

Lecture Notes in Bioinformatics 5750
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Corrado Priami Ralph-Johan Back
Ion Petre (Eds.)

Transactions on
Computational
Systems Biology XI

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Editor-in-Chief

Corrado Priami
The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Piazza Manci, 17, 38050 Povo (TN), Italy
E-mail: priami@cosbi.eu

Guest Editors

Ralph-Johan Back
Ion Petre
Åbo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5, 20520 Turku, Finland
E-mail: {backrj,ipetre}@abo.fi

Library of Congress Control Number: 2009933672

CR Subject Classification (1998): J.3, F.1, F.2, I.6, I.2, C.1.3

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1861-2075 (Transactions on Computational Systems Biology)
ISBN-10 3-642-04185-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04185-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany
Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12743292 06/3180 5 4 3 2 1 0

Preface

Biology is witnessing a transformation towards a more quantitative science,
based on the major technological breakthroughs of the past decade. In this
transformation, biology is incorporating mathematical modeling techniques and
computational approaches towards numerical simulations, model analysis, and
quantitative predictions. An important goal is to formalize and analyze the ever-
changing inter-connections between components (often on different time and
space scales), their influence on one another, regulatory patterns, alternative
pathways, etc. Formal reasoning rather than empirical observations is the main
driving force in this new type of biological research. At the same time, computer
science and applied mathematics are faced with considerable methodological
challenges in handling an unprecedented level of concurrency, stochastic effects,
a mix of large and small populations, combinatorial explosions in the state space,
model refinement, and model (de)composition, etc.

This special issue of Transactions on Computational Systems Biology on Com-
putational Models for Cell Processes is based on a workshop with the same name
that took place in Turku, Finland, on May 27, 2008. The workshop was orga-
nized as a satellite event of the 15th International Symposium on Formal Meth-
ods that took place in Turku in the period May 28-31, 2008. This special issue
however had an open call for paper submissions, with a separate peer-review
process. The accepted papers span an interesting mix of approaches to systems
biology, ranging from quantitative to qualitative techniques, from continuous to
discrete mathematics, from deterministic to stochastic methods, from computa-
tional models for biology to computing paradigms inspired by biology. Overall,
they give a good glimpse into some of the exciting current research avenues in
computational systems biology.

This volume also contains three regular submissions that deal with the rela-
tionships between ODEs and stochastic concurrent constraint programming (by
Bertolussi and Policriti), with the equilibrium points of genetic regulatory net-
works (by Chesi), and with probability models describing how epigenetic context
affects gene expression and organismal development (by Wallace and Wallace).

July 2009 Ralph-Johan Back
Ion Petre

Corrado Priami

LNCS Transactions on
Computational Systems Biology –

Editorial Board

Corrado Priami,
Editor-in-chief University of Trento, Italy

Charles Auffray Genexpress, CNRS and Pierre & Marie Curie
University, France

Matthew Bellgard Murdoch University, Australia
Soren Brunak Technical University of Denmark, Denmark
Luca Cardelli Microsoft Research Cambridge, UK
Zhu Chen Shanghai Institute of Hematology, China
Vincent Danos CNRS, University of Paris VII, France
Eytan Domany Center for Systems Biology, Weizmann

Institute, Israel
Walter Fontana Santa Fe Institute, USA
Takashi Gojobori National Institute of Genetics, Japan
Martijn A. Huynen Center for Molecular and Biomolecular

Informatics The Netherlands
Marta Kwiatkowska University of Birmingham, UK
Doron Lancet Crown Human Genome Center, Israel
Pedro Mendes Virginia Bioinformatics Institute, USA
Bud Mishra Courant Institute and Cold Spring Harbor

Lab, USA
Satoru Miayano University of Tokyo, Japan
Denis Noble University of Oxford, UK
Yi Pan Georgia State University, USA
Alberto Policriti University of Udine, Italy
Magali Roux-Rouquie CNRS, Pasteur Institute, France
Vincent Schachter Genoscope, France
Adelinde Uhrmacher University of Rostock, Germany
Alfonso Valencia Centro Nacional de Biotecnologa, Spain

Table of Contents

Computational Models for Cell Processes

Process Algebra Modelling Styles for Biomolecular Processes 1
Muffy Calder and Jane Hillston

Simple, Enhanced and Mutual Mobile Membranes . 26
Bogdan Aman and Gabriel Ciobanu

Bio-PEPA with Events . 45
Federica Ciocchetta

In Silico Modelling and Analysis of Ribosome Kinetics and aa-tRNA
Competition . 69

D. Bošnački, T.E. Pronk, and E.P. de Vink

Qualitative and Quantitative Analysis of a Bio-PEPA Model of the
Gp130/JAK/STAT Signalling Pathway . 90

Maria Luisa Guerriero

Rule-Based Modelling and Model Perturbation . 116
Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and
Jean Krivine

Extended Stochastic Petri Nets for Model-Based Design of Wetlab
Experiments . 138

Monika Heiner, Sebastian Lehrack, David Gilbert, and
Wolfgang Marwan

A Projective Brane Calculus with Activate, Bud and Mate as Primitive
Actions . 164

Maria Pamela C. David, Johnrob Y. Bantang, and
Eduardo R. Mendoza

Accepting Networks of Non-inserting Evolutionary Processors 187
Jürgen Dassow and Victor Mitrana

Discrete Modeling of Biochemical Signaling with Memory
Enhancement . 200

John Jack and Andrei Păun

Dynamical Systems and Stochastic Programming: To Ordinary
Differential Equations and Back . 216

Luca Bortolussi and Alberto Policriti

VIII Table of Contents

Computing Equilibrium Points of Genetic Regulatory Networks 268
Graziano Chesi

Code, Context, and Epigenetic Catalysis in Gene Expression 283
Rodrick Wallace and Deborah Wallace

Author Index . 335

Process Algebra Modelling Styles for
Biomolecular Processes

Muffy Calder1 and Jane Hillston2

1 Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland

2 Laboratory for Foundations of Computer Science and
Centre for Systems Biology, Edinburgh

The University of Edinburgh, Edinburgh EHA 9AB, Scotland

Abstract. We investigate how biomolecular processes are modelled in
process algebras, focussing on chemical reactions. We consider various
modelling styles and how design decisions made in the definition of the
process algebra have an impact on how a modelling style can be applied.
Our goal is to highlight the often implicit choices that modellers make in
choosing a formalism, and illustrate, through the use of examples, how
this can affect expressability as well as the type and complexity of the
analysis that can be performed.

1 Introduction

Much recent research has considered the problem of providing suitable abstract
models to allow biologists to construct mechanistic models to enhance under-
standing of biomolecular processes. Process algebras, formal modelling languages
originally conceived for modelling concurrent computations, have been widely ap-
plied, most notably in the area of signalling pathways [RSS01, CGH06, TK08].
This is experimental science and we are currently evaluating the hypothesis
that such formal models can add value to the mathematical analysis that is al-
ready undertaken within systems biology in terms of ordinary differential equa-
tion (ODE) models or stochastic simulations directly. In exploring this goal,
even within work on process algebras, several different styles of modelling have
emerged. Ultimately we hope to be able to give guidance on how to choose among
these modelling styles, or on how to map molecular components and their inter-
actions to processes, process communication and process composition. However,
in the first instance we investigate how design decisions made in the definition
of the language have an impact on how a modelling style can be applied, and
highlight the often implicit choices that modellers make in choosing a formalism.

Recent research effort on process algebras for biomolecular processes, e.g.
[CGH06, CVOG06, CH08, Car08], has focussed on defining alternative seman-
tics, such as discrete-state (stochastic) or continuous-state (ODE) semantics.
These provide important links with the work where mathematical representa-
tions are used directly and establish a valid foundation for process algebra mod-
els. Based on these semantics, analysis may be carried out by model-checking,

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 1–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Calder and J. Hillston

stochastic simulation based on Gillespie’s algorithm or ODE simulations. Our
emphasis in this paper is different. Here we consider the forms of abstraction
supported by process algebra and how the abstraction and the process algebra
chosen affect the expressiveness of the model with respect to the biological pro-
cesses, as well as the type and complexity of the analysis that can be performed.

We focus on one of the most important types of interaction between molecular
components: chemical reactions. In chemical notation, these may be first order
reactions, for example A degrades to B: A

k1−→B, or second order reactions, for ex-
ample A and B combine to form C or C and D: A + B

k2−→C, or A + B
k3−→C + D.

Typically, k1 . . .k3 are rate constants for kinetic laws (e.g. mass action).
A fundamental aspect of the abstraction used in modelling is the nature of

the process mapping. In the literature on process algebras for systems biology
we find predominantly the molecule-as-process [RSS01, Car08] abstraction, but
the species-as-process and reaction-as-process mappings have also been proposed
[CGH06, CH08, BP08]. The distinction between the first two can be understood
by appealing to ecology: the former is essentially individuals-based, whereas
the latter is population-based. We note that this distinction is less common in
distributed computing system modelling, the origins of process algebra, where
population-based models are rarely considered.

Further stylistic differentiation was identified in [CGH06] where the concepts
of reagent-centric and pathway-centric models are introduced, in the context of
population-based modelling. Reagent-centric models map all reagents in a re-
action to processes, whose variation reflect decrease through consumption and
increase through product formation (consumers and producers). Reagents such
as modifiers that do not vary species amounts can also be modelled in this ap-
proach. Reagent-centric models provide a fine-grained, distributed view of a sys-
tem. Pathway-centric models provide a more abstract view of a system, tracking
serialisations of events, which are then composed concurrently. Here, processes
vary according to their biological state rather than their quantity. Whereas in a
reagent-centric approach the processes may be molecules or molecular species, in
the pathway-centric approach the processes are molecules or sub-pathways. Thus
the interactions between processes are between flows of events corresponding to
producers, i.e. components on the left hand sides of a reactions.

Most modelling approaches map chemical reactions to events in a straightfor-
ward way, and map (possibly a subset of) the chemical components to processes.
Bortolussi and Policriti’s work on sCCP, using the reaction-as-process abstrac-
tion, is an exception to this. When chemical components are mapped to processes
within the reagent-centric approach there is a further choice: between associat-
ing processes with all components or only with the reagents on the left hand
side of equations, i.e. those reagents that are the reactants of the reaction. To
distinguish these two cases, we call the former reagent-centric and the latter
reactant-centric. This modelling choice is often influenced by the form of syn-
chronisation available within the algebra: binary or multi-way. If we have only
the former, then only the reactant-centric approach is possible and we are left

Process Algebra Modelling Styles for Biomolecular Processes 3

with an interesting dilemma when there are fewer components on the right hand
side of the equation than on the left hand side, e.g. A + B

k2−→C.
In summary, a number of factors will influence the structure of a process

algebra model of a biomolecular process:

– population-based or individuals-based,
– reagent-centric, reactant-centric, pathway-centric or reaction-centric,
– the form of synchronisation available in the algebra.

In this paper we investigate the interplay between these three factors. Our mo-
tivation is to explore the extent to which we can build clear and faithful models
using current algebras and analysis techniques, and how design decisions with
respect to the process algebra determine the mappings available to the mod-
eller. We consider different combinations, investigating their advantages and
disadvantages.

We will use five process algebras for illustration: π-calculus, Beta-binders,
PEPA, Bio-PEPA, and sCCP; these are briefly outlined in the next section.
These are chosen as they represent a spectrum of different modelling style, in-
cluding languages that have been adapted (π-calculus, PEPA and sCCP) and
designed (Beta-binders and Bio-PEPA) for biological modelling. This is by no
means a comprehensive list of process algebras used in systems biology. In par-
ticular we do not include any of the process algebras designed to consider spatial
aspects of biomolecular processes [CPR+04, Car04, V07, BMMT06, CG09] as
they are beyond the scope of this paper.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the process algebras and Section 3 describes the example pathway used
throughout for illustration and comparison. In Sections 4 to 8 we consider mod-
elling in PEPA, Bio-PEPA, π-calculus, Beta-binders and sCCP. We discuss the
results in Section 9 and give our conclusions in Section 10.

2 Process Algebras

Process algebras were originally defined to give semantics to concurrent processes
in a computing context and have enjoyed considerable success over the three
decades since they emerged. Classical process algebras such as CCS [Mil80] and
CSP [Hoa85] focus on the functional capabilities of processes and all actions are
atomic with only relative timing of actions captured. Subsequently there have
been many extensions of process algebras to capture more information about the
system being modelled, for example the relative probability of alternative actions
(probabilistic process algebras) and the expected duration of actions (stochastic
process algebras).

Each of the process algebras that we consider is based on three fundamen-
tal binary operators: action prefix, choice, which is associative and commuta-
tive, and synchronous composition, which is also associative and commutative.

4 M. Calder and J. Hillston

Note that in the following we omit the cooperation sets for composition in PEPA
and Bio-PEPA and assume them to be the intersection of the alphabets of the
processes involved (denoted ��∗). We disregard quantitative aspects of actions,
since the representation of kinetics is orthogonal to the expressiveness we con-
sider here. Therefore in our examples, we will assume that the reaction rate for
each considered reaction is unique and use this as the name of the corresponding
reaction event, i.e. the reaction A + B

r1−→C + D in chemical notation maps to
the process algebra event r1.

In seminal work, Regev and Shapiro [RS01] suggested an abstraction of cell-as-
computation and proposed that models formerly used in the study of interacting
computational entities, such as Petri nets, process algebras and automata, could
be usefully employed for the study of biological processes. In particular they
focussed on the π-calculus [Mil99], and subsequently the stochastic π-calculus
[Pri95] based on the molecule-as-process abstraction. This work has been hugely
influential with many other authors following the same abstraction in their own
work, even when the details of the process algebra differ.

However, the π-calculus has some particular characteristics that are indepen-
dent of the molecule-as-process abstraction that also shape the style in which
models are expressed. In this section we give a brief introduction to process
algebras, focussing on the features which lead to different modelling paradigms.

2.1 Forms of Synchronisation

The original process algebras, CCS and CSP, differ in their interpretation of
actions and consequently the meaning of synchronisation. In CCS all actions
are assumed to be communications, and therefore conjugate, i.e. actions are
paired, corresponding to an input and an output. An action cannot be carried
out without its partner, and the pairing of an input and an output becomes a
private τ action. This has the consequence that the interaction, or synchroni-
sation, between processes is strictly binary as once an input has been paired
with an output both become unavailable for further interaction. In contrast, in
CSP no distinction is made between inputs and outputs and there is no notion
of complementarity between actions. Instead action type denotes ownership of
a channel and synchronisation is assumed to take place whenever processes un-
dertake actions of the same type, i.e. communication over the named channel.
This is termed multiway synchronisation as there is no restriction on the num-
ber of processes that may own a channel and thus join a synchronisation. Note
that in both these cases the parallel composition operator is generic: in CCS
any complementary actions which are on either side of the parallel composi-
tion may synchronise; in CSP, processes composed by the parallel operator must
synchronise on common actions.

Synchronisation in PEPA is a subtle variation of the CSP scheme. Here the
parallel composition operator, termed cooperation, is decorated by a set of ac-
tion types (the cooperation set) and processes are only forced to synchronise on

Process Algebra Modelling Styles for Biomolecular Processes 5

action types within this set, being able to act concurrently and individually on
other action types. Thus the parallel composition is not generic, but a family
of parameterised operators. The characteristics of this multiway synchronisation
are important in the biological context as they allow one copy of a process
(molecule) within a set of identical processes to undertake a reaction individually,
something that would not be possible in CSP1.

2.2 π-Calculus

The π-calculus [Mil99] (and its stochastic form [Pri95]) was designed to express
mobility, represented by the passing of channel names. It evolved from CCS
[Mil80] and includes the operations of a constant, action prefix, choice, parallel
composition, communication and scope restriction. There are variants of the
syntax, here we use the following form with events π and processes P :

π ::= τ | x | x | x(y) | x〈y〉

P ::= 0 | π.P | P |P | P + P | νxP

Following CCS [Mil80], τ is the unobservable event. All other events are observ-
able and paired, e.g. x(y) with x〈y〉, with x(y) denoting input y on channel x,
and x〈y〉 denoting output y on channel x. 0 is the inactive process and νxP
restricts the scope of the name x to P . In the stochastic form, rates are bound
to channels, but as with the other process algebras, we will omit rates here.

A structural congruence, denoted ≡, determines when two syntactic expres-
sions are equivalent, and an operational semantics is given by a set of reaction
rules that define how a system evolves following communication. We do not give
the full definitions of the congruence and reaction rules, but note two distin-
guishing features. First, the constant, 0, is an identity for parallel composition,
i.e. there is a syntactic equality P | 0 ≡ P . Second, interaction only occurs
when there is a complementary pair of input and output events. The relevant
reduction rule is (. . . + x〈y〉.Q) | (. . . + x(z).P) → Q | P{y/z}.

There have been numerous applications of the π-calculus to biomolecular pro-
cesses, starting with the work of Regev et al. [RSS01]. An interesting aspect of the
application of π-calculus is that it was designed to facilitate modelling mobility
and name passing, thus in the original π-calculus events are parameterised, e.g.
x(y). Yet, most biological applications do not exploit mobility — the parameter
is not relevant, except when modelling compartments, or internal communica-
tions. So, in many models unparameterised events are also permitted, e.g. x and
x, and we have also included them here. We note the recent work of Cardelli
[Car08] on translations between process algebra and chemical reactions that in-
troduces a subset of the π-calculus and CCS suitable for modelling chemical
reactions. It is similar to the syntax above, but excludes event parameters and
the ν operator. Additionally, it includes an expression of initial components.

1 This might explain why, to the best of our knowledge, there has been no work
applying CSP to biomolecular modelling.

6 M. Calder and J. Hillston

A further distinctive aspect of the π-calculus/CCS paradigm for biomolecular
modelling is the underlying assumption of two-way synchronous communication.
This means that a a binary chemical reaction, e.g. of the form A + B →r C, is
modelled by processes A and B offering events r and r, whereas a unary chemical
reaction, e.g. of the form A →r B, must be modelled by an unobservable τ event.

2.3 Beta-Binders

Beta-binders [DPPQ06] is a process algebra based on the π-calculus, designed
for modelling and simulation of biological processes. A biological process is mod-
elled by a bio-process, which is a π-calculus process encapsulated in a box with
interaction capabilities expressed as beta-binders. Each communication channel
has a set of associated types and there are three kinds of binder: visible, hid-
den, and complexed. Additionally, there are rates, but these are omitted here.
A bio-process is either a constant or pair of encapsulated π-calculus processes
composed with a synchronous parallel operator.

The language has evolved over a number of years, here we use the following
syntax for boxes B and beta-binders B, assuming π-calculus processes P :

B ::= Nil | B[P] | B ‖ B

B ::= β(x, Γ) | βh(x, Γ) | βc(x, Γ)

Further, there is a additional syntactic category for events, which include func-
tions on boxes to join, split, create and destroy boxes; these are called join, split,
new and delete, respectively. These functions are only applied when a condition,
defined over binders and π processes, is fulfilled.

Interaction is two-way and is either intra-box, in which case it is standard
π-calculus interaction, or it is inter-box in which case it is specified by the
beta-binders and it is between (visible) input/output pairs, but now the types
have only to be compatible (rather than identical). There are additional actions
(within boxes) that include changing the status of binders (e.g. unhide or change
type). There are three structural congruences: ≡p, the standard congruence on
π processes, ≡b, a congruence on boxes (e.g. ‖ is associative, commutative), and
≡e, a congruence on events (e.g. join, split have substitution property).

2.4 PEPA

Performance Evaluation Process Algebra (PEPA) was introduced in the early
1990s as a formalism for building Markovian-based performance models of com-
puter and communication systems [Hil96]. All actions in PEPA consist of an
action type and a rate, which specifies the average duration of the action as an
exponentially distributed random variable. The language has a small set of com-
binators (prefix, choice, parallel composition/cooperation, hiding and constant).

Process Algebra Modelling Styles for Biomolecular Processes 7

Recursive behaviour is specified by mutually recursive definitions. As PEPA
was designed for specifying ergodic continuous time Markov chains (CTMC), a
restriction is often placed on model construction via a two level syntax, mean-
ing that models consist of parallel compositions of sequential components (con-
structed using only prefix and choice):

S := α.S | S + S | C

P := P ��
L

P | P/L | S

where S denotes a sequential component, P a model component and C is a
constant defined by a declaration such as

C
def= S

α.S carries out activity α (with an exponentially distributed duration, but omit-
ted here), and it subsequently behaves as S. As discussed above, PEPA supports
multi-way cooperations between components: the result of synchronising on an
activity α is thus another α, available for further synchronisation. We write
P ��

L
Q to denote cooperation between P and Q over L. The set which is used

as the subscript to the cooperation symbol, the cooperation set L, determines
those activities on which the cooperands are forced to synchronise. For action
types not in L, the components proceed independently and concurrently with
their enabled activities. We write P ‖ Q as an abbreviation for P ��

L
Q when

L is empty. P/L denotes the component P in which all actions with types in L
are hidden meaning that their type is no longer visible but is replaced by the
distinguished type τ . We do not consider hiding in the remainder of this paper.

The stochastic nature of the actions means that the choice becomes a proba-
bilistic choice governed by a race condition between the involved actions. Sim-
ilarly actions of parallel components that are not forced to cooperate are also
subject to a race condition. When components cooperate on actions but have
different definitions of the rate of the action, the rate of the synchronised action
is defined to be that of the slowest of the components. While these dynamic
considerations do not concern us in this paper, and PEPA has been used for
modelling a number of biological examples, we note that the form of the dy-
namics of synchronisation (the rate of the slowest component) is not always
appropriate in this context.

2.5 Bio-PEPA

Bio-PEPA [CH08] is a newly defined modification of the PEPA formalism that
has been specifically designed for modelling biochemical networks. It shares many
features with PEPA but also has some characteristics to tailor it to the biological
application.

Functional rates: In contrast to PEPA, individual processes are not able to
define their own rates for actions. Instead the rate associated with an action
is specified once, independently of the processes in which the action occurs.

8 M. Calder and J. Hillston

The value of this rate can be specified to be a function that depends on the
current state of the system.

Stoichiometry: For each action, as well as its type, the stoichiometry or degree
of involvement is also specified.

Parameterised processes: Bio-PEPA has been designed to support the
population-based reagent-centric style of modelling and so a model consists of
a number of sequential components each representing a distinct species which
evolve quantitatively (increasing or decreasing amounts). Thus in order to
capture the state of a system each component is parameterised recording its
current level.

Differentiated prefix: For each action (reaction) that a component is involved
in it records its role within that reaction, e.g. reactant, product, inhibitor
etc. This enables the appropriate values to be used in the functional rate
associated with this reaction.

As with PEPA, Bio-PEPA has a two level grammar. The syntax of the sequential
(species) components is defined as:

S ::= (α, κ) op S | S + S | C op ::= ↓ | ↑ | ⊕ |
 | �.

In the prefix term (α, κ) op S, α is an action name and can be viewed as the
name or label of a reaction, κ is the stoichiometry coefficient of the species
and the prefix combinator op represents the role of the element in the reaction.
Specifically, ↓ denotes the role of reactant, ↑ product, ⊕ activator,
 inhibitor
and � generic modifier. The operator + expresses the choice between possible
actions and the constant C is defined by an equation C

def= S.
The syntax of model components is defined as:

P ::= P ��
L P | S(x)

The process P ��
L Q denotes the synchronisation between components P and Q

and the set L specifies those activities on which the components must synchro-
nise. In the model component S(x), the parameter x ∈ R represents the initial
concentration by default, although according to the analysis to be carried out
the parameter may also be interpreted as number of molecules or molecular level
after appropriate conversion.

2.6 sCCP

In the Concurrent Constraint Programming (CCP) process algebra, rather than
components and actions, there are components and constraints [BJG96]; there
are also variables. The components evolve by adding constraints to a constraint
store (tell) or checking the current state of the constraint store (ask). This leads
to an asynchronous form of communication between components (via global vari-
ables in the constraint store) and there is no direct synchronisation. In addition
to tell and ask components may also have choice, parallel composition, procedure

Process Algebra Modelling Styles for Biomolecular Processes 9

call and local variables. In the stochastic form of CCP, sCCP [Bor06], a stochas-
tic duration is associated with the ask and tell operators in a manner analogous
to the durations of actions in other stochastic process algebras.

sCCP has been proposed as a modelling formalism for biological networks,
and stochastic, deterministic and hybrid semantics have been associated with
models in this context [BP08]. The style of modelling is similar to that of Bio-
PEPA in that a population-based view is taken, although here explicit variables
record the quantitative state of species, rather than parameterised components.
At a high level the abstraction is that measurable entities (molecules etc.) are
associated with stream variables, logical entities are associated with processes
or control variables and reactions are associated with processes. In general a
reaction is modelled as a sequence of interactions with the constraint store: first
checking that there is sufficient amount of the substrates and then updating the
amounts of the products. For mass action reactions the ask step of this sequence
will be given a rate equal to the product of the kinetic constant and the amounts
of the substrates; the tell step is assumed to be instantaneous. Thus an arbitrary
mass action reaction

R1 + . . . + Rn −→k P1 + . . . + Pm

will be represented as

reaction(k, [R1, . . . , Rn], [P1, . . . , Pm]) : −

askrMA(k,R1,...,Rn)

(n∧
i=1

(Ri > 0)
)
.

(
‖n

i=1 tell∞(Ri $= Ri − 1) ‖m
j=1 tell∞(Pj $= Pj + 1)

)

Here Ri and Pj are stream variables and rMA is a predefined function with the
obvious definition.

3 Example Pathway

We refer to a small synthetic pathway when exploring how design decisions with
respect to the the process algebra determine the mappings available to the mod-
eller. The pathway consists of five representative reactions. The reactions are
given in chemical notation in Figure 1, and presented graphically in Figure 2.
While the pathway is a synthetic example, it is based on behaviour we have ob-
served in various pathways, including the ubiquitous Raf/MEK/ERK signalling
pathway.

The equations exhibit various combinations of increasing/decreasing/prese-
rved reagents between the left and right hand sides. Specifically, r1 and r4 have
a decreasing number of reagents, r2 and r5 have an increasing number of reagents,
and r3 has the same number of reagents on the left and right hand sides. Note
that r5 has no reagent on the left hand side; we might use a reaction like this

10 M. Calder and J. Hillston

A + B →r1 C
C →r2 A + B
B →r3 D
D + E →r4 B

→r5 E

Fig. 1. Example pathway in chemical notation

C

B

D

E

A

r

r r

r

r2

1

4 5

3

Fig. 2. Example pathway

to indicate that E is plentiful, or that it is produced by another pathway that
is irrelevant to this abstraction. We will find it useful to refer to the degree of a
chemical reaction, meaning the number of reactants that it has i.e. the number
of reagents on the left hand side.

We have not included a homeo-reaction [Car08], where the components on the
left hand side are identical, as it is only relevant to distinguish this case when
rates are determined. In the example pathway, we assume initial concentrations
of A, B and E, unless stated otherwise.

4 PEPA Models

4.1 Reagent-Centric Style

In the reagent-centric view, first proposed in [CGH06], species concentrations are
discretised into levels; the granularity of the system is determined by the number
of levels n and the concentration step size h, where there is a given maximum
concentration max, h = max/n. As the number of levels increases/step size
decreases, the granularity of the model increases.

For each species, there is a family of processes, each defining the behaviour
for that (abstraction of) concentration. The system is defined by the parallel
composition of a number of initial components.

The simplest abstraction is obtained when the number of levels is two, so
that for each species there are two processes, denoting behaviour in the presence
and absence of that species, respectively. We often refer to this kind of model
as the high/low model. For example, for species A, AH denotes presence and
AL denotes absence (alternatively A1 and A0, respectively). Figure 3 gives the
PEPA high/low model for the example pathway, consisting of a set of equations
and a system definition. Figure 4 illustrates the state space for this model.

Process Algebra Modelling Styles for Biomolecular Processes 11

AH
def= r1.AL DH

def= r4.DL

AL
def= r2.AH DL

def= r3.DH

BH
def= r1.BL + r3.BL EH

def= r4.EL

BL
def= r2.BH + r4.BH EL

def= r5.EH

CH
def= r2.CL

CL
def= r1.CH

System
def= AH ��∗ BH ��∗ CL ��∗ DL ��∗ EH

Fig. 3. Example pathway: PEPA reagent-centric high/low model

E)HDLC LBH(A H ,,,,

E)HDLC HBL(A L ,,,,

E)LDLC HBL(A L ,,,,

E)HDHC LBL(A H ,,,,

E)LDLC LBH(A H ,,,, E)LDHC LBL(A H ,,,,
r r

r

rr

r

r

r

r

5

2

3

r5
4

5

3

1 2

1

Fig. 4. State space of the PEPA high/low model. Note that we use
(AX , BX , CX , DX , EX) to denote the state since the number of components is
fixed and the synchronisation structure does not change.

A0
def= r2.A1 D0

def= r3.D1

A1
def= r1.A0 + r2.A2 D1

def= r4.D0 + r3.D2

A2
def= r1.A1 D2

def= r4.D1

B0
def= r2.B1 + r4.B1 E0

def= r5.E1

B1
def= r1.B0 + r3.B0 + r2.B2 + r4.B2 E1

def= r4.E0 + r5.E2

B2
def= r1.B1 + r3.B1 E2

def= r4.E1

C0
def= r1.C1

C1
def= r2.C0 + r1.C2

C2
def= r2.C1

System
def= A2 ��∗ B2 ��∗ C0 ��∗ D0 ��∗ E2

Fig. 5. Example pathway: PEPA reagent-centric model with n = 3

12 M. Calder and J. Hillston

(A
2

B
2

C
0

D
0

E
) 2

,
,

,
,

(A
1

B
1

C
1

D
0

E
) 2

,
,

,
,

(A
0

B
0

C
2

D
0

E
) 2

,
,

,
,

(A
2

B
1

C
0

D
1

E
) 2

,
,

,
,

(A
2

B
2

C
0

D
0

E
) 1

,
,

,
,

(A
1

B
1

C
1

D
0

E
) 1

,
,

,
,

(A
0

B
0

C
2

D
0

E
) 1

,
,

,
,

(A
2

B
1

C
0

D
1

E
) 1

,
,

,
,

(A
1

B
0

C
1

D
1

E
) 1

,
,

,
,

(A
2

B
1

C
0

D
1

E
) 0

,
,

,
,

(A
1

B
1

C
1

D
0

E
) 0

,
,

,
,

(A
0

B
0

C
2

D
0

E
) 0

,
,

,
,

(A
1

B
0

C
1

D
1

E
) 0

,
,

,
,

(A
2

B
0

C
0

D
2

E
) 1

,
,

,
,

(A
2

B
0

C
0

D
2

E
) 0

,
,

,
,

(A
2

B
2

C
0

D
0

E
) 0

,
,

,
,

(A
1

B
0

C
1

D
1

E
) 2

,
,

,
,

(A
2

B
0

C
0

D
2

E
) 2

,
,

,
,

F
ig

.
6
.

St
at

e
sp

ac
e

of
th

e
P

E
P
A

re
ag

en
t-

ce
nt

ri
c

m
od

el
w

it
h

n
=

3.
T
o

av
oi

d
cl

ut
te

r
in

th
e

di
ag

ra
m

re
ac

ti
on

la
be

ls
ar

e
om

it
te

d,
bu

t
r 1

an
d

r 2
ar

e
sh

ow
n

in
so

lid
lin

es
,
r 3

in
da

sh
ed

lin
es

an
d

r 4
an

d
r 5

in
do

tt
ed

lin
es

.

Process Algebra Modelling Styles for Biomolecular Processes 13

As an example of a model with a different granularity, Figure 5 contains
a reagent-centric model with n = 3 (i.e. levels 0, 1, and 2). The state space
is in Figure 6. Note that regardless of the number of levels, the number of
(system) components is constant during system evolution, i.e. there are always
five components (the number of species).

Process as molecule in reagent-centric style. The granularity of the
reagent-centric style depends on the step size h. In the limit, the finest grained
model has a step size of one molecule. In general, it is impractical to increase n
to its corresponding limit, but one alternative is to take a reagent-centric model
with n = 1 and interpret each process as denoting the presence or absence of a
molecule. An approach based on this abstraction has been used for studying the
FGF pathway using stochastic model checking in [HKNT06]. For our example,
for species A, AH denotes presence of a molecule and AL denotes absence. So,
the population based high/low model model in Figure 3 can also be interpreted
as an individuals model, with at most one molecule for each species. Similarly, a
model consisting of (at most) two molecules for each species, is given by replacing
the system definition of Figure 3 by the system definition:

(AH ‖ AH) ��∗ (BH ‖ BH) ��∗ (CL ‖ CL) ��∗ (DL ‖ DL) ��∗ (EH ‖ EH).

Figure 7 illustrates a small portion of the corresponding state space (one tran-
sition step). Notice that this system describes the possible evolution of every
molecule: it is very fine grained. For example, from the initial state there are 8
possible transitions for reaction r1, because there are two possible molecules of
A that can be consumed, two possible molecules of B that can be consumed, and
two possible molecules of C that can be produced (23 combinations). Similarly,
there are 4 possibilities for reaction r3.

In many cases this degree of granularity is inappropriate. By appealing to
symmetry (i.e. composition is commutative), we can use a form of counter ab-
straction to represent the molecules AH ‖ . . . ‖ AH︸ ︷︷ ︸

n

by An, AH ‖ . . . ‖ AH︸ ︷︷ ︸
n−1

‖ AL

by An−1, and so on. This counter abstraction involves identifying an equivalence
class of states in a high/low model of m molecules, with a state in a model n
levels, where n = m. In other words, we define the processes as in the high/low

(A H A H BH BH C L C L DL DL EH E)H, , , , , , , , ,

r2r1

(A L A H BL BH C H C L DL DL EH E)H, , , , , , , , ,

(A H A H BL BH C L C L DH DL EH E)H, , , , , , , , ,
r

3

...

...

Fig. 7. One transition step in PEPA reagent-centric process-as-molecule model with
two molecules

14 M. Calder and J. Hillston

(A H A H BH BH C L C L DL DL EH E)H, , , , , , , , , E)2D0C 0B2(A 2 ,,,,

r2r1

(A L A H BL BH C H C L DL DL EH E)H, , , , , , , , ,

(A H A L BL BH C H C L DL DL EH E)H, , , , , , , , , E)2D0C 1B1(A 1 ,,,,

r2r1

....

Fig. 8. One transition step in the state space of the PEPA counter abstraction model

C

B

D

E

A

r

r r

r

r2

1

4 5

3

Fig. 9. Example set of reactions with pathways indicated

model of Figure 3, then compose multiple copies of each process and interpret
An as representing n molecules. This is illustrated in Figure 8, for the example
pathway with two molecules for each species. States in the fine-grained individu-
als model are quotiented and dashed lines indicate how the quotient class relates
to a state in the counter abstraction model.

4.2 Pathway-Centric Style

An alternative style of modelling that has been proposed in PEPA is the
pathway-centric style. In this style, we specify the sub-pathways that consume
and replenish the initial species, which are the species with significant initial
concentrations. In the example pathway, this involves defining the sub-pathways
starting from A, B, and E. Call these Path1, Path2 and Path3, respectively.
The example pathway is given in Figure 10, with corresponding state space in
Figure 11.

Notice that although the system definition has only 3 components, this space
is isomorphic to the high/low reagent-centric model (Figure 4). Notice also im-
plicitly, the model has two levels. For example, Path1 denotes high concentra-
tion of both A and B. We could make levels explicit in this style, by composing

Process Algebra Modelling Styles for Biomolecular Processes 15

Path1
def= r1.r2.Path1

Path2
def= r1.r2.Path2 + r3.r4.Path2

Path3
def= r4.r5.Path3

System
def= Path1 ��∗ Path2 ��∗ Path3

Fig. 10. Example pathway: PEPA pathway-centric model

r1 r2

r4

(r .Path , r .Path , r .Path)2 2 21 5 3

(Path , r .Path , Path)1 4 2 3

(Path , Path , r .Path)321 5

r1 r2

r5

r5

r3

(Path , r .Path , Path)1 24 3

r3

r5

(r .Path , r .Path , Path)2 1 2 2 3

(Path , Path , Path)1 2 3

Fig. 11. Pathway-centric model state space

multiple copies of each pathway (with parallel composition, no synchronisation).
For example the three level model would be:

(Path1 ‖ Path1) ��∗ (Path2 ‖ Path2) ��∗ (Path3 ‖ Path3)

In this case, similarly to the individuals reagent-centric style, there are more po-
tential interleavings than in the reagent-centric population-based representation,
and so the explicit state space here will be larger. However, again, by appealing
to symmetry, we can work at the aggregate level. Thus for a given number of
levels, the state space size and structure of both the pathway-centric and the
reagent-centric models should be the same, as established in [CGH06]. Note that
tools like the PEPA workbench [TDG09] can automatically detect such symme-
tries. We observe that assuming chemical reactions of at most degree two, we
only require binary synchronisation, for this style of model.

5 Bio-PEPA

The Bio-PEPA formulation [CH08] of the reagent-centric style for the example
pathway is given in Figure 12. This example does not fully exploit the power of
Bio-PEPA, since the stochiometric coefficients are all simple (1) and the func-
tional rates are omitted. However, it does illustrate how the language focuses
on the role of each species, in each reaction. Initial concentrations are denoted
A0 for species A, etc. An integral part of a Bio-PEPA specification (omitted
here) is a definition of h and n, for every species, as well as initial concentrations
(expressed as levels).

The state space of this model depends upon the levels, for example, if the
number of levels is uniformly 2, then the state space is the same as Figure 6.

16 M. Calder and J. Hillston

A
def= (r1, 1)↓A + (r2, 1)↑A

B
def= (r1, 1)↓B + (r2, 1)↑B + (r3, 1)↓B

C
def= (r2, 1)↑C

D
def= (r4, 1)↓D + (r3, 1)↑D

E
def= (r4, 1)↓E + (r5, 1)↑E

System
def= A(A0) ��∗ B(B0) ��∗ C(C0) ��∗ D(D0) ��∗ E(E0)

Fig. 12. Example pathway: Bio-PEPA model

Note that in the corresponding PEPA model (i.e. Figure 5), the number of levels
is “hardwired” into the equations, whereas in the Bio-PEPA model, it is given
as a parameter offering more flexibility to the modeller. If the number of levels is
set sufficiently high the model has a state space corresponding to an individuals
model (i.e. if n is chosen to be the number of molecules).

6 π-Calculus

Models in the π-calculus and its stochastic variants predominantly follow the
reactant style (e.g. [TK08]), based on the molecules-as-processes abstraction.
Thus these are individuals based models. Figure 13 gives the π-calculus model
in this style for the example pathway; since each reagent in the example also
occurs on the left hand side of a chemical equation, there are processes for
A . . . E.

The example pathway highlights an interesting aspect of this style because in
the biochemistry there are

1. equations with a decreasing number of components, and
2. an equation with no left hand side.

Consider the former case. Since synchronisations are between reagents on the
left hand side of an equation only, there is an arbitrary (and inconsequential)
choice between which component is output and which is input. Further, the
components on the left hand side, when translated into processes, evolve into
components on the right hand side. If the number of components decreases, then
we have to nominate one or more to evolve to 0, the null process. For example,
A + B →r C could map to A = r.C and B = r.0; equally, it could map to
A = r.0 and B = r.C, or A = r.0 and B = r.C, etc. Taking the first choice,
A | B evolves to C | 0. This is an example of a “trailing 0”, which is removed
through application of the syntactic equality P | 0 ≡ P , i.e. A | B evolves to C.

Now consider the second case. We cannot model an equation without a left
hand side explicitly, e.g. r5, but since E is present initially, we could represent
the infinite supply of E by a τ event, after offering the output event r4. However,
this would constrain the creation of E to occur only after a molecule has been

Process Algebra Modelling Styles for Biomolecular Processes 17

A = r1.C
B = r1.0 + τ.D
C = τ.A | B
D = r4. B
E = r4.0

Env = τ.Env | E

System = A | B | E | Env

Fig. 13. Example pathway: π-calculus model

. . .
. . .

. . .

A | B | E | Env

A | B | Env

A | D | E | Env

A | D | E | E | Env

A | D | Env

A | B | E | E | Env

C | E | E | Env

C | E | Env

C | Env

Fig. 14. π-calculus model state space

consumed in the reaction r4. An alternative, which we use, is to introduce a
representation of the environment Env and define it as follows:

Env = τ.Env | E
This presents the possibility that an unbounded number of E molecules may
be introduced into the system, which is true when we represent the system
only qualitatively. In the biological reality and when quantitative information is
included in the model in the form of rates the system will become pragmatically
bounded meaning that the probability for E to grow unboundedly is extremely
small.

Figure 14 illustrates possible evolutions for the system with one molecule of A,
B and E initially, i.e. the evolution of A | B | E | Env. We have not labelled the
transitions since events are either unobservable or become so after synchronisa-
tion. Notice that in this state space the number of system components fluctuates,
it both increases and decreases. Moreover the state space is infinite due to the
potentially unbounded number of E, although a graph isomorphic to the state
space of the pathway-centric model is embedded within it. An alternative inter-
pretation of this model is therefore a fine-grained pathway-centric view based on

18 M. Calder and J. Hillston

molecules. Or rather, it is a mixture of two styles: equations are defined for each
reagent, but the system definition has the form of a pathway-centric model.

While this approach provides a faithful overall system model, it is not compo-
sitional. Specifically, one equation incorporates aspects of the initial system and
it would be misleading to a reader who inspected the behaviour only of a pro-
cess that arbitrarily terminates, e.g. B, which can evolve into 0. Moreover, some
reactions are represented explicitly by named events, i.e. r1 and r4, whereas the
unary or nullary reactions r2, r3 and r5 are represented by the τ event. Thus,
there are no occurrences of the reaction names r2, r3 and r5 in the model.

7 Beta-Binders

There are several ways to map a chemical reaction in this formalism. For ex-
ample, we could define a mapping very similar to the π-calculus mapping, with
boxes for the processes that are initial, i.e. the system is given by [A] ‖ [B] ‖ [E],
with suitable beta-binders defined for each box, and each encapsulated process is
defined as in Figure 13. The authors recommend this mapping when the reaction
denotes a collision of entities, the collision being mapped to (inter-box) commu-
nication. However, if we use this mapping, we are left with boxes containing the
π-calculus constant process (i.e. 0) and we cannot remove them by the structural
congruences: we need to introduce an explicit delete event to remove them.

Alternatively, instead of representing reactions by inter-box communication,
we could represent reactions by events, i.e. by the box operations. In this case,
a reaction such as A + B →r C maps to (A, B) join C, where A, B, and C
are constant bio-processes. Figure 15 gives a Beta-binders model of the example
pathway using events. Notice that there are four events and no communication:
the encapsulated processes are constants, except for process B, which changes its
interaction type (to that of D). The state space is given in Figure 16; the space
is isomorphic to the π-calculus model, though we could bound the occurrences
of new E with a condition. The model is also a mixture of styles: equations are
defined for each reagent, but it is not reagent-centric: there is no communication
and the system definition has the form of a reaction-centric model.

There is a third possible mapping when the reaction denotes a binding (e.g.
ligand to receptor); this is usually written in chemical notation as: A+B →r [A+
B]. In this case we could we use the complex/decomplex beta-binder operations
to create and delete dedicated communication channels between boxes [A] and

(A,B) join C where A = β(x, ΓA) [nil]
C split (A,B) B = β(x,ΓB) [chtype(x,ΓD). nil]
(D, E) join B C = β(x, ΓC) [nil]
new E D = β(x, ΓD) [nil]

E = β(x,ΓE) [nil]

Fig. 15. Example pathway in Beta-binders

Process Algebra Modelling Styles for Biomolecular Processes 19

.. .
A D E

EC

A D E

E EC

A B E E

A B E

.. .
.. .

A DA B

C

E

Fig. 16. State space of Beta-binders model. Note that following the graphical notation
for Beta-binders, we omit the parallel composition operation ‖ on bio-processes.

[B]. That is, the two boxes [A] and [B] would evolve into a complex of two boxes,
instead of into two separate boxes.

8 sCCP

Our last example is a model in sCCP. This is shown in Figure 17. There are five
processes: one for each reaction, with stream variables representing the species.
Each process has the form ask (check that there is sufficient of a species) followed
by the parallel composition of all the possible effects of the reaction (i.e. produc-
tion or consumption) expressed by tell. The state space of the model is shown in
Figure 18. Unsurprisingly this includes the state space which has been retrieved
from the other models, such as the reagent-centric PEPA models (shown in the
shaded area in the diagram). However note that this model also permits the un-
bounded growth of the population of E (as in the π-calculus model), leading to
an infinite state space unless an explicit guard is inserted which disables reaction
r5 when the population of E reaches a given size.

This model bears some similarity to the state based PRISM model given in
[CVOG06], where species are represented by state variables. This is not surpris-
ing, since the PRISM modelling language is essentially the language of reactive
modules [AH90]. However, in [CVOG06], there is still explicit synchronisation
and commands are grouped by species, rather than by reaction. The reactions-
as-processes models of sCCP can therefore be considered to be reaction-centric
and in that they are similar to other rule-based formalisms such as the κ-calculus
[VFF+07] and BIOCHAM [CRCD+04].

9 Discussion

The three main abstractions for mapping chemical equations to process alge-
bras are molecule-as-process, species-as-process, and reaction-as-process. We have

20 M. Calder and J. Hillston

reaction(r1, [A, B], [C]) : −
ask(A > 0 ∧ B > 0). (tell(A $= A − 1) ‖ tell(B $= B − 1) ‖ tell(C $= C + 1))

reaction(r2, [C], [A, B]) : −
ask(C > 0). (tell(C $= C − 1) ‖ tell(A $= A + 1) ‖ tell(B $= B + 1))

reaction(r3, [B], [D]) : −
ask(B > 0). (tell(B $= B − 1) ‖ tell(D $= D + 1))

reaction(r4, [D, E], [B]) : −
ask(D > 0 ∧ E > 0). (tell(D $= D − 1) ‖ tell(E $= E − 1) ‖ tell(B $= B + 1))

reaction(r5, [], [E]) : −
(tell(E $= E + 1))

5 reaction system : −
reaction(r1, [A, B], [C]) ‖ reaction(r2, [C], [A, B]) ‖ reaction(r3, [B], [D])

‖ reaction(r4, [D,E], [B]) ‖ reaction(r5, [], [E])

Fig. 17. Example pathway: sCCP model

C=1B=0(A=0 D=0 E=1),,, ,

C=1B=0(A=0 D=0 E=0),,, ,

C=0B=1(A=1 D=0 E=0),,, ,

C=0B=0(A=1 D=1 E=1),,, ,

C=0B=0(A=1 D=1 E=0),,, ,

C=1B=0(A=0 D=0 E=2),,, ,
r5

r 5

C=0B=1(A=1 D=0 E=1),,, ,

r1 r2

r1 r2

r1 r2

C=0B=1(A=1 D=0 E=2),,, ,

r3

r3 C=0B=0(A=1 D=1 E=2),,, ,

r5

r5

r5

r4

r4

.. .

.. .
.. .

r

r
5

3

Fig. 18. State space of the sCCP model of the example

further defined four styles: reagent-centric, pathway-centric, reactant-centric, and
reaction-centric. We have presented reactant-centric π-calculus and Beta-binders
models, and (individuals-based) reagent-centric PEPA models as examples of the
the molecule-as-process abstraction, (population-based) pathway-centric PEPA
and (population-based) reagent-centric Bio-PEPA models as examples of the
species-as-process abstraction, and a reaction-centric sCCP model as an exam-
ple of the reaction-as-process abstraction.

Process Algebra Modelling Styles for Biomolecular Processes 21

The styles of modelling supported by a process algebra is strongly influ-
enced by the form of synchronisation available. Whilst languages with multiway
synchronisation are capable of representing models in reagent-centric, reactant-
centric or pathway-centric style, the same is not true for languages with conjugate
actions and binary synchronisation. These languages cannot generally represent
reactions in the reagent-centric style. Only first degree, or unary, reactions could
be modelled in this style in these languages.

In the example considered we have only considered reactions with degree
one and two — indeed there are thermodynamic arguments for restricting con-
sideration to such reactions if we wish to be faithful to biochemistry. However,
abstractions which lead to higher degree reactions are often applied by biologists
for a variety of reasons. For example, consider the enzyme-enabled association
of two smaller molecules (A and B) into a complex C. In terms of elementary
reactions this might proceed as follows:

A + B + E r2←→r1 A + B:E −→r3 C + E

where E is the enzyme and B:E is a complex formed from B and the enzyme.

This could abstracted as A+B
E−→r C. The abstraction has the advantage that

the number of reagents considered in the transformation is reduced, and that the
number of reaction rates which have to be measured, estimated or fitted is cut
from three to one. Moreover this is typically more consistent with what can be
observed in the lab as r1, r2 � r3. It may not even be known whether the enzyme
binds with A or B, leaving uncertainty about how to model the reaction without
the abstraction. However, representing this in even the reactant-centric style
requires three-way synchronisation, and four-way synchronisation in the reagent-
centric style, assuming that the enzyme is modelled as both a reactant and a
product in the abstracted reaction. In other words, it is not possible to support
modelling such biological abstractions using strictly binary synchronisations.

As with reagent-centric style, reaction-centric style seems to implicitly assume
a multi-way synchronisation. However note that in the way that this style is
captured in sCCP, the only process algebra that currently supports reaction-
centric modelling to the best of our knowledge, the requirement is not so strong.
What is needed is atomic multi-way composition of updates to the constraint
store, but this is not necessarily a synchronisation. Whilst sCCP is the only
process algebra supporting reaction-centric, or reaction-as-process, modelling,
conversely it is difficult to see sCCP being used to construct models in any of
the other styles or abstractions.

In process algebras with conjugate actions, each partner in an action/reaction
must be assigned an input/output role. In general this will be rather arbitrary
and somewhat artificial from the perspective of the biochemistry. Consider the
reaction r1 in our example. When A and B form the complex C there does not
appear to be a natural way to choose which of A and B should receive input
and which provide output. Furthermore, reactions of degree one, such as r5 in
the example, must be represented as a τ action. This means that the textual
representation of the model does not clearly articulate the biologists’ notion of

22 M. Calder and J. Hillston

the system. This problem becomes even worse at the level of the state space
where all transitions are labelled τ and information about the reactions that
gave rise to them is lost.

If we consider the contrast between population-based and individuals-based
modelling we can observe that population-based modelling is more compact both
from the point of view of the textual model expression and the underlying state
space. This means that for such models it can be feasible to use explicit state
space representations and the analysis techniques associated with them such
as model checking, equivalence checking and numerical analysis of the contin-
uous time Markov chain. Of course, such techniques reply on the state space
being finite. In contrast individuals-based modelling has a clear association with
stochastic simulation as proposed by Gillespie [GP06]. These models can be used
in association with explicit state space techniques, such as those listed above,
but only for very small systems or in combination with abstractions such as the
assumption of single molecules, as discussed in Section 4.1.

In the PEPA and Bio-PEPA models, as a consequence of the two level gram-
mar used to define these languages as compositions of sequential components,
the number of system components is constant, regardless of whether individuals-
based or population-based. This matches the species-as-process abstraction since
the possible species of the pathway will be known and fixed and is particularly
natural in the population-based modelling where the state of the system is a
count for each species. In contrast, in the π-calculus and Beta-binder models,
which are without the syntactic restriction, the number of system components
fluctuates throughout system evolution. This is in keeping with the molecules-
as-processes abstraction since we would expect the visible molecules within a
system to change as complexes are formed and dissociated etc. In sCCP, based
on the reaction-as-process abstraction, the number of species is fixed as the
variables in the variable store remain fixed. Here as in the PEPA/Bio-PEPA
population-based modelling the state of the system is captured in terms of the
number of each species so each species must always be present, even if to record
that its current count is zero.

The conservative nature of the PEPA/Bio-PEPA models (in terms of number
of components, and fixed number of levels) also means that the state space
underlying such models is necessarily finite. This is not the case in the other
process algebras as we have seen. It can be argued that if we consider the example
as presented there is the potential for unbounded numbers of E via reaction r5
and π-calculus, beta binder and sCCP correctly capture this. But on the other
hand, in a biological system unbounded growth like this will lead to cell death,
and when we introduced the example we explained that this reaction would be
used as an abstraction of some more complex, but bounded, situation. The beta
binders and sCCP formalisms do offer language mechanisms which allow the
number of E to remain bounded by introducing guards on the reaction, but
there is no such possibility in the π-calculus.

In this paper we have focussed on the standard discrete state spaces. How-
ever analysis based on these state spaces is rarely feasible. Therefore for all the

Process Algebra Modelling Styles for Biomolecular Processes 23

languages there are alternative semantics given by ordinary differential equa-
tions (population-based) and/or Gillespie simulations (individuals-based). The
discrete state space does of course form the basis of the Gillespie simulation but
it is never considered explicitly and the offered semantics avoid the construction.
Additionally, PEPA and Bio-PEPA support an alternative representation, which
is based on an explicit discrete state space but seeks to avoid the state space
explosion. Rather than states representing the count of molecules of each species,
the states represent the current level of concentration for each species. In other
words, the range of possible concentration values is discretised into intervals, and
these intervals constitute the states of the CTMC. In such models the stochastic
element of Gillespie’s approach is retained but the resulting CTMCs can be con-
siderably smaller. Keeping the state space manageable means that the CTMCs
can be solved explicitly and the repeated runs necessitated by stochastic simu-
lation are avoided. Further, in addition to quantitative analysis on the CTMC,
analysis by model checking of stochastic properties is possible, as illustrated in
[CVOG06] or [HKNT06].

10 Conclusions

As highlighted by Regev and Shapiro computational abstractions have already
brought considerable benefit to the study of biological phenomena [RS01]. For
example the DNA-as-string abstraction has been hugely successful and allowed
significant leaps forward. In the context of biomolecular processes the potential
benefit seems equally large. However further work is needed to assess the abstrac-
tions that are on offer, and their suitability to the systems under study. Research
in this direction has been enthusiastically taken up by theoretical computer sci-
entists as witnessed by the plethora of formal languages currently proposed for
modelling such systems. In this paper we have aimed to extract the general
paradigms of expression which underlie process algebras which aim to model
biomolecular processes. We have discovered that there are genuine differences in
the form of expression used, and this can impact on the form of analysis that is
readily applied.

In the long term all research on formal description techniques for biomolecular
systems has the objective of attracting biological users, and contributing to the
growing body of knowledge on how cells function. However in the medium term
we need to develop closer links with biologists, not only as users of our formal
description techniques, but also in the important work of evaluating them.

References

[AH90] Alur, R., Henzinger, T.A.: Reactive modules. Formal methods in Sys-
tem Design 15(1), 7–48 (1990)

[BMMT06] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus
of Looping Sequences for Modelling Microbiological Systems. Funda-
menta Informaticae 72(1-3), 21–35 (2006)

24 M. Calder and J. Hillston

[BJG96] Brim, L., Jacquet, J.-M., Gilbert, D.: A process algebra for synchronous
concurrent programming. In: Hanus, M., Rodŕıguez-Artalejo, M. (eds.)
ALP 1996. LNCS, vol. 1139, pp. 165–178. Springer, Heidelberg (1996)

[Bor06] Bortolussi, L.: Stochastic concurrent constraint programming. In:
Proceedings of QAPL 2006: 4th International workshop on quantita-
tive aspects of programming languages, vol. 164, pp. 65–80 (2006)

[BP08] Bortolussi, L., Policriti, A.: Modelling biological systems in stochastic
constraint programming. Constraints 13, 66–90 (2008)

[CGH06] Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on
the ERK signalling pathway using the stochastic process algebra PEPA.
In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.)
Transactions on Computational Systems Biology VII. LNCS (LNBI),
vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

[Car04] Cardelli, L.: Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB
2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg
(2005)

[Car08] Cardelli, L.: On process rate semantics. Theoretical Computer Sci-
ence 391(1), 190–215 (2008)

[CPR+04] Cardelli, L., Panina, E.M., Regev, A., Shapiro, E., Silverman, W.:
BioAmbients: An Abstraction for Biological Compartments. Theoreti-
cal Computer Science 325(1), 141–167 (2004)

[CG09] Ciocchetta, F., Guerriero, M.L.: Modelling Biological Compartments in
Bio-PEPA. ENTCS 227, 77–95 (2009)

[CH08] Ciochetta, F., Hillston, J.: Bio-PEPA: a framework for modelling and
analysis of biological systems. Theoretical Computer Science (to ap-
pear)

[CRCD+04] Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.:
Modeling and querying biomolecular interaction networks. Theoretical
Computer Science 325(1), 25–44 (2004)

[CVOG06] Calder, M., Vyshemirsky, V., Orton, R., Gilbert, D.: Analysis of sig-
nalling pathways using Continuous Time Markov Chains. In: Priami,
C., Plotkin, G. (eds.) Transactions on Computational Systems Biology
VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)

[VFF+07] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based
modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg
(2007)

[DPPQ06] Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for bi-
ological quantitative experiments. Electronic Notes in Computer Sci-
ence 164, 101–117 (2006)

[GP06] Gillespie, D., Petzold, L.: Numerical Simulation for Biochemical Kinet-
ics. In: System Modelling in Cellular Biology. MIT Press, Cambridge
(2006)

[HKNT06] Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.:
Probabilistic model checking of complex biological pathways. In: The
Proceedings of 4th International Workshop on Computational Methods
in Systems Biology 2006, Trento, Italy, October 18-19 (2006)

[Hil96] Hillston, J.: A Compositional Approach to Performance Modelling.
Cambridge University Press, Cambridge (1996)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs (1985)

Process Algebra Modelling Styles for Biomolecular Processes 25

[Mil80] Milner, R.: A Calculus for Communicating Systems. LNCS, vol. 92.
Springer, Heidelberg (1980)

[Mil99] Milner, R.: Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, Cambridge (1999)

[Pri95] Priami, C.: Stochastic π-calculus. The Computer Journal 38, 578–589
(1995)

[RS01] Regev, A., Shapiro, E.: Cellular abstractions: cells as computation.
Nature 419, 343 (2001)

[RSS01] Regev, A., Silverman, W., Shapiro, E.: Representation and simulation
of biochemical processes using π-calculus process algebra. In: Pacific
Symposium on Biocomputing 2001 (PSB 2001), pp. 459–470 (2001)

[TK08] Tymchyshyn, O., Kwiatkowska, M.: Combining intra- and inter-cellular
dynamics to investigate intestinal homeostasis. In: Fisher, J. (ed.)
FMSB 2008. LNCS (LNBI), vol. 5054, pp. 63–76. Springer, Heidelberg
(2008)

[TDG09] Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in.
Performance Evaluation Review 36(4), 28–33 (2009)

[V07] Versari, C.: A Core Calculus for a Comparative Analysis of Bio-
inspired Calculi. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 411–425. Springer, Heidelberg (2007)

Simple, Enhanced and Mutual
Mobile Membranes

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
A.I.Cuza University, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. The operations governing the movement of biological mem-
branes are endocytosis and exocytosis. New models of computation are
inspired by these biological operations. In this paper we present the mod-
els defined by simple, enhanced and mutual mobile membranes, together
with their biological motivations. Some results concerning their compu-
tational power are presented, including the first universality result for
mutual mobile membranes. In the case of simple and enhanced mobile
membranes, we improve the existing results by reducing the number of
membranes needed to get computational universality.

1 Introduction

Simple, enhanced and mutual mobile membranes represent new variants of mem-
brane systems. Membrane systems (also called P systems) were introduced in
[16]; standard P systems and several variations are presented in the mono-
graph [17]. Membrane systems were introduced as distributed, parallel and non-
deterministic computing models inspired by the compartments of eukaryotic cells
and by their biochemical reactions. The cellular components are formally rep-
resented in the definition of membrane systems. The structure of the cell is
represented by a set of hierarchically embedded regions, each one delimited by
a surrounding boundary (called membrane), and all of them contained inside an
external special region called the skin membrane. The molecular species (ions,
proteins, etc.) floating inside cellular compartments are represented by multisets
of objects described by means of symbols or strings over a given alphabet, objects
which can be modified or communicated between adjacent compartments. Chem-
ical reactions are represented by evolution rules given in the form of rewriting
rules which operate on the objects, as well as on the compartmentalized structure
(by dissolving, dividing, creating, or moving membranes).

A membrane system can perform computations in the following way: starting
from an initial configuration which is defined by the multiset of objects initially
placed inside the compartmentalized structure, the system evolves by applying
the evolution rules of each membrane in a nondeterministic and maximally par-
allel manner. A rule is applicable when all the objects that appear in its left
hand side are available in the region where the rule is placed. The maximal

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 26–44, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Simple, Enhanced and Mutual Mobile Membranes 27

parallelism of rule application means that every rule that is applicable inside a
region has to be applied in that region. A halting configuration is reached when
no rule is applicable. The result is represented by the number of objects from a
specified region.

Several variants of membrane systems are inspired by different aspects of
living cells (symport and antiport-based communication through membranes,
catalytic objects, membrane charge, etc.). Their computing power and efficiency
have been investigated using the approaches of formal languages and grammars,
register machines and complexity theory. An updated bibliography can be found
at the webpage http://ppage.psystems.eu

A first definition of mobile P systems is given in [21] with rules coming from
mobile ambients [5]. Inspired by the operations of endocytosis and exocytosis,
namely moving a membrane inside a neighbouring membrane (endocytosis) and
moving a membrane outside the membrane where it is placed (exocytosis), the
P systems with mobile membranes are introduced in [14] as a variant of P sys-
tems with active membranes [17]. We use simple mobile membranes instead of
P systems with mobile membranes. The computational power of simple mobile
membranes is treated in [12,14]: Turing completeness is obtained by using nine
membranes together with the operations of endocytosis and exocytosis [14], while
only four mobile membranes are enough using additional contextual evolution
rules [12]. In this paper we look at certain biological phenomena which motivate
and inspire new specific rules in simple mobile membranes.

Endocytosis is a general term for a group of processes that bring macro-
molecules, large particles, small molecules, and even small cells into another cell.
There are three types of endocytosis: phagocytosis (“cellular eating”), pinocytosis
(“cellular drinking”), and receptor-mediated endocytosis in which the membrane
infolds around materials from the environment, forming a small pocket. The
pocket deepens, forming a vesicle which separates from the membrane and mi-
grates with its contents to the cell’s interior.

While pinocytosis can be modelled using communication rules of usual P sys-
tems, there is no rule capable to model the process of engulfing a cell by another
one in phagocytosis. This is the reason why we define the enhanced mobile
membranes in Subsection 2.2; an example on how the new rules work is also
presented.

The enhanced mobile membranes represent a variant of simple mobile mem-
branes; they have been proposed in [3] for describing some biological mechanisms
of the immune system. The operations governing the mobility of the enhanced
mobile membrane systems are endocytosis (endo), exocytosis (exo), enhanced
endocytosis (fendo) and enhanced exocytosis (fexo). The computational power
of the enhanced mobile membranes using these four operations was studied in
[13] where it is proved that twelve membranes can provide the computational
universality. It is worth noting that unlike the results for simple mobile mem-
branes, the context-free evolution of objects is not used in proving any of these
results.

28 B. Aman and G. Ciobanu

Receptor-mediated endocytosis is used by animal cells to capture specific
macromolecules from the cell’s environment. This process depends on receptor
proteins, i.e., integral membrane proteins that can bind to a specific molecule in
the cell’s environment. The uptake process is similar to nonspecific endocytosis.
However, in receptor-mediated endocytosis, the receptor proteins at particular
sites on the extracellular surface of the plasma membrane bind to specific sub-
stances. These sites are called coated pits because they form a slight depression
in the plasma membrane. The cytoplasmic surface of a coated pit is coated by
proteins, such as clathrin. Strengthened and stabilized by clathrin molecules,
this vesicle carries the macromolecule into the cell [23].

SNARE-mediated exocytosis is the movement of materials out of a cell via
vesicles. SNARES (Soluble NSF Attachment Protein Receptor)) located on the
vesicles (v-SNARES) and on the target membranes (t-SNARES) interact to form
a stable complex that holds the vesicle very close to the target membrane.

There is no rule capable to model the mutual agreement between membranes
for the receptor-mediated endocytosis and SNARE-mediated exocytosis. This is
the reason why we define the mutual mobile membranes in Subsection 2.3; an
example on how the new rules work is also presented.

The mutual mobile membranes represent a variant of simple mobile mem-
branes in which the endocytosis and exocytosis work whenever the involved
membranes “agree” on the movement; this agreement is described by using dual
objects a and a in the involved membranes. The operations governing the mo-
bility of the mutual mobile membranes are mutual endocytosis (mutual endo),
and mutual exocytosis (mutual exo).

In this paper we study the computational power of simple, enhanced and
mutual mobile membranes. For simple mobile membranes we obtain the compu-
tational universality by using three membranes, and in this way improving the
result presented in [12] where four membranes are used. For enhanced mobile
membranes we obtain the computational universality by using nine membranes,
thus improving the result from [13] where twelve membranes are used. For mutual
mobile membranes we show that by using dual objects a and a in the involved
membranes, only seven membranes are enough to obtain the computational
universality.

The structure of the paper is as follows. In Section 2 we formally define the
simple, enhanced and mutual mobile membranes, and give biological motivations
for the enhanced and mutual mobile membranes. Section 3 contains a first uni-
versality result for mutual mobile membranes, and improvements of the existing
results for simple and enhanced mobile membranes. Section 4 presents related
results in P systems with active membrane from which the simple mobile mem-
branes originate. Conclusions and references end the paper.

2 Mobile Membranes

In this section we define the simple, enhanced and mutual mobile membranes,
describing some biological phenomena inspiring their rules.

Simple, Enhanced and Mutual Mobile Membranes 29

2.1 Simple Mobile Membranes

Definition 1 ([14]). A simple mobile membrane is a construct
Π = (V, H, μ, w1, . . . , wn, R)

where:

1. n ≥ 1 (the initial degree of the system);
2. V is an alphabet (its elements are called objects);
3. H is a finite set of labels for membranes;
4. μ ⊂ H ×H describes the membrane structure, such that (i, j) ∈ μ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
we distinguish the external membrane (usually called the “skin” membrane)
and several internal membranes; a membrane without any other membrane
inside it is said to be elementary;

5. w1, . . . , wn are strings over V , describing the multisets of objects placed in
the n regions of μ;

6. R is a finite set of developmental rules, of the following forms:

object evolution

(a) [a → v]m, for m ∈ H, a ∈ V , v ∈ V ∗;
An object a placed inside a membrane labelled m evolves into a multiset
of objects v.

endocytosis

(b) [a]h[]m → [[b]h]m, for h, m ∈ H, a, b ∈ V ;
An elementary membrane labelled h enters the adjacent membrane la-
belled m, under the control of object a; the labels h and m remain un-
changed during the process; however the object a may be modified to b
during the operation; m is not necessarily an elementary membrane.

exocytosis

(c) [[a]h]m → [b]h[]m, for h, m ∈ H, a, b ∈ V ;
An elementary membrane labelled h is sent out of a membrane labelled
m, under the control of object a; the labels of the two membranes remain
unchanged, but the object a of membrane h may be modified during this
operation; membrane m is not necessarily elementary.

The rules are applied according to the following principles:

1. Rules are applied in parallel, non-deterministically choosing the rules, the
membranes, and the objects in such a way that the parallelism is maximal;
this means that in each step we apply a certain set of rules such that no
further rule can be added to the set.

2. The membrane m from the rules of type (a)− (c) is said to be passive, while
the membrane h is said to be active. In any step of a computation, any object
and any active membrane can be involved in at most one rule. However, the
passive membranes can be used by several rules at the same time. In a rule
[a → v]m of type (a), object a is active, while membrane m is passive.

30 B. Aman and G. Ciobanu

3. When a membrane is moved across another membrane, by endocytosis or ex-
ocytosis, its whole contents (its objects) are moved; the inner objects evolve
first (if rules are applicable for them), and then any membrane is moved
with the contents as obtained after its internal evolution.

4. If a membrane exits the system (by exocytosis), then its internal evolution
stops, even if there are rules of type (a) which could be applied.

5. The objects and membranes which do not evolve at a given step are passed
unchanged to the next configuration of the system.

2.2 Enhanced Mobile Membranes

The enhanced mobile membranes have been introduced in [3] for describing some
biological mechanisms of the immune system. The presentation of the immune
system is taken from [10], a book which is revised every few years to keep the
pace with the new discoveries in this field. The cells of the immune system
work together with different proteins to seek out and destroy anything foreign
or dangerous which enters our body. It takes some time for the immune cell
to be activated, but once this happens there are very few hostile organisms
having a chance. There are several types of immune cells, each of them with its
own strength and weakness. Some seek out and engulf the invaders, while other
destroy the infected or mutated body cells. A type of immune cells are the B
cells which have the ability to release special proteins called antibodies which
mark intruders in order to be destroyed by macrophages. The immune system
has also the ability to produce some cells able to remember enemies which it
fought in the past. In this way, once the immune system recognizes an invader
it attacks more quickly and strongly against it.

Dendritic cells can engulf bacteria, viruses, and other cells. Once a dendritic
cells engulfs a bacterium, it dissolves this bacterium and places portions of

Fig. 1. Immune System Mechanisms [10]

Simple, Enhanced and Mutual Mobile Membranes 31

bacterium proteins on its surface (see Figure 1). These surface markers serve
as an alarm to other immune cells, namely helper T cells, which then infer the
form of the invader. This mechanism makes sensitive the T cells to recognize the
antigens or other foreign agents which triggers a reaction of the immune system.
Antigens are often found on the surface of bacterium and viruses.

New rules are introduced according to this biological example. We define a
new variant of mobile membranes, namely the enhanced mobile membranes,
originally introduced in [3]. The multiset u is the one indicating the membrane
which initializes the move in the rules of type (b)− (e).

Definition 2 ([3]). An enhanced mobile membrane is a construct∏
= (V, H, μ, w1, . . . , wn, R), where:

1. n, V , H, μ, w1, . . . , wn are as in Definition 1;
2. R is a finite set of developmental rules of the following forms:

local evolution
(a) [[u→v]m]h for h, m∈H, u ∈ V +, v∈V ∗;

These rules are called local because the evolution of a multiset of objects u
of membrane m is possible only when membrane m is inside membrane
h. If the restriction of nested membranes is not imposed, that is, the
evolution of the multiset of objects u in membrane m is allowed wherever
membrane m is placed, then we say that we have a global evolution rule,
and write it simply as [u → v]m.

endocytosis

(b) [uv]h[v′]m→ [[w]hw′]m for h, m∈H ; u∈V +, v, v′, w, w′∈V ∗;
An elementary membrane labelled h enters the adjacent membrane la-
belled m, under the control of the multisets of objects uv and v′. The
labels h and m remain unchanged during this process; however the mul-
tisets of objects uv and v′ are replaced with the multisets of objects w
and w′, respectively.

exocytosis

(c) [[uv]hv′]m→ [w]h[w′]m, for h, m∈H ; u ∈ V +, v, v′, w, w′ ∈ V ∗;
An elementary membrane labelled h is sent out of a membrane labelled
m, under the control of the multisets of objects uv and v′. The labels of
the two membranes remain unchanged, but the multisets of objects uv
and v′ are replaced with the multisets of objects w and w′, respectively.

enhanced endocytosis

(d) [v]h[uv′]m→[[w]hw′]m for h, m∈H, u∈V +, v, v′, w, w′∈V ∗;
An elementary membrane labelled h is engulfed into the adjacent mem-
brane labelled m, under the control of the multisets of objects uv′ and
v. The labels h and m remain unchanged during the process; however,
the multisets of objects uv′ and v are transformed into the multisets of
objects w′ and w, respectively. The effect of this rule is similar to the
effect of rule (b); the difference is that the movement is not controlled
by a multiset of objects inside the moving membrane h, but by a multiset

32 B. Aman and G. Ciobanu

of objects uv′ placed inside the membrane m which engulfs membrane h.
This means that the membrane which initiates the movement is mem-
brane m, and not the membrane h as in rule (b).

enhanced exocytosis

(e) [[v]huv′]m→[w]h[w′]m for h, m∈H, u ∈ V +, v, v′, w, w′ ∈ V ∗;
An elementary membrane labelled h is pushed out of a membrane labelled
m under the control of the multisets of objects uv′ and v. The labels of
the two membranes remain unchanged; however, the multisets of objects
uv′ and v evolve into the multisets of objects w′ and w, respectively. The
effect of this rule is similar to the one of rule (c); the difference is that
the movement is not controlled by an object inside the moving membrane
h, but by a multiset of objects uv′ placed inside the membrane m which
expels membrane h. This means that the membrane which initiates the
movement is membrane m, and not the membrane h as in rule (c).

The rules of enhanced mobile membranes are applied according to the principles
of simple mobile membranes.

Using the rules of the enhanced mobile membranes we can describe the im-
mune system mechanisms of Figure 1. We associate a membrane to each cell,
and objects to the signals, states and parts of molecules. For the steps done by
the dendritic cells presented in Figure 1, we use the following encodings:

– dendritic cell: [eat]DC

An immature dendritic cell is willing to eat any bacterium it encounters, so
we translate it into a membrane labelled by DC which has inside an object
eat used to engulf the bacterium.

– bacterium cell: [antigen]bacterium

A bacterium cell contains antigen so we simply represent it as a membrane
labelled by bacterium containing a single object antigen that encodes the
information of the bacterium.

– lymph node: []lymph node

The lymph node is the place where the mature dendritic cells migrate in
order to start the immune response, so we translate it into a membrane
labelled by lymph node.

Using these membranes, we describe the system as follows (here body stands for
the body skin):

[[eat]DC []lymph node]body[antigen]bacterium

The evolution is described by following rules:

* [antigen]bacterium[]body → [[antigen]bacterium]body

A bacterium enters through the body skin by performing an endocytosis rule
in order to infect the body. The bacterium contains an object antigen which
represent its signature.

Simple, Enhanced and Mutual Mobile Membranes 33

* [eat]DC []bacterium → [eat[]bacterium]DC

Once an immature dendritic cell becomes sibling to a bacterium, it “eats”
the bacterium by performing an enhanced endocytosis rule. Until now the
bacterium has controlled its own movement; in this step its movement be-
comes controlled by the dendritic cell which engulfs it.

* [[antigen]bacterium]DC → [antigen]DC

Once the bacterium is engulfed into the dendritic cell, it is dissolved and its
content is released into the dendritic cell.

* [antigen]DC[]lymph node → [[antigen]DC]lymph node

Once the dendritic cell contains parts of the antigen, it enters the lymph
node in order to activate a special class of T cells, namely the helper T cells.

* [[eat]DC]lymph node → [[]DC]lymph node

Once the dendritic cell enters the lymph node, it matures and the capacity
to engulf bacteria disappears; the eat object is consumed.

2.3 Mutual Mobile Membranes

In a receptor-mediated endocytosis a cell engulfs a particle of low-density lipopro-
tein (LDL) from the outside [23]. To do this, the cell uses receptors that specifi-
cally recognize and bind to the LDL particle. The receptors are clustered
together. An LDL particle contains one thousand or more cholesterol molecules.
A monolayer of phospholipid surrounds the cholesterol and its embedded with
proteins called apoB. This apoB proteins are specifically recognized by recep-
tors on the cell membrane. The receptors of the coated pit bind to the apoB
proteins of the LDL particle. The pit is reenforced by a lattice-like network of
proteins called clathrin. Additional clathrin molecules are added to the lattice
which eventually pinches off apart from the membranes.

SNARE-mediated exocytosis is the movement of materials out of a cell via
vesicles. SNARES located on the vesicles (v-SNARES) and SNARES located on
the target membranes (t-SNARES) interact to form a stable complex that holds
the vesicle very close to the target membrane as in Figure 3.

Fig. 2. Receptor-Mediated Endocytosis [23]

34 B. Aman and G. Ciobanu

Fig. 3. SNARE-Mediated Exocytosis

Starting from these biological examples we see the necessity to introduce new
rules. The rules of enhanced mobile membranes allow a membrane to enter,
exit, to engulf or to push out another membrane. The second membrane just
undergoes the movement; no permission is required from the second membrane
which may not even be aware that a movement involving it has taken place.
Following an approach described initially in [4], we introduce a new variant of
mobile membranes called mutual mobile membranes.

In mutual mobile membranes, a movement takes place only if the involved
membranes agree on the movement. This can be described by means of objects
a and co-objects a present in the membranes involved in such a movement.
Since we have the equality a = a, we have that mutual endocytosis is the same
as mutual enhanced endocytosis and mutual exocytosis is the same as mutual
enhanced exocytosis. The mutual mobile membranes are defined as follows:

Definition 3 ([4]). A mutual mobile membrane is a construct∏
= (V, H, μ, w1, . . . , wn, R), where:

1. n, V , H, μ, w1, . . . , wn are as in Definition 1;
2. R is a finite set of developmental rules of the following forms:

local evolution

(a) [[u → v]m]h for h, m ∈ H, u, v ∈ V ∗;
These rules are called local because the evolution of a multiset of objects u
of membrane m is possible only when membrane m is inside membrane
h. If the restriction of nested membranes is not imposed, that is, the
evolution of the multiset of objects u in membrane m is allowed wherever
membrane m is placed, then we say that we have a global evolution rule,
and write it simply as [u → v]m.

mutual endocytosis

Simple, Enhanced and Mutual Mobile Membranes 35

(b) [uv]h[uv′]m → [[w]hw′]m for h, m ∈ H, u, u ∈ V +, v, v′, w, w′∈ V ∗;
An elementary membrane labelled h enters the adjacent membrane la-
belled m under the control of the multisets of objects uv and uv′. The
labels h and m remain unchanged during this process; however the mul-
tisets of objects uv and uv′ are replaced with the multisets of objects w
and w′, respectively.

mutual exocytosis

(c) [uv′[uv]h]m → [w]h[w′]m for h, m ∈ H, u, u ∈ V +, v, v′, w, w′∈ V ∗;
An elementary membrane labelled h exits a membrane labelled m, under
the control of the multisets of objects uv and uv′. The labels of the two
membranes remain unchanged, but the multisets of objects uv and uv′

are replaced with the multisets of objects w and w′, respectively.

The rules of the mutual mobile membranes are applied according to principles of
simple mobile membranes. An object u indicates the membrane which initializes
the move in the rules of type (b)− (c), while an object u indicates the membrane
which accepts the movement.

Using the rules of the mutual mobile membranes we can describe the receptor-
mediated endocytosis of Figure 2. We associate a membrane to each cell, and
objects to the signals, states and parts of molecules. For the steps done by the
cells presented in Figure 2, we use the following encodings:

– LDL particle: [cholesterol . . . cholesterol apoB . . .apoB]LDL

An LDL particle contains one thousand or more cholesterol molecules and
some apoB proteins.

– cell membrane: [receptor . . . receptor clarithin . . . clarithin]cell

The cell contains receptors which are able to recognize apoB proteins and
also some proteins clathrin which enforce the pit containing the receptors.

Using the above membranes, and the equality apoB = receptor, we can describe
the membrane system as follows:

[cholesterol . . . apoB . . .]LDL [apoB . . . clarithin . . .]cell

The evolution is described by applying a rule of type (b):
[cholesterol . . . apoB . . .]LDL [apoB . . . clarithin . . .]cell →
→ [[cholesterol . . . apoB . . .]LDL apoB . . . clarithin . . .]cell

3 Computability Power of Mobile Membranes

In this section we present some existing results and also new results related to
the computational power of simple, enhanced and mutual mobile membranes.
First we present some notations from the field of formal languages which are
used throughout this section. More notions from formal languages can be found
in [7] and [22].

For an alphabet V = {a1, . . . , an}, we denote by V ∗ the set of all strings over
V ; λ denotes the empty string. V ∗ is a monoid with λ as its unit element. For

36 B. Aman and G. Ciobanu

a string x ∈ V ∗, |x|a denotes the number of occurrences of symbol a in x. A
multiset over V is represented by a string over V (together with all its permu-
tations), and each string precisely identifies a multiset. For an alphabet V , the
Parikh vector is ψV : V ∗ → Nn with ψV (x) = (|x|a1 , . . . , |x|an), for all x ∈ V ∗.
For a language L, the Parikh vector is ψV (L) = {ψV (x) | x ∈ L}, while for a
family FL of languages, it is PsFL = {ψV (L) | L ∈ FL}.

A matrix grammars with appearance checking is a construct G = (N, T, S,
M, F) where N , T are disjoint alphabets of non-terminals and terminals, S ∈ N
is the axiom, M is a finite set of matrices of the form (A1 → x1, . . . , An → xn) of
context-free rules, and F is a set of occurrences of rules in M . For w, z ∈ (N∪T)∗,
we write w ⇒m z if there is a matrix (A1 → x1, . . . , An → xn) in M and the
strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and for all i,
1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w′′
i ∈ (N ∪T)∗,

or (2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in F.
The language generated by G is L(G) = {x ∈ T ∗ | S ⇒∗ x}. A matrix grammar
in the strong binary normal form is a construct G = (N , T , S, M , F), where
N = N1∪N2∪{S, #}, with these three sets mutually disjoint, two distinguished
symbols B(1), B(2) ∈ N2, and the matrices in M of one of the following forms:

(1) (S → XA), with X ∈ N1, A ∈ N2,
(2) (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗,
(3) (X → Y, B(j) → #), with X, Y ∈ N1, j = 1, 2,
(4) (X → λ, A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

If we ignore the empty string when comparing languages, then the rules of type
(4) are of the form (X → a, A → x), with X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗.

3.1 Simple Mobile Membranes

The computational power of simple mobile membranes is treated in [14].
PsMMn(levol, endo, exo) denotes the family of all sets Ps(Π) generated by

systems using local evolution rules, together with endocytosis and exocytosis
rules and at most n membranes. If the number of membrane is not bounded,
this is denoted by PsMM∗(levol, endo, exo). When global evolution rules are
used, levol is replaced by gevol. If a type of rules is not used, then its name
is omitted from the list of parameters. The number of membranes does not
increase during the computation, but it can decrease by sending membranes out
of the skin.

The following result establishes an universality result using nine membranes
and the operations of endocytosis and exocytosis:

Theorem 1 ([14]). PsMM9(endo, exo) = PsRE.

A strengthening of the previous universality result is:

Corollary 1 ([14]). PsMM∗(endo, exo) = PsMMn(endo, exo) =
PsMMn(gevol, endo, exo) = PsMMn(levol, endo, exo) = PsRE, for all n ≥ 9.

Simple, Enhanced and Mutual Mobile Membranes 37

An improvement of the result presented in Theorem 1 is:

Theorem 2 ([12]). PsMM4(gevol, endo, exo) = PsRE.

We improve the previous result by decreasing the number of membranes to three.

Theorem 3. PsMM3(levol, endo, exo) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S, M, F) in the improved strong
binary normal form (hence with N = N1 ∪ N2 ∪ {S; #}), having n1 matrices
of types (2) and (4) (that is, not used in the appearance checking mode), and
n2 matrices of type (3) (with appearance checking rules). Let B(1) and B(2) be
the two objects in N2 for which we have rules B(j) → # in matrices of M . The
matrices of the form (X → Y, B(j) → #) are labelled by m′

i, with i ∈ labj, for
j ∈ {12}, such that lab1, lab2, and lab0 = {1, . . . , n1} are mutually disjoint sets.

We construct a mobile membrane system Π = (V, H, μ, w1, w2, w3, R, 2) of
degree three, where:

V = N ∪ {X, Xi,j | X ∈ N1, 1 ≤ i ≤ n1, 0 ≤ j ≤ n1}
∪ {a, a′ | a ∈ T } ∪ {x | x ∈ (N2 ∪ T)∗}
∪ {A, Ai,j | A ∈ N2, 1 ≤ i ≤ n1, 0 ≤ j ≤ n1}

H = {1, 2, 3}
μ = [[]2[]3]1
w2 = XA, where (S → XA) is the initial matrix of G
wh = λ, for all h ∈ {1, 3}

The set R of rules is constructed as follows:

(i) For each (nonterminal) matrix mi : (X → Y, A → x), X, Y ∈ N1, A ∈ N2,
x ∈ (N2 ∪ T)∗, with 1 ≤ i ≤ n1, we consider the rules:
1. [X]2[]3 → [[Xi,0]2]3 (endo)
2. [[A]2]3 → [Ai,0]2[]3 (exo)
3. [[Xi,j → Xi,j+1]2]1, j < i (levol)
4. [[Ai,j → Ai,j+1]2]1, j < i (levol)
5. [[Ai,iXi,i → xY]2]1 (levol)
6. [[Ai,jXj,j → #]2]1, j < i (levol)
7. [[Aj,jXi,j → #]2]1, j < i (levol)

In the initial configuration, we have the objects X and A corresponding to
the initial matrix in membrane 2. To simulate a matrix of the above type
we start by applying the endocytosis rule 1, thus replacing X with Xi,0,
followed by the exocytosis rule 2, thus replacing a single A ∈ N2 with Ai,0.
No other A ∈ N2 can be replaced until membrane 2 enters membrane 3.
Rule 3 (for X) and rule 4 (for A) are used to increment the second indices
of X and A. This is done to check if the indices of X and A are the same,
and in this case to rewrite A according to the matrix mi. Once the indices
are equal, rule 5 is applied to complete the simulation of matrix mi. If the
indices of X and A are not the same, rule 6 (if the indices of X is lower than
the indices of A) or rule 7 (if the indices of X is bigger than the indices of
A) is applied, the computation is blocked without producing any output.

38 B. Aman and G. Ciobanu

(ii) For a terminal matrix mi : (X → a, A → x), X ∈ N1, a ∈ T , A ∈ N2,
x ∈ T ∗, where 1 ≤ i ≤ n1, we use the rules 1-7, where the rule 5 is replaced
by the rules:
8. [ai,iXi,i → a′Y]1 (levol)
9. [[a′]2]1 → [a]2[]1 (exo)

Observe that simulation of a type (4) matrix is along similar steps, except
that we have an a in place of Y . During the finishing stages of a type
(4) simulation, we use rule 8 to replace ai,i by a′, and then to rewrite
it to a when sending the membrane 2 out of the skin membrane, namely
membrane 1.

(iii) For each matrix m′
i : (X → Y, B(k) → #), X, Y ∈ N1, A ∈ N2, where

n1 + 1 ≤ j ≤ n1 + n2, j ∈ labk, k = 1, 2, we consider the rules:

10. [X]2[]3 → [[Xk]2]3, for i ∈ labk (endo)
11. [[XkB(k) → #]2]3, k = 1, 2 (levol)
12. [[Xk]2]3 → [Y]2[]3, k = 1, 2 (exo)

The simulation of matrices of type (3) begins by a rule of type 10. This
is followed by a rule 11 in case B(k) exists, blocking membrane 2 inside
membrane 3 and the computation stops without producing any output. If
no B(k) exists, then rule 12 can be used to send out membrane 2, successfully
completing the simulation.

3.2 Enhanced Mobile Membranes

The operations governing the mobility of the enhanced mobile membranes are en-
docytosis (endo), exocytosis (exo), enhanced endocytosis (fendo) and enhanced
exocytosis (fexo). The interplay between these four operations is quite power-
ful, and the computational power of a Turing machine is obtained using twelve
membranes without using the context-free evolution of objects [13].

The family of all sets Ps(Π) generated by systems of degree at most n us-
ing rules α ⊆ {exo, endo, fendo, fexo, cevol} is denoted by PsEMMn(α). Here
endo and exo represent endocytosis and exocytosis, fendo and fexo represent
enhanced endocytosis and enhanced exocytosis, and cevol represents contextual
evolution. The main results are the following.

Theorem 4 ([13]). PsEMM12(endo, exo, fendo, fexo) = PsRE.

Theorem 5 ([13]). PsEMM3(cevol) = PsRE.

Theorem 6 ([13]). PsEMM3(endo, exo) = PsEMM3(fendo, fexo).

We improve the result of Theorem 4 as follows:

Theorem 7. PsEMM9(endo, exo, fendo, fexo) = PsRE.

Simple, Enhanced and Mutual Mobile Membranes 39

Proof. Consider a matrix grammar G = (N, T, S, M, F) in the improved strong
binary normal form (hence with N = N1 ∪ N2 ∪ {S; #}), having n1 matrices
m1, . . . , mn1 of types (2) and (4) (that is, not used in the appearance checking
mode), and n2 matrices of type (3) (with appearance checking rules). The initial
matrix is m0 : (S → XA). Let B(1) and B(2) be the two objects in N2 for
which we have rules B(j) → # in matrices of M . The matrices of the form
(X → Y, B(j) → #) are labelled by m′

i, 1 ≤ i ≤ n2 with i ∈ labj, for j ∈ {12},
such that lab1, lab2, and lab0 = {1, 2, . . . , n1} are mutually disjoint sets.

We construct a mobile membrane system Π = (V, H, μ, w1, . . . , w9, R, 7) of
degree nine, where:

V = N ∪ T ∪ {X ′
0i, A

′
0i | X ∈ N1, A ∈ N2, 1 ≤ i ≤ n1}

∪{Xji, Aji | 0 ≤ i, j ≤ n1} ∪ {Xj
i , Xj | X ∈ N1, j ∈ {1, 2}, 1 ≤ i ≤ n2}

H = {1, . . . , 9}
μ = [[]7[]8[]9[[]3[]4[]5[]6]2]1
w7 = XA, where (S → XA) is the initial matrix of G
wh = λ, for all h ∈ {1, . . . , 9}\{7}

The set R of rules is constructed as follows:

(i) For each (nonterminal) matrix mi : (X → Y, A → x), X, Y ∈ N1, A ∈ N2,
x ∈ (N2 ∪ T)∗, with 1 ≤ i ≤ n1, we consider the rules:
1. [X]7[]8 → [[Xi,i]7]8 (endo)
2. [[A]7]8 → [Ai,i]7[]8 (exo)
3. [Xj,i]7[]9 → [[Xj−1,i]7]9 (endo)
4. [[Aj,i]7]9 → [Aj−1,i]7[]9 (exo)
5. []8[X0,i]7 → [X ′

0,i[]8]7 (fendo)
6. []9[A0,i]7 → [A′

0,i[]9]7 (fendo)
7. []8[X0,i]7 → [#[]8]7 (fendo)
8. [[A0,i]7]9 → [#]7[]9 (exo)
9. [X ′

0,i[]8]7 → []8[Y]7 (fexo)
10. [A′

0,i[]9]7 → []9[x]7 (fexo)

In the initial configuration, we have the objects X , A corresponding to the
initial matrix in membrane 7. To simulate a matrix of type (2), we start
by applying the endocytosis rule 1, thus replacing X with Xi,i, followed
by the exocytosis rule 2, thus replacing a single A ∈ N2 with Ai,i. Rule 3
(for X) and rule 4 (for A) are used to decrement the first indices of X and
A. This is done to check if the indices of X and A are the same, and in
this case to rewrite A according to the matrix mi. By using fendo rules 5
and 6, membranes 8 and 9 enter membrane 7 replacing X0,i and A0,i with
X ′

0,i and A′
0,i, respectively. This is then followed by rules 9 and 10, when

membranes 8 and 9 exit membrane 7 by fexo rules replacing X ′
0,i and A′

0,i

with Y and x, respectively. If i > j, then we obtain A0,j before X0,i. In
this case, we have a configuration where membrane 7 is inside membrane 9
containing A0,j . Then rule 8 is used, replacing A0,j with #, and an infinite
computation is obtained (rule 17). If j > i, then we obtain X0,i before A0,j .

40 B. Aman and G. Ciobanu

In this case, we reach a configuration with X0,iAk,j , k > 0 in membrane 7,
and membrane 7 is in the skin membrane. Rule 3 cannot be used now, and
the only possibility is to use rule 7, which leads to an infinite computation.
Thus, if i = j, then we can correctly simulate a matrix of type (2).

(ii) For each matrix m′
i : (X → Y, B(k) → #), X, Y ∈ N1, A ∈ N2, where

n1 + 1 ≤ j ≤ n1 + n2, j ∈ labk, k = 1, 2, we consider the rules:

11. [X]7[]2 → [[X(j)
i]7]2, j = 1, 2 (endo)

12. []j+2[X
(j)
i]7 → [X(j)

i []j+2]7, j = 1, 2 (fendo)
13. []j+4[B(j)]7 → [#[]j+4]7, j = 1, 2 (fendo)
14. [X(j)

i []j+2]7 → []j+2[Yj]7, j = 1, 2 (fexo)
15. [[Yj]7]2 → [Y]7[]2, j = 1, 2 (exo)

The simulation of matrices of type (3) begins by a rule of type 11. Inside
membrane 2, rules 12 and 13 are used, and so membrane (j + 2) enters
membrane 7, and membrane (j + 4) enters membrane 7 if the symbol B(j)

is present. In this case, B(j) is replaced with #. Otherwise, membrane (j+2)
comes out of the membrane 7 replacing X

(j)
i with Yj . Then membrane 7

exits membrane 2, by replacing Yj with Y thus successfully simulating a
matrix of type (3).

(iii) For a terminal matrix mi : (X → a, A → x), X ∈ N1, a ∈ T , A ∈ N2,
x ∈ T ∗, where 1 ≤ i ≤ n1:

16. [[a′]7]1 → [a]7[]1 (exo)
17. []8[#]7 → [#[]8]7 (fendo)

[#[]8]7 → []8[#]7 (fexo)

Observe that simulation of a matrix of type (4) matrix is similar to that
of a matrix of type (2), except that we have an a′ in place of Y in rule
9. During the finishing stages of a matrix of type (4) simulation, we use
rule 16 to replace a′ with a when sending the membrane 7 out of the skin
membrane.

