investigations, but despite 
considerable progress, the in vivo role of these cells is not yet fully understood.  

5.2     Endometrial Leucocyte Populations 

 Leucocytes are present in both stratum basalis and the hormonally responsive stra-
tum functionalis, and the populations differ between these two sites. Leucocyte 
populations in the stratum basalis have been less well characterised than those in the 
stratum functionalis. 

 Lymphoid aggregates are a common feature in the stratum basalis, sometimes 
with germinal centres. These follicles include T cells, predominantly CD8+, macro-
phages and B cells (Morris et al.  1985 ; Marshall and Jones  1988 ; Bulmer et al. 
 1988a ); the aggregates have been reported to increase in size in the secretory com-
pared with proliferative phase and to be absent in postmenopausal endometrium, 
suggesting possible hormonal regulation (Yeaman et al.  1997 ; Wira et al.  2008 ). The 
presence of CD56+ uterine natural killer (uNK) cells in the stratum basalis has not 
been documented in detail. 

 The proportion of endometrial stroma accounted for by leucocytes in the stra-
tum functionalis varies during the menstrual cycle. Whereas leucocytes account for 
fewer than 10 % of stromal cells in the proliferative and early secretory phases, their 
numbers increase dramatically from the mid-secretory phase, increasing further in 
the late secretory phase and early pregnancy (Bulmer et al.  1991 ). Three main cell 
types account for the majority of endometrial stromal leucocytes in the secretory 
phase and early pregnancy: macrophages, T lymphocytes, including regulatory 
T cells, and uNK cells. Unlike other mucosal sites, including vagina, cervix and 
fallopian tube, B lymphocytes are uncommon in the endometrial stratum functio-
nalis and plasma cells are not a normal feature of endometrium; their presence in 
non- pathological endometrium is generally considered to indicate chronic endo-
metritis (Disep et al.  2004 ). Other leucocytes such as dendritic cells (Schulke 
et al.  2008 ), NK T cells (Shimada et al.  2003 ), eosinophils and mast cells are also 
present in endometrial stroma, in smaller numbers (Evans and Salamonsen  2012 ). 
Endometrial leucocyte populations also alter with the onset of menstruation, with 
neutrophil polymorphs becoming prominent components (Evans and Salamonsen 
 2012 ; Berbic and Fraser  2013 ). The mechanisms underlying the regulation of 
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the various  endometrial leucocyte populations during the menstrual cycle are not 
fully understood and are likely to involve complex interactions between steroid 
hormones, chemokine and cytokine products of endometrial stromal and epithelial 
cells, as well as placental trophoblast cells during pregnancy. 

 The relative proportion of endometrial leucocytes varies during the menstrual 
cycle. Whereas endometrial T lymphocytes remain relatively constant during the 
menstrual cycle, both macrophages and, to a greater extent, uNK cells increase in 
number in secretory endometrium and in early pregnancy (Bulmer et al.  1991 ). The 
prominence of uNK cells around the time of expected implantation in a fertile cycle 
and during early placentation has focused attention on these cells, with fewer studies 
of other leucocytes in human endometrium. Although uNK cells are the main focus of 
this chapter, it is useful to consider briefl y other endometrial leucocyte populations. 

5.2.1     T Lymphocytes 

 Although the numbers of CD3+ T cells remain relatively constant during the men-
strual cycle, their proportion alters as other cells vary in number. T cells constitute 
40–60 % of endometrial leucocytes in non-pregnant endometrium (Bulmer et al. 
 1991 ; Klentzeris et al.  1994 ) reducing to 10–20 % in early pregnancy as other cell 
populations become more abundant (Bulmer et al.  1991 ). Endometrial T lympho-
cyte subsets differ compared with those in peripheral blood; CD8+ cytotoxic T lym-
phocytes are the most abundant T cell in endometrium, with 30–45 % of CD4+ 
helper T cells. In vitro studies of CD8+ T cells purifi ed from both non-pregnant 
endometrium and early pregnancy decidua have demonstrated that endometrial 
T cells are capable of cytotoxic activity (Yeaman et al.  1997 ; Scaife et al.  2006 ), 
although CD8+ T cells in normal pregnancy must maintain a complex balance 
between control of infection and tolerance towards the fetoplacental unit (Tilburgs 
et al.  2010 ; Tilburgs and Strominger  2013 ). 

 Besides CD8+ T cells, less abundant endometrial T lymphocyte populations 
include TCRγδ T cells, CD4-CD8-TCRαβ+ T cells and Vα24 + Vβ11+ NK T cells 
(Shimada et al.  2003 ), although the function of these cell types is largely unknown. 
Th17+ cells are reduced in decidua compared with peripheral blood (Mjosberg et al. 
 2010 ), although Th17 cell responses in decidua are abrogated by uNK cells (Fu 
et al.  2013 ). CD4+ CD25 bright  FOXP3+ regulatory T cells are the most studied T cell 
subset in pregnancy (Tilburgs et al.  2008 ,  2010 ). Although they represent a minor 
T cell population in human decidua, regulatory T cells may act as immune 
 suppressors, contributing to immune homeostasis during pregnancy. They express 
immunosuppressive cytokines such as IL-10 and TGF-β, suppressing cytotoxic 
T cells (Aluvihare et al.  2004 ; Zenclussen et al.  2006 ). T regulatory cells may also 
play a role in vascular homeostasis at the maternal-fetal interface via production of 
IL-10 and TGF-β (Nevers et al.  2011 ). 

 T lymphocytes are a consistent and important component of the endometrial leu-
cocyte population. Various subsets have been identifi ed and even minor populations 
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may play an important role in implantation and pregnancy, although additional 
studies are required to determine the role of specifi c T cells in both normal and 
pathological human pregnancy.  

5.2.2     Macrophages 

 Macrophages are an important component of both non-pregnant and pregnant endo-
metrium, although their in vivo role remains unclear. They express CD14, CD68 
and class II MHC antigens as well as CD11c, CD86 and adhesion and activation 
markers depending on their activation state (Nagamatsu and Schust  2010 ; Houser 
 2012 ; Thiruchelvam et al.  2013 ). Macrophages have diverse functions, including 
remodelling of extracellular matrix, protease production, tissue regeneration and 
antigen presentation (Houser et al.  2011 ). Macrophages account for 20–25 % of the 
CD45+ leucocytes in non-pregnant endometrium and early pregnancy decidua, 
although the proportion of leucocytes accounted for by macrophages varies as uNK 
cell numbers increase during the menstrual cycle and pregnancy. Macrophages have 
been reported to increase in number in the late secretory and menstrual phases and 
in early pregnancy (Bulmer et al.  1991 ; Salamonsen et al.  2002 ; Thiruchelvam et al. 
 2013 ). Proteases and cytokines derived from macrophages may contribute to men-
struation and clearance of menstrual debris, and macrophages may also play a role 
in remodelling of the stratum functionalis after menstruation (Maybin et al.  2012 ; 
Thiruchelvam et al.  2013 ). 

 In decidua, macrophages are detected in both decidua basalis and decidua pari-
etalis, and in the former these cells are often closely associated with extravillous 
trophoblast (Bulmer et al.  1988b ). Macrophages have been divided into two distinct 
subtypes, termed pro-infl ammatory M1 and anti-infl ammatory M2, but decidual 
macrophages do not conform to these subtypes; recent phenotypic studies reported 
two distinct populations of decidual macrophages based on CD11c expression as 
CD11c high  or CD11c low  (Houser et al.  2011 ). CD11c high  macrophages exhibited 
increased antigen-presenting function with increased expression of CD1a, CD1c 
and CD1d compared with CD11c low  cells. In addition, microarray studies suggest 
that decidual macrophages group closer to a M2 phenotype, but are a unique popu-
lation of cells (Gustafsson et al.  2008 ). It has also been suggested that macrophages 
in decidua basalis show increased activation compared with decidua parietalis, evi-
denced by increased expression of HLA-DR (Repnik et al.  2008 ). 

 Despite the frequency of macrophages in endometrium and decidua, there have 
been relatively few studies of these cells, partly because of the diffi culty in obtain-
ing viable purifi ed populations. Production of anti-infl ammatory substances such as 
IL-10, IDO (Heikkinen et al.  2003 ) and prostaglandin E 2  (Parhar et al.  1989 ) raises 
the possibility of an immunosuppressive function in pregnancy (Nagamatsu and 
Schust  2010 ). Our recent studies of macrophages enriched from human early preg-
nancy decidua have demonstrated production of both IL-6 and IL-8 by macrophages 
in fi rst trimester decidua, with reduced production of both chemokines in associa-
tion with fi rst trimester miscarriage (Pitman et al.  2013 ).  
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5.2.3     Dendritic Cells 

 Mature dendritic cells (DCs) are numerically a small component of the human 
endometrial leucocyte population, but immature DCs are seen in greater numbers in 
early pregnancy, although studies are at a relatively early stage. In the cycling 
human endometrium, mature dendritic cells (DCs) are at their peak at the late secre-
tory phase, in contrast with early pregnancy decidua, where the majority of the DCs 
express CD209 (DC-SIGN), a marker of immature or inactive DC (Gardner and 
Moffett  2003 ; Kammerer et al.  2003 ; Rieger et al.  2004 ). Although it has been sug-
gested that DCs may play a role in remodelling the cycling endometrium following 
menstruation, current attention is focused on their potential role in the modulation 
of immune responses within the pregnant uterus (Dietl et al.  2006 ; Blois et al.  2011 ; 
Leno-Durán et al.  2014 ) with increasing interest into their potential interactions 
with uNK cells.  

5.2.4     Uterine NK Cells 

 As the most abundant leucocyte population in endometrium at the time of implanta-
tion and early placentation, uNK cells have been the most investigated of the endo-
metrial leucocyte populations, although their in vivo function is still not fully 
established. Although they were originally recognised by the presence of cytoplas-
mic granules (Hamperl and Hellweg  1958 ), uNK cells are now recognised by their 
unusual phenotype which is distinct from most peripheral blood NK cells (Bulmer 
et al.  1991 ; Trundley and Moffett  2004 ; Bulmer and Lash  2005 ). In contrast with 
most peripheral blood NK cells which are CD56 dim  CD16+, uNK cells express 
CD56 brightly but are CD16-. Around 5 % of peripheral blood NK cells are 
CD56 bright  CD16-, but, in contrast with the uNK cells which show prominent cyto-
plasmic granules, CD56 bright  CD16- NK cells in peripheral blood are mainly non- 
granulated (Cooper et al.  2001 ). There are other notable differences in the phenotype 
of uNK cells compared with peripheral blood NK cells, with expression of the tet-
raspanin family of proteins CD9 and CD151 by uterine but not by peripheral blood 
NK cells. uNK cells also show expression of NK surface receptors, with differing 
KIR repertoires noted between uNK cells and peripheral blood NK cells from the 
same individual (Verma et al.  1997 ). 

5.2.4.1     Distribution of uNK Cells 

 Although relatively sparse in the proliferative and early secretory phases of the men-
strual cycle, uNK cells increase in number dramatically in the mid-secretory phase of 
the cycle, increasing further as the cycle progresses and in early pregnancy (Bulmer 
et al.  1991 ). They reduce in number after the fi rst half of pregnancy, but a substan-
tial number of CD56+ cells remain in the decidua at term (Williams et al.  2009a ). 
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Early reports of a virtual absence of uNK cells at term may be explained by a reduc-
tion in the proportion of cells with perforin- and granzyme-containing cytoplasmic 
granules and therefore detectable using histochemical stains such as phloxine tartra-
zine to detect cytoplasmic granules (Bulmer et al.  2010 ). Electron microscope stud-
ies have suggested that the cells undergo some degranulation during pregnancy 
(Spornitz  1992 ), and this may refl ect functional changes as pregnancy progresses. 

 uNK cells are often seen closely associated with extravillous trophoblast in the 
decidua basalis. Several studies have compared the distribution of uNK cells in 
decidua basalis and decidua parietalis with confl icting results. Williams et al. 
( 2009a ) noted no differences between uNK cell numbers in decidua basalis and 
decidua parietalis at various gestational ages, whereas others have suggested that 
uNK cell numbers are increased in decidua basalis associated with invasive 
EVT. Most recently, Helige et al. ( 2014 ) examined density of uNK cells in relation 
to EVT and noted an increased uNK cell density within 20 μm of trophoblast cells 
in decidua with density reducing in areas more distant from extravillous 
trophoblast. 

 uNK cells are also found adjacent to endometrial glands, as well as in aggregates 
adjacent to spiral arterioles and arteries (Bulmer et al.  1991 ). Although it was sug-
gested that the perivascular distribution in the secretory phase may refl ect infl ux of 
uNK cells from blood, the distribution of the uNK cells at this site may refl ect their 
close association with predecidual change in the perivascular stromal cells. Both 
uNK cells and macrophages are closely associated with spiral arteries as pregnancy 
progresses, and this is likely to refl ect their role in the transformation of uterine 
spiral arteries which is an essential feature of normal pregnancy. 

 The mechanisms that control the altered numbers of uNK cells during the men-
strual cycle and in pregnancy are not known. uNK cells are often associated with 
stromal cell decidualisation; in secretory phase endometrium, they accumulate in 
areas of stromal predecidual change. They are also associated with stromal decidu-
alisation at ectopic sites such as ovarian serosal or cervical decidualisation in nor-
mal pregnancy or fallopian tube mucosa in ectopic tubal pregnancy. uNK cells are 
also particularly common in endometrium showing pseudodecidualisation due to 
high-dose progesterone treatment. This association has suggested regulation by pro-
gesterone, but uNK cells do not express progesterone receptor or oestrogen receptor 
(ER)α (Stewart et al.  1998 ; Henderson et al.  2003 ). Regulation of uNK cells by 
progesterone could occur indirectly via products of decidualised endometrial stro-
mal cells; endometrial stromal cells produce interleukin (IL)-15 in the late secretory 
phase of the cycle and early pregnancy, and immunostaining for IL-15 has been 
shown to correlate with numbers of CD56+ cells in endometrium from women with 
recurrent miscarriage and implantation failure (Mariee et al.  2012 ). uNK cells do, 
however, express ERβ and glucocorticoid receptor (Henderson et al.  2003 ). Recent 
studies suggest that stromal decidualisation may be associated with secretion of 
oestrogen (Gibson et al.  2013 ), raising the possibility that oestrogen may play a role 
in stimulating uNK cell proliferation and/or differentiation in the secretory phase of 
the menstrual cycle.  
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5.2.4.2     Increased uNK Cells: Recruitment, Differentiation 
and/or Proliferation? 

 There is no consensus regarding the origin of uNK cells; there is evidence to support 
both recruitment and local differentiation (Koopman et al.  2003 ; Bulmer and Lash 
 2005 ; Bulmer et al.  2010 ; Zhang et al.  2012 ). In mice, uNK progenitor cells have been 
identifi ed in primary and secondary lymphoid tissues, and CD127 is expressed at days 
10.5 and 12.5 but not at day 6.5 suggesting local differentiation and regulation (Zhang 
et al.  2012 ). However, limited extrapolation is possible from mouse studies since uNK 
cells are only detected after blastocyst implantation in mouse and not in non-pregnant 
endometrium; and human and mouse placentation show important differences. 

 Early studies suggested recruitment of uNK cells into endometrium in response 
to chemokine and cytokine secretion. For example, production of CXCL-12 by 
extravillous trophoblast cells was suggested to attract uNK cells into decidua in 
pregnancy (Wu et al.  2005 ), and IL-15 which is produced by secretory endometrium 
and decidua has been shown to have a selective chemoattractant effect on peripheral 
blood CD16- NK cells (Kitaya et al.  2007 ). Increasing evidence, however, indicates 
that uNK cells differentiate in situ in endometrium from haematopoietic precursor 
cells (HPC) or immature NK cells recruited from peripheral blood into an environ-
ment rich in growth factors, cytokines and hormones. CD34+ CD45+ HPC have 
been reported in non-pregnant endometrium (   Lynch et al.  2007 ) and early pregnancy 
decidua (Keskin et al.  2007 ; Vacca et al.  2011 ;    Szereday et al.  2012 ), with a fre-
quency of 0.1–4 %. CD34+ CD45+ HPC purifi ed from decidua and cultured in 
decidual stromal cell-conditioned medium or combinations of c-kit ligand (KL), 
IL-15, Flt3L and IL-7 produced CD56 bright  CD16- CD9+ uNK-like cells (Keskin 
et al.  2007 ; Vacca et al.  2011 ). Transplantation of human proliferative endometrium 
into nonobese diabetic/severe combined immunodefi ciency/γCnull immunodefi -
cient mice provides additional evidence for local differentiation; increased CD56+ 
uNK cells were detected after hormone treatment mimicking the menstrual cycle 
(Matsuura-Sawada et al.  2005 ). In contrast, Male et al. ( 2010 ) detected stage 3 NK 
cell precursors (CD34- CD117+ CD94-) in uterine mucosa that were able to develop 
into stage 4 mature (CD34- CD117+/− CD94+) NK cells in vitro but did not detect 
CD34+ HPC in non-pregnant endometrial pipelle samples; other studies used curet-
tage (Lynch et al. 2007) or hysterectomy samples (Matsuura-Sawada et al.  2005 ) 
which, in contrast with pipelle samples, would consistently include the stratum basa-
lis which is preserved after menstruation and would be a likely source of CD34+ HPC. 

 Although mesenchymal stem cells have been reported in endometrium (Gargett 
and Masuda  2010 ), whether there are haematopoietic stem cells (HSCs) in non- 
pregnant endometrium is uncertain. It could be proposed that stem cells residing in 
the stratum basalis, which is retained after menstruation, could differentiate into uNK 
cells as the cycle progresses. We have demonstrated rare CD45+ CD34+ double- 
labelled cells in non-pregnant endometrium with most cells within the stratum basa-
lis. It is interesting to note that if uNK cells do develop locally within endometrium 
during each menstrual cycle, abnormalities which have been detected in, for exam-
ple, recurrent miscarriage (see below) would point to abnormal regulation within the 
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endometrium as the cells develop and proliferate locally or an inherent defect in the 
stem cell population leading to abnormal development within each individual cycle. 

 Locally secreted chemokines/cytokines could attract distinct mature or immature 
NK cell subsets to endometrium and mediate further local differentiation. Male 
et al. ( 2010 ) proposed migration of stage 3 immature NK cells into endometrium 
and differentiation in situ within the endometrium into uNK cells. In contrast, 
Keskin et al. ( 2007 ) reported conversion of purifi ed peripheral blood CD16+ CD9- 
NK cells into CD16- CD9+ uNK-like cells after culture with decidual stromal cell- 
conditioned medium or TGF-β1, suggesting conversion of peripheral blood NK 
cells to uNK cells locally within endometrium. Further evidence that uNK cells are 
an immature population comes from a report that 60 % of decidual uNK cells are 
CD11b- CD27- (Fu et al.  2011 ). There is also clear evidence that uNK cells are able 
to proliferate within endometrium. Stromal mitotic fi gures which are often seen in 
late secretory phase endometrium are due to proliferation in uNK cells (Pace et al. 
 1989 ), and several studies have demonstrated expression of the Ki67 proliferation 
marker by uNK cells (Pace et al.  1989 ; Kämmerer et al.  1999 ). In a study of CD56+ 
cells purifi ed from non-pregnant endometrium by immunomagnetic selection, uNK 
cell expression of Ki67 was highest (>40 %) in the mid- and late secretory phase, 
reducing to ~12 % in early pregnancy decidua (Jones et al.  1998 ). Using a range of 
different techniques, Kämmerer et al. ( 1999 ) demonstrated proliferation in CD56+ 
cells in decidua from 5 to 11 weeks gestational age, with 7–23.5 % CD56+ cells 
co-expressing Ki67. CD56+ cells in pseudodecidualised endometrium after proges-
terone treatment also express Ki67. 

 Whether there is local development from HSCs within endometrium or local 
modifi cation of peripheral blood NK cells recruited into endometrium, it is clear that 
there is local development of uNK cells within endometrium. In addition, the pheno-
type of uNK cells in early pregnancy varies with gestational age, suggesting ongoing 
differentiation: reduced expression of KIR specifi c for HLA-C (KIR2DL1/S1 and 
KIRDDL3/L2/S2) with increasing gestational age from 6 to 12 weeks (Sharkey et al. 
 2008 ; Marlin et al.  2012 ) has been reported, as well as the reduction of the 
CD85j + NKG2D- subset and increase of the CD85j- NKG2D+ with increasing ges-
tation from 8 to 12 weeks (Marlin et al.  2012 ). In addition, in double immunohisto-
chemical labelling studies, we noted increased expression of CD122 by CD56+ cells 
in LH+13 endometrium compared with LH+7 endometrium (Otun et al.  2009 ). It is 
possible that the origin of uNK cells differs between non-pregnant endometrium and 
also different stages of pregnancy, with varying populations being recruited as their 
required function changes with implantation and early placentation.  

5.2.4.3     Regulation of uNK Cells by Growth Factors in Endometrium 

 Endometrial stromal cells undergo differentiation into decidual cells in the luteal 
phase, and human uNK cells localise to areas of stromal decidualisation. This asso-
ciation suggests a role for decidualised endometrial stromal cell products in uNK 
cell accumulation. A range of growth factors are produced within endometrium 
which could play a role in the development of uNK cells. 
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 In peripheral blood, IL-15 and/or IL-2 promote differentiation and expansion of 
CD34+ HPCs to CD56+ NK cells (Mrózek et al.  1996 ). Although IL-2 is not present 
in normal endometrium, IL-15 has been detected in stromal cells in luteal phase 
endometrium and early pregnancy decidua; secretion is stimulated by progesterone, 
although the regulation of this appears complex (Okada et al.  2000 ), involving 
IL-1-β (Okada et al.  2004 ) and IFNγ (   Dunn et al.  2002 ). Studies of luteal phase 
endometrium in women with recurrent reproductive failure have shown a correla-
tion between uNK cell number and stromal cell IL-15 levels (Mariee et al.  2012 ). 
Although no data are available for human uNK cells, IL-11 is required for mouse 
uNK cell maturation (Ain et al.  2004 ). As well as epithelial expression, IL-11 is 
highly expressed in decidualised endometrial stromal cells in luteal phase endome-
trium (   Dimitriadis et al.  2005 ). CD117 (c-kit) is expressed by the earliest IL-15-
responsive HPC throughout human NK cell differentiation (Freud et al.  2006 ). c-kit 
ligand (KL, stem cell factor, SCF) triggers haematopoiesis on binding to CD117 
(Broudy  1997 ) and enhances the proliferative action of both IL-2 and IL-15 on 
human CD56 bright  NK cells (Benson et al.  2009 ). Endometrial expression of KL/SCF 
increases in early pregnancy decidua (Kauma et al.  1996 ; Umekage et al.  1998 ). 
Reports on other NK cell differentiation factors in endometrium are limited: IL-7 
and Flt3L have recently been reported in uterine fl uid (Hannan et al.  2011 ); and 
IL-18 has been proposed as a marker of endometrial function and is related to uNK 
cell numbers and activation of NKp46 (Petitbarat et al.  2011 ). Transforming growth 
factor beta 1 (TGF-β1) inhibits peripheral blood NK cell cytotoxic activity, cytokine 
production and cell proliferation (Bellone et al.  1995 ) and suppresses expression of 
NK cell surface receptors, including NKp30 and NKG2D when cultured with 
human peripheral blood NK cells (Castriconi et al.  2003 ). TGF-β1 is present in 
human endometrium during the menstrual cycle and in early pregnancy (Jones et al. 
 2006 ; Omwandho et al.  2010 ; Lash et al.  2012 ).  

5.2.4.4     Relationship of uNK Cells in Non-pregnant Endometrium 
and Decidua in Pregnancy 

 The relationship between uNK cells in non-pregnant endometrium and decidualised 
endometrium in pregnancy is uncertain, at least in part because the origin of uNK 
cells remains controversial. Although they were initially reported as absent in pro-
liferative endometrium based on histochemical stains to detect cytoplasmic gran-
ules, CD56+ cells are detectable, albeit in relatively low numbers (Bulmer et al. 
 1991 ). The increase in numbers is seen from day 22 onwards (Russell et al.  2011 , 
 2013 ), and at least some of the increase can be accounted for by local proliferation. 
The phenotype of uNK cells in non-pregnant endometrium has not been investigated 
to the same extent as those from early pregnancy decidua, where distinct gestational 
age differences in phenotype and function have been reported. In a study of CD56+ 
cells separated from non-pregnant endometrium (>98 % CD56+) at various men-
strual cycle changes, expression of various cell surface markers was investigated. 
There was low to no expression of CD3, CD8, CD16, HML-1,  L - selectin  and CD25 
(IL-2 receptor-α) on CD56+ cells isolated from non-pregnant and pregnant 
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endometrium. Expression of CD2, CD49a and CD122 increased from the prolifera-
tive to the late secretory phase of the menstrual cycle, whereas CD11a, CD69 and 
CD49d expression was high and did not vary with menstrual cycle phase, although 
CD49d levels were signifi cantly reduced in early pregnancy. There were also dif-
ferential proliferative responses: in contrast with those from early pregnancy 
decidua, CD56+ cells from non-pregnant endometrium did not proliferate in 
response to phytohaemagglutinin (Searle et al.  1999 ). 

 Manaster et al. ( 2008 ) suggested that CD56+ cells in non-pregnant endometrium 
are immature, non-functional cells awaiting activation in pregnancy. This contrasts 
with other studies that have shown both proliferative and cytotoxic activity of uNK 
cells from non-pregnant endometrium (Jones et al.  1997 ; Searle et al.  1999 ). More 
recently, microarray studies (Kopcow et al.  2010 ) compared CD56+ cells from non- 
pregnant and early pregnancy endometrium: 450 genes were differentially expressed 
with >twofold difference, with ~70 % over-expressed in the non-pregnant uNK cell 
subset, suggesting that uNK cells in non-pregnant endometrium are far from inac-
tive and likely to play an important role in implantation and early placentation. 

 Studies of uNK cells in non-pregnant endometrium are limited by availability of 
tissues. As nonsurgical and more conservative treatments for problems associated 
with heavy menstrual bleeding increase in popularity, it is increasingly diffi cult to 
obtain endometrial samples for functional studies of uNK cells in non-pregnant 
endometrium. This diffi culty makes studies of the functional relevance of the 
increased luteal phase uNK cells that have been reported in some women with recur-
rent implantation failure (RIF) and recurrent miscarriage (RM) harder to achieve.  

5.2.4.5    Function of uNK Cells 

 The in vivo roles of uNK cells are still not clear, but in vitro studies are providing 
clues to their function. Because of the diffi culty in obtaining suffi cient non-pregnant 
endometrium for cell purifi cation, the vast majority of studies have been performed 
using uNK cells from early pregnancy decidua, with relatively few studies per-
formed on uNK cells from non-pregnant endometrium. 

   Cytotoxicity 

 The recognition of uNK cells as a type of natural killer cell led to early studies of 
their cytotoxic activity and focus on this function as a means to control trophoblast 
invasion in early pregnancy. Although uNK cells isolated from early pregnancy 
decidua exhibit cytotoxic activity against the classical NK cell target K562, this 
cytotoxic activity is lower than that of peripheral blood NK cells (Ritson and Bulmer 
 1989 ; Kopcow et al.  2005 ). Early reports suggested that uNK cells were able to lyse 
choriocarcinoma and normal trophoblast cells after IL-2 activation (King and Loke 
 1990 ), but the current consensus is uNK cells do not lyse normal trophoblast, due to 
expression of HLA-G, HLA-E and HLA-C by extravillous trophoblast and 
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expression by uNK cells of inhibitory receptors (Chumbly et al.  1994 ; Rouas-Freiss 
et al.  1997 ; Chen et al.  2010 ; Chazara et al.  2011 ). Vascular endothelial growth fac-
tor (VEGF)-C also upregulates expression of TAP-1 by extravillous trophoblast; 
TAP-1 plays a role in peptide loading for MHC class I assembly and antigen presen-
tation in EVT cells, thereby also potentially protecting them from uNK cell cyto-
toxic activity (Kalkunte et al.  2009 ). The cytoplasmic granules which are a 
characteristic feature of uNK cells express perforin and granzyme (King et al.  1993 ) 
suggesting that they are capable of effector function, although the proportion 
expressing these molecules reduces with increasing gestational age (Bulmer et al. 
 2010 ). However, although they possess the machinery for effector function, uNK 
cells have been shown to form immature synapses with K562 cells, failing to pola-
rise their microtubule- organising centres and perforin-containing granules to the 
synapse (Kopcow et al.  2005 ). Thus, although NK cells were originally defi ned by 
their cytolytic activity, it appears that cytolytic activity is unlikely to be a primary 
function of uNK cells in either normal or pathological human pregnancy.  

   Cytokine, Growth Factor and Protease Secretion 

 uNK cells purifi ed from early pregnancy decidua are a rich source of a range of 
cytokines and growth factors, including tumour necrosis factor (TNF)-α, IL-10, 
granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-1-β, TGF-β1, 
macrophage colony-stimulating factor (M-CSF), leukaemia inhibitor factor (LIF) 
and interferon (IFN)γ (Saito et al.  1993 ; Jokhi et al.  1994 ; Lash et al.  2010a ). 
Interestingly, there are gestational age differences in cytokine secretion by uNK 
cells: secretion of IL-1-β, GM-CSF (   Lash et al.  2010a ), IL-6 (Champion et al. 
 2012 ), IL-8 (De Oliveira et al.  2010 ) and IFNγ (Lash et al.  2006a ) has been shown 
to increase from 8–10 to 12–14 weeks gestational age. 

 uNK cells are also an important source of angiogenic growth factors within early 
pregnancy decidua. Production of angiopoietin (Ang) 1, Ang2, VEGF-C, placental 
growth factor (PlGF) and TGF-β1 by uNK cells from early pregnancy decidua has 
been reported (Lash et al.  2006b ), and uNK cells in secretory phase endometrium 
also produce VEGF-C, Ang1, Ang2 and PlGF (Li et al.  2001 ). In contrast with cyto-
kine production, uNK cell secretion of Ang2 and VEGF-C appears to reduce from 
8–10 to 12–14 weeks gestational age (Lash et al.  2006b ). The results of secretion 
studies suggest that uNK cells at 8–10 weeks gestational age are major local intra-
uterine producers of angiogenic growth factors, whereas at 12–14 weeks gestational 
age, they have switched their secretory profi les to become major cytokine produc-
ers. As the phenotype of uNK cells alters during the fi rst trimester of pregnancy, the 
change from secretion of angiogenic growth factors to cytokines as pregnancy pro-
gresses may refl ect these phenotypic alterations. Indeed, it is possible that the pro-
portion of uNK cells developing locally or traffi cking from the peripheral blood 
varies at different stages of the menstrual cycle and pregnancy in both non- pregnant 
endometrium and decidua. Detailed functional investigation of phenotypically dis-
tinct uNK cell populations in accurately dated samples would be required to resolve 
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this question. An alternative explanation is that exposure to the changing intrauter-
ine environment induces functional changes in uNK cells. There is evidence to sug-
gest that exposure of peripheral blood NK cells to soluble HLA-G induces a 
senescent phenotype that is characterised by increased secretion of IL-6 and IL-8 
(reviewed in Rajagopalan  2014 ). It could be proposed, therefore, that the exposure 
of uNK cells to soluble HLA-G within the pregnant uterus could lead to alterations 
in their secretory profi le which could impact on their in vivo function. 

