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Foreword

Normalmode calculations ofmolecules of biological interest [1–3]were intro-
duced several years after the first molecular dynamics simulation [4]. All
of the calculations studied the bovine pancreatic inhibitor, which was the
model system used for simulations because of its small size and the availab-
ility of a high-resolution crystal structure at that time [5]. It was recognized
that normal modes have several important attributes, which made them of
interest as a complement to molecular dynamics simulations, even though
they approximate the full potential by a harmonic function around a (not
necessarily the) minimum energy structure: (a) Unlike molecular dynamics
simulations, essentially exact results with no statistical error are obtained;
(b) only diagonalization of a matrix is required; and (c) quantization, which
is of particular importance for entropy and specific heat calculations, can
be introduced in a straightforward manner. A study of the bovine pancre-
atic inhibitor, for example, showed that above 50 K [2], quantum corrections
to the atomic fluctuations are small, although convergence of the entropy
to the classical value required much higher temperatures. Relatively little
was donewith normalmode treatments of biomolecules in subsequent years,
with most of the attention focused on molecular dynamics simulations. The
latter, which take account of deviations from the harmonic approximation
because the full potential is used, provide more correct information, in prin-
ciple, about the classical dynamics and thermodynamics of macromolecular
systems. Moreover, solvent can easily be introduced in an explicit manner.
However, one important attribute of normal mode analyses, which has con-
tinued to be exploited, is that they provide information about conformation
changes in amanner that is often easier to visualize thanmolecular dynamics
simulations. This aspect was recognized very early in a normal mode study
of lysozyme, which demonstrated that the lowest mode gave a good descrip-
tion of the hinge closing motion in that molecule [6]. It was also shown in
reference [2] that the thermal atomic fluctuations, which contribute to the
temperature (B) factors observed in x-ray crystallography, can be estimated
by summing over the normal modes at the appropriate temperature and that
they approximate, at least in their relative values, those found experimentally
and calculated from molecular dynamics simulations.
In the last few years a number of advances have been made that have

considerably increased interest in the use of normal modes for the study of
biomolecules. One is the use of molecular dynamics for the generation of
quasi-harmonic modes [7, 8] or the essentially equivalent extended dynamics

v
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method [9]. In this approach the results of a molecular dynamics simulation
are used to construct the equal time fluctuationmatrix 〈xi xj〉, whose diagonal
and off-diagonal terms are interpreted as force constants for the calculation
of the associated modes. In this way, some anharmonic effects are included,
while the simplicity of the normal modes is maintained. A second develop-
ment of widespread interest is the introduction of methods for determining
the normal modes of very large systems that are difficult to treat by molecu-
lar dynamics. One approach applicable to highly symmetric systems is the
use of group theory to reduce the size of the matrices that have to be diag-
onalized [10]; a recent application is to a full treatment of the normal modes
of icosahedral viruses (see Van Vlijmen, this volume). An alternative, which
also limits the size of the matrices to be diagonalized, is to use an iterative
approach (Perahia, this volume). Whether the interesting idea of obtaining
normalmodeswithout theHessianmatrix by driving the systemat the appro-
priate frequency (Bowman, this volume) can be extended to largemolecules is
yet to be determined. Block normal modes [11,12] or so-called elastic models
[13] havebeen found tobe surprisingly effective for the studyof large systems.
In the former the full all-atom potential is used but the size of the matrices
that have to be calculated is reduced by treating “blocks” (e.g., consisting of
an amino acid or two amino acids) as rigid bodies so that only the transla-
tions and rotations contribute to the internal motions of themolecule (see Cui
and Olson, this volume). As an example, the application of the methodology
to F1-ATPase [14] has provided useful insights that complement molecular
dynamics simulation [15, 16]. The seminal elastic model paper of Tirion [13]
used a potential function, which consists of pair-wise interactions between
all atoms with an arbitrary cutoff and a scale factor introduced to fit the aver-
age B factors (see Bahar, Jernigan, Brooks, and Phillips, this volume). Such
simplified models are being widely applied and can be used even in cases
when atomic resolution structures are not available (see Ma, this volume). It
is interesting tomention in this regard, the paper by de Gennes and Papoular,
published in 1969 [17] that suggested the importance of the shape of the
molecule in determining its low frequency modes. The ease of use of these
“elastic” models, analogous to the program GRASP for electrostatic surface
calculations, is likely tomake their results an integral part ofpapersdescribing
structures obtained from x-ray crystallography, nuclear magnetic resonance
spectroscopy, and cryo-electronmicroscopy in the not-too-distant future. The
results are of interest primarily for the lowest frequency modes, which cor-
respond to the displacements with the largest amplitudes. One important
conclusion that has come from the studies of the approximatemodes for large
systems is that inmanycaseswhere the internalmotionshave a functional role
(e.g., F1-ATPase [14]), nature has by evolution encoded them in the structure,
which is composed of relatively rigid domains connected by flexible hinges.
As a consequence of this evolutionary encoding, large structural changes can
be achievedwithonly small displacements of theflexible parts of themolecule
(i.e., the hinges), which are reasonably approximated by a few normal
modes.
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The seductive simplicity of normal mode calculations requires a caution-
ary note in this volume dedicated to their use. Normal mode modes, when
scaled appropriately, provide the amplitudes of the motions around a min-
imum, an equilibrium property, but they tell us little about the dynamics of
the motions involved. In a large molecular complex, the wave number of
the modes range from about 0.1 or so to 3000 cm−1, values corresponding to
timescales on the order of vibrational periods in the range of nanoseconds to
femtoseconds. However, it is known from experiments and simulations that
motions of interestmay extend into themillisecond to second range. Thus, for
example, the suggestion that the lowest frequency modes can be identified
with slow exchange phenomena on the microseconds timescale is unlikely
to be valid. The identification of a conformational transition with one or a
few normal modes tells us something about the inherent flexibility of the
molecule but does not provide an understanding of the dynamics of the con-
formational change, which requires knowledge of the free energy along the
reaction coordinate. The primary reason for events on the molecular times-
cale to take longer than nanoseconds is that there are activation barriers to be
surmounted in the conformational change. These, of course, are not included
in the normalmode description. Although such timescales cannot be attained
directly by present-day molecular dynamics simulations, they are present in
the model and can be probed by transition path sampling [18], for example.
If molecular dynamics calculations are made of the temperature depend-

ence of the magnitude of the atomic fluctuations, they have a harmonic
behavior (the amplitude varies as T1/2) below 150 K or so and above that tem-
perature they increase more rapidly, corresponding to contributions not only
from oscillations within a well but also from jumps between wells [19, 20].
Interestingly, the analysis of a series of minima along a molecular dynam-
ics trajectory has shown that the normal modes are surprisingly similar [21].
Extensions of normal mode calculations to include such behavior, as well
as anharmonicity in general, are being discussed (see Kitao and Keyes, this
volume) but so far a generally useful robust method has not been proposed.
Another aspect of normalmodes is that the lowest frequencymodes capture

elements of the collective motions and can, in principle, be used as reduced
bases in molecular dynamics simulations for treating large scale displace-
ments (see Nilges and Liu, this volume). This would be the ideal marriage of
the two complementary approaches.
This volume, written by experts in the field, is a very useful addition to the

literature concerning the simulation of complex systems. It will serve a role
for normal mode studies, which complements that of the volume edited by
Becker et al., for molecular dynamics simulations [22]. Both beginners and
experts will find helpful information in this volume, though it appears to
me to be designed more for the latter. I have enjoyed looking through all the
chapters, though I have not been able to mention everyone in this foreword.

Martin Karplus
Strasbourg
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Preface

With rapid developments in novel experimental techniques, limits in the res-
olution, size, and complexity of the chemical and biological systems that
can be investigated have been constantly pushed forward. Recent examples
include solving the atomic structures of the ribosome, imaging bacterial cell
with 3D electron tomography, monitoring the structural dynamics of a single
molecularmotor and revealingmotion of enzymemolecules during catalysis.
The availability of these new experimental data poses exciting challenges to
the theoretical community for developing novel theoretical and computa-
tional techniques that can be used to better interpret experimental results and
glean further mechanistic or functional insights. In this book, we focus on a
specific technique, normalmode analysis (NMA), that is finding awide range
of applications in the study of chemical and biological problems. Although
traditionally used in highly harmonic systems such as small molecules in the
gas phase and solid-state materials, creative adaptation and further devel-
opments of NMA have demonstrated that it is capable of providing unique
insights into the structural and dynamic properties of complex systems. This
is vividly illustrated by the contributions here from leading experts in this
rapidly developing area.
The book is organized into two general sections. The first section concerns

fundamental algorithmdevelopmentsofNMAatdifferent resolutionsand the
application of those techniques in the study of biological systems of variable
sizes. The second section covers method developments based on or inspired
byNMAbut going beyond the harmonic approximation inherent in standard
NMA techniques.
The first chapter, by Hinsen, gives a concise and incisive introduction to

the fundamental physical ideas of NMA and reviews the basic numerical
algorithms along with typical observables based on application to proteins.
Since NMA formally involves a Hessian matrix inversion process that limits
its applicability to large systems, both numerical and approximate methods
have been developed to extend the size limit. In Chapter 2, Mouawad and
Perahia discuss iterative diagonalization methods that facilitate the solution
of large eigenvalue problems in NMA of large protein or protein complexes.
In Chapter 3, Rader et al. introduce the elastic network model, which has
become tremendously useful for large biomolecules and biomolecular assem-
blies; the chapter also provides an insightful analysis of why such simplified
models work well for complex protein systems. In Chapter 4, Li et al. further
compare the elastic model with another coarse-grained NMA techniques for

xi
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nucleic acid systems to explore both the applicability and limitations of these
methods; in addition, the use of NMA for spectral analysis in proteins using
hybrid quantummechanical andmolecular mechanical potentials is also dis-
cussed. Chapter 5, by Sanejouand, further illustrates the unique value of
different NMAapproaches in the study of functional motions in proteins that
undergo significant conformational transitions for function. In the next few
chapters, various NMAtechniques uniquely developed for specific classes of
biomolecular systems are discussed and illustrated. Chapter 9 concerns an
optimizing elastic network model for studying conformational transitions in
ATPases. Chapter 10 involves the development of elastic models for motions
of DNAmolecules at different length scales. Chapter 11 presents an efficient
method that takes advantage of symmetry in the NMAof virus particles.
Aunique value of NMAis that a subset of eigenvectors provides a compact

description of the intrinsic flexibility of biomolecules, which can be used to
better interpret data from various structural biology techniques; this is the
theme for three contributions in the book. In Chapter 6, Tama and Brooks
discuss the value of NMA in the analysis of low-resolution cryo-electron
microscopy data. This important application is also emphasized by Ma in
Chapter 7, in addition to the use of NMAin x-ray fiber diffraction refinement.
In Chapter 8, Phillips describes coupling NMA and x-ray crystallography in
the investigation of protein motions.
An intrinsic approximation in most NMA techniques is the harmonic

approximation to the potential energy surface, which needs to be avoided
in a more accurate description of complex systems. The second part of the
book contains contributions that discuss how to go beyond the harmonic
limit but still maintain a NMA framework. In Chapter 12, Kitao compares
results from NMA and molecular dynamics analyses of proteins, based on
which he and coworkers propose a model for the energy landscape of pro-
teins. In Chapter 14, Kaledin and coworkers introduce a creative approach for
evaluating normal modes of interest in biomolecules with molecular dynam-
ics simulations that scale well with the size of the system. In the next two
chapters, Fujisaki et al. and Yu and Leitner discuss the problem of vibrational
relaxation in liquids and biomolecules and how an NMA framework can be
useful in such investigations. In Chapter 13, Keyes presents the theoretical
foundation of instantaneous NMA of liquids and how different dynamical
properties such as diffusion can be evaluated using the theory. Finally, in
the last two chapters, Nilges and Abseher and Liu et al. present innovative
computational algorithms that couple NMAandmolecular dynamics for effi-
cient sampling of the conformational space of biomolecules, which is a major
challenge in the field of biomolecular simulations.
The contributions here illustrate the very spirit of interdisciplinary research,

which involves adaptingmethods from traditionally separated areas for solv-
ing the problem of interest. Thus, it is our sincere hope that this bookwill help
not only to stimulate further application and development of NMA-based
theoretical and computational methods, but also to inspire young graduate
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students to pursue interdisciplinary studies that transverse the boundaries
between chemistry, biology, physics, and engineering.

Qiang Cui
Madison, Wisconsin

Ivet Bahar
Pittsburgh, Pennsylvania
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1.1 Introduction

Normal mode analysis (NMA) has become one of the standard techniques in
the study of the dynamics of biological macromolecules. It is primarily used
for identifying and characterizing the slowest motions in a macromolecular
system, which is inaccessible by other methods. This chapter explains what
normal mode analysis is and what one can do with it without going beyond
its limit of validity. The focus of this chapter is on proteins, although normal
mode analysis can equally well be applied to other macromolecules (e.g.,
DNA) and to macromolecular assemblies ranging in size from protein–ligand
complexes to a whole ribosome.

By definition, normal mode analysis is the study of harmonic potential
wells by analytic means. Section 1.2 of this chapter will therefore deal with
potential wells and harmonic approximations. Section 1.3 is about normal
mode approaches to different physical situations, and Section 1.4 discusses
how useful information can be extracted from normal modes.

1
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1.2 Potential Wells

The fundamental restriction of normal mode analysis is its limitation to the
study of dynamics in a single potential well. More specifically, normal mode
analysis studies motions of small amplitude in a potential well, where “small”
means“small enough that theapproximationshold.” What exactly thatmeans
in practice will be discussed later in this section. An immediate consequence
is that normal mode analysis is not well suited to the study of conformational
transitions, although it can play a complementary role to other techniques in
such applications.

The starting point for normal mode analysis is one particular stable con-
formation of the system that represents a minimum of the potential energy
surface. One then constructs a harmonic approximation of the potential well
around this conformation. This step involves the central approximation of
the method, which therefore deserves a more detailed discussion.

A harmonic potential well has the form1

U(r) = 1
2 (r − R) ·K(R) · (r − R) (1.1)

where R is a 3N-dimensional vector (N is the number of atoms) describ-
ing the stable conformation at the center of the well and r is an equally
3N-dimensional vector representing the current conformation. The symmet-
ric and positive semidefinite matrix K describes the shape of the potential
well. A harmonic model for a potential well thus consists of R and K.

Before we can describe the options for constructing a harmonic approx-
imation, we have to review the properties of potential energy landscapes
of proteins. First and foremost, the potential energy landscape of a protein
has a multiscale structure (see Figure 1.1). On the length scale on which
one typically considers conformations from a structural point of view (0.1 to
10 nm), a stable conformation corresponds to a local minimum of a smooth,
slowly varying potential. If several local minima exist, they describe different
stable conformations, and are separated by local maxima and saddle points.
Looking closer (0.001 to 0.1 nm), one sees that the potential well is not smooth,
but has many local minima and energy barriers of smaller height. These are
referred to as conformational substates [1–3]. The differences between neigh-
boring conformational substates are, for example, different arrangements of
sidechains, whereas a different conformation would imply more important
geometrical changes involving the backbone.

By far the most frequently applied method to construct a harmonic potential
model consists of starting from an all- or united-atom potential V(r) and an

1We limit ourselves to harmonic potentials in Cartesian coordinates. Other coordinates can be
used as well, but are less convenient for numerical applications. Note that a potential that is
harmonic in one coordinate set is in general not harmonic in other coordinates.
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Potential surface
Local minimum harmonic approximation
Smoothed potential well approximation

FIGURE 1.1
Aschematic one-dimensional view of the potential energy surface of a protein showing two kinds
of harmonic approximations: an approximation to a local minimum, and an approximation to
the smoothed-out potential well.

experimentally or otherwise obtained initial conformation. An energy min-
imization algorithm is then applied to find a local minimum Rmin near the
initial structure. Finally, the matrix K is obtained as the second derivative of
the potential:

Kij =
[
∂2U
∂ri∂rj

]
r=Rmin

(1.2)

The resulting harmonic model is thus an approximation to a conformational
substate, valid for very small motions around the local minimum. How-
ever, such models have been routinely used in the study of larger amplitude
motions, for example, the opening/closing motions that control the access
of ligands to the active site in enzymes. Most of the criticism aimed at
normal mode analysis concerns this use of a model for a conformational
substate beyond its theoretical limit of applicability. However, other kinds
of harmonic models exist, as will be shown below, and even the use of con-
formational substate models can be justified empirically because the outcome
of the subsequent normal mode analysis usually yields results that are in
agreement with experimental data. The low-energy motions in the local min-
ima and in the global potential must therefore be very similar in shape. This
is in fact plausible, because the motions that separate conformational sub-
states and those that characterize large-amplitude motions are very different.



BICH: “c472x_c001” — 2005/10/19 — 17:11 — page 4 — #4

4 Konrad Hinsen

A low-energy motion on a large scale should also be a low-energy motion on
a smaller scale.

Alternatively, one can directly construct a harmonic model around a given
Rmin (e.g., an experimental conformation) by fitting the remaining parameters
to experimental or simulation data. This approach has been used in particular
for simplified protein models in which only the Cα atoms are represented
explicitly. A reasonable and simplifying assumption is

U(r1, . . . , rN) =
∑

all pairs α,β

Uαβ(rα − rβ) (1.3)

with
Uαβ(r) = 1

2k(|Rα − Rβ |)(|r| − |Rα − Rβ |)2 (1.4)

that is, the harmonic potential consists of a sum of pair terms that rep-
resent springs whose force constants k(r) decrease with an increasing
distance between the two atoms in the configuration that represent the
minimum.

Such a potential, with a step function for k(r), was first used with an all-atom
model by Tirion [4], who showed that it reproduces the low-frequency end of
the density of states rather well. Hinsen [5, 6] then used another variant (with
k(r) exponentially decreasing and a reduced description of the backbone by
the Cα atoms) for characterizing slow protein motions by dynamical domains.
The Anisotropic Network Model [7], although derived in a different way, is
also equivalent to a potential of the form (1.3) for the Cα atoms, again with a
step function for k(r). As long as only an identification of the low-frequency
modes is required, the form of k(r) is indeed not critical.

On the other hand, a quantitative description of a potential well requires a
more careful approximation. By fitting to a local minimum (substate) of the
Amber 94 force field [8], Hinsen et al. [9] obtained the form

k(r) =




8.6× 105 kJ

mol nm3 · r − 2.39× 105 kJ

mol nm2 , for r < 0.4 nm

128 kJ nm4/mol

r6
, for r ≥ 0.4 nm

(1.5)

and found that the global potential well can be described by scaling the local
potential well down by a factor that must be evaluated for each protein
individually. The special case for r< 0.4 nm takes care of nearest neigh-
bors along the backbone, which are strongly bound through the very rigid
peptide group. For other pairs, the interaction is mediated mostly by a
large number of sidechain atoms. This model has been shown to reproduce
the long-time dynamics of proteins remarkably well, as will be shown in
Section 1.3.2.
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1.3 Normal Modes

The basic idea of normal modes is illustrated in Figure 1.2 for a system with
two coordinates, labeled r1 and r2. The harmonic potential well shown has
two special directions, labeled e1 and e2, which correspond to the normal
modes. Imagine the potential well as a real bowl in which a small ball moves
around. The normal mode directions are special because the ball can move
along any one of them back and forth. If it starts along any other direction
(say, r1), then it will be deflected by the potential along the perpendicular
direction (r2) as well, and thus move along both directions. Only the normal
mode directions are independent. This independence greatly simplifies the
analysis of the motions. In particular, oscillations of the ball along any one of
the normal mode directions have a well-defined frequency, which is related
to the curvature of the potential along the direction of motion. Any com-
pound motion contains both frequencies. Knowing the normal modes thus
permits the explicit evaluation of all possible vibrational frequencies in a sys-
tem, assuming of course that the system has vibrational dynamics, that is,
that friction can be neglected.

There is another important feature of normal modes that can be seen
in Figure 1.2. The thick line describes a particular constant energy value.
A ball that is dropped from a position on that line will bounce back to
the same energy level again (assuming the absence of friction). If the ball
moves along the lower normal mode (e1, the one with the lower curvature
and lower oscillation frequency), it can move further away from the min-
imum at a given energy than if it moved along the higher normal mode.
This illustrates that the low normal modes describe large-amplitude motions.
In a molecular system, the level of available energy is defined by the
temperature.

r1

r2

e1

e2

FIGURE 1.2
A two-dimensional harmonic potential well. The two Cartesian coordinate axes of the system
are r1 and r2, the two normal mode directions are e1 and e2.
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In the case of a protein with N atoms, there are 3N Cartesian coordin-
ates and thus also 3N normal mode directions. It is useful to consider the
3N-dimensional space defined by the 3N Cartesian coordinates, which is
called configuration space. A 3N-dimensional vector in this space can either
represent a point, that is, a configuration of the protein, or a direction, that is,
the change of a configuration. Normal mode vectors represent directions, as
do velocity vectors and force vectors. Anormal mode vector thus describes in
which direction each atom moves, and how far it moves relative to the other
atoms. However, a normal mode vector does not describe an absolute amount
of displacement for any atom. Additional information (e.g., the temperature)
is required for fixing the global amplitude of the atomic displacements.

Mathematically, the normal mode vectors are obtained as the eigenvectors
ei of the matrix K, which are defined by

K · ei = λiei, i = 1, . . . , 3N (1.6)

The 3N numbers λi are the associated eigenvalues that describe the curvature
of the potential along the normal mode directions.

The independence of the normal modes makes it possible to rewrite the
harmonic potential in the simpler form

U(c) = 1
2c ·� · c (1.7)

The new interaction matrix � is diagonal and has the eigenvalues λi as its
elements. The new coordinates c are given by

ci = (r − R) · ei (1.8)

and the original coordinates r can be recovered through

r = R +
3N∑
i=1

ciei (1.9)

Each of the coordinates ci measures the distance from the minimum along
one of the normal mode directions.

More important to us is, however, the physical interpretation of the normal
modes. The eigenvalue λi describes the energetic cost of displacing the system
by one length unit along the eigenvector ei. Normal mode analysis therefore
classifies the possible deformations of a protein by their energetic cost. For
realistic potentials, low-energy deformations correspond to collective or deloc-
alized deformations, whereas high-energy modes are local deformations. This
is a consequence of the nonlinearity of the interaction terms, plus the fact that
short-range interactions (e.g., bond stretching) are stronger than long-range
interactions (e.g., electrostatic).
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This can be illustrated by a simple example: a linear chain ofN equidistant
particles, each of which interacts with its two neighbors through a spring
of equilibrium length d, the pair potential is then given by Equation (1.4)
with k(r) = k0. Displacing a particle in the middle by a distance a causes
two pair terms to increase by 1

2k0a
2. Displacing a group of ten particles in

the middle by the same distance a (all in the same direction) also causes two
pair terms to increase, by exactly the same amount. However, we should be
comparing 3N-dimensional displacement vectors of the same length, that is,
the same norm in 3N-dimensional space. Moving a group of M particles as
a unit by a distance a yields a displacement vector with a norm of

√
Ma.

The incurred energy increase is thus proportional to 1/M, that is, collective
motions (large M) are energetically cheaper than local ones. This would not
be the case if the potential were linear in the pair distance, local and global
motions would then have equal energetic costs. A potential with a less than
linear growth would even favor local moves. However, such potentials do
not exist at the atomic scale. Finally, global displacements would be penalized
if there were strong interactions at longer distances, beyond nearest neigh-
bors. But such situations are not found on the atomic scale, the short-range
interactions (the chemical bond structure) are the strongest ones.

When normal mode analysis is applied to an isolated protein, the first six
eigenvalues λi are zero. They describe the six rigid-body movements of the
protein (translation along three independent axes plus rotation around three
independent axes) that incur no energetic cost at all. They are usually of no
interest and ignored in the analysis, such that “the lowest-energy modes” in
practice means “the lowest-energy modes with nonzero energies.”

1.3.1 Vibrational Modes

If one assumes that the atoms in a molecule are classical particles, then the
equations of motion for a molecule with a harmonic interaction potential of
the form (1.1) are given by

M · r̈ = −K · (r − R) (1.10)

The matrix M is a 3N×3N diagonal matrix, which contains the masses of the
atoms on its diagonal, each mass being repeated three times, once for each
of the three Cartesian coordinates. A system with these equations of motion
is known as a 3N-dimensional harmonic oscillator and is discussed in all
textbooks on classical mechanics (see, e.g., [10]). We will therefore only give
a summary of the solution.

With the introduction of mass-weighted coordinates,

r̃ = √M · r (1.11)

R̃ = √M · R (1.12)

K̃ = √M−1 ·K · √M−1
(1.13)
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the equations of motion can be rewritten as

¨̃r = K̃ · (r̃ − R̃) (1.14)

The 3N independent solutions of these equations have the form

r̃(t) = R̃ + Ãi cos(ωit+ δi), i = 1, . . . , 3N (1.15)

where δi is an arbitrary phase factor and ωi and Ãi are the solutions of the
eigenvalue equation

K̃ · Ãi = ωiÃi (1.16)

This is identical to Equation (1.6) except for the use of the mass-weighted
force constant matrix.

The combination of the 3N-dimensional vector Ai and the eigenvalue ωi
is known as a vibrational normal mode. Since this was historically the first
type of normal mode analysis, and remains the most frequently used one, it
is common to use the term “normal mode” for this form only.

The physical interpretation of Ai and ωi can be obtained from
Equation (1.15): ωi is a vibrational frequency, and Ai is an amplitude vector
that specifies how far and in what direction each individual atom moves.
Vibrational normal mode analysis thus classifies all possible motions around
a stable equilibrium state by vibrational frequency. Note that since the range
of atomic masses is much smaller than the range of eigenvalues, the dif-
ference between energetic (Equation [1.6]) and vibrational (Equation [1.16])
analysis is not very large. Low-frequency modes are therefore to a very good
approximation also low-energy modes, and vice versa. For historical reasons
(normal mode analysis in chemistry was originally developed for describ-
ing the vibrational spectra of small molecules), most published normal mode
studies on proteins use vibrational modes, even though the interpretation is
often in terms of energetic modes.

Figure 1.3 shows the frequency spectrum of three proteins, crambin, lyso-
zyme, and myoglobin, obtained from vibrational normal mode analysis using
a conformational substate approximation to the Amber 94 potential [8]. The
main observation is that the three spectra are nearly identical. The reason for
this is that most of the modes describe motions that are common to all pro-
teins, ranging from hydrogen vibrations (the well-separated block beyond
85 ps−1) at the high end through internal vibrations of single amino acids
down to vibrations of secondary-structure elements (helices, β-sheets). The
small differences are due to the different amino acid distributions and differ-
ent percentages of secondary structure motifs. The motions that are specific
to a particular protein, and thus of interest for understanding its function, are
at the far lower end of the spectrum.

It should be stressed that this analysis describes only vibrational motion
in a conformational substate. There are larger amplitude motions along
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FIGURE 1.3
The vibrational frequency spectrum (number of modes per frequency interval) of three different
proteins in a local minimum of the Amber 94 force field. The vertical line indicates the quantum
limit for T = 300 K.

the lower-frequency modes as well, but they are diffusive, not vibrational.
They will be discussed in Section 1.3.2.

It should also be noted that at the high frequency end, quantum
effects become important. The criterion for the applicability of classical mech-
anics is hν � kBT. At 300 K, this yields ν � 6 psec−1, which, as Figure 1.3
shows, is satisfied for only a very small part of the vibrational spectrum.
However, since the transformation to normal mode coordinates remains
valid in a quantum description, only the dynamic interpretation must be
adapted.

1.3.2 Langevin and Brownian Modes

The real large-amplitude motions in proteins traverse many conformational
substates. The transition fromoneconformational substate to thenext requires
crossing a small energy barrier. At the structural level this means, for
example, that some sidechain rearrangements are necessary before the back-
bone motion can proceed. An explicit treatment of these barrier crossings
is not desirable, and also not necessary. One can model such situations by
a smoothed-out potential (see Figure 1.1) and replace the barrier crossings
by the introduction of friction and random forces into the dynamics. The
simplest model involving friction is known as Langevin dynamics. It consists
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of augmenting Equation (1.10) by two terms:

M · r̈ = −K · (r − R)− � · ṙ + ξ(t) (1.17)

The first term, proportional to the velocities, is a friction term, defined by
a 3N × 3N matrix �, called friction matrix, which will be discussed later.
The second term describes a random force that satisfies the conditions

〈ξ(t)〉 = 0 (1.18)

〈ξ(t)ξ(t′)〉 = 2kBT�δ(t− t′) (1.19)

The second condition specifies that the random force is a white noise signal
(i.e., uncorrelated in time) with an amplitude defined to add on average just
as much energy to the system as is taken out by the friction term.

A method for solving this equation numerically has been given by Lamm
and Szabo [11]. However, it will not be discussed here because a further useful
simplification can be made for the case of large-amplitude motions in proteins.
In general, Langevin modes describe damped oscillations plus random dis-
placements along a normal mode coordinate. When the friction coefficients
are very large, the oscillations become overdamped: the molecule moves
slowly back toward its energetic minimum, but reaches it only asymptotic-
ally and never swings back. The random displacements become the dominant
aspect of the dynamics, and one observes Brownian motion (diffusion) with
preferential movements toward the minimum. This is the dynamic behavior
that the large-amplitude motions of proteins display. It can be described by the
formalism of Brownian Dynamics, which consists of a differential equation
(known as the Smoluchowski equation) for the probability distribution of the
random displacements. This equation can be solved analytically for a har-
monic potential. The derivation is too lengthy to be reproduced here, the
reader is therefore referred to Reference 9 and to Section 2.2 of Reference 12.
The result is again an eigenvalue problem, this time for the matrix

K̂ = √�−1 ·K · √�−1
(1.20)

that is, a friction-weighted force constant matrix. Its eigenvalues λ̂i, i =
1, . . . , 3N, are the relaxation coefficients of the Brownian modes, whose direc-
tions are again given by the eigenvectors. If the protein were deformed along
Brownian mode k by an amplitude A, and if then the random forces were
switched off, the protein would return toward the energetic minimum along
the same direction and its position along this direction would be given by
A exp(−λ̂kt).

Like other normal mode techniques, Brownian mode analysis requires a
stable conformation of the protein as input and a harmonic model for the
global potential well. In addition, a model for the friction matrix� is required.
Since friction manifests itself already on short time scales, it can be measured
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from molecular dynamics (MD) simulations of proteins. With the simplifying
assumption that each particle of the protein has an independent friction
constant (which implies that � is diagonal), it is sufficient to calculate the
mean-square displacement of each particle from the simulation trajectory and
fit the short-time behavior to a straight line in order to obtain approximate
values of the elements of �. It turns out that the friction constant can be well
described by a linear function of the local density in the protein around the
particle of interest, averaged over a sphere of 1.5 nm radius [9]. In a typical
compact protein, the local density is uniform on that length scale, the vari-
ations are thus due to surface effects: for particles near the surface, the sphere
contains water, whose density is much smaller than that of the protein itself.
The correlation between friction constant and amount of protein matter in
the vicinity of the particle is not surprising in view of the explanation of the
origin of friction given above, that is, interactions with other atoms in the
protein, in particular sidechain atoms. However, the idea that friction is a
solvent effect is quite popular in the literature, although it has never been
backed by any data.

Several experimentally observable quantities, in particular time correla-
tion functions, can be calculated from Brownian modes analytically [12],
which permits the study of protein dynamics at arbitrarily long time scales.
Figure 1.4 shows that such a model can yield surprisingly good results. It
shows the incoherent intermediate scattering function for a C-phycocyanin
dimer from a two-level normal mode calculation (Brownian modes for the
long-time dynamics plus vibrational modes for short-time effects) and from a
standard MD trajectory. It should be noted that the MD results should tend to
the same asymptotic values as the normal modes curves; the fact that they do
not indicates that the trajectory of 1.6 nsec is not long enough for sampling all
the motions. Alook at the relaxation times obtained from the Brownian modes
confirms this: the largest relaxation time is 4.5 nsec. The absence of sampling
problems is in fact an important advantage of normal mode techniques in the
study of slow protein dynamics.

In summary, Brownian mode calculations demonstrate that a very simple
harmonic potential with few parameters can reproduce the backbone dynam-
ics of a protein very well if an appropriate dynamical model is chosen.
The major limitation is the restriction to motions around a stable energetic
minimum.

1.4 Interpretation and Analysis of Normal Modes

In the study of molecular systems, normal modes are used to answer partic-
ular scientific questions. In order to draw valid conclusions, it is important to
understand the methods and, in particular, their limitations.
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FIGURE 1.4
The incoherent intermediate scattering function Finc(q, t), a quantity observable in neutron scat-
tering experiments, calculated from a mixed Brownian/vibrational modes model and from an
MD trajectory for a C-phycocyanin dimer. Both calculations are for a coarse-grained model
in which a single point mass located at the Cα position represents a whole residue. The normal
modes were calculated directly for this model, the MD trajectory was generated from an all-atom
simulation.

The applications of normal modes can be broadly classified into two groups.
Those in the first group use all modes or a large subset (usually the lowest
energy modes) as a convenient analytical representation of the potential well.
In that case the only limitations are due to the necessarily approximate nature
of the harmonic model, and due to the choice of a subset. The other group
contains all analyses that look at the properties of individual modes. In this
case, care must be taken to avoid an overinterpretation of the data.

One potential pitfall of single mode analysis is discussing the differences
of modes that are nearly equal in energy. In the extreme case of exactly equal
energies (the modes are then called degenerate), the modes that come out
of a numerical calculation represent arbitrary choices of the algorithm. Any
combination of such modes would be an equally valid mode. Interpreting the
characteristics of any one such mode or the differences between the degen-
erate modes is no more meaningful than discussing the differences between
motion along the x and the y coordinates in an arbitrarily chosen Cartesian
coordinate system. Although this is strictly true only for equal energies, it is
also approximately true for approximately equal energies. A small difference
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in energy between two modes should be considered a probably unreliable
detail of the numerical model, rather than something fundamental about the
system being studied. In practice, only a few of the lowest modes in a protein
are sufficiently well separated to merit an individual discussion, and even
that is not always the case. In all other cases, it is preferable to analyze the
coordinate subspace spanned by all modes in a certain range of timescales.

Asecond pitfall is placing too much importance on the frequency of a mode
obtained from a vibrational normal mode calculation. As discussed above, the
slow modes that are characteristic of a particular protein and often related to
its function show diffusional behavior on long timescales. Vibrational dynam-
ics occurs only inside a conformational substate for a short duration and is
rarely of interest. Vibrational normal mode analysis is thus useful mostly for
higher frequencies, for example, when comparing to spectroscopic measure-
ments. For assessing the time scales of slow motions, Brownian modes are
the appropriate approach.

A very useful approach in the analysis of normal modes is to turn attention
away from individual modes and toward the types of motion in the protein
that one would like to analyze. For example, one can ask the question: “Which
modes (and thus which energies and which time scales) are involved in the
rotation of this domain?” Or, turning to higher modes, “Which frequencies
are involved in helix bending motions?”

Such questions can be answered using projection methods [13], which are
based on an important mathematical property of normal modes: the normal
mode vectors ei (see Equation [1.6]), being the eigenvectors of a matrix, form
a basis of the 3N-dimensional configuration space of the protein. This means
that any vector d in configuration space, and thus any type of motion, can be
written as a superposition of normal mode vectors with suitable prefactors
pi, which are the projections of d onto mode i. Mathematically, the projections
are defined by

pi = d · ei (1.21)

and satisfy the relation

∑
i=1

3Np2
i = 1 (1.22)

because the normal mode vectors form a basis of configuration space. It
is therefore possible to interpret p2

i as the contribution of mode i (and its
associated energy and time scales) to the motion described by d.

Many interesting types of motion are described by more than one degree of
freedom. For example, the rigid-body translation of a helix has three degrees
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of freedom, one for each independent direction in 3D-space:

dx =




(0, 0, 0)
. . .

(0, 0, 0)
(1, 0, 0)
. . .

(1, 0, 0)
(0, 0, 0)
. . .

(0, 0, 0)




, dy =




(0, 0, 0)
. . .

(0, 0, 0)
(0, 1, 0)
. . .

(0, 1, 0)
(0, 0, 0)
. . .

(0, 0, 0)




, dz =




(0, 0, 0)
. . .

(0, 0, 0)
(0, 0, 1)
. . .

(0, 0, 1)
(0, 0, 0)
. . .

(0, 0, 0)




(1.23)

The nonzero entries in these vectors correspond to the atoms that make up
the helix. For the case of M vectors (in this example we have M = 3), the
projections are defined as

pi = 1√
M

M∑
k=1

dk · ei (1.24)

such that the sum of p2
i is again 1, and pi can again be interpreted as the quant-

itative contribution of mode i to the motion under consideration. Aconvenient
graphical representation is a plot of

Ck =
k∑
i=6

p2
i , k = 1, . . . , 3N (1.25)

against k, ωk (for vibrational modes), or λ̂k (for Brownian modes). This yields
a curve that increases from 0 to 1, with the steepest increase in the time scales
that contribute most to the type of motion being studied.

An example for such an analysis is shown in Figure 1.5. It is taken from a nor-
mal mode study of the dynamics and conformational changes of Ca-ATPase
[14] and shows how helix translations and rotations are distributed over
the normal modes. In particular, it shows that different helices move on
different timescales, and also that some helices have a wider time scale spec-
trum than others. In the case of Ca-ATPase, the helices near the A domain
are characterized by longer timescales and larger amplitudes than the other
helices. No explicit time scales were obtained in this calculation, but this
would have been possible by performing a Brownian mode analysis (see
Section 1.3.2).
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FIGURE 1.5
The cumulative projectionsCk (see Equation [1.25]) of rigid-body translations (a) and rotations (b)
of the transmembrane helices in Ca-ATPase onto the normal modes. Only translations along and
rotations around the helix axes were taken into account. The plot shows the different timescales
and amplitudes that characterize the motions of the different helices.

1.5 Conclusion

The goal of this chapter is to give an overview of the harmonic models and
normal mode techniques that are used in studying the behavior of proteins.
Any such overview is necessarily incomplete, and this chapter is no exception.
Quasi-harmonic analysis, which derives a force constant matrix from thermo-
dynamic calculations obtained from an MD trajectory, was left out because it
is a technique for analyzing trajectories rather than an independent method.
Normal mode calculations on continuous deformable media models were left
out as well, because they are of interest mainly to the community of electron
microscopists. Other rather specialized techniques have not been mentioned
either. Finally, the actual numerical algorithms that are useful for identify-
ing normal modes were not covered because they are either straightforward
textbook algorithms (for sufficiently small systems) or specialized techniques
discussed in Chapters 17 and 18. As for applications, the possibilities are
numerous and the reader can find ample inspiration in the other chapters of
this book.
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2.1 Introduction

The internal motions of proteins play an important role in their biological
function, especially large amplitude motions that may be necessary for
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enzymatic activity, allosteric transitions, and various biological processes
such as signal transduction, etc.; characterizing these conformational changes
is of general concern [1–4]. Molecular dynamics (MD) simulations have
played a dominant role since the late 1970s to reveal the internal motions
of proteins, however, due to the complex nature of the energy surface and
the existence of a tremendously large number of energyminima, this method
was not well-adapted to apprehend collective motions. Indeed, the conform-
ational jumps from one minimum to another, taking place on the picosecond
time scale [5], correspond to local motions that propagate into larger amp-
litude ones in a much longer time, as in liquids. On the contrary normal
mode (NM) analysis appeared to be the most direct way to obtain the large
amplitudemotions [6,7]. It showed that theymayoccur ina correlated fashion,
all atoms moving together along given directions, without the requirement
of important local conformational changes of residues, as in solids. These two
types of dynamics (MD and NM) raised the question whether the proteins
have rather liquid- or solid-like properties [8–10]. Many experimental obser-
vations indicated that the predominance of one or the other type depends
on the temperature of the system, the harmonic dynamics (i.e., NM) being
important at low temperatures (lower than 200 K) and a diffusive type
dynamics (i.e., MD), at higher temperatures [11–14].
The NM analysis is based on the harmonic approximation of the poten-

tial energy (see Section 2.2), which a priori represents a severe restriction
for the protein to undertake large movements. Despite this approximation,
low-frequency modes obtained by this method appeared to describe well the
wide conformational changes that are observed experimentally [15–19]. NM
analysis consists of diagonalizing the Hessian matrix whose elements are the
secondderivatives of the potentialwith respect to coordinates. The size of this
matrix increases as the square of the number of atoms, which constituted for
a long time a serious limitation for this method. Since the 1980s many efforts
were devoted to overcome this difficulty by reducing the number of degrees
of freedom, which can be done by several ways. The first approach [9,20] was
based on the use of dihedral angle space, neglecting the other degrees of free-
dom, which results inmore than tenfold reduction of theHessianmatrix’ size.
This approach yields a frequency spectrum and directions ofmotion in agree-
mentwith experiments, but still the sizeof thematrix increases as the squareof
the dihedral angle’s number, which may represent a limitation for its applic-
ation to very large proteins. Recently several authors [21, 22] considered each
residue (or set of residues) as a rigid block having six translation–rotation
degrees of freedom (RTB or BNM methods), which reduces drastically the
size of the Hessian matrix and consequently the computational time. The
quality of the modes depends on the number of residues taken in a block,
one residue per block yielding low-frequency modes comparable to those
obtained for all degrees of freedom, while increasing this number results in a
rapid deterioration of the mode quality.
Another approach is the elastic network model (ENM) proposed originally

by Tirion [23]; it is based on a simplified potential where the structure is only
maintained by springs between neighboring atoms, which is consistent with
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the solid-like nature of proteins. This potential is constructed in a way that
corresponds to theminimum energy. Thus, its principal advantage is to avoid
energy minimization. However, to calculate the NM for large proteins, the
size of the matrix still should be reduced. For that, one may only consider
the coordinates of the Cα atoms of the protein as a reduced basis set. Several
variants of this model were proposed by Bahar et al. [24, 25], Hinsen [26], and
Tama and Sanejouand [19]; they all yield low-frequency modes in a rather
good agreement with observed conformational changes, but give unrealistic
frequency spectra.
All themethods presented above neglect the coupling between the retained

degrees of freedom and those that were ignored, although such a coupling
may be important for a detailed description of the conformational change
mechanism. Thus, it is important to consider other approaches that take into
account all the degrees of freedom. The only way to do so is to use iterative
schemes in order to diagonalize the Hessian matrix [27–29]. The interest of
suchapproaches is thatnomoreapproximation than theharmonicone isdone.
These methods will constitute the object of this chapter, but beforehand let us
take a look at the theory of NMs.

2.2 Normal Mode Theory

The NM theory is based on the resolution of Newton’s equation of motion
with the hypothesis that the potential energy function V(r) has a quadratic
form [30, 31]. Let us consider the function V(r) of a molecule constituted
of N atoms and depending on the mass-weighted Cartesian coordinates r
(r1 = √m1x1, r2 = √m1y1, r3 = √m1z1, r4 = √m2x2, . . . , mi being the mass
of atom i). For small atomic displacements it may be expanded as a Taylor
series:

V(r) = V(r0)+
3N∑
i=1

(
∂V
∂ri

)
0
(ri − r0i )+

1
2

3N∑
i,j=1

(
∂2V
∂ri∂rj

)
0

(ri − r0i )(rj − r0j )+ · · ·

(2.1)
the index 0 refers to a reference structure that can be chosen to corres-
pond to a minimum of the potential energy function, thus (∂V/∂ri)0 = 0.
In addition, the potential energy can be defined relative to this reference
structure such that V(r0) = 0. Moreover, for sufficiently small displace-
ments the terms beyond second order may be neglected, reducingV(r) to the
quadratic form:

V(r) = 1
2

3N∑
i,j=1

kij(ri − r0i )(rj − r0j ) (2.2)

where kij = (∂2V/∂ri∂rj)0 represents the force constant relative to coordinates
i and j.
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In the matrix notation Equation (2.2) may be expressed as follows:

V(r) = 1
2 r
THr (2.3)

where r is now the vector constituted of 3N coordinate differences ri − r0i , rT
the transpose of r, and H the 3N × 3N matrix, the elements of which are the
force constants kij.
The kinetic energy K has also a quadratic form expressed by

K = 1
2 ṙ
TMṙ (2.4)

where ṙ is the vector of velocities, that is, the time derivative of r, andM the
matrix of second derivatives of the kinetic energy with respect to velocities.
In a Cartesian basis setM consists of a diagonal matrix whose elements are
the atomic masses. In the case of mass-weighted Cartesian coordinates as
here,M reduces to a unit matrix. Introducing Equation (2.3) in the Newton’s
equation of motion

Mr̈ = −∇V(r) (2.5)

in which r̈ represents the second derivative of r with respect to time, and
∇V(r) the first derivative of V(r)with respect to r, one obtains:

Mr̈ +Hr = 0 (2.6)

Equation (2.6) may be resolved by adopting the general form

r = Tu (2.7)

whereT is an orthogonal transformationmatrix, that is, TTT = TTT = 1, and
u a 3N coordinate vector, each element of which having the following time
dependence

uk = Ck cos(ωkt+ φk) (2.8)

where Ck and φk are the amplitude and the phase at time t = 0, respectively,
and ωk is the angular frequency of the kth vibrational mode. The coordinates
ukare called NM coordinates [31]. Using Equations (2.7) and (2.8) one gets for
a given Cartesian coordinate

ri − r0i =
3N∑
k=1

Tikuk =
3N∑
k=1

TikCk cos(ωkt+ φk) (2.9)

where Tik is an element of the matrix T. The set of elements {Tik} for a
given k, with i running from 1 to 3N defines the direction along which all the
atoms vibrate in phasewith the same frequency. This equation shows that the
displacement along a givenCartesian coordinate consists of the superposition
of 3N vibrational motions.
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Introducing the expression of r from Equation (2.7) in Equation (2.6) and
multiplying the latter by TT one gets

TTMTü+ TTHTu = 0 (2.10)

From Equation (2.8), one gets ük = −ω2kuk , which can be written in the matrix
form

ü = −�u (2.11)

where � is a diagonal matrix with elements λk =ω2k . Replacing ü in
Equation (2.10) and considering thatM is the unit matrix, this yields:

TTHT = � (2.12)

T is thus a square matrix that diagonalizes H. Each column of T is an eigen-
vector qk (expressed in the Cartesian basis set) of H and thus is a NM vector
associated to a given frequency, ωk (or eigenvalue, λk). All the 3N vectors
{qk} are orthonormal thus linearly independent; they form a new basis set
defining the NM reference frame for the molecule. In this frame, each of
the molecule’s structures corresponds to a point whose coordinate along
a given direction qk is the NM coordinate uk . This is analogous to what is
observed for one atom in the three-dimensional Cartesian space, where the
atom is a point and its position is determined by its coordinates (x, y, z)
along the three vectors of the basis set {e1, e2, e3}, which are the unit vec-
tors along X,Y, and Z directions. The structure of a molecule consisting of N
atoms can be considered as a point in the 3N-dimensional Cartesian space,
where its position is determined by its 3N-coordinates (r1, r2, . . . , r3N) along
the 3Nvectors of the basis set {X1,X2, . . . ,X3N}. In the reference frame cor-
responding to the NMs, the molecule’s position is determined by its NM
coordinates (u1,u2, . . . ,u3N) along the basis set {q1,q2, . . . ,q3N}. Notice that,
when expressed in the Cartesian space, a normal coordinate describes an
internal collective (or localized) change of the structure, except for the first
sixmodes that correspond to global translations and rotations of themolecule
with eigenvalues equal to zero.
The calculation of NMs reduces to the diagonalization of the Hessian mat-

rix H. The main difficulty is that, for a large molecule, this matrix becomes
too large to be diagonalized by standard diagonalization techniques [32].

2.3 Iterative Methods

2.3.1 Methods Based on the Rayleigh Quotient

Various iterativemethods, developed several years ago for obtaining the low-
est eigenvalue and eigenvector of a large symmetric matrix H, are based on
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the minimization of the Rayleigh quotient [33] given by

ρ(v) = v
THv
vTv

(2.13)

where v is a guess vector. In fact ρ(v) is a stationary point (minimum) with
respect to any variation in v if, and only if, v is the eigenvector of H, and
at this point ρ(v) is equal to the corresponding eigenvalue. One may then
use steepest descent or conjugate gradient methods to converge to the lowest
value of the Rayleigh constant for computing the lowest frequency mode. The
gradient of ρ(v) is

∇ρ(v) = 2(H− ρ(v)I)v
vTv

(2.14)

where I is the unit matrix.
As direct minimization is in general computationally costly, other tech-

niqueswere developed such as the one based onDavidson’smodification [34]
of Lanczos’s algorithm [35], consisting of adding orthonormal correction
vectors to v during successive iterations in order to approach the exact
eigenvector.
One inconvenience of this method is that only one mode is obtained, the

one corresponding to the lowest eigenvalue. However, the procedure may
be extended in order to find the next mode by introducing a modification
to the Hessian matrix such that the calculated lowest eigenvalue is shifted
to a higher value (root shifting method) [36]. This is achieved by repla-
cing H by H + β1q1qT1 where β1 is an arbitrary large value, and q1 the
eigenvector corresponding to the lowest eigenvalue of the unmodified mat-
rix. The vector q1 remains an eigenvector of the transformed matrix but its
eigenvalue is shifted by β1, all the other eigenvalues and eigenvectors being
unchanged.
A similar approach was adapted by Brooks and Karplus [27] to calculate

NM for proteins. They applied it to lysozyme to extract the lowest-frequency
NM corresponding to the hinge bending motion of the protein.
More recent developments based on Lanczos/Arnoldi factorization [37]

for diagonalizing large sparse matrices have been introduced in numer-
ous packages (BLZPACK [38], ARPACK [39], …), allowing to calculate
a large number of eigenvalues and eigenvectors. These methods seem to
converge rather rapidly to the exact modes, but to our knowledge only
BLZPACK was applied to proteins [40] (however, it required large computer
memory).

2.3.2 Perturbation Method

Another iterative approach developed by Durand et al. [29] for computing
exact NMs for macromolecules uses a perturbation-iteration scheme. In this
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approach low resolutionmodes are first obtained by considering that the pro-
tein consists of rigid blocks corresponding each to a given number of residues
and having only six translation–rotation degrees of freedom (RTB method
mentioned in Section 2.1). In a second step the obtained low-resolution
modes are perturbed by high frequency modes explicitly calculated in each
block. This is done by coupling low- and high-frequency modes through a
perturbation added to the Hessian matrix projected in the space of approx-
imate low-frequencymodes. This approach is based on the theory of effective
Hamiltonians [41]. It was applied to crambin, a small protein of 46 residues,
for which it provided exact low-frequency modes. Larger proteins were not
tested, which would have assessed the efficiency of the approach.

2.3.3 Mixed Basis Method

Several years ago we proposed an iterative method of diagonalization in a
mixed basis (DIMB) [28, 42] that was implemented in the CHARMM [43]
program. The rest of this chapter consists of the presentation of this method
because it is at present the only iterative method that is available within a
molecular simulation package that proved to be efficient for obtaining a set
of low-frequency modes for a very large molecular system.