3.3 Mutual Mobile Membranes

Similar to other classes of mobile membranes, we try to establish the number
of membranes in mutual mobile membranes in order to obtain a system which
is equivalent to Turing machines. The following result offers an answer. The
minimum number of membranes needed remains an open problem.

The family of all sets Ps(Π) generated by systems of degree at most n us-
ing rules α ⊆ {mutual exo, mutual endo} is denoted by PsMMMn(α). Here
mutual endo and mutual exo represent mutual endocytosis and mutual exo-
cytosis rules. By using objects and co-objects, the computational power is ob-
tained using a lower number of membranes than for enhanced mobile membranes,
namely:

Theorem 8. PsMMM7(mutual endo, mutual exo) = PsRE.

Simple, Enhanced and Mutual Mobile Membranes 41

Proof (Sketch). Consider a matrix grammar G = (N, T, S, M, F) in the improved
strong binary normal form (hence with N = N1 ∪ N2 ∪ {S; #}), having n1
matrices m1, . . . , mn1 of types (2) and (4) (that is, not used in the appearance
checking mode), and n2 matrices of type (3) (with appearance checking rules).
The initial matrix is m0 : (S → XA). Let B(1) and B(2) be the two objects in N2
for which we have rules B(j) → # in matrices of M . The matrices of the form
(X → Y, B(j) → #) are labelled by m′

i, 1 ≤ i ≤ n2 with i ∈ labj, for j ∈ {1, 2},
such that lab1, lab2, and lab0 = {1, 2, . . . , n1} are mutually disjoint sets.

We construct a mobile membrane system Π = (V, H, μ, w1, . . . , w7, R, 7) of
degree seven, where:

V = N ∪ T ∪ {X ′
0i, A

′
0i | X ∈ N1, A ∈ N2, 1 ≤ i ≤ n1}

∪{Xji, Aji | 0 ≤ i, j ≤ n1} ∪ {Xj
i , Xj | X ∈ N1, j ∈ {1, 2}, 1 ≤ i ≤ n2}

∪{β, β, γ, γ}
H = {1, . . . , 7}
μ = [[]7[]5[]6[[]3[]4]2]1
w1 = β, w2 = β, w3 = β, β, γ, γ, w4 = w5 = w6 = β, γ
w7 = XAβγ, where (S → XA) is the initial matrix of G.

In what follows we present only a part of the set of rules R constructed, namely
the ones used to simulate m′

i matrices.

(i) For each matrix m′
i : (X → Y, B(k) → #), X, Y ∈ N1, A ∈ N2, where

n1 + 1 ≤ j ≤ n1 + n2, j ∈ labk, k = 1, 2, we consider the rules:
1. [βX]7[β]2 → [β[βX

(j)
i]7]2, j = 1, 2 (mutual endo)

2. [βX
(j)
i]7[β]j+2 → [[βX

(j)
i]7β]j+2, j = 1, 2 (mutual endo)

3. [γ]3[γ]4 → [γ[γ]4]3 (mutual endo)
4. [γB(1)]7[γ]4 → [γ#[γ]4]7 (mutual endo)
5. [γ[γ]4]3 → [γ]3[γ]4 (mutual exo)
6. [β]3[β]4 → [β[β]3]4 (mutual endo)
7. [γB(2)]7[γ]3 → [γ#[γ]3]7 (mutual endo)
8. [β[β]3]4 → [β]3[β]4 (mutual exo)
9. [β[βX

(j)
i]7]j+2 → [β]j+2[βYj]7, j = 1, 2 (mutual exo)

10. [β[βYj]7]2 → [βY]7[β]2, j = 1, 2 (mutual exo)

The simulation of matrices of type (3) begins by a rule of type 1. Inside
membrane 2, rules 2 is used, by which membrane 7 enters membrane (j +2).
Rules 3 and 6 are used to introduce the remaining membrane (3 or 4) near
membrane 7. In this case, if B(j) exists this is replaced with # and the
computation is stopped. Otherwise, membrane 7 comes out of membrane (j+
2) replacing X

(j)
i with Yj . After the other membrane is removed from (j+2),

membrane 7 exits membrane 2, successfully simulating a matrix of type (3).

4 Related Work: P Systems with Active Membranes

The mobile membranes derive from the P systems with active membranes in-
troduced in [18]. P systems with active membranes are a variant of P systems

42 B. Aman and G. Ciobanu

in which each membrane is supposed to have an “electrical polarization” (also
called charge): positive, negative, or neutral.

A P system with active membranes has a finite set of developmental rules, of
the following forms:

object evolution
(a) [a → v]αh , for h ∈ H , α ∈ {+,−, 0}, a ∈ V , v ∈ V ∗

communication
(b) a[]α1

h →[b]α2
h , for h ∈ H , α1, α2∈{+,−, 0}, a, b ∈ V

communication
(c) [a]α1

h →[]α2
h b, for h ∈ H , α1, α2∈{+,−, 0}, a, b ∈ V

dissolving
(d) [a]αh → b, for h ∈ H , α∈{+,−, 0}, a, b ∈ V

division of elementary membranes
(e) [a]α1

h →[b]α2
h [c]α3

h , for h∈H, α1,α2,α3∈{+,−, 0}, a, b, c∈V

division of non-elementary membranes

(f) [[]α1
h1

. . . []α1
hk

[]α2
hk+1

. . . []α2
hn

]α0
h0
→ [[]α3

h1
. . . []α3

hk
]α5
h0

[[]α4
hk+1

. . . []α4
hn

]α6
h0

for k ≥ 1, n > k , hi ∈ H , 0 ≤ i ≤ n,
and α0, . . . , α6 ∈ {+,−, 0} with {α1, α2} = {+,−}

More details about these rules and how they are applied may be found in [18].
By denoting with LPA the family of languages L(Π) generated by P systems

with active membranes, we have the following result:

Theorem 9 ([18]). PsRE = PsLPA.

NPArd denotes the family of vectors of natural numbers N(Π) computed by
non-cooperative systems Π which do not use division rules of type (f). The
subscript rd stands for “restricted division”. This restriction does not decrease
the power of P systems with active membranes:

Theorem 10 ([20]). PsRE = NPArd.

NPAr denotes the family of natural numbers N(Π) computed by systems Π
which use only rules of types (a), (b) and (c).

Theorem 11 ([15]). PsRE = NPAr.

The set of numbers generated in the minimally parallel way by a system Π is
denoted by Nmin(Π). The family of sets Nmin(Π) generated by systems with
rules of the non-restricted form, having initially at most n1 membranes and using
configurations with at most n2 membranes during any computation is denoted
by NminOPn1,n2 . When a type of rule is not used, it is not mentioned in the
notation. If any of the parameters n1, n2 is not bounded, then it is replaced by .
If the system do not use polarizations for membranes, then we write (a0), (b0),
(c0), (d0), (e0) instead of (a), (b), (c), (d), (e). When using the maximal parallel
way we replace the subscript min by max.

Simple, Enhanced and Mutual Mobile Membranes 43

Theorem 12 ([1,6,17])

1. NmaxOP3,3((a), (b), (c)) = NRE. [17]
2. NmaxOP�,�((a0), (b0), (c0), (d0), (e0)) = NRE. [1]
3. NminOP3,3((a), (b), (c)) = NRE. [6]

Theorem 13 ([8]). NmaxOPn1,�((a1),(b1), (c1), (d1), (e1))=NRE, for all n1≥5.

Theorem 14 ([8]). NminOPn1,�((a1), (b1), (c1), (d1), (e1))=NRE, for all n1≥7.

When the rules of a given type (α0) are able to change the labels of the involved
membranes, then we denote that type of rules by (α′

0).
Using the power of label changing, the following results are obtained:

Theorem 15 ([2]). PsOP (a0, b0, c0, e
′
0) = PsOP (a0, b0, c

′
0) =

= PsOP (a0, b
′
0, c0) = PsOP (a0, c0, e

′
0) = PsRE.

By introducing replicative-distribution rules for nested membranes:

(l0) [a[]h1]h2 → [[u]h1]h2v, for h1, h2 ∈ H , a ∈ V , u, v ∈ V ∗;

the following result is obtained:

Theorem 16 ([9]). PsOP4(l′0) = PsRE.

5 Conclusions

Simple, enhanced and mutual mobile membranes are new models of computation
inspired from the biological operations governing the movement of biological
membranes: endocytosis and exocytosis. After defining these classes of mobile
membranes according to their biological motivations, some results concerning
their computational power are presented. For mutual mobile membranes this is
the first universality result, while for simple and enhanced mobile membranes the
results are improvements for existing ones by reducing the number of membranes
needed.

Acknowledgements

Many thanks to the referees for their helpful remarks and comments. This work
has been partially supported by research grants CNCSIS IDEI 402/2007 and
CNCSIS TD 345/2008.

References

1. Alhazov, A.: P Systems without Multiplicities of Symbol-Objects. Information Pro-
cessing Letters 100, 124–129 (2006)

2. Alhazov, A., Pan, L., Păun, G.: Trading Polarizations for Labels in P Systems with
Active Membranes. Acta Informatica 41(2-3), 111–144 (2004)

44 B. Aman and G. Ciobanu

3. Aman, B., Ciobanu, G.: Describing the Immune System Using Enhanced Mobile
Membranes. Electronic Notes in Theoretical Computer Science, vol. 194, pp. 5–18
(2008)

4. Aman, B., Ciobanu, G.: Resource Competition and Synchronization in Membranes.
In: Proceedings SYNASC 2008. IEEE Computing Society, Los Alamitos (2009)

5. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

6. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P Systems with Minimal
Parallelism. Theoretical Computer Science 378, 117–130 (2007)

7. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1990)

8. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Polarizationless P Systems with Active
Membranes Working in the Minimally Parallel Mode. In: Akl, S.G., Calude, C.S.,
Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618,
pp. 62–76. Springer, Heidelberg (2007)

9. Ishdorj, T.-O., Ionescu, M.: Replicative-Distribution Rules in P Systems with Ac-
tive Membranes. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp.
68–83. Springer, Heidelberg (2005)

10. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J.: Immunobiology - The
Immune System in Health and Disease, 5th edn. Garland Publishing, New York
(2001)

11. Krishna, S.N.: On the Efficiency of a Variant of P Systems with Mobile Membranes.
In: Cellular Computing: Complexity Aspects, Fenix Editora, Sevilla, pp. 237–246
(2005)

12. Krishna, S.N.: The Power of Mobility: Four Membranes Suffice. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 242–251. Springer,
Heidelberg (2005)

13. Krishna, S.N., Ciobanu, G.: On the Computational Power of Enhanced Mobile
Membranes. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008.
LNCS, vol. 5028, pp. 326–335. Springer, Heidelberg (2008)

14. Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Computing 4,
255–274 (2005)

15. Păun, A.: On P Systems with Membrane Division. In: Unconventional Models of
Computation, pp. 187–201 (2000)

16. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

17. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
18. Păun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems.

Journal of Automata, Languages and Combinatorics 6, 75–90 (2001)
19. Păun, G., Rozenberg, G., Salomaa, A.: Membrane Computing with External Out-

put. Fundamenta Informaticae 41, 259–266 (2000)
20. Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the Power of Membrane Di-

vision in P Systems. Theoretical Computer Science 324, 61–85 (2004)
21. Petre, I., Petre, L.: Mobile Ambients and P Systems. Journal of Universal Com-

puter Science 5, 588–598 (1999)
22. Salomaa, A.: Formal Languages. Academic Press, London (1973)
23. http://bcs.whfreeman.com/thelifewire

http://bcs.whfreeman.com/thelifewire

Bio-PEPA with Events

Federica Ciocchetta

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Edinburgh EH8 9AB, Scotland

Abstract. In this work we present an extension of Bio-PEPA, a lan-
guage recently defined for the modelling and analysis of biochemical sys-
tems, to handle events. Events are constructs that represent changes in
the system due to some trigger conditions. The events considered here
are simple, but nevertheless able to describe most of the discontinuous
changes in models and experiments.

Events are added to our language without any modification to the rest
of the syntax in order to keep the specification of the model as straight-
forward as possible. Some maps are defined from Bio-PEPA with events
to analysis tools. Specifically, we map our language to Hybrid Automata
(HA) and we consider a modification of Gillespie’s algorithm for stochas-
tic simulation. In order to test our approach, we present the translation
in Bio-PEPA of a biochemical network describing the functional prop-
erties of the Acetylcholine receptor with the addition of an event that
causes the inactivation of some reactions at a given time.

1 Introduction

Computational models play an important role in systems biology. Indeed they
help to study, analyze and predict the behaviour of biological systems. In recent
years there have been some applications of process algebras for the analysis of
biological systems (e.g. [27,25,8,9]). In most cases the analysis is performed using
Gillespie’s stochastic simulation algorithm [18]. Other possibilities exist, such as
the mapping to differential equations [7].

Many biological models need to capture both discrete and continuous phenom-
ena [1,4,23]. These models are called hybrid systems. A first example of a hybrid
system describes the activation of a certain activity when the concentration of
enabling quantities is above the desired threshold. A second example considers
a signal or stimuli that becomes null after some time leading to some changes
in the interactions of the system. Other examples describe some experiments,
where it may be necessary to render the possible change to the system, due, for
instance, to the introduction or the removal of some reagents.

In this work we present an extension of Bio-PEPA [9,10], a language recently
defined for the modelling and analysis of biological systems, to handle events.
Broadly speaking, events are constructs that represent changes in the system
due to some trigger conditions.

Here we are interested in simple forms of events. Specifically, we refer to
the definition of events reported in the SBML specification [22]. These kinds of

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 45–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

46 F. Ciocchetta

events can be found in biochemical networks, such as the ones in the BioModels
database [24] or defined in some experimental settings.

The idea underlying our work is the following:
Biochemical networks with events =⇒ Bio-PEPA with events =⇒ Analysis

Starting from a biochemical network with one or more events, we want to
map it into a Bio-PEPA system. From that, we can then consider different kinds
of analysis. In this, view Bio-PEPA is a formal, intermediate, compositional
representation of the biochemical network. This idea is the one proposed for
(the standard) Bio-PEPA.

A first challenge concerns the modelling: we need to add events to the Bio-
PEPA system. Events are added to our language as a set of elements and the rest
of the syntax is unchanged. There are two motivations for this choice. First, we
keep the specification of the model as simple as possible. Second, this approach
is appropriate when we study the same biochemical system but with different
experimental regimes as we can modify the list of events without any changes
to the rest of the system.

A second aspect is the analysis. Some maps must be defined from Bio-PEPA
to analysis tools. Specifically, we map our language to Hybrid Automata (HA)
[19]. HA are a formalism that consider both continuous and discrete changes. The
continuous part is expressed by a set of variables evolving in each state according
to a set of differential equations and the discrete dynamics is given by transitions
between states, triggered by some conditions on variables. Furthermore, we can
consider a modification of Gillespie’s algorithm [18] in order to tackle events.

A preliminary version of this work has been presented in [11]. Here we add
some definitions concerning the kind of events and further details concerning
the mappings from Bio-PEPA with events to the Hybrid Automata and Gille-
spie’s algorithm. Furthermore, we consider more general kinds of events, such as
simultaneous events or events with a delay different from zero.

The rest of the paper is organised as follows. Section 2 reports a description
of Bio-PEPA. In Section 3 we define the events we are considering in this work
and then we extend Bio-PEPA in order to handle them. Section 4 describes the
mapping from our language to Hybrid Automata. The mapping to stochastic
simulation is reported in Section 5. After that, Section 6 illustrates the modelling
in Bio-PEPA of a biochemical network describing the functional properties of
the Acetylcholine receptor with an event that is triggered at a given time and
causes the inactivation of some reactions. In Section 7 we overview some related
work. Finally, in Section 8, some conclusions are reported.

2 Bio-PEPA

Bio-PEPA [9,10] is a language for the modelling and analysis of biochemical
networks. The syntax of Bio-PEPA is defined as:

S ::= (α, κ) op S | S + S | C P ::= P ��
I P | S(x)

where op = ↓ | ↑ | ⊕ |
 | �.

Bio-PEPA with Events 47

The component S (species component) abstracts a biological species and the
component P (model component) describes the system and the interactions
among components. The prefix term (α, κ) op S contains information about the
role of the species in the reaction associated with the action type α: κ is the sto-
ichiometry coefficient of the species and the prefix combinator “op” represents
the role of the element in the reaction. Specifically, ↓ indicates a reactant, ↑ a
product, ⊕ an activator,
 an inhibitor and � a generic modifier. The operator
“+” expresses choice between possible actions and the constant C is defined by
an equation C

def= S. The parameter x ∈ R
+ in S(x) represents the initial quan-

tity (for instance the concentration) of the species. Finally, the process P ��
I Q

denotes the cooperation between components: the set I determines those activi-
ties on which the operands are forced to synchronize. In Bio-PEPA the rates are
not expressed in the syntax of components but are defined as functional rates.
These allow us to express any kind of kinetic law. Each action is associated with
a specific functional rate.

A possible modelling style supported by Bio-PEPA is in terms of concentration
levels. This is the style considered in the derivation of the transition system for
Bio-PEPA. The species concentrations can be discretized into a number of levels.
The granularity of the system is expressed in terms of the step size h, i.e. the
length of the concentration interval representing a level. The information about
the step sizes and the number of levels for each species is collected in a set N .
Specifically, the elements of the set N have the form: “C : h = value h, N =
value N, M = value M, V = value V, unit = value u”, where C is the species
component name, h is the step size, N is the maximum level, M is the maximum
concentration, V is the name of the enclosing compartment and unit is the unit
for concentration.

In order to fully describe a biochemical network in Bio-PEPA we need to de-
fine structures that collect information about the compartments, the maximum
concentrations, number of levels for all the species, the constant parameters and
the functional rates. The Bio-PEPA system is defined in the following way:

Definition 1. A Bio-PEPA system P is a 6-tuple 〈V ,N ,K,FR, Compon −
ents, P 〉, where: V is the set of compartments, N is the set of quantities de-
scribing species, K is the set of parameter definitions, FR is the set of functional
rates, Components is the set of definitions of sequential components, P is the
model component describing the system.

For details see [9,10].
The behaviour of the system is defined in terms of an operational semantics.

This refers to the level-based modelling style and in this context the parameter
in the species components stands for the concentration level. We define two
relations. The former, called capability relation, is indicated by θ−→c. The label
θ is of the form (α, w), where w := [S : op(l, κ)] | w :: w, with S a species
component, op a symbol representing the role of the species in the reaction,
l the level and κ the stoichiometry coefficient. This relation is defined as the
minimum relation satisfying the rules reported in Table 1.

48 F. Ciocchetta

Table 1. Axioms and rules for Bio-PEPA

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l,κ)])−−−−−−−−→c S(l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l,κ)])−−−−−−−−→c S(l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S)(l)
(α,[S:op(l,κ)])−−−−−−−−−→c S(l) with op = �,⊕,
 and

0 < l ≤ N if op = ⊕, 0 ≤ l ≤ N otherwise

choice1
S1(l)

(α,w)−−−→c S′
1(l

′)

(S1 + S2)(l)
(α,w)−−−→c S′

1(l
′)

choice2
S2(l)

(α,w)−−−→c S′
2(l

′)

(S1 + S2)(l)
(α,w)−−−→c S′

2(l
′)

constant
S(l)

(α,S:[op(l,κ)])−−−−−−−−−→c S′(l′)

C(l)
(α,C:[op(l,κ)])−−−−−−−−−→c S′(l′)

with C
def
= S

coop1
P1

(α,w)−−−→c P ′
1

P1 ��
L P2

(α,w)−−−→c P ′
1 ��

L P2

with α /∈ L

coop2
P2

(α,w)−−−→c P ′
2

P1 ��
L P2

(α,w)−−−→c P1 ��
L P ′

2

with α /∈ L

coop3
P1

(α,w1)−−−−→c P ′
1 P2

(α,w2)−−−−→c P ′
2

P1 ��
L P2

(α,w1::w2)−−−−−−−→c P ′
1 ��

L P ′
2

with α ∈ L

The latter relation, called stochastic relation, is −→s ⊆ P̃ × Γ × P̃ , where P̃ is
the set of well-defined Bio-PEPA systems1 and Γ is the set of labels γ = (α, r),
with α the action type and r the associated rate. This relation is defined as the
minimal relation satisfying the rule:

1 In a well-defined Bio-PEPA system each element has to satisfy some conditions.
For instance, we have that each species component C ∈ Comp must have subterms
of the form “(α, κ) op C” and the action types in each single component must
be all distinct. Furthermore, the model component P must be defined in terms of
the species components defined in Comp and, for each cooperation set Lj in P ,
Lj ⊆ A(P). For details see [12].

Bio-PEPA with Events 49

Final
P

(αj ,w)−−−−→cP
′

〈V ,N ,K,F , Comp, P 〉 (αj ,rα[w,N ,K])−−−−−−−−−−→s〈V ,N ,K,F , Comp, P ′〉

The element rα[w,N ,K] is the rate associated with the action α and is
defined as:

rα[w,N ,K] =
fα[w,N ,K]

h

where h is the step size for the species involved in the reaction and the notation
fα[w,N ,K] means that the function fα is evaluated over w and the information
about parameters and species components contained in the sets N and K.

In this definition rα represents the parameter of a negative exponential distri-
bution. The dynamic behaviour of processes is determined by a race condition:
all activities enabled attempt to proceed but only the fastest succeeds.

A Stochastic Labelled Transition System (SLTS) is defined for a Bio-PEPA
system. From this we can obtain a continuous time Markov Chain (CTMC).
Both the SLTS and the CTMC derived from Bio-PEPA are defined in terms of
levels of concentration. We call this Markov chain the CTMC with levels.

Bio-PEPA can be seen as an intermediate, formal, compositional represen-
tation of biological systems, from which different kinds of analysis can be per-
formed. We have defined some mappings from Bio-PEPA to ODEs, CTMC with
levels, stochastic simulation and PRISM [26]. Some tools for the analysis of Bio-
PEPA system have been implemented [3]. In the following we report a brief
description of the mapping from Bio-PEPA to ODE, as it is used later in the
paper. For further details and the other mappings see [10].

2.1 From Bio-PEPA to ODE System (πODE)

Let πODE be the mapping from Bio-PEPA system to the associated ODE system.
The mapping πODE entails three steps:

1. definition of the stoichiometry (n×m) matrix D, where n is the number of
species and m is the number of reactions;

2. definition of the kinetic law vector (m× 1) vKL containing the kinetic laws
of each reaction;

3. definition of the vector (n× 1) x, with xT = (x1, x2, ..., xn).

A crucial part is the derivation of the stoichiometry matrix D = {dij}. The
entries of the matrix are obtained as follows: for each sequential component Ci

consider the prefix subterms Cij representing the contribution of the species i
to the reaction j. If the term represents a reactant we write the corresponding
stoichiometry κij as −κij in the entry dij . In the case of a product we write +κij .
All other cases are null. The kinetic law vector is derived from the functional
rates and its definition is straightforward.

50 F. Ciocchetta

The ODE system thus obtained has the form:

dx
dt

= D× vKL

where the vector of initial concentrations is x0, with xi,0 the initial concentration
of the species i, as given in the specification of the system.

2.2 Example

In order to show how to model biochemical systems in Bio-PEPA we consider
the network presented in Fig. 1 and we translate it into Bio-PEPA. This network
is then used as a running example in the rest of the paper.

X

Y

2

1

3

Fig. 1. Biochemical network composed of two proteins X and Y . The numbers indicate
the reactions. Reaction 1 is the translation of Y enhanced by X, reaction 2 is the
degradation of X and reaction 3 the translation of X.

The network is composed of two proteins, X and Y . These are involved in the
following interactions:

– Translation of Y enhanced by X (reaction 1): X
r1−→X + Y .

The kinetic law is mass-action with constant parameter r1 = 0.01;
– Degradation of the protein X (reaction 2): X

r2−→∅.
The kinetic law is mass-action with constant parameter r2 = 0.02;

– Translation of the protein X (reaction 3): ∅ r3−→X .
The kinetic law is mass-action with constant parameter r3 = 0.01.

Each reaction i is represented by an action type αi. The kinetic laws are repre-
sented by the following functional rates:

fα1 = fMA(0.01); fα2 = fMA(0.02); fα3 = 0.01;

where fMA(r) stands for mass-action kinetic law with rate r.
The Bio-PEPA species components2 corresponding to the two proteins are:

X
def= (α1, 1)⊕X + (α2, 1)↓X + (α3, 1)↑X Y

def= (α1, 1)↑Y

2 Note that we use X and Y (capital letters) to indicate the names of the species and
the name of the Bio-PEPA components, whereas x and y indicate the associated
species concentrations.

Bio-PEPA with Events 51

Fig. 2. ODE integration results for the network

whereas the model component is:

X(0) ��
{α1} Y (0)

where the initial values are zero for both the proteins.
The set of compartments and the set N are not reported.
Applying the mapping πODE we obtain the ODE system:

dx
dt = −0.02 · x + 0.01
dy
dt = 0.01 · x

where x and y are the two variables describing X and Y . The result of ODE
integration is reported in Fig. 2. The protein X reaches a steady-state whereas
Y increases infinitely.

3 Bio-PEPA with Events

3.1 SBML-Like Events: Some Definitions

In this work we consider events as defined in the SBML specification [22]. SBML
events describe explicit discontinuous state changes in the model. Specifically,
an SBML event has the following structure:

“event id, if trigger then event assignment list with delay′′

52 F. Ciocchetta

where

– event id is the event identifier,
– trigger is a mathematical expression that, when it is evaluated to true, makes

the event fire. It can be composed of one or more conditions;
– event assignment list is a list of assignments that are made when the event

is executed;
– delay is the length of time between the time when the event fires and the

time when the event assignments are executed.

The trigger and the list of assignments are both mandatory and can involve
parameters, species concentrations and compartment sizes. All the triggers are
initially evaluated to false. An SBML-like event is immediate if delay is equal to
zero. Otherwise, the event is called delayed.

The definition of sequential and simultaneous events is reported below.

Definition 2. Two or more SBML-like events are sequential if they are fired
one after the other in a given order. They are said to be simultaneous if they
happen at the same point in time.

In most biochemical systems which we are interested in we have sequential events.
In the general situation of simultaneous events, sometimes some tie-breaking
rules are necessary to decide which of any set of events is simulated first. The
most common way to do this is to assign a priority to each event [13]: when there
are two or more simultaneous events, the event with the highest priority is defined
to be the next event to fire. However, the order in which a set of simultaneous
events is fired is not always important, for instance when the assignments of the
events influence different variables. We have the following definition:

Definition 3. Two simultaneous events are independent if their event assign-
ments do not effect each other. Otherwise, they are called dependent.

If we have simultaneous independent events we may abstract them as a single
event and the system is reset according to the assignments of all the set of
simultaneous events. Simultaneous independent events are dealt with similarly
to sequential ones.

3.2 Assumptions

We make the following assumptions for the events considered in this work.

1. Triggers can involve time and species components’ names, while assignments
can involve species components (concentrations), compartments (size), pa-
rameters (values) and functional rates (function definitions).

2. Triggers are deterministic, i.e. when they become true they are fired.
3. Triggers are only unidirectional, i.e. describing the change from one mode to

another, but not vice versa. Bidirectional triggers can be decomposed into
two unidirectional triggers.

4. Events are either sequential or simultaneous and independent.

Bio-PEPA with Events 53

These assumptions are not restrictive. Indeed the events satisfying these assump-
tions allow us to represent a large number of discontinuous changes that we can
find in biological systems.

3.3 The Definition of the Language

We can add events to a Bio-PEPA system by introducing a set of elements that
have the form (id, trigger, event assignment, delay), where id is the name of
the event, trigger is a mathematical expression involving the components of the
Bio-PEPA model and time, event assignment is a list of assignments, delay is
0 (immediate events) or positive real value (delayed events). Formally, we have
the following definitions:

trigger ::= cond | cond or cond | cond and cond | not cond
cond ::= t eq value | expression(C̄, k̄) eq value |

expression(C̄, k̄) eq expression(C̄, k̄)
eq ::= = | �= | > | < | ≤ | ≥
delay ::= value
event assignment ::= assignment ; event assignment
assignment ::= k ← value | C ← value | fα ← expression(C̄, k̄)

V ← value | t ← value
event ::= (id, trigger, event assignment, delay)

where C stands for any species component, k for any parameter and V for any
compartment, fα is the functional rate associated with the action type α, the
variable t ∈ R

+ represents the global time of the system, expression(C̄, k̄) is
an arithmetic expression involving a set of components (denoted C̄) and a set
of parameters (denoted k̄), value ∈ R

+ and id is a string indicating the event
name. Note that in the assignment definition, C indicates the concentration of
the associated species component and V the size of the associate compartment.
The assignment involving time is just auxiliary to express delayed events (see
Sec. 4.2).

The set of events is then defined as:

Events ::= [] | event :: Events

Definition 4. A Bio-PEPA system with events P is an 8-tuple
〈V ,N ,K,F , Comp, P, Events, t〉, where Events is the set of events, t ∈ R

+ is the
variable expressing time and the other elements are as in standard Bio-PEPA.

A Bio-PEPA system is well-defined if all the elements are well-defined. The
definition of well-definedness for all the elements, with the exception of events,
is reported in [10].

Definition 5. The set Events is well-defined if and only if the following con-
ditions hold:

– triggers involve time or the name of species components, assignments involve
species components, compartments, parameters and functional rates;

54 F. Ciocchetta

– all the elements used in the events are defined in the Bio-PEPA system;
– all the triggers are different and do not overlap in their values;
– given an event, the different assignments are independent (i.e. involve dif-

ferent elements).

In the following we refer to Bio-PEPA with events simply as Bio-PEPA. Only
well-defined Bio-PEPA systems are considered.

3.4 Example (Continued)

Consider the simple network described in Sect. 2.2. We can assume that the
translation of the protein X is possible only when the concentration of Y is
less than 0.8. This is expressed in Bio-PEPA by the following immediate event
involving concentrations:

(event1, Y = 0.8, r3 ← 0, 0)

where r3 is the constant rate for the translation of protein X . When the concen-
tration of Y reaches the value 0.8, the value of r3 becomes 0 and therefore the
creation of X is not possible anymore.

In addition to this events, we can assume that when the concentration of X
is less or equal than a given value (0.2, for instance) and the concentration of Y
greater than 0.8 the creation of X is enabled again but with a smaller rate than
before (r3 = 0.005).

This is expressed in Bio-PEPA by the following immediate event:

(event2, Y > 0.8 and X = 0.2, r3 ← 0.005, 0)

These two events are sequential and clearly satisfy the assumptions discussed
above.

4 Mapping to Hybrid Automata

4.1 Hybrid Automata

Hybrid automata (HA) [19] combine discrete transition graphs with continuous
dynamical systems. They are used to formally model hybrid systems, dynamical
systems with both discrete and continuous components. An hybrid automaton
consists of a finite set of real-valued variables {X1, X2, ..., Xn} and a finite la-
belled graph, whose vertices correspond to control modes (states), described by
differential equations, and whose edges are control switches, corresponding to
discrete events. In addition, we have some labels for the edges, specifying the
jump conditions (activation conditions) and labels for the vertices, containing
information about initial and invariant conditions. The variables evolve contin-
uously in time, apart from some changes induced by events. When an event
happens there is a change in the mode. The dynamic behaviour of each mode
is described by a set of differential equations, generally different from mode to
mode. We can use HA both for simulation (see for instance the SHIFT language
[15]) and model checking (see HyTech [20]). In this work we limit our attention
to simulation. For a formal definition and details of the formalism see [19].

Bio-PEPA with Events 55

4.2 Definition of the Mapping

Here we present the map from Bio-PEPA to HA. First, we limit our attention to
the case of immediate events and then we show a way to represent delayed events.
Indeed, the translation of the delay associated with an event is not straightfor-
ward in the usual definition of HA.

Let P0 = 〈V0,N0,K0,F0, Comp0, P0, Events, t0〉 be the initial Bio-PEPA sys-
tem and let Nevents be the number of events. We have the following correspon-
dences:

1. Each species component Ci in Comp is associated with a variable Xi. The set
of variables is then given by {X1, X2, · · · , XNComp , t}, where t is the variable
expressing the time and NComp is the number of species components. The
evolution of the variable t is described by the trivial differential equation
dt/dt = 1.

2. The initial conditions of the variables are derived from the initial model
component P0. The variable t is initially set to 0.

3. For each event i in Events, we can consider the trigger tri. We use these
triggers to define the jump conditions. In the case we have only sequential
events, the number of possible jump conditions Njump is just NEvents. If si-
multaneous independent events are possible, we may combine them together
in order to define a new jump condition representing the union of the triggers
of the simultaneous events. In this case, the system is reset according to the
union of the assignment lists of the events involved.

4. Each mode is described by a specific instance of the Bio-PEPA system.
Indeed modes are defined according to either the initial system or the system
modified with the event assignments relative to a trigger. The number of
modes is Njump + 1. σ is used to indicate a mode and the Σ the set of all
modes. In each mode some invariant conditions are added in order to force
the change of mode when the trigger becomes true. We have that:
– The initial mode σ0 is defined from the initial system P0. It is described

in terms of an ODE system and this is derived from the Bio-PEPA model
by considering the map πODE . Therefore, we have σ0 = πODE(P0).

– Given a mode σi = πODE(Pi), let trij be one possible jump condition
that can be satisfied from it. We define the Bio-PEPA system Pj =
Pi[event assignmentij] as the modification of the previous system Pi

according to the event assignments associated with the trigger. The mode
σj is then defined as σj = πODE(Pj).

Case of delayed events. The delay associated with an event represents the
time interval between when the event is fired and when its assignments are exe-
cuted. This information cannot be directly translated in any of the components
of standard HA. In the following we report as we handle the delay in HA.

First, we introduce a new variable tmode representing the time when the system
enters in a specific mode. It is initially set to zero. The differential equation
associated with this new variable is dtmode/dt = 0, i.e. this variable is constant
in each mode.

56 F. Ciocchetta

Second, given an event (id, trigger, event assignment, delay), we split it into
two immediate events, defined as:

1. (id1, trigger, tmode ← t, 0);
2. (id2, t = tmode + delay, event assignment, 0).

The role of the former event is to introduce the delay whereas the role of the
second is to guarantee that the assignments of the initial event are executed after
the given delay.

4.3 Example (Continued 2)

Consider the network presented in Sect. 2.2 with the addition of the set of events
(see Sect. 3.4):

[(event1, Y = 0.8, r3 ← 0, 0)].

A schema of the HA associated with this network is reported in Fig. 3. The set
of variables is {x, y, t}, where x and y are the two variables representing the
two proteins. The initial concentrations, derived from the initial condition in the
Bio-PEPA model, are x = 0, y = 0 and t = 0. We have just one event so we
have two modes and the jump condition (guard) is y = 0.8. The former mode is
described by the invariant condition y < 0.8 and the latter by y ≥ 0.8.

The ODE system corresponding to the initial mode (S1) is derived by applying
the mapping πODE to the initial Bio-PEPA system (P0) and is:

dx
dt = −0.02 · x + 0.01
dy
dt = 0.01 · x

For the second mode, the ODE system (S2) is obtained as πODE(P0[r3 ← 0])
and is:

dx
dt = −0.02 · x
dy
dt = 0.01 · x

If we consider both event1 and event2, we have the HA represented in
Fig. 4. There are three modes, representing the network at the initial state,
when y < 0.8 and when y ≥ 0.8 and x ≥ 0.2. Two jumps conditions are defined
in terms of the trigger conditions.

The ODE systems describing the first and second modes are as above, whereas
the ODE system for the third mode (S3) is obtained from πODE(P1[r3 ← 0.005])
(where P1 is the Bio-PEPA system corresponding to the second mode) and is:

x =0, y=0
[y = 0.8]

S1 S2

Fig. 3. HA representation for the network composed of the two proteins X and Y and
with an event involving concentrations

Bio-PEPA with Events 57

x =0, y=0
[y = 0.8]

S1 S2

S3

[y > 0.8 and x= 0.2]

Fig. 4. HA representation for the network composed of the two proteins X and Y and
with two sequential events

Fig. 5. Simulation results for the network composed of the two proteins X and Y and
with the addition of event1

dx
dt = −0.02 · x + 0.005
dy
dt = 0.01 · x

Some results for the network with just event1 are reported in Fig. 5. The protein
X increases until time 200 s when Y reaches the value 0.8 and then decreases
to 0. The protein Y increases, but after the event, its rate of increase is much
lower than the case without the event.

The results for the network with both event1 and event2 is reported in
Fig. 6. In this case, when the second event is fired, the protein X starts to
increase again and this has effect on the production of Y as well.

58 F. Ciocchetta

Fig. 6. Simulation results for the network composed of the two proteins X and Y and
with the addition of event1 and event2

5 Stochastic Simulation by Gillespie’s Algorithm

One of the possible kinds of analysis supported by Bio-PEPA is stochastic simu-
lation using Gillespie’s algorithm [10]. When events are considered the algorithm
has to be modified in order to handle them. Broadly speaking, events are tackled
by adding some conditions and some checks along the simulation. We start at
time t = 0, with the Bio-PEPA system in its initial conditions. We assume that
initially all the triggers evaluate to false. When one of the conditions is satisfied,
the simulation stops and the system is modified according to the event assign-
ments associated with the trigger. After that, the simulation can start again
until another condition becomes true or the simulation time is reached. The use
of triggers involving time can be challenging since it can happen that the time of
the event does not coincide with any of the simulation time points. Our approach
to deal with this case is discussed below.

Note that if the events involve species concentrations, we have to change
concentrations into number of molecules for stochastic simulation. Specifically,
we have to multiply each concentration by Na V , where Na is the Avogadro
number3 and V is the volume of the compartment. In the the rest of this section
we assume that the events are in terms of number of molecules.

3 This is the number of “entities” (atoms or molecules) in one mole of substance. Its
value is 6.022 × e+23 (mol)−1.

Bio-PEPA with Events 59

We propose the following procedure for each simulation run.

1. Let P0 be the initial Bio-PEPA system and ts the maximum simulation time.
2. While t < ts and triggeri = false for i = 1, 2, ..., NEvents, simulate.
3. If t ≥ ts then stop.
4. If t < ts and there exists a triggeri such that it is true, we have that:

(a) if delay = 0 modify the Bio-PEPA system according to the event assign-
ments associated with that trigger: P ′(t) = P(t)[event assignmenti].
Go to (2).

(b) if delay > 0 go on with the simulation until time t + delay and then
proceed as in (a).

Some final observations concern how to use the algorithm in two particular
situations.

– In the case of two or more independent simultaneous events we proceed as
observed in Section 3.1: we can abstract these events as a single event, whose
trigger is defined in terms of the triggers of the two events and the event
assignments are the union of the assignments. Therefore, we modify the
system according to the assignments associated with all the events involved.

– When we have an event with a trigger involving time t = t̃, the time value
t̃ may not correspond to any of the simulation time point obtained by us-
ing Gillespie’s simulation algorithm. Specifically, there exist two consecutive
simulation time points tj and tj+1 such that tj < t̃ < tj+1. If this happens,
we have to decide when the system has to be modified. In order to handle
this situation we consider the following approach:

1. if tj < t̃ + delay < tj+1 with delay ≥ 0 consider the system at time
t̃ + delay and modify it at that time point. The simulation restarts from
t̃ + delay.

2. If delay > 0 and t̃+delay ≥ tj+1 consider the last simulation time point
th ≤ t̃ + delay and run the simulation until th. Then, modify the system
at time t̃ + delay and restart the simulation from that time point.

6 The Acetylcholine Receptor Model

This example concerns the functional properties of the nicotin Acetylcholine
Receptors (nAChR). These are transmembrane proteins that mediate inter-
conversions between open and closed channel states under the control of neuro-
transmitters. The detailed description of the model is reported in [16].

A schema of the model is shown in Figure 7. B (Basal state), A (Active
state), D (Desensitized state) and I (Inactivable state) represent the different
states of the Acetylcholine receptors. The numbers 0, 1, 2 associated with the
state are the number of ligands (denoted X) bound to a receptor. In the model
the ligands are not modelled explicitly. Each column corresponds to a series
of ligand binding actions at two identical sites per receptor whereas each row
corresponds to a series of transactions between conformational states. All the

60 F. Ciocchetta

+ 2X

+ X

B0

B1

A0 2X+

A1 + X

I0 + 2X D0

I1 X + D1 +

2X+

X

A2B2 I2 D2

kf_0 kf_3

kf_5

kf_6

kf_7

kf_9

kf_10 kf_15

kf_12

4

kr_7kr_3

kr_5 kr_9

kr_0

kr_6

kr_4

kr 2

kf_2 kf_11

kr 11 kr 16

kf_16

kr_12

kf_14

kr_1

kr_10 kr_15

kr_1kf_1 kf_4 kf_8 kr_8 kf_13 kr_13

Fig. 7. Schema of the Acetylcholine receptor model

Table 2. The Acetylcholine receptor model. The list of parameters. The unit is s−1.

parameter value parameter value parameter value parameter value
kf0 3000 kr0 8000 kf1 1500 kr1 16000
kf2 30000 kr2 700 kf3 3000 kr3 8.64
kf4 1500 kr4 17.28 kf5 0.54 kr5 10800
kf6 130 kr6 2740 kf7 3000 kr7 4
kf8 1500 kr8 8 kf9 19.7 kr9 3.74
kf10 19.85 kr10 1.74 kf11 20 kr11 0.81
kf12 3000 kr12 4 kf13 1500 kr13 8
kf14 0.05 kr14 0.0012 kf15 0.05 kr15 0.0012
kf16 0.05 kr16 0.0012

reactions are reversible and the dynamics are described by mass-action laws. For
each reaction i, with i = 1, 2, ...16, the rate of the forward direction is kf i and
the rate of the reverse direction kr i.

In addition to these elements, there is an event to describe the recovery upon
removal of free agonist at a given time. This is expressed by constraining the
reaction rates of each second-order ligand-receptor reaction to zero. These con-
straints prevent ligand binding reactions from happening after that time, hence
the states evolve as if the free ligands were completely removed from the system.
The event is immediate, the trigger is “t = t2”, where t2 = 20 s, and the event
assignments are kf0 ← 0, kf1 ← 0, kf3 ← 0, kf4 ← 0, kf7 ← 0 , kf8 ←
0 , kf12 ← 0 , kf13 ← 0.

The Bio-PEPA system associated with the Acetylcholine receptor
model. In the following we report briefly the definition of the Bio-PEPA system

Bio-PEPA with Events 61

representing the Acetylcholine receptor model. The complete system is reported
in the Appendix A.

– Definition of the compartment list V . In the model we have a single three-
dimensional compartment, defined as “comp1 : 1e-16, l;”, where l is litre.

– Definition of the set N . Each species is associated with a species component.
For each species component we have to declare the step size, the number of
levels, the initial and maximum concentrations and the compartment where
the species is. The ligand is not represented explicitly. For instance, in the
case of B0, B1 and B2 we have:

B0 : H = h, N = NB0, M = MB0, V = comp1, unit = μM ;
B1 : H = h, N = NB1, M = MB1, V = comp1, unit = μM ;
B2 : H = h, N = NB2, M = MB2, V = comp1, unit = μM ;

where the step size is 1.66e-5, the number of levels NB0 = NB1 = NB2 is 1
(i.e. the species can be present, 1, or absent, 0), the maximum concentration
MB0 = MB1 = MB2 is 1.66e-5 and coincides with the initial concentration
of channels at the basal state. Note that the information about the step size
and the number of levels is not used in this work, as we do not consider
CTMC with levels, however we define them for completeness.

– Definition of functional rates (FR) and parameters (K). Each reversible re-
action i, i = 0, 1, 2, · · · , 16, is decomposed in two irreversible reactions, fi

and ri, representing the forward and inverse directions respectively. The as-
sociated kinetic laws are fα fi = fMA(kf i); and fα ri = fMA(kr i), where
fMA denotes mass-action. All the parameters are defined in the set K. The
values are the ones reported in the paper [16].

– Definition of species components (Comp) and of the model component (P).
In the following we report the definition for B0, B1 and B2; the other species
are dealt with similarly.

B0 def= (α f0, 1)↓B0 + (α r0, 1)↑B0 + (α f5, 1)↓B0 + (α r5, 1)↑B0
B1 def= (α f0, 1)↑B1 + (α r0, 1)↓B1 + (α f6, 1)↓B1 + (α r6, 1)↑B1+

(α f1, 1)↑B1 + (α r1, 1)↓B1
B2 def= (α f2, 1)↓B2 + (α r2, 1)↑B2 + (α f1, 1)↑B2 + (α r1, 1)↓B2

The system is described as:

B0(1.66e-5) ��
L1

B1(0) ��
L2

B2(0) ��
L3

A0(0) ��
L3

A1(0) ��
L4

A2(0) ��
L5

I0(0) ��
L6

I1(0) ��
L7

I2(0) ��
L8

D0(0) ��
L9

D1(0) ��
L10

D2(0)

where Li, i = 1, ..., 10 are the cooperation sets and the initial values for the
species are 0 with the exception of the species B0.

– Definition of events. We have only one event, describing a change in the
system at time 20 s:

[(event, t = 20, kf0 ← 0; kf1 ← 0; kf3 ← 0 kf4 ← 0; kf7 ← 0; kf8 ← 0;
kf12 ← 0; kf13 ← 0, 0)]

62 F. Ciocchetta

Fig. 8. Stochastic simulation results for the Acetylcholine receptor model (average over
100 runs)

Analysis results. The HA associated with the Acetylcholine receptor model is
similar to the one for the network presented in Sect.2.2 with the addition of the
set of events. We have two modes, described by two different sets of differential
equations. The trigger condition involves time and is “t = 20 s”. The details of
the two systems describing each mode are not reported.

Simulation results made using Gillespie’s algorithm are reported in Fig. 8. The
initial number of molecules for B0 is given M0×V ×Na = (1.66e-5 μM)× (1.e-
16 l)×(6.022×e+23 (mol)−1) = 1000, where Na is the Avogadro number. All the
other species are initially null. The number of runs is 100. The graph reproduces
results in agreement with the ones reported in the paper [16]. Following the
ligand removal, the state I2 loses agonist molecules and is transformed to the
state B0 very rapidly, while D2 loses ligand molecules to form D0. Since the data
occur on a wide range of times we represent the time on a logarithmic scale.

7 Related Works

The use of mathematical formalisms in order to represent discrete changes in
biological systems is not new [1,4,23,17,5,6]. In [1] the authors proposed a hy-
brid system approach to modelling an intra-cellular network using continuous
differential equations to model some part of the system and mode-switching to

Bio-PEPA with Events 63

describe the changes in the underlying dynamics. Some models with hybrid be-
haviour are presented and described using CHARON [2], a language that allows
formal description of hybrid systems. The authors of [23] discussed the use of
discrete changes in biological systems and presented some examples using the
formalism HybridSAL [21]. Hybrid Concurrent Constraint Programming is used
to model some biological systems with both discrete and continuous changes in
[4]. In [5] the authors presented a map from stochastic Concurrent Constraint
Programming (sCCP) to HA. The HA generated in this way are said to be able
to capture some aspects of the dynamics which are lost if standard differential
equations are used. A discussion of hybrid systems and biology is reported in [6].
Finally, in [17] the authors presented HYPE, a process algebra for the modelling
of hybrid systems and used it to represent the repressilator, an artificial genetic
network composed of three genes and their respective proteins with oscillatory
behaviour. In none of these works are SBML-like events considered explicitly,
but the focus is on general hybrid systems.

Events have been proposed in the Beta Workbench (BetaWB) [14] and in the
associated programming language BlenX [28]. In BlenX events can be considered
as global rules of the environment, triggered only when the conditions associated
with them are satisfied. Each event is the composition of a condition (cond) and
an action (verb) and is associated with a rate. Conditions can involve number
of entities, the simulation time or the simulation step. The possible actions are
the join of two entities, the split of one entity into two, the update of a variable
of the system and the deletion or the creation of a new entity.

The concept of events proposed in BlenX is quite similar to the one considered
for Bio-PEPA. The BlenX condition and action correspond to the trigger and
event assignment in Bio-PEPA events. However, rates in BlenX have a different
meaning from the delay in Bio-PEPA. Indeed, in Bio-PEPA an events occurs
when the trigger is satisfied and the role of the delay is to postpone when the
event is executed. BlenX events with a finite rate can happen only when the
trigger is satisfied but it is in competition with other actions that are enabled
contemporaneously (race condition). BlenX events with infinite rate correspond
to immediate events in Bio-PEPA.

In order to compare the definition of events in the two languages, we show
how the events proposed in this paper can be described in BlenX. The event
event1 defined in Sec. 3.4 is represented in BlenX as:

when (Y → value) update (r3, change par)

where value is 0.8 · NaV molecules and the function change par is defined as
change par : function = 0. The operator “→” recognizes when the quan-
tity bound to Y becomes greater than the specified value, whereas the action
“ update (r3, change par)” means that the parameter r3 is updated according
to the function change par (in our case it assigns the value 0). The rate asso-
ciated with the update action is always infinite and not reported. Concerning
the event in the Acetylcholine receptor model, it is not possible to represent
this event in BlenX as conditions involving time are not allowed with the action
update.

64 F. Ciocchetta

Note that BlenX events represent more general kinds of interactions than Bio-
PEPA events. For instance, they are used to model the formation of a complex
(by using the action join) or the split of a complex into two parts (by using
the split action). These reactions (as all the other kinds) are represented in
Bio-PEPA by synchronization of the species components over the action types
abstracting the reactions. Bio-PEPA events have been introduced specifically
to represent experimental situations when there is change in the system due to
some conditions.

8 Conclusions

In this work we have presented an extension of Bio-PEPA to handle SBML-like
events. Events are constructs that represent changes in the system due to some
trigger conditions. The events considered here are simple, but nevertheless able
to describe most of the discontinuous changes in models and experiments. Events
are added to our language without any modification to the rest of the syntax.
The main motivation of this choice is that we want to keep the specification of
the model as simple as possible. Furthermore, this approach is appropriate when
we study the same biochemical system but with different experimental regimes.

A topic for the future concerns the study of more general events and the
possible extension to other kinds of hybrid systems in biology. Furthermore,
we plan to exploit the possible kinds of analysis involving hybrid systems in
the context of systems biology. In this paper we focus on the mapping to Hybrid
Automata and stochastic simulation by (a modification of) Gillespie’s algorithm.
Further investigation will concern the application of model checking for the study
of the properties of biological systems.

Acknowledgements

The author thanks Jane Hillston, Vashti Galpin and Adam Duguid for their help-
ful comments. The author is supported by the EPSRC under the CODA project
“Process Algebra Approaches for Collective Dynamics” (EP/c54370x/01).

References

1. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappa, G., Rubin, H., Schug,
J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto,
M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32.
Springer, Heidelberg (2001)

2. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular Specification of Hybrid
Systems in CHARON. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, p. 6. Springer, Heidelberg (2000)

3. Bio-PEPA Workbench Home Page,
http://www.dcs.ed.ac.uk/home/stg/software/biopepa/

http://www.dcs.ed.ac.uk/home/stg/software/biopepa/

Bio-PEPA with Events 65

4. Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming
to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS,
vol. 2401, p. 85. Springer, Heidelberg (2002)

5. Bortolussi, L., Policriti, A.: Hybrid Approximation of Stochastic Concurrent Con-
straint Programming. Constraints 13(1-2), 66–90 (2008)

6. Bortolussi, L., Policriti, A.: Hybrid Systems and Biology. Continuous and Discrete
Modeling for Systems Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.)
SFM 2008. LNCS, vol. 5016, pp. 424–448. Springer, Heidelberg (2008)

7. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process
algebra models of signalling pathways. In: Proc. of CMSB 2005, pp. 204–215 (2005)

8. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. In: Priami, C.,
Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational
Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg
(2006)

9. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks. In: Proc. of FBTC 2007. ENTCS, vol. 194(3), pp. 103–
117 (2008)

10. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theoretical Computer Science (to appear)

11. Ciocchetta, F.: Bio-PEPA with SBML-like Events. In: Proc. of the Workshop Com-
putational Models for Cell Processes, TUCS general publication, vol. 47 (2008)

12. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analy-
sis of biological systems. School of Informatics University of Edinburgh Technical
Report, EDI-INF-RR-1231 (2008)

13. Cota, B.A., Sargent, R.B.: Simultaneous events and distributed simulation. In:
Proc. of the Winter Simulation Conference (1990)

14. Dematté, L., Priami, C., Romanel, A.: The BlenX Language: a Tutorial. In:
Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp.
313–365. Springer, Heidelberg (2008)

15. Deshpande, A., Gollu, A., Semenzato, L.: SHIFT Programming Language and
Run-Time System for Dynamic Networks of Hybrid Automata. PATH Report,
http://path.berkeley.edu/SHIFT/publications.html

16. Edelstein, S.J., Schaad, O., Henry, E., Bertrand, D., Changgeux, J.P.: A kinetic
mechanism for nicotin acetylcholine receptors based on multiple allosteric transi-
tions. Biol. Cybern. 75, 361–379 (1996)

17. Galpin, V., Hillston, J., Bortolussi, L.: HYPE applied to the modelling of hybrid
biological systems. ENTCS, vol. 218, pp. 33–51 (2008); Also in Proceedings of
MFPS 2008

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

19. Henzinger, T.A.: The Theory of Hybrid Automata. In: The proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS (1996)

20. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer 1, 110–122 (1997)

21. HybridSal home page, http://sal.csl.sri.com/hybridsal/
22. Hucka, M., Finney, A., Hoops, S., Keating, S., Le Novére, N.: Systems Biology

Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions,
http://sbml.org/documents/

http://path.berkeley.edu/SHIFT/publications.html
http://sal.csl.sri.com/hybridsal/
http://sbml.org/documents/

66 F. Ciocchetta

23. Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of
biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 660–672. Springer, Heidelberg (2004)

24. Le Novére, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioMod-
els Database: a Free, Centralized Database of Curated, Published, Quantitative
Kinetic Models of Biochemical and Cellular Systems. Nucleic Acids Research 34,
D689–D691 (2006)

25. Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

26. Prism web site, http://www.prismmodelchecker.org/
27. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic

name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80, 25–31 (2001)

28. Dematté, L., Priami, C., Romanel, A.: The Beta Workbench: a computational
tool to study the dynamics of biological systems. Briefings in Bioinformatics 9(5),
437–449 (2008)

A Appendix: Bio-PEPA System for the Acetylcholine
Receptor Model

In this appendix we report the specification of the whole Acetylcholine receptor
model in Bio-PEPA. Note that, in the definition of the species component, we use
the following notation: >> indicates a product (it corresponds to the operator
↑ in the Bio-PEPA syntax) and << indicates a reactant (it corresponds to the
operator ↓). This is the syntax used in the Bio-PEPA tools [3].

\\Definition of compartments

comp1: 1e-16, l;

\\Definition information about species components

[B0: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

B1: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

B2: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

A0: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

A1: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

A2: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

I0: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

I1: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

I2: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

D0: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

D1: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM;

D2: H= 1.66-5, N= 2, M= 1.66-5, V= comp1, unit = muM]

\\Definition of parameters

[kf_0= 3000; kr_0= 8000; kf_1= 1500; kr_1= 16000;

kf_2=30000; kr_2= 700; kf_3= 3000; kr_3= 8.64;

kf_4= 1500; kr_4= 17.28; kf_5= 0.54; kr_5= 10800;

http://www.prismmodelchecker.org/

Bio-PEPA with Events 67

kf_6= 130; kr_6= 2740; kf_7= 3000; kr_7= 4;

kf_8= 1500; kr_8= 8; kf_9= 19.7; kr_9= 3.74;

kf_10= 19.85; kr_10= 1.74; kf_11= 20; kr_11= 0.81;

kf_12= 3000; kr_12= 4; kf_13= 1500; kr_13= 8;

kf_14= 0.05; kr_14= 0.0012; kf_15= 0.05; kr_15= 0.0012;

kf_16= 0.05; kr_16= 0.0012]

\\Definition of functional rates

\\all kinetic laws are MA

[f_alpha_f_0= fMA(kf_0); f_alpha_r_0= fMA(kr_0);

f_alpha_f_1= fMA(kf_1); f_alpha_r_1= fMA(kr_1);

f_alpha_f_2= fMA(kf_2); f_alpha_r_2= fMA(kr_2);

f_alpha_f_3= fMA(kf_3); f_alpha_r_3= fMA(kr_3);

f_alpha_f_4= fMA(kf_4); f_alpha_r_4= fMA(kr_4);

f_alpha_f_5= fMA(kf_5); f_alpha_r_5= fMA(kr_5);

f_alpha_f_6= fMA(kf_6); f_alpha_r_6= fMA(kr_6);

f_alpha_f_7= fMA(kf_7); f_alpha_r_7= fMA(kr_7);

f_alpha_f_8= fMA(kf_8); f_alpha_r_8= fMA(kr_8);

f_alpha_f_9= fMA(kf_9); f_alpha_r_9= fMA(kr_9);

f_alpha_f_10= fMA(kf_10); f_alpha_r_10= fMA(kr_10);

f_alpha_f_11= fMA(kf_11); f_alpha_r_11= fMA(kr_11);

f_alpha_f_12= fMA(kf_12); f_alpha_r_12= fMA(kr_12);

f_alpha_f_13= fMA(kf_13); f_alpha_r_13= fMA(kr_13);

f_alpha_f_14= fMA(kf_14); f_alpha_r_14= fMA(kr_14);

f_alpha_f_15= fMA(kf_15); f_alpha_r_15= fMA(kr_15);

f_alpha_f_16= fMA(kf_16); f_alpha_r_16= fMA(kr_16);

]

\\Species components

B0 = (alpha_f_0,1)<<B0 + (alpha_r_0,1)>>B0 + (alpha_f_5,1)<<B0 +

(alpha_r_5,1)>>B0

B1 = (alpha_f_0,1)>>B1 + (alpha_r_0,1)<<B1 + (alpha_f_6,1)>>B1 +

(alpha_r_6,1)<<B1+ (alpha_f_1,1)<<B1 + (alpha_r_1,1)>>B1

B2 = (alpha_f_2,1)<<B2 + (alpha_r_2,1)>>B2 + (alpha_f_1,1)>>B2 +

(alpha_r_1,1)<<B2

A0 = (alpha_f_5,1)>>A0 + (alpha_r_5,1)<<A0 + (alpha_f_3,1)<<A0 +

(alpha_r_3,1)>>A0 + (alpha_r_9,1)<<A0 + (alpha_f_9,1)>>A0

A1 = (alpha_f_3,1)>>A1 + (alpha_r_3,1)<<A1 + (alpha_f_4,1)<<A1 +

(alpha_r_4,1)>>A1 + (alpha_f_6,1)<<A1 + (alpha_r_6,1)>>A1 +

(alpha_r_10,1)<<A1 + (alpha_f_10,1)>>A1

A2 = (alpha_f_2,1)>>A2 + (alpha_r_2,1)<<A2 + (alpha_f_4,1)>>A2 +

(alpha_r_4,1)<<A2 + (alpha_f_11,1)>>A2 + (alpha_r_11,1)>>A2

I0 = (alpha_f_7,1)<<I0 + (alpha_r_7,1)>>I0 + (alpha_f_9,1)>>I0 +

(alpha_r_9,1)<<I0 + (alpha_f_14,1)<<I0 + (alpha_r_14,1)>>I0

I1 = (alpha_f_7,1)>>I1 + (alpha_r_7,1)<<I1 + (alpha_f_8,1)<<I1 +

(alpha_r_8,1)>>I1 + (alpha_f_10,1)<<I1 + (alpha_r_10,1)>>I1 +

(alpha_r_15,1)<<I1 + (alpha_f_15,1)>>I1

I2 = (alpha_f_8,1)>>I2 + (alpha_r_8,1)<<I2 + (alpha_f_11,1)>>I2 +

(alpha_r_11,1)<<I2 + (alpha_r_16,1)<<I2 + (alpha_f_16,1)>>I2

D0 = (alpha_f_12,1)<<D0 + (alpha_r_12,1)>>D0 + (alpha_f_14,1)>>D0 +

68 F. Ciocchetta

(alpha_r_14,1)>>D0

D1 = (alpha_f_12,1)>>D1 + (alpha_r_12,1)<<D1 + (alpha_f_13,1)<<D1 +

(alpha_r_13,1)<<D1 + (alpha_f_15,1)>>D1 + (alpha_r_15,1)>>D1

D2 = (alpha_f_13,1)>>D2 + (alpha_r_13,1)<<D2 + (alpha_f_16,1)>>D2 +

(alpha_r_16,1)<<D2

\\Model components

B0(1.66e-5) <kf_0,kr_0> B1(0) <kf_1,kr_1> B2(0) <kf_5,kr_5>

A0(0) <kf_3,kr_3,kf_6,kr_6> A1(0) <kf_4,kr_4,kf_2,kr_2> A2(0) <kf_9,kr_9>

I0(0) <kf_7,kr_7> I1(0) <kf_8,kr_8,kf_10,kr_10> I2(0)<kf_14,kr_14>

D0(0) <kf_12,kr_12,kf_15,kr_15> D1(0) <kf_13,kr_13,kf_16,kr_16> D2(0)

\\Event

[(event, t = 20, kf_0 <- 0; kf_1 <- 0; kf_3 <- 0; kf_4 <- 0;

kf_7 <- 0; kf_8 <- 0; kf_12 <- 0; kf_{13} <- 0, 0)]

In Silico Modelling and Analysis of
Ribosome Kinetics and aa-tRNA Competition

D. Bošnački1,�, T.E. Pronk2,��, and E.P. de Vink3,� � �

1 Dept. of Biomedical Engineering, Eindhoven University of Technology
2 Swammerdam Institute for Life Sciences, University of Amsterdam

3 Dept. of Mathematics and Computer Science,
Eindhoven University of Technology

evink@win.tue.nl

Abstract. We present a formal analysis of ribosome kinetics using pro-
babilistic model checking and the tool Prism. We compute different pa-
rameters of the model, like probabilities of translation errors and average
insertion times per codon. The model predicts strong correlation to the
quotient of the concentrations of the so-called cognate and near-cognate
tRNAs, in accord with experimental findings and other studies. Using
piecewise analysis of the model, we are able to give an analytical expla-
nation of this observation.

1 Introduction

The translation mechanism that synthesizes proteins based on mRNA sequences
is a fundamental process of the living cell. Conceptually, an mRNA can be seen
as a string of codons, each coding for a specific amino acid. The codons of an
mRNA are sequentially read by a ribosome, where each codon is translated
using an amino acid specific transfer-RNA (aa-tRNA), building one-by-one a
chain of amino acids, i.e. a protein. In this setting, aa-tRNA can be interpreted
as molecules containing a so-called anticodon, and carrying a particular amino
acid. Dependent on the pairing of the codon under translation with the anti-
codon of the aa-tRNA, plus the stochastic influences such as the changes in the
conformation of the ribosome, an aa-tRNA, arriving by Brownian motion, docks
into the ribosome and may succeed in adding its amino acid to the chain under
construction. Alternatively, the aa-tRNA dissociates in an early or later stage of
the translation.

Since the seventies a vast amount of research has been devoted, unraveling the
mRNA translation mechanism and related issues. By now, the overall process
of translation is reasonably well understood from a qualitative perspective. The
translation process consists of around twenty small steps, a number of them being
reversible. For the model organism Escherichia coli, the average frequencies of
aa-tRNAs per cell have been collected, but regarding kinetics relatively little is

� Supported by FP6 LTR ESIGNET.
�� Funded by the BSIK project Virtual Laboratory for e-Science VL-e.

� � � Corresponding author.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 69–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 D. Bošnački, T.E. Pronk, and E.P. de Vink

known exactly. Over the past few years, Rodnina and collaborators have made
good process in capturing the time rates for various steps in the translation
process for a small number of specific codons and anticodons [21,23,24,12]. Using
various advanced techniques, they were able to show that the binding of codon
and anticodon is crucial at a number of places for the time and probability for
success of elongation. Based on these results, Viljoen and co-workers started from
the assumption that the rates found by Rodnina et al. can be used in general,
for all codon-anticodon pairs as estimates for the reaction dynamics. In [9],
a complete detailed model is presented for all 64 codons and all 48 aa-tRNA
classes for E. coli, on which extensive Monte Carlo experiments are conducted.
In particular, using the model, codon insertion times and frequencies of erroneous
elongations are established. Given the apparently strong correlation of the ratio
of so-called near-cognates vs. cognate and pseudo-cognates, and near-cognates
vs. cognates, respectively, it is argued that competition of aa-tRNAs, rather than
their availability decides both speed and fidelity of codon translation.

In the present paper, we propose to exploit abstraction and modelchecking
of continuous-time Markov chains (CTMCs) with Prism [18,13] for the case of
mRNA translation. The abstraction conveniently reduces the number of states
and classes of aa-tRNA to consider. The tool provides built-in performance anal-
ysis algorithms and path chasing machinery, relieving its user from mathematical
calculations. The outcomes are exact, unlike approximations obtained by simu-
lation. More importantly, from a methodological point of view, the incorporated
CSL-logic [2] allows to establish quantitative results for parts of the system,
e.g. for first-passage time for a specific state. Such piecewise analysis proves
useful when explaining the relationships suggested by the data collected from
the model. Additionally, in our case, the Prism tool enjoys rather favourably
response times compared to simulation.

Related work. Measurements in E. coli by Sørensen et al. [25] already suggested
dependence of the availability of various codons, qualified as ‘rare’ or ‘frequent’,
and translation rates. Wahab c.s. [27] noted that in E. coli strains expressing high
levels of tRNALeu

1 isoacceptor, an increase of available tRNA led to a decrease
of protein production. The present investigation started from the Monte-Carlo
experiments of mRNA translation reported in [9]. A similar stochastic model, but
based on ordinary differential equations, was developed in [14]. It treats insertion
times, but no translation errors. The model of mRNA translation in [10] assumes
insertion rates that are directly proportional to the mRNA concentrations, but
assigns the same probability of translation error to all codons.

Currently, there exist various applications of formal methods to biological
systems. A selection of recent papers from model checking and process algebra
includes [22,5,6]. More specifically pertaining to the current paper, [4] applies
the Prism model checker to analyze stochastic models of signaling pathways.
Their methodology is presented as a more efficient alternative to ordinary differ-
ential equations models, including properties that are not of probabilistic nature.
Also [13] employs Prism on various types of biological pathways, showing how
the advanced features of the tool can be exploited to tackle large models.

In Silico Modelling and Analysis of Ribosome Kinetics 71

In [3], we use the model presented in this paper to perform a formal analysis
of amino acid replacement during mRNA translation. Building on the abstract
stochastic model of arrival of tRNAs and their processing at the ribosome pre-
sented in the sequel, we compute probabilities of the insertion of amino acids
into the nascent polypeptide chain. This allows us to construct the substitution
matrix containing the probabilities of an amino acid replacing another. Finally
in [3], we discuss the analogy of this matrix with standard mutation matrices, and
analyze the mutual replacement of biologically similar amino acids. The main
contribution of the present paper is the study of the underlying model of mRNA
translation itself, exploiting probabilistic model checking and the approach of
piecewise analysis.

Organization of the paper. Section 2 provides the biological background, dis-
cussing the mRNA translation mechanism. Its Prism model is introduced in
Section 3. In Section 4, it is explained how error probabilities are obtained from
the model and why they correlate with the near-cognate/cognate fraction. This
involves adequate estimates of specific stochastic subbehaviour. Insertion times
are the subject of Section 5. There too, it is illustrated how the quantitative
information of parts of the systems is instrumental in deriving the relationship
with the ratio of pseudo-cognate and near-cognates vs. cognates.1

2 A Kinetic Model of mRNA Translation

In nature, there is a fixed correspondence of a codon and an amino acid. This
is the well-known genetic code, that couples all 61 relevant codons to 20 fun-
damental amino acids. The three codons not corresponding to an amino acid
are so-called stop codons, that guide the termination of the translation process.
Thus, an mRNA, as sequence of codons, codes for a unique sequence of amino
acids, i.e. protein. However, the match of a codon and the anticodon of a tRNA
is different from pair to pair. The binding influences the speed of the actual
translation. Here, we give a brief overview of the translation mechanism. Our
explanation is based on [23,17]. The basic idea is that mRNA is transcribed from
the cellular DNA. A ribosome, an enzyme catalyzing translation, attaches to an
individual mRNA and starts translating the sequence of codons into amino acids.
The ribosome processes one codon at the time by recruiting aa-tRNA from the
cell. Dependent on the match of the codon at the mRNA and the anticodon of
the aa-tRNA, the amino acid carried by the aa-tRNA is transfer to the polypep-
tide chain under construction, i.e. the nascent protein. Two main phases can be
distinguished: peptidyl transfer and translocation.

The peptidyl transfer phase runs through the following steps. aa-tRNA ar-
rives at the A-site of the ribosome-mRNA complex by diffusion in a ternary
complexation with elongation factor Tu (EF-Tu) and GTP at a rate determined
by the interaction of EF-Tu and the ribosome. The initial binding is relatively

1 An appendix presents supplementary data.

72 D. Bošnački, T.E. Pronk, and E.P. de Vink

weak. Codon recognition comprises (i) establishing contact between the anti-
codon of the aa-tRNA and the current codon in the ribosome-mRNA complex,
and (ii) subsequent conformational changes of the ribosome. Given a codon, an
anticodon can either be a cognate, a near-cognate or a non-cognate. As an aa-
tRNA carries precisely one anticodon, we also speak of cognate, near-cognate and
non-cognate aa-tRNA. The rates of confirmation of the ribosome are different
for cognate and near-cognates. This does not apply to non-cognate anticodons;
the aa-tRNA that carries it, dissociates from the ribosome almost immediately.
GTPase-activation of the elongation factor EF-Tu is largely favoured, because
of the conformational changes, in case of a strong complementary matching of
the codon and a cognate anticodon. Otherwise, GTPase-activation is lessened.
After GTP-hydrolysis, producing inorganic phosphate Pi and GDP, the affinity
of the ribosome for the aa-tRNA reduces. The subsequent accommodation step
also depends on the fit of the aa-tRNA. Accomodation happens rapidly for cog-
nate aa-tRNA, whereas for near-cognate aa-tRNA this proceeds slower and the
aa-tRNA is likely to be rejected.

The subsequent translocation phase will shift the peptide chain in nascent
and the mRNA including the codon just processed, exposing a new codon for
translation and releasing the A-site for the arrival of another aa-tRNA. The
first step of the translocation phase involves the association of GTP. By GTP-
hydrolysis of elongation factor EF-G, GDP and Pi are produced. This results
in unlocking and movement of the aa-tRNA to the P-site of the ribosome. The
latter step is preceded or followed by Pi -release, with GDP bound or unbound
to Pi , respectively. Reconformation of the ribosome and release of EF-G moves
the tRNA, that has transferred its amino acid to the polypeptide chain, into the
E-site of the ribosome. Further rotation eventually leads to dissociation of the
used tRNA.

Although overall qualitatively well understood, there is, at present, limited
quantitative information regarding the translation mechanism and its individual
steps. For E. coli, a number of specific rates have been collected by Rodnina and
co-workers [23,12]. Some steps are known to be relatively rapid. The fundamental
assumption of [9], that we also adopt here, is that experimental data found for the
UUU and CUC codons, regarding their matching to Phe-tRNA, extrapolate to
other codon-anticodon pairs as well. However, further assumptions are necessary
to fill the overall picture. In particular, Viljoen proposes to estimate the delay
due to so-called non-cognate aa-tRNA, that are blocking the ribosomal A-site,
at 0.5ms. Also, accurate rates for the translocation phase are largely missing.
Again following [9], we have chosen to assign, if necessary, high rates to steps
for which data is lacking. This way these steps will not be rate limiting.

An overview of the reactions involving cognates and near-cognates and the
corresponding rates are collected in Table 1. The upper and lower parts of Ta-
ble 1 correspond respectively to reactions involving cognate and near-cognate
tRNAs and they differ only in the reaction rates. The first reaction step repre-
sents the arrival of the ternary complex C (N) (aa-tRNA, EF-Tu, and GTP)
to the ribosome R1 and the initial binding between those. Subsequent reactions

In Silico Modelling and Analysis of Ribosome Kinetics 73

Table 1. Molecular reactions underlying the adapted model. Rates taken from the
model in [9] based on experiments reported in [23]. See the main text for an explanation
of the individual reactions. Rates for the reactions CR4 and NR4 are obtained by
merging subsequent reactions, as discussion in Section 3.

N + R1NR8NR4 NR4
46 FAST

C + R1 CR2
260

CR3 CR4
190

0.23

60
CR4 C + R1

167
CR4 CR8

85

140

NR4NR3N + R1 NR2
0.40

190

8085

140

correspond to various conformational changes of the ribosome-mRNA complex.
The first selection step happens by means of the inverse reaction that trans-
forms CR3 (NR3) back to CR2 (NR2). Because of the higher rate the near- and
non-cognate aa-tRNAs have much greater chance to be rejected than the cog-
nate ones. The one way reaction from CR3 (NR3) to CR4 (NR4) includes the
GTP hydrolysis step which means that the aa-tRNA has passed the first selec-
tion test. Reactions from the second row correspond to the proofreading step in
which either aa-tRNA is definitely accepted and the corresponding amino acid
incorporated into the polypeptide chain —represented by conformation state
CR8— or it is rejected which results in disassociation of the aa-tRNAfrom the
ribosome.

We will fit the above model of protein synthesis in the language of the Prism
model checker. The experiments confirm the main results of [9], viz. (i) insertion
errors are proportional to the quotient of the frequencies of near-cognates and
of cognates, (ii) aa-tRNA competition better predicts insertion times than aa-
tRNA availability. In fact, we show in the latter case the stronger result that the
ratio of near-cognate and cognate frequencies is an adequate estimate for inser-
tion time. In addition, for the above results, we are able to actually derive the
correlation with the quotient of near-cognates and cognates. It is the availability
of an explicit model, together with the possibility to obtain, by model checking,
quantitative information for parts of the system, that lead to a sharper analysis
of the experimental data, that cannot obtained by simulation of a monolithic
model.

3 The Prism Model

The model employed in the analysis below is an abstraction of the biological
model as sketched in the previous section. The abstraction is twofold: (i) Instead
of dealing with 48 individual classes of aa-tRNA, that are identified by the their
anticodons, we restrict to four types of aa-tRNA distinguished by their matching

74 D. Bošnački, T.E. Pronk, and E.P. de Vink

with the codon under translation. (ii) We combine various detailed steps into
one transition by accumulation of rates. The first reduction greatly simplifies
the model, more clearly eliciting the essentials of the underlying process. The
second abstraction is more a matter of convenience, though it helps in compactly
presenting the model.

For a specific codon, we distinguish below four types of aa-tRNA: cognate,
pseudo-cognate, near-cognate, non-cognate. Cognate aa-tRNAs have an anti-
codon that strongly couples with the codon. The amino acid carried by the aa-
tRNA is always the right one, according to the genetic code. The binding of the
anticodon of a pseudo-cognate aa-tRNA or a near-cognate aa-tRNA is weaker,
but sufficiently strong to occasionally result in the addition of the amino acid
to the nascent protein. In case the amino acid of the aa-tRNA is, accidentally,
the right one for the codon, we dubb the aa-tRNA of the pseudo-cognate type.
If the amino acid does not coincide with the amino acid the codon codes for,
we speak in such a case of a near-cognate aa-tRNA.2 The match of the codon
and the anticodon can be very poor too. We refer to such aa-tRNA as being
non-cognate for the codon. This type of aa-tRNA does not initiate a translation
step at the ribosome.

The Prism model can be interpreted as the superposition of four stochastic
automata, each encoding the interaction of one of the types of aa-tRNA. The
automata for the cognates, pseudo-cognates and near-cognates are very similar;
the cognate type automaton only differs in its value of the rates from those
for pseudo-cognates and near-cognates, while the automata for pseudo-cognates
and for near-cognates only differ in their arrival process. The automaton for
non-cognates is rather simple. See Figure 1.

near−cognate layer

cognate layer

pseudo−cognate layer

non−cognate layer

Fig. 1. Overview of Prism model as superposition of four aa-tRNA typed automata.
Each layer models the processing of a specific type of aa-tRNA, viz. cognate, pseudo-
cognate, near-cognate and non-cognate aa-tRNA.

Below, we are considering average transition times and probabilities for reach-
ability based on exponential distributions. Therefore, following common practice

2 The notion of a pseudo-cognate comes natural in our modeling. However, the dis-
tinction between a pseudo-cognate and a near-cognate is non-standard. Usually, a
near-cognate refers to both types of tRNA.

In Silico Modelling and Analysis of Ribosome Kinetics 75

in performance analysis, there is no obstacle to merge two subsequent sequential
transitions with rates λ and μ, say, into a combined transition of rate λμ/(λ+μ).
This way, a smaller model can be obtained that, although differently distributed,
is equivalent to the original regarding expected values. However, it is noted, that
in general, such a simplification is not compositional and should be taken with
care.

We briefly discuss the Prism code implementing the abstract model. For the
modeling of continuous-time Markov chains, Prism commands have the form

[label] guard→ rate : update ;

In short, from the commands whose guards are fulfilled in the current state,
one command is selected proportional to its relative rate. Subsequently, the
update is performed on the state variables. So, a probabilistic choice is made
among commands. Executing the selected command results in a progress of
time according to the exponential distribution for the particular rate. Labels are
used to synchronize Prism commands, a feature not used in this paper. We refer
to [18,13] for a proper introduction to the Prism model checker.

Initially, control resides in the common start state s=1 of the Prism model
with four boolean variables cogn, pseu, near and nonc set to false.

s : [0..8] init 1 ;
cogn : bool init false ;
pseu : bool init false ;
near : bool init false ;
nonc : bool init false ;

Next, an arrival process selects one of the booleans that is to be set to true.
This is the initial binding of the ternary aa-tRNA complex at the ribosome. The
continuation depends on the type of aa-tRNA: cognate, pseudo-cognate, near-
cognate or non-cognate. In fact, a race is run that depends on the concentrations
c cogn, c pseu, c near and c nonc of the four types of aa-tRNA and a kinetic
constant k1f. Concentrations are taken from [7]. For example, following Marko-
vian semantics, the probability in the race for cogn to be set to true (the others
remaining false) is the relative concentration c cogn/(c cogn + c pseu + c near +
c nonc). The rates can therefore also be computed as relative frequencies per cell,
as the volume of the cell cancels out. A small C program manipulating Table 4
in the appendix takes care of this. The values of the concentrations are provided
to Prism via the command line, since they differ from codon to codon.

// initial binding
[] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
[] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
[] (s=1) -> k1f * c_nonc : (s’=2) & (nonc’=true) ;

76 D. Bošnački, T.E. Pronk, and E.P. de Vink

As the aa-tRNA, that has just arrived, may dissociate too, the reversed reaction
is in the model as well. However, control does not return to the initial state
directly, but, for model checking purposes, first visits the special state s=0 rep-
resenting dissociation. At the same time, the boolean that was true is reset.
Here, cognates, pseudo-cognates and near-cognates are handled with the shared
rate k2b. Non-cognates always dissociate as captured by the separate rate k2bx.

// dissociation
[] (s=2) & (cogn | pseu | near) -> k2b :

(s’=0) & (cogn’=false) &
(pseu’=false) & (near’=false) ;

[] (s=2) & nonc -> k2bx : (s’=0) & (nonc’=false) ;

An aa-tRNA that is not a non-cognate can continue from state s=2 in the codon
recognition phase, leading to state s=3. This is a reversible step in the translation
mechanism, so there are transitions from state s=3 back to state s=2 as well.
However, the rates for cognates vs. pseudo- and near-cognates, viz. k3bc, k3bp
and k3bn, differ significantly (see Table 2), which is essential to the fidelity of
the mRNA-translation mechanism. Note that the values of the booleans do not
change.

// codon recognition
[] (s=2) & (cogn | pseu | near) -> k2f : (s’=3) ;
[] (s=3) & cogn -> k3bc : (s’=2) ;
[] (s=3) & pseu -> k3bp : (s’=2) ;
[] (s=3) & near -> k3bn : (s’=2) ;

The next forward transition, from state s=3 to state s=4 in the Prism model, is
a combination of several detailed steps of the translation mechanism involving
the processing of GTP. The transition is one-directional, again with a significant
difference in the rate k3fc for a cognate aa-tRNA compared to the rates k3fp
and k3fn for pseudo-cognate and near-cognate aa-tRNA, that are equal.

// GTPase activation, GTP hydrolysis
// and EF-Tu conformation change
[] (s=3) & cogn -> k3fc : (s’=4) ;
[] (s=3) & pseu -> k3fp : (s’=4) ;
[] (s=3) & near -> k3fn : (s’=4) ;

In state s=4, the aa-tRNA can either be rejected, after which control moves to
intermediate state s=5, or accommodates, i.e. the ribosome reconforms such that
the aa-tRNA can hand over the amino acid it carries, so-called peptidyl transfer.
In the latter case, control changes to state s=6. As before, rates for cognates and
those for pseudo-cognates and near-cognates are of different magnitudes. From
the intermediate rejection state s=5, with all booleans set to false again, control
returns to the start state s=1.

In Silico Modelling and Analysis of Ribosome Kinetics 77

// rejection
[] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;
[] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;
[] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer
[] (s=4) & cogn -> k4fc : (s’=6) ;
[] (s=4) & pseu -> k4fp : (s’=6) ;
[] (s=4) & near -> k4fn : (s’=6) ;

After some movement back-and-forth between state s=6 and state s=7, the bind-
ing of the EF-G complex becomes permanent. In the detailed translation mech-
anism a number of (mainly sequential) steps follows, that are summarized in the
Prism model by a single transition to a final state s=8, that represents elonga-
tion of the protein in nascent with the amino acid carried by the aa-tRNA. The
synthesis is successful if the aa-tRNA was either a cognate or pseudo-cognate for
the codon under translation, reflected by either cogn or pseu being true. In case
the aa-tRNA was a near-cognate (non-cognates never pass beyond state s=2),
an amino acid that does not correspond to the codon in the genetic code has
been inserted. Thus, in this case, an insertion error has occurred.

// EF-G binding
[] (s=6) -> k6f : (s’=7) ;
[] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking, tRNA movement
// Pi release, rearrangements of ribosome and EF-G
// dissociation of GDP
[] (s=7) -> k7f : (s’=8) ;

A number of transitions, linking the dissociation state s=0 and the rejection
state s=5 back to the start state s=1, where a race of aa-tRNAs of the four types
commences anew, and looping at the final state s=8, complete the Prism model.
The transitions are deterministically taking, as no other transitions leave these
states. Having no biological counterpart the transitions are assigned a high-rate
making the time they take negligible.

// no entrance, re-entrance at state 1
[] (s=0) -> FAST : (s’=1) ;
// rejection, re-entrance at state 1
[] (s=5) -> FAST : (s’=1) ;
// elongation
[] (s=8) -> FAST : (s’=8) ;

Table 2 collects the rates as compiled from the biological literature and used in
the Prism model above.

78 D. Bošnački, T.E. Pronk, and E.P. de Vink

Table 2. Rates of the Prism model, adapted from [9,26]. Rate k2bx is based on the
estimate of the average delay of non-cognate arrivals of 0.5ms. Rates k4fc, k4fp, k4fn
and k7f are accumulative rates of sequentially composed transitions.

k1f 140 k3fc 260 k4rc 60 k6f 150

k2f 190 k3fp, k3fn 0.40 k4rp, k4rn FAST k7f 145.8

k2b 85 k3bc 0.23 k4fc 166.7 k7b 140

k2bx 2000 k3bp, k3bn 80 k4fp, k4fn 46.1

In the next two sections, we will study the Prism model described above for
the analysis of the probability for insertion errors, i.e. extension of the peptidyl
chain with a different amino acid than the codon codes for, and of the average
insertion times, i.e. the average time it takes to process a codon up to elongation.

4 Insertion Errors

In this section we discuss how the model checking features of Prism can be ex-
ploited to predict the misreading frequencies for individual codons. The transla-
tion of mRNA into a polypeptide chain is performed by the ribosome machinery
with high precision. Experimental measurements show that on average, only one
in 1,000 to 10,000 amino acids is added wrongly (cf. [12]).3

For a codon under translation, a pseudo-cognate anticodon carries precisely
the amino acid that the codon codes for. Therefore, although different in codon-
anticodon bound, successful matching of a pseudo-cognate does not lead to an
insertion error, as –accidentally– the right amino acid has been used for elon-
gation. In our model, the main difference of cognates vs. pseudo-cognates and
near-cognates is in the kinetics. At various stages of the peptidyl transfer the
rates for true cognates differ from those for pseudo-cognates and near-cognates
up to three orders of magnitude.

Figure 2 depicts the relevant abstract automaton, derived from the Prism
model discussed above. See also Table 1. In case a transition is labeled with two
rates, e.g. 0.23/80, the leftmost number, viz. 0.23, concerns the processing of a
cognate aa-tRNA, while the rightmost number, viz. 80, that of a pseudo-cognate
or near-cognate. In three states a probabilistic choice has to be made: in state 2
leading to state 0 or 3, in state 3 leading back to state 3 or forward to state 4,
and in state 4 leading to rejection in state 5 or eventually to success via state 6.
The probabilistic choice in state 2 is the same for cognates, pseudo-cognates and
near-cognates alike, the ones in state 3 and in state 4 depend on the type of
aa-tRNA, cognates and pseudo-cognates vs. near-cognates.

A cognate aa-tRNA starting in state 1 will move to state 2 with probability 1.
From here, it will dissociate with probability 85/(85 + 190) ≈ 0.309, moving to

3 Our findings, see Table 5, based on the kinetic rates available and the assumptions
made, are well within these boundaries.

In Silico Modelling and Analysis of Ribosome Kinetics 79

1 2

0

3 4 6 7 8

5

85

0.23/80

190

260/0.40 167/46

60/FAST

FAST

FAST

Fig. 2. Abstract automaton summarizing the Prism code. See also Table 1.

state 0, or will be recognized with the complementary probability 190/(85 +
190) ≈ 0.691, moving to state 3. The same holds for pseudo-cognate and near-
cognate aa-tRNA. However, after recognition in state 3, a cognate aa-tRNA will
go through the hydrolysis phase leading to state 4 for a fraction 0.999 of the
cases (computed as 260/(0.23+260)), a fraction being close to 1. In contrast, for
a pseudo-cognate or near-cognate aa-tRNA this is 0.40/(0.40+80)≈ 0.005 only.
A similar difference can be noted in state 4 itself. Cognates will accommodate
and continue to state 6 with probability 0.736, while pseudo-cognates and near-
cognates will do so with the small probability 0.044, the constant FAST being set
to 1000 in our experiments as in [9]. Since the transition from state 4 to state 6
is irreversible, the rates of the remaining transitions are not of importance here.
For cognates, pseudo-cognates and near-cognates, the probability of reaching
state 8 in one attempt can be easily computed, solving a small system of equa-
tions by hand or by using Prism. In the latter case, we have Prism evaluate the
CSL-formula

P=? [(s!=0 & s!=5) U (s=8) {(s=2) & cogn}]

against our model. The formula asks to establish the probability for all paths
where s is not set to 0 nor 5, until s have been set to 8, starting from the (unique)
state satisfying s=2 & cogn. The expression {(s = 2)&cogn} is a so-called filter
construction as supported by Prism. We obtain pc

s = 0.508, pp
s = 0.484 · 10−4

and pn
s = 0.484 · 10−4, with pc

s the probability for a cognate to end up in state 8
—and elongate the peptidyl chain— without going through state 0 nor state 5;
pp

s and pn
s the analogues for success of pseudo- and near-cognates, respectively.

Note that these values are the same for every codon.
Different among codons in E. coli are the concentrations of cognates, pseudo-

cognates and near-cognates.4 Ultimately, the frequencies fc, fp and fn of the
types of aa-tRNA in the cell, i.e. the actual number of molecules of the kind,
determine the concentration of the aa-tRNA. Hence, under the usual assumption
of homogeneous distribution, the frequencies determine the total rates for the
arrival process of an anticodon. The probability for an anticodon arriving to be
a cognate, pseudo-cognate or near-cognate can then be calculated from this.

4 See Table 4 in the appendix.

80 D. Bošnački, T.E. Pronk, and E.P. de Vink

Fig. 3. Correlation of the ratio fn/fc of the frequency of near-cognates over the fre-
quency of cognates vs. the probability of an insertion error. See also Table 5 in the
appendix.

As concluded in [9] based on simulation results, the probability for an erro-
neous insertion, is strongly correlated with the quotient of the number of near-
cognate anticodons and the number of cognate anticodons. See Figure 3.

As an advantage of the present setting, this correlation actually can be for-
mally derived. This is as follows. We have that an insertion error occurs if a
near-cognate succeeds to attach its amino acid. Note that we already have es-
tablished pp

s , pn
s � pc

s . Therefore,

P (error) = P (near & elongation | elongation)

= pn
s · (fn/tot)

pc
s · (fc/tot) + pp

s · (fp/tot) + pn
s · (fn/tot)

≈ pn
s · fn

pc
s · fc

∼ fn

fc

with tot = fc + fp + fn, and where we have used that

P (elongation) = (fc/tot) · pc
s + (fp/tot) · pp

s + (fn/tot) · pn
s .

Note, the ability to precalculate the probabilities pc
s , pp

s and pn
s is instrumental

in obtaining the above result. As such, it illustrates the approach of piecewise
analysis, first establishing quantities for part of the system to obtain a quantity
for the system as a whole.

5 Competition and Insertion Times

In this section, we continue the analysis of the Prism model for translation and
discuss the correlation of the average insertion time for the amino acid specified

In Silico Modelling and Analysis of Ribosome Kinetics 81

by a codon, on the one hand, and and the aa-tRNA competition, i.e. the relative
abundance of pseudo-cognate and near-cognate aa-tRNAs, on the other hand.
The insertion time of a codon is the average time it takes to elongate the protein
in nascent with an amino acid.

The average insertion time can be computed in Prism using the concept of
rewards, also known as costs in Markov theory. Each state is assigned a value as
its reward. Further, the reward of each state is weighted per unit of time. Hence,
it is computed by multiplication with the average time spent in the state. The
cumulative reward of a path in the chain is defined as a sum over all states in
the path of such weighted rewards per state. Thus, by assigning to each state
the value 1 as reward, we obtain the total average time for a given path. For
example, in Prism the cumulative reward formula R=? [F (s=8)] which asks
to compute the expected time to reach state s=8. Recall, in state s=8 the amino
acid is added to the polypeptide chain. The formula returns the average reward
of all the paths that lead from the initial state 1 to state 8. As explained above,
in order to obtain the average time for insertion, we assign each state the value 1
as a reward, which in Prism can be done using the following code

rewards true: 1 endrewards

The construct expresses the fact that 1 is assigned to any state that satisfy the
condition true (which is trivially satisfied by all states).

So, a script calling Prism for model checking the above formula then yields
the expected insertion time per codon. Table 6 in the appendix lists the results.
Although the correlation of cognate frequency and insertion times is limited,
the qualitative claim of [25] of ‘rare’ codons being translated slow and ‘frequent’
codons being translated fast is roughly confirmed by the model. E.g., the codons
AGC and CCA have amongst the lowest frequencies, 420 and 617, the lowest and
two but lowest frequency, respectively, and translates indeed the slowest, 1.4924
and 1.5622 seconds, respectively. However, the codon CCA with an availability
of 581, of one but lowest frequency, is translated at a moderate rate of 0.5525
seconds on the average. Thus, in line with our considerations, cognate availability
per se does not sufficiently predict translation time. Comparably, the fastest
insertion times, 52.7 and 64.5 milliseconds, are realized by the codons CUG
and CGU , of the codons corresponding to amino acids the one and two but
most abundant. The codon CUG of the highest frequency 5136, excluding stop
codons, though has an average insertion time of 102.8 milliseconds.

A little bit more ingenuity is needed to establish average exit times, for exam-
ple for a cognate to pass from state s=2 to state s=8. The point is that conditional
probabilities are involved. However, since dealing with exponential distributions,
elimination of transitions in favour of adding their rates to that of the remaining
ones, does the trick. Various results, some of them used below, are collected in
Table 3. (The probabilities of failure and success for the non-cognates are trivial,
px
f = 1 and px

s = 0, with a time per failed attempt Tx
f = 0.5 · 10−3 seconds.)

There is a visible correlation between the quotient of the number of near-
cognate aa-tRNA over the number of cognate aa-tRNA and the average in-
sertion time. See Figure 4. In fact, the average insertion time for a codon is

82 D. Bošnački, T.E. Pronk, and E.P. de Vink

Table 3. Exit probabilities and exit times (in seconds) for three types of aa-tRNA,
superscripts c, p and n for cognate, pseudo-cognate and near-cognate aa-tRNA, respec-
tively. Failure for exit to states s=0 or s=5, subscript f ; success for exit to state s=8,
subscript s.

pc
s 0.5079 pc

f 0.4921 T c
s 0.03182 T c

f 9.342 · 10−3

pp
s 4.847 · 10−4 pp

f 0.9995 T p
s 3.251 T p

f 0.3914
pn

s 4.847 · 10−4 pn
f 0.9995 T n

s 3.251 T n
f 0.3914

Fig. 4. Correlation of the ratio (fp + fn)/fc of total frequency of pseudo-cognates and
near-cognates over the frequency of cognates vs. average insertion times. See also Ta-
ble 6 in the appendix.

approximately proportional to the near-cognate/cognate ratio. This can be seen
as follows. The insertion of the amino acid is completed if state s=8 is reached,
either for a cognate, pseudo-cognate or near-cognate. As we have seen, the prob-
ability for either of the latter two is negligible, pp

s , pn
s = 4.847 · 10−4. Therefore,

the number of cognate arrivals is decisive. With pc
f and pc

s being the probabil-
ity for a cognate to fail, i.e. exit at state s=0 or s=5, or to succeed, i.e. reach of
state s=8, the insertion time Tins can be regarded as a geometric series. (Note the
exponent i below.) Important are the numbers of arrivals of the other aa-tRNA
types per single cognate arrival, expressed in terms of frequencies.