 During early pregnancy, cytotrophoblast proliferates from the tips of the chori-
onic villi to form cytotrophoblast columns which extend peripherally to form a 
cytotrophoblast shell. Extravillous trophoblast from the cytotrophoblast shell then 
invades into uterine decidua and superfi cial myometrium. There are two main path-
ways of trophoblast invasion: interstitial extravillous trophoblast invades through 
the decidua and superfi cial myometrium, whereas endovascular trophoblast extends 
within the lumen of the spiral arteries, transiently replacing the endothelium and 
ultimately remodelling the uterine spiral arteries from thick-walled musculoelastic 
vessels into dilated tubes whose wall comprises fi brinoid material containing intra-
mural trophoblast cells (Pijnenborg et al.  2006 ). Both interstitial trophoblast inva-
sion and spiral artery remodelling require breakdown of extracellular matrix (ECM) 
by proteolytic enzymes. Uterine NK cells secrete metalloproteinase (MMP)-1, 
MMP-2, MMP-7, MMP-9, MMP-10, tissue inhibitor of metalloproteinases (TIMP)-
1, TIMP-2, TIMP-3, urokinase plasminogen activator (uPA) and uPA receptor 
(uPAR), although not plasminogen activator inhibitor (PAI)-1 and PAI-2 (Naruse 
et al.  2009a ,  b ). In contrast with cytokines and angiogenic growth factors, no gesta-
tional age differences have been detected in secretion of these proteolytic enzymes. 
Immunoreactivity of MMP-7 and MMP-9 by leucocytes surrounding spiral arteries 
during early pregnancy has also been reported (Smith et al.  2009 ). 

 Both trophoblast invasion and spiral artery remodelling are tightly controlled 
processes, defi cient trophoblast invasion and vascular transformation being associ-
ated with pregnancy pathology such as pre-eclampsia, fetal growth restriction, late 
miscarriage and preterm delivery (Pijnenborg et al.  2006 ). By their secretion of 
cytokines and angiogenic growth factors, uNK cells have been suggested to play a 
central role in these processes in early pregnancy.  

   Regulation of Trophoblast Invasion by uNK Cells 

 Hanna et al. ( 2006 ) demonstrated that IL-15-stimulated uNK cell supernatants stim-
ulate invasion of isolated cytotrophoblast cells in vitro, this stimulatory effect being 
partially abrogated by neutralising antibodies to IL-8 and IP-10 (Hanna et al.  2006 ). 
This result is supported in part by studies demonstrating that uNK cell supernatants 
from 12 to 14 weeks gestational age stimulated invasion of extravillous trophoblast 
from placental explants (Lash et al.  2010b ). This uNK-mediated stimulation of EVT 
invasion was partially abrogated in the presence of an IL-8 neutralising antibody 
(De Oliveira et al.  2010 ). In contrast, when both uNK cells and placenta were from 
8 to 10 weeks gestational age, uNK cell supernatants had no effect on extravillous 
trophoblast invasion (Lash et al.  2010b ; De Oliveira et al.  2010 ). Hu et al. ( 2006 ) 
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demonstrated that IL-15-stimulated uNK cell supernatants inhibited migration of 
EVT in a two-dimensional migration assay by a mechanism dependent on IFNγ. 
Discrepancies between reports may, therefore, be due to variation in the gestational 
ages of the samples studied, as well as sources of trophoblast cells and the presence 
of prior activation of uNK cells by IL-15.  

   Role of uNK Cells in Spiral Artery Remodelling 

 Spiral artery remodelling is a key feature of successful human pregnancy (Pijnenborg 
et al.  2006 ). This process has often been attributed solely to the effect of extravillous 
trophoblast, but increasing evidence indicates that there is a ‘trophoblast- 
independent’ phase of spiral artery remodelling (Pijnenborg et al.  2006 ). Histological 
studies of the placental bed in early pregnancy demonstrated that initial stages of 
spiral artery remodelling, including dilatation, some fi brinoid deposition, endothe-
lial swelling and vascular smooth muscle cell (VSMC) separation, occur in the 
absence of extravillous trophoblast (Craven et al.  1998 ; Kam et al.  1999 ), and more 
recent studies support this view. 

 uNK cells are often seen aggregated around the spiral arteries and arterioles in 
both the secretory phase of the menstrual cycle and in early human pregnancy; this 
distribution in pregnancy may refl ect a role in mediating vascular changes in preg-
nancy. Increased numbers of both uNK cells and macrophages were detected within 
25 μm of the vessel lumen in human decidual spiral arteries showing partial 
 remodelling and an absence of EVT, compared with non-remodelled vessels and 
those with greater degrees of remodelling, including the presence of extravillous 
trophoblast (Smith et al.  2009 ). Using in vitro vessel models (either chorionic plate 
arteries from human term placenta or non-pregnant myometrial arteries), we dem-
onstrated that supernatants produced by uNK cells from 8 to 10 weeks gestation 
were able to mediate separation of vascular smooth muscle cells within the vessels, 
while uNK cell supernatants from 12 to 14 weeks gestation had a greater effect on 
vascular smooth muscle cell dedifferentiation (Robson et al.  2012 ). The uNK cell-
derived factors responsible for mediating the effects on uterine spiral arteries remain 
to be fully determined, but evidence from our in vitro studies implicates Ang1, Ang2 
and VEGF-C in this process (Robson et al.  2012 ). It is possible that the stimulation 
of trophoblast invasion by uNK cells at 12–14 weeks gestational age may play a role 
in attracting interstitial trophoblast cells towards spiral arteries that have been par-
tially remodelled by uNK cells for completion of the remodelling process.   

5.2.4.6    Interaction of uNK Cells with Other Cell Types 

 uNK cells are intimately associated with a range of cell types in both non-pregnant 
and pregnant endometrium, including other endometrial leucocyte populations. 
Because of the intimate association of uNK cells with extravillous trophoblast in 
decidua basalis, several studies have focused on interactions between these two 
cell types. 
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   Uterine NK Cell: Trophoblast Cell Interactions 

 Although early studies of uNK cells focused on the ability of uNK cells to lyse 
normal and pathological trophoblast cells, current studies are focused on their secre-
tion of cytokines. Interactions could occur indirectly by secretion of growth factors 
and cytokines or directly via ligand-receptor interactions. 

 A key distinguishing feature of extravillous trophoblast, compared with villous 
cytotrophoblast and syncytiotrophoblast which do not express class I MHC anti-
gens, is their expression of HLA-C, HLA-E and HLA-G, but not the classical, poly-
morphic MHC molecules HLA-A and HLA-B. HLA-C alleles are recognised by 
both inhibitory and activating KIRs, including KIR2DL1, KIR2DL2, KIR2DL3 and 
KIR2DS1. Genetic association studies have linked maternal KIR and fetal (pater-
nal) HLA-C haplotypes and reproductive success. It has been suggested that a 
maternal KIR AA haplotype, with mainly inhibitory KIR in combination with a 
fetal HLA-C2 haplotype, is associated with pre-eclampsia and recurrent miscar-
riage (Hiby et al.  2004 ,  2010 ), while interaction between a fetal HLA-C2 haplotype 
and KIR BB, which is activating, may confer reproductive protection. However, it 
should be noted that the importance of this association has been disputed (Clark 
 2014 ), and it is not clear why only a proportion of pregnancies with the AA/C2 
combination have compromised reproductive success. 

 As HLA-G expression appears to be restricted to extravillous trophoblast cells, 
initial assumptions were that it was important to protect these cells from lysis by 
uNK cells closely associated in decidua basalis. However, it is now clear that any 
protective effects can be attributed to interactions of HLA-G with T cells rather than 
NK cells (van der Meer et al.  2004 ,  2007 ), although interactions between HLA-G 
and uNK cells do appear to result in altered secretion of a range of soluble factors 
(van der Meer et al.  2004 ). 

 Several studies have investigated the effect of interactions between extravillous 
trophoblast and uNK cells on secretion of cytokines and angiogenic growth factors. 
Most studies have used either HLA-G-transfected cell lines or the choriocarcinoma 
cell lines JEG-3 (HLA-G positive) and JAR (HLA-G negative), and in addition, 
peripheral blood mononuclear cells and uterine mononuclear cells have often been 
used as a proxy for uNK cells. There have been few studies using primary isolates of 
extravillous trophoblast and uNK cells. Not surprisingly with the diverse approaches 
that have been used, the overall results of these studies have been variable. 

 We performed an extensive study of cytokine and angiogenic growth factor 
secretion after uNK cell coculture with either extravillous trophoblast or cytotro-
phoblast, with all cell types being isolated from the same patient. uNK cells and 
trophoblast were cultured both in direct contact or separated by a 0.4 μm pore fi lter 
(Lash et al.  2011 ). Secretion of both cytokines and angiogenic growth factors was 
reduced in cocultures, although whether this was due to uNK cells or trophoblast 
cells or both was not determined. In general, coculture of uNK cells with either 
extravillous trophoblast or cytotrophoblast produced similar results suggesting that 
any effects were not mediated by HLA molecules which differ between these two 
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cell types, but by other shared molecules. Furthermore, secretion of angiogenic 
growth factors was altered after both direct and indirect coculture suggesting media-
tion by soluble factors, whereas alterations in cytokine secretion were only observed 
after direct coculture, suggesting involvement of a membrane-bound molecule. 
However, HLA-C and KIR haplotypes were not determined in this study, and recent 
studies indicate that secretion profi les may vary according to the HLA-C and KIR 
haplotypes (Xiong et al.  2013 ). 

 Xiong et al. ( 2013 ) studied the response of inhibitory KIR2DL1 or activating 
KIR2DS1 uNK cell subsets to coculture with 721.221 parent cells or those trans-
fected with HLA-C2 (221-C2) by microarray analysis. uNK cell subsets were 
KIR2DS1+ KIR2DL1- (KIR2DS1 single positive (sp)), KIR2DS1- KIR2DL1+ 
(KIR2DL1sp), KIR2DS1+ KIR2DL1+ (double positive (dp)) or KIR2DS1- 
KIR2DL1- (double negative (dn)). Distinct differences in all four uNK cell subsets 
were demonstrated using cluster analysis; 45 transcripts were altered in the 
KIR2DL1sp group, 378 in the KIR2DS1sp group, 289 in the dp group and 3 in the 
dn group. There was little overlap between the 3 positive groups with only 24 altered 
transcripts common in the KIR2DS1sp and dp groups, despite both expressing 
KIR2DS1. Furthermore, there were only six common transcripts between the 
KIR2DL1sp and dp groups, as well as between the two different sp subsets. It is 
important to note that each individual has different subsets of uNK cells suggesting 
that differential local production of cytokines and growth factors may occur through-
out the placental bed where uNK cells and EVT interact. In addition, the described 
study specifi cally concentrated on the effect of HLA-C2 on uNK cell transcription, 
whereas extravillous trophoblast cells express a range of ligands that would simul-
taneously interact with uNK cell-expressed receptors. 

 The functional consequence of interactions between uNK cells and trophoblast 
remains unclear. Although specifi c cytokines and growth factors have been impli-
cated in these processes, it is likely that many different cytokines and chemokines 
are involved in the control of trophoblast invasion and spiral artery remodelling. 
Close association of extravillous trophoblast cells with uNK cells leads to reduced 
cytokine secretion, and it is possible that after recruitment of extravillous tropho-
blast or uNK cells to specifi c sites in the placental bed by higher cytokine levels, this 
serves to inhibit their onward passage. Extravillous trophoblasts are naturally highly 
invasive cells (Lash et al.  2006c ), yet cease to invade in the inner third of the myo-
metrium. Fusion of mononuclear trophoblast cells to form non-invasive multinucle-
ate trophoblast giant cells may play a role in the control of trophoblast invasion. In 
women with focal placenta accreta, the numbers of myometrial multinucleate tro-
phoblast giant cells are highly reduced in areas lacking decidua compared with areas 
with intact decidua, suggesting that decidual derived factors mediate or initiate this 
fusion process as the cells move towards the myometrium (   Hannon et al.  2012 ). 
Furthermore, in placenta adhesiva, the mildest form of adherent placenta in which 
decidua basalis is present (van Beekhuizen et al.  2009 ), numbers of uNK cells were 
markedly reduced (van Beekhuizen et al.  2010 ). It is tempting to speculate that uNK 
cells may play a role in the fusion of mononuclear to multinucleate trophoblast.  
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   Interaction of uNK Cells with Other Endometrial Cells 

 Many different cell types are present in human endometrium, and potentially uNK 
cells could interact with any of these cells. There is considerable interest in potential 
interactions between uNK cells and CD209+ (DC-SIGN) dendritic cells (DCs) in 
early pregnancy decidua. Although many studies have focused on mouse (Blois 
et al.  2011 ), there are a few studies that point to important interactions in human 
pregnancy. Using immunohistochemistry, Kammerer et al. ( 2003 ) noted intimate 
contact between DCs and uNK cells within human decidua, and this was confi rmed 
in studies of decidual leucocyte suspensions in which it was suggested that a pro-
portion of the DC-SIGN+ cells associated with uNK cells were apoptotic (Tirado- 
González et al.  2012 ). Investigation of the DC/uNK cell interaction in human 
pregnancy is at a very early stage, and technical issues in in vitro studies using a 
decidual source for both cell populations are challenging. However, studies in 
mouse highlight the potential importance, with evidence suggesting direct control 
of stromal cell proliferation, angiogenesis and homing and maturation of uNK cell 
precursors in the pregnant uterus (Blois et al.  2011 ).   

5.2.4.7    uNK Cells in Pregnancy Pathology 

 As the predominant endometrial leucocyte population in the secretory phase and 
early pregnancy, when the seeds are sewn for pregnancy problems that may not 
manifest until much later in gestation, uNK cells have been a focus for studies of 
pathological pregnancy. 

   Miscarriage 

 Miscarriage is a common gynaecological problem; it has been estimated that 
11–20 % of all clinically recognised pregnancies are lost before the 20th week of 
gestation (Everett  1997 ). Miscarriages are often separated into early (≤12 com-
pleted weeks from LMP) and late (≥13 weeks): early miscarriage accounts for the 
majority, with ~50 % being associated with aneuploidy, whereas late miscarriage 
affects only 1–2 % of pregnancies (Regan and Rai  2000 ) and is less likely to be 
associated with chromosomal abnormalities. Whereas some studies have focused on 
uNK cell populations in secretory phase endometrium, studies of decidua in miscar-
riage are hampered by the potential criticism that since clinical presentation may 
occur days after demise of the pregnancy, any alteration in leucocyte populations 
may simply refl ect the result rather than the cause of the miscarriage. 

 Having been referred to by several names, such as Kornchenzellen, K cells and 
endometrial/decidual granulated/granular lymphocytes, the terminology of ‘uterine 
natural killer cell’ was adopted following the recognition that these cells are a type 
of NK cell, expressing NK receptors. Unfortunately, the term may suggest potential 
for these cells to ‘kill’ a pregnancy if activated, although there is no evidence for this 
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and activation of uNK cells in pregnancy is considered benefi cial. The focus on 
peripheral blood NK cells and uNK cells in recurrent miscarriage and implantation 
failure has led to patient demand for testing and treatment. At present, although 
some associations with NK cells have been reported, the functional consequences 
and importance of these are not known. 

  Sporadic Miscarriage     Increased uNK cells have been reported in immunohisto-
chemical studies of decidua from women with sporadic miscarriage compared with 
controls (Zenclussen et al.  2001 ; Plaisier et al.  2009 ), although this was not repro-
duced in an immunohistochemical study of placental bed biopsies from 8 to 20 
weeks gestation (Scaife et al.  2004 ). A recent study of chromosomally normal and 
abnormal miscarriage reported an increased incidence of NK cell aggregates in both 
euploid and aneuploid miscarriage compared with elective abortion (Lee et al. 
 2015 ). In contrast, Yamamoto et al. ( 1999 ) reported reduced CD56+ uNK cells in a 
fl ow cytometric study of decidua of women with sporadic miscarriage. Vassiliadou 
and Bulmer ( 1996 ) noted increased numbers of CD57+ NK cells in a subgroup of 
cases of sporadic miscarriage. Thus, whether numbers or phenotype of uNK cells 
are altered in sporadic miscarriage remains uncertain. 

 Altered NK cell function is likely to be more important than any change in NK 
cell numbers within decidua. Early suggestions that activation of NK cells in 
decidua could lead to pregnancy loss by cytotoxicity against fetoplacental tissues 
have not been supported by studies in human pregnancy. Compared with controls, 
Vassiliadou and Bulmer ( 1998 ) detected reduced cytotoxic activity against K562 
cells in uNK cells isolated from decidua of women with early sporadic miscarriage. 
Yamada et al. ( 2005 ) reported an increased proportion of perforin-positive uNK 
cells in decidua associated with sporadic miscarriage compared with controls. In 
contrast, Nakashima et al. ( 2008 ) reported no difference in the proportion of uNK 
cells expressing perforin and granzyme B in sporadic miscarriage compared with 
controls, although the proportion of granulysin-positive uNK cells in decidua was 
increased and this was linked to an increase in EVT apoptosis. 

 Hence, there are several studies that suggest that uNK cells could play a role in 
sporadic early pregnancy loss. However, results are confl icting and studies are com-
plicated by the potential of infl ammation secondary to pregnancy demise. 
Furthermore, despite many studies of uNK cell function in the fi rst trimester of 
pregnancy, understanding of their function around implantation and in very early 
pregnancy remains very limited.  

  Recurrent Miscarriage     Recurrent miscarriage (RM) is defi ned as three or more 
consecutive fi rst trimester miscarriages and in 50 % of cases the cause remains 
unknown (Quenby and Farquharson  1993 ; Rai and Regan  2006 ). Several immuno-
histochemical studies from different groups have reported increased numbers of 
uNK cells in mid-secretory phase endometrium from women with a history of RM 
(Clifford et al.  1999 ; Quenby et al.  1999 ; Tuckerman et al.  2007 ). Quenby et al. 
( 1999 ) noted signifi cantly higher uNK cell numbers in women who went on to a 
further miscarriage compared with those who had a live birth, although a subsequent 
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larger study failed to detect such an association (Tuckerman et al.  2007 ). In contrast, 
using fl ow cytometry, others have not detected altered numbers of endometrial uNK 
cell numbers in women with RM (Lachapelle et al.  1996 ; Shimada et al.  2004 ), 
although Lachapelle et al. ( 1996 ) did report reduced CD56 bright  CD16- and increased 
CD56 dim CD16+ subsets. Michimata et al. ( 2002 ) also did not detect any differences 
in endometrial uNK cell numbers, although RM in this study was defi ned as two 
rather than three or more consecutive miscarriages. Although there are discrepancies 
in results, immunohistochemical studies have consistently shown increased uNK 
cell numbers in mid-secretory phase endometrium of women with a well-defi ned 
history of RM. 

 It is diffi cult to interpret studies of uNK cell numbers in the miscarried decidua 
of women with RM which have differing results; this may refl ect the use of immu-
nohistochemistry versus fl ow cytometry, but in addition whether any changes noted 
represent ‘cause’ or ‘effect’ is uncertain. Chao et al. ( 1995 ) reported similar num-
bers but increased NK activity in decidua associated with RM. Emmer et al. ( 2002 ) 
reported expression of CD16 by CD56+ cells in decidua from RM samples, while 
Kwak et al. ( 1995 ) noted increased expression of CD57+ cells in 29.6 % of RM 
cases. In contrast, Quack et al. ( 2001 ) reported reduced CD56+ cells in decidua 
from RM, although there were signifi cantly increased numbers of CD25+ cells, sug-
gesting increased leucocyte activation. Yamamoto et al. ( 1999 ) also reported reduced 
numbers of CD56+ cells in RM compared with controls, but an increased propor-
tion expressed CD16. 

 In summary, reports of increased uNK cells in secretory phase endometrium 
from women with RM are consistent, but other approaches, including investigation 
of decidua, have not yielded consistent results. The functional importance of this is 
largely unknown. Quenby et al. ( 2009 ) linked increased uNK cells to altered blood 
fl ow in endometrium from women with both RM and RIF. However, little is known 
of uNK cell function in non-pregnant endometrium, and further studies of normal 
endometrium are required before the functional signifi cance of these increased uNK 
cells is known.   

   Recurrent Implantation Failure and Infertility 

 There are several studies that have suggested that uNK cells may be implicated in 
both infertility and RIF, but results are variable. Although, using fl ow cytometry, 
Matteo et al. ( 2007 ) reported no difference in uNK cells in late secretory phase 
endometrium in women with RIF compared with normal fertile controls, others have 
reported increased uNK cells in pre-pregnancy endometrium in association with 
RIF. Tuckerman et al. ( 2010 ) reported a dramatic increase in uNK cells as a propor-
tion of stromal cells in the mid-secretory phase in women with RIF after IVF com-
pared with normal fertile controls, with uNK cell numbers correlating with stromal 
expression of IL-15 (Mariee et al.  2012 ). Similarly, Ledee-Bataille et al. ( 2004 ) 
demonstrated elevated uNK cell numbers in women with RIF in association with 
increased endometrial IL-12 or IL-18. This cohort also showed abnormal uterine 

J.N. Bulmer and G.E. Lash



113

artery Doppler compared with normal controls or RIF women without elevated uNK 
cells and cytokines. Quenby et al. ( 2009 ) also reported that elevated uNK cell num-
bers in women with RIF correlated with abnormal uterine artery Doppler. 

 Women with unexplained infertility have been less well studied. Klentzeris et al. 
( 1994 ) reported reduced CD56+ cells in timed luteal phase biopsies from women 
with unexplained infertility compared with fertile controls. In contrast, using fl ow 
cytometry, Fukui et al. ( 1999 ) did not demonstrate alteration in overall CD56+ cell 
numbers but reported increased CD16+ CD56dim NK cells and reduced CD56 bright  
CD16- NK cells in endometrium from women who subsequently went on to have 
failed IVF compared with those who had a successful pregnancy. McGrath et al. 
( 2009 ) subsequently reported that while uNK cell numbers were not altered in infer-
tility, uNK cell expression of CD94, CD158a and CD158a was increased, suggest-
ing an altered phenotype in this cell type. 

 Infertility may be associated with uterine pathology, and although there are few 
studies, this may also be associated with altered uNK cells. Tremellen and Russell 
( 2012 ) studied infertile women with adenomyosis and demonstrated increased uNK 
cells and macrophages in late secretory phase endometrium in women with diffuse or 
‘adenomyoma’-type adenomyosis compared with focal adenomyosis or no  disease. 
Leucocytes have also been investigated in the endometrium of women with leiomyo-
mata (Kitaya and Yasuo  2010 ). Compared with controls, uNK cell numbers in prolif-
erative and mid- to late secretory phase endometrium were lower in association with 
leiomyoma, with reduced uNK cells seen in ‘non-near nodule’ (i.e. distant from the 
leiomyoma) endometrium with a further reduction in ‘near nodule’ endometrium.  

   Clinical Applications of uNK Assessment in Recurrent Reproductive Failure 

 The association of altered uNK cells in endometrium has led to testing of uNK cells 
in endometrium from women suffering RM and RIF. Although increased uNK cell 
numbers have consistently been detected in a proportion of women suffering RM 
(Clifford et al.  1999 ; Quenby et al.  1999 ; Tuckerman et al.  2007 ), assessment differs 
between different laboratories and defi nitions of ‘abnormal’ uNK cell levels differs. 
Since there is variation in uNK cell numbers at different levels in endometrium (e.g. 
between zona spongiosum and zona compactum), an initial step should be to estab-
lish consistent methodology for quantifi cation of uNK cell numbers in endometrium 
(Lash et al.  2014 ). Furthermore, the date of assessment may vary from LH+6 to 
LH+9 in different studies, refl ecting a cycle stage when uNK cell numbers can vary 
dramatically (Russell et al.  2011 ,  2013 ). It is essential that sampling is on a specifi c 
day of the cycle or that ‘normal’ ranges for uNK cell numbers are established in 
large subject groups. 

 At present, the importance of increased uNK cells in recurrent reproductive fail-
ure remains unknown, and whether there is a correlation between high uNK cell 
levels and pregnancy outcome is uncertain and unclear. A recent meta-analysis did 
not demonstrate any difference in uNK cell numbers in RM subjects compared with 
controls, although percentages and numbers of peripheral blood NK cells were 
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increased in women with RM (Seshadri and Sunkara  2014 ). Tang et al. ( 2011 ) 
 conducted a systematic review and concluded that studies of uNK cells were not 
suffi ciently large to determine whether high levels of uNK cells in the luteal phase 
predicted subsequent miscarriage.  

   Fetal Growth Restriction and Pre-eclampsia 

 Both fetal growth restriction (FGR) and pre-eclampsia (PE) are associated with 
failed spiral artery transformation and trophoblast invasion (Pijnenborg et al.  2006 ). 
Since uNK cells have been implicated in the control and stimulation of trophoblast 
invasion as well as in early stages of spiral artery transformation, it is feasible that 
altered uNK cell numbers or function may contribute to the aetiology of these path-
ological pregnancies. Furthermore, as already highlighted, there are genetic asso-
ciation studies that suggest that pre-eclampsia and recurrent miscarriage may be 
associated with specifi c maternal KIR haplotypes expressed by uNK cells interact-
ing with paternal HLA-C haplotypes expressed by extravillous trophoblast (   Moffett 
and Colucci  2014 ). 

 In common with RM and RIF, reports of uNK cells in FGR and PE are variable. 
Some groups have reported increased numbers of CD56 +  uNK cells in decidua 
from women with pre-eclampsia compared with age-matched controls (Stallmach 
et al.  1999 ; Wilczynski et al.  2003 ; Bachmayer et al.  2006 ). However, in an immu-
nohistochemical study of placental bed biopsies, we demonstrated reduced CD56 +  
uNK cells in both pre-eclampsia and FGR (Williams et al.  2009b ). These results 
are similar to another report of reduced decidual CD56 +  uNK cells in women with 
severe FGR with and without pre-eclampsia, although there were no differences in 
pre- eclampsia not associated with FGR (Eide et al.  2006 ). A fl ow cytometry study 
of decidual curettings reported no difference in the proportion of CD45 +  cells that 
were CD56+ CD16- in pre-eclampsia compared with controls, although the pro-
portion of CD45+ cells that were CD56+ CD16+ was reduced in pre-eclampsia 
(Rieger et al.  2009 ). 

 Studies of both pre-eclampsia and fetal growth restriction are limited by the fact 
that their clinical presentation occurs in the second half of pregnancy, whereas the 
pathogenetic lesions are likely to be established at a much earlier gestational age. 
Recent studies have investigated uNK cell function in early pregnancy decidua from 
pregnancies screened prior to pregnancy termination using uterine artery Doppler 
(Fraser et al.  2012 ; Wallace et al.  2013 ,  2014 ,  2015 ). Pregnancies were separated 
into those showing normal or high uterine artery Doppler resistance index as those 
at least risk (<1 %) and at most risk (21 %) of developing pre-eclampsia. Compared 
with uNK cells from low-risk pregnancies, those from pregnancies showing a high 
resistance index were less able to induce apoptosis of vascular smooth muscle cells 
and produce factors able to stimulate trophoblast invasion (Fraser et al.  2012 ). The 
cells were also less chemoattractant for trophoblast and less able to stimulate 
 outgrowth from placental villous explants (Wallace et al.  2013 ), and uNK cell secre-
tion of various angiogenic growth factors was increased (Wallace et al.  2014 ). 
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Perhaps most interesting in the context of reports of the importance of paternal 
HLA-C/maternal KIR interactions in the pathogenesis of pre-eclampsia, a reduced 
proportion of uNK cells from the high-risk pregnancies expressed KIR2DL/S1, 3 
and 5 and LILRB1 (Wallace et al.  2015 ), raising the possibility of an altered interac-
tion with extravillous trophoblast via class I MHC antigens. Whether these results 
will be confi rmed by others is not yet known, and it is notable that only a proportion 
of those pregnancies with a high uterine artery Doppler resistance index will go on 
to develop pre-eclampsia. Furthermore, the studies are based on vascular smooth 
muscle cell and extravillous trophoblast cell lines which may not be representative 
of the primary cells. However, these studies represent an exciting new approach to 
investigation of pre-eclampsia and potentially other pregnancy disorders that are 
associated with defi cient trophoblast invasion.  

   Could uNK Cells Interact with Seminal Fluid Components? 

 Investigation of the role of uNK cells in pregnancy disorders has mainly focused on 
their potential role in mediating successful implantation and early placentation. 
However, uNK cells are potentially exposed to components within the seminal fl uid, 
and this is an alternative mechanism whereby their function and/or differentiation 
and proliferation may be disturbed, thereby contributing to reproductive failure. 
Despite several studies, many in animals, that have indicated that seminal fl uid con-
tributes to reproductive success by signalling to elicit functional adaptations in the 
female (Robertson  2007 ; Schjenken and Robertson  2014 ), no studies have consid-
ered the potential effect of seminal fl uid on uNK cell function. 

 Seminal fl uid contains cytokines and prostaglandins that are synthesised in the 
male accessory glands which are transferred to the female at insemination. Early 
studies in humans demonstrated an infl ux of leucocytes, predominantly neutrophil 
polymorphs, into the cervix following insemination (Thompson et al.  1992 ), and 
more recent studies have demonstrated that the seminal fl uid induces production of 
GM-CSF, IL-6, IL-8, MCP-1, MIP-3-α and IL-1-α (Sharkey et al.  2012 ). Evidence 
in mice suggests that seminal fl uid induces T regulatory cells (Guerin et al.  2011 ), 
and there is some evidence for a similar effect in humans, although evidence to date 
is not defi nitive (Schjenken and Robertson  2014 ). Molecules within seminal fl uid 
which may play a role in signalling are TGF-β, HLA-G5 and PGE 2  (Kelly and 
Critchley  1997 ; Hutter and Dohr  1998 ; Robertson et al.  2002 ; Schjenken and 
Robertson  2014 ), and it is feasible that these could affect the function of uNK cells 
within endometrium. TGF-β affects the differentiation of NK cells, and incubation 
of peripheral blood NK cells in TGF-β1 has been shown to result in formation of 
cells with uNK-like phenotype (Keskin et al.  2007 ). TGF-β1 also affects uNK cell 
function by altering expression of cytokines (Eriksson et al.  2004 ). Soluble HLA-G 
has been detected in seminal fl uid (Larsen et al.  2011 ); although effects on uNK 
cells have not been studied directly, it has been shown that soluble HLA-G induces 
a senescent phenotype in peripheral blood NK cells, altering their cytokine secre-
tion profi le (reviewed in Rajagopalan  2014 ). 
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 Several pregnancy complications are commoner in the fi rst pregnancy or when 
pregnancy occurs with a new partner in multiparous women, emphasising the 
importance of a paternal component in successful reproduction. Furthermore, 
women who have had recurrent miscarriages with one partner may go on to have 
successful pregnancy with a different partner. Although the focus has been on inter-
actions of endometrial leucocytes with placental trophoblast cells as the pathoge-
netic mechanism in problems such as recurrent miscarriage and pre-eclampsia, the 
possibility that problems arise much earlier in the process should be considered. 
Given the prominence of uNK cells in endometrium around the time of implanta-
tion, as well as the known effects on NK cells in general, and in some cases on uNK 
cells, of the various components of seminal fl uid, it is surprising that attention has 
not focused on the potential effect of seminal fl uid on uNK cell function. This may 
be a promising area for future investigation.     