2.4 The DIMBMethod

The DIMB method is based on the principle that approximate low frequency
modes may be refined if they are coupled to higher frequency degrees of
freedom. It consists, first, of dividing the Hessian matrix in sub-blocks, the
low-frequency eigenvectors of diagonal sub-blocks providing the approx-
imate guess vectors that will be refined iteratively. Second, this refinement
is made by coupling the guess vectors to high-frequency degrees of free-
dom, which amounts to taking into account the off-diagonal sub-blocks.
These degrees of freedom may be high-frequency NMs; however, the use
of these modes is complex and not efficient, especially for large systems [28],
so another way to perform such a coupling is to consider subsets of Cartesian
coordinatedisplacements. Indeed, the latter, as itwas shown inEquation (2.9),
contain implicitly high-frequencymotions since they correspond to the super-
position of all the low- and high-frequency NM. This coupling proved to be
very efficient, so it was adopted in the DIMB method, whose name referred
to the mixing of subsets taken from two different basis sets: low-frequency
NM and Cartesian coordinates.
In what follows we will describe how to obtain initial guess vectors taken

as a first approximation of exact modes and the iterative procedure used to
refine them.
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2.4.1 Initial Guess Vectors

The Hessian matrix is subdivided in an arbitrary number of sub-blocks:

H =

HAA HAB · · ·
HBA HBB · · ·
· · · · · · · · ·


 (2.15)

Eachdiagonal block (HAA,HBB, . . .) contains an arbitrary number of elements
(l × l, k × k, . . ., respectively) corresponding to any part of the molecule’s
structure. Diagonalizing these blocks and redimensioning their eigenvectors
yield the set of orthonormal vectors {qA,qB, . . .} as shown in Figure 2.1(a) (for
more details see the appendix). Expressing the Hessian matrix in this set of
vectors after reorganizing them in the ascending order of their eigenvalues,
yields the matrix Q (see Figure 2.1[b]). The property of this matrix is that it
can be partitioned in sub-blocks that depend on the frequency. Diagonalizing
only the sub-block QLL that corresponds to the lowest frequencies, yields
the set of initial guess vectors {q}0, where the subscript stands for iteration
number 0.

2.4.2 Iterative Procedure for Obtaining the NMs

In iteration number 1, a subset s0 from theCartesian basis, {X}s0 , is chosen (see
Figure 2.2 and the appendix for the composition of vectors X) and combined
with the guess vectors {q}0. Then the mixed set of vectors is orthonormalized
to form {q′,X}0, a sub-basis in which the Hessian matrix will be expressed,
yielding Q(1). Notice that the dimension of Q(1) is much smaller than that
of H. The eigenvectors of Q(1), {q}1, constitute the starting vectors for the
second iteration, replacing {q}0 in the procedure. In each iteration step, the
set of Cartesian vectors is chosen differently in order to scan the entire set of
degrees of freedom of the system. The iteration procedure continues until the
eigenvectors converge to exact NMs according to defined criteria.

2.4.3 Convergence Criteria

In iteration I, an eigenvector q(I)of the matrix Q(I) is considered to be con-
verged to an exact mode if, when it is expressed in the Cartesian reference
frame (formore details see the appendix), it is also an eigenvector of the initial
Hessian matrix H. A precise evaluation of the convergence is given by [42]:

Cq = 1− qT
(I)Hq(I)(

qT
(I)H

THq(I)
)1/2 (2.16)

In this expression, whenq(I) is the correct eigenvector ofH,Cq is equal to zero,
while when it is very far from it, Cq is close to 1; during successive iterations,
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FIGURE 2.1
DIMB method, iteration number 0: (a) The subdivision of the Hessian matrix H corres-
ponds to the example of a molecule divided into four parts. Diagonalization of each block
(HAA,HBB,HCC, and HDD) yields the sets of eigenvectors {qAA}, {qBB}, {qCC}, and {qDD}.
The dimensions of these vectors correspond to those of the sub-matrices; therefore, they are
completed with zeroes in order to attain the dimension of the entire matrix H, yielding sets of
vectors {qA}, {qB}, {qC}, and {qD}. (b) These vectors are reorganized in their frequencies’ ascend-
ing order. TheHessianmatrix expressed in this basis,Q, is divided in its turn into sub-blocks and
onlyQLL is diagonalized; a part of its eigenvectors {q}0, corresponding to the lowest-frequency
eigenvalues, are the initial guess vectors.
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FIGURE 2.2
DIMB method, iterative procedure: example of a 3-atom molecule. (a) In iteration number 1, a
selection (s0 = 3) of elements of all the {q}0 vectors are replaced by zeroes in two disjoint regions
of the vectors (double-window technique mentioned in the appendix) and orthonormalized,
yielding {q′}0. The corresponding Cartesian coordinate basis vectors {X3,X4,X8} are combined
to {q′}0 to form the mixed basis {q′,X}0. Diagonalization of the Hessian matrixQ(1) in this sub-
basis yields {q}1 vectors that replace {q}0 in the next iteration run. (b) Iteration number 2, in
which the s0 elements are chosen differently, and so on.

Cq will decrease until it reaches zero, but in practice a threshold value is
chosen in order to stop the iterative procedure at a given level of precision. It
was observed that even for vectors q close to the NMs, the value of Cq stays
high because it is too sensitive to small, nonrepresentative variations of the
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vectors; this yields a large number of unnecessary iterations, thus another
criterion may be used.
In this new criterion, the eigenvectors are considered to be convergedwhen

they do not change significantly during a given number, K, of successive
iterations. Therefore at each iteration (I) the calculated eigenvectors {q}I are
projected on those {q}I−1 of the previous iteration (I−1). We define (PI,I−1)j
as the maximum of the projections of all the m calculated vectors {q}I on the
jth vector qj(I−1):

(PI,I−1)j = max[(q1(I) · qj(I−1)), . . . , (qi(I) · qj(I−1)), . . . , (qm(I) · qj(I−1))]
(2.17)

and P̄I,I−1, the average of the maximum projections over all the modes j:

P̄I,I−1 = 1
m

m∑
j=1

(PI,I−1)j (2.18)

Finally, the new convergence criterion

CP = (K − 1)− (P̄I,I−1 + P̄I−1,I−2 + · · · + P̄I−(K−2),I−(K−1)) (2.19)

should be smaller than a threshold value. We observed that for K = 4, corres-
ponding to CP = 3 − (P̄I,I−1 + P̄I−1,I−2 + P̄I−2,I−3), and a threshold value of
10−3, good quality eigenvectors are obtained with reasonable computational
time (see Section 2.5).

2.5 Applications of DIMB

The DIMB method has been applied to several proteins of various sizes and
shapes (going from BPTI, 58 residues, to ATCase, 2878 residues) [17,28,44,45]
and always converged to exactNM[28,42]. Only two test-caseswill be presen-
ted here, a small protein, neocarzinostatin (NCS, 948 atoms; its pdb identifier:
1NOA) andamiddle-size one, humanhemoglobin (HbA, 5598 atoms, 2HHB).
Both proteins were energy minimized until a root mean square energy gradi-
ent of 10−4 kcal/mol/Å was reached, before undertaking the calculation of
their NMs.

2.5.1 Neocarzinostatin

The modes of NCS were calculated in two ways, either by the DIMB method
or by the standard method (SM), that is, the straightforward diagonalization
of the entire Hessian matrix, in order to compare the results.
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(a) (b)

FIGURE 2.3
(See color insert following page 136) Structure of NCS. (a) Partition of the protein according to
its secondary structure elements. (b) Subdivision of the protein in four equal parts of 237 atoms
without any structural considerations. Each part of the protein is presented by a different color.

2.5.1.1 Comparison between DIMB and the SM

In iteration zero of the DIMB method the Hessian matrix was divided into
four diagonal blocks according to the secondary structure elements of NCS,
as shown in Figure 2.3(a). Then 20 iterations were carried out to calculate
the 50 lowest-frequency modes. The evolution of the frequencies and of the
projection of the eigenvectors on those of SM are presented in Figure 2.4(a)
and Figure 2.4(b) for the four lowest frequencymodes. Moreover, eigenvalues
and the projections of eigenvectors for all the calculatedmodes (except the six
translation–rotationmodes) are shown in Figure 2.4(c) and Figure 2.4(d) at the
first and last iterations (numbers 0 and 20). It is observed that even at iteration
0 onemay find an eigenvectorwith a rather good overlapwith a correctmode
calculated by SM, as here 86% (1 − Pmax = 0.07) for mode 7, which is the
lowest-frequency internal mode, although its eigenvalue is slightly higher
than the correct one (5.7 cm−1 instead of 3.6 cm−1). After 20 iterations in the
mixed basis, all the modes have converged to a very high precision (with an
average relative error of 10−4 for the eigenvalues and an average overlap for
the eigenvectors of 99.99%). In fact the modes have converged more rapidly,
in only 12 iterations, as can be seen in Figure 2.5(a), in which the average
of the maximum projections between the two sets of modes is reported with
respect to the iteration number, (P̄DIMB,SM is obtained using Equations [2.17]
and [2.18] but instead of modes at iterations I and I − 1, the modes were
those calculated by DIMB and SM). This observation is corroborated by the
convergence criterion CP (Equation [2.19], Figure 2.5[b]) that is based on the
projections of the modes for four successive iterations. On the contrary, the
old criterion Cq (Equation [2.16], Figure 2.5[c]) did not reveal the right state
of convergence at 20 iterations; it tends to zero only after 32 iterations.
These calculations were performed on a single 2.4 GHz Pentium IV pro-

cessor for both SM and DIMB methods. The CPU time needed to calculate
the 50 lowest-frequency modes by SM was 1.7 min, while 20 iterations of the
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FIGURE 2.4
Comparison between DIMB and SM for NCS. (a) Evolution of the frequencies with respect to
the iteration number for the four lowest-frequency modes. (b) 1 − Pmax for the four lowest-
frequencymodes, Pmax being themaximum of the projections of eachmode calculated by DIMB
on all those obtained by SM. In (a) and (b), filled circles correspond to mode 7 (the 6 translation–
rotationmodes are omitted), filled squares tomode 8, open squares tomode 9, andfilled triangles
to mode 10. (c) The frequency of all the modes calculated by DIMB at iteration 0 (circles) and
iteration 20 (open squares) and by SM (solid line). (d) 1 − Pmax for all the modes calculated by
DIMB, at iteration 0 (circles) and iteration 20 (squares).

DIMBmethod required 2.8min to calculate the same number ofmodes. How-
ever, if the calculations would have been stopped after only 12 iterations, at
which point the modes had already attained good convergence, they would
have cost 1.6 min in CPU time.

2.5.1.2 Utilization of DIMB with a Different Partition

The initial partition of the protein determines the quality of the guess vectors
and thereforemay influence the convergence rate of themodes. To investigate
the role of the partition, the Hessian matrix was divided in four equal parts
of 237 atoms (Figure 2.3[b]) without any structural considerations. In this
partition it happened that the first diagonal block included the entire residues
fromnumber 1 to 31 and the nitrogen atomof the peptidic group of residue 32,
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(a) 1− P̄DIMB,SM, P̄DIMB,SM being the average of themaximum of the projections obtained using
Equations (2.17) and (2.18) for modes calculated by DIMB and SM vs. iteration number. It shows
that the modes have converged after only 12 iterations. (b) The new convergence criterion, CP,
confirms this observation. (c) The old convergence criterion, Cq, shows that convergence is not
reached before 30 iteration steps.

leaving its bonded hydrogen atom isolated in the second block. The existence
of similar orphan atoms was observed in other blocks. For these atoms, the
bonds connecting them to the rest of the protein are not taken into account in
the eigenvectors calculated for the corresponding block, which reduces the
quality of the guess vectors. Despite this poor subdivision of the matrix, the
eigenvectors still converge after few iterations to the right NMs as shown in
Figure 2.6, although not as efficiently as when the secondary structures were
taken into account.

2.5.1.3 Coupling Between Backbone Collective Motions and Side-Chains

It is of general interest to know how side-chains motions may be coupled to
the overall internal motion of the backbone, because it may have important
implications in the function of the protein. Such information can be obtained
from the NM analysis when all the atoms are taken into account in the calcu-
lation (as in the DIMB method). For comparison, approximate methods that
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Fluctuations of the side-chains χ1 angles of NCS for amaximumdisplacement of 2 Å alongmode
number 9.

consider only Cα atoms (as ENM) or rigid-body side-chains (as RTB) do not
allow such investigations.
To illustrate the importance of the couplingbetween side-chains and the col-

lectivemotions, let us consider oncemore the case ofNCS. The fluctuations of
theχ1 angles of the side-chainswere calculated formodenumber 9, which cor-
responded themost to the conformational change involved in ligand-binding.
The results, presented in Figure 2.7, showed the prominence of the fluctu-
ations of a single residue, Phe 78, whose side-chain motion is thus coupled
to the collective conformational change of the protein. In a more detailed
analysis of the dynamics along mode 9 it was observed that the collective
backbone motion for opening the binding site of the protein was coupled to
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 (a)

(b) (c)

FIGURE 2.8
(See color insert following page 136) Crystal structures of apo (a) and holo-NCS containing a
chromophore (b and c); residue Phe 78 is shown in red and the chromophore in green. In (a) the
arrows indicate the motion along mode 9, in the opening direction of the cleft, which is coupled
to the upwardmotion of Phe 78. In (b) holo-NCS is presented in the same orientation as (a) while
in (c) it is rotated by 90˚.

the upwardmotion of the Phe 78 side-chain (Figure 2.8[a]) and in the opposite
direction, the closing of the cleft was accompanied by a downward motion
of the side-chain. This indicated that the mentioned residue would play an
important role in ligand binding, first by making more accessible the bind-
ing site for ligand approach and second, by maintaining the ligand tightly
bound to the protein. This deduction is consistent with the observation of
both liganded and unbound crystal structures, where residue Phe 78 adopts
two different orientations as can be seen in Figure 2.8.

2.5.2 Hemoglobin

Hemoglobin is a tetramer composed of two α chains (141 residues) and two
β chains (146 residues), each chain containing a heme molecule. To calcu-
late the 200 lowest-frequencymodes of this proteinwe could not apply the SM
because it requiredmore than 1.2 GB RAM,while the DIMBmethod required
only 50 MB. Two ways for subdividing the Hessian matrix were adopted,
first in 10 parts without any structural consideration [16,42] (560 atoms for
the largest block) and second in 4 parts, each corresponding to a polypeptide
chain with its heme (1429 atoms for the largest block). In the former case
the calculationswere continued for 384 iterations, until the older convergence
criterion given by Equation (2.16) reached a value less than 0.06, that is, the
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Comparison between two ways of subdividing the Hessian matrix for hemoglobin. 1 − Pmax,
Pmax being the maximum of the projections of all the modes calculated by DIMB after only
12 iterations (partition in four parts corresponding to each chain) on those obtained after 384
iterations (partition in 10 parts of approximately 560 atoms). The latter are assimilated to modes
obtained by SM because they converged to a very high precision level.

modes have converged to a high precision level. These modes are considered
as the reference ones. In the second method of subdivision, only 12 iterations
were carried out, taking 3 h on a single 2.4 GHz processor, and all the vectors
were projected on all the referencemodes. Themaximum of these projections
for each reference mode are reported in Figure 2.9, where it can be seen that
the first 66 modes (i.e., including all those describing the collective motions)
are well-converged. Notice that modes 18 and 19, the projections of which are
around 0.85 (1− Pmax ≈ 0.15), are quasi-degenerate modes.

2.6 Concluding Remarks

The three iterative methods presented here converge well to the exact low-
frequency NMs. However the methods based on the Rayleigh quotient [27]
or on the perturbation approach [29] do not allow the calculation of a large
number of low-frequency NM, contrary to DIMB. In the latter the num-
ber of calculated modes can be large enough to describe all the interesting
motions ranging from the collective movements to those of isolated second-
ary structures. Therefore DIMB is at present the only method implemented
in a molecular simulation package that allows the calculation of a large num-
ber of exact low-frequency NMs for macromolecules that are too large to be
handledby theSM. It is basedon the classical forcefieldused inmolecular sim-
ulations. This is important because it yields the low-frequency spectrum for
a given molecule in the same range as that obtained experimentally by neut-
ron scattering or other techniques; therefore the calculated thermodynamic
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quantities from these modes come out with reasonable values. Moreover, it
allows the calculation of NMs for any type of molecule of biological interest
(proteins, nucleic acids, ligands, in which may be included water molecules
and ions, …) and their possible assemblies, as far as their parameters are
known for MD simulations. In addition, since the all-atom representation is
used, it permits the study of the coupling between collective and localized
motions as shown in the previous section.
Generally, calculation of NM by either the standard or iterative methods

is relatively long compared to approximate methods using simplified force
fields, because it requires beforehand the energy minimization to a very low
root mean energy gradient (≤10−4 kcal/mol/Å), which is very time con-
suming. In addition the DIMB method has been criticized because of the
length of its calculation time, but as it was mentioned earlier, the new con-
vergence criterion (Equation [2.19]) shows that in fact, the modes converge
much more rapidly than what was reported previously [22,26] by using the
old criterion (Equation [2.16]). In fact only few iteration steps are necessary to
obtain exact modes and still fewer if the molecule’s internal structure is taken
into account in the initial subdivision of the Hessian matrix. Nevertheless,
the DIMBmethod offers the possibility to stop the calculations at any desired
precision of themodes. Even at iteration zero, the guess vectors may be of the
same quality or better than those obtained by approximate methods (ENMs,
rigid-blocks approaches, …) for a relatively low calculation time cost (exclud-
ing the energy minimization), but with all atoms represented and obtained
frequencies of the same order ofmagnitude as those revealed by experimental
spectra.
Moreover, any initial guess vectorsmay be considered in theDIMBmethod,

either obtained by an arbitrary subdivision of theHessianmatrix in iteration 0
orby introducing in iteration1 thevectorsobtained fromanother approximate
method. Indeed, they all will ultimately converge to exact lowest frequency
modes; however, there is a real advantage to choosing guess vectors that are
as close as possible to the correct lowest frequencymodes in order to increase
the convergence rate.

Appendix A Detailed Description of the DIMBMethod

A.1 Initial Guess Vectors

The Hessian matrix is subdivided in an arbitrary number of sub-blocks

H =

HAA HAB · · ·
HBA HBB · · ·
· · · · · · · · ·


 (2.20)
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each diagonal block (HAA,HBB, . . .) contains an arbitrary number of elements
(l× l, k × k, . . . , respectively) corresponding to any part of the structure. The
diagonalization of these blocks yields the set of eigenvectors {qAA} for HAA,
{qBB} for HBB, etc. These vectors should be transformed to have the dimen-
sionality of the entire system (3N) by adding zeros to the vectors as shown in
Figure 2.1(a). This yields the set of orthonormal vectors {qA,qB, . . .}, which
forms a new basis set. In this procedure all the off-diagonal sub-blocks of
the Hessian matrix are neglected, although they represent the interactions
betweendifferent parts of the protein. In order to take into account these inter-
actions, a new basis set consisting of low-frequency NM and some Cartesian
coordinates should be adopted as described earlier. So first, one should calcu-
late the low-frequencyNM thatwill be considered as initial guess vectors. For
this purpose, the basis set {qA,qB, . . .} is reorganized in the ascending order
of the corresponding eigenvalues {qL,qM, . . .}, as shown in Figure 2.1(b) and
the Hessian matrix is expressed in this basis set (it will be denoted Q). The
newHessian matrix is divided in sub-blocks and only the low-frequency one
is diagonalized as shown below.
Theoretically, there exists an orthogonal transformation matrix T′ (see

Reference 28) such that

Q = T′THT′ (2.21)

The elements ofQ are the second derivatives of the potential energy function
with respect to the coordinates in the basis set {qL,qM, . . .} and as for mat-
rix T in Equation (2.12) the columns of T′ are the vectors {qL,qM, . . .}, thus
the elements of T′ are of the form t′ij = ∂Xi/∂qj where Xi are the Cartesian
coordinates. Equation (2.21) is a similarity transformation that preserves the
eigenvalues and the eigenvectors when expressed in the Cartesian basis. For
a complete basis set {qL,qM, . . .} of 3Nelements, the Q matrix is of the same
dimension as H. It can be partitioned in sub-blocks that depend on the fre-
quency as shown in Figure 2.1(b). The sub-block corresponding to the lowest
frequencies, QLL, is of an arbitrary size; it depends on the number of modes
that is intended to be calculated. In practice, only the QLL sub-matrix is cal-
culated using the {qL} set; then it is diagonalized to yield a reduced basis set
{qr}, which is defined in the space of the {qL} vectors. {qr} have to be back
transformed in order to define them in the initial Cartesian frame using the
transformation matrix T′′

q = T′′qr (2.22)

T′′ is not a squarematrix; it corresponds to a part ofT′. Indeed, its columns are
only composed by vectors {qL}. From the set of the obtained {q} vectors, only
a chosen subset {q}0, corresponding to the lowest eigenvalues, constitutes the
initial guess vectors. The subscript stands for iteration number 0.
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A.2 Iterative Procedure for Obtaining the NMs

The guess vectors are coupled with subsets of Cartesian coordinates to form
mixed basis sets using an iterative procedure. In iteration number 1, let us
consider s0 Cartesian coordinate vectors, {X}s0 , that constitute a subset of the
Cartesian basis. Each of these vectors corresponds to one degree of freedom
although it is constituted of 3N elements. Indeed, all the elements are equal
to zero except the one that corresponds to the displacement of a given atom
along one of the Cartesian axes, whose value is 1 (see Figure 2.2[a]). Let us
nowconsider the set of vectors {q}0 and {X}s0 , which shouldbeorthonormal to
constitute a reduced basis. Note that each of them is already orthonormal, but
this is not the case between the two sets. In order to orthonormalize thewhole
set {q,X}0 keeping the vectors {X}s0 unchanged, for each vector q the com-
ponents corresponding toCartesian coordinates of selection s0 are replacedby
zeros, making themodified set {q̄}0 not orthonormal anymore, but orthogonal
to the set {X}s0 . In order to reorthonormalize the set {q̄}0 by preserving the
null components that were introduced, the Gram–Schmidt orthogonalization
procedure is used [33], followed by the normalization N . In this proced-
ure the vector q̄i is orthogonalized with respect to all the preceeding vectors
{q̄1, . . . , q̄i−1}:

q′i = N
(
q̄i −

i−1∑
k=1

(q′Tk q̄i)q
′
k

)
(2.23)

The Hessian matrix Q(1) is expressed in the new reduced basis {q′,X}0,
using the transformation matrix T(1) as in Equation (2.21), the columns of
T(1) being the vectors {q′,X}0. Diagonalization ofQ(1) yields the eigenvectors
{q}1 which constitute the starting vectors for the second iteration. In each iter-
ation step, the set of Cartesian vectors is chosen differently in order to scan
the whole degrees of freedom of the system (Figure 2.2[b]). Different kinds
of selections of the Cartesian coordinates may be adopted, but in practice
we observed that it is more efficient to choose the Cartesian coordinates that
belong to two disjoint regions along the sequence of the molecule; we called
it the double-window technique [42]. The iteration procedure continues until
the eigenvectors converge to exact NMs.
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3.1 Introduction

A view that emerges from many studies is that proteins possess a tend-
ency, encoded in their three-dimensional (3D) structures, to reconfigure into
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functional forms, that is, each native structure tends to undergo conform-
ational changes that facilitate its biological function. An efficient method
for identifying such functional motions is normal mode analysis (NMA), a
method that has foundwidespread use in physical sciences for characterizing
molecular fluctuations near a given equilibrium state. The utility of NMA as
a physically plausible andmathematically tractable tool for exploring protein
dynamics has been recognized for the last 20 years [1, 2]. With recent increase
in computational power and speed the application of NMA to proteins has
gained renewed interest and popularity.
Contributing to this renewed interest in utilizing NMA has been the

introduction of simpler models based on polymer network mechanics. The
Gaussiannetworkmodel (GNM) is probably the simplest among these. This is
an elastic network (EN) model introduced at the residue level [3, 4], inspired
by the full atomic NMA of Tirion with a uniform harmonic potential [5].
Despite its simplicity, the GNM and its extension, the anisotropic network
model (ANM) [6], or similar coarse-grained ENmodels combinedwithNMA
[7–9], have found widespread use since then for elucidating the dynam-
ics of proteins and their complexes. Significantly, these simplified NMAs
with EN models have recently been applied to deduce both the machinery
and conformational dynamics of large structures and assemblies including
HIV reverse transcriptase [10, 11], hemagglutinin A [12], aspartate transcar-
bamylase [13], F1 ATPase [14], RNA polymerase [15], an actin segment [16],
GroEL-GroES [17], the ribosome [18, 19], and viral capsids [20–22].
Studying proteins with the GNM provides more than the dynamics of

individual biomolecules, such as identifying the common traits among the
equilibrium dynamics of proteins [23], the influence of native state topology
on stability [24], the localization properties of protein fluctuations [25], or
the definition of protein domains [26, 27]. Additionally, GNM has been used
to identify residues most protected during hydrogen–deuterium exchange
[28, 29], critical for folding [30–34], conserved among members of a given
family [35], or involved in ligand binding [36].
The theoretical foundations of the GNM will be presented in this chapter,

alongwith a fewapplications that illustrate its utility. The following questions
will be addressed. What is the GNM?What are the underlying assumptions?
How is it implemented? Why and how does it work? How does the GNM
analysis differ from NMA applied to EN models? What are its advantages
and limitations compared to coarse-grained NMA? What are the most signi-
ficant applications and prospective utilities of the GNM, or the ENmodels in
general?
To this end, the chapter begins with a brief overview of conformational

dynamics and the relevance of such mechanical motions to biological func-
tion. Section 3.2.1 is devoted to explaining the theory and assumptions of
the GNM as a simple, purely topological model for protein dynamics. The
casual reader may elect to skip over Sections 3.2.2 to 3.2.4 where the deriv-
ation of the GNM is presented using fundamental principles from statistical
mechanics. In Section 3.3, attention is given to how the GNM is implemented
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(Section 3.3.1), and to what extent it can be or cannot be applied to proteins
in general. An interpretation of the physical meaning of both fast and slow
modes is presented (Section 3.3.2) with examples for a small enzyme, ribo-
nuclease T1. Section 3.3.3 describes how the GNM differs from the ANM
(i.e., from the NMA of simplified EN models) and discusses when the use
of one model is preferable to the other. Finally, results are presented in
Sections 3.3.4 and 3.3.5 for twowidely different applications: specificmotions
of supramolecular structures and classification of motions in general through
the iGNM online database of GNM motions. The chapter concludes with
a discussion of potential future uses.

3.1.1 Conformational Dynamics: A Bridge Between
Structure and Function

With recent advances in sequencing genomes, it has become clear that the
canonical sequence-to-function paradigm is far from being sufficient. Struc-
ture has emerged as an important source of additional information required
for understanding the molecular basis of observed biological activities. Yet,
advances in structural genomics have now demonstrated that structural
knowledge is not sufficient for understanding the molecular mechanisms of
biological function either. The connectionbetween structure and functionpre-
sumably lies in dynamics, suggesting an encoding paradigm of sequence to
structure to dynamics to function.
Not surprisingly, a major endeavor in recent years has been to develop

models and methods for simulating the dynamics of proteins, and relating
the observed behavior to experimental data. These efforts have been largely
impeded, however, by thememoryand timecost ofmoleculardynamics (MD)
simulations. These limitations are particularly prohibitive when simulating
the dynamics of large structures or supramolecular assemblies.

3.1.2 Functional Motions of Proteins Are Cooperative Fluctuations
Near the Native State

While accurate sampling of conformational space is a challenge for macro-
molecular systems, the studyofproteindynamicsbenefits fromagreat simpli-
fication: proteinshaveuniquelydefinednative structuresunderphysiological
conditions, and they are functional only when folded into their native con-
formation. Therefore, while the motions of macromolecules in solution are
quite complex and involve transitions between an astronomical number of
conformations, those of proteins near native state conditions are much sim-
pler, as they are confined to a subset of conformations, ormicrostates, near the
folded state. These microstates usually share the same overall fold, second-
ary structural elements, andeven tertiary contactswithin individualdomains.
Typical examples are the open and closed forms of enzymes, usually adopted
in the unliganded and liganded states, respectively. Exploring the fluctuation
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dynamics of proteins near native state conditions is a first step toward gaining
insights about themolecular basis andmechanismsof their function; andfluc-
tuation dynamics can be treated to a good approximation by linear models
— such as NMA.
Another distinguishable property of protein dynamics — in addition to

confinement to a small subspace of conformations— is the collective nature of
residue fluctuations. The fluctuations are indeed far from random, involving
the correlated motions of large groups of atoms, residues, or even entire
domains or molecules whose concerted movements underlie biological func-
tion. An analytical approach that takes account of the collective coupling
between all residues is needed, and again NMAemerges as a reasonable first
approximation.

3.2 The Gaussian Network Model

3.2.1 A Minimalist Model for Fluctuation Dynamics

Most analytical treatments of complex systems dynamics entail a comprom-
ise between physical realism and mathematical tractability. A challenge is to
identify the simplest, yet physically plausible, model that retains the phys-
ical and chemical characteristics, which are needed for the time and length
scales of interest. Clearly, as the size and length scales of the processes of
interest increase, it becomes unnecessary to account for many of the micro-
scopic details in the model. The inclusion of these microscopic details could,
on the contrary, tend to obscure the dominant patterns characterizing the
biological function of interest.
TheGNMwasproposedbyBahar et al. [3]within suchaminimalistmindset

to explore the role and contribution of purely topological constraints, defined by
the 3D structure, on the collective dynamics of proteins. Inspired by the sem-
inalwork of Flory and collaborators applied to polymer gels [37], each protein
is modeled by an EN (Figure 3.1), the dynamics of which is entirely defined
by network topology. The position of the nodes of the EN are defined by the
Cα-atom coordinates, and the springs connecting the nodes are representative
of the bonded and nonbonded interactions between the pairs of residues loc-
ated within an interaction range, or cutoff distance, of rc. The cutoff distance
is usually taken as 7.0 Å, based on the radius of the first coordination shell
around residues observed in PDB structures [38, 39].

3.2.2 GNM Assumes Fluctuations Are Isotropic and Gaussian

If we define equilibrium position vectors of a node, i, by R0
i , and the instant-

aneous position by Ri, the fluctuations, or deformations, from this mean
position can then be defined by the vector �Ri = Ri − R0

i . The fluctuations
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FIGURE 3.1
(See color insert following page 136) Description of the GNM. (a) Schematic representation of
the equilibrium positions of the ith and jth nodes, R0i and R

0
j , with respect to a laboratory-fixed

coordinate system (xyz). The instantaneous fluctuation vectors, �Ri and �Rj , are shown by the
dashed arrows, along with the instantaneous separation vector Rij between the positions of the
two residues. R0ij is the equilibrium distance between nodes i and j. (b) In the EN of GNM every
residue is represented by a node and connected to spatial neighbors by uniform springs. These
springs determine the N − 1 degrees of freedom in the network and the structure’s modes of
vibration. (c) Threedimensional imageofheneggwhite lysozyme (PDBfile 1hel [46]) showing the
Cα trace. Secondary structure features are indicated by pink for helices and yellow for β-strands.
(d) Using a cutoff value of 10 Å, all connections between Cα nodes are drawn for the same
lysozyme structure to indicate the nature of the EN analyzed by GNM.

in the distance vector Rij between residues i and j, can in turn be expressed
as �Rij = Rij −R0

ij = �Rj −�Ri (Figure 3.1[a]). By assuming that these fluc-
tuations are isotropic and Gaussian we can write the potential of the network
of N nodes (residues), VGNM, in terms of the components�Xi, �Yi, and�Zi
of �Ri, as

VGNM = γ

2


 N∑

i,j

�ij[(�Xi −�Xj)
2 + (�Yi −�Yj)

2 + (�Zi −�Zj)
2]


(3.1)
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where �ij is the ijth element of the Kirchhoff (or connectivity) matrix of inter-
residue contacts defined by

�ij =



−1, if i �= j and Rij ≤ rc
0, if i �= j and Rij > rc
−
∑
j,j �=i

�ij, if i = j
(3.2)

and γ is the force constant taken to be uniform for all network springs.
Expressing the X-, Y-, and Z-components of the fluctuation vectors �Ri as
three N-dimensional vectors �X,�Y, and �Z, Equation (3.1) simplifies to

VGNM = γ

2
[�XT��X +�YT��Y +�ZT��Z] (3.3)

where �XT, �YT, and �ZT are the row vectors [�X1,�X2, . . . ,�XN ],
[�Y1,�Y2, . . . ,�YN ], and [�Z1,�Z2, . . . ,�ZN ], respectively. The total poten-
tial can alternatively be expressed as

VGNM = γ

2
[�RT(� ⊗ E)�R] (3.4)

where �R is the 3N-dimensional vector of fluctuations, �RT is its trans-
pose, �RT = [�X1,�Y1, . . . ,�ZN ], E is the identity matrix of order 3, and
(� ⊗ E) is the direct product of � and E, found by replacing each element �ij
of � by the 3× 3 diagonal matrix �ijE. One should note that by construction
the eigenvalues for this 3N × 3N matrix, � ⊗ E, are threefold degenerate.
This degeneracy arises from the isotropic assumption, further explored in the
following section.

3.2.3 Statistical Mechanics Foundations of the GNM

Whatwe are primarily interested in is determining themean-square (ms) fluc-
tuations of a particular residue, i, or the correlations between the fluctuations
of two different residues, i and j. These respective properties are given by

〈�Ri ·�Ri〉 = 〈�X2
i 〉 + 〈�Y2

i 〉 + 〈�Z2i 〉 (3.5)

and
〈�Ri ·�Rj〉 = 〈�Xi�Xj〉 + 〈�Yi�Yj〉 + 〈�Zi�Zj〉 (3.6)

Thus, if we know how to compute the component fluctuations 〈�X2
i 〉 and〈�Xi�Xj〉 then we know how to compute the residue fluctuations and their

cross-correlations.



BICH: “c472x_c003” — 2005/10/19 — 20:45 — page 47 — #7

The Gaussian Network Model 47

In the GNM, the probability distribution of all fluctuations, P(�R) is
isotropic (Equation [3.7]) and Gaussian (Equation [3.8]), that is,

P(�R) = P(�X,�Y,�Z) = p(�X)p(�Y)p(�Z) (3.7)

and

p(�X)∝ exp
{
− γ

2kBT
�XT��X

}

∝ exp

{
−1
2

(
�XT

(
kBT
γ
�−1

)−1
�X

)}
(3.8)

where kB is the Boltzmann constant andT is the absolute temperature. Similar
forms apply to p(�Y) and p(�Z). �X = [�X1,�X2, . . . ,�Xi, . . . ,�XN ] is
therefore a multidimensional Gaussian random variable with zero mean and
covariance (kBT/γ )�−1 in accord with the general definition [40]

W(x,µ,�) = 1
(2π)N/2|�|1/2 exp

{
−1
2
(x − µ)T�−1(x − µ)

}
(3.9)

for multidimensional Gaussian (normal) probability density function asso-
ciated with a given N-dimensional vector x having mean vector µ and
covariance matrix�. Here, the term in the denominator, (2π)N/2|�|1/2, is the
partition function that ensures the normalization ofW(x,µ,�) upon integra-
tion over the complete space of accessible x, and |�| is the determinant of�.
Similarly, the normalized probability distribution p(�X) is

p(�X) = 1
ZX

exp

{
−1
2

(
�XT

(
kBT
γ
�−1

)−1
�X

)}
(3.10)

where ZX is the partition function given by

ZX =
∫
exp

{
−1
2

(
�XT

(
kBT
γ
�−1

)−1
�X

)}
d�X = (2π)N/2

∣∣∣∣kBTγ �−1
∣∣∣∣
1/2

(3.11)

In theGNM, thedeterminant of theKirchhoffmatrix is zero, and the inverse,
�−1, which scaleswith the covariance, cannot therefore be directly computed.
�−1 is found instead by eigenvalue decomposition of � and reconstruction
of the inverse using the N − 1 nonzero eigenvalues and associated eigen-
vectors. The same expression in Equation (3.11) is valid for ZY andZZ such
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that the overall GNMpartition function (or configurational integral) becomes

ZGNM = ZXZYZZ = (2π)3N/2
∣∣∣∣kBTγ �−1

∣∣∣∣
3/2

(3.12)

Nowwehave the statisticalmechanical foundations towrite the expectation
values of the residue fluctuations, 〈�X2

i 〉 and correlations, 〈�Xi�Xj〉. It can
be verified that theN×N covariancematrix 〈�X�XT〉 is equal to (kBT/γ )�−1,
using the statistical mechanical average1

〈�X�XT〉 =
∫
�X�XTp(�X)d�X = kBT

γ
�−1 (3.13)

Because

〈�X�XT〉 = 〈�Y�YT〉 = 〈�Z�ZT〉 = 1
3 〈�R�RT〉 (3.14)

we obtain

〈�R2
i 〉=

3kBT
γ

(�−1)ii

〈�Ri ·�Rj〉= 3kBT
γ

(�−1)ij
(3.15)

as the ms fluctuations of residues and correlations between residue fluc-
tuations. It should be noted that the assumption of isotropic fluctuations
(Equation [3.8]) is intrinsic to the GNM. Thus the 3N-dimensional prob-
lem (Equation [3.4]) can be reduced to an N-dimensional one described by
Equation (3.15).

3.2.4 Influence of Local Packing Density

The diagonal elements of the Kirchhoff matrix, �ii, are equal to the residue
coordination numbers, zi (1 ≤ i ≤ N), which represent the degree of the
EN nodes in graph theory. Thus zi is a direct measure of local packing density
around the ith residue. To better understand this, it is possible to express � as
a sum of two matrices �1 and �2, consisting exclusively of the diagonal and
off-diagonal elements of �, respectively. Using these two matrices, �−1 may

1Note that solving Equation (3.13) involves the ratio of the multidimensional Gaussian counter-
parts for the two integrals

∫
exp{−ax2}dx = 1

2
√
(π/a) and

∫
x2 exp{−ax2}dx = (√π/4)a3/2 in the

range (0,∞) such that 〈x2〉 = (
√
π/4)a−3/2/ 12

√
(π/a) = 1/2a. For the simplest case of a single

spring, subject to harmonic potential 12γ x
2, a = γ /2kBT, and 〈x2〉 = kBT/γ .
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be written as

�−1 = [�1 + �2]−1 = [�1(E+ �−11 �2)]−1 = (E+ �−11 �2)
−1�−11

= (E− �−11 �2 + · · · )�−11 = �−11 − �−11 �2�
−1
1 + · · · (3.16)

if one assumes that the invariants of the product (�−11 �2) are small compared
to those of the identity matrix, E, which is a valid approximation for protein
Kirchhoff matrices. Thus, the information concerning local packing dens-
ity and distribution of contacts is dominated by the diagonal matrix, �−11 ,
which is the leading term in a series expansion for �−1 in Equation (3.16).
Consequently, application of Equation (3.15) indicates that 〈(�Ri)

2〉 scales
with [�−11 ]ii = 1/zi, to a first approximation. Thus the local packing density
as described by the coordination numbers is an important structural prop-
erty contributing to the ms fluctuations of residues [41]. However, these
coordination numbers represent only the leading order and not the entire
set of dynamics described by Equation (3.15).

3.3 Method and Applications

3.3.1 Equilibrium Fluctuations

The ms fluctuations of residues are experimentally measurable (e.g., x-ray
crystallographicB-factors, or rootmean-square [rms] differences betweendif-
ferent models fromNMR), and as such, have often been used as an initial test
for verifying and improving computational models and methods. Beginning
with the originalGNMpaper [3], several applications havedemonstrated that
the fluctuations predicted by the GNM are in good agreement with experi-
mental B-factors [6, 23, 39, 42–44]. The B-factors are related to the expected
residue fluctuations and calculated according to

Bi = 8π2

3
〈(�Ri)

2〉 = 8π2kBT
γ
[�−1]ii (3.17)

Figure 3.2(a) illustrates the agreement between the B-factors predicted by
the GNM (solid curve) and those calculated from experimental data (open
circles) for an example protein, ribonuclease T1 (RNase T1), where� has been
constructed from the Cα coordinates for RNase T1 deposited in the Protein
Data Base (PDB) [45]. Panel B compares the rms fluctuations predicted by the
GNMand those observed across the 20NMRmodels deposited in the PDB for
reduced disulphide-bond formation facilitator (DsbA) [46]. The correlation
coefficientbetweenGNMresults andexperimentaldata for these twoexample
proteins are 0.769 and 0.823 in the respective panels A and B. An extensive
comparisonof experimental and theoreticalGNMB-factors for a series of PDB
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FIGURE 3.2
Comparison ofms fluctuations predicted byGNMandANMwith experimental observations. (a)
Experimental x-ray crystallographic B-factors (open circles) reported for ribonuclease T1 (PDB
file 1bu4 [53]) plotted with calculated values from GNM (solid line) and ANM (dotted line)
against residue number. (b) Root mean square deviation between Cα coordinates of NMRmodel
structures (open circles) deposited for the reduced disulphide-bond formation facilitator (DsbA)
in the PDB file 1a24 [46].

structures by Phillips and coworkers has shown that GNM calculations yield
an average correlation coefficient of about 0.65 with experimental B-factors
provided that the contacts between neighboringmolecules in the crystal form
are taken into account. The agreement with NMR data is also remarkable,
pointing to the consistency between the fluctuations undergone in solution
and those inferred from x-ray structures.

3.3.2 GNM Mode Decomposition: Physical Meaning of Slow and
Fast Modes

A major utility of the GNM is the ease of obtaining the collective modes
of motion accessible to structures in native state conditions. The GNM nor-
mal modes are found by transforming the Kirchhoff matrix into a product of
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three matrices, the matrix U of the eigenvectors ui of �, the diagonal matrix
� of eigenvalues λi, and the transpose UT = U−1 of the unitary matrix U as
in Equation (3.18).

� = U�UT (3.18)

The eigenvalues are representative of the frequencies of the individual modes,
while the eigenvectors define the shapes of themodes. The first eigenvalue, λ1,
is identically zero with the corresponding eigenvector comprised of elements
all equal to a constant, 1/

√
N, indicative of an absence of internal motions

in this zeromode. The vanishing frequency reflects the fact that the molecule
can be translated rigidly without any potential energy change.
Combining Equations (3.15) and (3.18), the cross-correlations between

residue fluctuations can be written as a sum over the N − 1 nonzero modes
(2 ≤ k ≤ N) using

〈�Ri ·�Rj〉 = 3kBT
γ
[�−1]ij = 3kBT

γ
[U�−1UT]ij

= 3kBT
γ

∑
k

[λ−1k uku
T
k ]ij (3.19)

This permits us to identify the correlation, [�R ·�R]k contributed by the
kth mode as

[�Ri ·�Rj]k = 3kBT
γ

λ−1k [uk]i[uk]j (3.20)

where [uk]i is the ith element of uk . Because uk is normalized, the plot of
[uk]2i against the residue index, i, yields the normalized distribution of ms
fluctuations of residues in the kth mode, shortly referred to as the kth mode
shape (Figure 3.3[a]). Because the residue fluctuations are related to the experi-
mental temperature (B-factors) by Equation (3.17), these elements of uk reflect
the residue mobilities in the kth mode.
Note that the factor λ−1k plays the role of a statistical weight, which suit-

ably rescales the contribution of mode k. This ensures that the slowest mode
has the largest contribution. In addition to their significant contribution,
the slowest motions are in general also those having the highest degree of
collectivity. Many studies have shown that the shapes of the slowest modes
indeed reveal the mechanisms of cooperative or global motions, and the most
constrained residues (minima) in these modes play a critical role, such as
a hinge-bending center, that govern the correlated movements of entire
domains [10–13, 17, 19, 44, 47–52]. It is important to note that although these
motions are slow, they involve substantial conformational changes distrib-
uted over several residues. The fastest modes, on the other hand, involve
the most tightly packed and hence most severely constrained residues in
the molecule. Their high frequency does not imply a definitive conform-
ational change, because they cannot effectively relax within their severely
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FIGURE 3.3
(See color insert following page 136) Physical meaning of slow and fast modes in GNM. (a) Dis-
tribution of squared displacements of residues in the slowestmode as a function of residue index
for ribonuclease T1 (RNase T1). The red arrows identify local minima that correspond to five
experimentally identified catalytic residues: Tyr38, His40, Glu58, Arg77, and His92. (b) Distri-
bution of squared displacements averaged over the ten fastest modes for the same protein. Here
the arrows indicate the residues shown by hydrogen/deuterium exchange to be themost protec-
ted and thus important for reliable folding. A majority of these critical folding residues appear
as peaks in the fast modes. (c) Color-coded mapping of the slowest mode (a) onto the 3D Cα

trace of RNase T1 (PDB file: 1bu4 [53]) where red is most mobile and blue least mobile. The side
chains of the five catalytic residues are shown in pink surrounding the nucleotide binding cavity.
(d) A similar color-coded mapping of the fluctuations of the ten fastest modes (b) onto the Cα

trace. Here the side chains of the tenmost protected residues fromhydrogen deuterium exchange
experiments are drawn explicitly showing that most of them are calculated to be mobile (red).
The images in c and d were generated using VMD [74].

constrained environment. On the contrary, they enjoy extremely small con-
formational freedom, on a local scale, by undergoing fast, but small amplitude
fluctuations.
Figure 3.3 illustrates the contrast between the degree of collectivity for

the slowest and fastest modes for an example protein, RNase T1. As in this
case, the slow modes involve almost the entire molecule as indicated by the
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broad, delocalized peaks in panel A. The relative potential motion predicted
by this mode is plotted onto the 3D structure in Figure 3.3(c), color-coded
such that minima are blue andmaxima are red. For RNaseT1, five red arrows
are drawn in Figure 3.3(a) to indicate the residues identified as part of the
catalytic site (Y38, H40, E58, R77, and H92) [53]. With the exception of H92,
these five residues are located near minima in the slow (global) mode shape
(Figure 3.3[a]) and their side chains are shown to be spatial neighbors (pink
tubes) in the 3D plot of this protein (Figure 3.3[c]).
In contrast, the fastest modes are highly localized, with mode shapes that

usually involve only a few peaks, as in Figure 3.3(b). These peaks refer to the
residues that have a high concentration of local energy and are tightly con-
strained inmotion. It has been noticed that these residues are often conserved
across species and may form the folding nuclei [33, 34, 54]. In the applica-
tion to RNase T1, the ten most protected residues (57,59,61,77–81,85, and 87),
as identified by hydrogen–deuterium exchange experiments [55], are indic-
ated by gold arrows in Figure 3.3(b) and shown with their side chains in the
3D structure, color-coded such that minima are blue and maxima are red
(Figure 3.3[d]). As illustrated, many of these residues involve interactions
between different strands of the central β-sheet, suggesting their potential
involvement in the folding of RNase T1.

3.3.3 What Is ANM? How Does GNM Differ from ANM?

As pointed out in Chapter 1 by Hinsen, ANM analysis is simply an NMA
applied to an EN model, the potential of which is defined as [6]

VANM = γ

2

[ N∑
i,j

(Rij − R0ij)
2H(rc − Rij)

]
(3.21)

where H(rc − Rij) is the heavyside step function equal to 1 if the argument
is positive, and zero otherwise. H(rc − Rij) selects all residue pairs within
the cutoff separation of rc. In the GNM, on the other hand, the potential is
given by

VGNM = γ

2

[ N∑
i,j

(Rij − R0
ij
)2H(rc − Rij)

]
(3.22)

Equation (3.22) looks very similar to Equation (3.21), with the major differ-
ence that the vectors Rij and R0

ij in Equation (3.22) replace distances (scalars),
Rij and R0ij. This means that the potential, which depended upon the dot
product between the fluctuation vectors in the GNM

(Rij − R0
ij) · (Rij − R0

ij) = R2ij + (R0ij)2 − 2RijR0ij cos(Rij,R0
ij)

= R2ij + (R0ij)2 − 2(XijX0
ij + YijY0

ij + ZijZ0ij) (3.23)
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now (in the ANM) depends upon their scalar product

(Rij − R0ij)(Rij − R0ij) = R2ij + (R0ij)2 − 2RijR0ij

= R2ij + (R0ij)2 − 2[X2
ij + Y2

ij + Z2ij]1/2

× [(X0
ij)
2 + (Y0

ij)
2 + (Z0ij)2]1/2 (3.24)

Because the scalarsRij andR0ij dependupon their components in anonquad-
ratic form, it is natural to endupwith anisotropic fluctuations upon taking the
second derivatives of the potential with respect to the displacements along
the X-, Y-, and Z-axes as is done in NMA. Using Equations (3.23) and (3.24),
the difference between these two potentials is

VGNM − VANM = γ

 N∑

i,j

RijR0ij(1− cos(Rij,R0
ij))H(rc − Rij)


 (3.25)

that is, the two potentials are equal only if cos(Rij, R0
ij) = 1, that is, Rij = R0

ij
or �Ri = �Rj.
Physically, this means that in addition to changes in inter-residue distances

(springs), any change in the direction of the inter-residue vector R0
ij is also

being resisted or penalized in the GNM potential. On the contrary, the ANM
potential depends exclusively on themagnitudes of the inter-residue distances
and does not penalize any such changes in orientation. It is conceivable that
within the densely packed environment of proteins, orientational deforma-
tions may be as important as translational (distance) ones, and a potential
that takes account of the energy dependence associated with the internal
orientational changes (i.e., VGNM) is physically more meaningful than one
exclusively based on distances (VANM). Not surprisingly, ANM has been
observed to give rise to excessively high fluctuations compared to the GNM
results or experimental data (Figure 3.2), and hence necessitated the adop-
tion of a higher cutoff distance for interactions [6]. With a higher cutoff
distance, each residue is connected to more neighbors in a more constrained
and consolidated network.
InasmuchasVGNM isphysicallymore realistic, onemightprefer toadopt the

GNM, rather than theANM for a coarse-grainedNMA.However, this greater
realism comes at a price. Because the GNMdescribes the dynamics within an
N-dimensional configurational space as opposed to a 3N-dimensional one
of ANM, the residue fluctuations predicted by the GNM are intrinsically
isotropic. Thus GNM cannot provide information regarding the individual
components: �X(k), �Y(k), and �Z(k), of the deformation vectors �R(k)

associated with each mode, k, but rather predicts the magnitudes, |�R(k)|,
induced by such deformations. The conclusion is that GNM is more accurate,
and should be chosen when evaluating the deformation magnitudes, or the
distribution of motions of individual residues. However, ANM is the only
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possible (less realistic) model when it comes to assessing the directions or
mechanisms of motions. That the fluctuations predicted by the GNM correl-
ate better with experimental B-factors than those predicted by the ANM has
been observed and confirmed in a recent systematic study of Phillips and
coworkers [23]. The dotted curves in Figure 3.2 illustrate the ANM results,
and provide a comparison of the level of agreement (with experimental data)
usually achieved by the two respective models. The correlation coefficients
between the GNM results and experimental data are 0.769 and 0.823 in the
panels A and B, respectively, whereas their ANM counterparts are 0.639 and
0.261. We note that the two sets of computed results are themselves correlated
(0.756 and 0.454, respectively), which can be expected from the similarity of
the underlying models.