An arrival occurring for the (i+1)st arrival of a cognate has spent (i×T c
f)+

T c
s processing cognate aa-tRNA. The number of pseudo-cognate, near-cognate

and non-cognate arrivals per individual cognate arrival are, on the average, the

relative fractions fp

fc

, fn

fc

, and fx

fc

, respectively (with fp, fn, and fc as before in

In Silico Modelling and Analysis of Ribosome Kinetics 83

(n) (x) (cf) (cf)(x)(n)(p) (cs)(p) (n) (x)(p)

Fig. 5. Accumulated delay after three cognate arrivals: (p) delay (fp/fc)·T p
f for failing

pseudo-cognates, (n) delay (fn/fc)·T n
f for failing near-cognates, (x) delay (fx/fc)·T x

f for
non-cognates, (cf) exit time T c

f for a failing cognate, (cs) exit time T c
s for a successful

cognate.

Section 4, and fx the frequency of non-cognate aa-tRNA). See Figure 5. Summing
over i, the number of failing cognate aa-tRNA for a successful cognate insertion,
yields

Tins =
∑∞

i=0 (pc
f)i

pc
s · (delay for i failing and 1 successful cognate arrivals)

=
∑∞

i=0 (pc
f)i

pc
s ·
(
(i + 1) · (fp

fc

T p
f + fn

fc

Tn
f + fx

fc

T x
f) + i · T c

f + T c
s

)
≈ fp+fn

fc

pc
s Tn

f

∑∞
i=0 (i + 1) · (pc

f)i

∼ fp+fn

fc

.

Here, we have used that T c
f and T c

s are negligible, T p
f equals T n

f , and fx

fc

Tx
f is

relatively small, from which it follows that fp+fn

fc

Tn
f is the dominant summand.

Note that the estimate is not accurate for small values of fp + fn. Nevertheless,
closer inspection shows that for these values the approximation remains order-
preserving. Again, the results obtained for parts of the systems are pivotal in
the derivation.

6 Concluding Remarks

In this paper, we presented a stochastic model of the translation process based on
presently available data of ribosome kinetics [12,9]. We used the model checking
facilities of the Prism tool for continuous-time Markov chains. Compared to [9]
that uses simulation, our approach is computationally more reliable (independent
on the number of simulations) and has faster response times (taking seconds
rather then minutes or hours). More importantly, model checking allowed us to
perform piecewise analysis of the system, yielding better insight in the model
compared to just observing the end-to-end results with a monolithic model.
Based on this, we improved on earlier observations, regarding error probabilities
and insertion times, by actually deriving the correlation suggested by the data.

In [7] a correlation was reported between the number of copies (concentra-
tions) of cognate tRNAs and the frequency of usage of particular codons in the
most abundant proteins in E. coli. It is suggested that this optimization is favor-
able for the cell growth: when they are urgently needed the most used proteins are
translated with maximum speed and accuracy. On the other hand, we observed
that there is a high correlation (0.86) between the cognate tRNA concentrations

84 D. Bošnački, T.E. Pronk, and E.P. de Vink

and the ration near-cognates vs. cognates which, according to our model, deter-
mines the error probabilities. Consequently, it would be interesting to check if
there exists even better correlation between the near-cognates/cognates ratios
and the codon usage frequencies than between the latter and the concentrations.

In conclusion, we have experienced aa-tRNA competition as a very interesting
biological case study of intrinsic stochastic nature, falling in the category of the
well known lambda-phage example [1]. Our model opens a new avenue for future
work on biological systems that possess intrinsically probabilistic properties.
It would be interesting to apply our method to processes which, similarly to
translation, involve small numbers of molecules, like DNA replication [16,19],
DNA repair [11,20], charging of the tRNAs with amino acids [8,15], etc., thus
rendering approaches based on ordinary differential equations less attractive.

Acknowledgments. We are grateful to Timo Breit, Christiaan Henkel, Erik Luit,
Jasen Markovski, and Hendrik Viljoen for fruitful discussions and constructive
feedback.

References

1. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected. Escherichia coli cells. Genetics 149,
1633–1648 (1998)

2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of
continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)

3. Bošnački, D., ten Eikelder, H.M.M., Steijaert, M.N., de Vink, E.P.: Stochastic
analysis of amino acid substitution in protein synthesis. In: Heiner, M., Uhrma-
cher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 367–386. Springer,
Heidelberg (2008)

4. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using continuous time Markov chains. In: Priami, C., Plotkin, G. (eds.) Trans-
actions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67.
Springer, Heidelberg (2006)

5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

7. Dong, H., Nilsson, L., Kurland, C.G.: Co-variation of tRNA abundance and codon
usage in Escherichia coli at different growth rates. Journal of Molecular Biol-
ogy 260, 649–663 (1996)

8. Nureki, O., et al.: Enzyme structure with two catalytic sites for double-sieve selec-
tion of substrate. Science 280, 578–582 (1998)

9. Fluitt, A., Pienaar, E., Viljoen, H.: Ribosome kinetics and aa-tRNA competition
determine rate and fidelity of peptide synthesis. Computational Biology and Chem-
istry 31, 335–346 (2007)

In Silico Modelling and Analysis of Ribosome Kinetics 85

10. Gilchrist, M.A., Wagner, A.: A model of protein translation including codon bias,
nonsense errors, and ribosome recycling. Journal of Theoretical Biology 239, 417–
434 (2006)

11. Goodman, M.F.: Coping with replication ‘train wrecks’ in Escherichia coli using
Pol V, Pol II and RecA proteins. Trends in Biochemical Sciences 25, 189–195 (2000)

12. Gromadski, K.B., Rodnina, M.V.: Kinetic determinants of high-fidelity tRNA dis-
crimination on the ribosome. Molecular Cell 13(2), 191–200 (2004)

13. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Proba-
bilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB
2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

14. Heyd, A.W., Drew, D.A.: A mathematical model for elongation of a peptide chain.
Bulletin of Mathematical Biology 65, 1095–1109 (2003)

15. Ibba, M., Söll, D.: Aminoacyl-tRNAs: setting the limits of the genetic code. Genes
& Development 18, 731–738 (2004)

16. Johnson, K.A.: Conformational coupling in DNA polymerase fidelity. Annual Re-
views in Biochemistry 62, 685–713 (1993)

17. Karp, G.: Cell and Molecular Biology, 5th edn. Wiley, Chichester (2008)
18. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model cheking

with Prism: a hybrid approach. Journal on Software Tools for Technology Trans-
fer 6, 128–142 (2004), http://www.prismmodelchecker.org/

19. Martomo, S.A., Mathews, C.K.: Effects of biological DNA precursor pool asymme-
try upon accuracy of DNA replication in vitro. Mutation Research 499, 197–211
(2002)

20. Ni, M., Wang, S.-Y., Li, J.-K., Ouyang, Q.: Simulating the temporal modulation of
inducible DNA damage response in Escherichia coli. Biophysical Journal 93, 62–73
(2007)

21. Pape, T., Wintermeyer, W., Rodnina, M.: Complete kinetic mechanism of elon-
gation factor Tu-dependent binding of aa-tRNA to the A-site of E. coli. EMBO
Journal 17, 7490–7497 (1998)

22. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80, 25–31 (2001)

23. Rodnina, M.V., Wintermeyer, W.: Ribosome fidelity: tRNA discrimination, proof-
reading and induced fit. Trends in Biochemical Sciences 26(2), 124–130 (2001)

24. Savelsbergh, A., et al.: An elongation factor G-induced ribosome rearrangement
precedes tRNA–mRNA translocation. Molecular Cell 11, 1517–1523 (2003)

25. Sørensen, M.A., Kurland, C.G., Pedersen, S.: Codon usage determines translation
rate in Escherichia coli. Journal of Molecular Biology 207, 365–377 (1989)

26. Viljoen, H.: Private communication (2008)
27. Wahab, S.Z., Rowley, K.O., Holmes, W.M.: Effects of tRNALeu

1 overproduction in
Escherichia coli. Molecular Microbiology 7, 253–263 (1993)

A Appendix: Suplementary Figures and Data

// translation model

stochastic

http://www.prismmodelchecker.org/

86 D. Bošnački, T.E. Pronk, and E.P. de Vink

// constants
const double ONE=1;
const double FAST=1000;

// tRNA rates
const double c_cogn ;
const double c_pseu ;
const double c_near ;
const double c_nonc ;

const double k1f = 140;
const double k2b = 85;
const double k2bx=2000;
const double k2f = 190;
const double k3bc= 0.23;
const double k3bp= 80;
const double k3bn= 80;
const double k3fc= 260;
const double k3fp= 0.40;
const double k3fn= 0.40;
const double k4rc= 60;
const double k4rp=FAST;
const double k4rn=FAST;
const double k4fc= 166.7;
const double k4fp= 46.1;
const double k4fn= 46.1;
const double k6f = 150;
const double k7b = 140;
const double k7f = 145.8;

module ribosome

s : [0..8] init 1 ;
cogn : bool init false ;
pseu : bool init false ;
near : bool init false ;
nonc : bool init false ;

// initial binding
[] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
[] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
[] (s=1) -> k1f * c_nonc : (s’=2) & (nonc’=true) ;
[] (s=2) & (cogn | pseu | near) -> k2b : (s’=0) &

(cogn’=false) & (pseu’=false) & (near’=false) ;
[] (s=2) & nonc -> k2bx : (s’=0) & (nonc’=false) ;

In Silico Modelling and Analysis of Ribosome Kinetics 87

// codon recognition
[] (s=2) & (cogn | pseu | near) -> k2f : (s’=3) ;
[] (s=3) & cogn -> k3bc : (s’=2) ;
[] (s=3) & pseu -> k3bp : (s’=2) ;
[] (s=3) & near -> k3bn : (s’=2) ;

// GTPase activation, GTP hydrolysis, reconformation
[] (s=3) & cogn -> k3fc : (s’=4) ;
[] (s=3) & pseu -> k3fp : (s’=4) ;
[] (s=3) & near -> k3fn : (s’=4) ;

// rejection
[] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;
[] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;
[] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer
[] (s=4) & cogn -> k4fc : (s’=6) ;
[] (s=4) & pseu -> k4fp : (s’=6) ;
[] (s=4) & near -> k4fn : (s’=6) ;

// EF-G binding
[] (s=6) -> k6f : (s’=7) ;
[] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking,
// tRNA movement and Pi release,
// rearrangements of ribosome and EF-G,
// dissociation of GDP
[] (s=7) -> k7f : (s’=8) ;

// no entrance, re-entrance at state 1
[] (s=0) -> FAST*FAST : (s’=1) ;
// rejection, re-entrance at state 1
[] (s=5) -> FAST*FAST : (s’=1) ;
// elongation
[] (s=8) -> FAST*FAST : (s’=8) ;

endmodule

rewards
true : 1;

endrewards

88 D. Bošnački, T.E. Pronk, and E.P. de Vink

Table 4. Frequencies of cognate, pseudo-cognate, near-cognate and non-cognates for
E. coli as molecules per cell [7]. Stop codons UGA, UAG and UAA.

codon cognate pseudo- near- non- codon cognate pseudo- near- non-
cognate cognate cognate cognate cognate cognate

UUU 1037 0 2944 67493 GUU 5105 0 0 66369
UUC 1037 0 9904 60533 GUC 1265 3840 7372 58997
UUG 2944 0 2324 66206 GUG 3840 1265 1068 65301
UUA 1031 1913 2552 65978 GUA 3840 1265 9036 57333
UCU 2060 344 0 69070 GCU 3250 617 0 67607
UCC 764 1640 4654 64416 GCC 617 3250 8020 59587
UCG 1296 764 2856 66558 GCG 3250 617 1068 66539
UCA 1296 1108 1250 67820 GCA 3250 617 9626 57981
UGU 1587 0 1162 68725 GGU 4359 2137 0 64978
UGC 1587 0 4993 64894 GGC 4359 2137 4278 60700
UGG 943 0 4063 66468 GGG 2137 4359 0 64978
UGA∗ 6219 0 4857 60398 GGA 1069 5427 11807 53171
UAU 2030 0 0 69444 GAU 2396 0 4717 64361
UAC 2030 0 3388 66056 GAC 2396 0 10958 58120
UAG∗ 1200 0 5230 65044 GAG 4717 0 3464 63293
UAA∗ 7200 0 4576 59698 GAA 4717 0 10555 56202

CUU 943 5136 4752 60643 AUU 1737 1737 2632 65368
CUC 943 5136 1359 64036 AUC 1737 1737 6432 61568
CUG 5136 943 2420 62975 AUG 706 1926 4435 64407
CUA 666 5413 1345 64050 AUA 1737 1737 6339 61661
CCU 1301 900 4752 64521 ACU 2115 541 0 68818
CCC 1913 943 2120 66498 ACC 1199 1457 4338 64480
CCG 1481 720 5990 63283 ACG 1457 1199 4789 64029
CCA 581 1620 1430 67843 ACA 916 1740 2791 66027
CGU 4752 639 0 66083 AGU 1408 0 1287 68779
CGC 4752 639 2302 63781 AGC 1408 0 5416 64650
CGG 639 4752 6251 59832 AGG 420 867 6318 63869
CGA 4752 639 2011 64072 AGA 867 420 4248 65939
CAU 639 0 6397 64438 AAU 1193 0 1924 68357
CAC 639 0 3308 67527 AAC 1193 0 6268 64013
CAG 881 764 6648 63181 AAG 1924 0 6523 63027
CAA 764 881 1886 67943 AAA 1924 0 2976 66574

In Silico Modelling and Analysis of Ribosome Kinetics 89

Table 5. Probabilities per codon for erroneous elongation

UUU 27.4e-4 CUU 46.7e-4
UUC 91.2e-4 CUC 13.6e-4
UUG 7.59e-4 CUG 4.49e-4
UUA 23.5e-4 CUA 18.9e-4
UCU 2.81e-10 CCU 34.1e-4
UCC 56.1e-4 CCC 10.4e-4
UCG 20.3e-4 CCG 37.6e-4
UCA 9.09e-4 CCA 22.8e-4
UGU 6.97e-4 CGU 1.21e-10
UGC 30.4e-4 CGC 4.59e-4
UGG 39.8e-4 CGG 88.7e-4
UGA 7.50e-4 CGA 3.98e-4
UAU 2.81e-10 CAU 91.1e-4
UAC 15.7e-4 CAC 47.5e-4
UAG 41.3e-4 CAG 69.4e-4
UAA 6.04e-4 CAA 22.7e-4

GUU 1.12e-10 AUU 14.4e-4
GUC 55.0e-4 AUC 35.0e-4
GUG 2.68e-4 AUG 58.3e-4
GUA 22.3e-4 AUA 34.4e-4
GCU 1.77e-10 ACU 2.73e-10
GCC 12.5e-4 ACC 34.2e-4
GCG 3.187e-4 ACG 31.7e-4
GCA 28.2e-4 ACA 29.1e-4
GGU 1.32e-10 AGU 8.70e-4
GGC 9.40e-4 AGC 37.2e-4
GGG 2.72e-10 AGG 140.7e-4
GGA 100.3e-4 AGA 48.1e-4
GAU 18.6e-4 AAU 15.2e-4
GAC 43.2e-4 AAC 49.3e-4
GAG 7.09e-4 AAG 32.1e-4
GAA 21.4e-4 AAA 14.6e-4

Table 6. Estimated average insertion time per codon in seconds

UUU 0.3327 CUU 0.8901 GUU 0.0527 AUU 0.2733
UUC 0.8404 CUC 0.6286 GUC 0.7670 AUC 0.4373
UUG 0.1245 CUG 0.1028 GUG 0.1041 AUG 0.8115
UUA 0.4436 CUA 0.9217 GUA 0.2604 AUA 0.4321
UCU 0.0893 CCU 0.4202 GCU 0.0756 ACU 0.0943
UCC 0.7409 CCC 0.1992 GCC 1.5622 ACC 0.4658
UCG 0.3035 CCG 0.4257 GCG 0.1010 ACG 0.4073
UCA 0.2313 CCA 0.5535 GCA 0.3002 ACA 0.5025
UGU 0.1432 CGU 0.0645 GGU 0.0924 AGU 0.1636
UGC 0.3296 CGC 0.1010 GGC 0.1673 AGC 0.3905
UGG 0.4360 CGG 1.3993 GGG 0.2308 AGG 1.4924
UGA 0.1098 CGA 0.0962 GGA 1.2989 AGA 0.5517
UAU 0.0758 CAU 0.8811 GAU 0.2180 AAU 0.2242
UAC 0.2008 CAC 0.5341 GAC 0.4144 AAC 0.4959
UAG 0.4319 CAG 0.7425 GAG 0.1106 AAG 0.3339
UAA 0.0963 CAA 0.4058 GAA 0.2243 AAA 0.1945

Qualitative and Quantitative Analysis of a Bio-PEPA
Model of the Gp130/JAK/STAT Signalling Pathway

Maria Luisa Guerriero

Laboratory for Foundations of Computer Science,
The University of Edinburgh, UK

Abstract. Computational modelling of complex biochemical systems has grown
in importance over recent years as a tool for supporting biological studies. Con-
sequently, several formal languages have been recently proposed as modelling
languages for biology. Among these, process algebras have been proved capable
of providing researchers with new hypotheses on the behaviour of biochemical
systems.

Bio-PEPA is a process algebra recently defined for the modelling and analysis
of biochemical systems, which provides modellers with a wide range of analysis
techniques: models can be analysed by stochastic simulation, model-checking,
and mathematical methods based on ordinary differential equations.

In this work, we use Bio-PEPA for modelling the gp130/JAK/STAT signalling
pathway, and we use both stochastic simulation and model-checking to analyse
several qualitative and quantitative aspects of the system.

1 Introduction

Several modelling approaches have been used over recent years to analyse complex
biological systems such as signaling pathways, ranging from traditional mathematical
methods based on differential equations to computational methods based on stochastic
simulation and model-checking. Each of these techniques can be more suitable than
others in some context or to study some particular features of biological systems.

Process algebras are formal languages traditionally used to model distributed sys-
tems of concurrent computing devices. Starting from the biochemical π-calculus [1],
several other process algebras have been recently adapted in order to model biochem-
ical systems [2,3,4,5], following the “molecules as processes” paradigm introduced in
the landmark paper [6]: molecules are modelled as concurrent processes, and biochem-
ical reactions are represented by actions performed by synchronising processes.

Bio-PEPA [7,8] is a process algebra specifically defined to model and analyse bio-
chemical networks. Compared to other process algebras, Bio-PEPA uses a more ab-
stract view of biochemical systems, the so-called “species as processes” abstraction:
processes represent molecular species instead of single molecules, and multi-way syn-
chronisations of processes represent changes in the amounts of molecular species re-
sulting from biochemical reactions. Such an abstract view enables modellers to deal
with analysis techniques which are computationally infeasible when considering the
“molecules as processes” abstraction.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 90–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Qualitative and Quantitative Analysis of a Bio-PEPA Model 91

The main feature of Bio-PEPA is that it integrates several kinds of analysis tech-
niques. Both discrete stochastic and continuous deterministic models can be automati-
cally generated from Bio-PEPA models, thus allowing modellers to perform time-series
analysis via stochastic simulation, Markovian analysis and ordinary differential equa-
tions (ODEs); in addition, system properties can be verified through model-checking
and mathematical techniques such as bifurcation, stability and continuation analysis.
Moreover, as for the other process algebras, Bio-PEPA is equipped with an operational
semantics which supports various kinds of formal analysis (e.g. causality, equivalence,
and reachability analysis).

In this work, we define a Bio-PEPA model of the gp130/JAK/STAT signalling path-
way, a well-studied system which plays a major role in several biological processes
both in human and other organisms. A lot of experimental data is available about the
molecules in the pathway, and some mathematical and computational models have been
already developed. For these reasons, the gp130/JAK/STAT pathway represents a good
case study for exploiting some of the possible Bio-PEPA analysis methods in order to
study different aspects (both qualitative and quantitative) of the system, and compare
them with existing models.

The rest of the paper is structured as follows. First, the Bio-PEPA language is intro-
duced in Sec. 2, while the pathway and the Bio-PEPA model are described in Sec. 3
and Sec. 4, respectively. The following three sections are devoted to the analysis of
the model: in Sec. 5 several qualitative properties are analysed via model-checking, in
Sec. 6 we present some stochastic simulation results, and in Sec. 7 model-checking is
employed for quantitative analysis. Finally, Sec. 8 is an overview of the related work
and Sec. 9 contains some concluding remarks.

2 Bio-PEPA

Bio-PEPA [7,8] is a process algebra which has been recently defined for the modelling
and analysis of biochemical networks. It is a biologically-inspired language based on
PEPA [9] and, differently from PEPA and other process algebras, it is able to explicitly
represent details such as stoichiometric coefficients and the roles of species in reactions,
and it supports the definition of general kinetic laws. Bio-PEPA models can be analysed
by different techniques (stochastic simulation, analysis based on ODEs, numerical solu-
tion of the continuous-time Markov chain (CTMC), and probabilistic model-checking),
since the mappings of Bio-PEPA models into specifications for those approaches have
been defined [10].

The Bio-PEPA language is based on discrete levels of parameterised species: each
component represents a species and its parameter may be interpreted as the number of
molecules or discrete levels of concentration depending on the type of analysis to be
applied. Parametric levels are considered for the definition of the transition system and
for the derivation of a CTMC whose states represent the concentration levels of the
species.

The syntax of Bio-PEPA is defined as:

S ::= (α, κ) op S | S + S | C P ::= P ��I P | S (x)

where op = ↓ | ↑ | ⊕ | � | �.

92 M.L. Guerriero

The component S is called a species component and abstracts a molecular species,
whereas the component P, called a model component, describes the system and the in-
teractions among components. The prefix term (α, κ) op S contains information about
the role of the species in the reaction associated with the action type α: κ is the stoichio-
metric coefficient of the species and the prefix combinator “op” represents its role in the
reaction. Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, � an inhibitor
and � a generic modifier. The operator “+” expresses the choice between possible ac-
tions and the constant C is defined by an equation C

def
= S . The parameter x ∈ IR+ in

S (x) represents the concentration of S . Finally, the process P ��I Q denotes the cooper-
ation between components: the set I determines those activities on which the operands
are forced to synchronise. Reaction rates are defined as functional rates associated with
actions.

Bio-PEPA supports a modelling style in terms of concentration levels: the species
amounts are discretised into a number of levels, from level 0 (i.e. species not present)
to a maximum level N (which depends on the maximum concentration of the species).
Each level represents an interval of concentration and the granularity of the system is
expressed in terms of the step size H (i.e. the length of the concentration interval).

Definition 1. A Bio-PEPA system P is a 6-tuple 〈V,N ,K ,FR,Comp, P〉, where:V is
the set of compartments,N is the set of quantities describing the species (i.e. H and N),
K is the set of parameter definitions, FR is the set of functional rates, Components is
the set of definitions of species components, P is the model component describing the
system.

For discrete state space analysis the behaviour of the system is defined in terms of an
operational semantics. A Stochastic Labelled Transition System (SLTS) is defined for a
Bio-PEPA system. From this we can obtain a Continuous Time Markov Chain (CTMC).
Both the SLTS and the CTMC derived from Bio-PEPA are defined in terms of levels of
concentration, and the generated Markov chain is called CTMC with levels. For a full
description of the language semantics see [10].

The Bio-PEPA language is supported by software tools such as the Bio-PEPA Work-
bench [11], which automatically processes Bio-PEPA models and generates other
representations in forms suitable for simulation and model-checking. For instance, the
generated simulation model can be executed using the Dizzy stochastic simulator [12].
The representation which is used for discrete state space generation and analysis by nu-
merical solution of the underlying CTMC is expressed in the reactive modules language
supported by the PRISM model-checker [13]. In addition, the Bio-PEPA Workbench
generates reward structures and common CSL [14] formulae used in model-checking.

3 The Gp130/JAK/STAT Signalling Pathway

The gp130/JAK/STAT signalling pathway is a well-studied biological system, of great
clinical interest because of its key role in human fertility, neuronal repair and

Qualitative and Quantitative Analysis of a Bio-PEPA Model 93

haematological development [15,16,17]. Much experimental data is available on this
pathway, and a few mathematical and computational models [18,19,20,21] have been
developed.

The signalling cascade in the gp130/JAK/STAT pathway is triggered by members of
the family of IL (interleukin)-6-type cytokines binding to plasma membrane receptor
complexes containing the common signal transducing receptor chain gp130 (glycopro-
tein 130). Among the targets of gp130 signal transduction, we consider the transcription
factors of the STAT (signal transducers and activators of transcription) family, in partic-
ular STAT3. A key feature of the pathway is the nuclear/cytoplasmic shuttling of STATs:
upon activation, STATs can translocate into the nucleus and activate the transcription of
downstream gene targets.

Different cytokines signal through the formation of different receptor complexes,
all of them containing gp130 and another subunit. We focus here on two different
cytokines: LIF (leukaemia inhibitory factor) and OSM (oncostatin M). LIF signals
through an heterodimeric receptor complex gp130:LIFR. OSM exhibits the uncommon
ability to signal through two different receptor complexes: the type I OSM receptor
complex (gp130:LIFR), and the type II OSM receptor complex (gp130:OSMR).

Figure 1 is a graphical representation of the biochemical reactions occurring in the
gp130/JAK/STAT pathway. In the inset the different types of receptor complexes are
shown.

Fig. 1. Gp130/JAK/STAT pathway: graphical representation. Full arrows represent biochemical
reactions, dotted arrows represent transports, dashed arrows represent syntheses.

94 M.L. Guerriero

The molecular species we consider in the model are: two ligands (LIF and OSM),
three membrane-bound receptors (gp130, LIFR and OSMR), one effector (STAT3), and
two inhibitors (SOCS3 and PIAS3). JAK kinase and TC-PTP phosphatase are implicitly
modelled.

Four compartments are involved in the system: the exosol (the extracellular space,
where the two ligands are located), the cell membrane (location of the receptors), the
cytosol (initial location of STAT3), and the nucleus (in which STAT3 can translocate).

Receptors are activated by ligand bindings, and active receptors dimerise to form
receptor complexes (gp130:LIFR or gp130:OSMR) (reaction r1 in Fig. 1). Once the re-
ceptor dimeric complex is formed, each receptor subunit (gp130, LIFR and OSMR) can
undergo JAK-mediated phosphorylation (r2). STAT3 can bind on receptors’ phosphory-
lated sites (r3), and the binding of STAT3 leads to its activation (phosphorylation) (r4).

Once phosphorylated, STAT3 dissociates from the receptor complex, and its phos-
phorylated site allows STAT3 to homodimerise (r5). When STAT3 is in dimeric form,
it can translocate into the nucleus (r6) where it can carry out its specific functions (not
modelled here): STAT3 binds to the DNA, thus activating the transcription of down-
stream gene targets. Nuclear STAT3 dimers are inactivated through TC-PTP -mediated
dephosphorylation, which leads to the dimers’ dissociation (r7) and to STAT3 export to
the cytoplasm (r8), where STAT3 can undergo additional cycles of activation.

The two inhibition mechanisms considered are due to SOCS3 and PIAS3. SOCS3 is
synthesised by STAT3 (r9) and it acts by competing with STAT3 in binding to receptors
(r10). PIAS3 acts by binding to active nuclear STAT3 (r11).

4 The Bio-PEPA Model

A Bio-PEPA model of the gp130/JAK/STAT pathway has been developed. The full
model can be downloaded from [22]. The model and the reaction rates are based on [21],
though some differences are present due to the conceptual differences in the used mod-
elling languages (see Sec. 8 for a discussion of such differences). All kinetic laws are
assumed to be mass-action (i.e. depending on the amount of reactants and on given
kinetic constants).

Each possible form of the molecular species is modelled as a distinct Bio-PEPA
species component. For instance, STAT3 is modelled by four distinct species compo-
nents representing, respectively, the cytoplasmic dephosphorylated monomeric form
(STAT3 c), the cytoplasmic phosphorylated dimeric form (STAT3-PD c), the nuclear
phosphorylated dimeric form (STAT3-PD n), and the nuclear dephosphorylated mono-
meric form (STAT3 n); further species components are defined for each state of each
complex containing STAT3.

Reactions and biochemical modifications are represented by reactions over which
the involved species components synchronise. For instance, the reaction representing
r7 in Fig. 1 is modelled as the reaction dephospho dedimer stat59, which decreases the
amount of STAT3-PD n and increases (with stoichiometry coefficient 2) the amount of
STAT3 n.

Qualitative and Quantitative Analysis of a Bio-PEPA Model 95

As an example, the definitions of the species STAT3-PD n and STAT3 n are reported
(here we use the simplified syntax of the Bio-PEPA Workbench, in which the trailing S
in prefix terms (α, κ) op S can be omitted).

S T AT3-PD n ::= (reloc stat cn58, 1) ↑ + (synth socs61, 1) ⊕ + (unbind pias80, 1) ↑
+ (dephospho dedimer stat59, 1) ↓ + (bind pias stat80, 1) ↓

S T AT3 n ::= (dephospho dedimer stat59, 2) ↑ + (reloc stat nc60, 1) ↓
For each of the involved reactions, a functional rate specifying its kinetic rate law is
defined. The ones used in the species definitions for STAT3-PD n and STAT3 n are
defined as follows.

reloc stat cn58 =

[
0.693

k58
· STAT3-PD c

]
;

//STAT3-PD c relocation cytoplasm -> nucleus

dephospho dedimer stat59 = [k59 · STAT3-PD n] ;
//STAT3-PD n dephosphorylation & dedimerisation

reloc stat nc60 =

[
0.693

k60
· STAT3 n

]
;

//STAT3-PD n relocation nucleus -> cytoplasm

synth socs61 = [k61 · STAT3-PD n] ;
//SOCS3 synthesis by STAT3-PD n

bind pias stat80 =

[
k80

nucleus · NA
· PIAS3 · STAT3-PD n

]
;

//PIAS3/STAT3-PD n binding

unbind pias stat80 = [k−80 · PIAS3:STAT3-PD n] ;
//PIAS3/STAT3-PD n unbinding

As mentioned above, the Bio-PEPA Workbench [11] allows us to automatically gener-
ate representations of the Bio-PEPA model for different analysis tools. In the following
sections we show some of the analyses performed using these generated models. In par-
ticular, we consider the PRISM [23,13] and Dizzy [12,24] models. We use the PRISM
model-checker to verify that some desired properties of the system are satisfied, and the
Dizzy simulation tool to perform time-series analysis via stochastic simulation.

5 Model-Checking Based Qualitative Analysis

As a first step in the analysis of the model we use the PRISM model-checker [23,13]
to verify a number of qualitative properties of the system. Such properties are intended
to be consistency checks on the model and they allow us to check for the presence
of possible human errors in the modelling process. This kind of checks is particularly
useful when modelling complex systems such as the pathway we consider here since,
due to the size of the models, trivial typing errors are likely to occur and may be hard
to identify.

96 M.L. Guerriero

5.1 PRISM Modelling and Specification Language

PRISM [23,13] is a probabilistic model-checker, which can be used to verify proper-
ties of CTMCs. Models are described using the state-based PRISM language, and it
is possible to specify quantitative properties of the system using a property specifica-
tion language which includes CSL (Continuous Stochastic Logic) [25,26]. The PRISM
language is composed of modules and variables. A model is composed of a number
of interacting modules and each module contains a number of local variables, whose
values constitute the state of the module. The global state of the model is determined
by the local state of all modules. The behaviour of the modules is given by a set of
guarded commands, each describing a transition which is enabled when the guard is
true. A command includes an update which gives new values to the variables.

PRISM properties are made up of state properties φ and path properties ψ. The
syntax of PRISM properties is given by the following grammar.

φ ::= true | false | expr | φ ∧ φ | φ ∨ φ | ¬φ | φ⇒ φ |
P��p[ψ] | P=?[ψ] | S��p[φ] | S=?[φ]

ψ ::= X φ | φ UI φ | φ U φ | FI φ | F φ | GI φ | G φ

Here expr is a boolean expression (containing literal values, identifiers and the standard
arithmetic and relational operators), �� ∈ {<, ≤, ≥, > } is a relational parameter, p ∈
[0, 1] is a probability, and I is an interval of IR+.

The operators P��p[ψ] and P=?[ψ] are used to express transient properties (i.e. which
depend on time) whereas the operators S��p[φ] and S=?[φ] are used to express steady
state properties (i.e. which hold in the long run). The result of the verification of for-
mulae P��p[ψ] (resp. S��p[φ]) is one of the boolean values true or false depending on
whether ψ (resp. φ) is satisfied. The result of the verification of formulae P=?[ψ] (resp.
S=?[φ]) is the expected probability with which ψ (resp. φ) is satisfied.

The operators X, U, F, and G are used to express neXt, Until, Finally, and Globally
properties, respectively. Time-bounded formulae are indexed by an interval I.

The PRISM language supports the specification and analysis of reward-based prop-
erties. Reward structures allow us to associate real values with certain states or tran-
sitions of the model. Such values, which can be thought of as “costs” of the specified
states/transitions, are taken into account during the solution of the CTMC. In this way it
is possible to reason about various quantitative measures such as “expected number of
instances of processes”, “expected number of occurrences of reactions”, “expected time
until a condition is satisfied”, etc. The PRISM reward language supports the expression
of both instantaneous and cumulative rewards.

5.2 Model-Checking the Bio-PEPA Model with PRISM

In the PRISM models generated by the Bio-PEPA Workbench, one module is defined
for each species, and the module local variables are used to record the current quantity
of each species. The transitions correspond to the activities of the Bio-PEPA model
and the updates take the stoichiometry into account. Transition rates are specified in an
auxiliary module which defines the functional rates corresponding to all the reactions.

Qualitative and Quantitative Analysis of a Bio-PEPA Model 97

Moreover, lower and upper bounds must be defined for each variable (i.e. for the amount
of each species). The step size H in the Bio-PEPA model allows us to consider different
PRISM models with different granularity, leading to systems with different numbers of
levels.

As an example, we provide the PRISM definitions relative to the species
STAT3-PD n and STAT3 n, which are obtained from the corresponding Bio-PEPA
species definitions reported in Sec. 4.

First, the lower and upper levels for both species are computed from the defined step
size H and the given bounds on species amounts.

MIN S T AT3-PD n = MIN S T AT3 n = 0
MAX S T AT3-PD n = MAX S T AT3 n = 1500

NL S T AT3-PD n =
⌊

MIN S T AT3-PD n
H

⌋
NU S T AT3-PD n =

⌊
MAX S T AT3-PD n

H

⌋
NL S T AT3 n =

⌊
MIN S T AT3 n

H

⌋
NU S T AT3 n =

⌊
MAX S T AT3 n

H

⌋

The specifications of the behaviour of STAT3-PD n and STAT3 n are given by the two
following modules. The third module contains the definition of the functional rates for
all reactions.

module S T AT 3-PD n

S T AT 3-PD n : [NL S T AT 3-PD n ..NU S T AT 3-PD n] init 0;

[reloc stat cn58] (S T AT 3-PD n + 1 ≤ NU S T AT 3-PD n)→
1 : (S T AT 3-PD n′ = S T AT 3-PD n + 1);

[synth socs61] (S T AT 3-PD n + 0 ≤ NU S T AT 3-PD n)→
1 : (S T AT 3-PD n′ = S T AT 3-PD n + 0);

[dephospho dedimer stat59] (S T AT 3-PD n ≥ 1 + NL S T AT 3-PD n)→
1 : (S T AT 3-PD n′ = S T AT 3-PD n − 1);

[bind pias stat80] (S T AT 3-PD n ≥ 1 + NL S T AT 3-PD n)→
1 : (S T AT 3-PD n′ = S T AT 3-PD n − 1);

[unbind pias stat80] (S T AT 3-PD n + 1 ≤ NU S T AT 3-PD n)→
1 : (S T AT 3-PD n′ = S T AT 3-PD n + 1);

endmodule

module S T AT 3 n

S T AT 3 n : [NL S T AT 3 n ..NU S T AT 3 n] init 0;

[dephospho dedimer stat59] (S T AT 3 n + 2 ≤ NU S T AT 3 n)→
1 : (S T AT 3 n′ = S T AT 3 n + 2);

[reloc stat nc60] (S T AT 3 n ≥ 1 + NL S T AT 3 n)→ 1 : (S T AT 3 n′ = S T AT 3 n − 1);

endmodule

98 M.L. Guerriero

module Rates

[reloc stat cn58]

(
0.693
k58
·STAT3-PD c·H

H > 0

)
→
(

0.693
k58
·STAT3-PD c·H

H

)
: true;

[dephospho dedimer stat59]
(

k59 ·STAT3-PD n·H
H > 0

)
→
(

k59 ·STAT3-PD n·H
H

)
: true;

[reloc stat nc60]

(
0.693
k60
·STAT3 n·H

H > 0

)
→
(

0.693
k60
·STAT3 n·H

H

)
: true;

[synth socs61]
(

k61·STAT3-PD n·H
H > 0

)
→
(

k61 ·STAT3-PD n·H
H

)
: true;

[bind pias stat80]

(k80
nucleus·NA

·PIAS3·H·STAT3-PD n·H
H > 0

)
→
(k80

nucleus·NA
·PIAS3·H·STAT3-PD n·H

H

)
: true;

[unbind pias stat80]
(

k−80 ·PIAS3:STAT3-PD n·H
H > 0

)
→
(

k−80 ·PIAS3:STAT3-PD n·H
H

)
: true;

endmodule

The PRISM model generated from the Bio-PEPA model of the gp130/JAK/STAT path-
way has 63 species and 118 reactions. Because of the well-known state space explosion
problem of model-checking, even if we consider only a few levels for each species,
the state space for this model is so huge that it makes the numerical solution of the
CTMC nearly unmanageable. To overcome this problem, we consider a subdivision of
the pathway into two distinct sub-models in such a way that the analysis of the individ-
ual sub-models becomes more feasible.

In order to find an appropriate modularisation, we adopt the approach proposed
in [27,28], based on the identification of sub-systems with no retroactivity. For the con-
sidered model of the gp130/JAK/STAT pathway, two modules with low coupling can
be easily identified.

In the first sub-model, which refers to the bindings of ligands to receptors and the
activation of the receptor dimers, we consider all the distinct combinations of lig-
and/receptor complexes, and we describe in detail the formation of all possible types
of active receptor dimers, considering the fact that different ligand-receptor pairs have
different binding affinities.

In the second sub-model, which refers to the downstream signalling pathway, we
instead consider as a starting point a single “generic” type of active receptor dimer (re-
ferred to as rcpt-DP), and we focus on the reactions involving the activation of STAT3
and its cytoplasmic/nuclear shuttling.

These two sub-models refer to sub-systems of the gp130/JAK/STAT pathway which
act in a rather sequential way and, as a consequence, it is reasonable to assume that,
for the downstream STAT3 signalling to occur, the receptor-complexes must have been
already activated. The initial number of active receptor dimers in the second sub-model
is defined as the sum of the steady-state quantities of all the active receptor dimers in
the first sub-model. This assumption is justified by the fact that the activation of the
receptors is fast compared with the following reactions, and therefore the amount of
initially inactive receptors is negligible when considering the downstream pathway.

As discussed in [27,28], the absence of retroactivity ensures that the modularisation
has no significant effect on the overall behaviour of the system. This, together with the
fact that we use the output of the first sub-model as input of the second sub-model,

Qualitative and Quantitative Analysis of a Bio-PEPA Model 99

ensures that the structural qualitative properties verified for the individual sub-models
in the rest of this section also hold for the full model. Particular care should be taken
when verifying quantitative temporal properties over sub-models. Here we only con-
sider semi-quantitative analysis (Sec. 7) as we are interested in relative rather than ab-
solute values. Therefore, in this particular case, the absence of retroactivity ensures the
validity, in the full model, of the analysis results obtained in the sub-models. In gen-
eral, however, the actual reaction rates in the composite model (and therefore the anal-
ysis results) might be different from the ones in the sub-models, and more advanced
approaches for modularisation should be applied.

In the rest of this section we use H = 200 as the step size for the ligands-receptors
sub-model, and H = 300 for the downstream sub-model. See Sec. 7 for a discussion of
the choice of step size values.

Deadlock Detection. Deadlock states are the ones in which no transition is enabled.
In some cases the presence of deadlock states is (correctly) due to the presence of ir-
reversible reactions which lead to the transformation of all reactants into non-reactive
proteins. In other cases deadlocks could be due to the scarcity of one of the reactants of
a multimolecular reaction; in our model, for instance, all receptors are consumed (i.e.
transformed into different forms, such as dimers) while still ligands are available. In
other cases deadlocks could be caused by modelling errors.

PRISM automatically detects deadlock states when building the state space of mod-
els, and this feature can be considered the first step in the identification of potential
modelling errors.

For instance, in the ligands-receptors sub-model, any state in which ligands are
present while all gp130 receptors have been consumed is a deadlock. This suggests
that gp130 is the bottleneck of the system.

Species Invariants. One simple and yet interesting property that can be verified is the
presence of invariants in the amount of the involved proteins.

Species invariants are commonly present in biochemical systems because of the ex-
istence of basic constraints such as the law of conservation of mass, which states that
the amount (i.e. mass) of reactants consumed by a reaction must be equal to the amount
of products of the reaction.

For instance, given the conservation of mass and the absence of synthesis and degra-
dation reactions, we expect that the sum of the amounts of LIFR receptor present in
its various possible forms (free, as gp130:LIF:LIFR complex and as gp130:OSM:LIFR
complex, with one or both of its subunits phosphorylated) is constant (and equal to the
LIFR initial amount).

The satisfaction of the following properties confirms the existence of the expected
invariants on the total amount of ligands and receptors (as an example, we report the
ones for LIF and LIFR).

P≥1[G (LIF + gp130:LIF:LIFR + gp130-P:LIF:LIFR + gp130:LIF:LIFR-P+
gp130-P:LIF:LIFR-P = NU LIF)] → true

100 M.L. Guerriero

P≥1[G (LIFR + gp130:LIF:LIFR + gp130:OSM:LIFR + gp130-P:LIF:LIFR+
gp130:LIF:LIFR-P + gp130-P:LIF:LIFR-P + gp130-P:OSM:LIFR+
gp130:OSM:LIFR-P + gp130-P:OSM:LIFR-P = NU LIFR)] → true

Here, and in the rest of the section, the notation P��p[ψ]→ true (resp. false) means that
ψ is satisfied (resp. is not satisfied), while the notationP=?[ψ]→ p (with p ∈ IR) means
that the result of ψ is the probability p.

Reachability Analysis. Reachability properties allow us to verify whether a given state
is eventually reached. States of interest can be, for instance, the ones in which some
species reaches a threshold or is totally consumed, or when the amounts of two species
coincide.

We consider here the states in which a certain number of receptors are phosphory-
lated, and the ones in which a certain amount of active nuclear STAT3 (STAT3-PD n)
is present.

We consider first the ligands-receptors sub-model. The satisfaction of the first of the
following properties guarantees that a state in which one fourth of the total amount of
available receptors is phosphorylated is always reached at some time point. On the con-
trary, the second property, which is not satisfied, proves that we do not necessarily reach
a state with one third of receptors phosphorylated.

P≥1[F (gp130-P:LIF:LIFR-P + gp130-P:OSM:LIFR-P + gp130-P:OSM:OSMR-P >

(NU OS MR + NU LIFR + NU gp130) / 4)] → true

P≥1[F (gp130-P:LIF:LIFR-P + gp130-P:OSM:LIFR-P + gp130-P:OSM:OSMR-P >

(NU OS MR + NU LIFR + NU gp130) / 3)] → false

The next property, instead, guarantees that in general we could reach a system where
no gp130:OSMR receptor complex is activated.

P≥1[F (gp130-P:OSM:OSMR-P > 0)] → false

Regarding the downstream sub-model, we check for the following properties, which
guarantee that, at some time point, at least half the initial amount of STAT3 has been
transported into the nucleus and activated, but not all of it.

P≥1[F (S T AT 3-PD n > NU S T AT 3 c / 2)] → true

P≥1[F (S T AT 3-PD n > NU S T AT 3 c)] → false

Reversibility. A system is called reversible if the initial state is reachable from any
other state (i.e. the system is able to self-reinitialise). More generally, a state is called
reversible if it can be reached again at some later time point.

The following property, if satisfied, guarantees the reversibility of the system: it
states that it is always possible to return to the initial state (in the PRISM language
“init” is a predefined formula which completely specifies the initial state).

Qualitative and Quantitative Analysis of a Bio-PEPA Model 101

P=?[G (“init”⇒ P≥1[X (!“init”⇒ P≥1[F (“init”)])])]

For the ligands-receptors sub-system the result of this property is 0, since we have
considered bindings to be irreversible and, therefore, the system cannot return to the
initial state in which all receptors and ligands are free.

The downstream sub-system, instead, is reversible (the result of the property is 1),
thanks to the cytoplasmic/nuclear STAT3 shuttling, which enables the system to return
to the initial state in which cytoplasmic STAT3 molecules are not phosphorylated and
not bound to receptor dimers.

Liveness. The notion of liveness of a reaction in a given state refers to the possibility
of it occurring in such a state. In particular, it is interesting to know which reactions are
live in the initial state.

Since PRISM properties are state-based, it is not possible to explicitly check for
the occurrence of a given reaction. However, knowing how each model component is
affected by the occurrence of a given reaction, we can verify this kind of property by
checking for the expected variations in the involved components.

We are interested, for instance, in verifying that in the initial state the binding re-
actions between ligands and receptors can occur, leading to the three possible types of
ligand/receptor dimers (gp130:LIF:LIFR, gp130:OSM:LIFR, and gp130:OSM:OSMR).

The following three properties are satisfied, confirming that the three known types
of complexes can be formed.

P≥1[G (“init”⇒ P>0[X (gp130 = NU gp130 − 1 & LIF = NU LIF − 1 &
LIFR = NU LIFR − 1)])] → true

P≥1[G (“init”⇒ P>0[X (gp130 = NU gp130 − 1 & OS M = NU OS M − 1 &
LIFR = NU LIFR − 1)])] → true

P≥1[G (“init”⇒ P>0[X (gp130 = NU gp130 − 1 & OS M = NU OS M − 1 &
OS MR = NU OS MR − 1)])] → true

The following property, instead, is not satisfied: it states, as desired, that LIF cannot
bind to receptors to form gp130:OSMR dimers.

P≥1[G (“init”⇒ P>0[X (gp130 = NU gp130 − 1 & LIF = NU LIF − 1 &
OS MR = NU OS MR − 1)])] → false

Causality Analysis. Causality relations between given reactions can be expressed and
verified by properties which relate the order of “appearance” of relevant molecules.
This kind of property can be used, for instance, to verify the order in which intermediate
products are formed within a cascade of events.

A form of causality relation can be expressed by using the sequence and consequence
relations defined in [29]: specifically, while sequence formulae describe ordering rela-
tions between events (e.g. “in order to reach a given state, we must first reach another
one”), consequence formulae describe causal relations (e.g. “if a given state occurs, it
is necessarily followed by a second one”).

102 M.L. Guerriero

For example, the ordering and causality relations between STAT3 phosphorylation,
homodimerisation and relocation into the nucleus can be verified by the following pairs
of properties (assuming at system initialisation all STAT3 is present in cytoplasmic
monomeric form (STAT3-P c).

When the result of the first property is 0, such a property states that it is not pos-
sible for a STAT3-PD c molecule to be present if in all previous states we had no
rcpt-DP:STAT3-DP1 (a complex formed by a receptor dimer and a STAT3 molecule).
Similarly, the following property (when it evaluates to 0) states that STAT3-PD c must
be produced before STAT3-PD n appears.

P=?[(rcpt-DP:STAT3-DP1 = 0) U S T AT 3-PD c > 0]→ 0

P=?[(S T AT 3-PD c = 0) U S T AT 3-PD n > 0]→ 0

The following two properties complement the previous two, stating that if at least one
complex rcpt-DP:STAT3-DP1 is formed, then at least one STAT3-PD c molecule will
necessarily be formed.

P=?[G (rcpt-DP:STAT3-DP1 > 0⇒ P≥1[F (S T AT 3-PD c > 0)])]→ 1

P=?[G (S T AT 3-PD c > 0⇒ P≥1[F (S T AT 3-PD n > 0)])]→ 1

As another example, the following two properties verify that the transport of phospho-
rylated STAT3 dimers can only occur from the cytoplasm to the nucleus, but not vice
versa. The result of the first property is 0 (i.e. transport of STAT3-PD can occur from
cytoplasm to nucleus), while the result of the second property is 1 (i.e. transport of
STAT3-PD cannot occur from nucleus to cytoplasm) for all reachable values of i, j.

P=?[F (S T AT 3-PD c = i & S T AT 3-PD n = j &P≤0[X (S T AT 3-PD c = i − 1 &
S T AT 3-PD n = j + 1)])] → 0

P=?[F (S T AT 3-PD c = i & S T AT 3-PD n = j &P≤0[X (S T AT 3-PD c = i + 1 &
S T AT 3-PD n = j − 1)])] → 1

Conversely, the transport of dephosphorylated STAT3 monomers can only occur from
the nucleus to the cytoplasm.

P=?[F (S T AT 3 c = i & S T AT 3 n = j &P≤0[X (S T AT 3 c = i − 1 & S T AT 3 n = j + 1)])] → 1

P=?[F (S T AT 3 c = i & S T AT 3 n = j &P≤0[X (S T AT 3 c = i + 1 & S T AT 3 n = j − 1)])] → 0

6 Simulation Based Time-Series Analysis

In the previous section we have used model-checking in order to check for a number of
simple formulae which guarantee us that some key properties of the gp130/JAK/STAT

Qualitative and Quantitative Analysis of a Bio-PEPA Model 103

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(a) Full model

STAT3_c
STAT3_n

STAT3-PD_c
STAT3-PD_n

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(b) no SOCS3

STAT3_c
STAT3_n

STAT3-PD_c
STAT3-PD_n

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(c) no PIAS3

STAT3_c
STAT3_n

STAT3-PD_c
STAT3-PD_n

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(d) no TC-PTP

STAT3_c
STAT3_n

STAT3-PD_c
STAT3-PD_n

Fig. 2. Simulation results: full model vs. no inhibitors

model are satisfied. This analysis allows us to be more confident about the absence of
modelling errors.

Now we progress our analysis of the model by means of stochastic simulation.
We report here some results obtained by simulating the full model (comprising both
the ligands-receptors and the downstream sub-systems) using the Gibson-Bruck [30]
stochastic simulation engine implemented in Dizzy [12,24].

Figure 2 shows the time-series evolution produced by the model (Fig. 2(a)) versus the
ones in which each of the three inhibitors has been removed (Fig. 2(b)–(d)). Each plot
refers to average values computed over 1000 simulation runs, and the amounts of the
four different forms of STAT3 are shown (cytoplasmic and nuclear dephosphorylated
monomers, and cytoplasmic and nuclear phosphorylated dimers).

In all the performed simulations, at system initialisation STAT3 is only present in
cytoplasmic monomeric form. As shown in Fig. 2(a), as time passes, STAT3 is phos-
phorylated, dimerised, and transported into the nucleus, until the systems reaches a
state in which the inhibition of nuclear STAT3 by dephosphorylation and the nuclear/
cytoplasmic shuttling lead nuclear and cytoplasmic STAT3 to be in equilibrium.

When the amount of nuclear STAT3 increases significantly, the inhibitory role of
SOCS3 (which is under transcription control of STAT3) comes into play (Fig. 2(b)).
SOCS3 is responsible for signal attenuation and, hence, after reaching a peak, nuclear
STAT3 decreases.

104 M.L. Guerriero

PIAS3 slows down the production of active nuclear STAT3 by binding to it
(Fig. 2(c)). Therefore, if PIAS3 is present, part of nuclear STAT3 is bound to it, while,
if PIAS3 is knocked down, the amount of available STAT3 increases.

A third inhibitor, TC-PTP, allows nuclear STAT3 to translocate back into the cyto-
plasm, by dephosphorylating it (Fig. 2(d)). If TC-PTP is present, STAT3 nuclear/cyto-
plasmic shuttling occurs; instead, if TC-PTP is knocked out (i.e. if nuclear STAT3 is
not dephosphorylated), STAT3 accumulates in the nucleus, whilst cytoplasmic STAT3
molecules quickly disappear.

7 Semi-quantitative Analysis of the CTMC with Levels

In Sec. 5 we have shown how model-checking can be used in order to discover mod-
elling errors by checking for some basic properties which guarantee the model to behave
as expected. In this section, instead, we use model-checking also for quantitative anal-
ysis, with the purpose of completing the simulation-based analysis in order to provide
additional insight on the behaviour of the gp130/JAK/STAT pathway.

The main advantage of model-checking with respect to stochastic simulation is the
fact that model-checking is exhaustive: it explores all the possible behaviours of the
model and it does not require us to compute an average behaviour of a number of
stochastic simulation runs.

As mentioned before, the main disadvantage of model-checking is the state space
explosion problem, which implies that we cannot deal with too many levels for the
model components without inducing an intractable model.

In has been shown (see [10]) that, as the number of levels increases, the behaviour of
the CTMC with levels tends to the behaviour of ODEs (when the number of molecules
is large enough to average out the randomness of the system); this result guarantees the
theoretical correctness of the approach. However, if the number of levels is too small,
the error introduced by the discretisation becomes significant and the numerical solution
of the generated CTMC fails to reproduce the correct behaviour.

The number of levels for model components is related to the step size H and to
the upper NU and lower NL bounds for each species. The step size H represents the
granularity of the system, and it directly affects the accuracy of the results; the upper and
lower bounds are also relevant to the accuracy, since imposing bounds on the numbers
of molecules causes a state space truncation which might potentially have impact on the
behaviour of the system.

Therefore, when performing CTMC analysis of Bio-PEPA models, the choice of the
step size and of the upper and lower bounds is essential: they must be carefully selected
so that the number of levels to be used for the model components is a suitable trade-off
between accuracy and efficiency.

In the following sections we report some of the results obtained by using the PRISM
model-checker to perform quantitative analysis. First we consider reward-based prop-
erties which allow us to observe the time-series for some of the species of the system
(for comparison with the stochastic simulation), and we discuss the error introduced by
discretising and bounding the model; afterwards, we define further properties in order
to compute additional (semi-)quantitative measures.

Qualitative and Quantitative Analysis of a Bio-PEPA Model 105

Time-series Analysis Using State Rewards. A reward structure is automatically de-
fined by the Bio-PEPA Workbench for each PRISM component, and it can be referred
to either by the component name or by an integer value (implicitly assigned to reward
structures based on the order in which they are defined). These reward structures asso-
ciate an instantaneous reward equal to the current amount of the corresponding molecu-
lar species with each state. The evaluation of these reward-based properties corresponds
to computing an average behaviour for the species at given time points.

As an example, the following reward is used to observe the time evolution of the
receptor dimer gp130:LIF:LIFR.

rewards “gp130:LIF:LIFR”
true : gp130:LIF:LIFR · H;

endrewards

Figure 3 reports the results obtained by verifying on the ligands-receptors sub-system
the reward-based property

Ri
=?[I = T]

for time points T ≤ 30 minutes, where i is an integer variable used to index the reward
structure of interest.

Figure 4, instead, reports the results obtained by verifying the same reward-based
property for time points T ≤ 800 minutes on the downstream sub-system. In this figure,
we also report the standard deviation of the number of molecules, which is computed
by exploiting reward structures associating the square of the number of molecules of
each species with each state: the standard deviation is calculated as the square root of
the variance E(Y)2 − E(Y2), where Y is the random variable representing a species in

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

gp130:LIF:LIFR
gp130:OSM:LIFR

gp130:OSM:OSMR
gp130-P:LIF:LIFR
gp130:LIF:LIFR-P

gp130-P:LIF:LIFR-P
gp130-P:OSM:LIFR
gp130:OSM:LIFR-P

gp130-P:OSM:LIFR-P
gp130-P:OSM:OSMR
gp130:OSM:OSMR-P

gp130-P:OSM:OSMR-P

Fig. 3. Time-series by model-checking: ligands-receptors sub-model

106 M.L. Guerriero

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

STAT3_c
STAT3_n

STAT3-PD_c
STAT3-PD_n

Fig. 4. Time-series by model-checking: downstream sub-model. Thick lines represent the ex-
pected numbers of molecules; thin lines represent their standard deviation.

the network, whereas E(Y) and E(Y2) indicate the expected values for the amount of
the species Y and for its square value.

Figures 3 and 4 have been obtained by analysing the sub-models with step sizes
H = 200 and H = 300 respectively. In the next section we discuss the considerations
which lead us to the choice of such values.

Three kinds of approximation errors could have been introduced by our analysis of
the CTMC with levels due to, respectively, the discretisation of the amounts (H), their
bounding (NL and NU), and the subdivision into modules.

In the next section we discuss the effect of varying the step size H on the behaviour
of the system. Instead, we do not report results concerning the variation of the bounds
NL and NU since, in this particular system, increasing the bounds does not have a sig-
nificant effect: the reason for this is that no synthesis and degradation reactions are
defined (with the single exception of SOCS3) and, as a consequence, the amount of
most molecular species is clearly bounded by the amounts of the molecules present at
system initialisation.

The choice of how to modularise the system has been carried out in order to minimise
the interaction between the two modules. However, the modularisation has certainly an
impact on the quantitative behaviour. In the whole system, for instance, STAT3 and
SOCS3 molecules can bind to receptor dimers as soon as they start being phosphory-
lated; in the downstream sub-model, instead, we had to fix an initial amount of phos-
phorylated receptor dimers.

Despite these possible sources of approximation, comparing Fig. 4 and Fig. 2, we
notice that the results obtained by analysing the downstream sub-model using PRISM
instantaneous rewards do not differ significantly from the behaviour observed by av-
eraging the results obtained by 1000 stochastic simulation runs of the whole model.
Both the time-scale and the relative amounts of molecules are the same in both figures,

Qualitative and Quantitative Analysis of a Bio-PEPA Model 107

and the only significant difference regarding the absolute amounts is the amount of cy-
toplasmic monomeric STAT3, which is higher in Fig. 4. We can also observe that the
standard deviation reported in Fig. 4 is quite high, due to the stochastic noise which has
been introduced by using a small number of levels.

Experimenting with Step Sizes. As previously stated, the choice of the step size has
a great impact on both accuracy and performance of the analysis: the smaller the step
size is, the larger the CTMC state space and, hence, the smaller the discretisation error
introduced, but also the longer the time needed for solving the CTMC.

Before choosing the values to be used for the step size H in the analysis of the
models, we have performed a number of experiments varying H in order to find val-
ues representing a good trade-off between accuracy and performance of the analysis.
In Fig. 5 and Fig. 6 we report some results which show how changing the step size
affects the behaviour of the system (in ligands-receptors and downstream sub-systems,
respectively).

In Fig. 5, we compare the results obtained by using six different values for
H (1000, 500, 300, 250, 200, 150) in the analysis of the ligands-receptors sub-model,
and we can observe that H in this case does not have a big impact on the results.

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(a) H=1000

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(b) H=500

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(c) H=300

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(d) H=250

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(e) H=200

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(f) H=150

Fig. 5. Time-series by model-checking: ligands-receptors sub-model. The three types of
receptor complexes are shown, gp130:LIF:LIFR (red), gp130:OSM:LIFR (green), and
gp130:OSM:OSMR (blue), in the stage when one (full line) or both (dashed line) receptors are
phosphorylated.

108 M.L. Guerriero

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(a) STAT_c

Simulation
MC, H=1000

MC, H=500

MC, H=400
MC, H=300
MC, H=270

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(b) STAT3-PD_c

Simulation
MC, H=1000

MC, H=500

MC, H=400
MC, H=300
MC, H=270

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(c) STAT3_n

Simulation
MC, H=1000

MC, H=500
MC, H=400
MC, H=300
MC, H=270

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 m

ol
ec

ul
es

Time (minutes)

(d) STAT3-PD_n

Simulation
MC, H=1000

MC, H=500
MC, H=400
MC, H=300
MC, H=270

Fig. 6. Time-series by model-checking: STAT3 sub-model

The first notable difference is that in Fig. 5(a) the amounts of gp130:LIF:LIFR and
gp130:OSM:LIFR are equal: as expected, with H = 1000 (i.e. one single level for each
ligand and receptor) we are not able to observe the fact that LIFR has an higher binding
affinity with LIF than with OS M.

The other interesting thing is that, contrary to what we expected, there is no notice-
able increase of accuracy when decreasing H. Instead, after observing the similarities
between Fig. 5(b), (d) and (e), and between Fig. 5(c) and (f), respectively, we drew
the conclusion that the first group is the “correct” one; the reason is the rounding error
introduced when computing the number of levels starting from the initial amounts (re-
member that NL = �MIN/H� and NU = �MAX/H�): when a small numbers of levels is
used, this rounding error happens to be more significant than H itself.

In Fig. 6, we compare the results obtained by using five different values for H
(1000, 500, 400, 300, 270) in the analysis of the downstream sub-model; the value ob-
tained by stochastic simulation is also shown.

As for the ligands-receptors sub-model, also for this sub-model we notice that when
using H = 1000 we obtain a totally wrong behaviour, and we observe a general increase
in accuracy when increasing the number of levels. For the smallest values of H, the
relative values and the trends for the considered species are correctly reflected compared
to the stochastic simulation results: for instance, both the peaks’ amplitude and the time
at which they occur are reproduced quite accurately.

Qualitative and Quantitative Analysis of a Bio-PEPA Model 109

Though not exact with respect to the stochastic simulation, these results are satisfac-
tory enough for the kinds of semi-quantitative properties we are interested in analysing
in the next section. Exact quantitative analysis via CTMC, instead, is infeasible for sys-
tems such as the model we consider here. Indeed, the time needed for obtaining the
results shown in Fig. 6 ranges from a couple of seconds to hours, and for H = 250 the
size of the CTMC already becomes prohibitively large to analyse.

Semi-quantitative Properties. Using again the “trade-off” step sizes H = 200 and H =
300, we consider here a few more semi-quantitative properties of the two
sub-models.

For instance, we are interested in analysing the impact that the different affinities of
ligand/receptor pairs have on the consumption of the different ligands and receptors and
on the relative amount of type I and type II receptors formed.

Though this kind of analysis is clearly quantitative (since it involves calculating
probabilities and, hence, numbers of molecules), we consider such properties semi-
quantitative because we are not interested in computing absolute values, but rather in
knowing relative values with respect to each other.

The following properties measure the probability with which the amount of each
molecular species never changes from the initial amount.

P=?[G (LIF = NU LIF)]→ 7.53 · 10−2

P=?[G (OS M = NU OS M)]→ 1.45 · 10−6

P=?[G (gp130 = NU gp130)] → 0

P=?[G (LIFR = NU LIFR)]→ 1.24 · 10−4

P=?[G (OS MR = NU OS MR)]→ 4.56 · 10−4

From the obtained results we notice, for instance, that gp130 is always used (indeed,
it is necessary to form all receptor dimers), and that it is more likely for OSM to be
consumed than LIF (indeed, LIF is only used in the formation of one type of receptor
dimers).

We measure also the probability with which the amount of each molecular species
reaches its lower bound.

This group of properties shows that gp130 is totally consumed in any possible evo-
lution of the system, that LIF and OSM are never totally consumed, and that the prob-
ability of LIFR being totally consumed is equal to the probability of OSMR not being
used at all. These results mean that gp130 is the bottleneck of the system, while LIF
and OSM are present in abundance.

P=?[F (LIF = NL LIF)]→ 0

P=?[F (OS M = NL OS M)]→ 0

P=?[F (gp130 = NL gp130)] → 1

110 M.L. Guerriero

P=?[F (LIFR = NL LIFR)]→ 4.56 · 10−4

P=?[F (OS MR = NL OS MR)]→ 1.24 · 10−4

Finally, we consider the reward-based property

Ri
=?[C ≤ T]

and we verify it on the downstream sub-model for time points T ≤ 800 minutes, where
i is an integer variable referring to a transition reward structure.

In addition to state rewards, in fact, PRISM allows for the definition of reward struc-
tures which associate with each transition a cumulative reward equal to its expected
number of occurrences up to the considered time.

In Fig. 7 and Fig. 8 the expected number of occurrences for some of the reactions of
the downstream sub-model is shown.

In particular, in Fig. 7 we compare the number of occurrences of receptors/STAT3
and receptors/SOCS3 binding reactions, which shows intuitively the different binding
affinities of STAT3 and SOCS3 to the receptor dimers.

In Fig. 8, instead, we consider the number of occurrences of transport reactions of
STAT3 molecules from cytoplasm to nucleus and back. In Fig. 8(a) we compare the
number of occurrences of transport in the two directions: we count each transport from
cytoplasm to nucleus twice since STAT3 molecules are translocated in the nucleus in
dimeric form and, hence, a pair of STAT3 molecules is moved at each reaction occur-
rence. We observe that, since at system initialisation no STAT3 molecule is present in
the nucleus, the difference between the two curves in Fig. 8(a) (multiplied by the step

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 o

cc
ur

re
nc

es

Time (minutes)

receptor / STAT3_c binding
receptor / SOCS3 binding

Fig. 7. Expected number of occurrences of receptor binding reactions in the downstream sub-
model. The full red line plots the number of occurrences of reactions bind rcpt DP stat27 and
bind rcpt DP stat28, while the dashed green line plots the number of occurrences of reactions
bind rcpt DP socs62 and bind rcpt DP socs63.

Qualitative and Quantitative Analysis of a Bio-PEPA Model 111

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 o

cc
ur

re
nc

es

Time (minutes)

cytoplasm -> nucleus
nucleus -> cytoplasm

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800

Time (minutes)

(cytoplasm->nucleus - nucleus->cytoplasm) * H
STAT3_n + STAT3-PD_n*2 + PIAS:STAT3-PD_n*2

(b)

Fig. 8. Expected number of occurrences of transport reactions in the downstream sub-model. In
(a) the full red line plots twice the number of occurrences of reaction reloc stat cn58, while the
dashed green line plots the number of occurrences of reaction reloc stat nc60. In (b) the full red
line is the difference between the lines in (a) multiplied by H, while the dashed green line is
the total current amount of STAT3 molecules in the nucleus (S T AT 3 n + S T AT 3-PD n · 2 +
PIAS:STAT3-PD n · 2).

size H) must be the number of STAT3 molecules present in the nucleus. This consider-
ation is confirmed by the perfect agreement of the two curves in Fig. 8(b).

8 Related Work

Given its significant impact on various cellular processes, the gp130/JAK/STAT path-
way has been subject of numerous studies, both experimental and computational. Con-
sequently, a few variants of the pathway model have been developed in order to analyse
different aspects of it.

In [18] the focus is on the shuttling of STATs from nucleus to cytoplasm and back.
A more complete model is developed in [19], which also reports the results of a global
sensitivity analysis of parameter interaction. The role of inhibitory mechanisms is in-
stead studied in [20]. These three works are based on mathematical modelling and the
analysis is performed by ODEs solvers.

In [21], a process algebra based computational model of the gp130/JAK/STAT path-
way is presented and analysed using the BetaWB tool [31], a stochastic simulator for
the BlenX language [32]. The Bio-PEPA model we present here is strongly based on
the BlenX model described in [21], and the simulation results of the two models match
well. This agreement is particularly interesting in view of the conceptual differences
existing in the two process algebras. One of these differences concerns the treatment of
complexes, which in BlenX are considered as molecular species consisting of the indi-
vidual molecules composing them, while in Bio-PEPA they are considered as different
species not explicitly related to the sub-components. Secondly, immediate reactions can
be defined in BlenX, while they are not admitted in Bio-PEPA because of Bio-PEPA’s
underlying CTMC semantics. Finally, stoichiometric information can be specified in

112 M.L. Guerriero

Bio-PEPA, while they cannot be explicitly coded in BlenX (requiring reactions involv-
ing stoichiometry greater than one to be decomposed into multiple steps). In addition
to these theoretical differences between the languages, we mention that the focus in the
two works is quite different. In [21] the effects of a number of experiments involving
quantitative parameters are analysed and compared with experimental data. The aim of
the present work, instead, is to exploit model-checking, in addition to stochastic simu-
lation, to analyse both qualitative and quantitative properties of the model behaviour.

A few works have recently been published regarding the application of model-
checking techniques to the analysis of biochemical systems. In [33] the authors demon-
strate how the PRISM model-checker can be adopted to model and analyse biochemical
pathways, using the FGF pathway as a case study. The approach proposed in this work
differs from ours in the level of abstraction considered. Instead of taking a variable
number of levels into account, the authors of [33] consider an abstraction in which one
single copy of each involved molecular species is present and such that module variables
represent changes in state of the molecules. This approach has the evident advantage of
reducing the CTMC state space, though it might not be quantitatively correct in general:
it can be seen as a level of abstraction equivalent to ours when one single level is used
for each species. In the same work, the authors also consider a number of state space
reduction techniques, some of which (based on lumpability and symmetry reduction)
are exact, meaning that the behaviour of the reduced CTMC is preserved.

The notion of CTMC with levels of concentrations has been introduced in [34], in
which the ERK signalling pathway was used as a case study, and in [35] the PRISM
model-checker is used to analyse it. Following these works, the notion of discrete levels
of concentrations has been adopted also in IDD-CSL [36], an Interval Decision Diagram
based model-checker for stochastic Petri nets, which allows for the verification of CSL
properties.

In [37] the authors propose a framework, based on Petri nets, in which qualitative
and quantitative (stochastic and continuous) analysis of biochemical pathways are inte-
grated. Qualitative properties such as boundedness, liveness and reversibility are con-
sidered, in addition to the possibility to check for P- and T-invariants, and behavioural
properties are verified by probabilistic model-checking.

Finally, BIOCHAM [38,39] is a framework for modelling, simulating and analysing
biochemical systems, in which different semantics (differential, stochastic, discrete, and
boolean) are considered. BIOCHAM allows for the verification of temporal proper-
ties expressed in the Computation Tree Logic (CTL) by using the NuSMV model-
checker [40].

9 Conclusions and Future Work

In this work we have used the gp130/JAK/STAT signalling pathway as a case study
for modelling and analysis using the Bio-PEPA process algebra. Among the possible
analysis methods made available by the Bio-PEPA Workbench, we have considered
stochastic simulation and model-checking.

The results obtained by simulation agree well with existing mathematical and com-
putational models. The application of the model-checking approach to the analysis of

Qualitative and Quantitative Analysis of a Bio-PEPA Model 113

the pathway model, though limited by the state space explosion problem, provided us
with some useful insight. First, it can be used for consistency checking, in order to guar-
antee the satisfaction of essential properties and, therefore, the absence of modelling er-
rors. Second, it allows us to check for the satisfaction of semi-quantitative behavioural
properties over the whole model, without the need for computing average values over a
number of stochastic simulation runs.

In order to deal with the computational complexity of model-checking, we have
subdivided the pathway model into two distinct sub-models. The time-series analysis
obtained by analysing the sub-models individually via model-checking shows a reason-
ably good agreement with the behaviour obtained via stochastic simulation. The issue
of modularisation of models of biochemical systems is a complex one. In this work
we have adopted a simple approach which is adequate for this particular case study. A
general approach for modularisation of models deserves additional study, in particular
in view of the possible performance improvement which this technique could bring in
model-checking.

Finally, in order to fully exploit the framework provided by Bio-PEPA further analy-
sis could be performed on the MATLAB model generated by the Bio-PEPA Workbench
using ODEs based methods to perform, for instance, bifurcation, stability, and continu-
ation analysis.

Acknowledgments. The author wishes to thank Jane Hillston for her helpful com-
ments. This research is supported by the EPSRC grant EP/E031439/1 “Stochastic Pro-
cess Algebra for Biochemical Signalling Pathway Analysis”.

References

1. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical pro-
cesses using the π-calculus process algebra. In: Proceedings of Pacific Symposium on Bio-
computing (PSB 2001), vol. 6, pp. 459–470 (2001)

2. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: an Ab-
straction for Biological Compartments. Theoretical Computer Science 325(1), 141–167
(2004)

3. Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V., Schachter,
V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

4. Priami, C., Quaglia, P.: Operational patterns in Beta-binders. In: Priami, C. (ed.) Transac-
tions on Computational Systems Biology I. LNCS (LNBI), vol. 3380, pp. 50–65. Springer,
Heidelberg (2005)

5. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1) (2004)
6. Regev, A., Shapiro, E.: Cells as Computation. Nature 419(6905), 343 (2002)
7. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for bio-

chemical networks. In: Proc. of FBTC 2007. ENTCS, vol. 194, pp. 103–117 (2008)
8. Ciocchetta, F., Hillston, J.: Bio-PEPA: A Framework for the Modelling and Analysis of Bio-

logical Systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)
9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University

Press, Cambridge (1996)
10. Ciocchetta, F., Hillston, J.: Calculi for Biological Systems. In: Formal Methods for Compu-

tational Systems Biology (SFM 2008). LNCS, vol. 5016, pp. 265–312. Springer, Heidelberg
(2008)

114 M.L. Guerriero

11. Bio-PEPA Workbench Home Page:
http://www.dcs.ed.ac.uk/home/stg/software/biopepa/

12. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regu-
latory networks. J. Bioinf. Comp. Biol. 3(2), 415–436 (2005)

13. PRISM Home Page: http://www.prismmodelchecker.org
14. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov

chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)
15. Underhill-Day, N., Heath, J.: Oncostatin M (OSM) Cytostasis of Breast Tumor Cells: Char-

acterization of an OSM Receptor β-Specific Kernel. Cancer Research 66(22), 10891–10901
(2006)

16. Heinrich, P., Behrmann, I., Haan, S., Hermanns, H., Müller-Newen, G., Schaper, F.: Princi-
ples od interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20
(2003)

17. Kisseleva, T., Bhattacharya, S., Braunstein, J., Schindler, C.: Signaling through the
JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002)

18. Swameye, I., Müller, T., Timmer, J., Sandra, O., Klingmüller, U.: Identification of nucleocy-
toplasmic cycling as a remote sensor in cellular signaling by databased modeling. PNAS 100,
1028–1033 (2003)

19. Mahdavi, A., Davey, R.E., Bhola, P., Yin, T., Zandstra, P.W.: Sensitivity Analysis of In-
tracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control. PLoS
Computational Biology 3(7), 1257–1267 (2007)

20. Singh, A., Jayaraman, A., Hahn, J.: Modeling Regulatory Mechanisms in IL-6 Transduction
in Hepatocytes. Biotechnology and Bioengineering 95(5), 850–862 (2006)

21. Guerriero, M.L., Dudka, A., Underhill-Day, N., Heath, J.K., Priami, C.: Narrative-based
computational modelling of the Gp130/JAK/STAT signalling pathway. BMC Systems Bi-
ology 3(1), 40 (2009)

22. Bio-PEPA Home Page: http://www.biopepa.org/
23. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-

cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

24. Dizzy Home Page: http://magnet.systemsbiology.net/software/Dizzy
25. Aziz, A., Kanwal, K., Singhal, V., Brayton, V.: Verifying continuous time Markov chains.

In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer,
Heidelberg (1996)

26. Baier, C., Katoen, J.P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999.
LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)

27. Saez-Rodriguez, J., Kremling, A., Gilles, E.: Dissecting the puzzle of life: modularization of
signal transduction networks. Computers and Chemical Engineering 29, 619–629 (2005)

28. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Bullinger, E., Allgöwer, F., Gilles, E.: Re-
duction of mathematical models of signal transduction networks: simulation-based approach
applied to EGF receptor signalling. Systems Biology 1(1), 159–169 (2004)

29. Monteiro, P., Ropers, D., Mateescu, R., Freitas, A., de Jong, H.: Temporal logic patterns for
querying dynamic models of cellular interaction networks. ECCB 24, 227–233 (2008)

30. Gibson, M., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. The Journal of Chemical Physics 104, 1876–1889 (2000)

31. Dematté, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool to study
the dynamics of biological systems. Briefings in Bioinformatics 9(5), 437–449 (2008),
http://www.cosbi.eu/Rpty_Soft_BetaWB.php

http://www.dcs.ed.ac.uk/home/stg/software/biopepa/
http://www.prismmodelchecker.org
http://www.biopepa.org/
http://magnet.systemsbiology.net/software/Dizzy
http://www.cosbi.eu/Rpty_Soft_BetaWB.php

Qualitative and Quantitative Analysis of a Bio-PEPA Model 115

32. Dematté, L., Priami, C., Romanel, A.: The BlenX Language: A Tutorial. In: Bernardo,
M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer,
Heidelberg (2008)

33. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic Model
Checking of Complex Biological Pathways. Theoretical Computer Science 319, 239–257
(2008)

34. Calder, M., Gilmore, S., Hillston, J.: Modelling the Influence of RKIP on the ERK Sig-
nalling Pathway Using the Stochastic Process Algebra PEPA. In: Priami, C., Ingólfsdóttir,
A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII.
LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

35. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using
continuous time Markov chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Compu-
tational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg
(2006)

36. The Idd-CSL Home Page:
http://www-dssz.informatik.tu-cottbus.de/software/software.html

37. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In:
Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264.
Springer, Heidelberg (2008)

38. The BIOCHAM Home Page: http://contraintes.inria.fr/BIOCHAM/
39. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks

in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chem-
istry 4(2), 64–73 (2004)

40. NuSMV Home Page: http://nusmv.irst.itc.it/

http://www-dssz.informatik.tu-cottbus.de/software/software.html
http://contraintes.inria.fr/BIOCHAM/
http://nusmv.irst.itc.it/

Rule-Based Modelling and Model Perturbation

Vincent Danos1, Jérôme Feret2, Walter Fontana3,
Russ Harmer4, and Jean Krivine3,5

1 University of Edinburgh
2 INRIA–ENS–CNRS

3 Harvard Medical School
4 CNRS–Université Paris Diderot

5 Institut des Hautes Etudes Scientifiques

Abstract. Rule-based modelling has already proved to be successful for
taming the combinatorial complexity, typical of cellular signalling net-
works, caused by the combination of physical protein-protein interactions
and modifications that generate astronomical numbers of distinct molec-
ular species. However, traditional rule-based approaches, based on an
unstructured space of agents and rules, remain susceptible to other com-
binatorial explosions caused by mutated and/or splice variant agents,
that share most but not all of their rules with their wild-type counter-
parts; and by drugs, which must be clearly distinguished from physio-
logical ligands.

In this paper, we define a syntactic extension of Kappa, an estab-
lished rule-based modelling platform, that enables the expression of a
structured space of agents and rules that allows us to express mutated
agents, splice variants, families of related proteins and ligand/drug in-
terventions uniformly. This also enables a mode of model construction
where, starting from the current consensus model, we attempt to repro-
duce in numero the mutational—and more generally the ligand/drug
perturbational—analyses that were used in the process of inferring those
pathways in the first place.

1 Introduction

In recent years, there has been extensive development in the use of modelling to
understand cellular signalling networks (see [1, 2, 3, 4] among many others). To
date, this line of work has focussed almost exclusively on describing wild-type
behaviours, i.e. it deals with the interactions between proteins that take place
in a normal healthy cell. This is already highly non-trivial since these signalling
networks employ a strategy of binding, modification and unbinding between pro-
teins that generates astronomical numbers of non-isomorphic molecular species.
This poses an essentially unsolvable scalability problem for any modelling ap-
proach, such as ODE-based chemical kinetics or Petri nets, based on exhaustively
enumerating reactions between fully-specified molecular species.

In recent years, a new modelling approach has been used to tame this com-
binatorial explosion, namely agent- or rule-based modelling [5]. In this setting,

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 116–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Rule-Based Modelling and Model Perturbation 117

molecular species are left implicit; instead, agents are used to represent not com-
plexes but their constituent proteins. Each type of agent has a name and a set
of sites. Instead of reactions, we write rules that mention names of agent types
and some, but not necessarily all, of their respective sites. In this way, and unlike
reactions, a rule need only make explicit those aspects of the agents upon which
it acts that are actually relevant to the interaction being described by the rule.
So reaction-based models leave agents implicit, considering them at best as an
aggregation of molecular species, whereas rule-based models make agents explicit
but the reactions implicit, instead considering their rules to be aggregations of
reactions.

It should be noted that such wild-type models, be they reaction- or rule-based,
can already handle situations where, typically as a result of gene amplification or
ablation, a protein is either over- or under-expressed. Under such circumstances,
the response of a cell to external conditions may be exaggerated or attenuated
as a consequence of the induced perturbation of mass-action kinetics and of the
nature and numbers of complexes that exist in the cell’s resting state (cf. [6]).
This does not bring about new protein-protein interactions, it only affects the
relative importance of the wild-type interactions, e.g. if protein X has a binding
partner Y that is over-expressed, X will be attracted to the greater than usual
mass of Y s to the detriment of its binding with other partners.

However, many disease states are the result of genetic mutations that build
incorrect proteins, with aberrant behaviour, rather than the straightforward
modulation of protein expression levels (although in some cases the two de-
fects co-exist and synergize). Such mutant proteins may only differ by one or
two amino acids from their wild-type cousins and yet have radically different
behaviour, e.g. erbB1 with the single substitution L858R, which exists in many
kinds of solid tumour, has a constitutively active kinase domain, as does B-Raf
with the single V600E mutation. The flip side of this is that much of the wild-
type behaviour of a protein is actually shared with such mutants, for instance
a binding domain far from any site of mutation will quite likely retain its usual
functionality. This poses a further serious challenge to modelling since mutated
proteins therefore duplicate large chunks of an already highly combinatorial wild-
type network, while also potentially adding interactions.

To tackle these issues, we introduce a syntactic extension of Kappa that allows
the definition of a structured space of agents. Agents can either be declared ab
initio or derived from existing agents in a manner reminiscent of object-oriented
programming (particularly the prototype-based approach). In the latter case, the
new agent can gain, lose, rename, mutate or duplicate sites of the agent from
which it is derived. This organizes the space of agents hierarchically and thus
enables us to write generic rules that mention agents that have many descendants
in the hierarchy. These generic rules act as shorthand for sets of normal Kappa
rules; they capture behaviours shared by splice variants (e.g. p46, p52 and p66
Shc), genetically related proteins (e.g. ERK1 and ERK2) or mutated proteins.
In particular, the conciseness of generic rules enables us to write and analyze
large Kappa models far more easily. We illustrate this with a small generic rule

118 V. Danos et al.

set (15 rules) for the erbB receptor network that, once expanded into Kappa,
has over 300 rules and which grows considerably larger still if we add in drug
interventions and mutated erbB agents.

In summary, our agent hierarchy allows us to write large models in a com-
fortable way, to navigate the perturbation space of the model (ligands, muta-
tions and drugs) and investigate the consequences of chosen perturbations, i.e.
those for which we have experimental data, with the static and causal analy-
ses of Kappa. This is particularly interesting for mutational perturbations as
these enable us to reproduce, in numero, biochemical experiments that employ
engineered mutations. In this way, our rules—a formalization of the consensus
pathway assembled by many biochemical experiments—can be tested by check-
ing, in numero, whether perturbing them with mutated agents—representing
the engineered mutations—matches those experimental results. Of course, this
procedure can never “prove” that a rule is correct but it can be used to reject
rules that lead to behaviour incompatible with experimental results. It can also
point to the existence of missing links in a model if it throws up false negatives
with respect to the experimental data, e.g. it predicts some but not all experi-
mentally observed phosphorylated sites. In other words, it enables us to put our
assumptions under the microscope and verify that the consensus wild-type path-
way behaves as expected when subjected to perturbations—and if it doesn’t, we
will need to change our consensus model.

Contribution and relation to existing work. Rule-based modelling is one branch
of a rich literature based on the idea of representing proteins and their interac-
tions as concurrent processes, thereby viewing a signalling network as a kind of
massively distributed system. This was initially expressed in the formalism of
π-calculus [7,8] but, since then, a number of variants of π-calculus [9,10] and of
other languages for distributed systems [11, 12, 13, 14, 15, 16, 17] have also been
proposed for representing various aspects of biological processes, notably the
importance of causality and compartments.

Rule-based modelling, rather like the BWB/BlenX system [18], was devel-
oped out of these ideas but, instead of being based on some prior formalism for
general distributed systems, is a domain-specific modelling language for biologi-
cal processes. Our language Kappa is particularly closely related to BioNetGen
(BNG) [19]. Although the original aims of BNG were rather different—it was
conceived as a language for describing systems of ODEs in a higher-level fashion,
rather than as a modelling language in its own right—the two approaches have
much in common and, in particular, our agent hierarchy proposal would work
just as well in BNG as in Kappa.

Despite these many advances, to the best of our knowledge none of the above-
cited approaches, including Kappa and BNG, can deal with all the potential
sources of combinatorial explosion in signalling models. Our extension of Kappa
with agent hierarchies directly addresses this problem in the specific context of
rule-based modelling. Given that mutating agents, via small changes in their
sites and thus interaction capabilities, is central to our proposal, it would be
interesting to investigate the possible connections of this work with the recent

Rule-Based Modelling and Model Perturbation 119

use of mutations on the structure of BlenX programs in order to evolve networks
via genetic algorithms [20]. However, it should be stressed that our work was
originally intended to facilitate the construction (and documentation) of large
models in a way that makes explicit any underlying uniformities, rather than in
directly enabling an evolutionary analysis of networks.

2 Kappa and Agent Variants

A Kappa [21] model consists of a collection of concrete agents and rules. Each
agent, or more properly agent type, has a name, an associated set of sites, each
with an optional internal state, and a copy number. An atomic rule falls into one
of five classes—a binding between two agents, an unbinding, the modification of
an agent, the creation of an agent or the deletion of an agent—but a rule can
also be non-atomic, combining several actions.

Given a Kappa model, its contact map, which is computed statically from the
rules, specifies which agents can bind and on which sites. (See e.g. Figs. 1, 4.) On
the other hand its influence map, also computed statically, specifies the causal
relations of activation and inhibition between rules, that is to say a rule activates
(inhibits) another if its application may add (subtract) from the set of instances
of the other one. We will make use of the static analysis of rule accessibility [22]
which identifies whether a rule is dead, i.e. cannot be applied, or is potentially
applicable; in the latter case, we will use the story sampler [23] to extract, from
stochastic simulations [24] of the model, the chains of rule firings that can lead
to an actual application of the rule. If we find such a story, this confirms that
the static analysis didn’t produce a false positive.

The concrete syntax we use to present agents, agent variants and rules should
be self-explanatory (although we stress that it can be formalized). One key thing
to remember, as said earlier, is that in the definition of a rule one has the option
of not mentioning some sites of an agent. In situations where agents have up
to a dozen different sites (e.g. the members of the EGF receptor family), this
is key to obtaining concise models. This, combined with the ability to mention
generic agents, allows us to express enough uniformities for also obtaining concise
descriptions of perturbed models.

2.1 Agent Variants

A variant on an agent always introduces a new name and can arise in sev-
eral different ways: it can lose or mutate an existing site, gain a new site or
rename/duplicate an existing site. To represent these possibilities formally, we
need only introduce two perturbation operations on agents, one to add a site,
the other to replace a site with a set of sites. The latter operation subsumes site
deletion (by replacing a site with the empty set), site renaming (replacing with
a singleton set) and duplication.

For example,

%gen: A(s,t)
%gen: B = A[+u s\{} t\{t1,t2}]

120 V. Danos et al.

declares the agent A with sites s and t and derives from it an agent B with sites
t1, t2 and u. This defines a tree of agent variants ; most nodes of the tree are
labelled ‘gen’ for generic but leaves of the tree can be labelled ‘conc’ for concrete
which signals that that agent can be used in a Kappa model. Note that we have
a second tree structure that traces site linkages: any site can be traced back to
either a site addition or to a site declared ab initio; and conversely, following
the linkages the other way, a site in agent A maps to a set of sites in any given
descendant agent B (empty if the site has been deleted, singleton if it has just
been renamed). This is important for compiling generic rules into a bona fide
Kappa model.

Mutation of a site is represented by the compound operation of deleting the
original site and, if desired, adding a new site to “replace” it. If the desired
result of the mutation is simply the loss of certain wild-type interactions, the
loss of the site is enough and no such new site need be added; but sometimes
mutations result in new interactions becoming possible in which case we would
need to introduce a new site in order to write the new rules expressing the
novel interactions of the mutated agent, e.g. the tyrosine kinase inhibitor er-
lotinib binds to the L858R mutated erbB1 with much higher affinity than to the
wild-type receptor.

2.2 A First Example

Let us make this more concrete with an example extracted from a larger model of
the MAPK cascade. We start with two basic agent types, MAP2K and MAPK,
from which we would like to derive some more specific agent types. Our first
declarations introduce the starting agents:

%gen: MAP2K(D,S~u,ST~u)
%gen: MAPK(CD,T~u,Y~u)

Formally, these declarations play a role analogous to that of the axioms in any
formal language and, as in that kind of setting, we use them as the starting point
to introduce more subtle objects. In this case, we wish to consider the three
common kinds of MAPK protein—ERKs, JNKs and p38s—and their respective
MAP2K upstream activators—MEKs, JNKKs and p38 kinases.

To do this, we first introduce three variants of MAPK and three of MAP2K:

%gen: ERK = MAPK[+FXFP]
%gen: JNK = MAPK
%gen: p38 = MAPK

Note that, while ERK gains a new site FXFP, an ERK-specific binding site
for immediate early gene products such as Fos and Jun [25], JNK and p38
simply inherit the sites of MAPK without making any changes. As we will see
shortly, the introduction of these three variants allows us to express concisely
the specificity of binding between these three distinct families of MAPKs and
their cognate upstream activators. Note also that these three agents are still

Rule-Based Modelling and Model Perturbation 121

generic as they represent families of proteins: ERK covers two proteins (ERK1
and ERK2), JNK covers three (JNK1, JNK2 and JNK3) and p38 covers four
(p38alpha/beta/gamma/delta); and several of those proteins have multiple splice
variants.

We formalize this by a further layer of variants:

%conc: ERK1 = ERK[T\{T202} Y\{Y204}]
%conc: ERK2 = ERK[T\{T185} Y\{Y187}]

We show only the case of ERK1 and ERK2 as those of JNK and p38 are com-
pletely analogous. Recall that we use the ‘conc’ tag (rather than ‘gen’) to make
explicit the fact that ERK1 and ERK2 are concrete, not generic, agents and, as
such, can be used in a Kappa model.

Note that we have renamed (via singleton duplications) the sites of ERK to
include specific information about the exact residue numbers of their phosphory-
latable sites; this is not essential, of course, but does illustrate the documentary
power of agent variants over and above their role of structuring the space of
agents.

We must also introduce generic and concrete variants of MAP2K. Each variant
covers two proteins: MEK1 and MEK2 for MEK; MEK4 and MEK7 for JNKK;
and MEK3 and MEK6 for p38K. (Again, for the sake of simplicity, we only show
the concrete variants of MEK.)

%gen: MEK = MAP2K
%gen: JNKK = MAP2K
%gen: p38K = MAP2K

%conc: MEK1 = MEK[S\{S218} ST\{S222}]
%conc: MEK2 = MEK[S\{S222} ST\{S226}]

Already, the simple fact of hierarchically structuring the agents under consid-
eration yields a useful object in its own right that documents, in a completely
formal way, a significant amount of biological knowledge (about exactly how
related proteins relate to each other) that can easily be found in several online
databases but which, in that medium, remains informal and purely descriptive,
whereas, in this formalized setting, has already been subjected to an initial step
of processing and structuring. It also includes a convenient documentation of the
specific sites of interest, e.g. the precise identities of phosphorylation sites, that
are otherwise rather cumbersome to keep track of.

Moreover, the creation of this agent hierarchy also facilitates the process of
writing rules by enabling us to write them at the appropriately generic level. It
eases the cognitive burden of writing rules by exposing clearly the similarities
and differences between various agent types. More concretely, it allows us to
avoid writing essentially the same rule many times for closely related agents
and, as such, also eliminates the risk of forgetting cases (a very common mistake
when developing large rule sets). We turn to this in the next subsection where
we will complete the MAPK example.

122 V. Danos et al.

2.3 Generic Rules

We have seen how we can structure agents hierarchically with concrete agents at
the leaves and generic agents above them. In this context, a normal (or concrete)
Kappa rule is a rule that only mentions concrete agents. A generic rule is syn-
tactically just like a normal rule but mentions one or more generic agents. The
purpose of such a rule is to be expanded into a set of concrete rules by replacing
each generic agent G in the rule with all appropriate concrete agents C below
it in the hierarchy. However, this expansion is modulated by the changes made
to G’s sites in C; notably, if site s of G is deleted in C, then no rule testing the
existence of s can instantiate G to C. And we must also use the site linkages
between C and G to deal with any renaming and duplication of G’s sites in C.
So, were we to write the single generic rule

MAP2K(D), MAPK(CD) <-> MAP2K(D!0), MAPK(CD!0)

this would “incorrectly”, i.e. not as we wish, expand to a collection of concrete
rules where all concrete descendants (in the agent hierarchy) of MAP2Ks can
bind with all concrete descendants of MAPKs, e.g. JNK2 could bind ERK1.
This is the reason why, in the previous section, we introduced a second layer of
generic agents—ERK, JNK, p38; MEK, JNKK, p38K. Given that, we can write
the following three generic rules that properly respect the desired specificity of
binding between MAP2Ks and MAPKs.