5.3     Conclusions 

 Uterine NK cells have been the focus of many studies since it was appreciated that 
they are a major leucocytic component of the endometrial stroma at the time of 
implantation and in early pregnancy. There have been considerable advances in 
knowledge, but studies of very early pregnancy are limited by availability of tissues 
from humans and the limitations of extrapolating from animal (predominantly 
mouse) models. Functional studies of uNK cells from early pregnancy have high-
lighted their functions, with particular focus on secretion of cytokines and angio-
genic growth factors pointing to roles in facilitation and control of trophoblast 
invasion and spiral artery remodelling in early pregnancy. Despite studies suggest-
ing altered uNK cell numbers in recurrent reproductive failure, the functional con-
sequences remain uncertain. It is important that the mechanisms that underlie the 
increased numbers of uNK cells as well as the functional consequences are deter-
mined before it will be possible to develop effective diagnostic and therapeutic 
approaches. Furthermore, the possible contribution of male factors such as compo-
nents within seminal fl uid should be considered in the context of uNK cell differen-
tiation and function in recurrent reproductive failure.   
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    Chapter 6   
 Seminal Fluid Signalling in the Female 
Reproductive Tract: Implications 
for Reproductive Success and Offspring Health 

             John     E.     Schjenken     and     Sarah     A.     Robertson    

    Abstract     Carriage of sperm is not the only function of seminal fl uid in mammals. 
Studies in mice show that at conception, seminal fl uid interacts with the female 
reproductive tract to induce responses which infl uence whether or not pregnancy 
will occur, and to set in train effects that help shape subsequent fetal development. 
In particular, seminal fl uid initiates female immune adaptation processes required to 
tolerate male transplantation antigens present in seminal fl uid and inherited by the 
conceptus. A tolerogenic immune environment to facilitate pregnancy depends on 
regulatory T cells (Treg cells), which recognise male antigens and function to sup-
press infl ammation and immune rejection responses. The female response to semi-
nal fl uid stimulates the generation of Treg cells that protect the conceptus from 
infl ammatory damage, to support implantation and placental development. Seminal 
fl uid also elicits molecular and cellular changes in the oviduct and endometrium that 
directly promote embryo development and implantation competence. The plasma 
fraction of seminal fl uid plays a key role in this process with soluble factors, includ-
ing TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the 
peri-conception immune environment. Recent studies show that conception in the 
absence of seminal plasma in mice impairs embryo development and alters fetal 
development to impact the phenotype of offspring, with adverse effects on adult 
metabolic function particularly in males. This review summarises our current under-
standing of the molecular responses to seminal fl uid and how this contributes to the 
establishment of pregnancy, generation of an immune-regulatory environment and 
programming long-term offspring health.  
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   Abbreviations 

  AI    Artifi cial Insemination   
  AMP    Antimicrobial peptide   
  APC    Antigen-presenting cells   
  ART    Assisted reproductive technologies   
  ASG    Accessory sex glands   
  BSP    Bovine seminal plasma protein   
  CCL    C-C motif chemokine ligand   
  COX2    Cyclooxygenase 2   
  CRISP3    Cysteine-rich secretory protein-3   
  CSF    Colony-stimulating factor   
  CXCL    C-X-C motif chemokine ligand   
  DAMP    Danger-associated molecular patterns   
  FOXP3    Forkhead box P3   
  GCSF    Granulocyte colony-stimulating factor   
  GMCSF    Granulocyte-macrophage colony-stimulating factor   
  GRO/KC    Growth regulated alpha   
  IFNG    Interferon gamma   
  IL    Interleukin   
  IVF    In vitro fertilisation   
  JAK/STAT    Janus kinase/Signal transducer and activator of transcription   
  LIF    Leukaemia inhibitory factor   
  MAPK    Mitogen-activated protein kinase   
  MCP1    Monocyte chemotactic protein 1   
  MHC    Major histocompatibility complex   
  MIP    Macrophage infl ammatory protein   
  MMP    Matrix metalloproteinase   
  NK cells    Natural killer cells   
  OIF    Ovulation-inducing factor   
  P13K-AKT    Phosphatidylinositol-3 kinase-protein kinase B   
  PGE    Prostaglandin E   
  PSP    Porcine sperm adhesion proteins   
  sFlt1    Soluble fms-like tyrosine kinase-1   
  SVX    Seminal vesicle defi cient   
  TGFB    Transforming growth factor beta   
  TIMP    Tissue inhibitor of matrix metalloproteinase   
  TLR    Toll-like receptor   
  TNF    Tumor Necrosis Factor   
  Treg cells    Regulatory T cells   
  VEGF    Vascular endothelial growth factor   
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6.1           Introduction 

 Over the last 20 years, it has become clear that the soluble fraction of the male 
ejaculate, known as seminal plasma, provides more than simply a transport medium 
for sperm. Compelling reports in a range of mammalian species demonstrate that 
seminal fl uid interacts with female reproductive tract tissues to induce cellular and 
molecular changes that impact reproductive function. The post-copulatory environ-
ment activated by seminal fl uid not only ensures fertilisation but also activates 
female responses that facilitate conception and sustain progression to pregnancy. 
Within seminal plasma, a range of soluble signalling factors including hormones 
and cytokines have been identifi ed (Aumuller and Riva  1992 ; Maegawa et al.  2002 ; 
Mann  1964 ) and interfering with their function compromises early embryo develop-
ment and affects the longer-term health of offspring (Bromfi eld et al.  2014 ; Poon 
et al.  2009 ). Recent advances in male–female seminal fl uid signalling mainly focus 
on the mouse and human, but there is evidence of seminal fl uid effects in every 
mammalian species examined, with considerable variation in the physiological ori-
gin, fate, and consequences of seminal fl uid constituents between species (Schjenken 
and Robertson  2014 ; Robertson  2005 ). Remarkably, the biological mechanisms and 
effects have parallels with invertebrate species such as Drosophila, where male 
seminal fl uid infl uences ovulation and egg storage, the production of antimicrobial 
proteins, female tract remodelling, and female receptivity to mating and related 
behaviours (Wolfner  2002 ; Chapman and Davies  2004 ). This conservation across 
taxa, with the tremendous variation across species in signalling proteins and their 
rapid evolution, implies there is substantial biological value in seminal fl uid signal-
ling that is driven by sexual selection with implications at a population level 
(McGraw et al.  2015 ). 

 In this review, we describe our current understanding of how seminal fl uid acts 
in the female reproductive tract after coitus to promote pregnancy and reproduc-
tive success. We discuss the active components of seminal fl uid and recent fi nd-
ings demonstrating that seminal fl uid affects not only the peri-conception 
environment but also the course of gestation, such that alterations to seminal fl uid 
composition impact fetal growth and offspring development. The majority of rel-
evant studies concern the mouse and human, but since a comparative approach 
provides insight on mechanisms conserved across species, we note commonalities 
and differences between the signalling properties of seminal fl uid in other mam-
malian and non- mammalian species. Finally, the clinical implications of these 
fi ndings will be discussed with a particular focus on the use of seminal fl uid or 
active components of seminal fl uid in assisted reproductive technologies (ART), 
where the frequent absence of seminal plasma may be part of the explanation for 
their limited success.  
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6.2     Seminal Fluid Signalling in Invertebrate 
and Avian Species 

 Our knowledge of the effects of male accessory gland fl uids on female reproductive 
physiology originated in invertebrates [reviewed in Wolfner ( 2002 ) and Gillott 
( 2003 )]. In fl ies, crickets, and other insects where intromission results in seminal 
fl uid delivery to the female tract, the male accessory gland fl uids have multiple func-
tions, ultimately improving the likelihood of the male siring offspring. Studies in 
 Drosophila  are particularly informative and show that accessory gland proteins con-
tribute to the induction of female refractoriness to subsequent mating, support sperm 
function and storage, induce ovulation and oviposition, regulate egg development, 
and alter behaviour, metabolism, immune function, and ultimately lifespan of the 
female. Successful fertilisation and transmission of the male germ line to the next 
generation depend on the male’s capacity to induce an adequate response in the 
female. Since most intromitting insects are polyandrous (females regularly mate 
with different males each reproductive cycle), the female tract response is part of a 
process through which different males compete to sire offspring, in so-called ‘sexual 
confl ict’. The female has a high threshold for recognition and suffi cient responsive-
ness to signals in seminal fl uid—unless the seminal fl uid elicits a suffi cient response 
in the female reproductive tract, ovulation and progression of the reproductive cycle 
will not occur. Through this process of ‘cryptic female choice’, females interrogate 
the reproductive fi tness of the prospective male partner and invest reproductive 
resources accordingly (Roldan et al.  1992 ; Eberhard  2009 ). This ensures optimal 
female investment of reproductive resources and ensures maximal progeny fi tness 
since the next generation are sired only by the most competitive males. 

 Accessory gland proteins have been identifi ed that contribute to various aspects 
of the female response. In  Drosophila , a protein named Acp26Aa (otherwise known 
as ovulin) acts to trigger ovulation (Heifetz et al.  2000 ), while Acp36DE contributes 
to the formation of the anterior plug and facilitates sperm storage (Lung and Wolfner 
 2001 ; Chapman et al.  2000 ). There is a multi-step network of interactions between 
different seminal fl uid proteins to induce behavioural responses lasting several days 
after mating (Ram and Wolfner  2009 ). Some male seminal fl uid proteins utilise 
female reproductive tract proteases to achieve full activity, indicating a dynamic 
interaction between male and female reproductive biology for male effects to be 
fully exerted (Lafl amme et al.  2014 ). Interestingly, Toll pathway and Imd pathway 
(which akin to mammalian Toll like receptors (TLRs), are activated by endogenous 
and pathogen-associated molecular structures) act to mediate the effects of seminal 
fl uid signals to induce an innate immune response mediated by antimicrobial pep-
tides (AMPs) in females (Peng et al.  2005 ). It is speculated that this response pro-
tects the female from injury and potential pathogen transfer at mating (Peng et al. 
 2005 ). Other studies show that despite the acute effect on AMP synthesis, females 
exposed to sperm and seminal fl uid proteins have compromised humoral immune 
system activity and impaired immune defence against bacterial infection (Short 
et al.  2012 ). This trade-off between reproductive success and immune defence is 
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common to many species of fruit fl ies, damselfl ies, beetles, crickets, and ant queens 
and is thought to lie at the heart of the well-known cost to longevity of reproductive 
success in insects (Short et al.  2012 ). 

 In birds, which are generally also polyandrous despite often being socially 
monogamous, there is also evidence of sperm competition and seminal plasma pro-
teins interacting with the immune system may contribute to this. Fresh semen 
instilled into the chicken oviduct acts to induce local expression of proinfl ammatory 
cytokines (Das et al.  2009 ) and to recruit immune cells (Zheng et al.  2001 ). Since 
sperm not involved in fertilisation in the fowl oviduct are phagocytosed by immune 
cells (Koyanagi and Nishiyama  1981 ), the immune response induced by seminal 
fl uid is speculated to contribute to the fate and survivability of sperm in the oviduct, 
as well as defence from infectious microorganisms (Das et al.  2008 ).  

6.3     Seminal Fluid Signalling in Mammals 

 In mammalian species, various effects of male seminal fl uid in the female reproduc-
tive tract are reported in humans, rodents, domestic and livestock animals, and all 
mammals examined to date (Schjenken and Robertson  2014 ; Robertson  2005 ). The 
fi rst evidence of a female response to seminal fl uid in mammals was reported in 
rabbits in 1952 (McDonald et al.  1952 ), where an infl ux of leukocytes into the 
female tract following semen exposure was observed. Since then, a leukocytic 
response to seminal fl uid has been reported in pigs, sheep, cow, horses, donkeys and 
dogs (Schjenken and Robertson  2014 ). Typically the response is characterised by an 
infl ux of immune cells including macrophages and neutrophils into the cervical or 
uterine lumen, as well as changes in the leukocyte content of stromal tissues accom-
panied by the induction of expression of immune-regulatory genes (Lovell and 
Getty  1968 ; Troedsson et al.  2001 ; Mattner  1968 ; England et al.  2012 ). 

 The infl ammatory response to seminal fl uid is likely to have a central role in 
female tract processing of seminal material and recovery of tissue homeostasis after 
mating, which is common to all species. However the extent to which seminal fl uid 
infl uences subsequent events to impact reproductive success presumably relates to 
extraordinary variation in reproductive strategies, the timing and nature of implan-
tation and placentation, and the operation of different molecular pathways to induce 
and maintain pregnancy. Despite patchiness in the depth of investigation in different 
species, it is clear that the precise nature of the female response to seminal fl uid—its 
tissue site, cellular composition, and the pattern of gene expression induced—varies 
between species according to the different reproductive physiology and anatomy of 
each, particularly the site of seminal fl uid deposition and its access to different parts 
of the female tract. 

 In many livestock species, the success of artifi cial insemination (AI) with 
diluted semen suggests that seminal constituents other than sperm are not manda-
tory for pregnancy. Depending on the species, reproductive success and quality of 
the pregnancy can be compromised if females are not exposed to seminal plasma. 
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In cattle, AI with diluted semen routinely achieves pregnancy at rates approaching 
natural service, despite very limited carry-over of seminal plasma (Lima et al. 
 2009 ). In other species such as rodents and pigs, effects ranging from reduced fer-
tilisation and embryo implantation to altered growth of the placenta and fetus are 
observed when seminal signalling is perturbed. Moreover, given that some effects 
of seminal fl uid manifest in offspring phenotype, there is the prospect that ignor-
ing the effects of seminal plasma is potentially contributing to reduced fertility or 
declining reproductive fi tness as seen in dairy cows (Lucy  2001 ), or the limited 
success of human in vitro fertilisation (IVF) programmes (Schieve  2002 ; Maher 
et al.  2003 ; Ceelen et al.  2007 ,  2008 ) (see later). Furthermore, long-held views 
that post-mating responses are detrimental to reproductive success in some species 
may be inappropriately founded. For example in horses, infl ammation following 
seminal fl uid exposure is linked with a pathological condition known as mating-
induced endometritis, but recent studies contend that contrary to this, infl ammation 
induced by seminal fl uid facilitates resolution of the endometrium to a receptive 
state (Katila  2012 ). 

 Studies in rodents show clearly that seminal plasma increases the likelihood of 
conception and embryo implantation, through infl uencing sperm survival and com-
petence, development of the pre-implantation embryo, and receptivity of the uterine 
endometrium to embryo implantation. Experiments in which the seminal vesicle, 
prostate, or coagulating glands are surgically removed from mice, rats, and ham-
sters prior to mating each show that seminal vesicle fl uid is the most vital non-sperm 
component of the ejaculate (Pang et al.  1979 ; O et al.  1988 ; Queen et al.  1981 ; Peitz 
and Olds  1986 ), and in hamsters, this is accompanied by a slower cleavage rate in 
pre-implantation embryos and higher fetal loss after implantation (O et al.  1988 ). 
In mice, fetal loss and abnormality is much greater when embryos are transferred 
into recipients not exposed to male fl uids (Watson et al.  1983 ). In rats, implantation 
rates and fetal growth are similarly impaired unless females are inseminated prior 
to embryo transfer (Carp et al.  1984 ). 

 Research in pigs also indicates that pregnancies conceived in the presence of 
seminal plasma can have better outcomes. Comparisons made when AI was fi rst 
implemented suggested that conception rates and litter sizes were compromised by 
AI compared with natural mating (Claus  1990 ; Skjervold  1975 ). However with cur-
rent AI practice in modern, large-scale facilities, farrowing rates, and litter sizes are 
comparable to natural service. This suggests that seminal fl uid stimulation of the 
female tract is not essential, particularly when insemination occurs close to the time 
of ovulation, and when sperm are deposited high in the reproductive tract (Vazquez 
et al.  2005 ). However, in herds with poorer reproductive performance, seminal 
plasma can improve reproductive outcomes. Increases in farrowing rate from 70 % 
to 81 % were reported when seminal plasma was administered prior to natural ser-
vice, and seminal plasma treatment increased both farrowing rate and litter size 
when given together with AI plus natural service (Flowers and Esbenshade  1993 ). 
Uterine infusion with heat-killed semen in the previous estrus can also increase lit-
ter size and improve farrowing rate (Murray et al.  1983 ,  1986 ), and similar effects 
result from mating with vasectomised boars in previous estrous periods (Flowers 
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and Esbenshade  1993 ), suggesting that some benefi t persists into subsequent cycles. 
Similarly when fertility is impaired by less than optimal female condition, addition 
of seminal plasma to sperm at AI may promote both conception rate and farrowing 
rate (Rozeboom et al.  2000 ).  

6.4     Seminal Fluid and the Peri-conception Infl ammatory 
Response 

 The molecular basis of the female response to seminal fl uid mostly comes from 
laboratory studies using the mouse as a model (Robertson  2005 ; Robertson et al. 
 1996 ; Schjenken et al.  2015 ). At coitus in the mouse, seminal fl uid is deposited in 
the uterus and disseminates throughout the female reproductive tract, where it inter-
acts with epithelial cells of the uterine lumen to activate gene expression and syn-
thesis of several proinfl ammatory cytokines and chemokines. Early studies focused 
on granulocyte-macrophage colony-stimulating factor (GMCSF) as a key element 
of the female response. More recently, several other cytokines and chemokines 
including interleukin-6 (IL6), tumor necrosis factor (TNF), C-X-C motif chemo-
kine ligand-1 (CXCL1, also known as growth regulated alpha protein, GRO or KC), 
CXCL2 (macrophage infl ammatory protein-2, MIP2), C-C motif chemokine 
ligand-3 (CCL3, macrophage infl ammatory protein-1 alpha, MIP1A), and granulo-
cyte colony-stimulating factor (GCSF) have been identifi ed as elevated in the mouse 
uterus during the immediate post-coital phase (Schjenken et al.  2015 ; Sanford et al. 
 1992 ; Robertson et al.  1998 ; Pollard et al.  1998 ; Johansson et al.  2004 ). Seminal 
plasma is required for much of this response as coitus with males rendered seminal 
fl uid defi cient, by surgery to remove seminal vesicles and vasectomy, results in 
either no induction or substantially reduced cytokine induction (Schjenken et al. 
 2015 ). In contrast, delivery of seminal plasma by vasectomised males induces a 
response comparable to that induced by intact males (Robertson et al.  1996 ). 

 In response to the seminal fl uid-induced cytokine and chemokine infl ux, immune 
cells including macrophages, granulocytes, and dendritic cells are recruited into the 
endometrial stroma (Robertson et al.  1992 ,  1996 ,  1998 ). Large populations of neu-
trophils are also observed to migrate into the luminal cavity (De et al.  1991 ). This 
leukocytic response is transient and is resolved prior to embryo implantation, when 
infl ammatory cytokine release declines due to rising levels of progesterone. The 
effects of seminal fl uid extend the full depth of the reproductive tract to the oviduct 
(Jasper et al.  2005 ) and to the ovary (Gangnuss et al.  2004 ) where cytokine synthe-
sis and leukocyte numbers also increase. 

 Similar cytokine responses are observed in the human, where the cervix is the 
site of seminal fl uid deposition (Pudney et al.  2005 ). In vitro and in vivo studies 
of the effect of seminal fl uid on the cervix and vagina have shown an induction 
of cytokines and chemokines including GMCSF, IL1A, IL6, IL8, CCL2 (mono-
cyte chemotactic protein-1 (MCP1)), and CCL20 (MIP3A) (Sharkey et al.  2007 , 
 2012a ,  b ). As with the mouse, the seminal plasma fraction appears to play a 
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 critical role in this response (Sharkey et al.  2007 ,  2012a ), as no response is observed 
when barrier contraceptives are used (Sharkey et al.  2012b ) while a signifi cant 
induction mimicking the in vivo response is observed in cervical cells exposed to 
seminal fl uid in vitro (Sharkey et al.  2007 ). Seminal fl uid-induced cytokines initiate 
the recruitment of leukocytes into the epithelial layers and deeper stromal tissues 
with macrophages, dendritic cells, and memory T cells also being detected (Sharkey 
et al.  2012b ). Even amongst proven fertile men, the cytokine response elicited by 
seminal plasma is highly variable (Sharkey et al.  2007 ) and the seminal fl uid com-
position can vary greatly between individual men depending on fertility status or 
infection (Owen and Katz  2005 ). Thus there is the real prospect that coitus induces 
quite variable cytokine responses in women depending on seminal fl uid composi-
tion, but how this might relate to fertility or subfertility remains to be determined. 

 In women, seminal fl uid is largely retained in the cervix but effects of seminal 
fl uid constituents may extend to the higher reproductive tract. In vitro experiments 
show that human endometrial epithelial cells can respond to seminal plasma with 
upregulated expression of  IL1B ,  IL6 , and leukaemia inhibitory factor ( LIF ) (Gutsche 
et al.  2003 ). It has been demonstrated that moieties in seminal plasma can bind to 
the sperm surface (Chu et al.  1996 ) and in the subcellular or sperm-bound form 
would be transported into the higher reproductive tract by uterine peristalsis, as 
demonstrated using hysterosalpingo scintigraphy which indicates rapid and exten-
sive transport of particulate material from the cervix to the higher tract in women 
(Kunz et al.  1996 ). The ‘fi rst uterine pass effect’, which is the vaginal to uterine 
transport of molecules (Bulletti et al.  1997 ), also supports a uterine response to 
semen exposure. 

 Studies in the pig, horse, and sheep all demonstrate the induction of endometrial 
cytokine expression following seminal plasma exposure with GMCSF, IL6, MCP1, 
and IL10 being induced in the pig (O’Leary et al.  2004 ), IL1B, IL6, TNF, and cyclo-
oxygenase 2 (COX2) in the horse (Palm et al.  2008 ), and GMCSF and IL8 in the 
sheep (Scott et al.  2009 ). Studies in the cat and camel provide evidence for a similar 
function for seminal fl uid as in other mammalian species (Lockett et al.  2010 ; Li 
and Zhao  2004 ).  

6.5     Function of Seminal Fluid Response at Coitus 

 The consequences of seminal fl uid-induced cytokine production and leukocyte 
recruitment in the female reproductive tract in turn have a range of effects on con-
ception and pregnancy. In    different species, effects include clearing the uterine cav-
ity of microorganisms introduced at mating (Robertson et al.  1999 ), induction of 
ovulation and promoting corpus luteum formation (Gangnuss et al.  2004 ), support-
ing development of the pre-implantation embryo (Robertson et al.  2001 ), inducing 
endometrial expression of embryo attachment molecules and angiogenic factors to 
promote uterine receptivity (Jasper et al.  2011 ), and priming the female immune 
response to paternal antigens (Robertson and Sharkey  2001 ; Moldenhauer et al. 
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 2009 ) to promote T cell-mediated immune tolerance (Moldenhauer et al.  2009 ) 
(Fig.  6.1 ). When seminal fl uid signals operate optimally, the result is to facilitate 
fertilisation, embryo development, and implantation. But depending on the balance 
of cytokines produced and immune cells recruited, the female response to seminal 
fl uid may also induce mechanisms that constrain embryo implantation and progres-
sion of the reproductive cycle (Robertson  2010 ). In this way, it seems biologically 
plausible that the mammalian response to seminal fl uid provides a mechanism of 
post-copulatory selection, or cryptic female choice, analogous to that described in 
invertebrate species (Eberhard  2009 ).   

6.6     Clearance of Microorganisms and Superfl uous Sperm 

 A major component of the female immune response to seminal fl uid is the recruit-
ment of neutrophils, which are prevalent in the uterine luminal cavity during the 
initial acute infl ammatory phase following mating (De et al.  1991 ; Pandya and 
Cohen  1985 ). These neutrophils are believed to infl uence the capacity of sperm to 

uterine vein to ovarian artery
counter-current signals

uterus and cervix:
- phagocytic clearance
- sperm selection
- endometrial receptivity
- immune tolerance
- blastocyst development

ovary:
- induction of ovulation
- formation of corpus luteum

oviduct:
- sperm storage
- embryo development

SEMINAL FLUID

  Fig. 6.1    The function of seminal fl uid in the female reproductive tract following coitus. Seminal fl uid 
exposure at coitus induces female responses that have consequences for conception and pregnancy. 
In the uterus, seminal fl uid mediated effects include the phagocytic clearance of superfl uous sperm 
and microorganisms introduced at mating, sperm selection, preparation of a receptive endometrium, 
promotion of blastocyst development, and regulation of the maternal immune response towards 
paternal antigens. In addition to effects in the uterus, seminal fl uid has also been demonstrated to have 
effects in the higher reproductive tract. In the oviduct, components of seminal fl uid infl uence sperm 
storage as well as promote the development of the embryo through generation of embryotrophic 
cytokines. Further effects are seen in the ovary, where seminal fl uid exposure contributes to the induc-
tion of ovulation and the promotion of corpus luteum formation, potentially via a countercurrent 
mechanism between the uterine vein and ovarian artery. Figure is updated from (O’Leary et al.  2002 )       
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reach the oocyte by removing superfl uous sperm, microorganisms, and seminal 
debris (Robertson  2007 ). At coitus, commensal microorganisms from male or female 
tissues or sexually transmitted infections have the opportunity to enter the normally 
sterile higher reproductive tract where they can be detected in the immediate period 
post-coitus with sterility being recovered within 24 h (Robertson et al.  1999 ). 

 In addition to a function for neutrophils and other phagocytes in the rapid clear-
ance of microorganisms introduced at coitus, there is also evidence that these cells 
may respond to seminal fl uid exposure and act to phagocytose non-fertilising sperm. 
This process was originally postulated to act to fi lter out morphologically abnormal 
spermatozoa (Tomlinson et al.  1992 ). However, both abnormal and apparently via-
ble and morphologically normal spermatozoa can undergo phagocytosis, suggesting 
that sperm selection may occur on the basis of morphological or antigenic parame-
ters other than the ability to fertilise (Robertson  2005 ), and conferring female 
immune cells with the capacity to infl uence sperm selection through the recognition 
of surface markers that indicate faulty or damaged sperm (Sutovsky and Lovercamp 
 2010 ). The    means by which phagocytes could discriminate between gametes 
remains to be determined, but if a biologically plausible mechanism were identifi ed, 
this could explain observations of active female tract selection of male gametes 
(Robertson  2007 ).  

6.7     Endometrial Receptivity and Embryo Implantation 

 The immune cells recruited into the endometrium in response to seminal fl uid con-
tribute to restructuring the endometrial environment to facilitate embryo implanta-
tion and support the fi rst phase of placental development (Robertson  2005 ). Of the 
leukocytes present in the female reproductive tract following coitus, macrophages 
are postulated to play a critical role in the tissue remodelling process through the 
regulation of angiogenesis. Macrophages are a potent source of vascular endothelial 
growth factor (VEGF) and other key angiogenic factors and vascular permeability 
agents (Yoshida et al.  1997 ). The expression of these angiogenic factors is tightly 
regulated through the estrous cycle and early pregnancy (Ma et al.  2001 ) with a 
reduction of VEGF mRNA expression in hamsters after coitus occurring when sem-
inal fl uid signalling is perturbed by mating with accessory gland-defi cient males 
(Chow et al.  2003 ). Evidence of a role for seminal fl uid in angiogenesis is also 
demonstrated by studies in the horse and pig which show an increase in uterine 
vasodilation and oedema in the days following coitus (O’Leary et al.  2004 ; Bollwein 
et al.  2003 ). 

 Macrophage secreted products may also target the extracellular matrix of the 
endometrial stroma, which is remodelled during the decidualisation period (Aplin 
 2002 ). In particular, macrophage-secreted matrix metalloproteinases (MMPs) and 
tissue inhibitors of MMPs (TIMPs) coordinate their expression to contribute to this 
remodelling process (Robertson  2005 ). In rodents, MMPs and TIMPs are induced 
during the pre-implantation period (Das et al.  1997 ; Feng et al.  1998 ), with seminal 
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plasma postulated to contribute to their induction as the absence of accessory gland 
fl uid at coitus in the hamster is associated with a reduction in MMP2 at the implan-
tation site (Chow et al.  2003 ). 

 In addition to macrophages, seminal fl uid-induced dendritic cells may contribute 
to tissue remodelling in preparation for implantation. Uterine dendritic cells have 
been demonstrated to be crucial in decidua formation and maternal receptivity. 
Depletion of uterine dendritic cells around the period of implantation leads to 
impaired decidual formation through perturbed angiogenesis. This process was pos-
tulated to be regulated by dendritic cell soluble fms-like tyrosine kinase-1 (sFlt1) 
and transforming growth factor beta (TGFB) which promote coordinated blood ves-
sel maturation (Plaks et al.  2008 ). 

 Embryo attachment and implantation is a process requiring specifi c changes in 
the expression of integrins and mucins which function to allow close apposition 
and then adhesion between the blastocyst and implantation site (Aplin  1997 ). 
Fucosyltransferases, which modulate the expression of fucosylated structures 
involved in the attachment and implantation process, are defi cient when seminal 
plasma signalling is perturbed by surgical removal of the seminal vesicle from males 
(Jasper et al.  2011 ), suggesting that seminal plasma exposure contributes to this 
process. 

 Macrophages are implicated as cellular mediators transmitting the effects of 
seminal fl uid on endometrial receptivity. They are postulated to secrete molecules 
that target luminal epithelial cells to induce modifi cations to proteins involved in 
embryo attachment (Robertson  2005 ). In support of this, mouse macrophage- 
derived LIF and IL1B induce fucosyltransferases  Fut2  and  Fut4  required for embryo 
attachment and implantation (Jasper et al.  2011 ), and activity of fucosyltransferases 
is impaired when females are mated with seminal fl uid-defi cient males (Jasper et al. 
 2011 ). Studies in human tissues indicate a similar mechanism, where leukocytes 
infl uence the adhesive properties of uterine epithelial cells in vitro (Kosaka et al. 
 2003 ). In the cow, intrauterine administration of leukocytes may operate through a 
similar pathway to increase embryo implantation rates (Ideta et al.  2010 ).  

6.8     Synthesis of Embryotrophic Cytokines 

 A key role of the female tract response to seminal fl uid is the synthesis of embry-
otrophic cytokines that control the development of the pre-implantation embryo. 
Alterations to embryo programming may have a major infl uence on long-term 
 offspring health as small perturbations in blastomere number and inner cell mass/
trophectoderm allocation in the blastocyst are associated with an altered growth 
trajectory of the fetus and resulting offspring (Thompson et al.  2002 ). Embryos 
express cytokine receptors from conception until implantation with seminal fl uid- 
induced cytokines GMCSF, IL6, LIF, and MCSF all exerting direct effects on 
blastocyst cell number and viability, gene expression, and developmental compe-
tence (Robertson  2005 ). Prominent cytokine receptor pathways demonstrated to be 
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involved in pre-implantation embryo development include the phosphatidylinositol- 3 
kinase-protein kinase B (PI3K-AKT), Janus kinase/signal transducer and activator 
of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK) path-
ways. Depending on the cytokine, ligation may affect one or more of these signal 
transduction pathways to modify gene expression, metabolism, and differentiation, 
alter the epigenome, suppress the cell stress response, and ultimately impact blas-
tomere survival (Robertson et al.  2011 ). Cytokine effects have profound impact 
on embryo developmental competence and programming future developmental tra-
jectory, providing a pathway whereby the peri-conception environment affects the 
future growth of the fetus and phenotype of offspring after birth (Robertson et al. 
 2011 ; Sjoblom et al.  2005 ). 