3.3.4 Applicability to Supramolecular Structures

A major advantage of the GNM is its applicability to large complexes and
assemblies. The size of the Kirchhoff matrix is N × N for a structure of N
residues, as opposed to the size 3N × 3N of the equivalent Hessian matrix
for a residue-level EN NMA (or ANM). The resulting computational time
requirement forGNManalysis is thenabout 33 times less than forANM,which
in turn is about 83 times less than for NMA at atomic scale (assuming eight
atoms on the average per residue). This enormous decrease in computational
time permits us to useANM, and certainly GNM, for efficiently exploring the
dynamics of supramolecular structures [17, 22].
Due to limitations in computational memory and speed, efforts to analyze

large structures of ∼105 residues rely upon further coarse-graining of the
structure of interest. This is now the standard approach, having been imple-
mented in several forms by various research groups including hierarchical
coarse-graining (HCG) [56], discussed below; rotations–translations of blocks
(RTB) [57] or block normal mode (BNM) [9]; and substructure-synthesis
method (SSM) [58], which are discussed in other chapters of this book.
For both GNM and ANM, it has been demonstrated that an HCG scheme

where clusters of residues and their interactions, as opposed to individual
pairs of residues, are considered as the EN nodes successfully reproduce
the essential features of the full-residue GNM/ANM calculations [56]. The
global dynamics of hemagglutinin A were obtained at least two orders of
magnitude faster than standard GNM/ANM by coarse-graining to the level
of every 40th residue (N/40) [56]. Notably, theminima in globalmode shapes,
which identify key regions coordinating the collective dynamics, were exactly
reproduced by the N/40 coarse-graining.
Figure 3.4 illustrates the application of GNM to the wild type 70S ribosome

from Escherichia coli [59]. The calculations were performed by considering a
single node for each amino acid (on the Cα atom) and each nucleotide (on the
P atom), yielding a total of 10,453 nodes (residues and nucleotides). Because
the diameter of theA-formRNAdouble helix is 20Å, a larger cutoff distance is
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FIGURE 3.4
(See color insert following page 136) Application of GNM to the 70S ribosome structure. The
calculations were performed on the wild type 70S ribosome from E. coli (PDB files 1pnx and
1pny [59]). (a) The slowest nonzero mode for the 70S ribosome colored from −1 (red) to +1
(blue) is mapped onto the 3D structure indicating a dramatic break at the interface between the
two subunits (50S and 30S). This image was generated using VMD [74]. (b) The slowest nonzero
mode plotted vs. the residue number. Residues in the 50S subunit (blue) exhibit one direction of
motion that is opposed to the motion in the 30S subunit (red).

required to correctly identify base-paired nucleotides solely by their P-atom
positions [42]. To ensure adequate connectivity, two cutoff distances were
adopted, 9.0 Å if both atoms were Cα and 21.0 Å if one or both were phos-
phorous, analogous to our ANM analysis of ribosome [19]. Panels a and b
illustrate the slowest (nonzero) mode shape as a color-coded 3D structure
and against the residue index. The coloring emphasizes the distinct differ-
ence between the motions of the 50S (red) and 30S (blue) subunits in this
mode and indicates an anticorrelated motion of one subunit with respect to
the other. This type of anticorrelated motion (i.e., ratcheting of one subunit
with respect to the other) has been observed by cryo-EM [60].
Recently the dynamics of the HK97 bacteriophage viral capsid has been

analyzed using the GNM. Two different forms of the capsid known as the
pro-capsid (Prohead II) [2] and mature (Head II) [61] were considered. These
structures are comprised of 420 copies of a single protein chain arranged
into 12 pentamers and 60 hexamers, which expand from a spherical form
(prohead) to icosahedral form (head) during maturation [62]. The GNM res-
ults obtained with a coarse-graining of N/35 for the first (slowest nonzero)
mode of the two forms are shown in Figure 3.5(a) and Figure 3.5(b). These
HCG structures have 3072 and 3360 nodes respectively. GNM computations
were also performed with the complete sets of 107,520 and 117,600 residues
for the respective pro-capsid and mature capsid to examine the conforma-
tional changes accompanyingmaturation [22]. Figure 3.5(c) and Figure 3.5(d)
indicate that the slowest nonzero mode for the full capsid matches the
N/35 results. This mode is asymmetric, yet identifies a region at each pole,
pentamer-centered, as the most mobile (red) in each of these calculations.
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FIGURE 3.5
(See color insert following page 136) Application of GNM to the HK97 bacteriophage viral
capsid. (a) The ms fluctuations from the slowest (threefold degenerate) mode for the prohead
viral capsid coarse-grained by retaining only every 35th residue are colored from most mobile
(red) to least mobile (blue). (b) The results for the slowest (threefold degenerate) mode of the
head viral capsid calculated using a similar coarse-grained procedure of retaining every 35th
residue. Both identify pentamer-centered regions at opposite poles as the most mobile regions
suggesting an expansion or puckering of these residues. (c) The ms fluctuations for the slowest
mode calculated over the entire (107,520 residue) prohead capsid structure (PDBfile 1if0 [62]) and
(d) entire (117,600 residue) head capsid structure (PDB file 1fh6 [61]) also demonstrate this high
degree of mobility at the poles. (e) The weighted summation of the 11 slowest modes identifies
the 12 pentamers as themost mobile regions responsible for expansion from the prohead to head
form. (f) The slowest nondegenerate, symmetric mode, mode 31, also identifies these pentamers
as highly mobile. These images were generated using VMD [74].
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Due to the large degree of symmetry of the capsid, many of the calculated
modes are degenerate, that is, have the same frequencies (eigenvalues). For
example, the mode indicated in Figures 3.5(a) to Figure 3.5(d) is threefold
degenerate, oriented along a different axis of the capsid. Hence a superposi-
tion of these three modes would more accurately describe the global motion
of expansion that accompanies maturation. In fact, the superposition of the
11 slowest modes was found to yield icosahedrally symmetric fluctuations
and identify the 12 pentamers as the most mobile (red) regions in the capsid
(Figure 3.5[e]). Cryo-EM maps of intermediates between the prohead and
headconformations indicate a largedegreeofmotion for thesepentamersdur-
ing expansion [63]. It should be noted that the slowest nondegenerate mode,
mode 31, is icosahedrally symmetric and also identifies these 12 pentamers
as the most mobile regions (Figure 3.5[f]). However, because the frequency
of mode 31 is at least three times that of modes 1 through 11, its contribution
to the observed structural changes is small relative to that of these slower,
asymmetric modes which cooperatively induce a similar set of fluctuation
dynamics [22].

3.3.5 iGNM: A Database of GNM Results

With advances in computational methods for characterizing proteins, and
with the recognition of the importance of modeling and understanding struc-
tural dynamics, a number of groups have recently undertaken the task of
generating and making available on the Internet servers or databases for
modeling or examining protein motions. One of the earliest attempts in this
direction is the Database (DB) of Macromolecular Movements (MolMovDB;
http://molmovdb.org/) [64] originally known as the DB of Protein Motions,
constructed by Gerstein and collaborators [65]. Currently, about 4400 movies
(“morphs”) are available in the MolMovDB, generated by interpolating
between pairs of known conformations of proteins or RNAmolecules. These
“morphs” are then used to classify molecules into roughly 178 motion types.
Another online calculation tool based on a simplified NMA combined with
the rotations–translations of blocks (RTB) algorithm [57] has been developed
by Sanejouand’s group with a sophisticated webserver interface (elNémo;
http://igs-server.cnrs-mrs.fr/elnemo/), which includes up to 100 slowest
modes for each studied structure [66]. A similar, yet more extensive work
has been conducted in the lab of Wako [67] where the normal modes in the
spaceofdihedral angleshavebeengeneratedandcollected in theProModeDB
(http://cube.socs.waseda.ac.jp/pages/jsp/index.jsp), for nearly 1442 single
chain proteins extracted from the PDB. ProMode has been restricted to
relatively small proteins (<300 residues) due to the time cost of energyminim-
ization performed prior to NMA. In the same spirit, we have generated a DB
of GNM results, iGNM (http://ignm.ccbb.pitt.edu/) [68]. Two major advant-
ages of this DB are (i)motions are predicted, rather than interpolated between
two structures, implying that knowledge of a single structure is sufficient to
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generate the equilibrium fluctuations and (ii) the completeness of structure-
dynamics data generated, since almost all of the existing PDB structures
(22,549 PDB files as of September 15, 2003) have been analyzed. One should
note thatweare still in theprocessof cleaningandrefining the resultantoutput
files as well as augmenting the iGNM DB with newly deposited structures.
The iGNM DB provides information on protein dynamics beyond those

experimentally provided by B-factors (for x-ray structures) or rms fluctu-
ations (NMR structures). We have developed an Internet-based query system
to retrieve information on B-factors, GNM mode shapes (eigenvectors cor-
responding to both the slowest and fastest ends of the vibrational spectrum),
ribbon diagrams color-coded according to the residue mobilities, and cross-
correlation maps describing the strength and types of correlations between
residue fluctuations. The retrieved data are presented using a Chime plug-in
(for 3D visualization of molecular structures) and Java applets (for graph-
ical two-dimensional [2D] plots of fluctuation distributions). In addition to
retrieving the data stored in the DB, the user has the ability to compute GNM
dynamics for newly deposited structures as well as user-generated structures
(e.g., from comparative modeling) through an automated online calcula-
tion server. The raw data for modes, frequencies, and residue correlations
can be downloaded from the iGNM DB. Figure 3.6 illustrates the different
types of outputs accessible from the iGNM DB, for phospholipase A2, as an
example. For visualization, the residue mobility in the 20 slowest and fastest
modes for each protein is mapped onto a ribbon diagram of the 3D structure
(Figure 3.6[a]) color-coded from blue (least mobile) to red (most mobile). For
slowmodes, theblueportionof themolecule indicates the leastmobile regions
(minima), which are usually relevant to biological function (see Section 3.3.2).
Similarly, by selecting the fast modes from the menu, the users are able to
view the residues predicted to be critical for folding (maxima) colored red.
Figure 3.6(b) illustrates a 2D plot of this same information against residue
number for a given mode. Using the Java-applet windows (Figure 3.6[b]
insets) the user is able to identify residues of interest, and scale the curves in
order to compare multiple modes or different proteins. Figure 3.6(c) demon-
strates the case where theoretical (red) and experimental (yellow) B-factors
are plotted against the residue index simultaneously. The correlation map
between themotions of residue pairs is illustrated in Figure 3.6(d). The colors
on the map reflect the correlation cosines between the fluctuations of residue
pairs — dark blue for anticorrelated (coupled but opposite direction), red for
correlated (coupled, same direction), and green for uncorrelated motions.

3.4 Future Prospects

As discussed earlier, EN models in general have proven effective in charac-
terizing large-scale motions in biomolecules. The simplicity of these models
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(a) (b)

(c) (d)

FIGURE 3.6
(See color insert following page 136) Visualization of dynamics data stored in the iGNM DB.
The results shown are of the example phospholipaseA2 (PDB:1bk9 [75]). (a) The slowestmotions
(slow1) are color-coded and mapped on structure of 1bk9 in dark blue, green, orange to red in
the increasing order of mobility. (b) The window shows the mobility of the slowest mode with
scalable range of view, max/min value info window and pop-up tag that shows the residue
number and coordinates. (c) The experimental and predicted B factors are compared. (d) The
cross-correlation of residue pairs of all modes. The perfect concertedmotion (+1) is colored dark
red while the perfect anticorrelated motion (−1) is colored dark blue.

sacrifice atomic-level predictions, in favor of performing efficient calculations
of large structures, which capture the essential dynamics and functional
motions encoded in the native structure. Such models are necessary to infer
dynamics and function in an age where structural information about larger
and larger complexes outpaces the computational ability to apply traditional
atomic-level simulations.
There are at least five major areas in which GNM, or ENmodels in general,

are anticipated tobeuseful. These include (i) theapplications to lowresolution
structural data (e.g., cryo-EM), both for structure refinement and dynamics
assessment [69–71]; (ii) exploring themachinery of supramolecular structures
or multi-molecular assemblies including protein–DNA, protein–protein, and
membrane protein–lipid complexes [19]; (iii) high throughput examination
of the collective dynamics of families of proteins toward extracting common
dynamic patterns and design principles selected and conserved across gen-
omes or within subfamilies for functional requirements; (iv) investigation
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of unfolding pathways and kinetics by including a temperature depend-
ence for contacts [31, 36, 72]; and (v) integration with more detailed models
and simulations [32, 73] (e.g., MD) for efficiently exploring the physical and
chemical transitions between different functional forms further discussed in
the chapter by Liu and coworkers.
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4.1 Introduction

Normal mode analysis (NMA), a simple but powerful approach, finds its
value in many research areas including chemistry [1], structural biology [2],
and solid-state physics [3, 4]. The basic information available from NMA
includes the frequency and direction of motions, which makes NMA
valuable in the interpretation (assignment) of experimental data [5] such
as spectra and scattering profiles that encode structural and dynamical
information.

65
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Historically, NMAhas beenwidely used in small-molecule spectroscopy [1]
and the theoretical description of solid dynamics [3, 4], perhaps mainly
because the harmonic approximation inherent in NMA is often expected
to be valid in those systems. Application of NMA to macromolecules,
especially biomolecules, started much later [6–8] due to a number of reas-
ons. First of all, the systems are much larger and more complex; it therefore
appeared to be a daunting task to compute a reliable Hessian matrix and
solve the corresponding eigenvalue problem. Second, in addition to local-
ized vibrations, biomolecules have diffusive type of motions that are highly
anharmonic in nature; it was not clear if NMAwould provide a meaningful
description. Finally, biomolecules are usually characterized experimentally
in solution or more complex media. It was almost certain that the environ-
ment would have a major impact on the motion of biomolecules, but it was
not clear how such contributions can be incorporated effectively in a NMA
framework [9].
Despite those difficulties, many research groups devoted efforts to improv-

ing and applyingNMAtechniques in the context of biomolecular simulations.
Through more than two decades of studies, it has now become clear that
NMA can be used in very versatile and ingenious ways to extract mean-
ingful information regarding the structural and dynamical properties of
biomolecules. The key is to make appropriate approximation(s) that suits
the property or experiment observable under investigation; this has been
illustrated well by other chapters in the book. In the current chapter, we
discuss two classes of NMA studies being pursued in our research group,
which probe dramatically different kinds of properties of biomolecules. The
first area concerns quantitative characterization of localized vibrations at
high frequency (thousands of wave numbers), which report on the structure
(and potentially the dynamics) of specific site. The second area deals with
semi-quantitative but systematic characterization of soft modes at very low
frequency, which reflect the inherent structural flexibility of large biomolecu-
lar assemblies [10–13]. Since the modes of interest differ drastically in terms
of frequency and character of motion in those two areas of study, different
computational techniques need to be employed. In Section 4.2, we concisely
summarizemethods being developed and refined in our group, and compare
these with other techniques available in the literature. In Section 4.3, we use
a number of applications to illustrate information uniquely available from
NMA calculations in the study of biomolecules. We summarize our findings
and comment on future developments in Section 4.4.

4.2 Basic Theories and Implementations

In this section, we first briefly summarize technical details of NMA
with hybrid QM/MM potential functions, which are required for the



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 67 — #3

Normal Mode Analysis of Macromolecules 67

quantitative description of localized vibrations that report on local struc-
ture and dynamics. We then describe a systematic approach for reducing
the resolution (and therefore dimension) of NMA, which is well suited for
the study of low-frequency motions in large biomolecules or biomolecular
assemblies.

4.2.1 NMA with Hybrid QM/MM Potentials

Laser spectroscopy is a class of powerful techniques that are used for prob-
ing the structural and dynamical properties of complex molecular systems.
In addition to the widely used 1-dimensional (1D) infrared (IR), Raman, and
ultraviolet spectroscopies [1, 14, 15], more recent developments in nonlinear
(such as 3-photon echo and fifth-order Raman) spectroscopies have provided
novel ways of probing the dynamics of liquids and biomolecules with much
improved time resolution [16]. For complex molecular systems, the inter-
pretation of spectra is in general challenging and robust theoretical analysis
is essential. Central to the simulation of many molecular spectra is the fre-
quency of a particular (set of) chromophore vibration; depending on the level
of sophistication, one needs to determine either the distribution of vibrational
frequencies along a set of microscopic molecular dynamics trajectories or the
time correlation function of the vibrational frequency [16]. The technique we
discuss here has been applied by us to only 1D, IR, and Raman spectra cal-
culations, but it is also useful in more sophisticated nonlinear spectroscopy
simulations.
The frequency of interest here is often in the range of 1500 cm−1 or higher,

thus the corresponding mode is expected to be highly localized although
the fluctuating environment can perturb the value of the frequency through
molecular interactions. Therefore, meaningful simulation of spectra in the
condensed phase requires a method that can reliably describe both the
electronic structure of the chromophore and the interaction between the chro-
mophore and the environment. In this regard, a hybrid QM/MM framework
[17–19] seems most attractive in terms of the balance between accuracy and
computational cost: the chromophore and its immediate environment are
treated quantum mechanically, whereas atoms further away are described
with more approximate methods such as classical force fields (molecular
mechanics). Indeed, such methods have been widely applied to the study of
catalytic mechanisms in enzymes with substantial success [20–22], and sev-
eral groups reported applications of QM/MMmethods in molecular spectra
simulations [23–28].
If only the ground and the first vibrational levels are explicitly involved, a

harmonic approximation is often found to be adequate in spectra assignment.
In this case, NMA is the method of choice and the major challenge concerns
the calculation of the Hessian matrix in a QM/MM framework; the technical
details have been discussed in previous work [23], here we summarize the
most essential points. One starts with a popular expression of the QM/MM
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total energy [17–19],

E =
〈
�

∣∣∣ ĤQM + ĤQM/MM
ele

∣∣∣�〉+ EQM/MM
van + EQM/MM

bonded + EMM (4.1)

which indicates that the QM and MM regions interact through electrostatic,
van der Waals, and bonded energy terms, among which only the electro-
static term explicitly perturbs the wavefunction of the QM region. Taking
the second derivative of the energy expression in Equation (4.1) with respect
to nuclear displacements, one obtains a somewhat lengthy formula for the
Hessian matrix elements [23, 29]. As discussed in detail in Reference 23, an
important point is that one needs to evaluate both the MM derivatives of the
one-electron integrals describing QM/MM interactions and the MM deriv-
atives of the molecular orbital (MO) coefficients. The latter arises because
displacement of theMMatom influences the QMwavefunction and the effect
can be obtained by solving the coupled perturbed Hartree–Fock (CPHF) or
coupled perturbed Kohn–Sham (CPKS) equations [29, 30]. Calculations in
Reference 23 showed thatMMderivatives ofMOcoefficientsmake very small
contributions to the vibrational frequencies but make notable contributions
to the dipole derivatives and therefore IR intensities; we expect a similar
situation for other spectra (e.g., Raman) calculations.
Once the Hessian matrix is calculated, the normal modes of the system can

be readily obtained by diagonalizing the mass-weighted Hessian through
well-established procedures [31]. Algorithms that are useful for large bio-
molecules have been developed to allow the diagonalization of a partial
Hessian localized to the site of interest [27, 28].
For spectra assignment, one needs to estimate the intensity of various

vibrations, which can be derived with the appropriate derivatives of molecu-
lar properties and the eigenvectors determined from NMA. For linear IR
spectroscopy, for example,

Ik = Nπ
3c2
|∇µ̄ · Lk|2 (4.2)

where N is the Avogadro’s number, c is the speed of light, µ̄ is the dipole
moment of the molecule, and Lk is the kth eigenvector. The QM/MM
methods for computing IR spectra were implemented in the GAMESS–
US/CHARMM package [23]; the procedure for computing Raman spectra
is being implemented.
In QM/MM calculations, the minimal QM region would normally be the

chromophore, but previous calculations have established that formore quant-
itative results one has to treat the immediate environment of the chromophore
(e.g., within hydrogen-bonding distances) with quantum mechanical mod-
els also. Alternatively, the immediate QM region can be described with a
polarizable molecular mechanical model that has been fine-tuned to treat
interactions with the QM region; in this regard, the effective fragment poten-
tial approach [32] was found useful in a number of studies. With a polarizable
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MMforcefield, the calculationof theQM/MMHessianbecomesmore tedious
but the basic principle is the same.

4.2.2 Coarse-Grained NMA with Physical Potentials

In the study of low-frequency modes of large biomolecules or macromolecu-
lar assemblies, the nature of the motions (modes) of interest is very different
from those described in Section 4.2.1. Here we are mainly concerned with the
qualitative character of vibrationalmotions of the lowest frequencies, because
these are often found to correlate well with conformational transitions that
occur during the functional cycle of “molecular machines” [10, 12, 13]. It is
usually difficult to directly characterize such large-scale collective motions
using experimental techniques, which makes NMA a powerful tool that
complements structural biology techniques in revealing structure–function
relationships of largebiomolecular complexes. In addition, NMAcanbe ause-
ful tool for improving the resolution of x-ray [33], NMR [34], or EM structures
(see other chapters in this book) by approximating collective motions.
The fact that only the lowest-frequency modes are of interest makes it pos-

sible to develop unique computational algorithms for NMA applications.
Since these modes involve the collective motion of a large number of atoms,
an adequate description can be achieved by reducing the effective dimension
of the eigenvalue problem by partitioning the macromolecule into a set of
“blocks,” where each block can be as small as a single residue or as large as
a secondary structure element; the level of coarse-graining depends on the
desired level of accuracy and the number of low-frequency modes. The full
Hessian is then projected onto a subspace spanned by the basis vectors asso-
ciated with the coarse-grained blocks. Only the projected Hessian, which has
a significantly smaller dimension, needs to be diagonalized

Hsub = PTHP (4.3)

In the original work of Tama et al. [35], the subspace consists of the
translational and rotational eigenvectors of the blocks

PµJ,jν =
√

mj/MJδµν , µ = 1, 2, 3

PµJ,jν =
∑
αβ

(IJ)
−1/2
(µ−3),α

√
mj(rj − r0J )βεαβν , µ = 4, 5, 6

(4.4)

where J and j label blocks and atoms respectively, andµ labels the translation
(µ = 1, 2, 3) and rotation (µ = 4, 5, 6) of each block; MJ , IJ , and r0J is the sum
of mass, moment of inertia, and center of mass for block J, respectively. The
method is thus referred to as “Rotational–translational block” (RTB).
In our implementation [36], we adapted the name “block normal mode”

(BNM) for the coarse-graining procedure, because the subspace in general
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can be constructed by a set of low-frequency modes of the blocks, in addition
to their translational and rotational eigenvectors. The advantage of using
only the translational and rotational eigenvectors of the blocks is that the
expressions are analytical (Equation [4.6]) and no normal mode calculation
for the blocks is required; however, accurate results can be expected only
when the size of the block is small (e.g., one residue). When the size of the
block is large, for example, eachblock corresponding to a secondary structural
element, it is clearly desirable to include low-frequency modes of the blocks.
In the original implementation of Tama et al. [35], the entire atomic Hessian

is first constructed and then projected into the RTB subspace (Equation [4.3]).
In our implementation [36], the projected Hessian is constructed directly,
taking advantage of the block structure of the projection calculation, which
completely eliminated the memory or disk required for the storage of the
full atomic Hessian. Recently, we have further increased the efficiency of the
BNM method by taking advantage of the power of parallel computations
and sparsity associated with the Hessian matrix of very large systems (e.g.,
30S/50S ribosome) even after projection. The projected Hessian matrix (Hsub

in Equation [4.3]) is constructed in a parallel fashionwith only elements above
a predetermined threshold (10−8 kcal/mol Å2) in Reference 8 and the corres-
pondingHessian indices stored. The eigenvalues and eigenvectors associated
with a desired number of lowest-frequency modes are then determined with
an iterative Lanczos algorithm [37, 38] implemented in the PARPACK pack-
age [39]. There are several distinct advantages associated with using Lanczos
for BNM calculations. First, approximate solutions are available at any step
during the recursion and can be systematically improved by more recurs-
ive steps. The smallest and largest eigenvalues usually converge much faster
than the rest and therefore Lanczos is ideally suited for BNM, where only a
small number of low-frequency modes are of interest. Second, the Lanczos
algorithm involves simple matrix–vector multiplications and therefore can
be made highly efficient for sparse-matrices like the projected Hessian in
BNM. Finally, the recursion usually needs only a small number of previous
vectors and therefore does not require a large storage space, which is only
proportional to the number of eigenvalues to be calculated.
It is of interest to compare the BNM/RTB method to other techniques

developed in the literature for NMAof large biomolecules. Although the size
of the projected Hessian is similar to those used in the elastic network model
[40, 41], the projected Hessian is constructed based on the full Hessian with
atomic level of physical interactions. Therefore, we expect that BNM/RTB is
in general more robust than the elastic network model that assumes a uni-
form coupling constant between all atoms within a cutoff (see Section 4.3.2
for further comparisons). We also note that the block partitioning scheme
in BNM is somewhat similar to that in the substructure-synthesis method
(SSM) proposed recently byMing et al. in Reference 42, where the “blocks” in
BNM are replaced by “substructures” (a term widely used in the literature of
mechanics) in SSM. The difference is that the blocks in BNM do not overlap,
whereas the “substructures” have overlapping regions in SSM. The modes
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of the complete macromolecule are constructed in BNM by diagonalizing
a projected Hessian spanned by the eigenvectors of blocks, whereas the
modes of the substructures are “synthesized” together with the Rayleigh–
Ritz variational principle based on constraints in the overlapping region. The
BNM result does not rely on the choice of the overlapping boundary between
different substructures as in SSM, and is completely general in terms of block
structures and spatial arrangements. The significant advantage of the SSM
method, on the other hand, is that it does not require Hessian of the entire
molecule. Due to this simplification, SSM is most suited for specific types
of substructure arrangements, such as filament systems. For more globular
systems, such as the ribosome (see Section 4.3) or virus, BNM is more useful.

4.3 Illustrative Applications

In this section, we briefly discuss applications of the two NMA techniques
presented above for various biophysical problems. The main aim is to illus-
trate the versatility of this simple but unique computational framework; due
to limited space, detailed discussions are given elsewhere.

4.3.1 Active Site of Mb–CO

Myoglobin (Mb) has attracted the attention of many authors over the past
several decades [43]. The issue that received the most investigation concerns
the differentiation between CO andO2 binding. In the gas phase, compounds
involving the heme group bindCOmuchmore strongly thanO2 by a factor of
approximately 30,000 (corresponds to a difference of 6.2 kcal/mol in binding
energy). In the presence of the protein environment, by contrast, the differ-
ence is reduced to a value between 25 (∼1.9 kcal/mol) and 40 (∼2.2 kcal/mol
difference in binding energy), depending on the biological source of Mb.
During the early period of this long investigation, attention was paid to the
steric repulsion between active site residues and the bound ligand, whichwas
based on the x-ray observation that CO in the synthetic models of myoglobin
[44] appears to bend away from the typical linear geometry observed in most
inorganic compounds. Several x-ray results for theMb–CO system also indic-
ate abend inCOarrangementofdifferentdegrees [45, 46]. This agreementwas
recently questioned by a number of groups based on observations frompolar-
ized IR [47, 48], 13C, 17O, and 57Fe nuclear magnetic resonance (NMR), 57Fe
Mössbauer [49], and Resonance Raman (RR) spectroscopies [50–52], augmen-
ted with density functional theory (DFT) calculations on model compounds
[53–57]. Themost recent high-resolution x-ray structure also showed a nearly
linear Fe–C–O geometry [58]. Such a linear Fe–CO arrangement led several
groups to conclude that the steric interaction between the bound ligand and
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active site residues is not the main origin for the CO/O2 binding differen-
tiation. Mutagenesis studies from Olson and Phillips among others [43, 59]
emphasized the importance of polarity, rather than steric interaction, in the
binding site. This concept is supported by various measurements including
RR, IR, vibrational echo, and stark spectroscopy, which found correlation
between the vibrational frequency and relaxation rate of the bound CO with
electrostatic polarization from the protein [60–62].
Central to the interpretation of spectroscopicmeasurements is the direction

of the transition dipole moment, and whether it is aligned with the CO bond
vector. Although this issue has been addressed briefly in previous computa-
tional studies [63, 64], a rigorous analysis that includes the protein has not
been done; this is our goal here.
QM/MM geometry optimization and NMA were performed for the wild

type sperm-whaleMb–CO (two different His64 tautermers) and twomutants
that have the highest (H64G) and lowest (V68N) measured CO vibrational
frequencies [43, 65]. The structures of themutantsweremodeled starting from
the x-ray result for the wild type Mb–CO (PDB code 1MBC) [45]. The details
of calculations are summarized in the footnote of Table 4.1.
The major difference (on a relative scale) between wild type and mutant

Mb–CO active site lies in the equilibrium of C–O and Fe–C distances; the
former varies from 1.172 Å in H64G to 1.180 Å in V68N. The longer CO
distance in the latter is due to theweakhydrogenbonding interactionbetween
CO and the side-chain of N68 introduced by the mutation. The Fe–C distance
has an inverse correlation with the C–O distance, as expected from the well-
knownbonding character of the Fe–COmoiety; it varies from1.740Å inV68N
to 1.762 Å in H64G. These variations in the bond lengths correlate with C–O
and Fe–C stretching frequencies (see below). In all the structures investigated
here, the Fe–CO moiety is more or less perpendicular to the heme plane
(Figure 4.1).
The calculated vibrational frequencies and IR intensities for the CO stretch

in thewild type and a number ofmutantMb–COare summarized in Table 4.1.
Encouragingly, the computed values are in good agreement with experi-
mental results, especially on a relative scale. For instance, the V68N has the
lowest CO stretch frequency, which is 1945 and 1922 cm−1 from the calcula-
tion and experiment, respectively. TheH64Gmutant and the δ-H64wild type
Mb–CO has the highest CO stretch of 1977 cm−1; the experimental meas-
urement gave values of about 1960 to 1965 cm−1. The ε-H64 wild type has
a calculated CO stretch of 1960 cm−1, which is similar to the experimental
value of 1941 cm−1. The trend in the CO stretch frequency correlates well
with that in the CO equilibrium distance, that is, V68N and H64G have the
longest and shortest CO distance, respectively. The IR intensity for the CO
stretch is very similar among the structures considered here, the δ-H64-WT
andV68Nhas the smallest and the largest IR intensity of 644 and 788 km/mol,
respectively. Interestingly, it was found experimentally that substituting H64
by a Gly induced an increase in the IR intensity of the CO stretch. It should
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His93

His64
Val68

CO

FIGURE 4.1
(See color insert following page 136) Active site of CO bound myoglobin. The heme and CO
are shown in the line form, and part of the protein is shown in the ribbon form; the protein
is color-coded based on the amino acid type (red — acidic, blue — basic, green — polar, and
white — nonpolar).

be noted that the absolute IR intensity is likely to be overestimated with the
small basis set used here.
In a number of polarized IR measurements, the angle between CO and

the heme normal was estimated [47, 51]. A critical assumption made in those
studies is that the transition dipole moment for the CO stretch lies along the
CO bond vector. The validity of the assumption was investigated by Spiro
et al. with DFT calculations on a small model heme–CO system [63, 64]. It
was found that the transition dipole moment is much closer to the Fe–C bond
vector than the C–O vector even though the deviation is not large. In the cur-
rent work, calculation of the IR transition dipole moment (dipole derivative
projected onto the CO stretch eigenvector) in the protein gives a similar pic-
ture (Scheme 4.1). As shown in Table 4.1, in all the structures considered, the
transition dipole forms an angle of 2.5 to 4.4˚ with the Fe–C vector, and an
angle of 2.6 to 5.7˚ with the CO bond vector. In other words, the assumption
made in the IR measurements appears to be valid even in the presence of the
protein environment.
Other frequencies that involve CO are also in fair agreement with exper-

imental measurements. For the ε-H64-WT, the calculated Fe–C stretch is
calculated to be 520 cm−1, which is in qualitative agreement with the experi-
mental values of 510 cm−1. The Fe–C stretch has the highest value in theV68N
mutant, which is 544 and 526 cm−1 from the calculation and experiment,
respectively. The QM/MM calculation also gave a value of about 600 cm−1
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for the Fe–CO bending modes, whose assignment has been controversial.
Our value supports the latest assignment (∼580 cm−1) based on RR study of
hemoglobin [66].

4.3.2 Flexibility of Molecular Machines — Comparison between
BNM and ANM

As discussed in several chapters of this book, another interesting method for
describing the low-frequencymotions in large biomolecules is the anisotropic
elastic network model (ANM) based on the initial work of Tirion [40, 41]. The
physical argument is that the low-frequency collectivemotions depend essen-
tially on the mass-distribution of atoms in a biomolecule and, therefore, an
elastic model without much atomic detail can capture the major character
of these motions; the reliability of such elastic approximation is expected to
becomemore robust as the system size increases. Although this appears very
reasonable, it is of interest toquantify theagreementbetween theelasticmodel
andmodels withmore physical atomic interactions so that the level of confid-
ence in applying the elastic model for biological systems can be established.
Such comparisons have beenmade for proteins rather extensively in previous
work [41], which in general has found satisfactory agreements, as long as the
cutoff is carefully chosen. For another type of important biopolymers, such
as nucleic acids, no systematic studies using ANM have been carried out.
The performance of simplified models might be different in nucleic acid sys-
tems due to different three-dimensional (3D) structures and dominant forces
compared to globular proteins. Here we use two ribozymes of very different
size, the hammerhead ribozyme and the ribosome, as examples for compar-
ing ANM and atom-based calculations. More detailed analysis compared to
MD simulations is given elsewhere.

4.3.2.1 The Hammerhead Ribozyme

The hammerhead ribozyme is an ideal system for studying conforma-
tional flexibility because it has been proposed that a major conformational
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Scissile bond

Mg2+ binding site

FIGURE 4.2
(See color insert following page 136) Computed RMS fluctuation using classical NMAmapped
onto the structure of the hammerhead ribozyme. The structural domains and approximate
location of the second metal binding site relative to the scission site are also shown.

change has to occur for the catalysis to proceed. The essential experimental
observation is that a Mg2+ binding site (A9, also referred to as the P9/G10.1
site), which is nearly 20 Å away from the splicing site in the x-ray struc-
ture [67], appears to be crucial to the catalysis; changing the pro-R phosphate
oxygen in A9 to sulfur abolished the catalytic rate by a factor of 103 [68],
whereas the splicing activity is largely restored with softer metal ions such as
Mn2+ that prefers to bind sulfur. Based on this result and a set of abasic muta-
tions [69], Herschlag and coworkers proposed a model in which a significant
conformational change from the x-ray structure has to take place to bring the
metal at the P9/G10.1 site closer to the splicing site; this corresponds to refold-
ing of domain 2 onto domain 1 (Figure 4.2; see also Reference 69). Although
this proposal has not been confirmedby later structural studies [70], andmore
recent biochemical studies have suggested that the metal ion at the P9/G10.1
site is not within the coordination sphere from the splicing site [71–73], it is
of interest to investigate whether the hammerhead ribozyme has noticeable
conformational flexibility that is consistent with the major conformational
transition proposed in Reference 69. In addition, the small size of the system
provides an ideal opportunity to systematically compare collective motions
from MD simulations and NMA at various resolutions; here we focus on
the comparison between NMA at full atomic level (referred to as “classical
NMA”), BNM, and the ANM.
In the classical NMA and BNM calculations, the CHARMM 27 force field

for nucleic acidswas used [74], with a recently parameterized EEF1model for
nucleic acid systems for an approximate treatment of solvation effect [75, 76].



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 77 — #13

Normal Mode Analysis of Macromolecules 77

Starting from the x-ray structure 301D [67], which contained 5Mg2+ ions, the
structure was minimized till the root mean square (RMS) gradient dropped
below 0.01 kcal/mol Å. In the BNM calculations, each nucleotide or Mg2+
ion was taken as a block; in computing the RMS fluctuations, the BNM fre-
quencies were scaled by a factor of 2.35 similar to previous work [36]. In the
ANM calculations, two sets of calculations were done with different atoms
representing the nodes of the elastic network; only P atoms were used in one
set, whereas both the Pand theNbonded to the sugarmoietywere used in the
other. A number of cutoff distances were used that ranged from 18 to 30 Å.
Since only low-frequency modes are of interest, only 40 lowest-frequency
modes were computed.
To quantify the comparison between different normal mode results, we

examined RMS fluctuations, the overlap between eigenvectors and the
“spanning coefficients.” The latter was defined as the following:

Sk =
M∑
i=1

(LT
i;BNM/ANM • Lk;NMA)

2 (4.5)

which represents how well the kth classical NMA eigenvector is spanned by
M set of BNM or ANM eigenvectors. As discussed in a previous work [36],
it is possible that two methods give different eigenvectors but span the same
conformational subspace.
The RMS fluctuations from classical NMA calculations are mapped onto

the minimized structure in Figure 4.2. As expected, the ends of both RNA
chains are floppy and exhibit large degree of flexibility (RMS fluctuations
∼1.90 Å). The Stem-III region, which is loosely packed, also has high RMS
fluctuations. The domain 1 and 2 regions, by contrast, seem to be well
packed through base–pair interactions and exhibit only mild fluctuations
on the order of 0.6 Å. Therefore, it seems that although the hammerhead
ribozyme is a flexible system overall, the domains implicated in the pro-
posal of Herschlag and coworkers [69] actually form a rather stable core.
This suggests that a large conformational transition involving refolding of
domain 2 onto domain 1 seems unlikely, although further studies involving
more elaborate simulations need to be done to investigate this point.
Moving on to the comparison between different NMAmethods, it is seen in

Figure 4.3(a) that none of the approximate schemes (BNMandANM)perform
very accurately. The BNM results are in close parallel to the classical NMA.
RMS fluctuations throughout the molecule, although BNM seems to system-
atically overestimate the magnitude of fluctuations. Closer inspection of the
vibrational frequencies found that a few lowest frequencies have a somewhat
different scaling factor relative to the classicalNMAvalues, as compared to the
othermodes. Therefore, using the scaling factor that best fitted all frequencies
below 60 cm−1 over-corrected the lowest BNM frequencies, which resulted
in overestimation of the fluctuations. The general agreement between eigen-
vectors computed from BNM and classical NMA calculations is excellent, as
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FIGURE 4.3
Comparison between ANM, BNM, and classical NMA for the hammerhead ribozyme. (a) RMS
fluctuations and (b) spanning coefficients (Equation [4.5]).

illustrated by the spanning coefficients in Figure 4.3(b) and overlap matrix
in Figure 4.4(a) for example, the spanning coefficient is larger than 0.9 for
the first 15 modes, and the overlap matrix has a clear diagonal feature that
indicates significant overlap between individual pairs of eigenvectors.
The ANM results, somewhat surprisingly, were quite disappointing with

all cutoff schemes and choice of nodes in the elastic network; selected results
are shown in Figure 4.3 and Figure 4.4. For the RMS fluctuations, even the
qualitative trend was not reproduced in any ANM calculations; the ANM
results gave significantly damped flexibility in the 5′-termini in both strands
and a local peak in fluctuation around C3 (Figure 4.3[a]). The spanning coef-
ficients are substantially smaller than those from BNM calculations; the best
agreement was found with both P and sugar-bonded N as elastic nodes
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FIGURE 4.4
(See color insert following page 136) Overlap between (a) BNM–NMA and (b) ANM–NMA
eigenvectors for the hammerhead ribozyme.

and 18 Å of cutoff, in which only three modes have spanning coefficients
larger than 0.8 (Figure 4.3[b]). The overlap matrix is even more devastating
(Figure 4.4[b]), which nearly approaches a random distribution.
The results obtained here clearly indicated that the approximations made

in the BNM method have very little impact on the quality of the computed
low-frequency normal modes for the hammerhead system. By contrast, the
simplified ANM model seems to be inaccurate. This is likely due to the fact
that the 3D structure of the hammerhead, likemanyRNAsystems, is very dif-
ferent fromthat of globularproteins. Thepackingof atoms is lessdense, which
makes it difficult for a simple elastic network model to capture the essential
dynamical features. What remains to be seen is whether the classical NMA
results can reproduce collectivemotions fromMDsimulations, which include
anharmonic contributions. It would also be interesting to see if the limitation
in ANM is also observed in larger RNA systems that have more complex
secondary/tertiary structural features and in proteins that have highly non-
globular forms such as cytoskeleton filaments. We will report such studies in
a separate publication.

4.3.2.2 The 30S and 50S Ribosomes

Obtaining atomic resolution structures for the ribosome [77–80] has been one
of the major achievements in structural biology in recent years. However,
many studies, such as those using electron microscopy [81], have indicated
that the ribosome is a highly dynamical “molecular machine,” which should
not come as a surprise considering the complex functional cycle of peptide
synthesis. A major challenge is to characterize motions that have important
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FIGURE 4.5
(See color insert following page 136) Computed RMS fluctuation using (a) BNM and (b) ANM
mapped onto the structure of the 30S ribosome subunit (PDB code 1J5E). The red region has
higher fluctuations.

functional roles, for whichmajor progress has beenmade by theANMmodel
[82, 83], as illustrated in recent publications and in this book. Due to the
recent improvements in BNM, it became straightforward to compute the low-
frequency modes for systems like the ribosome. This gives us an opportunity
to compare the ANM and BNM methods for describing important motions
of very large biomolecular assemblies.
We have calculated low-frequencymodes of both the 30S and 50S ribosome

(PDB code 1J5E and 1JJ2, respectively), which have x-ray structures of 3.05
and 2.4Å resolution, respectively. The calculation procedures are very similar
to those used for the hammerhead. A 10 Å group-based cutoff in electrostatic
interactions was used to be consistent with the EEF1 solvation model. This
makes the Hessian very sparse, and the sparsity ratio is 141 and 229 even for
the projected Hessian for the 30S and 50S ribosome, respectively. In theANM
calculations, thePatoms in thenucleic acids andCα atoms in theproteinswere
used as the elastic nodes; similar to previous studies of Tama and Brooks, a
cutoff distanceof 20 and16Åwasused for thePandCα atoms, respectively.As
in the hammerhead study, quantities of interest include the RMS fluctuation
(Figure 4.5 and Figure 4.6), overlap between eigenvectors (Figure 4.7) and the
spanning coefficients (Figure 4.8).
For the overall RMS fluctuations (summed over same number of computed

modes inANMandBNM), the patterns are remarkably similar betweenANM
and BNM results for both the 30S and 50S ribosomes, except for the relat-
ive magnitudes of major peaks. In the 30S ribosome both ANM and BNM
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FIGURE 4.6
(See color insert following page 136) Computed RMS fluctuation using (a) BNM and (b) ANM
mapped onto the structure of the 50S ribosome subunit (PDB code 1JJ2). The red region has
higher fluctuations.

show large RMS fluctuations in the beak, head, platform, spur, and in the
region at the base of the spur (Figure 4.5). The high degree of flexibility in
the beak, head, and platform is particularly noteworthy, as it appears to be
structurally poised to have a role in the translocation of mRNA relative to
the ribosome that is essential for translation. This hypothesis is supported by
the fact that the mRNA–30S interface is located at the junction of the head,
shoulder, and platform, and one can easily envision a role for the immedi-
ately adjacent beak, platform, and head in providing a ratchet-like motion
that would effect a translocation. Further support for a role for the head in
the translocation is given by its binding to domain IV of elongation factor G,
a GTPase that catalyzes translocation [84]. Regions of high flexibility in the
50S ribosome (Figure 4.6), namely the L7/L12 stalk, base of the L1 stalk, and
the central protuberance, also appear to coincide with regions that may be
intimately involved in translocation. These regions are adjacent to regions
intimately associated with the A, P, and E site of the 30S subunit where
mRNA binds. Consistent with a role for the L7/L12 in translocation is the
finding that it binds EF to G [84]. Furthermore, the L7/L12 stalk, central
protuberance, and L1 stalk were found to be highly flexible in cryoelectron
microscopy studies [85]. ANM studies of the 30S and 50S subunits by Wang
et al. [83] yielded similar results, withmarked flexibility in the beak, spur, and
base of the head of the 30S subunit and in the base of the central protuber-
ance, L7/L12 stalk, and L1 stake for the 50S. A notable difference between
our data and that of Wang et al. [83] is their finding of flexibility at the
bases of the aforementioned 50S structures and base of the head of the 30S,
whereas our calculations reveal flexibility in the entirety of these structures.
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FIGURE 4.7
Spanning coefficients for the BNM modes in terms of ANM modes for the (a) 30S and (b) 50S
ribosome subunits.

This discrepancy might be accounted for by the fact that they used a larger
P–P cutoff distance (24 Å) than this study (20 Å), which would decrease the
flexibility.
In terms of eigenvectors (Figure 4.7 and Figure 4.8), the agreement between

ANM and BNM results is also quite remarkable considering the complex-
ity of the system. For 30S and 50S, there are about eight BNM modes that
have spanning coefficients larger than 0.9; it is interesting that these corres-
pond to the first eight modes in 30S, but not so in the 50S ribosome. The
overlap matrix (Figure 4.8) has a much better form compared to that in the
hammerhead ribozyme (Figure 4.4). A near diagonal feature is clearly evid-
ent that illustrates reasonable overlap between the individual pairs of ANM
and BNM eigenvectors, although the feature is much less striking than the
overlap between BNM and classical NMA results for the hammerhead.
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4.4 Conclusions and Future Perspectives

Two very different methods for computing specific normal modes of interest
in biomolecules have been discussed and illustrated with examples. Due
to the drastic difference in the nature and frequency of the vibrations, dif-
ferent levels of approximations are appropriate. For computing localized
vibrational frequencies, which are useful for characterizing the structural fea-
ture of the active site of enzymes, sophisticated treatment of the chromophore
electronic structure is important while the environment can be treated more
approximately; this gives rise to theQM/MMframework for computing local
spectroscopic signature of biomolecules [23]. For analyzing delocalized low-
frequency modes, which represent collective flexibility of large biomolecules
or biomolecular assemblies, the NMA can be significantly coarse-grained
by either reducing the dimension (or resolution) of motion (as in the block
NMA [36] or the RTB method [35]) or reducing the resolution of both the
potential and motion (as in the elastic network model [40, 41]). Determining
whether the coarse-graining procedure is robust or not depends somewhat
on the amount of interest and system under study. For large systems of
globular shape, previous and current studies suggest that a high degree of
coarse-graining, such as in the elastic network model, is useful for describing
the overall flexibility. For systems of less globular structure, by contrast, the
BNM method that relies on physical interactions is more robust [86]. With
the improvements in numerical algorithms, there is essentially no limitation
in BNM calculations, provided that a high-resolution structure is available;
for low-resolution models, the elastic network model is clearly the only
choice.
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In terms of future developments, both areas discussed here have plenty
of potential. In the QM/MM area, much effort is needed to investigate the
appropriate QM size and level for quantitative spectroscopic assignments,
in terms of both frequency and intensity. Finding the most efficient pro-
tocol to couple such calculationswithmolecular dynamics simulationswould
be important for accurate interpretation of nonlinear spectroscopies [16, 87],
which are under rapid developments that hold the promise of dramatic
improvements in the time resolution for probing biomolecular dynamics.
In the study of low-frequency modes, the most exciting possibility con-
cerns using such modes as a basis set to predict unknown conformation
of different ligation states (e.g., calcium binding or phosphorylation). Some
progress has been made in the context of structure reconstruction based on
EM density maps [88], and similar developments can be anticipated with
other low-resolution experimental information such as small-angle x-ray
scattering [89] or fluorescence-resonance energy transfer (FRET) [90, 91].
Coupled with powerful structural prediction tools [92], meaningful model
structures might be generated even in the absence of experimental data,
which can serve as powerful guide for the design of future experimental
investigations.

Acknowledgments

A.V.W. acknowledges support from the National Science Foundation for a
predoctoral fellowship. Q.C. acknowledges support in this area of research
from the start-up funding provided by the University of Wisconsin-Madison
and a Research Innovation Award from the Research Corporation. Q.C. is an
Alfred P. Sloan Research Fellow.

References

1. E.B.J. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations. New York: Dover
Publications, Inc., 1955.

2. C.L. Brooks III, M. Karplus, and B.M. Pettitt, Proteins: a theoretical perspective of
dynamics, structure, & thermodynamics. Adv. Chem. Phys. 1988; LXXI.

3. N.W. Ashcroft and N.D. Mermin, Solid State Physics. New York: Hartcourt Brace
College Publishers, 1976.

4. B.T.M. Willis and A.W. Pryor, Thermal Vibrations in Crystallography. 1975, Cam-
bridge: Cambridge University Press, 1975.

5. B.R. Brooks, D. Janezic, and M. Karplus, Harmonic analysis of large systems: I.
Methodology. J. Comput. Chem., 1995; 16: 1522–1542.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 85 — #21

Normal Mode Analysis of Macromolecules 85

6. N. Go, T. Noguti, and T. Nishkawa, Dynamics of a small globular protein in
terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA, 1983; 80:
3696–3700.

7. J.A. McCammon et al., The hinge-bending mode in lysozyme. Nature, 1976. 262:
325–326.

8. M. Levitt, C. Sander, and P.S. Stern, Protein normal mode dynamics: trypsin
inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol., 1985. 181: 423–447.

9. G. Lamm andA. Szabo, Langevin modes of macromolecules. J. Chem. Phys., 1986.
85: 7334–7348.

10. J. Ma and M. Karplus, The allosteric mechanism of the chaperonin GroEL:
a dynamic analysis. Proc. Natl Acad. Sci. USA, 1998. 95: 8502–8507.

11. F. Tama and Y. Sanejouand, Conformational change of proteins arising from
normal mode calculations. Protein Eng., 2001. 14: 1–6.

12. G. Li and Q. Cui, Analysis of the functional motions in “Brownian molecular
machines” with an efficient block normal mode approach. Biophys. J., 2004. 86:
743–763.

13. Q. Cui et al., A normal mode analysis of structural plasticity in the biomolecular
motor F1-ATPase. J. Mol. Biol., 2004. 340: 345–372.

14. J.R. Ferraro et al., Introductory Raman Spectroscopy. 2002, New York: Academic
Press.

15. R. Petry, M. Schmitt, and J. Popp, Raman spectroscopy — a prospective tool in
the life sciences. Chem. Phys. Chem., 2003. 4: 14–30.

16. S. Mukamel, Principles of Nonlinear Optical Spectroscopy. 1995, New York: Oxford
University Press.

17. J. Åqvist and A. Warshel, Simulation of enzyme reactions using valence-bond
force-fields and other hybrid quantum-classical approaches. Chem. Rev., 1993. 93:
2523.

18. M.J. Field, P.A. Bash, and M. Karplus, A combined quantum mechanical and
molecular mechanical potential for molecular dynamics simulations. J. Comput.
Chem., 1990. 11: 700–733.

19. J. Gao, Hybrid quantum and molecular mechanical simulations: an alternative
avenue to solvent effects in organic chemistry. Acc. Chem. Res., 1996. 29: 298–305.