MEK(D), ERK(CD) <-> MEK(D!0), ERK(CD!0)
JNKK(D), JNK(CD) <-> JNKK(D!0), JNK(CD!0)
p38K(D), p38(CD) <-> p38K(D!0), p38(CD!0)

These three generic rules expand to eighteen concrete rules if we take ERK1/2,
JNK1/2/3 and p38α/β/γ/δ as concrete agents. If we included the many splice
variants of the JNKs and p38s, the same three generic rules would expand to
over thirty concrete rules. This illustrates the flexibility of our approach whereby
a given generic rule can expand differentially depending on the background of
concrete agent variants we select. In particular, a single rule set can be seen as
existing at many levels of detail—and this is easily tunable by the modeller as a
function of his/her current needs.

There is, however, an associated cost, over and above the obvious need to
recompile one’s generic rules, when changing the level of detail of a model: under
certain circumstances, this will lead to a degradation in the performance of
stochastic simulation. The reason for this is that the cost of an event in the
simulator depends, in part, on the maximum outdegree of the “wake-up map”, a
graph derived from the rule set which keeps track of which rules are reactivated
when a rule fires [24]. In the worst-case scenario, our generic rule expansion
causes a “blow up” of the wake-up map with concomitant degradation in the
simulator’s performance.

More generally, our mechanism of using an agent hierarchy and generic rules
to generate a concrete rule set allows the Kappa modeller a finer control of the
granularity of his/her rules. Consider for example an agent A that can bind two

Rule-Based Modelling and Model Perturbation 123

agents, B1 or B2, and that binding with either is sufficient (and necessary) for
A to bind a further agent C. To express this in Kappa, we would have to write
two rules for A binding C; one for the case of B1, the other for B2. This isn’t
too bad—but if we have not two but a large number of activating ligands of
A, it rapidly becomes tedious and error-prone to write the rule sets. By using
a generic agent B, representing the class of A-activating ligands, we write just
one generic rule that covers all cases (albeit requiring recompilation after the
addition of new concrete descendants of B). Or to put it another way, we think
of the generic agent B as generating a coarse-graining of the model’s molecular
species that no longer distinguishes between the various concrete descendants of
B (i.e. B1, B2, etc).

With more complex agent hierarchies, one can express further, more subtle
coarse-graining effects such as the MAP2K-MAPK binding specificity example
above. However, it should be admitted that the example of MAPK is particularly
conducive to a treatment of this kind (which is why we use it as our initial
example!) and that not all signalling pathways exhibit the same degree of sharing
of structure found here, as expressed by the highly generic nature of the rules.
This in itself is a useful aspect of our language extension in that it enables us to
recognize, formally, the fact that a pathway is highly generic or, on the contrary,
particularly obtuse and dependent on many specific details. Indeed, the purpose
of this extension is not to obtain a maximal “compression” of a concrete rule set
into as few generic rules as possible; rather it is to illuminate the structure of a
model by expressing it at an appropriate level of abstraction.

3 The Perturbation Space

Now that we have shown, with the MAPK example, how our parsimonious lan-
guage extension enables rapid development of large rule sets via the mechanism
of generic rules, let us turn to the main problem of interest here which is to
build realistic models incorporating multiple erbB ligands and receptors, mu-
tated forms of those receptors and monoclonal antibodies (mAbs) and tyrosine
kinase inhibitors (TKIs) targeting those receptors. Unlike the previous MAPK
model where the use of agent variants was convenient but hardly indispensable,
in this case it would be a nightmarish process to write the rules directly in
Kappa. As we will see, the use of agent variants not only helps to structure the
model in a human-understandable manner, it also radically tames the combi-
natorial explosions caused by having multiple ligands and receptors and by the
introduction of mutations.

We first define our agent hierarchy. It has two roots, erbB for the receptors
and erbL for the ligands, each with four children.

%gen: erbB(L,CR,N,atp,AS,C,Y~u)
%gen: erbBL(L)

The next layer of agents splits the space of ligands into four, each with a different
repertoire of receptors to which it binds.

124 V. Danos et al.

%gen: erbBL1 = erbBL
%gen: erbBL14 = erbBL
%gen: erbBL34 = erbBL
%gen: erbBL4 = erbBL

Note that a hierarchical presentation of a model has a degree of intensionality
and, in particular, is of course not unique—indeed, the compiled model is actually
a presentation of itself. This begs the remark that a presentation is both a
way to achieve compactness of description and to document knowledge about
relationships between agents that disappears in the compilation process.

We also need variants for the four erbB receptors. Note that we introduce
them as generic agents and only later specialize them as wild-types and mutant
ones (only erbB1-WT is shown here).

%gen: erbB1 = erbB[Y\{Y1016, Y1092, Y1110, Y1172, Y1197}]
%gen: erbB2 = erbB[L\{}]
%gen: erbB3 = erbB[N\{}]
%gen: erbB4 = erbB
%conc: erbB1_WT = erbB1

To keep our presentation uncluttered, we have only shown the full repertoire of
phosphorylation sites for erbB1; in the full model, the other receptors also have
a similar complement of Y sites. Note though that erbB2 loses the site L and
erbB3 the site N . Finally, let us note the concrete ligands. In what follows, we
will in fact only consider EGF and HRG.

%conc: EGF = erbBL1
%conc: TGFalpha = erbBL1
%conc: AR = erbBL1

%conc: BTC = erbBL14
%conc: HB-EGF = erbBL14
%conc: ER = erbBL14

%conc: HRG = erbBL34
%conc: NRG2 = erbBL34

%conc: NRG3 = erbBL4
%conc: NRG4 = erbBL4

3.1 The Consensus Model

We build our consensus model on the basis of a conservative reading of the
literature; see e.g. [26,27]. Specifically, we consider that ligands bind monomer
receptors which can then externally (on the trans-side of the plasma membrane)
dimerize; this in turn enables the formation of asymmetric dimers that lead to
receptor binding on the cis-side and cross-phosphorylation.

Rule-Based Modelling and Model Perturbation 125

erbBL1(L), erbB1(L,CR) -> erbBL1(L!0), erbB1(L!0,CR)
erbBL14(L), erbB1(L,CR) -> erbBL14(L!0), erbB1(L!0,CR)
erbBL14(L), erbB4(L,CR) -> erbBL14(L!0), erbB4(L!0,CR)
erbBL34(L), erbB3(L,CR) -> erbBL34(L!0), erbB3(L!0,CR)
erbBL34(L), erbB4(L,CR) -> erbBL34(L!0), erbB4(L!0,CR)
erbBL4(L), erbB4(L,CR) -> erbBL4(L!0), erbB4(L!0,CR)

These six generic rules expand into a significant number of concrete Kappa rules
in a manner that depends on the level of detail requested in the identities of
ligands. For example, although there are three ligands of type erbBL1 and three
of type erbBL14, the two ligands of type erbBL34 actually exist in multiple
splice variants, as do those of type erbB4. In any case, at the very least these
six generic rules give rise to fifteen concrete rules; and, of course, we also need
the unbinding rule:

erbBL(L!0), erbB(L!0) -> erbBL(L), erbB(L)

Note that this generic unbinding rule will generate concrete rules that will never
apply, e.g. a descendant of erbBL1 unbinding erbB3. However, these dead rules
are detected by our static analysis and so can be removed (if desired) from the
generated rule set.

erbBL(L!1), erbB(L!1,CR), erbBL(L!2), erbB(L!2,CR) -> \
erbBL(L!1), erbB(L!1,CR!0), erbBL(L!2), erbB(L!2,CR!0)
erbBL(L!1), erbB(L!1,CR), erbB2(CR) -> \
erbBL(L!1), erbB(L!1,CR!0), erbB2(CR!0)

The first of these generic rules deals with most of the cases of (external) dimer-
ization. The only difficulty comes from the fact that erbB2 has no ligand binding
site L and, as such, cannot ever match the generic erbB agent in that rule which
mentions L. For this reason, we must explicitly include the second rule that
covers the case of erbB2 dimerizing with a different erbB receptor type; we do
not consider erbB2 homodimerization. These three rules generate a very large
number (well over 150) of concrete rules due not only to the fact that the erbB
generic agent is capable of multiple matches but also because the concrete erbB
agents can bind multiple ligand agents.

We next have the rule for internal (or asymmetric) dimer formation. Here,
a receptor binds its (external) dimer partner on a second site; this dimer is
asymmetric because the bond is made between the N site of one receptor and
the C site of the other. In a dimer not containing erbB3, this asymmetric dimer
can flip states; this is the second rule.

erbB(CR!1,N,C), erbB(CR!1,C) -> erbB(CR!1,N!0,C), erbB(CR!1,C!0)
erbB(CR!1,N!2,C), erbB(CR!1,N,C!2) -> erbB(CR!1,N,C!3), erbB(CR!1,N!3,C)

The final rule is for trans phosphorylation of one erbB receptor by its dimer
partner. In an asymmetric dimer, the receptor bound on site C is the activator

126 V. Danos et al.

whereas the receptor bound on N is the activated. It is thus the activator that
gets phosphorylated.

erbB(N!1,atp,AS), erbB(C!1,Y~u) -> erbB(N!1,atp,AS), erbB(C!1,Y~p)

This one generic rule expands into many concrete rules for two independent
reasons. Firstly, each erbB agent can be multiply instantiated: the first erbB
can be anything but erbB3 (whose N site was deleted) and the second can be
any of the four erbBs. Secondly, each receptor duplicates the site Y, so we get
one concrete rule per duplicand. In the context of the purely wild-type model,
neither the atp nor the AS site plays any role. This is because the rule tests only
for the existence of these sites (which always succeeds) and that they are both
unbound (which also always succeeds since we have no rules for binding to either
of them). However, as we will see shortly, these two sites do play an important
role once we take drug interventions and mutations into account.

We can neatly summarize the model so far with its contact map (Fig. 1).

Fig. 1. Contact map of the consensus model: each concrete agent is represented once
with all its sites; possible bindings are indicated by an edge joining two nodes, mod-
ifiable sites are indicated in grey. Only a restricted subset of known EGFR receptors
ligands is shown, namely EGF and HRG.

Rule-Based Modelling and Model Perturbation 127

3.2 Ligand Perturbations

The erbB receptor network clearly has a lot of flexibility in its response to ligands.
In particular, the receptor dimers that form depend on the available ligands and
the presented receptors. In addition, erbB3 has compromised capability to form
asymmetric dimers: it can activate the catalytic activity of its dimer partner but
cannot be activated by it. This phenomenon adds yet another layer of subtlety
to erbB receptor activation. For example, in a cell line expressing erbB2, erbB3
and erbB4, one would expect HRG to promote phosphorylation of erbB2, via
erbB2:erbB4 dimers, as well as phosphorylation of erbB3 and erbB4. On the
other hand, were erbB4 not expressed, one would expect only erbB3 phosphory-
lation, via erbB2:erbB3 dimers. However, this kind of reasoning rapidly becomes
highly complicated, particularly in the presence of multiple ligands, and we would
like some way of deducing, from the rule set and a choice of expression levels of
ligands and receptors, which receptors get phosphorylated (and, in some cases,
on which sites).

We can do this using static analysis of the rule set. We first write dummy
rules that detect typical molecular species of interest, e.g.

erbB2(Y~p) -> erbB2(Y~p)

We then ask the static analyser whether or not our dummy rules can fire. It
responds in one of two ways: either a categorical ‘no’ or a tentative ‘yes’. In the
case of a ‘no’, we know (since the static analysis never produces false negatives)
that our rule set cannot create the molecular species in question—starting from
the declared initial solution. In the case of a ‘yes’, we have no certainly (since
the analysis can give false positives) that the species can arise, but also no proof
that it cannot. In an attempt to confirm the ‘yes’, we then use the story sampler
to search for pathways leading to a dummy rule; if (at least) one exists, we have
proof that the species can arise.

For example, the static analysis shows that, with our rule set, erbB2 phos-
phorylation cannot take place (categorical ‘no’) under the following conditions:

– HRG only; erbB2 and erbB3 only [erbB3 cannot phosphorylate erbB2]
– HRG only; erbB1, erbB2 and erbB3 only [erbB1 cannot bind HRG]

whereas it can potentially take place (tentative ‘yes’) under the following
conditions:

– HRG only; erbB2, erbB3 and erbB4 only
– EGF and HRG; erbB1, erbB2 and erbB3 only.

To confirm this claim, we ask for stories leading to the appropriate observables.
In both cases, we find indeed a story leading to phosphorylated erbB2 which
confirms that the static analysis did not give us false positives (Figs. 2, 3).

This combination of static analysis and story sampling enables a powerful
model development process where, starting from a consensus, perhaps overly
restrictive, rule set, we investigate which observables of interest can arise under

128 V. Danos et al.

Fig. 2. Story leading to erbB2 phosphorylation by erbB4

Fig. 3. Story leading to erbB2 phosphorylation by erbB1

Rule-Based Modelling and Model Perturbation 129

which conditions. We then compare these predictions to experimental data in
order to judge the accuracy and completeness of the model. If experimental
data conflicts with the results of our analysis, this means one of two things: the
consensus model either has fatal flaws or missing links. A ‘fatal flaw’ means that
certain experimentally unobservable species can be generated by the rule set;
in other words, that the mechanism described by the rules makes unwarranted
assumptions. A ‘missing link’ corresponds to the more likely situation where an
experimentally observed species remains inaccessible with our consensus model;
this implies that the rule set lacks certain necessary rules.

For example, in the above discussion, we noted that, in our rule set with erbB1,
erbB2 and erbB3 only, HRG stimulation leads only to erbB3 phosphorylation;
whereas the combination of EGF and HRG leads to phosphorylation of all three
receptors. This constitutes an experimentally refutable prediction. In the event of
such a refutation, e.g. we observe erbB1 phosphorylation upon HRG stimulation,
we could freely postulate various new rules, check that they do indeed open
up the possibility of erbB1 phosphorylation and then compare and contrast
their effects on other observables. If a new rule creates a ‘fatal flaw’, we can
discount it; but in general this may still leave us with a choice between several
proposed new mechanisms. To decide between these would require us to find a
new, experimentally refutable prediction and do the experiment (or find it in
the literature).

We stress that this remains a human-directed model development process—
we do not consider automatically generated rules in any form—but one in which
variant mechanisms can be built and evaluated in an organized fashion.

3.3 Drug Perturbations

In recent years, particularly with the realization that deregulated erbB signalling
contributes to the development of multiple cancers, much research has focussed
on finding ways of blocking the activity of this family of receptors via drug in-
tervention. To date, two broad classes of drug have been developed: monoclonal
antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). Antibodies typically
act as classical competitive inhibitors that exert their function by binding cell
surface receptors in a way that physically obstructs their usual ligands from bind-
ing. On the other hand, TKIs behave as classical non-competitive inhibitors of
kinase activity that do not prevent substrate binding but instead block the ATP
binding site of the kinase domain, thus preventing substrate phosphorylation.

As an illustration of the ease with which we can incorporate these kinds of
pharmaceutical intervention in our modelling framework, we include rules for
C225 (cetuximab, a mAb) binding to erbB1’s site L, ZD1839 (gefitinib, a TKI)
binding to erbB1’s atp site and 4D5 (trastuzumab, another mAb) binding to
erbB2’s dimerization site CR.

C225(L), erbB1(L) -> C225(L!0), erbB1(L!0)
ZD1839(L), erbB1(atp) -> C225(L!0), erbB1(atp!0)
4D5(L), erbB2(CR) -> C225(L!0), erbB2(CR!0)

130 V. Danos et al.

As each of these molecules has a reversible inhibitory effect on the respective
receptor, we also need the accompanying unbinding rules:

C225(L!0), erbB1(L!0) -> C225(L), erbB1(L)
ZD1839(L!0), erbB1(atp!0) -> ZD1839(L), erbB1(atp)
4D5(L!0), erbB2(CR!0) -> 4D5(L), erbB2(CR)

The contact map of the system (Fig. 4) including these inhibitors makes it
clear that the antibodies (C225 and 4D5) act as competitive inhibitors: C225
competes with EGF for the ligand binding site of erbB1 and 4D5 competes for
the dimerization binding site of erbB2.

The inhibitory effect of ZD1839 shows up only in the influence map: the
rule binding ZD1839 to erbB1 inhibits all modification rules (concretely, the
phosphorylations) dependent on erbB1. This is because ZD1839 binds to the
site atp of erbB1 which must be free in order for erbB1 to modify its dimer
partner. The presence of ZD1839 thus frustrates, without completely preventing,
erbB1-dependent phosphorylation. We will return to this later.

Fig. 4. Contact map of the consensus model with antibodies (C225 and 4D5) as com-
petitive inhibitors, and ZD1839 as non-competitive inhibitor.

Rule-Based Modelling and Model Perturbation 131

It should be noted that, in our examples of inhibitors, all agents are concrete.
But, in general, drugs would also be organized, much like natural ligands, by an
appropriate agent hierarchy.

3.4 The Uses of Mutational Perturbations

So far, we have seen how the use of agent variants allows us to organize agents
hierarchically and thus write generic rules at a convenient level of granularity.
In particular, this facilitates the development of models with families of related
proteins, or proteins with multiple splice variants, that have overlapping func-
tionality. However, agent variants also enable the treatment of mutated agents
which likewise share a lot of the functionality of their wild-type cousins but which
also potentially lose some of that functionality and/or gain new functionality.

This has two immediate applications. Firstly, it allows us to build models
with a mixture of wild-type and mutated agents in order to investigate (stati-
cally or numerically) the consequences of mutations. This is particularly inter-
esting in the context of models, as described previously, that also include drug
interventions.

More subtly, it also allows us to cast a critical eye over the assumptions we
make in building our wild-type model. After all, a lot of the experimental data
from which consensus pathways have been deduced comes from mutation exper-
iments. These typically eliminate one or more phosphorylation sites in a protein
and investigate which, if any, pathways suffer from this perturbation. However,
such data can be difficult to interpret and the deduced wild-type interactions
may be incorrect.

For example, as explained in [28], one experiment showed that expressing a
kinase-dead mutant of PI3K inhibited Ras activation upon EGF stimulation;
this led the authors to propose a role for PI3K in activating Ras. But then, a
second study demonstrated that a constitutively active (and membrane associ-
ated) mutant of PI3K did not promote Ras activation, which contradicted the
conclusions of the first study. In the end, it turned out [28] that PI3K actually
inhibits Ras deactivation; so PI3K sensitizes Ras for activation but cannot by it-
self actually activate it. In more details: PI3K promotes Gab1 recruitment to the
membrane which, on EGF stimulation, strongly recruits Shp2 to the membrane;
Shp2 is a tyrosine phosphatase that dephoses the phospho-tyrosine binding sites
for RasGAP (and for PI3K!) on erbB receptors and Gab1. So Shp2 inhibits Ras-
GAP recruitment to the membrane which indirectly aids Ras activation (Sos
which activates Ras has an easier job). This gives a measure of the daunting
complexity of inferring a protein network, and as a consequence a measure of
how helpful a methodology such as the one we illustrate here can prove.

Indeed, using agent variants, we can express the kinds of (artificially) mutated
proteins used in biochemical studies and so replay numerically such experiments.
We can therefore detect, in numero, if the hypothesized wild-type network is in
fact incorrect, e.g. if we had a model for Ras activation including a rule for
‘PI3K activates Ras’, we would have been able to predict that a constitutively
active PI3K mutant would activate Ras; the fact that, experimentally, this is

132 V. Danos et al.

not observed means that that rule must be wrong. This kind of perturbational
analysis is not just useful for postdictive verification of inferences, it is also
a discipline to build a model upon such data, and to build further data to
refute predictions; this could be particularly interesting if two plausible molecular
mechanisms (candidate consensus pathways) made divergent predictions.

3.5 Testing the Wild-Type Model

In two recent papers, Kuriyan and coworkers have developed a conceptual model
of erbB receptor acivation that depends on the formation of an asymmetric
dimer [27, 29]. We have used this when writing the above rules for the wild-
type erbB network in the previous section. They developed their model using a
combination of structural and mutational data and provide convincing evidence
of its correctness by cotransfecting various artifical erbB constructs that lack
one or more of the N, C and AS sites.

We can use agent variants, in combination with static analysis, to reproduce
these kinds of results in numero. For example, kinase-dead erbB1 is obtained by
defining a variant of erbB1 with the AS site deleted; this agent can no longer
phosphorylate its dimer partner. Similarly, we can also introduce variants that
delete either the N or the C site instead of, or in addition to, the AS site.

%conc: erbB1_KD = erbB1[AS/{}]
%conc: erbB1_noN = erbB1[N/{}]
%conc: erbB1_noC = erbB1[C/{}]
%conc: erbB1_KDnoN = erbB1[AS/{} ; N/{}]
%conc: erbB1_KDnoC = erbB1[AS/{} ; C/{}]

These agents inherit all rules from wild-type erbB1 that do not mention the sites
that they lack. So erbB1 KD can freely form asymmetric dimers but phosphory-
lates nothing, whereas erbB1 noN and erbB1 noC are partially compromised in
their ability to form asymmetric dimers: the former can activate its partner and
get phosphorylated, but cannot be activated and phosphorylate its partner; the
latter can be activated by its partner and phosphorylate it, but cannot activate
its partner and get phosphorylated.

We can now use static analysis, as in the previous section, to analyze the
consequences of coexpressing pairs of these variant agents. We do this by checking
the accessibility of the rules

erbB1(N!1), erbB1(C!1) -> erbB1(N!1), erbB1(C!1)
erbB1(Y1197~p) -> erbB1(Y1197~p)

(that respectively detect the possibility of an asymmetric dimer forming and
an erbB1 receptor becoming phosphorylated) in an initial solution that includes
EGF and a choice of any (one or) two of the erbB1 variants. In particular, we
can recapitulate the results of [27] (see their Fig. 6; we use the same combination
numbers) in completely automatic fashion:

Rule-Based Modelling and Model Perturbation 133

1. wild-type erbB1 only: asymmetric homodimer accessible; phosphorylation
accessible

2. erbB1 KD only: asymmetric homodimer accessible; phosphorylation inacces-
sible

3. erbB1 KD & erbB1 noN: one asymmetric heterodimer accessible; phospho-
rylation inaccessible

4. erbB1 KD & erbB1 noC: one asymmetric heterodimer accessible; phospho-
rylation accessible

5. erbB1 KDnoC only: asymmetric homodimer inaccessible; phosphorylation
inaccessible

6. erbB1 KDnoC & erbB1 noN: one asymmetric heterodimer accessible; phos-
phorylation inaccessible

7. erbB1 KDnoC & erbB1 noC: asymmetric heterodimer inaccessible; phospho-
rylation inaccessible

8. erbB1 KDnoN only: asymmetric homodimer inaccessible; phosphorylation
inaccessible

9. erbB1 KDnoN & erbB1 noN: asymmetric heterodimer inaccessible; phos-
phorylation inaccessible

10. erbB1 KDnoN & erbB1 noC: one asymmetric heterodimer accesible; phos-
phorylation accessible

In [27], this had to be done by hand, a task that soon begins to get rather subtle,
particularly if you want to consider doubly-mutated agents and/or coexpression
of more than two receptor constructs at a time. It is thus very useful to be
able to express this situation in Kappa and rely on static analysis to detect
the impossibility/possibility of phosphorylation. Moreover, if the static analysis
announces that phosphorylation is not impossible, we can, as above, use the story
sampler to search for ways in which this can actually take place. Again, in some
cases, this is easy to do by hand but, beyond a certain degree of complexity,
it is highly desirable to have an automatic method in order to avoid making
mistakes.

These results demonstrate that our consensus model is indeed compatible with
the experimental data of Kuriyan et al. and, as such, it passes the test. This
comforts us, for now, in our choice of rules but of course provides no guarantee
that future experimental data will not invalidate some of them.

3.6 The Limits of Perturbation Testing

We mentioned earlier that our language extension shields the modeller from the
underlying rule set generated by generic rules. However, we should say that this
is only true qualitatively—if we wish to manipulate the rate constants of our
model in such a way that different concrete instantiations of one generic rule get
different kinetics, this can only be done by examining and modifying directly
the generated rule set.

134 V. Danos et al.

More generally, the modelling methodology advocated above based on static
analysis cannot be used to gauge the effect of perturbations, such as drugs, that
restrict, but don’t outlaw, the application of other rules. Or, to put it another
way, a perturbation that operates entirely at the level of kinetics is undetectable
by this method. We would however expect to observe the effects of such pertur-
bations during stochastic simulation and/or story sampling. Indeed, it would be
straightforward to observe the inhibition of erbB1’s kinase activity by tracking
that rule’s activity in the absence and presence of drugs. More ambitiously, we
could compare the relative strengths of each erbB’s kinase activity and the way
in which that is disturbed by drugs that target only one receptor; this would
require running the story sampler many times at many time points to get a sta-
tistical picture of the model’s activity profile over time. We leave this for future
work.

4 Conclusions

Even if wild-type pathways are obviously central to a systemic view of molecular
biology, modelling is not just about these. It is equally important to be able to
navigate the space of derivatives of a model for two complementary reasons.
Firstly, one needs to understand diseased conditions as natural perturbations
of the wild-type; secondly, one also needs to represent synthetic perturbations
(by genetic knock-outs, domain truncations, point mutations, etc) because they
are key in the inference of the wild-type. This is a formidable challenge because
the space of such model perturbations introduces a second kind of combinatorial
explosion. The well-studied example of the EGF receptor family (see §3) is a
powerful illustration of this fact. Now, we have to do something if we want our
modelling vessel to stay afloat in the sea of perturbations. In other words, just as
the passage from reactions to rules tames the first binding-caused explosion, we
have to find a mechanism to tame what one might call the perturbation-caused
explosion.

The fact that Kappa describes molecular interactions at the level of domain
binding and modification seems a good start, since this is the granularity at which
the engineering of perturbations in protein networks actually happens (e.g. Y
to A mutations that disable a modification). But to tackle our representation
problem, we need another ingredient, namely a syntactic extension of Kappa
that enables a clean, uniform treatment of protein families, splice variants and
mutated proteins. This is what we have proposed here. The idea is to structure
agents hierarchically so that rules can be expressed at an appropriate level of
abstraction, as generic rules, which are then automatically compiled into pure
Kappa. This eases the pain (and pitfalls) of writing large rule sets (indeed the
modeller has no need to ever look at the resulting concrete rule set, unless
he/she wishes to modify its rate constants), and as we wanted, this give means
to navigate their perturbation space.

Of course there is no magic: to work around the explosive generativity of wild-
type pathways we capture postulated regularities by using rules (if the universe

Rule-Based Modelling and Model Perturbation 135

of reactions were lacking any regularity no method could describe them anyway,
a rather grim perspective for systems biology); to work around the second source
of complexity, again we capture regularities of another kind, namely that much
of the wild-type behaviour of a protein is actually shared with its mutants and
isoforms.

We have shown that this strategy works well with our EGF example, as we
were able to neatly set a wild-type model together with a selection of derivatives.
With this model in place, one can bring the usual analysis tools of Kappa to bear
on the rule set. As we have shown further, even in the absence of quantitative
information about rates and copy numbers, one can obtain qualitative predic-
tions about the induced perturbed behaviours and thus support on a full-scale
the traditional informal inferences that are commonplace in the experimental
investigation of protein networks.

Acknowledgements. Jean Krivine is supported via grants from the Agence Na-
tionale de la Recherche (ANR-07-PHYSIO-013-01) and the Génopole Evry held
by A. Benecke of the IHES.

References

1. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of Short
Term Signaling by the Epidermal Growth Factor Receptor. J. Biol. Chem. 274(42),
30169–30181 (1999)

2. Kiyatkin, A., Aksamitiene, E., Markevich, N.I., Borisov, N.M., Hoek, J.B.,
Kholodenko, B.N.: Scaffolding protein GAB1 sustains epidermal growth factor-
induced mitogenic and survival signaling by multiple positive feedback loops. J.
Biol. Chem. 281, 19925–19938 (2006)

3. Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.:
Computational modelling of the receptor tyrosine kinase activated MAPK pathway.
Biochemical Journal 392(2), 249–261 (2005)

4. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.-D., Müller, G.: Computational model-
ing of the dynamics of the map kinase cascade activated by surface and internalized
EGF receptors. Nature Biotechnology 20, 370–375 (2002)

5. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana,
W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006(344)
(2006)

6. Maslov, S., Ispolatov, I.: Propagation of large concentration changes in re-
versible protein-binding networks. Proceedings of the National Academy of
Sciences 104(34), 13655–13660 (2007)

7. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochem-
ical processes using the π-calculus process algebra. In: Altman, R.B., Dunker,
A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6,
pp. 459–470. World Scientific Press, Singapore (2001)

8. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (September 2002)
9. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic

name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters (2001)

136 V. Danos et al.

10. Baldi, C., Degano, P., Priami, C.: Causal π-calculus for biochemical modeling. In:
Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)

11. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

12. Cardelli, L.: Brane Calculi Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

13. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
an abstraction for biological compartments. Theoretical Computer Science 325,
141–167 (2004)

14. John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the π Calculus.
Electronic Notes in Theoretical Computer Science, vol. 194(3), pp. 133–148 (2008)

15. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. In: Priami, C.,
Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational
Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg
(2006)

16. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks. Electronic Notes in Theoretical Computer Science,
vol. 194(3), pp. 103–117 (2008)

17. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling bi-
ological systems and formalizing experimental knowledge. Bioinformatics 22(14),
1805–1807 (2006)

18. Dematte, L., Priami, C., Romanel, A.: The BlenX language: a tutorial. In:
Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp.
313–365. Springer, Heidelberg (2008)

19. Blinov, M.L., Faeder, J.R., Hlavacek, W.S.: BioNetGen: software for rule-based
modeling of signal transduction based on the interactions of molecular domains.
Bioinformatics 20, 3289–3292 (2004)

20. Dematté, L., Priami, C., Romanel, A., Soyer, O.: Evolving BlenX programs to
simulate the evolution of biological networks. Theoretical Computer Science 408(1),
83–96 (2008)

21. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325(1), 69–110 (2004)

22. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract Interpretation of Cellular
Signalling Networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

23. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of
Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

24. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable Simulation of Cel-
lular Signaling Networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 139–157. Springer, Heidelberg (2007)

25. Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C., Blenis, J.: Molecular inter-
pretation of ERK signal duration by immediate early gene products. Nat. Cell
Biol. 4(8), 556–564 (2002)

26. Burgess, A.W., Cho, H.S., Eigenbrot, C., Ferguson, K.M., Garrett, T.P.J., Leahy,
D.J., Lemmon, M.A., Sliwkowski, M.X., Ward, C.W., Yokoyama, S.: An Open-and-
Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Molecular
Cell 12(3), 541–552 (2003)

Rule-Based Modelling and Model Perturbation 137

27. Zhang, X., Gureasko, J., Shen, K., Cole, P.A., Kuriyan, J.: An Allosteric Mecha-
nism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor.
Cell 125(6), 1137–1149 (2006)

28. Sampaio, C., Dance, M., Montagner, A., Edouard, T., Malet, N., Perret, B., Yart,
A., Salles, J., Raynal, P.: Signal strength dictates phosphoinositide 3-kinase con-
tribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via dif-
ferential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth
factor receptor inhibition. Mol. Cell Biol. 28(2), 587–600 (2008)

29. Zhang, X., Pickin, K.A., Bose, R., Jura, N., Cole, P.A., Kuriyan, J.: Inhibition of
the EGF receptor by binding of MIG6 to an activating kinase domain interface.
Nature 450(7170), 741 (2007)

Extended Stochastic Petri Nets
for Model-Based Design of Wetlab Experiments

Monika Heiner1, Sebastian Lehrack1, David Gilbert2, and Wolfgang Marwan3

1 Department of Computer Science, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

{monika.heiner,slehrack}@informatik.tu-cottbus.de
2 School of Information Systems, Computing and Mathematics

Brunel University, Uxbridge, Middlesex UB8 3PH, UK
david.gilbert@brunel.ac.uk

3 Otto von Guericke University & Magdeburg Centre for Systems Biology
c/o Max Planck Institute for Dynamics of Complex Technical Systems,

Sandtorstr. 1, 39106 Magdeburg, Germany
marwan@mpi-magdeburg.mpg.de

Abstract. This paper introduces extended stochastic Petri nets to
model wetlab experiments. The extentions include read and inhibitor
arcs, stochastic transitions with freestyle rate functions as well as several
deterministically timed transition types: immediate firing, determinis-
tic firing delay, and scheduled firing. The extensions result into non-
Markovian behaviour, which precludes analytical analysis approaches.
But there are adapted stochastic simulation analysis (SSA) methods,
ready to deal with the extended behaviour. Having the simulation traces,
we apply simulative model checking of PLTL, a linear-time temporal logic
(LTL) in a probabilistic setting.

We present some typical model components, demonstrating the suit-
ability of the introduced Petri net class for the envisaged application sce-
nario. We conclude by looking briefly at a classical example of prokaryotic
gene regulation, the lac operon case.

1 Motivation

This paper extends the Markovian stochastic Petri nets SPNBio as introduced
in [GHL07] to model and analyse biochemical networks. Related application
scenarios are discussed in [BGHO08], [GBHD09]. Case studies demonstrating
a unifying framework to integrate the qualitative, stochastic and continuous
paradigms can be found in [HGD08], [GHR+08], [HDG10]. Thus, SPNBio have
been proven to be useful in systems and synthetic biology. However, there are
limitations in expressivity.

Generally, biologists face the problem to design wetlab experiments to vali-
date or contradict the current understanding of the biochemical network under
investigation. In order to be better able to do so, they ask for the following
advanced features:

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 138–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extended Stochastic Petri Nets 139

– stochastic and deterministic firing behaviour within one model,
– relative and absolute timing of the transitions’ firing,
– construction of arbitrary schedules of programmed interventions.

Therefore, we are going to extend SPNBio belonging to the Markovian world
by several features supporting the comfortable modelling of wetlab experiments.
The extentions lead to the definition of biochemically interpreted Generalised
Stochastic Petri nets GSPNBio and Deterministic and Stochastic Petri nets
DSPNBio. They include read and inhibitor arcs, stochastic transitions with
freestyle rate functions as well as several deterministically timed transition types:
immediate firing, deterministic firing delay, and scheduled firing.

The extension go beyond the Markov property, which precludes analytical
analysis approaches; but there are adapted stochastic simulation analysis (SSA)
methods, ready to deal with the extended behaviour. Having the simulation
traces we apply simulative model checking of linear-time temporal logic (LTL)
in a probabilistic setting (PLTL). Simulative model checking approximates the
probability of a given temporal logic formula by considering finite sets of finite
paths through the state space. Thus, it works even for systems with infinite state
spaces.

We discuss in detail some typical model components, demonstrating the suit-
ability of the introduced Petri net class DSPNBio for the envisaged applica-
tion scenario. These components will be analysed by checking sets of stochastic
simulation traces against PLTL properties. In doing so, a special category of
properties, the so-called invariant properties, will be used to prove at the same
time the plausibility of the applied simulation algorithm.

We conclude by looking briefly at a classical example of prokaryotic gene
regulation, the lac operon case.

2 Stochastic Modelling

We assume basic knowledge of the standard notions of qualitative place/transi-
tion Petri nets, see e.g. [Mur89], [Rei82], [HGD08]. To be self-contained we start
with recalling the fundamentals of (biochemically interpreted) stochastic Petri
nets, belonging to the Markovian world, before introducing the extended notions
resulting finally into non-Markovian Petri nets.

2.1 The Markovian Case - Stochastic Petri Nets (SPN Bio)

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t, which are random variables
Xt ∈ [0,∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative

140 M. Heiner et al.

Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as they are applied for qualitative Petri nets.

For a better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its preplaces, then the local timer is set to an initial value,
which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a
race for the next firing will take place. After the firing of the winning transition,
the timers of the others still enabled transitions keep their values or are reset,
depending on the specific type of the net.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter λ, and each transition needs only its particular, generally
marking-dependent parameter λ to specify its local time behaviour. The follow-
ing definition summarises this informal introduction.

Definition 1 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPNBio = (P, T, f, v, m0), where

– P and T are finite, nonempty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t∈T

{
ht |ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ T .

– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition rate
λt(m) for the transition t, i.e. ht = λt(m). The domain of ht is restricted to the
set of preplaces of t, denoted by •t with •t := {p ∈ P |f (p, t) �= 0}, to enforce a
close relation between network structure and hazard functions. Therefore, λt(m)
actually depends on a sub-marking only.

Stochastic Petri net, Semantics. Transitions become enabled as usual, i.e. if
all preplaces are sufficiently marked. However there is a time, which has to elapse,
before an enabled transition t ∈ T fires. The transition’s firing delay (waiting
time) is an exponentially distributed random variable Xt with the probability
density function:

fXt(τ) = λt(m) · e(−λt(m)·τ), τ ≥ 0.

Extended Stochastic Petri Nets 141

The firing itself does not consume time and follows the standard firing rule of
qualitative Petri nets. The semantics of a stochastic Petri net (with exponentially
distributed firing delays for all transitions) is described by a continuous time
Markov chain (CTMC). The CTMC of a stochastic Petri net without parallel
transitions is isomorphic to the reachability graph of the underlying qualitative
Petri net, while the arcs between the states are now labelled by the transition
rates. For more details see [MBC+95], [BK02], [HGD08].

Based on this general SPNBio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
stochastic hazard function more precisely. In this paper, we are going to use the
molecule semantics with mass action transition rates. Therefore we deploy the
stochastic mass-action hazard function, which tailors the general SPNBio defini-
tion to biochemical mass-action networks, where tokens correspond to molecules:

ht := ct ·
∏
p∈•t

(
m(p)
f(p, t)

)
.

The constant ct is the transition-specific stochastic rate constant, and m(p) is the
current number of tokens on a preplace p of the transition t. The binomial coeffi-
cient describes the number of non-ordered combinations of the f(p, t) molecules,
required for the reaction, out of the m(p) available ones. In the following we
abbreviate this formula by BioMassAction(ct).

See [GHL07] for another example, reading the tokens as concentration levels.

2.2 The Non-markovian Case - Extended Stochastic Petri Nets

We start off with an overview and brief biochemical motivation before introduc-
ing two classes of extended stochastic Petri nets.

There are quite a number of various extensions based on the fundamental
stochastic Petri net class SPN , see e.g. [MBC+95], [Ger01]. The most important
additional features concern deterministically timed transitions, or deterministic
transitions for short, which come along in different types. The crucial point is
that the firing delay (waiting time) before an enabled transition fires does not
depend anymore on a random variable, but is specified by a fixed time duration.
To avoid confusion, we will call the transitions with a probabilistic firing delay,
as introduced in the former subsection, stochastic transitions, if necessary. In
summary, our extended stochastic Petri nets support the following features:

– read and inhibitor arcs,
– programmed transitions (freestyle rate functions),
– deterministic firing delay,
– scheduled transitions.

Read and inhibitor arcs. are popular add-ons enhancing modelling comfort.
Read arcs (often also called test arcs) allow to specify positive side-conditions,
e.g., if the occurrence of a subunit depends on the conformation of a protein

142 M. Heiner et al.

complex, or if a cell’s reaction to a given stimulus depends on the specific phys-
iological conditions of the cell. Contrary, inhibitor arcs allow to specify negative
side-conditions in an abstract way, e.g., if the presence of a given protein or
condition inhibits a specific reaction.

Speaking in technical terms, read and inhibitor arcs are directed arcs, going
always from places to transitions. The standard firing rule needs to be adapted
accordingly. The enabling condition is extended in the following way: if there is
an arc a with a weight w = f(p, t) connecting a place p with a transition t, then
t can be enabled in a marking m if the following conditions are also satisfied:

– a is a read arc ∧m(p) ≥ w,
– a is an inhibitor arc ∧m(p) < w.

The token situation on p is not changed by the firing of t, i.e. m′(p) = m(p) for
m

t−→ m′.

Programmed transitions are stochastic transitions with freestyle rate func-
tions. The firing rate can be specified by arbitrary mathematical functions, stored
in lookup tables, if necessary.

To give an example, a popular phenomenon in biology is cooperativity. A
biochemical reaction may be controlled by an highly non-linear, cooperative
mechanism. Simple versions of cooperativity may be represented by complicated
Petri net structures, but there are limits. The kinetic mechanisms of a coop-
erative behaviour are often not completely understood. However, the acquired
understanding must be included in the model to get a coherent system model.

Deterministic firing delay is the outstanding characteristics of deterministic
transitions. The delay is always relative to the time point where the transition
gets enabled. There is one popular special case, the zero delay, for which the
immediate transitions are introduced. Immediate transitions have always highest
priority, which creates a subtle difference between an immediate transition and
a deterministic transition with zero firing delay: if there is a conflict between the
two, the immediate transition gets priority.

We will use the function TimedFiring(delay) to assign the delay constant.

Scheduled transitions belong to the deterministic transitions. The determin-
istic firing occurs according to a schedule specifying absolute points of the simu-
lation time. A schedule can specify just a single time point, or equidistant time
points within a given interval, triggering the firing once or periodically. However,
transitions only fire at their scheduled time points if they are enabled. Scheduled
transitions can dramatically restrict the behaviour, as we will see in Section 4.3,
example EX5.

Scheduled transitions allow to disturb the core model at well-defined time
points as it is done experimentally with the actual biological system under in-
vestigation in the wetlab; see Section 5 for an example.

We will use two functions to assign the required values: Fixed-
TimedFiring Single(time point), FixedTimedFiring Periodic(begin time point,
repetition, end time point).

Extended Stochastic Petri Nets 143

2.3 Generalised Stochastic Petri Nets (GSPNBio)

Generalised stochastic Petri nets (GSPNBio) are stochastic Petri nets SPNBio

extended by inhibitor arcs and immediate transitions.

Inhibitor arcs are a powerful modelling feature and are known to bring com-
putational completeness. Consequently, Petri nets of the net class GSPN have
the same expressivity as an universal Turing machine [PW03]. However, in
terms of construction of the reachability graph (continuous-time Markov chain),
they do not establish additional challenges for finite state spaces, i.e. bounded
Petri nets.

Immediate transitions are a very special kind of deterministic transitions
with zero firing delay, i.e. they fire immediately after getting enabled, and always
prior to (general) deterministic and stochastic transitions. Consequently, getting
enabled and the firing itself coincide for immediate transitions. A cyclic system
behaviour involving only the firing of immediate transitions corresponds to an
infinite behaviour without time progress; we get a time deadlock.

If a stochastic simulation encounters a situation with more than one imme-
diate transition enabled, one is chosen randomly [Ger01]. However, an analysis
approach will consider all possible choices.

In terms of the reachability graph (continuous-time Markov chain), induced
by a GSPNBio Petri net, we distinguish between transient and non-transient
states. A system never spends time in a transient state before changing into
another state. Thus, the time spent (sojourn time) in transient states is always
zero, and not exponentially distributed anymore.

Consequently, the underlaying semantics is not a continuous-time Markov
chain anymore. However, the transient states can be removed such that the
reduced reachability graph corresponds again to a continuous-time Markov chain.
See [MBC+95] for a precise description of the reduction technique and related
formal definitions. In summary this means that GSPNBio can still be analysed
analytically, if the state space, i.e. the continuous-time Markov chain can be
constructed.

2.4 Deterministic and Stochastic Petri Nets (DSPN Bio)

Deterministic and Stochastic Petri Nets (DSPNBio) are generalised stochastic
Petri nets (GSPNBio) extended by deterministic transitions.

Deterministic transitions possess a deterministic firing delay (waiting time),
specified by a nonnegative real value. When a deterministic transition gets en-
abled, a count-down timer is started, initialized with the transition’s firing delay.
If the transition gets disabled before the timer reaches zero, the timer is switched
off, and the transition will not fire. Otherwise, the transition will fire as soon as
the timer reaches zero. The firing itself does not consume time.

If we consider stochastic Petri nets without deterministic transitions, the prob-
ability of two transitions firing at the same time is practically zero. Contrary,

144 M. Heiner et al.

in stochastic Petri nets with deterministic transitions, it is possible that two
transitions want to fire simultaneously. We already discussed the special case of
two concurrently enabled immediate transitions. To analyse such a system, all
possible choices have to be considered, while in the simulation a random choice
takes place.

Definition 2 (Deterministic and stochastic Petri net). A biochemically
interpreted deterministic and stochastic Petri net is a septuple DSPNBio =
(P, T, f, g, v, d, m0), where

– P und T are finite, nonempty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– The set T is the union of three disjunctive transition sets, i.e.
T := Tstoch ∪ Tim ∪ Ttimed with:
1. Tstoch, the set of stochastic transitions with exponentially distributed

waiting time,
2. Tim, the set of immediate transitions with waiting time zero, and
3. Ttimed, the set of transitions with deterministic waiting time.

– f : ((P × T) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integers.

– g : (P × T) → IN0 defines the set of directed inhibitor arcs, weighted by
nonnegative integers.

– v : Tstoch → H is a function, which assigns a stochastic hazard function ht

to each transition t ∈ Tstoch, whereby
H :=

⋃
t∈Tstoch

{
ht |ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ Tstoch.

– d : Ttimed → IR+ assigns to each deterministic transition t ∈ Ttimed a non-
negative deterministic waiting time.

– m0 : P → IN0 gives the initial marking.

The stochastic transitions correspond to the transitions of the net class SPNBio,
so they have an exponentially distributed waiting time following the definitions
given in Section 2.1.

The net class DSPNBio is a subset of the class eDSPN , introduced in
[Ger01]. For details of the subset relation see [Leh07]. Therefore, the theory,
which has been developed to analyse eDSPN Petri nets, see [Ger01] and [Haa03],
can be deployed to analyse DSPNBio, too.

The remaining two features read arcs and scheduled transitions are not ex-
plicitly mentioned in the definition above, because the just allow a simplified
specification using the orthogonal basic concepts in DSPNBio.

Read arcs do not extend the modelling power as long as an interleaving se-
mantics is considered. A read arc and two opposite arcs are indistinguishable in
terms of the reachability graph (continuous-time Markov chain).

Scheduled transitions can be replaced by net components consisting of imme-
diate and deterministic transitions only; see [Leh07] for construction patterns.
Thus, they do not extend the modelling power.

Extended Stochastic Petri Nets 145

3 Stochastic Analysis

The non-Markovian behaviour of DSPNBio precludes the standard analyti-
cal approaches belonging to the Markovian world. However, there are adapted
stochastic simulation methods, ready to deal with the extended behaviour, see
e.g. [Ger01], [Haa03], [Leh07], and many more. A detailed discussion of the nec-
essary adaptions compared to the fundamental Gillespie algorithm [Gil77] is
beyond the given space limitations of this paper. Having the simulation traces,
we apply simulative model checking of linear-time temporal logic (LTL) in a
probabilistic setting (PLTL).

Simulative model checking follows the idea of Monte Carlo sampling and
handles large or even infinite state spaces through approximating results by
analysing only a subset of the state space – a finite set of finite outputs (traces)
from a stochastic simulation algorithm (SSA), e.g. Gillespie’s exact SSA or any
other suitable variations of it.

A natural choice of logic to describe properties of sets of traces is linear-time
logic. A linear-time logic operates over sets of linear paths through the state
space, equivalent to operating on simulation outputs. A given property holds if
it holds in all possible paths. Consequently, there are no path quantifiers.

We apply PLTL, a probabilistic linear-time temporal logic [DG08], [MC208].
This logic extends standard Linear-time Temporal Logic (LTL) [Pnu81] to a
stochastic setting with a probability operator and a filter construct, defining the
initial state of the property. LTL is the fragment of full Computational Tree Logic
(CTL*) [CGP01] without path quantifiers, implicitly quantifying universally over
all paths. To be self-contained we briefly recall the PLTL basics.

Syntax. PLTL is a logic to create path formulae φ and to ask for their proba-
bilities. The grammar given in Table 1 defines a PLTL formula ψ.

Semantics. The semantics is defined over finite sets of finite linear traces of
temporal behaviour, in our case by stochastic simulation runs. Each trace is
evaluated to a Boolean truth value, and the probability of a property holding
true is computed by the fraction of true values in the set over the whole set. It
goes without saying, the choice of simulator and simulation parameters used to
compute the sequence of states can affect the semantics of the PLTL property
and the correctness of the result.

P�x is any inequality comparison of the probability of the property holding
true, for example P≥0.5. The expression P=? returns the value of the probability
of the property holding true. Equality testing of the probability, P=x, is not
supported for obvious reasons.

PLTL allows the use of filters over top-level LTL expressions, denoted by
{AP}, similar to those used in Probabilistic Computational Tree Logic (PCTL)
[HJ94] and Continuous Stochastic Logic (CSL) [ASSB96]. This permits specifica-
tions to refer to the state or states that the property is checked from, rather than
default to the initial state. This means that for a query of the form φ {AP}, φ is
checked from the first state that AP is satisfied. This can be a different one for
each stochastic run. The temporal operators follow the standard LTL semantics:

146 M. Heiner et al.

Table 1. PLTL syntax. Please note that the square and curly brackets are part of
PLTL.

ψ ::= P�x[φ]
| P�x[φ {AP}] .

φ ::= Xφ | Gφ | Fφ | φ U φ | φ R φ
| ¬ φ | φ ∨ φ | φ ∧ φ | φ ⇒ φ
| AP .

AP ::= ¬ AP | AP ∨ AP | AP ∧ AP | AP ⇒ AP
| value comp value
| true | false .

comp ::= = | �= | ≥ | > | < | ≤ .

value ::= value op value
| variable | max(variable) | d(variable)
| Int | Real .

op ::= + | − | ∗ | / ,

with � ∈ {<,≤,≥, >}, x ∈ [0, 1]. P�x can be replaced by Px=?.

– Next (X) - The property must hold true in the next time point.
– Globally (G) - The property must hold true always 1.
– Finally (F) - The property must hold true sometime in the future.
– Until (U) - The first property must hold true until the second property

holds true.
– Release (R) - The second property can only ever not hold true if the first

property becomes true.

The meta term variable stands for any variable in the model, Int is any integer
number and Real is any real number. In our case of stochastic Petri net analysis,
a variable is going to be a place name, and the formulae refer to the number of
tokens on a place in a given state. Additionally, there is a predefined variable
time, referring to the simulation time points. Thus we can, for example, express
properties which occur after some simulation time has elapsed.

The function max operates over all the token values of a place to return the
maximum in the given simulation runs, thus the peak of a species’ concentration,
modelled by a place, can be checked, e.g. Protein = max(Protein). The function
d operates on each place in each state individually to return the derivative, thus
increasing token numbers can be checked, e.g. d(Protein) > 0.

This approach to simulative model checking incorporates two approx-
imations. The truth value of a single trace is approximated by operating over
a finite sequence of states only; and the probability of the property is approx-
imated through sampling a finite number of traces only. Thus, a subset of the
model’s behaviour is considered only. However, there are two special categories

1 To be precise, in the given setting of model checking by finite traces, globally means
’always –as far as known’.

Extended Stochastic Petri Nets 147

of properties, where definitive, i.e. non-approximating answers are possible by
simulative model checking.

– Monotone properties comply with the following condition: if the property
is satisfied in any path through the state space, then it is satisfied in any
extension of the path [HLMP04]. Formulae without the Globally operator
are monotone properties. The Globally operator and semantically equivalent
descriptions by the other operators are incompatible with the monotony
property. Considering longer paths can only increase the probability.

– Invariant Properties have to hold true in every state in every path. Thus
they comply with the following condition: if the property is satisfied in any
path through the state space, then it is satisfied in any other path. Their
probability is independent of the number of considered paths. They are often
used as consistency checks, and so do we in this paper.

PLTL may be considered as a linear-time counterpart to CSL. It can easily be
used to formalise the visual evaluation of diagrams as generated by determinis-
tic/stochastic simulation runs or by recording experimental time series. In the
following chapter we are going to use PLTL to analyse sets of stochastic simu-
lation traces of extended stochastic Petri nets, which have been constructed to
illustrate the expressiveness of DSPNBio.

4 Typical Components

We present some typical model components, controlling a network’s inflow and
outflow, and thus demonstrating the suitability of the introduced Petri net class
DSPNBio for the envisaged application scenarios of model-based design of wet-
lab experiments. We use the following abbreviations introduced in Section 2:

– BioMassAction(ct),
– TimedFiring(delay),
– FixedTimedFiring Single(time point),
– FixedTimedFiring Periodic(begin time point, repetition, end time point);

and we apply the following drawing conventions:

– read arcs: identified by a black dot,
– inhibitor arcs: identified by a hollow dot,
– stochastic transition: hollow square,
– deterministically timed transition: black square,
– immediate transition: black rectangle.

We are going to examine the behaviour of each component by simulative PLTL
model checking over 100 (1,000) simulation runs. The individual runs are inde-
pendent, so generally different. We confine ourselves deliberately on introductory
formulae to illustrate the key ideas, increasing at the same time our confidence
in the accuracy of our simulation algorithm for the non-Markovian setting.

148 M. Heiner et al.

4.1 Time-Controlled Inflow/Outflow

EX1. In our first example we consider a closed system, consisting of one
reversible reaction A ↔ B, modelled by the two transitions t1 (BioMass-
Action(0.11)) and t2 (BioMassAction(0.1)). The two deterministically timed
transitions input (FixedTimedFiring Periodic(11,1,20)) and output (Fixed-
TimedFiring Periodic(31,1,40)) are responsible for the absolutely timed inflow
and outflow of tokens, see Figure 1.

The transition input does not have preplaces, thus it fires for sure at the
time points 11, 12, . . . , 20, producing each time 1,000 additional tokens on place
A. Contrary, the transition output removes 1,000 tokens from place B at the
time points 31, 32, . . . , 40, provided there are enough tokens to enable the firing.
Figure 2 shows the first 100 time units of a single simulation run.

We give some introductory samples of temporal-logic formulae (queries), for-
malising the visual inspection of the simulation output as it might be done by
the expert evaluating former or designing the next wetlab experiments. We ap-
ply these queries to a set of 100 stochastic (single) simulation traces. The ratio

A

500

B

t1

t2

input output

1000 1000

Fig. 1. First example of time-controlled inflow/outflow (EX1)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 2. Simulation result of the network given in Figure 1 (single run) (EX1)

Extended Stochastic Petri Nets 149

of traces where the formula holds to the total number gives us a rough estimate
of a formula’s probability.

We check over exact Gillespie traces, i.e. all single events are logged. There
are generally no ”even” time points (like 30.000000 for 30). However, the firing
of scheduled transitions at absolute time points (e.g. 20 in this example) causes
exact time points in the simulation traces. We have to keep this in mind when
refering to absolute time points in the following queries.

Please remember, all place names are read as integer variables in the following
formulae; and the predefined variable time relates to the simulation time. The
probabilities as computed by simulative model checking are given in brackets.

– Maxima (probabilities: 1.0, 0.95).
P=? [G(A < 7550)]
P=? [G(B < 5350)]

– Peaks (probabilities: 0.9, 1.0).
P=? [F(time = 20 ∧A > 0.9·max(A) ∧ (3000 < B ∧B < 3500))]
P=? [F((29 < time∧time < 30)∧(5000 < A∧A < 5400)∧B > 0.9·max(B))]

– Steady state, relative statements (probabilities: 0.03, 0.59, 0.8, 0.91).
P=? [time ≥ 50 ⇒ G(A < B)]
P=? [time ≥ 55 ⇒ G(A < B)]
P=? [time ≥ 60 ⇒ G(A < B)]
P=? [time ≥ 70 ⇒ G(A < B)]

– Steady state, absolute statements (probabilities: 0.39, 1.0).
P=? [time ≥ 50 ⇒ G((1500 < A ∧A < 1800)∧ (1600 < B ∧B < 2000))]
P=? [time ≥ 60 ⇒ G((1500 < A ∧A < 1800)∧ (1600 < B ∧B < 2000))]

EX2. We vary the pattern of our first example to remove repeatedly all currently
available tokens on place B at equidistant time points, see Figure 3.

The immediate transition output consumes all tokens on place B, while there
is a token on place output on. The token on place output on is controlled
by the deterministically timed transition switch output on (FixedTimedFir-
ing Periodic(20,20, SimEnd)) and the immediate transition switch output off.
The transition switch output on initiates every 20 time units the cleaning pro-
cess. The immediate transition switch output off switches off the outflow as soon
as the place B is clean; otherwise each token arriving on B would be instantly
removed and no token accumulation would be possible anymore. A single simu-
lation run is given in Figure 4. We analyse a set of 100 of such stochastic traces
by the following temporal-logic queries (all yield probability 1.0).

– If the output is switched on, B is cleaned immediately.
P=? [G(output on = 1 ⇒ B = 0)]

– Cleaning of B at time point 20.
P=? [F(time = 20 ∧B = 0)]

150 M. Heiner et al.

A

500

B

output_on

t1

t2

input switch_output_on

output

switch_output_off

1000

Fig. 3. Second example of time-controlled inflow/outflow (EX2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 4. Simulation result of the network given in Figure 3 (single run) (EX2)

– Cleaning of B at time point 20, ensuring that B does not get cleaned earlier.
P=? [F(B > 0 ∧ (B > 0 U (time = 20 ∧B = 0)))]

– Cleaning of B at time point 40, ensuring that B remains marked inbetween
as soon as it got a token.
P=? [F(time = 20∧B = 0)∧F(B > 0∧ (B > 0 U (time = 40∧B = 0)))]

4.2 Token-Controlled Inflow

We discuss two examples and start again with a reversible reaction A ↔ B,
modelled by the two stochastic transitions t1 (BioMassAction(0.1)) and t2 (Bio-
MassAction(0.005)), which we consider as a closed system, challenged by exper-
imental interventions.

EX3. In our first example of token-controlled inflow, the tokens on place A
are raised by 50 as soon as the token amount drops below the threshold 30,
see Figure 5. This behaviour is implemented by the immediate transition input,
the firing of which is prevented by an inhibitor arc testing A. The weight 30

Extended Stochastic Petri Nets 151

A

100

Binput

t1

t2

50

30

Fig. 5. First example of token-controlled inflow (EX3)

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 6. Simulation result of the network given in Figure 5 (single run) (EX3)

of the inhibitor arc prevents the firing of input until the token amount drops
below 30. 50 tokens are added to place A as soon as the inhibition condition
becomes invalid, preventing again further inflow until the next drop occurs.
Figure 6 shows a single simulation run. We analyse a set of 1,000 runs against
the following formulae.

– The tokens on A never fall below the threshold 30 (probability: 1.0).
P=? [¬ F(A < 30)]

– The transition input tries to keep the tokens on A between 30 and 80.
But there are always some tokens on place B, which may return to A
(probabilities: 0.946, 0.996, 0.999).
P=? [F(A = 30 ∧ G(30 ≤ A ∧A ≤ 80))]
P=? [F(A = 30 ∧ G(30 ≤ A ∧A ≤ 82))]
P=? [F(A = 30 ∧ G(30 ≤ A ∧A ≤ 84))]

– There is a constant inflow due to the transition input, and the rate of
t1 is (significantly) higher than of t2. Therefore, B increases permanently and

152 M. Heiner et al.

A

20

B

input_off

input_on

input

t1

t2

switch_on

switch_off

output
5 10

10

30

Fig. 7. Second example of token-controlled inflow (EX4)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
input_on

Fig. 8. Simulation results of the network given in Figure 7 (single run). The input is
switched on/off (place input on) in dependence on the token situation on A (EX4).

without limits. This is true in the averaged case only, e.g. 100 runs. d(B)
specifies the derivative.
P=? [G(d(B) ≥ 0)]

EX4. Our second example of token-controlled inflow is given in Figure 7. The
transitions t1 (BioMassAction(0.2)) and t2 (BioMassAction(0.1)) form again
the reversible reaction A ↔ B. We add the deterministically timed transition
output (FixedTimedFiring Periodic(5,5, SimEnd)) to get a significant consump-
tion of tokens. Each time output gets activated, it removes 10 tokens from B.

If the token amount on place A drops below 10, the deterministically timed
transition input (TimedFiring(0.5)) starts working and adds by each firing 5

Extended Stochastic Petri Nets 153

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 9. Simulation results of the network given in Figure 7 (100 runs). A and B oscillate
due to the repeated switching between inflow on/off (EX4).

tokens with 0.5 units waiting time inbetween, until there are at least 30 tokens
on A. This behaviour is controlled by the immediate transitions switch on and
switch off, and the two places input on and input off, forming a 1-P-invariant1.
Switch on can only fire if there are less than 10 tokens on A, and switch off can
only fire, if there are at least 30 tokens on A.

We give two related diagrams. The single run in Figure 8 shows how the
input is switched on/off (place input on) in dependence on the token situation
on A. Figure 9 gives the average of 100 runs. It highlights the oscillation of A
and B, caused by the repeated switching between inflow on/off. We analyse the
token-controlled inflow component by the following formulae (1,000 runs) (the
first three yield probability 1.0).

– The two places input on and input off form a 1-P-invariant.
P=? [G((input on = 1∧ input off = 0)∨(input on = 0∧ input off = 1))]

– The transition input is switched on/off if the token amount on A crosses
the threshold 10 or 30, respectively.
P=? [G(A < 10 ⇒ input on = 1)]
P=? [G(A ≥ 30 ⇒ input off = 1)]

– There is a delay of 0.5 time units between the on/off switch and the reaction
of the actual inflow transition. E.g., after having switched off the input, 5
additional tokens will arrive by the already triggered firing of the transition
input. Thus, even a weaker range than specified by the threshold values does
not get probability 1 (probability: 0.995).
P=? [G(5 ≤ A ∧A ≤ 40)]

1 Exactly one of both places carries a token at any point of time.

154 M. Heiner et al.

4.3 Switch between Deterministic and Stochastic Transitions

The following two networks demonstrate how to switch between deterministic
and stochastic transitions. We start off with a time-controlled switch, before
discussing a token-controlled switch.

In both cases we consider a non-reversible reaction A → B, which is neverthe-
less modelled by two transitions: the stochastic transition t stoch (BioMassAc-
tion(0.1)) and the deterministically timed transition t det (TimedFiring(0.25)).
The chosen net structure ensures that always one of these two transitions only
is able to transfer tokens from place A to place B; with other words: the to-
ken flow occurs either stochastically or deterministically. The mutually exclusive
firing is implemented by the two places stochastic on and det on, forming a
1-P-invariant and establishing side-conditions for t stoch or t det, respectively.

EX5. The actual time-controlled switch is performed by two determin-
istically timed transitions: switch to det (FixedTimedFiring Single(10)) and
switch to stoch (FixedTimedFiring Single(30)), which fire (each once!) at the
absolute time points 10 or 30, respectively, causing a switch in the other oper-
ation mode, see Figure 10. In summary, the modelled reaction A → B behaves
deterministically between the time points 10 and 30, and stochastically else.

A

1000

B

stochastic_on

det_on

t_stoch

t_det

switch_to_detswitch_to_stoch

Fig. 10. Example of time-controlled switch between deterministic and stochastic
behaviour. The semantic functions assigned to the transitions switch to det and
switch to stoch allow them to fire only once (EX5).

EX6. We keep the basic principle for the token-controlled switch, but replace
the transitions switching between the operation modi by immediate transitions,
which depend on the token situation in place A. The immediate transitions
switch to det and switch to stoch fire each once as soon as the token amount
on place A drops below 700 or 500, see Figure 12. In summary, the modelled
reaction A → B behaves deterministically for token amount between 500 and
700, and stochastically else.

The diagrams in Figure 11 and 13 show the behaviour of the two patterns for
a single run each. For both we confirm the mutually exclusive operation mode
of the stochastic and deterministic behaviour by the following query.

Extended Stochastic Petri Nets 155

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 11. Simulation result of the network given in Figure 10 (single run). There is a
deterministic token flow from A to B between time points 10 and 30, and stochastic
flow else (EX5).

A

1000 B

det_on

stochastic_on

t_stoch

t_det

switch_to_det

switch_to_stoch
700

500

Fig. 12. Example of token-controlled switch between deterministic and stochastic be-
haviour. The additional preplaces of the immediate transitions bring the equivalence
to the net component in Figure 10; i.e. the immediate transitions fire only once (EX6).

– The two places stochastic on and det on form a 1-P-invariant.
P=? [G((stochastic on = 1 ∧ det on = 0) ∨

(stochastic on = 0 ∧ det on = 1))]

We conclude the analyses with checking the range of deterministic versus stochas-
tic behaviour for the two discussed patterns.

– Deterministic token flow from A to B between time points 10 and 30.
P=? [(10 ≤ time ∧ time < 30) ⇒ det on = 1]

156 M. Heiner et al.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
ar

ki
ng

Time

A
B

Fig. 13. Simulation result of the network given in Figure 12 (single run). There is a
deterministic token flow from A to B for a token amount on A between 500 and 700,
and stochastic flow else (EX6).

– Stochastic token flow from A to B from 0 up to time point 10, and starting
at time 30 again.
P=? [(time < 10 ∨ 30 ≤ time) ⇒ stochastic on = 1]

– Deterministic token flow from A to B for a token amount on A between 500
and 700.
P=? [(500 ≤ A ∧A < 700)⇒ det on = 1]

– Stochastic token flow from A to B for a token amount on A less than 500 or
greater or equal 700.
P=? [(A < 500 ∨ 700 ≤ A) ⇒ stochastic on = 1]

All these properties are invariant properties, i.e. they yield probability 1.0, in-
dependently of the number and the length of considered simulation traces.

5 Lac Operon Model

We conclude by looking briefly at a classical example of prokaryotic gene regu-
lation, the lac operon case. We follow the simplified version discussed in [Wil06]
and specified there by a set of reaction equations and in an SBML-shorthand
notation. We keep all naming conventions and the initial conditions, and trans-
late the textual representation into a (qualitative) Petri net, reflecting explicitly
the inherent structure of the regulatory network, compare Figure 14. Finally, we
assign the rate equations as specified in the SBML code, and we get a stochastic
Petri net.

Extended Stochastic Petri Nets 157

Idna Irna

I

50
Op Rnap

100

Rna

Z

Lactose

20

ILactose

IOp

RnapOp

InhibitorTranscription InhibitorTranslation

Transcription

Translation

Conversion

InhibitorRnaDegradation InhibitorDegradation

LactoseInhibitorDegradation
RnaDegradation

ZDegradation

Intervention

InhibitorBinding/Dissociation

RnapBinding/Dissociation

LactoseInhibitorBinding/Dissociation

10000

Fig. 14. Lac operon model according to [Wil06]. Macro transitions (drawn as two
centric squares) indicate reversible reactions.

The core model of the network under consideration is extended by a
special transition – an event in SBML terminology – modelling a timed in-
tervention in a wetlab experiment. The transition Intervention (FixedTimed-
Firing Periodic(50000,50000, SimEnd)2) introduces 10,000 molecules of Lactose
every 50,000 time units, compare Figure 15.

To increase our confidence in the model we start with a preliminary structural
analysis and compute the P-invariants and T-invariants3. There are input tran-
sitions, so the net can not be covered by P-invariants. However, there are three
P-invariants, inducing mass-conserving subnetworks (modules) and enjoying ob-
vious biological meaning. The preserved species is given first in the following
short-hand notation:

– pi1 = {Idna},
– pi2 = {Rnap, RnapOp},
– pi3 = {Op, IOp, RnapOp}.

Contrary, T-invariants do cover the net, which is a common consistency criteria
for well-formed net structures, allowing e.g. a steady state behaviour. Each T-
invariant induces a self-contained, state-repeating subnetwork (module). Besides
the expected three trivial T-invariants for the three reversible reactions:
2 Here we differ from the model given in [Wil06], where the modelled intervention

occurs only once at a specified point of time.
3 For all notions used in this section, but note introduced in this paper, see [HGD08].

158 M. Heiner et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50000 100000 150000 200000 250000 300000

M
ar

ki
ng

Time

Lactose

Fig. 15. Simulation result of the lac operon model: Lactose

– ti1 = {LactoseInhibitorBinding, LactoseInhibitorDissociation},
– ti2 = {InhibitorBinding, InhibitorDissociation},
– ti3 = {RnapBinding, RnapDissociation},

we get the following six non-trivial T-invariants, each input/output behaviour is
made of:

– ti4 = {InhibitorT ranscription, InhibitorRnaDegradation},
– ti5 = {InhibitorT ranslation, InhibitorDegradation},
– ti6 = {InhibitorT ranslation, LactoseInhibitorBinding,

LactoseInhibitorDegradation},
– ti7 = {Intervention, Conversion},
– ti8 = {RnapBinding, T ranscription, RnaDegradation},
– ti9 = {Translation, ZDegradation}.

There are four transitions (underlined), which are not involved in non-trivial
T-invariants. However, they are crucial for the regulation mechanism between
Z and Lactose. Please note, each T-invariant is given in a short-hand notation,
enumerating the T-invariants’ transitions in an order, which they may follow to
reproduce a state, or what has to happen to get the system back in the steady
state after some disturbences.

Remarkably, the net fulfills the Deadlock Trap Property (DTP), however is
beyond the structural net class extended simple. In summary this allows the
conclusion that there is no reachable dead state, in which any further sys-
tem activities would be prevented. Actually, we expect the model to be live,
which can not be proven with the analysis techniques available for (qualitatively)
unbounded Petri nets.

Extended Stochastic Petri Nets 159

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000 300000

M
ar

ki
ng

Time

Z

Fig. 16. Simulation result of the lac operon model: Z

However, there are property-preserving reduction rules downsizing the net
structure, which are supported by the Integrated Net Analyser INA [SR99].
Applying these structural reduction rules, we get a smaller network, consisting
of 2 places and 4 transitions. Liveness becomes obvious for this reduced network;
see the supplementary material for more details.

The place Z models the enzyme β-Galactosidase; its reaction to the repeatedly
sudden increase of Lactose molecules is shown in Figure 16. We analyse for the
first intervention how a peak of Lactose triggers a peak of Z.

– The intervention causes Lactose to peak at time point 50,000 (probabilities
1.0, 1.0, 0.65).
P=? [(49, 999 ≤ time ∧ time < 50, 000)⇒ Lactose ≤ 0.01·max(Lactose)]
P=? [time = 50, 000⇒ Lactose ≥ 0.99·max(Lactose)]
P=? [(52, 000 ≤ time ∧ time < 52, 001)⇒ Lactose ≤ 0.1·max(Lactose)]

– Z is highly likely to be at low concentration at time point 50,000 (probability
0.9).
P=? [time = 50, 000⇒ Z ≤ 0.1·max(Z)]

– Z will rise to at least 80% of its maximal value within 2,000 time units
(probability 0.925).
P=? [F ((50, 000 < time ∧ time < 52, 000)∧ Z ≥ 0.6·max(Z))]

– In summary, a peak of Lactose triggers a peak of Z within 2,000 time units
(probability 0.925).
P=? [time = 50, 000∧ Lactose ≥ 0.99·max(Lactose) ∧ Z ≤ 0.1·max(Z)

⇒ F (Z ≥ 0.8·max(Z) ∧ time < 52, 000)]

160 M. Heiner et al.

6 Tools

The Petri net components and the lac operon model have been constructed using
Snoopy [Sno08], [HRS08], a tool to design and animate or simulate hierarchical
graphs, among them qualitative and continuous Petri nets, and the extended
stochastic Petri nets as used in this paper. Snoopy provides export to various
analysis tools as well as import and export of the Systems Biology Markup
Language (SBML) [HFS+03].

The qualitative analyses of the lac operon model have been made with the
Petri net analysis tool Charlie [Cha08], complemented by the structural reduc-
tion rules supported by the Integrated Net Analyser INA [SR99]; see the corre-
sponding log files in the supplementary material.

The quantitative analyses have been done by the cooperation of two tools:
Snoopy’s build-in simulation algorithm for extended stochastic Petri nets to
generate the sets of simulation traces, and MC2 [MC208], a model checker by
Monte Carlo sampling, for the simulative PLTL model checking. MC2 reads sets
of simulation traces as, e.g., generated by Snoopy and expects additionally a file
with the temporal-logical formulae.

As a proof of concept, we confined ourselves to rather small sets of 100 (1,000)
runs only, allowing at the same time an affordable repetition of all computational
experiments by the reader. A general recommendation is to start with smaller
sets of simulation runs, just to check whether one got a formula right, before
analysing larger sets, which could actually be done in parallel. None of the com-
putational experiments for the typical components required more than 6 minutes
per net example on a standard machine. Simulative model checking of the lac
operon model is slightly more expensive. The traces have been generated on a
workstation (2.83 GHz, 64 bit). The 100 exact traces (simulation time interval:
300,000) require about 5 GB. The model checking itself consumes less than 30
minutes on a standard machine.

Snoopy, Charlie as well as the data and analysis files of the discussed Petri
net examples are available at

www-dssz.informatik.tu-cottbus.de/examples/xspn-components.

7 Summary

This paper extends the Markovian stochastic Petri nets SPNBio as introduced
in [GHL07] to model and analyse biochemical networks. The extensions lead to
the definition of Generalised Stochastic Petri nets GSPNBio and deterministic
and stochastic Petri nets DSPNBio. They include read and inhibitor arcs as well
as several time-dependent transition types, which in summary preclude standard
Markovian analysis approaches. Therefore we applied simulative model checking,
approximating the probability of a given temporal logic formula by considering
finite sets of finite paths through the state space. These paths are generated by

Extended Stochastic Petri Nets 161

stochastic simulation algorithms, adjusted to deal with the extended modelling
features.

We discussed some typical net components demonstrating the usability of
DSPNBio for the envisaged application scenario of model-based experiment
design and evaluation. These components have been analysed by checking sets of
stochastic simulation traces against PLTL properties. Invariant properties have
been used to prove at the same time the plausibility of the applied simulation
algorithm. We concluded with briefly looking at the lac operon case study, one
of the classical examples of prokaryotic gene regulation.

Currently we consider some further extensions of our modelling formalism;
among them are variable deterministic firing delays specified by an interval or an
arbitrary marking-dependent function, reset and equal arcs as well as marking-
dependent arc weights.

Simulative model checking is an extremely powerful tool. By way of intro-
duction we have deliberately deployed some basic features of PLTL only. There
is an interesting extension, PLTLc [DG08], supporting free variables, and thus
allowing richer and more elegant properties, which however are also more com-
plicated to write and to interpret. Thus, demonstrating these advanced features
to more sophisticated users is beyond the scope and space limits of this paper.

Acknowledgements. The stochastic features of the Snoopy tool have been
developed by Sebastian Lehrack, which cumulated in his Master thesis [Leh07].
This work has been financially supported by MPI Martinsried and MPI Madge-
burg. Snoopy’s quality improvements by Christian Rohr are crucial for the com-
putational experiments presented in this paper. We would like to thank Robin
Donaldson for his responsive assistance in MC2 issues.

References

[ASSB96] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous-
time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

[BGHO08] Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for
the engineering of biochemical network models, illustrated for signalling
pathways. Briefings in Bioinformatics 9(5), 404–421 (2008)

[BK02] Bause, F., Kritzinger, P.S.: Stochastic Petri Nets. Vieweg (2002)
[CGP01] Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press,

Cambridge (2001) (third printing)
[Cha08] Charlie Website. A Tool for the Analysis of Place/Transition Nets. BTU

Cottbus (2008),
http://www-dssz.informatik.tu-cottbus.de/software/

charlie/charlie.html

[DG08] Donaldson, R., Gilbert, D.: A model checking approach to the param-
eter estimation of biochemical pathways. In: Heiner, M., Uhrmacher,
A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer,
Heidelberg (2008)

http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html
http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html

162 M. Heiner et al.

[GBHD09] Gilbert, D., Breitling, R., Heiner, M., Donaldson, R.: An introduction
to biomodel engineering, illustrated for signal transduction pathways. In:
Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2008. LNCS, vol. 5391, pp. 13–28. Springer, Heidelberg (2009)

[Ger01] German, R.: Performance analysis of communication systems with non-
Markovian stochastic Petri nets. John Wiley and Sons Ltd., Chichester
(2001)

[GHL07] Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling
and analysing biochemical pathways using Petri nets. In: Calder, M.,
Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216.
Springer, Heidelberg (2007)

[GHR+08] Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybi�lo, M.: A Case
Study in Model-driven Synthetic Biology. In: Proc. 2nd IFIP Conference on
Biologically Inspired Collaborative Computing (BICC), IFIP WCC 2008,
Milano, pp. 163–175 (2008)

[Gil77] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

[Haa03] Haas, P.J.: Stochastic Petri nets: Modelling, Stability, Simulation.
Springer, Heidelberg (2003)

[HDG10] Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology.
In: Iyengar, M.S. (ed.) Symbolic Systems Biology: Theory and Methods.
Jones and Bartlett Publishers, Inc., USA (in Press, 2010)

[HFS+03] Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H.,
et al.: The Systems Biology Markup Language (SBML): A Medium for
Representation and Exchange of Biochemical Network Models. J. Bioin-
formatics 19, 524–531 (2003)

[HGD08] Heiner, M., Gilbert, D., Donaldson, R.: Petri nets in systems and synthetic
biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008.
LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

[HJ94] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability.
Formal Aspects of Computing 6(5), 512–535 (1994)

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 307–329. Springer, Heidelberg (2004)

[HRS08] Heiner, M., Richter, R., Schwarick, M.: Snoopy - a tool to design and ani-
mate/simulate graph-based formalisms. In: Proc. PNTAP 2008, associated
to SIMUTools 2008. ACM digital library (2008)

[Leh07] Lehrack, S.: A tool to model and simulate stochastic Petri nets in the
setting of biochemical networks (in German). Master thesis, BTU Cottbus,
Dep. of CS (2007)

[MBC+95] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:
Modelling with Generalized Stochastic Petri Nets, 2nd edn. Wiley Series
in Parallel Computing. John Wiley and Sons, Chichester (1995)

[MC208] MC2 Website. MC2 - PLTL model checker. University of Glasgow (2008),
http://www.brc.dcs.gla.ac.uk/software/mc2/

[Mur89] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc.of the
IEEE 77(4), 541–580 (1989)

[Pnu81] Pnueli, A.: The temporal semantics of concurrent programs. Theor. Com-
put. Sci. 13, 45–60 (1981)

http://www.brc.dcs.gla.ac.uk/software/mc2/

Extended Stochastic Petri Nets 163

[PW03] Priese, L., Wimmel, H.: Theoretical Informatics - Petri Nets (in German).
Springer, Heidelberg (2003)

[Rei82] Reisig, W.: Petri nets; An introduction. Springer, Heidelberg (1982)
[Sno08] Snoopy Website. A Tool to Design and Animate/Simulate Graphs. BTU

Cottbus (2008),
http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html

[SR99] Starke, P.H., Roch, S.: INA - The Intergrated Net Analyzer. Humboldt
University Berlin (1999),
http://www.informatik.hu-berlin.de/~starke/ina.html

[Wil06] Wilkinson, D.J.: Stochastic Modelling for System Biology, 1st edn. CRC
Press, New York (2006)

http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html
http://www.informatik.hu-berlin.de/~starke/ina.html

A Projective Brane Calculus with Activate, Bud
and Mate as Primitive Actions

Maria Pamela C. David1,�, Johnrob Y. Bantang1,2,3,∗,
and Eduardo R. Mendoza1,4

1 Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, D-80539 München, Germany

2 Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstraße 1,
D-39106 Magdeburg, Germany

3 National Institute of Physics, College of Science, University of the Philippines,
Diliman, Quezon City 1101 Philippines

4 Department of Computer Science, University of the Philippines, Diliman, Quezon
City 1101 Philippines

Abstract. We modify and extend Cardelli’s Brane Calculus and Danos
and Pradalier’s Projective Brane Calculus (PBC) to improve consistency
with biological characteristics of membrane reactions. We propose a Pro-
jective Activate-Bud-Mate (PABM) calculus as an alternative to the
Phago-Exo-Pino (PEP) basic calculus of L. Cardelli. PABM uses a gener-
alized formalism for Action activation with receptor-ligand type channel
construction that incorporates multiple association and affinity similar
to Priami’s beta binders. Calculus elements are finite. Volumes are asso-
ciated with systems for more realistic compartment-based reaction prob-
abilities. PABM also uses Brane domains that partition membranes into
controllable, independent groupings of projective actions. Domains elim-
inate the need for parameters in Phago and Bud and allow lateral and
cross-membrane interactions. We show that PABM can emulate bitonal
membrane reactions. PABM also realizes the idea of L. Cardelli (Cardeli,
2004) on modeling molecules as systems.

1 Introduction

Cellular organization plays a key role in biological systems through the physi-
cal regulation of reactions. Enzymes, for instance, are typically sequestered in
membrane-bound systems to which access is only made possible through cascades
of equally regulated and timed signals. Most current formalisms for modeling,
however, do not possess an explicit functionality for modeling compartmental-
ization. In deterministic models, compartmentalization is modeled with the use
of additional variables that differentiate a species S that is within some com-
partment X from S that is within another compartment Y . While this has been
used with some success, S in X is actually not different from S in Y , unless it
has already reacted with other species in either compartment. It has only been in
� The first two authors contributed equally to this work.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 164–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Projective Brane Calculus with Activate, Bud and Mate 165

recent years that several calculi were developed so that membrane compartmen-
talization: (a) becomes an inherent part of computations and (b) is emphasized
in simulating reactions[1, 2, 3, 4].

Brane calculus is a formalism that can be used to describe systems as
mem-brane-bound compartments that may contain other systems[3]. These com-
partments can merge, split or be hierarchically reorganized through uptake
(phagocytosis) or extrusion (exocytosis) mechanisms, based on the capabilities,
known as actions, of the membranes that enclose them[3, 5]. An important aspect
of these actions — directly adapted from pi calculus — is that they are triggered
via highly specific channel-based communication. Nevertheless, the mapping be-
tween channels is not necessarily one-to-one, with some channels having more
than one communication partner. Although the original concept of channels in
pi calculus was for mobile telecommunication systems, it is compatible with the
representation of biological interactions, from enzyme-substrate systems that in-
teract to form a chemically distinct product to receptor-mediated intermembrane
communication that leads to membrane reorganization.

Another formalism that includes compartments is Priami’s beta binders[4].
Here, much emphasis is given to the promiscuousity of the channels (“beta
binders”) through which the compartments interact, as well as its effects on the
dynamic evolution of the compartment contents, interactions, and interfaces. As
in Brane calculus, compartments can merge and split as a result of binder-based
communication. While inherent in Brane Calculus, beta binders needed an ex-
tension to include hierarchical construction of compartments. Recent extensions,
however, only permit intuitive representation of static hierarchical structures,
but still forbid the explicit nesting of compartments[6]. The main advantage
of beta binders over Brane calculus is its natural representation of affinity to
channel pairings, a concept that is adapted in the proposed extension in this
paper.

The uniqueness of Cardelli’s Brane calculus lies in the representation of all
computations on membranes. This is important, particularly since it is actually
the dynamic property of membranes that determines its capability to interact
with other membranes and its general environment in vivo. Consequently, this
property also determines how a membrane-bound system would evolve. Structure
hierarchy can likewise be easily represented in Brane calculus, where nested
systems are effectively organized in tree structures[3, 5].

Brane calculus has been previously extended by Danos and Pradalier to in-
corporate the idea that the inner and outer surfaces of a membrane are not
identical[5]. In vivo, it could be frequently observed that the membrane protein
domains exposed to the extracellular matrix are different from the domains ex-
posed to the cytosol. It is even possible for membrane proteins to possess either
an extracellular domain or a cytosolic domain. As a result, the definition of the
inner and outer membranes are different. Additional physical restrictions are in-
troduced on which reactions could take place, in particular only directed actions
on membrane surfaces that could “see” each other are allowed to interact. This
extension using directed actions is known as projective Brane calculus (PBC).

166 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

Nevertheless, there are a number of aspects in both calculi that involve con-
cepts not observed in biological system. The purpose of this paper is to introduce
further modifications and extensions combining the strength of both Brane cal-
culi, with the aim of making it even more consistent with the biological charac-
teristics of membrane reactions. Specifically, we introduce the following changes
that result to the proposed extension, the Projective Activate-Bud-Mate calculus
(PABM):

1. Use of the minimal set Smin ≡ {bud, mate, !, 0} instead of the set S ≡
{phago, exo, pino, mate, bud, drip} for the possible actions a ∈ Smin (see §2).
All other actions in S are realized using only the actions in Smin together
with directed Actions of PBC.

2. Abstraction of specific send-receive channel pairing into less specific chan-
nel name equality, eliminating the distinction between input and output
channels. Together with the previous revision, it allows generalized repre-
sentations in the form ax for Actions and Coactions, where x is a named
channel.

3. Introduction of Brane domains, which are autonomous groups of directed
Actions within a Brane. The use of Brane domains would also allow inter-
domain interactions within and across the same membrane.

4. Removal of the parameters for Bud and Phago, allowing the dynamic nature
of membranes to be reflected in the calculus.

5. Inclusion of volume information as a system attribute to reflect its effects on
the probability at which collisions will occur inside a compartment.

6. Association of rates to channels emulating an affinity feature similar to beta
binders.

7. Treatment of Brane constituents and contents as finite quantities.
8. Elaboration of molecules as systems, a concept previously introduced by L.

Cardelli[3].

These modifications are also geared towards the development of a machine for
Brane calculus that can handle large-scale biological models.

2 Modified Notations

Table 1 summarizes the proposed notation and conceptual changes to the current
Brane calculus, provided as a quick reference to the detailed explanations for
these changes in the succeeding sections.

2.1 Actions

Notations and terms. In the documentation for the design of a machine for
Brane calculus[7], stochastic pi calculus notations for input and output chan-
nels are used to distinguish between actions and coactions. At this point, it is
important to make a distinction between an action (small ‘a’), a and an Action
(capital ‘A’), σ. An action is an element of the set, a ∈ S currently defined as:

S ≡ {phago, pino, exo, mate, bud, drip}; (1)

A Projective Brane Calculus with Activate, Bud and Mate 167

Table 1. Comparison of the currently-established Brane calculus (Cardelli’s Brane
calculus and PBC) with the proposed calculus. Note that a, ai ∈ S σ, σi, τ ∈ A,
i = 1, 2, with ā as the coaction of a. Conventions for parallel composition from PBC
[5] are used.

Definition Brane/Pi Calculus PABM

Channel (x ∈ C) !x ←→ ?x x ←→ x

Set of actions (a ∈ S) S ≡ {phago, pino, exo, Smin ≡ {0, bud, mate, !}
mate, bud, drip, . . .}

Action (σ, τ ∈ A) a!x ←→ ā?x !x ←→ ax (a �= !)
Brane domain undefined ρ ≡ 〈σ1 ; σ2〉

Brane 〈σ1 ; σ2〉 [ρ]
Directionality σ1 is outside, σ2 is inside σ1 is outside, σ2 is inside

System 〈σ1 ; σ2〉(| P |) [ρ](| P |)
Parameter σ(τ) τ.σ and ρ (see text for details)

(bud and phago)
Choice σ1 + σ2 σ1 + σ2

Series σ1.σ2 or σ1σ2 σ1.σ2 or σ1σ2

Parallel σ1|σ2 σ1, σ2

ρ1|ρ2

P ◦ Q P ◦ Q

Replication !σ .= σ, σ, . . . (infinite) (n)σ .= σ, σ, . . . , σ; n parallel
(σ)n .= σ.σ.σ; n series

(n)ρ .= ρ|ρ| . . . |ρ; n parallel
!P .= P ◦ P ◦ . . . (infinite) (n)P .= P ◦ P ◦ . . . ◦ P ; n parallel

while an Action is an element of the set, σ ∈ A currently defined as:

A ≡ {ax; a ∈ S, x ∈ C}, (2)

where the set C contains all possible channels. These notations are used through-
out the text. In PABM, we use the following (minimal) set:

Smin ≡ {m, b, 0, !}; (3)

where m is Mate, b is Bud, and two new actions, 0 and !, as the null and activate
actions, respectively. The set A remains the same but with S replaced by Smin.
We demonstrate that all other elements a ∈ S (Eq. 1) can be derived from a
combination of these modifications with the directed Actions of PBC. Note that
with the changes, the action becomes a passive entity (i.e. an action waits for
an activation signal) by default.

Since the definitions of mate and bud were not changed and have been dis-
cussed elsewhere [3, 5, 8], we will only review these definitions briefly.

Activate action, ! Cardelli’s Brane calculus requires two levels of matching
before an Action could be executed/activated: (a) input and output channels;
and (b) action and co-action. The use of an activation signal is expected to

168 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

improve the symmetry of form for the Actions with respect to channel and ac-
tivation pairings. Here, we introduce an activate action, ‘!’, to approximate the
input/output channel functionality of stochastic pi calculus, consequently pre-
cluding the need for an explicit distinction between actions and coactions within
Brane. The Action in the form !x acts as an initiator of membrane interaction
through channel x. This Action may be interpreted as a binding event, analogous
to the required output signal from the intiating membrane or molecule before
any non-activate Action can be executed/activated.

The use of an activation signal, instead of a more strictly-bound action-
coaction pair with matching channels, is based on the fact that a single com-
pound, modeled here as a communication channel, can interact with more than
one substance, which may range from proteins to oligosaccharides, on the cell
membrane. As discussed in §2.2, typical biological interactions involving recep-
tors, logically corresponding to channels, are one-to-many relationships, rather
than one-to-one pairs. Nevertheless, such cardinality does not imply that reac-
tion specificity is lost.

Another biological characteristic taken into account is the dependence of the
kind of reaction that occurs on the receptor type, rather than on the ligand (i.e.
it is the receiver that determines which effect will occur). This characteristic
is particularly marked in cells of the immune system, as well as antibodies,
which have different effector functions associated with each class and subclass.
The proposed form emphasizes that interaction specificity is conferred by the
channel, but the receiver determines the type of action to execute.

The null action, 0. The null action, 0, blocks actions that precede it; an Action
in the form σ.0x0 can thus be used to model a blocked Action, σ. The null
action can be deactivated with !x, making σ accessible. Biologically, blocking
occurs in the event of temporary receptor internalization [9], binding-induced
conformational changes [10, 11], and binding-induced physical blocking of other
available binding sites. The use of 0 will be useful for modeling bind-and-release,
molecular functionality switching, and other membrane-bound mechanisms.

Bud. Bud refers to the arbitrary splitting of a membrane, resulting in two
membrane-bound compartments[3]. Cardelli makes a distinction between bud
and drip; bud occurs when the split occurs with one internal membrane, while
drip refers to the separation of zero internal membranes. In PABM, this distinc-
tion is not made.

Mate. Mate causes the irreversible mixing of actions of membranes that fuse
either horizontally (i.e. membranes at the same level of nesting) or vertically
through an exocytosis-type process[3].

2.2 Choice, Parallel, and Series

All discussions of choice, parallel and series compositions are made with reference
to Actions, unless otherwise indicated. Parallel and series compositions are not
valid for actions and channels.

A Projective Brane Calculus with Activate, Bud and Mate 169

Choice. The concepts of parallel composition, choice and prefix(series) are re-
tained from pi calculus. The notation for choice will be retained (‘+’). Choice
could either be between actions a1 and a2 or channels x1 and x2. These are
equivalent to having a choice between two (or more) Actions in the basic form,
ax. In particular, the following choices within action-channel pairs (Actions)
would be equivalent to their respective choices between Actions:

(a1 + a2)x ≡ a1x + a2x (4)
a(x1 + x2) ≡ ax1 + ax2 (5)

(a1 + a2)(x1 + x2) ≡ a1x1 + a2x1 + a1x2 + a2x2 (6)

These equivalences remove the need of implementing Actions in their non-basic
forms. Hence, implementing choice in actions and/or channels will be unnecessary
since all cases can always be reduced to a choice between (at least) two Actions.

Aside from simplifying the implementation of Actions, Eqns. 4 and 5 reflect
biological phenomena. For instance, Eqn. 5 is illustrated by membrane-bound
receptors that have multiple ligands, with each ligand binding with a different
affinity. At least three virus families, Orthomyxoviradae, Paramyxoviradae and
Reoviradae, for example, use sialic acid in cell surfaces to enter via the endocytic
pathway(s)[14]. A biological phenomenon that illustrates Eqn. 4, on the other
hand, is the receptor for advanced glycation of end products (RAGE), expressed
in a wide variety of cell types. RAGE is characterized by its ability to recognize
numerous ligands, each of which result in different effects[15]. This is equivalent
to having several actions associated with the same channel. Although the reac-
tions of RAGE do not involve membrane structure deformations, a feature that
would allow the direct modeling of such events may be of interest. Furthermore,
Eqn. 5 implies that several receptors (or channels), can be used to initiate the
same actions. Different receptors, for instance, are used by different viruses to
enter the cell. Equation 6 is included for the purpose of completeness, but may
not have any biological significance.

Parallel. Parallel pi processes and Actions, as indicated in Table 1, are repre-
sented following the notations in Danos and Pradelier and Cardelli.

Prefix/Series. The original notation will be maintained for the series. A recur-
ring series of the same Action would be used instead of replication to indicate
the finite reusability of an Action.

2.3 Rates

PABM incorporates rates by associating a real number, rx, to the channel of
each Action ax. When rx is associated with !x, it corresponds to the rate with
which !x reacts on average with its receiver — the basic rate. When this real
number is instead associated with ax, a �= !, rx is a factor of the basic rate which
reflects the efficiency of the reaction. A value of 1.0 indicates that the specific
reaction rate with a particular receiver is the same as the basic rate. Association
of rates to channels is adapted from beta binders[4].