 GMCSF, CSF1, IL6, and LIF are well-described examples of key embryotrophic 
cytokines induced in the uterus and oviduct by seminal fl uid contact (Bromfi eld et al. 
 2014 ). In mice, GMCSF targets the pre-implantation embryo to promote blastocyst 
formation and increase the number of viable blastomeres by inhibiting apoptosis and 
facilitating glucose uptake (Robertson et al.  2001 ) and GMCSF defi ciency compro-
mises blastocyst development by inducing stress response and apoptotic gene path-
ways (Robertson et al.  2001 ; Chin et al.  2009 ). In cattle embryos, GMCSF regulates 
genes involved in de novo methylation to infl uence epigenetic reprogramming 
(Loureiro et al.  2009 ).    IL6 regulates STAT3-dependent miRNAs that function to pro-
tect embryos from apoptosis (Shen et al.  2009 ) while neutralisation of LIF affects 
embryo implantation rates and fetoplacental development (Mitchell et al.  2002 ). 
Addition of CSF1 to embryo culture media improves embryo development (Pampfer 
et al.  1991 ) and reduced fertility in CSF1-defi cient mice may be due to adverse effects 
in blastocysts (Cohen et al.  1997a ). The contribution of seminal plasma to embryo 
development is illustrated by fi ndings that coitus with seminal plasma-defi cient males 
is associated with reduced cytokine synthesis and this is linked with a signifi cant 
reduction in the rate of cleavage to the 2-cell stage in zygotes and reduction in the 
development of blastocysts from 2-cell embryos (Bromfi eld et al.  2014 ). 

 In contrast to cytokines and growth factors that exert a positive infl uence on 
embryonic development, factors that have profound inhibitory effects on embryo 
development have also been identifi ed. Increased levels of apoptosis-inducing cyto-
kines TNF, interferon gamma (IFNG), and TNF-related apoptosis-inducing ligand 
(TRAIL) in the female reproductive tract following coitus are emerging as factors 
that cause pre-implantation embryonic loss or impair embryo development. TNF 
acts in vitro to increase the percentage of apoptotic blastomeres in the mouse 
(Fabian et al.  2007 ), while IFNG inhibits the embryotrophic factor GMCSF and 
also exerts direct inhibitory effects in mouse embryo culture (Robertson et al.  1992 ; 
Haimovici et al.  1988 ). TRAIL induces apoptosis in the pre-implantation embryo 
(Riley et al.  2004 ). Like the embryotrophic cytokines, these cytokines are regulated 
by seminal fl uid and particularly oviduct TRAIL expression is suppressed in 
response to seminal fl uid factors (Bromfi eld et al.  2014 ). 

 In the human, the embryotrophic cytokines GMCSF, IL6, and LIF are induced 
in cervical and endometrial epithelial cells in response to seminal plasma expo-
sure (Sharkey et al.  2012a ,  b ; Gutsche et al.  2003 ), but to date whether this occurs 
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in the higher reproductive tract in vivo has not been confi rmed. These cytokines 
are predicted to have a similar role in the human as in vitro culture of human 
embryos in GMCSF improves developmental outcomes through an increase in 
embryos reaching blastocyst stage, with earlier blastulation and increased inner 
cell mass and trophectoderm cell number (Sjoblom et al.  1999 ), followed by 
improved implantation rates and progression to healthy birth after IVF treatment 
(Ziebe et al.  2013 ). Due to the challenges in accessing appropriate tissues, it has 
not been possible to ascertain the extent to which expression of embryotrophic and 
embryotoxic cytokines responds to coital activity to infl uence human embryo 
development and implantation after natural conception. 

 The capacity for seminal fl uid to alter the balance of embryotrophic and embryo-
toxic cytokines provides a mechanism through which the female reproductive tract 
can refl ect signals from the male, to either support or impair progression of pre- 
implantation embryo development, and impart longer-term programming. The 
capacity to liberate embryotoxic cytokines such as TRAIL in the absence of suffi -
cient seminal fl uid suppression raises the prospect of maternal tract ‘quality con-
trol’. If proven to occur, this would be relevant in couples where altered seminal 
fl uid composition provides insuffi cient signalling factors (Sharkey et al.  2007 ) or 
where sexually transmitted infection alters the balance of seminal fl uid signals to 
induce a proinfl ammatory phenotype (Rasmussen et al.  1997 ). These changes may 
affect progression of these embryos as well as imparting effects on offspring pheno-
type and health in adult life (Bromfi eld et al.  2014 ; Sjoblom et al.  2005 ).  

6.9     Maternal Immune Tolerance 

 A critical component of the female tract response to seminal fl uid which is essential 
for ongoing pregnancy success is programming of the maternal immune system to 
respond to the presence of the genetically disparate fetus. Immune tolerance must 
exist from the very earliest time the embryo contacts the maternal tissues at implan-
tation. A combination of strategies contributes to the activation of maternal immune 
tolerance, with seminal fl uid providing antigens and cytokines that, in the correct 
immune environment, drive production of regulatory T cells (Trowsdale and Betz 
 2006 ; Robertson et al.  2009a ). 

 Seminal fl uid contains several antigens specifi c to individual males including 
class Ia, Ib, and II major histocompatibility complex (MHC) (Hutter and Dohr 
 1998 ) that can be presented by antigen-presenting cells (APCs) such as macro-
phages and dendritic cells recruited into the endometrium following exposure to 
seminal fl uid (Robertson et al.  1996 ; McMaster et al.  1992 ). These dendritic cells 
and macrophages in the presence of seminal fl uid factors prostaglandin E (PGE) 
and TGFB differentiate into cells that mediate tolerogenic immune responses (Blois 
et al.  2007 ; Jaiswal et al.  2012 ). However, not all APCs are tolerogenic as the 
immune environment at this stage of pregnancy is highly varied with both tolero-
genic and immunogenic cells present, demonstrating differing roles for these cells 
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during peri-conception (Jaiswal et al.  2012 ). The APCs are thought to take up pater-
nal antigens and either traffi c to the uterine draining lymph nodes or interact locally 
with resident uterine T cells driving activation and expansion of clonal subsets of 
Treg cells which recognise and appropriately respond to paternal/fetal antigens 
(Robertson et al.  2009a ). An antigen-specifi c T cell response has been demonstrated 
using a T cell receptor transgenic model with OVA as a model paternal antigen 
(Moldenhauer et al.  2009 ). The concept of seminal fl uid-induced tolerance of pater-
nal antigens is supported by experiments demonstrating prolonged survival of skin 
grafts of paternal origin in mated female mice (Lengerova and Vojtiskova  1966 ) and 
studies demonstrating tolerance towards tumor cells expressing the same MHC as 
the donor male (Robertson et al.  2009b ). 

 Treg cells operate as potent suppressors of infl ammation and cell-mediated 
immunity (Rudensky  2011 ). These cells act via a variety of mechanisms, generally 
involving the suppression of cytokine production and effector function in T cells, B 
cells, natural killer (NK) cells, dendritic cells, and macrophages (Sakaguchi  2000 ; 
Shevach  2002 ). In pregnancy, Treg cells play a critical role in mediating immune 
tolerance required for embryo implantation, with several studies demonstrating in 
the mouse that allogenic mating leads to fetal rejection unless suffi cient Treg cells 
are present in the endometrium in the pre- and peri-implantation phase (Aluvihare 
et al.  2004 ). In humans, Treg cells play a similar regulatory role, with an increase in 
pregnant women of circulating CD4+ CD25+ cells highly enriched for the signature 
Treg transcription factor forkhead box P3 (FOXP3) in early pregnancy. The number 
of these regulatory cells peaks during the second trimester before declining at term 
(Somerset et al.  2004 ). 

 The presence of TGFB and PGE in seminal fl uid confers immune-deviating activ-
ity that drives immune cells into tolerogenic phenotypes. Both factors have been 
linked with the induction of naïve T cells into suppressor T cells expressing  Foxp3  
(Chen et al.  2003 ; Baratelli et al.  2005 ) and exogenous TGFB delivery at conception 
is shown to boost vaginal Treg cell numbers which acts to reduce fetal loss in the 
abortion prone CBA/J x DBA/2 J model (Clark et al.  2008 ). Because of poor avail-
ability of suitable reagents for Treg cells, they have not been extensively studied in 
other species, other than in the cat where there is evidence that an increase in Treg 
cells in early pregnancy occurs after seminal fl uid exposure (Lockett et al.  2010 ).  

6.10     Ovulation and Corpus Luteum Formation 

 As well as the endometrium, seminal fl uid exposure at coitus has effects in the 
ovary. This effect was fi rst described in camelids, where effects of seminal plasma 
on induction of ovulation are well known (Li and Zhao  2004 ). It is challenging to 
conceive how seminal fl uid moieties could reach the ovary via the oviduct. An alter-
native pathway for seminal fl uid effects on ovarian function may be due to a unique 
countercurrent exchange mechanism through which prostaglandins and other small 
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molecules can be transmitted from the uterine vein to the ovarian artery (Krzymowski 
et al.  1989 ). In the presence of a mature follicle, ovulation can be induced by natural 
coitus, artifi cial insemination, or intramuscular injection of seminal plasma, but not 
washed sperm. The ovulation-inducing factor in camelid seminal plasma has been 
identifi ed as the highly conserved beta-nerve growth factor, which acts via an endo-
crine mechanism targeting the hypothalamic–pituitary axis to induce LH release and 
ovulation (Ratto et al.  2012 ). This so-called ovulation-inducing factor (OIF) is pres-
ent in other species demonstrating induced ovulation (koalas and rabbits). Recent 
studies indicate that OIF in seminal plasma is conserved among species, including 
cattle, horses, pigs, mice, and other species considered to be spontaneous ovulators 
(Bogle et al.  2011 ; Ratto et al.  2006 ). Additional studies showing that OIF can 
induce ovulation in prepubertal mice (Bogle et al.  2011 ) and alter ovarian follicular 
wave dynamics in cows (Tanco et al.  2012 ) imply this factor may have broader rel-
evance than originally thought (Ratto et al.  2012 ). Seminal plasma- mediated effects 
on ovarian function are clearly demonstrated in pigs, where a reduction in the inter-
val between LH surge and ovulation, followed by elevated plasma progesterone 
concentration over the pre-implantation phase, occurs when seminal plasma is 
instilled into the uterus just prior to ovulation (Waberski et al.  1997 ; O’Leary et al. 
 2001 ). 

 As well as endocrine actions, the effects of seminal fl uid on ovarian function in 
rodents and pigs may be mediated through local mechanisms involving stimulation 
of macrophage populations. Ovarian macrophages contribute to regulation of folli-
cle development, ovulation, and post-ovulatory tissue remodelling associated with 
the conversion of the ruptured follicle into the corpus luteum (Cohen et al.  1997b ; 
Care et al.  2013 ). Ovarian macrophages are present in the theca of developing fol-
licles and their numbers increase at ovulation (Brannstrom et al.  1993 ). These mac-
rophages support follicle growth, ovulation, and vascular homeostasis (Brannstrom 
et al.  1993 ; Wu et al.  2004 ; Van der Hoek et al.  2000 ; Turner et al.  2011 ). In both 
rodents and humans, macrophages migrate into the developing corpora lutea imme-
diately after ovulation (Cohen et al.  1997b ; Hellberg et al.  1991 ; Brannstrom et al. 
 1994a ,  b ) where they infl uence steroidogenic function of luteal cells as well as tis-
sue remodelling after luteal regression (Kirsch et al.  1981 ; Nelson et al.  1992 ). 

 In mice, seminal plasma infl uences macrophage recruitment into the ovary, as 
mating with seminal plasma-defi cient males results in fewer macrophages in the 
corpus luteum compared to mating with seminal plasma suffi cient males (Gangnuss 
et al.  2004 ). Cytokines that are induced by seminal fl uid in the uterus such as MCP1, 
MCSF, and GMCSF (Robertson  2005 ) also act as chemoattractants to recruit mac-
rophages into the ovary (Cohen et al.  1997b ; Jasper et al.  2000 ; Townson et al. 
 1996 ), although whether these cytokines are induced in the ovary by seminal fl uid 
remains to be examined. Serum progesterone levels on days 1, 2, and 4 of pregnancy 
in mice are not different with seminal plasma defi ciency (Gangnuss et al.  2004 ). 
However, a threshold level of macrophage activity is essential for normal corpus 
luteum development as macrophage depletion disrupts the luteal microvascular net-
work and alters expression of VEGFs required to support luteal angiogenesis in the 
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peri-implantation period (Care et al.  2013 ). The result is increased infl ammatory and 
apoptotic gene expression, decreased steroidogenic gene expression, and infertility 
which can be rescued by exogenous progesterone administration (Care et al.  2013 ).  

6.11     Active Factors in Seminal Fluid 

 To further understand the function of seminal fl uid at coitus, studies have aimed to 
identify the components of the ejaculate that induce the female tract response. Early 
studies in the mouse demonstrated through removal of the male accessory glands 
that the seminal plasma fraction contains many of the active factors, as its absence 
resulted in a reduced production of GMCSF and reduced leukocyte infi ltration in 
the endometrium (Robertson et al.  1996 ). Further analysis of the high molecular 
weight component of mouse seminal fl uid that induced these changes was able to 
identify TGFB as the principal trigger (Tremellen et al.  1998 ). These fi ndings have 
since been confi rmed in the human, where high levels of TGFB in seminal plasma 
contribute to the peri-conception infl ammatory response by inducing GMCSF, 
IL1B, IL6, and LIF in human cervical epithelial and endometrial epithelial cells 
in vitro (Sharkey et al.  2012a ; Gutsche et al.  2003 ). Secreted TGFB is initially pro-
duced in a precursor dimeric form where it is activated in the female tract after 
insemination as a consequence of the low pH, enzymatic activation with plasmin or 
interaction of the latent TGFB with thrombospondin-1 or avb6 integrins (Robertson 
 2005 ). In the mouse there is approximately 30 ng/ml TGFB1 in the ejaculate 
(Robertson et al.  2002 ) while in the human the TGFB concentrations are 219 ng/ml 
TGFB1, 5 ng/ml TGFB2, and 172 ng/ml TGFB3 (Sharkey et al.  2012a ). TGFB is 
also detected in the seminal plasma of pigs (O’Leary et al.  2011 ) and sheep (Scott 
et al.  2006 ), with the pig carrying similar concentrations [150 ng/ml TGFB1 
(O’Leary et al.  2011 )] to that of the human and mouse. There is no correlation 
between TGFB and fertility (Loras et al.  1999 ), but studies in the seminal plasma of 
fertile men show that there are substantial differences in TGFB concentrations 
between individuals (Sharkey et al.  2012a ). 

 In addition to TGFB, we have recently identifi ed that ligands for TLR4 contrib-
ute to the peri-conception infl ammatory response in the mouse. In these studies, the 
induction of colony-stimulating factor 3 ( Csf3 ),  Cxcl1 , and  Cxcl2  was shown to 
require the presence of TLR4 while the TLR4 signalling pathway may also contrib-
ute to the induction of  Il1a ,  Tnf , and  Csf2  (Schjenken et al.  2015 ). While it has been 
speculated that bacterial products including endotoxin may contribute to the capac-
ity of seminal fl uid to interact with the female reproductive tract (Schaefer et al. 
 2004 ), the amount of endotoxin detectable in the female reproductive tract of mice 
following coitus (Schjenken et al.  2015 ) and in human seminal fl uid (Sharkey, in 
preparation) is insuffi cient to explain the induction of TLR4 regulated cytokines. 
This suggests that other TLR4 ligands such as the endogenous danger-associated 
molecular patterns (DAMPs) contribute to eliciting the female response; however, 
these studies are yet to be completed. DAMPS have previously been identifi ed in 
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seminal fl uid with beta-defensin-2 (Narciandi et al.  2014 ), fi bronectin (Lilja et al. 
 1987 ), heat shock proteins (Rego et al.  2014 ; Pilch and Mann  2006 ), hyaluronidase 
(Geipel et al.  1992 ; Shimada et al.  2008 ), and S100 proteins (Rego et al.  2014 ; 
Donato et al.  2013 ) all being present. 

 In line with the functions of seminal fl uid, activation of TLR4 signalling may 
contribute to tolerogenic immune responses (Conroy et al.  2008 ), as studies have 
demonstrated that CD45RB low  CD25 +  regulatory T cells can express TLR4 and 
enhance suppressive function following TLR4 ligation (Caramalho et al.  2003 ), 
dendritic cells from TLR4-defi cient mice have reduced capacity to produce IL10 in 
response to TLR4 ligation and have impaired expansion of Treg cells (Higgins et al. 
 2003 ), and Treg cells cultured in the presence of dendritic cells can induce trypto-
phan catabolism which enhances tolerogenic dendritic cell production (Fallarino 
et al.  2015 ). More detailed studies are required to understand how disruption of 
TLR4 signalling may affect the female response to seminal fl uid in the mouse and 
other species and how in turn offspring health might be affected. 

 In humans, PGE in seminal fl uid are postulated to act as signalling agents, most 
notably those in the 19-hydroxy (19-OH) form (Templeton et al.  1978 ). While PGE 
is detectable in equine seminal plasma (Claus et al.  1992 ), it is undetectable in 
rodent and porcine samples. In the human, extremely high levels of PGE are 
detected in seminal fl uid, with 300 μM of the 19-OH form detectable (Templeton 
et al.  1978 ). Due to the immunosuppressive nature of 19-OH PGE, it was postulated 
that seminal prostaglandins may protect sperm from immunological damage in the 
male and protect the female against sensitisation to sperm antigens (James and 
Hargreave  1984 ; Alexander and Anderson  1987 ). In vitro experiments using human 
cervical explants stimulated with 19-OH PGE demonstrated an induction of IL8 and 
suppression of the anti-infl ammatory molecule, secretory leukocyte protease inhibi-
tor (Denison et al.  1999 ). Seminal plasma PGE2 has also been linked to facilitate 
tumorigenesis- angiogenesis in reproductive tract cells through activation of fi bro-
blast growth factor 2, COX2, and VEGF expression and E series prostanoid-2 and 
-4 receptor, EGF receptor, and ERK1/2 signalling pathways (Battersby et al.  2007 ; 
Muller et al.  2006 ). Further, PGE has been demonstrated in the human to induce a 
regulatory phenotype in naïve CD4 + CD25 −  T cells, enhance the in vitro inhibitory 
function of Treg cells, and induce expression of Foxp3 (Baratelli et al.  2005 ) which 
is consistent with the female tract response to seminal fl uid. 

 Other factors postulated to contribute to seminal fl uid signalling include IL8, 
which is present in seminal plasma of healthy human donors at 1456 pg/ml. 
Treatment of human endometrial epithelial cells in vitro with recombinant IL8 at 
physiological levels can induce  IL1B ,  IL6 , and  LIF  (Gutsche et al.  2003 ). Outside of 
mice and humans, other novel seminal fl uid signalling molecules that have been 
examined are porcine sperm adhesion proteins (PSP)1 and PSP2, which contribute 
in part to the infl ux of neutrophils in pigs and can preserve sperm viability, motility, 
and mitochondrial activity (Rodriguez-Martinez et al.  2010 ; Caballero et al.  2006 ), 
and cysteine-rich secretory protein-3 (CRISP3) in horses, which mediates the inter-
action between sperm and neutrophils (Doty et al.  2011 ). Positive correlations 
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between specifi c seminal plasma proteins and fertility have been observed in the 
horse (Brandon et al.  1999 ) and bull (Killian et al.  1993 ). 

 Despite the evidence showing an integral role for seminal plasma in the signal-
ling process, it is becoming apparent that not all seminal fl uid effects can be 
accounted for by the soluble fraction, raising the prospect that sperm also communi-
cate with female reproductive tract cells. In domestic animal species, there is exten-
sive evidence that sperm is critical to the infl ammatory response and may be required 
to interact with seminal plasma to regulate the infl ux and function of immune cells 
(Schjenken and Robertson  2014 ). In the human and mouse, while the literature has 
focused on seminal plasma, there is some evidence for a sperm signalling compo-
nent. In the mouse, sperm has been shown to contribute to the peri- conception 
immune environment as  Foxp3  expression requires the presence of both sperm and 
seminal plasma for its complete induction (Guerin et al.  2011 ) while in the human, 
AI of human sperm into the cervix results in an infl ux of leukocytes (Pandya and 
Cohen  1985 ; Thompson et al.  1992 ). A function for sperm in the signalling process 
is further supported by studies in the mouse showing that sperm can form intimate 
associations with cells of the female reproductive tract following coitus (Reid  1965 ). 
Non-fertilising sperm can be taken up by female tissues, potentially by phagocyto-
sis, where sperm-associated transcripts can be identifi ed in the uterus and other distal 
sites, including the uterine draining lymph nodes for several days post-coitus 
(Watson et al.  1983 ). Similar interactions between sperm and the female reproduc-
tive tract can be seen in other species, including human, pigs, cow, dog, cats, bats, 
lizards, and even some marsupials (Suarez and Pacey  2006 ; Murakami et al.  1985 ; 
Rasweiler  1987 ; Nogueira et al.  2011 ; Pacey et al.  1995 ; Taylor et al.  2008 ; 
Rijsselaere et al.  2004 ; Ignotz et al.  2001 ; Breed et al.  1989 ). Seminal plasma pro-
teins contribute to these interactions as bovine seminal plasma (BSP) proteins coat 
bull sperm and mediate interactions between sperm and oviductal epithelial cells to 
assist in the formation of sperm storage reservoirs, which function to maintain fertil-
ity of sperm until ovulation (Suarez  2008 ). In addition to the formation of storage 
reservoirs, these interactions assist in the clearance of sperm at coitus. Additionally, 
these interactions may potentially be a mechanism by which sperm communicates 
with the female reproductive tract to transmit antigen and facilitate pregnancy suc-
cess; however, this remains to be determined. 

 In contrast to signalling molecules that promote successful pregnancy, there is 
also evidence that seminal fl uid may contain factors that inhibit seminal fl uid signal-
ling. The type 1 cytokine IFNG can be detected in the seminal fl uid of both mouse 
(~50 pg/ml) (Gopichandran et al.  2006 ) and human (range: 0–130 pg/ml) (Politch 
et al.  2007 ) and in the mouse has been shown to inhibit the tolerance inducing prop-
erties of TGFB during early pregnancy (Glynn et al.  2004 ). Whether IFNG levels are 
altered in the seminal fl uid of infertile or subfertile men remains to be determined. 

 While several active factors that contribute to seminal fl uid signalling have been 
identifi ed, future studies will be required to understand in more detail how these 
factors interact to regulate the female response. In addition, if sperm contain signal-
ling factors as has been postulated, studies will be required to elucidate these 
 factors and their function. Additional factors beyond those discussed here no doubt 
exist. Exciting candidates include CD52, transglutaminase 4, and seminal vesicle 
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secretion 2. CD52 is present in soluble form in seminal plasma and on the sperm 
surface (Koyama et al.  2009 ), which is recently reported to be a potent immune-
regulatory signal driving induction of antigen-activated suppressor T cells, distinct 
from FOXP3 +  Treg cells, from CD4 precursors (Bandala-Sanchez et al.  2013 ). 
Transglutaminase 4 and seminal vesicle secretion 2 are proteins which are known to 
play a critical role in copulatory plug formation (Dean  2013 ; Kawano et al.  2014 ). 
Interestingly, the absence of these seminal proteins disrupts not only plug formation 
but also fertility. Sperm from ejaculates lacking transglutaminase 4 fertilised at nor-
mal rates but were signifi cantly less likely to give birth to a litter (Dean  2013 ). 
Sperm from seminal vesicle secretion 2-defi cient mice are disrupted by uterine- 
derived cytotoxic factors (Kawano et al.  2014 ), suggesting that seminal plasma 
plays a protective role in sperm function. 

 Consideration of species-specifi c differences is integral as it is highly likely, due to 
the different sites of semen deposition, that different species will utilise different active 
factors. Within a species, fl uctuations in the seminal fl uid profi le between individuals, 
or even within an individual, may infl uence the female response leading to altered out-
comes for offspring depending on male health and environmental exposures.  

6.12     Seminal Fluid and Programming of Offspring Health 

 The studies detailed above document a complex role for seminal fl uid in preparing 
the female reproductive tract for pregnancy, particularly through regulating the 
maternal immune response to tolerate exposure to paternal antigens. These changes 
not only infl uence the period of early pregnancy but also have the potential to infl u-
ence fetal development and offspring health. It is well documented that the in utero 
environment is a major determinant in programming how adult individuals respond 
to stressors and challenge, and the risk of disease later in life (Godfrey et al.  2010 ). 
Increasingly the peri-conception period is identifi ed as the most sensitive for imprint-
ing later life consequences, and the health and experiences of both the mother and 
father even prior to conception contribute through effects transmitted by the male 
and female gametes (Lane et al.  2014 ). There is evidence that altered conditions at 
conception can induce adaptations to protect the fetus from immediate effects, but a 
consequence of these changes is an increased risk of later metabolic disease (Barker 
and Clark  1997 ; Hanson and Gluckman  2005 ).    Studies on the paternal contribution 
towards health and disease have identifi ed smoking, age, environmental exposures, 
and obesity being linked to later offspring illness (Fullston et al.  2012 ), with sperm 
transmission of epigenetic mechanisms including non-coding RNAs (Fullston et al. 
 2012 ; Liu et al.  2012 ) being postulated to contribute to these changes. 

 As well as a contribution from sperm, there is the prospect that seminal fl uid 
can contribute at fertilisation to infl uence the peri-conception environment in turn 
affecting later development and offspring health (Lane et al.  2014 ). Some evi-
dence supporting a role for seminal plasma through its infl uence over the female 
reproductive tract at coitus is emerging. In mice, Bromfi eld et al. (Bromfi eld et al. 
 2014 ) demonstrate that conception in the absence of seminal plasma using mice 
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surgically rendered seminal vesicle defi cient (SVX) leads to a reduction in fecun-
dity and altered fetal and neonatal outcomes. Mice mated with SVX males had a 
signifi cant reduction in progression to pregnancy and fewer implanting embryos 
compared to intact mated females. Changes in development were observed as 
early as the eight- cell stage, where most embryos from SVX fathers were devel-
opmentally delayed. Prior to birth, changes in phenotype were evident as placental 
hypertrophy. Male offspring were observed to have altered growth trajectory and 
metabolic parameters with evidence of obesity, distorted metabolic hormones, 
reduced glucose tolerance, and hypertension. Embryo transfer experiments con-
fi rmed the role of seminal plasma in programming altered phenotype as increased 
adiposity was also observed in adult male progeny when normal 2-cell embryos 
were transferred to females mated with SVX males (Bromfi eld et al.  2014 ). 

 Similar studies have been conducted in the golden hamster, where ablation of the 
accessory sex glands (ASG), which produce seminal plasma, delayed entry of the 
zygote into the fi rst cell cycle (Ying and Chow  1998 ), reduced pre-implantation 
embryonic cell number (Chan et al.  2001 ), resulted in an early transit of the embryo 
into the uterus from the oviduct (Wong et al.  2008 ), decreased the rate of implanta-
tion, and ultimately resulted in embryo death (Jiang et al.  2001 ). The offspring of 
fathers defi cient in seminal plasma exhibited altered postnatal growth and elevated 
anxiety (Wong et al.  2007 ). It is postulated that these changes may be associated 
with epigenetic mechanisms as cleavage stage embryos from females mated with 
ASG-defi cient males showed reduced acetylation and altered methylation kinetics 
which were associated with dysregulated expression of the paternally expressed 
 Igf2  and  Dlk1  (Jiang et al.  2001 ). 

 In the human, there is no clear direct evidence implicating altered seminal fl uid 
signalling activity with long-term health of offspring. However, there are clinical 
observations that are consistent with a similar function (discussed below). This 
means that alterations to the content of seminal fl uid outside of the normal range 
may not manifest as impaired fertility, but could potentially alter fetal development 
and impart long-term consequences for offspring health. Carefully designed studies 
will be required to evaluate this, as effects on offspring can be subtle and require 
large populations to detect. Additionally, it will be important to distinguish effects 
of seminal fl uid factors exerted via the female reproductive tract from those exerted 
through effects on sperm fertilising capacity and epigenetic status.  

6.13     Clinical Implications of Altered Seminal Fluid 
Signalling 

 These considerations raise the question of the extent to which seminal fl uid expo-
sure may infl uence pregnancy outcomes in humans. The success of IVF even in 
women without male partners demonstrates that seminal plasma is not an absolute 
requirement for pregnancy. Rather, evidence suggests that rather than being an 
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absolute prerequisite, seminal plasma infl uences the success and quality of 
 pregnancy outcome (Robertson  2005 ). There are few defi nitive studies in humans 
focussed on evaluating effects of seminal fl uid, but clinical studies point to a con-
sistent benefi cial effect in improving the chance of conception and protecting from 
immune-mediated gestational disorders such as preeclampsia. 

 Preeclampsia is characterised by a signifi cant reduction in peripheral blood 
CD4 + CD25 high  T regulatory cells and decidual Foxp3-positive cells within the CD3 +  
population (Sasaki et al.  2007 ). The altered Treg cell numbers may in part be due to 
altered seminal fl uid function, with extensive evidence pointing to an important role 
for TGFB in regulating human Treg cell reactivity and autoimmunity (Rubtsov and 
Rudensky  2007 ). Clinical studies show that preeclampsia is more common in situa-
tions where limited exposure to the conceiving partners seminal fl uid has occurred—
including fi rst conception, after a short period of cohabitation, when barrier 
contraception has been used, or when multiparous mothers conceive with a new 
male partner [reviewed in Schjenken and Robertson ( 2014 )]. Treg cell numbers and 
function are found to be altered in the peripheral blood and decidua of pregnant 
women who have spontaneous abortions compared to induced abortions (Sasaki 
et al.  2004 ; Arruvito et al.  2007 ), while  FOXP3  expression, used as a surrogate 
measure of Treg cells, is reduced in the endometrium of women with primary unex-
plained infertility (Jasper et al.  2006 ). 

 Data from ART further support a protective function for seminal fl uid. The 
absence of seminal plasma in the in vivo setting has been associated with higher 
rates of implantation failure and decreases in embryo quality [reviewed in Schjenken 
and Robertson ( 2014 )]. Exposure to semen around the time of embryo transfer is 
demonstrated to improve embryo viability 6–8 weeks post-transfer (Tremellen et al. 
 2000 ). Given the emerging recognition that IVF is linked with reduced birth weights 
and impaired metabolic health outcomes for IVF children (Hart and Norman  2013 ), 
and the overlap between these changes and the phenotypes of offspring conceived 
without seminal fl uid in mouse studies (Bromfi eld et al.  2014 ), it would seem pru-
dent to more formally investigate the impact of seminal fl uid on perinatal outcome 
and offspring health in human IVF. One diffi culty with advising couples to have 
coitus at the time of embryo transfer is the small but real prospect of multiple preg-
nancy due to natural conception, but this would be expected to be a small risk in 
couples experiencing long-term infertility.  