20. Q.Cui andM.Karplus, Catalysis andspecificity in enzymes: a studyof triosephos-
phate isomerase (TIM) and comparisonwithmethylglyoxal synthase (MGS).Adv.
Protein Chem., 2003. 60: 315–372.

21. J.GaoandD.G.Truhlar, Quantummechanicalmethods for enzymekinetics.Annu.
Rev. Phys. Chem., 2002. 53: 467–505.

22. A. Warshel, Computer simulations of enzyme catalysis: methods, progress and
insights. Annu. Rev. Biophys. Biomol. Struct., 2003. 32: 425–443.

23. Q. Cui andM. Karplus, Molecular properties from combined QM/MMmethods.
I. Analytical second derivative and vibrational calculations. J. Chem. Phys., 2000.
112: 1133.

24. M. Nonella, G. Mathias, and P. Tavan, Infrared spectrum of p-benzoquinone in
water obtained from a QM/MM hybrid molecular dynamics simulation. J. Phys.
Chem.A, 2003. 107: 8638–8647.

25. M. Nonella et al., Structures and vibrational frequencies of the quinones in Rb.
sphaeroides derived by a combined density functional/molecular mechanics
approach. J. Phys. Chem. B, 2003; 107: 316–322.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 86 — #22

86 Guohui Li et al.

26. M. Klahn et al., IR spectra of phosphate ions in aqueous solution: predictions of
a DFT/MM approach compared with observations. J. Phys. Chem. A, 2004. 108:
6186–6194.

27. K. Speranskily and M. Kurnikova, Accurate theoretical prediction of vibrational
frequencies in an inhomogeneousdynamic environment: a case studyof aglutam-
ate molecule in water solution and in a protein-bound form. J. Chem. Phys., 2004.
121: 1516–1524.

28. H. Li and J.H. Jensen, Partial Hessian vibrational analysis: the localization of the
molecular vibrational energy and entropy. Theo. Chem. Acc., 2002. 107: 211–219.

29. J.A. Pople et al., Derivative studies in Hantrce-Fock andMoller–Plesset Theories.
Int. J. Quant. Chem., 1979. S13: 255.

30. Y. Yamaguchi et al., A New Dimension to Quantum Chemistry, Analytical Derivative
Methods in ab initio Molecular Electronic Structure Theory. 1994, Oxford: Oxford
University Press.

31. J.E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations. 1980, New York:
Dover Publications, Inc.

32. M.S. Gordon et al., The effective fragment potential method: a QM-based MM
approach to modeling environmental effects in chemistry. J. Phys. Chem.A, 2001.
105: 293–307.

33. A.K. Kidera et al., Normal mode refinement: crystallographic refinement of pro-
tein dynamic structure: II.Application to human lysozyme. J. Mol. Biol., 1992. 225:
477–486.

34. D.A. Case, Normal-mode analysis of protein dynamics. Curr. Opin. Struct. Biol.,
1994. 4: 285–290.

35. F. Tama et al., Building block approach for determining low-frequency normal
modes of macromolecules. Proteins: Struct. Funct. Genet., 2000. 41: 1–7.

36. G. Li and Q. Cui, A coarse-grained normal mode approach for macromolecules:
an efficient implementation and application to Ca2+-ATPase. Biophys. J., 2002. 83:
2457–2474.

37. J.K. Cullum and R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigen-
value Computations. 1985, Boston: Birkhauser.

38. C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operations. J. Res. Natl Bur. Stand., 1950. 45: p. 255.

39. K.J. Maschhoff and D.C. Sorensen, A portable implementation of arpack for
distributed memory parallel computers, in Preliminary Proceedings of the Copper
Mountain Conference on Iterative Methods. 1996.

40. M.M. Tirion, Large amplitude elasticmotions in proteins froma single-parameter,
atomic analysis. Phys. Rev. Lett., 1996. 77: 1905–1908.

41. A.R. Atilgan et al., Anisotropy of fluctuation dynamics of proteins with an elastic
network model. Biophys. J., 2002. 80: 505–515.

42. D. Ming et al., Substructure synthesis method for simulating large molecular
complexes. Proc. Natl Acad. Sci. USA, 2003. 100: 104–109.

43. B.A. Springer et al.,Mechanisms of ligand recognition in myoglobin. Chem. Rev., 1994.
94: 699–714.

44. J.P. Collman et al., Nature of O2 andCObinding tometalloporphyrines and heme
proteins. Proc. Natl Acad. Sci. USA, 1976. 73: 3333–3337.

45. J. Kuriyan et al., X-ray structure and refinement of carbon-monoxy (Fe-II)
myoglobin at 1.5 Å resolution. J. Mol. Biol., 1986. 192: 133–154.

46. M.L. Quillin et al., High-resolution crystal structures of distal histidine mutants
of sperm whale myoglobin. J. Biol. Chem., 1993. 234: 140–155.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 87 — #23

Normal Mode Analysis of Macromolecules 87

47. M.Lim, T.A. Jackson, andP.A.Anfinrud, BindingofCO tomyoglobin fromaheme
pocket docking site to form nearly linear Fe–CO. Science, 1995. 269: 962–966.

48. D. Ivanov et al., Determination of CO orientation in myoglobin by single-crystal
infrared linear dichroism. J. Am. Chem. Soc., 1994. 116: 4139–4140.

49. T.M. McMahon et al., An experimental and quantum chemical investigation of
CO binding to heme proteins andmodel systems: a unifiedmodel based on C-13,
O-17, and Fe-57 nuclear magnetic resonance and Fe-57 Mossbauer and infrared
spectroscopies. J. Am. Chem. Soc., 1998. 120: 4784–4797.

50. X. Li and T.G. Spiro, Is bound CO linear or bent in heme-proteins — evidence
from resonance Raman and infrared spectroscopic data. J. Am. Chem. Soc., 1988.
110: 6024–6033.

51. S. Hu, K.M. Vogel, and T.G. Spiro, Deformability of heme protein CO adducts
— FT-IR assignment of the FeCO bending mode. J. Am. Chem. Soc., 1994. 116:
11187–11188.

52. S. Hu, K.M. Smith, and T.G. Spiro, Assignment of protoheme resonance Raman
spectrum by heme labeling in myoglobin. J. Am. Chem. Soc., 1996. 118: 12638–
12646.

53. T.G. Spiro and P.M. Kozlowski, Will the real FeCO please stand up? J. Biol. Inorg.
Chem., 1997. 2: 516–520.

54. T.G. Spiro andP.M.Kozlowski, Discordant results on FeCOdeformability in heme
proteins reconciled by density functional theory. J. Am. Chem. Soc., 1998. 120:
4524–4525.

55. T. Vangberg, D.F. Bocian, andA. Ghosh, Deformability of Fe(II)CO and Fe(III)CN
groups in heme protein models: nonlocal density functional theory calculations.
J. Biol. Inorg. Chem., 1997. 2: 526–530.

56. A. Ghosh and D.F. Bocian, The CO tilting and bending potential energy surface
of carbon monoxyhemes. J. Phys. Chem., 1996. 100: 6363–6367.

57. P. Jewsbury et al., The proximal residue largely determines the CO distortion in
carbon monoxy globin proteins — an ab initio study of a heme prosthetic unit. J.
Phys. Chem., 1995. 99: 12677–12685.

58. G.S. Kachalova, A.N. Popov, and J.D. Bartunik, A steric mechanism for inhibition
of CO binding to heme proteins. Science, 1999. 284: 473–476.

59. T. Li, M.L. Quillin, and G.N.J. Phillips, Structural determinants of the stretching
frequency of CO bound to myoglobin. Biochemistry, 1994. 33: 1433–1446.

60. K.D. Rector et al., Mutant and wild type myoglobin–CO protein dynamics:
vibrational echo experiments. J. Phys. Chem. B, 1997. 101: 1468–1475.

61. C.W. Rella et al., Vibrational echo studies of myoglobin–CO. J. Phys. Chem., 1996.
100: 15620–15629.

62. E.S. Park et al., Vibrational stark spectroscopy in proteins: a probe and calibration
for electrostatic fields. J. Phys. Chem. B, 1999. 103: 9813–9817.

63. T.G. Spiro, M.Z. Zgierski, and P.M. Kozlowski, Stereoelectronic factors in CO,
NO, and O2 binding to heme from vibrational spectroscopy and DFT analysis.
Coord. Chem. Rev., 2001. 219: 923–936.

64. T.G. Spiro and P.M. Kozlowski, Is the CO adduct of myoglobin bent, and does it
matter? Acc. Chem. Res., 2001. 34: 137–144.

65. J.S. Olson and G.N.J. Phillips, Myoglobin discriminates between O2, NO, and CO
by electrostatic interactions with the bound ligands. J. Biol. Inorg. Chem., 1997. 2:
544–552.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 88 — #24

88 Guohui Li et al.

66. C. Rajani and J.R. Kincaid, Resonance Raman studies of hemoglobin with select-
ively deuterated hemes. A new perspective on the controversial assignment of
the Fe–CO bening mode. J. Am. Chem. Soc., 1998. 120: 7278–7285.

67. W.G. Scott et al., Capturing the structure of a catalytic RNA intermediate. Science,
1996. 274: 2065.

68. A. Peracchi et al., Involvement of a specific metal ion in the transition of the
hammerhead ribozyme to its catalytic conformation. J. Biol. Chem., 1997. 272:
26822–26826.

69. A. Peracchi et al., Acore foldingmodel for catalysis by the hammerhead ribozyme
accounts for its extraordinary sensitivity to abasic mutations. Biochemistry, 1998.
37: 14765–14775.

70. C.M. Dunham, J.B. Murray, and W.G. Scott, A helical twist-induced conforma-
tional switch activates cleavage in the hammerhead ribozyme. J. Mol. Biol., 2003.
332: 327.

71. K.Yoshinari andK. Taira,Afurther investigation and reappraisal of the thiol effect
in the cleavage reaction catalyzed by a hammerhead ribozyme.Nucleic Acids Res.,
2000. 28: 1730–1742.

72. K. Suzumura et al., A reappraisal, based on 31P NMR, of the direct coordination
of a metal ion with the phosphoryl oxygen at the cleavage site of a hammerhead
ribozyme. J. Am. Chem. Soc., 2002. 124: 8230–8236.

73. Y. Tanaka et al., Nature of the chemical bond formedwith the structural metal ion
at the A9/G10.1 motif derived from hammerhead ribozyme. J. Am. Chem. Soc.,
2004. 126: 744–752.

74. N. Foloppe and J.A.D. MacKerell, All-atom empirical force field for nucleic
acids: 2.) Parameter optimization based on small molecule and condensed phase
macromolecular target data. J. Comput. Chem., 2001. 21: 86–104.

75. T. Lazaridis and M. Karplus, Effective energy function for proteins in solution.
Proteins: Struct. Funct. Genet., 1999. 35: 133.

76. T. Lazaridis and M. Karplus, Effective energy functions for protein structure
prediction. Curr. Opin. Struct. Biol., 2000. 10: 139–145.

77. N. Ban et al., The complete atomic structure of the large ribosomal subunit at 2.4Å
resolution. Science, 2000. 289: 905–920.

78. P.B. Moore and T.A. Steitz, The structural basis of large ribosomal subunit
function. Annu. Rev. Biochem., 2003. 72: 813–850.

79. B.T. Wimberly et al., Structure of the 30S ribosomal subunit. Nature, 2000. 407:
327–339.

80. F. Schluenzen et al., Structure of functionally activated small ribosomal subunit
at 3.3. Å resolution. Cell, 2000. 102: 615–623.

81. J. Frank, Single-particle imaging of macromolecules by cryo-electronmicroscopy.
Annu. Rev. Biophys. Biomol. Struct., 2002. 31: 303–319.

82. F. Tama et al., Dynamic reorganization of the functionally active ribosome
explored by normal mode analysis and cryo-electronmicroscopy. Proc. Natl Acad.
Sci. USA, 2003. 100: 9319–9323.

83. Y.M. Wang et al., Global ribosome motions revealed with elastic network model.
J. Struct. Biol., 2004. 147: 302–314.

84. H. Stark et al., Large-scale movement of elongation factor G and extensive
conformational change of the ribosome during translocation. Cell, 2000. 100:
301–309.

85. R.K.Agrawal and J. Frank, Structural studies of the translational apparatus. Curr.
Opin. Struct. Biol., 1999. 9: 215–221.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 89 — #25

Normal Mode Analysis of Macromolecules 89

86. A. van Wynsberghe, G. Li, and Q. Cui, Normal mode analysis suggests
protein flexibility modulation throughout RNA polymerase’s functional cycle.
Biochemistry, 2004. 43: 13083–13096.

87. K.A. Merchant et al., Myoglobin-CO substate structures and dynamics: multidi-
mensional vibrational echoes and molecular dynamics simulations. J. Am. Chem.
Soc., 2003. 125: 13804–13818.

88. W.Wriggers and P. Chacon, Modeling tricks and fitting techniques formultiresol-
ution structures. Structure, 2001. 9: 779–788.

89. S. Doniach, Changes in biomolecular conformation seen by small angle x-ray
scattering. Chem. Rev., 2001. 101: 1763–1778.

90. X.W. Zhuang and M. Rief, Single-molecule folding. Curr. Opin. Struct. Biol., 2003.
13: 88–97.

91. D. Rueda et al., Single-molecule enzymology of RNA: essential functional groups
impact catalysis fromadistance. Proc. Natl Acad. Sci. USA, 2004. 101: 10066–10071.

92. M.P. Jacobson et al., A hierarchical approach to all-atom protein loop prediction.
Proteins: Struct. Funct. Bioinf., 2004. 55: 351–367.



BICH: “c472x_c004” — 2005/10/19 — 17:29 — page 90 — #26



BICH: “c472x_c005” — 2005/10/19 — 21:49 — page 91 — #1

5
Functional Information from Slow Mode
Shapes

Yves-Henri Sanejouand

CONTENTS
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Conformational Change of AdK Arising from NMA .. . . . . . . . . . . . . . . . . . 93

5.2.1 Standard Normal Mode Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Comparison with the Conformational Change. . . . . . . . . . . . . . . . . . 94
5.2.3 Effective Number of Modes Required for the Description . . . . 95
5.2.4 RTB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.5 Tirion’s Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.6 Description of the Conformational Change with

Approximate Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Conformational Change of DHFR and NMA .. . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Introduction

The idea that protein functional motions can be well described with a few slow
normal modes only, probably originates from the seminal study of hen-egg
lysozyme hinge-bending motion, by Martin Karplus and coworkers, 30 years
ago [1]. Indeed, after the calculation of an adiabatic potential for the angle-
bending, found to be approximately parabolic, these authors treated the
relative motion of the two structural domains as an angular harmonic oscil-
lator composed of two rigid spheres with moments of inertia corresponding
to those of the domains. A vibrational frequency of 4.3 cm−1 was obtained,
quite close to the lowest-frequency value found afterward, when standard
normal mode analysis (NMA) was performed [2,3].

91
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Then, approximate low-frequency (slow) normal modes were obtained in
the case of the quite large yeast hexokinase enzyme (nearly 450 amino-acids),
using the Raleigh–Ritz method, and compared to the conformational change
observed upon inhibitor binding. It was noticed that two of them had strong
components along the conformational change [4].

Later on, such a relationship between protein functional motion and slow
mode shapes was also observed for proteins whose structural domains (in
particular, their limits) cannot be determined easily, like those of citrate syn-
thase [5]. Notably, as one of the more striking examples, it was found that
the second lowest-frequency mode of the T-form of hemoglobin is enough
for describing two-third of the transition between T- and R-forms [6, 7].

The fact that a protein motion with a high “collective” character, that is, a
motion in which many atoms are involved, can be accurately described with
a subset of low-frequency modes is not a surprising result because the cor-
responding (normal) coordinates themselves have such collective character.
However, the fact that one, or a few, of them may prove enough for obtaining
a fair description of a conformational change was not a priori expected.

For instance, from a physical point of view, the energy function used to
compute protein normal modes is an approximate one, and frequency values
would be significantly different, if it were possible to compute them at ab initio
levels. Moreover, low-frequency parts of protein normal mode spectra are
usually not characterized by clear gaps. More generally, NMA is based on a
small displacements approximation, which amounts to suppose that a pro-
tein behaves like a solid does at low temperature, although it is well known
that a protein is a somewhat flexible polymer, undergoing many local con-
formational transitions at room temperature. Furthermore, from a biological
point of view, proteins are known to fold and function in a water environ-
ment, within a narrow range of pH, temperature, ionic strength, etc., whereas
standard NMA is performed in vacuo. As a matter of fact, it requires a prelim-
inary energy minimization, which drifts the atoms of the protein up to several
Ångstroms away from their positions in the crystallographic structure. As a
consequence, the structure studied with standard NMA is a distorted one.
Note that, nowadays, this later point can be partly disregarded, thanks to
the development of implicit solvent models, like EEF1 [8] or ACE [9, 10],
within the frame of the generalized Born approximation. Indeed, some nor-
mal mode studies are now being performed with such a kind of description
for protein–water interactions [11].

However, recent results have shed some light on this paradox. Notably,
it was shown that using a single parameter Hookean potential for taking
into account pairwise interactions between neighboring atoms, the so-called
elastic network model (ENM) [12–14], yields results in good agreement
with those obtained when NMA is performed with standard semi-empirical
potentials, as far as low-frequency normal modes are concerned [15–17].

The purpose of the present contribution is to compare protein func-
tional motions and slow mode shapes, as they are obtained with standard
NMA or with various, less detailed, approaches, including ENM. Hereafter,



BICH: “c472x_c005” — 2005/10/19 — 21:49 — page 93 — #3

Functional Information from Slow Mode Shapes 93

2

4

6

8

10

12

14

50

AMP-bind
domain ATP-lid

domain

100

Amino-acid residue

150 200

A
m

in
o-

ac
id

 d
is

pl
ac

em
en

t (
Å

)

0

16

FIGURE 5.1
The conformational change of adenylate kinase upon ligand binding.

approximate methods are described and two cases studied previously
[12, 18, 19] are considered in more depth, namely Adenylate Kinase (AdK)
and dihydrofolate reductase (DHFR).

5.2 Conformational Change of AdK Arising from NMA

5.2.1 Standard Normal Mode Calculation

Adenylate kinase is a “classic” three-domain enzyme [20]. Upon binding of
AdK substrates, ATP and AMP, large-amplitude motions (up to 15 Å; see
Figure 5.1) of the two small “AMP-bind” (residues 31 to 72) and “ATP-lid”
(residues 119 to 156) structural domains allow for the closure of the active site,
as shown in Figure 5.2 in the case of Escherichia Coli structures (PDB codes
4AKE and 1ANK).

Standard NMA was done as follows, starting from the “open” form of
AdK (Figure 5.2[a]). First, an extensive energy minimization was performed,
with the CHARMM package [22], version 27, using extended atoms, the
PARAM19 force-field, a distance-dependent dielectric constant, and a 9 Å
cutoff for electrostatic interactions. The minimization process was stopped at
a gradient root-mean-square (RMS) of 10−6 kcal/(mole Å), after nearly 20,000
adopted basis Newton–Raphson (ABNR) steps. At this point, the Cα-RMS
deviation from the crystal structure is significant: 1.9 Å. Next, using the
VIBRAN module of CHARMM, F, the Hessian, that is, the mass-weighted
second derivatives of the potential energy matrix, was diagonalized. Because
in this case the matrix is not large (matrix order is 3N = 6093), the standard
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AMP-bind
domain

ATP-lid(a) (b)
domain

FIGURE 5.2
AdK open (a) and closed (b) conformations, drawn with Molscript [21].

DIAGQ routine available in CHARMM was used [23]. Among the six “zero-
frequency” values found, corresponding to the overall translations and
rotations of the whole protein, the largest one is close to expected numer-
ical limits, namely 0.0035 cm−1. This means that the minimization process
was efficient enough.

5.2.2 Comparison with the Conformational Change

In order to quantify how well a conformational change is described by normal
mode j, one can calculate Ij, the scalar product (overlap) between �x =
{�x1, . . . ,�xk , . . . ,�x3N}, the conformational change observed by crystallo-
graphers, and yj = {y1j, . . . , ykj, . . . , y3Nj}, the jth normal mode of the protein.
This is a measure of the similarity between the direction of the conformational
change and the one given by mode j. It is obtained as follows [5]:

Ij = �x · yj =
∑
�xkykj√∑
�x2

k

(5.1)

where �xk = xo
k − xc

k , x
o
k and xc

k are, respectively, the kth atomic coordinate
of the protein in the open crystallographic structure and in the closed one.
A value of ±1 for the overlap (yj is normalized) means that the direction
given by yj is identical to�x. From a practical point of view,�x is calculated
after both crystallographic conformations of the protein are superimposed,
using standard fitting procedures. Note that Qd, the quality of the motion
description, calculated as:

Qd = 100
n∑
j=1

I2j (5.2)

is equal to 100% when n = 3N, that is, when all modes are taken into account,
since the 3N modes form a complete basis set [24].
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FIGURE 5.3
Description of AdK conformational change with standard normal modes.

In Figure 5.3, Qd is given for the AdK conformational change shown in
Figure 5.2, when more and more low-frequency modes of the open form are
added to the description (black circles). The contribution of each normal mode
is also shown (white boxes). Note that a single normal mode, the one with
lowest frequency (ν = 0.68 cm−1), is enough for describing nearly 40% of
the conformational change, whereas the five with lowest frequency modes
allow for the description of more than 80% of this motion. Of course, the six
zero-frequency modes do not contribute to the description, because overall
rigid body motions are removed when the least-square fit of the closed form
with respect to the open form is performed.

5.2.3 Effective Number of Modes Required for the Description

In order to determine neff, the minimum number of modes that are sufficient
for accurately describing a conformational change, one can try to evaluate
the information contained in the I2j s, as follows (a related, recently proposed,
quantity was coined “mode concentration” [25]):

log(neff) = −
n∑
I
′2
j log(I

′2
j ) (5.3)

where

I
′2
j =

I2j∑n I2j
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The above normalization means that the n low-frequency normal modes
considered are supposed to yield the best possible description of the con-
formational change. In the case of the AdK conformational change, when
n = 3N = 6093, neff = 14.8, whereas when n = 90, that is, when all modes
considered in Figure 5.3 are taken into account, neff = 6.9. The difference
comes from the fact that many modes contribute somehow to the descrip-
tion of the 10% of the conformational change that are not described by the 90
modes with the lowest frequency. Note that 6 to 8 modes describe more than
a few percentages of the conformational change each (see Figure 5.3), a figure
in good agreement with the latter evaluation of neff.

5.2.4 RTB Approximation

Owing to its size, diagonalizing the Hessian can be the technically lim-
iting step. Indeed, though the NMA of the small, 58 amino-acids, BPTI
protein was performed as early as 1982 [26], 10 years later the largest pro-
tein studied at the atomic level of description was still myoglobin, with 153
amino-acids [27], although most interesting proteins are much larger. Since
then, efficient algorithms were designed (e.g., DIMB [28]) or adapted to the
case of macromolecular assemblies (e.g., the block Lanczos approach [5])
in order to compute the lowest-frequency normal modes, that is, the most
informative ones.

Instead of diagonalizing the Hessian, F, as in standard NMA, the principle
of the RTB approximation (RTB stands for rotation–translation of blocks) is
to diagonalize Fb, a smaller 6nb × 6nb matrix defined as follows [18, 29, 30]:

Fb = PtFP (5.4)

where P is an orthogonal 3N × 6nb projection matrix built with the vec-
tors describing the six rigid-body rotations and translations of each of the
nb blocks the protein is split into. For instance, each block can contain a
single amino-acid residue. Up, the 3N×6nb matrix with the 6nb approximate
lowest-frequency normal modes of the protein, is then obtained as follows:

Up = PUb

where Ub is the matrix diagonalizing Fb, Ub being obtained with standard
diagonalization techniques. DIAGRTB, the corresponding Fortran program is
available on the web (http://ecole.modelisation.free.fr/modes.html). An effi-
cient, more general, implementation, called BNM (standing for Block Normal
Modes) [30], where each block can be treated as a flexible body, in the spirit
of dynamical models of the MB(O)ND family [31, 32], is also available in
CHARMM [22], since version 32. Note that approximate modes thus obtained
can then be refined, for instance, using the effective Hamiltonian theory, as
originally proposed [29]. However, as far as slow mode shapes are concerned,
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approximate modes are usually so close to exact modes [18, 29] that it is not
worth the extra computational cost.

As a matter of fact, the RTB approximation allows for quick calculations
of the lowest-frequency modes of large systems described at atomic level
[18]. Indeed, when two residues are placed in each block, Fb is a 3Nr × 3Nr
matrix, whereNr is the number of residues. So, it has the same size as matrices
diagonalized within the frame of methods based on simplified protein rep-
resentations, when only Cα atoms are taken into account [12, 13, 17]. When
six residues are placed in each block, Fb is a Nr × Nr matrix, that is, it has
the same size as contact matrices diagonalized within the frame of the fastest
method allowing for B-factors calculation [16].

Of course, the RTB approximation can only be used for calculating modes
in which the so-defined blocks behave almost rigidly. Even in that case, cal-
culated frequencies are found to be higher than exact ones, reflecting the
fact that atoms belonging to a given block cannot relax so as to lower the
energetical cost of the normal mode motion. However, for frequencies lesser
than 40 cm−1, at least when one amino-acid is put in each block, a linear
relationship between approximate and exact frequencies holds, that is,

νrtb = dp · νs

where νs and νrtb are frequencies obtained using, respectively, standard
approaches or the RTB approximation. In the case of a set of proteins of
various sizes, using CHARMM force-field [22] and an 8.5 Å cutoff for elec-
trostatic interactions, it was found that dp does not depend upon protein size
or fold type (dp = 1.7 ± 0.1) [18]. This enables us to get fair estimates for
exact frequencies, once the approximate ones are known. Note that dp seems
to increase linearly, as a function of the number of amino-acid residues put
in each block. Indeed, dp is nearly equal to 1.7, 2.1, 2.4, and 3.0, when each
block contains 1, 2, 3, or 5 residues, respectively. However, in the later case,
the linear relationship between νs and νrtb only holds for frequencies below
15 to 20 cm−1 [18]. Note also that dp depends little upon the details of the elec-
trostatic potential. In the present study of AdK normal modes, where a 9.0 Å
cutoff and a distance-dependant dielectric constant are used, dp is found equal
to 1.8 and 3.2, respectively, when each block contains one or five residues.

In Figure 5.4,Qd, the quality of the motion description (see Equation 5.2), is
given for each standard normal mode of AdK when the 100 lowest-frequency
approximate modes are taken into account in Equation 5.2 (n = 100), as
they are calculated with the RTB approximation, with one (black squares) or
five (white squares) residues per block (results are also shown when Tirion’s
modes are used for the description; see Section 5.2.5). With one residue per
block, RTB low-frequency modes are able to describe more than 80% of each
standard mode of frequency lower than 10 to 15 cm−1. Similar results were
obtained previously, in the case of the HIV-1 protease [18]. With five residues
per block, the quality of the description drops significantly as the frequency



BICH: “c472x_c005” — 2005/10/19 — 21:49 — page 98 — #8

98 Yves-Henri Sanejouand

 10

 20

 30

 40

 50

 60

 70

 80

 90

Normal mode frequency (cm–1)

5  10  150  20

Q
ua

lit
y 

of
 m

od
e 

de
sc

rip
tio

n 
(%

)

0

 100

FIGURE 5.4
Quality of the description of each AdK normal mode with 100 approximate ones. Approximate
low-frequency modes were calculated as follows: standard Hessian and the RTB approximation,
with one (black squares) or five amino-acid residues per block (white squares); Tirion’s Hessian
(stars); Tirion’s Hessian and the RTB approximation (crosses).

of the mode increases, except for the five lowest-frequency modes (ν = 0.68,
1.23, 1.72, 2.52, and 3.02 cm−1).

In Figure 5.5, neff, the effective number of modes required for the descrip-
tion (see Equation 5.3), is also given for each standard normal mode of AdK,
when the 100 lowest-frequency approximate modes are taken into account
in Equation 5.3 (n = 100), as they are calculated with the RTB approx-
imation. Only the five lowest-frequency standard normal modes can be
accurately described with less than five approximate modes. The sixth one
(ν = 3.95 cm−1) is well described with neff = 3.5 modes calculated with the
RTB approximation and one residue per block, but neff = 13.8 when the RTB
approximation is used with five residues per block.

5.2.5 Tirion’s Approach

Within the frame of the approach proposed by Tirion [15], the standard
detailed potential energy function is replaced by

Ep =
∑
d0
ij<Rc

C(dij − d0
ij)

2 (5.5)
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where dij is the distance between atoms i and j, d0
ij being the distance between

these two atoms in the studied structure. The strength of the potential C
is a constant assumed to be the same for all interacting pairs. As such, it
has to be set only in order to define energy (and frequency) units. Note
that this energy function was designed so that for any chosen configura-
tion the potential energy, Ep, is a minimum of the function (Ep = 0). Thus,
with such an approach par définition NMA does not require any prior energy
minimization.

Note also that in Equation 5.5 the sum is restricted to atom pairs sep-
arated by less than Rc, which is an arbitrary cutoff parameter. When, as
proposed by Bahar et al., only Cα atoms are taken into account [16], a cutoff of
8 to 13 Å can be used [12, 13]. The corresponding ENM [12–14] (Cα-ENM) is
enough to study backbone motions, since it proves sufficient for characteriz-
ing low-frequency normal modes of proteins. Moreover, it allows for studying
proteins of large size on common workstations, using small amounts of CPU
time, since, with such a simple model, the matrix to be diagonalized is a
3Nr × 3Nr one. As a matter of fact, with such models, modes of systems as
large as the whole ribosome have been calculated on desktop computers [33].

Using this kind of highly simplified potential, as with detailed modes, a
few low-frequency normal modes are often found to yield a good description
of protein functional motions, especially when the corresponding conform-
ational change has a highly collective character [12, 14, 25]. Thus, results
obtained with NMA in the field of low-frequency protein dynamics seem
to be of a very good quality even when most atomic details are ignored.

In Figure 5.4 and Figure 5.5, respectively, Qd, the quality of the motion
description and neff, the effective number of modes required for an accurate
description, are given for each standard normal mode of AdK when the 100
lowest-frequency approximate modes are taken into account in Equations 5.2
and 5.3 (n = 100), as they are calculated with Tirion’s approach. For the
sake of comparison, the structure considered is the open form of AdK stud-
ied with standard NMA, that is, the energy-minimized one. Here, Rc = 5 Å
and, as initially proposed [15], all atoms are included in the model. First, the
diagonalization of the corresponding Hessian is performed with standard
techniques (stars). Next, the RTB approximation is used, with one residue
per block (crosses). Note that this kind of calculation can now be per-
formed through the Web, thanks to the ELNEMO Web site of Karsten Suhre
(http://igs-server.cnrs-mrs.fr/elnemo/) [34, 35].

Interestingly, within the frame of Tirion’s approach, the RTB approxim-
ation seems to improve the quality of the description of most, if not all,
standard modes considered (see Figure 5.4 and Figure 5.5). This is not
an unexpected result, because RTB adds informations to Tirion’s model,
about amino-acid sizes for instance, through the projection process (see
Equation 5.4). Note that in the method originally proposed by Tirion, topolo-
gical informations were also included in the model through the use of internal
coordinates [15]. On the other hand, Tirion’s modes yield better descriptions
of standard modes than those obtained with detailed potentials, when the
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FIGURE 5.5
Minimum number of approximate modes required for an accurate description of each AdK
normal mode. Approximate low-frequency modes were calculated as follows: standard Hessian
and the RTB approximation, with one (black squares) or five amino-acid residues per block (white
squares); Tirion’s Hessian (stars); Tirion’s Hessian and the RTB approximation (crosses).

latter are obtained with the RTB approximation and five residues per block
(see Figure 5.4 and Figure 5.5).

However, with all four approximations, the five lowest-frequency stand-
ard normal modes of the open form of AdK are all found to be extremely
well described (Qd over 95%; see Figure 5.4), with a small effective number
of approximate modes (neff = 5 or less; see Figure 5.5). This means that
these modes are very robust and, specifically, that the subspace spanned by
the five corresponding coordinates (the normal coordinates) is almost not
perturbed when most atomic details are missing in the protein model. A sim-
ilar conclusion was also reached in a study of large protein normal modes,
through a hierarchy of coarse-grained models [36], as well as in a study using
low-resolution structural data [19].

Such results support the idea that the few lowest-frequency modes depend
mainly upon the shape of the protein, that is, upon the distribution of
its masses in space. As expected, such modes can be described well in
terms of relative motions of structural domains of the protein. Reciproc-
ally, when the limits of the domains of a given protein are not obvious,
they can be used in order to delineate the domains, as proposed by
Hinsen [17].
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TABLE 5.1

Quality of the Description ofAdK Conformational Change with Low-
Frequency Normal Modes, either Standard or Approximate Ones.

Largest overlap
Structure Method (mode rank) neff Qd(%)

Energy-minimized Standard −0.62 (#1) 6.9 91
Energy-minimized Standard+RTB(1) 0.74 (#1) 4.4 91
Energy-minimized Standard+RTB(5) −0.71 (#1) 4.5 91
Energy-minimized Tirion −0.75 (#6) 4.8 91
Energy-minimized Tirion+RTB(1) −0.77 (#1) 4.3 92
Energy-minimized Cα-ENM −0.74 (#1) 4.9 96
Crystallographic Tirion 0.81 (#9) 3.6 94
Crystallographic Tirion+RTB(1) −0.81 (#1) 3.6 95
Crystallographic Cα-ENM 0.81 (#1) 3.8 97

The normal modes are calculated either for the energy-minimized structure
obtained within the frame of the standard approach, or for the initial, crystal-
lographic, structure of the open form. When the RTB approximation is used
for diagonalizing the Hessian, the number of amino-acid residues put in each
block is given between parentheses.

5.2.6 Description of the Conformational Change with Approximate Modes

In Table 5.1, a summary of the results obtained is given, when the AdK con-
formational change is compared to the 100 lowest-frequency normal modes
obtained with the various methods described above.

Amazingly, results obtained with standard NMA, that is, with the more
detailed protein model, are the less spectacular ones. Indeed, the mode that is
most involved in the conformational change [37] has an overlap with the con-
formational change (seeEquation5.1) of−0.62, whereas it hasmore significant
values when approximate modes are considered (up to 0.81). Moreover, the
number of modes required for an accurate description of the conformational
change, neff (see Equation 5.3), is significantly smaller when approximate
methods are used (down to 3.6, instead of 6.9), whereas the quality of the
description with the 100 lowest-frequency modes, Qd (see Equation 5.2), is
better (up to 97%, instead of 91%).

One major advantage of the family of methods based on Tirion’s approach
is that they enable calculating low-frequency modes of the crystallographic
structure itself. As mentioned above, during the minimization process
required within the frame of standard NMA, the open form of AdK drifts
away from the crystal structure by 1.9 Å. As a matter of fact, better results are
obtained when normal modes are calculated for the crystallographic structure
(see Table 5.1). Note that, in this later case, as far as the description of the con-
formational change is concerned, the RTB approximation does not improve
the modes obtained with Tirion’s approach. However, it lowers the rank of
the mode found to be the most involved in the conformational change. This is
likely to be related to the following artifact, found when Tirion’s approach
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FIGURE 5.6
Elastic network model of the open form of AdK. Harmonic springs are established between Cα
atoms less than 10 Å away from each other.

is used as is, namely, as described in Equation 5.5: when a light atom is
linked to others by few harmonic springs, it can be found involved in a low-
frequency, though localized, normal mode motion. Because when the RTB
approximation is used this atom is included in a rigid body, namely, the
block this atom is put into, it allows for getting rid of such artifactual low-
frequency modes [38]. Note that such artifactual modes can also be obtained
with Cα-ENM. Indeed, parts of the polypeptidic chain extending away from
most other amino-acids can be observed in crystal structures, in particu-
lar at both N- and C-terminal ends. Being linked by few harmonic springs
to the rest of the protein, they can also be found involved in the lowest-
frequency normal modes calculated for the model. Note that if an atom or a
group of atoms is not linked by at least three springs to the rest of the sys-
tem, this artifact appears as a number of zero-frequency normal modes larger
than six.

However, such artifacts are not observed in the case of AdK Cα-ENM, even
when modes are calculated for the crystal structure of the open form (see
Table 5.1). As a matter of fact, low-frequency modes obtained with the cor-
responding protein model, that is, without any atomic detail (see Figure 5.6,
where Rc = 10 Å) yield one of the best descriptions obtained in the present
study for the conformational change of AdK (see Figure 5.7, and compare it
to Figure 5.3). Notably, a single mode, the lowest-frequency one, is found to
be enough for describing 65% of the conformational change.
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FIGURE 5.7
Description of AdK conformational change with Cα-ENM modes. C was adjusted, so that
ν(#1) = 1 cm−1.

This later result has a rather general character. Indeed, in a recent survey of
a database [39] of more than 3800 protein motions found in the PDB, Gerstein
et al. [25] showed that for nearly half of them a couple of Cα-ENM modes are
enough for describing most of the motion.

5.3 Conformational Change of DHFR and NMA

Dihydrofolate reductase, a rather small, 159 amino-acid, protein is the target
for the therapeutically important “anti-folate” drugs, such as methotrexate.
A significant conformational change occurs when DHFR binds methotrexate
[40]. Although changes are small (Cα-RMS = 0.8 Å), the motion has a collect-
ive character, as shown in Figure 5.8, where the distance between the open
(PDB code 5DFR) and the closed (PDB code 4DFR) forms is given for each
Cα , as a function of residue number.

All normal mode analyses performed in the case of AdK were also done
in the case of the open form of DHFR. A summary of the results obtained
when comparing the normal modes of DHFR with its conformational change
is given in Table 5.2. As shown in Figure 5.9, low-frequency normal modes
obtained with standard approaches do not allow a fair description of the
conformational change of DHFR (compare with Figure 5.3 and Figure 5.7).
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FIGURE 5.8
The conformational change of DHFR.

TABLE 5.2

Quality of the Description of DHFR Conformational Change with Low-
Frequency Normal Modes, either Standard or Approximate Ones.

Largest overlap
Structure Method (mode rank) neff Qd(%)

Energy-minimized Standard −0.27 (#3) 32.2 52
Energy-minimized Standard+RTB(1) 0.36 (#2) 23.9 55
Energy-minimized Tirion 0.28 (#2) 32.2 46
Energy-minimized Tirion+ RTB(1) −0.29 (#2) 36.7 52
Energy-minimized Cα-ENM 0.48 (#1) 21.7 73
Crystallographic Tirion 0.32 (#2) 20.3 29
Crystallographic Tirion+ RTB(1) −0.32 (#1) 29.4 39
Crystallographic Cα-ENM −0.53 (#1) 8.8 51

The normal modes are calculated either for the energy-minimized structure obtained
within the frame of the standard approach, or for the initial, crystallographic one of
the open form.

In particular, no single mode is found to be enough for describing more
than 7% of the motion. One reason for that could be that preliminary energy
minimizations have distorted the structure a lot. Indeed, at the end of the
process, the Cα-RMS deviation from the crystal structure is 1.0 Å, that is, a
value similar to the Cα-RMS difference between the open and closed forms
of DHFR (0.8 Å). When modes are calculated with Tirion’s approach, either
for the energy-minimized or for the crystal structure, they do not perform
better. However, a clear improvment is observed with Cα-ENM modes. In
particular, a single mode is found to be enough for describing nearly 25% of
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FIGURE 5.9
Description of DHFR conformational change with standard normal modes.

the motion. Further work is required in order to check the general character
of such results, but they probably mean that details of the protein descrip-
tion become important either when the protein is small or (and) when the
amplitude of the conformational change is not large.

5.4 Applications

Nowadays, one major application of NMA is the identification of potential
functional motions of proteins. Here, the main difficulty is that NMA alone
cannot tell which is the mode that is most involved in the conformational
change (and if there is any). Also, it does not tell anything about the amp-
litude of the functional motion, which is often much larger than amplitudes
predicted by normal mode theory for room temperature motions (typically,
1 to 2 Å). So, attempts to predict conformational changes from NMA have
to be backed by experimental data. For instance, it was predicted that, upon
Gp120 binding, a conformational change occurs in CD4, the HIV-1 receptor,
as a rigid-body motion of domain one (D1), on top of which the virus binds,
with respect to domain two (D2). This prediction was based on normal mode
calculations [41], and also on the fact that the only mutations of D2 found
to lower the affinity of CD4 for Gp120 are located in the two loops of D2
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involved in the interface between D1 and D2. Moreover, both loops exhibit
large motions in the lowest-frequency modes of CD4 [41], allowing for relative
domain displacement in spite of their tight association.

Another kind of application is to use NMA as a check for conformational
changes proposed on the basis of nonstructural experimental data (muta-
genesis experiments, etc.). If a few normal modes are found involved in the
proposed conformational change, this will be in favor of the correctness of
the proposal. Such a positive feedback from NMA has, for instance, recently
been obtained, in a study of the mechanosensitive channel opening [42].

However, for the years to come, applications that appear to be the most
promising ones rely on the use of the lowest-frequency modes of a protein as
a (small) set of coordinates along which the structure is perturbed, so as to
achieve better agreement with experimental data [34, 43, 44].

5.5 Conclusion

When the functional motion of a protein has a clear collective character [14, 18]
and, probably, as illustrated above, when its amplitude is large enough, nor-
mal modes can prove useful for studying the mechanical details of the motion.
This is due to the fact that the few lowest-frequency modes of a protein are
relative motions of structural domains. This fact is not a trivial one, since
it also proves helpful to define such structural domains, when their limits
are not obvious ones, through the dynamical information provided by these
modes [17].

However, perturbing the structure along its lowest-frequency modes
appears to be a promising tool in the field of structure refinement [44], espe-
cially for fitting atomic structures into low-resolution electron density maps
[43] or within the frame of molecular replacement techniques [34], when
a protein with a known structure has undergone a large conformational
change.
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6.1 Introduction

It is now well established that large-scale rearrangements in proteins are
important for a variety of protein functions including catalysis and reg-
ulation of activity. The recent developments in experimental methods,
especially cryo-electron microscopy (cryo-EM), have revealed that large-
molecular assemblies are also highly dynamic.While experiment can provide
a tremendous source of information on these dynamical properties, computa-
tionalmethodsmust be employed to complement experimental observations.
Indeed, by using theory to explore (at near-atomic levels of detail) function-
ally important rearrangements observed in experiments at low-resolution it
is possible to gain new insights into the mechanism of these transformations
that are presently inaccessible to experiments.
The exploration of molecular motions of biological molecules and their

assemblies by simulation approaches such as molecular dynamics has
provided significant insights into structure–function relationships for small
biological systems. However, the study of large-scalemacromolecular assem-
blies by this technique is limited to relatively short timescales due to the
computational complexity of brute-force simulation methods.
Normalmode analysis (NMA)provides an alternative tomolecular dynam-

ics for the study of motions of macromolecules. The timescale accessible to
theoretical work is extended with NMA, and this approach has been proven
extremely useful for studying collective motions of biological systems
[1–3]. Exploration of the normal modes of a molecular system can yield
insights, at the atomic level, on the mechanism of large-scale rearrangements
of proteins–proteins complexes that occur upon ligand–protein binding
[4–11]. Studies employing NMA have generally focused on a few large-
amplitude/low-frequency normal modes, which are expected to be relevant
to function.
Theoretical studies of dynamical properties of biological systems by NMA

have been limited to small proteins (up to 300 residues) [12], mainly due to
the size of the biological system. The protein model used in such calculations
consists of classical point masses, with typically one point per atom, and
the energy terms for interactions between atoms are defined by semiempir-
ical force-fields. The use of such force-fields requires an energetically precise



BICH: “c472x_c006” — 2005/10/19 — 17:37 — page 113 — #3

Unveiling Molecular Mechanisms of Biological Functions 113

all-atom description of the equilibrium configuration of the macromolec-
ule, which becomes computationally difficult to achieve as the system size
increases. However, multi-scale approaches that retain the atomic detail have
also seen some success.
Elastic network models can also be used to address these issues [13]. In

the elastic network model approach a simplified potential is used to repres-
ent the molecule as a set of pseudo-particles that capture the molecule mass
distribution. These particles are coupled via harmonic springs to provide a
description of the system as an elastic net. This model does not necessitate
preliminary energy minimization, thereby permitting direct analysis of crys-
tal and NMR coordinates, or even low-resolution structures obtained from
electron microscopy [14–17]. Moreover, the reduced representation of the
molecule, whereby a single coordinate is used to represent several atoms
(e.g., using Cα atoms to represent each residue of a protein) provides a multi-
scale description that can significantly reduce the computational expense. The
elastic network model, in concert with methods that facilitate large diagonal-
ization problems such as the rotation–translation block (RTB) method [18,19]
or DIMB [20], have extended studies of dynamics via NMA to very large
biological assemblies.
In the following pages, we will review the elastic network model and RTB-

based diagonalization techniques used in NMA as well as methods based
on NMA for the generations of feasible conformational change pathways
between different conformations of biological systems. We will illustrate
recent successes of NMAapplied to large macromolecular assemblies. Partic-
ular focus will be on recent studies of viruses, the ribosome and myosin.
In addition, the application of elastic network normal mode analysis to
low-resolution structures obtained from cryo-EM will also be presented.

6.2 Theory and Method

6.2.1 Normal Mode Theory

Thenormalmodemethod isbasedon theanalyticdynamicsof a systemwhose
potential energy is expressed as a quadratic function of atomic displacement
about an equilibrium conformation (harmonic approximation) [21]. Specific-
ally, if one expands the potential energy function U around a minimum on
the energy surface, r0, the Hamiltonian of the system is given by

H ∼= K(ṙ)+ E(r) ∼= 1
2

∑
n

mnṙ2n +
1
2

∑
nm

(rn − r0n)
∂2E
∂rn∂rm

∣∣∣∣∣
r=ro

(rm − r0m) (6.1)

where K represents the kinetic energy, E the potential energy, and rn and r0n
are the coordinates of atom n.
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The dynamics of this system (for all times) now follow from the solution of
the eigenvalue problem

M−1/2∇2EM−1/2yi = ω2i yi (6.2)

yTi yj = δij (6.3)

In this expression, ∇2E is the Hessian, which comprises the 3N ×
3N matrix of the second derivatives of the potential energy evaluated
at �r = �r0, the matrix M contains the atomic masses on its diagonal.
The solution is a set of normal modes consisting of an eigenvector
yi = (y1xi , y1yi , y1zi , y2xi , y2yi , y2zi , . . . , yNxi , yNyi , yNzi )

T and its associated frequency
ωi. The eigenvector gives the direction and relative amplitude of each atomic
displacement. For a mode i, all the atoms oscillate at the same frequency, ωi
[21]. The dynamics of the system is described as a linear combination of inde-
pendent normal mode oscillators. The nature of the atomic displacements in
the framework of the normal mode representation is then expressed as

|	rn| =
∣∣∣rn − r0n∣∣∣ =

3N−6∑
i=1

Ai
ω2i


ynxiynyi
ynzi


 (6.4)

whereAi/ω2i is an arbitrary amplitude for displacement along normalmode i.
If the atoms are undergoing thermal fluctuations along each mode, the
standard deviation of each atom is given by setting Ai equal to

√
kB T/mn,

here T is the absolute temperature, kB is the Boltzmann constant, and mn is
the atomic mass of atom n. From this equation, it is evident that the largest
contribution to the atomicdisplacement comes fromthe lowest frequencynor-
malmodes. In addition, the lowest-frequency eigenvectors represent themost
globally distributed or collective motions, that is, a large number of atoms
have significant components (y3n−2i , y3n−1i , y3ni ), whereas for high-frequency
eigenvectors only a few atoms contribute to the Cartesian element yi.

6.2.2 Multi-Scale Energy Functions Using Elastic Networks

Asimplified representation of the potential energy can also be introduced for
the NMA of biological systems. In this representation, the biological system
is described as a three-dimensional (3D) elastic network based on the equilib-
rium distribution of atoms [13]. In this elastic network model, amino acids or
basepairsmaybe represented in full atomicdetail, or at amore coarse-grained
level. For example, at one mass point per residue [22], only Cα atoms [23,24]
or more coarse-grained particle-based models [25] may be used to identify
the junctions of the network. These junctions are representative of the mass
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distribution of the system and are connected together via a simple harmonic
restoring force

E(�ra, �rb) =
{
k
2 (|�ra − �rb| − |�r0a − �r0b |)2, for |�r0a − �r0b | ≤ RC
0, for |�r0a − �r0b | > RC

(6.5)

where �ra − �rb denotes the vector connecting pseudo-atoms a and b, the zero
superscript indicates the initial configuration of the pseudo-atoms, and RC
is a spatial cutoff for interconnections between the particles. The strength of
the potential k is a phenomenological constant assumed to be the same for
all interacting pairs; different types of atoms or residues are not assigned
different values of k.
The total potential energy of the molecule is expressed as the sum of elastic

strain energies:

ESystem =
∑
a,b

E(�ra, �rb) (6.6)

Note that this energy function, E, is a minimum for any chosen configuration
of any system, thus eliminating the need for minimization prior to NMA.
Consequently, NMA can be performed directly on crystallographic or NMR
structures [13].
Several studies have shown that this Hookean potential is sufficient to

reproduce the low-frequency normal modes of proteins as produced bymore
complete potential energy functions [24]. The high degree of accord between
the modes constructed from these methods suggests that low-frequency
normal modes are predominantly a property of the shape of the molecular
system [26]. Although this agreement tends to break down at high frequen-
cies, there have beenmany cases showing that collectivemotions found in the
low-frequency modes well characterize biologically relevant conformational
changes [24].