170 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

2.4 Affinity

Affinity describes the strength of non-covalent interactions between a ligand to
its specific binding site on the receptor surface; this value is independent of the
number of binding sites[12]. Higher affinities are associated with factors such as
the exposure of large, interactive amino acid side-chains, highly electronegative
groups, or the deformability of a surface; these characteristics generally enable
a ligand to form more non-covalent bonds with the receptor[13]. Empirically, a
value known as the affinity constant (Ka) is used to approximate affinity for
ligand-receptor systems1. It is determined by measuring the concentration of
free ligand required to fill half of the binding sites on the receptor. When half
the sites are filled, [Ligand ·Receptor] = [Ligand] and Ka = 1/[Receptor], where
‘[X]’ is used to indicate the molar concentration of X ; common Ka values range
from as low as 5× 104 to as high as 1011 liters/mole[12].

The use of affinity in process calculi for biology has been proposed by C.
Priami and P. Quaglia as a feature for beta binders[4]. Affinity is incorporated
as a probability P (a, b) that an interaction between two different interfaces a
and b can take place, effectively relaxing the requirement for an exact matching
of interface[6] — a distinct digression from pi calculus, where interactions occur
on syntactically identical ports (lock-and-key model).

In PABM, affinity is inherent with choice. Since channels in PABM represent
receptor-ligand functionality, the execution of a single action a can be associated
with its interaction through more than one channel, say x1, x2, . . . , and xn, n >
1, resulting to the Action: a(x1+x2+. . .+xn) that reduces to ax1+ax2+. . .+axn

(Eqn. 5). When a = !, this results in multiple rates of execution, which depends
on the Action a′xl that is activated (a′ ≤ ! and l ≤ n). A similar situation occurs
when a �= ! and a′ = !, albeit with a different biological implication. Table 2
summarizes the difference between this approach and Priami’s implementation
in beta binders.

Table 2. Comparison of affinity in beta binders and PABM

Beta Binders PABM

Association each reduction each channel
reaction probability P (a, b) multiple channels

Implementation between two non-identical using choice
interfaces a and b

2.5 Branes and Systems

The definition for Systems as sets of nested Branes is retained, and notations for
these are adapted from PBC[5]. Null Systems are represented as �. Notations for
parallel composition of Systems are also retained. The same replication rules are
1 Notably for antibodies and antigens.

A Projective Brane Calculus with Activate, Bud and Mate 171

applied to both Actions and Systems (Table 1). Branes however, are redefined as
a composition of Brane domains; a Brane consisting of a single domain reduces
to the original definition (Table 1).

Directed Brane domains and directed Actions. In this section, the concept
of directed actions in PBC is extended to Brane domains. A Brane domain,
represented as a vector, ρ, is a grouping of directed Actions that approximates
the occurrence of composition and functional non-homogeneity (“patchiness”)
observed in biological membranes. Consequently, a Brane is now defined as a
parallel composition of Brane domains. A Brane defined using a single domain
is homogenous, and reduces to a Brane in PBC.

Brane domains were introduced to facilitate greater control in processes like
membrane budding. As opposed to Cardelli’s calculus where a parameter is used
to define the characteristics of the Brane that will be budded out, the proposed
calculus makes these characteristics entirely dependent on the current, dynamic
state of the parent membrane. Budding processes, however, are highly localized,
and the derived system should not have all the characteristics of the parent
membrane. In the proposed calculus, only specific Brane domains are transferred
in budding processes, unless the parent membrane is homogenous.

Alternately, a Brane domain can be visualized as a set of directed Actions oc-
curring proximally in a membrane. As an example, a system with Brane domains
is subsequently represented as follows:

[ρ1|ρ2](| [ρ3](| P |) ◦Q |) (7)

where ρn is of the form 〈σ1 ; σ2〉 (Table 1). As in the original Cardelli calculus,
both ρ1 and ρ2 are visible to ρ3. Using the rules of PBC, only the “outside”
Actions of ρ3 can interact with the “outside” Actions of both ρ1 and ρ2. The
advantage of this feature is relevant in modeling competition between parallel
membrane processes (§3.6).

It is important to note that Brane domains represent active or functional sites
on membranes or molecules and not the molecules themselves. Nevertheless, since
at least one active site is associated with proteins, these can be represented as
Brane domains. Brane domains can be used to model membrane proteins that
function together such as lipid rafts[17] and SNARE complexes[18].

Lateral and cross-membrane interaction. Since interactions are now be-
tween two Brane domains, apart from the interaction of a domain from one
membrane with another in a different membrane, domain-domain interactions
within a membrane is now possible. Actions can now be activated by Activate
Actions on a neighboring domain (lateral membrane interaction). Activations by
Actions on opposite sides of a single membrane (cross-membrane) can also be
facilitated, provided that one of the Actions is translocated to the other side of
the membrane by a mechanism similar to diffusion or channel-mediated trans-
port. This capability can be used to model ligands that interact with receptors

172 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

on the same membrane surface or on the opposite side of the same membrane.
Spontaneous membrane and in-membrane operations such as pinocytosis, drip,
inversion, and fusion of proteins to form rafts and complexes[17, 18] can now be
easily modeled.

The following equation shows the competition between a1x and a2x since
lateral- and cross-membrane interactions are allowed.

[〈!x ; a1x〉|〈a2x ; −〉|〈− ; a3x〉](| · · · |) ⇒ a1 or a2 (8)

Note that a3 cannot be activated since cross-membrane interaction are allowed
only within the same Brane domain. With PABM, the transport of functional
particles (e.g. molecules) through the membrane without introduction of atonal
reduction rules can also be modeled (see §3.7).

Volume information. A single enzyme-substrate experiment in a controlled
nanoenvironment has shown that the frequency of collisions between two
molecules is inversely proportional to the size of the vesicle where these molecules
are contained[19]. Consequently, volume information will be associated with each
System, representative of a compartment, allowing adjustments to be made in
the probabilities at which the contained reactions will occur.

2.6 Replication

For the purpose of a calculus geared towards discrete biological system modeling,
PABM uses a more controlled form of replication for Actions (also applicable to
Brane domains and Systems), where the cardinality of replication is indicated
(see Table 1). For instance, even if the initial counts of cellular components
that are in the order of � 104 to ∼ 1010 [16] are large enough to warrant
the use of ∞, these are still finite quantities that may be critical determinants
of biological system viability, especially in simulations that run for relatively
prolonged periods of time (≥ 24 hours). Finite replication also reflects the finite
lifetimes, masses and/or energies of both the components of biological systems
and the systems themselves, appropriately manifested in the calculus in the form
of finite Brane or Action usage. The numbers representing the finite number of
replications can also be made stochastic to mimic the heterogeneity of membrane
domains in terms of the absolute numbers of its constituents. Finite replication
is conceptually similar to energy in beta binders [4], since the special entity Ej

(with j ∈ +) can be mapped to the cardinality of replication in PABM.

2.7 Sample Notation: Mitogen-Induced Proliferation of Schwann
Cells

Cell proliferation induced by an external signal is one of the simplest biolog-
ical examples that is, nevertheless, difficult to express in an intuitive manner
without the use of spatial information. Mitogens, which induce cell division, are
typically associated with one or more cognate receptors through which it can
enter a cell. In Schwann cells, which form the insulation for vertebrate neurons

A Projective Brane Calculus with Activate, Bud and Mate 173

in the peripheral nervous system and which are critical for axon regeneration,
proliferation is induced by the following mitogens in the neonatal stage: glial
growth factor (GGF), platelet-derived growth-factor B (PDGF-BB) and basic
fibroblast growth factor (bFGF) [32].

For purposes of illustration, a coarse-grained model of the system can be
defined in the above notational changes as follows:

[〈!xG ; !xa〉](|X |) ◦ [〈!xP ; !xa〉](|X |) ◦ [〈!xbF ; !xa〉](|X |) ◦
[〈mxG, mxP , mxbF ; bxb〉](| SC ◦ [〈!xb.0xa ; −〉](| R |) |)

where each X represents a growth factor associated with some channel !xs,
where s represents the part of X that binds to the GGF receptor (G), the
PDGF-BB receptor (P) or the bFGF receptor (bF). The corresponding recep-
tors, mxG, mxP , mxbF are all associated with the Schwann cell (SC). R repre-
sents the inactive replication machinery of the cell. This can only be activated on
the fusion of one of the growth factors with SC, removing 0xa, and making !xb

available for interaction. The availability of !xb in R allows SC to bud through
its interaction with Action bxb.

3 Projective Activate, Bud, and Mate Calculus

In this section, we demonstrate that all Actions in S (Eq. 1) can be expressed
as the actions in Smin (Eq. 3) combined with the directed Actions of PBC. The
use of Smin as primitives has similarities to the basic Mate-Bud-Drip (MBD)
calculus [8], which is one of two possible basic calculi for membrane interactions,
together with the Phago-Exo-Pino (PEP) calculus. It has been shown [3, 8],
however, that an encoding of MBD can be obtained with PEP, but not the
opposite, because the maximum level of membranes (i.e. the membrane nesting)
cannot grow during computation in MBD. Furthermore, the same articles prove
that PEP calculus is Turing complete and Turing powerful, as opposed to MBD.

Given these limitations, the use of a Bud- and Mate-based basic calculus ap-
pears counterintuitive. However, events indicated in the derivation of the MBD
primitives using PEP (Fig. 1A) are not observed in biological systems (Fig. 1B).
Although it is partly superfluous to observe that the derivations of MBD were
previously qualified as performed for computational purposes only, it is clear
that in vivo membrane fusion is characterized by membrane perturbances rather
than a series of phagocytosis and exocytosis events[20]. Specifically, the preva-
lent hypothesis regarding membrane fusion involves the reduction of the distance
between the fusing membranes, followed by the local perturbation of the lipid
structure and merger of proximal monolayers. Stalk formation and stalk expan-
sion, and finally, pore formation are postulated to follow. Furthermore, there is
a requirement that each of these steps has to be driven by an energy gradient
towards lower energies. The stalk hypothesis is mainly based on the observation
that the merger of proximal monolayers precedes the merger of distal monolayers.
These events are followed by the intravesicular solvent exchange[20].

174 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

Fig. 1. PEP derivation of Mate [3] (A) and the latest model of how membrane fusion
occurs [20] (B)

The succeeding discussions focus on the proposed PABM calculus as an en-
compassing calculus that conforms better with biologically observed phenomena.

3.1 Mate and Bud as Inverses of the Other

We consider Bud and Mate membrane actions as the primitives of this calculus,
together with the Activate action, which controls their execution. Figure 2(top
to bottom) shows a local deformation of the membrane separating the spaces
labeled as P and Q ◦ R resulting from its interaction with Q. The increase in
local curvature is then followed by the movement of Q towards the newly formed
protrusion. On the fusion of the initial points of deformation, a new membrane-
bound space containing Q is formed within P (Fig. 2, bottom), completing Bud.
The reverse process, Mate, can be obtained using an opposite perspective. Here,
the membrane separating Q from P merges with the membrane separating P
and R (bottom to top). Colors are used to indicate tonality; in these processes,
bitonality is conserved, as in PBC[5]. Since Bud and Mate are opposite opera-
tions, it would be possible to think of these as belonging to a single operation.

3.2 Projective Equivalence

Projective equivalence arose from the introduction of directed actions by Danos
and Pradalier [5]. Briefly, projective equivalence refers to the idea that the nature
of membrane interactions is such that one does not make a distinction between
top and bottom, or in this case, outside and inside. Consequently, by using a
simple point-of-view change (i.e. what one considers inside before, which is a
bounded space, is now viewed as the outside, which is unbounded), one reverses
the process. If one uses a pointed bitonal tree representation for the structure, the
equivalence is simply a change in the distinguished vertex [5], which is a change in
the root of the tree. One can then generalize phago and bud as a single budding
action, and exo and mate as a single mate action.

A Projective Brane Calculus with Activate, Bud and Mate 175

Fig. 2. Mate and Bud as inverse actions of the other. Bud is shown as a sequence from
top to bottom while Mate as the reverse. Note that a distinction is not made between
“inside” and “outside” spaces. A bilayer is used to illustrate directionality.

3.3 Basic Reduction Rules

The basic reduction rules of PABM are entirely based on Bud and Mate. Reduc-
tion rules are applied between interacting Brane domains, where the location
of the activation signal with respect to the receiver (i.e. the directionality of
the Action) determines if a Bud will be inward or outward, or if a Mate will
be horizontal (i.e. membranes at the same level will merge) or vertical (i.e.
the membrane of a content will merge with the membrane of its parent); this
is conceptually similar to what has been done in PBC[5]. In the design of a
Brane model, the directions at which Bud and Mate proceed are naturally inte-
grated.The reduction rules of PABM are as follows, with “∼” used for indicating
projective equivalence[5].

– Bud:

P ◦ [ρ1|〈σ1 ; σ2, τ2.bx〉](| [ρ2|〈σ4, τ4.!x ; σ3〉](|Q′ |) ◦R |)
−→ P ◦ [〈σ1 ; σ2, τ2, τ4〉](| [ρ2|〈σ4 ; σ3〉](|Q′ |) |) ◦ [ρ1](| R |) (9)

∼[
ρ †

1 |〈σ2, τ2.bx ; σ1〉
]
(| P |) ◦ [ρ2|〈σ4, τ4.!x ; σ3〉](|Q′ |) ◦R

−→
[

ρ †
1

]
(| P ◦ [〈σ1 ; σ2, τ2, τ4〉](| [ρ2|〈σ4 ; σ3〉](|Q′ |) |) |) ◦R (10)

176 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

– Mate:

P ◦ [ρ2|〈σ1, τ1.!x ; σ2〉](|Q |) ◦ [ρ1|〈σ′
1, τ3.mx ; σ′

2〉](| R |)
−→ P ◦ [ρ1|ρ2|〈σ1 ; σ2〉|〈σ′

1, τ1, τ3 ; σ′
2〉](|Q ◦R |) (11)

∼[
ρ †

1 |〈σ′
2 ; σ′

1, τ3.mx〉
]
(| P ◦ [ρ2|〈σ1, τ1.!x ; σ2〉](|Q |) |) ◦R

−→
[

ρ †
1 |ρ2|〈σ2 ; σ1〉|〈σ′

1, τ1, τ3 ; σ′
2〉
]
(| P |) ◦Q ◦R (12)

Note that Q in Mate is equivalent to [σ4, τ4.!x](| σ3 |)Q′ in Bud. Odd-even sub-
scripts and primed Actions are used to illustrate bitonality preservation. For
directionality to be conserved, note the need for the reversal of ρ1 to ρ †

1 when
the perspective is changed.

In the case of Mate, interchanging the locations of mx and !x results in slightly
different Brane domains. Eq. 11 results in:

P ◦ [ρ1|ρ2|〈σ1, τ1, τ3 ; σ2〉|〈σ′
1 ; σ′

2〉](|Q ◦R |) ; (13)

while Eq. 12 results in:

[ρ1|ρ2|〈σ1 ; σ2〉|〈σ′
1, τ1, τ3 ; σ′

2〉](| P |) ◦Q ◦R. (14)

It is only in the absence of τ1 and τ3 that the location of mx and !x does not
result in different succeeding states.

3.4 Non-primitive Actions with Bud and Mate

As shown in Eqs. 9 to 12, congruence exists between an inward and outward Bud,
and between a horizontal and vertical Mate. This is more clearly illustrated in
Fig. 2, where one sees that a simple perspective shift makes the same Bud or
Mate operation inward or outward, or vertical or horizontal. For instance, when
one chooses P as the “inside”, Q can be viewed as budding in towards P , or that
the membrane containing Q is mating with the membrane separating P and R.
As a result, PABM considers a ∈ S, a /∈ Smin as membrane operations congruent
to either Bud or Mate operation or its specific cases.

Phago and Exo. Fig. 3(top) shows how Q is exocytosed from R or endocy-
tosed into P via Mate and Bud, respectively. This is congruent to the Mate-Bud
reactions in Fig. 2, with R as the outside and P as the inside. Phago is expressed
as Bud in Eq. 10 and is congruent to the usual bud in Eq. 9.

Pino and Drip. Pino and Drip may be spontaneous or induced Bud actions (see
Eq. 10), where a null System (Q = null) is created inside or outside the bounded
space P . The activation may also be induced by an appropriate Activate Action
outside or inside P , or within-membrane activations (see §2.5). Pino and drip
are obtained when Q = null in Fig. 3.

A Projective Brane Calculus with Activate, Bud and Mate 177

Fig. 3. Specific cases of Mate and Bud: (top, forward) Exo and (top, reverse) Phago;
(bottom, forward) Cardelli’s Mate and (bottom, reverse) Bud operations

3.5 Enhanced Membrane Dynamics

A fundamental difference of the proposed calculus from the Brane calculus of
Cardelli is the dynamic nature of the reacting membranes. In Cardelli’s version,
the properties of budded membranes are specified as parameters to provide con-
trol; the same is true for the “endosomes” formed during Phago. In biological
systems, however, the characteristics of the budded membrane are necessarily
dependent on the state of the parent membrane at the time of budding or phago-
cytosis. Fig. 4 reflects this particular case of budding, when a sequential action
is associated with the activation Action on an initiating membrane (σ1, green).
Note the incorporation of σ1 in the budded membrane. Also note that only a
portion of the membrane is budded out.

This dynamic property of the membrane generally implies that systems in-
volved in a Mate followed by a Bud (b.m) will not evolve equivalently when
Bud is performed before Mate (m.b). For instance, consider the following initial
system:

Q0 ≡ [〈σ4, τ4.mxM ; σ3, τ3.bxB〉](| [〈σ1, τ1.!xB ; σ2〉](| P2 |) ◦ P3 |)
◦ [〈σ6, τ6.!xM ; σ7〉](| P1 |) (15)

Depending on which operation occurs first, the system will evolve in two different
ways. First, on performance of b.m, the system will evolve as:

Q0
m−−−−−−→ Q′

0 ≡ [〈σ4, τ4, τ6 ; σ3, τ3.bxB〉|〈σ6 ; σ7〉](|
P1 ◦ [〈σ1, τ1.!xB ; σ2〉](| P2 |) ◦ P3|) (16)

Q′
0

b−−−−−−→ Q′
1 ≡ [〈σ6 ; σ7〉](| P1 ◦ P3 |)

◦ [〈σ4, τ4, τ6 ; σ3, τ1, τ3〉](| [〈σ1 ; σ2〉](| P2 |) |) (17)

178 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

Fig. 4. Budding as a dynamic process. Note that a new action, σ1, associated with the
‘!’ is incorporated into the budded membrane. Domains are illustrated as line segments;
only selected domains proximal to the activated action are budded out.

Second, with m.b, the system will evolve as:

Q0
b−−−−−−→ Q′′

0 ≡ [−](| P3 |) ◦ [〈σ4, τ4.mxM ; σ3, τ3, τ1〉](| [〈σ1 ; σ2〉](| P2 |) |)
◦ [〈σ6, τ6.!xM ; σ7〉](| P1 |) (18)

Q′′
0

m−−−−−−→ Q′′
1 ≡ [−](| P3 |) (19)

◦ [〈σ4, τ4, τ6 ; σ3, τ3, τ1〉|〈σ6 ; σ7〉](| P1 ◦ [〈σ1 ; σ2〉](| P2 |) |)

Clearly, Q′
1 �= Q′′

1 . This asymmetry example (b.m �= m.b) is depicted in Fig. 5.
The difference disappears when the Mate and Bud are placed in separate do-
mains, 〈σ4, τ4.mxM ; σ3〉 and 〈σ′

4 ; σ′
3, τ3.bxB〉.

3.6 Competition of Parallel Membrane Processes

Using the concept of Brane domains, competition of two or more parallel mem-
brane processes can be easily modeled. Given the following system (longhand),
the interactions of !x is restricted to bx associated with σ1 or that associated
with σ3. If it interacts with bx in 〈σ1 ; bx〉, then the system reduction will be in
the form:

[〈σ1 ; bx〉|〈σ3 ; bx〉](| [〈!x ; σ5〉](|Q′ |) ◦R |)
−→ [〈σ1 ; −〉](| [〈− ; σ5〉](|Q′ |) |) ◦ [〈σ3 ; bx〉](|R |) (20)

A Projective Brane Calculus with Activate, Bud and Mate 179

Fig. 5. Differences in final system states based on the order at which reactions occur.
(top) Initial configuration; (middle) Mate then Bud; (bottom) Bud then Mate.

On the other hand, if it interacts with bx in 〈σ3 ; bx〉 instead, then the system
reduction will be as follows:

[〈σ1 ; bx〉|〈σ3 ; bx〉](| [〈!x ; σ5〉](|Q′ |) ◦R |)
−→ [〈σ3 ; −〉](| [〈− ; σ5〉](|Q′ |) |) ◦ [〈σ1 ; bx〉](|R |) (21)

Competition can also be realized in lateral and cross-membrane processes
(see Eq. 8).

3.7 Molecules as Systems

Molecules can either serve as ligands or receptors. In this proposed modification,
Molecules can be modeled as null Systems containing Activators associated with
Actions or other Activators. It may also be in the form of blocking functions,
σ.0x, which could only be activated by !x. A molecule can be modeled as:

Molecule : [〈σ1, (n)(!xname+!xgeneric) ; σ2, (m)(!xname+!xgeneric)〉](| � |) (22)

where τ may be a null Brane and the “name” could be the name of the molecule
making the channel unique for the molecule and “generic” refers to the generic
channel of the molecule. For example, “RNA” can be a generic channel having
the name of the protein that it encodes for its specific name.

180 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

Together with cross-membrane interactions, molecule diffusion through a
membrane can be modeled without atonal reduction. This is illustrated in the
reduction below, where the molecule on the left-hand side enters the system
P . Note the change in the replication coefficient, reflecting the reduction of the
active sites in both the molecule and the membrane surrounding P .

[〈(!x)(n1) ; (bx.!y)(n1)〉](| � |) ◦ [(n2)〈my ; −〉](| P |)
−→ [

(n2 − 1)〈my ; −〉|〈(bx.!y)(n1−1).bx ; (!x)(n1−1).!x〉](| P |)
−→ [(n2 − 1)〈my ; −〉]

(∣∣ P ◦ [〈(!x)(n1−1) ; (bx.!y)(n1−1)〉](| � |) ∣∣) (23)

3.8 Mass and Energy Conservation

Since budding involves direct movement of Brane domains, mass (represented
by an Action) conservation is also simulated. The “consumption” of an Action
after reduction can be seen as the usage of the available energy used for and/or
transfer of mass during the process, i.e. transformation of the structure into
new ones.

4 PABM as an Extension of Existing Brane Calculi

Equivalent expressions for the multiple association of the activation action using
Cardelli’s original notations can be derived. Suppose there are three systems
that can interact via a generic action a, with coaction a. Multiple association
can be realized with:

a!x (|Q0 |) ◦ a?x (| P1 |) ◦ a?x (| P2 |) , (24)

where system Q0 can proceed with the action (a ↔ a) on both systems P1 and P2
through the same channel !x →?x. It is possible to eliminate the use of coactions
(a) through the following representation:

!x (|Q0 |) ◦ a?x (| P1 |) ◦ a?x (| P2 |) (25)

with !x possibly activating either P1 or P2 via a?x. This minor notation change
is immediately compatible with Pi calculus, and would require a minor code
translation for recognition by the Stochastic Pi Machine (SPiM) [21].

However, the proposed calculus also involves the removal of the sender-receiver
pairing (viz. !x →?x), apart from the action-coaction pairing. Moreover, in
Eq. 25, the notation is asymmetric, with the activator !x having a different
form from a?x. It is possible to use α!x as a universal activator to conserve sym-
metry, but α will be underutilized. The use of a single “sender” is proposed for
all the other actions in the form !x, while simultaneously making the notation
symmetric with the use of the same form (ax, see Table 1). Both conceptually
and implementationwise, these major differences could be seen as improvements
over the current representation.

A Projective Brane Calculus with Activate, Bud and Mate 181

Hence, the multiple association expressed as (24) would be written in
PABM as:

[〈!x ; −〉](|Q0 |) ◦ [〈ax ; −〉](| P1 |) ◦ [〈ax ; −〉](| P2 |) (26)

with x as the channel; “!” now belongs to the same class as a �= ! (Table 1).
The choice of the symbol “!” for the activate action is directly inspired by the
Pi calculus notation.

As indicated previously, the other major departure from Cardelli’s Brane cal-
culus is the utilization of Brane domains in dynamic membranes to eliminate the
use of parameters in phagocytosis and budding. With these domains, a Brane
in PBC becomes a special case when a Brane in PABM is homogenous (i.e. is
comprised of a single Brane domain). For purposes of comparison, the reduction
rules of the original calculus [taken from [8]] are shown in Fig. 6.

Fig. 6. Cardelli’s Brane calculus reduction rules taken from [8]

The realization of non-primitive actions that were illustrated utilizes the same
concepts as in the projective equivalence of Danos and Pradalier [5], with the
exception that no arguments are explicitly used for the Bud action. Furthermore,
the simplicity of the current basis and reduction makes the calculus closer to
actual biological membrane operations. Finally, PBC becomes a subset of the
proposed calculus since PBC Branes can be simulated using homogenous PABM
Branes.

5 Summary and Outlook

We end this paper with brief discussions on a potential application of the calcu-
lus, as well as a strategy for its possible implementation.

182 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

5.1 Application Example: Viral Infection

Influenza A causes highly contagious respiratory infections in humans that range
in severity from acute to lethal. New strains arise annually, which lead to 250,000
to 500,000 deaths worldwide[22, 23, 24]. It is particularly interesting for biologists
because of its ability to evolve very quickly, a trait that makes the development of
an efficient vaccine against it particularly challenging[25, 26]. To date, a number
of qualitative studies have been performed to investigate its life cycle, but most
involved separate analyses of steps in the infection process [24, 26].

One of the recent most extensive quantitative models of influenza A in cell
culture is that by Sidorenko and Reichl[24]. It consists of 49 ordinary differential
equations (ODEs) that involve the use of additional parameters to approximate
the movement of viruses and its components across cell compartments. The main
results obtained from the model include the identification of factors that limit the
growth rate of viral progeny; these results are particularly useful in molecular
engineering, where engineered viruses are created for vaccine production[24].
Nevertheless, it is clear that much is still not known about the influenza A life
cycle, primarily owing to the complexity of the virus. Some details, for instance,
that have not been included in the Sidorenko-Reichl model include the following:

1. Distinction between each of the eight strands of genetic material (vRNA),
complexed with three proteins (collectively known as vRNP), throughout
the replication cycle

2. Distribution of 11 protein-coding genes across the eight vRNAs
3. Indirect genetic material replication (vRNA → cRNA → vRNA), with the

intermediate cRNA being able to interact with the same proteins that vRNA
interacts with

4. Requirement for precise viral assembly

Accordingly, several key issues remain unanswered:

1. time it takes to assemble vRNPs
2. ratio of infective to non-infective viruses
3. instances of ‘infectivity recovery’ in the event that two complementary non-

infective viruses enter a cell

Since compartments can be naturally represented in Brane, its use for modeling
the influenza A life cycle is probably an elegant, quantitative alternative that
would allow the inclusion of details such as those enumerated previously. Fig. 7
is a general illustration for the possible usage of PABM to model the influenza
infection cycle. This particular model is an interesting application for Brane
calculus on account of its scale. Note that all operations used for modeling the
system are restricted to budding and mating, including the simulation of the
bind-and-release action in the nucleus. The position of activation signals are
not explicitly indicated in the figure, but could be deduced from the illustrated
processes.

In addition to these, it would also be possible to include details that are known
to affect influenza infectivity, as well as efficiency[27]:

A Projective Brane Calculus with Activate, Bud and Mate 183

Fig. 7. Influenza A infection cycle model being implemented using PABM. All opera-
tions are performed with Bud and Mate, including nuclear import and export through
the use of the NP protein, nuclear localization sequences (NLS) or nuclear export
sequences (NES). All processes are conformant with the actual events in influenza
infection.

1. cleavage efficiency of HA
2. distinction between transcriptionally active and inactive vRNPs

5.2 Implementation and Compatibility with SPiM

Previous efforts have been made to implement Brane calculus[28, 29]. These
implement calculi based on the set S (Eq. 1) and were found useful for studying
events having the same scale as the Semliki forest virus life cycle, which was used
as the illustrative example in [3]. Nevertheless, these are not powerful enough to
handle models having the scale of the influenza A life cycle. It is consequently
of interest to develop an implementation that is both scalable and robust.

The stochastic pi machine (SPiM) was developed by Andrew Phillips, and
uses a simulation algorithm for stochastic pi calculus that is particularly suited
for simulating biological systems involving a large number of molecules. This

184 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

simulation algorithm makes the execution cost dependent on the number of
species, rather than the actual number of molecules, unlike in direct implemen-
tations of the Gillespie algorithm [21]. SPiM has been used on a number of
occasions for a variety of biological problems [21, 30, 31]. Lately, the algorithm
in SPiM has been extended to include compartment-based computation, using
the Bioambients formalism [7]. SPiM also has a graphical interface, which sig-
nificantly improves its ease of use.

PABM should be compatible with SPiM using the following equivalences:

!x ≡ (m!x + b!x + 0!x) (27)
ax ≡ a?x (28)

σ.!x ≡ a!x(σ) (29)

where a = m, b, 0 and a is the corresponding coaction. Encoding more specific
stochastic pi calculus constructs would only require the use of very specific chan-
nel names. For PABM to be implemented on top of SPiM, compartments, Brane
domains, and action directionality have to be appropriately represented. A sep-
arate implementation approach that focuses on the rewriting rules of PABM is
also currently being explored.

Acknowledgments. We wish to thank Luca Cardelli and Andrew Phillips for
helpful discussions.

References

[1] Păun, G.: Introduction to membrane computing. In: Applications of Membrane
Computing, pp. 1–42 (2006)

[2] Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems.
In: Modelling in Molecular Biology (2004)

[3] Cardelli, L.: Brane calculi: interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

[4] Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

[5] Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V.
(eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg
(2005)

[6] Guerriero, M.L., Priami, C., Romanel, A.: Modeling Static Biological Compart-
ments with Beta-binders. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007.
LNCS, vol. 4545, pp. 247–261. Springer, Heidelberg (2007)

[7] Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in
the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS
(LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

[8] Busi, N., Zandron, C.: Modelling and analysis of biological processes by
(mem)brane calculi and systems. In: Proceedings of the 2006 Winter Simulation
Conference, pp. 1646–1655 (2006)

A Projective Brane Calculus with Activate, Bud and Mate 185

[9] Guglielmo, G.D., Drake, P., Baass, P., Authier, F., Posner, B., Bergeron, J.: In-
sulin receptor internalization and signalling. Mol. Cell. Biochem. 182, 59–63 (1998)

[10] Hsu, S., Bonvin, A.: Atomic insight into the CD4 binding-induced conforma-
tional changes in HIV-1 gp120. Proteins: structure, function and bioinformatics 3,
582–593 (2004)

[11] Keskin, O.: Binding induced conformational changes of proteins correlate with
their intrinsic fluctuations: a case study of antibodies. BMC Structural Biology 7,
31 (2007)

[12] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.: Molecular
Biology of the Cell, New York (2002)

[13] David, M., Asprer, J., Ibana, J., Concepcion, G., Padlan, E.: A study of the struc-
tural correlates of affinity maturation: antibody affinity as a function of chemi-
cal interactions, structural plasticity and stability. Mol. Immunol. 44, 1342–1351
(2006)

[14] Dimitrov, D.: Virus entry: molecular mechanisms and biomedical applications.
Nature Reviews Microbiology 2, 109–122 (2004)

[15] Kim, W., Hudson, B., Moser, B., Guo, J., Rong, L., Yu, L., Qu, W., Lalla, E.,
Lerner, S., Chen, Y., Yan, S.D., D’Agati, V., Naka, Y., Ramasamy, R., Herold,
K., Yan, S., Schmidt, A.: Receptor for advanced glycation end products and its
ligands: A journey from the complications of diabetes to its pathogenesis. Annals
of the New York Academy of Sciences 1043, 553–561 (2006)

[16] Thulke, S., Radonic, A., Nitsche, A., Siegert, W.: Quantitative expression analysis
of HHV-6 cell receptor CD46 on cells of human cord blood, peripheral blood and
G-CSF mobilised leukapheresis cells. Virology Journal 3, 77–81 (2006)

[17] Simons, K., Vaz, W.L.C.: Model Systems, Lipid Rafts, and Cell Membranes. An-
nual Review of Biophysics and Biomolecular Structure 33(1) (June 2004)

[18] Sutton, R.B., Fasshauer, D., Jahn, R., Brunger, A.T.: Crystal structure of
a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Na-
ture 395(6700), 347–353 (1998)

[19] Chiu, D., Wilson, C., Karlsson, A., Danielsson, A., Lunqvist, A., Stroemberg, A.,
Ryttsen, F., Davidson, M., Nordholm, S., Orwar, O., Zare, R.: Manipulating the
biochemical nanoenvironment around single molecules contained within vesicles.
Chem. Phys. 247, 133–139 (1999)

[20] Jahn, R., Grubmüller, H.: Membrane fusion. Current Opinion in Cell Biology 14,
488–495 (2002)

[21] Phillips, A., Cardelli, L.: A Correct Abstract Machine for the Stochastic Pi-
calculus. In: Concurrent Models in Molecular Biology (2004)

[22] Poland, G.A., Tosh, P., Jacobson, R.M.: Requiring influenza vaccination for health
care workers: seven truths we must accept. Vaccine 23(17-18), 2251–2255 (2005);
Vaccines and Immunisation. Based on the Fourth World Congress on Vaccines
and Immunisation

[23] Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinet-
ics of Influenza A Virus Infection in Humans. J. Virol. 80(15), 7590–7599 (2006)

[24] Sidorenko, Y., Reichl, U.: Structured model of influenza virus replication in mdck
cells. Biotechnology and bioengineering 88, 1–14 (2004)

[25] Bardiya, N., Bae, J.: Influenza vaccines: recent advances in production technolo-
gies. Applied Microbiology and Biotechnology 67(3), 299–305 (2005)

[26] Genzel, Y., Schulze-Horsel, J., Möhler, L., Sidorenko, Y., Reichl, U.: Influenza
vaccines –challenges in mammalian cell culture technology. Cell Technology for
Cell Products, 503–508 (2007)

186 M.P.C. David, J.Y. Bantang, and E.R. Mendoza

[27] Nayak, D.P., Hui, E.K.-W., Barman, S.: Assembly and budding of influenza virus.
Virus Research 106, 147–165 (2004)

[28] de Ronde, J.J., Ndjehan, C.P.: Modelling Networks and Pathways in Systems
Biology. Technical report, CA545 Practicum, School of Computing, Dublin City
University (2005/2006)

[29] David, M.P.C.: BCD: Design and implementation of a stochastic brane machine.
Master’s thesis, Department of Computer Science, University of the Philippines,
Diliman, Quezon City (2008)

[30] Segata, N., Blanzieri, E., Priami, C.: Stochastic π-calculus modelling of multisite
phosphorylation based signaling: in silico analysis of the Pho4 transcription fac-
tor and the PHO pathway in Saccharomyces cerevisiae. Technical report, Center
for Computational and Systems Biology, The Microsoft Research – University of
Trento (2007)

[31] Yap, J.M.: A Pi-Calculus Model of the CD95 Receptor Medicated Pathway of
Apoptosis. Philippine Information Techonology Journal 1(1) (2008)

[32] Zhang, B.T., Hikawa, N., Horie, H., Takenaka, T.: Mitogen induced proliferation
of isolated adult mouse Schwann cells. J. Neurosci. Res., 648–654 (1995)

Accepting Networks of Non-inserting
Evolutionary Processors

Jürgen Dassow1 and Victor Mitrana2,�

1 Faculty of Computer Science, University of Magdeburg
P.O.Box 4120, 39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de
2 Faculty of Mathematics, University of Bucharest

Str. Academiei 14, 70109 Bucharest, Romania
Department of Information Systems and Computation

Technical University of Valencia,
Camino de Vera s/n. 46022 Valencia, Spain

mitrana@fmi.unibuc.ro

Abstract. In this paper we consider four variants of accepting networks
of evolutionary processors with in-place computations, that is the length
of every word in every node at any step in the computation is bounded
by the length of the input word. These devices are called here accept-
ing networks of non-inserting evolutionary processors (ANNIEP shortly).
The variants differ in two respects: filters that are used to control the
exchange of information, i.e., we use random context conditions and reg-
ular languages as filters, and the way of accepting the input word, i.e., at
least one output node or all output nodes are nonempty at some moment
in the computation. The computational power of these devices is inves-
tigated. In the case of filters defined by regular languages, both variants
lead to the class of context-sensitive languages. If random context con-
ditions are used for defining filters, all linear context-free languages and
some non-semilinear (even over the one-letter alphabet) can be accepted
with both variants. Moreover, some closure properties of the classes of
languages ANNIEPs with random context filters are also given.

1 Introduction

The origin of networks of evolutionary processors (NEP for short) is a basic ar-
chitecture for parallel and distributed symbolic processing, related to the Con-
nection Machine [9] as well as the Logic Flow paradigm [7], which consists of
several processors, each of them being placed in a node of a virtual complete
graph, which are able to handle data associated with the respective node. All
the nodes send simultaneously their data and the receiving nodes handle also
simultaneously all the arriving messages, according to some strategies, see, e.g.,
[8,9]. Similar ideas may be met in other bio-inspired models like membrane sys-
tems [16], evolutionary systems [4], or models from Distributed Computing area

� Work supported by the Alexander von Humboldt Foundation.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 187–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

188 J. Dassow and V. Mitrana

like parallel communicating grammar systems [15], networks of parallel language
processors [3].

In a series of papers (see [14] for an early survey) one considers that each node
may be viewed as a cell having genetic information encoded in DNA sequences
which may evolve by local evolutionary events, that is point mutations. Each
node is specialized just for one of these evolutionary operations. Furthermore,
the data in each node are organized in the form of multisets of words (each word
appears in an arbitrarily large number of copies), and all the copies are processed
in parallel such that all the possible events that can take place do actually take
place. Obviously, the computational process just described is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we
have considered might be interpreted as mutations and the filtering process
might be viewed as a selection process. Recombination is missing but it was
asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [17].

In [13] one presents a characterization of the complexity class NP based on
accepting networks of evolutionary processors (ANEP for short). This charac-
terization is extended in [12] to PSPACE and P. The work [10] discusses how
ANEPs can be considered as problem solvers. In [11], one shows that every recur-
sively enumerable language can be accepted by an ANEP with 24 nodes. More
precisely, one proposes a method for constructing, for every NP-language, an
ANEP of size 24 deciding that language in polynomial time. While the number
of nodes of this ANEP does not depend on the language, the other parameters
of the network (rules, symbols, filters) depend on it.

From a computational point of view it is of interest to consider ANEPs with
in-place computations, that is the length of every word in every node at any
step in the computation is bounded by the length of the input word. This is
our main reason to consider here some variants of networks of evolutionary pro-
cessors without insertion nodes, called here accepting networks of non-inserting
evolutionary processors, ANNIEP shortly. The differences between the variants
of ANNIEPs consist in the filters and in the way of accepting the input word.

Besides accepting networks of evolutionary processors, generating networks
of such processors have been investigated (see [2], [5], [14]). In the paper [6],
the generative power of networks where only two types of point mutations are
allowed for the nodes have been investigated. In case of non-inserting processors
one only gets the set of all finite languages. This paper presents the counterpart
for accepting networks, where the situation is completely different.

We study the computational power of accepting networks of non-inserting
processors. In the case of filters defined by regular languages, both variants
of accepting lead to the same class of languages, namely the class of context-
sensitive languages. If random context conditions are used for defining filters,
all linear context-free languages and some non-semilinear (even over the one-
letter alphabet) can be accepted with both variants. Therefore the power of
accepting networks is much greater than that of generating networks (both with
non-inserting processors). Moreover, some closure properties of the classes of

Accepting Networks of Non-inserting Evolutionary Processors 189

languages accepted by ANNIEPs with filters defined by random context condi-
tions are also discussed.

2 Some Notations and Definitions

Throughout the paper we assume that the reader is familiar with the basic
notions of the theory of formal languages. We here only recall some notation
and notions as they are used in the paper.

An alphabet is a finite and nonempty set of symbols. The cardinality of a finite
set A is written card(A). Any sequence of symbols from an alphabet V is called
word over V . The set of all words over V is denoted by V ∗ and the empty word
is denoted by ε. A language over V is a subset of V ∗.

The length of a word x is denoted by |x| while alph(x) denotes the (with
respect to inclusion) minimal alphabet W such that x ∈ W ∗. A morphism h :
V ∗ −→ U∗ is said to be literal if |h(a)| = 1 for all a ∈ V ; it is weak literal
if |h(a)| ≤ 1 for all a ∈ V . In other words a (weak) literal morphism is called
(weak) coding.

Let V be an alphabet. We say that a rule a → b, with a, b ∈ V ∪ {ε} is a
substitution rule if both a and b are not ε; it is a deletion rule if a �= ε and b = ε.
The set of all substitution and deletion rules over an alphabet V are denoted by
SubV and DelV , respectively. Given a rule σ as above and a word w ∈ V ∗, we
define the following actions of σ on w:

• If σ ≡ a → b ∈ SubV , then σ∗(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{ub : w = ua},
{w}, otherwise σl(w) =

{{bv : w = av},
{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{u : w = ua},
{w}, otherwise σl(w) =

{{v : w = av},
{w}, otherwise

The action α ∈ {∗, l, r} expresses the way of applying a substitution or deletion
rule to a word, namely at any position (α = ∗), in the left (α = l), or in the right
(α = r) end of the word, respectively. For every rule σ, any action α ∈ {∗, l, r},
and any L ⊆ V ∗, we define the α-action of σ on L by σα(L) =

⋃
w∈L

σα(w).

Given a finite set of rules M , we define the α-action of M on the word w and
the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively.

190 J. Dassow and V. Mitrana

If θV ∗ −→ {0, 1} is a predicate and L ⊆ V ∗, we write:

θ(L) = L ∩ θ−1(1).

We are interested in some special predicates. For two disjoint subsets P and F
of an alphabet V , a regular set R over V , and a word x over V , we define the
predicates

θs,P,F (x) = 1 if and only if P ⊆ alph(x) and F ∩ alph(x) = ∅,
θw,P,F (x) = 1 if and only if alph(x) ∩ P �= ∅ and F ∩ alph(x) = ∅,

θR(x) = 1 if and only if x ∈ R.

The first two predicates are based on random context conditions defined by the
two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols).
Informally, the first condition requires (s stands for strong) that all permitting
symbols are and no forbidding symbol is present in x, while the second (w stands
for weak) is a weaker variant such that at least one permitting symbol appears
in x but still no forbidding symbol is present in x. We call these two predicates
random context predicates. The third predicate asks for membership in a regular
set, and is called a regular predicate.

A non-inserting evolutionary processor over V is a tuple (M, ϕ, ψ), where:

– M is a set of either substitution or deletion rules over the alphabet V ; for-
mally, M ⊆ SubV or M ⊆ DelV . The set M represents the set of evolution-
ary rules of the processor. As one can see, a processor is “specialized” in one
evolutionary operation, only.

– ϕ is the input predicate, while ψ is the output predicate of the processor.
Informally, these two predicates work as filters. A word w can enter or leave
the processor, if it satisfies the predicate ϕ or ψ, respectively.

We are interested in two types of processors, random context non-inserting evo-
lutionary processor over V (or short rcNIEPV) and regular non-inserting evolu-
tionary processor over V (or short regNIEPV). These processors are defined by
the requirement that,

– for an rcNIEPV , both predicates are of the form θs,P,F or of the form θw,P,F

for certain subsets P and F of V ,
– for an regNIEPV , both predicates are of the form θR for some regular set

R ⊆ V ∗.

We want to stress from the very beginning that the evolutionary processor we
discuss here is a mathematical object only and the biological hints presented in
the introduction are intended to explain in an informal way how some biological
phenomena are sources of inspiration for our mathematical computing model.
We denote the set of non-inserting evolutionary processors over V by NIEPV .

An accepting network of non-inserting evolutionary processors (ANNIEP for
short) is a 8-tuple Γ = (V, U, G, N, α, xIn, Out), where:

Accepting Networks of Non-inserting Evolutionary Processors 191

– V and U are the input and network alphabet, respectively, satisfying V ⊆ U .
– G = (XG, EG) is an undirected graph without loops with the set of vertices

XG and the set of edges EG. G is called the underlying graph of the network.
– N : XG −→ NIEPV is a mapping which associates with each node x ∈ XG

the evolutionary processor N(x) = (Mx, ϕx, ψx).
– α : XG −→ {∗, l, r} is a mapping which associates with each node a type

of action; α(x) gives the action mode of the rules of node x on the words
existing in that node.

– xIn ∈ XG is the input node of Γ .
– Out ⊂ XG is the set of output nodes of Γ .

An ANNIEP is a random context ANNIEP or regular ANNIEP if all its non-
inserting evolutionary processors are random context or regular non-inserting
evolutionary processors, respectively.

We say that card(XG) is the size of Γ . A configuration of an ANNIEP Γ
as above is a mapping C : XG −→ 2V ∗

f which associates a finite set of words
with every node of the graph. A configuration may be understood as the sets of
words which are present in any node (or in the associated prozessor) at a given
moment. Given a word z ∈ V ∗, the initial configuration of Γ on z is defined by
C

(z)
0 (xIn) = {z} and C

(z)
0 (x) = ∅ for all x ∈ XG \ {xIn}.

A configuration can change either by an evolutionary step or by a communica-
tion step. When changing by an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x provided that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C $ C′, iff

C′(x) = (C(x) − ψx(C(x))) ∪
⋃

{x,y}∈EG

(ψy(C(y)) ∩ ϕx(C(y))) for all x ∈ XG.

Note that words that cannot pass the output filter of a node remain in that node
and can be further modified in the subsequent evolutionary steps, while words
that can pass the output filter of a node but cannot pass the input filter of any
node are lost.

Let Γ be an ANNIEP, the computation of Γ on the input word z ∈ V ∗ is a
sequence of configurations C

(z)
0 , C

(z)
1 , C

(z)
2 , . . ., where C

(z)
0 is the initial configu-

ration of Γ on z, C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 $ C

(z)
2i+2, for all i ≥ 0. Note that the

configurations are changed by alternative steps. By the previous definitions, each

192 J. Dassow and V. Mitrana

configuration C
(z)
i is uniquely determined by the configuration C

(z)
i−1. A compu-

tation halts (and it is said to be weak (strong) halting) if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in at least
one output node (all output nodes) is non-empty. In this case, the computation
is said to be a weak (strong) accepting computation.

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.

The language weakly (strongly) accepted by Γ are defined as:

Lwa(Γ) = {z ∈ V ∗ | the computation of Γ on z is a weak accepting one}
Lsa(Γ) = {z ∈ V ∗ | the computation of Γ on z is a strong accepting one}.

In the theory of networks some types of underlying graphs are common like rings,
stars, grids, etc. Networks of evolutionary words processors, seen as language
generating or accepting devices, with underlying graphs having these special
forms have been considered in several papers, see, e.g., [14] for an early survey.
We focus here on complete ANNIEPs i.e., ANNIEPs having a complete under-
lying graph. Therefore, in what follows we replace the graph G in the definition
of an ANNIEP by the set of its nodes usually denoted by χ.

Moreover, we present an evolutionary network by its nodes x and the param-
eters corresponding to x, where instead of ϕβ,PIx,FIx and ψβ,POx,FOx , in case of
random context processors, and instead of ϕRx and ϕR′

x for regular processors,
we only mention PIx, F Ix, POx, FOx, β and Rx, R′

x, β, respectively.
For x ∈ {wa, sa} and y ∈ {rc, reg}, by Lx(yANNIEP) we denote the set of

all languages which can be accepted by yANNIEPS.
The following two notions will be very useful in the sequel. If h is a one-to-

one mapping from U to W and Γ = (V, U, χ, N, α, xIn, Out) is an ANNIEP,
then we denote by Γh the ANNIEP Γh = (h(V), h(U), χ, h(N), α, xIn, Out),

where by h(N) we mean h(N)(x) = (h(Mx), ϕβ,h(PIx),h(FIx), ψβ,h(POx),h(FOx))
for every x ∈ χ, provided that N(x) = (Mx, ϕβ,PIx,FIx , ψβ,POx,FOx). Further,
h(a → b) = h(a) → h(b) for any evolutionary rule a → b. Now, given two
ANNIEPs Γi = (Vi, Ui, χi, Ni, αi, x

i
In, Outi), i = 1, 2, χ1 ∩ χ2 = ∅, we denote by

Γ1%Γ2 = (V1, U1∪U2, χ1∪χ2, N, α, x1
In, Out2), where ◦ |χi= ◦i for all ◦ ∈ {N, α}

and i = 1, 2.

3 Computational Power of Regular ANNIEPs

We start with a relation between the strong and weak acceptance modes.

Theorem 1. Lwa(regANNIEP) ⊆ Lsa(regANNIEP).

Proof. Let L ∈ Lwa(regANNIEP). Then L = Lwa(Γ) for some regular AN-
NIEP Γ = (V, U, χ, N, α, xIn, Out). Let N(x) = (Mx, ϕRx , ψR′

x) for a node x of

Accepting Networks of Non-inserting Evolutionary Processors 193

χ. Without loss of generality we may assume that Mx = ∅ for all x ∈ Out. We
now construct the regular ANNIEP

Γ ′ = (V, U ∪ {Z}, χ ∪ {xOut}, N ′, α′, xIn, {xOut}),
where N ′(x) = N(x) for x ∈ χ \Out, and

y : {a → Z | a ∈ U}, Ry, Z∗, α′(y) = ∗ for y ∈ Out,

xOut : ∅, Z∗, ∅, α′(xOut) = ∗.
Obviously, if there is a non-empty node y of Out in some configuration of Γ ,
then y contains some word in some configuration of Γ ′, too. If this word is ε,
then ε is not changed and sent to xOut. If the word in y is non-empty, then all
its letters are replaced by Z (note that it cannot leave the node as long as it still
contains letters different than Z) and it is send to xOut. Conversely, if a word
eventually arrives in xOut, then it contains only Z’s which means that it was in
a node from Out at some previous step. Thus Γ ′ accepts the same language as
Γ does. Moreover, since the set of output nodes of Γ ′ is a singleton, we have
Lwa(Γ) = Lwa(Γ ′) = Lsa(Γ ′). �

Note that we have shown a stronger result than given in Theorem 1 because
we have shown that the number of output nodes of an ANNIEP accepting in the
weak mode can be decreased to one only.

We now compare the families of languages generated by ANNIEPs with the
family of context-sensitive languages denoted here by L(CS).

Theorem 2. L(CS) ⊆ Lwa(regANNIEP).

Proof. Let L be a context-sensitive language. Then L = L(G) for some context-
sensitive grammar G = (N, T, P, S) in Kuroda normal form, i.e., all its rules are
of the form A → a, A → BC and AD → BC with A, B, C, D ∈ N and a ∈ T .
Let P ′ be the set of rules of the form A → BC and AD → BC. For every p ∈ P ′

with its right-hand side BC we set

Rp = (N ∪ T)∗{Bp}(N ∪ T)∗,
R′

p = (N ∪ T)∗{BpCp}(N ∪ T)∗,
R′′

p = (N ∪ T)∗{Cp}(N ∪ T)∗

and R =
⋃

p∈P ′
Rp. We construct the ANNIEP Γ = (T, U, χ, H, α, xIn, {xOut})

with

U = N ∪ T ∪ {Bp, Cp | p = AD → BC or p = A → BC},
χ = {xIn, xOut} ∪ {p, p′, p′′ | p ∈ P ′},

xIn : MxIn , (N ∪ T)∗, R, α = ∗
MxIn = {a → A | A → a ∈ P} ∪ {B → Bp | p = AD → BC or p = A → BC},

p : {C → Cp}, Rp, R′
p, α = ∗ for p = AD → BC or p = A → BC,

194 J. Dassow and V. Mitrana

p′ : {Bp → A}, R′
p, R′′

p , α = ∗ for p = AD → BC or p = A → BC,

p′′ :
{{Cp → D}, R′′

p , (N ∪ T)∗, α = ∗ for p = AD → BC,
{Cp → ε}, R′′

p , (N ∪ T)∗, α = ∗ for p = A → BC,

xOut : ∅, {S}, {S}, α = ∗.
The network simulates a derivation in G backwards. Let w be the input word;
we claim that for any word z ∈ (N ∪ T)+ in xIn at any computation step we
have that z =⇒∗ w in G. Initially, this assertion is true as w lies in xIn. Assume
that a word z ∈ (N ∪ T)+ is in the node xIn at some step. If we apply a rule
a → A to z, the new word remains in xIn and the assertion holds for this new
word.

Now assume that we apply B → Bp to z for a rule p = AD → BC. Then the
obtained word z′ = z1Bpz2, where z = z1Bz2, is sent to the node p, where some
C is replaced by Cp. If BpCp is not a subword, then the word cannot go out from
this node; moreover any word further obtained from this word can never go out
from the node p. If BpCp is a subword, the word is sent out to the node p′, where
Bp is replaced by A. This new word is sent out to p′′. There Cp is either replaced
by D, provided that p = AD → BC, or deleted provided that p = A → BC.
Finally, the obtained word, say z′, is sent to xIn. Altogether, we started with
z = vBCu and obtained z′ = vADu, which implies that z′ =⇒ z =⇒∗ w.

Moreover, since a word only reaches xOut, if it is S, we infer that a word is
weakly accepted by Γ if and only if it is generated by G. Thus Lwa(Γ) = L(G).

�

Theorem 3. Lsa(regANNIEP) ⊆ L(CS).

Proof. For an ANNIEP Γ = (V, U, χ, N, α, xIn, Out), we construct a linearly
bounded automaton, which accepts Lsa(Γ). We do not give a complete formal
construction; we only give an informal description of the automaton and leave
the details of the construction to the reader.

Let r = card(Out). The automaton has r tapes, and on each tape it nonde-
terministically follows the itinerary of a copy of the input word. The states are
vectors of size 2r, each ith entry, 1 ≤ i ≤ r, being associated with the node
containing the word on the tape i, and each ith entry, r + 1 ≤ i ≤ 2r, being
0 or 1 that indicates whether the node associated with the (i − r)th entry has
finished its task on the word on tape i (in this case the entry is 1) or not. Ini-
tially, all tapes contain the input word w, the first r entries of the initial states
are associated with the input node xIn, and the last r entries are 0.

Let us now consider an arbitrary configuration of the automaton: the first r
elements of the current state state are associated with the nodes x1, x2, . . .xr ,
the last r elements are 0, and on the i-th tape, 1 ≤ i ≤ r, the word wi stands.
Now the automaton performs on each tape i the following actions:

– Changes the word wi according to an application of a rule in Mxi ; let vi be
the result.

– Checks whether vi can pass the output filter of xi. In the non-affirmative
case the automaton blocks the computation. In the affirmative case, the

Accepting Networks of Non-inserting Evolutionary Processors 195

automaton changes the ith entry of the state into an entry associated with
the node yi, which is a nondeterministically chosen node among the nodes
of χ \ {xi}.

– Check whether vi can pass the input filter of yi. In the non-affirmative case
the automaton blocks the computation. In the affirmative case, the i+r entry
becomes 1. From now on, no move is observed on the ith tape and no change
is made for the entries i and i + r, until all the entries r + 1, r + 2, . . . , 2r
are 1.

– Checks whether the state with the last r entries 1 has its first r entries
associated with all output nodes of Γ . In the affirmative case the automaton
accepts the input; otherwise it changes the last r entries into 0 and resumes
the actions explained above.

It is rather plain that the automaton accepts Lsa(Γ). Since in any evolutionary
step one deletes or substitutes one letter, the length of the words on any tape is
bounded by the length of the input word. Thus the workspace of this automaton
is linearly bounded. �

By the Theorems 1, 2 and 3, we get immediately the following two statements.

Corollary 1

1. Lwa(regANNIEP) = Lsa(regANNIEP) = L(CS).
2. Every language in LX(regANNIEP), X ∈ {wa, sa}, can be weakly/strongly
accepted by a regANNIEP Γ such that the action mode of every node of Γ is ∗. �

4 Computational Power of Random Context ANNIEPs

We start with two statements that immediately follows from Theorems 1 and 3.

Theorem 4

1. Lwa(rcANNIEP) ⊆ Lsa(rcANNIEP).
2. Lsa(rcANNIEP) ⊆ L(CS). �

We do not know whether the second inclusion is proper or equality holds. Thus
we give some further relations to other known language families inside L(CS)
and some closure properties which give some more information about the classes
Lwa(rcANNIEP) and Lsa(rcANNIEP).

Theorem 5

1. Lwa(rcANNIEP) includes the class of linear context-free languages.
2. Lwa(rcANNIEP) contains non-semilinear languages.

Proof. 1. Let G = (N, T, S, P) be a linear context-free grammar; without loss of
generality we may assume that the following conditions hold:

196 J. Dassow and V. Mitrana

– Every rule in P is of one of the following three forms: A → aB, A → Ba,
A → a, where A, B ∈ N and a ∈ T ,

– If both rules A → aC and B → Db belong to P , then A �= B,
– The set of nonterminals N of G is {A1, A2, . . . , An} for some n ≥ 1 and

S = A1,
– There is no rule A → aA or A → Aa for any A ∈ N and a ∈ T .
We construct the following ANNIEP with the input alphabet T , the working

alphabet U = T ∪ {ai, a
′
i | 1 ≤ i ≤ n} ∪ {Z}, and only one output node xOut.

xIn :

⎧⎪⎪⎨
⎪⎪⎩

M = {a → a1 | a ∈ T },
P I = T, FI = {ai | a ∈ T, 1 ≤ i ≤ n},
PO = ∅, FO = T,
α = ∗, β = w,

xOut :

⎧⎪⎪⎨
⎪⎪⎩

M = ∅,
P I={Z}, F I=U \ {Z},
PO = U, FO = ∅,
α = ∗, β = s,

If there exists Ai → aAj ∈ P for some a ∈ T and 1 ≤ j �= i ≤ n, then the node
xi is defined by

xi :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → a′
j | Ai → aAj ∈ P},

P I = {ai | a ∈ T }, F I = U \ {ai | a ∈ T },
PO = {a′

j | a ∈ T, 1 ≤ j �= i ≤ n}, FO = ∅,
α = l, β = w,

If there exists Ai → Aja ∈ P for some a ∈ T and 1 ≤ j �= i ≤ n, then the node
xi is defined by

xi :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → a′
j | Ai → aAj ∈ P},

P I = {ai | a ∈ T }, F I = U \ {ai | a ∈ T },
PO = {a′

j | a ∈ T, 1 ≤ j �= i ≤ n}, FO = ∅,
α = r, β = w,

Moreover, we set

x′
i :

⎧⎪⎪⎨
⎪⎪⎩

M = {aj → ai | a ∈ T, 1 ≤ j �= i ≤ n},
P I = {a′

i | a ∈ T }, F I = ∅,
PO = {ai | a ∈ T }, FO = {aj | a ∈ T, 1 ≤ j �= i ≤ n},
α = ∗, β = w,

for 1 ≤ i ≤ n,

x̄i :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′
i → ε | a ∈ T },

P I = {a′
i | a ∈ T }, F I = {aj | a ∈ T, 1 ≤ j �= i ≤ n},

PO = {ai | a ∈ T }, FO = {a′
i | a ∈ T },

α = l, β = w,

for 1 ≤ i ≤ n,

x̃i :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′
i → ε | a ∈ T },

P I = {a′
i | a ∈ T }, F I = {aj | a ∈ T, 1 ≤ j �= i ≤ n},

PO = {ai | a ∈ T }, FO = {a′
i | a ∈ T },

α = r, β = w,

for 1 ≤ i ≤ n,

y :

⎧⎪⎪⎨
⎪⎪⎩

M = {ai → Z | Ai → a ∈ P, a ∈ T, 1 ≤ i ≤ n},
P I =

⋃n
i=1{ai | a ∈ T }, F I = U \ (

⋃n
i=1{ai | a ∈ T }),

PO = {Z}, FO = ∅,
α = r, β = w,

Accepting Networks of Non-inserting Evolutionary Processors 197

The general idea of this construction is that for every 1 ≤ i ≤ n, the following
statement holds:

Fact: If S =⇒t uAiv =⇒+ uwv = z for some t ≥ 0, with |z| = m, then
hi(w) ∈ (C(z)

2m(t+1)+2t(xi)∩C
(z)
2m(t+1)+2t(y)), where hi is a literal morphism from

T to {ai | a ∈ T } defined by h(a) = ai for any a ∈ T .
This fact can be proved by a standard induction argument on t. Now, if

t = m− 1, then w is reduced to a letter from T , say a, therefore after the word
ai is transformed into Z in the node y, it arrives in xOut and the computation
halts successfully. This means that z is accepted by the network.

On the other hand, if C
(z)
0 , C

(z)
1 , C

(z)
2 , . . . , C

(z)
p is an accepting computation

on z and hi(w) ∈ (C(z)
t (xi) ∩ C

(z)
t (y)) for some t < p, then the derivation

S =⇒∗ uAiv =⇒+ uwv = z holds in G, which concludes the proof of the first
statement of the theorem.

2. The network with the nodes defined by:

xIn :

⎧⎪⎪⎨
⎪⎪⎩

M = {a → ā},
P I = {a}, F I = {ā, ã},
PO = {ā}, FO = ∅,
α = ∗, β = s,

x1 :

⎧⎪⎪⎨
⎪⎪⎩

M = {a → ã},
P I = {ā}, F I = {ã},
PO = {ã}, FO = ∅,
α = ∗, β = s,

x2 :

⎧⎪⎪⎨
⎪⎪⎩

M = {ā → ε},
P I = {ā, ã}, F I = ∅,
PO = {ã}, FO = ∅,
α = ∗, β = s,

x3 :

⎧⎪⎪⎨
⎪⎪⎩

M = {ã → a′},
P I = {ã}, F I = {ā},
PO = {a′}, FO = {ã},
α = ∗, β = s,

x4 :

⎧⎪⎪⎨
⎪⎪⎩

M = {a′ → a},
P I = {a′}, F I = {a, ā, ã},
PO = {a}, FO = {a′},
α = ∗, β = s,

xOut :

⎧⎪⎪⎨
⎪⎪⎩

M = ∅,
P I = {ā}, F I = {a, ā, ã},
PO = {ā}, FO = ∅,
α = ∗, β = s,

weakly accepts the non-semilinear language {a2n | n ≥ 0}. Indeed, the compu-
tation of this netwok on every input is divided in two phases. In the first phase,
the input word looses one occurrence of a and changes another one to a′ by
visiting the nodes xIn, x1, x2, x3. This process resumes until no occurrence of a
is observed in the current word. There are three possiblities: (1) it contains only
a’s, (2) it contains only a’s excepting an occurrence of ā, (3) it equals ā. Now
the second phase of the computation starts. In the first case, the word enters
x4 where all a’s are transformed into original a’s and the first phase resumes
from xIn with a word that is exactly twice shorter than the word present in the
input node in the beginning of the previous first phase. In this case, we have
checked whether the length of that word was an even number. In the second
case listed above, the computation cannot continue anymore, hence the network
will eventually halt without accepting. In the third case, the computation halts
accepting the input word. This means that the length of the input word could
be divided iteratively by 2 until the result was one, hence the length of the input
word was a power of 2. �

198 J. Dassow and V. Mitrana

Theorem 6
1. The class Lwa(rcANNIEP) is closed under boolean union, literal morphism,
inverse weak literal morphism, mirror image.
2. The class Lsa(rcANNIEP) is closed under boolean intersection, literal mor-
phism, inverse weak literal morphism, concatenation, mirror image.

Proof. 1. We give an informal proof for union that can be easily formalized by
the reader. Let Γ1 and Γ2 be to ANNIEPs; we construct a new ANNIEP Γ
that contains three subnetworks. In the input node of the first subnetwork, an
arbitrary symbol of the input word is substituted by either its primed copy or its
barred copy. All words containing a primed symbol are received by a specific node
while those containing a barred symbol are received by another specific node.
All symbols of the words arrived in these two nodes are replaced by their primed
and barred copies, respectively. When this process is finished, each of the two
nodes contains only one word. The word containing primed symbols only is given
as an input word to the subnetwork formed from Γ1 modified accordingly. The
other word is processed analogously by the subnetwork formed from Γ2 modified
accordingly. The set of output nodes of Γ is the union of the sets of output nodes
of Γ1 and Γ2 modified accordingly. Clearly, Lwa(Γ) = Lwa(Γ1) ∪ Lwa(Γ2).

If h : V −→ U is a literal morphism and Γ is an ANNIEP with the input
alphabet V , then let Γ ′ be the ANNIEP with the input alphabet U formed
by two subnetworks as follows. In the input node of the first subnetwork, each
symbol b of the input word is substituted by a symbol a′ such that a′ is a copy
of a ∈ V that does not appear in V ∪ U and h(a) = b. When all symbols of
the input word were substituted, all the words obtained are sent to the input
node of the subnetwork formed from Γ modified accordingly. It is plain that
h(Lwa(Γ)) = Lwa(Γ ′). The construction for the closure under inverse weak
literal morphism is pretty similar and left to the reader.

The closure under mirror image follows pretty simple; it suffices to interchange
all the action modes l and r of the nodes.

2. The closure under intersection, literal morphism and inverse literal mor-
phism follows similarly to the previous case. Note the fundamental role played
by the strong acceptance in the case of intersection. �

It is known that every recursively enumerable language can be written as
the image of the intersection of two linear languages through a weak literal
morphism. Therefore, the following statement is a consequence of the second
statement of Theorem 4 and Theorem 6:

Corollary 2
1. Every recursively enumerable language is the weak literal morphic image of a
language in Lsa(ANNIEP).
2. Lsa(ANNIEP) is not closed under weak literal morphism. �

5 Final Remarks

As we showed in this note, the computational power of ANNIEPs is very dif-
ferent than that of generating networks of non-inserting processors. The role of

Accepting Networks of Non-inserting Evolutionary Processors 199

evolutionary operations in generating networks of evolutionary processors, that is
generating networks with nodes specialized in all three evolutionary operations,
in two operations out of these three and in only one operation, was considered
in [1]. A similar investigation on ANEPs has already started.

References

1. Alhazov, A., Dassow, J., Rogozhin, Y., Truthe, B.: Personal communication
2. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.: Networks of evolution-

ary processors. Acta Informatica 38, 517–529 (2003)
3. Csuhaj-Varj, E., Salomaa, A.: Networks of parallel language processors. In: Păun,

G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218,
pp. 299–318. Springer, Heidelberg (1997)

4. Csuhaj-Varj, E., Mitrana, V.: Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)

5. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Hybrid NEPs are computationally
complete. Acta Informatica 41, 257–272 (2005)

6. Dassow, J., Truthe, B.: On the power of networks of evolutionary processors. In:
Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 158–169.
Springer, Heidelberg (2007)

7. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing.
In: Artificial Intelligence and Information-Control Systems of Robots, vol. 94,
pp. 31–40. World Scientific, Singapore (1994)

8. Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI:
NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on
AI, pp. 109–113. William Kaufman, Los Altos (1983)

9. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)
10. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On the size complexity of universal ac-

cepting hybrid networks of evolutionary processors. Mathematical Structures in
Computer Science 17, 753–771 (2007)

11. Manea, F., Mitrana, V.: All NP-problems can be solved in polynomial time by
accepting hybrid networks of evolutionary processors of constant size. Information
Processing Letters 103, 112–118 (2007)

12. Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez, M.: A new characteri-
zation of NP, P, and PSPACE with accepting hybrid networks of evolutionary
processors (submitted)

13. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of
evolutionary systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004.
LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

14. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives. In: Molecular Computational Models: Unconventional Approaches,
pp. 78–114. Idea Group Publishing, Hershey (2005)

15. Păun, G., Sntean, L.: Parallel communicating grammar systems: the regular case.
Annals of University of Bucharest, Ser. Matematica-Informatica 38, 55–63 (1989)

16. Păun, G.: Computing with membranes. Journal of Computer and System
Sciences 61, 108–143 (2000)

17. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of
the mitochondrial genome. In: Proceedings of the National Academy of Sciences of
the United States of America, vol. 89, pp. 6575–6579 (1992)

Discrete Modeling of Biochemical Signaling with
Memory Enhancement

John Jack1 and Andrei Păun1,2,3

1 Department of Computer Science/IfM
Louisiana Tech University, P.O. Box 10348, Ruston, LA 71272, USA

{johnjack,apaun}@latech.edu
http://www.latech.edu

2 Departamento de Inteligencia Artificial, Facultad de Informática
Universidad Politécnica de Madrid,

Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain
http://www.upm.es

3 Bioinformatics Department, National Institute of Research and
Development for Biological Sciences,

Splaiul Independenţei, Nr. 296, Sector 6, Bucharest, Romania

Abstract. We present an enhancement of the Nondeterministic Wait-
ing Time algorithm. This work is a continuation of our group’s previ-
ous modeling efforts. We have improved our algorithm with a “memory
enhancement”. Previously, we have used our algorithm to explore the
Fas-mediated apoptotic pathway in cells with a particular focus on can-
cerous or HIV-1-infected T cells. In this paper, we will describe the mem-
ory enhancement and give a simple three reaction model to illustrate the
differences between our technique and a continuous, concentration-based
approach using a system of ordinary differential equations. Furthermore,
we provide our results from the modeling of two well-known models: the
Lotka-Volterra predator-prey and a circadian rhythm model. For these
models, we provide the results of our simulation technique in comparison
to results from ordinary differential equations and the Gillespie Algo-
rithm. We show that our algorithm, while being faster than Gillespie’s
approach, is capable of generating oscillatory behavior where ordinary
differential equations do not.

Keywords: Discrete modeling, Lotka-Volterra, predator - prey, circa-
dian rhythm, Gillespie, ordinary differential equations.

1 Introduction

Systems biology, the systematic study of biological systems through a combined
effort between computational and experimental results, has received a great
deal of attention in recent years [17,18]. There has been an expansive effort
from mathematicians and computer scientists to use models to unravel the mys-
teries behind biochemical/biological systems – e.g., signal transduction, viral
dynamics, gene transcription. With the ever-increasing wealth of information

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 200–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.latech.edu
http://www.upm.es

Discrete Modeling of Biochemical Signaling with Memory Enhancement 201

flowing in from biological labs around the world on protein dynamics, the chal-
lenge remains for computer scientists to develop/refine efficient algorithms for
modeling molecular signaling cascades. Computational tools are being applied
to interpret biological results and make predictions into the underlying molec-
ular mechanisms involved in cancer, autoimmune disorders, and neurological
disorders.

We see two important efforts being undertaken by computer scientists with
respect to modeling molecular signaling cascades. First, the algorithms devel-
oped to interpret molecular interactions need visibility to biochemists and non-
computer scientists. Notably, the authors of [10,12] have made great strides in
developing software, designed for biochemists with little to no knowledge on
the modeling algorithm, to design, develop, and implement biochemical network
simulations based on their experimental observations.

The second major effort is the development of more efficient algorithms to
drive biochemical simulation software. With many labs focusing on the modeling
of individual pathways – e.g., Fas-mediated apoptosis [11], p53 network [19,22]
and the EGF-receptor system [24] – the concept of a realistic whole-cell simu-
lation remains a very distant goal. There are too many unknowns biochemical
aspects to build an accurate and reliable model. However, while the biochemical
questions surrounding whole-cell simulation are being answered in experimental
labs, there is still work to be done in modifying (and developing new) algorithms
for simulating biochemical systems.

1.1 Motivation Behind the Paper

Many signal transduction models in the literature contain as many (or more)
reactions as proteins. Although the human genome contains over three billion
base-pairs, it only encodes approximately 20,000-25,000 genes. The proteins en-
coded by these genes are entangled in an intricate and diverse web of interactions.
The dynamics of these proteins – e.g., expression levels and reactions – define
the complexity and physiological characteristics of the human cell.

Some reactions in signaling cascades can sometimes share common reactants
and compete for resources. These competing reactions typically have different
kinetic rates – i.e., some of the competing reactions utilize a given reactant
faster than other reactions use the same reactant. Hence, when the numbers
of some molecules are very small, stochastic (or nondeterministic) methods for
biochemical modeling can play an important role in interpreting the results of
lab experiments, and offer insight into unknown aspects of the system.

When modeling biochemical networks via systems of ordinary differential
equations (ODEs), the data are considered in terms of concentrations instead
of numbers of molecules, and the reactions are deterministically applied. While
the ODEs are satisfactory for predicting the average behavior of a biochemical
system, they are not ideal for extrapolating the different cellular responses re-
sulting from molecular signaling cascades – especially ones involving low numbers

202 J. Jack and A. Păun

of molecules. The Gillespie Algorithm [7,8], which is a numerical simulation
algorithm for the chemical master equation, has been extensively employed to
address these low molecular multiplicity situations. However, even though it has
been modified to run more efficiently [9], it does not scale well with respect to the
number of reactions. Hence, an algorithm capable of realistic and efficient whole-
cell simulation, a significant goal for systems biology, is still being explored. Our
algorithm is designed to be faster than Gillespie’s algorithm and its derivatives
– such as, Gibson’s Next Reaction Method – yet more sensitive than ODE-based
simulations.

Our group has previously argued in [3,13,14] that an approach involving the
Membrane Systems paradigm of computing offers a unique perspective on bio-
chemical network simulation. Specifically, in [13,14] we discuss the advantages
of our simulation technique: the Nondeterministic Waiting Time (NWT) algo-
rithm. Our algorithm is distinct from the Gillespie Algorithm. Yet, it is a discrete,
nondeterministic technique which can offer a different perspective than systems
of ordinary differential equations on the biochemistry of a cell.

In this paper, we will describe a modification to our algorithm. In order to
improve the deterministic aspects of reaction competition for our simulation
technique, we have added a memory enhancement to the NWT. This enhances
the sensitivity of our algorithm with respect to reaction competition over limited
resources. Since our algorithm relies on the law of mass action to drive the
population dynamics, fast reactions may be allowed to use up all the resources
of a slow reaction. With the modified algorithm, a slow reaction will remember
how long it has waited when a fast reaction uses all available reactants. The
memory can be factored into the equation for calculating the next time the slow
reaction will occur, once reactants become available again.

In Section 2 we provide the necessary background on the NWT algorithm, a
simulation technique based on Membrane Systems. We will discuss the specifics
on the memory enhancement in Section 3, as well as results for a simple bio-
chemical model involving fast-slow reaction competition. In Section 4 we show
the results of the NWT algorithm for simulating two popular models: The Lotka-
Volterra predator-prey model and a circadian rhythm model [1]. For both models,
we compare the results of the NWT algorithm with an ODE-based simulation
and a simulation based on the Gillespie Algorithm. Section 5 contains our final
remarks and a discussion on the future research interests of our modeling group.

2 The Nondeterministic Waiting Time Algorithm

The NWT algorithm is a discrete, nondeterministic biochemical simulation al-
gorithm. We track the evolution of a Membrane System where the rules (or
reactions) occur over discrete time intervals in an asynchronous manner. Before
we give a step-by-step description of the algorithm, it is important to discuss
the concept of reaction Waiting Times.

Our NWT algorithm is driven by the law of mass action – the time a reaction
takes to occur is directly proportional to the number of its reactant molecules.

Discrete Modeling of Biochemical Signaling with Memory Enhancement 203

When dealing with concentration-based kinetics we need to calculate a discrete
kinetic constant (for molecules instead of nMs, μMs, etc). We initialize the dis-
crete kinetic constants with Equation 1.

constR =
kR

V i−1 ×N i−1 (1)

where V is the volume of the system, N is Avogadro’s constant (6.0221415×1023)
and i is the number of reactants involved in the reaction.

Once the kinetic constants are initialized, for every reaction in the system, we
calculate the initial Waiting Time – the amount of time required for one instance
of a reaction – using Equation 2.

WTR1 =
1

constR1 ∗ |A|
(2)

where A is the reactant, constR1 is the discrete kinetic constant, and |A| rep-
resents the number of molecules present in the system at the moment of WT
calculation.

Equation 2 represents the calculation for a first order reaction (involving only
one reactant). For second and third order reactions (two and three reactants,
resp.), we need to use Equations 3 and 4.

WTR2 =
1

constR2 ∗ |A| ∗ |B|
(3)

and
WTR3 =

1
constR3 ∗ |A| ∗ |B| ∗ |C|

(4)

where A, B, and C are the reactants, constR2 and constR3 are the discrete kinetic
constants, and |A|, |B| and |C| represent the numbers of molecules present in
the system at the moment of WT calculation.

With the calculation of reaction Waiting Time, we have the amount of time
it will take for each reaction to occur. If there are insufficient reactants for a
reaction, then we set the Waiting Time equal to infinity; this is easily done in
the C programming language. We can now provide the following description of
the NWT algorithm (n.b., Step 7 is the new memory enhancement step, which
will be explained in Section 3):

1. Build Membrane System: Import model information (alphabet, rules,
etc.). For every reaction, Ri, calculate the initial Waiting Time, WTRi .
Choose simulation end-time τfin. Set current simulation time to zero (τ = 0).

2. Build Heap: Using the reaction Waiting Times, we build a min-heap of all
reactions in the system.

3. Select Rule: Choose the reaction with the lowest Waiting Time – the top of
the min-heap. Upon selecting the top node, recursively check to see if there
are any children nodes sharing the minimum Waiting Time. If such a tie
for minimum Waiting Time exists, proceed to Step 4. If no tie exists, then
proceed to Step 5.

204 J. Jack and A. Păun

4. Handle Tie: Check the multiplicities of the reactant species for all tied
reactions. If there are enough reactants to satisfy all of the reactions with the
minimum Waiting Time, implement all tied reactions. If there are not enough
reactants to accommodate all the reactions, then nondeterministically apply
as many reactions as possible.

5. Apply Rule: Update the multiplicities of the reactant(s) and product(s)
for the reaction(s) from Step 3. Aggregate the simulation time (τ = τ +
WTapplied).

6. Update Rules: Recalculate the Waiting Time for all reactions whose reac-
tants include the products or reactants of the applied reaction(s). That is, we
need to see how the multiplicity changes from the applied reaction(s) have
affected the Waiting Times for all rules dependent on those proteins with
changed multiplicity. For each such reaction compare the new Waiting Time
with the existing Waiting Time and keep the smallest of the two (unless the
new time is infinity).

7. Memory Enhancement: If the recalculation of a reaction’s Waiting Time
results in a value of infinity, then we must store the amount of time waited
as a percentage (Memperc). If the recalculation of a reaction’s Waiting Time
results in a real value and the previous value was infinite, then the Waiting
Time will need to be adjusted according to the stored memory percentage.

8. Heap Maintenance: Adjust the min-heap, bubbling reaction nodes up or
down in order to satisfy the min-heap property, once reaction Waiting Times
have been recalculated according to the multiplicity changes. N.B., to accom-
modate the multiple changes in Waiting Times, we employ nonstandard heap
maintenance methods.

9. Termination: If τ = τfin, then terminate the simulation. Output the mul-
tiplicity information for entire simulation. Otherwise, go back to Step 3.

For a deeper explanation of the algorithm, we refer the interested reader to
[13,14]. In the next section, we will clarify Step 7 of the algorithm – the memory
enhancement.

3 Memory Enhancement

As we discussed in Section 1.1, there are often situations in biochemical networks,
where one protein is a reactant for two or more reactions of different kinetic rates
(fast vs. slow). In order to explain our memory enhancement, we will consider
an example system (see Table 1).

The biochemical system in Table 1 involves three reactions (R1, R2 and R3)
acting on four proteins (A, B, C, D). We can mathematically describe the model
as a system of ordinary differential equations (Equation 5)

d[A]
dt

= −(k1 + k2)[A] + k3[D]

d[B]
dt

= k2 ∗ [A]

Discrete Modeling of Biochemical Signaling with Memory Enhancement 205

Table 1. An example biochemical system

Reaction Rate Constant Initial Molecules
R1: A → C k1 (slow) A = 1
R2: A → B k2 (fast) B = 0
R3: D → D + A k3 C = 0

D = 1

d[C]
dt

= k1 ∗ [A]

d[D]
dt

= 0 (5)

The system of ordinary differential equations in Equation 5 was specifically de-
signed to illustrate the effects of the memory enhancement. We will compare
the enhanced NWT algorithm with solutions to the systems of ODEs, providing
two differences cases based on variable kinetics. By selecting different kinetic
rates, we will show how the memory enhancement leads to agreement between
the NWT and ODEs for strictly deterministic runs, but with nondeterministic
decisions it can lead to distinct results and a divergence in overall behavior of
the biochemical network. For the sake of simplicity, we will assume the rate con-
stants (k1, k2 and k3) are already in discrete form. Therefore, when refer to ki

in Ri above, we have constRi .
A model similar to the one described in Table 1 could be used to investigate

the dynamics of HIV-1 Tat protein, since it is initially transcribed at very low
numbers [16]. Once Tat is assembled in the cytosol, it can be exocytised or
translocated to the nucleus [20]. When Tat is translocated to the nucleus it
can begin upregulating HIV-1 proteins (including itself). Since the downstream
effects of Tat translocation to the nucleus has profound impacts on the cell
(causing upregulation of the HIV-1 proteins), a discrete and nondeterministic
approach is beneficial to the study of the dynamics of the low levels of Tat [23].

In the system, molecules of A are formed from molecules of D. This reaction
can basically be viewed as a combined transcription and translation rule with D
being the gene and A being the protein encoded by the gene. Once a molecule of
A is formed, it has the option of turning into a molecule of B at rate k2 or it can
turn into a molecule of C at a rate k1. If we consider the species A to be analogous
to HIV-1 Tat protein, then reaction R1 (A → B) could be the translocation of
Tat from the cytosol to the nucleus, and reaction R2 (A → C) could be the
translocation of Tat from the cytosol to the extracellular environment.

We will next consider two cases for the model described in Table 1 and discuss
the implementation of the memory enhancement. The cases are determined by
the values for the discrete kinetic rates. The first case shows that the memory
enhancement can produce similar results between the ODEs and the NWT when
no nondeterministic decisions are made. For the second case, we will show how
the technique can produce different results, illustrating the NWT algorithm’s

206 J. Jack and A. Păun

ability to explore the stochastic nature of molecular signaling cascades. Note,
the NWT algorithm remains the same in both cases, the only difference lies in
the initialization of the discrete kinetic constants.

3.1 Case 1: Deterministic Memory Enhancement

If we let k1 = 4, k2 = 10, and k3 = 5, then we can see the results of a simulation
using the NWT algorithm plotted against the solution of the system of ordinary
differential equations (Figure 1).

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Time

M
ol

ec
ul

es

0

5

10

15

20

25

Fig. 1. The graph shows the accumulation of C molecules throughout a 10 second
run. The bars are the discrete results from the NWT algorithm and the black line is
the solution of the system of ordinary differential equations. With the kinetic values
(k1 = 4, k2 = 10, k3 = 5), there are no nondeterministic decisions for the entire length
of the NWT simulation. Therefore, we are pleased to see the NWT algorithm results
are similar to the solution to the system of ordinary differential equations.

At initialization (t = 0), there is exactly one molecule of D and one molecule
of A. Therefore, from Equation 2, we see that all three reactions have real (finite)
Waiting Times when the simulation begins. Moreover, we have WTR1 = 0.25,
WTR2 = 0.1 and WTR3 = 0.2. According to the reaction Waiting Times, the
first reaction to occur is R2, which immediately exhausts the system’s supply
of A molecules, yields one molecule of B and a simulation time of t = 0.1. The
Waiting Times for the rules affected by the applied rule must be recalculated;
since there are no molecules of A in the system, we have WTR1 = WTR2 = ∞.
R3 does not use any proteins involved in the applied reaction (A or C), so WTR3

is left unchanged after the first reaction is executed. After the heap maintenance,
R3 will be at the top.

The next reaction to be applied is R3, which gives us a new molecule of A
and a simulation time of t = 0.2. Now the memory enhancement plays a role. In
the first step, reaction R2 exhausts the supply of A molecules. When this occurs,

Discrete Modeling of Biochemical Signaling with Memory Enhancement 207

R1 has waited for 0.1 seconds of its total WT . The memory enhancement allows
the simulator to keep track of the percentage of time waited. In other words,
R1 waited for 0.1 seconds out of its required 0.25 seconds, which means it has
waited 40% of its Waiting Time. We store the percentage of time left to wait
(60%). So, when a new molecule of A is formed (for instance, at τ = 0.2), we
can recalculate the WTR1 using the percentage to adjust its Waiting Time.

Continuing after R3 is applied at time τ = 0.2, we have a new molecule of
A. Since R1 and R2 both use A as a reactant, we must recalculate the Waiting
Times of both reactions. The Waiting Time of R2 and R1 are calculated using
Equation 2. However, the memory of R1 allows us to take 60% of its recalculated
WT . Therefore, the Waiting Time of R2 is calculated as 0.1, but the Waiting
Time of R1 is recalculated as 0.15. This number stems from the equation

WTR1 = Mem
1

k1 ∗ |C| (6)

where Mem is the percentage of time left to wait (60% in the example above).
The second and third order reactions follow similarly.

Using this implementation, our NWT algorithm agrees with the ODEs for a
strictly deterministic run. In the next subsection, we will explore the implications
of the memory enhancement in a system requiring reaction competition over low
numbers of molecules. Although we agree with ODEs in a deterministic run, we
want to explore the nondeterministic effects of the memory enhancement.

3.2 Case 2: Nondeterministic Memory Enhancement

We will now assume different kinetic constants to highlight the effects of the
nondeterministic component of the NWT algorithm in conjunction with the
memory enhancement. Although the kinetics of our sample system are chosen
in a deliberate manner in order to illustrate the nondeterministic effects of the
algorithm, we will later show in Section 4.2 how our nondeterministic logic can
have similar implications in a model reported in the literature.

For our next simulations, we assume k1 = 0.1, k2 = 1.0, and k3 = 0.5. The
initial Waiting Times are calculated as WTR1 = 10, WTR2 = 1, and WTR3 = 2.
In Figure 2, we see the accumulation of B and C molecules. The results of the
ODE-based simulation are visibly different than the results of the simulation
involving the NWT algorithm. The reasons for the differences are the nondeter-
ministic decisions on reaction competition for A molecules.

Based on the initialized WT s, the first reaction to be applied is R2. After
R2 is applied, the simulation time is aggregated (t = 1) and there are no more
molecules of A present in the system. Hence, the WT s for R2 and R1 are both
infinite after recalculation. We store the percentage of time the slow reaction,
R1, had left to wait when the WT changed to infinity – MemR1 = 90%. The
next rule to be applied is R3, since it was unaffected by the application of R2.
The simulation time is adjusted (t = 2), and we now have a new molecule of A.
With our new A molecule available, we must recalculate the WT s for R1 and R2.

208 J. Jack and A. Păun

(a)

(b)

Fig. 2. In both graphs we see the results of the ODE-based simulation (straight black
line) and the results from the modified NWT algorithm. (a) The accumulation of
molecules of B and (b) the accumulation of C are shown. Molecules of B and C both
come from A molecules. However, the reaction for B is faster than the reaction for C. In
the ODE models, a molecule of A can be used to partially satisfy B and C. Since our
NWT algorithm is discrete, the molecules are nondeterministically chosen to satisfy
one or the other. The reaction changing A into C ’remembers’ how long it has waited,
and uses this information the next time a molecule of A is ready.

Using MemR1 , we calculate the WT for reaction R1, using the fact that it
need wait only 90% of its new Waiting Time. Therefore, when a new molecule
of A is formed two seconds into the run, we recalculate WTR1 using Equation
6. In our case, we have WTR1 = 9 and WTR2 = 1.

Continuing the calculations for the simulation, we skip ahead to a future event
(t = 18). Up until this point, we have been creating molecules of A, and every
single one of them has been deterministically chosen to change into molecule
B via reaction R2. But, at t = 18, a molecule of A has been created, and the
Waiting Times of reaction R1 and R2 are equal WTR1 = WTR2 = 1, since we
have MemR1 = 10%. In other words, R1 and R2 are each attempting to use
the A molecule to form a C and B, resp. The ODE-based simulation has no

Discrete Modeling of Biochemical Signaling with Memory Enhancement 209

problems at this time-point, since it is continuously sending a fraction of each
A to form a fraction of B and C, whereas our algorithm represents A discretely
and only satisfies one reaction per molecule.

Our algorithm faces the question: at t = 18 should the A molecule be allowed
to satisfy R1 or R2? The algorithm answers the question by making a nondeter-
ministic choice between R1 and R2. If R1 is chosen, then it is applied, and our
results stay with the ordinary differential equations results (up to t = 19). Re-
member, the ordinary differential equations have been slowly and continuously
aggregating fractions of C molecules throughout to reach one full molecule of C
by t = 19. However, if R2 is chosen, then our solution diverges from the previous
solution. When the effects of the nondeterministic decisions are aggregated over
1000 seconds, we see the different results obtained from the NWT algorithm
(Figure 2).

4 Other Models

4.1 Lotka-Volterra Predator-Prey

The Lotka-Volterra predator-prey model depicts the interactions of two species.
There is a prey population and a predator population, where P1(t) and P2(t)
represent the number of each species respectively at time t. The model can be
written as the following pair of first-order, nonlinear, differential equations

dP1

dt
= P1 ∗ (a− b ∗ P2)

dP2

dt
= −P2 ∗ (c− d ∗ P1) (7)

where prey species are born at a rate of a and consumed at a rate of b. Predator
species are born at a rate of d and die at a rate of c.

In Figure 3, we see a picture of the predator-prey model. The picture (as well
as the SBML code for the model) was generated with CellDesigner [5,6], which
we also used to generate the SBML code to initialize our simulator. The way
the system is designed, an increase in prey leads to an increase in predator, and
an increase in predator leads to a decrease in prey. Total annihilation of prey
leads to total extinction of predator, since the food supply of the predator will
be exhausted.

We used three different simulation techniques to model the reactions described
in the Lotka-Volterra model: solution to the system of ordinary differential equa-
tions, the Gillespie Algorithm, and our NWT algorithm. The ODEs were solved
in MATLAB, while the other two algorithms were both coded in C. The results
are given in Figure 4 and Figure 5.

The solution to the ordinary differential equations in Equation 7 shows consis-
tent oscillations throughout the entire simulation run. The NWT shows damp-
ened oscillations over time. The Gillespie Algorithm has difficulties producing
the oscillations, due to the stochasticity of the algorithm. In this case, our NWT

210 J. Jack and A. Păun

Fig. 3. The Lotka-Volterra model involves two interacting species. Prey species are
born at a rate a and are consumed at a rate b by the predator species. The predator
species are born at a rate of d if there is available food (prey). The way the system
is designed, an increase in prey leads to an increase in predator. Total annihilation of
prey leads to total extinction of predator, since there is no longer any food. The model
deterministically leads to oscillatory behavior.

(a)
0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

500
Lotka−Volterra (ODE)

Time

M
ol

ec
ul

es
 o

f p
ro

te
in

 R

Prey
Pred

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500
Lotka−Volterra (NWT)

Time

M
ol

ec
ul

es
 o

f p
ro

te
in

 R

Prey
Pred

(b)

(c)
0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

500
Lotka−Volterra (Gillespie)

Time

M
ol

ec
ul

es
 o

f p
ro

te
in

 R

Prey
Pred

Fig. 4. Results of three simulation techniques for the Lotka-Volterra model (up to 100
seconds). (a) solution to ordinary differential equations, (b) the NWT algorithm, and
(c) the Gillespie Algorithm.

Discrete Modeling of Biochemical Signaling with Memory Enhancement 211

(a)
0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450
Lotka−Volterra (ODE)

Time

M
ol

ec
ul

es
 o

f p
ro

te
in

 R

Prey
Pred

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450
Lotka−Volterra (NWT)

Time

M
ol

ec
ul

es
 o

f p
ro

te
in

 R

Prey
Pred

(b)

Fig. 5. Results of the two simulation techniques for the Lotka-Volterra model (up to 500
seconds). (a) solution to ordinary differential equations and (b) the NWT algorithm.

algorithm runs deterministically. The system is small enough and the dynam-
ics are such that the NWT makes no nondeterministic decisions due to reaction
competition. If we expand the results of the solution to system of ordinary differ-
ential equations and the NWT algorithm, we see further decline in the amplitude
for the NWT algorithm. In Figure 5, we expand the simulation run for a total
of five hundred seconds. The results for the solution to the system of ordinary
differential equations and the NWT algorithm simulation are provided.

We modeled this classic system to illustrate the differences in the results of
our simulation technique compared to the solution of the system of ordinary
differential equations, the NWT algorithm, and the Gillespie Algorithm simula-
tions. Our system was able to exhibit oscillatory behavior, albeit the oscillations
are damped. However, as you can see in Figure 5, the oscillations persist with
the NWT algorithm (and the ordinary differential equations). Yet, the Gille-
spie Algorithm will always reach a steady state, whereby the predator and prey
species will eventually completely disappear. Since there are no nondeterministic
decisions made during the run, we can only attribute the dampened oscillations
to the fact that the system is discrete. We will next discuss a circadian rhythm
model, which will illustrate how our algorithm can produce Gillespie-like results,
even though we have a reduced complexity.

4.2 Circadian Rhythm

Circadian rhythm models are often explored in nature. These act as internal
clocks which allow organisms to anticipate daily changes in the environment [1]
– for instance, when to hunt for food, when to rest, etc. Yet, at the level of
cellular biochemistry, circadian rhythms have also been reported [4]. Biological
systems run by internal clocks – that is, certain proteins are created at certain
parts of the day. Therefore, simulating circadian rhythm models is important in
understanding the way DNA is interpreted and pre-existing proteins waiting to
be activated are used by the body for daily survival [1].