6.14     Conclusions 

 Seminal fl uid signalling appears to play an integral role in eliciting infl ammatory 
changes in the female reproductive tract following coitus in all species examined so 
far, despite differences in sites of semen deposition and reproductive physiology. 
This implies that the capacity for seminal fl uid to exert effects in the female repro-
ductive tract has biological value beyond the support of sperm. The enormous varia-
tion between mammalian species in seminal fl uid volume, tissue origin and 
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composition, and actions in the female implies rapid evolution that is driven by 
sexual selection, analogous to that which occurs in invertebrate species. For sexual 
selection to occur there must be variation in the female response that impacts the 
likelihood of progression to pregnancy. The array of effects induced by seminal 
fl uid that impact conception, embryo development, implantation, and fetal growth 
together impact fertility and fecundity and ultimately infl uence offspring survival 
and health. Signalling factors within seminal fl uid, in particular in the seminal 
plasma fraction, have been identifi ed, but there are clearly other, as yet unknown 
factors that contribute to signalling in the female tract, potentially including sperm. 

 Despite the advances that have been made in understanding the contribution of 
seminal fl uid, there is still much to learn. In particular, the contribution of seminal 
fl uid to offspring phenotype requires further study and the knowledge to be gained 
will have major implications in human and animal ART, where seminal fl uid signal-
ling is often overlooked or avoided. In humans there are substantial variations in 
seminal fl uid profi les, but the implications and causes of this are not known. Whether 
these variations, or the presence of conditions such as reproductive tract infection, 
affect the capacity of seminal fl uid to induce the appropriate response and ulti-
mately affect male fertility, pregnancy health, or even offspring phenotype remains 
to be understood. Ultimately, a better understanding of seminal fl uid signalling may 
improve success rates and outcomes of human IVF, and yield novel therapies for 
infertility and pathologies of pregnancy.   
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    Chapter 7   
 Role of Seminal Plasma in Human Female 
Reproductive Failure: Immunomodulation, 
Infl ammation, and Infections 

                Deborah     J.     Anderson       and     Joseph     A.     Politch    

    Abstract     Human seminal plasma contains factors that can regulate the female 
immune system and potentially promote reproductive fi tness. Adverse effects on 
fertility and pregnancy may occur when seminal plasma provides insuffi cient, 
excessive, or altered signals or when the female partner is incapable of receiving 
these signals.  

  Keywords     Seminal plasma   •   Prostate   •   Seminal vesicles   •   Vaginal epithelium   • 
  Endometrium   •   Cytokines   •   TGF-beta   •   PGE  

     Seminal plasma can theoretically affect the reproductive fi tness of a female sexual 
partner in a number of ways: (1) in healthy couples, normal components of seminal 
plasma such as immunomodulatory, proinfl ammatory, and growth factors may posi-
tively impact the female reproductive tract by inducing tolerance and supporting 
early pregnancy; (2) the immunomodulatory/proinfl ammatory effects of seminal 
plasma thought to enhance fertility and early fetal survival may also predispose 
women to genital infections which could lead to reproductive failure; (3) alterations 
in the composition of semen in male partners with pathologic conditions such as 
genital infections could have detrimental effects on female reproductive function 
by providing insuffi cient, excessive, or altered signals. Much of the research on 
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benefi cial effects of seminal plasma on fertility has been conducted in animal mod-
els and is reviewed elsewhere in this issue. This chapter will focus on human studies 
and will address potential effects of seminal plasma on human female reproduction. 
Specifi cally, we will review the origins and concentrations of immunomodulatory/
proinfl ammatory factors in human seminal plasma in health and disease, their 
effects on immune defense in the female genital tract that may promote fertility and 
fetal well-being, and mechanisms whereby these factors may directly or indirectly 
contribute to female reproductive failure. 

7.1     Tissue Origins of Seminal Plasma Components 

 The male genital tract is contained within an epithelial barrier system that normally 
limits the penetration of components from the peripheral blood and surrounding 
tissues (Anderson and Pudney  2005 ). Therefore, most components of the semen are 
derived from organs that comprise the male genital tract. Recent proteomics studies 
indicate that there are over 900 proteins in human seminal plasma (Rodriguez- 
Martinez et al.  2011 ; Cadavid et al.  2014 ). Most of the seminal plasma volume is 
produced in the seminal vesicles (65–75 %) and prostate (25–35 %) (Mann  1954 ). 
Several of the principal organs contribute specifi c immunomodulatory seminal 
plasma components which will be discussed in more detail below.    The epididymis 
produces soluble HLA-G (Rajagopalan et al.  2006 ) and CD52g (Norton et al.  2002 ); 
the seminal vesicles are a principle source of prostaglandins (Kelley  1981 ) and 
TGF-β (Robertson et al.  2002 ); the prostate also produces TGF-β (Pannek et al. 
 1999 ) along with large amounts of exosomes, subcellular microvesicles enriched in 
bioactive components including cytokines and small RNAs (Burden et al.  2006 ; 
Vojtech et al.  2014 ). Local antibody production in the male genital tract occurs pri-
marily in the penile urethra (Pudney and Anderson  2011 ). Other important compo-
nents of semen, such as cytokines, chemokines, and mucins, are produced by 
epithelial, immune, and stromal cells throughout the genital tract (Anderson and 
Pudney  2005 ) (Fig.  7.1 ).   

7.2     Benefi cial Effects of Immunomodulatory 
and Proinfl ammatory Factors in Human Seminal Plasma 

 Seminal plasma contains very high concentrations of two potent immunomodula-
tory factors, TGF-β and PGE, which may promote female fertility by suppressing 
natural immune responses to sperm and the semi-allogeneic fetus. Humoral and 
cellular immunity to sperm and embryos have been associated with infertility and 
miscarriage (Kokcu et al.  2012 ; Hill  1995 ; Raghupathy  1997 ). The immunomodula-
tory roles of seminal TGF-β and PGE were recently reviewed in detail by Robertson 
( 2013 ) and Doncel ( 2014 ). TGF-β is a ubiquitous pleiotropic immunomodulatory 
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factor that has been implicated as a key factor in the modulation of host defense 
(Wahl et al.  2006 ; Gorelik and Flavell  2002 ). Its potent immunoregulatory activity 
became evident from studies in Tgfb1 and Tgfbr1 knockout mice (mice without 
TGF-β or the TGF-β receptor), which develop lethal infl ammatory disorders early in 
life (Kulkarni et al.  1993 ; Marie et al.  2006 ; Shull et al.  1992 ). Three isoforms of 
TGF-β are present in human seminal plasma (TGF-β1, TGF-β2, and TGF-β3); they 
exist primarily in latent form until activation in the female genital tract by proteases 
and acid pH (   Robertson et al.  2002 ). TGF-β induces stimulatory or inhibitory effects 
in human T cells depending on the T cell differentiation status and the stimulatory 
conditions (Oh and Li  2013 ). The fi rst evidence that TGF-β plays a critical role at 
mucosal sites was provided by early studies on TGF-β signaling in the intestine 
showing that induction of regulatory T cells (Tregs) by TGF-β promoted immuno-
logical tolerance to food antigens by active control of innate and adaptive immune 
responses (Harrison and Powrie  2013 ). TGF-β has been suggested to be one of the 
major factors inducing immune tolerance in the female genital tract by inducing dif-
ferentiation of Treg cells and suppressing the activity of natural killer cells (Robertson 
et al.  2002 ), thereby suppressing immunity to antigens expressed on sperm and the 
implanting embryo. TGF-β also upregulates the expression of proinfl ammatory 
cytokines and chemokines in epithelial cells from the female reproductive tract 
which could stimulate cell growth and angiogenesis to support embryo implantation 
(Sharkey et al.  2012a ) and thus be benefi cial to early events in pregnancy. PGE is 
another potent immunomodulatory factor in semen, capable of modulating immune 
functions on multiple levels (Quayle et al.  1989 ). The concentration of PGE in semi-
nal plasma is several orders of magnitude higher than that in blood plasma, although 
there is a high degree of interindividual variation (Templeton et al.  1978 ). PGE sup-
presses macrophage and neutrophil function and the cytotoxic activity of T lympho-
cytes and natural killer cells and upregulates the infl ammatory mediator Cox 2 in 
vaginal epithelial cells (Templeton et al.  1978 ). Kelley et al. showed that PGE 
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  Fig. 7.1    Origin of seminal plasma components       

 

7 Role of Seminal Plasma in Human Female Reproductive Failure…



162

exposure results in upregulated IL-10 and downregulated IL-12 production, shifting 
the T cell response from a Th1 (cell-mediated immunity (CMI) dominant) to Th2 
(humoral immunity dominant) immune response (Kelley  1981 ). Soluble HLA-G is 
also present in semen and has been proposed to suppress adverse NK cell activity 
directed against invading cytotrophoblast (Rajagopalan et al.  2006 ). CD52g, a 
sperm-coating glycoprotein derived from the epididymis, may also play an impor-
tant role in preventing antisperm immunity and infertility, although it can itself be a 
target of antisperm antibodies in some infertility patients (Norton et al.  2002 ). 
Seminal plasma also contains high concentrations of proinfl ammatory cytokines and 
chemokines that could affect fertility by recruiting and activating immune cells in 
the reproductive tissues and stimulating the production of factors that stimulate cell 
growth and angiogenesis (Politch et al.  2007 ). Specifi cally, seminal plasma has very 
high concentrations of IL-7, a hematopoietic growth factor that promotes the prolif-
eration of lymphoid progenitors, B cell maturation, and T and NK cell survival (Fry 
and Mackall  2005 ), and three chemokines, SDF-1, MCP-1, and IL-8, which may 
recruit leukocytes to the insemination site to participate in immune defense and 
scavenger functions. The concentrations and ranges of principal immunomodulatory 
and proinfl ammatory factors in semen are provided in Table  7.1 . Unpublished data 

   Table 7.1    Concentrations of selected components in normal semen      

 Component  Concentration  References 

  Immunomodulatory factors  
 TGF-β1  Sharkey et al. ( 2012a ) 

 Total  219.3 ± 13.4 ng/ml a  
 Bioactive (% total)  2.3 ± 0.4 ng/ml a  (1.2 %) 

 TGF-β2 
 Total  5.3 ± 0.7 ng/ml a  
 Bioactive (% total)  0.25 ± 0.04 ng/ml a  (5.3 %) 

 TGF-β3 
 Total  172.2 ± 32.8 ng/ml a  
 Bioactive (% total)  3.5 ± 1.2 ng/ml a  (1.8 %) 

 PGE-1  7.0 ± 6.0 μg/ml a   Gerozissis et al. ( 1982 ) 
 PGE-2  14.0 ± 11.0 μg/ml a  
 PGF-1a  1.0 ± 0.7 μg/ml a  
 PGF-2a  2.0 ± 2.0 μg/ml a  
 IL-7  2,365.8 (1,109.5–3,985.5) pg/ml b   Politch et al. ( 2007 ) 
 HLA-G  82 (29–1,161) U/ml c   Dahl et al. ( 2014 ) 
 Exosomes  ~1 Trillion/ejaculate  Vojtech et al. ( 2014 ) 
  Chemokines  
 MCP-1  3.3 (0.3–81.5) ng/ml b   Politch et al. ( 2007 ) 
 IL-8  1.6 (0.4–14.7) ng/ml b  
 SDF-1α  5.1 (ND–18.0) ng/ml b  
  Proinfl ammatory cytokines  
 TNF-α  1.5 (ND–40.3) pg/ml b   Politch et al. ( 2007 ) 
 GM-CSF  1.5 (ND–1,190.6) pg/ml b  

   a Mean ± SE 
  b Geometric mean (range) 
  c Median (range)  
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from our laboratory indicate that TGF-β levels are decreased and IL-8 levels are 
signifi cantly increased in semen from men with leukocytospermia (male genital 
infl ammation) (Politch J, personal communication).

   An exciting new area of research is the study of seminal exosomes. These highly 
abundant subcellular microvesicles, produced primarily by the prostate but also in 
the epididymis and seminal vesicles, are enriched in bioactive components includ-
ing cytokines and small RNAs (miRNA, YRNA, and tRNA) and may play an impor-
tant role in the fertilization and intercellular communication in the genital tract 
(Burden et al.  2006 ; Vojtech et al.  2014 ; Li et al.  2013 ). It is estimated that approxi-
mately one trillion exosomes are present in a human ejaculate. These small vesicles 
readily fuse with the plasma membrane of sperm and other cell types to deliver 
important signaling molecules. A number of immune-related mRNAs are targeted 
by miRNAs in seminal exosomes; whether miRNAs can be delivered by seminal 
exosomes in suffi cient quantity to target genes and change cellular functions in the 
vaginal immune cell population is unknown (Vojtech et al.  2014 ). They have been 
shown to play a direct role in antiviral immune defense (Madison et al.  2014 ).  

7.3     Evidence for Effects of Seminal Plasma on the Human 
Female Reproductive Tract 

 Recently, a meta-analysis was conducted on the role of seminal plasma for improved 
outcomes during in vitro fertilization. The outcome of IVF treatment in patients 
exposed to seminal plasma near the time of oocyte pickup or embryo transfer was 
compared to that of controls with no exposure to seminal plasma (a total of 2,204 
patients in seven randomized control trials). They found a statistically signifi cant 
improvement in the clinical pregnancy rate after seminal plasma exposure (RR 1.24, 
 p  = 0.003), but no improvement in the ongoing pregnancy/live birth rate (Crawford 
et al.  2015 ). However, this topic is a matter of debate. Michael Bedford has pointed 
out that virgin animals are perfectly good embryo transfer recipients and that many 
human IVF programs do not use priming with seminal plasma in conjunction with 
IVF cycles and obtain good fertilization and pregnancy outcomes. He concludes 
that whereas a nuanced effect of seminal plasma on fertility outcome in humans 
cannot be dismissed, many experimental and clinical results demonstrate that the 
presence of seminal plasma is not essential for the transport and survival of sperma-
tozoa in the female tract, for fertilization, or for implantation and embryonic devel-
opment (Bedford  2015 ). We review below evidence from in vitro and clinical studies 
of the effect of seminal plasma on various regions of the human female genital tract. 

7.3.1     Vagina and External Genitalia 

 In human reproduction, semen is deposited into the vagina, and it is this site and the 
external genitalia that have maximum exposure to semen components. Semen con-
centrations in vaginal fl uid decline after intercourse to approximately 50 % after 1 h 
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and reach baseline after 24 h (Macaluso et al.  1999 ; Graves et al.  1985 ). The exter-
nal genitalia (labia majora and minora) are covered with keratinized skin, and the 
vagina and ectocervix are lined with specialized nonkeratinizing stratifi ed squa-
mous epithelia (Anderson  2007 ). These multilayered epithelia normally afford a 
barrier to external signaling by presenting a wall of cornifi ed enucleated cells on the 
apical surface which lack most membrane receptors and signaling pathways 
(Anderson et al.  2014 ). Lipophilic molecules from semen could be absorbed through 
the vaginal epithelium to achieve local or systemic effects (Muranishi et al.  1993 ). 
In women with certain lower genital infections (e.g., HSV-2, HPV, GC) or epithelial 
lesions, living functional basal epithelial cells or leukocytic infi ltrates in the vaginal 
epithelium could be exposed and react to seminal components. Vaginal and ectocer-
vical cells grown as monolayers in vitro respond to semen challenge by producing 
GM-CSF, IL-6, IL-8, and MCP-1 (Sharkey et al.  2007 ); these cultures are not fully 
differentiated and represent the basal epithelial layer of the stratifi ed epithelium that 
is exposed by vaginal lesions or infections. A clinical study that monitored the infi l-
tration of lymphocytes and other WBC population into the ectocervical mucosa 
following intercourse reported increased numbers of T lymphocytes, macrophages, 
and dendritic cells (Sharkey et al.  2012b ), but whether the signal was transmitted 
across the stratifi ed squamous epithelium of the ectocervix or via the neighboring 
endocervix has yet to be determined.  

7.3.2     Endocervix 

 The human endocervix is lined with a single layer of viable columnar epithelial cells 
that are highly responsive to external signals (Fichorova and Anderson  1999 ), includ-
ing seminal plasma (Sharkey et al.  2012a ). The opening of the endocervix (cervical 
os) is protected from bacteria in the vaginal compartment by a thick layer of secreted 
mucins (Gipson et al.  1997 ), but seminal components may diffuse through mucus 
(Cone  2009 ) or directly contact endocervical epithelial cells after intercourse due to 
disruption of the mucus barrier or other means of exposure (e.g., cervical ectopy). 
Studies have documented leukocytic exudates in the cervical canal following inter-
course (Pandya and Cohen  1985 ; Thompson et al.  1992 ) and infi ltrates of macro-
phages, dendritic cells, and T lymphocytes in the cervical epithelium and stroma 
(   Sharkey et al.  2012b ) indicating that the cervix is a region that commonly responds 
to seminal signaling. Leukocytic infi ltrates could play a scavenger role in the clear-
ance of sperm and other seminal factors after intercourse. Less well understood are 
the potential effects of endocervical epithelial factors produced in response to semi-
nal plasma on other aspects of reproductive function such as sperm capacitation and 
effects registered in the upper tract pertaining to implantation.  
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7.3.3     Uterus/Endometrium 

 Seminal plasma effects on various sites in the female reproductive tract depend on 
the concentration of seminal factors reaching the tissue. In mice, semen rapidly 
enters the uterus after coitus (Zamboni  1972 ), and a number of studies have docu-
mented effects of semen on endometrial receptivity and implantation in mice 
(Robertson et al.  2013 ). However, there is debate on whether seminal plasma 
ascends beyond the cervix to enter the upper genital tract (uterus, fallopian tubes) 
in women. A series of magnetic resonance imaging studies using  99m Tc-labeled 
human albumin microspheres showed radiolabel dispersion into the uterus and fal-
lopian tubes following deposition into the vagina (Kunz et al.  1996 ; Venter and 
Iturralde  1979 ; Zervomanolakis et al.  2007 ). However, a number of other studies 
using semen surrogates or vaginal gels have failed to document this effect (Barnhart 
et al.  2004 ,  2005 ; Brown et al.  1997 ; Chatterton et al.  2004 ; Louissaint et al.  2012 ; 
Mauck et al.  2008 ). Even if appreciable amounts of soluble vaginal contents do not 
ascend into the uterus through the endocervix, seminal plasma components could 
signal cells in the upper reproductive tract if small amounts ascend into this region 
after intercourse through peristalsis as proposed by some studies or through absorp-
tion through the vaginal epithelium. A small percentage (1–15 %) of TGF-beta in 
semen is associated with the sperm fraction (Sharkey et al.  2012a ), therefore mak-
ing it possible for sperm to provide TGF-β signaling as they ascend into the upper 
genital tract.   

7.4     Potential Adverse Effects of Seminal Plasma 

7.4.1     Insuffi cient Seminal Plasma Immunoregulation Could 
Permit Immunity Against Sperm and the Conceptus 

 In some couples, the man’s seminal plasma may be defi cient in some of the immu-
noregulatory compounds described above, or the female partner could be nonre-
sponsive to seminal plasma signaling (e.g., defi cient in receptors or proteases that 
activate TGF-β) due to genetic abnormalities, genital infections, or other circum-
stances. Lack of immune tolerance/immunosuppression in the genital tract could 
promote the synthesis of antibodies associated with female reproductive failure 
including antisperm and antiphospholipid antibodies or the generation of a T cell 
response to the conceptus that can lead to miscarriage (Kokcu et al.  2012 ; Hill  1995 ; 
Raghupathy  1997 ).  
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7.4.2     Regulation of Cervicovaginal Immune Defense by 
Seminal Plasma: Increased Susceptibility to Infections? 

 Memory T cells, including antigen-specifi c cytotoxic CD8+ T cells, reside through-
out the female genital tract and are thought to play a major role in host defense at 
this site. They are concentrated in the transformation zone of the cervix, where 
seminal plasma exerts its maximum effect (Pudney et al.  2005 ). Chemokines in 
semen attract T cells, along with PMNs and macrophages, to the endocervix after 
intercourse and may promote immune defense during this vulnerable window of 
infection. But TGF-β and PGE may also exert a tolerizing or immunosuppressive 
effect on these critical immune defense cells and impede their ability to clear an 
infection. Viral and bacterial genital infections have been associated with infertility 
and miscarriage in women (Novy et al.  2008 ).  

7.4.3     Proinfl ammatory Factors in Seminal Plasma Could 
Promote HIV Infection 

 Genital infl ammation is a risk factor for HIV transmission due to the recruitment of 
HIV target cells into the mucosal epithelium and their activation which makes cells 
more vulnerable to infection and enables cells to produce more HIV once infected 
(Mayer and Venkatesh  2011 ). TGF-beta and PGE act on cervical epithelial cells to 
upregulate the synthesis of proinfl ammatory cytokines and chemokines which 
recruit leukocytes and regulate their immune function (Sharkey et al.  2012a ). 
Suppression of T cell immunoactivity and promotion of infl ammation in the genital 
tract by seminal plasma could promote the sexual transmission of HIV-1. This topic 
has recently been reviewed by Doncel et al. ( 2014 ) and Rametse et al. ( 2014 ).   

7.5     Conclusions 

 Seminal fl uid improves the pregnancy rate in laboratory and farm animals, and a 
number of components in seminal plasma have been identifi ed that have benefi cial 
effects on reproduction. The extent to which seminal plasma affects fertility in 
humans is not fully understood, but there is considerable evidence that seminal 
plasma affects immune cell populations in the lower genital tract. Several studies 
have documented leukocytic infi ltration into the endocervical canal following inter-
course, possibly due to chemokines in semen, and these cells may play a scavenger 
role and/or secrete factors that can positively or negatively affect fertility. In vitro 
studies have demonstrated that seminal plasma components are immunosuppressive 
and induce the differentiation of Treg cells that can mediate tolerance in the genital 
tract to foreign antigens on sperm and trophoblast cells. This effect of seminal plasma 
must be tightly controlled so as not to weaken immune defense to sexually 
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transmitted pathogens. If there is too little immunomodulation by semen, cellular 
and humoral immune responses could develop against antigens expressed on sperm 
or the conceptus and negatively affect female reproductive function. However, too 
much immunosuppression or the induction of infl ammation by seminal plasma could 
predispose women to genital infections which also can adversely affect reproductive 
function.   
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    Chapter 8   
 Human Leukocyte Antigen-G Within 
the Male Reproductive System: 
Implications for Reproduction 

             Thomas     Vauvert     F.     Hviid     

    Abstract     In sexual reproduction in humans, a man has a clear interest in ensuring 
that the immune system of his female partner accepts the semi-allogenic fetus. 
Increasing attention has been given to soluble immunomodulatory molecules in the 
seminal fl uid as one mechanism of ensuring this, possibly by “priming” the wom-
an’s immune system before conception and at conception. Recent studies have dem-
onstrated the presence of the immunoregulatory and tolerance-inducible human 
leukocyte antigen (HLA)-G in the male reproductive organs. The expression of 
HLA-G in the blastocyst and by extravillous trophoblast cells in the placenta during 
pregnancy has been well described. Highly variable amounts of soluble HLA-G 
(sHLA-G) in seminal plasma from different men have been reported, and the con-
centration of sHLA-G is associated with HLA-G genotype. A fi rst pilot study indi-
cates that the level of sHLA-G in seminal plasma may even be associated with the 
chance of pregnancy in couples, where the male partner has reduced semen quality. 
More studies are needed to verify these preliminary fi ndings.  

  Keywords     MHC   •   HLA class Ib   •   HLA-G   •   Male reproductive system   •   Human 
reproduction  

8.1         Introduction 

 In reproduction, the focus has traditionally been on the oocyte and the spermato-
zoon and on the embryo that develops from these to initial germ cells. However, the 
sperm cells are bathed in the seminal fl uid that contains a large number of active 
molecules. Not all possible physiological functions related to the seminal fl uid have 
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been given special attention. Only recently, it has been proposed—and evidence for 
this proposal has been presented—that soluble immunomodulatory factors in the 
seminal fl uid, or seminal plasma, may infl uence the immune system of the female 
partner (Robertson et al.  2009 ,  2013 ; Sharkey et al.  2012 ; Schjenken and Robertson 
 2014 ). This may occur even before fertilization during a period of sexual cohabita-
tion and at least at conception. An immunomodulation of the female immune 
response through tolerance-inducible immune factors in the seminal fl uid may be 
important for the woman’s acceptance of the semi-allogenic fetus. Thereby, it may 
also infl uence pregnancy success and certain pregnancy complications, such as pre-
eclampsia, where immune maladaptation seems to be involved in the pathophysiol-
ogy (Redman and Sargent  2005 ). 

 Semen and seminal fl uid have been shown to contain several immune molecules, 
and one of the most extensively studied is transforming growth factor-β (Robertson 
et al.  2003 ). Recently, we screened the male reproductive system, including semen 
and seminal plasma, for the nonclassical human leukocyte antigen (HLA) class Ib 
molecule, HLA-G (Larsen et al.  2011 ; Dahl et al.  2014 ). This is an immunomodula-
tory and tolerance-inducible molecule with a restricted tissue distribution; however, 
it is particularly expressed in the placenta during pregnancy (Kovats et al.  1990 ; 
Ishitani et al.  2003 ; Hviid  2006 ). We detected soluble HLA-G (sHLA-G) in seminal 
plasma in widely varying amounts when samples from different men were tested 
and compared. Below, preliminary results will be summarized, and the potential 
importance of the immunoregulatory and immunosuppressive actions of sHLA-G 
in semen for possible “priming” of the immune system of the female partner before 
conception and pregnancy will be discussed in addition to the possible signifi cance 
for pregnancy success and the development of preeclampsia.  

8.2     A Rationale for Immunomodulatory Factors 
in Human Semen  

 When a man successfully impregnates his female partner, he contributes one impor-
tant factor: genetic material from the sperm cell. This is essential and has drawn all 
the focus. One function of the seminal fl uid is to protect against sperm damage. 
Another important issue for the male might be to induce mechanisms that will 
ensure that the fetal expression of potential allogeneic proteins derived from the 
paternal genome is tolerated by the immune system of his female partner. A mecha-
nism for immunological “priming” of the female before and at conception could be 
through the sexual cohabitation with the female partner based on installation of 
immunomodulatory factors in the female reproductive tract at sexual intercourse. In 
this way, the female partner might be prepared for acceptance of the blastocyst at 
the time of implantation and for the development of the semi-allogenic placental 
tissue and fetus in the uterus. 
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 Based on animal models and human studies, emerging evidence has shown that 
seminal fl uid, or seminal plasma, actually contains immunomodulatory molecules 
and that these molecules induce changes in the female partner’s immune system, at 
least locally in the female reproductive organs (Beer et al.  1975 ; Tremellen et al. 
 2000 ; Robertson et al.  2003 ,  2013 ; Robertson  2005 ; Sharkey et al.  2012 ).  

8.3     The Immunoregulatory HLA-G Molecule 

 The HLA genes are part of the human major histocompatibility complex (MHC) 
located on the short arm of chromosome 6. It includes a substantial number of 
immune genes. The best described are the classical HLA class Ia and II genes (HLA-
A, HLA-B, HLA-C, HLA-DR, HLA-DQ, and HLA-DP) (The MHC Sequencing 
Consortium  1999 ). Their physiological role is antigen-peptide presentation, and 
they are well known for their importance in organ transplantation and association 
with autoimmune diseases (Doherty and Zinkernagel  1975 ; Svejgaard et al.  1983 ). 
However, human MHC also includes another group of so-called nonclassical HLA 
class Ib genes, the HLA-E, HLA-F, and HLA-G gene loci (Redman et al.  1984 ; 
Geraghty et al.  1987 ; Ellis  1990 ; Schmidt and Orr  1991 ). 

8.3.1     HLA-G Is Expressed in Immune-Privileged Sites 

 HLA-G has a restricted tissue distribution in non-pathological conditions. HLA 
expression has been detected in immune-privileged sites such as the uterus, pla-
centa, eye, and testis (Kovats et al.  1990 ; Le Discorde et al.  2003 ; Larsen et al. 
 2011 ). Furthermore, HLA-G expression has been reported in the thymus, the 
matured cumulus–oocyte complex, and by certain immune cells as T cells, mono-
cytes, and tolerogenic dendritic cells (Crisa et al.  1997 ; Rebmann et al.  2003 ; Feger 
et al.  2007 ). Soluble HLA-G protein has also been detected in the blood of pregnant 
and nonpregnant individuals, in follicular fl uid, and in seminal fl uid (Hviid et al. 
 2004a ; Chen et al.  2008 ; Rizzo et al.  2009a ; Larsen et al.  2011 ).  

8.3.2     Functions of HLA-G 

 The HLA-G gene and protein are the most studied of the class Ib molecules. Table  8.1  
lists some of the main functions of HLA-G. Some of these are inhibition of NK- and 
T-cell-mediated cell lysis through interaction with the immunoglobulin- like transcript 
(ILT) 2 receptor, the ILT4 receptor, and the killer Ig-like receptor 2 DL4 (KIR2DL4) 
(Ponte et al.  1999 ; Rajagopalan and Long  1999 ; Riteau et al.  2001 ; Menier et al. 
 2002 ). Furthermore, HLA-G may induce a shift from a proinfl ammatory T helper 1 
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(Th1) cell-mediated response toward a Th2 response (Kapasi et al.  2000 ; McIntire 
et al.  2004 ). Finally, HLA-G can inhibit an allocytotoxic T lymphocyte (CTL) 
response, inhibit the proliferation of CD4 +  T cells, and induce CD4 +  T cell anergy, and 
this may contribute to long-term immune escape or tolerance (LeMaoult et al.  2004 ).

8.3.3        HLA-G Isoforms and Gene Polymorphism 

 HLA-G potentially exists in four membrane-bound isoforms, HLA-G1, HLA-G2, 
HLA-G3, and HLA-G4, and three soluble isoforms, HLA-G5, HLA-G6, and HLA- 
G7, all generated by alternative splicing of HLA-G mRNA (Ishitani and Geraghty 
 1992 ; Fujii et al.  1994 ; Hviid et al.  1998 ). The secreted soluble HLA-G isoforms are 

   Table 8.1    Important immunomodulatory and immunosuppressive functions of HLA-G reported 
in the literature based on different experimental settings   

 HLA-G function 
 HLA-G isoforms 
involved 

 Immune cells 
involved  References 

 Inhibition of NK- and 
T-cell-mediated cell 
lysis 

 Primarily HLA-G1 
and HLA-G5 
 Also shown for the 
other alternatively 
spliced HLA-G 
isoforms (HLA-G2 
to HLA-G4 and 
HLA-G6); however, 
an in vivo 
functionality is 
controversial 

 Decidual and 
peripheral NK cells 
 CD8 +  cytotoxic T 
cells 

 Rouas-Freiss et al. 
( 1997 ), Navarro et al. 
( 1999 ), Ponte et al. 
( 1999 ), Rajagopalan 
and Long ( 1999 ), Riteau 
et al. ( 2001 ), Le 
Discorde et al. ( 2005 ) 

 Inhibition of an 
allocytotoxic T 
lymphocyte response 

 HLA-G1 and soluble 
HLA-G (HLA-G5 
and/or sHLA-G1) 

 Peripheral blood 
mononuclear cells 
(PBMCs) 

 Maejima et al. ( 1997 ), 
Kapasi et al. ( 2000 ) 

 Upregulation of 
inhibitory receptors 

 HLA-G1 and 
HLA-G5 

 NK cells and CD4 +  
T cells 

 LeMaoult et al. ( 2005 ) 

 Shift from a 
proinfl ammatory Th1 
response to a Th2 
response 

 HLA-G1 and soluble 
HLA-G (HLA-G5 
and/or sHLA-G1) 

 CD4 +  T cells  Maejima et al. ( 1997 ), 
Kapasi et al. ( 2000 ), 
Kanai et al. ( 2001 ), 
Rieger et al. ( 2002 ), van 
der Meer et al. ( 2004 ), 
McIntire et al. ( 2004 ) 

 Induction of CD4 +  T 
cell anergy/long-term 
unresponsiveness 

 HLA-G1  CD4 +  T cells  LeMaoult et al. ( 2004 ) 

 Possible induction of 
FoxP3-regulatory T 
cells 

 HLA-G5 (and 
HLA-G1?) 