6.2.3 Rotation–Translation Block Method

The application of NMAcritically depends on diagonalization of the Hessian
and this can be a limiting factor in applying NMA to interesting molecular
systems. The RTB method was introduced to reduce the size of the Hessian
by introduction of a simple physical idea: a protein or nucleic chain may
be viewed as being composed of rigid components linked together, such as
residues/bases or group of residues/bases or more extensive segments of
structure forming secondary structural elements [18,19]. The combination of
rotation and translation of these rigid components should provide a good
representation of the low-frequency normal modes of the biological system.
Thus in the RTB method, the molecular system is first divided into nb blocks,
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each consisting of one or of a few consecutive residues/base pairs, etc. Then,
the lowest-frequency normal modes of the biological system are obtained as
a linear combination of the rotations and translations of these blocks.
In standard approaches, the normal modes of the system are calculated

through the diagonalization of the Hessian matrix ∇2E (Equation [6.2]).
The Hessian is the 3N × 3N matrix of the second derivatives of the poten-
tial energy with respect to the mass-weighted coordinates, where N is the
number of atoms of the system. In the RTB approach, ∇2E, the Hessian
being diagonalized is first expressed in a basis defined by the rotational and
translational degrees of freedom of nb blocks. Hb, the projected Hessian, is
given by

Hb = PT∇2EP (6.7)

where P is the orthogonal 3N × 6nb matrix built with the vectors associ-
ated with the local rotations and translations of each block. From the normal
modes, Ab, obtained by diagonalizing Hb, which is a 6nb × 6nb matrix, the
corresponding (3N) atomic displacements are recovered by

AP = PAb (6.8)

Following the above formalism, the actual computational procedure con-
sists of three steps. In the first step, blocks of residues are defined and the six
rotation–translation modes of each block α, Uα , are determined and stored.
These 6nb vectors form a new basis of small dimension that corresponds to
the projector P. In the second step, the Hessian matrix is expressed in this
new basis, separately for each coupling or diagonal block, Hαβ

Hbαβ = UT
αHαβUβ (6.9)

The set of n2bH
b
αβ block-matrices forms the matrix Hb. The construction

of Hb has minimal memory requirements, since the Hessian correspond-
ing to each block, that is, Hαβ , is first calculated and projected into the
rotation–translation matrix. Therefore, during this step, the largest matrix
kept in memory corresponds to the size of one block in the 3D coordinates.
The RTBmethod requires only the small dimension vectorsUα and the small
6nb × 6nb Hb matrix to be stored. In the last step, Hb is diagonalized with
standard methods.
It has been demonstrated that this approach yields very accurate approx-

imations of the low-frequency normal modes of proteins. Studies have also
shown that themanner inwhich theprotein is partitioned into blocks hasmin-
imal qualitative consequence on the description of the low-frequency normal
modes of the system [19].
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6.2.4 Multi-Scale NMA Using Elastic Network Hamiltonians and
the RTB Method

Combining the elastic network representation of molecular structure and
connectivity with the RTB approach for the reduction of the complexity of
the normal mode, Hessian permits one to extend the application of nor-
mal modes methods for the exploration of conformational deformations and
dynamics to assemblies of nearly arbitrary size while maintaining a mod-
est requirement for computer memory and computational time. Thus, these
approaches together enable the development and exploration of multi-scale
models for the functional motions of large biological machines and assem-
blies. However, this methodology does not provide an absolute scale of the
normal mode eigenvalues, that is, the frequencies of the motions. Instead,
only relative values are extracted. To retrieve the absolute value, for example,
as could be obtained from a fully atomic representation using a standard
force-field incorporating all interatomic interactions, a scaling factor may
be deduced by comparing the thermal fluctuations from the elastic net-
work NMAcalculations (Equation [6.4]) with those from either simulation or
experiment (through Debye–Waller factor) [13,23]. Even though the absolute
energy scale/time scale of the molecular motions is distorted in these calcu-
lations, the character (directions) of the low-frequency motions is unaffected,
thus providing an efficient way to study the nature of large conformational
rearrangements of biological systems that are not accessible via molecular
dynamics simulation.

6.2.5 Mapping the Pathway of Conformational Change Using NMA

The elucidation of the pathways for conformational changes in macromolec-
ular systems may be useful in the analysis of functional rearrangements
in biological systems, providing an atomic-level description of the con-
formational transition. To generate these pathways, models of intermediate
structures between the twoknownconformational states of themoleculemust
be developed. This can be approached in a variety of ways from the stand
point of modeling [27,28]. The approach that we discuss here is to follow the
low-energy normalmodes directions of the systembetween the two endpoint
states. NMA based methods have been already developed to describe con-
formational change pathways [11,29]. Here an alternative iterative technique
is presented [30,31].

6.2.5.1 Linear Interpolation between Endpoints Using
Normal Mode Directions

The displacement vector between two endpoint conformation of a molecular
system, 	r, can simply be expressed as the superposition of displacements
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along the normal modes direction of the system

	r =
∑
i

yiqi (6.10)

where
qi = yi	r (6.11)

since the normal mode eigenvectors should span the conformational space.
By using some fraction of normal mode coordinate, qi, of Equation (6.11) for
the deformation, Equation (6.10), the intermediate structures can be gener-
ated. However, we should note that using the entire mode corresponds to
simple Cartesian interpolation. Generally, one finds that a smaller subset of
displacements, qi, along mode yi account for the majority of the conform-
ational deformation between two endpoint conformations and this serves
as a basis for expressing the possibly functional dynamics of the conforma-
tional change. These modes are coincident with a few modes with the lowest
frequencies [24].

6.2.5.2 Nonlinear/Iterative Approach

Although the linear interpolation approach just described is often adequate
to describe conformational changes in biological systems in some instances,
to describe conformational changes between two conformationally distinct
states requires a nonlinear description due to the anharmonic character of the
energy landscape. The lowest frequency normalmode of the open structure is
shown in Figure 6.1 indicates the preferential direction of the conformational
change in the vicinity of the structure. However, it is evident that the mode

FIGURE 6.1
(See color insert following page 136) Nonlinear conformational change between the open and
closed forms of the adenylate kinase the linear normal mode directions.
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itself is not adequate to lead the structure to the closed form. The discrepancy
arises because the normal modes provide only linear motions even though
the conformational change pathway is nonlinear. The direction of the con-
formational change alters as the structure is deformed from the initial to the
final structure as seen in Figure 6.1. Another critical aspect is that displacing
too far along the direction given by the lowest frequency modes, inspite of
being the globally preferential direction of the conformational change, can
induce large distortion in the local structure such as bond distances.
The problems arising from the harmonic approximation employed in the

NMA can be ameliorated by performing the NMAs and conformational
deformations in an iterative manner [30,31]. Instead of moving the structure
from the initial to the final form directly, the deformation is limited to a small
amount, and normal modes are recalculated for the deformed structure. In
this approach, the conformational change is described by the following iter-
ative procedure: the initial conformation is defined as CI = C0 and the final
state is CF. NMAis performed on Ck with k initially taken at k = I. The vector
difference 	rk between Ck and CF is (re-)evaluated. The structure Ck is dis-
placed along a linear combination of normal modes yk toward the final state
leading to the next structure Ck+1. The amplitude, qki , of the displacements
along normal mode i is given by

qki = yki ·	rkQ (6.12)

where Q is a parameter that determines how far the structure is displaced; 0
equals the current coordinates and 1 equals the full projection of the current
normalmode coordinates ontoCF. This procedure is repeated until some con-
vergence criterion inRMSDbetween the kth iterate and thefinal conformation
is reached. Figure 6.1 shows the nonlinear conformational change pathway
obtained in this procedure.

6.3 Applications

With the methods and algorithms just described in hand, one can tackle the
exploration of biological questions related to the conformational reorganiza-
tion of large macromolecular assemblies. In this section, we present several
applications of NMAto largemacromolecular assemblies such as viruses, the
ribosome, and the muscle protein myosin. In addition, we will illustrate not
only how NMA can be used to explore dynamical properties of atomically
detailed x-ray structures, but also how the multi-scale methods described
above can be used to provide insights to dynamical processes that are char-
acterized by low-resolution experiments. The primary motivation behind
the studies described below is to complement experimental observations
by exploring, at a near-atomic level, functionally important rearrangements
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observed in experiments at low-resolution and to obtain new insights into
the mechanism of these transformations that are presently inaccessible to
experiments.

6.3.1 Unveiling Molecular Mechanisms of Conformational Changes of
Large Macromolecular Assemblies

6.3.1.1 The Mechanism and Pathway of pH Induced Swelling in
Cowpea Chlorotic Mottle Virus

Recent advances in structural biology and the large increase in computer
power have made possible theoretical studies on systems as large as entire
viral capsids of nonenveloped icosahedral viruses. For example, a general
kinetic model for the self-assembly of spherical viruses, that includes a nuc-
leation event has been described [32]. Other important aspects regard the
assembly and maturation of virus particles. These phenomena involve large-
scale rearrangements of the capsid proteins, from swollen or nonspherical
shaped forms to the mature spherical icosahedral form [33–36]. The explora-
tion of putative pathways for the conformational changes, which accompany
these physical transitions, would be helpful to understand the mechanism
associated with the swelling phenomena since it could provide a descrip-
tion of the rearrangements of the subunits at an atomic level and motivate
hypotheses for the triggering event.
The large majority of viruses display icosahedral symmetry. This requires

at least 60 structural units to complete a shell. However, very few viruses
contain only 60 copies of a single capsid protein. Most of the icosahedral
viruses display quasi-symmetry, that is, they have 60T identical subunits in
the shell, whereT is the triangulation number [37], which reflects the selection
rules for distributing capsomers (hexamers andpentamer) on a surface lattice.
One example of such a system that we have examined is the Cowpea

Chlorotic Mottle Virus (CCMV). The capsid is made up of 180 proteins that
form a 286 Å diameter icosahedral shell with T = 3 quasi-symmetry. Native
CCMV is stable around pH 5.0. At pH 7.0 and with low ionic strength, the
particles undergo a concerted transition to a swollen formwhere the average
size of the particle has increased by roughly 10% [36]. Presumably swelling
only occurs when Ca2+ ions, which binds at the quasi-3-fold axes, is first
removed. Structures of native and swollen forms have been determined by
x-ray crystallography and cryo-EM [38], respectively, thus a comparison of
our calculations with experimental results will be possible.
An elastic networkwas constructed from the 28620Cα atoms ofCCMVwith

a cutoff of 8 Å to define the Cα–Cα based network connectivity. For the com-
putation of the lowest frequency normal modes using the RTB method, each
block was made of one of the proteins comprising the asymmetric subunit.
Thus a total of 180 blocks was considered and the matrix to be diagonal-
ized was 1,080× 1,080, instead of 85,860× 85,860 when diagonalization was
done in the full Cartesian space. We note that in this calculation since each
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protein is treated as a block, conformational changes within each individual
protein are not allowed. Nevertheless, this approach should be a reason-
able approximation since the experimental cryo-electron density map of the
swollen particle was only at 28 Å and does not reveal large rearrangements
within each protein [38].
Normal mode analysis performed on icosahedral viruses gives modes that

are degenerate and nondegenerate. For the nondegenerate normal modes,
the motion of each asymmetrical unit is exactly the same because this mode
adheres to the icosahedral symmetry of thewhole system. Experimental stud-
ies of viruses have suggested that the swollen or provirion capsids also adhere
to icosahedral symmetry. Therefore, to study swelling phenomena pathway,
in theabsenceof experimentaldata suggesting symmetry-breakingpathways,
it seems most appropriate to explore pathways that obey the implied sym-
metry and thus limit our considerations to the fully symmetric normalmodes.
Starting from the native form of CCMV, we displaced the structure along

the direction given by the nondegenerate low-frequency normal modes and
intermediate structures were created. Since we performedNMAonly on a Cα
representation, all-atom structureswere created by rigidly superimposing the
atomically detailed subunit structures onto the Cα framework. These struc-
tures were compared to the experimental density map of the swollen CCMV
by computing the R-factor. For one mode, we observed a decrease of the R-
factor value from 72 to 49%. Such a decrease of the R-factor indicates that this
normalmode is actually similar to thedirection followedbyCCMVduring the
swellingprocess. Thismode, referred to as a “breathingmode” (Figure 6.2[a]),
corresponds to an overall expansion of the virus particle. We were able to
improve the R-factor value by displacing the structure presenting the lowest
R-factor (49%) along three other non-degenerate normal modes. Compared
to the breathing mode, these modes make a more limited contribution to
the conformational change and they correspond mainly to rearrangements
between the subunits. The final R-factor was 45 and 43.8 after minimization
of the protein interfaces in the presence of icosahedral symmetry, and the
final structure fits the experimental map of the swollen CCMV quite well
(Figure 6.2[b]).
These structures provide feasible pathways for the swelling process. In this

case, a linear pathway is a reasonable approximation due to the symmet-
rical properties of virus structure. To obtain more information on the origin
of the swelling process, the all-atom intermediate structures were energy
minimized and the approximate association energies for each unique inter-
face were calculated [39,40]. The interfacial energies should reflect how each
protein–protein interface changes during the swelling process. We observed
that the dimeric interactions are well preserved in the swollen form, while
pentameric interactions nearly disappear.We also noticed that the association
energy around the quasi-3-fold axis is lost very early in the swelling process,
which suggests that the residues triggering the swelling may be located at
quasi-3-fold interface. A closer examination of the residues interacting at the
quasi-3-fold axis and their contribution to the association energy reveals that
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FIGURE 6.2
(See color insert followingpage 136)ElasticNMAof the viral capsid proteins ofCCMV. (a)Amp-
litude and direction of motion for CCMV as obtained from expansion along the breathing mode.
(b) Electron density fitting with the estimated model for swollen CCMV as obtained fromNMA.
All the graphics were produced using VMD [62].

residues sensitive to a change in the pH (acidic residues, ASP, and GLU) have
a significantly lower contribution to the association energy after expansion.
Since the swelling process is driven by a change in pH, pKa calculations were
performed for the acidic residues present at the quasi-3-fold axis in the nat-
ive CCMV and for intermediate structures along the swelling pathway. The
pKa calculations pointed to one specific residue, GLU 81, with a pKa higher
than expected (>7). In the native state, this acidic residue interacts with two
other acidic residues of the adjacent subunits that comprise the quasi-3-fold
symmetry axis. When the pH increases from 5 to 7, GLU 81 becomes depro-
tonated, which results in repulsive interactions with these two other acidic
residues. The repulsive interactionswould be sufficient to trigger the swelling
process of CCMV.
Extension of this study to a variety of viruses comprising different sizes

andquasi-equivalence symmetries reveals that thepentamericunits generally
have higher flexibility andmaymove as independent units against the others
capsomers. This general behavior indicates that viral capsids, if needed, can
accomplish transition between conformations thatmight havedifferent shape
using the specific character of the pentameric unit’s flexibility [41].
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6.3.1.2 Dynamic Reorganization of the Functionally Active 70S Ribosome

The ribosome is a macromolecular machine that performs protein synthesis
by translating the genetic information residing on the mRNA into a specific
sequence of amino acids. The ribosome is made from more than 50 proteins
and several elements of ribosomal RNA (rRNA) that are arranged in two
unequal subunits, the large (50S) and the small (30S) subunits. The two sub-
units join together on anmRNAmolecule to form the 70S active complex and
interact via a network of intermolecular bridges [42–44]. These bridges are
components critical to the maintenance of the overall architecture of the 70S
complex. The tRNAmolecules responsible for carrying the particular amino
acid moieties to be added to the nascent protein chain are located in the inter-
subunit void between the 30S and 50S subunits. There are three distinct stages
in protein synthesis: the initiation, the elongation, and the termination. Each
of these stages involves the binding of several factors (intiation factor, elonga-
tion factor, termination factor) which induce conformational rearrangements
of the ribosome.
One of the keymechanical steps during the elongation cycle is the transloca-

tion process, inwhich the tRNAmoleculesmove from theA-aminoacyl andP-
peptidyl site into the P- andE-exit site. This process is promoted by binding of
the elongation factor G protein (EF-G) and subsequent GTPhydrolysis. Large
conformational rearrangements of the ribosome occur during this process,
which consists of a ratchet-like rotation of the two ribosomal subunits [45].
Several other rearrangements such as the large displacement of the L1 stalk
[46], rearrangement of the L7/L12 stalk, and domain movement in the 30S
subunit were also experimentally observed [47]. We studied the rearrange-
ments of the ribosome using the theoretical methods of elastic network NMA
to provide a near-atomic level description of these structural rearrangements
linking motions obtained from the NMA to experimental observations.
An elastic network model was constructed based on the 5.5 Å x-ray map

[48] of the 70S ribosome from Thermus thermophilus [26]. Phosphate and Cα
atom positions were taken for the junctions of the elastic network. In our
calculations, we considered two cutoff distances to delimitate the junctions
within the network. We used a cutoff of 20 Å for the P–P and P–Cα interac-
tions and 16 Å for the Cα–Cα interactions in the x-ray structure. These values
were based on the distance distribution functions between Cα–Cα , Cα–P and
P–P positions. NMA was performed using the RTB method for which five
consecutive Cα or P atoms were assigned to a block, the block boundaries
were constructed such that atoms from different subunits were not included
in the same blocks.
The lowest frequency modes obtained from the elastic network of the 70S

structure of the ribosome show a number of motions that may have potential
functional relevance [26]. In particular, two of these motions show similarity
with rearrangements that have been elucidated by means of experimental
techniques. To complement experimental information, these modes were
analyzed in detail.



BICH: “c472x_c006” — 2005/10/19 — 17:37 — page 124 — #14

124 Florence Tama and Charles L. Brooks III

Our NMA of the ribosome shows a mode that corresponds well to the
ratchet-like motions observed experimentally. We observed a rotation of the
30S relative to the 50S subunit similar to thatdescribedbyFranket al. basedon
single particle cryo-EM structural data [45]. This rotation leads to relatively
large conformational rearrangement of several parts of the ribosome such
as the stalk base in the 50S subunit and the head and the shoulder in the
30S subunit, which are known to interact with EF-G (see Figure 6.3). These
observations suggest amechanical couplingbetween thebinding sites ofEF-G
and the ratchet-like motion.
The underlying mechanism of the ratchet-like motion can be examined

using one mode from the NMA. First, helix 27 of the 16S RNA, for which
base pair rearrangements are known to promote large rearrangements of the
ribosome, emerges as a part of the axis of the rotation of the 30S subunit.
Thus, this detailed analysis of the conformational rearrangements may have

FIGURE 6.3
(See color insert following page 136) Elastic network NMA of the 70S ribosome. (a) The x-ray
structure of the 70S ribosome (the 30S subunit in yellow and the 50S in blue). (b) Rearrangements
of the 70S ribosome after displacement along the ratchet-like mode. (c) and (d) Two different
views, as indicated by thumbnails, of the atomic displacements along the ratchet-like mode.
The atoms are colored according to their amplitude along the mode. The scale ranges from red
(largest conformational rearrangements) to blue (no motions).
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provided a rationalization for this experimental observation; since base pair
rearrangements affect the center of rotation of the subunit, large conform-
ational change may occur. Second, two types of bridges emerge from our
study. Two peripheral bridges connecting the 30S and 50S subunits are found
to facilitate the conformational switching bybeingflexible, whereas others are
very rigid, and serve to maintain the integrity of the architecture during the
ratchet-related conformational change. Third, we observe that the positions
of the tRNAs are affected by the ratchet likemotion. In particular, weaker con-
tacts are observed between the ribosome and tRNA in the A site, indicated
by increasing distance between interacting pairs of atoms. The change in the
interactions between the ribosome and the tRNAs suggests that the rotation
may facilitate the movement of the tRNAs through the inter-subunit space,
by optimizing their positions for the translocation process that occurs upon
GTP hydrolysis once EF-G is bound.
Another interesting motion observed through our NMA, which comple-

ments recent experimental observations [46,49,50], is the large displacement
of the L1 stalk in a manner that opens/closes the inter-subunit space (see
Figure 6.4). This motion is correlated with small rearrangements in the A, P,
and E sites, which implicates this region in the binding and shuttling of tRNA
at the E site.
Using the iterative NMA based method, we were able to define a feasible

conformational change pathway for the ratchet-like motion of the ribosome.
The amplitude of displacements along the ratchet-like normal modes was
calibrated tomatch the experimentally observed amplitudeof conformational
change seen in the cryo-EM structures [45]. Using the structures generated
from NMA, in collaboration with members of the McCammon group, we
also recently investigated how the electrostatic properties of the ribosome

(b)(a)

FIGURE 6.4
(See color insert following page 136) Elastic network NMAof the 70S ribosome. The structural
rearrangements of the L1 stalk along the mode 1. (a) This displacement occurs around a pivotal
point and several positions of the L1 stalk along this mode are represented (1) the outer, (2) x-ray
structure, (3) the inner. (b) Themagnitude of the structural rearrangements correlatedwith the L1
stalk motion, with red color indicating large motion and blue color indicating no motion. Small
rearrangements are observed in H68, which is connected with H69. H69 is known to interact
with the tRNA at A, P, and E sites.
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are altered by these conformational changes [51]. Our analysis revealed that
there are regions of positive potential around the A-site tRNA in the initial
structure, which may help keep the tRNA in place. Upon completion of the
ratchet-like motion, the channel between the 30S and 50S domains of the
ribosome is wider and more negative. This change in electrostatic potential
may make it easier for the tRNA molecules to translocate. In addition, the
region around the L1 protein is positively charged, supporting the idea that
L1 may interact with the negatively charged E-site tRNA during its release
from the ribosome.

6.3.1.3 Myosin II ATPase Inhibition

Myosin is a molecular motor that performs its motile functions on actin
filaments. Myosin II is found in both muscle and nonmuscle cells. Phos-
phorylation of smoothmuscle and nonmusclemyosin II serves two purposes.
It turns on the actin stimulated ATPase activity and it modifies myosin
solubility. Dephosphorylated myosin (10S) is soluble and adopts a folded
rod-like domain. Phosphorylation leads to a conformational change to an
extended form (6S) that is competent for filament assembly at physiological
ionic strength [52]. Similar conformational changes are observed with heavy
meromyosin (HMM), a soluble 2-headed fragment of myosin [53]. Themech-
anismof formationof the inhibited state is still unexplainedbystatic structural
models obtained from cryo-EM experiments [53], in particular, how the two
heads of the S1 domain fold backward onto the S2 (dimerization domain) and
how the arrangement of the two heads can destabilize the filaments.
To address these fundamental questions about the functioning and inhib-

ition of myosin, the conformational transition from the activated state of
smooth muscle HMM to its inhibited state was investigated using elastic net-
work NMA [54]. An atomic model for the inhibited structure was obtained
by building a high-resolution structure into a 3D image [53] (see Figure 6.5).
The 3D image reveals an asymmetrical interaction (head–head) between the
S1 domains, but the position of S2 was unclear. For the active state, no struc-
ture is available. It is known that the active state is symmetrical and the rod
domain (S2) adopts a coiled-coil structure. However, the number of residues
that should be uncoiled at the S1–S2 junction is not known. Thus, we have
constructed several hypothetical models for the active state with 0, 14, 21,
or 28 residues uncoiled at the S1–S2 junctions (see Figure 6.5) and examined
which model of uncoiled junction best conforms to other experimental data.
We employed an iterative NMA conformational interpolation method (see

Equation [6.12]) to create a conformational pathway between the activated
and inhibited states. In our calculations only the 40 lowest-frequency normal
modes were considered and the structure was displaced along the 10 largest
amplitude normal modes. Q was chosen to be relatively small, Q = 0.025
(see Equation [6.12]) in order to avoid large distortion in the structures, and
approximately 400 iterations were used to move from the initial to the final
state. The target structure does not include coordinates of the S2 domain.
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FIGURE 6.5
Elastic network NMA of myosin II from heavy meromyosin (HMM). (a) The initial (activated-
state) model, (b) our intermediate structure for the transition from active to inhibited HMM (c)
the final structure obtained from iterative NMA, (d) S1 domains of the target structure which
was modeled by Wendt et al. [53], (e) S1 domains of the final structure obtained from iterative
NMA, (f) modeled S1–S2 junction with 0, 14, and 28 uncoiled residues.

Although S2 contributes to the normal modes of the initial structure, it does
not contribute to the vector difference	rk used to define the transition path-
way. Thus, the movements of S2 obtained in this analysis result from the
movements of the myosin heads toward the target structure.
The analysis of the final structures obtained from this iterative procedure

indicates that at least 14 but not more than 21 residues of S2 at its junction
with S1 must be uncoiled to obtain a smooth conformational transition and
to have the correct spatial placement of S1 and S2 domains of the inhibited
conformation. Lengths of uncoiled helix greater or shorter than these leads to
decouplingof thehead (S1) and tail (S2)domainor severe strain remaining loc-
alized at the S1–S2 junction. Both yieldmodels that poorly conform to thefinal
state. Since S2 was not present in the target structure, its position was essen-
tially extrapolated from the resulting normal modes. In our final structure
the S2 domain is between the two heads (see Figure 6.5), as it was determ-
ined by conventional EM, and, at the same time, positions the S2 domain
near densities in 3D reconstructions of smoothmuscle HMM and 10Smyosin
[52,53]. Furthermore, the simulations show that the transition between the
symmetrical active-state myosin to the asymmetrical inhibited-state induce
distortions throughout the S2 domain, which provides, for the first time, a
mechanism to explain changes in myosin solubility due to dephosphoryla-
tion. Such distortions produced in a sufficient number of myosin molecules
would destabilize the filament, as the tight filament packing of S2 domains
of assembling myosin that is possible with a regular coiled-coil is disrupted.
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As the myosin is released from the filaments, further folding into the 10S
conformation occurs until all the myosin is dissolved.

6.3.2 Exploration of Global Distortions and Interpretation of
Low-Resolution Structural Information

Large biomolecular assemblies are difficult to study by x-ray crystallography.
The recent developments in electron microscopy have produced a growing
number of low-resolution structures of such large assemblies. In particular,
large conformational changes of macromolecular complexes have been char-
acterized by cryo-EM [55]. Nevertheless, despite the amount of available
low-resolution structural information, few theoretical methods have been
developed to assist the interpretation of inferreddynamical transitions. In this
section, we present the first application of NMA to study global distortions
of biological systems from low-resolution structure and a new procedure for
the flexible fitting of high-resolution structures into low-resolution electron
densities.

6.3.2.1 Global Distortions of Biological Molecules from Low-Resolution
Structural Information

Until recently, reduced representations of proteins for NMA were limited
to the use of Cα atoms. Greater reductions in the representation have been
considered in the study of the influenza virus hemagglutinin [25]. NMAs
based on elastic network models from coarse-grained structures containing
N/2,N/10,N/20, and N/40 (where N is the number of residues) Cα atoms
were performed, and it was shown that with coarse-graining it continued
to capture the slow dynamics of proteins with high accuracy. Since highly
reduced representations are sufficient to provide dynamical information on
x-ray and NMR protein structures, studies of dynamical properties of low-
resolution image data, as for example from cryo-EM, should be possible if
one develops a discrete representation of the density.
This objective can be achieved by taking advantage of the vector quantiza-

tion approach, which is a clustering technique that provides a robust means
to develop a discrete reduced representation of continuous 3D data [56,57].
In this approach, the shape of the biological object is encoded in so-called
codebook vectors that identify the structural features of the system. Using
the elastic network model and the codebook vectors as a representation of
the electron density map, it is possible to perform NMA for a low-resolution
structure. To testwhether thismethodologyprovides agooddescriptionof the
dynamical properties of biological systems, several proteins that are known
to undergo a large conformational change have been studied.
Several elastic network models were constructed from simulated low-

resolution EM density maps with different levels of complexity, that is,
number of codebook vectors, for the discretized representation. In the elastic
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network model, an important parameter is the cutoff, since it determines
the number of interactions between each junction of the network. It has been
shown thatwhenonly theCα atomsareused, thebest results areobtainedwith
an 8 to 10 Å cutoff, which roughly corresponds to the second peak in the dis-
tribution of Cα–Cα separations. When we use such reduced representations,
where in some cases only 30% of the total number of residues are considered,
codebook vectors are sparsely distributed and the distance between each
point in these models is significantly larger than the mean Cα–Cα distance
in proteins. Thus, in order to choose the cut-off value appropriate for the
reduced representation, it is first necessary to establish the distribution of
codebook-vector center—codebook-vector center separations, then the and
the elastic network model can be constructed by choosing a cutoff distance
that just exceeds the second peak in the distribution.
Figure 6.6 illustrates that the global preferential directions for the con-

formational change is well reproduced from discrete representations of a
low-resolution map for the example of adenylate kinase [14]. Similar results
were observed byMing et al. [16]. These studies show that the global dynam-
ical properties of a biological object can be extracted not only from high x-ray
crystallographic data but also from low-resolution structural data. This work
opens the door for further studies aimed at understanding the mechanical
properties for large assemblies for which experimental data from cryo-EM is
available for different functional states.
Indeed, applications of this methodology to experimental data revealed

functionally important rearrangements of severalmacromolecular assemblies
[15]. NMA based on a discrete representation of an EM map of the ribosome
at 25 Å resolution can capture a motion similar to the ratchet-like reorgan-
ization observed by cryo-EM experiment [45] and NMA of the 70S atomic
structure [26]. In the case of the Escherichia coli RNA polymerase, the low-
est frequency normal mode obtained from a discretized representation of the
low-resolution structure at 15Å reveals a large conformational rearrangement
of the clamp domains that is consistent with several studies [58,59]. Finally,
NMA performed from a discretized representation of a map at 27 Å resol-
ution of the chaperonin CCT suggests large flexibility of the apical domain,
which is involved in the substrate binding. This result is in agreement with
the known structural variability of the chaperonin [60].

6.3.2.2 Flexible Fitting of Atomic Structures into Low-Resolution Electron
Density Maps

The fitting of a known x-ray structure into low-resolution structural data
from electron microscopy or other lower-resolution methods can provide a
deeper understanding of the low-resolution data. However, since biological
systems are highly dynamic, in some cases the conformation of the known
x-ray structure does not correspond to the conformation of the low-resolution
map. Thus, it is necessary to take into account the flexibility of the system
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(a) (b)

(c) (d)

Resolution is
lowered to 15 Å 

Discretized representation
with 214 code-book vectors
(1 per residues)

Discretized representation
with 50 code-book vectors

FIGURE 6.6
Elastic network NMA on low resolution structures: amplitude and direction of motion for the
normal mode that has the highest similarity with the conformational changed observed in the
adenylate kinase (a,c,d). (a) X-ray structure, (b) low-resolution structure of the adenylate kinase.
Discretized representations of the adenylate kinase with (c) 214 codebook vectors, and (d) 50
codebook vectors. The NMAwas carried out with a cut-off of 12 and 18 Å, respectively.

during the fitting. We propose that low-frequency distortions fromNMAcan
be used as search directions in structure refinement protocols.
We recently developed a new program for flexible fitting based on iterat-

ive normal mode analysis (NMFF) [30]. For the fitting of a high-resolution
structure into low-resolution structural data, it is necessary to maximize the
correlation coefficient:

c.c. =
∑

ijk ρ
exp(i, j, k)ρsim(i, j, k)√∑

ijk ρ
exp(i, j, k)2

∑
ijk ρ

sim(i, j, k)2
(6.13)
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where ρexp(i, j, k) is the target experimental density map and ρsim(i, j, k) is
a given map simulated from the deformed x-ray structure. In the case of
myosin it was possible to determine the exact amplitude for each normal
mode since a conformational difference vector was known; such information
is not available if the target is a low-resolution electron density map. In order
to overcome this problem, we developed a protocol to guide the choice of the
relevant normal modes.
To choose the normal mode that increases the correlation coefficient and

to determine the modes to be followed, we can calculate the gradient of the
correlation coefficient Fi = ∂ c.c./∂qi for each mode yi. The gradient can be
derived analytically. The absolute value of the gradient indicates how each
mode will increase the correlation coefficient, whereas the sign determines
the direction that needs to be followed along each mode. The magnitude of
the displacement can be set to be proportional to the gradient:

qi = λFi (6.14)

where λ is a parameter that is chosen to make suitable displacements
that expedite convergence while minimizing local distortions. This refine-
ment process is equivalent to a steepest descent/ascent optimization of the
correlation coefficient in the normal mode coordinate space.
During the maximization process, we also use a Newton–Raphson type

algorithm near amaximumof the correlation coefficient. In this case, we need
to calculate the second derivative, or Hessian, of the correlation coefficient.
From this, the approximate best amplitude to displace the structure along
each mode is given as:

q = H−1F (6.15)

where F = {Fk},H = {∂ c.c./∂qi∂qj} is the Hessian, and q is the amplitude of
displacement.
Our iterative procedure combines steepest ascent and Newton–Raphson

techniques to optimize displacements of the x-ray structures along the 20
lowest-frequency normal modes to achieve high correlation between the
experimental cryo-EMmapand themodeled structure.At each step, the struc-
ture is displaced along the fivemodes with the largest gradient/Hessian. The
procedure is performed until convergence of the correlation coefficients. To
evaluate theperformanceof our approach, several proteins that undergo large
conformational changes have been examined. Results indicate that NMFF
provides an accurate and fast alternative method for the flexible fitting of
high-resolution structure into a low-resolution density map determined by
electron microscopy. Additionally, we have demonstrated that lower resol-
ution (multi-scale) structural models, that is, Cα based models, can also be
used for the normal mode searching in lieu of fully atomic models with little
loss of overall accuracy [30].
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Domain V
Domain I

Domain II
Domain III

Domain IV

(a)

(b)

FIGURE 6.7
(See color insert following page 136) Flexible fitting using all-atoms at 10 Å resolution of Elong-
ation G bound to the ribosome with NMFF. Rigid-body fitted structure (with Situs package) [56]
into simulated EM map of the other conformational state. (b) The final flexibly fitted structure.

This methodology was then successfully applied to experimental cryo-EM
maps for three biological systems with different degrees of complexity [61].
In each case, there were experimental data suggesting that a large conforma-
tional change was needed to fit the known x-ray structure of the biomolecule
or molecular complex into the cryo-EM map. We explored the conforma-
tional change of a single protein, EF-G bound to the ribosome [46]. As we
can see in Figure 6.7(a), after initial rigid body fitting some regions of the
density remain unaccounted for. Figure 6.7(b) illustrates the structure after
flexible fitting, using all atoms, in which significant improvement of the fit
to the density is observed. The flexible fitting reveals large rearrangements
between the domains II, IV, and V. In particular, we observe a large displace-
ment (up to 20 Å) of domain IV, which is correlatedwith rotations of domains
II and V.
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NMFF was also shown to be successful in flexibly fitting complex mac-
romolecular assembly such as the E. coli RNA polymerase [58] and protein
assemblies such as the protein capsid of CCMV [38]. The latter system is
peculiar since it exhibits icosahedral symmetry. Thus, our application to this
system addresses the imposition of symmetry constraints during the flexible
fitting/refinement of the high-resolution structure.

6.4 Conclusions

The combination of the elastic network model and the RTB approach have
enabled the extensionof applications ofNMAto largemacromolecular assem-
blies. These initial applications have focused on a range of assemblies and
aimed to provide a better understanding of their functional motions, that
is, the swelling transition of CCMV, the ratchet-like motion of the ribosome,
and the conformational transition between active and inhibited myosin II. In
addition, NMAof discretized representations of 3D data, such as that arising
from cryo-EMmap, provides predictive insight into conformational changes
of large biomolecular assemblies. Finally, NMAprovides a tool for the flexible
fitting of high-resolution structures into low-resolution structural data.
Elastic network NMA based on coarse-grained x-ray structure or discrete

representation of continuous 3D data successfully predicts many dynamical
properties of several large macromolecular assemblies. Here, the detailed
atomic interactions present in a standard force-field are replaced by a simple
harmonic restoring force between the junctions of the network, and the essen-
tial properties captured by this model are the shape of the macromolecular
assembly and the connectivity of its underlying structural framework. Thus,
these studies show that a key to understanding the function of biological
systems appears to lie in the shape-dependent dynamical properties of their
complex architecture. These observations support the idea that Nature builds
robustness into the functioning of these machines by assembling particular
shapes, and that it is this shape, which dominates the character of the most
facile motions, used in achieving function in such assemblies.
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7.1 Introduction

From several decades of computational research in structural biology and
biophysics [1, 2], it is now well established that functions of biological mac-
romolecules involve substantial structural motions, which can occur in a
wide range of length scales [1, 2], for example, from vibrations of chemical
bonds to global conformational changes of supramolecular complexes. How-
ever, molecular motions often impose difficulties in experimental structural
determination as they tend to compromise the precision of the measure-
ment. Meanwhile, due to the nature of instruments and molecular systems,
experimental structural data are obtained in varying resolution scales, for
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example, from atomic coordinates provided by x-ray crystallography to low-
to intermediate-resolution electron density maps from, for example, electron
cryomicroscopy (cryo-EM). For certain systems, especially supramolecular
complexes, the errors in resolution are further augmented by the motions
intrinsic to the complexes. The only way to overcome the errors imposed
by motions is to use computational methods to model the structural flexibil-
ity in the process of structural refinement against experimentalmeasurement.
Therefore, a challenge inmodern computational biophysics is to develop new
methods of expanded capacity to efficiently model biomolecular motions in
such a wide distribution of length and resolution scales.
Harmonic modal analyses are effective ways for analyzing molecular

motions. The most frequently used ones are normal mode analysis (NMA)
[3] and quasi-harmonic analysis [4], which is closely related to a method
called essential dynamics [5]. Mathematically, all these modal analyses
are eigenvalue problems that provide a complete basis set of modes from
which any arbitrary molecular deformation can be expressed as a linear
combination. Since modal analyses are harmonic approximations, they are
particularly effectivewhen elastic (harmonic) properties ofmolecules are con-
cerned. From numerous computational studies, it is known that large-scale
elastic deformational motions of biomolecules can be well described by low-
frequency vibrational modes of the structures (typical samples can be found
in References 6–21). Therefore, in practice, it is desirable to study biomolecu-
lar dynamics by filtering out the less important high-frequency motions and
focusing on those dominating low-frequency components.
In recent years, significant advance has been made in methodology devel-

opment of NMA [22]. It has provided a substantially enhanced capacity
for studying large-scale biomolecular dynamics. In this chapter, a brief out-
line is given for some of those new methods that were developed to study
dynamics at multi-length and multi-resolution scales. Emphases are given
to the important applications of the new methods to assisting experimental
structural determination.
This chapter is a concise reviewwith a focused scope and our apology goes

to the colleagueswhosework is not explicitly referred to in this limited space.

7.2 Methods of NMA

7.2.1 Basic Theory of NMA

In the standardNMA[1, 3, 9], the potential surface of a givenmolecular struc-
ture is treated as quadratic in the vicinity of an energy minimum (harmonic
approximation). The motions of the molecule are then decomposed into a
set of independent harmonic vibrational modes, that is, normal modes, by
which the overallmolecularmotions canbedescribed as a linear combination.
The normal modes are also referred to as molecular deformational modes.
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They can be determined by computationally diagonalizing second-derivative
matrix, H, of the total potential function with a matrix transformation,
H = U�U−1, whereU is an orthogonal matrix with its columns representing
the eigenvectors ofH and� is a diagonalmatrix that contains the eigenvalues
of H, or force constants of the harmonic modes. The eigenvectors determine
the directionality of modes and the eigenvalues are related to frequencies
of vibration. For a nonlinear system that contains N atoms, totally there are
3N − 6 vibrational modes.
Fromnumerous studies, it has beenfirmly established that only a very small

set of low-frequency modes makes dominant contributions to biologically
important conformational dynamics that are often of large amplitudes andare
concerted.Anoutstanding example is themolecular chaperoninGroEL[7], an
ATP-driven supramolecular motor complex, in which the nature of the func-
tionally important en bloc domain motions was very successfully captured
by NMA.
A fundamentally important fact that emerged fromNMAis that many pro-

teins, especially the large molecular complexes, have evolved to utilize their
intrinsic structural flexibility, as manifested in low-frequency normal modes,
to facilitate the conformational changes required for functions. This is prob-
ably because, mechanically it simply costs the least amount of energy to alter
a molecular conformation to fulfill a certain function.

7.2.2 Elastic NMA

In recent years, a different type of NMA, called elastic NMA based on an
elastic network often formedbyCα positions [23, 24], was introduced to study
protein dynamics. The most frequently used one is also called anisotropic
network model (ANM) [25]. It is essentially a standard NMA [3] based on
a simplified pairwise harmonic potential function [26] applied to the Cα-
based network with a single phenomenological force constant γ that can
be set to be the same for all pairs. The mathematical form of the potential
function is

V = (γ /2)
∑

i

∑
j

σij(|rij| − |r0ij|)2, σij =
{
1, |r0ij| ≤ rc
0, |r0ij| > rc

,

where |rij| and |r0ij| are the instantaneous and equilibriumvalues (or initial val-
ues from the coordinates) of pairwise distance between the ith and the jth Cα
atoms, respectively. The cutoff effect of the interaction is specifiedby the value
of σij, which is the Heaviside step function. This form of potential function
was introduced by Tirion [26]. Its functional form resembles that of chemical
bond in commonly used molecular mechanics potential function [27], that is,
the harmonic potential is proportional to the square of the scalar difference
of the instantaneous and the equilibrium lengths of the pair distance. The
absolute value of γ in ANM is irrelevant to the calculation and is often set
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to 1.0. A distinct advantage of ANM is that it treats the initial coordinates
as the equilibrium coordinates. This feature avoids the lengthy initial energy
minimization required in all atom-based NMA that sometimes significantly
distorts structures [3]. Despite the fact that the potential function for ANM
[25, 26] is drastically simplified and bears no resemblance to real molecular
mechanics force field [27], studies have shown that the method can faithfully
describe the patterns ofmotion for low-frequencymodes of protein structures
[17–19, 21, 25, 28–32].
However, the elastic NMA has an inherent weakness referred to as “tip

effect.” In systems that have certain structural components, the “tips,” stick-
ing out of the main body, for example, an isolated surface loop or simply a
thinner region, tip effect could lead to pathological behaviors in some modes
presumably due to imbalance of elastic forces among neighboring harmonic
oscillators. In those modes, the magnitudes of displacement of the points in
eigenvectors at or around the tips are much larger than those of the rest of
the system, but with perfectly normal-looking eigenvalues. Since the eigen-
vectors of normal modes are normalized, the abnormally large magnitudes
of displacement of the “tips” make the rest of the system essentially static. To
make the matter worse, it is usually impossible to predict which modes have
tip effect. But generally speaking, the higher-frequency modes have a larger
tendency to have more severe tip effect. Although in a case-by-case situation,
one might be able to ease such an effect, to our best knowledge, systematic
ways are unavailable for overcoming this problem. In practice, if one is only
interested in very few lowest-frequency modes for functional interpretation,
the tip effect may beminimal since thosemodes are usually less likely to have
tip effects. But in cases where a small set of continuous low-frequency modes
are needed, the tip effect could become a major issue because it is almost
inevitable that some of the modes in that small set will have some degrees of
tip effect.

7.3 Structural Refinement in Cryo-EMMeasurement

7.3.1 NMA Based on Low-Resolution Density Maps

In experiments, structural information comes at various resolutions. This is
especially true for supramolecular complex structures determined by meth-
ods such as cryo-EM technique. For these systems, modelling motions based
on structural data from which no atomic coordinates can be built is a chal-
lenge for computational study. This challenge was met by the development
of quantized elastic deformational model (QEDM) by us [33] and by others
as well [34], one very important advance in the field of NMA in recent years.
Without the knowledge of atomic coordinates and amino-acid sequence,
QEDM successfully allows one to compute low-frequency normal modes
based on low-resolution (as low as 20 to 30Å) density maps.
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FIGURE 7.1
Comparison of computed and experimental B-factor curves, (a) and (c) for 2CCY; (b) and (d) for
1AQB. In (a) and (b), GNM uses the Cα positions, and QEDM uses 5 Å electron density map.
In (c) and (d), QEDM is applied to electron density maps of 5, 7, and 15 Å resolutions. B-factors
on the centroids of Voronoi cells computed at low resolutions by QEDM were mapped onto the
Cα atoms based on a distance averaging method, that is, the average B-factors on the centroids
within 1.9 Å (half of the nearest Cα–Cα distance along the polypeptide chain) from a particular
Cα atom is assigned to that Cα atom. EveryB-factor curve is normalized against the experimental
one by matching the areas underneath the two curves. The cutoff distance was 6.8 Å. (Adopted
from Ming, D., Kong, Y., Lambert, M., Huang, Z., and Ma, J., Proc. Natl Acad. Sci. USA, 99, 8620
[2002].)

In QEDM, the concept of elastic NMA is applied to a set of points that are
chosen to discretize the density maps. The positions of these points have no
correlation with the positions of real atoms. They can be the grid points used
for storing the density maps [35], or the ones determined by vector quantiz-
ation method [36–38]. As shown in the original methodology papers [33, 34],
the number of points can vary significantly and the only requirement is that it
is large enough to effectively represent the overall shape of themolecule. This
feature enables the calculation ofmodes for extremely large systems, inwhich
cases the number of points much smaller than that of Cα atoms could be used
to extract the overall features of low-frequency motions. It was shown that
both the profiles of thermal fluctuation and directionality of low-frequency
modes can be computed by QEDM almost as faithfully as what one can do
with atomic coordinates at awide range of resolutions [33, 34]. In Figure 7.1(a)
and (b), the experimentally determined B-factor profiles for two arbitrarily
selected proteins are plotted together with those computed by QEDM using
density maps at 5.0 Å resolution and those by GNM based on the known Cα
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positions [23]. The positions of peaks and valleys arematched strikinglywell.
It was also shown that the features of B-factor profiles calculated by QEDM
are very insensitive to the resolution of the maps. At 15 Å or even lower
resolutions, one can still get pretty good B-factor profiles [33] (Figures 7.1[c]
and 7.1[d]) that match the experimentally determined ones.
A rather unique application of QEDM was to compute the mechanical

elasticproperties of largemolecular systemsbasedon low-resolution cryo-EM
density maps. In one case, QEDM was employed to compute the differen-
tial flexibility of two key components of bacterial flagellum, filament, and
hook [39], which is partially responsible for the mechanism of the motor.
The dimensionless twist-to-bend ratio (EI/GJ) of the filament and hook was
computed. The results indicate that within each structure bending is favored
over twisting. The two ratios, along with data from experimental meas-
urements, allowed one to propose a theoretical Young’s modulus (E) for
the hook. The value seems to be orders of magnitude smaller than exper-
imentally determined Young’s moduli for the filament and thus provides
quantitative evidence for linking compliance in the flagellum mainly to
the hook.
Another particularly important application of QEDM to supramolecular

complexes is on human fatty acid synthase (FAS) [40], which is a crucial
enzyme in fat metabolism and its malfunction is involved in many diseases
[41–44]. Themolecule is a huge enzymatic complexwith extraordinarily large
structural flexibility as required by its functions. The application of QEDM to
the 19-Å cryo-EM density maps [45] successfully revealed the deformations
of the structure [40]. It was found that themost significant molecular motions
are the rigid body movements around the structural hinges as described by
the four lowest-frequency modes. In mode 7, the motion is primarily around
the inter-subunit hinge (Figure 7.2[a]). Each subunit moves as a rigid body
and the dimer undergoes a see-saw-like bending around the pseudo 2-fold
symmetry axis in the plane of the dimer. In mode 8, it describes an out-of-
plane twisting, nearly perpendicular to mode 7, between two rigid subunits
around the inter-subunit hinge (Figure 7.2[b]). The combination of modes
7 and 8 would allow the two subunits to make large-scale motions around
the inter-subunit hinge. Mode 9 (Figure 7.2[c]) and mode 10 (Figure 7.2[d])
reveal themotions around the two intra-subunit hinges. Furthermore, for this
particular system, the computationally predicted conformerswere confirmed
by experiments for the first time [46] (also see Section 7.3.4).
Just like the Cα-based elastic NMA, the success of QEDM hinges on an

important fact that, in biomolecular dynamics, the features of low-frequency
deformational motions are not sensitive to the local structural connectivity,
rather they are predominantly influenced by the overall shape, or the mass
distribution, of the molecule, which can be depicted by the low-resolution
density maps. It is clear that QEDM significantly extends one’s capability of
modeling molecular motions, especially those of supramolecular complexes,
to an unprecedented level and opens a newhorizon forNMA. Formany large
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FIGURE 7.2
The motional patterns of the first four lowest-frequency deformational modes: mode 7 (a), 8 (b),
9 (c), and 10 (d). Note, the first six modes are zero modes corresponding to global translation
and rotation of the entire molecule. For each mode, two opposite conformations (left and right)
during harmonic vibration are shown to illustrate the direction of the motion. The amplitude of
themotionwas arbitrarily chosen for visual clarity. The arrows are used to indicate the directions
of the motions. The larger circles in (a) and (b) indicate the intersubunit hinge and the smaller
circles in (c) and (d) indicate the intrasubunit hinges. The dotted lines in (d) indicate the longest
axes of the subunits. (Adopted from Ming, D., Kong, Y., Wakil, S.J., Brink, J., and Ma, J., Proc.
Natl Acad. Sci. USA, 99, 7895 [2002].)
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systems, themethodoffers away to reliably compute theglobaldeformational
motions at almost any experimentally accessible resolutions in real space.
Since the birth of the method [33, 34], there have been many applications of
QEDMon very largemolecular complexes [40, 47–49] withmanymore surely
to come in future.

7.3.2 QEDM-Assisted Cryo-EM Structural Refinement

Similar to x-ray crystallography and many other structural determination
methods, the conformational heterogeneity of biomolecules severely impairs
one’s ability to reach high resolution by single-particle cryo-EM technique.
The structuralheterogeneitywithin theparticlepopulationdue to the inherent
flexibility of the proteins in solution can lead to smearing out of the cryo-EM
averaging. At this point, this issue is mainly manifested in extraordinarily
flexible systems such as FAS, in which case the cryo-EM reconstruction was
only able to reach 19 Å [45] although the actual data extended to a much
higher resolution. In the near future, given the dynamic nature of biological
systems, the conformational heterogeneity is expected to become a major
limiting factor for resolution of many systems once the resolutions of cryo-
EM are high enough. To cope with such a problem, in a recent study of FAS
[46], a major effort has been made to develop a computational strategy in
conjunction with NMA [40] to separate the heterogeneous data such that
structurally homogeneous particle images can be grouped to achieve higher
resolution reconstructions within each group [50].
In a standard cryo-EM single model refinement, a set of projections of an

initial 3D model is generated [51, 52]. Each raw particle image is aligned to
eachprojection in 2Dandgroupedwith the projection it ismost similar to. The
particles groupedwith eachprojection are thenmutually aligned to eachother
and averaged together. This produces a class-average from the raw particle
data corresponding to each projection image. Since the 3D orientation of the
projections is known, the orientation of the class averages is also known. The
class averages are used to construct a new 3D model, which is used to seed
the next iteration of refinement.
In the study of FAS [46], the two end-point conformers of the first two

vibrational modes (modes 7 and 8 shown in Figures 7.2[a] and 7.2[b]) and the
original structure were used (totally n = 5 models) as initial models for the
multirefinement algorithm as developed in EMAN [52] (Figure 7.3). As usual,
the particles are classified based on the projection they are themost similar to,
however, now one ends up with n class-averages for each orientation, which
can be used to produce n new 3D models to seed the next round of iterative
refinement. Not only does this technique yield n refined 3Dmodels, but it also
produces n subsets of the raw particle data that were associated with each of
the 3D models.
This very simple method produced very encouraging results. However,

a potential criticism of this method is that it could potentially bias the final
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FIGURE 7.3
Aflowdiagram of the second test used to verify that structurally consistent subpopulationswere
determined from the raw heterogeneous particle data set. A featurelessmodel (right) was refined
against the particle data used to generate refined model 2. The result of this refinement appears
to be in the same structural substate as refined model 2.

results to look like the initial models, even if there was no true structural
heterogeneity in the data [53]. In other words, one may be extracting false
features from the noise present in the raw particle images by imposing biased
initial models. To demonstrate that this is not the case, a number of valid-
ation tests were designed to assure that the refined model from the subset
image particles is genuine. First, if the conformational variation exists and
is strongly represented in the data, it should be possible to generate con-
formational substates without requiring accurate initial 3D models. Toward
this end, a multireference refinement was performed, but rather than starting
with QEDM-derived models, a single averaged structure seeded with a low
level of noise was used to produce several nearly identical and featureless
starting models. This refinement did, indeed, produce structures with vari-
ations very similar to what was predicted by QEDM. However, due to the
much larger differences between the initial models and the final structures,
this refinement took substantially longer time to converge. An additional test
is to take the subpopulation of particles used to generate one of the finalmod-
els in the QEDM-based refinement, and to refine these particles against the
original featureless two ellipsoidal model (Figure 7.3). This computational
experiment again produced a structure similar to the original normal-mode-
based structure that was used to group the images, demonstrating that the
models produced using the QEDM-based refinement are not biased by the
initial models, but are actually represented by the experimental data.
At current stage, QEDM-assisted cryo-EM refinement is not yet suited for

every system. Several technical difficulties need to be overcome before the
method can become a routine structural refinement procedure. For example,
when the raw particle images are grouped into subgroups based on dif-
ferent molecular conformational states, each subgroup will naturally have
fewer particles, which itself limits the resolutions. Therefore, a larger set of
total particle images is required in order for each subgroup to have enough
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particles for high-resolution reconstruction.Moreover, there is nouniqueway
to determine the magnitudes of displacement of modes in generating the ini-
tial searchingmodels. In principle, a complexmolecule can have a continuous
distribution of vibrational amplitude even along a single normal mode. It
is merely an approximation to select a small number of extreme conform-
ers along the modal displacement vector as representative searching models.
Finally, in many cases, it is not clear what are the optimal ways of combining
different modes. This is because combination of even a small set of modes
can result in a very large number of conformers that can all be used for initial
searching models. When there are only a limited number of particle images,
a large number of initial searching models could impose severe difficulties.
Although still with these difficulties, the concept involved in QEDM-

assisted cryo-EM refinement harbors hope for facilitating structural determ-
ination by cryo-EM to high resolutions. In a related issue, normal modes
were also recently used to guide flexible docking of crystal structures into
cryo-EM density maps [54]. There will certainly be more new methodology
developments along this line in the foreseeable future.