We have chosen to model the circadian rhythm model described in [21]. The
system describes an activator and a repressor gene (A and R). These genes are

212 J. Jack and A. Păun

transcribed into mRNA, which leads into the translation of the proteins. The
activator A binds to the promoters for A and R and increases the transcription
rate. The system of ordinary differential equations described in [21] showed that
intrinsic biochemical noise enhanced the oscillations. In Equation 8, we see the
system of ordinary differential equations for the model.

dDA

dt
= θA ∗ D′

A − γA ∗ DA ∗ A

dDR

dt
= θR ∗ D′

R − γR ∗ DR ∗ A

dD′
A

dt
= γA ∗ D′

R ∗ A − θA ∗ D′
A

dD′
R

dt
= γR ∗ DR ∗ A − θR ∗ D′

R

dDMA

dt
= α′

A ∗ D′
A + αA ∗ DA − δMa ∗ MA

dA

dt
= βA ∗ MA + θA ∗ D′

A + θR ∗ D′
R − A ∗ (γA ∗ DA + γR ∗ DR + γC ∗ R + δA)

dMR

dt
= α′

R ∗ D′
R + αR ∗ DR − δMR ∗ MR

dR

dt
= βR ∗ MR − γC ∗ A ∗ R + δA ∗ C − δR ∗ R

dC

dt
= γC ∗ A ∗ R − δA ∗ C (8)

where A and R represent the number of activator and repressor proteins, D′
A

and DA represent the number of activator genes with or without binding to A,
D′

R and DR represent the number of repressor genes with or without binding to
R, MA and MR represent mRNA molecules of A and R, and C represent the
corresponding inactivated complex formed by A and R.

Deterministic modeling techniques, like the solution to the systems of ordinary
differential equations, for biochemical interactions fail to produce the oscillations
of a circadian rhythm model. However, the stochastic noise from a Gillespie-
based approach leads to repeated oscillations throughout an entire run. Our
NWT algorithm can produce results similar to the Gillespie algorithm – genetic
oscillations – but at a considerably reduced computational cost.

The results for the simulation of the circadian rhythm model are shown in
Figure 7. We present the results from Gillespie’s Algorithm, the solution of
the system of ordinary differential equations (Equation 8), and our NWT al-
gorithm. The NWT algorithm is able to reproduce the oscillations for the per-
turbed model, as is the case with the Gillespie approach [21]. Similar to Gillespie,
the NWT shows some variability in both the amplitude – numbers of molecules
– and the periodicity of oscillations.

The authors in [21] showed that parameter values can have a profound impact
on oscillations. By reduction of the kinetic rate governing R degradation, the
deterministic results produce a single peak followed by a steady state, while
a stochastic simulation remains oscillating. Our NWT algorithm also produces
oscillations instead of a steady state, but at a reduced computational cost from

Discrete Modeling of Biochemical Signaling with Memory Enhancement 213

Fig. 6. The picture of this system was generated using CellDesigner. The system was
described in [21]. We have modeled this system with the NWT algorithm, Gillespie’s
Algorithm, and as a system of ordinary differential equations.

(a)
0 50 100 150 200 250 300 350 400

0

500

1000

1500

2000

2500

3000

Time

M
ol

ec
ul

es

ODE
NWT

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

Time

M
ol

ec
ul

es

ODE
Gillespie

(b)

Fig. 7. The results for the circadian rhythm model: (a) the NWT algorithm and (b)
the Gillespie Algorithm. Both algorithms are plotted against the solution to the system
of ordinary differential equations.

the Gillespie Algorithm approach. This is the benefit of modeling with the NWT
algorithm instead of the Gillespie Algorithm.

For our simulation to produce oscillations comparable to the Gillespie Algo-
rithm, we require only 50 random numbers to be generated. This stems from
the fact that the NWT algorithm relies on deterministic kinetics for the major-
ity of reactions, but when reactants are limited and competition for reactants
exists, nondeterministic decisions drive a variable response from the competing
reactions.

5 Final Remarks

We have improved the sensitivity of our NWT algorithm through the addition of
memory to Waiting Time calculation. We argue that this gives us an edge over
ordinary differential equations in modeling reactions of low molecular multiplic-
ity. The improvements were illustrated with multiple examples, one designed to

214 J. Jack and A. Păun

specifically discuss the memory enhancement and two other models from the
literature.

In the field of systems biology, there is a strong emphasis on using nondeter-
ministic (or stochastic) techniques in modeling biochemical networks where low
numbers of molecules can be found. We are interested in exploring these types
of situations. For instance, in HIV-infected T cells, there are initially low levels
of Tat protein, which after translocation to the nucleus, bind to receptor sites
and cause upregulation of the HIV-1 proteins [16]. We have already published a
paper on the effects of HIV-1 proteins on Fas-mediated apoptosis, and will be
looking to use our refined algorithm for future development in this pathway.

Also, in regards to T cells, it seems that low levels of cytochrome C released
from the mitochondria bind to IP3R. This receptor binding leads to release of
Ca+ form the mitochondria, and [2] showed that this was necessary for both the
extrinsic (Fas-mediated) and the intrinisic apoptotic pathways. We are explor-
ing this direction via wetlab experimentation, and we will be using the NWT
algorithm to elucidate new aspects to Fas-mediated apoptotic events.

Acknowledgments. We gratefully acknowledge support in part from the LONI
Institute: fellowship for J.J. and state-of-the-art parallel computing facilities, Na-
tional Science Foundation Grant CCF-0523572, INBRE Program of the NCRR (a
division of NIH), support from CNCSIS grant RP-13, support from CNMP grant
11-56 /2007, support from Spanish Ministry of Science and Education (MEC) un-
der project TIN2006-15595, and support from the Comunidad de Madrid (grant
No. CCG07-UPM/TIC-0386 to the LIA research group).

References

1. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Na-
ture 403, 267–268 (2000)

2. Boehning, D., van Rossem, D.B., Patterson, R.L., Snyder, S.H.: A peptide inhibitor
of cytochrome c/inositol 1,4,5-triphosphate receptor binding blocks intrinsic and
extrinisc cell death pathways. PNAS 102(5), 1466–1471 (2005)

3. Cheruku, S., Păun, A., Romero-Campero, F., Pérez-Jiménez, M., Ibarra, O.: Simu-
lating FAS-Induced Apoptosis by Using P Systems. In: Proceedings of Bio-inspired
computing: theory and applications (BIC-TA), Wuhan, China, September 18-22
(2006); also extended version published as Progress in Natural Science 17(4),
424–431 (2006)

4. Dunlap, J.: Circadian Rhythms: An End in the Beginning. Science 280(5369),
1548–1549 (1998)

5. Funahashi, A., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor
for gene-regulatory and biochemical networks. BIOSILICO 1(5), 159–162 (2003)

6. Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.:
CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proceedings
of the IEEE 96(8), 1254–1265 (2008)

7. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22,
403–434 (1976)

Discrete Modeling of Biochemical Signaling with Memory Enhancement 215

8. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Jour-
nal of Physical Chemistry 81(25), 2340–2361 (1977)

9. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems
with Many Species and Many Channels. Journal of Physical Chemistry A 104,
1876–1889 (2000)

10. Hoops, S., et al.: COPASI – a Complex Pathway Simulator. Bioinformatics 22(24),
3067–3074 (2006)

11. Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D.: Effects of bcl-
2 levels on fas signaling-induced caspase-3 activation: molecular genetic tests of
computational model predictions. The Journal of Immunology 175(2), 985–995
(2005); Correction 175(9), 6235–6237 (2005)

12. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

13. Jack, J., Romero-Campero, F.J., Perez-Jimenez, M.J., Ibarra, O.H., Păun, A.: Sim-
ulating Apoptosis Using Discrete Methods: A Membrane System and a Stochastic
Approach. Language Theory in Biocomputing (2007)

14. Jack, J., Rodriguez-Paton, A., Ibarra, O.H., Păun, A.: Discrete Nondeterministic
Modeling of the FAS Pathway. Int. J. Found. Comput. Sci. 19(5), 1147–1162 (2008)

15. Jack, J., Păun, A., Rodriguez-Paton, A.: Effects of HIV-1 Proteins on the Fas-
mediated Apoptotic Signaling Cascade: A Computational Study of T cell Latency.
In: Proceedings of WMC9: 2008. LNCS, vol. 5391, pp. 246–259 (2009)

16. Karn, J.: Tackling Tat. Journal of Molecular Biology 2(22), 235–254 (1999)
17. Kitano, H.: Computational Systems Biology. Nature 420 (2002)
18. Kitano, H.: Systems Biology: A Brief Overview. Science 295, 55–60 (2002)
19. Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: A plausible model for

the digital response of p53 to DNA damage. PNAS 102(40), 14266–14271 (2005)
20. Selliah, N., Finkel, T.: Biochemical mechanisms of HIV induced T cell apoptosis.

Cell Death and Differentiation 8, 127–136 (2001)
21. Vilar, J.M.G., et al.: Mechanisms of noise-resistance in general oscillations.

PNAS 99(9), 5988–5992 (2002)
22. Wagner, J., Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: p53-Mdm2

loop controlled by a balance of its feedback strength and effective dampening using
ATM and delayed feedback. IEE Proc.-Syst. Biol. 152(3), 109–118 (2005)

23. Weinberger, L., Burnett, J., Toettcher, J., Arkin, A., Schaffer, D.: Stochastic Gene
Expression in a Lentivrial Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive
Phenotypic Diversity. Cell 122(2), 169–182 (2005)

24. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of
EGF-receptor system: a paradigm for systems biology. TRENDS in Cell Biol-
ogy 13(1), 43–50 (2003)

Dynamical Systems and Stochastic
Programming:

To Ordinary Differential Equations and Back

Luca Bortolussi1 and Alberto Policriti2,3

1 Dept. of Mathematics and Computer Science, University of Trieste, Italy
luca@dmi.units.it

2 Dept. of Mathematics and Computer Science, University of Udine, Italy
policriti@dimi.uniud.it

3 Applied Genomics Institute (IGA), Udine, Italy
policriti@appliedgenomics.org

Abstract. In this paper we focus on the relation between models of
biological systems consisting of ordinary differential equations (ODE)
and models written in a stochastic and concurrent paradigm (sCCP
stochastic Concurrent Constraint Programming). In particular, we de-
fine a method to associate a set of ODE’s to an sCCP program and a
method converting ODE’s into sCCP programs. Then we study the prop-
erties of these two translations. Specifically, we show that the mapping
from sCCP to ODE’s preserves rate semantics for the class of biochem-
ical models (i.e. chemical kinetics is maintained) and we investigate the
invertibility properties of the two mappings. Finally, we concentrate on
the question of behavioral preservation, i.e if the models obtained ap-
plying the mappings have the same dynamics. We give a convergence
theorem in the direction from ODE’s to sCCP and we provide several
well-known examples in which this property fails in the inverse direction,
discussing them in detail.

1 Introduction

The systemic approach to biology is nowadays a fertile and growing research area,
considered by many as a promising track to the understanding of life [41,1]. A
key ingredient of systems biology resides in coupling wet lab experiments with
mathematical modeling and analysis of bio-systems [33]. Many mathematical
instruments have been used for this purpose, some concerned with qualitative
analysis, others encapsulating also quantitative data [32]. Quantitative modeling
is essentially dominated by two main mathematical tools: (ordinary) differential
equations on one side and stochastic processes on the other [32]. Both these meth-
ods are concerned with the study of dynamical evolution of systems; however,
they differ in the description of the quantities of interest: differential equations
represent them as continuous variables, stochastic processes operate, instead, on
discrete quantities. Modeling formalisms mixing discrete and continuous ingredi-
ents, like hybrid automata [29], have also been used in modeling bio-systems [2].

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 216–267, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamical Systems and Stochastic Programming 217

We will focus here mainly on the two former approaches, although commenting
on the theme of the use of hybrid systems for restoring behavioral equivalence
throughout the paper.

The theory of dynamical systems and differential equations (ODE’s) is very
attractive, being it a mature research area equipped with a huge set of analysis
tools, ranging from static analysis of phase space topology to fast simulation
via numerical integration [51,43]. However, writing ODE’s for a given system
is generally a difficult task, requiring a considerable expertise. In addition, the
representation of biological entities as continuous variables is an approximation
that can sometimes be too rough, especially for low populations [26].

Stochastic processes like Continuous Time Markov Chains (CTMC) [39], on
the other hand, do not suffer from these approximation limits, as they represent
biological entities as discrete quantities, thus being more adherent to reality. On
the other hand, analyzing a stochastic model is much more difficult, both from an
analytical and from a computational point of view [53]. Regarding the descrip-
tion of stochastic models, recently we have seen the application of stochastic pro-
cess algebras (SPA) [48,45], a class of formal languages developed in theoretical
computer science as formal tools to analyze (quantitatively) the performances
of computing networks. These languages allow to build CTMC-based models
following a simple, paradigmatic, identification of biological entities with (com-
puting) processes. Moreover, they are compositional, allowing to build models
by composing together sub-models.

Ideally, one would like to have a modeling technique that collects the advan-
tages both of stochastic process algebras and differential equations, or, at least,
to switch automatically between the two formalisms, depending on the particu-
lar task to be performed. In this direction, there are two related problems that
must be faced: (a) studying the (mathematical) relation between the two model-
ing techniques and (b) finding automatic methods for converting one formalism
into the other.

More specifically, we suggest the following workflow: first defining translation
methods (for a specific process algebra), thus tackling (b), and then studying
the mathematical relations intervening between the models obtained applying
these translations. In this way we should be able to evaluate the appropriateness
of conversion procedures between SPA and ODE’s and to restrict the focus of
the analysis required by (a).

There are two directions in the conversion between SPA and ODE: the first one
associating a set of differential equations to a stochastic process algebra model,
and the inverse one, mapping differential equations to stochastic process algebra
programs. The first direction can be helpful for the analysis of SPA models, as
ODE’s can be solved and analyzed more efficiently. Associating SPA to ODE,
instead, can help to clarify the logical pattern of interactions that are hidden
in the mathematical structure of differential equations. Generally, as process
algebra models can be written much more easily than differential equations,
even by non-experts (possibly via a graphical interface), the first direction, from

218 L. Bortolussi and A. Policriti

SPA to ODE, looks potentially more fruitful, though having both mappings helps
the study of the relationship between the two formalisms.

Supposing to have such transformations at our disposal, a crucial problem is
to single out criteria to evaluate and validate them. The first possibility is to
inspect the relationship intervening between a SPA program and the associated
ODE’s only from a mathematical point of view, forgetting any information about
the system modeled. As both stochastic processes and differential equations are
dynamical systems, this approach essentially corresponds to require that both
models exhibit the same behavior, i.e. the same dynamical evolution. Of course,
we may require agreement only from a qualitative point of view (so that the
qualitative features of the dynamics are the same) or even from a quantitative
one (numerical values agree). The difficulty with this approach is that stochastic
processes have a noisy evolution, in contrast with the determinism characterizing
differential equations. Hence, we need to remove the noise. One possibility is to
look only at qualitative features of the dynamics, defining them in a precise way;
we will go back to this problem in Section 3.2 below. Otherwise, we may average
out noise from the stochastic models, thus considering the expected evolution of
the system and requiring it to be described precisely (i.e. quantitatively) by the
ODE’s. Unfortunately, noise cannot be eliminated so easily, as sometimes it is the
driving force of the dynamics [26,52]. Therefore, this second form of equivalence
is not completely justified; we will comment more on this point while discussing
some examples in the following.

A different approach in comparing stochastic and differential models can be
defined if we consider some additional information, which is external to the
mathematics of the two models. The idea is to validate the translation w.r.t. this
additional information. We explain this point with an example. Consider a model
of a set of biochemical reactions; there are different chemical kinetic theories that
can be used to describe such system, the most famous one being the principle
of mass action. Using such a kinetic theory, we can build (in a canonical way)
both a model based on differential equations and a model based on stochastic
process algebras. If we are concerned with the principle of mass action more than
with dynamical behavior, we may ask that our translation procedures preserves
the former, meaning that the ODE’s associated to a mass action SPA program
are exactly the ODE’s built according to mass action principle, and viceversa.
Essentially, this corresponds to requiring that the translation procedures defined
are coherent with (some) principles of the system modeled. For instance, in the
case of mass action, coherency corresponds to preserve the meaning of rates (the
so called rate semantics in [17]). Notice that in this case we are not requiring
anything about dynamics, so coherent models may exhibit a divergent behavior,
and this is indeed a well known issue, see, for instance, [26] or Section 3.2 below.
Therefore, this comparison is essentially different from the behavioral-based one,
and it is essentially syntactic, in the sense that it is concerned only with how
models are written, not with their time evolution.

The operation of associating ODE’s to SPA can be seen also as the defini-
tion of an ODE-based semantic for the stochastic processes, as opposed to the

Dynamical Systems and Stochastic Programming 219

CTMC-based one. Consequently, the comparison of the stochastic model with
the derived ODE’s can also be seen as an attempt to discover the mathematical
relationship between these two semantics.

The problem of associating ODE’s to stochastic process algebras has been
tackled only recently in literature. The forefather is the work of Hillston [31],
associating ODE’s to models written in PEPA [30], a stochastic process algebra
originally designed for performance modeling. Successively, similar methods have
been developed for stochastic π-calculus [16,11,44] and for stochastic Concurrent
Constraint Programming [7,12]. All these methods build the ODE’s performing
a syntactic inspection and manipulation of the set of agents defining the SPA
model. In fact, they all satisfy the coherency condition staten above, at least for
mass action principle (a proof for stochastic π-calculus can be found in [17]).
The inverse problem of associating SPA models to ODE’s has received much
less attention, the only example being [12], where we use stochastic Concurrent
Constraint Programming as target SPA.

In this paper, we will retake the work previously done for sCCP in [12], pre-
senting it in a more detailed and formal way. Basically, we will define two transla-
tion procedures: from sCCP to differential equations and viceversa. sCCP plays
here a central role, thanks to some ingredients giving a noteworthy flexibility
to it, the presence of functional rates above all. Therefore, in Section 2, we will
recall the basics of sCCP and its application as a modeling language for bi-
ological systems, as presented in [15]. Further details on the language can be
found in [8]. The translation procedure from sCCP to differential equations is
presented formally in Section 3, while Section 4 is devoted to the presentation
of the inverse mapping from general ODE’s into sCCP. In Section 3, we will also
show coherency conditions for a class of chemical kinetics and we will comment
in detail the problem of behavioral equivalence in the conversion from sCCP
to ODE’s. This will be done mainly via examples, exhibiting biological systems
for which the translation preservers also the behavior and other systems whose
stochastic models show a different behavior than ODE’s. The problem of be-
havioral equivalence is not new, and in fact some examples that we will give are
famous ones [26]. However, the syntactic structure of process algebras in general,
and sCCP specifically, give a new flavor to these classical examples, and brings
the attention into new ones.

The issue of preservation of dynamic behavior in the mapping from ODE’s to
sCCP is tackled in Section 4. In this case we are able to exploit the structure of
the mapping and thus to give a convergence theorem.

Throughout the paper, we will encounter several situations in which discrete-
ness is a crucial ingredient for the dynamics of the system. This points to a third
class of dynamical systems that is in the middle between SPA and ODE’s and
that can be used to approximate them, namely hybrid automata [29]. In [13,14]
we deal with the problem of mapping sCCP programs into hybrid automata,
showing that in this case we are able to deal correctly from a behavioral view-
point with a broader class of sCCP systems. The idea of such mapping is that
of translating to ODE’s locally while retaining some level of discreteness in the

220 L. Bortolussi and A. Policriti

finite control of the hybrid automata. By the way, the method of [13] can be
extended into a general framework encompassing also the mapping presented in
this paper as a particular case.

2 Preliminaries

In this section we briefly recall the basics of stochastic Concurrent Constraint
Programming (sCCP, Section 2.1) and its application as a modeling language
for biological systems (Section 2.2). The interested reader is referred to [8] for
further details. In Section 2.3, we introduce some restrictions on the language
that greatly simplify the mapping from and to ODE’s.

2.1 Stochastic Concurrent Constraint Programming

Concurrent Constraint Programming (CCP, [49]) is a process algebra having two
distinct entities: agents and constraints. Constraints are interpreted first-order
logical formulae, stating relationships among variables (e.g. X = 10 or X+Y < 7).
Agents in CCP, instead, have the capability of adding constraints (tell) into a
sort of global memory (the constraint store) and checking if certain relations are
entailed by the current configuration of the constraint store (ask). The communi-
cation mechanism among agents is therefore asynchronous, as information is ex-
changed through global variables. In addition to ask and tell, the language has
all the basic constructs of process algebras: non-deterministic choice, parallel com-
position, procedure call, plus the declaration of local variables.

The stochastic version of CCP (sCCP [7,15]) is obtained by adding a stochastic
duration to all instructions interacting with the constraint store C, i.e. ask and
tell. Each instruction has an associated random variable representing time (thus
taking values in the positive reals), exponentially distributed with rate given by
a function associating a real number to each configuration of the constraint store:
λ : C → R

+. This is a unusual feature in traditional stochastic process algebras
like PEPA [30] or stochastic π-calculus [44] (although recently introduced in
BioPEPA [18]), and it will be crucially used in the translation mechanisms. The
syntax of sCCP can be found in Table 1.

Two different kind of actions are present in such table: stochastic actions, hav-
ing a rate attached to them, and instantaneous actions, having an infinite rate.

Table 1. Syntax of sCCP

Program = D.A
D = ε | D.D | p(x) : −A

π = tellλ(c) | askλ(c)
M = π.G | M + M

G = 0 | tell∞(c).G | p(y) | M | ∃xG | G ‖ G
A = 0 | tell∞(c).A | M | ∃xA | A ‖ A

Dynamical Systems and Stochastic Programming 221

This second class of actions can be used to model the happening of complex atomic
events, like a sequence of store updates happening instantaneously. However, only
tell actions can happen instantaneously, and moreover they are always guarded
by a stochastic action. The same restriction applies to recursive calls.

Operational Semantics. The definition of the operational semantics is given spec-
ifying two different kinds of transitions: one dealing with instantaneous actions
and the other with stochastically timed ones. The basic idea of this operational
semantics is to apply the two transitions in an interleaved fashion: first we apply
the transitive closure of the instantaneous transition, then we do one step of the
timed stochastic transition. To identify a state of the system, we need to take
into account both the agents that are to be executed and the current state of
the store. Therefore, a configuration will be a point in the space P × C, where
P is the space of agents and C is the space of all possible configurations of the
constraint store.

The instantaneous transition −→⊆ (P × C) × (P × C) and the stochastic
transition =⇒⊆ (P × C) × [0, 1] × R

+ × (P × C) are defined according to the
structural rules of Tables 2 and 3, respectively.

The fact that instantaneous actions and recursive calls are guarded by stochas-
tic actions guarantees that −→ can be applied only for a finite number of steps.
Moreover, it can be proven to be confluent, see [8]. With the notation

−−−→〈A, d〉 of
Table 3, we denote by the configuration obtained by applying the transitions
−→ as long as it is possible (i.e., by applying the transitive closure of −→). The
confluence property of −→ implies that

−−−→〈A, d〉 is well defined.
The stochastic transition =⇒, instead, is labeled by two numbers: intuitively,

the first one is the probability of the transition, while the second one is its global
rate. Note that, after performing one step of the transition =⇒, we apply the
transitive closure of −→. This guarantees that all actions enabled after one =⇒
step are timed.

Using relation =⇒, we can build a labeled transition system, whose nodes are
configurations of the system and whose labeled edges correspond to derivable

Table 2. Instantaneous transition for stochastic CCP

(IR1) 〈tell∞(c).A, d〉 −→ 〈A, d � c〉

(IR2) 〈p(x), d〉 −→ 〈A[x/y], d〉 if p(y) : −A

(IR3) 〈∃xA, d〉 −→ 〈A[y/x], d〉 with y fresh

(IR4)
〈A1, d〉 −→ 〈A′

1, d
′〉

〈A1 ‖ A2, d〉 −→ 〈A′
1 ‖ A2, d

′〉

222 L. Bortolussi and A. Policriti

Table 3. Stochastic transition relation for stochastic CCP. The function rate : P×C →
R assigns to each agent its global rate. Its effect is to recursively traverse the syntactic
tree of agents, adding up the rates of active stochastic actions. Its formal definition can
be found in [15].

(SR1) 〈tellλ(c).A, d〉 =⇒(1,λ(d))
−−−−−−→〈A, d � c〉

(SR2) 〈askλ(c).A, d〉 =⇒(1,λ(d))
−−−→〈A, d〉 if d � c

(SR3)
〈M1, d〉 =⇒(p,λ)

−−−−−→〈
A′

1, d
′〉

〈M1 + M2, d〉 =⇒(p′,λ′)
−−−−−→〈
A′

1, d
′〉

with p′ = pλ
λ+rate(M2,d)

and λ′ = λ + rate(M2, d)

(SR4)
〈A1, d〉 =⇒(p,λ)

−−−−−→〈
A′

1, d
′〉

〈A1 ‖ A2, d〉 =⇒(p′,λ′)
−−−−−−−−−→〈
A′

1 ‖ A2, d
′〉

with p′ = pλ
λ+rate(A2,d)

and λ′ = λ + rate(A2, d)

steps of =⇒. As a matter of fact, this is a multi-graph, as we can derive more
than one transition connecting two nodes. Starting from this labeled graph, we
can build a Continuous Time Markov Chain (cf. [39] and brlow) as follows:
substitute each label (p, λ) with the real number pλ and add up the numbers
labeling edges connecting the same nodes.

Continuous Time Markov Chains. A Continuous Time Markov Chain (CTMC
for short) [39] is a continuous-time stochastic process (Xt)t≥0 taking values in a
discrete set of states S and satisfying the memoryless property:

P{Xtn = sn | Xtn−1 = sn−1, . . . , Xt1 = s1} = P{Xtn = sn | Xtn−1 = sn−1},
(1)

for each n, t1, . . . , tn, s1, . . . , sn.
A CTMC can be represented as a directed graph whose nodes correspond to

the states of S and whose edges are labeled by real numbers, which are the rates
of exponentially distributed random variables. In each state there are usually
several exiting edges, competing in a race condition in such a way that the
fastest one is executed. The time employed by each transition is drawn from the
random variable associated to it. When the system changes state, it forgets its
past activity and starts a new race condition (this is the memoryless property).
Therefore, the traces of a CTMC are made by a sequence of states interleaved
by variable time delays, needed to move from one state to another.

The time evolution of a CTMC can be characterized equivalently by com-
puting, in each state, the normalized rates of the exit transitions and their sum
(called the exit rate). The next state is then chosen according to the prob-
ability distribution defined by the normalized rates, while the time spent for

Dynamical Systems and Stochastic Programming 223

the transition is drawn from an exponentially distributed random variable with
parameter equal to the exit rate. This second characterization is at the ba-
sis of several stochastic simulation algorithms for CTMC, like the well-known
Gillespie’s one [26].

Stream Variables and Implementation. Some variables of the system, like those
used in the definition of rate functions, need to store a single number that may
vary over time. Such variables, for technical reasons, are conveniently modeled
as variables of the constraint store, which, however, must be rigid (over time).
To deal with this problem we store time varying parameters as growing lists with
an unbounded tail variable. In order to avoid heavy symbolism, we will use a
natural notation where X ′ = X + 1 has the intended meaning of1: “extract the
last ground element n in the list X , consider its successor n + 1 and add it to
the list (instantiating the old tail variable as a list containing the new ground
element and a new tail variable)”. We refer to such variables as stream variables.

An interpreter for the language is available and can be used for running simu-
lations. This interpreter is written in Prolog and uses standard constraint solver
on finite domains as manager for the constraint store. All simulations of sCCP
shown in the paper are performed with it.

2.2 Modeling Biological Systems in sCCP

In [8,15] we argued that sCCP can be conveniently used for modeling biological
systems. In fact, while maintaining the compositionality of process algebras,
the presence of a customizable constraint store and of variable rates gives a
great flexibility to the modeler, so that different kinds of biological systems can
be easily described within this framework. In [15], we showed that biochemical
reactions and genetic regulatory networks are easily handled by sCCP. In [8] we
added to this list also formation of protein complexes and the process of folding of
a protein, whose description requires knowledge about spatial position of amino
acids constituting the protein (a kind of information easily added building on
expressive potential of the constraint store).

Finally, in [10] we showed how sCCP can be used to encode Kohn maps [34],
a graphical formalism capable of describing implicitly biochemical networks sub-
ject to combinatorial explosion of the number of different kinds of protein com-
plexes. In this case, the power of the constraint store is used to maintain a
graph-based representation of complexes, allowing a linear description of Kohn
Maps (i.e., the encoding requires a linear number of characters w.r.t. the ones
needed to describe a Kohn map).

We recall now the modeling in sCCP of biochemical reactions. A general
biochemical reaction has the form

R1 + . . . + Rn →f(R,X;k) P1 + . . . + Pm, (2)

1 The use of primed variables to denote values taken at the next time step is typical
of model checking and is not to be confused with first derivatives (for which we will
used dotted variables, as time is the only independent variable).

224 L. Bortolussi and A. Policriti

where R1, . . . , Rn are the reactants and P1, . . . , Pm are the products. The real-
valued kinetic function of the reaction is f(R,X;k), depending on the reactants
R, on other molecules X acting as modifiers, and on some parameters k. This
function can be one of the many used in biochemistry (cf. [20,50]) and it is
required to satisfy the following boundary condition: it must be zero whenever
one reactant is less than its amount consumed by the reaction. For instance, if
a reactant R appears two times in the left hand size of (2), then f must be zero
for R = 0, 1.2

Biochemical networks can be easily modeled in sCCP taking a reaction-centric
approach, where each reaction (or action capability) is associated to a process,
while molecules, whose concentration varies over time, are represented by integer
variables of the constraint store (actually, stream variables). Moreover, the pres-
ence of non-constant rates allows to describe reactions with arbitrary chemical
kinetics. More specifically, to each reaction like (2), we associate the following
sCCP agent:

f-reaction(R,X,P,k) :-
tellf(R,X;k)

(∧n
i=i(Ri − 1) ∧∧m

j=i(Pj + 1)
)
.

f-reaction(R,X,P,k)

This agent is a simple recursive loop, modifying the value of reactants’ and
products’ variables at a speed given by the kinetic law. Note that the boundary
conditions for the rate function f imply that no stream variable will ever become
negative, as all reactions that may produce this effect have rate zero3. In Table 4
we give a list of some of the most common kinetics: mass action, Michaelis-
Menten and Hill kinetics.

In order to describe genetic regulatory networks, instead, we use a modeling
style mixing the reaction-centric point of view with the more classical molecular-
centric one. Essentially, genes are described by sCCP agents, while proteins are
associated to stream variables, like for biochemical reactions. An example of a
genetic network can be found in Section 3.2. More information and examples on
modeling biological systems in sCCP can be found in [15].

2.3 Restricted sCCP

The mapping between sCCP and ODE’s is not defined for the whole sCCP
language, but rather for a restricted version of it, which is, however, sufficient
to describe biochemical reaction and genetic networks.

This restricted version of sCCP will be denoted in the following by re-
stricted(sCCP), and is formally specified by the following definition:
2 In case of mass action kinetics, this condition means that the rate for R + R → P

must be kR(R − 1) and not kR2. This is, however, consistent with the definition of
the mass action principle in the stochastic setting.

3 Boundary conditions for f may be relaxed by checking explicitly with ask instructions
that variables stay within their domain. For instance, for the reaction R + R → P ,
we can precede tell by ask(R > 1) . This allows us to use the more common kR2

as rate function.

Dynamical Systems and Stochastic Programming 225

Table 4. List of some of the most common types of biochemical reaction, taken
from [50]. The first three are first and second order mass-action-like reactions. The
second arrow corresponds to a reaction with Michaelis-Menten kinetics. The last arrow
replaces Michaelis-Menten kinetics with Hill’s one (see [20]).

R →k P1 + . . . + Pm fma(R; k) = kR

R1 + R2 →k P1 + . . . + Pm fma(R1, R2; k) = kR1R2

R + R →k P1 + . . . + Pm fma(R; k) = kR(R − 1)

S �→E
k,v P fMM (S, E; k, v) = vES

k+S

S �→E
K,V0,h P fHill(S, E; h, k, v) = vESh

k+Sh

Definition 1. A restricted(sCCP) program is a tuple (Prog,X, init(X))
satisfying:

1. Prog is an sCCP-program respecting the grammar defined in Table 5.
2. The variables used in the definition of agents are taken from a finite set

X = {X1, . . . , Xn} of global stream-variables, each with the same domain
D, usually D = N or, more generally, D = Z.

3. The only admissible updates for variables {X1, . . . , Xn} are constraints of
the form Xi = Xi + k or Xi = Xi − k, with k ∈ D constant.

4. Constraints that can be checked by ask instructions are finite conjunctions
of linear equalities and inequalities.

5. The initial configuration of the store is specified by the formula init(X),
consisting in the following conjunction of constraints: (X1 = x0

1)∧. . .∧(Xn =
x0

n), with the constants x0
i ∈ D referred to as the initial values of the sCCP-

program.

This definition can be justified looking at the sCCP-agent associated to a bio-
chemical reaction and also at the sCCP-model of genes considered in [15].

In fact, in these cases all employed variables are numerical variables of the
stream-type4, while all updates in the store add or subtract them a predefined
constant quantity. Guards, instead, usually check if some molecules are present
in the system (X > 0), though we consider here the more general case of lin-
ear equalities and inequalities. The use of global variables only, instead, can be
justified noting that the existential operator ∃x is never used (neither in the

4 We do not need further types of variables, as we just need to count the number of
different molecules in the system.

226 L. Bortolussi and A. Policriti

Table 5. Syntax of the restricted version of sCCP

Prog = Def.N Def = ε | Def.Def | p : −A
π = tellλ(c) | askλ(c) M = π.G | M + M

G = tell∞(c).G | p | M A = 0 | M
N = A | A ‖ N

reaction agent nor in gene models of [15]), as the scope of molecular interac-
tions is system-wide. The suppression of the operator ∃x, as a side consequence,
guarantees that we can avoid to pass parameters to procedure calls: in fact,
each procedure can be defined as operating on a specific subset of global vari-
ables. However, parameter passing is used in Section 2.2 to define parametrically
the reaction agent. Therefore, we agree that each instance of a reaction agent,
say f-reaction(R,X,P,k), is replaced with the corresponding ground form
f-reaction(R,X,P,k). The same trick will be used for other agents. We demand
further comments on the restrictions in Section 3.4.

In order to fix the notation in the rest of the paper, we give the following
definition:

Definition 2. A restricted(sCCP) agent A not containing any occurrence
of the parallel operator ‖ is called a sequential component or a sequential agent.
A restricted(sCCP) agent N is called an sCCP-network if it is the parallel
composition of sequential agents.

Inspecting the grammar of Table 5, we can observe that the initial configuration
of a restricted(sCCP) program is indeed an sCCP-network. The following
property is straightforward:

Lemma 1. The number of sequential components forming an sCCP-program
(Prog,X, init(X)) remains constant at run-time and equals the number of se-
quential agents in the sCCP-network of the initial configuration.

Proof. As sequential components do not contain any parallel operator, no new
agents can be forked at run-time.5

In the rest of the paper, for notational convenience, we usually identify an sCCP-
program with the corresponding sCCP-network.

Moreover, forbidding the definition of local variables implies the following
property:

Lemma 2. The number of variables involved in the evolution of an sCCP-
network6 is a subset of {X1, . . . , Xn}, hence finite.
5 We are counting also deadlocked agents.
6 A variable is involved in the evolution of the network if one of the following things

happen: it is updated in a tell instruction, it is part of a guard checked in an ask
instruction, or it is used in the definition of a rate function.

Dynamical Systems and Stochastic Programming 227

The restrictions of restricted(sCCP) are in the spirit of those introduced
in [31]: we are forbidding an infinite unfolding of agents and we are consider-
ing global interactions only, forcing the speed of each action to depend on the
whole state of the system. Indeed, also in [16] we find similar restrictions, though
the comparison with sCCP is subtler. First of all, the version of π-calculus pre-
sented in [16] does not allow the use of the restriction operator, meaning that
interactions have a global scope. However, agents in the π-calculus of [16] are
not sequential, as each process is associated to a single molecule and the produc-
tion of new molecules is essentially achieved by forking processes at run-time.
This is not necessary in sCCP, as sCCP-agents model reactions, while molecules
are identified by variables of the system. What is finite in [16], however, is the
number of syntactically different agents that can be present in a system.

On the Restrictions of the Language. restricted(sCCP) limits the full
language in three main aspects: the allowance of sequential agents only, the
suppression of local variables and the simplifications on the constraint store,
cf. Definition 1. We will, however, comment here only on the first one, as the
other two are forced by the translation to ODEs, hence their discussion will be
postponed to Section 3.4.

As observed, in restricted(sCCP) we constrain all the agents to be sequen-
tial, i.e. no occurrence of the parallel operator is allowed. Essentially, sequential
agents are automata cooperating together, a property that will be exploited in
the next section to represent them graphically in a simple way. Indeed, this re-
striction is only apparent: we can always convert a non-sequential agent into a
network of sequential ones using additional (stream) variables of the constraint
store. The idea is simply that of identifying all the syntactically different terms
that are stochastic choices, associating a new variable to each of them. These
variables are used to count the number of copies of each term that are in par-
allel. Each agents is modified consequently: all agents will only call recursively
themselves, while the variations induced in the number of terms by transitions
are dealt with by updating the new state variables. Finally, rates are corrected
by multiplying them by the multiplicity variable associated to the agent execut-
ing the corresponding transition. This is justified by the fact that in Markovian
models, the global rate of a set of actions is computed by adding all basic rates
together—ultimately, a consequence of the properties of the exponential distribu-
tion [39]. For instance, consider the agents x and y, defined by x :- tell1(true).(y ‖
y), y :- tell1(true).x+ tell1(true).0. They can be made sequential by introducing
two variables, X and Y , counting the number of copies of x and y respectively
and by replacing x by x′:- askX(X > 0).tell∞(X ′ = X − 1 ∧ Y ′ = Y + 2).x′

and y by y′ :- askY (Y > 0).tell∞(X ′ = X + 1 ∧ Y ′ = Y − 1).y′ + askY (Y >
0).tell∞(Y ′ = Y − 1).y′.

3 From sCCP to ODE

In this section we define a translation method associating a set of ordinary dif-
ferential equations to an sCCP program. This translation applies precisely to

228 L. Bortolussi and A. Policriti

restricted(sCCP), as defined above. The procedure is organized in several
simple steps, illustrated in the following paragraphs. Essentially, we first asso-
ciate a finite graph to each sequential component of an sCCP network and then,
analyzing the graph, we define an interaction matrix similar to the one defined
in [31] or to action matrices of (stochastic) Petri nets (see, for instance, [27]).
Writing ODE’s from this matrix is then almost straightforward.

After defining this translation, in Section 3.1 we investigate how it relates to
biochemical kinetics and we show that the ODE’s associated to an sCCP-model
of a set of biochemical reactions are the ones generally considered in standard
biochemical praxis [17,20]. Some considerations on dynamical properties are then
put forward in Section 3.2, while in Section 3.3 the focus is moved on the concept
of behavioral equivalence. Finally, in Section 3.4 we reconsider the restrictions
applied to sCCP in the light of the described transformation procedure.

Step 1: Reduced Transition Systems

The first step consists in associating a labeled graph, called reduced transition
system [8], to each sequential agent composing the network. As a working ex-
ample, we consider the following simple sCCP agent:

RWX :-
ask1(X > 0).tell∞(X ′ = X − 1).RWX

+ tell1(X ′ = X + 2).RWX

+ askf(X)(true).(ask1(X > 1).tell∞(X ′ = X − 2).RWX

+ tell1(X ′ = X + 1).RWX

f(X) = 1
X2+1

This agent performs a sort of random walk in one variable, increasing or decreas-
ing its value by 1 or 2 units, depending on its inner state.

Inspecting Table 5, where the syntax of restricted(sCCP) is summarized,
we observe that each branch of a stochastic choice starts with a stochastic timed
instruction, i.e. an askλ(c) or a tellλ(c), followed by zero or more tell∞(c),
followed by a procedure call or by another stochastic choice. The first operation
that we need to perform, in order to simplify the structure of agents, is that of
collapsing each timed instruction with all the instantaneous tell instructions
following it and replacing everything with one “action” of the form

action(c, d, λ),

where c is a guard that must be entailed by the store for the branch to be entered,
d is the constraint that will be posted to the store, and λ is the stochastic rate of
the branch, i.e. a function λ : C → R

+∪{∞}. The presence of ∞ among possible
values of λ is needed to simplify the treatment of instantaneous tells.

To achieve this goal, we formally proceed by defining a conversion function,
named compact, by structural induction on terms. The result of this function

Dynamical Systems and Stochastic Programming 229

Table 6. Syntax of compact(sCCP)

Prog = ˆDef.Â
ˆDef = ε | ˆDef. ˆDef | �p� : −Â

π̂ = action(g, c, λ) M̂ = π̂;Ĝ | M̂ ⊕ M̂

Ĝ = �p� | M̂ Â = �0� | M̂

N̂ = Â | Â ‖ N̂

is that of transforming an agent written in restricted(sCCP) into an agent of
a simpler language, called compact(sCCP), where ask and tell are replaced
by the instruction action. In order to distinguish between the two languages,
we denote stochastic summation in compact(sCCP) by “⊕”, sequential com-
position by “;”, and we surround procedure calls and nil agent occurrences by
double square brackets “�·�”. The syntax of compact(sCCP) is formally de-
fined in Table 6; its constraint store, instead, follows the same prescriptions of
Definition 1.

In defining the function compact, we use a concatenation operator �� to
merge instantaneous tells with the preceding stochastic action. Formally, com-
pact is defined as follows:

Definition 3. The function compact: restricted(sCCP) → compact
(sCCP) is defined by structural induction through the following rules:

1. compact(0) = �0�;
2. compact(p) = �p�.
3. compact(askλ(c).G) = action(c, true, λ) ��compact(G).
4. compact(tellλ(c).G) = action(true, c, λ) ��compact(G).
5. compact(tell∞(c).G) = action(true, c,∞) ��compact(G).
6. compact(M + M) =compact(M)⊕compact(M).

where ∞ : C → R
+ ∪ {∞} is defined by ∞(c) = ∞, for all c ∈ C.

We now define the concatenation operator ��:

Definition 4. The operator �� is defined by:

1. action(g, c, λ) �� �p� = action(g, c, λ);�p�.
2. action(g, c, λ) �� M̂ = action(g, c, λ);M̂ .
3. action(g1, c1, λ1) �� action(g2, c2, λ2) = action(g1 ∧ g2, c1 ∧ c2, min(λ1, λ2)).

where min(λ1, λ2) :C → R
+∪{∞} is defined by min(λ1, λ2)(c)=min{λ1(c), λ2(c)}.

Going back to the agent RWX previously defined; if we apply the function com-
pact to it, we obtain the following agent:

compact(RWX) :-
action(X > 0, true, 1) �� action(true, X ′ = X − 1,∞) �� �RWX�

⊕ action(true, X ′ = X + 2, 1) �� �RWX�

230 L. Bortolussi and A. Policriti

⊕ action(true, true, f(X)) ��
(action(X > 1, true, 1) �� action(true, X ′ = X − 2,∞) �� �RWX�
⊕ action(true, X ′ = X + 1, 1) �� �RWX�)

After the removal of �� operator according to the rules in Definition (4), the
agent compact(RWX) becomes a compact(sCCP) agent:

compact(RWX) = �RWX� :-
action(X > 0, X ′ = X − 1, 1) ; �RWX�

⊕ action(true, X ′ = X + 2, 1) ; �RWX�
⊕ action(true, true, f(X)) ;

(action(X > 1, X ′ = X − 2, 1) ; �RWX�
⊕ action(true, X ′ = X + 1, 1) ; �RWX�)

The above example shows clearly that the function compact simply collapses
all the actions performed on the store after one execution of the stochastic tran-
sition, as defined in [7,8]. It is a simple exercise to define a stochastic transition
relation for compact(sCCP) similar to the one for restricted(sCCP) and
to successively prove the strong equivalence [30] between agents A and com-
pact(A).7 Hence, from a semantic point of view, the application of function
compact is safe, as stated in the following

Lemma 3. For each sequential agent A of restricted(sCCP), A and Â =
compact(A) are strongly equivalent.

Let Â =compact(A) be an agent of compact(sCCP). We want to associate a
graph to such agent, containing all possible actions that Â may execute. Nodes
in such graph will correspond to different internal states of Â, i.e. to different
stochastic branching points. Edges, on the other hand, will be associated to
actions: each edge will correspond to one action(g, c, λ) instruction and will be
labeled consequently by the triple (g, c, λ).

To define such graph, we proceed in two simple steps:

1. First we define an equivalence relation ≡c over the set of compact(sCCP)
agents, granting associativity and commutativity to ⊕ and reducing pro-
cedure calls to automatic “macro-like” substitutions (a reasonable move as
we do not pass any parameter). We will then work on the set A of com-
pact(sCCP) agents modulo ≡c, called the set of states ; notably, all agents
in A are stochastic summations.

2. Then, we define a structural operational semantics [42] on compact(sCCP),
whose labeled transition system (LTS) will be exactly the target graph.

Definition 5. The equivalence relation ≡c between compact(sCCP) agents is
defined as the minimal relation closed with respect to the following three rules:
7 Strong equivalence [30] is a form of bisimulation preserving probabilities: two agents

are strongly equivalent if their exit rates are the same and transitions of one agent
can be matched by transitions of the other having the same probability.

Dynamical Systems and Stochastic Programming 231

1. M̂1 ⊕ M̂2 ≡c M̂2 ⊕ M̂1;
2. M̂1 ⊕ (M̂2 ⊕ M̂3) ≡c (M̂1 ⊕ M̂2)⊕ M̂3;
3. �p� ≡c Â if �p� : −Â belongs to the declarations D̂.

The space of compact(sCCP) agents modulo ≡c is denoted by A, and is re-
ferred to as the space of states.

Definition 6. The transition relation �⊆ A × (C × C × R
C) ×A is defined in

the SOS style as the minimal relation closed with respect to the following rule:

action(g, c, λ);Ĝ⊕ M̂
(g,c,λ)� Ĝ.

The transition relation � encodes the possible actions that a compact(sCCP)
agent can undertake. Notice that procedure calls are automatically solved as
we are working modulo ≡c. The relation � induces a labeled graph, its labeled
transition system (LTS), whose nodes are agents in A and whose edges are
labeled by triples (g, c, λ), where g ∈ C is a guard, c ∈ C is the update of the
store, and λ the functional rate of the edge.

Definition 7. Let Â be an agent of compact(sCCP); the portion of the labeled
transition system reachable from the state Â is denoted by LTS(Â).

Theorem 1. For any agent Â of compact(sCCP) (modulo ≡c), LTS(Â) is
finite.

Proof. The agents reachable from Â are subagents of Â or subagents of Â′, where
�p� : −Â′ is a procedure called by an agent reachable from Â. The number of
subagents of Â (modulo ≡c) corresponds to the number of summations present
in Â, and it is finite for any definable agent. The proposition follows because
there is only a finite number of agents defined in the declarations D̂.

We are finally ready to define the reduced transition system for an agent A of
restricted(sCCP).

Definition 8. Let A be an agent of restricted(sCCP). Its reduced transition
system RTS(A) is a finite labeled multigraph (S(A), T (A), �A) defined by

RTS(A) = LTS(compact(A)).

Given RTS(A) = (S(A), T (A), �A), S(A) ⊆ A is the set of RTS-states reachable
from agent compact(A), finite for Theorem 1, T (A) is the set of RTS-edges or
RTS-transitions and �A : T (A) → C × C × R

C is the label function assigning to
each RTS-edge the triple (g, c, λ), g, c ∈ C, λ : C → R

+.
In order to effectively compute the RTS of an agent Â of compact(sCCP),

we can proceed as follows:

1. Given an compact(sCCP) program, write the syntactic tree of the agent
Â and of all the agents Â′ such that �p�:-Â′ is in ˆDef .

232 L. Bortolussi and A. Policriti

2. Nodes corresponding to action(g, c, λ) instructions will have one single in-
coming edge and one single outgoing edge. Remove them, connecting the
entering and exiting edges and labeling them by the triple c, g, λ).

3. Leaves of the obtained labeled tree correspond either to nil agents or to
procedure calls. The latter are replaced according to the following rule: if
the syntactic tree of the procedure �p� has not been added in the current
tree, replace the leaf labeled with �p� with the corresponding syntactic tree;
otherwise, remove the leaf and redirect the incoming edge to the root of the
copy of the syntactic tree of �p�. Iterate the application of the rule until no
more leaves corresponding to procedure calls are available.

The previous procedure always terminates, as the number of different procedures
�p� in ˆDef is finite, hence the algorithm needs to process only a finite number
of leaves.

Going back to our running example, RTS(RWX) = LTS(compact(RWX))
is shown in the figure below. Note that it has one RTS-edge for every action that
can be performed by compact(RWX), and just two RTS-states, corresponding
to the two summations present in compact(RWX). Three intermediate steps in
the construction of the RTS can be visualized in Figure 1.

Step 2: The Interaction Matrix

Our next step consists in encoding all the information about the dynamics in a
single interaction matrix and in a rate vector. Consider the initial sCCP-network
N = A1 ‖ . . . ‖ Ah of a restricted(sCCP) program (Prog,X, init(X)), with
sequential components A1, . . . , Ah. First of all, we construct the reduced tran-
sition system for all the components, i.e. RTS(A1) = (S(A1), T (A1), �A1), . . . ,
RTS(Ah) = (S(Ah), T (Ah), �Ah

). Then we construct the set of RTS-states and
RTS-transitions of the network (we agree that states and transitions belonging
to different components A1, . . . , Ah are distinct8), putting:

S(N) = S(A1) ∪ . . . ∪ S(Ah) (3)

and
T (N) = T (A1) ∪ . . . ∪ T (Ah).9 (4)

8 If the same component is present in multiple copies, we distinguish among them by
suitable labels.

9 The labeling function acting on T (N) will be denoted consistently by �N .

Dynamical Systems and Stochastic Programming 233

Fig. 1. Three intermediate steps of the construction of RTS for the agent RW(X),
according to the procedure sketched in the main body of the paper. The top one is the
outcome of point 1, the middle one is the labeled tree obtained after step 2, while the
bottom one is the result of applying twice the rule of step 3.

Suppose now that there are m RTS-states in S(N) and k RTS-transitions in
T (N). We conveniently fix an ordering of these two sets, say S(N)={σ1, . . . , σm}
and T (N) = {t1, . . . , tk}.

The variables Y of the differential equations are of two different kinds, Y =
X ∪ P. The first type corresponds to the global stream variables of the store,
i.e X = {X1, . . . , Xn} (see Definition 1). In addition, we associate a variable
of the second type Pσi = Pi to each RTS-state of S(N) = {σ1, . . . , σm}, so
P = {P1, . . . , Pm}. For the manipulations to follow, we assume the existence

234 L. Bortolussi and A. Policriti

of a lexicographic ordering among all variables, so that vectors and matrices
depending on this ordering are defined uniquely and manipulated consistently.
Moreover, variables will be also used to index of these objects.

Consider now an RTS-transition tj ∈ T (N), connecting RTS-states σj1 and
σj2 , and suppose �N(tj) = (gj, cj , λj). We introduce the following notation:

– rateN
j (X) = λj(X) is the rate function of tj ;

– guardN
j (X) is the indicator function of gj (by Definition 1, gj is a conjunction

of linear equalities and inequalities), i.e.

guardN
j (X) =

{
1 if gj is true for X,
0 otherwise. (5)

We are now able to define the rate vector :

Definition 9. The rate vector rN for transitions T (N) = {t1, . . . , tk} is a k-
dimensional vector of functions, whose components rN

j are defined by

rN
j (Y) = rateN

j (X) · guardN
j (X) · Pj1 , (6)

where Pj1 is the variable associated to the source state σj1 of transition tj.

Consider again a transition tj ∈ T (N), going from σj1 to σj2 and with label
�N(tj) = (gj , cj, λj), and consider the updates cj , a conjunction of constraints
of the form Xi = Xi ± k, according to Definition 1. We can assume that each
variable Xi appears in at most one conjunct of cj .10 We are now ready to define
the interaction matrix.

Definition 10. The interaction matrix IN
Y for an sCPP-network N with respect

to variables Y is an integer-valued matrix with n+m rows (one for each variable
of Y) and k columns (one for each RTS-transition T (N)), defined by:

1. If σj1 �= σj2 , then IN
Y [Pj1 , tj] = −1 and IN

Y [Pj2 , tj] = 1.
2. If Xh = Xh ± k is a conjunct of cj, then IN

Y [Xh, tj] = ±k.
3. All entries not set by points 1,2 above are equal to zero.

For the agent RWX , the interaction matrix IRWX

Y for the variables
Y = {X, P0, P1} is:

IRWX

Y =

⎛
⎝−1 +2 0 −2 +1

0 0 −1 +1 +1
0 0 +1 −1 −1

⎞
⎠ (X)

(P0)
(P1)

(7)

Similarly, the rate vector rRWX is

rRWX =
(
P0〈X > 0〉, P0, f(X)P0, P1〈X > 1〉, P1,

)T
, (8)

where 〈·〉 denotes the logical value of a formula (i.e., 1 if the formula is true, 0
otherwise).
10 If, for instance, both Xi = Xi + k1 and Xi = Xi + k2 are in cj . Then we can replace

these two constraints with Xi = Xi + (k1 + k2).

Dynamical Systems and Stochastic Programming 235

Step 3: Writing ODE’s

Once we have the interaction matrix, writing the set of ODE’s is very simple:
we just have to multiply matrix IN

Y by the (column) rate vector rN , in order to
obtain the vector odeN

Y :
odeN

Y = IN
Y · rN . (9)

Each row of the odeN
Y vector gives the differential equation for the corresponding

variable. Specifically, the equation for variable Yi is

Ẏi = odeN
Y[Yi] =

k∑
j=1

IN
Y [Yi, j] · rN

j (Y)

=
k∑

j=1

(
IN
Y [Yi, j] · guardj(X) · ratej(X) · Pj1

)

For instance, the set of ODE’s associated to the agent RWX is

⎧⎨
⎩

Ẋ = P0(2− 〈X > 0〉) + P1(1− 2〈X > 1〉)
Ṗ0 = − 1

X2+1P0 + P1(1 + 〈X > 1〉)
Ṗ1 = 1

X2+1P0 + P1(1 + 〈X > 1〉)

In order to solve a set of ODE’s, we need to fix the initial conditions. The
variables Y = X ∪ P of odeN

Y are of two distinct types: P, denoting states of
the reduced transition systems of the components, and X, representing stream
variables of the store. The initial conditions for P are easily determined: we
set to one all the variables corresponding to the initial states of RTS of each
component, and to 0 all the others. Regarding X, instead, initial conditions are
given in the formula init(X) of Definition 1, specifying the values assigned to
stream variables before starting the execution of the sCCP program.

Elimination of Redundant State Variables

Consider an sCCP component A whose reduced transition system RTS(A) has
just one RTS-state. Then, the odeN

Y vector of an sCCP-network N having A as
one of its components will contain a variable corresponding to this RTS-state,
say Pi, with equation Ṗi = 0 and initial value Pi(0) = 1. Clearly, such variable
is redundant, and we can safely remove it by setting Pi ≡ 1 in all equations
containing it and by eliminating its equation from the odeN

Y vector. From now on,
we assume that this simplification has always been carried out. As an example,
consider the following agent

A :- tellf1(X)(X = X + 1).A
+ tellf2(X)(X = X − 1).A

236 L. Bortolussi and A. Policriti

Its RTS contains just one state, corresponding to the only summation present
in it, with associated variable P . As the other variable of the agent is X , the
vector odeA

{X,P} contains two equations, namely

(
Ẋ

Ṗ

)
=
(

f1(X)P − f2(X)P
0

)
.

The simplification introduced above just prescribes to remove the equation for
P , setting its value to 1 in the other equations; therefore we obtain

odeA
{X} = (f1(X)− f2(X)) .

Notice that the set of variables Y is updated consistently, i.e. removing the
canceled variables from it.

We summarize the whole method just presented defining the following
operator.

Definition 11. Let N be the sCCP-network of an restricted(sCCP) pro-
gram. With

ODE(N)

we denote the vector odeN
Y associated to N by the translation procedure previ-

ously defined, after applying the removal of state variables coming from network
components with just one RTS-state.

Compositionality of the Transformation Operator

In order to clearly state formal properties of the transformation, we need a
version of the ODE(N) indicating explicitly the variables X for which the dif-
ferential equations are given. In the following, the variables for the equations
ODE(N) are indicated by V AR(ODE(N)).

Definition 12. Let N be the sCCP-network of an restricted(sCCP) program
and let Y = V AR(ODE(N)) and ODE(N) = odeN

Y. The ordinary differential
equations of N with respect to the set of variables X, denoted by ODE(N,X),
is defined as

ODE(N,X)[Xi] =
{

odeN
Y[Yj] ifXi = Yj ∈ Y,

0 otherwise.

The operations performed on ODE(N) by ODE(N,X) simply consist in the
elimination of the equations of ODE(N) for the variables not in X, and in the
addition of equations Ẋ = 0 for all variables X in X but not in Y. We can also
associate a new interaction matrix IN

X to ODE(N,X), whose rows are derived
according to Definition 12. As the set of RTS-transitions T (N) is unaltered by
ODE(N,X), the equation ODE(N,X) = IN

X · rN continues to hold.
We can now prove the following theorem, stating compositionality of ODE

operator.

Dynamical Systems and Stochastic Programming 237

Theorem 2. Let N1, N2 be two sCCP-networks, and let N = N1 ‖ N2 be their
parallel composition. If Y1 = V AR(ODE(N1)), Y2 = V AR(ODE(N2)), and
Y = Y1 ∪Y2, then11

ODE(N1 ‖ N2,Y) = ODE(N1,Y) + ODE(N2,Y).

Proof. The components in N1 ‖ N2 are the components of N1 plus the com-
ponents of N2. Therefore, the set of RTS-transitions (i.e. edges in the RTS of
the components) T (N1 ‖ N2) of N1 ‖ N2 is equal to T (N1) ∪ T (N2). As each
column of I

N1‖N2
Y is either a transition of T (N1) or a transition of T (N2), it

clearly holds I
N1‖N2
Y [Yi, tj] = INh

Y [Yi, tj] if tj ∈ T (Nh), h = 1, 2. The following
chain of equalities then follows easily from the definitions:

ODE(N1 ‖ N2,Y)[Yi] =
∑

tj∈T (N1‖N2)

I
N1‖N2
Y [Yi, tj]r

N1‖N2
j

=
∑

tj∈T (N1)

IN1
Y [Yi, tj]rN1

j +
∑

tj∈T (N2)

IN2
Y [Yi, tj]rN2

j

= ODE(N1,Y) + ODE(N2,Y).

3.1 Preservation of Rate Semantics

In Section 2.2 we discussed how biochemical reaction with general kinetic laws
can be modeled in sCCP. Given a list of reactions, the standard praxis in compu-
tational chemistry is that of building a corresponding differential (set of ODE’s)
or stochastic (CTMC) model. The definition of such models is canonical, and it
is fully specified by the reaction list, see [53] for further details.

sCCP models of biochemical reactions are generated by associating an agent,
call it biochemical agent, to each reaction in the list. These agents are rather
simple: they can execute in one single way, namely an infinite loop consisting
of activation steps, where the agents compete stochastically for execution, with
rate given by the kinetic law specified in the reaction arrow, and update steps, in
which the store is modified according to the prescriptions of the reaction. This
bijective mapping between reactions and sCCP biochemical agents soon implies
that the stochastic model for sCCP is identical to the continuous-time Markov
chain generated in classical stochastic simulations with Gillespie algorithm [26],
for instance like those obtainable with a program like Dizzy [46,19].12 A different
question is wether the ODE’s that are associated to an sCCP model of biochem-
ical reactions coincide with the canonical ones. In the rest of the section, we
show that this is indeed the case.

Following the approach by Cardelli in [17], we can then say that the translation
from sCCP to ODE’s preserves the rate semantics. The sense of this sentence is
better visualized in Figure 2, graphically depicting the correspondence between
11 Here “+” denotes the usual sum of vectors.
12 Stochastic simulations with Michaelis-Menten and Hill rate functions have been con-

sidered, for instance, in [47].

238 L. Bortolussi and A. Policriti

Fig. 2. Diagram of relations intervening between stochastic and ODE-based semantics
of chemical reactions and sCCP agents

stochastic and differential models of biochemical reactions and of the derived
sCCP agents. Preservation of rate semantics essentially means that the arrows
in the diagram commute.

As a matter of fact, in [17] the author deals only with mass action kinetics,
due to the intrinsic properties of π-calculus (all definable rates are mass-action
like). In our setting, instead, functional rates and the constraint store allow us
to deal with arbitrary chemical kinetics, including also Michaelis-Menten and
Hill ones (cf. [20]). In the following, we formally prove the equivalence of ODE’s
obtained from sCCP agents with the corresponding classical ones.

In general, the stochastic and the deterministic rate of a reaction are not the
same, because ODE’s variables measure concentration, while sCCP variables
count the number of molecules. Therefore, in passing from one model to the
other, we need to convert numbers to concentrations, dividing by the volume
V times the Avogadro number NA (γ = V NA will be referred as system size).
Rates need also to be scaled consistently, see [53] for further details. In the rest of
this section, however, we get rid of scaling problems simply by assuming γ = 1.
In any case, system size can be reintroduced without difficulties, by change the
scale of rates and variables after the derivation of ODE’s.

We now put forward some notation, in order to specify how to formally derive
a set of ODE’s given a set of reactions R = {ρ1, . . . , ρk}, where each ρi denotes
a single reaction. Each reaction ρ has some attributes: a multiset of reactants
(species can have a specific multiplicity), denoted by REACT (ρ), a multiset
of products, PROD(ρ), and a real-valued rate function, RATE(ρ), depending
on the variables associated to the molecules involved in the reaction, V AR(ρ).
This last function, V AR, can be easily extended to sets of reactions by letting
V AR({ρ1, . . . , ρk}) = V AR(ρ1) ∪ . . . ∪ V AR(ρk).

Now let R be a set of reactions and X = V AR(R). The (canonical) differen-
tial equations associated to R w.r.t. variables X, denoted by ODE(R,X)13 are
defined for each variable Xi as Ẋi = ODE(R,X)[Xi], where:14

13 We overload here the symbol introduced in Definitions 11 and 12; however, the two
cases can be easily distinguished looking at their first argument.

14 We conveniently identify each variable with the molecule it represents.

Dynamical Systems and Stochastic Programming 239

ODE(R, X)[Xi] =
∑

ρ ∈ R :
Xi ∈ PROD(ρ)

RATE(ρ)−
∑

ρ ∈ R :
Xi ∈ REACT (ρ)

RATE(ρ). (10)

If Xi is not involved in any reaction of R, then ODE(R,X)[Xi] = 0. We ob-
serve that the correct stoichiometry is automatically dealt with by the fact that
we are using multisets to list reactants and products. Restricting this construc-
tion to a fixed variable ordering allows to state the following straightforward
compositionality lemma.

Lemma 4. Let R = R1 ∪ R2 be a partition of R and let X1 = V AR(R1),
X2 = V AR(R2), and X = X1 ∪X2. Then

ODE(R1 ∪R2,X) = ODE(R1,X) + ODE(R2,X).

We turn now to formally define the encoding of reactions into sCCP agents.
For each reaction ρ, its sCCP agent SCCP (ρ) is constructed according to Sec-
tion 2.2. Operator SCCP is extended compositionally to sets of reactions R =
{ρ1, . . . , ρk} by letting SCCP (R) = SCCP (ρ1) ‖ . . . ‖ SCCP (ρk).

We are finally ready to state the theorem of preservation of rate semantics:

Theorem 3 (Preservation of rate semantics). Let R be a set of biochemical
reactions, with X = V AR(R). Then

ODE(R,X) = ODE(SCCP (R),X) (11)

Proof. We prove the theorem by induction on the size k of the set of reactions
R. For the base case k = 1, consider a reaction ρ

R1 + . . . + Rn →f(R,X;k) P1 + . . . + Pm

and its associated sCCP agent SCCP (ρ)

SCCP (ρ) :- tellf(R,X;k)

⎛
⎝ n∧

i=i

(Ri − 1) ∧
m∧

j=i

(Pj + 1)

⎞
⎠ .SCCP (ρ).

Clearly, the reduced transition system of such agent is

Let Y = V AR(ρ), then the interaction matrix I
SCCP (ρ)
Y has |Y| rows and 1

column, with entries corresponding to the stoichiometry of the reaction:

I
SCCP (ρ)
Y [Yi] =

∑
Yi∈PROD(ρ)

1−
∑

Yi∈REACT (ρ)

1.

240 L. Bortolussi and A. Policriti

The rate vector rSCCP (ρ), instead, is the scalar f(R,X;k). Hence, the equation
for variable Yi is

Ẏi =
∑

Yi∈PROD(ρ)

f(R,X;k)−
∑

Yi∈REACT (ρ)

f(R,X;k),

which is equal to equation (10).
The inductive case follows easily from compositionality properties of ODE

operators. Suppose the theorem holds for lists up to k − 1 reactions, and let
R = R0 ∪ {ρ} be a set of k chemical reactions (hence |R0| = k − 1). Then

ODE(SCCP (R),X) = ODE(SCCP (R0 ∪ {ρ}),X)
= ODE(SCCP (R0) ‖ SCCP (ρ),X)
= ODE(SCCP (R0),X) + ODE(SCCP (ρ),X)
= ODE(R0,X) + ODE(ρ,X)
= ODE(R,X),

where the second equality follows from the definition of SCCP , the third follows
from Theorem 2, the fourth is implied by the induction hypothesis on SCCP (R0)
and by the base case proof on SCCP (ρ), while the last is a consequence of
Lemma 4.

3.2 Preservation of Dynamic Behavior

In Theorem 3 we proved that the ODE map, when applied to sCCP-models of
biochemical networks, satisfies a condition of coherence: it preserves the kinetic
principles used in the construction of the model (i.e., the rate semantics).

A different question is whether an sCCP-network N (evolving stochastically
according to the prescriptions of its semantic) shows a dynamic behavior equiva-
lent to the one exhibited by the equations ODE(N). This problem is the sCCP-
counterpart of the famous mathematical issue concerning the relation between
stochastic and differential models [35,36], studied deeply also in the context of
biochemical reactions [26,23]. It is well-known that stochastic and differential
models of biochemical reactions are behaviorally equivalent only in some cases.

These results are significant also for sCCP. Theorem 3, in fact, states that,
when biochemical reactions are concerned, the stochastic process underlying the
sCCP-models and the associated ODE’s are exactly the classical ones. Therefore,
in the mapping from sCCP to ODE’s we have the same phenomenology as in the
classical case. However, the logical structure of sCCP-agents makes the problem
of behavioral preservation subtler.

In the following, we discuss this problem with different examples, especially
of situations in which an sCCP-network and the corresponding ODE’s show
a different behavior. In particular, we are interested in sketching a brief, and
plausibly incomplete, classification of the causes of behavioral divergence.

Dynamical Systems and Stochastic Programming 241

An important issue is the concept of behavioral equivalence itself, which is
difficult to formalize, as already discussed in the introduction. We will return on
this problem in the next section.

Oregonator. The Oregonator is a chemical systems showing an oscillatory
behavior, devised by Field and Noyes [40] as a simplified version of the Belousov-
Zhabotinsky oscillator15. Essentially, Oregonator is composed of three chemical
substances, call them A, B, C, subject to the following reactions:

B →k1 A
A + B →k2 ∅

A →k3 2A + C
2A →k4 ∅
C →k5 B

(12)

Actually, other chemical substances are involved, but they are kept constant in
the experiment. The differential equations associated to (12) are known to pos-
sess a stable limit cycle for a wide range of parameter’s values [28], containing an
unstable equilibrium. The limit cycling behavior is clearly visible in Figure 3(a),
where the numerical solution of Oregonator’s ODE’s is shown.

In Figure 3(b), instead, we plot a stochastic simulation of the sCCP model
associated to (12) according to prescriptions of Section 2.2. In this case, the
stochastic model shows the same pattern as the differential one. Theorem 3
guarantees that the graph in Figure 3 depicts the numerical solution of ODE’s
associated to the sCCP program by the transformation previously defined. In
this case, the behavior is preserved.

We remark two things regarding Oregonator. First, the size of each molecu-
lar species is of the order of thousands, hence the relative variation induced by
one reaction in the stochastic model is small. Under this condition, stochastic
and deterministic models of biochemical reactions usually coincide [26]. Another
property of the Oregonator that can be important for behavioral preservation
is that the limit cycle is an attractor in the phase space: nearby trajectories
asymptotically converge to it (see [51]). This means that a relatively small per-
turbation is not willing to change the overall dynamics: stochastic fluctuations
have a negligible effect. Things are different if we start from the unstable equilib-
rium of the system. The numerical solution of ODE’s shows a constant evolution
(Figure 4(a)), while the stochastic simulation (Figure 4(b)) essentially evolves
as the limit cycle of Figure 3. In fact, stochastic fluctuations, in this case, make
the sCCP system move away from the instable equilibrium into the basin of
attraction of the limit cycle. This shows another well known fact: stochastic and
differential models usually differ near instabilities [26].

Lotka-Volterra system. The Lotka-Volterra system is a famous simple model
of population dynamics, see for example [26] and references therein. There are

15 This chemical system is called “Oregonator” because its inventors where working at
the University of Oregon.

242 L. Bortolussi and A. Policriti

(a) ODE model of Oregonator

(b) sCCP model of Oregonator

Fig. 3. 3(a): Numerical simulation of the differential equation model of the Oregonator,
with parameters determined according to the method presented in [26]. Specifically, let
As = 500, Bs = 1000 and Cs = 2000 be an equilibrium of the system of equations,
and let R1 = 2000, R2 = 50000. Then parameters are equal to k1 = R1/Bs = 2,
k2 = R2/(AsBs) = 0.1, k3 = (R1 + R2)/As = 104, k4 = ((2R1)/(A2

s))/2 = 4e−7, and
k5 = (R1 + R2)/Cs = 26. The starting point is A0 = As/2, B0 = Bs/2, C0 = Cs/2.
The system soon approaches an attractive limit cycle. 3(b): Stochastic simulation
with Gillespie’s method of the sCCP network associated to reactions (12). Parameters
and initial conditions are those specified above. The effect of stochastic fluctuations is
negligible, and the plot essentially coincide with its deterministic counterpart.

two species: preys and predators. Preys eat some natural resource, supposed un-
bounded, and reproduce at a rate depending only on their number. Predators,
instead, can reproduce only if they eat preys, otherwise they die. To keep the
model simple, we admit predation as the only source of prey’s death. The pre-
vious hypotheses can be summarized in the following set of reactions, where E
refer to preys and C to predators:

E →kb
2E

C →kd
∅

E + C →kp 2C
(13)

If we consider the standard mass action ODE’s (they coincide with the equa-
tions derived from the sCCP model due to Theorem 3), a typical solution shows

Dynamical Systems and Stochastic Programming 243

(a) ODE model of Oregonator from unsta-
ble equilibrium

(b) sCCP model of Oregonator from un-
stable equilibrium

Fig. 4. 4(a): Numerical simulations of ODE’s derived from reactions (12), with pa-
rameters given in caption of Figure 3, starting from an unstable equilibrium of the
system. 4(b): Stochastic simulation of sCCP model associated to reactions (12), with
the same parameters and initial conditions than the differential counterpart. As we
can see, stochastic fluctuations drive the system away from the unstable equilibrium,
so that its surrounding limit cycle is approached.

oscillations in which high values of preys and predators alternate. An example of
such a solution is given in Figure 5(a). Inspecting equations, it can be shown that
the point Es = kd/kp, Cs = kb/kp is an equilibrium of a rather special kind: it is
stable (trajectories starting nearby it stay close) but not asymptotically stable
(trajectories starting nearby do not converge to it as time approaches infinity).
This behavior is easily understood looking at the phase space (Figure 5(b)), in
which we can see that trajectories form closed orbits around the equilibrium,
whose amplitude increases with distance from equilibrium. More details can be
found, for instance, in [51].

What kind of behavior can we expect from the stochastic evolution of the
sCCP model for (13)? Stochastic fluctuations will make the system jump from
one trajectory to nearby ones, without any force pulling it towards the equilib-
rium. Therefore, fluctuations can, in the long run, make the system wander in
the phase plane, eventually reaching a borderline trajectory (corresponding to
E or C axis in the phase plane). Whenever this happens, then both preys and
predators go extinct (C-axis trajectory), or just predators do, while preys go to
infinity (E-axis trajectory). This intuition is confirmed in Figure 6, where we
compare the ODE solution starting from equilibrium (dotted lines), and a trace
of the sCCP model, starting from the same initial configuration. As we can see,
the stochastic system starts oscillating until both species go extinct.

This is another well known case in which stochastic and differential dynamics
differ, again induced by properties of the phase space [26].

A negatively auto-regulated system. The effect of stochastic fluctuations
is mostly remarkable in biological phenomena where gene expression is involved.
This is because the transcription of a gene is usually a slower process than
protein-protein interaction, and often the number of mRNA strands for a given

244 L. Bortolussi and A. Policriti

(a) ODE solution of Lotka-Volterra
model

(b) Phase space of Lotka-Volterra model

Fig. 5. 5(a): Numerical solution of ODE’s associated to reactions (13), with parameters
kb = 1, kp = 0.1, kd = 0.1 and initial conditions E0 = 4 and C0 = 10. 5(b): phase
portrait of the Lotka Volterra system, for the same value of parameters as above. As we
can see, all the solutions show an oscillating behaviour. The system has an (instable)
equilibrium for E = 1, C = 10, at the center of the circles.

Fig. 6. Effect of stochastic fluctuations for the Lotka-Volterra system. The dotted
lines are an equilibrium solution for the ODE model (parameters are as in caption of
Figure 5). A stochastic trace of the sCCP model is drawn with solid lines: both species
fluctuate around the equilibrium values until they both get extinct.

gene present in the cell is very small, of the order of some units. As the production
of one single mRNA is a rare event (compared to other cellular events), stochastic
variability in its happening can induce behaviors difficult to capture if mRNA is
approximated with its concentration. Stochasticity in gene expression is indeed
a phenomenon that has received a lot of attention, see for instance [38,6].

We present here a simple, artificial example taken from [53] and depicted in
Figure 7. The biological network shown represents a simple autoregulatory mech-
anism in gene expression of a procaryotic cell. Gene g produces, via mRNA r, a

Dynamical Systems and Stochastic Programming 245

Fig. 7. Diagram of a simple self-regulated gene network. Gene g produces mRNA r and,
from it, protein P . P can dimerise and its dimer can bind to a promoter region of gene
g, downstream of RNA polymerase binding site. The P2-binding blocks polymerase
activity, thus inhibiting gene expression.

protein P that, as a dimer, can bind to a promoter region of gene g, preventing
RNA-polymerase activity and thus inhibiting its own production.

Following the approach of [5], genes can be modeled as logical gates having a
fixed output (the produced mRNA or protein), and several inputs, corresponding
to different proteins of the system, exerting a positive or negative regulatory
function. A gene gate with one inhibitory input is called in [5] neg gate, and can
be modeled in restricted(sCCP) simply as:

neg gateP,I :-
tellkp(P = P + 1).neg gateP,I

+ askkb·I(I ≥ 1).askku(true).neg gateP,I ,

where kp is the basic production rate, kb is the binding rate of the repressor to
the promoter region of the gene and ku is its unbinding rate.

In order to model the system of Figure 7 we can combine one neg gate with
some reactions. This is an example of the modeling style mixing the reaction-
centric and the molecular-centric point of view, see Section 2.2. The model is
the following:

neg gater,P2

r →kt r + P
P →kdim1

P2

P2 →kdim2
P

r →kd1
∅

P →kd2
∅

(14)

In Figure 8 we compare a stochastic simulation of the sCCP model of reac-
tions (14) with the numerical solution of the associated ODE’s. As we can readily
see, the two plots are completely different. In particular, in the stochastic simu-
lation, P2 is produced in short bursts; normally it is slowly degraded. The bursts
correspond to mRNA production events, shown in Figure 8(a) as blue peaks. The

246 L. Bortolussi and A. Policriti

(a) sCCP model of system (14) (b) ODE model of system (14)

Fig. 8. 8(a): Simulation of the sCCP model of (14). The red line corresponds to P2,
while the blue line shows the evolution of r, multiplied for a factor 100 (for visual-
ization purposes). Note that the increases in P2 expression immediately follow mRNA
production events. Parameters of the models are the following: kp = 0.01, kb = 1,
ku = 10, kt = 10, kdim1 = 1, kdim2 = 1, kd1 = 0.1, and kd2 = 0.01. All molecules are
set initially equal to 0. 8(b): Numerical simulation of ODE’s associated to the sCCP
model of (14), for the same parameters just given. The evolution of P2 is tamer than
in the stochastic counterpart, as it converges quickly to an asymptotic value.

ODE’s system, however, presents a much simpler pattern of evolution, in which
the quantity of P2 converges to an asymptotic value. This divergence is caused
by the fact that, approximating continuously the number of RNA molecules, we
lose the discrete information that seems to characterize its dynamics, i.e. the fact
that mRNA can be present in one unit of completely absent from the system.

Staten otherwise, continuously approximating molecular species present in
low quantities may lead to errors inducing a completely divergent observable
behavior.

Repressilator. The Repressilator [21] is an artificial biochemical clock com-
posed of three genes expressing three different proteins, tetR, λcI, LacI, exert-
ing a regulatory function on each other’s gene expression. In particular, protein
tetR represses the expression of protein λcI, protein λcI represses the gene pro-
ducing protein LacI, and, finally, protein LacI is a repressor for protein tetR.
The expected behavior is an oscillation of the concentrations of the three pro-
teins. A simple stochastic model of Repressilator can be found in [5], where the
authors describe it with three neg gates (see the previous paragraph) cyclically
connected, in such a way that the product of one gate inhibits the successive
gene gate in the cycle. In addition, they introduce degradation mechanisms for
the three repressors. More formally, the model is the following

neg gateA,C

neg gateB,A

neg gateC,B

A →kd
∅

B →kd
∅

C →kd
∅

(15)

Dynamical Systems and Stochastic Programming 247

In Figure 9(a) we show a trace of the stochastic model generated by a simula-
tor of sCCP based on Gillespie algorithm. The oscillatory behavior is manifest.

If we apply the translation procedure discussed in Section 3 to this particular
model, we obtain the ODE’s shown in Table 7, while their numerical integration
is shown in Figure 9(b). As we can readily see there is no oscillation at all,
but rather the three proteins converge to an asymptotic value, after an initial
adjustment.

Inspecting the ODE’s, we note the presence of six variables (YA, YB, YC and
ZA, ZB, ZC) in addition to those representing the quantity of repressors in the
system (A, B, C). Such variables correspond to states of genes gates, and they are
used to model the change of configuration of the gates, from active to repressed
and vice versa.

This scenario seems rather unjustified here: there is no argument to support
the introduction of these variables, especially because we are continuously ap-
proximating boolean quantities.

An interesting point regarding Repressilator is the relation between the solu-
tion of the ODE’s and the average trace of the stochastic system (i.e. E[X(t)],
returning the average value of system variables as a function of time). In fact,
we may expect that the behavior preserved by the differential equations is the
average dynamics of the stochastic system, rather than that shown by one of its
traces. Interestingly, also the average value of the Repressilator model does not
oscillate, as can be seen from Figure 10. This can be explained by noticing that
the oscillations’ period in the stochastic model is not constant, but it varies con-
siderably. Hence, for every instant (when the Markov chain is at the stationary
regime), we will observe one of the proteins at its peak value approximatively
only in one third of the traces. Hence its average value will tend to stabilize at
one third of the peak value, as confirmed by Figure 10. In fact, when we aver-
age Repressilator, we measure the fraction of traces in which a certain gene is

(a) sCCP model of repressilator (b) sCCP model of repressilator

Fig. 9. 9(a): Stochastic time trace for the Repressilator system of described by reac-
tions 15. Parameters are kp = 1, kd = 0.01, kb = 1, ku = 0.01. 9(b): Solution of the
differential equations of Table 7, automatically derived from sCCP program associated
to reactions 15. Parameters are the same as in stochastic simulation. The stochastic
simulation lasts longer than the ODE one in order to better underline its oscillatory
behavior.

248 L. Bortolussi and A. Policriti

Table 7. ODE’s derived for the Repressilator, generated by the method of Section 3.1

Ȧ = kpYA − kdA

Ḃ = kpYB − kdB

Ċ = kpYC − kdC

Ẏ1 = kuZA − kbYAC

Ẏ2 = kuZB − kbYBA

Ẏ3 = kuZC − kbYCB

Ż1 = kbYAC − kuZA

Ż2 = kbYBA − kuZB

Ż3 = kbYCB − kuZC

Fig. 10. Average value of the sCCP model for Repressilator, computed using model
checker PRISM [37]. See [8] for further details.

active and the fraction of traces in which it is inactive, for every time instant. In
this way, however, we lose any information regarding the sequence of gene gate’s
state changing. The different behavior existing between a trace of a stochastic
system and its average trace suggests that the switching dynamics of genes can
be the driving force behind oscillations. This implies that another source of non-
equivalence between sCCP models and the associated ODE’s can appear due to
the representation of RTS-states with continuous RTS-state variables.

Indeed, this example suggested us to preserve part of the discrete dynam-
ics, mapping the sCCP Repressilator into an hybrid automaton. The work put
forward in [?] shows that this move is enough to maintain oscillations. The
translation to hybrid automata opens an entire range of possibilities to combine
discreteness and continuity. These will be investigated in detail in the planned
second part of this paper.

Sources of non-equivalence. In the previous examples we outlined different
cases in which an sCCP model and its associated ODE’s fail to be equivalent from
a dynamical viewpoint. We remark that most of these examples are well known,
as they have been studied in detail in theoretical and applicative contexts, like
biochemical reactions [26,53] and our main interest here is in their connection
with the sCCP translation machinery. For sake of clarity, we summarize the
different sources of non-equivalence.

1. In some cases, non-equivalence is a direct consequence of properties of the
phase space. For instance, instable trajectories are destroyed by small fluc-
tuations, like the equilibrium trajectory of the Oregonator. Also stable but

Dynamical Systems and Stochastic Programming 249

not asymptotically stable trajectories can be troublesome, as stochastic fluc-
tuations are not counterbalanced by any attracting force, and so they can
bring the stochastic system far away from the initial trajectory. This is the
case of the Lotka-Volterra system.

2. Another well-known problem is related to the approximation by continuous
quantities of integer variables having small (absolute) values. In this case,
in fact, the effect of a single stochastic fluctuation has a relative magnitude
that is relevant, so the dynamics can change quite dramatically. A typical
example appearing in Biology is related to the transcription of genes, as
shown in the simple example of a self-regulated gene.

3. A final source of non-equivalence is, instead, characteristic of the translation
procedure defined for sCCP. In fact, in this case we represent each RTS-
state of a component of the system with a continuous variable, which can
take values in the real interval [0, 1]. RTS-states represent, in some sense,
logical structures that control the activity of the system, while a change of
state is an event triggered by some condition of the system. Moreover, in
each sCCP trace, each component can be in only one state, hence RTS-state
variables are boolean quantities. Continuous approximation, in this case,
can have dramatic consequences, as the example of Repressilator seems to
suggest.

3.3 Behavioral Equivalence

Comparing the dynamical evolution of a deterministic and a stochastic system
is a delicate issue, because stochastic processes have a noisy evolution, hence
we need to remove noise from their traces, before attempting any comparison
with time traces evolving deterministically. In the previous discussion, in fact,
we appealed to the concept of “behavioral equivalence” always in a vague sense,
essentially leaving to the reader the task of visually comparing plots and recog-
nizing similarities and differences. Clearly, a mathematical definition is needed
in order to prove theorems and automatize comparisons.

We first consider the comparison of traces generated by ODE’s with the av-
erage trace of the stochastic system, taken as the representative of its whole
ensemble of traces. In practice, for each time instant t we need to compute the
average value E(X(t)) of each stream variable X w.r.t. the probability distribu-
tion on states of the system at time t. This probability can be obtained as the
solution of the Chapman-Kolmogorov forward equation [39], a system of differen-
tial equations of the size of the state space. This equation, known in biochemical
literature as the chemical master equation [25], can rarely be solved analyti-
cally, and it is also very difficult to integrate numerically [26]. A more efficient
approach to compute an estimate of the average consists in generating several
(thousands of) stochastic traces and in computing pointwise their sample mean.
Alternatively, the average value of one or more variables can be computed for
a small sample of time points {t1, . . . , tk} using numerical techniques, as those
implemented in the model checker PRISM [37].

250 L. Bortolussi and A. Policriti

Whatever the method chosen, the computation (even approximate) of the av-
erage trace of a stochastic system is a difficult matter. Whenever such trace is
known, we can compare it with the trace of the ODE’s, generated using standard
numerical techniques [43], using quantitative measures (essentially computing a
distance between the two curves). Indeed, in [9] it is shown that the ODE as-
sociated to a sCCP program is a first order approximation of the true equation
for the average.

However, the average trace of a stochastic system is not necessarily a good
representative of its evolution. A paradigmatic example is the Repressilator,
whose average trace (sampled with PRISM, see caption of Figure 10) converges
to an asymptotic value, while all its stochastic traces show persistent oscillations.
Hence, even when averaging a stochastic system, we may lose the characterizing
qualitative features of its dynamics.

The example of Repressilator suggests that the notion of behavioral equiva-
lence is probably better captured in a qualitative setting. Qualitative comparison
requires a formal definition of the features of dynamical evolution, like oscilla-
tions, convergence to a stable value, and so on. A possibility we suggest in this
direction is to describe these features as logical formulae of a suitable logical
language L, for instance temporal logic, as done in Simpathica [3]. The concepts
below are just sketched; this subject is currently under investigation and we will
deal with it in detail in future works. Let Φ denote the set of formulae describing
all dynamical features of interest. Associating a Kripke structure K1 to the trace
of an ODE and another structure K2 to a stochastic trace, then we may declare
these traces equivalent whenever their Kripke structures satisfy the same subset
of formulae of Φ (possibly restricting the attention to formulae of degree ≤ n).

Below we give three examples of temporal logic formulas expressing infinite
oscillations:

G(Z = zm → F (Z = zM)) ∧ G(Z = zM → F (Z = zm)) ∧
G(zm � Z � zM) ∧ F (Z = zm);

G(Z =zm → X(Z > zm U Z =zM)) ∧G(Z = zM → X(Z < zM U Z = zm)) ∧
G(zm � Z � zM) ∧ F (Z = zm);

(
¬G

(
dZ

dt
> 0
))

∧ (¬G
(

dZ
dt = 0

)) ∧
(
¬G

(
dZ

dt
< 0
))

.

In the above formulas X stands for next, G stands for always (globally), F stands
for sometimes (in the future), U stands for until, zm and zM are minimum
and maximum values, and the thirds formula uses propositional formulas taking
values according to the sign of the first derivative.16

This idea seems promising, as it gives a considerable freedom in the definition
of formulae Φ, hence allowing to privilege some aspects of dynamical evolution
16 In order to use meaningfully the notion of “next” for ODE’s we need to consider a

discretization of the time and of the state space, such as that performed in [3].

Dynamical Systems and Stochastic Programming 251

more than others. However, the real problem is in the definition of a reasonable
Kripke structure for a stochastic trace (and for sets of traces). In fact, Kripke
structures for ODE’s can be constructed starting from one or more traces, as
done in Simpathica [3], in the following way: the bounded (product) domain
of all variables is divided in small, compact regions; a state of the Kripke au-
tomaton consists of one of such regions; edges connect two states if a trajectory
crosses the corresponding regions consecutively. This construction, however, is
not reasonable for stochastic traces, as noise would force the addition of many
edges that may introduce spurious behaviors. Of course, it is possible to model
check directly on CTMC formulae written in CSL [4,37]. However, the com-
plexity of this latter approach makes the definition of non-deterministic Kripke
structures interesting also for stochastic traces. We are currently investigating
this direction, considering the introduction of a bounded form of memory to
tame noise.

3.4 More on the Restrictions of the Language

restricted(sCCP) restricts the full language in several aspects, see Section 2.3.
Actually, these restrictions have been introduced in order to define in a rea-
sonably simple way the mapping to ODE’s. We discuss them in detail in the
following.

First, all agents must be sequential, i.e. not containing any occurrence of the
parallel operator. As already remarked at the end of Section 2.3, this does not
constitute a real limitation, as each non-sequential agent can be transformed into
a network of sequential ones. Here we note that the same trick of Section 2.3 can
be used to transform each sCCP-network into an equivalent network where each
sequential agent has an RTS with one single state; indeed, this is done implicitly
by the transformation to ODE’s itself. However, writing programs in this form
is less natural.

Another syntactic restriction regards the definition of local variables. Actually,
variables in ODE’s have a global scope. Of course, any local variable can be made
global by suitably renaming it. There is a problem, however, concerning the fact
that at run-time we may generate an unbounded number of local variables.
This implies that their use may lead to a set of ODE’s with an infinite number
of variables (although each equation will depend only on a finite number of
them). The uprising of an infinite number of variables requires more complex
mathematical techniques, and it prevents the use of standard numerical solvers.

Finally, the third class of restrictions regards the constraint store. The restric-
tion to numeric variables is obviously necessary, as we are mapping to ODE’s.
The restriction on the admissible constraints for the updating of variables, on
the other hand, is related to the fact that each update in a sCCP program
needs to be considered as a flux acting on some variables. Indeed, even a simple
update like X ′ = 0 is difficult to render within ODE’s framework, as it is inher-
ently discrete. A possible way out is to mix the continuous ingredient of ODE’s
with discreteness, mapping sCCP programs to hybrid automata [29]. Within this

252 L. Bortolussi and A. Policriti

formalism, updates like X ′ = 0 are perfectly admissible: they are resets associ-
ated to discrete transitions.

4 From ODE’s to sCCP

In this section we define a transformation SCCP , associating an sCCP network
to a generic set of ordinary differential equations, analyzing both its mathemat-
ical properties and the relation with the the map ODE defined in the previous
section.

Before entering into the mathematical details, we need to make a preliminary
remark. Essentially, the main obstacle we have to face in defining the map SCCP
is the fact that ODE’s are an aggregate description of a system. To be more
precise, if a system can be described by a set of fluxes acting on the different
entities into play (i.e. on the system variables), then the ODE’s hide part of the
logical structure of such fluxes by combining them into the equations. To clarify
the concept, consider the following two sCCP agents:

A :- (tell1(X = X + 1) + tell1(Y = Y + 1)).A

B :- (tell1(X = X + 1 ∧ Y = Y + 1)).B

When we apply the ODE operator to the networks N1 = A and N2 = B, we
obtain, in both cases, the following equations:

(
Ẋ

Ẏ

)
=
(

1
1

)

Therefore, two different sCCP agents can be mapped into the same set of ODE’s.
Note that A and B are “semantically” different, as they induce two different
CTMC. The chain associated to A has edges connecting a state (i, j) to (i+1, j)
and (i, j + 1) (hence the exit rate from (i, j) is 2), while the chain of B has
transitions only from (i, j) to (i + 1, j + 1) (with exit rate 1).

This information pertains the logical structure of the system, which is manifest
in the sCCP program, but irremediably lost in the associated ODE’s.

An even worse situation happens for the following agent, implementing a one-
dimensional random walk [39]:

C :- (tell1(X = X + 1) + tell1(X = X − 1)).C

The equation associated to C by ODE is Ẋ = 0, as the production and degrada-
tion rate cancel out when summed together. This equation predicts a constant
evolution for X , thus failing to capture its erratic behavior. Note, however, that
the average value of X is constant also in the stochastic model for C.

Therefore, the structural information lost in passing from sCCP agents to
ODE’s makes impossible to recover the original sCCP network; stated otherwise,
the map ODE(·) is not injective. Indeed, the lack of injectivity of ODE(·) means

Dynamical Systems and Stochastic Programming 253

that an sCCP program is more informative than a set of ODE’s: it defines not
only the fluxes, but also their logical relation.

The previous discussion suggests that the map SCCP must be defined with
care. Given an ODE set ẋ = f(x), there are many sCCP networks that can
be associated to it, i.e. at least all those belonging to the set ODE−1(f(x)).
In order to choose one among them, additional discriminating information is
required, essentially related to the structure of the fluxes, hence to the logic of
the system modeled.

As suggested by the previous discussion, we will therefore define not a single
SCCP map, but rather a class of maps, parametric w.r.t. the additional informa-
tion required to sort out the logical structure of fluxes. We will then show that,
independently of this additional information, the transformation scheme satisfies
properties guaranteeing a form of coherence w.r.t. the ODE mapping and also
a form of behavioral equivalence. Finally, we will provide two instantiations of
such scheme, assuming specific conditions on the system modeled.

4.1 The Translation to sCCP

In the conversion from ODE’s to sCCP, we approximate continuous quantities by
discrete variables. Therefore, this mapping will depend on an additional param-
eter, the step δ, specifying the granularity of the approximation of continuous
variables. The magnitude of δ has a strong impact on the preservation of dy-
namical behavior; this point will be the content of Section 4.3.

Consider a system of first order ODE’s with n variables x = (x1, . . . , xn):

ẋ = f(x).

We will now define the notion of set of covering functions, which captures the idea
of external knowledge required to solve the ambiguity about the logical structure
inherent in the ODE’s. Essentially, a set of covering functions corresponds to a
plausible choice of a set of fluxes, generating the given ODE’s.