 CD4 + CD25 + FoxP3 +  
Tregs 
 Dendritic cells 

 Ristich et al. ( 2005 ), 
Selmani et al. ( 2008 ), 
Castellaneta et al. ( 2011 ) 

 Dendritic cell 
induction and 
immunosuppression 

 CD4 +  and 
CD8 +  T cells 
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generated by the retention of intron 4 that includes a stop codon (Fujii et al.  1994 ; 
Hviid et al.  1998 ). The most important isoforms are the full-length membrane- 
bound isoform HLA-G1 and the full-length secreted isoform HLA-G5. Soluble 
HLA-G1 (sHLA-G1) is generated by the shedding of membrane-bound HLA-G1 
molecules (Park et al.  2004 ). 

 In contrast to the extremely polymorphic HLA class Ia genes, the HLA-G gene 
is almost monomorphic. HLA-G has a low polymorphism in the coding regions 
(Hviid  2006 ; Dahl and Hviid  2012 ). According to the WHO Nomenclature 
Committee for Factors of the HLA System and the International Immunogenetics 
Information System (IMGT)/HLA Database, 18 HLA-G alleles have been described 
at the protein level; two of these are so-called null alleles coding for—at least 
some—nonfunctional protein isoforms. Table  8.2  shows a comparison between the 
numbers of reported alleles for some of the HLA class Ia genes and HLA-G. In 
short, only very few amino acid substitutions have been observed in the HLA-G 
protein. However, quite many single nucleotide polymorphisms (SNPs) have been 
described in the 5′-upstream regulatory region (5′URR) and in the 3′-untranslated 
region (3′UTR) of the HLA-G gene (Hviid et al.  1999 ; Ober et al.  2003 ; Castelli 
et al.  2011 ). In particular, a 14 bp insertion/deletion polymorphism in the 3′UTR has 
been widely studied in relation to HLA-G mRNA alternative splicing and HLA-G 
expression levels. This polymorphism has been associated with the risk of develop-
ing preeclampsia, recurrent spontaneous abortion, and the success of assisted repro-
duction, although not all studies show such associations (Harrison et al.  1993 ; Hviid 
et al.  2002 ,  2004b ; Hylenius et al.  2004 ; Larsen et al.  2010 ; Iversen et al.  2008 ).

8.4         HLA Class Ib Molecules During Pregnancy 

 Follicular fl uid has been shown to contain sHLA-G, as well as the matured cumu-
lus–oocyte complex (Rizzo et al.  2009b ). A range of studies have reported the 
expression of HLA-G mRNA and protein in blastocysts (Jurisicova et al.  1996 ; Yao 
et al.  2005 ; Verloes et al.  2011 ). Furthermore, consensus from a rather large number 

   Table 8.2    A comparison between the total number of DNA alleles and protein alleles of some of 
the classical HLA class Ia genes and the nonclassical HLA class Ib gene, HLA-G, according to the 
offi cial WHO Nomenclature Committee for Factors of the HLA System and the International 
Immunogenetics Information System [IMGT/HLA Database (October 2014)]. HLA class Ia gene 
loci are among the most polymorphic genes in the human genome, whereas HLA-G at the protein 
level is nearly monomorphic   

 Gene locus  HLA-A  HLA-B  HLA-G 

 Class Ia  Class Ib 

 Alleles (DNA)  2,946  3,693  50 
 Proteins  2,077  2,741  18 
 Null alleles  138  122  2 
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of studies is that the media from 2- to 3-day-old embryo cultures from in vitro fer-
tilization treatments is positive for sHLA-G in approximately 30–40 % of the cases, 
although not supported by all studies (Fuzzi et al.  2002 ; Van Lierop et al.  2002 ; Sher 
et al.  2004 ; Noci et al.  2005 ; Yao et al.  2005 ; Sageshima et al.  2007 ; Vercammen 
et al.  2008 ; Kotze and Kruger  2013 ). Interestingly, a considerable number of inde-
pendent studies have observed that the pregnancy rate in women who have embryos 
transferred from cultures, where sHLA-G is detected, is signifi cantly higher than 
that in women, who have embryos transferred from sHLA-G-negative cultures 
(Fuzzi et al.  2002 ; Sher et al.  2004 ; Noci et al.  2005 ; Yie et al.  2005 ; Vercammen 
et al.  2008 ; Kotze and Kruger  2013 ). However, the source of the sHLA-G, or the 
detection assays, is controversial because it does not seem plausible that the two- to 
eight-cell blastocyst should be capable of producing the amounts of sHLA-G mea-
sured (Sargent et al.  2007 ). At least some of the sHLA-G might originate from fol-
licular fl uid adhering to the oocyte. One study has observed a signifi cant association 
between an increased cleavage rate and detection of sHLA-G, and another study 
reported that downregulation of HLA-G attenuates the cleavage rate in human trip-
loid embryos, which to some extent may explain the higher chance of pregnancy 
associated with positive detection of HLA-G (Yie et al.  2005 ; Sun et al.  2011 ). 
Additionally, the study by Yie et al. has also reported that although pregnancy and 
live births were observed in sHLA-G-negative IVF cycles, the rate of spontaneous 
abortions was higher in the HLA-G-negative group (25 %) versus the HLA-G- 
positive group (11 %) (Yie et al.  2005 ). Together, all these different studies support 
a role for HLA-G very early in pregnancy and even at the time of implantation. 

 Another interesting observation is a study of sHLA-G in maternal blood during 
early pregnancy after IVF treatment (Pfeiffer et al.  2000 ). The concentration of 
sHLA-G in serum samples from 20 women experiencing early spontaneous abor-
tion was signifi cantly reduced during the fi rst 9 weeks of gestation, compared with 
those of 37 women with intact pregnancies. Even the mean preovulatory sHLA-G 
serum levels in the 20 women were signifi cantly lower than the mean level in the 
women with successful pregnancies. These results are supported by another study 
by Sipak-Szmigiel et al. ( 2007 ); however, larger studies are needed to reproduce 
these initial fi ndings. Soluble HLA-G concentrations in the maternal peripheral 
blood are two to fi ve times higher than the levels in nonpregnant women and in 
men; it peaks at the end of the fi rst trimester and the beginning of the second (Alegre 
et al.  2007 ; Rizzo et al.  2009a ; Darmochwal-Kolarz et al.  2012 ). Almost all studies 
have reported signifi cantly reduced sHLA-G levels in maternal blood in cases of 
preeclampsia in all three trimesters (Hackmon et al.  2007 ; Steinborn et al.  2007 ; 
Rizzo et al.  2009a ; Bortolotti et al.  2012 ). 

8.4.1     Expression of HLA Molecules in the Placenta 

 During pregnancy, HLA-G is expressed by the trophoblast cells in the placenta, 
especially the extravillous trophoblast cells that invade the uterine wall and the 
spiral arteries (Kovats et al.  1990 ; Le Bouteiller and Blaschitz  1999 ; Morales et al. 
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 2003 ; Proll et al.  1999 ; Ishitani et al.  2003 ) (Fig.  8.1 ). It is in this feto-maternal 
contact zone that the HLA-G-expressing trophoblast cells, both as membrane- 
bound HLA-G and sHLA-G, are in intimate contact with the maternal immune 
cells. The leukocyte population in the decidua contains approximately 10 % T cells, 
20 % macrophages, and 70 % NK cells (Loke et al.  1995 ). Therefore, the 
CD16 −/low CD56 high  NK cells represent the largest population of lymphocytes in the 
placenta, constituting 50–90 % of all resident leukocytes according to different 
studies (Bulmer et al.  1991 ; Koopman et al.  2003 ).  

 The extravillous trophoblast cells also express the other two HLA class Ib mole-
cules, HLA-E and HLA-F, and may be the only cells in the body that do so (Ishitani 
et al.  2003 ) (Fig.  8.1 ). The trophoblast cells also express HLA-C at an apparently low 
level but not HLA-A or HLA-B or HLA class II molecules (King et al.  2000 ). Again, 
almost all studies have shown a signifi cantly reduced expression of HLA-G mRNA 
and protein in the placenta in cases of preeclampsia compared to control pregnancies 
(Hara et al.  1996 ; Goldman-Wohl et al.  2000 ; Yie et al.  2004 ; Zhu et al.  2012 ).   

HLA class I in pregnancy

HLA-Am, -Bm, -Cm

HLA-Am, -Bm, -Cm

m = maternal
p = paternal

HLA-Am, -Bm, -Cm

HLA-Ap, -Bp, -Cp

HLA-Gm, -Em, -Fm, -Cm

HLA-Gp, -Ep, -Fp, -Cp

Mother: HLA class Ia

Fetus: HLA class Ia

Placenta / fetus: HLA class Ib

class II class III class I

DP          DQ  DR             B   C            E           A   G   F

Human Leucocyte Antigen (HLA) system
Major Histocompatibility Complex (MHC)

Chromosome 6, short arm, 6p��.�-��.�

HLA class Ia and II (-A, -B, -C, -DR etc): highly polymorfic

HLA class Ib (-G, -E, -F): nearly monomorphic

Uterine Natural Killer (NK) cells:
50-90 % of the lymphocyte population in the first
trimester of pregnancy

  Fig. 8.1    Expression of human leukocyte antigen ( HLA ) molecules at the feto-maternal contact 
zone during pregnancy. The fetus inherits one HLA haplotype from the mother and one from the 
father; thereby, the fetus is semi-allogenic for the mother. The very polymorphic classical HLA 
class Ia and II molecules are not expressed by the trophoblast cells in the placenta, except for HLA- 
C. HLA class Ib proteins (HLA-E, HLA-F, and HLA-G) are expressed on the extravillous and 
invasive trophoblast cells, and they interact with specifi c receptors on uterine immune cells, espe-
cially natural killer ( NK ) cells. In this way, the trophoblast cells escape NK-cell-mediated lysis, 
and regulatory T cells may also be induced with the involvement of dendritic cells [Figure modi-
fi ed from (Hviid  2006 )]       
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8.5     HLA-G Expression in the Male Reproductive System 

 Most of the studies on HLA-G expression and function in reproduction have focused 
entirely on the female reproductive system, on pregnancy, and on certain pregnancy 
complications. However, two early studies of HLA class Ib gene expression in male 
gametogenic cells have been conducted (Guillaudeux et al.  1996 ; Fiszer et al.  1997 ). 
Guillaudeux et al. detected low levels of HLA class Ib mRNA in both spermatocytes 
and spermatids; three different alternatively spliced HLA-G mRNA isoforms were 
detected corresponding to HLA-G1, HLA-G2, and HLA-G3 (Guillaudeux et al. 
 1996 ). On the other hand, the same study did not observe any production of detect-
able HLA class I proteins in spermatogenic cells. These fi ndings are partly in con-
trast to a study by Fiszer et al. that investigated HLA class Ib mRNA expression in 
male gametogenic cells from testicular tissue (Fiszer et al.  1997 ). Considerable lev-
els of HLA-E mRNA were observed, very low levels of HLA-F, and no expression 
of HLA-G mRNA, even with RT-PCR techniques. HLA-E protein was observed on 
cells of the adluminal compartment within the seminiferous tubules. A new study by 
Yao et al. investigated HLA-G mRNA expression in testicular tissue with Johnson 
scores of 2–9 (Yao et al.  2014 ). The Johnson scoring system is a method of evaluat-
ing the quality of spermatogenesis in testicular biopsies. The HLA-G mRNA levels 
were signifi cantly higher in testicular tissues with spermatocytes than those with 
only Sertoli cells and/or spermatogonia. Interestingly, the expression of HLA-G 
mRNA increased with higher Johnson score of the testicular tissue indicating an 
important role for HLA-G in spermatogenesis. In this study, HLA-G mRNA expres-
sion was also detected in ejaculated sperm. Investigation of HLA-G protein expres-
sion was not performed. Interestingly, by using siRNA techniques, it was found in 
the same study that silencing of the HLA-G gene impaired embryonic development 
indicating an important role for HLA-G in early pregnancy. 

 Langat et al. were the fi rst to report the expression of HLA-G mRNA and protein 
in the normal human prostate (Langat et al.  2006 ). It was possible to detect mRNA 
for HLA-G1, HLA-G2, HLA-G5, and HLA-G6. However, only HLA-G5 protein 
was detectable. The HLA-G5 protein was prominent in the cytoplasm of tubulo-
glandular epithelia and in glandular secretions. In cases of prostatic adenocarcino-
mas, the HLA-G5 protein was detectable mainly in secretions. 

 Given this background—many studies of HLA-G in the female reproductive 
cycle and during pregnancy, and only a few published studies of specifi c issues 
regarding HLA-G in the male reproductive system—we decided to perform a sys-
tematic study of HLA-G protein expression in the male reproductive organs (Larsen 
et al.  2011 ). Immunohistochemical staining with the use of four different anti-HLA-
 G monoclonal antibodies (mAbs), two specifi c for all HLA-G isoforms and two 
specifi c for the soluble isoforms HLA-G5 and HLA-G6, was performed on paraffi n- 
embedded tissue samples. Normal testis, testis with atrophy, prostate with hyperpla-
sia, normal epididymis, normal ductus deferens, and normal seminal vesicle were 
studied. We detected HLA-G protein expression in normal testis in some of the 
Sertoli cells and in epididymal tissue. The ductuli efferentes stained very strongly for 
HLA-G. There was a weak expression of HLA-G in hyperplastic prostatic tissue. 
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Only mAbs against the soluble HLA-G isoforms stained positive, suggesting that 
soluble HLA-G5 is the predominantly expressed HLA-G protein isoform in the male 
reproductive organs. This is consistent with the fi ndings of Langat et al. in the pros-
tate (Langat et al.  2006 ). The seminal vesicle was negative for HLA-G protein 
expression (Larsen et al.  2011 ). Cells in seminal samples that were immobilized in a 
plasma–thrombin gel and paraffi n embedded all stained negative for HLA-G indicat-
ing that leukocytes in the semen do not seem to contribute to sHLA-G in the seminal 
plasma. 

 However, based on Western blotting techniques and a sHLA-G ELISA, we 
detected sHLA-G in seminal plasma samples and in sperm samples. At least some 
of this sHLA-G was the HLA-G5 isoform (Larsen et al.  2011 ; Dahl et al.  2014 ). In 
a pilot study, we observed highly varied amounts of sHLA-G in seminal plasma 
samples from different men. This was also the case when the sHLA-G concentration 
was standardized to total protein concentration in the seminal plasma sample 
(Larsen et al.  2011 ). A very large variation in sHLA-G levels in seminal plasma 
samples was confi rmed in a follow-up study of the male partners of 54 unselected 
couples attending a fertility clinic (Dahl et al.  2014 ). 

 It is possible that HLA-G in the testis might have a functional role serving as an 
immunosuppressive factor, thereby avoiding recognition of “self” sperm cells con-
sidered as autoantigens for the immune system. In this way, HLA-G might be a 
local factor among several that maintains the testes as an immune-privileged site. In 
 support of this, the Sertoli cells seem to be immunoprotective, and they seem to 
locate HLA-G as described above (Mital et al.  2010 ; Larsen et al.  2011 ). 

 Interestingly, it has been reported that the rhesus monkey carries a nonclassical 
MHC class I gene named Mamu-AG (Ryan et al.  2002 ). The expression of 
Mamu-AG is very similar to HLA-G, and it is a putative homolog of HLA- G. 
Mamu-AG shares a number of features of HLA-G: generation of alternatively 
spliced mRNA isoforms, relatively low level of polymorphism, and a high level of 
expression at the feto-maternal interface (Ryan et al.  2002 ). However, Mamu-AG is 
also expressed as a soluble isoform, Mamu-AG5, in the rhesus monkey testis; it is 
generated by a premature stop codon in intron 4, just as in the case of HLA-G. The 
Sertoli cells were positive for Mamu-AG in immunostaining experiments. Semen or 
seminal plasma was not investigated, but late-stage primary and secondary sper-
matocytes and spermatids were positive for Mamu-AG5, while mature sperm was 
negative (Ryan et al.  2002 ). These similar observations across different species sup-
port a possible important role of MHC class Ib molecules in the male reproductive 
system and that they may serve a function in semen even before conception, at 
conception, and in very early stages of pregnancy.  
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8.6     HLA-G Genetics Infl uence HLA-G Protein 
Concentrations in Seminal Plasma 

 Several studies have shown signifi cant associations between specifi c HLA-G 
genotypes, alleles and haplotypes, and different levels of soluble HLA-G in the 
blood from nonpregnant donors (Hviid et al.  2004a ; Chen et al.  2008 ; Di Cristofaro 
et al.  2013 ; Martelli-Palomino et al.  2013 ). Therefore, we investigated whether 
soluble HLA-G levels in seminal plasma samples were associated with the 
HLA-G genotype of the men. We studied the concentration of sHLA-G in seminal 
plasma samples and the HLA-G 14 bp ins/del genotype in 40 men, half of them 
with reduced semen quality (Dahl et al.  2014 ). The concentration of sHLA-G in 
the seminal plasma samples was signifi cantly associated with the HLA-G 14 bp 
ins/del genotype of the men. The del 14 bp/del 14 bp genotype showed the highest 
level of sHLA-G, and the ins 14 bp/ins 14 bp genotype showed the lowest level. 
These fi ndings are exactly the same as reported for sHLA-G in blood plasma, or 
serum, in relation to the HLA-G 14 bp genotype (Hviid et al.  2004a ; Chen et al. 
 2008 ). Measurements of total protein concentration in the seminal plasma sam-
ples were also performed to compensate for semen sample concentration. The 
same signifi cant differences were observed, when the sHLA-G concentration in 
the seminal samples was corrected by the total protein concentration expressed as 
the ratio of sHLA-G to total protein. Furthermore, the same pattern was observed 
for the total amount of sHLA-G protein in the seminal sample obtained by multi-
plying the volume of semen with the sHLA-G concentration (Dahl et al.  2014 ). In 
conclusion, HLA-G genetics of the man clearly infl uences the amount of sHLA-G 
in his semen.  

8.7     Immunomodulatory Factors in Seminal Fluid Infl uence 
the Female Immune Response 

 Several studies have indicated that repeated exposure to semen in animal models 
and in humans, respectively, improves reproductive success (Robertson et al.  2003 ; 
Robertson  2005 ). In mice, it seems that “uterine priming” with semen can promote 
implantation and fetal growth in subsequent pregnancies, even in a partner-specifi c 
manner (Beer et al.  1975 ). It seems that seminal fl uid elicits an infl ammation-like 
response in the female genital tract. Thereby, immune adaptations that can advance 
conception and pregnancy may be activated (Sharkey et al.  2012 ). In humans, live 
birthrates in couples undergoing IVF are signifi cantly improved, when women are 
exposed to semen at the time of embryo transfer (Tremellen et al.  2000 ). In fertile 
women, immune cells and immune factors have been studied in cervix biopsies 
12 h after unprotected vaginal coitus, vaginal coitus with the use of condom, or no 
coitus. After unprotected coitus, seminal fl uid induced the recruitment of leuko-
cytes and changes in cytokine and chemokine expression in the cervix and vagina 
(Sharkey et al.  2012 ). 
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8.7.1     HLA-G in Seminal Plasma Might Have Implications 
for Pregnancy Success 

 Several factors in seminal plasma may be involved in the modulation of the infl am-
matory response in the cervix and in the uterus. Two candidates for induction of 
tolerance to seminal antigens are transforming growth factor-β (TGF-β) and pros-
taglandin E 2 , which can be detected at high concentrations within mammalian 
semen (Robertson et al.  2003 ; Robertson  2005 ). However, our studies also indicate 
sHLA- G as a possible tolerance-inducible and “priming” factor in human semi-
nal fl uid (Fig.  8.2 ). Regulatory T cells (Tregs) and tolerogenic dendritic cells of 
the woman are most likely to be important in this immunomodulation (Robertson 
et al.  2013 ). Interestingly, soluble HLA-G5 may be involved in the induction of 
CD4 + CD25 high FoxP3 +  Tregs (Selmani et al.  2008 ), and HLA-G seems to be impli-
cated as a key regulator of tolerogenic dendritic cells (Ristich et al.  2005 ; Gregori 
et al.  2010 ; Amodio et al.  2013 ).  

The fatherSoluble HLA-G 
in follicular fluid

The blastocyst/embryo
expresses HLA-G

HLA class Ib expression in the placenta

Soluble HLA-G, TGF-β and
other immuno-active factors
in seminal fluid

•  Active tolerance mediated
    by regulatory T cells?
•  Modulation of uterine
    NK cells?

The mother

•  Soluble HLA-G levels are
     associated with HLA-G genetics
•  Soluble HLA-G may influence
     pregnancy success?

  Fig. 8.2    Human leukocyte antigen-G is expressed in almost all of the phases of the reproductive 
cycle. Therefore, a central and important role for HLA-G in reproduction may be postulated. As 
shown, HLA-G is present in maternal blood, in follicular fl uid, and in seminal plasma prior to implan-
tation. After fertilization, membrane-bound HLA-G and secreted soluble HLA-G are expressed by 
the extravillous trophoblast cells in the placenta. The expression of HLA-G in the reproductive sys-
tem during the reproductive cycle may modulate the local immune cells in the female reproductive 
organs toward immune tolerance of the semi-allogenic embryo. HLA-G gene polymorphisms infl u-
ence HLA-G protein expression. Aberrant expression or reduced levels of HLA-G may infl uence 
pregnancy success and may modulate the risk of certain pregnancy complications, which seem to 
include immune maladaptation, such as preeclampsia [Figure modifi ed from (Nilsson et al.  2014 )]       
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 In a pilot study of 54 unselected couples attending a fertility clinic, a trend for 
higher seminal plasma levels of sHLA-G per total protein and total sHLA-G in 
cases with reduced semen quality was observed when the female partner became 
pregnant after ART, compared with those couples, where no pregnancy was achieved 
(Dahl et al.  2014 ). Therefore, the amount of sHLA-G that the woman is exposed to 
before and at conception, especially in the genital tract, may infl uence the chance of 
obtaining a pregnancy. Most of the female partners to the males in the subgroup 
with reduced semen quality had normal fertility according to the results of the 
 standard medical examination for female factors infl uencing fertility. It can be spec-
ulated that following successful ART procedures, these women might have been 
able to provide an optimal immunological response to high levels of sHLA-G in the 
semen of the partner (Dahl et al.  2014 ). 

 In conclusion, repeated female exposure to semen and paternal factors therein 
may be important for the success of pregnancy. One of these factors might be sHLA-
 G generating a state of local and maybe specifi c immunomodulation in the woman.   

8.8     A Possible Importance of Seminal sHLA-G in Relation 
to the Risk of Developing Preeclampsia 

 Preeclampsia can be a very serious pregnancy complication, and it occurs in 2–8 % of 
all pregnancies. In the second half of pregnancy, the woman develops hypertension 
and proteinuria, which can be complicated by activation of the coagulation system 
and disseminated intravascular coagulation. Preeclampsia is a leading cause of mater-
nal and fetal morbidity and mortality. The fetus and especially the placenta are central 
to the development of the syndrome, and in most cases, the symptoms disappear rap-
idly after delivery (Redman and Sargent  2005 ; Ahmed and Ramma  2014 ). 
Preeclampsia has been named the “disease of theories.” However, a popular hypoth-
esis for the etiology and pathogenesis of preeclampsia involves immune maladapta-
tion in the early phases of pregnancy and placentation (Dekker and Sibai  1998 ; Saito 
et al.  2007 ). Experimental evidence exists for abnormal immunomodulation in the 
pregnant woman with preeclampsia when compared with uncomplicated pregnancies. 
This involves in cases of preeclampsia compared to controls: reduced fractions of 
regulatory FoxP3 +  T cells and CD4 + HLA-G +  T cells in peripheral blood (Toldi et al. 
 2008 ; Santner-Nanan et al.  2009 ; Hsu et al.  2014 ), an apparently skewing of the 
immune response from T helper 2 (Th2) response toward a proinfl ammatory Th1 
response (Darmochwal-Kolarz et al.  1999 ), reduced levels of sHLA-G in maternal 
blood (Hackmon et al.  2007 ; Steinborn et al.  2007 ; Rizzo et al.  2009a ; Darmochwal-
Kolarz et al.  2012 ), and aberrant expression of HLA-G in placentas (Goldman-Wohl 
et al.  2000 ; Yie et al.  2004 ; Zhu et al.  2012 ). In addition, several other immune param-
eters have been reported to be abnormal in cases of preeclampsia. 
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8.8.1     Epidemiological Observations Support Immune 
Maladaptation as a Possibly Important Factor 
in Developing Preeclampsia 

 It can be speculated that an abnormal exposure to immunomodulatory and tolero-
genic factors in semen, either by reduced exposure or low concentration of these 
factors, might infl uence the fate of the pregnancy and especially the risk of develop-
ing preeclampsia. This has led to a theory of inadequate fetal, or paternal, tolerance 
induction in cases of preeclampsia, and this might already be of importance before 
conception involving a mechanism of immunological “priming” of the woman 
before or at conception. Several epidemiological observations support this and the 
hypothesis of immune maladaptation as an important factor in the development of 
preeclampsia: (1) preeclampsia is much more frequent in primipara/primigravida; 
(2) preeclampsia is more frequent in women with some of the autoimmune diseases, 
e.g., type 1 diabetes; and (3) there might be a higher risk of developing preeclampsia 
in a subsequent pregnancy for multipara, who changes partner. However, this may 
simply be attributed to a higher risk of preeclampsia as a consequence of longer 
duration to the next pregnancy according to one large study (Skjaerven et al.  2002 ). 
Furthermore, the use of donor sperm instead of partner (homologous) sperm in 
intrauterine insemination treatments seems to increase the risk of developing pre-
eclampsia indicating a partner-specifi c dimension in a possible immunological 
“priming” of the woman (Gonzalez-Comadran et al.  2014 ). Finally, the sexual rela-
tionship with the father before preeclampsia seems to infl uence the risk of develop-
ing preeclampsia. A short sexual relationship with the father increases the risk of 
preeclampsia (Kho et al.  2009 ), and the use of barrier methods (condom and pes-
sary) as contraception increases the risk of preeclampsia in a subsequent pregnancy 
(Einarsson et al.  2003 ). A recent study of 258 preeclampsia cases and 182 normoten-
sive controls has confi rmed that the risk of developing preeclampsia decreases sig-
nifi cantly with increasing vaginal exposure to paternal semen (Saftlas et al.  2014 ). 
HLA typing for mother–offspring pairs, both cases and controls, was also performed 
for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA- DQB1. The authors observed 
that HLA-A matching (or sharing), HLA class Ia matching, and combined HLA 
class Ia and II matching were associated with increased odds of preeclampsia 
(Triche et al.  2014 ). Very interestingly, the association with preeclampsia was infl u-
enced by prior vaginal exposure to paternal seminal fl uid. For women with low 
semen exposure, the effects of HLA class Ia matching were amplifi ed. With moder-
ate to high semen exposure, HLA class II matching effects were predominant. 

 Therefore, there is accumulating evidence that seminal fl uid exposure may 
induce immunological tolerance and “priming” in the woman to the semi-allo-
genic embryo and fetus in a subsequent pregnancy. Furthermore, reduced expres-
sion in seminal fl uid may increase the risk of preeclampsia. As several studies 
have shown a link between reduced, or aberrant, HLA-G protein expression in the 
pregnant woman in cases of preeclampsia, it is possible to hypothesize that sHLA-
G, as one of possibly several immunomodulatory factors in seminal fl uid, may be 
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involved in modifying the risk of preeclampsia through genetic association with 
the amount of sHLA-G in seminal fl uid from a specifi c man and the degree of 
female exposure to sHLA-G infl uenced by the duration and the type of sexual 
relationship with the partner. However, a role for seminal sHLA-G in modifying 
the risk of preeclampsia is pure speculation at the moment, and experimental 
proof needs to be established.   

8.9     Conclusions and Perspectives 

 New studies should clarify the associations between extended HLA-G gene haplo-
types and the amount of sHLA-G in seminal fl uid from individual men. From stud-
ies of soluble HLA-G concentrations in blood plasma, it has been shown that gene 
polymorphisms, especially in the 3′UTR but most likely also in the 5′URR, infl u-
ence soluble HLA-G expression. Based on this, it might be possible to identify in a 
more specifi c way high and low producers of sHLA-G in seminal fl uid, or seminal 
plasma, and the relevance to assisted reproduction treatments and to the risk of 
developing preeclampsia. Another interesting issue is whether a given man has fl uc-
tuating levels of sHLA-G in his seminal fl uid over time or if the amount—adjusted 
for sperm volume variation—is fairly constant. In summary, the total amount of 
sHLA-G that a female partner is exposed to in semen in a given period of time, when 
the woman tries to conceive, is a combination of several factors: the frequency of 
sexual intercourse; the volume of semen per ejaculation, which may be related to the 
degree of sexual arousal by the male partner, although this is controversial; time of 
abstinence; and according to our studies, the HLA-G genotype of the male partner. 