7.4 Structural Refinement in Fiber Diffraction

7.4.1 NMA at Length Scales of Several Microns

Long filamentous systems in cells play important roles for cellular functions.
From the computational point of view, the length of those filaments, which
can be as long as several microns, prevents them from being studied by any
conventional methods at atomistic details. To cope with this problem, a spe-
cific computational method called substructure synthesis method (SSM) [55]
was developed to determine modes at very long length scales. In SSM, a
given structure is treated as an assemblage of substructures, which can be
domains, subunits, or large segments of biomolecules. NMAis first applied to
the single substructure to obtain a set of substructure modes. Then, substruc-
tures are connected together to generate a longer structure of desired length.
This is achieved by a set of geometric constraints for compatibility at the inter-
faces of neighboring substructures. Figure 7.4 illustrates a 1D example for the
implementation of SSM: in fusing two identical segments together, one of the
two boundary points (c and a′) are equalized (sacrificed) in the process of syn-
thesis. The efficiency of SSM lies in the fact that the method only deals with
an eigenvalue problem for a much smaller substructure. The low-frequency
vibrational modes of the longer structure are determined from substructure
modes according to Rayleigh–Ritz principle [56]. For periodically repeating
systems, the desired length of final structure can be reached by combining a
hierarchical synthesis scheme (HSS) with SSM.
SSMwasapplied to simulatingF-actinfilaments, whicharewidely involved

in cytoskeletal support, cell transport, and contractile events in all eukaryotic
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FIGURE 7.4
A schematic illustration of SSM when fusing two 3-mass-point chains together. One of the two
boundary points (c and a’) is equalized (sacrificed) during synthesis. (Adopted from Ming, D.,
Kong, Y., Wu, Y., and Ma, J., Biophys. J., 85, 27 [2003].)
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FIGURE 7.5
Themotional patterns of several lowest-frequency bendingmodes for the 4.6µmF-actin filament
calculated by SSM–HSS. The indices of the modes are marked. The even indices are the ones that
degenerate to the displayed one. The 7th mode is the lowest-frequency mode. (Adopted from
Ming, D., Kong, Y., Wu, Y., and Ma, J., Biophys. J., 85, 27 [2003].)

cells [57]. Themonomeric formof actin is calledG-actin that exists in nonionic
solutions. It has a molecular weight of 41 kD. In the presence of salt, actin
monomers polymerize into a double-stranded helical polymer called F-actin
[58]. It is known from experimental evidence [59] that a substantial portion
of dynamic properties of F-actin resides in the elasticity of the filaments.
Therefore, a harmonic analysis of dynamics of F-actin filaments is useful for
understanding of the mechanical elastic properties of actin filaments.
The vibrational modes of F-actin filaments of 4.6 µm from the substruc-

ture modes of a single repeat that consisted of 13 G-actin subunits was
successfully calculated [60]. To achieve that, SSM was used, in conjunction
with HSS, to simplify the calculation for periodically repeating F-actin fila-
ments. Figure 7.5 shows patterns of several lowest-frequency bendingmodes.
SSM–HSS is proven tobe an effectiveway to scaleup themicroscopicdynamic
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information from atomistic simulations to a wide range of near macroscopic
length scales [60].

7.4.2 Fiber Diffraction Refinement Based on Long-Range Normal Modes

One very significant application of long-range normal modes for biological
fibers determined by SSM is in the refinement of structural models against
fiber diffraction data [61, 62]. There are many filamentous systems in cell
whose structures can only be studied by fiber diffraction [63]. Examples
range from simple polypeptides, polynucleotides, and polysaccharides, to
cytoskeletal filaments and filamentous viruses.
In fiber diffraction, the fiber specimens align axially, but not azimuthally, so

that the diffraction patterns are cylindrically averaged. Such an average leads
to a much more limited number of independent diffractions comparing with
those of a single crystal with a similar size of asymmetric unit. The lack of
sufficient data prevents one from refining the Cartesian coordinates of every
atom in the fibers. Therefore, it is very important to choose a proper set of
parameters for effective structural refinement [64]. Moreover, in traditional
fiber refinement methods, fibers are assumed to be straight helices. However,
in reality, biological fibers, such asDNAor F-actin, are usually flexible and are
likely to deviate from perfect helical systems. All kinds of static and dynamic
disordering of fibers such as bending, twisting, and stretching are likely to
contribute to themodulation of diffraction patterns. Therefore, effects should
be included in refinementbecauseotherwise it can lead to severemistreatment
of errors.
From what was described in the previous section, collective long-range

deformations of a filament, such as bending, twisting, and stretching, can
be effectively described by normal modes [60, 65]. Therefore, they are the
natural choices as refinement parameters. A distinct advantage of using nor-
mal modes as refinement parameters is that a very small set of parameters
(modes) can effectively model the dynamic deformations of fibers in the
fiber diffraction refinement. In practice, it was assumed that deformations
occur within the periodic repeat of the filaments (helical unit cell) with a cer-
tain defined length. As a result, the straight rigid filament model used in
traditional refinement methods was replaced by wave-like conformations.
The method was applied to the refinement of F-actin model against fiber

diffraction data [61]. In the traditional model of F-actin, the Holmes model
[66], filaments have two right-handed helical strands that twist around each
other with a rise of 27.5 Å and a rotation angle of −166.15˚ per monomer
around the filament axis. The minimum repeat of the double-stranded helix
has 13 subunits (the 13-subunit repeat).
The refinement was focused on the effects of long-range filamentous

deformation, which were separated from those of local deformation by
treating the four-domains of G-actin as rigid bodies. Several runs of
refinement were performed against the fiber diffraction data [66] using
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FIGURE 7.6
Refinement results by each of the first 20 lowest-frequency vibrational modes as a function of the
mode index. The refinement was based on the normal modes calculated for a 13-subunit repeat
usingANM.The ceiling of the figure is the value ofR-factor of the standardHolmesmodel (8.7%),
the starting point of this study. (Adopted fromWu, Y. and Ma, J., Biophys. J., 86, 116 [2004].)

various assemblies of G-actin subunits as helical unit cells. Within the helical
unit cells, the helical symmetry was disregarded and all atoms were treated
in a unique way. F-actin filaments were assumed to deform periodically in
terms of the helical unit cells.
First, the low-frequencymodes of a 13-subunit repeatwere computedusing

Cα-basedANM [25]. Then, each individual low-frequency mode was used as
a refinement parameter (Figure 7.6). All the first 20 lowest-frequency modes
tested reduced the R-factor to various degrees (the ceiling of the figure is
the R-factor of the standard Holmes model 8.7%), whereas the two perpen-
dicular bending modes 1 and 2 resulted in the lowest R-factor (7.4%). All
of the first 11 lowest-frequency modes are bending modes with shortening
wavelengths, with the exception that modes 3 and 6 are twisting modes
and mode 9 is a stretching mode. These results suggest that the very low-
frequency bending modes of F-actin filament make the dominant contribu-
tions to the improvement of structure refinement. Furthermore, the bending
modes calculated by SSM for longer repeating units can further improve the
refinement [61].
In addition to the refinement by a single mode as described above, runs of

refinement were also performed to find out how a combination of multiple
modes improves the refinement. The combination of several low-frequency
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Refinement results using various sizes of repeats as helical unit cells with a combination of
multiple low-frequency normal modes. (Adopted from Wu, Y. and Ma, J., Biophys. J., 86, 116
[2004].)

modes further decreased the R-factor. For example, the use of 9 modes in the
refinement resulted in anR-factor of 7.0% (Figure 7.7). With larger helical unit
cells (26- and 52-subunit repeats), the trends of changes in R-factor were con-
sistent, that is, they monotonically decrease as the number of modes used in
refinement increases. Thebest values ofR-factorwere 6.8% for the 26-subunits
and 6.3% for the 52-subunits using 7 to 9 lowest-frequency modes.
In summary, these results clearly suggest that a substantial portion of

refinement errors infiberdiffractionofF-actin comes fromlong-rangedeform-
ations, in particular bending, of the filaments. Therefore, effects of these
long-range deformations should be properly accounted for in the refine-
ment to avoid mistreatment of errors. SSM-based normal mode refinement
provides an effective way of doing so with only a small set of long-range
modes as adjustable parameters, thus preventing the potential over-fitting
problem.
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8.1 Introduction

Traditional x-ray crystallography has provided prodigious amounts of
information on protein and nucleic acid structures, revealing intricate details
for many biological activities. In most cases, however, it is the subtle or
sometimes not so subtle dynamic behavior of these structures that contains
the essence of their function. Allostery, induced fit, and key conformational
changes are alterations in the structures that allow proteins to catalyze reac-
tions, transport ligands, or regulate systems. Thus, it is not only the form that
determines function, but also the way in which the form changes in time.
Collectively, we are moving beyond static pictures of biological structures

to a point where dynamic descriptions are necessary for defining mechan-
isms of function including catalysis (Benkovic and Hammes-Schiffer 2003).
Dynamics are much harder to study than the static aspects of structures,
or even the “energy landscape” of possible states (Bryngelson et al. 1995;
Frauenfelder 1995). The classical chemists’ idea that Arrhenius’ law applies
for enzyme-mediated catalysis or substrate binding is limited. We know that
the complexity of proteins and the multiple processes involved in substrate

155
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binding, distortion, and release impose multiple barriers that do not equate
to simply achieving a transition state (Ansari et al. 1994). New connections
are needed in our understanding of the relationships between sequence,
structure, dynamics, and function.
According to the Haldane–Pauling theory, any complex between a protein

and substrates that stabilizes the transition state of a reaction will acceler-
ate the rate of reaction (Haldane 1930; Pauling 1946). This principle has
been verified as being a good first order approximation by the generation of
antibody-based enzymes (Schultz and Lerner 1995; Ulrich et al. 1997). How-
ever, there are documented differences between the catalytic efficiencies of
abzymes and enzymes. As pointed out by Hilvert (2000), if rate acceleration
(−logKTs) is plotted against chemical proficiency (log kcat/kuncat) for a rep-
resentative set of reactions, the result shows that abzyme reactions cluster in
the lower left quadrant of the plot, corresponding to the poorest catalysts,
whereas enzymatic reactions are much more effective. The Km values are
roughly comparable in all of these systems. The best antibodies approach
the effectiveness of the least efficient enzymes, but it should be noted that
the corresponding reactions often involve conversions of relatively activated
substrates (e.g., the hydrolysis of aryl esters).
Forming a specific stabilization of the transition state is likely to be only

part of the design of naturally selected, efficient enzymes. Another feature
is the channeling of thermal energy into modes of motion that can contrib-
ute to one or more necessary steps in a catalytic cycle. Induced fit binding,
thermal fluctuations that overlap the transition state, and structural fluctu-
ations that lead to binding or even unbinding events can all be a part of
the selection process for better chemical efficiency. The number of failures in
abzyme development (proteins that bind transition state analogs well but do
not have activity) is not reported. The abzyme examples that doworkmay be
ones with a small dynamic requirement, with even that having been selected
by the combinatorial or other approaches to abzyme discovery.
The application of dimensionality reduction methods, namely principle

component analysis, to macromolecular structural data was first described
by Garcia (1992) to identify large-amplitude modes of fluctuations in mac-
romolecular dynamics simulations. Principle component analysis and its
correlates have also been used to identify and study protein conforma-
tional substates (Romo et al. 1995; Caves et al. 1998; Kitao and Go 1999)
as a possible method to extend the timescale of molecular dynamics simula-
tions (Amadei et al. 1993; Amadei et al. 1996) and as a method to perform
conformational sampling (de Groot et al. 1996a,b). The validity of themethod
has also been established by comparison with experimentally derived data
(de Groot et al. 1998; Haliloglu and Bahar 1999). An alternative approach to
determine collectivemodes for proteins uses normalmode analysis (Levy and
Karplus 1979; Go et al. 1983; Levitt et al. 1985) andwas also extended as a basis
for modeling the flexibility of larger molecules (Zacharias and Sklenar 1999).
AspointedoutbyGoandalsoothers (Goet al. 1983; Go1990), the largeamp-

litude, low-frequency modes of motion of a protein contribute significantly
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to the entropy of the system, and must therefore be understood if any con-
nections are to be made with experimental thermodynamic measurements.
Classification ofmodes and their use in describing or predicting key conform-
ational changes is also takinghold. Gerstein andhis grouphavedone a superb
job of mining examples from the PDB and adding dynamic interpretations
and explanations (Gerstein andKrebs 1998). Increasingly specific connections
between dynamics and function were found, as a result of studies, including
those on cyclophilin A (Eisenmesser et al. 2002) and the signaling protein
NtrC (Volkman et al. 2001) using NMR, and theoretical studies on alpha-
lytic protease (Miller and Agard 1999; Ota and Agard 2001), hemagglutinin
(Isin et al. 2002), tubulin (Keskin et al. 2002), and photosynthetic reaction
centers (Balabin and Onuchic 2000) and others.
There are numerous examples that indicate that modes of motion in pro-

teins occur along closure pathways resulting from ligand binding (Miller and
Agard 1999; Ota andAgard 2001; Roccatano et al. 2001; Tama and Sanejouand
2001). Many other studies relate simplified normal modes to function, illus-
trating the value of the approach (e.g., Ma and Karplus 1998; Doruker et al.
2002). There is a growing awareness and discussion of the role of dynamics in
catalysis (Benkovic and Hammes-Schiffer 2003) and new experimental and
theoretic tools are needed. Clearly more insight is needed before enzymes
can be well understood or designed de novo. The effect of protein motions
on the drug design process has also been noted (Teodoro and Kavraki 2003).
The problem of allowing for induced-fit in computational searches for lead
compounds is still largely unsolved. Members of my laboratory have been
contributing by trying to reduce the space of local protein dynamics to a
manageable dimensionality once the motions are understood (Teodoro et al.
2003).
Experimental determinations of the detailed dynamics of proteins aremore

difficult than obtaining a static model of the average structure. At present
there are only a few techniques that can yield information about both the
structure and the deviations from the average. X-ray crystallography can
provide very detailed information about relatively small amplitude fluctu-
ations, but is limited by the requirement that the crystalline lattice retain
order during an experiment. Crystals can be subjected to time-resolved
experiments (Moffat 1998; Schotte et al. 2003), but the range of applica-
tions is limited to reactions that can be triggered by light or trapped by
clevermanipulations (Stoddard1998). Usually crystallographic studies reveal
amplitudes, but not time constants of displacements. NMR spectroscopy
can provide information about dynamics of particular regions of a protein,
but it has limitations on interpretation depending on whether the dynam-
ics can be defined as slowly or quickly exchanging (Kay 1998; Kempf and
Loria 2003). More recently, it has been found that mass spectrometry coupled
with hydrogen/deuterium exchange with proteolysis allows relative solvent
accessibility changes to be determined (Engen and Smith 2001; Lanman and
Prevelige 2004). This technique may be slightly more indirect but shows
strong promise.



BICH: “c472x_c008” — 2005/10/19 — 21:48 — page 158 — #4

158 George N. Phillips, Jr.

FIGURE 8.1
(See color insert following page 136) Comparison of the variation within an ensemble derived
from NMR (left) and x-ray crystallography (right). The plot shows an expanded backbone rep-
resentation in proportion to the RMS deviations within each ensemble. The regions of mobility
overlap well.

The experimental techniques mentioned above give complementary
information about dynamics. A comparison of the dynamics of myoglobin
as determined by NMR and crystallography is also possible by building two
ensembles. Figure 8.1 shows one ensemble derived from five different crys-
tal forms (and hence different packing forces) of sperm whale myoglobin
(Phillips 1990; Zhang et al. in preparation) compared with the ensemble
generated by NMR methods (Osapay et al. 1994). Although the amplitudes
seem to be on somewhat different scales, the regions of the protein that are
mostmobile are highly correlated. The variation amongmembers of the x-ray
ensemble is greater than that derived from B-factors of any individual struc-
ture determination, but the trends are remarkably similar. Thus it seemsNMR
and crystallography produce similar patterns of dynamic regions in this case.
The same experimental technique that has given us so many struc-

tures over the years, x-ray crystallography, also contains the potential to
study the molecular dynamics of these biological structures. Surprisingly,
however, the crucial component of the x-ray data needed for such dynam-
ical studies, the diffuse scattering, is usually treated as noise and discarded
(ClarageandPhillips 1997). Onecanargue for the complete refinementofmac-
romolecular structure and dynamics in crystals, utilizing all of the available
x-ray scattering data, namely, the high resolution Bragg reflections and the
diffuse scattering between Bragg peaks. In addition to the average structure,
the result of this expanded refinement will be a picture of the conformational
states available to a macromolecule, knowledge indispensable for correlating
molecular structure and dynamics with biochemical function. The effect of
the crystal lattice on dynamics must be part of the analysis. Starting from
some of my early work on myoglobin (Phillips 1990), we know that crystal
contacts can locally dampen the flexibility of the protein in regions of crystal
contacts. Since the percentage of water in the crystals is about the same as
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the percentage of water in cells, the contacts with neighbors may be more
regular in crystals, but not more numerous or extreme.
The basis of the methods stems from Born and von Karman (1912) theory,

which has worked well for ionic solids and other crystals. Modern phys-
ical lattice dynamics includes quantum effects, but the classical spring-like
methods seem to work well for many aspects of protein structure, and many
researchers believe quantum effects can be ignored, at least for now, due to
the larger size of proteins and their more macroscopic properties. Simplified
normal mode analysis would seem appropriate here.

8.2 Comparison of Theory and Diffraction Experiment

The dynamic behavior of proteins in crystals can be calculated by these
simple models and compared with experiments. The Gaussian network
model (GNM) and a simplified version of the crystallographic translation–
libration screw (TLS) model were used to calculate mean square fluctuations
of Cα atoms for 114 proteins from two nonredundant sets of proteins whose
structures havebeendeterminedbyx-ray crystallography (Kunduet al. 2002).
The GNMdescribes a protein as an elastic network of alpha carbons attached
by Hookean springs where the atoms fluctuate about their mean positions
(Haliloglu et al. 1997). The Kirchhoff, or valency–adjacency matrix of such a
structure is constructed. A quantity proportional to the mean-square fluctu-
ations of each atom, and the cross-correlation fluctuations between different
atoms are the diagonal and off-diagonal elements, respectively, of the pseudo
inverse of the Kirchhoff matrix. The “inverse” can be expressed as a sum of
eigenvectors. Initial comparisons of calculations with displacement paramet-
ers from crystallography were encouraging (Bahar et al. 1997). Kundu et al.
(2002) calculated correlation coefficients between the theoretical predictions
and experiment for an extensive set of proteins. TheGNMmethod gave excel-
lent correlation with experimental measurement with an average correlation
coefficient of 0.59. It has the added benefit of being able to calculate correla-
tions between the fluctuations of pairs of atoms. By incorporating the effect of
neighboringmolecules in the crystal the correlationwas further improved to a
correlation coefficient of 0.66. TheGNMmodel does better than the rigid body
libration model in predicting atomic displacements in proteins (Kuriyan and
Weis 1991), and is further able to compute cross-correlationsbetweendifferent
atoms, which takes us toward understanding the oft-invoked and sometime
mystical “conformational change.” Recent techniques using a simplified har-
monic potential on all atoms or Cα atoms or vector fields (Hinsen 2000) allow
the calculation of not only amplitudes but also directions of protein motions
in crystals for even very large protein complexes.
TLSmethods have been used successfully to define the directions andmag-

nitudes of collective motions of predefined set of atoms (seeWinn et al. 2001)
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SimulationData

FIGURE 8.2
Illustration of effects of coupled motions on crystal diffraction and the ability to calculate
both Bragg and diffuse components. Data (left): 30 sec still exposure from calmodulin at room
temperature. Measurements of the intensities of sharp Bragg peaks were used to refinemultiple-
conformer structural models. Simulation (right): exposure calculated using a simple anisotropic
liquid-like model for motions, using our program XCADS. The parameters obtained from the
diffuse-scattering refinement not only yielded the best correlation coefficient with the data, but
also produced the best simulated diffraction images. (Reprinted from Wall, M.E., J.B. Clarage
and G.N. Phillips [1997]. Structure 5: 1599–1612. With permission.)

and the resulting tensors can be converted easily to thermal ellipsoids for
a conventional illustration of each atom’s motion (Howlin et al. 1993). One
problemwith the approach is the requirement for manual choosing of the set
of atoms in a group. Using GNM or other simplified normal mode analysis,
it is possible to automatically identify the domain (segments) for collective
motion analysis. This method uses graph theoretic methods, which state that
the first nonzero eigenvector of the Kirchoff or Laplacian matrix, also known
as the Fiedler (1975) vector, cuts the protein into the best two collectively
moving groups on the basis of the sign of the eigenvector component for each
atom or amino acid. The method has been implemented and compared with
manual or othermethods of domain assignment and seems towork extremely
well (Kundu et al. 2004).
Analysis of diffuse x-ray scattering has been applied to a variety of systems

in my laboratory including tropomyosin (Chacko and Phillips 1992), tRNA
(Kolatkar et al. 1994), aspartate amino transferase (unpublished), calmodulin
(Wall et al. 1997), and myoglobin (Clarage et al. 1995). Other laboratories
have also made significant contributions (e.g., Clarage et al. 1992; Benoit and
Doucet 1995; Thune and Badger 1995; Hery et al. 1998). Given an appropriate
model for motions, it is possible to produce slices of calculated and experi-
mentally determineddiffractionpatterns that showed remarkable agreement,
one ofwhich is shown in Figure 8.2. Allmotions in a latticemay not be exactly
the same asmotions in the cellularmilieu, but there ismounting evidence that
the lattice does not change the fundamental modes.
Prior work on effects of the crystal lattice on protein dynamics leads dir-

ectly to the idea of calculating the Bragg and diffuse scattering arising from
coupled displacements. Compared to the usual Bragg formalism, there will
be slight differences when couplings are included, and the predicted diffuse
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FIGURE 8.3
(See color insert following page 136) On the left is a constructed segment of a 3D lattice of a
crystal of the enzyme, adenylate kinase, and on the right is the calculated reciprocal-space slice
showing the calculated Bragg anddiffuse x-ray scattering assuming independentmotionswithin
each molecule.

scattering will also come naturally from the calculations. Both Bragg and dif-
fuse scattering are affected by these couplings and should be incorporated in
modern crystallographic theory.

8.3 Effect of Displacements on the Bragg Peaks

One general form of the diffraction equation in terms of the scattering vector,
Q, and locations of atoms, Rlk is

I(Q) = FF∗ =
( N∑

lk

fkQeiQ·Rlk

)( N∑
l′k′

f∗k:′Qe
−iQ·Rl′k′

)

where the sum is over l, l′ unit cells and k, k′ atomswithin eachunit cell.Rlk can
be written as the vector sum of the average position and a displacement

Rlk = rlk + ulk

The average over time scales longer than the x-ray frequency and over the
space of the mosaic block of crystal (the so-called ideally imperfect crystal
because the lattice defects are uniformly distributed in a long range sense)
then becomes

I(Q) =
∑
lk

∑
l′k′

fkQf∗k:′Qe
iQ·(rlk−rl′k′ )〈eiQ·(ulk−ul′k′ )〉
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which, using the usual approximation for the averaged exponential term,
reduces to

I(Q) =
∑
lk

∑
lk′

fkHe−Q2〈u2lk〉/2f∗k′Qe
−Q2〈u2lk′ 〉/2eiQ·(rlk−rlk′ )eQ2〈ulkulk′ 〉

whereQ is the scattering factor andQ itsmagnitude. This formapplies to a full
anisotropic treatment, but for the sake of discussion of the ramification of the
last term, it can be rewritten for isotropic displacements in a crystal, leading to
the common Bragg approximation. Allowing for correlatedmotions of atoms
k and k′ within the unit cell, the equation becomes:

I(H) =
∑

k

∑
k′

fkHe−(2πH)2〈u2k〉/2f∗k′He
−(2πH)2〈u2

k′ 〉/2ei2πH·(rk−rk′ )e(2πH)2〈ukuk′ 〉

where H is the reciprocal lattice vector and H its magnitude. Thus for two
atoms in the structure with the same u (or B-factor) whose movements are
correlated, the contribution by this pair to the intensity is “full strength,”
that is, all the Debye–Waller type terms cancel, leaving only the interference
term involving the coordinates. Thiswill apply to the entirediffractionpattern
including both the Bragg spots and diffuse scattering. Of course, there will be
a resolution dependent fall off in the overall diffraction pattern, because there
are lattice and intermolecular uncoupled motions. But there will also remain
effects for atoms with different B-factors or somewhat less coupled motions.
This is a secondorder effect and itsmanifestationswill dependon the extent of
the coupling and the maintenance of the coherence among neighboring unit
cells. (Note that the equation reduces to the standard form when motions are
assumed to be uncorrelated, as the last term becomes unity.)
Since there are many correlated motions in protein crystals, this is likely to

be anoticeable effectwhen comparing calculated and experimental intensities
and could account for some of the problems in protein crystallography in
getting experimental and calculated intensities to agree to each other within
experimental error. The effect is not expected to be large in cases where the
mosaic block size is large, but the change in intensity distributions is in the
right direction to explain why many protein crystals appear to be slightly
twinned based on intensity distributions, even when their standard Bragg
analysis seemed not to require explicit treatment of the twinning.
This result suggests that both an improvement in agreement between the-

ory and experiment and additional information about correlated movements
can be obtained from Bragg diffraction data. One can calculate the diffraction
patterns for known structures using both the usual Bragg approximation,
and including the additional term for comparison. In principle, the correl-
ated movements between atoms should be extractable from the diffraction
data. It is impossible, however, for the complete set of k(k−1)/2 possible cor-
relation terms to be determined directly by refinement, since the number of
terms exceeds thenumberof observedx-ray spots! However, one can envision
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using constraints in a refinement, much like prior knowledge of bond lengths,
angles, planarity, etc. is used in standard protein structure refinements. Dif-
ferent types of coupling models, including GNM, simplified normal modes,
liquid-like potentials, TLS, etc. can be tested.

8.3.1 Normal Mode Predictions of X-Ray Diffuse Scattering

Diffuse scattering analysis requires the inclusion of more than one unit cell
of the crystal. A recent algorithm for calculating simplified normal modes
makes it possible to include very large structures (Hinsen et al. 1999) and
the code, the Molecular Modeling Toolkit (MMTK) has been made available
(Hinsen 2000). SinceMMTK includes both a simplified potential function and
a Fourier-based vector field description of the couplings, the “normalmodes”
of an entire block of a protein crystal with several unit cells on a side can be
included within the range of current 64-bit computer processors. One could
also use CHARMM (Brooks and Karplus 1983) to construct “crystals” of pro-
teins that employ cyclic boundary conditions as an additional constraint on
the modes and employ the block normal mode approach (Tama et al. 2000)
as implemented in a modified version of CHARMM (Li and Cui 2002). Using
the simplified potential functions, the wave vector-associated modes com-
prising the first Brillouin zone in Born–von Karman theory (Willis and Pryor
1975) could be computed. Once the modes of protein motions are defined,
the results can be used to calculate the Bragg and diffuse diffraction accord-
ing to the equations above. These calculations would allow the connections
between structure and dynamics in protein crystals. The diffuse scattering
analysis will allow a comparison between the theory and experiment in a
direct way.
The calculation of the diffuse scattering can be incrementally increased in

sophistication, startingwith the somewhat ad hocmodel described byCaspar
and coworkers (Clarage et al. 1992) and by Wall et al. (1997) using an aniso-
tropic pair correlation function with a long-range and a short-range regime
for the correlations. Alternative formulations have also been proposed by Go
and coworkers (Mizuguchi et al. 1994).After one calculates the lattice dynam-
ics from the basic structure using the MMTK or CHARMM-based methods,
it is possible to use the following expression from Wall (1996) with the large
amplitudemodes. The atomic displacements can be expanded in terms of the
crystalline modes, so that

ukl =
∑
gs

as,geks,gei(g·Rl−ωs(g)t)

where eks,g is the complex polarization vector for atom k in branch s with
lattice wave vector, g, as,g is the amplitude, and ωs is the frequency. The first-
order expression for the Bragg and diffuse components can be derived from
equations given above, ignoring for these purposes the second order effect of
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covariance on the Bragg scattering, to be

IBragg = e−(1/2)q·(Vk+Vk′ )·qIo(q)

and

Idiffuse =
∑
g,s

∑
l,l′

ei(g+q)·(Rl−Rl′ )
∑
k,k′

fkfk′eiq·(rk−rk′ )e−(1/2)q·(Vk+Vk′ )·q

× q · [|as,g|2eks,gek′s,g] · q

where Vk is the variance matrix for atom k (same for k′), Io(q) is the standard,
unperturbed Bragg intensity, and the scattering factors, rk and Rl are the
displacements for the kth atomand the lth unit cell, the scattering factors fk are
presumed real here. This expression reduces directly to the liquid-likemotion
of Clarage et al. if displacements are assumed to be equivalently distributed
(Wall 1996). Coupled with the ability to calculate the modes, this allows for a
direct comparison of calculated motions and experimental data.
Because qualitative inspection of the diffuse scattering of many protein

crystals reveals streaks that would correspond to transverse displacements
of waves (Clarage and Phillips 1997), one would hypothesize that the cal-
culations will show this. The alternative, compression waves, would not
be expected to be present in large amplitudes if the theory is to match the
experimental observations.

8.4 Complete Refinement Strategies

The generalized crystallographic target function for refinement of struc-
tures should be defined as the mean square difference of all measured
intensities for all reciprocal space points, R, on either the raw pixel level
or the Gibbs lattice-sampled pattern, both of which include Bragg and dif-
fuse intensities. Note that amplitudes alone cannot be used, for there is no
analog of a structure factor in diffuse scattering; in fact, squaring the scat-
tering amplitude is crucial to defining the double-sum over atoms, which in
turn leads to terms involving pair-correlations. To optimize the fit one must
first describe a model for the disorder, which then defines the explicit form
of the correlations.
This more complete approach is less “ad hoc” than previous efforts by

me and others, and in principle provides just what is needed: all the posi-
tions, displacements, and correlations. Adisadvantage is the great number of
parameters in the displacement covariance matrix (whose diagonal elements
correspond to the standard B-values, and whose off-diagonals contain the
cross-correlations between atom pairs) or its normal mode-based equivalent.
Thenumber of freeparameters is certainly larger than even the extended set of
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observations collected on theGibbs lattice. One is therefore led to explore sev-
eralways to reduce the complexityof theproblem. This iswhere the simplified
mode calculations or the use of TLS-like rigid body definitions (Harris et al.
1992; Howlin et al. 1993; Winn et al. 2001) with soundmethods for division of
the molecule into groups enter the picture. It seems best to make use of all the
diffraction data instead of using only the Bragg approximation in describing a
structure and its deviations. The impact will be variable. For “tight” proteins
the dynamics will be small in amplitude and largely “uncoupled” on a large
scale and little if any new insight would be likely to result. For more com-
plex systems where differentially coupled motions are retained in the crystal
lattice, new insight about mechanisms of actions will result.
Abstractions of the structure of proteins has led to the identification of a

plethora of motifs, usually visualized as static icons of underlying function,
rather than dynamic ones. We are now increasingly appreciating the fact that
the interconversion between states, and the relaxations of structure as biolo-
gical recognition events occur is just asmuchapart ofmolecular biology as the
starting structures. If we can discover new ways to observe these events, the
result will be a richer picture of structure and dynamics and their connections
to function.
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9.1 Introduction

The elastic network models of coarse-grained proteins have demonstrated
their success in representing the overall motions of proteins, and particularly
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the slowestmost importantmotions derived fromnormalmode analysis. The
elastic network model’s superior performance in comparison to results from
atomic molecular dynamics must originate in its better representation of the
cooperativity within protein structures. Generally atomic interaction poten-
tials would have less overall cohesiveness. The elastic network models, by
having large numbers of interconnections, many of which are evident in the
large domain motions of the slowest modes of motion, provides a clear and
simple model of protein cohesiveness. Until now, these interactions repres-
ented by springs have all been treated as identical. If a model is to represent
the cohesiveness properly, then the question arises as to whether this is being
done in the best way. Are the protein cores being represented in too rigid a
way? Or are the surface residues not sufficiently rigid?Motions computed for
the slow important motions might be affected by these issues. Here we are
exploring some range of changes to the ways in which the spring constants
are formulated, by making them depend on the local packing density in the
simplest way, in terms of the number of each residue’s close interactions.
We also examine the cutoff distance dependence of spring constants for

the adenosine triphosphate (ATP)-binding protein set. The cutoff distance
establishes the packing density of the studied protein because it determines
the number of neighbors each residue has. The cutoff distance was optimized
against the experimental B-factors for a large set of protein by Kundu et al.
[1]. Note that our data set of six proteins is not intended to obtain statistically
tested results, but rather to provide initial insights regarding the effects of
packing density for the case of ATP-binding proteins.

9.2 Methods

9.2.1 Proteins

Asmall high-resolution protein set is comprised of the ATP-binding proteins
available in the Brookhaven protein data bank (pdb) [2], having different
sizes and with domains belonging to different CATH superfamilies [3, 4].
This set consists of three protein pairs, each having an unbound form and an
ATP-bound conformer. (1) The human cyclin-dependent kinase 2, (a) for the
unbound conformer (pdb code 1HCL [5], resolution 1.8 Å) and (b) for itsATP-
bound conformer (pdb code 1HCK [6], resolution 1.9 Å). These proteins each
consist of 294 residues. (2) The 5′-nucleotidase from Escherichia Coli, (a) for
the unbound conformer (pdb code 1USH [7], resolution 1.73 Å) and (b) the
ATP-bound conformer (pdb code 1HP1 [8], resolution 1.7 Å). The proteins
each consist of 516 residues. (3) The gamma subunit of phosphoinositide
3-kinase (a) for the unbound conformer (pdb code 1E8Y [9], resolution 2 Å)
and (b) for the ATP-bound conformer (pdb code 1E8X [9], resolution 2.2 Å).
These proteins each consist of 841 residues. In the last protein pair, the origins



BICH: “c472x_c009” — 2005/10/19 — 20:46 — page 173 — #3

Optimizing Parameters for ATP-Binding Proteins 173

TABLE 9.1

RMSD between Conformers
of the Same Protein With
and Without ATP.

Conformers RMSD (Å)

1HCL/1HCK 0.33
1USH/1HP1 0.15
1E8Y/1E8X 1.41

of the two proteins are different. 1E8Y is a human protein; whereas 1E8X is
a porcine protein. The root-mean-square-distance (RMSD) between these two
proteins is 1.41 Å (Table 9.1). This group of proteins has been chosen to show
the effect of protein size in the elastic network calculations.
The ATP-binding sites for the protein pairs have major distinctive differ-

ences as can be seen in Figure 9.1. For both kinases, the ATP binding site
is buried inside the protein; therefore when the ATP ligand is bound, it
establishes substantial numbers of contacts with the protein. In the case of
the 5′-nucleotidase, however, the ATP-binding site is located on the sur-
face, and has fewer contacts. The number and the type of contacts between
ATP and the proteins are obtained using the LPC (ligand–protein contacts)
software developed by Sobolev et al. [10]. According to the distance cal-
culations between atoms, not only do the kinases achieve more contacts
with ATP, but they also create more hydrogen bonds with the ligands than
does the 5′-nucleotidase protein; there are 16 and 13 hydrogen bonds in
the cases of 1HCK and 1E8X and only nine hydrogen bonds in the case
of 1HP1.
For the RMSD calculations, the protein pairs are structurally aligned using

ProFit v2.2 (Martin, A.C.R., http://www.bioinf.org.uk/software/profit/)
[11] over the coordinates of Cα atoms.

9.2.2 Gaussian Network Model

The theory of the Gaussian network model (GNM) can be found elsewhere
in detail [12, 13] and in the chapter “Gaussian network model: theory and
applications” by Rader et al. in this book. The underlying concept of the
original GNM treatment is to represent the cohesiveness of the proteins by
establishing sufficient number of stringswithuniformfixed-value spring con-
stants between all close pairs of residues. In this treatment, each residue is
represented as a point (or node) positioned at its Cα atom. There are two
parameters, the cutoff distance Rc and spring constant: the cutoff distance Rc
determines whether two residues are connected with a spring, that is, in con-
tact, without differentiating between bonded and nonbonded interactions.
These contacts are expressed in a contact matrix, and the pseudoinverse of
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.1
(See color insert following page 136) Three-dimensional representations of representativeATP-
binding proteins (a) 1HCL, (b) 1HCK, (c) 1USH, (d) 1HP1, (e) 1E8Y, and (f) 1E8X. The proteins are
colored according to their secondary structures usingAccelrysDSViewerPro 5.0. TheATP-bound
conformers are shown in the right column. Their unbound counterpart is in the left column. ATP
molecules are given with blue stick representations.

this matrix (since the zero eigenvalue corresponding to the external degree
of freedom must be eliminated) is obtained with singular value decomposi-
tion (SVD). The diagonal of the pseudoinverse of the contact matrix provides
mean-square fluctuations for each node, which in turnmay be comparedwith
the experimental Debye–Waller temperature factors (B-factors), generally
available in the pdb files.
The computedmean-square fluctuations can be decomposedmeaningfully

into normal modes by using appropriate eigenvalues during calculations.
The smallest eigenvalues provide the global or collective motions that cor-
respond to the conformational rearrangements of the protein on the largest
scale. In contrast, the largest eigenvalues correspond to noncollective modes
influenced mainly by local effects. In terms of the overall motions, only the
large domain motions make significant contributions.
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In this work, the protein residues are represented by single nodes, and
likewise theATPmolecule is represented by one node placed at the C4* atom.
For other proteins, best results are usually achievedwhen the nodes represent
similar volumes of protein, that is, similar numbers of atoms, but the details of
the representation for a small molecule in the context of amuch larger protein
often do not have so much effect on the important large domain motions,
except to influence the direction of a motion [14,15].

9.2.3 Spring Constants

In the original GNM treatment, the spring constants between each pair of
residues are defined all to be identical. Hinsen [16] employed distance-
dependent spring constants, whose magnitudes fall off exponentially. Here
in an exploratory attempt to improve protein dynamics predictions, we intro-
duced novel alternative types of spring constants by creating a dependence
upon the number of contacts for each residue, so as to make the protein more
heterogeneous. Different interacting pairs can now have different spring con-
stants, reflecting their packing environments. For this purpose, the following
constants are employed:

k1ij =1 (9.1)

k2ij =
1

nC
i

+ 1
nC

j

(9.2)

k3ij =
1√

nC
i × nC

j

(9.3)

k4ij =
(
1

nC
i

)0.5
+
(
1

nC
j

)0.5
(9.4)

k5ij =
(nC

i + nC
j )

2
(9.5)

k6ij =
√

nC
i × nC

j (9.6)

where kij represents the spring constant between nodes i and j. For simplicity,
k = i will be used throughout the text to denote the use of a spring con-
stant, where i ranges from 1 to 6 for the defined springs in Equations (9.1)
to (9.6). nC

i is the number of contacts for the ith node. Note that form 1 is
the original version, independent of the number of neighbors, 2 to 4 have
weaker cooperativity than 1, and 5 to 6 have enhanced cooperativity for dense
packing.
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9.2.4 Correlation Coefficient

Generally, our criterion for choosing parameterswill be based on the extent of
agreement of the computed fluctuations with the experimental B-factors. For
this purpose, we use the linear correlation coefficient calculated as follows:

C =
∑N

i=1 (xi − x̄)(yi − ȳ)√∑N
i=1 (xi − x̄)2 ·∑N

i=1 (yi − ȳ)2
(9.7)

In this equation, N is the number of nodes, xi and x̄ are the mean-
square residue fluctuations as calculated by GNM and their mean over all
residues. Similarly, yi and ȳ are the experimentally determined B-factors
and their mean. This linear correlation coefficient is a straightforward way
to analyze the extent of linear dependence between any two quantities.
Its value can range between 1 and −1, where the limiting values 1 and
−1 correspond to perfect correlation and perfect anticorrelation. However,
this coefficient has its limitations. The linear correlation coefficient only
captures how two quantities track together in their deviations from the
mean without any reference to their relative amplitudes. Therefore, this
parameter only provides information regarding the relative up and down
patterns.

9.3 Results

9.3.1 Conformational Changes

Eachproteinpair is aligned structurally as described in Section 9.2. TheRMSD
calculated after the structural alignments are shown in Table 9.1. The RMSD
values of the 1HCL/1HCK and 1USH/1HP1 pairs are small compared to that
of the 1E8X/1E8Y pair. The distances between conformers for each residue
are also calculated separately to locate the regions of largest conformational
changes.
For the 1HCL/1HCK pair, the distances between corresponding residues

in the conformers larger than 1 Å are seen for the following residues: G13,
T14, T26, R36, Y159, and T160. Among those residues, T26 is located on a
loop on the protein surface away from the binding site, which explains its
high mobility. G13 and T14 are in the binding pocket and establish hydrogen
bonds withATP. These two residues clearly undergo conformational changes
specifically to accommodate the binding of the ATP. The other residues, R36,
Y159, and T160, are situated on two surface loops, which directly interact
with G13 and T14, so the conformational changes in these three residues
could be induced by the rearrangements of G13 and T14 positions at the
ATP-binding site. For the 1USH/1HP1 pair, the largest distance between
corresponding residues is 0.87 Å for residue K321, and the other distances
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are all less than 0.6 Å. The small amplitude of conformational changes may
be attributed to the characteristically exposed surface binding of the ATP
ligand. For the 1E8Y/1E8X pair, the global conformational rearrangements
observed may be due to the different origins of the proteins. The largest
changes occur at the C-terminal in the residues F1087 to L1092. Changes lar-
ger than 1Åare only seen for surface residues, rather than in the vicinity of the
binding sites.

9.3.2 Pair Distribution Functions

Since the cutoff distance is as crucial as the spring constant for the protein
dynamics predictions, the issue ofwhich structural features are capturedwith
a given cutoff distance becomes of primary importance. To understandwhere
the residues are located with respect to one another, pair distribution func-
tions are useful. The pair distribution function is calculated by (1) assuming
each node as a center, (2) calculating the distances between the central node
and other nodes, and (3) repeating this procedure for each node followed by
averaging. By defining bins of constant size and counting how many node
pairs fall into each bin, the distribution of the relative positions of nodes
with respect to one another can be obtained. Therefore, the peaks in this
function represent average node shells around each central node. Figure 9.2
shows the pair distribution functions for 1E8Y and 1E8X as representatives.

0.014

0.012

3.5Å

5.5Å

10.5Å

1E8Y
1E8X

0.010

0.008

0.006g 
(r

)

0.004

0.002

0.000

20 40

Radius (Å)

60 80

FIGURE 9.2
The pair distribution functions of 1E8Y and 1E8X with bins of size 1 Å.
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Since the bin step size is taken as 1 Å, the first peak at 3.5 Å shows the
relative node density in the range of 3 and 4 Å. This first peak captures
the sequence neighbors with their Cα–Cα virtual bond length of 3.8 Å. Two
additional peaks are clearly visible at 5.5 and 10.5 Å in Figure 9.2. When a
cutoff distance needs to be chosen to model the protein interactions, the pair
distribution function provides a guideline by revealing the relative positions
of two nodes with respect to one another. An interesting feature of Figure 9.2
is that it shows nearly identical behavior for both 1E8Y and 1E8X, a simil-
arity also observed for the other two pairs of proteins. This similarity could
have been anticipated from the low values of RMSD between conformers.
Although the pair distribution function can be used a guideline to choose
the cutoff distance, the function fails to capture the details of interactions
between nodes. Consequently, further analysis is necessary to understand
how the cutoff distance affects the quality of the protein dynamics predic-
tions.Weuse thevaluesof the correlationcoefficient as ameans to improveour
predictions.

9.3.3 Correlations

Table 9.2 shows the linear correlation coefficients between the experimental
B-factors and the mean-square fluctuations obtained with the elastic net-
work calculations. The correlation coefficients are calculated at various cutoff
distances and for various spring constants. As the cutoff distance determ-
ines the nonzero elements of the contact matrix, it also influences the overall
strength of cooperativity for connections in a given protein. For some cases,
the correlation coefficients couldn’t be calculated, since the singular value
decomposition algorithm [17] failed to converge during the diagonalization
of the contact matrix. This failure may originate in the algorithm. These cases
are designated with dashes in the tables.
For any spring constant, the cutoff distance of 5 Å usually yields low cor-

relations (data not shown). This inadequacy can be clearly explained by the
pair distribution functions. As discussed earlier, the cutoff distance of 5 Å
would only capture the first shell of nodes that corresponds almost exclus-
ively to sequenceneighbors. Therefore, at this cutoff value, neither long-range
interactions, nor secondary structure information can be factored out in the
contact matrix. As a result of this, the GNM with Rc = 5 Å does not predict
experimental B-factors well.

9.3.4 Correlation Coefficients at Different Cutoff Distances and
Spring Constants

The correlation coefficients as a function of cutoff distances and spring con-
stants are shown in Figures 9.3(a) to (c) for the three proteins in their unbound
forms. Generally, the correlation coefficient is largest in the range of Rc from
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TABLE 9.2

Correlation Coefficients — the Left Side Is for Proteins Without ATP and the Right
Side for Proteins With ATP.

(a) 1HCL (b) 1HCK

Å k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6

7 0.70 0.73 0.73 0.73 0.63 0.63 0.58 0.60 0.60 0.60 0.51 0.51
10 0.67 0.64 0.64 0.67 0.66 0.65 0.58 0.57 0.57 0.58 0.57 0.56
13 0.66 0.59 0.59 0.64 — — 0.59 0.53 0.53 0.58 0.59 —
15 0.66 0.58 0.59 0.64 0.66 0.5 0.61 0.54 0.56 0.60 — —
17 0.65 0.57 0.58 0.63 — — 0.61 0.54 0.56 0.59 — —
20 0.64 0.57 0.59 0.63 — — 0.56 0.53 0.54 0.56 — —
25 0.57 0.52 0.53 0.56 — — 0.47 0.44 0.45 0.47 — —
30 0.49 0.45 0.45 0.48 — — 0.40 0.36 0.36 0.39 — —

1USH 1HP1

Å k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6

7 0.73 0.74 0.74 0.74 0.70 0.69 0.77 0.78 0.78 0.78 0.72 0.72
10 0.70 0.69 0.69 0.70 0.69 0.68 0.74 0.74 0.74 0.74 0.72 —
13 0.67 0.64 0.64 0.67 — — 0.69 0.68 0.68 0.70 0.68 —
15 0.67 0.63 0.63 0.67 — 0.66 0.69 0.66 0.66 0.69 — —
17 0.68 0.62 0.62 0.67 — — 0.69 0.65 0.65 0.69 — —
20 0.70 0.62 0.62 0.68 — — 0.70 0.64 0.64 0.69 — —
25 0.70 0.61 0.62 0.68 — — 0.71 0.62 0.63 0.69 — —
30 0.70 0.61 0.63 0.68 — — 0.71 0.62 0.63 0.69 — —

1E8Y 1E8X

Å k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6

7 0.56 0.57 0.58 0.58 0.48 0.47 0.69 0.75 0.75 0.73 0.58 0.56
10 0.71 0.69 0.69 0.72 0.65 0.64 0.70 0.74 0.74 0.73 0.59 0.57
13 0.72 0.69 0.69 0.72 — 0.66 0.73 0.73 0.73 0.76 — —
15 0.70 0.69 0.69 0.72 — — 0.74 0.74 0.74 0.77 0.64 0.62
17 0.69 0.69 0.69 0.71 — — 0.75 0.76 0.76 0.78 — —
20 0.68 0.70 0.69 0.70 — — 0.78 0.79 0.78 0.80 — —
25 0.65 0.67 0.67 0.67 — — 0.77 0.80 0.80 0.79 — —
30 0.62 0.62 0.62 0.63 — — 0.73 0.77 0.76 0.75 — —

7 to 10 Å, and then decreases with increasing cutoff distances. In the case of
1E8Y, this peak range extends even to 13 Å. The correlation coefficients do not
always decrease after reaching a peak: for 1USH, the correlation coefficient
starts increasing again at higher cutoff distances, but never reaches the level of
the 7–10 Å peak that captures the second and even a part of the third coordin-
ation shells of nodes. Correlation coefficients also show a peculiar behavior
with the use of different spring constants. In all three cases, the original spring
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FIGURE 9.3
The correlation coefficients at different cutoff distances Rc for (a) 1HCL, (b) 1USH, (c) 1E8Y, and
(d) 1E8X.

constant, k = 1, which excludes any dependence on the number of contacts
each node interacts with, outperforms other spring constants over a wide
range of cutoff distances except in the 7–10 Å range. In this range k = 4 is
similar or slightly more successful for 1E8Y in predicting the mean-square
fluctuations. Figure 9.3(d) shows the correlation coefficients for the case of
1E8X, with ATP included in the calculations as an additional single node.
For this protein, the correlation coefficient shows a peak not at the range of
7–10 Å, but instead in the 20–25 Å range. This peak region is specific only
for 1E8X: the remaining ATP-bound proteins, 1HP1 and 1HCK, show peaks
around 7 and 15 Å, respectively. The structural origin of this peculiar shift in
peak positions is not clear.

9.3.5 Cases of Highest Correlations

The cutoff distances and the spring constants yielding the highest correlations
are summarized in Table 9.3. The spring constant k = 4 in almost all cases
outperforms other spring constants except for the protein 1HCK,which gives
best correlation with the fixed spring constant.
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TABLE 9.3

Conditions That Give the Highest Correlations
for Each Protein.