Definition 13. A set of covering functions G for the ODE ẋ = f(x) is a set of
pairs {(gi,hi) | i = 1, . . . , k}, such that each gi is a function gi : R

n → R, each
hi is a vector of Z

n, and, for each x ∈ R
n,

k∑
i=1

higi(x) = f(x).

Example 1. Consider the following simple system of ODE’s with two variables:
{

ẋ = a− by
ẏ = c + dx

(16)

One possible covering set is the following:

G = {(a, (1, 0)), (by, (−1, 0)), (c, (0, 1)), (dx, (0, 1))},

254 L. Bortolussi and A. Policriti

which corresponds to the choice of disentangling all addends of the equations.
Another possibility, instead, is the following: G′ = {(−a + by, (−1, 1)), (a −
by, (0, 1,)), (c + dx, (0, 1,))}, as easily verified.

In the sCCP program associated to the ODE’s ẋ = f(x), we approximate the
continuous variables x with discrete stream variables X. Definition 1, however,
requires variables X to have integer values. In order to set the size of the basic
increment to an arbitrary step δ, we can change variables, setting x = δX and
expressing f with respect to X (in this way, a unit increment of Xi corresponds
to an increment of δ of xi). The equation for X thus becomes

Ẋ =
1
δ
f(δX) = F(X; δ).

If we are given a set of covering functions G for ẋ = f(x), we can apply the same
variable’s substitution to each gi, obtaining new covering functions Gi(X; δ) =
1
δ gi(δX) such that

Ẋ = F(X; δ) =
1
δ
f(δX) =

1
δ

k∑
i=1

gi(δX) =
k∑

i=1

Gi(X; δ).

The translation to sCCP simply proceeds associating an agent to each element
of the set of covering functions G:

Definition 14. Let ẋ = f(x) be a set of ODE’s, and G be a set of covering
functions for it. Let gi ∈ G and δ ∈ R

+. The agent manGi,δ is defined as17

manGi,δ :- ask|Gi(X;δ)|(Gi(X; δ) > 0). tell∞(X′ = X + hi).manGi,δ

+ ask|Gi(X;δ)|(Gi(X; δ) < 0). tell∞(X′ = X− hi).manGi,δ

The agent manGi,δ is a summation with two branches: both have rate equal to
the modulus of function Gi, but one is active when Gi > 0, and it increments
the value of X according to the vector hi, while the other is active when Gi < 0,
decrementing X by hi.

In order to construct the sCCP network associated to a set of ODE ẋ = f(x),
we simply need to define an agent manGi,δ for each function Gi of the covering
set G, putting these agents in parallel. We can render this procedure in the
following SCCP operator:

Definition 15. Let ẋ = f(x) be a set of ODE’s, G be a set of covering func-
tions for f , and δ ∈ R, δ > 0. The sCCP-network associated to f(x), with
respect to the set of covering functions G and the increment’s step δ, indicated
by SCCP (f(x),G, δ), is

SCCP (f(x),G, δ) = manG1,δ ‖ . . . ‖ manGk,δ, (17)

with x = δX.
17 The name “man” stands for manager.

Dynamical Systems and Stochastic Programming 255

The initial conditions of the sCCP program, given by init(X), are X(0) = 1
δ x0,

where x0 are the initial conditions of the ODE’s.
Functional rates of sCCP are central in the definition of this translation: each

function of the covering set becomes a rate in a branch of an sCCP summation.
This is made possible only due to the freedom in the definition of rates, because
differential equations and covering functions considered here are general.

The possibility of having general rates in sCCP is intimately connected with
the presence of the constraint store, which contains information external to the
agents. This means that part of the description of interactions can be moved from
the logical structure of agents to the functional form of rates. Common stochastic
process algebras like stochastic π-calculus [44] or PEPA [30], on the other hand,
have simple numerical rates and they rely just on the structure of agents (and on
additivity of the exponential distribution [39]) to compute the global rate. This
restricts severely the class of functional rates that they can model. Indeed, in a
recent work [18] Hillston introduces general rates in PEPA essentially through
the addition of information external to the model, an approach similar in spirit
to sCCP.

4.2 Invertibility

We turn now to study the relation between the two translations defined, i.e.
ODE and SCCP . Specifically, we will show that (ODE ◦ SCCP) returns the
original differential equations, independently from the covering set G. The other
direction, instead, cannot hold, as pointed out at the beginning of this section.
In fact, we have seen that several sCCP agents can be mapped by ODE to the
same equations, hence the map ODE cannot be inverted.

Theorem 4. Let ẋ = f(x) be a set of differential equations, with x=(x1, . . . , xn)
and X = 1

δ x, and let G be a set of covering functions for f .
Then

ODE(SCCP (f(x),G, δ) ,X) = f(x).

Proof. From Definition 15 we know that SCCP (f(x), δ) = manG1,δ ‖ . . . ‖
manGn,δ, and by Theorem 2,

ODE (manG1,δ ‖. . .‖ manGn,δ,X)=ODE(manG1,δ,X)+. . .+ODE(manGn,δ,X).

Now, the agent manGi,δ can modify several variables Xi, according to the vector
hi coupled with the function Gi. The RTS of manGi,δ is easily seen to have the
following form

256 L. Bortolussi and A. Policriti

Therefore, the interaction matrix associated to manGi,δ has just two columns,
corresponding to the vectors hi and −hi, and ODE(manGi,δ,X) is equal to

hi|Gi(X; δ)| 〈Gi(X; δ) > 0〉 − hi|Gi(X; δ)| 〈Gi(X; δ) < 0〉 .

In the previous equation, 〈·〉 denotes, as in Section 3, the logical value of a
formula. The previous equation can be simplified by noting that

|Gi(X; δ)| 〈Gi(X; δ) > 0〉 − |Gi(X; δ)| 〈Gi(X; δ) < 0〉 = Gi(X; δ),

hence
ODE(manGi,δ,X) = hiGi(X; δ).

By applying Theorem 2 we then obtain

ODE(SCCP (f(x),G, δ) ,X) =
k∑

i=1

hiGi(X; δ) = F (X),

which is equal to ẋ = f(x) when changing the variables back to x.

4.3 Behavioral Equivalence

We start this section by presenting an example showing how the translation
from ODE’s to sCCP works. In particular we will be concerned with the behavior
exhibited by both systems and with the dependence on the step size δ, governing
the size of the basic increment or decrement of variables. Intuitively, δ controls
the “precision” of the sCCP agents w.r.t. the original ODE’s. Hence, varying
the size of δ, we can calibrate the effect of the stochastic fluctuations, reducing
or increasing it. This is evident in the following example, where we compare
solutions of ODE’s and the simulation of the corresponding sCCP processes.

Let’s consider the following system of equations, representing another model
of the Repressilator (see Section 3.2), a synthetic genetic network having an
oscillatory behavior (see [21,3]):

ẋ1 = α1x
−1
3 − β1x

0.5
1 , α1 = 0.2, β1 = 0.01

ẋ2 = α2x
−1
1 − β2x

0.5
2 , α2 = 0.2, β2 = 0.01

ẋ3 = α3x
−1
2 − β3x

0.5
3 , α3 = 0.2, β3 = 0.01.

(18)

We fix the following set G of covering functions: g1 = α1x
−1
3 , h1 = (1, 0, 0), g2 =

α2x
−1
1 , h2 = (0, 1, 0), g3 = α3x

−1
2 , h3 = (0, 0, 1), g4 = β1x

0.5
1 , h4 = (−1, 0, 0),

g5 = β2x
0.5
2 , h5 = (0,−1, 0), g6 = β3x

0.5
3 , h6 = (0, 0,−1).

The corresponding sCCP process, after changing variables according to
Xi = xi

δ , is:

manG1,δ ‖ manG2,δ ‖ manG3,δ ‖ manG4,δ ‖ manG5,δ ‖ manG6,δ, (19)

where, for instance, the agent manG1,δ is

Dynamical Systems and Stochastic Programming 257

manG1,δ :- ask|α1
δ

(δX3)−1|(α1
δ

(δX3)−1 > 0).tell∞(X ′
1 = X1 + 1).manG1,δ

+ ask|α1
δ

(δX3)−1|(α1
δ

(δX3)−1 < 0).tell∞(X ′
1 = X1 − 1).manG1,δ

In Figure 11, we study the dependence on δ of the sCCP network obtained from
equations (19). From the plots, we note that the smaller the δ, the closer the
stochastic trace is to the solution of ODE’s. However, increasing δ, the effect of
stochastic perturbations gets stronger and stronger, making the system change
dynamics radically.

Reducing the value of δ seems to be essentially the same as working with a suf-
ficiently high number of molecules in standard biochemical networks, see [26,24]
and the discussion in Section 3.2. It is thus reasonable to expect that, by taking
δ smaller and smaller, the deterministic and the stochastic dynamics will eventu-
ally coincide. In fact, reducing δ we are diminishing the magnitude of stochastic
fluctuations, hence their perturbation effects.

(a) Solution of ODE’s (19) (b) SCCP simulation, δ = 0.001

(c) SCCP simulation, δ = 0.01 (d) SCCP simulation, δ = 1

Fig. 11. Different simulations of sCCP agent obtained from S-Systems equations of
repressilator (19), as basic step δ varies. Specifically, in Figure 11(a) we show the
solution of ODE’s (19), while in Figures 11(b), 11(c), 11(d) we present three simulations
of the sCCP agent corresponding to ODE’s (19), for δ = 0.001, 0.01, 1 respectively.
In the last diagram, the behavior of S-System’s equations is destroyed. Note that in
Figure 11(c) the time axis is stretched by a factor of 100, while in Figure 11(b) the
time axis is stretched by a factor of 1000, consistently with the rescaling of variables
by 1

δ
performed in the translation from ODE to sCCP.

258 L. Bortolussi and A. Policriti

This conjecture is indeed true: in the rest of the section we prove that, under
mild conditions on the ODE’s and of the functions of G, the trajectories of the
stochastic simulation converge to the solution of the ODE’s, independently of the
choice of the covering set G. In fact, the set of stochastic traces whose distance
from the solution of the ODE’s is greater than a fixed arbitrary constant has
zero probability in the limit δ → 0.

Kurtz theorem. In 1970 Thomas Kurtz proved a theorem giving conditions
for a family of density dependent Continuous Time Markov Chains to converge
to a solution of a system of ODE’s [35,36]. In fact, under mild assumptions on
the smoothness of functions into play, the trajectories of the CTMC remain, in
the limit, close to the solution of a particular set of ODE’s with probability one.
Our mapping SCCP easily fits into Kurtz’s framework, with the step δ playing
the role of the density. We start by recalling the Kurtz’s theorem.

Let V be a positive parameter, playing the role of the “size” of the system, and
XV (t) be a family of CTMC with state space Z

n, depending on the parameter
V . Suppose that there exist a continuous positive real function ϕ : R

n × Z
n →

R, such that the infinitesimal generator matrix [39] Q = (qX,Y) for XV (t) is
given by

qX,X+h = V ϕ(
1
V

X,h), h �= 0.

In addition, let Φ(x) =
∑

h∈Zn hϕ(x,h).

Theorem 5 (Kurtz [35]). Fix a bounded time interval [0, T]. Suppose there
exists an open set E ⊆ R

n and a constant ME ∈ R
+ such that

1. |Φ(x) − Φ(y)| < ME|x − y|, ∀x,y ∈ E (i.e. Φ satisfies the Lipschitz condi-
tion);

2. supx∈E

∑
h∈Zn |h|ϕ(x,h) < ∞;

3. limd→∞ supx∈E

∑
|h|>d |h|ϕ(x,h) = 0.

Then, for every trajectory x(t) that is a solution of ẋ = Φ(x) satisfying x(0) = x0

and x(t) ∈ E, t ∈ [0, T], if

lim
V →∞

1
V

XV (0) = x0,

then for every ε > 0,

lim
V →∞

P

{
sup
t≤T

∣∣∣∣ 1V XV (t)− x(t)
∣∣∣∣ > ε

}
= 0.

This theorem states that the trajectories of XV (t) converge, in a bounded time
interval, to the solution of ẋ = Φ(x), when V →∞. The function Φ is essentially
the sum of all fluxes of the system.

Dynamical Systems and Stochastic Programming 259

Convergence for SCCP

Our framework can be easily adapted to fit this theorem. Consider a system of
ODE’s ẋ = f(x) and a set of covering functions G. Denote by Xδ(t) the CTMC
associated to the sCCP-network SCCP (f(x),G, δ).

Theorem 6. Let ẋ = f(x) be a system of ODE’s, with x ∈ R
n, and [0, T] a

bounded time interval. Let G = {(gi,hi) | i = 1 . . . , μ} be a set of covering
functions for f .

If there exists an open set E ⊆ R
n such that f satisfies the Lipschitz condition

in E and supx∈E |gi(x)| < ∞, for each i = 1 . . . , μ, then for every ε > 0

lim
δ→0

P

{
sup
t≤T

|δXδ(t)− x(t)| > ε

}
= 0,

where x(t) is the solution of ẋ = f(x) with initial condition x(0) = x0 and
δXδ(0) = x0.

Proof. In order to prove the theorem, we simply need to show that we satisfy
all the hypothesis of the Kurtz’s theorem. First of all, in this setting the density
V is equal to 1

δ , so that 1
δ →∞ when δ → 0.

Consider now the function gi(x), and define as customary g+
i (x) =

gi(x)〈gi(x) ≥ 0〉 and g−i (x) = gi(x)〈gi(x) ≤ 0〉, so that gi(x) = g+
i (x) − g−i (x)

and |gi(x)| = g+
i (x) + g−i (x), where 〈·〉 denotes the logical value as before.

Consider now the infinitesimal generator matrix Qδ = (qδ
X,Y) of the CTMC

Xδ(t). It is straightforward to prove that, for each h ∈ Z
n,

qδ
X,X+h =

1
δ

∑
i | hi=h

g+
i (δX) +

1
δ

∑
i | hi=−h

g−i (δX),

where the sum must be intended equal to zero if the index set is empty. Clearly,
these are density dependent rates, with density 1

δ . Note that there is a finite
number of vectors for which qδ

X,X+h is different from zero, as the set {h1, . . . ,hμ}
is finite.

Therefore, the function ϕ of the Kurtz theorem is simply defined as

ϕ(x,h) =
∑

i | hi=h

g+
i (x) +

∑
i | hi=−h

g−i (x).

Then, the function Φ(x) is

Φ(x) =
∑
h

hϕ(x,h) =
μ∑

j=1

hj(g+
j (x)− g−j (x)) =

μ∑
j=1

hjgj(x) = f(x).

260 L. Bortolussi and A. Policriti

It only remains to prove that conditions 1–3 of Theorem 5 are satisfied. Con-
dition 1 is obvious because Φ = f is Lipschitz by hypothesis, while condition 3
hold because |h| > M implies ϕ(x,h) = 0, where M = max1≤i≤μ |hi|. Finally,
condition 2 follows because

∑
h

|h|ϕ(x,h) ≤ M

μ∑
j=1

(g+
j (x) + g−j (x)) = M

μ∑
j=1

|gj(x)|,

hence

sup
x∈E

∑
h

|h|ϕ(x,h) ≤ sup
x∈E

M

μ∑
j=1

|gj(x)| ≤
μ∑

j=1

sup
x∈E

M |gj(x)| ≤ ∞,

due to the condition on gi functions.

Comments and examples on Theorem 6. Theorem 6 states that sCCP
networks are able to simulate ODE’s with an arbitrary precision. The cost of an
exact stochastic simulation of the sCCP-network of Definition 15, however, is
proportional to 1

δ , hence accurate stochastic simulations of ODEs are computa-
tionally impractical. On the other hand, there is no apparent reason to generate
stochastic trajectories indistinguishable from the solution of the ODE’s, as the
latter can be generally obtained with much less computational effort.

In a work related to ours [22], Hillston et al. used the same Kurtz theorem to
prove an analogous result for the equations that can be obtained from a PEPA
program. Theorem 6 can be seen as a generalization of their result. Moreover,
in [22] the authors suggest that a stochastic approximation of ODE’s can be used
together with analysis techniques typical of CTMC, like steady state analysis.
This is a promising direction, but extreme care must be used.

Kurtz theorem, in fact, guarantees convergence only in a fixed and bounded
time interval [0, T], hence it does say nothing about asymptotic convergence of
stochastic trajectories to ODE’s.

Intuitively, the step δ may not be the only responsible for asymptotic con-
vergence; an important role should also be played by initial conditions through
topological properties of the phase space. If the ODE-trajectory we are consid-
ering is stable, i.e. resistant to small perturbations, then we can expect it to be
reproduced in sCCP along the whole time axis, given a step δ small enough. On
the other hand, if the trajectory is unstable, then even small perturbations can
drive the dynamics far away from it; stochasticity, in this case, will unavoidably
produce a trace dramatically different from the one of ODE’s. Of course, by
taking the interval [0, T] of the theorem big enough (hence δ small enough), we
can postpone arbitrarily far away in time the moment in which a stochastic and
an unstable deterministic trajectories will diverge.

As an example of instability, let’s consider a simple linear system of differential
equations: (

Ẋ

Ẏ

)
=
(

X + Y
4X + Y

)
(20)

Dynamical Systems and Stochastic Programming 261

The theory of dynamical systems [51] tells us that the point (0, 0) is a saddle
node, i.e. an unstable equilibrium whose phase space resembles the one depicted
in Figure 12(a). The two straight lines are the directions spanned by the eigen-

vectors of the matrix of coefficients
(

1 1
4 1

)
, and are called stable and unstable

manifolds. Motion in the stable manifold converges to the equilibrium (0, 0),
while the unstable manifold and all other trajectories diverge to infinity. How-
ever, small perturbations applied to the stable manifold can bring the system
on a divergent hyperbolic trajectory, so we expect that ODE’s and the asso-
ciated sCCP agent, when starting from the stable manifold (say from point
(1,−2)), will eventually jump on a divergent trajectory. Moreover, we expect
that the smaller δ the later this event will happen. This intuition is confirmed in
Figures 12(b), 12(c), 12(d).

(a) Phase portrait of a saddle node (b) ODE solution

(c) sCCP simulation — δ = 0.001 (d) sCCP simulation — δ = 0.00001

Fig. 12. 12(a): Phase space of the linear system (20). The origin is a saddle node; the
stable manifold is displayed with arrows pointing towards the origin, while the unstable
manifold has arrows diverging from it. 12(b): Solution of the ODE’s (20), starting
from (1,−2), a point belonging to the stable manifold. 12(c),12(d): Simulation of the
sCCP agent associated to the linear system (20), w.r.t. the set of convering functions
{(X, (1, 0)), (Y, (1, 0)), (4X, (0, 1)), (Y, (0, 1))} with initial conditions (1,−2). The step δ
is equal respectively to 0.001 and 0.00001. The time in which these trajectories diverge
from the solution of the ODE’s increases as δ becomes smaller.

262 L. Bortolussi and A. Policriti

This example shows that convergence issues need to be investigate further. In
particular, conditions taking into account the topology of the phase space of the
ODE’s are required in order to guarantee also asymptotic convergence. Another
interesting direction to investigate is to exploit other results by Kurtz [36] in
order to state error bounds in the approximation.

Examples of Sets of Covering Functions. All the results of this Section
have been given parametrically w.r.t. a set of covering functions G. When we
motivated the introduction of such concept, we stated that a choice of a specific
G corresponds to a specific logical structure of the fluxes generating the ODEs.
We discuss now two possible choices of G, one natural in absence of information,
and the other tailored for ODEs coming from sets of biochemical reactions for
which it is possible to reconstruct the reactions from the ODEs.

Example 2. The simplest choice of a covering set is the one in which all the
addends of ODEs are treated as independent flux sources. To be more specific,
consider a set of ODE f(x) = (f1(x), . . . , fk(x)), with fi(x) =

∑ki

j=1 fij(x),
where fij are the single addends of the ODE. The idea is to treat independently
each such fij , so that GD = {(fij , ei) | 1 ≤ i ≤ k, 1 ≤ j ≤ ki}. Such covering
set GD will be called in the following the disentangled covering set. This was
the choice adopted, for instance, when discussing the Repressilator example in
Section 4.3. This choice is reasonable in absence of any further information on
the system modeled by the ODE’s, and it does not preserve structural properties
of the system, like mass conservation. For instance, consider the system defined
by the single reaction A →k·A B, which preserves the total mass A+B. With the
disentangled covering set, however, we would reconstruct the logical structure of
the following system of biochemical reactions: A →k·A and →k·A B, which does
not preserve the total mass A + B.

Example 3. Assume now we have a system generated by a set of mass action
reactions such that the left hand side (i.e., the list of reactants) of each such
reaction is unique. This has the consequence that each reaction is uniquely iden-
tified by the algebraic structure as a monomial of its rate function. For instance,
the only reaction with A and B as reagents, A+B →k?, is uniquely identified by
the signature as a monomial of its rate function kAB, i.e. by the monomial AB
with coefficient 1. This property has the immediate consequence that, whenever
we find two addends of the ODE with the same signature as a monomial, we
are guaranteed that they are two instances of the same flux. That is to say, if
the condition is satisfied, we know how to reconstruct the set of reactions that
originated the ODE’s.

Formally, given f(x) = (f1(x), . . . , fk(x)), with fi(x) =
∑ki

j=1 fij(x), we can
construct the covering set GR as follows: list all the different support monomials
{p1, . . . , ps} in the set {fij | 1 ≤ i ≤ k, 1 ≤ j ≤ ki}, and, for each l, define the
terms αl,j ∈ Z and βl ∈ R

+ such that:

1. if pl occurs in the equation for variable i, then its occurrence is equal to
αl,iβlpl;

Dynamical Systems and Stochastic Programming 263

2. if pl does not occur in the equation for variable i, then αl,i = 0;
3. all αl,j �= 0 are prime among them18;

Then, letting αl = (αl,1, . . . , αl,k), the covering set GR can be defined as GR =
{(βlpl, αl) | l = 1, . . . , s}.

For instance, consider the ODEs
⎧⎨
⎩

Ẋ = −2kX2Y

Ẏ = −kX2Y

Ż = 3kX2Y

The associated covering set GR is simply GR = {(kX2Y, (−2,−1, 3))}, corre-
sponding to the single reaction 2X + Y →k 3Z.

5 Final Discussion

In this paper we presented a method to associate ordinary differential equations
to sCCP programs (written with a restricted syntax), and also a method that
generates an sCCP-network from a set of ODE’s. The translation from sCCP
to ODE’s is based on the construction of a graph, called RTS, whose edges
represent all possible actions performable by sCCP-agents. Properties of re-
stricted(sCCP) guarantee that the graph is always finite. From an RTS, we
can construct an interaction matrix containing the modifications that each ac-
tion makes to each variable. Writing the corresponding ODE’s is simply a matter
of combining the interaction matrix with the rate of each action. The inverse
translation, from ODE’s to sCCP, exploits the functional form that rates have
in sCCP. In this way, we can associate sCCP-agents to general ODE’s. An im-
portant feature of this method is that it is parametric w.r.t. the basic increment
of variables, meaning that we can reduce the effect of stochastic fluctuations
in the sCCP-model. Actually, we proved in Theorem 6 that, in the limit of an
infinitesimal increment, the trajectories of the ODE’s and of the corresponding
sCCP-system coincide.

In Section 3.1, we showed that the translation from sCCP to ODE’s, when
applied to models of biochemical reactions, preserves the rate semantics in the
sense of [17]. This condition, however, is not sufficient to guarantee that the
translation maintains also the dynamical behavior of the sCCP-model. In fact,
in Section 3.2, we provided several examples where an sCCP-network and the
associated ODE’s manifest a different behavior. This divergence can be caused
by many factors, all qualitatively different.

Preserving dynamical behavior, however, is not just a mathematical game,
but is is a central property that a translation from sCCP to ODE should have in
order to be used as an analysis technique for stochastic process algebras. In this
light, also the mapping from ODE to sCCP can be seen as a tool to investigate
behavioral preservation.
18 This condition guarantees that αlj are uniquely defined.

264 L. Bortolussi and A. Policriti

In Section 4, when we introduced the notion of set of covering functions,
we noted that in the passage to ODE’s we unavoidably lose something of the
logic of the sCCP model. This also suggest that the preservation of behavior
may be reasonable only from a qualitative point of view. Indeed, this weaker
approach fits better with the management of stochastic noise, see the discussion
at the end of Section 3.2. The loss of precision in passing to ODE’s is, however,
counterbalances by the computational gain: simulating stochastic processes is
undoubtedly much more expensive than numerically solving ODE’s [24].

There are several open problems related to the question of behavioral equiv-
alence. We list hereafter some of the most important ones, according to us.

– We need to identify the class of sCCP models (and their regions of parameter
space/initial conditions) for which the mapping ODE preserves dynamics.
Intuitively, according to discussion of Section 3.2, this may happen if all
variables have big absolute values and if the phase space of the ODE’s has
asymptotically stable trajectories with ample basins of attraction.

– The repressilator and the simple self-inhibited genetic network of Section 3.2
suggest that the discrete ingredient cannot be continuously approximated so
easily. In particular, associating continuous variables to RTS-states seems
rather arbitrary. A possible solution can be that of transforming an sCCP
network into a hybrid system, in which continuous and discrete dynamics
coexist. In this way, we may be able to preserve part of the discrete structure
of an sCCP-network, possibly just that fundamental for maintaining the
behavior. We are investigating this direction, mapping sCCP-programs to
hybrid automata [29,2]. The first results are encouraging, see [13,14]

– The notion of behavioral equivalence needs to be specified formally. At the
end of Section 3.2, we suggested an approach based on a suitable temporal
logic, in which equivalence would mean equi-satisfiability of the same set of
formulae.

As a final remark, we would like to consider this work under the perspective of the
study of systemic properties. In fact, when we model a biological system, we are
concerned mainly with the understanding of its systemic properties, especially
what they are and how they emerge from basic interactions. In this direction, a
modeler needs a formal language to specify biological systems, possibly provided
with different semantics, related to one another and stratified in several layers
of increasing approximation and abstraction. For example, sCCP has a natural
CTMC-based semantics, but an ODE-based one can be assigned to it via the
ODE operator. A possible layer in the middle consists in a semantic based,
for instance, on hybrid automata. Finally, we need also a language to specify
system’s properties, automatically verifying them on the different semantics, or
better, on the simpler semantic where answers are correct (i.e., on the simpler
semantic showing the same dynamical behavior of the most general one). All
these features must clearly be part of the same operative framework (and of the
same software tool), hence all the open questions presented above can be seen
as steps in this direction.

Dynamical Systems and Stochastic Programming 265

References

1. Converging sciences. Trento (2004), http://www.unitn.it/events/consci/
2. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., Rubin,

H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

3. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38(3), 271–286
(2003)

4. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: Ver-
ifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

5. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic
dynamics of gene networks. T. Comp. Sys. Biology, 99–122 (2006)

6. Blossey, R., Cardelli, L., Phillips, A.: Compositionality, stochasticity and coopera-
tivity in dynamic models of gene regulation. HFPS Journal (2007) (in print)

7. Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of
4th International Workshop on Quantitative Aspects of Programming Languages
(QAPL 2006). ENTCS, vol. 164, pp. 65–80 (2006)

8. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biologi-
cal systems. PhD thesis, PhD in Computer Science, University of Udine (2007),
http://www.dmi.units.it/~bortolu/files/reps/Bortolussi-PhDThesis.pdf

9. Bortolussi, L.: A master equation approach to differential approximations of
stochastic concurrent constraint programming. In: Proceedings of QAPL 2008.
ENTCS (2008) (to appear)

10. Bortolussi, L., Fonda, S., Policriti, A.: Constraint-based simulation of biological
systems described by molecular interaction maps. In: Proceedings of IEEE confer-
ence on Bioinformatics and Biomedicine, BIBM 2007 (2007)

11. Bortolussi, L., Policriti, A.: Relating stochastic process algebras and differential
equations for biological modeling. In: Proceedings of PASTA 2006 (2006)

12. Bortolussi, L., Policriti, A.: Stochastic concurrent constraint programming and
differential equations. In: Proceedings of Fifth Workshop on Quantitative Aspects
of Programming Languages, QAPL 2007. ENTCS, vol. 16713 (2007)

13. Bortolussi, L., Policriti, A.: Hybrid approximation of stochastic concurrent con-
straint programming. In: Proceedings of IFAC 2008 (2008)

14. Bortolussi, L., Policriti, A.: The importance of being (a little bit) discrete. In:
Proceedings of FBTC 2008. ENTCS (2008) (to appear)

15. Bortolussi, L., Policriti, A.: Modeling biological systems in concurrent constraint
programming. Constraints 13(1) (2008)

16. Cardelli, L.: From processes to odes by chemistry (2006),
http://lucacardelli.name/

17. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391(3),
190–215 (2008)

18. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA
for biochemical networks. In: Proceeding of FBTC 2007. Workshop of CONCUR
2007 (2007)

19. Seattle CompBio Group, Institute for Systems Biology. Dizzy home page
20. Cornish-Bowden, A.: Fundamentals of Chemical Kinetics, 3rd edn. Portland Press

(2004)

http://www.unitn.it/events/consci/
http://www.dmi.units.it/~bortolu/files/reps/Bortolussi-PhDThesis.pdf
http://lucacardelli.name/

266 L. Bortolussi and A. Policriti

21. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403, 335–338 (2000)

22. Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete pepa
models of signalling pathways. Theoretical Computer Science (2008) (in print)

23. Gillespie, D.: The chemical langevin equation. Journal of Chemical Physics 113(1),
297–306 (2000)

24. Gillespie, D., Petzold, L.: Numerical Simulation for Biochemical Kinetics. In: Sys-
tem Modelling in Cellular Biology. MIT Press, Cambridge (2006)

25. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. of Computational Physics 22 (1976)

26. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of
Physical Chemistry 81(25) (1977)

27. Haas, P.J.: Stochastic Petri Nets. Springer, Heidelberg (2002)
28. Hastings, S.P., Murray, J.D.: The existence of oscillatory solutions in the field-noyes

model for the belousov-zhabotinskii reaction. SIAM Journal on Applied Mathemat-
ics 28(3), 678–688 (1975)

29. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996: Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science (1996)

30. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

31. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, QEST
2005 (2005)

32. Kitano, H.: Foundations of Systems Biology. MIT Press, Cambridge (2001)
33. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)
34. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction

maps of bioregulatory networks: A general rubric for systems biology. Molecular
Biology of the Cell 17(1), 1–13 (2006)

35. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
markov processes. Journal of Applied Probability 7, 49–58 (1970)

36. Kurtz, T.G.: Limit theorems for sequences of jump markov processes approxi-
mating ordinary differential processes. Journal of Applied Probability 8, 244–356
(1971)

37. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model check-
ing with prism: A hybrid approach. International Journal on Software Tools for
Technology Transfer 6(2), 128–142 (2004)

38. Mcadams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. PNAS 94,
814–819 (1997)

39. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)
40. Noyes, R.M., Field, R.J.: Oscillatory chemical reactions. Annual Review of Physical

Chemistry 25, 95–119 (1974)
41. Nurse, P.: Understanding cells. Nature 24 (2003)
42. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.

Program., 60-61, 17–139 (2004)
43. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes

in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge
(2002)

44. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)
45. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic

name-passing calculus to representation and simulation of molecular processes. Inf.
Process. Lett. 80(1), 25–31 (2001)

Dynamical Systems and Stochastic Programming 267

46. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale
genetic regulatory networks. Journal of Bioinformatics and Computational Biol-
ogy 3(2), 415–436 (2005)

47. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady
state assumption: Application to the gillespie algorithm. Journal of Chemical
Physics 118(11), 4999–5010 (2003)

48. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419
(2002)

49. Saraswat, V.A.: Concurrent Constraint Programming. MIT press, Cambridge
(1993)

50. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.:
Cellerator: extending a computer algebra system to include biochemical arrows
for signal transduction simulations. Bioinformatics 19(5), 677–678 (2003)

51. Strogatz, S.H.: Non-Linear Dynamics and Chaos, with Applications to Physics,
Biology, Chemistry and Engeneering. Perseus books, Cambridge (1994)

52. Vilar, J.M.G., Yuan Kueh, H., Barkai, N., Leibler, S.: Mechanisms of noise resis-
tance in genetic oscillators. PNAS 99(9), 5991 (2002)

53. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall,
Boca Raton (2006)

Computing Equilibrium Points of Genetic
Regulatory Networks

Graziano Chesi

Department of Electrical and Electronic Engineering
University of Hong Kong

chesi@eee.hku.hk

http://www.eee.hku.hk/~chesi

Abstract. Computing equilibrium points of genetic regulatory networks
is a problem of primary importance for numerous investigations in these
systems. This paper addresses this problem for differential equation mod-
els, with the regulation function expressed in a general form which in-
cludes both SUM form and PROD form for saturation functions of any
type. Specifically, a recursive algorithm is proposed, which provides at
each recursion a region guaranteed to contain all equilibrium points. This
region progressively shrinks, and asymptotically converges to the sought
set of equilibrium points. Moreover, the proposed algorithm can also al-
low one to delimit and find limit cycles. Some numerical examples are
reported to illustrate and validate the proposed algorithm, including ex-
amples where standard mathematical tools fail to compute the sought
equilibrium points.

Keywords: Genetic regulatory network, Differential equation, Satura-
tion, Equilibrium point, Limit cycle.

1 Introduction

Genetic regulatory networks explain the interactions between genes and proteins
to form complex systems that perform complicated biological functions, see for
instance [1,2,3,4,5,6,7,8]. Basically, there are two types of genetic regulatory net-
work models, i.e., the Boolean model (or discrete model) and the differential
equation model (or continuous model). In Boolean models, the activity of each
gene is expressed in one of two states, ON or OFF, and the state of a gene
is expressed by a Boolean function of the states of other related genes. In the
differential equation models, the variables describe the concentrations of gene
products, such as mRNAs and proteins, as continuous values of the gene regula-
tion systems. See for example [9,10,11,12,13] and references therein for a wider
categorization of genetic regulatory networks models.

This paper focuses on genetic regulatory networks described through differ-
ential equation models. In these models the dynamics of each concentration is
expressed by a function of all concentrations of the system. This function typi-
cally consists of two parts: a linear part which defines the natural decay rate of

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 268–282, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing Equilibrium Points of Genetic Regulatory Networks 269

the concentration itself, and a nonlinear part which defines the influence by all
the other concentrations. The nonlinear part can be either described via sum of
saturation functions (in this case the system is said to be in SUM form) or via
product of saturation functions (in this case the system is said to be in PROD
form). See for instance [14,15,16,17].

A fundamental problem in these networks consists of determining the equi-
librium points, i.e. the amounts of concentrations for which the regulation pro-
cess results complete. This is a necessary step for several investigations, such
as steady-state, stability, disturbance rejection, etc. Unfortunately, to determine
equilibrium points of genetic regulatory networks is a difficult problem because
these systems contain saturation functions, and hence the calculation of the equi-
librium points amounts to solving a system of nonlinear equations. Indeed, there
do not exist techniques able to guarantee to find all solutions of such a system,
except in the case of polynomial equations, which however can be addressed only
for small degrees and small number of variables, see for instance [18,19,20,21]
and references therein.

In this paper we address the problem of computing equilibrium points of ge-
netic regulatory networks described through differential equation models. We
consider a general model which includes both SUM form and PROD form for
saturation functions of any type. The contribution consists of a recursive al-
gorithm which holds the following properties. First, at each recursion the al-
gorithm provides a region containing all equilibrium points, i.e. no equilibrium
is lost. Second, this region progressively shrinks, i.e. the conservatism does not
increase. Third, this region asymptotically converges to the set of equilibrium
points, i.e. all equilibrium points are found. The proposed algorithm is illustrated
and validated through some numerical examples with synthetic and real genetic
regulatory networks. In these examples it is also shown that standard mathe-
matical tools for solving systems of nonlinear equations may fail to compute the
sought equilibrium points. Moreover, in these examples it is also explained that
the proposed algorithm can be useful to delimit and find limit cycles.

The paper is organized as follows. Section 2 introduces some preliminaries on
genetic regulatory networks. Section 3 describes the proposed results. Section 4
presents some numerical examples. Finally, Section 5 reports some concluding
remarks.

2 Preliminaries

First of all, let us introduce the notation used throughout the paper:

- R+: positive real number set, i.e. {x ∈ R : x ≥ 0};
- 0n: null vector of size n× 1;
- In: identity matrix of size n× n;
- ei: i-th column of In;
- diag(x1, . . . , xn): diagonal matrix with xi at the (i, i) entry;
- XT : transpose of vector/matrix X ;
- TF: transcription factor.

270 G. Chesi

The genetic regulatory networks considered in this paper are described by the
differential equation model⎧⎨

⎩
ṁi(t) = −aimi(t) + bi(p1(t), . . . , pn(t))
ṗi(t) = −cipi(t) + dimi(t)

i = 1, . . . , n
(1)

where mi(t), pi(t) ∈ R+ are the concentrations of mRNA and protein of the i-th
gene, ai, ci ∈ R+ are the degradation rates, di ∈ R+ expresses the effect of mi(t)
on pi(t), and bi : R

n
+ → R+ is the regulatory function of the i-th gene. This

function is typically nonlinear, and either always increases or always decreases
with respect to any component of p(t) whenever its other components are fixed,
i.e.

(−1)kibi(p1, . . . , pi−1, x2, pi+1, . . . , pn) ≥ (−1)kibi(p1, . . . , pi−1, x1, pi+1, . . . , pn)
∀x1, x2 : x1 ≤ x2 ∀p1(t), . . . , pn(t) ∈ R+ ∀i = 1, . . . , n

(2)
for some k1, . . . , kn ∈ {0, 1}.

In genetic regulatory networks with SUM form, the function bi(p1(t), . . . ,
pn(t)) is expressed as the sum of functions of a single variable, i.e.

bi(p1(t), . . . , pn(t)) =
n∑

j=1

αi,jbi,j(pj(t)) (3)

where αi,j ∈ R+ is the contribution of TF j to the transcriptional rate for gene
i, and bi,j : R+ → R+ is a monotonic function, i.e. bi,j(pj(t)) either always
increases or always decreases with respect to pj(t).

In genetic regulatory networks with PROD form, the function bi(p1(t), . . . ,
pn(t)) is expressed as the product of the functions bi,j(pj(t)), i.e.

bi(p1(t), . . . , pn(t)) = αi

n∏
j=1

bi,j(pj(t)) (4)

where αi ∈ R+ represents the transcriptional rate for gene i.
Each function bi,j(pj(t)) in (3) and (4) is typically expressed as

bi,j(pj(t)) =

⎧⎨
⎩

f(pj(t)) if TF j is an activator of gene i
1− f(pj(t)) if TF j is a repressor of gene i
γ otherwise

(5)

where γ ∈ R is a constant depending on the model which expresses the inde-
pendence of gene i on TF j (γ = 0 for SUM form, γ = 1 for PROD form), and
the function f(pj(t)) is a saturation function. For saturation function we mean
a function satisfying the following properties:⎧⎪⎪⎨

⎪⎪⎩

f : R+ → [0, 1]
f(0) = 0
limx→∞ f(x) = 1
f(x2) ≥ f(x1) ∀x1, x2 : x1 ≤ x2

(6)

Computing Equilibrium Points of Genetic Regulatory Networks 271

Hence, a saturation function is an increasing function between 0 and 1 defined
for positive value of the variable. For instance, in the case of regulatory functions
with Hill form, the function f(pj(t)) is given by

f(pj(t)) =
pj(t)H

βH + pj(t)H
(7)

where β ∈ R+ and H is an integer known as Hill coefficient.
In order to describe the results of this paper in a more compact form, we

introduce a matrix version of the model (1) according to{
ṁ(t) = Am(t) + b(p(t))
ṗ(t) = Cp(t) + Dm(t) (8)

where
m(t) = (m1(t), . . . , mn(t))′

p(t) = (p1(t), . . . , pn(t))′ (9)

are the vectors containing the concentrations of mRNA and protein, and

A = diag(−a1, . . . ,−an)
C = diag(−c1, . . . ,−cn)
D = diag(d1, . . . , dn)

(10)

are diagonal matrices containing the decay rates (matrices A and C) and the
effect of m(t) on p(t) (matrix D). The function b : R

n
+ → R

n
+ is a nonlinear func-

tion representing the regulation of the process, whose i-th component bi(p(t))
satisfies the monotonicity condition (2).

We observe that the model (8) under the assumption (2), which is an equiv-
alent matrix version of the model (1), includes:

1. genetic regulatory networks with SUM form, by choosing the i-th component
of b(p(t)) as in (3);

2. genetic regulatory networks with PROD form, by choosing the i-th compo-
nent of b(p(t)) as in (4);

3. genetic regulatory networks that are neither in SUM form nor in PROD
form, provided that (2) holds. For instance, the choice for n = 3 given by

b(p(t)) =

⎛
⎝ b1,1(p1(t)) + b1,2(p2(t))3

eb2,1(p1(t))b2,3(p3(t))
b3,2(p2(t))3 +

√
b3,3(p3(t))

⎞
⎠ (11)

defines a genetic regulatory networks which is neither in SUM form nor in
PROD form, but which is included in the model (8) under the assump-
tion (2).

The problem addressed in this paper consists of determining the equilibrium
points of (8), i.e. the solutions of the system of nonlinear equations⎧⎨

⎩
Am + b(p) = 0n

Cp + Dm = 0n

m, p ∈ R
n
+

(12)

272 G. Chesi

Remark 1. Before proceeding let us observe that existing mathematical tools
for solving systems of nonlinear equations generally do not guarantee to find all
solutions of such systems. Indeed, systems of nonlinear equations can be solved
via either analytical techniques or numerical techniques. Analytical techniques
can be used in the case of polynomial or rational equations, and provides the
sought solutions as roots of a one-variable polynomial. Unfortunately, the de-
gree of this polynomial is prohibitive (except for very small systems) since in the
worst case coincides with the maximum number of solutions of the system, which
is given by the degree of the equations to the power of the number of variables,
see for instance [18,22,19,21]. Numerical techniques, which are either based on
the numerical minimization of a suitable function via for example Newton’s it-
erations starting from an initial point, or on homotopy methods which adopt
continuation strategies, do not suffer of the previous problems. Unfortunately,
these techniques cannot guarantee to find all sought solutions, see for instance
[23,20] and Section 4.

Remark 2. Another remark concerns the fact that genetic regulatory networks
can be also modeled as stochastic systems, where the input is represented by a
stochastic process such as white noise. For instance, such an input could affect
(8) according to {

ṁ(t) = Am(t) + b(p(t)) + w(t)
ṗ(t) = Cp(t) + Dm(t) (13)

where w(t) ∈ R
n is a stochastic process. In these systems there are no equilibrium

points in the classic sense since the input is a non-constant function of the time
and hence the equation

Am + b(p) + w(t) = 0n (14)

would not admit solutions where m and p do not depend on the time (which
is the classic definition of equilibrium point). Instead, one can consider equilib-
rium points corresponding to particular constant values of the stochastic process,
such as its mean value, that the algorithm proposed in this paper allows one to
compute. Indeed, these equilibrium points are defined analogously to (12) as

⎧⎨
⎩

Am + b(p) + w̄ = 0n

Cp + Dm = 0n

m, p ∈ R
n
+

(15)

where w̄ ∈ R
n is the the stochastic expectation of w(t).

3 Equilibria Computation

In this section we describe the proposed algorithm. Specifically, in Theorems 1
and 2 we introduce two preliminary functions and we describe their properties.
Then, in Theorem 3 we provide the main algorithm to be used to compute the
sought equilibrium points.

Computing Equilibrium Points of Genetic Regulatory Networks 273

Before proceeding, let us observe that the m-component of any solution of
(12) is related to its p-component by the relationship Cp+Dm = 0n where C, D
are nonsingular diagonal matrices with C negative definite. This means that (12)
can be equivalently rewritten as

⎧⎨
⎩
−AD−1Cp + b(p) = 0n

m = −D−1Cp
p ∈ R

n
+

(16)

Therefore, in the sequel we will focus on the computation of the vectors p fulfilling
(16). We indicate the set of such vectors as

E =
{
p ∈ R

n
+ : −AD−1Cp + b(p) = 0n

}
(17)

Theorem 1. Let H be the rectangle defined by

H =
{
p ∈ R

n
+ : pi ∈ [pi,−, pi,+]

}
(18)

for some p1,−, p1,+, . . . , pn,−, pn,+ ∈ R+, and let us define the map A(H) as

A(H) =
{
p ∈ R

n
+ : pi ∈ [qi,−, qi,+]

}
(19)

where q1,−, q1,+, . . . , qn,−, qn,+ ∈ R+ are computed according to

qi,− = max
{

pi,− , min
z∈Z

eT
i C−1DA−1z

}
(20)

qi,+ = min
{

pi,+ , max
z∈Z

eT
i C−1DA−1z

}
(21)

where Z is the set given by

Z = {b(p) : pi ∈ {pi,−, pi,+} , i = 1, . . . , n} . (22)

Then, the following properties hold:

- Property P1: A(H) ⊆ H;
- Property P2: p∗ ∈ H ∩ E ⇒ p∗ ∈ A(H);
- Property P3: H∩A(H) = ∅ ⇒ H ∩ E = ∅.

Proof. First, the property P1 holds because from (20)–(21) one has

qi,− ≥ pi,− and qi,+ ≤ pi,+ ∀i = 1, . . . , n. (23)

Second, the property P2 holds due to the monotonicity property (2) of bi(p) with
respect to each component of p and to the linearity of the function eT

i C−1DA−1z
with respect to z. In fact, we have

274 G. Chesi

p∗ ∈ H ⇒ bi(p∗) ∈ [min
z∈Z

zi, max
z∈Z

zi]. (24)

Moreover,
p∗ ∈ E ⇒ eT

i C−1DA−1b(p∗) = p∗i . (25)

Hence, it follows

p∗ ∈ H ∩ E ⇒ qi,− ≤ p∗i and qi,+ ≥ p∗i . (26)

Lastly, the property P3 holds because, if one suppose for contradiction that
H ∩ A(H) = ∅ and H contains a vector p∗ of E , then it would follow from the
property P2 that p∗ belongs to A(H), hence contradicting the assumption that
H∩A(H) = ∅. �

Let us observe that map A(·) requires trivial computations, i.e. evaluation of a
linear function in some given points. In fact, let us observe that the set Z is
finite. From the map A(·) we define the map B(·) in the following theorem.

Theorem 2. Let H be a rectangle in (18), and let us define the map B(H) as
follows:

- (Step 1) set H(0) = H and k = 0 (k denotes the iteration number);
- (Step 2) if H(k) ∩ A(H(k)) = ∅, set B(H) = ∅ and exit;
- (Step 3) if A(H(k)) is a point, set B(H) = A(H(k)) and exit;
- (Step 4) if H(k) = A(H(k)), set B(H) = H(k) and exit;
- (Step 5) set H(k+1) = A(H(k)), k = k + 1, and go to 2.

Then, B(H) returns either a rectangle, a point, or the empty set. Moreover:

- Property P4: B(H) ⊆ H;
- Property P5: p∗ ∈ H ∩ E ⇒ p∗ ∈ B(H).

Proof. First of all, let us observe that the output of B(H) can be either the empty
set (output of Step 2), a point (output of Step 3), or a rectangle (output of Step
4). Then, the property P4 follows from the fact that the output of B(H) is a
sequence of applications of the map A(·) for which the property P1 ensures that
the output is a subset of the input. Lastly, the property P5 holds since B(H)
returns either a sequence of applications of the map A(·) for which the property
P2 ensures that no vector of H ∩ E can be lost, or the empty set in the case
H(k) ∩ A(H(k)) = ∅ which however guarantees the absence of vectors of E in
H(k) (and hence in H) due to the properties P2 and P3. �

The map B(·) transforms a given rectangle via a sequence of applications of the
map A(·), and returns a set which can be either a rectangle, a point, or the
empty set. By exploiting the map B(·) we derive the algorithm for the compu-
tation of the sought equilibrium points as follows.

Computing Equilibrium Points of Genetic Regulatory Networks 275

Theorem 3. (Algorithm for equilibrium points computation) Let H be a rect-
angle in (18) and let us define the map C(H) as follows:

- (Step 1) if B(H) is either the empty set or a point, then set C(H) = B(H)
and exit;

- (Step 2) divide the rectangle B(H) in 2k rectangles H1, . . . ,H2k by taking the
middle point on each side of B(H) with nonzero length;

- (Step 3) set C(H) =
⋃

i=1,...,2k C(Hi) and exit.

Then, the algorithm to be launched in C(Rn
+), for which the following properties

hold:

- Property P6: the positive octant R
n
+ is progressively shrunk without losing

any point of E;
- Property P7: the set provided by the algorithm asymptotically converges to

the set E.

Proof. The property P6 holds because B(H) is guaranteed to include any vector
in H∩ E according to the property P5, moreover from the property P4 one has
that the set returned by the algorithm cannot increase. Then, property P7 holds
because no portion of R

n
+ is lost in the division of each rectangle B(H). �

Hence, the proposed algorithm for computing the equilibrium points of (8) is
launched as C(Rn

+), which means that the positive octant R
n
+ is used as ini-

tial rectangle H. This because R
n
+ is clearly guaranteed to contain all solutions

of (16). Then, the initial rectangle is passed to the map B(·). If the output of
this map is either the empty set or a point, then the algorithm stops as it is
guaranteed that there are no equilibrium points inside the considered rectangle.
Otherwise, the output is another rectangle, which is then divided in smaller ones.
The rectangles obtained in this division are passed to the map C(·) itself, hence
realizing a recursive algorithm. As explained by the properties P6 and P7, the
set provided by the algorithm is guaranteed to contain all points of E at each
recursion, and to asymptotically converge to E .

Remark 3. It is worth to remark that the proposed algorithm differs from ex-
isting techniques for computing the solutions of systems of nonlinear equations.
A first difference is that the proposed algorithm does not rely on analytical
techniques, which can be used only in special cases and typically for small sys-
tems. A second difference is that the proposed algorithm does not consider one
possible initial point only contrary to some numerical techniques. Instead, the
proposed algorithm consider the whole space of possible solutions, and progres-
sively shrinks this space to the sought set of equilibrium points without losing
any portion of it.

Remark 4. Lastly, it is interesting to observe that the proposed algorithm can
also allow one to investigate limit cycles of (8), which are periodic solutions
m(t), p(t) of (8) satisfying the condition

276 G. Chesi

∃T ∈ R :
{

m(t) = m(t + T)
p(t) = p(t + T) ∀t ≥ 0 (27)

where T represents the period. Indeed, at the first recursion of the proposed
algorithm one obtains the rectangle B(Rn

+) which is expected to contain existing
limit cycles of (8) as they are periodic solutions of the system of differential equa-
tions. This suggests a strategy which can be useful to establish the existence of
limit cycles in (8). In fact, once that B(Rn

+) has been found at the first recursion
of the algorithm, one can investigate the trajectories starting along its boundary
(for instance, at the vertices) to reveal limit cycles. See for instance Example 3.

4 Illustrative Examples

In this section we present some examples where the proposed algorithm is
used. We report only the p-component of each equilibrium point, being the m-
component directly given by D−1Cp according to (16). The computational time
for all examples is lesser than 5 seconds with an implementation of the proposed
algorithm in Matlab 7 running under Windows XP on a personal computer with
Pentium IV 2.2 GHz and 2 GB RAM.

4.1 Genetic Regulatory Network in PROD Form with Non-Hill
Function

Let us start by considering the genetic regulatory network described in PROD
form given by

⎧⎪⎪⎨
⎪⎪⎩

ṁ1(t) = −0.17m1(t) + 0.73f(p2)(1− f(p3))
ṁ2(t) = −0.8m2(t) + 0.95(1− f(p3))
ṁ3(t) = −0.52m3(t) + 0.58(1− f(p1))
ṗi(t) = −pi(t) + mi(t) ∀i = 1, 2, 3

(28)

and the saturation function

f(pi(t)) = 1− e−pi(t)2 . (29)

This genetic regulatory network is characterized by the fact that TF 1 is a
regressor of gene 3, TF 2 is an activator of gene 1, and TF 3 is a regressor of
genes 1 and 2.

Let us use the algorithm proposed in Theorem 3. At the first recursion of the
algorithm we obtain that the positive octant R

+
3 is shrunk to the rectangle shown

in Figure 1a. At the second recursion, the rectangle previously found is divided
in four equal rectangles, one of which is shown in Figure 1b, another one shrinks
to the equilibrium point shown in Figure 1b, and the other two converges to the
empty set. At the fourth recursion, another equilibrium point is found as shown
in Figure 1c, and only one rectangle is left. Then, at the eight recursion the last
equilibrium point is found and no rectangle is left as shown in Figure 1d. We

Computing Equilibrium Points of Genetic Regulatory Networks 277

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

p1

p
2

(a)

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

p1

p
2

(b)

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

p1

p
2

(c)

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

p1

p
2

(d)

Fig. 1. Steps of the proposed algorithm for the example in Section 4.1 (shown in the
plane p1–p2 for clarity of presentation): (a) first recursion, R

3
+ is shrunk to a rectangle;

(b) second recursion, an equilibrium point is found (denoted by the “∗” mark); (c)
fourth recursion, another equilibrium point is found. (d): ninth recursion, the last
equilibrium point is found.

hence conclude that this system has three equilibrium points, in particular the
set E in (17) is given by

E =
{
(3.246, 1.189, 0.000)T , (0.461, 0.527, 0.902)T , (0.166, 0.366, 1.085)T

}
. (30)

For comparison, we attempt to use standard mathematical tools, in particular
via Matlab and Mathematica. We hence use the functions “solve” (Matlab func-
tion for both analytical and numerical techniques) and ”findroot” (Mathematica
function for numerical technique) which find only one solution. This happens be-
cause the equations in (12) are neither polynomial nor rational in this case, which
means that no analytical technique exist for finding the solutions in this case.
Existing tools therefore apply numerical techniques which allow to find a local
solution starting from an initial point, but the other solutions are lost.

278 G. Chesi

4.2 Genetic Regulatory Network in SUM Form with Hill Function

In this example we consider the genetic regulatory network in SUM form with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ1(t) = −2.0m1(t) + 0.9(1− f(p2)) + 0.5f(p3)
ṁ2(t) = −2.2m2(t) + 0.9(1− f(p3)) + 0.5f(p4)
ṁ3(t) = −2.4m3(t) + 0.9(1− f(p4)) + 0.5f(p5)

...
ṁ8(t) = −3.4m8(t) + 0.9(1− f(p9)) + 0.5f(p10)
ṁ9(t) = −3.6m9(t) + 0.9(1− f(p10)) + 0.5f(p1)

ṁ10(t) = −3.8m10(t) + 0.9(1− f(p1)) + 0.5f(p2)
ṗi(t) = −pi(t) + mi(t) ∀i = 1, . . . , 10

(31)

where the saturation function is chosen as the Hill function

f(pi(t)) =
1

1 + pi(t)6
. (32)

This genetic regulatory network is characterized by the cyclic structure where
gene i has TF i + 1 as regressor and TF i + 2 as activator.

By using the algorithm proposed in Theorem 3 we have that the positive
octant R

10
+ shrinks to the set

E =
{
(0.449, 0.408, 0.375, 0.346, 0.321, 0.300, 0.281, 0.267, 0.251, 0.236)T

}
, (33)

hence implying that there is one equilibrium point only in this genetic regulatory
network.

Also in this case we attempt to use standard mathematical tools as done in
the previous example. However, by using analytical techniques (which can be
used since the equations in (12) are rational for this example) we do not obtain
any solution. This happens because the degree of the one-variable polynomial
that the analytical techniques allow one to find is prohibitive in this case since
the equations in (12) have degree 12 (the degree of b(p)) and 10 variables (the
p-components of the state), therefore there can be up to 1210 solutions. Also, we
attempt to use numerical techniques, and find that they return the sought equi-
librium point. Unfortunately, these techniques are not able to establish whether
this solution is unique or not.

4.3 Repressilator Model in E. Coli

Here we consider the repressilator investigated in Escherichia coli [24]:
⎧⎨
⎩

ṁi(t) = −mi(t) + αrep(1− f(pj(t)))
ṗi(t) = −βrep(pi(t)−mi(t))
i = lacl, tetR, cl; j = cl, lacl, tetR

(34)

where the saturation function is the Hill function

Computing Equilibrium Points of Genetic Regulatory Networks 279

0
1

2
3

4
5

6
7

8

0

2

4

6

8

0

2

4

6

8

p1

p2

p
3

Fig. 2. Found equilibrium point and limit cycle in the example of Section 4.3

f(pi(t)) =
1

1 + pi(t)2
(35)

and αrep, βrep ∈ R+ are positive constants.
Let us select the plausible values αrep = 10 and βrep = 1. By using the

algorithm proposed in Theorem 3 we find that there is a unique equilibrium
point, in particular

E =
{
(2, 2, 2)T

}
. (36)

For this example it is interesting to observe that, in addition to the found equi-
librium point, there exists a limit cycle that the proposed algorithm can help
to find. Indeed, as explained in Remark 4, at the first recursion of the proposed
algorithm one obtains the rectangle B(R3

+), which is equal to [0.1010, 9.899]3.
Then, the limit cycle is revealed by simply computing the trajectory of the sys-
tem starting at the vertices of this rectangle. Figure 2 shows the projection on
the plane p1-p2 of the found limit cycle.

280 G. Chesi

4.4 Genetic Regulatory Network in SUM Form with Non-Hill
Function

As last example, we consider the genetic regulatory network in SUM form de-
scribed by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṁ1(t) = −2m1(t) + 0.5f(p5)
ṁ2(t) = −m2(t) + 0.1(1− f(p2)) + 0.4(1− f(p4))
ṁ3(t) = −0.6m3(t) + 0.2f(p1) + 1.1(1− f(p4))
ṁ4(t) = −m4(t) + 0.5(1− f(p3)) + 1.5f(p4)
ṁ5(t) = −2m5(t) + 0.3f(p2) + 0.3(1− f(p5))
ṗi(t) = −pi(t) + mi(t) ∀i = 1, . . . , 5

(37)

and the saturation function

f(pi(t)) =
2
π

arctan(pi(t)2). (38)

This genetic regulatory network is characterized by the fact that TF 1 is an
activator of gene 3, TF 2 is an activator of gene 5 and a regressor of gene 2, TF
3 is a regressor of gene 4, TF 4 is a regressor of genes 2 and 3 and an activator
of gene 4, and TF 5 is an activator of gene 1 and a regressor of gene 5.

By using the algorithm proposed in Theorem 3 as done in the previous ex-
amples we conclude that this system has three equilibrium points, in particular
the set E in (17) is given by

E =
{
(0.0037, 0.1961, 0.4518, 1.566, 0.1515)T, (0.0039, 0.3130, 1.003,

0.9278, 0.1570)T , (0.0046, 0.4827, 1.821, 0.1035, 0.1691)T
}

.
(39)

However, by using standard mathematical tools, we obtain only one solution
similarly to the example in Section 4.1.

5 Conclusion

We have proposed an algorithm which allows one to find the equilibrium points
of genetic regulatory networks described by differential equation models and
which include both SUM form and PROD form with saturation functions of
any type. The proposed algorithm is guaranteed to find all sought equilibrium
points, moreover as shown by some numerical examples the computation is rea-
sonably fast also in cases where standard mathematical tools for solving systems
of nonlinear equations may fail.

It is hence expected that the proposed algorithm represents a useful tool for
researchers working in the area of genetic regulatory networks. In particular,
the proposed algorithm can allow one to investigate issues such as stability,
disturbance rejection, and robustness, for which the knowledge of the equilibrium
points is required, see for instance [25,26,27,28].

Computing Equilibrium Points of Genetic Regulatory Networks 281

Acknowledgement

The author would like to thank the Editor and the Reviewers for their time and
useful comments.

References

1. D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Mining the gene expression
matrix: Inferring gene relationships from large scale gene expression data. In:
Paton, R.C., Holcombe, M. (eds.) Information Processing in Cells and Tissues.
Plenum Publishing, New York (1998)

2. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks In Develop-
ment And Evolution. Academic Press, London (2006)

3. D’haeseleer, P.: Reconstructing Gene Networks from Large Scale Gene Expression
Data. PhD thesis, University of New Mexico (2000)

4. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-
expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

5. Li, C., Chen, L., Aihara, K.: A systems biology perspective on signal processing in
genetic network motifs. IEEE Signal Processing Magazine 221(3), 136–142 (2007)

6. Yuh, C.H., Bolouri, H., Davidson, E.H.: Genomic cis-regulatory logic: Experimental
and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998)

7. Tsai, H.K., Yang, J.M., Tsai, Y.F., Kao, C.Y.: An evolutionary approach for
gene expression patterns. IEEE Transactions on Information Technology in
Biomedicine 8(2), 69–78 (2004)

8. Maraziotis, I.A., Dragomir, A., Bezerianos, A.: Gene networks reconstruction and
time-series prediction from microarray data using recurrent neural fuzzy networks.
IET Systems and Biology 1(1), 41–50 (2007)

9. Smolen, P., Baxter, D.A., Byrne, J.H.: Mathematical modeling of gene networks.
Neuron 26(3), 567–580 (2000)

10. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochem-
ical Networks. Computational Molecular Biology. MIT Press, Cambridge (2001)

11. Jong, H.D.: Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computation Biology 9, 67–103 (2002)

12. D’haeseleer, P., Liang, S., Somogyi, R.: Gene expression data analysis and model-
ing. In: Proc. Pacific Symposium on Biocomputing, Hawaii, USA (1999)

13. Aracena, J., Lamine, S.B., Mermet, M.A., Cohen, O., Demongeot, J.: Mathematical
modeling in genetic networks: Relationships between the genetic expression and
both chromosomic breakage and positive circuits. IEEE Transactions on Systems,
Man, and Cybernetics–Part b: Cybernetics 33(5), 825–834 (2003)

14. Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Phillips,
R.: Transcriptional regulation by the numbers: models. Current Opinion in Genet-
ics and Development 15(2), 116–124 (2005)

15. Li, C., Chen, L., Aihara, K.: Stability of genetic networks with sum regulatory logic:
Lure system and lmi approach. IEEE Trans. on Circuits and Systems I 53(11),
2451–2458 (2006)

16. Li, C., Chen, L., Aihara, K.: Stochastic stability of genetic networks with distur-
bance attenuation. IEEE Transactions on Circuits and Systems II 54(10), 892–896
(2007)

282 G. Chesi

17. Chesi, G., Hung, Y.S.: Stability analysis of uncertain genetic SUM regulatory net-
works. Automatica 44(9), 2298–2305 (2008)

18. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Characterizing the solution set of poly-
nomial systems in terms of homogeneous forms: an LMI approach. Int. Journal of
Robust and Nonlinear Control 13(13), 1239–1257 (2003)

19. Mora, T.: Solving Polynomial Equation Systems II. Cambridge University Press,
Cambridge (2005)

20. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, Heidelberg (2006)

21. Chesi, G.: Optimal representation matrices for solving polynomial systems via LMI.
Int. Journal of Pure and Applied Mathematics 45(3), 397–412 (2008)

22. Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)
23. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Sev-

eral Variables. SIAM, Philadelphia (1987)
24. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-

lators. Nature 403, 335–338 (2000)
25. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2001)
26. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Homogeneous Lyapunov functions for

systems with structured uncertainties. Automatica 39(6), 1027–1035 (2003)
27. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Solving quadratic distance problems:

an LMI-based approach. IEEE Trans. on Automatic Control 48(2), 200–212 (2003)
28. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Homogeneous Polynomial Forms for Ro-

bustness Analysis of Uncertain Systems. Lecture Notes in Control and Information
Sciences, vol. 390. Springer, London (2009)

Code, Context, and Epigenetic Catalysis in Gene
Expression

Rodrick Wallace1 and Deborah Wallace2

1 The New York State Psychiatric Institute,
549 W. 123 St., Suite 16F, New York, NY, 10027. Tel.: (212) 865-4766

wallace@pi.cpmc.columbia.edu
2 Consumers Union

rdwall@ix.netcom.com

Abstract. We examine a class of probability models describing how
epigenetic context affects gene expression and organismal development,
using the asymptotic limit theorems of information theory in a highly
formal manner. Taking classic results on spontaneous symmetry break-
ing abducted from statistical physics in groupoid, rather than group, cir-
cumstances, the work suggests that epigenetic information sources act as
analogs to a tunable catalyst, directing development into different char-
acteristic pathways according to the structure of external signals. The
results have significant implications for epigenetic epidemiology, in par-
ticular for understanding how environmental stressors, in a large sense,
can induce a broad spectrum of developmental disorders in humans.

1 Introduction

1.1 Toward New Tools

Researchers have begun to explore a de-facto cognitive paradigm for gene ex-
pression in which contextual factors determine the behavior of what Cohen calls
a ‘reactive system’, not at all a deterministic, or even stochastic, mechanical
process (e.g., [18, 19, 74]). The different approaches, while highly formal, are
nonetheless much in the spirit of the pioneering efforts of Maturana and Varela
[53, 54] who foresaw the essential role that cognitive process must play in a vast
realm of biological phenomena.

O’Nuallain [57] has recently placed gene expression firmly in the realm of
complex linguistic behavior, for which context imposes meaning, claiming that
the analogy between gene expression and language production is useful both
as a fruitful research paradigm and also, given the relative lack of success of
natural language processing (nlp) by computer, as a cautionary tale for molecular
biology. First O’Nuallain argues that, at the orthographic or phonological level,
depending on whether the language is written or spoken, we can map from
phonetic elements to nucleotide sequence. His second claim is that Nature has
designed highly ambiguous codes in both cases, and left disambiguation to the
context.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XI, LNBI 5750, pp. 283–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

284 R. Wallace and D. Wallace

He notes that, given our concern with the Human Genome Project (HGP) and
its implications for human health, only 2% of diseases can be traced back to a
straightforward genetic cause. As a consequence the HGP will have to be redone
for a variety of metabolic contexts in order to establish a sound technology of
genetic engineering [58].

Here we investigate a broad class of probability models based on the asymp-
totic limit theorems of information theory that instantiate this perspective, find-
ing a ‘natural’ means by which epigenetic context ‘farms’ gene expression in an
inherently punctuated manner via a kind of tunable catalysis. The models will
be used to study how normal developmental modes can be driven by external
context into pathological trajectories often expressed, in humans, as comorbid
psychiatric and physical disorders, expanding recent work [71]. It appears pos-
sible to convert such models to powerful tools for data analysis, much as those
based on the Central Limit Theorem can be converted to parametric statistics.
A more formal version of the underlying mathematics can be found in [34].

We will begin with a summary of the biological context, then examine the
popular spinglass model of development taken from neural network studies that
we will ultimately generalize using a cognitive paradigm. The expanded approach
permits import of tools and methods from statistical physics via the homology
between information source uncertainty and free energy density, and this leads
directly to the idea of epigenetic catalysis.

It is worth keeping in mind throughout the formal mathematics that Feyn-
man’s basic measure of information is simply the free energy needed to erase
it [31].

1.2 Epigenetic Epidemiology

What we attempt is itself embedded in a large and lively intellectual context.
Jablonka and Lamb [41, 42] have long argued that information can be trans-
mitted from one generation to the next in ways other than through the base
sequence of DNA. It can be transmitted through cultural and behavioral means
in higher animals, and by epigenetic means in cell lineages. All of these transmis-
sion systems allow the inheritance of environmentally induced variation. Such
Epigenetic Inheritance Systems are the memory structures that enable somatic
cells of different phenotypes but identical genotypes to transmit their pheno-
types to their descendants, even when the stimuli that originally induced these
phenotypes are no longer present.

In chromatin-marking systems information is carried from one cell generation
to the next because it rides with DNA as binding proteins or additional chemical
groups that are attached to DNA and influence its activity. When DNA is repli-
cated, so are the chromatin marks. One type of mark is the methylation pattern
a gene carries. The same DNA sequence can have several different methylation
patterns, each reflecting a different functional state. These alternative patterns
can be stably inherited through many cell divisions.

Epigenetic inheritance systems are very different from the genetic system.
Many variations are directed and predictable outcomes of environmental changes.

Code, Context, and Epigenetic Catalysis in Gene Expression 285

Epigenetic variants are, in the view of [41, 42], often, although not necessarily,
adaptive. The frequency with which variants arise and their rate of reversion
varies widely and epigenetic variations induced by environmental changes may
be produced coordinatedly at several loci.

Parenthetically, some authors, e.g., [39], disagree with the assumption of adap-
tiveness, inferring that input responsible for methylation effects simply produces
a phenotypic variability then subject to selection. The matter remains open.

Jablonka and Lamb [42] conclude that epigenetic systems may therefore pro-
duce rapid, reversible, co-ordinated, heritable changes. However such systems can
also underlie non-induced changes, changes that are induced but non-adaptive,
and changes that are very stable.

What is needed, they feel, is a concept of epigenetic heritability comparable
to the classical concept of heritability, and a model similar to those used for
measuring the effects of cultural inheritance on human behavior in populations.

Following a furious decade of research and debate, this perspective received
much empirical confirmation. Backdahl et al. [6], for example, write that epi-
genetic regulation of gene expression primarily works through modifying the
secondary and tertiary structures of DNA (chromatin), making it more or less
accessible to transcription. The sum and interaction of epigenetic modifications
has been proposed to constitute an ‘epigenetic code’ which organizes the chro-
matin structure on different hierarchical levels [67]. Modifications of histones
include acetylation, methylation, phosphorylation, ubiquitination, and sumoyla-
tion, but also other modifications have been observed. Some such modifications
are quite stable and play an important part in epigenetic memory although DNA
methylation is the only epigenetic modification that has maintenance machinery
which preserves the marks through mitosis. This argues for DNA methylation
to function as a form of epigenetic memory for the epigenome.

Codes and memory, of course, are inherent to any cognitive paradigm.
Jaenish and Bird [45] argue that cells of a multicellular organism are genet-

ically homogeneous but structurally and functionally heterogeneous owing to
the differential expression of genes. Many of these differences in gene expression
arise during development and are subsequently retained through mitosis. Exter-
nal influences on epigenetic processes are seen in the effects of diet on long-term
diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism
to respond to the environment through changes in gene expression. Epigenetic
modifications of the genome provide a mechanism that allows the stable propa-
gation of gene activity states from one generation of cells to the next. Because
epigenetic states are reversible they can be modified by environmental factors,
which may contribute to the development of abnormal responses. What needs
to be explained, from their perspective, is the variety of stimuli that can bring
about epigenetic changes, ranging from developmental progression and aging to
viral infection and diet.

Jaenish and Bird conclude that the future will see intense study of the chains
of signaling that are responsible for epigenetic programming. As a result, we will

286 R. Wallace and D. Wallace

be able to understand, and perhaps manipulate, the ways in which the genome
learns from experience.

Indeed, our central interest precisely regards the manner in which the asymp-
totic limit theorems of information theory constrain such chains of signaling, in
the same sense that the Central Limit Theorem constrains sums of stochastic
variates.

Crews et al. [21, 22] provide a broad overview of induced epigenetic change
in phenotype, as do Guerrero-Bosagna et al. [39], who focus particularly on
early development. They propose that changes arising because of alterations in
early development processes, in some cases environmentally induced, can appear
whether or not such changes could become fixed and prosper in a population.
They recognize two ways for this to occur, first by dramatically modifying DNA
aspects in the germ line with transgenerational consequences – mutations or
persistent epigenetic modifications of the genome – or by inducing ontogenet-
ical variation in every generation, although not inheritance via the germ line.
From their perspective inductive environmental forces can act to create, through
these means, new conformations of organisms which also implies new possibilities
within the surrounding environment.

Foley et al. [32] take a very general perspective on the prospects for epigenetic
epidemiology. They argue that epimutation is estimated to be 100 times more
frequent than genetic mutation and may occur randomly or in response to the
environment. Periods of rapid cell division and epigenetic remodeling are likely
to be most sensitive to stochastic or environmentally mediated epimutation. Dis-
ruption of epigenetic profile is a feature of most cancers and is speculated to play
a role in the etiology of other complex diseases including asthma, allergy, obe-
sity, type 2 diabetes, coronary heart disease, autism spectrum disorders, bipolar
disorders, and schizophrenia.

They find evidence that a small change in the level of DNA methylation, es-
pecially in the lower range in an animal model, can dramatically alter expression
for some genes. The timing of nutritional insufficiency or other environmental
exposures may also be critical. In particular low-level maternal care was associ-
ated with developmental dysfunction and altered stress response in the young.
Foley et al. emphasize the potential implications of such findings, given how
widely stress is implicated in disease onset and relapse.

They especially note that when epigenetic status or change in status over time
is the outcome, then models for either threshold-based dichotomies or propor-
tional data will be required. Threshold models, defined by a given level or pattern
of methylation or a degree of change in methylation over time, will, in their view,
benefit from relevant functional data to identify meaningful thresholds.

A special contribution of the approach taken here is that just such thresh-
old behavior leads ‘naturally’ to a language-like ‘dual information source’ con-
strained by the necessary conditions imposed by information theory’s asymptotic
limit theorems, allowing development of statistical models of complicated cog-
nitive phenomena, including but not limited to cognitive gene expression.

Code, Context, and Epigenetic Catalysis in Gene Expression 287

A recent review by Weaver [77] focuses specifically on the epigenetic effects
of glucocorticoids – stress hormones. In mammals, Weaver argues, the close-
ness or degree of positive attachment in parent-infant bonding and parental
investment during early life has long-term consequences on development of inter-
individual differences in cognitive and emotional development in the offspring.
The long-term effects of the early social experience, he continues, particularly
of the mother-offspring interaction, have been widely investigated. The nature
of that interaction influences gene expression and the development of behav-
ioral responses in the offspring that remain stable from early development to
the later stages of life. Although enhancing the offspring’s ability to respond ac-
cording to environmental clues early in life can have immediate adaptive value,
the cost, Weaver says, is that these adaptations serve as predictors of ill health
in later life. He concludes that maternal influences on the development of neu-
roendocrine systems that underlie hypothalamic-pituitary-adrenal (HPA) axis
and behavioral responses to stress mediate the relation between early environ-
ment and health in the adult offspring. In particular, he argues, exposure of the
mother to environmental adversity alters the nature of mother-offspring interac-
tion, which, in turn, influences the development of defensive responses to threat
and reproductive strategies in the progeny.

In an updated review of epigenetic epidemiology, Jablonka [43] finds it clear
that the health and general physiology of animals and people can be affected
not only by the interplay of their own genes and conditions of life, but also by
the inherited effects of the interplay of genes and environment in their ancestors.
These ancestral influences on health, Jablonka says, depend neither on inheriting
particular genes, nor on the persistence of the ancestral environment.

Significantly, Bossdorf et al. [11] invoke ‘contexts’ much like Baars’ model
of consciousness [68], and infer a need to expand the concept of variation and
evolution in natural populations, taking into account several likely interacting
ecologically relevant inheritance systems. Potentially, this may result in a signifi-
cant expansion, though by all means not a negation, of the Modern Evolutionary
Synthesis as well as in more conceptual and empirical integration between ecol-
ogy and evolution.

More formally, Scherrer and Jost [62, 63] use information theory arguments
to extend the definition of the gene to include the local epigenetic machinery,
something they characterize as the ‘genon’. Their central point is that coding
information is not simply contained in the coded sequence, but is, in their terms,
provided by the genon that accompanies it on the expression pathway and con-
trols in which peptide it will end up. In their view the information that counts
is not about the identity of a nucleotide or an amino acid derived from it, but
about the relative frequency of the transcription and generation of a particular
type of coding sequence that then contributes to the determination of the types
and numbers of functional products derived from the DNA coding region under
consideration.

From our perspective the formal tools for understanding such phenomena
involve asymptotic limit theorems affecting information sources – active systems

288 R. Wallace and D. Wallace

that generate or ‘provide’ information – and these are respectively the Rate
Distortion Theorem and its zero error limit, the Shannon-McMillan Theorem,
described in the Mathematical Appendix.

We begin with a reconsideration of the current de-facto standard systems
biology neural network-analog model of development, and proceed to its gener-
alization.

2 Models of Development

2.1 The Spinglass Model

Ciliberti et al.[16, 17], culminating a long series of papers, apply the spinglass
model from statistical physics to organisimal development in an evolutionary
context. We summarize their formalism and look at some of the less obvious
topological implications – in particular the mapping of disjoint directed homo-
topy classes of phenotype paths into interaction matrix space. We then extend
the approach by applying a cognitive paradigm for gene expression first devel-
oped in [74]. Analogs to phase transition arguments in physical systems generate
punctuated equilibrium evolutionary transitions in a ‘highly natural’ manner,
even for the spinglass treatment, and a hierarchical extension permits incorpo-
ration of epigenetic effects as a kind of tunable catalysis.

The spinglass model of development assumes that N transcriptional regulators
are represented by their expression patterns

S(t) = [S1(t), ..., SN (t)]

at some time t during a developmental or cell-biological process and in one cell
or domain of an embryo. The transcriptional regulators influence each other’s ex-
pression through cross-regulatory and autoregulatory interactions described by a
matrix w = (wij). For nonzero elements, if wij > 0 the interaction is activating,
if wij < 0 it is repressing. w represents, in this model, the regulatory genotype
of the system, while the expression state S(t) is the phenotype. These regula-
tory interactions change the expression of the network S(t) as time progresses
according to a difference equation

Si(t + Δt) = σ[
N∑

j=1

wijSj(t)], (1)

where Δt is a constant and σ a sigmodial function whose value lies in the interval
(−1, 1). In the spinglass limit σ is the sign function, taking only the values ±1.

The networks of interest in the spinglass model are those whose expression
state begins from a prespecified initial state S(0) at time t = 0 and converge to
a prespecified stable equilibrium state S∞. Such a network is termed viable, for
obvious reasons.

After an elaborate and very difficult simulation exercise, a particular series
of results emerges. Reference [16] finds that viable networks comprise a tiny

Code, Context, and Epigenetic Catalysis in Gene Expression 289

fraction of possible ones. They could be widely scattered in the space of all
possible networks and occupy disconnected islands in this space. However, direct
computation indicates precisely the opposite. The metagraph of viable networks
has one ‘giant’ connected component that comprises most or all viable networks.
Any two networks in this component can be reached from one another through
gradual changes of one regulatory interaction at a time, changes that never leave
the space of viable networks, for this calculation.

In general, within the giant component, randomly chosen pairs of networks
with the same phenotype will have vastly different organization, in terms of the
matrix (wij).

Define 0 ≤ d ≤ 1 as the the fraction of genes that differ in their expression
state between S0 and S∞. A typical result is that for N = 5 genes, 6 ≤ M ≤ 7
total regulatory interactions, and d = 0.4, full enumeration finds a total of only
37,338 viable networks out of 6.3 × 107 possible ones [16]. Long random walks
through the space of viable networks, however, visit all but a very small fraction
of the nodes of the metagraph, and this missing fraction decreases as N increases.
Large N require elaborate Monte Carlo sampling for simulation, a difficult and
computationally intensive enterprise.

In w-space [16, 17] define a metric characterizing the distance between two
network topologies as

D(w, w′) =
1

2M+

∑
i,j

|sign(wij)− sign(w′
ij)|,

where M+ is the maximum number of regulatory interactions, and sign(x)=±1
depends on the sign of x, and is 0 for x = 0.

Several observations emerge directly.

1. This approach is formally similar to spinglass neural network models of
learning by selection, e.g., as proposed by Toulouse et al. [66] nearly a genera-
tion ago. Subsequent work [4, 5], summarized in [23], suggests that such models
are simply not sufficient to the task of understanding high level cognitive func-
tion, and these have been largely supplanted by complicated ‘global workspace’
concepts whose mathematical characterization is highly nontrivial [3].

2. What [16, 17] observe, in another idiom, is that in phenotype space, in
S-space, the set of all paths associated with viable networks forms an equiva-
lence class, closely analogous to the directed homotopy equivalence classes in
the sense of [36, 37]. Directed homotopy differs from simple homotopy (e.g.,
[50]) in that one uses paths from one point to another rather than loops, and
seeks continuous deformations between them. See [74] for discussion in a bio-
logical context. Thus there is, in this spinglass model, a mapping from S-space
into (wij) space, characterized by the metric D, that associates a unique simply
connected component with each dihomotopy-like equivalence class of paths con-
necting two particular phenotype points. Indeed, the w-space component might
well be treated according to standard homotopy arguments, i.e., using loops.

290 R. Wallace and D. Wallace

3. What one does with homotopically simply connected components is patch
them together to build larger, and more interesting, topological structures, using
the Seifert-Van Kampen Theorem (SVKT) (e.g., [50], Ch. 10). If paths within S-
space are not continuously transformable into one another, (if there are ‘holes’),
then several distinct dihomotopy classes will exist, e.g., as in figures 1 and 2
of [74], explored further below in terms of developmental critical periods and
their ‘shadows’. The obvious conjecture is that, under such a circumstance, very
complex topological objects may lurk in w-space, not just the simply connected
component discovered by by [16, 17]. These may, according to the SVKT, inter-
sect as well as exist as isolated and disconnected sets.

In particular, if there are dihomotopy ‘holes’ in S-space, consequently reflected
in disconnected patches in w-space, then punctuated transition events of various
sorts may well become an evolutionary norm, as in [38], even for the spinglass
model.

4. A large and increasing body of work surrounding coupled cell networks
invokes groupoids, a natural generalization of symmetry groups. As [25] remarks,
until recently the abstract theory of coupled cell systems has mainly focused on
the effects of symmetry in the network and the consequent formation of spatial
and spatiotemporal patterns. The formal setting for this theory centers upon the
symmetry group of the network.

Reference [25] concludes that analysis of robust patterns of synchrony in gen-
eral coupled cell systems – that is, dynamics in which sets of cells behave iden-
tically as a consequence of the network topology – leads to the fruitful notion
of the ‘symmetry groupoid’ of a coupled cell network. A groupoid is a general-
ization of a group, in which products of elements are not always defined. The
symmetry groupoid of a coupled cell network is a natural algebraic formalization
of the ‘local symmetries’ that relate subsets of the network to each other. In par-
ticular ‘admissible’ vector fields – those specified by the network topology – are
precisely those that are equivariant under the action of the symmetry groupoid.

The Appendix provides a summary of standard material on groupoids that
will be of later use.

5. Both of these – analogous – approaches can apparently be coarse-grained
into a symbolic dynamics associated with (simple) information sources having
particular grammar and syntax. The method is straightforward (e.g., [7, 55]).
One could, thus, probably translate the spinglass results of Ciliberti et al. into
symbolic dynamics, using groupoid methods to study the underlying topological
objects.

6. The spinglass model of development is abstracted from longstanding (if
ultimately unsucessful) attempts at similar treatments of neural networks in-
volved in high level cognition (e.g., [44, 56, 61, 64]). Thus and consequently
[16, 17] are invoking an implicit cognitive paradigm for gene expression (e.g., [18,
19, 74]). Cognitive process, as the philosopher Fred Dretske eloquently argues
(e.g., [26]), is constrained by the necessary conditions imposed by the asymptotic
limit theorems of information theory. A little work produces a very general cog-
nitive gene expression metanetwork structure recognizably similar to that found

Code, Context, and Epigenetic Catalysis in Gene Expression 291

in [16, 17]. The massively parallel computations are hidden, somewhat, in the
required empirical fitting of regression model analogs based on the asymptotic
limit theorems of information theory rather than on the central limit theorem.

7. A salient characteristic of high level cognitive process is precisely its inher-
ent punctuation (e.g., [4, 5, 68]), and this emerges directly using an information
theory approach via the famous homology between information and free energy
(e.g., [31]). ‘Simple’ neural network analogs will inevitably have more difficulty
replicating such behavior, but as discussed, the mapping of disjoint dihomotopy
equivalence classes from phenotype sequence space to disjoint sets in interaction
matrix space provides a straightforward example for spinglass models.

The next sections use information theory methods to make the transition from
crossectional w-space into that of serially correlated sequences of phenotypes,
expanding on the results of [74].

2.2 Shifting Perspective: Cognition as an Information Source

Atlan and Cohen [2], in the context of a study of the immune system, argue that
the essence of cognition is the comparison of a perceived signal with an internal,
learned picture of the world, and then choice of a single response from a large
repertoire of possible responses.

Such choice inherently involves information and information transmission
since it always generates a reduction in uncertainty, as explained in [1] (p. 21).

More formally, a pattern of incoming input – like the S(t) of equation (1) –
is mixed in a systematic algorithmic manner with a pattern of internal ongoing
activity – like the (wij) according to equation (1) – to create a path of combined
signals x = (a0, a1, ..., an, ...) – analogous to the sequence of S(t+Δt) of equation
(1), with, say, n = t/Δt. Each ak thus represents some functional composition
of internal and external signals.

This path is fed into a highly nonlinear decision oscillator, h, a ‘sudden thresh-
old machine’, in a sense, that generates an output h(x) that is an element of one
of two disjoint sets B0 and B1 of possible system responses. Let us define the
sets Bk as

B0 = {b0, ..., bk},

B1 = {bk+1, ..., bm}.
Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern has been recognized, and some action bj , k + 1 ≤ j ≤ m takes place.

292 R. Wallace and D. Wallace

The principal objects of formal interest are paths x triggering pattern
recognition-and-response. That is, given a fixed initial state a0, examine all pos-
sible subsequent paths x beginning with a0 and leading to the event h(x) ∈ B1.
Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high probability gram-
matical and syntactical paths of length n which begin with some particular a0
and lead to the condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than the number of all
possible paths of length n leading from a0 to the condition h(x) ∈ B1.

While the combining algorithm, the form of the nonlinear oscillator, and the
details of grammar and syntax are all unspecified in this model, the critical
assumption which permits inference of the necessary conditions constrained by
the asymptotic limit theorems of information theory is that the finite limit

H = lim
n→∞

log[N(n)]
n

(2)

both exists and is independent of the path x.
Define such a pattern recognition-and-response cognitive process as ergodic.

Not all cognitive processes are likely to be ergodic in this sense, implying that H ,
if it indeed exists at all, is path dependent, although extension to nearly ergodic
processes seems possible [73].

Invoking the spirit of the Shannon-McMillan Theorem, whose content is de-
scribed in more detail in the Appendix, as choice involves an inherent reduction
in uncertainty, it is then possible to define an adiabatically, piecewise stationary,
ergodic (APSE) information source X associated with stochastic variates Xj

having joint and conditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1)
such that appropriate conditional and joint Shannon uncertainties satisfy the
classic relations

H [X] = lim
n→∞

log[N(n)]
n

=

lim
n→∞H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)
n + 1

. (3)

See the Mathematical Appendix for a summary of basic information theory
results.

This information source is defined as dual to the underlying ergodic cognitive
process.

Adiabatic means that the source has been parametized according to some
scheme, and that, over a certain range, along a particular piece, as the param-
eters vary, the source remains as close to stationary and ergodic as needed for
information theory’s central theorems to apply. Stationary means that the sys-
tem’s probabilities do not change in time, and ergodic, roughly, that the cross

Code, Context, and Epigenetic Catalysis in Gene Expression 293

sectional means approximate long-time averages. Between pieces it is necessary
to invoke various kinds of phase transition formalisms, as described more fully
in [68, 74].

Using the developmental vernacular of [16, 17], we now examine paths in
phenotype space that begins at some S0 and converges n = t/Δt → ∞ to
some other S∞. Suppose the system is conceived at S0, and h represents (for
example) reproduction when phenotype S∞ is reached. Thus h(x) can have two
values, i.e., B0 not able to reproduce, and B1, mature enough to reproduce. Then
x = (S0,SΔt, ...,SnΔt, ...) until h(x) = B1.

Structure is now subsumed within the sequential grammar and syntax of the
dual information source rather than within the cross sectional internals of (wij)-
space, a simplifying shift in perspective.

This transformation carries heavy computational burdens, as well as providing
deeper mathematical insight.

First, the fact that viable networks comprise a tiny fraction of all those possi-
ble emerges easily from the spinglass formulation simply because of the ‘mechan-
ical’ limit that the number of paths from S0 to S∞ will always be far smaller
than the total number of possible paths, most of which simply do not end on
the target configuration.

From the information source perspective, which inherently subsumes a far
larger set of dynamical structures than possible in a spinglass model – not simply
those of symbolic dynamics – the result is what [47] characterizes as the ‘E-
property’ of a stationary, ergodic information source. This property is that, in
the limit of infinitely long output, the classification of output strings into two
sets:

1. A very large collection of gibberish which does not conform to underlying
(sequential) rules of grammar and syntax, in a large sense, and which has near-
zero probability, and

2. A relatively small ‘meaningful’ set, in conformity with underlying structural
rules, having very high probability.

The essential content of the Shannon-McMillan Theorem is that, if N(n)
is the number of meaningful strings of length n, then the uncertainty of an
information source X can be defined as H [X] = limn→∞ log[N(n)]/n, that can
be expressed in terms of joint and conditional probabilities as in equation (3)
above. Proving these results for general stationary, ergodic information sources
requires considerable mathematical machinery [20, 24, 47].

Second, information source uncertainty has an important heuristic interpre-
tation that [1] describes as follows:

...[W]e may regard a portion of text in a particular language as being
produced by an information source. The probabilities P [Xn = an|X0 =
a0, ...Xn−1 = an−1] may be estimated from the available data about the
language; in this way we can estimate the uncertainty associated with
the language. A large uncertainty means, by the [Shannon-McMillan
Theorem], a large number of ‘meaningful’ sequences. Thus given two
languages with uncertainties H1 and H2 respectively, if H1 > H2, then in

294 R. Wallace and D. Wallace

the absence of noise it is easier to communicate in the first language; more
can be said in the same amount of time. On the other hand, it will be
easier to reconstruct a scrambled portion of text in the second language,
since fewer of the possible sequences of length n are meaningful.

This will prove important below.
Third, information source uncertainty is homologous with free energy den-

sity in a physical system, a matter having implications across a broad class of
dynamical behaviors.

The free energy density of a physical system having volume V and partition
function Z(K) derived from the system’s Hamiltonian – the energy function –
at inverse temperature K is (e.g., [49])

F [K] = lim
V →∞

− 1
K

log[Z(K, V)]
V

=

lim
V →∞

log[Ẑ(K, V)]
V

, (4)

where Ẑ = Z−1/K .
The partition function for a physical system is the normalizing sum in an

equation having the form

P [Ei] =
exp[−Ei/kT]∑
j exp[−Ej/kT]

where Ei is the energy of state i, k a constant, and T the system temperature,
and P [Ei] is the probability of state i.

Feynman [31], following the classic arguments of [9] that present idealized
machines using information to do work, concludes the information contained in
a message is most simply measured by the free energy needed to erase it. The
arguments of [9] are clever indeed, and the Feynman treatment of them in [31]
is well worth reading.

Thus, according to this argument, source uncertainty is homologous to free
energy density as defined above, i.e., from the similarity with the relation H =
limn→∞ log[N(n)]/n.

Ash’s comment above then has an important corollary: If, for a biologi-
cal system, H1 > H2, source 1 will require more metabolic free energy than
source 2.

3 Symmetry Arguments

A formal equivalence class algebra, in the sense of the groupoid section of the
Appendix, can now be constructed by choosing different origin and end points
S0,S∞ and defining equivalence of two states by the existence of a high proba-
bility meaningful path connecting them with the same origin and end. Disjoint

Code, Context, and Epigenetic Catalysis in Gene Expression 295

partition by equivalence class, analogous to orbit equivalence classes for dy-
namical systems, defines the vertices of the proposed network of cognitive dual
languages, much enlarged beyond the spinglass example. We thus envision a
network of metanetworks, in the sense of [16]. Each vertex then represents a dif-
ferent equivalence class of information sources dual to a cognitive process. This
is an abstract set of metanetwork ‘languages’ dual to the cognitive processes of
gene expression and development.

This structure generates a groupoid, in the sense of [78]. States aj , ak in a
set A are related by the groupoid morphism if and only if there exists a high
probability grammatical path connecting them to the same base and end points,
and tuning across the various possible ways in which that can happen – the
different cognitive languages – parametizes the set of equivalence relations and
creates the (very large) groupoid.

There is an implicit hierarchy. First, there is structure within the system having
the same base and end points, as in [16]. Second, there is a complicated groupoid
structure defined by sets of dual information sources surrounding the variation
of base and end points. We do not need to know what that structure is in any
detail, but can show that its existence has profound implications.

We begin with the simple case, the set of dual information sources associated
with a fixed pair of beginning and end states.

3.1 The First Level

The spinglass model of [16, 17] produced a simply connected, but otherwise un-
differentiated, metanetwork of gene expression dynamics that could be traversed
continuously by single-gene transitions in the highly parallel w-space. Taking
the serial grammar/syntax model above, we find that not all high probability
meaningful paths from S0 to S∞ are actually the same. They are structured
by the uncertainty of the associated dual information source, and that has a
homological relation with free energy density.

Let us index possible dual information sources connecting base and end points
by some set A = ∪α. Argument by abduction from statistical physics is direct:
Given metabolic energy density available at a rate M , and an allowed develop-
ment time τ , let K = 1/κMτ for some appropriate scaling constant κ, so that
Mτ is total developmental free energy. Then the probability of a particular Hα

will be determined by the standard expression (e.g., [49]),

P [Hβ] =
exp[−HβK]∑
α exp[−HαK]

, (5)

where the sum may, in fact, be a complicated abstract integral.
This is just a version of the fundamental probability relation from statistical

mechanics, as above. The sum in the denominator, the partition function in
statistical physics, is a crucial normalizing factor that allows the definition of of
P [Hβ] as a probability.