 If our primary fi ndings, which indicate a role of sHLA-G in seminal fl uid for 
pregnancy success of the female partner, are verifi ed in independent and larger stud-
ies, then it should be noted that the administration of purifi ed, or recombinant, 
sHLA-G might actually be a possible co-treatment option in assisted reproduction.   
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Chapter 9
Prostasomes: Their Characterisation: 
Implications for Human Reproduction

Prostasomes and Human Reproduction

Gunnar Ronquist

Abstract The prostate is a principal accessory genital gland that is vital for normal 
fertility. Epithelial cells lining the prostate acini release in a defined fashion (exocy-
tosis) organellar nanosized structures named prostasomes. They are involved in the 
protection of sperm cells against immune response in the female reproductive tract 
by modulating the complement system and by inhibiting monocyte and neutrophil 
phagocytosis and lymphocyte proliferation. The immunomodulatory function most 
probably involves small non-coding RNAs present in prostasomes. Prostasomes 
have also been proposed to regulate the timing of sperm cell capacitation and induc-
tion of the acrosome reaction, since they are rich in various transferable bioactive 
molecules (e.g. receptors and enzymes) that promote the fertilising ability of sperm 
cells. Antigenicity of sperm cells has been well documented and implicated in 
involuntary immunological infertility of human couples, and antisperm antibodies 
(ASA) occur in several body fluids. The propensity of sperm cells to carry attached 
prostasomes suggests that they are a new category of sperm antigens. Circulating 
human ASA recognise prostasomes, and among 12 identified prostasomal antigens, 
prolactin- inducible protein (95 %) and clusterin (85 %) were immunodominant at 
the expense of the other 10 that were sporadically occurring.
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9.1  Introduction

The acinar, epithelial cells of the prostate gland have the capacity for secretion. These 
cells are not alone (although being in majority) in the epithelial lining of prostatic 
ducts, since there are also minor elements of basal and endocrine–paracrine (APUD) 
cells. The secretion is not only the result of the synthesising activity of the epithelial 
cells but depends also on transudation from blood plasma. Besides soluble compo-
nents, the human prostate gland secretes a particular fraction organised in well-
defined organelles (extracellular vesicles, EVs) termed prostasomes (Ronquist and 
Brody 1985) that were first reported in the 1970s (Ronquist and Hedstrom 1977). 
They are surrounded by a bilayered membrane and have a globular appearance 
(Fig. 9.1) and can be recovered in prostatic and seminal fluids with similar ultrastruc-
ture. Subsequent electron microscopy examinations revealed that the EVs corre-
sponded to intracellular vesicles inside another larger vesicle, a so-called storage 
vesicle, equivalent to a multivesicular body (MVB) of late endosomal origin 
(Ronquist and Brody 1985). Prostasomes exhibited similar mean diameters of about 
150 nm regardless of being intracellular or extracellular (after isolation) (Ronquist 
and Brody 1985), but the size varied and the diameter of a vast majority of prosta-
somes was within the range of 30–200 nm (Ronquist 2012). Ultrastructural studies 

Fig. 9.1 Ultrastructure of prostasomes. (a) Thin-section transmission electron microscopy (EM) 
image of human prostasomes isolated from seminal plasma. Prostasomes display rounded struc-
tures with varied sizes more or less filled with electron-dense material. (b) Ultrastructural appear-
ance of prostasomes by cryo-EM. The samples have been vitrified in liquid ethane to prevent the 
formation of perturbating ice crystals. The rounded prostasomes are surrounded by classical bio-
logical membranes (Brisson A & Ronquist G, unpublished 2013)

G. Ronquist



193

revealed that prostasomes were delivered into the glandular duct by so-called exocy-
tosis (Ronquist and Brody 1985; Sahlen et al. 2002). Functional effects of prosta-
somes on sperm cells were early registered (Stegmayr and Ronquist 1982).

9.2  Biochemical Characteristics of Prostasomes

9.2.1  Proteins

The protein composition of human prostasomes is varied and has been comprehen-
sively examined (Ronquist et al. 2013). There are almost 1,000 different proteins in 
prostasomes and many proteins are enzymes. In order to investigate possible con-
tamination from testes and epididymides in our prostasome preparation, we followed 
the Mg2+ and/or Ca2+ ATPase activity (a marker enzyme of prostasomes) in seminal 
plasma of 13 men before and after vasectomy. Interestingly, there was no change in
ATPase activity meaning that the contribution of sperm cells with regard to ATPase 
activity and therewith prostasomes was nil. Similar precautions were carried out by 
Aalberts et al. (2012), and they isolated from vasectomised men two distinct seminal 
prostasome populations. Both types of prostasomes resembled exosomes in terms of 
their buoyant density, size and presence of characteristic exosome markers.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) sep-
aration of prostasomal proteins gave rise to a characteristic and consistent banding 
pattern (Ronquist et al. 2011) (Fig. 9.2) that was distinctly different from that 
obtained after SDS-PAGE separation of pellets from seminal vesicle secretion sub-
jected to ultracentrifugation, again emphasising the prostate gland as solitary origin 
of prostasomes. The SDS-PAGE characteristics of prostasomes were three distinct 
bands identified as aminopeptidase N (CD13; 110 kDa), dipeptidyl peptidase 4 
(CD26; 88 kDa) and enkephalinase or neutral endopeptidase, NEP (CD10; 86 kDa) 
(Fig. 9.2). Mammalian aminopeptidase N (APN) is an important player in many 
physiological processes, such as sperm motility, cell–cell adhesion, immune cell 
chemotaxis, tumour angiogenesis and metastasis and coronavirus entry.

We identified dipeptidyl peptidase 4 (DPP-4) as the antigen of a monoclonal 
antiprostasome antibody on human prostasomes, and the specific activity of 
DPP-4 in its prostasomal context is unprecedentedly high (Vanhoof et al. 1992). The 
DPP-4 antigen (CD26) and enzymatic activity were present in human prostatic fluid 
but absent from that of the seminal vesicles (Wilson et al. 1998) in harmony with the 
idea of a solitary prostate gland origin of prostasomes. On the T-cell surface, DPP-4 
functions as adenosine deaminase binding protein. A transfer of CD26 from prosta-
somes to sperm cells was possible, followed by an interaction of prostasomal ade-
nosine deaminase and the transferred CD26 on sperm cells, ultimately leading to 
fusion between prostasomes and sperm cells (Minelli et al. 1999).

Prostasome-associated enkephalinase/neutral endopeptidase, NEP (CD10), was 
characterised by Aumüller’s group (Renneberg et al. 2001). Endogenous opioid 
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 peptides, among which the naturally occurring opioid pentapeptides (enkephalins) are 
to be found, participate in the regulation of reproductive physiology at multiple sites.

Three of the glycolytic enzymes detected in prostasomes on proteomic examina-
tions (Ronquist et al. 2013) belong to the top ten proteins found in most exosomes. 
Moreover, not only human prostasomes but also bovine, canine and equine prosta-
somes demonstrated a capacity for adenosine triphosphate (ATP) production 
(Ronquist et al. 2013). The effect of extracellular ATP on the activation of sperm 
cells has revealed a signal transduction mechanism for ATP involving the purinergic 
receptor-mediated release of second messengers culminating in acrosomal exocyto-
sis (Luria et al. 2002).

9.2.2  Lipids

Prostasomes exhibit a peculiar lipid composition with an exceptionally high 
cholesterol- to-phospholipid molar ratio around 2.0. Sphingomyelin (at the expense 
of phosphatidylcholine) was the predominant phospholipid class representing 
nearly half of the total phospholipid measured. One third of the fatty acids in sphin-
gomyelin were palmitic acid. Remaining fatty acids consisted largely of saturated 
and monounsaturated fatty acids (Arvidson et al. 1989). This peculiar pattern sug-
gested the lipids in the prostasome membrane to be highly ordered. This conclusion 
was corroborated by our electron spin-labelling experiments showing that the 

Fig. 9.2 Highly reproducible 
SDS-PAGE pattern of 
preparations from different 
pools of seminal prostasomes 
(1–5) over a 2-year period. 
The three marked bands, a–c, 
in the high molecular weight 
range have been identified as 
follows: (a) CD13—
aminopeptidase N 
(approximately 110 kDa), (b) 
CD26—dipeptidylpeptidase 4 
(approximately 88 kDa), (c) 
CD10—neprilysin 
(approximately 86 kDa) 
(Reprinted from Ronquist 
et al. (2011) with permission 
of the publisher. Copyright 
2014 John Wiley & Sons A/S)
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order parameters for prostasomes and extracted prostasome lipids were very high 
(Arvidson et al. 1989) rendering the prostasomal membrane robust features with-
standing physical violence, e.g. freezing and thawing. The two types of “true” pros-
tasomes mentioned above and described by Aalberts et al. (2012) also harboured the 
characteristic lipid pattern. In addition, these authors reported the presence of
monohexosylceramides. Prostasome/exosome formation may be dependent on 
hydrolysis of sphingomyelin by neutral sphingomyelinase in the lipid raft mem-
brane domain of endosomes (Trajkovic et al. 2008). The hydrolysis product, 
ceramide, may serve as a trigger of endocytosis. The lipid raft hypothesis was 
launched in 1997 alleging that lipids play a regulatory role in which they mediate 
protein clustering and protein diffusion within the lipid bilayer of the membrane 
(Simons and Ikonen 1997). In this model, the membrane can undergo phase separa-
tion into coexisting liquid-disordered and liquid-ordered phases. The liquid-ordered 
phase, termed lipid raft (Simons and Ikonen 1997), was envisaged as enriched in 
cholesterol and saturated sphingolipids and phospholipids and characterised by 
tight lipid packing and reduced molecular diffusion, as we previously noticed for 
prostasomes (Arvidson et al. 1989).

9.2.3  Nucleic Acids

Different types of RNA have been detected in EVs from various sources (Raposo 
and Stoorvogel 2013). Technological developments have allowed for the deep 
sequencing of RNA involving also prostasomes isolated from the ejaculate of vasec-
tomised men, revealing that the majority is neither mRNA nor miRNA (Aalberts 
et al. 2014). However, recent data provide evidence that prostasomes carry several 
small RNA biotypes with immunomodulatory functions when delivered to target 
cells (Vojtech et al. 2014). Fragments of human chromosomal DNA were identified 
inside purified prostasomes (Ronquist et al. 2009). A genome-wide DNA copy num-
ber analysis revealed that they contained fragments of DNA randomly selected from 
the entire genome (Ronquist et al. 2011). It has been argued that it cannot be
excluded that small apoptotic vesicles, which are known to contain fragmented 
DNA, were co-isolated with prostasomes (Aalberts et al. 2014). Round bodies 
agreeing with apoptotic vesicles have indeed been identified in human semen, but 
their dimensions ranged from those similar to sperm head to much larger (Marchiani 
et al. 2007) meaning a size range considerably larger than that of prostasomes from 
which DNA was isolated. We prepared human seminal prostasomes in accordance 
with the prevailing protocol for exosome preparation including passage through a 
0.2 μm filter and centrifugation in a sucrose gradient (Ronquist et al. 2012). 
Filterable prostasomes contained about half the amount of DNA when compared 
with nonfilterable prostasomes (Table 9.1). The DNA pattern in both types of pros-
tasomes ranged from 1–2 kbp (kilobase pairs) to 10–14 kbp which was similar to 
what was found when examining prostasomes not subjected to filtration and sucrose 
gradient separation (Ronquist et al. 2009, 2011).
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9.2.4  Neuroendocrine Components

Prostasomes contain the neuroendocrine markers chromogranin B, neuropeptide Y 
and vasoactive intestinal polypeptide in about equimolar amount. Synaptophysin 
and chromogranin A were found in about 10 % and 2 %, respectively, of that amount 
(Stridsberg et al. 1996). It was reported that prostasomes express a common secre-
tory granule protein, viz. granulophysin (Skibinski et al. 1994). This molecule has a 
similar structure as the neuroprotein synaptophysin mentioned above.

9.3  Human Reproduction and Role of Prostasomes

9.3.1  Prostasome Regulation of Sperm Cell Function

The physiological relevance of prostasomes was brought out by the finding that 
prostasomes are able to interact with sperm cells, albeit that both prostasomes and 
sperm cells display a net negative surface charge favouring repulsive forces 
(Ronquist et al. 1990). This important extracellular reaction between a cell and an 
organelle was subsequently confirmed in different ways. Accordingly, prostasomes 
can carry information from prostate cells to sperm cells. Transfer of a message to 
target cells could occur by three possible mechanisms: (1) by direct contact between 
the prostasomal membrane and the sperm cell plasma membrane, (2) by fusion of 
the two membranes and (3) by sperm cell internalisation of the prostasome. The 
female reproductive tract is equipped with a well-balanced immune system, and 
prostasomes are able to mediate different abilities to sperm cells which are impor-
tant for their survival in a hostile environment to reach and penetrate the zona pel-
lucida for fertilisation of the ovum (Park et al. 2011). Achievement of zona 
penetration by sperm cells means an ability of both lysis (hydrolytic enzymes) and 
thrust (hyperactivated motility). It seems reasonable that at least a part of the pros-
tasomes (that are in great excess over sperm cells in an ejaculate) are able to deliver 

Table 9.1 DNA content in filterable and nonfilterable prostasomes (duplicate assays) obtained 
from the main band after sucrose gradient centrifugation

Prostasome 
type

Prostasome 
concentration 
(mg protein)/mL

Volume of 
prostasomes 
(mL)

Total 
prostasome 
content (mg)

DNA 
concentration 
(ng/μL)

Elution 
volume 
(μL)

Total 
DNA 
(μg)

Filterable 2 1.2 2.4 57 50 2.85

Filterable 2 1.2 2.4 96 50 4.8

Nonfilterable 2 1.2 2.4 160 50 8

Nonfilterable 2 1.2 2.4 160 50 8

From Ronquist et al. (2012)
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their cargo to sperm cells. This is well-founded, since there might be a conflict 
within the sperm cell between the critical demand of functional abilities and the 
silence of protein translation. Transcription ceases several days before the end of 
spermiogenesis, and the time between when expression is shut down and when 
acquisition of a distinct pattern of motility known as hyperactivation is needed may 
be weeks.

9.3.2  Sperm Motility, Capacitation and the Acrosome Reaction

Sperm motility is a critical factor in judging semen quality, and the motility pattern 
influences the fertilising capability of sperm cells. In the lower female reproductive
tract, motility is important to penetrate the cervical mucus, while vigorous beating 
of the sperm tail is necessary for penetration of zona pellucida in the upper tract 
(Aitken et al. 1985). The motility pattern of sperm cells evoked by prostasomes 
(Fabiani et al. 1994; Arienti et al. 2004) helps oocyte fertilisation. We and others 
have suggested that prostasomes may be able to regulate the divalent cation concen-
trations in the microenvironment of sperm cells to promote motility (Arienti et al. 
2004; Ronquist 1987). On the other hand, it has been claimed that the sperm plasma 
membrane is extremely impermeable to direct calcium entry into the cytoplasm 
(Vijayaraghavan and Hoskins 1989). In comparison with the surrounding seminal
plasma, an unambiguous enrichment of calcium was observed in prostasomes 
(Stegmayr et al. 1982). Prostasomes may deliver calcium to sperm cells after fusion, 
and a detectable increase was indeed noted after 2 min of fusion (Palmerini et al. 
1999). Progesterone was influential on the process, and the increased calcium accu-
mulation in sperm cells produced by the fusion with prostasomes and by stimulation 
of progesterone was independent and additive phenomenon (Arienti et al. 2001). 
New evidence indicates that human sperm cells have a clever way to solve the con-
flict between the critical demand for Ca2+ signalling tools and the silence of protein 
translation (Park et al. 2011).

Natural fertilisation to occur implies interrelationships between the female and 
the sperm cells, and fertilising ability is only acquired in the female reproductive 
tract through a functional maturation process that is capacitation. It means a com-
plex of structural and functional changes in sperm cells throughout their transit 
through the female reproductive tract and is considered to be complete when 
the sperm cells are able to respond to ligands in the zona pellucida by undergo-
ing the acrosome reaction. The capacitation concept involves sperm alterations 
such as loss of cholesterol from the membrane, increased protein phosphoryla-
tion, increased intracellular concentrations of Ca2+ and cyclic nucleotides and 
hyperpolarisation of membrane potential (Visconti 2009). Capacitated sperm 
cells change their motility characteristics probably in order to facilitate their pas-
sage through the latter parts of the female reproductive tract (Ho et al. 2009). 
Herewith, they are primed to undergo the acrosome reaction in case they should 

9 Prostasomes: Their Characterisation: Implications for Human Reproduction



198

come in contact with the zona pellucida and/or cumulus cells surrounding the 
ovum (Publicover et al. 2007), and sperm cells that acrosome react before a 
 contact with these structures are invalid to fertilise. Hence, the acrosome  reaction 
must take place after binding to a homologous zona.

Prostasomes bind primarily to the head of live sperm cells, and in vivo, prosta-
somes may bind to sperm cells in the uterus, to be carried (as “rucksacks”) into 
oviduct and to fuse with the sperm cell only during the final approach of the ovum 
(Aalberts et al. 2013). This is in line with the observation that prostasome fusion 
with the sperm cell was an obligatory prerequisite for the transfer from prostasomes 
of a range of calcium ion signalling tools (including receptors and enzymes) for 
regulating sperm flagella (Park et al. 2011) and guaranteeing hyperactivated motil-
ity necessary for zona pellucida penetration. Apparently, this might be interpreted as 
a logical consequence of the limited outfit of the sperm cell. Progesterone released 
by cumulus cells surrounding the ovum is a potent stimulator of the acrosome reac-
tion (Lishko et al. 2011). Human sperm cells are extremely sensitive to progester-
one, demonstrating a chemotactic response to picomolar concentration of the 
hormone (Teves et al. 2006). Park et al. (2011) found that picomolar concentrations 
of progesterone induced a well-adapted, high-amplitude, calcium ion signal in 
sperm cells, provided they had fused with prostasomes. This is concordant with 
other data corroborating the view that prostasome–sperm cell fusion can stimulate 
the acrosome reaction making sperm cells more sensitive to the effect of progester-
one (Palmerini et al. 2003).

9.3.3  Protective Ability Against Oxidative Damage

Reactive oxygen species (ROS) are a major cause of idiopathic male infertility. An 
abnormally high production of ROS has been demonstrated in 40 % of semen sam-
ples from infertile individuals (Iwasaki and Gagnon 1992). Leukocytes infiltrating 
the semen, particularly the polymorphonuclear neutrophils, seem to be the major 
source of ROS generation (Saez et al. 1998). Prostasomes have the ability to interact 
with neutrophils and reduce their capacity to produce superoxide anion after stimu-
lation (Skibinski et al. 1992). Hence, prostasomes could play a role as an antioxi-
dant factor, and it was demonstrated that prostasomes indeed reduced ROS 
production by sperm preparations containing polymorphonuclear neutrophils (Saez 
et al. 1998). Subsequent work suggested that prostasomes inhibit the NADPH (nic-
otinamide adenine dinucleotide phosphate, reduced form) oxidase activity of poly-
morphonuclear neutrophils by lipid transfer from prostasomes to the plasma 
membrane of these cells (Saez et al. 2000), therewith inhibiting the ongoing machin-
ery of ROS production.
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9.3.4  Protective Ability Against Bacteria

Prostasomal chromogranin B is in abundance over chromogranin A, which is 
unusual (Stridsberg et al. 1996). What is more, a C-terminal fragment of chromo-
granin B possesses a potent antibacterial ability. This peptide (secretolytin) forms a 
three-dimensional structure similar to the insect-derived proteins, cecropins, that 
are antibacterial as well. The biological activity of these peptides results from their 
ability to form channels through the bacterial wall leading to bacterial cell death. 
Also, other parts of both chromogranin B and chromogranin A were antibacterial 
(Metz-Boutigue et al. 1998). Prostasomes at low concentrations displayed distinct 
antibacterial effects associated with membrane cavities and bacterial cell death 
(Carlsson et al. 2000).

A group of peptide antibiotics is the cathelicidin family. The human cationic 
antimicrobial protein (hCAP-18) is the only known member of this family of pro-
teins in humans (Larrick et al. 1994). The antimicrobial peptide LL-37 becomes 
activated when released from the C-terminal end of the hCAP-18 holoprotein. In
addition to its antimicrobial activity, LL-37 has chemotactic activity for neutrophils, 
monocytes and T-cells (Agerberth et al. 2000). Hence, LL-37 may contribute to 
both innate and adaptive immunity, the latter by recruiting immunocompetent cells 
to sites of microbial invasion. hCAP-18 is expressed in the male reproductive sys-
tem and high levels were found in seminal plasma (Malm et al. 2000). It appeared
in two distinct fractions after gel chromatography of seminal plasma, and the high 
molecular fraction (the major part) represented hCAP-18 bound to prostasomes 
(Andersson et al. 2002). In other words, prostasomes can well serve as a reservoir
of this precursor of the antibiotic peptide LL-37. It seems like prostasomes may
exert antibacterial activities by more than one route.

9.4  Involvement of Prostasomes in Immune Responses

9.4.1  Seminal Plasma Immunosuppressive Activity

The prostate gland is equipped with an active immunological armamentarium and 
is able to respond to several nonself antigens. It has CD8+ suppressor/cytotoxic T
lymphocytes, macrophages and B cells. Prostate epithelium and stromal cells 
express toll-like receptors and respond to various antigens (Hoover and Naz 2012). 
This is somewhat contrary to the general belief that the blood–testis barrier forms 
an immunological barrier excluding the entry of immunoglobulins and lymphocytes 
into the luminal compartment and preventing germ cell components crossing the 
barrier to elicit an immunological response in the body. Still, immunosuppressive 
factors exist and play a pivotal role in successful fertilisation, implantation and fetal 
growth by protecting female and male reproductive cells from the immunosurveil-
lance system. Since the female genital tract is not an immunologically privileged 
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site, the presence within seminal fluid of powerful immunosuppressive agents is 
called for. The activity of seminal plasma in this regard has been measured by sup-
pression of the proliferation of lymphocytes that have been activated by mitogen 
and also by suppression of natural killer (NK) cell activity. The studies of inhibition 
of NK cell function have all concluded that the prostaglandins in semen are respon-
sible for the inhibition. However, in studies that used the mitogen induced lympho-
proliferation assay, activity was detected in high molecular weight fractions (Lee 
and Ha 1989), and this led to some confusion about the active substances in human 
semen. Kelly et al. (1991) solved this issue by identifying the high molecular weight 
immunosuppressive factor as prostasomes. The prostasomes not only inhibited lym-
phoproliferation but also the ability of macrophages to phagocytose latex beads. As 
a matter of fact, prostasomes bound rapidly to the leukocyte plasma membrane fol-
lowed by endocytosis that was mediated by an undefined plasma membrane recep-
tor. Interactions of prostasomes with neutrophils and monocytes inhibited their
ability to phagocytose latex particles (Skibinski et al. 1992).

NK cells may represent an important component of innate immunity in the 
female reproductive tract, and the role of prostasomes in the regulation of NK cell 
activity showed that prostasomes expressed high levels of CD48, the ligand for the 
activating receptor CD244 (Tarazona et al. 2011). The interactions between NK 
cells and prostasomes resulted in a decrease of CD244 expression. Furthermore, the 
decreased NK cell activity observed in NK cells cultured in the presence of prosta-
somes suggested that prostasomes may immunomodulate the local environment 
within the female reproductive tract preventing immune-mediated sperm destruc-
tion and prolonging their survival rate (Tarazona et al. 2011). Hence, prostasomes 
play a significant role in neutralising immune defences against sperm cells in the 
hostile environment that the female reproductive tract constitutes.

The complement system consists of about 30 plasma and cellular proteins (recep-
tors and regulators) with a primary function in host defence, to differentiate between 
self and nonself, and as a purging system of the body. The complement system 
destroys invading foreign cells and organisms, either by direct lysis or by recruit-
ment of leukocytes. The main event in the activation of complement is the activation 
of C3 into C3b and C3a. This is achieved by two enzyme complexes called conver-
tases, and the classic pathway is triggered by the formation of antigen–antibody 
complexes (Doekes et al. 1984). The complement system is controlled by several 
soluble and membrane-bound regulators. Most of the regulators are members of the 
“regulators of complement activation” (RCA) superfamily encoded by a gene clus-
ter on chromosome 1 that mainly regulates the two types of convertases. Decay 
accelerating factor (DAF, CD55) and membrane cofactor protein (MCP, CD46) 
belong to this family. CD59 antigen is an 18–20 kDa membrane protein that is a 
regulator of membrane attack complex (MAC). Seminal plasma is known to have 
complement-inhibiting activity, (Tarter and Alexander 1984) and the trophoblast/
leukocyte common (TLX) antigen occurring on sperm cells (Anderson et al. 1989) 
is identical with the above-mentioned MCP, an inhibitor of complement activation 
(Purcell et al. 1990). Rooney et al. described that all detectable CD59 in seminal 
plasma was associated with prostasomes representing a protection to sperm cells by 
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being a pool of CD59 from which protein lost from sperm cells, perhaps as a result 
of low level complement attack or of normal membrane turnover, can be replen-
ished (Rooney et al. 1993). CD46 and CD55 were subsequently found to be 
prostasome- associated as well (Rooney et al. 1996). These findings should be con-
sidered in the light of findings suggesting a functionally active complement system 
in the female reproductive tract (Jin et al. 1991). Therefore, it is reasonable to con-
clude that sperm cells are at risk within the female reproductive tract. The interac-
tion of prostasomes with the local female immune system including 
immunomodulatory skills exerted by prostasomal small RNA biotypes (Vojtech 
et al. 2014) may prevent sperm cells from being phagocytosed, damaged or killed 
and therewith prolongs their lifespan in an otherwise hostile environment.

9.5  Sperm Cell Immunogenicity

9.5.1  Antisperm Antibodies

The addition of carbohydrates (glycosylation) is the most common form of covalent 
posttranslational modification of newly synthesised proteins. A variety of functions 
can be ascribed to the carbohydrate modifications of proteins. The common feature 
of the varied functions is that they either mediate specific recognition events (e.g. 
cell–cell, cell–matrix, immune responses) or that they modulate protein function 
(e.g. ligand binding; intra- and intercellular trafficking) (Varki 1993). Important
constituents of a biological membrane (including that of the sperm cell) are periph-
erally located and integral proteins. Therefore, surface coat antigens that are periph-
erally associated with the sperm plasma membrane should be distinguished from 
those linked to integral plasma membrane proteins. A salient feature of this reason-
ing is the maintenance of the strict distinction between on the one hand immunity to 
sperm surface antigens that could theoretically play a role in gamete interactions 
leading to fertilisation and, on the other hand, due to, e.g. steric hindrance, hidden 
antigens of sperm cells that would not (Bronson 1999). The other variable in this 
complex of problems is that the immunoglobulin class responsible for the reactivity 
with the sperm cell antigens is not a single one but rather three (IgG, IgA and IgM)
that appear in different concentrations, among which antisperm IgM in blood
plasma hardly enters the male genital tract secretions due to its ungainly molecular 
structure (Bronson 1999). Despite the antigenic nature of sperm cells, the vast 
majority of males do not produce antisperm antibodies (ASA). This would in turn 
presuppose mechanisms that suppress this reaction, involving genital tract struc-
tures and sperm cells themselves. Freshly ejaculated and capacitated human sperm 
cells have been claimed to react with different types of ASA (Fusi and Bronson 
1990). The alterations in antigenicity associated with capacitation may reflect a sur-
face redistribution associated with changes in the functional state of sperm cells. 
ASA, which are more frequent than oocyte antibodies, may fulfil the criteria of an 
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autoimmune disease in the male (Omu et al. 1999). ASA can inhibit fertility by 
interfering with motility, penetration of the cervical mucus, capacitation/acrosomal 
exocytosis, zona pellucida binding and sperm–oocyte fusion (Bohring and Krause 
2003; Naz and Butler 2013). ASA are prevalent in the infertile male population, and 
the presence of ASA in males can reduce fecundity, but the causality is not strictly 
clear. It should be mentioned that ASA occur in several body fluids like seminal
plasma and bound to the sperm cell surface and blood plasma of men and women 
but also in oviduct fluid, cervical mucus and follicular fluid of women. The presence 
of ASA has been described in 1.2–19 % of fertile couples, suggesting that not all 
ASA cause infertility. ASA from infertile patients may be directed to dissimilar 
sperm antigens and/or clusters of antigens or possess different antigen-binding 
characteristics differing from those of fertile individuals (Chamley and Clarke 
2007). Bohring et al. (2001) investigated seminal plasma samples from 20 infertile 
patients, and 18 proteins associated with sperm membranes were detected as anti-
gens and 6 proteins were biochemically identified.

9.5.2  Circulating ASA Recognise Prostasomes

A prostasome coat on swim-up sperm cells was found when we immunostained the 
samples with seven different monoclonal antibodies directed against purified pros-
tasomes and all monoclonal antibodies tested demonstrated a similar staining pat-
tern (Allegrucci et al. 2001). Therefore, the probability of a possible cross-reactivity 
with some other seminal plasma component was weak and prompted us to suggest 
that prostasomes may be a candidate antigen for ASA and we raised polyclonal 
chicken antibodies against purified seminal prostasomes (Allegrucci et al. 2001). 
Chicken antibodies have the advantage that they eliminate interference caused by 
the human complement system, rheumatoid factor and cellular Fc receptors and 
they resemble human autoantibodies in their reactivity. Human sperm cells incu-
bated with increasing concentrations of chicken polyclonal antiprostasome antibod-
ies caused approximately 80 % of the sperm cells to agglutinate. The agglutination 
displayed several types of sperm formation, mostly tail to tail contacts, but the 
design of interaction was dependent upon the concentration of the antiprostasome 
antibody. It should be pointed out that the agglutination of sperm cells by the
chicken prostasome antibody was similar to the agglutination caused by sera from 
patients having ASA. When antiprostasome antibodies were preincubated with high 
concentrations of prostasomes, no agglutination was observed during the subse-
quent contact with sperm cells (Allegrucci et al. 2001) herewith underlining the 
specific role of prostasomes as antigens in this context. IgG antibodies against
sperm cells were detected in the 20 sera of ASA-positive patients investigated for 
infertility (15 men and 5 women). In the majority of cases (90 %), the sera of the
patients elicited complement activation, measured by the deposition of C3 on the 
sperm cells. A significant positive correlation was found between sperm cell-bound 
C3 and ASA titer and especially between deposition of C3 and IgG (Allegrucci et al.
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2001). ASA of the IgG type in serum of infertile men and women do recognise
prostasomes as antigens, and prostasomes are strongly immunogenic and they 
should not be overlooked in immunological infertility assessment.

As already mentioned, prostasomes have the ability to adhere to sperm cells 
albeit that both prostasomes and sperm cells have a net negative surface charge of 
their membranes favouring repulsive forces. This propensity of sperm cells to carry 
attached prostasomes, allowed us to regard prostasomes as a new category of sperm 
antigens (Carlsson et al. 2004a). In a study of the reactivity of ASA-positive sera
from 116 suspected immunoinfertile patients, a binding of IgG antibodies to prosta-
somes was clearly visible in 113 patient sera (97 %) (Carlsson et al. 2004b). Those 
sera with well-expressed antibody reaction showed 3–10 different prostasomal 
bands in one-dimensional electrophoresis as antigens. Serum samples from male 
and female patients agreed with each other, and no difference was observed between 
sexes (Carlsson et al. 2004b). This reflects a high conformity taking into consider-
ation that the ASA assay was carried out on fresh sperm cells, while the prostasomal 
antigen represented frozen material that had been thawed before testing. Twenty 
sera from the 116 suspected immunoinfertile patients with highest titres of antipros-
tasome autoantibodies were selected for the identification of the proteins corre-
sponding to the prostasomal antigens. Two-dimensional, silver-stained SDS-PAGE 
gel of separated prostasomal proteins revealed over 200 protein spots in the molecu-
lar mass range of 8–180 kDa, and approximately 70 % of the spots displayed iso-
electric points (IPs) below 7, i.e. reflecting anionic proteins (Carlsson et al. 2004c). 
On immunoblotting, most of the ASA-positive sera recognised 3–10 spots in the 
molecular mass range between 17 and 70 kDa. The size distribution of all protein 
spots recognised by patient sera after immunoblotting revealed that 19 out of 20 
(95 %) of the serum samples discerned protein(s) with a molecular mass range of 
approximately 17 kDa. Another protein spot with a molecular mass of approxi-
mately 40 kDa was found in 17 out of 20 (85 %) of the serum samples. Proteins in 
12 spots were identified and are summarised with their theoretical IPs, molecular
masses and accession numbers in Table 9.2. The two most frequent antigens are 
prolactin-inducible protein (PIP), recognised by 19 out of 20 (95 %) patient sera,
and corresponding figures for clusterin are 17 out of 20 (85 %) patient sera 
(Table 9.2). The remaining ten prostasomal antigens were sporadically occurring 
and identified as given in Table 9.2. A comparison of this study is feasible with that 
of Bohring et al. (2001) who investigated seminal plasma samples from 20 infertile 
patients. It should be noted though, that we used blood sera to avoid the problem of
antigen excess, due to the huge representation of prostasomes in seminal plasma. 
The former authors detected 18 proteins associated with sperm membrane antigens, 
and six proteins were biochemically identified (Bohring et al. 2001), but none of 
these proteins associated with sperm membranes and recognised by ASA were 
identical with the 12 proteins associated with prostasomal membranes and yet rec-
ognised by ASA. The clearly disproportionate occurrence of only two immuno-
dominant prostasomal antigens (PIP and clusterin) at the expense of the remaining
ten sporadically occurring prostasomal proteins deserves careful consideration. 
It should be mentioned though that Thacker et al. (2011) identified in a pilot study 
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the presence of four major proteins in human seminal plasma that were unique and 
different in fertile and infertile men. These were PIP, clusterin isoform, prostate-
specific antigen (PSA) isoform 1 preprotein and semenogelin II precursor. However,
immunoblot analyses of individual serum samples containing ASA from infertile 
couples generally reveal a certain degree of heterogeneity of antigens recognised by 
human sperm auto- and isoantibodies (Mathur et al. 1988). Shetty et al. (1999) 
adopted high-resolution two-dimensional electrophoresis with separation of sperm 
cell antigens in the first dimension by either isoelectric focusing or nonequilibrium 
pH gradient electrophoresis to screen a range of proteins with different isoelectric 
points, followed by SDS-PAGE and a sensitive Western blotting method. They 
found that a number of antigenic spots among both anionic and cationic proteins 
were reactive with sera from infertile but not fertile individuals reflecting a consid-
erable diversity in the ASA composition of infertile males and females.