Best k Rc (Å) Correlation

1HCL 4 7 0.73
1USH 4 7 0.74
1E8Y 4 13 0.72

1HCK 1 15 0.61
1HP1 4 7 0.78
1E8X 4 20 0.80

The cutoff distances that correspond to highest correlations show a wide
range from 7 to 20 Å. The cutoff distance that provides the highest correlation
seems to be protein-specific, at least for the limited set of proteins employed
in this study.

9.3.6 Mean-Square Fluctuation Predictions for the Cases That
Show Highest Correlations

The benchmark for the predictive power of the elastic network models is its
ability to reproduce the experimentally determined fluctuations, or B-factors.
Figure 9.4 shows a comparison of B-factors with fluctuations predicted by
GNM for the three unbound proteins for highest correlations. Figure 9.4(a)
shows the case of 1HCLwhere GNM consistently captures the profile and the
magnitudes of the B-factors. The GNM predictions of fluctuations success-
fully demonstrate a similar overall shape over almost the range of the whole
protein. In Figure 9.4(b), the predicted and experimental fluctuations for the
protein 1USH are in good agreement. Most of the highly mobile residues that
demonstrate large fluctuations are successfully predicted byGNM. In the case
of 1E8Y in Figure 9.4(c), although the experimental fluctuation profile is very
rough, GNM results show a high linear correlation of 0.72, identifying most
of the highly mobile regions. Of course some minor discrepancies may be
caused by inter-molecular interactions in the crystal and these have not been
considered here [1].

9.3.7 Comparison of Fluctuations for Different Spring Constants

Although the correlations between experimental and theoreticalmean-square
fluctuations are satisfactory, information as to how the theoretical fluctu-
ation calculations are influenced by the spring constants may nonetheless
be useful to indicate how to better predict protein dynamics. Figures 9.5(a)
and (b) compare theoretical fluctuation predictions for the case of 1HP1 at
7 and 35 Å cutoff distances for a series of spring constants. For improved
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FIGURE 9.4
Comparison of mean-square fluctuations and experimental B-factors for the case of spring con-
stant type k = 4 at (a) Rc = 7 Å for 1HCL, (b) Rc = 7 Å for 1USH, and (c) Rc = 13 Å for
1E8Y.
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FIGURE 9.5
(See color insert following page 136) Comparison of mean-square fluctuations with B-factors
for 1HP1 with different spring constants at (a) 7 Å and (b) 35 Å cutoff distances.

visualization, only a range of residues are shown. Interestingly, the fluctu-
ation predictions for different spring constants all follow a similar pattern,
demonstrating highly similar maxima and minima profiles at a given cutoff
distance. This behavior is limited not only to the protein 1HP1, but also has
been observed for the other proteins in the data set. This surprising result
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(See color insert following page 136) Comparison of mean-square fluctuations in the case of
1HP1 at (a) k = 1 and (b) k = 4.

emphasizes the significance of the state of connectivity between the nodes in
fluctuation predictions, rather than the type or strength of connectivity. This
result suggests that the global modes ofmotion are not so strongly influenced
by the spring constants. However, this point requires further analysis and it
is beyond the scope of the present work. Notably, the longer cutoff distance
yields significantly smoother curves.
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9.3.8 Comparison of Fluctuations at Different Cutoff Distances

Since the spring constants based on the number of contacts do not substan-
tially influence the B-factor predictions, the next step is to analyze the effect
of cutoff distances on the predictions. Figures 9.6(a) and (b) show these com-
parisons in the case of 1HP1 for the spring constants of type k = 1 and
k = 4. Figures 9.6(a) and (b) illustrate that the fluctuations with cutoff dis-
tances ranging from 7 to 25 Å follow the same overall pattern. Overall, the
cutoff distance seems to be the parameter that affects the correlation between
experimental and theoretical fluctuations most, significantly more than do
the spring constants.

9.4 Conclusion

The GNM provides a powerful tool to predict protein domain dynamics. In
this work, we have analyzed the effect of two important parameters of this
model, cutoff distance and spring constant, on the correlation coefficients
between experimental B-factors and theoretical predictions of mean-square
fluctuations. These parameters have been tested for the data set of three pro-
tein pairs of ATP-binding proteins. It has been found that the correlation
coefficients show distinct dependences on both parameters. Interestingly, the
fluctuation patterns for different spring constants show strong similarities,
with an overall suggestion that springs ought to be slightly weaker, as in
Equation (9.4). The observed strong dependence on cutoff distance is a more
significant problem. One possible origin of this dependence could be the dif-
ferences in sizes among the amino acids. It might be appropriate to introduce
springs that are residue type dependent and in the simplest way to make the
cutoff distances depend on the sizes of the residue types.
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10.1 Introduction

The large-scale fluctuations of DNA are key to understanding kinetically
complicated molecular events, such as the ease of the long, double helical
polymer snaking through the pores of a gel or closing into a loop between
separately bound regulatory proteins. DNA loop formation is implicated, in
turn, in a number of important biological processes, including the regulation
of transcription [1, 2] and the organization of chromatin [3–5]. The base-pair
sequence plays a critical role in these processes, helping to guide the over-
all folding of the chain molecule [6–8] and determining the responses of the
double helix to superhelical stress, References 9 and 10.
Recently, we developed a new computational approach for studying the

dynamic properties of relatively long DNAmolecules without losing track of
the local sequence-dependent features of the double helix [11–13]. We make
use of a dimeric representation ofDNA,which incorporates the known effects
of base sequence on the intrinsic structure and the elastic deformability of the
constituent dinucleotide steps [14]. The rest states of each dimer are described
by six independent step parameters, which specify the preferred orientation
and displacement of neighboring base-pair planes (Figure 10.1). The set of
rest states and the range of local conformational fluctuations are governed by
knowledge-based harmonic energy functions deduced from the mean values
and dispersion of step parameters observed in DNA crystal structures. The
sugar–phosphate backbone is treated implicitly in the potential energy but is
incorporated explicitly as a rigid nucleotide appendage in the kinetic energy.
The description of the collective motions of DNA in terms of base-pair steps
builds upon general formulations developed by others to express the normal
modes of proteins in terms of internal chemical coordinates [15–18].
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FIGURE 10.1
Schematic representation of DNAhelical structure, local elastic deformability, and base-pair step
parameters used in the normal-mode analysis of polymeric DNA.
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The coarse-grained representation of DNA makes it possible to study the
motions of much longer molecular fragments than can be treated with tradi-
tional, higher resolution (atomic or torsion angle) treatments, that is, chains
roughly an order of magnitude longer than the DNA examined in earlier
normal-mode calculations [19–23]. The low-resolution model of DNA also
provides a straightforward way to deduce the effects of local structure and
deformability on the configurational properties of polymeric sequences.
This chapter focuses on the subtle relationship betweenDNAbase sequence

and collective polymeric motions gleaned from the normal-mode analysis
of representative double helical molecules. The local, sequence-dependent
conformational propensities become important as the contributions of base-
pair steps accumulate with the increase of chain length, introducing notable
structural variability in molecules of lengths relevant to protein-mediated
DNA looping. Here we briefly summarize the DNA model and computa-
tional approach. We compare the properties of ideal, naturally straight DNA
molecules and naturally curved duplexes, both in the open, linear form
and when the structure of the chain is restrained by long-range physical
or chemical forces. We highlight the changes in global molecular mobility
that accompany ring closure and dissect the effects of intrinsic dimeric struc-
ture and local conformational freedom on the dominant normal modes. We
focus on sequence contexts, which enhance or repress the global bending,
torsion, and stretching of long chain fragments, thereby illustrating ways to
“engineer” the macroscopic properties of DNAat the base-pair level. We also
discuss the interplay of superhelical stress and the natural coupling of local
conformational variables on the large-scale configurational rearrangements
of closed circular molecules and the direct physical micromanipulation of
single linear chains.

10.2 Methodological Overview

10.2.1 Molecular Representation

Normal-mode analyses of proteins and nucleic acids are usually performed
in Cartesian or dihedral angle space. In the case of nucleic acids, there is an
even simpler way to describe three-dimensional molecular motion. Because
each base or base pair can be approximated as a rigid body, molecular
structure can be described in terms of the relative positions and orienta-
tions of complementary bases or successive base pairs. Here the base pairs
are treated as rigid objects and the six base-pair step parameters — three
angular variables called Tilt, Roll, and Twist and three variables called Shift,
Slide, and Rise with dimensions of distance [24] — are used as independent
conformational degrees of freedom (Figure 10.1). The description of nuc-
leic acid structure is not complete, however, without specification of the
sugar–phosphate backbone. We therefore treat each DNAstrand as a chain of
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nucleotide 5′-monophosphates, with each residue fixed in the B-form and
related to its sequential neighbors by a given set of local base-pair step
parameters (Figure 10.1). This treatment drastically reduces the number of
variables needed to describe the helical structure and is key to the successful
study of long DNAmolecules. The step parameters are defined according to
the formulationofElHassan andCalladine [25], and thebackbone is incorpor-
ated by superposition of a 5′-nucleotide fragment from the canonical B-DNA
fiber diffraction model [26] on each base.

10.2.2 DNA Force Field

The conformational potential energyV is a sum of independent contributions
from all DNAbase-pair steps. The energy of each dimer, VXY , is expressed as
a sum of elastic terms over the six base-pair step parameters [14]:

VXY = 1
2

6∑
i=1

6∑
j=1
fij(θi − θui )(θj − θuj ) (10.1)

Here the subscript XY refers to one of the ten unique dinucleotide steps, the
θi(i = 1, 2, . . . , 6) correspond to the instantaneous Tilt, Roll, Twist, Shift, Slide,
and Rise at the given step, the θui denote the equilibrium values of the step
parameters in the undeformed reference state, and the fij are force constants
impeding dimeric deformations.
The sugar–phosphate backbone and the surrounding aqueous solvent,

that is, charged phosphate groups, water molecules, and counterions, are
implicitly treated in the elastic energy terms. The omission of these atoms
introducesno serious errorswhenduplexdeformationsare limited to energies
of the order of kBT, where kB is the Boltzmann constant and T the temperature
in Kelvin.
We consider two types of molecules (i) ideal, naturally straight B-DNA

chains in which the planes of neighboring base pairs are perfectly parallel
(θu1 = θu2 = 0◦) and (ii) chains that formclosed, smoothlydeformedminicircles
in their equilibrium rest states. The bending components (θ◦1 , θ

◦
2 ) at each base-

pair step in the latter molecules are described by a 10-bp repeating pattern of
the form,

θ◦1 =
(
360◦

nB

)
cos(36(m− 0.5)); θ◦2 =

(
360◦

nB

)
cos(36(m− 0.5)+ 90)

(10.2)

where nB, the number of base pairs, is a multiple of ten, and m denotes the
sequential dimer position (see below). The values of Tilt and Roll used as
references in the calculation of energy are the same as the values of Tilt and
Roll of the natural minicircle, that is, θu1 = θ◦1 and θu2 = θ◦2 .
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Values of the intrinsic Twist (θu3 ) are assumed to be independent of sequence
and are assigned a range of values consistent with known environmentally
induced changes, such as the dependence of helical twist on temperature
[27, 28] or ionic strength [29]. The intrinsic displacement of base pairs is
restricted to Rise, that is, θu4 = θu5 = 0 Å and θu6 = 3.4 Å.
Unless otherwise noted, the elastic constants are chosen to mimic the prop-

erties of an ideal elastic rod. The variation of individual step parameters is
thus assumed to be independent of one another, so that all off-diagonal elastic
terms, fij(i �= j), in Equation (10.1) are zero. Bending deformations are iso-
tropic and chosen such that the persistence length of the linear chain is 500 Å
[30], that is, fii = kBT/〈�θ2i 〉, where 〈�θ21 〉1/2 = 〈�θ22 〉1/2 = 4.7◦. The root-
mean-square variation in Twist, 〈�θ23 〉1/2, is set to 4◦ based on estimates of the
fluctuations of helical twist in supercoiled DNA involving considerations of
the residualwrithe in closed circular structures [31–33]. The force constants of
the displacement variables — 〈�θ24 〉1/2 = 〈�θ25 〉1/2 = 〈�θ26 〉1/2 = 0.1 Å — are
assigned values large enough to prevent local spatial translations. The model
is therefore comparable to the representation of DNAused in the theory of an
ideal, inextensible elastic rod [34, 35] and can be comparedwith the predicted
normal modes. More realistic treatment of the double helical molecule can be
obtained through appropriate changes of the intrinsic structural parameters
and elastic constants.

10.2.3 Kinetic Energy

The total kinetic energyK is expressed in quadratic form in terms of θ̇i, the first
derivative of θi with respect to time, and the weighted “mass” coefficients hij:

K = 1
2

∑
ij

hij�θ̇i�θ̇j (10.3)

Here the double summation extends over all combinations of base-pair step
parameters, that is 6(nB − 1), step parameters in an open, linear DNA or 6nB
parameters in a cyclic molecule. The kinetic energy coefficients incorporate
themassma and theCartesian coordinates ra of all atoms a in theDNAthrough
the relationship:

hij =
∑
a

ma

(
∂ra
∂θi

)(
∂ra
∂θj

)
(10.4)

We take advantage of published analytical expressions for the (∂ra/∂θi) to
evaluate the hij. The set of rigid-body parameters used to relate neighbor-
ing base-pair planes is identical in form to the variables used by others
[16, 17] to describe the relative global positions and orientations of different
molecules. The internal atomicmotions ofDNAare effectively separated from
the overall rotations and translations of themolecule by expressing the atomic
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displacements in terms of an embedded coordinate frame, chosen according
to the Eckart condition [36] to minimize the mass-weighted square atomic
displacement of DNA [37] in its equilibrium rest state and in a state where
one of the step parameters is altered from its minimum energy value [15].

10.2.4 Normal Modes

If the �θi and �θ̇i are collected respectively in the vectors � and �̇, the
equations of motion simplify to:

H��̈+ F�� = 0 (10.5)

with a periodic solution of the form:

�θi =
∑
n

Ainαn cos(ωnt+ δn) (10.6)

Here F is a collective pseudo-diagonal matrix of elastic force constants and
H is constructed from the terms in Equation (10.4). The fluctuations of each
step parameter �θi at time t are thereby expressed as a linear combination
of harmonic oscillators, the energies of which are proportional to the square
of the nth normal-mode frequency, ω2n. The contribution of each mode to
the variation of individual step parameters decreases rapidly with increase
in ωn, so that relatively few (low frequency) modes are responsible for the
large-scale deformations of themolecule. The contributions of individual step
parameters �θi to each of the modes can be determined from the frequency
ωn, phase angle δn, and amplitude αn of the normal mode of interest and the
eigenvector components Ain obtained by solving the equations of motion.

10.2.5 Imposed Superhelical Stress

The Twist of DNA is assigned values such that, when the molecule is cova-
lently closed into a circle, the normalized sum of the equilibrium Twist,∑
nB θ
◦
3 /360

◦, over all nB base-pair steps is an integer. Here θ◦3 is set to 36
◦

and nB to 200. The normalized sum, which is equal to 20, is the linking num-
ber Lk of the closed ring, that is, the number of times the two strands of the
double helix wrap around one another. If there are no spatial constraints on
the ends of the chain, the variation of intrinsic Twist θu3 converts the circular
equilibrium structure to a helical configuration [30, 38–40]. If the chain ends
are also covalently linked, the total increase or decrease of intrinsic Twist
relative to the unligated structure, �Tw◦ = (θ◦3 − θu3 )nB/360◦, imposes tor-
sional stress on the naturally circular molecule. Such a molecule is said to be
supercoiled and is characterized by a linking number difference �Lk equal
to �Tw◦.
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In practice, the ends of circular molecules are held in place by a restraint
energy, Er, given as a sum over N distance restraints:

Er =
N∑
l=1
kl(dl − d◦l )2 (10.7)

The parameter kl is an arbitrarily chosen spring constant, dl is the instantan-
eous distance between two points onwhich a distance restraint is placed, and
d◦l is the desired separation distance. Three distance restraints, placed on the
origins and two coordinate axes of terminal base pairs, are used to enforce
DNA ring closure. A single restraint on the separation of base-pair origins
is used to limit the end-to-end extension of stretched, linear chains. Because
the restraint energy is close to zero after energy minimization, the dimeric
contributions from Equation (10.1) dominate the total energy.

10.3 Dominant Modes

10.3.1 Comparative Spectra

We start with a comparative analysis of the dominant (lowest frequency)
normal modes of four DNA molecules — a pair of open, linear chains and
a pair of circularized molecules — each chain inextensible, 200 bp in chain
length, and capable of ideal isotropic bending. One of the DNAs in each pair
is intrinsically straight and the other closes naturally into a circle in its equi-
librium rest state. We classify themotions, followingMatsumoto andGō [23],
on the basis of the global structural changes revealed through computer visu-
alization of the eigenvectors associated with each mode and expressed by
Equation (10.6). The dominant bending and twisting modes of the linear
molecules are represented by the upper set of spectra in Figure 10.2 and those
of the cyclic molecules by the lower set.

10.3.2 Linear DNA

Each of the pure (planar) bending modes of the naturally straight linear
molecules (dashed lines at the left of the uppermost spectrum inFigure 10.2) is
doubly degenerate, describingmutually perpendicularmotions of equivalent
energy. The superpositionof thesemodes leads to theglobal isotropic bending
characteristic of an ideal elastic rod. The bendingmodes of the unligatedDNA
circle, by contrast, are not degenerate: it is energetically more costly to bend
the curved molecule out of the plane of the minimum energy structure than
to deform it in the plane of the equilibrium configuration (note the higher
frequency bending modes represented by light gray lines associated with
each lower frequency [dashed] bending mode in the spectrum). Moreover,
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FIGURE 10.2
Comparative spectra of the lowest frequency bending and twistingmodes of 200-bp open, linear
DNA, and circular molecules, which are perfectly straight or naturally curved at equilibrium
and are subject to an ideal elastic potential. The terms in- and out-of-plane distinguish the dif-
ferent types of global bending exhibited by the covalently closed molecules. The terms twisting
and torsion are used interchangeably to describe the net rotation of molecular fragments or the
rotation of the molecule as a whole.

as frequency increases, the out-of-plane distortions of the naturally curved
molecule become higher in energy and the in-plane distortions become lower
in energy than the corresponding deformations of the straight chain.
The twistingmodes of the linear molecules (solid black lines in Figure 10.2)

are higher in frequency, more widely spaced, and even more sensitive to
intrinsic DNA structure than the bending modes. The lowest torsional fre-
quency of the naturally straight molecule is significantly lower in value than
that of the curved chain. The localized buildup of Twist associated with this
mode has no effect on the overall shape of the naturally straight DNA but
forces the curved molecule out of its natural plane. Interestingly, Twist plays
virtually no role in the extra “free” (0.189 cm−1) torsional mode of the curved
DNA chain (see Section 10.3.3). The energy differences between correspond-
ing torsional modes of the unligated straight and curved chains decrease at
higher frequency.

10.3.3 Circular DNA

The collective motions of the circular molecules, both of which are torsion-
ally relaxed (θ◦3 = θu3 = 36◦), show three types of large-scale deformation,
namely in-plane, out-of-plane, and torsional deformations. It should be noted
that the only truly pure normal mode of the torsionally relaxed circular
molecules is the in-plane bendingmotion. Out-of-plane bending of the closed
polymer always involves torsion and local bending deformations accompany
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the global torsional motions. Concerted changes in local bending, rather than
twisting, over a 10-bp helical repeat, give rise to the lowest (near zero) fre-
quency “free” torsionalmodeof the covalently closedmolecule constructedof
naturally straight DNA. The DNAretains a circular shape, with the molecule
rotating freely about its helical axis in this mode. As is clear from the spectral
alignment in Figure 10.2, the torsional frequencies of the natural minicircle
formed upon ligation of the intrinsically curved DNA are much higher than
those of the cyclized, naturally straight chain. The conformational mechan-
ism, which takes base pairs from the inside to the outside of the circle, places
a greater energy penalty on the naturalminicircle, fixing the rotational setting
of the molecule. The free spinning of DNAabout its global helical axis cannot
be detected in the internal reference frame of the linear, naturally straight
molecule, but is observed in the unligated circle, at a slightly lower frequency
compared to its cyclic equivalent (0.189 vs. 0.195 cm−1). A number of the
higher-frequency torsional modes observed in the open, linear form have
no counterpart in the cyclic molecules, presumably, because of the boundary
constraints of covalent bond formation. Suchmodes are expected to occur and
other modes, which are illustrated here, are expected to vanish if the ends of
the molecule are constrained by the binding of a twisting agent, that is, if the
imposed superhelical stress is concentrated at a single base-pair step.
The in-plane bendingmodes of the cyclicDNAmolecules generate elliptical

shapes and the out-of-plane modes produce cuplike distortions (see inset in
Figure 10.4). As is clear from Figure 10.2, ring closure increases the energetic
cost, that is, frequencies, of global bending compared to linear DNA. In con-
trast to the isotropic deformations of its unligated counterpart, the ease of in-
andout-of-planebendingdiffers in circlesmadeupofnaturally straightDNA.
The frequencies of in- and out-of-plane deformations are virtually identical,
however, in the closed naturally circular molecule. The latter frequencies are
roughly equivalent to the frequency of in-plane bending of the cyclized natur-
ally straight chain (Figure 10.2). The differences in the out-of-plane bending
modes of naturally circular vs. naturally straight DNArings arise from differ-
ent patterns of local conformational motion. While the uptake of Twist, �θ3,
is uniformly zero for the out-of-plane deformations of the naturally straight
DNA, it assumes nonzero values for the corresponding changes in the natural
minicircle (formed from curved DNA). By contrast, the patterns of local con-
formational fluctuations underlying the in-plane modes are similar for the
two types of closed molecules.

10.4 Role of Intrinsic Structure

10.4.1 Intrinsic Bending and Single-Molecule Stretching

Mechanical constants, which describe the overall elastic behavior of
linear DNA, can be obtained by substituting the computed normal-mode



BICH: “c472x_c010” — 2005/10/19 — 17:56 — page 196 — #10

196 Atsushi Matsumoto and Wilma K. Olson

–15 –10 –5 0 5 10 15
0

1000

2000

3000

Equilibrium roll (°)

S
tr

et
ch

in
g 

co
ns

ta
nt

 (
pN

)

FIGURE 10.3
Computed variation of the mechanical stretching constant as a function of the equilibrium Roll
angle θu2 of an ideal, naturally straightDNAchain. Themolecular insets, generatedwithMolScript
[64], illustrate equilibrium rest states with positive, zero, and negative intrinsic Roll.

frequencies in classical expressions for the normal modes of an ideal elastic
rod [41]. For example, the stretching constant (Young’smodulus)Y is givenby
(2νsn)ML/n

2, where νsn is the computed frequency of the nth stretching mode,
M is the total mass of the molecule, and L is the length of the DNA helical
axis. Substitution of the computed stretching frequencyof a 200-bp extensible,
naturally straight DNAmolecule, in which the translational force constants
are assigned values mimicking the observed dispersion of Shift, Slide, and
Rise in high resolution structures (〈�θ24 〉1/2 = 0.61 Å, 〈�θ25 〉1/2 = 0.61 Å,
and 〈�θ26 〉1/2 = 0.22 Å), however, fails to account for the values of Y deduced
from single-moleculemanipulations ofDNA(3 vs. 1.0 to 1.4×103 pN) [42–45].
Global extension of an ideal, naturally straight molecule occurs exclusively
through changes in Rise, the energetically stiffest step parameter, which
describes the axial, that is, van derWaals’ separation of neighboring base-pair
planes. Other lower energy dimer deformations contribute to the extension
and compression if the equilibrium structure deviates from its ideal rest state
(see below).
Starting from the ideal, naturally straight polymer, we introduce an

identical nonzero equilibrium Roll value (θu2 ) at every dimer step and com-
pute the normalmodes and stretching constant. Because the choice of θu2 alters
the helical contour length aswell as the normal-mode frequencies, the change
of mechanical constants in Figure 10.3 reflects the slight compression of the
double helical axis brought about by the assumed nonzero equilibrium Roll,
for example, ca. 4% reduction in contour length for θu2 = ±10◦, as well as
the natural global stretching motions. The major contributions to Y in this
example arise, however, from the change in normal-mode frequencies.
As depicted in the inset to Figure 10.3, the base pairs ofDNAstructureswith

nonzero θu2 are inclined with respect to the helical axis. The displacement
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of neighboring base pairs in the direction of inclination, that is, variation
of Slide, adds naturally to the global stretching. Because Slide is a much
“softer” conformational variable than Rise [14], global stretching is energet-
ically enhanced with increase (or decrease) of θu2 . The mechanical stretching
constant consequentlydecreases, attainingvalues comparable to those extrac-
ted from experiment for θu2 = ±10 to 15◦. In other words, when the base-pair
planes are perpendicular to the helical axis, alongwhich the stretchingmotion
takes place, energetically costly deformations via Rise result in a large elastic
constant.When theequilibriumRoll angledeviates fromzero, stretching takes
place by lower energy conformational routes with a concomitant decrease in
the mechanical constant. Thus, the base pairs of the mixed sequence DNA
used in single-molecule stretching experiments may not lie perpendicular to
the direction of stretching, ormay reorient upon forced extension as predicted
in atomic simulations [46].

10.4.2 Intrinsic Curvature and DNA Ring Puckering

We next consider a series of closed, naturally curved molecules of vary-
ing intrinsic curvature, but all of the same chain length (nB = 200 bp),
planar in their undeformed open configuration, and torsionally relaxed.
When the condition of a uniform double helical repeat of 10 bp per turn
is satisfied, the closed, torsionally relaxed, circular molecule with curvature
κ◦ = 2π/3.4nB = 0.009 Å−1 is a minimum energy configuration. Figure 10.4
reports the dependence of the frequencies of the lowest in-plane and
out-of-plane bending deformations on the ratio of curvature q= κu/κ◦ in
a series of molecules, which form natural minicircles of different chain
lengths.
The variation of the computed normal modes agrees closely with the theor-

etical dependence on q [35]. The degeneracy of the in-plane and out-of-plane
modes is evident from the superposition of o and + symbols, which are
overlaid on the predicted variation of frequencies (solid and dashed curves,
respectively). As noted above, the frequency of the out-of-plane bending
mode is higher than that of the in-plane mode if the molecule is naturally
straight (q = 0), but is of comparable magnitude if the DNA forms a natural
minicircle (q = 1). The ease of out-of-plane bending becomes greater than that
of in-plane deformation, that is, of lower frequency and lower energy, if q is
greater than 1.06, a threshold value determined by the choice of elastic con-
stants. In other words, molecules that are more strongly bent and cyclize into
smaller rings than the naturalminicircle, show a natural tendency to fluctuate
out of the plane of the 200-bp circle. Indeed, when q = 2 and the molecule is
closed into a circle two times the length of its equilibrium rest state, the barrier
to out-of-plane deformations is removed, and the frequency of the mode is
close to zero. Thus, DNA loops of a few hundred base pairs can be forced
to adopt puckered, out-of-plane configurations by incorporating sequences,
such as those reported by Cloutier and Widom [47], which naturally close
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FIGURE 10.4
Normal-mode frequencies of the lowest n = 2 in- and out-of-plane bending modes of naturally
circularmolecules that are closed into chains of 200 bp. Data are reported as a function of the ratio
q = κu/κ◦ of the intrinsic curvature κu to the curvature κ◦ of the minimum energy configuration
of the natural minicircle. The degeneracy of modes is evident from the computed frequencies,
which are distinguished by o and + symbols and compared with the theoretically predicted
frequencies [34, 35] (shown respectively by smooth unbroken and broken curves). Themolecular
insets, generated with MolScript [64], illustrate the two types of global motion.

into tight circles. By contrast, the frequencies of the in-plane modes of the
torsionally relaxed minicircles are constant over the above range of q.

10.4.3 Intrinsic Curvature and Enzyme Cutting Patterns

In order to mimic the effect of a bound protein on the natural motions of
DNA, we introduce a short naturally curved chain fragment into a covalently
closed molecule otherwise made up of naturally straight DNA. The binding
of proteins often induces significant bending in DNA and is known to influ-
ence large-scale properties of closed molecules. For example, the presence of
the Escherichia coli catabolite activator protein (CAP) on a 284-bp minicircle
precludes access of the DNAcutting enzyme, DNase I, to parts of the duplex,
other than the CAPbinding site, that can be reached in the absence of CAP [9].
Here a curved insert is assigned the position-dependent, intrinsic bending

components (Equation [10.2]) that characterize an ideal 200-bp natural mini-
circle. These changes in equilibrium rest state are made only at dimer steps
within the selected region of curvature.All other steps of the duplex retain the
intrinsic step parameters of a naturally straight molecule, and both curved
and straight dimer steps are governed by the same ideal elastic potential. As
anticipated, a 5- to 11-bp insert of curved DNA raises the lowest frequency
“free” torsionalmode to values greater than zero (blackened circles on the left
half of Figure 10.5). Precise identification of the torsionalmode is complicated
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FIGURE 10.5
Spectrum of the five lowest frequency normal modes as a function of the chain length, in base
pairs, of a curved insert in a 200-bp torsionally relaxed circularDNA,which is otherwisenaturally
straight in its equilibrium state. The curved inserts are assigned the same force constants as
other dimer steps. The intrinsic step parameters of the insert are assigned the repeating pattern
associatedwith a 200-bp naturalminicircle. The dominant torsionalmodes of the different chains
are highlighted by filled circles. The molecular inset, generated with MolScript [64], illustrates
the overall twisting of the closed DNAmolecule with a 20-bp curved fragment. Circles filled in
black correspond to the dominant torsional mode in chains with a specified curved inset and
circles filled in gray to the second most important mode.

by the mixed character of motions in the modified duplex. Two of the five
lowest frequency modes between 0.02 and 0.06 cm−1 (denoted by the circles
filled in black and gray) show a mixture of out-of-plane bending and global
torsional motions.
The restrictions on global motion imposed by a curved insert are further

enhanced by increasing the length of the perturbed fragment. As evident
from Figure 10.5, where the five lowest normal-mode frequencies are repor-
ted for curved inserts of 5 to 20 bp, the frequencies of the two aforementioned
mixed torsional modes increase with added base-pair steps. The dominant
torsional mode with the largest average degree of rotation around the helical
axis, shown by blackened circles in the figure, increases in frequency as the
length of the insert is increased. With inserts of 5 bp, the dominant torsional
frequency falls below the pure in-plane and out-of-plane bendingmodes and
has some out-of-plane bending character. By contrast, when 20 bp of themini-
circle are naturally curved, the frequency exceeds those of the pure bending
modes, but still retains some out-of-plane bending character. The motions of
the latter DNA are illustrated schematically in Figure 10.5.
Regardless of the choice of mode, the frequency of torsional motion of a

closed duplex with a curved insert is clearly increased over that of a circular
chainwithout such a fragment. The enzyme cutting properties of CAP-bound
DNAminicircles [9] are thus clarified. In theabsenceofprotein (curved insert),
the energy of “free” torsional motion is low and no single orientation of the
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closed duplex is preferred over any other. Thus, all sites are equally accessible
to a ligand such as DNase I, which contacts the (outer) convex surface of its
bent double helical target [48, 49]. The introduction of local curvature restricts
rotation of the DNA as a whole about its helical axis, favoring the minimum
energy configuration and limiting access to residues located on the inside of
the ring.

10.5 Role of Sequence-Dependent Deformability

10.5.1 Dimer Deformability and Large-Scale Anisotropy of Linear DNA

The interplay between local and large-scale conformational motions found
from base-pair level analyses of DNA normal modes suggests new ways
in which one might “engineer” the macroscopic properties of long poly-
mers from the perspective of dimer deformability. For example, one can take
advantage of the enhanced deformability of pyrimidine–purine steps [14] in
combination with the periodic fluctuations of Roll and Tilt, which underlie
the low-frequency bending modes of DNA to design regular polymers that
are intrinsically straight in the equilibrium state (at 0 K), yet, which bend in
a preferred direction at ambient temperatures.
We illustrate this large-scale anisotropy in Figure 10.6 with the two lowest

frequency bending modes of a series of intrinsically straight poly d(AmTm)
sequences where m is half the length of the repeating unit, that is, m = 1
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FIGURE 10.6
The first (nb = 1) and second (nb′ = 1) lowest global bending frequencies (solid anddashed lines,
respectively), plotted as a function ofm, in a series of intrinsically straight 120-bp poly d(AmTm)
chains, which are subject to a sequence-dependent elastic potential [14]. Frequencies are nor-
malized with respect to the lowest bending frequency of the poly d(AT) alternating copolymer
(m = 1). The molecular insets, generated with MolScript [64], illustrate the orthogonal directions
of bending of the linear chain.
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corresponds to the alternating poly d(AT) copolymer with a 2-bp repeating
unit and m = 5 to the poly d(A5T5) block copolymer with a 10-bp sequential
repeat. To emphasize the influence of sequence-dependent deformability on
global properties, we assign an ideal, naturally straight rest state to all dimers.
We employ elastic constants deduced from the variation of base-pair steps
in high-resolution protein–DNA crystal structures [14] and consider 120-bp
sequences with m = 1 to 20. As is clear from the figure, the degeneracy
of bending frequencies that is characteristic of large-scale isotropic bending
breaks down for particular sequential repeats, namely at m = 5, 7, 8, and
10–20, where the frequencies are no longer equivalent. The DNA in these
cases bends more easily in the direction of the lower frequency mode than
in the roughly perpendicular direction of the higher frequency mode (see
molecular inset in Figure 10.6).
Thus, even a naturally straight chain will bend in a preferred direction if

intrinsically flexible and stiff dimer steps are spaced at half-turn increments,
that is, ca. 5 bp apart, on opposite sides of the double helix. Chains with such
features are more likely to associate with strategically placed, up- or down-
stream proteins in a hairpin loop structure, and are expected to experience
more difficulty in snaking through the pores of a gel. This picture of intrinsic
global mobility differs from conventional “static” interpretations [50,51] of
the anomalously slow gel mobilities of certain DNA sequences based on the
intrinsic equilibrium structure of the constituent base-pair steps.

10.5.2 Dimer Deformability and Rotational Positioning of Circular DNA

In order to gain understanding of the effects of local base-pair deformability
on the properties of cyclic DNAmolecules, we examined a simple polymeric
sequence with T ·A base pairs replacing A ·T base pairs at two sites along a
cyclized 200-bp poly dA ·poly dT chain. Each base-pair substitution intro-
duces two new dimer steps in the closed duplex, that is, an AT immediately
followed by a TA in the closed d(TAm−1TA199−m) sequence. Here the DNA
is again assumed to be naturally straight in its equilibrium rest states and is
subject to fluctuations at the dimeric level based on the observeddistributions
of base-pair parameters in protein–DNA complexes [14].
As is clear from Figure 10.7, the distance m between altered sites has a

remarkable effect on the lowest torsional frequency. The computed frequency
assumes a maximum if the altered sites are separated by a multiple of 5 bp,
regardless of the distance of separation along the chain contour. That is, a
comparable increase in frequency, with a concomitant enhancement of the
energy barrier to “free” global rotational motion, occurs whether either the
two TA steps are sequentially close or on the opposite sides of the closed
duplex. A minimum in frequency is also repeated every 5 bp, but is offset
from the maxima in Figure 10.7 by 2 to 3 bp. Here too, the minimum values
do not depend on the distance between altered base pairs.
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FIGURE 10.7
Lowest (n = 0) torsional frequency, as a function of the sequential distance, m, between altered
A ·T→T ·A base pairs, of a torsionally relaxed poly d(TAm−1TA199−m) closed duplex, which
is naturally straight in its equilibrium rest state and subject to a sequence-dependent elastic
potential [14]: (top) 2 ≤ m ≤ 15, when the modified sites are close to one another; (bottom)
100 ≤ m ≤ 115, when the sites are on opposite sides of the circle; (middle) 41 ≤ m ≤ 55, when
the sites are separated by intermediate distances.

Thus, chain deformability also contributes to the rotational positioning of
DNA and the relative accessibility of cutting enzymes and other chemical
agents to the inner and outer surfaces of DNA loops and minicircles.

10.6 Role of Conformational Coupling

10.6.1 Roll–Slide Interdependence and Supercoiling of Circular DNA

Slight over- or undertwisting of a DNAcircle introduces subtle changes in the
computed normal-mode frequencies. The in-plane bendingmotions of super-
coiledchainsare consistently lower in frequency (energy) and theout-of-plane
motions are consistently higher in value than the correspondingmodes of the
relaxedcircle, with thedifferencesbecomingmorepronouncedas the frequen-
cies of the modes increase. The in- and out-of-plane bending deformations of
the supercoiled rings, however, are not pure, that is, the normal modes are
combinations of pure in-plane and pure out-of-plane bending modes.
Figure 10.8 reports the decrease in the lowest (predominantly in-plane)

bending frequencies of a 200-bp circular molecule made up of naturally
straight DNA as a function of imposed intrinsic Twist θu3 . The computed
bendingmodes of idealizedmolecules are represented by discrete points and
connected by solid lines. The superposition of symbols (open circles and plus
signs) highlights the degeneracy of the configurational fluctuations.
The frequency of deformation drops precipitously if the intrinsic Twist is

changed slightly beyond the illustrated range, approaching a value of zero
if θu3 is changed by ±2.2◦, the critical values in the present model associated
with the interchange of the circular and Figure 8 minimum energy rest states
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FIGURE 10.8
Lowest normal-mode bending frequencies, plotted as a function of intrinsic Twist θu3 , of circular
DNAmolecules, which are naturally straight in the equilibrium rest state. Chains governed by
an ideal elastic potential (points connected by solid lines) are compared with chains that are
also subject to the positive or negative coupling of Roll and Slide, where f25 is −0.233 or 0.233,
respectively. The degeneracy of the modes is evident from the computed frequencies, which are
distinguished by o and + symbols.

[52]. The very low frequency of such modes indicates that the energetic cost
of deforming the over- or undertwisted circle into a different shape is negli-
gible in these regions of θu3 . Both in- and out-of-plane bending deformations
contribute to the changes in molecular shape at the critical values.
In contrast to the symmetric effects of over- and undertwisting on bending

frequency found for aminicircle subject to ideal elastic deformations, compar-
able increases or decreases in θu3 have different effects on a more realistically
closed duplex with base-pair step parameters obeying the conformational
coupling characteristic of known structures, that is, nonzero fij(i �= j) in
Equation (10.1). The normal-mode frequencies of such molecules are shif-
ted to the right or left of the values which characterize the ring described by
an ideal elastic force field (points connected by broken lines in Figure 10.8).
In these examples, Roll and Slide are assigned a covariance 〈�θ2�θ5〉 based
on the observed dispersion, |〈�θ2�θ5〉| = (1/2)(〈�θ22 〉〈�θ25 〉)1/2, and the sign
of correlation seen inDNAcrystal data [14]. The elastic constants are obtained
by inversion of the assumed covariance matrix (see Reference 14 for details).
If Roll and Slide are correlated such that the increase of Roll leads to a

decrease of Slide and vice versa, that is, 〈�θ2�θ5〉 < 0, f25 = +0.233, the
maximum value of the lowest bending frequency occurs at an imposed Twist
of 36.1◦, a value that undertwists the molecule (because θ◦3 , the step parameter
in the torsionally relaxed circle, is less than θu3 ; see Section 10.2.5). (Positive
values of fij allow for the concomitant increase in Roll and decrease in Slide
observed in themajority of base-pair steps [14].) Themaximumshifts to lower
values of θu3 characteristic of overtwistedDNAifRoll andSlide obey apositive
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correlation (〈�θ2�θ5〉 > 0, fij = −0.233) such as that found in a few base-pair
steps, including AAdimers.
The shift in frequencies in Figure 10.8 alters, albeit slightly, the values of

imposed Twist at which the normal-mode frequencies approach zero, that is,
the critical values of θu3 at which the large-scale transition between circular
and Figure-8 forms take place. The transition occurs as θu3 approaches 33.8

◦
or 38.2◦ in the ideal natural minicircle. Because the frequencies are symmetric
with respect to the equilibrium Twist (θ◦3 = 36.0◦) of the torsionally relaxed
configuration, the difference between the smaller critical value (33.8◦) and θ◦3
is equal to that of the larger one (38.2◦). The shift in frequencies when Roll
and Slide are negatively correlated makes both critical values larger. As a
result, the difference between the smaller critical value and θ◦3 is less than that
of the larger one. Given the smaller difference of the former, the large-scale
configurational transition in such chains is expected to take place more easily
when θu3 is decreased rather than increased, that is, overtwisted rather than
undertwisted. The preferred direction of transition occurs via the increase of
θu3 , that is, undertwisting, if Roll–Slide coupling is positive.
The asymmetric uptake of supercoiling in naturally occurring DNA may

reflect the interplay of conformational variables like Roll and Slide in com-
bination with the sequence-dependent variation of equilibrium Twist. (The
mean values of dimer steps in B-DNA structures span the range 31 to 40◦
with a mean generic sequence average of 36◦ [53].) Most naturally occurring
DNA is undertwisted, that is, negatively supercoiled [54]. The shift in bend-
ing frequencies computed when Roll and Slide exhibit positive correlations
may contribute to the observed tendency of the closed duplex to unwind.
Interestingly, no other pair of step parameters has a comparable effect on
the computed bending frequencies. More realistic representation of the chain
molecule, such as sequence-dependent anisotropic bending, does not affect
the general effects of coupling. Changes in intrinsic step parameters, how-
ever, shift the state of minimum energy and have more pronounced effects
on the tendency of the closed duplex to over- or underwind.

10.6.2 Twist–Rise Coupling and Overstretching of Linear DNA

Values of the global twisting rigidity of DNA derived from recent single-
molecule studies of over- and undertwisted molecules, which are stretched
to full extension [55] are much higher (by a factor of 1.1 to 1.5) than values
deduced from earlier solution measurements [32, 56–59]. The low-frequency
twisting modes of model DNApolymers subject to comparable external con-
straints provide a structural rationalization for these differences. The global
twisting constant, which can be obtained by substituting the computed
normal-mode twisting frequencies in the standard expression [41] for the
normal modes of an ideal elastic rod, is dominated by the lowest-frequency
twisting (n = 1) mode. The increase in frequency of the latter mode is thus
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TABLE 10.1

Effect of Local Conformational Coupling on the Lowest Frequency Nor-
mal Twisting Modes and Global Torsional Constant of a 100-bp Ideal,
Naturally Straight DNAMoleculea.

Coupled variables νol ν
eq
l νstrl ν

eq
l − νol νstrl − νol Rb

cm−1 cm−1 cm−1 (%) (%)

Ideal DNAc 0.1886 0.1886 0.1886 0.00 −0.01 1.05
Tilt–Roll 0.1887 0.1887 0.1886 0.00 −0.01 1.05
Tilt–Twist 0.1882 0.1882 0.1895 0.00 +0.71 1.06
Tilt–Shift 0.1886 0.1886 0.1886 0.00 −0.01 1.05
Tilt–Slide 0.1886 0.1886 0.1886 0.00 −0.01 1.05
Tilt–Rise 0.1886 0.1886 0.1888 0.00 +0.08 1.05
Roll–Twist 0.1874 0.1874 0.1905 0.00 +1.65 1.08
Roll–Shift 0.1886 0.1886 0.1886 0.00 −0.01 1.05
Roll–Slide 0.1887 0.1887 0.1886 0.00 −0.01 1.05
Roll–Rise 0.1887 0.1887 0.1897 0.00 +0.54 1.06
Twist–Shift 0.1881 0.1881 0.1873 0.00 −0.45 1.04
Twist–Slide 0.1882 0.1882 0.1866 0.00 −0.87 1.03
Twist–Rise 0.1845 0.1971 0.1971 +6.83 +6.87 1.20
Shift–Slide 0.1887 0.1887 0.1886 0.00 −0.01 1.05
Shift–Rise 0.1886 0.1886 0.1881 0.00 −0.30 1.04
Slide–Rise 0.1886 0.1886 0.1882 0.00 −0.22 1.05
Roll–Twist, Twist–Rise 0.1866 0.1992 0.2023 +6.72 +8.41 1.23
Twist–Slide, Twist–Rise 0.1862 0.1987 0.1971 +6.72 +5.87 1.18
Roll–Twist, Twist–Slide 0.1906 0.1906 0.2045 0.00 +7.28 1.21
Roll–Twist, Twist–Slide, 0.1845 0.1969 0.2123 +6.75 +15.09 1.39
Twist–Rise

a Equilibrium rest state: θu1 = 0◦, θu2 = 0◦, θu3 = 36◦, θu4 = 0 Å, θu5 = 0 Å, and
θu6 = 3.4 Å; DNA chains subject to the following global constraints: νol , unres-
trained chain ends; ν

eq
l , ends restrained to equilibrium length; νstrl , chain ends

stretched by 5%.
b Ratio of torsional constants R = Cstr/Co of stretched chains compared to the
corresponding DNA molecules with unrestrained ends. Torsional constants
estimated from the lowest torsional frequency, that is, C = (2Lνtn)2IM/n2, where
IM is the moment of inertia per unit length around the twisting axis [41].

c Chain with independent parameters.

indicative of an increase in the twisting constant. (The global twisting rigidity
is proportional to the square of the normal-mode twisting frequency.)
The frequency of the dominant global twisting mode of a series of 100-bp

DNA homopolymers with different local conformational properties and
global constraints on chain ends is listed in Table 10.l. The reference molecule
is assigned the intrinsic step parameters and elastic constants of an ideal
naturally straight duplex. In other chains, the base-pair step parameters are
assumed to be correlated. All pairs of correlations, for which, 〈�θi�θj〉 =
〈�θj�θi〉 �= 0, are considered, one at a time, as well as selected combinations
of two or three pairs of conformational correlations.
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Thenormal-mode twisting frequencies νol , which are obtained fromcalcula-
tionswithout restraint on the end-to-end distance, are compared in Table 10.1
with the frequencies νeql of chain ends restrained to their full equilibrium
extension and the frequencies νstrl of chains that are stretched 5% beyond
the end-to-end length of the equilibrium structure. The spring constant k of
the energy term (Equation [10.7]) used to restrain chain ends is equated to
kBT/〈�Rise2〉. That is, the restraint energy placed on chain ends is compar-
able to the interaction associated with the deformation of Rise at a single
base-pair step.
According to the tabulated data, the largest change in twisting frequency

due to the end-to-end restraint occurs when Twist–Rise conformational cor-
relations are considered in thepotential energy function (5th column). Smaller
changes in frequency accompany the incorporation of Roll–Twist or Twist–
Slide interactions in the slightly overstretched chains (6th column). The
normal-mode frequency increases much more if two or three parameters
are coupled. The combination of Roll–Twist and Twist–Slide is striking,
because each of the correlations alone does not change the frequency very
much, yet when combined, the increase of frequency is fairly large. When
the Twist–Rise correlation is included with this combination, the frequency
is especially large (last entry in Table 10.1). The computed increase in the
elastic constant under these conditions is equivalent to that observed in recent
physical studies of single, fully extended DNAmolecules [55].