A basic requirement, then, is that the sum/integral always converges. K is
the inverse product of a scaling factor, a metabolic energy density rate term, and

296 R. Wallace and D. Wallace

a characteristic development time τ . The developmental energy might be raised
to some power, e.g., K = 1/(κ(Mτ)b), suggesting the possibility of allometric
scaling.

Thus, in this formulation, there must be structure within a (cross sectional)
connected component in the w-space of [16, 17], determined in no small measure
by available energy. Some dual information sources will be ‘richer’/smarter than
others, but, conversely, must use more metabolic energy for their completion.

3.2 The Second Level

The next generalization is crucial:
While we might simply impose an equivalence class structure based on equal

levels of energy/source uncertainty, producing a groupoid in the sense of the
Appendix (and possibly allowing a Morse Theory approach in the sense of [52,
59]), we can do more by now allowing both source and end points to vary, as
well as by imposing energy-level equivalence. This produces a far more highly
structured groupoid that we now investigate.

Equivalence classes define groupoids, by standard mechanisms [13, 35, 78]. The
basic equivalence classes – here involving both information source uncertainty
level and the variation of S0 and S∞, will define transitive groupoids, and higher
order systems can be constructed by the union of transitive groupoids, having
larger alphabets that allow more complicated statements in the sense of Ash
above.

Again, given an appropriately scaled, dimensionless, fixed, inverse available
metabolic energy density rate and development time, so that K = 1/κMτ ,
we propose that the metabolic-energy-constrained probability of an information
source representing equivalence class Di, HDi , will again be given by

P [HDi] =
exp[−HDiK]∑
j exp[−HDj K]

, (6)

where the sum/integral is over all possible elements of the largest available sym-
metry groupoid. By the arguments of Ash above, compound sources, formed
by the union of underlying transitive groupoids, being more complex, gener-
ally having richer alphabets, as it were, will all have higher free-energy-density-
equivalents than those of the base (transitive) groupoids.

Let

ZD =
∑

j

exp[−HDj K]. (7)

We now define the Groupoid free energy of the system, FD, at inverse normalized
metabolic energy density K, as

FD[K] = − 1
K

log[ZD[K]], (8)

again following the standard arguments from statistical physics [31, 49].
The groupoid free energy construct permits introduction of important ideas

from statistical physics.

Code, Context, and Epigenetic Catalysis in Gene Expression 297

3.3 Spontaneous Symmetry Breaking

We have expressed the probability of an information source in terms of its
relation to a fixed, scaled, available (inverse) metabolic free energy, seen as a
kind of equivalent (inverse) system temperature. This gives a statistical thermo-
dynamic path leading to definition of a ‘higher’ free energy construct – FD[K]
– to which we now apply Landau’s fundamental heuristic phase transition argu-
ment [49, 59, 65].

The essence of Landau’s insight was that certain phase transitions were usu-
ally in the context of a significant symmetry change in the physical states of a
system, with one phase being far more symmetric than the other. A symmetry is
lost in the transition, a phenomenon called spontaneous symmetry breaking. The
greatest possible set of symmetries in a physical system is that of the Hamilto-
nian describing its energy states. Usually states accessible at lower temperatures
will lack the symmetries available at higher temperatures, so that the lower
temperature phase is less symmetric: The randomization of higher temperatures
– in this case limited by available metabolic free energy – ensures that higher
symmetry/energy states – mixed transitive groupoid structures – will then be
accessible to the system. Absent high metabolic free energy, however, only the
simplest transitive groupoid structures can be manifest. A full treatment from
this perspective requires invocation of groupoid representations, no small matter
(e.g., [10, 14]).

Somewhat more rigorously, the biological renormalization schemes of the Ap-
pendix to [74] may now be imposed on FD[K] itself, leading to a spectrum of
highly punctuated transitions in the overall system of developmental information
sources.

Most deeply, however, an extended version of Pettini’s Morse-Theory-based
topological hypothesis [59] can now be invoked, i.e., that changes in underlying
groupoid structure are a necessary (but not sufficient) consequence of phase
changes in FD[K]. Necessity, but not sufficiency, is important, as it, in theory,
allows mixed groupoid symmetries.

The essential insight is that the single simply connected giant component of
[16, 17] is unlikely to be the full story, and that more complete models will likely
be plagued – or graced – by highly punctuated dynamics.

Several matters are worth noting. First, Landau’s spontaneous symmetry
breaking arguments are perhaps the simplest approach possible here. The formal
mathematical development requires invoking holonomy groups and groupoids, as
in [34].

Second, one need not be restricted to terms of the form exp[−HjK], as any
f(Hj , K) such that the sum over j converges will serve, although the resulting
‘thermodynamic’ relations between variates of central interest may then be less
elegant.

Third, there may be some allometric scaling tradeoff between metabolic energy
rate and development time determined by a relation of the form K ∝ (τM)α.

298 R. Wallace and D. Wallace

4 Tunable Epigenetic Catalysis

Incorporating the influence of embedding contexts – epigenetic effects – is
most elegantly done by invoking the Joint Asymptotic Equipartition Theorem
(JAEPT) [20]. For example, given an embedding contextual information source,
say Z, that affects development, then the dual cognitive source uncertainty HDi

is replaced by a joint uncertainty H(XDi , Z). The objects of interest then be-
come the jointly typical dual sequences yn = (xn, zn), where x is associated
with cognitive gene expression and z with the embedding context. Restricting
consideration of x and z to those sequences that are in fact jointly typical allows
use of the information transmitted from Z to X as the splitting criterion.

One important inference is that, from the information theory ‘chain rule’ [20],

H(X, Y) = H(X) + H(Y |X) ≤ H(X) + H(Y),

while there are approximately exp[nH(X)] typical X sequences, and exp[nH(Z)]
typical Z sequences, and hence exp[n(H(x) + H(Y))] independent joint se-
quences, there are only about exp[nH(X, Z)] ≤ exp[n(H(X) + H(Y))] jointly
typical sequences, so that the effect of the embedding context, in this model, is
to lower the relative free energy of a particular developmental channel.

Thus the effect of epigenetic regulation is to channel development into path-
ways that might otherwise be inhibited by an energy barrier. Hence the epi-
genetic information source Z acts as a tunable catalyst, a kind of second order
cognitive enzyme, to enable and direct developmental pathways. This result per-
mits hierarchical models similar to those of higher order cognitive neural function
that incorporate Baars’ contexts in a natural way [73, 74].

It is worth emphasizing that this is indeed a relative energy argument, since,
metabolically, two systems must now be supported, i.e., that of the ‘reaction’
itself and that of its catalytic regulator. ‘Programming’ and stabilizing inevitably
intertwined, as it were.

This elaboration allows a spectrum of possible ‘final’ phenotypes, what [33]
calls developmental or phenotype plasticity. Thus gene expression is seen as, in
part, responding to environmental or other, internal, developmental signals.

West-Eberhard [79] argues that any new input, whether it comes from the
genome, like a mutation, or from the external environment, like a temperature
change, a pathogen, or a parental opinion, has a developmental effect only if
the preexisting phenotype is responsive to it. A new input causes a reorgani-
zation of the phenotype, or ‘developmental recombination.’ In developmental
recombination, phenotypic traits are expressed in new or distinctive combina-
tions during ontogeny, or undergo correlated quantitative change in dimensions.
Developmental recombination can result in evolutionary divergence at all levels
of organization.

Individual development can be visualized as a series of branching pathways.
Each branch point, according to [79], is a developmental decision, or switch
point, governed by some regulatory apparatus, and each switch point defines a
modular trait. Developmental recombination implies the origin or deletion of a

Code, Context, and Epigenetic Catalysis in Gene Expression 299

branch and a new or lost modular trait. It is important to realize that the novel
regulatory response and the novel trait originate simultaneously. Their origins
are, in fact, inseparable events. There cannot, [79] concludes, be a change in the
phenotype, a novel phenotypic state, without an altered developmental pathway.

These mechanisms are accomplished in our formulation by allowing the set
B1 in section 2.2 to span a distribution of possible ‘final’ states S∞. Then the
groupoid arguments merely expand to permit traverse of both initial states and
possible final sets, recognizing that there can now be a possible overlap in the
latter, and the epigenetic effects are realized through the joint uncertainties
H(XDi , Z), so that the epigenetic information source Z serves to direct as well
the possible final states of XDi .

Again, [62, 63] use information theory arguments to suggest something similar
to epigenetic catalysis, finding the information in a sequence is not contained in
the sequence but has been provided by the machinery that accompanies it on the
expression pathway. That work does not, however, invoke a cognitive paradigm,
its attendant groupoid symmetries, or the homology between information source
uncertainty and free energy density that drives dynamics.

The mechanics of channeling can be made more precise as follows.

5 Rate Distortion Dynamics

Real time problems, like the crosstalk between epigenetic and genetic structures,
are inherently rate distortion problems, and the interaction between biological
structures can be restated in communication theory terms. Suppose a sequence
of signals is generated by a biological information source Y having output yn =
y1, y2, This is ‘digitized’ in terms of the observed behavior of the system with
which it communicates, say a sequence of observed behaviors bn = b1, b2, The
bi happen in real time. Assume each bn is then deterministically retranslated
back into a reproduction of the original biological signal,

bn → ŷn = ŷ1, ŷ2,

Here the information source Y is the epigenetic Z, and B is XDi , but the ter-
minology used here is more standard [20].

Define a distortion measure d(y, ŷ) which compares the original to the retrans-
lated path. Many distortion measures are possible, as described in the Mathe-
matical Appendix.

The distortion between paths yn and ŷn is defined as

d(yn, ŷn) =
1
n

n∑
j=1

d(yj , ŷj).

A remarkable fact of the Rate Distortion Theorem is that the basic result is
independent of the exact distortion measure chosen [20, 24].

300 R. Wallace and D. Wallace

Suppose that with each path yn and bn-path retranslation into the y-language,
denoted ŷn, there are associated individual, joint, and conditional probability
distributions

p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D =
∑
yn

p(yn)d(yn, ŷn). (9)

It is possible, using the distributions given above, to define the information
transmitted from the Y to the Ŷ process using the Shannon source uncertainty
of the strings:

I(Y, Ŷ) = H(Y)−H(Y |Ŷ) = H(Y) + H(Ŷ)−H(Y, Ŷ), (10)

where H(..., ...) is the joint and H(...|...) the conditional uncertainty [1, 20].
If there is no uncertainty in Y given the retranslation Ŷ , then no information

is lost, and the systems are in perfect synchrony.
In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a distortion measure

d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I(Y, Ŷ). (11)

The minimization is over all conditional distributions p(y|ŷ) for which the joint
distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint (i.e.,
average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission which ensures communication does not exceed
average distortion D. Thus R(D) defines a minimum necessary channel capac-
ity. References [20, 24] provide details. The rate distortion function has been
explicitly calculated for a number of simple systems.

Recall, now, the relation between information source uncertainty and channel
capacity [1, 20]:

H [X] ≤ C, (12)

where H is the uncertainty of the source X and C the channel capacity, defined
according to the relation [1, 20]

C = max
P (X)

I(X |Y). (13)

X is the message, Y the channel, and the probability distribution P (X) is chosen
so as to maximize the rate of information transmission along a Y .

Code, Context, and Epigenetic Catalysis in Gene Expression 301

Finally, recall the analogous definition of the rate distortion function above,
again an extremum over a probability distribution.

Recall, again, equations (4-8), i.e., that the free energy of a physical sys-
tem at a normalized inverse temperature-analog K = 1/κT is defined as
F (K) = − log[Z(K)]/K where Z(K) the partition function defined by the sys-
tem Hamiltonian. More precisely, if the possible energy states of the system are
a set Ei, i = 1, 2, ... then, at normalized inverse temperature K, the probability
of a state Ei is determined by the relation P [Ei] = exp[−EiK]/

∑
j exp[−EjK].

The partition function is simply the normalizing factor.
Applying this formalism, it is possible to extend the rate distortion model by

describing a probability distribution for D across an ensemble of possible rate
distortion functions in terms of available free metabolic energy, K = 1/κMτ .

The key is to take the R(D) as representing energy as a function of the
average distortion. Assume a fixed K, so that the probability density function
of an average distortion D, given a fixed K, is then

P [D, K] =
exp[−R(D)K]∫ Dmax

Dmin
exp[−R(D)K]dD

. (14)

Thus lowering K in this model rapidly raises the possibility of low distortion
communication between linked systems.

We define the rate distortion partition function as just the normalizing factor
in this equation:

ZR[K] =
∫ Dmax

Dmin

exp[−R(D)K]dD, (15)

again taking K = 1/κMτ .
We now define a new free energy-analog, the rate distortion free-energy, as

FR[K] = − 1
K

log[ZR[K]], (16)

and apply Landau’s spontaneous symmetry breaking argument to generate punc-
tuated changes in the linkage between the genetic information source XDi and
the embedding epigenetic information source Z. Recall that Landau’s insight
was that certain phase transitions were usually in the context of a significant
symmetry change in the physical states of a system.

Again, the biological renormalization schemes of the Appendix to [74] may
now be imposed on FR[K] itself, leading to a spectrum of highly punctuated
transitions in the overall system of interacting biological substructures.

Since 1/K is proportional to the embedding metabolic free energy, we assert
that

1. The greatest possible set of symmetries will be realized for high develop-
mental metabolic free energies, and

2. Phase transitions, related to total available developmental metabolic free
energy, will be accompanied by fundamental changes in the final topology of the

302 R. Wallace and D. Wallace

system of interest – phenotype changes – recognizing that evolutionary selection
acts on phenotypes, not genotypes.

The relation 1/K = κMτ suggests the possibility of evolutionary tradeoffs
between development time and the rate of available metabolic free energy.

6 More Topology

It seems possible to extend this treatment using standard topological arguments.
Taking T = 1/K in equations (6) and (14) as a product of eigenvalues, we can

define it as the determinant of a Hessian matrix representing a Morse Function,
f , on some underlying, background, manifold, M, characterized in terms of (as
yet unspecified) variables X = (x1, ..., xn), so that

1/K = det(Hi,j),

Hi,j = ∂2f/∂xi∂xj . (17)

Again, see the Appendix for a brief outline of Morse Theory.
Thus κ, M , and the development time τ are seen as eigenvalues of H on the

manifold M in an abstract space defined by some set of variables X .
By construction H has everywhere only nonzero, and indeed, positive, eigen-

values, whose product thereby defines T as a generalized volume. Thus, and
accordingly, all critical points of f have index zero, that is, no eigenvalues of
H are ever negative at any point, and hence at any critical point Xc where
df(Xc) = 0.

This defines a particularly simple topological structure for M: If the interval
[a, b] contains a critical value of f with a single critical point Xc, then the topol-
ogy of the setMb defined above differs from that ofMa in a manner determined
by the index i of the critical point. Mb is then homeomorphic to the manifold
obtained from attaching to Ma an i-handle, the direct product of an i-disk and
an (m− i)-disk.

One obtains, in this case, since i = 0, the two halves of a sphere with critical
points at the top and bottom [52, 59]. This is, as in [16], a simply connected ob-
ject. What one does then is to invoke the Seifert-Van Kampen Theorem (SVKT,
[50]) and patch together the various simply connected subcomponents to con-
struct the larger, complicated, topological object representing the full range of
possibilities.

The physical natures of κ, M , and τ thus impose constraints on the possible
complexity of this system, in the sense of the SVKT.

7 Inherited Epigenetic Memory

The cognitive paradigm for gene expression invoked here requires an internal pic-
ture of the world against which incoming signals are compared – algorithmically

Code, Context, and Epigenetic Catalysis in Gene Expression 303

combined according to the rules of Section 2.2 – and then fed into a sharply step-
wise decision oscillator that chooses one (or a few) action(s) from a much large
repertoire of possibilities. Memory is inherent, and much recent work, as described
in the introduction, suggests that epigenetic memory is indeed heritable.

The abduction of spinglass and other models from neural network studies
to the analysis of development and its evolution carries with it the possibility
of more than one system of memory. What Baars called ‘contexts’ channeling
high level animal cognition may often be the influence of cultural inheritance,
in a large sense. Our formalism suggests a class of statistical models that indeed
greatly generalize those used for measuring the effects of cultural inheritance on
human behavior in populations.

Epigenetic machinery, as a dual information source to a cognitive process,
serves as a heritable system, intermediate between (relatively) hard-wired clas-
sical genetics, and a (usually) highly Larmarckian embedding cultural context. In
particular, the three heritable systems interact, in our model, through a crosstalk
in which the epigenetic machinery acts as a kind of intelligent catalyst for gene
expression.

8 Multiple Processes

The argument to this point has, in large measure, been directly abducted from
recent formal studies of high level cognition – consciousness – based on a Dretske-
style information theoretic treatment of Bernard Baars’ global workspace model
[3, 68]. A defining and grossly simplifying characteristic of that phenomenon
is its rapidity: typically the global broadcasts of consciousness occur in a mat-
ter of a few hundred milliseconds, limiting the number of processes that can
operate simultaneously. Slower cognitive dynamics can, therefore, be far more
complex than individual consciousness. One well known example is institutional
distributed cognition that encompasses both individual and group cognition in
a hierarchical structure typically operating on timescales ranging from a few
seconds or minutes in combat or hunting groups, to years at the level of ma-
jor governmental structures, commercial enterprises, religious organizations, or
other analogous large scale cultural artifacts. Reference [73] provides the first
formal mathematical analysis of institutional distributed cognition.

Clearly cognitive gene expression is not generally limited to a few hundred
milliseconds, and something much like the distributed cognition analysis may be
applied here as well. Extending the analysis requires recognizing an individual
cognitive actor can participate in more than one ‘task’, synchronously, asyn-
chronously, or strictly sequentially. Again, the analogy is with institutional func-
tion whereby many individuals often work together on several distinct projects:
Envision a multiplicity of possible cognitive gene expression dual ‘languages’
that themselves form a higher order network linked by crosstalk.

Next, describe crosstalk measures linking different dual languages on that
meta-meta (MM) network by some characteristic magnitude ω, and define a
topology on the MM network by renormalizing the network structure to zero if

304 R. Wallace and D. Wallace

the crosstalk is less than ω and set it equal to one if greater or equal to it.
A particular ω, of sufficient magnitude, defines a giant component of network
elements linked by mutual information greater or equal to it, in the sense of [29],
as more fully described in [73] (Section 3.4).

The fundamental trick is, in the Morse Theory sense [52], to invert the argu-
ment so that a given topology for the giant component will, in turn, define some
critical value, ωC , so that network elements interacting by mutual information
less than that value will be unable to participate, will be locked out and not
active. ω becomes an epigenetically syntactically-dependent detection limit, and
depends critically on the instantaneous topology of the giant component defining
the interaction between possible gene interaction MM networks.

Suppose, now, that a set of such giant components exists at some generalized
system ‘time’ k and is characterized by a set of parameters Ωk = ωk

1 , ..., ωk
m.

Fixed parameter values define a particular giant component set having a par-
ticular set of topological structures. Suppose that, over a sequence of times the
set of giant components can be characterized by a possibly coarse-grained path
γn = Ω0, Ω1, ..., Ωn−1 having significant serial correlations that, in fact, permit
definition of an adiabatically, piecewise stationary, ergodic (APSE) information
source Γ .

Suppose that a set of (external or internal) epigenetic signals impinging on
the set of such giant components can also be characterized by another APSE
information source Z that interacts not only with the system of interest globally,
but with the tuning parameters of the set of giant components characterized by
Γ . Pair the paths (γn, zn) and apply the joint information argument above,
generating a splitting criterion between high and low probability sets of pairs of
paths. We now have a multiple workspace cognitive genetic expression structure
driven by epigenetic catalysis.

9 ‘Coevolutionary’ Development

The model can be applied to multiple interacting information sources repre-
senting simultaneous gene expression processes, for example across a spatially
differentiating organism as it develops. This is, in a broad sense, a ‘coevolution-
ary’ phenomenon in that the development of one segment may affect that of
others.

Most generally we assume that different cognitive developmental subprocesses
of gene expression characterized by information sources Hm interact through
chemical or other signals and assume that different processes become each other’s
principal environments, a broadly coevolutionary phenomenon.

We write

Hm = Hm(K1...Ks, ...Hj ...), (18)

where the Ks represent other relevant parameters and j �= m.
The dynamics of such a system is driven by a recursive network of stochastic

differential equations, similar to those used to study many other highly parallel
dynamic structures (e.g., [83]).

Code, Context, and Epigenetic Catalysis in Gene Expression 305

Letting the Kj and Hm all be represented as parameters Qj, (with the caveat
that Hm not depend on itself), one can define, according to the generalized
Onsager development of the Appendix,

Sm = Hm −
∑

i

Qi∂Hm/∂Qi

to obtain a complicated recursive system of phenomenological ‘Onsager relations’
stochastic differential equations,

dQj
t =

∑
i

[Lj,i(t, ...∂Sm/∂Qi...)dt + σj,i(t, ...∂Sm/∂Qi...)dBi
t], (19)

where, again, for notational simplicity only, we have expressed both the Hj and
the external K’s in terms of the same symbols Qj .

m ranges over the Hm and we could allow different kinds of ‘noise’ dBi
t, having

particular forms of quadratic variation that may, in fact, represent a projection
of environmental factors under something like a rate distortion manifold [73, 74].

As usual for such systems, there will be multiple quasi-stable points within a
given system’s Hm, representing a class of generalized resilience modes accessible
via punctuation.

Second, however, there may well be analogs to fragmentation when the system
exceeds the critical values of Kc according to the approach of [74]. That is,
the K-parameter structure will represent full-scale fragmentation of the entire
structure, and not just punctuation within it.

We thus infer two classes of punctuation possible for this kind of structure.
There are other possible patterns:

1. Setting equation (19) equal to zero and solving for stationary points again
gives attractor states since the noise terms preclude unstable equilibria.

2. This system may converge to limit cycle or ‘strange attractor’ behaviors in
which the system seems to chase its tail endlessly, e.g., the cycle of climate-driven
phenotype changes in persistent temperate region plants.

3. What is converged to in both cases is not a simple state or limit cycle
of states. Rather it is an equivalence class, or set of them, of highly dynamic
information sources coupled by mutual interaction through crosstalk. Thus ‘sta-
bility’ in this extended model represents particular patterns of ongoing dynamics
rather than some identifiable ‘state’, although such dynamics may be indexed
by a ‘stable’ set of phenotypes.

Here we become enmeshed in a system of highly recursive phenomenological
stochastic differential equations, but at a deeper level than the standard stochas-
tic chemical reaction model (e.g., [84]), and in a dynamic rather than static
manner: the objects of this system are equivalence classes of information sources
and their crosstalk, rather than simple final states of a chemical system.

306 R. Wallace and D. Wallace

10 Multiple Models

Recent work [75] argues that consciousness may have undergone the character-
istic branching and pruning of evolutionary development, particularly in view
of the rapidity of currently surviving conscious mechanisms. According to that
study, evolution is littered with polyphyletic parallelisms: many roads lead to
functional Romes, and consciousness, as a particular form of high order cogni-
tive process operating in real time, embodies one such example, represented by
an equivalence class structure that factors the broad realm of necessary condi-
tions information theoretic realizations of Baars’ global workspace model. Many
different physiological systems, then, can support rapidly shifting, highly tun-
able, and even simultaneous assemblages of interacting unconscious cognitive
modules. Thus [75] concludes the variety of possibilities suggests minds today
may be only a small surviving fraction of ancient evolutionary radiations – bush
phylogenies of consciousness pruned by selection and chance extinction.

Even in the realms of rapid global broadcast inherent to real time cognition,
[75] speculates, following a long tradition, that ancient backbrain structures in-
stantiate rapid emotional responses, while the newer forebrain harbors rapid
‘reasoned’ responses in animal consciousness. The cooperation and competition
of these two rapid phenomena produces, of course, a plethora of systematic
behaviors.

Since consciousness is necessarily restricted to realms of a few hundred mil-
liseconds, evolutionary pruning may well have resulted in only a small surviv-
ing fraction of previous evolutionary radiations. Processes operating on longer
timescales may well be spared such draconian evolutionary selection. That is,
the vast spectrum of mathematical models of cognitive gene expression inherent
to our analysis here, in the context of development times much longer than a
few hundred milliseconds, implies current organisms may simultaneously harbor
several, possibly many, quite different cognitive gene expression mechanisms.

It seems likely, then, that, with some generality, slow phenomena, ranging
from institutional distributed cognition to cognitive gene expression, permit the
operation of very many quite different cognitive processes simultaneously or in
rapid succession.

One inference is, then, that gene expression and its epigenetic regulation are, for
even very simple organisms, far more complex than individual human conscious-
ness, currently regarded as one of the ‘really big’ unsolved scientific problems.

Neural network models adapted or abducted from inadequate cognitive studies
of a generation ago are unlikely to cleave the Gordian Knot of scientific inference
surrounding gene expression.

11 Epigenetic Focus

The Tuning Theorem analysis of the Appendix permits an inattentional blind-
ness/concentrated focus perspective on the famous computational ‘no free lunch’
theorem of [81, 82]. Following closely the arguments of [28], [81, 82] have estab-
lished that there exists no generally superior function optimizer. There is no ‘free

Code, Context, and Epigenetic Catalysis in Gene Expression 307

lunch’ in the sense that an optimizer ‘pays’ for superior performance on some
functions with inferior performance on others. If the distribution of functions is
uniform, then gains and losses balance precisely, and all optimizers have identi-
cal average performance. The formal demonstration depends primarily upon a
theorem that describes how information is conserved in optimization. This Con-
servation Lemma states that when an optimizer evaluates points, the posterior
joint distribution of values for those points is exactly the prior joint distribution.
Put simply, observing the values of a randomly selected function does not change
the distribution: An optimizer has to ‘pay’ for its superiority on one subset of
functions with inferiority on the complementary subset.

As [28] describes, anyone slightly familiar with the evolutionary computing
literature recognizes the paper template ‘Algorithm X was treated with modifi-
cation Y to obtain the best known results for problems P1 and P2.’ Anyone who
has tried to find subsequent reports on ‘promising’ algorithms knows that they
are extremely rare. Why should this be?

A claim that an algorithm is the very best for two functions is a claim that it is
the very worst, on average, for all but two functions. It is due to the diversity of
the benchmark set of test problems that the ‘promise’ is rarely realized. Boosting
performance for one subset of the problems usually detracts from performance
for the complement.

Reference [28] argues that hammers contain information about the distribu-
tion of nail-driving problems. Screwdrivers contain information about the distri-
bution of screw-driving problems. Swiss army knives contain information about
a broad distribution of survival problems. Swiss army knives do many jobs, but
none particularly well. When the many jobs must be done under primitive con-
ditions, Swiss army knives are ideal.

Thus, according to [28], the tool literally carries information about the task
optimizers are literally tools-an algorithm implemented by a computing device
is a physical entity.

Another way of looking at this is to recognize that a computed solution is
simply the product of the information processing of a problem, and, by a very
famous argument, information can never be gained simply by processing. Thus a
problem X is transmitted as a message by an information processing channel, Y ,
a computing device, and recoded as an answer. By the Tuning Theorem argument
of the Appendix there will be a channel coding of Y which, when properly tuned,
is most efficiently transmitted by the problem. In general, then, the most efficient
coding of the transmission channel, that is, the best algorithm turning a problem
into a solution, will necessarily be highly problem-specific. Thus there can be no
best algorithm for all equivalence classes of problems, although there may well
be an optimal algorithm for any given class. The tuning theorem form of the No
Free Lunch theorem will apply quite generally to cognitive biological and social
structures, as well as to massively parallel machines.

Rate distortion, however, occurs when the problem is collapsed into a smaller,
simplified, version and then solved. Then there must be a tradeoff between allowed
average distortion and the rate of solution: the retina effect. In a very fundamental

308 R. Wallace and D. Wallace

sense – particularly for real time systems – rate distortion manifolds present a
generalization of the converse of the no free lunch arguments. The neural corollary
is known as inattentional blindness [69].

We are led to suggest that there may well be a considerable set of no free
lunch-like conundrums confronting highly parallel real-time structures, including
epigenetic control of gene expression, and that they may interact in distinctly
complicated ways.

12 Developmental Disorders

12.1 Network Information Theory

Let U be an information source representing a systematic embedding environ-
mental ‘program’ interacting with the process of cognitive gene expression, here
defined as a complicated information set of sources having source joint uncer-
tainty H(Z1, ..., Zn) that guides the system into a particular equivalence class of
desired developmental behaviors and trajectories.

To model the effect of U on development one can, most simply, invoke re-
sults from network information theory, ([20], p. 388). Given three interacting
information sources, say Y1, Y2, Z, the splitting criterion between high and low
probability sets of states, taking Z as the external context, is given by

I(Y1, Y2|Z) = H(Z) + H(Y1|Z) + H(Y2|Z)−H(Y1, Y2, Z),

where, again, H(...|...) and H(..., ..., ...) represent conditional and joint uncer-
tainties. This generalizes to the relation

I(Y1, ..., Yn|Z) = H(Z) +
n∑

j=1

H(Yj |Z)−H(Y1, ..., Yn, Z).

Thus the fundamental splitting criterion between low and high probability sets
of joint developmental paths becomes

I(Z1, ..., Zn|U) = H(U)+
n∑

j=1

H(Zj |U)−H(Z1, ..., Zn, U). (20)

Again, the Zi represent internal information sources and U that of the embedding
environmental context.

The central point is that a one step extension of that system via the results
of network information theory [20] allows incorporating the effect of an external
environmental ‘farmer’ in guiding cognitive developmental gene expression.

12.2 Embedding Ecosystems as Information Sources

The principal farmer for a developing organism is the ecosystem in which it is
embedded, in a large sense. Summarizing briefly the arguments of [74], ecosys-
tems, under appropriate coarse graining, often have reconizable grammar and

Code, Context, and Epigenetic Catalysis in Gene Expression 309

syntax. For example, the turn-of-the-seasons in a temperate climate, for most
natural communities, is remarkably similar from year to year in the sense that
the ice melts, migrating birds return, trees bud, flowers and grass grow, plants
and animals reproduce, the foliage turns, birds migrate, frost, snow, the rivers
freeze, and so on in a predictable manner from year to year.

Suppose, then, that we can coarse grain an ecosystem at time t according to
some appropriate partition of the phase space in which each division Aj repre-
sents a particular range of numbers for each possible species in the ecosystem,
along with associated parameters such as temperature, rainfall, humidity, inso-
lation, and so on. We examine longitudinal paths, statements of the form

x(n) = A0, A1, ..., An

defined in terms of some ‘natural’ time unit characteristic of the system. Then
n corresponds to a time unit T , so that t = T, 2T, ..., nT . Our interest is in
the serial correlation along paths. If N(n) is the number of possible paths of
length n that are consistent with the underlying grammar and syntax of the
appropriately coarse grained ecosystem, for example, spring leads to summer,
autumn, winter, back to spring, etc., but never spring to autumn to summer to
winter in a temperate climate.

The essential assumption is that, for appropriate coarse graining, N(n), the
number of possible grammatical paths, is much smaller than the total conceivable
number of paths, and that, in the limit of large n,

H = lim
n→∞

log[N(n)]
n

both exists and is independent of path.
Not all possible ecosystem coarse grainings are likely to lead to this result, as

is sometimes the case with Markov models. Reference [40] in particular empha-
sizes that mesoscale ecosystem processes are most likely to entrain dynamics at
larger and smaller scales, a process [74] characterizes as mesoscale resonance, a
generalization of the Baldwin effect. See that reference for details, broadly based
on the Tuning Theorem.

12.3 Ecosystems Farm Organismal Development

The environmental and ecosystem farming of development may not always be
benign.

Suppose we can operationalize and quantify degrees of both overfocus or inat-
tentional blindness (IAB) and of overall structure or environment distortion (D)
in the actions of a highly parallel cognitive epigenetic regulatory system. The
essential assumption is that the (internal) dual information source of a cognitive
structure that has low levels of both IAB overfocus and structure/environment
distortion will tend to be richer than that of one having greater levels. This
is shown in figure 1a, where H is the source uncertainty dual to internal cog-
nitive process, X = IAB, and Y = D. Regions of low X, Y , near the origin,

310 R. Wallace and D. Wallace

have greater source uncertainty than those nearby, so H(X, Y) shows a (rela-
tively gentle) peak at the origin, taken here as simply the product of two error
functions.

We are, then, particularly interested in the internal cognitive capacity of the
structure itself, as paramatized by degree of overfocus and by the (large scale)
distortion between implementation and impact. That capacity, a purely internal
quantity, need not be convex in the parameter D, which is taken to character-
ize interaction with an external environment, and thus becomes a context for
internal measures. Such measures need not themselves be convex in D.

The generalized Onsager argument, based on the homology between informa-
tion source uncertainty and free energy, as explained more fully in the Appendix,
is shown in figure 1b. S = H(X, Y)−XdH/dX−Y dH/dY , the ‘disorder’ analog
to entropy in a physical system, is graphed on the Z axis against the X − Y
plane, assuming a gentle peak in H at the origin. Peaks in S, according to theory,
constitute repulsive system barriers, which must be overcome by external forces.
In figure 1b there are three quasi-stable topological resilience modes, in the sense
of [71], marked as A, B, and C. The A region is locked in to low levels of both
overfocus and distortion, as it sits in a pocket. Forcing the system in either di-
rection, that is, increasing either IAB or D, will, initially, be met by homeostatic
attempts to return to the resilience state A, according to this model.

If overall distortion becomes severe in spite of homeostatic developmental
mechanisms, the system will then jump to the quasi-stable state B, a second
pocket. According to the model, however, once that transition takes place, there
will be a tendency for the system to remain in a condition of high distortion.
That is, the system will become locked-in to a structure with high distortion
in the match between structure implementation and structure impact, but one
having lower overall cognitive capacity, i.e., a lower value of H in figure 1a.

The third pocket, marked C, is a broad plain in which both IAB and D remain
high, a highly overfocused, poorly linked pattern of behavior which will require
significant intervention to alter once it reaches such a quasi-stable resilience
mode. The structure’s cognitive capacity, measured by H in figure 1a, is the
lowest of all for this condition of pathological resilience, and attempts to correct
the problem – to return to condition A, will be met with very high barriers in
S, according to figure 1b. That is, mode C is very highly resilient, although
pathologically so, much like the eutrophication of a pure lake by sewage outflow.
See [70, 71] for discussions of ecological resilience and literature references.

We can argue that the three quasi-equilibrium configurations of figure 1b
represent different dynamical states of the system, and that the possibility of
transition between them represents the breaking of the associated symmetry
groupoid by external forcing mechanisms. That is, three manifolds representing
three different kinds of system dynamics have been patched together to create
a more complicated topological structure. For cognitive phenomena, such be-
havior is likely to be the rule rather than the exception. ‘Pure’ groupoids are
abstractions, and the fundamental questions will involve linkages which break
the underlying symmetry.

Code, Context, and Epigenetic Catalysis in Gene Expression 311

Fig. 1. a. Source uncertainty, H , of the dual information source of epigenetic cogni-
tion, as parametized by degrees of focus, X = IAB and distortion, Y = D, between
implementation and actual impact. Note the relatively gentle peak at low values of
X, Y . Here H is generated as the product of two error functions. b. Generalized On-
sager treatment of figure 1a. S = H(X,Y)−XdH/dX−Y dH/dY . The regions marked
A, B, and C represent realms of resilient quasi-stability, divided by barriers defined by
the relative peaks in S. Transition among them requires a forcing mechanism. From
another perspective, limiting energy or other resources, or imposing stress from the
outside, driving down H in figure 1a, would force the system into the lower plain of
C, in which the system would then become trapped in states having high levels of
distortion and inattentional blindness/overfocus.

In all of this, as in equation (19), system convergence is not to some fixed state,
limit cycle, or pseudorandom strange attractor, but rather to some appropriate
set of highly dynamic information sources, i.e., behavior patterns constituting,
here, developmental trajectories, rather than to some fixed ‘answer to a comput-
ing problem’ [72].

What this model suggests is that sufficiently strong external perturbation
can force a highly parallel real-time cognitive epigenetic structure from a nor-
mal, almost homeostatic, developmental path into one involving a widespread,
comorbid, developmental disorder. This is a well studied pattern for humans
and their institutions, reviewed at some length elsewhere [71, 73]. Indeed, this
argument provides the foundation of a fairly comprehensive model of chronic
developmental dysfunction across a broad class of cognitive systems, including,
but not limited to, cognitive epigenetic control of gene expression. One approach
might be as follows:

A developmental process can be viewed as involving a sequence of surfaces
like figure 1, having, for example, ‘critical periods’ when the barriers between

312 R. Wallace and D. Wallace

the normal state A and the pathological states B and C are relatively low.
This might particularly occur under circumstances of rapid growth or long-term
energy demand, since the peaks of figure 1 are inherently energy maxima by the
duality between information source uncertainty and free energy density. During
such a time the peaks of figure 1 might be relatively suppressed, and the system
would become highly sensitive to perturbation, and to the onset of a subsequent
pathological developmental trajectory.

To reiterate, then, during times of rapid growth, embryonic de- and re- methy-
lation, and/or other high system demand, metabolic energy limitation imposes
the need to focus via something like a rate distortion manifold. Cognitive process
requires energy through the homologies with free energy density, and more focus
at one end necessarily implies less at some other. In a distributed zero sum de-
velopmental game, as it were, some cognitive or metabolic processes must receive
more free energy than others, and these may then be more easily affected by ex-
ternal chemical, biological, or social stressors, or by simple stochastic variation.
Something much like this has indeed become a standard perspective (e.g., [76]).

A structure trapped in region C might be said to suffer something much like
what [80] describes as the loss of gradient problem, in which one part of a mul-
tiple population coevolutionary system comes to dominate the others, creating
an impossible situation in which the other participants do not have enough in-
formation from which to learn. That is, the cliff just becomes too steep to climb.
Reference [80] also characterizes focusing problems in which a two-population
coevolutionary process becomes overspecialized on the opponent’s weaknesses,
effectively a kind of inattentional blindness.

Thus there seems some consonance between our asymptotic analysis of cogni-
tive structural function and current studies of pathologies affecting coevolution-
ary algorithms (e.g. [30, 72]). In particular the possibility of historic trajectory,
of path dependence, in producing individualized failure modes, suggests there
can be no one-size-fits-all amelioration strategy.

Equation (20) basically enables a kind of environmental catalysis to cognitive
gene expression, in a sense closely similar to the arguments of Section 4. This
is analogous to, but more general than, the ‘mesoscale resonance’ invoked by
[74]: during critical periods, according to these models, environmental signals
can have vast impact on developmental trajectory.

12.4 A Simple Probability Argument

Again, critical periods of rapid growth require energy, and by the homology
between free energy density and cognitive information source uncertainty, that
energy requirement may be in the context of a zero-sum game so that the bar-
riers of figure 1 may be lowered by metabolic energy constraints or high energy
demand. In particular the groupoid structure of equation (5) changes progres-
sively as the organism develops, with new equivalence classes being added to
A = ∪α. If metabolic energy remains capped, then

P [Hβ] =
exp[−HβK]∑
α exp[−HαK]

Code, Context, and Epigenetic Catalysis in Gene Expression 313

must decrease with increase in α, i.e., with increase in the cardinality of A. Thus,
for restricted K, barriers between different developmental paths must fall as the
system becomes more complicated.

A precis of these results can be more formally captured using methods closely
similar to recent algebraic geometry approaches to concurrent, i.e., highly par-
allel, computing [26, 37, 60].

13 Reconsidering Directed Homotopy: Shadows

Here we reconsider directed homotopy in a developmental context, as shadowed
by critical developmental periods. First, we restrict the analysis to a two dimen-
sional phenotype space, and begin development at some S0 as in figure 2.

If one requires temporal path dependence – no reverse development – then
figure 2 shows two possible final states, S1 and S2, separated by a critical point
C that casts a path-dependent developmental shadow in time. There are, conse-
quently, two separate ‘ways’ of reaching a final state in this model. The Si thus
represent (relatively) static phenotypic expressions of the solutions to equation
(19) that are, of themselves, highly dynamic information sources.

Elements of each ‘way’ can be transformed into each other by continuous
deformation without crossing the impenetrable shadow cast by the critical
period C.

These ways are the equivalence classes defining the system’s topological struc-
ture, a groupoid analogous to the fundamental homotopy group in spaces that
admit of loops [50] rather than time-driven, one-way paths. That is, the closed
loops needed for classical homotopy theory are impossible for this kind of system
because of the ‘flow of time’ defining the output of an information source – one
goes from S0 to some final state. The theory is thus one of directed homotopy, di-
homotopy, and the central question revolves around the continuous deformation
of paths in development space into one another, without crossing the shadow
cast by the critical period C. Reference [36] provides another introduction to
the formalism.

Thus the external signals U of equation (20), as a catalytic mechanism, can
define quite different developmental dihomotopies.

Such considerations suggest that a multitasking developmental process that
becomes trapped in a particular pattern cannot, in general, expect to emerge
from it in the absence of external forcing mechanisms or the stochastic reso-
nance/mutational action of ‘noise’. Emerging from such a trap involves large-
scale topological changes, and this is the functional equivalent of a first order
phase transition in a physical systems and requires energy.

The fundamental topological insight is that environmental context – the U in
equation (20) – can be imposed on the ‘natural’ groupoids underlying massively
parallel gene expression. This sort of behavior is, as noted in [71], central to
ecosystem resilience theory.

Apparently the set of developmental manifolds, and its subsets of directed
homotopy equivalence classes, formally classifies quasi-equilibrium states, and

314 R. Wallace and D. Wallace

Fig. 2. Given an initial developmental state S0 and a critical period C casting a path-
dependent developmental shadow, there are two directed homotopy equivalence classes
of deformable paths leading, respectively, to final phenotype states S1 and S2 that are
expressions of the highly dynamic information source solutions to equation (19). These
equivalence classes define a topological groupoid on the developmental system.

thus characterizes the different possible developmental resilience modes. Some
of these may be highly pathological.

Shifts between markedly different topological modes appear to be necessary ef-
fects of phase transitions, involving analogs to phase changes in physical systems.

It seems clear that both ‘normal development’ and possible pathological states
can be represented as topological resilience/phase modes in this model, suggest-
ing a real equivalence between difficulties in carrying out gene expression and its
stabilization. This mirrors recent results on the relation between programming
difficulty and system stability in highly parallel computing devices [70].

14 Epigenetic Programming of Artificial Systems for
Biotechnology

Reference [72] examines how highly parallel ‘Self-X’ computing machines – self-
programming, protecting, repairing, etc. – are inevitably coevolutionary in the
sense of Section 9 above, since elements of a dynamic structural hierarchy always
interact, an effect that will asymptotically dominate system behavior at great

Code, Context, and Epigenetic Catalysis in Gene Expression 315

scale. The ‘farming’ paradigm provides a model for programming such devices,
that, while broadly similar to the liquid state machines of [51], differs in that
convergence is to an information source, a systematic dynamic behavior pattern,
rather than to a computed fixed ‘answer’. As the farming metaphor suggests,
stabilizing complex coevolutionary mechanisms appears as difficult as program-
ming them. Sufficiently large networks of even the most dimly cognitive modules
will become emergently coevolutionary, suggesting the necessity of ‘second order’
evolutionary programming that generalizes the conventional Nix/Vose models.

Although we cannot pursue the argument in detail here, very clearly such an
approach to programming highly parallel coevolutionary machines – equivalent
to deliberate epigenetic farming – should be applicable to a broad class of ar-
tificial biological systems/machines for which some particular ongoing behavior
is to be required, rather than some final state ‘answer’. Examples might include
the manufacture, in a large sense, of a dynamic product, e.g., a chemical sub-
stance, anti-cancer or artificial immune search-and-destroy strategy, biological
signal detection/transduction process, and so on.

Tunable epigenetic catalysis lowers an ‘effective energy’ associated with the
convergence of a highly coevolutionary cognitive system to a final dynamic be-
havioral strategy. Given a particular ‘farming’ information source acting as the
program, the behavior of the final state of interest will become associated with
the lowest value of the free energy-analog, possibly calculable by optimization
methods. If the retina-like rate distortion manifold has been properly imple-
mented, a kind of converse to the no free lunch theorem, then this optimization
procedure should converge to an appropriate solution, fixed or dynamic. Thus
we invoke a synergism between the focusing theorem and a ‘tunable epigenetic
catalysis theorem’ to raise the probability of an acceptable solution, particularly
for a real-time system whose dynamics will be dominated by rate distortion
theorem constraints.

The degree of catalysis needed for convergence in a real time system would
seem critically dependent on the rate distortion function R(D) or on its product
with an acceptable reaction time, τ , that is, on there being sufficient bandwidth
in the communication between a cognitive biological ‘machine’ and its embedding
environment. If that bandwidth is too limited, or the available reaction time too
short, then the system will inevitably freeze out into what amounts to a highly
dysfunctional ‘ground state’.

The essential point would seem to be a convergence between emerging needs in
biotechnology and general strategies for programming coevolutionary computing
devices.

15 Discussion and Conclusions

We have hidden the kind of massive calculations made explicit in [16, 17], burying
them as ‘fitting regression-model analogs to data’, possibly at a second order
epigenetic hierarchical level. In the real world such calculations would be quite
difficult, particularly given the introduction of punctuated transitions that must

316 R. Wallace and D. Wallace

be fitted using elaborate renormalization calculations, typically requiring such
exotic objects as Lambert W-functions (e.g., [68, 73, 74]).

Analogies with neural network studies suggest, however, intractable concep-
tual difficulties for spinglass-type models of gene expression and development
dynamics, much as claimed by [57]. In spite of nearly a century of sophisti-
cated neural network model studies – including elegant treatments like [66] –
Atmanspacher [3] claims that to formulate a serious, clear-cut and transpar-
ent formal framework for cognitive neuroscience is a challenge comparable to
the early stage of physics four centuries ago. Only a very few contemporary
approaches, including that of [68], are worth mentioning, in his view.

Furthermore, [48] has identified what might well be described as the sufficiency
failing of neural network models, that is, neural networks can be constructed as
Turing machines that can replicate any known dynamic behavior in the same
sense that the Ptolemaic Theory of planetary motion, as a Fourier expansion in
epicycles, can, to sufficient order, mimic any observed orbit. Keplerian central
motion provides an essential reduction. The particular characterization of [48] is
that ‘neural possibility is not neural plausibility’.

Likewise, [8] concludes that neural-centered explanations of high order mental
function commit the mereological fallacy, that is, the fundamental logical error
of attributing what is in fact a property of an entirety to a limited part of the
whole system. ‘The brain’ does not exist in isolation, but as part of a complete
biological individual who is most often deeply embedded in social and cultural
contexts.

Neural network-like models of gene expression and development applied to
complex living things inherently commit both errors, particularly in a social,
cultural, or environmental milieu. This suggests a particular necessity for the
formal inclusion of the effects of embedding contexts – the epigenetic Z and the
environmental U – in the sense of [4, 5]. That is, gene expression and develop-
ment are conditioned by signals from embedding physiological, social, and for
humans, cultural, environments. As described above, our formulation can include
such influences in a highly natural manner, as they influence epigenetic catalysis.
In addition, multiple, and quite different, cognitive gene expression mechanisms
may operate simultaneously, or in appropriate sequence, given sufficient devel-
opment time.

Although epigenetic catalysis, as we have explored it here, might seem wor-
thy of special focus, this would be a kind of intellectual optical illusion akin
to inattentional blindness. Epigenetic catalysis is only one aspect of a general
cognitive paradigm for gene expression, and this larger, and very complicated
‘perceptual field’ should remain the center of intellectual attention, rather than
any single element of that field. This is to take, perhaps, an ‘East Asian’ rather
than ‘Western’ perspective on the matter [69].

Developmental disorders, in a broad sense that must include comorbid men-
tal and physical characteristics, emerge as pathological ‘resilience’ modes, in
the sense of [71], a viewpoint from ecosystem theory quite similar to that of
epigenetic epidemiology [32, 76]. Environmental farming through an embedding

Code, Context, and Epigenetic Catalysis in Gene Expression 317

information source affecting internal epigenetic regulation of gene expression,
can, as a kind of programming of a highly parallel cognitive system, place the
organism into a quasi-stable pathological developmental pattern converging on
a dysfunctional phenotype.

The probability models of cognitive process presented here will lead, most
fundamentally, to statistical tools based on the asymptotic limit theorems of
information theory, in the same sense that the usual parametric statistics are
based on the Central Limit Theorem. We have not, then, given ‘a’ model of
development and its disorders in cognitive gene expression, but, rather, outlined
a possible general strategy for fitting empirically-determined statistical models to
real data, in precisely the sense that one would fit the usual parametric statistical
models to normally distributed data.

The fitting of statistical models does not, of itself, perform scientific inference.
That is done by comparing fitted models for similar systems under different, or
different systems under similar, conditions, and by examining the structure of
residuals.

One implication of this work, then, is that understanding complicated pro-
cesses of gene expression and development – and their pathologies – will require
construction of data analysis tools considerably more sophisticated than now
available, including the present crop of simple models abducted from neural
network studies or stochastic chemical reaction theory. Most centrally, however,
currently popular (and fundable) reductionist approaches to understanding gene
expression must eventually exhaust themselves in the same desert of sand-grain
hyperparticularity that appears to have driven James Crick from molecular bi-
ology into consciousness studies, a field now mature enough to provide tools for
use in the other direction.

Acknowledgments

The author thanks Dr. C. Guerrero-Bosagna and two anonymous reviewers for
comments useful in revision.

References

1. Ash, R.: Information Theory. Dover Publications, New York (1990)
2. Atlan, H., Cohen, I.: Immune information, self-organization, and meaning. Inter-

national Immunology 10, 711–717 (1998)
3. Atmanspacher, H.: Toward an information theoretical implementation of contex-

tual conditions for consciousness. Acta Biotheoretica 54, 157–160 (2006)
4. Baars, B.: A Cognitive Theory of Consciousness. Cambridge University Press,

New York (1988)
5. Baars, B.: Global workspace theory of consciousness: toward a cognitive neuro-

science of human experience. Progress in Brain Research 150, 45–53 (2005)
6. Backdahl, L., Bushell, A., Beck, S.: Inflammatory signalling as mediator of epige-

netic modulation in tissue-specific chronic inflammation. The International Journal
of Biochemistry and Cell Biology (2009), doi:10.1016/j.biocel.2008.08.023

318 R. Wallace and D. Wallace

7. Beck, C., Schlogl, F.: Thermodynamics of Chaotic Systems. Cambridge University
Press, Cambridge (1995)

8. Bennett, M., Hacker, P.: Philosophical Foundations of Neuroscience. Blackwell
Publishing, Malden (2003)

9. Bennett, C.: Logical depth and physical complexity. In: Herkin, R. (ed.) The Uni-
versal Turing Machine: A Half-Century Survey, pp. 227–257. Oxford University
Press, Oxford (1988)

10. Bos, R.: Continuous representations of groupoids. arXiv:math/0612639 (2007)
11. Bossdorf, O., Richards, C., Pigliucci, M.: Epigenetics for ecologists. Ecology Let-

ters 11, 106–115 (2008)
12. Britten, R., Davidson, E.: Gene regulation for higher cells: a theory. Science 165,

349–357 (1969)
13. Brown, R.: From groups to groupoids: a brief survey. Bulletin of the London Math-

ematical Society 19, 113–134 (1987)
14. Buneci, M.: Representare de Groupoizi. Editura Mirton, Timisoara (2003)
15. Cannas Da Silva, A., Weinstein, A.: Geometric Models for Noncommutative Alge-

bras. American Mathematical Society, RI (1999)
16. Ciliberti, S., Martin, O., Wagner, A.: Robustness can evolve gradually in complex

regulatory networks with varying topology. PLoS Computational Biology 3(2), e15
(2007)

17. Ciliberti, S., Martin, O., Wagner, A.: Innovation and robustness in complex reg-
ulatory gene networks. Proceedings of the National Academy of Sciences 104,
13591–13596 (2007)

18. Cohen, I.: Immune system computation and the immunological homunculus. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 499–512. Springer, Heidelberg (2006)

19. Cohen, I., Harel, D.: Explaining a complex living system: dynamics, multi-scaling,
and emergence. Journal of the Royal Society: Interface 4, 175–182 (2007)

20. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley and Sons,
New York (1991)

21. Crews, D., McLachlan, J.A.: Epigenetics, evolution, endocrine disruption, health,
and disease. Endocrinology 147, S4–S10 (2006)

22. Crews, D., Gore, A., Hsu, T., Dangleben, N., Spinetta, M., Schallert, T., An-
way, M., Skinner, M.: Transgenerational epigenetic imprints on mate preference.
Proceedings of the National Academy of Sciences 104, 5942–5946 (2007)

23. Dehaene, S., Naccache, L.: Towards a cognitive neuroscience of consciousness: basic
evidence and a workspace framework. Cognition 79, 1–37 (2001)

24. Dembo, A., Zeitouni, O.: Large Deviations: Techniques and Applications, 2nd edn.
Springer, New York (1998)

25. Dias, A., Stewart, I.: Symmetry groupoids and admissible vector fields for coupled
cell networks. Journal of the London Mathematical Society 69, 707–736 (2004)

26. Dretske, F.: The explanatory role of information. Philosophical Transactions of the
Royal Society A 349, 59–70 (1994)

27. Emery, M.: Stochastic Calculus on Manifolds. Springer, New York (1989)
28. English, T.: Evaluation of evolutionary and genetic optimizers: no free lunch. In:

Fogel, L., Angeline, P., Back, T. (eds.) Evolutionary Programming V: Proceedings
of the Fifth Annual Conference on Evolutionary Programming, pp. 163–169. MIT
Press, Cambridge (1996)

29. Erdos, P., Renyi, A.: On the evolution of random graphs (1960); reprinted in The
Art of Counting, pp. 574–618 (1973), and in Selected Papers of Alfred Renyi,
pp. 482–525 (1976)

Code, Context, and Epigenetic Catalysis in Gene Expression 319

30. Ficici, S., Milnik, O., Pollak, J.: A game-theoretic and dynamical systems analysis
of selection methods in coevolution. IEEE Transactions on Evolutionary Compu-
tation 9, 580–602 (2005)

31. Feynman, R.: Lectures on Computation. Westview Press, New York (2000)
32. Foley, D., Craid, J., Morley, R., Olsson, C., Dwyer, T., Smith, K., Saffery, R.:

Prospects for epigenetic epidemiology. American Journal of Epidemiology 169,
389–400 (2009)

33. Gilbert, S.: Mechanisms for the environmental regulation of gene expression: eco-
logical aspects of animal development. Journal of Bioscience 30, 65–74 (2001)

34. Glazebrook, J.F., Wallace, R.: Small worlds and red queens in the global
workspace: an information-theoretic approach. Cognitive Systems Reserch (2009),
doi:10.1016/j.cogsys.2009.01.002

35. Golubitsky, M., Stewart, I.: Nonlinear dynamics and networks: the groupoid for-
malism. Bulletin of the American Mathematical Society 43, 305–364 (2006)

36. Goubault, E., Raussen, M.: Dihomotopy as a tool in state space analysis. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 16–37. Springer,
Heidelberg (2002)

37. Goubault, E.: Some geometric perspectives on concurrency theory. Homology, Ho-
motopy, and Applications 5, 95–136 (2003)

38. Gould, S.: The Structure of Evolutionary Theory. Harvard University Press,
Cambridge (2002)

39. Guerrero-Bosagna, C., Sabat, P., Valladares, L.: Environmental signaling and evo-
lutionary change: can exposure of pregnant mammals to environmental estrogens
lead to epigenetically induced evolutionary changes in embryos? Evolution and
Development 7, 341–350 (2005)

40. Holling, C.: Cross-scale morphology, geometry and dynamicsl of ecosystems. Eco-
logical Monographs 41, 1–50 (1992)

41. Jablonka, E., Lamb, M.: Epigenetic Inheritance and Evolution: The Lamarckian
Dimension. Oxford University Press, Oxford (1995)

42. Jablonka, E., Lamb, M.J.: Epigenetic inheritance in evolution. Journal of Evolu-
tionary Biology 11, 159–183 (1998)

43. Jablonka, E.: Epigenetic epidemiology. International Journal of Epidemiology 33,
929–935 (2004)

44. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K., Manu,
M., Myasnikova, E., Vanario-Alonso, C., Samsonova, M., Sharp, D., Reintiz,
J.: Dynamic control of positional information in the early Drosophila embryo.
Nature 430, 368–371 (2004)

45. Jaenisch, R., Bird, A.: Epigenetic regulation of gene expression: how the genome
integrates intrinsic and environmental signals. Nature Genetics Supplement 33,
245–254 (2003)

46. Kastner, M.: Phase transitions and configuration space topology. ArXiv cond-
mat/0703401 (2006)

47. Khinchin, A.: Mathematical Foundations of Information Theory. Dover, New York
(1957)

48. Krebs, P.: Models of cognition: neurological possibility does not indicate neurolog-
ical plausibility. In: Bara, B., Barsalou, L., Bucciarelli, M. (eds.) Proceedings of
CogSci 2005, Stresa, Italy, pp. 1184–1189 (2005), http://cogprints.org/4498/

49. Landau, L., Lifshitz, E.: Statistical Physics, Part I, 3rd edn., Part I. Elsevier, New
York (2007)

50. Lee, J.: Introduction to topological manifolds. Springer, New York (2000)

http://cogprints.org/4498/

320 R. Wallace and D. Wallace

51. Maas, W., Natschlager, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Computation 14, 2531–2560 (2002)

52. Matsumoto, Y.: An Introduction to Morse Theory. American Mathematical
Society, Providence (2002)

53. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition. Reidel Publishing Com-
pany, Dordrecht (1980)

54. Maturana, H.R., Varela, F.J.: The Tree of Knowledge. Shambhala Publications,
Boston (1992)

55. McCauly, J.: Chaos, Dynamics, and Fractals. Cambridge Nonlinear Science Series,
Cambridge, UK (1994)

56. Mjolsness, E., Sharp, D., Reinitz, J.: A connectionist model of development. Journal
of Theoretical Biology 152, 429–458 (1991)

57. O’Nuallain, S.: Code and context in gene expression, cognition, and consciousness.
In: Barbiere, M. (ed.) The Codes of Life: The Rules of Macroevolution, ch. 15, pp.
347–356. Springer, New York (2008)

58. O’Nuallain, S., Strohman, R.: Genome and natural language: how far can the
analogy be extended? In: Witzany, G. (ed.) Proceedings of Biosemiotics. Tartu
University Press, Umweb (2007)

59. Pettini, M.: Geometry and Topology in Hamiltonian Dynamics and Statistical Me-
chanics. Springer, New York (2007)

60. Pratt, V.: Modeling concurrency with geometry. In: Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
311–322 (1991)

61. Reinitz, J., Sharp, D.: Mechanisms of even stripe formation. Mechanics of Devel-
opment 49, 133–158 (1995)

62. Scherrer, K., Jost, J.: The gene and the genon concept: a functional and
information-theoretic analysis. Molecular Systems Biology 3, 87–95 (2007)

63. Scherrer, K., Jost, J.: Gene and genon concept: coding versus regulation. Theory
in Bioscience 126, 65–113 (2007)

64. Sharp, D., Reinitz, J.: Prediction of mutant expression patterns using gene circuits.
BioSystems 47, 79–90 (1998)

65. Skierski, M., Grundland, A., Tuszynski, J.: Analysis of the three-dimensional time-
dependent Landau-Ginzburg equation and its solutions. Journal of Physics A
(Math. Gen.) 22, 3789–3808 (1989)

66. Toulouse, G., Dehaene, S., Changeux, J.: Spin glass model of learning by selection.
Proceedings of the National Academy of Sciences 83, 1695–1698 (1986)

67. Turner, B.: Histone acetylation and an epigeneticv code. Bioessays 22, 836–845
(2000)

68. Wallace, R.: Consciousness: A Mathematical Treatment of the Global Neuronal
Workspace Model. Springer, New York (2005)

69. Wallace, R.: Culture and inattentional blindness. Journal of Theoretical
Biology 245, 378–390 (2007)

70. Wallace, R.: Toward formal models of biologically inspired, highly parallel machine
cognition. International Journal of Parallel, Emergent, and Distributed Systems 23,
367–408 (2008)

71. Wallace, R.: Developmental disorders as pathological resilience domains. Ecology
and Society 13(1), 29 (2008),
http://www.ecologyandsociety.org/vol13/iss1/art29/

72. Wallace, R.: Programming coevolutionary machines: the emerging conundrum. In-
ternational Journal of Parallel, Emergent, and Distributed Systems (in press, 2009)

http://www.ecologyandsociety.org/vol13/iss1/art29/

Code, Context, and Epigenetic Catalysis in Gene Expression 321

73. Wallace, R., Fullilove, M.: Collective Consciousness and its Discontents: Institu-
tional Distributed Cognition, Racial Policy, and Public Health in the United States.
Springer, New York (2008)

74. Wallace, R., Wallace, D.: Punctuated equilibrium in statistical models of general-
ized coevolutionary resilience: how sudden ecosystem transitions can entrain both
phenotype expression and Darwinian selection. In: Priami, C. (ed.) Transactions on
Computational Systems Biology IX. LNCS (LNBI), vol. 5121, pp. 23–85. Springer,
Heidelberg (2008)

75. Wallace, R.G., Wallace, R.: Evolutionary radiation and the spectrum of conscious-
ness. Consciousness and Cognition (2009), doi:10.1016/j.concog.2008.12.002

76. Waterland, R., Michels, K.: Epigenetic epidemiology of the developmental origins
hypothesis. Annual Reviews of Nutrition 27, 363–388 (2007)

77. Weaver, I.: Epigenetic effects of glucocorticoids. Seminars in Fetal and Neonatal
Medicine (2009), doi:10.1016/j.siny.2008.12.002

78. Weinstein, A.: Groupoids: unifying internal and external symmetry. Notices of the
American Mathematical Association 43, 744–752 (1996)

79. West-Eberhard, M.: Developmental plasticity and the origin of species differences.
Proceedings of the National Academy of Sciences 102, 6543–6549 (2005)

80. Wiegand, R.: An analysis of cooperative coevolutionary algorithms. PhD Thesis,
George Mason University (2003)

81. Wolpert, D., Macready, W.: No free lunch theorems for search. Santa Fe Institute,
SFI-TR-02-010 (1995)

82. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1, 67–82 (1997)

83. Wymer, C.R.: Structural nonlinear continuous-time models in econometrics.
Macroeconomic Dynamics 1, 518–548 (1997)

84. Zhu, R., Rebirio, A., Salahub, D., Kaufmann, S.: Studying genetic regulatory net-
works at the molecular level: delayed reaction stochastic models. Journal of Theo-
retical Biology 246, 725–745 (2007)

16 Mathematical Appendix

16.1 The Shannon-McMillan Theorem

According to the structure of the underlying language of which a message is a
particular expression, some messages are more ‘meaningful’ than others, that
is, are in accord with the grammar and syntax of the language. The Shannon-
McMillan or Asymptotic Equipartition Theorem, describes how messages them-
selves are to be classified.

Suppose a long sequence of symbols is chosen, using the output of a random
variable X , so that an output sequence of length n, with the form

xn = (α0, α1, ..., αn−1)

has joint and conditional probabilities

P (X0 = α0, X1 = α1, ..., Xn−1 = αn−1)

P (Xn = αn|X0 = α0, ..., Xn−1 = αn−1).

322 R. Wallace and D. Wallace

Using these probabilities we may calculate the conditional uncertainty

H(Xn|X0, X1, ..., Xn−1).

The uncertainty of the information source, H [X], is defined as

H [X] = lim
n→∞ H(Xn|X0, X1, ..., Xn−1). (21)

In general
H(Xn|X0, X1, ..., Xn−1) ≤ H(Xn).

Only if the random variables Xj are all stochastically independent does equality
hold. If there is a maximum n such that, for all m > 0

H(Xn+m|X0, ..., Xn+m−1) = H(Xn|X0, ..., Xn−1),

then the source is said to be of order n. It is easy to show that

H [X] = lim
n→∞

H(X0, ...Xn)
n + 1

.

In general the outputs of the Xj , j = 0, 1, ..., n are dependent. That is, the output
of the communication process at step n depends on previous steps. Such serial
correlation, in fact, is the very structure which enables most of what is done in
this paper.

Here, however, the processes are all assumed statble in time, that is, the
probabilities and serial correlations do not change in time, and the system is
stationary.

A very broad class of such self-correlated, stationary, information sources, the
so-called ergodic sources for which the long-run relative frequency of a sequence
converges stochastically to the probability assigned to it, have a particularly
interesting property:

It is possible, in the limit of large n, to divide all sequences of outputs of an
ergodic information source into two distinct sets, S1 and S2, having, respectively,
very high and very low probabilities of occurrence, with the source uncertainty
providing the splitting criterion. In particular the Shannon-McMillan Theorem
states that, for a (long) sequence having n (serially correlated) elements, the
number of ‘meaningful’ sequences, N(n) – those belonging to set S1 – will satisfy
the relation

log[N(n)]
n

≈ H [X]. (22)

More formally,

lim
n→∞

log[N(n)]
n

= H [X]

= lim
n→∞ H(Xn|X0, ..., Xn−1)

Code, Context, and Epigenetic Catalysis in Gene Expression 323

= lim
n→∞

H(X0, ..., Xn)
n + 1

. (23)

Using the internal structures of the information source permits limiting attention
only to high probability ‘meaningful’ sequences of symbols.

16.2 The Rate Distortion Theorem

The Shannon-McMillan Theorem can be expressed as the ‘zero error limit’ of
the Rate Distortion Theorem [20, 24] which defines a splitting criterion that
identifies high probability pairs of sequences. We follow closely the treatment
of [20].

The origin of the problem is the question of representing one information
source by a simpler one in such a way that the least information is lost. For
example we might have a continuous variate between 0 and 100, and wish to
represent it in terms of a small set of integers in a way that minimizes the
inevitable distortion that process creates. Typically, for example, an analog audio
signal will be replaced by a ‘digital’ one. The problem is to do this in a way which
least distorts the reconstructed audio waveform.

Suppose the original stationary, ergodic information source Y with output
from a particular alphabet generates sequences of the form

yn = y1, ..., yn.

These are ‘digitized,’ in some sense, producing a chain of ‘digitized values’

bn = b1, ..., bn,

where the b-alphabet is much more restricted than the y-alphabet.
bn is, in turn, deterministically retranslated into a reproduction of the original

signal yn. That is, each bm is mapped on to a unique n-length y-sequence in the
alphabet of the information source Y :

bm → ŷn = ŷ1, ..., ŷn.

Note, however, that many yn sequences may be mapped onto the same retrans-
lation sequence ŷn, so that information will, in general, be lost.

The central problem is to explicitly minimize that loss.
The retranslation process defines a new stationary, ergodic information

source, Ŷ .
The next step is to define a distortion measure, d(y, ŷ), which compares the

original to the retranslated path. For example the Hamming distortion is

d(y, ŷ) = 1, y �= ŷ

d(y, ŷ) = 0, y = ŷ. (24)

324 R. Wallace and D. Wallace

For continuous variates the Squared error distortion is

d(y, ŷ) = (y − ŷ)2. (25)

There are many possibilities.
The distortion between paths yn and ŷn is defined as

d(yn, ŷn) =
1
n

n∑
j=1

d(yj , ŷj). (26)

Suppose that with each path yn and bn-path retranslation into the y-language
and denoted yn, there are associated individual, joint, and conditional probabil-
ity distributions

p(yn), p(ŷn), p(yn|ŷn).

The average distortion is defined as

D =
∑
yn

p(yn)d(yn, ŷn). (27)

It is possible, using the distributions given above, to define the information
transmitted from the incoming Y to the outgoing Ŷ process in the usual manner,
using the Shannon source uncertainty of the strings:

I(Y, Ŷ) = H(Y)−H(Y |Ŷ) = H(Y) + H(Ŷ)−H(Y, Ŷ).

If there is no uncertainty in Y given the retranslation Ŷ , then no information is
lost.

In general, this will not be true.
The information rate distortion function R(D) for a source Y with a distortion

measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I(Y, Ŷ). (28)

The minimization is over all conditional distributions p(y|ŷ) for which the joint
distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint (i.e.,
average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the maximum achievable
rate of information transmission which does not exceed the distortion D. See
[20, 24] details.

More to the point, however, is the following: Pairs of sequences (yn, ŷn) can
be defined as distortion typical ; that is, for a given average distortion D, defined
in terms of a particular measure, pairs of sequences can be divided into two sets,
a high probability one containing a relatively small number of (matched) pairs
with d(yn, ŷn) ≤ D, and a low probability one containing most pairs. As n →∞,
the smaller set approaches unit probability, and, for those pairs,

p(yn) ≥ p(ŷn|yn) exp[−nI(Y, Ŷ)]. (29)

Code, Context, and Epigenetic Catalysis in Gene Expression 325

Thus, roughly speaking, I(Y, Ŷ) embodies the splitting criterion between high
and low probability pairs of paths.

For the theory of interacting information sources, then, I(Y, Ŷ) can play the
role of H in the dynamic treatment above.

The rate distortion function can actually be calculated in many cases by using
a Lagrange multiplier method – see Section 13.7 of [20].

16.3 Groupoids

Basic ideas. Following [78] closely, a groupoid, G, is defined by a base set A
upon which some mapping – a morphism – can be defined. Note that not all
possible pairs of states (aj , ak) in the base set A can be connected by such a
morphism. Those that can define the groupoid element, a morphism g = (aj , ak)
having the natural inverse g−1 = (ak, aj). Given such a pairing, it is possible to
define ‘natural’ end-point maps α(g) = aj , β(g) = ak from the set of morphisms
G into A, and a formally associative product in the groupoid g1g2 provided
α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then the product is
defined, and associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity elements λg, ρg such that
λgg = g = gρg [78].

An orbit of the groupoid G over A is an equivalence class for the relation
aj ∼ Gak if and only if there is a groupoid element g with α(g) = aj and
β(g) = ak. Following [15], we note that a groupoid is called transitive if it has
just one orbit. The transitive groupoids are the building blocks of groupoids in
that there is a natural decomposition of the base space of a general groupoid
into orbits. Over each orbit there is a transitive groupoid, and the disjoint union
of these transitive groupoids is the original groupoid. Conversely, the disjoint
union of groupoids is itself a groupoid.

The isotropy group of a ∈ X consists of those g in G with α(g) = a = β(g).
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map (α, β) : G → A×A is a morphism from
G to the pair groupoid of A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy groups. If f : X → Y
is a function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X : f(x1) = f(x2)]
defines an equivalence relation.

Groupoids may have additional structure. As [78] explains, a groupoid G is a
topological groupoid over a base space X if G and X are topological spaces and
α, β and multiplication are continuous maps. A criticism sometimes applied to
groupoid theory is that their classification up to isomorphism is nothing other
than the classification of equivalence relations via the orbit equivalence relation
and groups via the isotropy groups. The imposition of a compatible topological
structure produces a nontrivial interaction between the two structures. It is
possible to introduce a metric structure on manifolds of related information
sources, producing such interaction.

326 R. Wallace and D. Wallace

In essence, a groupoid is a category in which all morphisms have an inverse,
here defined in terms of connection to a base point by a meaningful path of an
information source dual to a cognitive process.

As [78] points out, the morphism (α, β) suggests another way of looking at
groupoids. A groupoid over A identifies not only which elements of A are equiv-
alent to one another (isomorphic), but it also parametizes the different ways
(isomorphisms) in which two elements can be equivalent, i.e., all possible infor-
mation sources dual to some cognitive process. Given the information theoretic
characterization of cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown [13] describes the fundamental structure as follows:

A groupoid should be thought of as a group with many objects, or
with many identities... A groupoid with one object is essentially just a
group. So the notion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range of applications...

EXAMPLE 1. A disjoint union [of groups] G = ∪λGλ, λ ∈ Λ, is a
groupoid: the product ab is defined if and only if a, b belong to the same
Gλ, and ab is then just the product in the group Gλ. There is an identity
1λ for each λ ∈ Λ. The maps α, β coincide and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a set] X becomes
a groupoid with α, β : R → X the two projections, and product
(x, y)(y, z) = (x, z) whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X ...

[78] makes the following fundamental point:

Almost every interesting equivalence relation on a space B arises in
a natural way as the orbit equivalence relation of some groupoid G over
B. Instead of dealing directly with the orbit space B/G as an object
in the category Smap of sets and mappings, one should consider instead
the groupoid G itself as an object in the category Ghtp of groupoids and
homotopy classes of morphisms.

The groupoid approach has become quite popular in the study of networks of
coupled dynamical systems which can be defined by differential equation models,
[35].

Global and local symmetry groupoids. Here we follow [78] fairly closely,
using the example of a finite tiling.

Consider a tiling of the euclidean plane R2 by identical 2 by 1 rectangles,
specified by the set X (one dimensional) where the grout between tiles is X =
H∪V , having H = R×Z and V = 2Z×R, where R is the set of real numbers and
Z the integers. Call each connected component of R2\X , that is, the complement
of the two dimensional real plane intersecting X , a tile.

Let Γ be the group of those rigid motions of R2 which leave X invariant, i.e.,
the normal subgroup of translations by elements of the lattice Λ = H ∩ V =

Code, Context, and Epigenetic Catalysis in Gene Expression 327

2Z × Z (corresponding to corner points of the tiles), together with reflections
through each of the points 1/2Λ = Z × 1/2Z, and across the horizontal and
vertical lines through those points. As noted in [78], much is lost in this coarse-
graining, in particular the same symmetry group would arise if we replaced
X entirely by the lattice Λ of corner points. Γ retains no information about
the local structure of the tiled plane. In the case of a real tiling, restricted to
the finite set B = [0, 2m] × [0, n] the symmetry group shrinks drastically: The
subgroup leaving X ∩ B invariant contains just four elements even though a
repetitive pattern is clearly visible. A two-stage groupoid approach recovers the
lost structure.

We define the transformation groupoid of the action of Γ on R2 to be the set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γy},

with the partially defined binary operation

(x, γ, y)(y, ν, z) = (x, γν, z).

Here α(x, γ, y) = x, and β(x, γ, y) = y, and the inverses are natural.
We can form the restriction of G to B (or any other subset of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

1. An orbit of the groupoid G over B is an equivalence class for the relation
x ∼G y if and only if there is a groupoid element g with α(g) = x and β(g) = y.
Two points are in the same orbit if they are similarly placed within their tiles

or within the grout pattern.
2. The isotropy group of x ∈ B consists of those g in G with α(g) = x = β(g).

It is trivial for every point except those in 1/2Λ∩B, for which it is Z2×Z2, the
direct product of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger context permits def-
inition of a much richer structure, i.e., the identification of local symmetries.

We construct a second groupoid as follows. Consider the plane R2 as being
decomposed as the disjoint union of P1 = B ∩ X (the grout), P2 = B\P1 (the
complement of P1 in B, which is the tiles), and P3 = R2\B (the exterior of the
tiled room). Let E be the group of all euclidean motions of the plane, and define
the local symmetry groupoid Gloc as the set of triples (x, γ, y) in B × E × B
for which x = γy, and for which y has a neighborhood U in R2 such that
γ(U ∩ Pi) ⊆ Pi for i = 1, 2, 3. The composition is given by the same formula as
for G(Γ, R2).

For this groupoid-in-context there are only a finite number of orbits:

O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.

328 R. Wallace and D. Wallace

O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich indeed:
The isotropy group of a point in O1 is now isomorphic to the entire rotation

group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.

16.4 Morse Theory

Morse theory examines relations between analytic behavior of a function – the
location and character of its critical points – and the underlying topology of
the manifold on which the function is defined. We are interested in a number
of such functions, for example information source uncertainty on a parameter
space and ‘second order’ iterations involving parameter manifolds determining
critical behavior, for example sudden onset of a giant component in the mean
number model [74], and universality class tuning in the mean field model of the
next section. These can be reformulated from a Morse theory perspective. Here
we follow closely the elegant treatments of [46, 59].

The essential idea of Morse theory is to examine an n-dimensional manifold
M as decomposed into level sets of some function f : M → R where R is the
set of real numbers. The a-level set of f is defined as

f−1(a) = {x ∈ M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact, then the whole
manifold can be decomposed into such slices in a canonical fashion between two
limits, defined by the minimum and maximum of f on M . Let the part of M
below a be defined as

Ma = f−1(−∞, a] = {x ∈ M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse functions are defined as a particular set of smooth functions f : M → R
as follows. Suppose a function f has a critical point xc, so that the derivative
df(xc) = 0, with critical value f(xc). Then f is a Morse function if its crit-
ical points are nondegenerate in the sense that the Hessian matrix of second
derivatives at xc, whose elements, in terms of local coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues, so that there are
no lines or surfaces of critical points and, ultimately, critical points are isolated.

Code, Context, and Epigenetic Catalysis in Gene Expression 329

The index of the critical point is the number of negative eigenvalues of H
at xc.

A level set f−1(a) of f is called a critical level if a is a critical value of f , that
is, if there is at least one critical point xc ∈ f−1(a).

Again following [59], the essential results of Morse theory are:
1. If an interval [a, b] contains no critical values of f , then the topology of

f−1[a, v] does not change for any v ∈ (a, b]. Importantly, the result is valid even
if f is not a Morse function, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology of f−1[a, v] changes
in a manner determined by the properties of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the critical points of f is a
discrete subset of M , i.e., critical points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then on a finite
interval [a, b] ⊂ R, there is only a finite number of critical points p of f such
that f(p) ∈ [a, b]. The set of critical values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse functions on M is an
open dense set in the set of real functions of M of differentiability class r for
0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that are the same
for all the manifolds that have the same topology as M , can be estimated and
sometimes computed exactly once all the critical points of f are known: Let
the Morse numbers μi(i = 0, ..., m) of a function f on M be the number of
critical points of f of index i, (the number of negative eigenvalues of H). The
Euler characteristic of the complicated manifold M can be expressed as the
alternating sum of the Morse numbers of any Morse function on M ,

χ =
m∑

i=1

(−1)iμi.

The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V, E, and F are the numbers of vertices, edges, and faces in the
polyhedron.

7. Another important theorem states that, if the interval [a, b] contains a
critical value of f with a single critical point xc, then the topology of the set
Mb defined above differs from that of Ma in a way which is determined by the
index, i, of the critical point. Then Mb is homeomorphic to the manifold obtained
from attaching to Ma an i-handle, i.e., the direct product of an i-disk and an
(m− i)-disk.

Again, see [52, 59] for details.

16.5 Generalized Onsager Theory

Understanding the time dynamics of groupoid-driven information systems away
from phase transition critical points requires a phenomenology similar to the

330 R. Wallace and D. Wallace

Onsager relations of nonequilibrium thermodynamics. This also leads to a gen-
eral theory involving large-scale topological changes in the sense of Morse theory.

If the Groupoid Free Energy (GFE) of a biological process is parametized by
some vector of quantities K = (K1, ..., Km), then, in analogy with nonequilib-
rium thermodynamics, gradients in the Kj of the disorder, defined as

SG = FG(K)−
m∑

j=1

Kj∂FG/∂Kj (30)

become of central interest.
Equation (30) is similar to the definition of entropy in terms of the free energy

of a physical system. Pursuing the homology further, the generalized Onsager
relations defining temporal dynamics of systems having a GFE become

dKj/dt =
∑

i

Lj,i∂SG/∂Ki, (31)

where the Lj,i are, in first order, constants reflecting the nature of the underlying
cognitive phenomena. The L-matrix is to be viewed empirically, in the same
spirit as the slope and intercept of a regression model, and may have structure
far different than familiar from more simple chemical or physical processes. The
∂SG/∂K are analogous to thermodynamic forces in a chemical system, and may
be subject to override by external physiological or other driving mechanisms:
biological and cognitive phenomena, unlike simple physical systems, can make
choices as to resource allocation.

That is, an essential contrast with simple physical systems driven by (say)
entropy maximization is that complex biological or cognitive structures can make
decisions about resource allocation, to the extent resources are available. Thus
resource availability is a context, not a determinant, of behavior.

Equations (30) and (31) can be derived in a simple parameter-free covariant
manner which relies on the underlying topology of the information source space
implicit to the development [74]. We will not pursue that development here.

The dynamics, as we have presented them so far, have been noiseless, while
biological systems are always very noisy. Equation (31) might be rewritten as

dKj/dt =
∑

i

Lj,i∂SG/∂Ki + σW (t)

where σ is a constant and W (t) represents white noise. This leads directly to a
family of classic stochastic differential equations having the form

dKj
t = Lj(t,K)dt + σj(t,K)dBt, (32)

where the Lj and σj are appropriately regular functions of t and K, and dBt

represents the noise structure, and we have readjusted the indices.
Further progress in this direction requires introduction of methods from

stochastic differential geometry and related topics in the sense of [27]. The ob-
vious inference is that noise – not necessarily ‘white’ – can serve as a tool to

Code, Context, and Epigenetic Catalysis in Gene Expression 331

shift the system between various topological modes, as a kind of crosstalk and
the source of a generalized stochastic resonance.

Effectively, topological shifts between and within dynamic manifolds consti-
tute another theory of phase transitions [59], and this phenomenological Onsager
treatment would likely be much enriched by explicit adoption of a Morse theory
perspective.

16.6 The Tuning Theorem

Messages from an information source, seen as symbols xj from some alphabet,
each having probabilities Pj associated with a random variable X , are ‘encoded’
into the language of a ‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone receiving the symbol
yk then retranslates it (without error) into some xk, which may or may not be
the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a ran-
dom variable X having the distribution

P (X = xj) = Pj , j = 1, ..., M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Then the Shannon uncertainty of X and Y independently and the joint uncer-
tainty of X and Y together are defined respectively as

H(X) = −
M∑

j=1

Pj log(Pj)

H(Y) = −
L∑

k=1

Pk log(Pk)

H(X, Y) = −
M∑

j=1

L∑
k=1

Pj,k log(Pj,k). (33)

332 R. Wallace and D. Wallace

The conditional uncertainty of Y given X is defined as

H(Y |X) = −
M∑

j=1

L∑
k=1

Pj,k log[P (yk|xj)]. (34)

For any two stochastic variates X and Y , H(Y) ≥ H(Y |X), as knowledge of
X generally gives some knowledge of Y . Equality occurs only in the case of
stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), we have

H(X |Y) = H(X, Y)−H(Y).

The information transmitted by translating the variable X into the channel
transmission variable Y – possibly with error – and then retranslating without
error the transmitted Y back into X is defined as

I(X |Y) = H(X)−H(X |Y) = H(X)+H(Y)−H(X, Y) (35)

See, for example, [1, 20, 47] for details. The essential point is that if there is
no uncertainty in X given the channel Y , then there is no loss of information
through transmission. In general this will not be true, and herein lies the essence
of the theory.

Given a fixed vocabulary for the transmitted variable X , and a fixed vocabu-
lary and probability distribution for the channel Y , we may vary the probability
distribution of X in such a way as to maximize the information sent. The ca-
pacity of the channel is defined as

C = max
P (X)

I(X |Y) (36)

subject to the subsidiary condition that
∑

P (X) = 1.
The critical trick of the Shannon Coding Theorem for sending a message with

arbitrarily small error along the channel Y at any rate R < C is to encode it in
longer and longer ‘typical’ sequences of the variable X ; that is, those sequences
whose distribution of symbols approximates the probability distribution P (X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] ≈ nH(X),

where H(X) is the uncertainty of the stochastic variable defined above. Some
consideration shows that S(n) is much less than the total number of possible
messages of length n. Thus, as n → ∞, only a vanishingly small fraction of
all possible messages is meaningful in this sense. This observation, after some
considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, which are
sent at very nearly the capacity of the channel. As the encoded messages become

Code, Context, and Epigenetic Catalysis in Gene Expression 333

longer and longer, their maximum possible rate of transmission without error
approaches channel capacity as a limit. Again, [1, 20, 47] provide details.

This approach can be, in a sense, inverted to give a tuning theorem which
parsimoniously describes the essence of the Rate Distortion Manifold.

Telephone lines, optical wave, guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must struc-
ture a message so as to attain an optimal error-free transmission rate.

Telephone lines, wave guides, and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most other signaling net-
works. Indeed, the capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize I(X |Y).

Suppose there is some message X so critical that its probability distribution
must remain fixed. The trick is to fix the distribution P (x) but modify the
channel – i.e., tune it – so as to maximize I(X |Y). The dual channel capacity
C∗ can be defined as

C∗ = max
P (Y),P (Y |X)

I(X |Y). (37)

But

C∗ = max
P (Y),P (Y |X)

I(Y |X)

since

I(X |Y) = H(X) + H(Y)−H(X, Y) = I(Y |X).

Thus, in a purely formal mathematical sense, the message transmits the channel,
and there will indeed be, according to the Coding Theorem, a channel distribu-
tion P (Y) which maximizes C∗.

One may do better than this, however, by modifying the channel matrix
P (Y |X). Since

P (yj) =
M∑
i=1

P (xi)P (yj |xi),

P (Y) is entirely defined by the channel matrix P (Y |X) for fixed P (X) and

C∗ = max
P (Y),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated expression

I(X |Y) = H(X) + H(Y)−H(X, Y),

that contains products of terms and their logs, subject to constraints that the
sums of probabilities are 1 and each probability is itself between 0 and 1. Maxi-
mization is done by varying the channel matrix terms P (yj |xi) within the con-
straints. This is a difficult problem in nonlinear optimization. However, for the
special case M = L, C∗ may be found by inspection:

334 R. Wallace and D. Wallace

If M = L, then choose
P (yj|xi) = δj,i,

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ = H(X),

with P (yk) = P (xk) for all k. Information is thus transmitted without error
when the channel becomes ‘typical’ with respect to the fixed message distribution
P (X).

If M < L, matters reduce to this case, but for L < M information must be
lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P (Y) or
of P (X) are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second a tuning theorem variant, a tunable retina-like Rate Distortion
Manifold. It seems likely, however, than for many important systems P (X) and
P (Y) will interpenetrate, to use Richard Levins’ terminology. That is, P (X) and
P (Y) will affect each other in characteristic ways, so that some form of mutual
tuning may be the most effective strategy.

Author Index

Aman, Bogdan 26

Bantang, Johnrob Y. 164
Bortolussi, Luca 216
Bošnački, D. 69

Calder, Muffy 1
Chesi, Graziano 268
Ciobanu, Gabriel 26
Ciocchetta, Federica 45

Danos, Vincent 116
Dassow, Jürgen 187
David, Maria Pamela C. 164
de Vink, E.P. 69

Feret, Jérôme 116
Fontana, Walter 116

Gilbert, David 138
Guerriero, Maria Luisa 90

Harmer, Russ 116
Heiner, Monika 138
Hillston, Jane 1

Jack, John 200

Krivine, Jean 116

Lehrack, Sebastian 138

Marwan, Wolfgang 138
Mendoza, Eduardo R. 164
Mitrana, Victor 187

Păun, Andrei 200
Policriti, Alberto 216
Pronk, T.E. 69

Wallace, Deborah 283
Wallace, Rodrick 283

	Title Page
	Preface
	Organization
	Table of Contents
	Computational Models for Cell Processes
	Process Algebra Modelling Styles for Biomolecular Processes
	Introduction
	Process Algebras
	Forms of Synchronisation
	π-Calculus
	Beta-Binders
	PEPA
	Bio-PEPA
	sCCP

	Example Pathway
	PEPA Models
	Reagent-Centric Style
	Pathway-Centric Style

	Bio-PEPA
	π-Calculus
	Beta-Binders
	sCCP
	Discussion
	Conclusions
	References

	Simple, Enhanced and Mutual Mobile Membranes
	Introduction
	Mobile Membranes
	Simple Mobile Membranes
	Enhanced Mobile Membranes
	Mutual Mobile Membranes

	Computability Power of Mobile Membranes
	Simple Mobile Membranes
	Enhanced Mobile Membranes
	Mutual Mobile Membranes

	Related Work: P Systems with Active Membranes
	Conclusions
	References

	Bio-PEPA with Events
	Introduction
	Bio-PEPA
	From Bio-PEPA to ODE System (π$_{ODE)}$
	Example

	Bio-PEPA with Events
	SBML-Like Events: Some Definitions
	Assumptions
	The Definition of the Language
	Example (Continued)

	Mapping to Hybrid Automata
	Hybrid Automata
	Definition of the Mapping
	Example (Continued 2)

	Stochastic Simulation by Gillespie’s Algorithm
	The Acetylcholine Receptor Model
	Related Works
	Conclusions
	References
	A Appendix: Bio-PEPA System for the Acetylcholine Receptor Model

	In $Silico$ Modelling and Analysis of Ribosome Kinetics and aa-tRNA Competition
	Introduction
	A Kinetic Model of mRNA Translation
	ThePrismModel
	Insertion Errors
	Competition and Insertion Times
	Concluding Remarks
	References
	A Appendix: Suplementary Figures and Data

	Qualitative and Quantitative Analysis of a Bio-PEPA Model of the Gp130/JAK/STAT Signalling Pathway
	Introduction
	Bio-PEPA
	The Gp130/JAK/STAT Signalling Pathway
	The Bio-PEPA Model
	Model-Checking Based Qualitative Analysis
	PRISM Modelling and Specification Language
	Model-Checking the Bio-PEPA Model with PRISM

	Simulation Based Time-Series Analysis
	Semi-quantitative Analysis of the CTMC with Levels
	Related Work
	Conclusions and Future Work
	References

	Rule-Based Modelling and Model Perturbation
	Introduction
	Kappa and Agent Variants
	Agent Variants
	A First Example
	Generic Rules

	The Perturbation Space
	The Consensus Model
	Ligand Perturbations
	Drug Perturbations
	The Uses of Mutational Perturbations
	Testing the Wild-Type Model
	The Limits of Perturbation Testing

	Conclusions
	References

	Extended Stochastic Petri Nets for Model-Based Design of Wetlab Experiments
	Motivation
	Stochastic Modelling
	The Markovian Case - Stochastic Petri Nets ${\mathcal (SPN}_{Bio}$)
	The Non-markovian Case - Extended Stochastic Petri Nets
	Generalised Stochastic Petri Nets ${\mathcal (GSPN}_{Bio})$
	Deterministic and Stochastic Petri Nets ${\mathcal (DSPN}_{Bio})$

	Stochastic Analysis
	Typical Components
	Time-Controlled Inflow/Outflow
	Token-Controlled Inflow
	Switch between Deterministic and Stochastic Transitions

	Lac Operon Model
	Tools
	Summary
	References

	A Projective Brane Calculus with Activate, Bud and Mate as Primitive Actions
	Introduction
	Modified Notations
	Actions
	Choice, Parallel, and Series
	Rates
	Affinity
	Branes and Systems
	Replication
	Sample Notation: Mitogen-Induced Proliferation of Schwann Cells

	Projective Activate, Bud, and Mate Calculus
	Mate and Bud as Inverses of the Other
	Projective Equivalence
	Basic Reduction Rules
	Non-primitive Actions with Bud and Mate
	Enhanced Membrane Dynamics
	Competition of Parallel Membrane Processes
	Molecules as Systems
	Mass and Energy Conservation

	PABM as an Extension of Existing Brane Calculi
	Summary and Outlook
	Application Example: Viral Infection
	Implementation and Compatibility with SPiM

	References

	Accepting Networks of Non-inserting Evolutionary Processors
	Introduction
	Some Notations and Definitions
	Computational Power of Regular ANNIEPs
	Computational Power of Random Context ANNIEPs
	Final Remarks
	References

	Discrete Modeling of Biochemical Signaling with Memory Enhancement
	Introduction
	Motivation Behind the Paper

	The Nondeterministic Waiting Time Algorithm
	Memory Enhancement
	Case 1: Deterministic Memory Enhancement
	Case 2: Nondeterministic Memory Enhancement

	Other Models
	Lotka-Volterra Predator-Prey
	Circadian Rhythm

	Final Remarks
	References

	Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back
	Introduction
	Preliminaries
	Stochastic Concurrent Constraint Programming
	Modeling Biological Systems in sCCP
	Restricted sCCP

	From sCCP to ODE
	Preservation of Rate Semantics
	Preservation of Dynamic Behavior
	Behavioral Equivalence
	More on the Restrictions of the Language

	From ODE’s to sCCP
	The Translation to sCCP
	Invertibility
	Behavioral Equivalence

	Final Discussion
	References

	Computing Equilibrium Points of Genetic Regulatory Networks
	Introduction
	Preliminaries
	Equilibria Computation
	Illustrative Examples
	Genetic Regulatory Network in PROD Form with Non-Hill Function
	Genetic Regulatory Network in SUM Form with Hill Function
	Repressilator Model in E. Coli
	Genetic Regulatory Network in SUM Form with Non-Hill Function

	Conclusion
	References

	Code, Context, and Epigenetic Catalysis in Gene Expression
	Introduction
	Toward New Tools
	Epigenetic Epidemiology

	Models of Development
	The Spinglass Model
	Shifting Perspective: Cognition as an Information Source

	Symmetry Arguments
	The First Level
	The Second Level
	Spontaneous Symmetry Breaking

	Tunable Epigenetic Catalysis
	Rate Distortion Dynamics
	More Topology
	Inherited Epigenetic Memory
	Multiple Processes
	‘Coevolutionary’ Development
	Multiple Models
	Epigenetic Focus
	Developmental Disorders
	Network Information Theory
	Embedding Ecosystems as Information Sources
	Ecosystems Farm Organismal Development
	A Simple Probability Argument

	Reconsidering Directed Homotopy: Shadows
	Epigenetic Programming of Artificial Systems for Biotechnology
	Discussion and Conclusions
	References
	Mathematical Appendix
	The Shannon-McMillan Theorem
	The Rate Distortion Theorem
	Groupoids
	Morse Theory
	Generalized Onsager Theory
	The Tuning Theorem

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