The two immunodominant prostasomal antigens (PIP and clusterin) are widely
expressed proteins. PIP is a 17 kDa glycoprotein (gp17). It exerts multiple impor-
tant functions in biological systems and is involved in fertility, immunoregulation, 
antimicrobial activity, apoptosis and tumour progression. PIP has been identified in
prostatic secretion and therewith in seminal plasma (Autiero et al. 1995) which is a 
rich source for its isolation and characterisation (Chiu and Chamley 2003). The 
binding ability of PIP to the Fc fragment of IgG has improved the understanding of
the functional role of PIP in seminal plasma (Witkin et al. 1983). The reduced level 
of PIP might be associated with infertility, especially in men with ASA (Bronson
1999). Secreted PIP in seminal plasma has been found to have its localisation on the
sperm cell surface (Bergamo et al. 1997). PIP is able to bind to CD4+ T-cell receptor 
and to block CD4-mediated T-cell programmed death which means that PIP may

Table 9.2 Twelve prostasome immunogens recognised by antisperm antisera of 20 patients with 
suspected immunological infertility in two-dimensional gel electrophoresis. Identification was
carried out by MALDI analyses

No. pI Mass (Da) Accession No. Protein name

1 7.0 46,800 Q13584 Isocitrate dehydrogenase [NADP]
2 5.9 86,600 Q99728 BRCA1-associated RING domain protein 1
3 6.3 36,500 P10909 Clusterin
4 7.0 36,600 P14550 Alcohol dehydrogenase [NADP(+)]
5 5.7 31,100 O94760 N(G),N(G)-dimethylarginine dimethylaminohydrolase 1
6 6.8 38,700 P04083 Annexin A1
7 6.0 36,400 P12429 Annexin A3
8 7.4 32,400 O00560 Syntenin-1
9 6.5 22,800 P04792 Heat shock protein beta-1 (HSP27)
10 5.2 20,800 Q04760 Lactoylglutathione lyase
11 5.4 21,900 P32119 Peroxiredoxin-2
12 5.3 16,600 P12273 Prolactin-inducible protein

From Carlsson et al. (2004c)
pI = isoelectric point
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act as a modulator in an immune response reaction (Gaubin et al. 1999). PIP was
among some candidate galectin-3 ligands in prostasomes that were identified by 
tandem mass spectrometry of proteins that co-purified with galectin-3 during lac-
tose affinity chromatography of the membrane fraction containing solubilised 
human prostasomes (Block et al. 2011). Galectin-3 is a beta-galactoside-binding 
protein involved in immunomodulation, cell interactions and cancer progression. 
The intact galectin- 3 molecule contains a carbohydrate recognition domain and a 
non-lectin domain that interacts with protein and lipid moieties. It has a firm asso-
ciation to human prostasomes and more precisely to the prostasome surface (Block 
et al. 2011), meaning that also PIP may have a surface localisation on human pros-
tasomes. Hence, the multiple functions of galectin-3 are exerted through ligand 
binding with specific galectin-3 ligands involved (Ochieng et al. 2004). Galectin-3 
ligands in human prostasomes were purified, identified and characterised by Kovak 
et al. (2013), and using a proteomic approach, clusterin as well was among the 
candidate galectin-3 binding ligands.

Clusterin has been found in all body fluids and is a major heterodimeric glyco-
protein in mammalian semen. It is synthesised and secreted by a wide variety of
cells in different species. Clusterin was named for its ability to elicit clustering 
among Sertoli cells (Blaschuk et al. 1983). Two forms of clusterin have been identi-
fied, viz. the secretory form and the nuclear form. The secretory form is synthesised 
as a 50–60 kDa protein precursor that is glycosylated and proteolytically cleaved 
into two subunits (alpha and beta chains) (Leskov et al. 2003). The nuclear form is 
expressed as a 49 kDa inactive protein precursor that does not undergo a proteolytic 
cleavage (Reddy et al. 1996). The soluble form of clusterin is present in normal 
human sperm cells (Thacker et al. 2011), and it has also been observed on the sur-
faces of immature, low-motile and morphologically aberrant sperm cells (O’Bryan 
et al. 1994). Clusterin participates in many biological processes such as cell–cell 
interactions, sperm maturation, agglutination of abnormal sperm cells, membrane 
recycling, apoptosis and lipid transportation and controls complement-induced 
sperm cell lysis (Silkensen et al. 1999; Wong et al. 1993). Using a panel of poly-
clonal and monoclonal antibodies against different parts of the clusterin molecule, 
Lakins et al. (1998) inferred that in normal rat prostate, clusterin has at least five 
different glyco/isoforms: fully glycosylated mature pro-protein (76 kDa), cleaved 
fully glycosylated alpha and beta chains (32 and 48 kDa), two intermediate 
uncleaved processing forms of pro-protein [presumably the high-mannose (64 kDa)
and low-mannose species of clusterin (56 kDa) and full length unglycosylated holo-
protein (50 kDa)]. It means that prostate-derived clusterin may act in different
immunological shapes herewith including its probable presence at the surface of 
both sperm cells and prostasomes.
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Chapter 10
The Paternal Contribution to Fetal Tolerance

Anne Schumacher and Ana Claudia Zenclussen

Abstract Recognition of foreign paternal antigens expressed in the semi- allogeneic 
fetus by maternal immune cells is a requirement for successful pregnancy. However, 
despite intensive research activity during the last decades, the precise mechanisms 
contributing to the acceptance of the paternal alloantigens are still puzzling and preg-
nancy remains a fascinating phenomenon. Moreover, most studies focused on the 
maternal and fetal contribution to pregnancy success, and relatively little is known 
about the paternal involvement. In the current review, we address the contribution of 
paternal-derived factors to fetal-tolerance induction. First, we discuss data suggest-
ing that in both humans and mice, the female body gets prepared for a pregnancy in 
every cycle, also in regard to male alloantigens delivered at coitus. Then, we provide 
an overview about factors present in seminal fluid and how these factors influence 
immune responses in the female reproductive tract. We further discuss ways of pater-
nal alloantigen presentation and identify the immune modulatory properties of semi-
nal fluid-derived factors with a special focus on Treg biology. Finally, we highlight 
the therapeutic potential of seminal fluid in different clinical applications.

Keywords Alloantigens • Fetal tolerance • Regulatory T cells • Seminal fluid •
Seminal plasma • Pregnancy

10.1  Introduction

Awareness of the foreign paternal/fetal alloantigens and their tolerance is a prerequi-
site for the survival of the semi-allogeneic fetus within the maternal uterus. There is 
plenty of published evidence that, to achieve this tolerance, both mother and fetus 
release immune-modulating factors that among other effects augment the number of 
regulatory immune cells to suppress alloreactive immune responses. By contrast, the 
contribution of the father to fetal tolerance is still underexplored. When a couple 
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plans to have a baby, they should have sexual intercourse without contraception. 
Within this time, even if pregnancy does not occur, maternal immune cells present in 
the vagina and the uterus are repeatedly challenged by paternal alloantigens present 
in the semen at coitus. Several studies indicate that there is an accumulation of vari-
ous immune cell populations in the vagina and the uterus at or immediately after 
ovulation, and these cellular changes are needed to establish fetal tolerance from the 
very beginning of pregnancy. Early recognition and acceptance of paternal alloanti-
gens has been shown to ensure successful embryo implantation and fetal growth. 
Preeclampsia (PE) is a serious pregnancy complication associated with poor placen-
tation as a consequence of shallow trophoblast invasion. The risk of developing PE is
diminished if repeated contact with paternal alloantigens has taken place before preg-
nancy arises (Saftlas et al. 2014). Dekker and colleagues discuss in their review that 
PE is a disease of first pregnancies. The protective effect of multiparity is however
lost with change of partner. Artificial donor insemination and oocyte donation result
in a substantial increase of PE risk (Dekker et al. 1998). These observations underlie 
the meaningfulness of early alloantigen awareness for a successful progress of preg-
nancy as immune maladaptation is related with poor pregnancy outcome. We need to 
further study mechanisms underlying establishment of early fetal allotolerance. Here, 
we discuss available data from the literature on the immune- modulating properties of 
seminal fluid components with a specific focus on regulatory T cells (Treg).

10.2  Immune Cell Fluctuations During 
the Reproductive Cycle

Fluctuations in various immune cell populations have been observed in uterine tis-
sue during the reproductive cycle in humans and mice. These cellular changes are 
proposed to prepare the endometrium for the appearance of fetal alloantigens when 
the embryo is implanting. Hormonal variations and other factors have been held 
responsible for the observed fluctuations. For instance, uterine natural killer (NK)
cells dramatically increase in number in the late secretory phase of the human men-
strual cycle finally representing the main immune cell population of all leukocytes
in human decidual tissue (Bulmer et al. 1991). Moreover, human and murine uterine 
mast cells (MCs) oscillate during the reproductive cycle (Padilla et al. 1990; Mori 
et al. 1997) reaching their maximum number in the receptive phase (estrus) of the
murine estrous cycle (Woidacki et al. 2013). In line, we demonstrated that dendritic 
cells (DCs) and Treg accumulate in the estrus phase in mice (Zenclussen et al. 2013; 
Teles et al. 2013a). For the latter, cycle-dependent fluctuations have been confirmed
also by others in human and mice (Arruvito et al. 2007; Kallikourdis and Betz
2007), and it was proposed that Treg changes are hormone driven (Weinberg et al.
2011; Schumacher et al. 2014). Altogether, it can be assumed that every time a 
female becomes receptive, her immune system prepares itself for the contact with 
the foreign paternal antigens delivered with semen at coitus. This ensures the pos-
sibility of a very early tolerance initiation toward the paternal antigens that will be 
presented by fetal tissue at implantation and afterward.
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10.3  Composition of Seminal Fluid

Seminal fluid (semen) consists of spermatozoa suspended in seminal plasma.
Components of seminal plasma are secreted from rete testis, epididymis, and acces-
sory sex glands including the seminal vesicle, the prostate, and the bulbourethral 
glands (Juyena and Stelletta 2012). Analysis of mammalian seminal plasma revealed 
a variety of factors including ions, energy substrates, organic compounds, and 
nitrogenous compounds (Juyena and Stelletta 2012; Milardi et al. 2013). 
Additionally, seminal plasma contains high concentrations of factors proven to pos-
ses immune regulatory properties. One of these factors is tumor growth factor-β 
(TGF-β), whereby TGF-β1 and TGF-β3 can be found in high amounts and TGF-β2 
is present in lower amounts (Nocera and Chu 1995; Lokeshwar and Block 1992; 
O’Leary et al. 2013; Srivastava et al. 1996; Tremellen et al. 1998). Therefore, the 
majority of TGF-β existing in its latent form has to be activated to be fully func-
tional. TGF-β activation was proposed to take place after insemination in the female 
tract. Here, several enzymes delivered with the seminal plasma or being present in 
the female tract are suggested to contribute to the activation process. More pre-
cisely, plasmin, subtilisin-like endoproteases, tissue- and urokinase-type plasmino-
gen activator (Chu and Kawinski 1998), thrombospondin 1 (Slater and Murphy
1999), and αvβ6 integrin (Breuss et al. 1993) were implicated in TGF-β activation. 
Moreover, the acidic environment of the human vagina may drive TGF-β activation 
to some extent. Besides TGF-β, human seminal plasma contains other immune- 
modulating factors such as interleukin (IL)-8 and soluble IL-2 receptor (Srivastava
et al. 1996) prostaglandin E2 (PGE2) and 19-hydroxyprostaglandin E (19-hydroxy
PGE) (Denison et al. 1999), soluble tumor necrosis factor (TNF) receptors (Liabakk
et al. 1993), receptors for the Fc portion of γ-globulin, spermine (Evans et al. 1995), 
and complement inhibitors (Kelly 1995).

10.4  Recognition and Presentation of Seminal  
Fluid-Derived Alloantigens

Immediately after insemination, the secretion of growth factors, cytokines, and che-
mokines from cervical and endometrial tissue is induced, resulting in local pro- 
inflammatory environment. This provokes a rapid and dramatic influx of immune 
cells and additionally increases the number of various immune cell populations in 
situ. In the mouse, release of the granulocyte-macrophage colony-stimulating factor 
(GM-CSF), IL-6, and several chemokines leads to the infiltration of macrophages,
DCs, and granulocytes in subepithelial stromal tissue (De et al. 1991; McMaster 
et al. 1992; Robertson et al. 1996). In humans, sexual intercourse results in neutro-
phil infiltration into the superficial epithelium of the cervical tissues (Pandya and
Cohen 1985) followed by a recruitment of macrophages, DCs, and lymphocytes
into the epithelial layers and deeper stromal tissues (Sharkey et al. 2007). This 
remarkable recruitment of immune cells and especially of those capable of 
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efficiently present alloantigens suggests that presentation of paternal antigens can
take place even before implantation and be involved in pregnancy success or failure 
already at this early time point. Evidence for this was provided by two studies 
showing that depletion of Treg before mating or depletion of uterine DCs in the
preimplantation period impaired the implantation process drastically (Plaks et al.
2008; Teles et al. 2013a). We confirmed the presence of paternal alloantigens imme-
diately after fecundation in a mouse model. By mating wild-type females with 
GFP+ males, we demonstrated that paternal antigens (GFP+ cells) can be found in 
vaginal lumen as early as day 0.5 of pregnancy. Moreover, at the same time, we
detected GFP+ cells in decidual tissue and lymph nodes. At later pregnancy stages, 
we found GFP+ cells in lymphoid as well as nonlymphoid tissue. However, after day 
5 of murine pregnancy (implantation), we could not distinguish whether GFP+ 
structures were of paternal or fetal origin (Zenclussen et al. 2010). The appearance 
of fetal cells in maternal organs as a result of transplacental cell migration is well 
documented in humans and mice and results in a phenomenon called fetal microchi-
merism (Yan et al. 2005; Khosrotehrani et al. 2005; Tan et al. 2005). Accordingly, 
maternal cells migrate to the fetus ending up in maternal microchimerism (Loubière
et al. 2006). In more detailed analysis, we then showed that some GFP+ cells also 
expressed MHC class II molecules and were positive for the DC marker CD11c
suggesting that semen contains DCs capable to present paternal antigens immedi-
ately after fecundation. In line with these findings, Witkin and colleagues confirmed
the presence of several immune cell populations in semen (Witkin and Goldstein
1988). Together with the observation that maternal antigen-presenting cells (APCs)
are enriched in the vagina and uterus after insemination, it can be assumed that 
paternal alloantigens are presented directly (via paternal APCs) and/or indirectly
(via maternal APCs). Moldenhauer and colleagues analyzed the involvement of
seminal fluid antigens in maternal T-cell activation and defined the underlying antigen-
presenting pathway in a transgenic mouse model. The authors transferred T cells 
specific for the ovalbumin antigen to female mice that were mated to male mice
ubiquitously expressing membrane-bound ovalbumin. They confirmed the presence
of the ovalbumin antigen in the seminal plasma and detected activated ovalbumin-
specific CD4+ and CD8+ T cells locally in the para-aortic lymph nodes displaying a 
high proliferative capacity. Furthermore, they proved that seminal plasma, but not 
sperm, was necessary to induce T-cell proliferation. Interestingly, they showed that 
paternal ovalbumin presented by maternal APCs was essential for CD8+ T-cell pro-
liferation, but responses were not elicited when ovalbumin was presented by pater-
nal APCs (Moldenhauer et al. 2009) suggesting that indirect rather that direct 
pathways are involved. However, two other groups proposed antigen presentation 
via the direct pathway (Root-Bernstein and DeWitt 1995; Clark et al. 2013). It was 
suggested that the direct presentation of paternal antigens may also determine the 
occurrence of spontaneous abortion events (Clark et al. 2013). More studies are 
necessary to clarify the pathways of paternal antigens presentation and their rele-
vance for pregnancy success.
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10.5  Immune Regulatory Properties of Seminal Plasma

Sarah Robertson and colleagues discussed four different effector functions medi-
ated by seminal plasma on reproductive processes (Robertson 2005). These func-
tions include the clearance of sperms and microbes delivered with semen at mating, 
the activation of tissue remodeling processes essential for embryo implantation, the 
induction of cytokines and growth factors important for preimplantation embryo 
development, and the induction of tolerance mechanisms toward the foreign pater-
nal alloantigens. Additionally, very recently, the same research group provided 
important evidence that seminal plasma can also affect the health of male offsprings. 
By ablation of the plasma fraction from seminal fluid, the authors observed male 
offsprings exhibiting obesity, distorted metabolic hormones, diminished glucose 
tolerance, and hypertension suggesting that seminal plasma has long-lasting effects 
on the health of the male progenies (Bromfield et al. 2014).

Here, we will focus on the immune-modulating properties of seminal plasma 
components. As one of the major components, TGF-β is able to negatively influence 
growth activity and function of lymphocytes (Nocera and Chu 1993). Moreover, 
together with IL-8, TGF-β has been shown to induce IL-1β, IL-6, and LIF expres-
sion in endometrial epithelial cells (Gutsche et al. 2003). LIF itself was reported to 
play an essential role for embryo implantation and development, and its lack has 
been associated with pregnancy loss in the mouse (Stewart et al. 1992). Whether 
this is relevant for human pregnancies, it is still a matter of debate. Furthermore, 
other factors present in seminal plasma were reported to influence immune 
responses, for instance, the soluble p55 TNF-α receptor known to inhibit TNF-
mediated cytotoxicity (Liabakk et al. 1993), spermine which impairs proliferation 
of NK cells and T lymphocytes (Evans et al. 1995), and inhibitors of the comple-
ment system (Tarter and Alexander 1984; Chowdhury et al. 1996). Finally, prosta-
glandins were suggested to prevent lymphocyte proliferation, NK cell activity, and
secretion of pro-inflammatory cytokines (Kelly 1995; Kelly et al. 1997).

10.6  Regulatory T Cells in Human and Murine Pregnancy

Treg represent a unique T-cell subpopulation best known for their function in sup-
pressing autoreactive and alloreactive immune responses, thereby preventing auto-
immune diseases and allograft rejection (Sakaguchi et al. 1995). In addition, a crucial 
role for Treg in the establishment and maintenance of fetal tolerance has widely been 
reported in both humans and mice (Aluvihare et al. 2004; Zenclussen et al. 2005; 
Heikkinen et al. 2004; Saito et al. 2005). Most studies observed an augmentation of 
Treg in peripheral blood and decidua during the first and second trimester in normal
pregnant women (Heikkinen et al. 2004; Xiong et al. 2013; Tilburgs et al. 2006). In 
the third trimester, Treg levels begin to decrease (Seol et al. 2008) and further decline 
with successive stages of labor (Xiong et al. 2010). Furthermore, Treg suppressive 
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capacity is reduced in term labor and preterm labor suggesting that changes in Treg 
function may contribute to initiation of labor (Kisielewicz et al. 2010). In mice, nor-
mal pregnancy is associated with an augmentation in Treg numbers at very early 
pregnancy stages, a reduction around implantation time followed by a second incre-
ment on day 10 of pregnancy (Teles et al. 2013b; Thuere et al. 2007). Uterine enrich-
ment of Treg can be achieved by a selective recruitment of these cells from the 
periphery or by conversion from conventional T cells directly at the fetal-maternal 
interface (Ramhorst et al. 2012; Tilburgs et al. 2008). Cytokines, chemokines, and
hormones may serve as attractors for Treg migration into uterine tissue (Kallikourdis
et al. 2007; Schumacher et al. 2009; Teles et al. 2013a). We recently suggested that 
CCR7 is involved in murine Treg homing to nonpregnant uterus (Teles et al. 2013a), 
while the pregnancy-hormone human chorionic gonadotropin attracts human Treg to 
trophoblasts (Schumacher et al. 2009) and murine Treg to the fetal-maternal inter-
face when injected at peri-implantation (Schumacher et al. 2013). LH also attracted 
Treg to the fetal-maternal interface in a mouse model (Schumacher et al. 2014).

The importance of Treg for pregnancy success was confirmed by several studies
showing that in both humans and mice, spontaneous abortion is associated with a 
diminished number and activity of Treg (Aluvihare et al. 2004; Zenclussen et al.
2005; Heikkinen et al. 2004; Somerset et al. 2004; Sasaki et al. 2004; Yang et al.
2008; Jin et al. 2009; Mei et al. 2010; Inada et al. 2013). Additionally, reduced Treg 
levels and impaired functionality were reported in other pregnancy complications 
such as extrauterine pregnancies, endometriosis, and preeclampsia (Schumacher
et al. 2009; Basta et al. 2010; Sasaki et al. 2007; Toldi et al. 2008; Prins et al. 2009; 
Santner-Nanan et al. 2009; Quinn et al. 2011; Darmochwal-Kolarz et al. 2012), 
clearly indicating that only fully functional Treg guarantee successful pregnancy. 
The adoptive transfer of Treg was shown to diminish the occurrence of spontaneous 
abortion in the mouse (Zenclussen et al. 2005; Schumacher et al. 2007; Yin et al.
2012). Immunization with paternal antigens in early human pregnancies was associ-
ated with an increase of Treg (Wu et al. 2014).

10.7  Antigen Specificity of Treg and Mechanisms  
of Their Action

There is a general consent that recognition of fetal alloantigens by maternal immune 
cells is a prerequisite for the induction of an active suppression of anti-fetal immune 
responses. However, there is still a lively debate whether Treg mediate their protec-
tion in an antigen-specific fashion. Although several studies indicated that the recog-
nition of foreign paternal/fetal alloantigens is critically for Treg development and 
function (Darrasse-Jèze et al. 2006; Mjösberg et al. 2007; Kallikourdis et al. 2007; 
Tilburgs et al. 2009; Kahn and Baltimore 2010; Schumacher et al. 2007; Liu et al. 
2013), there is also evidence arguing against a “pure” alloantigen-driven expansion of 
Treg during pregnancy (Chen et al. 2013). Based on these findings, it seems presum-
able that both alloantigens and self-antigens support Treg augmentation and protec-
tive activity during pregnancy.
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In contrast to the discussed antigen specificity of Treg function, the research
community agrees on the indispensable role for Treg in the prevention of over-
whelming inflammatory immune responses in various clinical disciplines. Here, 
Treg have been reported to modulate the number and activity of every other immune 
cell population. For instance, Treg suppress the proliferation and function of T cells, 
DCs, and macrophages (Piccirillo and Shevach 2001; Mempel et al. 2006; Cederbom
et al. 2000; Misra et al. 2004; Taams et al. 2005) and hamper the proliferation of B 
cells as well as their antibody secretion (Lim et al. 2005). Treg function is thereby 
realized either by direct cell-cell contact or via the secretion of immune-suppressive 
cytokines such as IL-10 and TGF-β (Hara et al. 2001; Wahl et al. 2004; Friedline 
et al. 2009). In pregnancy, the precise mechanisms underlying Treg protection are 
still not completely understood. We found that in a murine model of disturbed fetal 
tolerance, Treg rather function through PD-1, IL-10, and HO-1 than through
CTLA-4 and TGF-β (Verdijk et al. 2004; Schumacher et al. 2007, 2012). However, 
Jin and colleagues proposed a role for CTLA-1 in Treg function in humans (Jin et al.
2009), suggesting that the way of Treg-mediated suppression may differ between 
experimental models and species. Additionally, we recently showed that Treg regu-
late the accumulation of conventional CD8+ T cells and the production of pro-
inflammatory molecules in the uterus and draining lymph nodes in the preimplantation 
period. Therefore, Treg dampen local inflammatory processes occurring during the 
time of implantation and support successful embryo nidation (Teles et al. 2013a).

10.8  Influence of Seminal Fluid on Treg Biology

There is accumulating evidence that seminal fluid-derived antigens and other fac-
tors present in seminal fluid play a pivotal role in Treg generation, expansion, migra-
tion, and function. In the preimplantation period, seminal fluid causes an expansion 
of the CD4+CD25+Foxp3+ Treg population in uterine-draining lymph nodes and the 
uterus itself. The need for seminal fluid for uterine Treg expansion was proven by 
matings with seminal vesicle-deficient and vasectomized males (Guerin et al. 2011; 
Robertson et al. 2009) suggesting that both seminal plasma and sperms are neces-
sary for Treg induction. We confirmed the need for seminal plasma for in vivo Treg
expansion in draining lymph nodes in the preimplantation period by matings with 
seminal-deficient male mice (Teles et al. 2013a). In addition, in vitro co-culture of 
Treg in the presence of different concentrations of seminal plasma provoked a sig-
nificant proliferation of Treg. However, this was not observed for conventional T
cells (Teles et al. 2013a). Moreover, pseudopregnancy induced by mechanical stim-
ulation did not result in Treg augmentation again underlying the importance of 
seminal plasma for Treg elevation (Schumacher et al. 2007). In contrast to observa-
tions obtained by Robertson and colleagues, in our mouse model, matings with 
vasectomized males did not significantly impair Treg increase in lymph nodes
(Schumacher et al. 2007; Teles et al. 2013a).

TGF-β, present in high amounts in seminal plasma, might be one of the fac-
tors responsible for seminal plasma-driven Treg expansion. In vitro co-cultures of 
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seminal plasma with Treg in the presence of a TGF-β antibody abrogated Treg pro-
liferation (Teles et al. 2013a). In line, Clark and colleagues confirmed an effect of
pure TGF-β3 onTreg induction and pregnancy success.They applied pharmaceutical-
grade bioactive TGF-β3 into the vaginal tract of abortion-prone females at mating.
Application of intravaginal TGF-β3 reduced the abortion rate and increased the
numbers of Treg in the vagina (Clark et al. 2008). PGE, known to have the capability
to induce Treg number and activity (Baratelli et al. 2005), may also contribute to 
Treg elevation. Furthermore, seminal fluid induces the expression of uterine CCL19,
a chemokine that acts through the CCR7 receptor, and may therefore be involved in
Treg recruitment to the uterus (Guerin et al. 2011; Teles et al. 2013a). Moreover, 
Robertson and colleagues proved that seminal fluid-induced Treg are fully func-
tional. In a mouse model, they nicely showed that Treg induced by seminal fluid- 
derived paternal antigens efficiently prevented the rejection of engrafted tumor cells
expressing the same paternal antigens (Robertson et al. 2009). In agreement with the 
murine data, human seminal plasma was also shown to increase the proportion of 
CD127low CD49dlow Treg. However, Balandya and colleagues revealed that increased 
Treg numbers were a result of an increased conversion rate from CD4+ non-Treg into 
Foxp3- Treg and not due to proliferation of preexisting Treg (Balandya et al. 2012).

Altogether, Treg expansion in the preimplantation period may occur due to the 
presence of paternal alloantigens and other factors in seminal fluid. Paternal alloan-
tigens might be presented by APCs of paternal or maternal origin. After implanta-
tion, the Treg pool is then further maintained by the continuous release of fetal 
antigens from the placenta supporting fetal survival until birth. Interestingly, post-
partum fetal-specific Treg may persist in the mother creating a memory to paternal
antigens (Schober et al. 2012) and rapidly re-accumulate during subsequent preg-
nancies (Rowe et al. 2012).

10.9  Therapeutic Potential of Seminal Fluid

The findings discussed above provide evidence that seminal fluid might possess
some therapeutic potential in the treatment of infertility and miscarriage. A recently 
published review compared data on the outcome of in vitro fertilization (IVF) treat-
ments in patients exposed to seminal plasma around the time of oocyte retrieval or 
embryo transfer with placebo controls or controls with no exposure to seminal 
plasma. The authors compared the clinical pregnancy and live birth/ongoing preg-
nancy rate and found a statistically significant improvement in clinical pregnancy
rate but no significant improvement in terms of ongoing pregnancy/live birth rates.
However, they admitted that available data for the ongoing pregnancy/live birth rates 
were very limited, and the methodology and quality of the analyzed studies were 
variable (Crawford et al. 2014). The positive effect of seminal plasma exposure on 
the clinical pregnancy rate in IVF patients might be explained by an increase in the
number of Treg that has been associated with improved pregnancy rates in IVF
patients (Zhou et al. 2012). Moreover, seminal fluid-driven Treg protection may also 
have beneficial effects in other clinical applications. In this regard, exposure of
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seminal fluid may improve disease activity in autoimmune disorders associated with 
reduced Treg numbers and function (Pakravan et al. 2014). Altogether, it can be 
assumed that administration of seminal fluid is a promising tool to modulate unde-
sired immune responses and provoke tolerance in different clinical disciplines.

10.10  Conclusions

Despite intensive research work investigating the factors and mechanisms allowing 
fetal survival within the hostile uterine environment, there remain several open 
questions to be answered. One of these questions addresses the father’s contribution 
to fetal tolerance. Here, we pointed out that the father not only provides the genetics 
to create new life but also contributes to its survival from the very beginning by 
delivering immune-modulating factors with the semen. These factors allow the 
establishment and maintenance of a fetal- friendly environment resulting in a suc-
cessful embryo implantation and fetal growth. Moreover, the health of the progeny 
after birth seems also to be influenced by paternal-derived factors. Thus, the contri-
bution of the father for the survival of its own child should not be underestimated. 
In Fig. 10.1, we propose an hypothetical scenario as to how maternal immune 
responses are regulated upon contact with paternal antigens.

Fig. 10.1 Hypothetical scenario on the immune modulatory capacity of seminal fluid. After con-
tact with paternal antigens a rather tolerant immune response is generated. The graphic illustrates 
the interactions between immune cells at different compartments
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