10.7 Summary

The DNA discussed in this review is comparable in length to the loops that
are formed by various regulatory proteins and enzymes that bind in tandem
to sequentially distant parts of the long chainmolecule [1, 2]. The influence of
intrinsic structure, such as, natural curvature vs. ideal extension, on the global
motions of themolecules presented here thus provides insight into howDNA
loops of several hundred base pairs might respond to changes in nucleotide
sequence and environmentally induced superhelical stress. The sequence of
base pairs determines the degree of intrinsic curvature, local deformability,
and other conformational properties of the double helical molecule [60–62].
Changes in chemical environment perturb the equilibrium rest state [27–29]
andeffect transformations of theB-DNAduplex to alternate helical forms [63].
Herewe show that covalently closedDNAduplexeswith natural curvature

are torsionally stiffer than minicircles, which are made up of naturally
straight DNA (Figure 10.2). While naturally straight DNA rotates freely
about its global helical axis, there is a barrier impeding large-scale helical
twisting of curved DNA. Even a short, naturally curved insert locks the rota-
tional setting of a covalently closed molecule, which is otherwise naturally
straight (Figure 10.5). Segments that lie on the outer face of the circularized
structure are accessible to DNA cutting enzymes but those on the inside are
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hidden. Cyclic DNA molecules with base-pair deformability appropriately
phased with the double helical repeat also restrict “free” torsional motions
(Figure 10.7). Even a naturally straight, linear chain will bend in a pre-
ferred direction if intrinsically flexible and stiff dimer steps are spaced at
half-turn increments, that is, ∼5 bp apart, on opposite sides of the double
helix (Figure 10.6).
The degree of intrinsic curvature also governs global bending. ClosedDNA

molecules that are strongly bent show a natural tendency to fluctuate out of
the plane and chains made of naturally straight DNA deform more easily in
the plane of a circle (Figure 10.4). The barrier opposing global bending of the
natural minicircle lowers significantly when the molecule is over- or under-
twisted (Figure 10.8). The frequency, or, energy, of global bending decreases
in value upon supercoiling, and if the imposed stress is sufficiently large,
global configurational rearrangements take place.
At the polymeric level, the local conformational features included in the

dimeric DNAmodel bring structural insights not possible with conventional
elastic treatments. The calculations reported here showhow the natural coup-
ling of local conformational variables affects the global motions of DNA.
The synchronous variation of Twist and Rise increases the global twisting
constant substantially, providing a structural perspective on the microma-
nipulation of individual molecules (Table 10.1). Successful correspondence of
the computed stretching modulus with experimental data requires that the
DNAbase pairs be inclinedwith respect to the direction of stretching or reori-
ented upon forced extension (Figure 10.3). Chain extension is thereby effected
by low energy transverse motions, which vary the overlap but preserve the
strong van der Waals’ stacking of neighboring base-pair planes. The com-
puted stretching constant significantly exceeds observed values if the DNA
is pulled in a direction perpendicular to the base-pair planes.
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11.1 Introduction

In the past 20 years, many atomic structures of icosahedral viruses have
become available. The VIPER database [1] currently lists 74 x-ray struc-
tures and 11 cryo-electron microscopy (cryo-EM) structures, corresponding
to 65 different virus types and additional strain variations. In most structures
only the virus protein capsid is present, whereas the RNA (or DNA) that is
encapsulated by the capsid is not resolved. The icosahedral virus capsid con-
sists of 60 or more identical subunits, called protomers, which in turn are
made up of a number of identical or nonidentical proteins often called viral
proteins (VPs).
Computational analyses of virus capsid structures have included molecu-

lar dynamics (MD) calculations to study the binding of small molecules [2, 3],
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Poisson–Boltzmann calculations to study the structural basis of pH sensitivity
[4], and normal mode (NM) calculations to study swelling pathways [5].
Because of the large size of these viruses all these calculations were sim-
plified to reduce the complexity. The first MD studies were restricted to fully
symmetric motions in which only one protomer is simulated and neighbor-
ing protomers are copies generated by icosahedral symmetry operations [2].
A different series of MD studies by Post and coworkers focused on a small
molecule ligand binding site in rhinovirus in which only residues in a spher-
ical region around the binding site were allowed to move [3,6–8]. The study
of the pH-dependent stability of foot-and-mouth disease virus was reduced
in complexity by calculating the electrostatic interactions between two pro-
tomers only [4]. TwoNMstudies on icosahedral viruses have been published,
both of which included a full virus capsid. These, otherwise extremely large
calculations, were greatly simplified by allowing the individual VPs to move
as rigid bodies only [5], or by allowing symmetric motions only [9].
All these simplifications significantly limit the relevance of the results with

respect to the full virus capsid. To allow only fully symmetric motions [2, 9]
the virus only explores a small fraction

( 1
60 th

)
of its available phase space,

as the motion of a single protomer determines the motion of the complete
system in this approach. Focusing on a small flexible region around a binding
site within a large fixed structure [3] allows the simulation of local effects,
but if the property to be studied involves larger scale motions, the results
are not representative of the full virus. To use the interaction between two
protomers as a model for all interprotomer interactions in the system, [4]
ignores potentially significant multibody effects.
The previously published NM studies on icosahedral viruses analyzed

conformational changes of cowpea chlorotic mottle virus (CCMV) [5] and
bacteriophage HK97 [9], respectively. For CCMV, the x-ray structure of the
native formwas used to calculate NMs of the virus. TheNMswere compared
to the cryo-EM structure of the swollen form of CCMV to propose potential
pathwaysof virus swelling. TheHK97 study calculated the symmetricNMsof
a simplified atomic representation to predict a pathway of virus maturation.
As mentioned earlier, both NM studies required significant simplifications to
enable the calculations to be done with currently available computer power.
Themotions allowed in the CCMV studywere rigid bodymotions of the indi-
vidual VPs, resulting in dynamics analogous to tectonic plate motions. It is
likely that internal flexibility of the VPs plays a significant role in large-scale
motions of the system, and thus it would be desirable to be able to include
more of the natural degrees of freedom in a NM calculation. The HK97 study
only included fully symmetric motions, which constitute less than 2% of the
motions of the system, and a full treatment of all motions would be a more
complete representation of the dynamics of the system.
The symmetry of icosahedral viruses enables a great simplification of the

NM calculation without any loss of accuracy. The approach uses the fact that
the matrix of second derivatives of the potential energy (the Hessian) of a
symmetric system is inherently symmetric [10]. By usingmethods developed
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in group theory the Hessian is expressed in “symmetry coordinates,” which
results in the Hessian becoming block-diagonal.
Because of this transformation, the size of the Hessian to be diagonalized

is reduced from 60N × 60N (where N is the number of degrees of freedom
per protomer) to five blocks of sizes 5N × 5N, 4N × 4N, 3N × 3N, 2N × 2N,
and N × N, respectively. Since the memory use of a NM calculation scales
as N2 and CPU time scales approximately as N3 [11], the symmetry method
enables a large increase in N without sacrificing any accuracy. The approach
is completely general and any protomer basis set can be used as long as it
can be expressed in Cartesian coordinate displacements. These include, for
instance, the Cα-only basis set used in the elastic network model [12, 13], the
rigid block basis sets of the rotation–translation block (RTB) model [14], and
internal coordinate basis sets such as a dihedral basis set.
The symmetry coordinate method has been applied to systems with cir-

cular symmetry such as the gramicidin channel dimer [15] and the tobacco
mosaic virus protein disk (17-mer) [16]. For systems with icosahedral sym-
metry themethodhasbeenapplied tobuckminsterfullerene [17, 18], as aproof
of concept to an artificial (Dialanine)60 system [19], and recently to icosahedral
virus capsids [20, 21].
Here we describe the results of the NM calculations of the (Dialanine)60

system and several icosahedral virus capsids. The (Dialanine)60 system is a
useful proof of concept calculation since it contains all types of intra- and
intermolecular forces that are present in much larger icosahedral viruses,
and because it allows a direct comparison between a full regular NM cal-
culation and a calculation using symmetry coordinates. The calculations of
icosahedral virus capsids focus on general NM properties such as frequency
spectra, calculated fluctuations, and displacements of individual NMs. The
symmetry method has great potential in the study of dynamic icosahedral
virus properties such as large-scale conformational changes associated with
cell entry, reversible swelling, or viral maturation. Another application is the
study of the stabilizing effects of small molecule binding to the capsid con-
formation, which is thought to be entropic in nature [8, 22]. In addition, it
has recently been shown that NMs can be used to improve the accuracy of
cryo-EM structures of icosahedral viruses [23].

11.2 Methods

11.2.1 Theory

The computationally most expensive step in a NM calculation of a large
system is the diagonalization of F, the mass-weighted Hessian matrix of
second derivatives of the potential energy [11]. Since F grows quadratically
with the size of the molecule, NM calculations on large systems are often
prohibitive because of memory and CPU time requirements. For systems
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with internal symmetry, group theoretical methods allow a simplification
of the form of F, resulting in a block-diagonal form S that is much easier
to diagonalize [10]. Detailed reviews of the group theoretical methods have
been published elsewhere [16, 19, 21, 24]. The key step in the simplification of
F is a change from a Cartesian basis to a symmetry coordinate basis, which is
done by the following matrix operations:

S = t�F� (11.1)

where t denotes transposition and � is the matrix of orthonormal symmetry
coordinates φk

p,s that are defined by the type of symmetry of the system. The
φk
p,s coordinates are obtained by application of projection operators P̂p

ss to
an arbitrary function Uk of the coordinates of the symmetric system. The
projection operators are defined as

P̂p
st =

∑
g∈G

τ
p∗
st (g)T (g), s, t = 1, sp (11.2)

where τ p∗st (g) is the complex conjugate of the sth row and tth column of the
matrix τ p(g), which is defined by the irreducible representation (irrep) p of
the symmetry group G containing pG irreps. Matrices τ p(g)with dimensions
sp× sp for the icosahedral group were described previously [17]. T (g) are the
rotationmatrices of all (nG) symmetry operations g ofG, which are the regular
Cartesian rotationmatrices if the functionUk is expressed in aCartesian basis.
There are 60 rotation matrices for the icosahedral group. Let {uk ; k = 1,N} be
an orthonormal basis of subunit 1, for example, a full Cartesian basis where
N equals three times the number of atoms. Alternatively, uk can be a reduced
basis set, where component i of each uk vector corresponds to the coefficient
of the ith degree of freedom of the full Cartesian basis. We defineN functions
of the symmetric multimer {Uk ; k = 1,N}, where Uk = (uk , 0, . . . , 0). Every
Uk vector is 60 times the length of a uk vector. When the diagonal projection
operators P̂p

ss are applied to all Uk ,

φ
p,s
k = P̂p

ssUk (k = 1,N) (11.3)

we obtain sp × N basis functions φp,s
k for each irrep of the symmetry group.

The total number of basis functions obtained this way is nG × N and the
transformation is orthogonal.
Using orthogonality properties of the τ p(g) matrices the elements of the

matrix S (Equation [11.1]) are given by [19]

Sps,πσk,κ = tuk

[
nG

sp

nG∑
M=1

τ
p
sσ (M)F1MT (M)

]
uκδsσ δpπ ,

(k, κ = 1,N; p,π = 1, pG; s, σ = 1, sp) (11.4)
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FIGURE 11.1
Diagrammatic representations of the symmetry-based Hessians S for irreps A and T1. The
matrices are shown in upper diagonal form since they are symmetric. The entries of the matrices
are calculated according to Equation (11.4), which results in the following sums: Irrep A: S1,1k,κ =
tuk

[
(60/1)

∑60
M=1 τA11(M)F1MT (M)

]
uκ ; Irrep T1: S

l,λ
k,κ = tuk

[
(60/3)

∑60
M=1 τ

T1
lλ (M)F1MT (M)

]
uκ ,

where the indices l and λ correspond to the S subscripts in the diagram.

where F1M is the block of the full mass-weighted Hessian F corresponding
to the interaction of subunit 1 with subunit M, the indices k and κ sum over
all N degrees of freedom, p and π sum over all irreps, s and σ sum over all
entries in the matrices τ p(g), and δ is the Kronecker delta.
Thus far, themethod is general for anypoint symmetrygroup. Thedegreeof

reduction in complexity in going frommatrix F toSdepends on the symmetry
of the system. For systems with z-fold circular symmetry and N degrees of
freedom per subunit, the Hessian transforms from a (z × N)2 sized matrix
to a block-diagonal matrix containing one matrix of size (N)2 and (z − 1)/2
matrices of size (2N)2 for odd numbers of z, and two matrices of size (N)2,
and (z− 2)/2 matrices of size (2N)2 for even numbers of z.
Systems with icosahedral symmetry transform from a (60N)2-sized matrix

to a block-diagonal matrix containing one matrix of size (N)2, two of size
(3N)2, one of size (4N)2, and one of size (5N)2, which can all be diagonalized
separately. These matrices correspond to the irreps A, T1/T2, G, and H, of
the icosahedral symmetry group. The largest matrix that needs to be diag-
onalized is 12 times smaller in linear dimension, resulting in an approximate
diagonalization speedup of 123 = 1,723-fold. Figure 11.1 shows diagrams of
the transformed Hessians for the A and T1 irreps.
The A irrep represents fully symmetric motions, and all other irreps cor-

respond to asymmetric motions that are degenerate. For instance, for every
NM contained in the T1 irrep (3-fold degeneracy) there are two additional
modes with identical frequency and identical displacements that are rotated
with respect to the first NM. The T2, G, and H irreps have 3-, 4-, and 5-fold
degeneracies, respectively. The number of modes represented by the sym-
metric A irrep form only a small fraction ( 160 = 1.7%) of the complete NM
spectrum of the icosahedral system.
Afterdiagonalization, theCartesiandisplacements of theNMscanbe recon-

structed, which allows the calculation of NM fluctuations, cross-correlations,
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and trajectories. The Cartesian atomic displacement vectors yji of subunit j
due to symmetry mode i of irrep A are given by

yji = τA11(gj)T (gj)
N∑

k=1
ukzAi,k (11.5)

where gj is the rotation corresponding to subunit j, uk (k = 1,N) is the
orthonormal basis set of subunit 1, and zAi,k is the kth entry of symmetry
mode i of irrep A. For the other irreps the expression for the Cartesian dis-
placement yji is more complex, due to the form of the corresponding block in
the transformed Hessian F (Figure 11.1). For instance, the expression for the
T1 irrep is

yji = τT111 (gj)T (gj)
N∑

k=1
ukz

T1
i,k + τT112 (gj)T (gj)

N∑
k=1

ukz
T1
i,(N+k)

+ τT113 (gj)T (gj)
N∑

k=1
ukz

T1
i,(2N+k) (11.6)

The expressions for the T2, G, and H irreps are analogous and contain 3,
4, and 5 terms, respectively. After obtaining Cartesian displacement, vectors
of all NM standard methods can be used to calculate trajectories, atomic
fluctuations, and cross-correlations [11].

11.2.2 Calculation Details

The methods to calculate NMs using circular and icosahedral symmetry
bases and to obtain fluctuations, cross-correlations, and trajectories, were
implemented in the program Chemistry at Harvard Molecular Mechan-
ics (CHARMM) (version 28) [25], which was used to calculate all results
presented in this chapter.
An artificial icosahedral system consisting of 60 dialanine subunits (called

[Dialanine]60) was constructed to verify the symmetry-based calculations by
comparing the results to a full standard diagonalization [19].
The capsid structures of poliovirus (Mahoney strain), rhinovirus 16, and

CCMV, were obtained from the protein data bank (PDB) database [26] (PDB
entries 1vbd, 1aym, and 1cwp, respectively).All calculationswere done using
the polar hydrogen PARAM19 parameter set [27] in CHARMM. The virus
protomer structures were energy minimized in the presence of nine adjacent
protomers, using the IMAGE facility in CHARMM, which places symmet-
ric images of the protomer around itself. During the minimizations and
NM calculations we used a distance-dependent dielectric constant of 2r (r is
the distance between atoms in Å) to account for solvent screening, and a
nonbonded cutoff distance of 7.5 Å.
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Since a full Cartesian basis set was too large to be handled by the available
computer memory, we used a basis set that includes all dihedral angles of the
system with the exception of the peptide bonds, which were assumed rigid.
In addition, the six vectors representing uniform translations and rotations
were added for every chain in the protomer. For example, the poliovirus pro-
tomer contains five chains: vp1, vp2, vp3, vp4, and a bound ligand. The total
size of the protomer basis set of poliovirus was 3,438, which is significantly
smaller than a full Cartesian basis set (24,252). The maximum Hessian to be
diagonalized is therefore (5×3, 428)2, which uses approximately 1.2 gigabyte
(GB) of computer memory. The memory requirement for a full diagonaliza-
tion with this dihedral basis set would have been 144 × 1.2 = 172 Gbytes.
For comparison we also used RTB basis sets method with rigid blocks of two
residues each (basis set size 2,556), or rigid blocks corresponding to complete
protein chains in the protomer (basis set size 30).
Calculations were done on SGI computers with R10000 and R14000 pro-

cessors. CPU times for the largest system, poliovirus, were approximately
27 h for the A irrep to 43 h for the H irrep. Most of the CPU time is spent in
the calculation of the transformed Hessian S (Equation [11.1]).

11.3 Results

11.3.1 (Dialanine)60

We applied the symmetry method to the artificial (Dialanine)60 system to
be able to confirm that the obtained results are identical to those obtained
from a regular NM calculation [19]. The features that were compared were
the NM frequencies, displacements, and fluctuations. Figure 11.2 shows the
structure of the minimized (Dialanine)60 system. The regular NM calculation
of the system took 12min on an SGIR10000 processor, whereas the symmetry-
based calculations were much faster, that is, 0.1 sec for the A irrep, 0.2 sec for
T1 and T2 irrep, 0.4 sec for G irrep, and 0.5 sec for the H irrep. A comparison
of the NM frequencies shows that they are identical up to the fourth decimal
place (Table 11.1). Round-off differences between the full matrix calculation
and the much smaller symmetry matrices calculations are the cause of the
small differences beyond the fourth decimal.
The NM displacements of the A irrep are fully symmetric and nondegen-

erate, that is, identical for all 60 subunits, and the results from both methods
could be easily compared by calculating the vector inner product between
the atomic displacements. The displacements were identical up to at least six
significant figures (inner product >0.999 998). For the degenerate NMs (all
other irreps), the displacements from the NM obtained from the symmetry
method should be expressable as a linear combination of the set ofmodeswith
identical frequencies from the full calculation. This was confirmed as the total
squared inner product of the symmetry method mode with the degenerate
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FIGURE 11.2
Symmetrically minimized structure of the (Dialanine)60 system. The numbers represent five of
the symmetry axes, labeled by their symmetry level. The 10 subunits in the back are omitted for
clarity. Hydrogens are not shown.

TABLE 11.1

Comparison of the NM Frequencies (in cm−1) from Full and
Symmetry Calculations.

Full A T1 T2 G H

8.541 953 (5) 8.541 912
9.030 711 (3) 9.030 643
9.927 437 (4) 9.927 345
11.230 868 (5) 11.230 826
12.960 291 (3) 12.960 120
13.298 421 (4) 13.298 819
17.217 847 (5) 17.214 828
19.146 540 (5) 19.146 528
20.921 159 (4) 20.921 062
22.822 960 (1) 22.822 952

modes from the full calculation added up to exactly one in all cases. As a
final check we compared the atomic fluctuations of the system from the full
and symmetry-based calculations and found that they were identical. These
results therefore confirmed that our implementation was correct and that the
results are equivalent.

11.3.2 Poliovirus

The Cα-trace of theminimized structure of poliovirus is shown in Figure 11.3.
Minimization of the protomer in the presence of symmetry images resulted in
relatively small conformational changes (RMSD Cα atoms 2.3 Å). Most of the
difference is due to a uniform shrinkage of the capsid, which has a diameter of
about 300 Å (shrinkage of less than 2%). The shrinkage is small on a relative
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FIGURE 11.3
(See color insert following page 136) Top view of the Cα-trace of the poliovirus capsid, in
which protomers are shown in different colors. The locations of a 2-fold, two 3-fold, and a 5-fold
symmetry axis are indicated.

scale, but highlights one of the potential drawbacks of NM analysis with
a standard molecular mechanics potential energy function. The shrinkage
could be caused by approximations of electrostatics, the absence of RNA in
the structure, or the fact that minimization corresponds to the annealing of a
structure that is basically a hollow shell.
Every protomer of poliovirus contains 8,084 atoms in a polar hydrogen rep-

resentation, and thus the full capsid contains 60 × 8, 084 = 485, 040 atoms,
or 1,455,120 degrees of freedom in a full Cartesian basis set. A standard NM
calculation would need over 8 Terabytes (TB) of computer memory to store
the Hessian, and the CPU time to complete the calculation would be unac-
ceptably long. The use of the symmetrymethodwith a full Cartesian basis set
is still a very large calculation with a maximum Hessian size (corresponding
to theH irrep) ofmore than 58GB.Although the fully symmetricmodes of the
Airrep couldbe calculatedwith a full Cartesian basis (memory requirement of
2.3GB),we decided to use various reduced basis sets to describe the flexibility
of the virus. Themost complete basis set usedwas the set of all dihedral angles
excluding thedihedrals of the peptide bonds, extendedwith theuniform rota-
tion/translation motions of all separate protein chains and small molecule.
This resulted in a protomer basis set size of 3,438 vectors. The second basis
set was the RTB basis set using a block size of 2 residues (2,556 vectors).
The most simplified basis set included only the uniform rotation/translation
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FIGURE 11.4
Frequency spectra of the NMs of poliovirus using a full dihedral basis set. The five columns
correspond to the five different irreducible representations of the icosahedral symmetry group.

motions of all separate protein chains (vp1 to vp4) and small molecules (total
of 30 vectors). This last basis set corresponds to the basis set used in the
previously reported CCMV NM study [5].
As described in Section 11.2, the NMs of the virus capsid are grouped into

five irreps: A, T1, T2, G, and H. Memory requirements for the different irreps
with the dihedral basis set were 47 Megabytes (MB), 425 MB, 756 MB, and
1.2 GB, for the A, T1/T2, G, and H irreps, respectively.
Figure 11.4 shows the frequency spectra up to 20 cm−1 of the NMs of the

different irreps for the full dihedral angle basis set. The H irrep contains the
lowest frequency NM with a frequency of 0.94 cm−1, which corresponds to
28.2 GHz and a period of approximately 35 psec. This value is very close to
the estimated frequencies for an elastic sphere model of a virus particle with
a radius of 150 Å [28, 29]. The lowest fully symmetric mode (A irrep) has a
frequency of 2 cm−1. As expected from group theoretical arguments [10], the
six uniform translational and rotational motions are present as two near-zero
frequencies in the T1 irrep. Since the T1 irrep is 3-fold degenerate, these two
frequencies correspond to six uniform motions, which is the correct num-
ber for three-dimensional nonlinear molecules. The density of the frequency
spectrum is increasingly higher for the A, T1/T2, G, and H irreps. Because
the A, T1s/T2, G, and H irrep frequencies correspond to 1-, 3-, 4-, and 5-fold
degenerate NMs, a comparison of the density of states of the different irreps
shows an even larger dominance of the nonsymmetric NMs (Figure 11.5).
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FIGURE 11.5
Density of states calculated from the frequency spectra in Figure 11.4. The density was calculated
at every integer frequency and averaged over awindowof 5 cm−1. TheA, T1/T2, G, andH irreps
are represented by dashed, solid, short-dashed, and thick lines, respectively.

The overall character of the NMs can be illustrated with displacement
vectors attached to their corresponding atoms. Because of the large num-
ber of atoms even in a Cα-only representation, we present virus capsids and
show the average displacement vectors per vp protein in every protomer.
We omitted displacements of the vp4 protein for clarity. It should be noted
that although the displacements shown suggest rigid body motions of the
individual vp proteins, they are in fact fully flexible. The direction of the
motions will be in the opposite direction after half a period of oscillation of
the NMs. The first three modes of theA, T1, T2, G, andH irreps are illustrated
in Figure 11.6. Figure 11.6 shows the displacements of the lowest frequency
A irrep NM. The NM is fully symmetric (as are all A irrep modes) and can be
described as a uniform radial expansion and contractionmotion. Thismotion
is very similar to the spheroidal motion with l = 0 in vector spherical har-
monics of an elastic sphere [30]. The second A irrep NM is characterized by
an in- and outwardmotion of the structural region around the 5-fold axis also
known as the mesa [31] (Figure 11.6). The thirdA irrepmode consists of cork-
screw rotations of pentameric modules around the 5-fold axis without any
significant swelling or shrinking of the capsid (Figure 11.6). In the first NM
of the T1 irrep, the mesa are also projected outward significantly, although
not simultaneously. Describing the capsid as a sphere with a northern and
southern hemisphere the motion consists of alternating expansions and con-
tractions of opposite hemispheres. The second T1 NM also has alternating
expansions and contractions of the hemispheres, but the motions are more
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FIGURE 11.6
Top and side views of the first threeNMdisplacements of poliovirus half capsid for all five irreps.
The Cα-traces are omitted for clarity. The orientation of the top views is identical to Figure 11.3,
and the side views are rotated by 90˚.

uniform. The third T1 mode has a predominantly toroidal character (motions
in plane) in which pentamers are deformed. The first T2 mode consists of an
alternating inward and outward projection of themesa area around the 5-fold
axis on one hemisphere combined with uniform deformation of the capsid
(Figure 11.6[g] and Figure 11.7[a]). The second T2 mode is also a predomin-
antly toroidal mode with three nodes in the latitude direction (including the
one at the pole), so that motions in the north and south pole area are in the
samedirection, andmotionsaround theequator are inoppositedirection. This
motion corresponds to the third toroidal motion (l = 3) in vector spherical
harmonics. The third T2 mode is a complexmodewith an outward projection
of themesa. The first Gmode consists of an alternating north and south hemi-
sphere motion in which the area around the 2-fold and 3-fold axes is moving
outward. The secondGmode is complex and contains outwardmotions of the
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(a)

(b)

FIGURE 11.7
(a) Shapes of the poliovirus capsid at the two extremes of the first NM of the T2 irrep. (b) Same
as part(a) for the second H irrep NM.

2-fold axes. The third G mode is a complex toroidal mode. The first H mode
can be described as a football mode inwhich the capsid sphere deforms into a
football-shaped ellipsoid. This motion also has a direct counterpart in vector
spherical harmonics (spheroidal motion with l = 2). The second H mode is
toroidal and has two nodes in the latitude direction, with the hemispheres
moving in opposite directions (toroidal mode with l = 2 in vector spherical
harmonics). The third H mode projects the mesa simultaneously outward at
both poles.
After inspection of the lowest frequency NMs of the different irreps, it

appears that some of themotions directly correspond to the individual stand-
ing waves that are solutions to the vector spherical harmonics of an elastic
sphere. Other motions are clearly influenced by the structural detail of the
capsid, for example, the mesa around the 5-fold axis and the canyon that is
located around the mesa probably cause many of the low-frequency modes
to have significant outward motions of the mesas in which the canyon area
functions as a hinge.
We compared the results of the dihedral basis set and we also used two

alternative basis sets. The second set was an RTB basis set containing uniform
rotation/translationmotionsof 2-residueblocks, and is smaller (2,556vectors)
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FIGURE 11.8
Frequency spectra of the A and H irrep NMs of poliovirus using three different basis sets.
Columns 1 and 2 correspond to the full dihedral basis set also shown in Figure 11.4, columns 3
and 4 correspond to the 2-residue RTB basis set, and columns 5 and 6 to the complete chain RTB
basis set.

than the dihedral basis set (3438 vectors). The third basis set thatwas usedhad
uniform rotation/translation motions for individual chains (vp1, vp2, vp3,
vp4, ligand), and contained 30 vectors only. With a basis set of 30 vectors it is
possible to do a regular NM calculationwithout using the symmetry coordin-
ate transformation, and the results would be identical to those obtained here.
This approach was used in the NM study of CCMV swelling, where the basis
set for the protomer consisted of 18 basis set vectors [5]. The use of the RTB
basis sets increased the frequencies of the NMs as a result of the more rigid
representation of the system (Figure 11.8). Although the general character
of some of the modes such as the uniform breathing mode of the A irrep is
also represented in some of the RTBmodes, the lack of flexibility significantly
affects the details of themotions.Whenusing the third basis set for poliovirus,
a protomer of almost 1000 residues is represented by five rigid blocks and
therefore anymotion that requires flexibility in the protomers themselveswill
be severely impeded. The effect of using different basis sets on the calculated
atomic fluctuations is illustrated in Figure 11.9 for the vp1 protein. The cal-
culated fluctuations are compared to the experimental fluctuations extracted
from the crystallographic temperature factors. The results from the dihed-
ral basis set are clearly correlated with the experimental values, although
not all fluctuation details are reproduced. The fact that the overall level of



BICH: “c472x_c011” — 2005/10/19 — 18:00 — page 227 — #15

Symmetry in Normal Mode Analysis of Icosahedral Viruses 227

0.4

0.8

1.2

1.6

R
M

S
 fl

uc
tu

at
io

ns

0.0

2.0

60 100 140 180 220 26020 300

Residue number

FIGURE 11.9
Residue-averaged fluctuations of poliovirus for vp1. The fluctuations based on crystallographic
temperature factors are shown in thick lines, those based on NMswith the full dihedral basis set
in thin lines, the RTB basis set with block size of two residues in long-dashed lines, and the RTB
basis set with full vp protein block size in short-dashed lines.

fluctuations is lower than that in the experiment is caused by various factors
[32]. NMcalculationwith a full Cartesian basiswould result in lower frequen-
cies (and correspondingly larger fluctuations), and bring theNMfluctuations
even closer to the experimental values. The fluctuations resulting from the
2-residueRTBbasis set are smaller in absolute value but have a pattern similar
to the results from the dihedral basis set. In contrast, the fluctuations resulting
from the third basis set have few features, and it is clear that many details
are lost.

11.3.3 Rhinovirus and CCMV

We also calculated the NMs for rhinovirus 16 and CCMV using dihedral
basis sets. The minimizations of the rhinovirus structure resulted in relat-
ively small conformational changes (RMSD Cα atoms 1.8 Å). For CCMV
significantly larger changes were seen after minimization (RMSD Cα atoms
6.5Å). These changes consistedof anoverall shrinkingof the capsid combined
with relatively small loop changes in the A capsid proteins that surround
the 5-fold symmetry axis [5]. The capsid structure of CCMV contains larger
holes than the structures of poliovirus and rhinovirus, and this may well
be the main cause of the shrinking of the CCMV capsid upon energy min-
imization. Frequency spectra of the NM calculations using dihedral basis
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FIGURE 11.10
Comparison of frequency spectra of the A and H irrep NMs of poliovirus (columns 1 and 2),
rhinovirus (columns 3 and 4), and CCMV (columns 5 and 6).

sets for irreps A and H of poliovirus, rhinovirus, and CCMV, are shown
in Figure 11.10. The density of NM frequencies and lowest calculated fre-
quencies (0.87 cm−1 for rhinovirus, 0.80 cm−1 for CCMV) are comparable
to those obtained for poliovirus. The general character of the displacements
of the NMs of rhinovirus and CCMV are also similar to those observed for
poliovirus. For the first several NMs of the different irreps themotions corres-
pond to those shown for poliovirus in Figure 11.6. The motions at the residue
level or secondary structure element level of the different viruses are still sig-
nificantly different as the detailed structural features and residue types differ
between the viruses.

11.4 Discussion

NM calculations with full dihedral flexibility on icosahedral viruses have
been made possible by application of group theory methods. This approach
maintains the same level of accuracy as the full calculation but speeds up the
calculation more than thousandfold. A (Dialanine)60 icosahedral system was
used to verify that allNMresultswere equivalent to a regularNMcalculation.
In the applications to the viruses we used a full atomic model of the structure
and included all dihedral angles except the ones corresponding to the peptide
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bonds, which are known to be very rigid. More computer memory will soon
allow virus NM calculations with a full Cartesian basis set. The size of the
full poliovirus system was 485,040 atoms and the total number of degrees
of freedom of the system that were included in the calculation was 205,680
(60 times 3,428). As far as we know, this is the largest NM calculation for a
biomolecule reported to date.
Incorporation of full dihedral flexibility in the NM calculation is import-

ant for a correct description of the motions in viral capsids. For example, the
binding site of small molecules in the capsid is located in the hinge region of
the structure. Since a large part of the hinge is located within vp1, any model
that represents the vp1 protein as a rigid body would not accurately repres-
ent hinge flexibility. In addition, the ability of this method to calculate both
symmetric and asymmetric motions allows for a more complete description
of the mobility of the system.
The method was implemented in the program CHARMM, which makes it

possible to easily use a variety of basis sets and force field parameters. The
symmetry method is general and any basis set (full or reduced) can be used
as long as the components of the vectors correspond to the coefficients of a
full Cartesian basis set (see Section 11.2).
For example, it would be straightforward to use the elastic network model

[13]. The elastic network model itself constitutes a large simplification of the
system, but it still cannot be used for a virus without the symmetry method
due to the large size of the system. The basis set is attractive for use with
viruses, since the system does not have to be energy minimized before the
NMcalculation is done.Asdescribed in the results, minimizations of the virus
capsids may lead to significant deviations (6.5 Å for CCMV) from the crystal
structure and it is not known how this affects the results.
Various experimentally determined properties of virus capsids provide

interesting areas of application of NM analysis. These include large scale
conformational changes from native to expanded capsids during the process
of cell entry [31, 33, 34] or caused by changes in pH [35]. It is likely that the
accuracy of fitting atomic structures into cryo-EM density improves as more
accurate low-frequency NMs are used in the procedure [23].
NM analysis can also be used to study the structural origins of the ligand-

induced conformational changes that occur in poliovirus at sites remote
from the ligand binding site [36]. The capsid stabilization of poliovirus and
rhinovirus by small molecules has been suggested to result from entropic
effects [3, 22]. We can now directly calculate the entropy of icosahedral sys-
tems by using the NM frequencies [37], and a comparison of systems with
andwithout bound ligandswill provide additional information on the nature
of the stabilization effect.
The cryo-EM structure of the swollen CCMV is icosahedrally symmetric,

and thus symmetric breathingmodes, in particular the firstNMof theAirrep,
have the largest degree of overlap with this conformational change [5]. Other
conformationally altered structures of icosahedral viruses such as those of
poliovirus and rhinovirus are also symmetric [31, 33]. However, the fact that
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the conformationally altered particle is icosahedrally symmetric does not
mean that the pathway from the native conformation is necessarily symmet-
ric. For instance, in the changes associatedwith cell entry theRNAof the virus
exits the capsid, and this occurs most likely through an opening in the capsid
[33, 38]. The conformation of the capsid at which the RNAexits is unlikely to
be fully symmetric, and thus asymmetricNMsmay provide insight into those
parts of the capsid that are most likely to open up. Symmetric motions make
up less than 2%of themotions of the virus capsid, and it is therefore alsomore
likely that many conformational changes occur through asymmetric states.
Fully flexible all-atom NM analyses of icosahedral viruses have become

possible by application of group theory. There also exist many systems with
circular symmetry where the application of these methods can significantly
reduce the complexity of theNMcalculation. The recent increase in structural
information of viruses and other symmetric systems from x-ray crystallo-
graphy and cryo-EM provides a large set of potential applications for NM
analysis in the field of large system dynamics.
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Extension of the Normal Mode Concept:
Principal Component Analysis,
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12.1 Introduction

The nature of the protein dynamics is often stated complex and anharmonic.
However, the framework of the normal mode analysis (NMA), in which pro-
tein dynamics is described as a linear combination of collective variables and
harmonic multidimensional energy surface is assumed, is of great use to elu-
cidate complex dynamics of proteins. The reason of this statement will be
threefold. First, collective description of protein dynamics, a key concept
of the NMA, has been applied successfully to a number of protein systems

233
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(see, reviews [1–5]). Small number of large-amplitude modes dominantly
determines atomic fluctuation of proteins. Since protein dynamics takes place
extremely anisotropic, it can be efficiently described by an appropriate set
of collective variables. Furthermore, the concepts of “important subspace”
[6] and “essential subspace” [7] propose the possibility that “important” or
“essential” protein motions take place in a dimensionally small subspace
spannedby a subset of collective variables. Second, NMAis useful as an ideal-
ized reference to investigate real complex systems. Although anharmonic
aspects of protein dynamics draw attention, a large number of degrees of
freedom can be approximated to be harmonic [7–14]. Anharmonic degrees
of freedoms in protein dynamics were discussed by examining the deviation
from purely harmonic systems. Third, very low-frequency normal modes
are relevant to protein function. This has been believed for years, and the
conceptof “dynamicdomain” recently succeeded infindingevident examples
[15–19]. This has been achieved by comparing conformational variations
observed in crystal structures to conformational fluctuations calculated by
NMA, molecular dynamics (MD), and principal component analysis (PCA).
In this chapter, some extensions of NMA and applications of NMA con-

cepts to investigate protein dynamics in the native state are introduced. For
this purpose, we describe PCA [7, 9, 10, 20]. Langevin mode analysis (LMA)
[21, 22] and Jumping-among-minima model (JAM) [3, 14], and discuss the
anharmonic nature of protein energy landscape. Also, some applications of
NMA concept to the analysis experimental data, the applications in nuclear
magnetic resonance (NMR) [23], x-ray crystallography [24, 25], and neutron
scattering [10, 26, 27], are focused.

12.2 Collective-Mode Description of Protein Dynamics

Akey concept of the NMAis that a set of atomic or internal coordinates of the
system is expressed as a linear combination of normal mode coordinates. Let
us introduce a mass-weighted atomic coordinate set, {qi(t)}. This coordinate
set at time t can be written as a column vector q(t) as

{qi(t)} = q(t) =




...
(mn)

1/2rn(t)
...


 =




...
(mn)

1/2xn(t)
(mn)

1/2yn(t)
(mn)

1/2zn(t)
...




(12.1)

wheremn and rn(t) = (xn(t), yn(t), zn(t))t are the mass and the position vector
of the nth atom (n = 1, . . . ,N) in Cartesian coordinates, respectively. The
mass-weighted position vector q(t) consists of 3N elements. The element
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qi(t) is given by the linear combination of collective-mode variables, σ (t) =
{σα(t)}, as

qi(t) =
∑
α

viασα(t) (12.2)

where viα is the matrix element of the 3N × 3N matrix V = {viα}, which is
the transformation matrix from Cartesian coordinate to a certain collective
coordinate. In the NMA, it is called “normal mode eigenvector.” The matrix
V should be chosen to satisfy an orthonormal condition,

VtV = I (12.3)

where I is the 3N × 3N unit matrix. Equations (12.2) and (12.3) indicate that
the collective-mode representation is the orthonormal transformation of the
Cartesian coordinate to the other collective coordinate. ThematrixV specifies
howatomic coordinates are transformed tonewcollective coordinate. This is a
general aspect of collective description of the protein dynamics not only valid
for the NMAbut also for other treatment, for example, PCA. Since no inform-
ation is lost in this transformation, we can choose an appropriate coordinate
set to observe target quantity effectively. Normal mode coordinate and the
other possible coordinates are described below.

12.3 Principal Component Analysis

The PCAis described in the framework similar to normalmode butmore gen-
erally. ThematrixV is definedas the eigenvectormatrix of the secondmoment
matrix (orvariance–covariancematrix) of theatomicCartesian coordinates,A.
V is determined as the solution of the standard eigenvalue problem:

AV = Vζ (12.4)

where ζ = {ζα} is a diagonalmatrix of the eigenvalueswhose elements repres-
ent mean-square fluctuation (MSF) along the direction of the corresponding
eigenvectors. Matrix A is defined as

A = {aij} = {〈(qi − 〈qi〉)(qj − 〈qj〉)〉} (12.5)

The second moment matrix can be obtained by various sources, for example,
trajectories ofMD simulations andMonteCarlo simulation, various conform-
ations deposited in Protein Data Bank for given L conformations. Suppose a
sampleofmass-weightedatomic coordinates aregivenas a 3N×Lmatrix,Q =
{(L− 1)−1/2�qil}, where �qil = qil − 〈qi〉, and the indexes i (=1, . . . , 3N) and
l (=1, . . . ,L) represent indexes of coordinates and conformations. For time-
dependent samples determined byMD,�qil is given as�qil = �qi(tl) for time
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series t = t1, . . . , tl, . . . , tL. Then, the 3N × 3N matrix A is determined as

A = QQt (12.6)

If internal motion of the system is to be observed, external motion can
be removed fromQ by satisfying Eckart condition [28]. This condition can be
satisfied if each instantaneous coordinate is best-fit to a reference coordinate,
which is often chosen to be the average coordinate set {〈qi〉} determined self-
consistently. If the secondmomentmatrix is determined,V and ζ are obtained
byEquation (12.4). For internalmotion, the rank of the secondmomentmatrix
is a minimum of 3N − 6 and L. Also, please note that atomic coordinates to
be considered in the analysis can be chosen depending on the purposes, for
example, Cα atoms, backbone atoms, all atoms, etc.
The atomic coordinate is expressed as a linear combination of a new

coordinate set σ (tl) = {σα(tl)} at time tl as shown in Equation (12.2). In
this case, {σα(tl)} is termed principal mode variable. From Equation (12.2),
it is determined by the projection of q(tl) onto the axes of principal modes V
as σ (tl) = Vtq(tl) or,

	 = VtQ (12.7)

where σα(tl) is written by a 3N×Lmatrix� = {σαl}. The principal mode vari-
able σα(tl) can be scaled by the root-mean-square fluctuation (RMSF) along
the axis of theαth principalmode, that is, the square root of the corresponding
eigenvalue ζα . The matrix of scaled variables Ut is given by

Ut = ζ−1/2	 = ζ−1/2VtQ (12.8)

The condition
UtU = I (12.9)

is easily derived by using (12.3), (12.4), (12.6), and (12.8).
Projection of theMDandMonteCarlo (MC) trajectories of human lysozyme

onto normal mode space was successful in explaining the anharmonicity in a
single conformational substate [8]. However, the projection onto the principal
mode space is a more efficient way to observe intersubstate transitions [12].
Two important features, transitions between substates and solvent effects,
are clearly revealed by the attempt to project an MD trajectory onto the prin-
cipal coordinate space [9]. By projecting anMD trajectory of melittin in water
onto the two-dimensional space spanned by the largest- and second largest-
amplitude principal modes, a transition from one substate to another is very
clearly seen. The motion along these coordinates involves a bending of the
molecule. In early 1990s, conformational transitions in the subspace spanned
by fewprincipal components (PCs)were reported in the cases ofmelittion [9],
Met-enkephaline [29], crambin [20], bovine pancreatic trypsin inhibitor (bpti)
[10], and hen-egg lysozyme [7]. PCA has now become a standard tool to
investigate important motions of biological molecules [5].
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Singular value decomposition (SVD) can be also used for this analysis. The
SVD is a set of techniques bywhich any I×JmatrixB can be decomposed into
a product of three matrices as B = CDEt, where the matrixD is J× J diagonal
matrix with positive or zero elements (the singular values), and C and E are
I × J and J × J matrices orthonormalized as CtC = I and EtE = EEt = I,
respectively. The decomposition is proved by the theorem of linear algebra.
Using SVD, the matrix Qt can be decomposed as,

Qt = Uζ 1/2Vt (12.10)

The matrices Qt, U, ζ 1/2, and V correspond to B, C, D, and E, respectively.
Therefore thedimensions of thematrices I and J are equal toL and3N, respect-
ively. By inserting the relation (12.10) into (12.6), Equation (12.4) is obtained.
As shown here, both PCA and SVD give identical results although they are
termed differently. SVDhas an advantage that three-step calculations in PCA,
preparing the secondmomentmatrix, diagonalization, and projection, can be
done in one step. SVD is numerically more demanding in the case L � 3N,
because the size of the matrix to be stored in computer memory may become
extremely large.
The PCA is a general method of multivariable analysis. When PCA was

applied to the MD trajectory by Levy et al., it was termed “quasi-harmonic”
[30], probably because the focus was on the anharmonic aspects of protein
dynamics. The term “PCA” was used in Reference 9 because the projection
of MD trajectory onto dominant subspace was more emphasized. The term
“essential dynamics (ED)” is also used to represent a few dominant anhar-
monic PC modes [7]. García et al. called dominant principal coordinates
“molecule optimal dynamic coordinates” (MODC) [31]. These analyses share
essentially the same concept, apart from some details, for example, atoms
considered, mass-weighted or not, etc.
Normal mode analysis can be understood as one particular case of PCA.

In the place of the second moment matrix F = {fij} = {∂2E/∂qi∂qj}, the
second derivative of potential energy, that is, Hessian matrix, is employed
to determine the matrix V.

FV = Vλ (12.11)

The eigenvalue matrix λ is related to the angular frequency of the
normal modes ωα as λ = {λα} = ω2 = {ω2α}. Since the second moment
matrix is calculated from the Hessian matrix as A = kBTF−1, we get the
relation

ζα = kBT
ω2α

(12.12)
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Multidimensional scaling (MDS) is an alternative approach to analyze the
given sample Q. In this case, the L× Lmatrix

R = QtQ (12.13)

is diagonalized. The eigenvalue ζ and eigenvector U = QtVζ−1/2 (see
Equation [12.8]) are identical with that in (12.4) and (12.10), respectively. This
is easily derived by using Equations (12.3), (12.4), (12.6), and (12.13) as,

UtRU =(ζ−1/2VtQ)(QtQ)(QtVζ−1/2)

=ζ−1/2(VtQQtV)(VtQQtV)ζ−1/2 = ζ (12.14)

The orthonormality of U is already shown in Equation (12.9).
Equation (12.14) indicates that PCA and MDS give the same eigenvalues.
Troyer and Cohen applied MDS to investigate energy landscape of bpti [32].

12.4 Langevin Mode

Langevin mode is a natural extension of NMA to include solvent effect on
multidimensional harmonic energy surface. It has been proposed by Lamm
and Szabo [21] and was applied to Crambin and DNAhexamer by Kottalam
and Case [22]. In Langevin mode, we need to introduce the mass-weighted
friction matrix � in addition to the second derivative matrix F. A 3N × 6N
eigenvector matrix W and a 6N × 6N diagonal eigenvalue matrix ξ are
determined by the relations

FW + �Wξ +Wξ2 = 0 (12.15)

Wt�W + ξWtW +WtWξ = ξ (12.16)

The relation (12.15) and (12.16) correspond to (12.11) and (12.3) in NMA,
respectively. The matrix elements of W and ξ are complex numbers. If the
element ξα , the eigenvalue of the αth Langevin mode, has both real part and
imaginary part, these values determine the damping factor and oscillatory
frequency, respectively. Therefore, the mode is underdamping. If ξα is a real
number, the mode is overdamping mode. In the NMA limit (�→ 0), these
matrices become

W = 1√
2
(V,V) (12.17)

ξ =
(±iω O

O ±iω
)

(12.18)

where ω is the matrix of normal mode frequency.
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A practical problem is how the friction � is to be determined. Based on
hydrodynamic theory, the friction can be derived from Oseen tensor and its
extensions [33]. In thesemodels,� isdetermined for thegivenviscosity, radius
of particle, and interparticle distances. However, the effective friction matrix
determined from MD simulation in water was found to be rather different
from those calculated from these hydrodynamic treatments [9]. To reproduce
spectral density calculated from theMD trajectory inwater, simpler treatment
was sufficient [10]. In this case, the off-diagonal elements are set to be zero and
the diagonal elements are constant. In otherwords, spectrumwas reproduced
well with the combination of independent Langevin oscillators. It was also
shown that friction effect on low-frequency collective motions is evidently
protein dependent [14]. Estimated friction coefficients are 20 ± 10, 47 ± 10,
and 100± 10 cm−1 for human lysozyme, bpti, and melittin, whose molecular
weights are 14700, 6520, and 2580, respectively. This tendency against size
of proteins is qualitatively explained by the relation between translational
friction coefficient γ and solvent viscosity η, γ = 6πaη/m, which is known as
Stokes–Einstein law. Here the mass m and radius a should be considered as
those of domain or whole molecule rather than that of each atom in protein,
because large-amplitudemodes concerned are global motion. Solvent viscos-
ity η is constant, and the factor a/m ∝ m−2/3 decreases rapidly as protein size
increases. Since the overdamping of themode occurs if the condition γ > 2ωα
is satisfied, the number of overdamping modes decreases as the protein size
is larger.

12.5 Conservation and Convergence of Collective Variables

As far as we have learned from published papers, it is safe to say that few
modes (say 10 to 50) mainly determine total atomic fluctuation of proteins
by ∼80% for a given length of simulation trajectory. More number of modes
is necessary to describe fluctuations of nucleic acids because they are softer
and less anisotropic than proteins. The question here is whether the determ-
ined subset of modes is useful to understand protein dynamics. Physical time
length of MD is often much shorter than the time scale of the phenomena of
interest. Within the limited simulation time, conformational space cannot be
sufficiently sampled. Therefore, the results of PCA clearly depend on the
length of the simulation. However, as mentioned in the introduction, a small
subset of large-amplitude collective variables is expected to conservewithin a
certain range, as has been proposed as the concepts of “important subspace”
[6] and “essential subspace” [7]. In the normal mode refinement of crystallo-
graphic protein structure [6], a subset of low-frequency normal modes were
usedas abasis set todescribe internalmotions. In the caseofhuman lysozyme,
100 normal modes were sufficient. Hundred normal modes occupy 16% and
1.6%of the internal degrees of freedom indihedral angle space and in all-atom
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Cartesian coordinate space, respectively (for more details see Section 12.8).
The subspace spanned by these collective variables is called important sub-
space as mentioned earlier. By using PCA of 900-psec trajectory of hen-egg
lysozyme, Amadei et al. [7] concluded that the ED can be described by less
than tenmodes [7]. The essential subspace, which is spanned by thesemodes,
is smaller than the important subspace in dimension. The point is whether a
subset of collective variables, which is determined by the limited simulation
time often shorter than functional time scale, is conserved. Another point is
that how many degrees of freedoms are necessary to span a conserved sub-
space. This can be examined by comparing an eigenvalue matrix of PCA,
V = {viα}, with another set determined separately, V′ = {v′jβ}, whose column
vectors Vα and V′β are eigenvectors of PC modes. The inner product of two
eigenvectors

cαβ = Vα(V′β)t =
3N∑
i=1

viαv′iβ (12.19)

represents the amount of correlation between two vectors. If cαβ is close to
unity, the αth eigenvectorVα resembles the βth eigenvectorV′β . The number
of variables needed to describe a subset of Vα can be examined by changing
the numberM in the following equations

Pα(M) =
M∑
β=1

c2αβ (12.20)

P̄(M) = 1
M

M∑
α=1

Pα(M) = 1
M

M∑
α=1

M∑
β=1

c2αβ (12.21)

If Pα = 0.9 forM = 120, this indicates that Vα is described by a subset of 120
PC modes in V′ by 90%. P̄(M) represents the extent of overlap between two
subspaces spanned by eachM of PC modes.
Balsera et al. [34] carried out MD simulation of G-action and PCA of two

consecutive 235-psec trajectories. In this article, a subspace spanned by 10, 50,
and 300PCmodes out of totally 1275modesdeterminedbyone set of 235-psec
Cα atom trajectory overlaps the corresponding subspace of another trajectory
by less than 20, 50, and70%, that is, P̄(10) < 0.2, P̄(50) = 0.5, and P̄(300) = 0.7,
respectively, while a set of random vectors overlap by about 25% when 300
modes are employed. They concluded that small number of modes (say 1%)
do not have predictive power for the longtime behavior of proteins although
such modes dominantly contribute to total fluctuations. Similar results were
reported in the reference [14], but viewpoints and conclusionswere rather dif-
ferent. In this article, 1-nsecMDof human lysozymewas carried out and PCA
of ten overlapping trajectories of lengths 100 to 1000 psec. When the large-
amplitude PC modes of 1000-psec MD were compared to those of 200-psec,
Pα valueswere 0.35 to 0.5 forM = 30 and 0.7 to 0.8 forM = 300, whereM = 30
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and 300 correspond to 0.5 and 5% of the total all-atom degrees of freedom,
respectively. In this simulation, large conformational changewas observed in
the middle of the simulation. Therefore, first few PC modes of the 1000-psec
MD represent the large conformational change not found in 200-psec MD. It
was concluded that a very small subset of PC modes determined from short
MD, for example, first 10 PC mode, cannot predict the direction of future
large-amplitude mode but it is expected to occur in the subspace spanned by
a larger subset, for example, 300PCmodes. This number roughly corresponds
to important subspace. Contrarily, Amadei et al. [35] reported that simula-
tions of a few hundreds of picoseconds are, in general, sufficient to provide
a stable subspace that the largest 10 eigenvectors compose. The difference is
probably caused by the fact that the characteristic time of anharmonicmotion
strongly depends on protein. If so, it is safer to use the subspace spanned
by hundreds of principal modes rather than a fewmodes. Hess reported that
PCAresults of high-dimensional randomdiffusion can appear as pseudo cor-
related motion in large-amplitude principal modes [36, 37]. The projections
of random diffusion are predicted to be cosines. The resemblance to cosines
was suggested to be the indicator of insufficient sampling.

12.6 Anharmonicity of Energy Landscape and JAMModel

Since the real energy landscape is anharmonic, the secondmoments along the
principal modes are different from those expected from the normal modes.
In other words, the relation given by (12.12) does not hold true. However, we
can introduce “effective frequency” of the αth principal mode, ωeffα , as [9]

ωeffα =
√
kBT
ζα

(12.22)

Although the real energy surface along the principal mode is not necessarily
parabolic, this quantity gives the coarse grained informationof energy surface
if it is approximated to be parabolic. The difference between ωα and ωeffα is a
measure to examine the anharmonicity of real energy landscape. However,
because the eigenvectors of normalmode is not necessarily the same as that of
PCmode, it is difficult to judge if the difference betweenωα andωeffα originates
from either anharmonicity of energy surface or difference of two vectors. The
anharmonicity factor ρα introduced in Reference 12 gives a better measure to
define the extent of anharmonicity as,

ρα =
(
ζα

ζharα

)1/2
=
(

ζα∑3N−6
β=1 c2αβ(kBT/ω

2
β)

)1/2
(12.23)
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where cαβ in (12.23) is defined for the PC mode vector Vα and the normal
mode vector V′β . The denominator in (12.23) represents the second moment
expected from the normalmode along the direction of the PCmode vectorVα .
In the case of bpti, the fraction of anharmonic modes (ρα > 1) determined by
united-atom is 11.7%, which can be rescaled to 7.4% in all-atom model [12].
For other modes, the anharmonicity factor is ∼1, which means that more
than 90% of the degrees of freedom have nearly harmonic energy surface. In
the case of human lysozyme, the fraction of the anharmonic modes are 5%
[14]. The fraction of anharmonicmodes roughly corresponds to the important
subspace well conserved during the simulation.
The main source of the anharmonicity originates from multiple minima of

the energy landscape. As a simple extension of PCA to consider the multiple
minima problem, the JAM model has been proposed [14]. Consider the case
whereK conformations consisting ofQ are classified intoK groups.Although
arbitrary classification is valid in the following derivations, physical mean-
ing is given if conformations in each group are chosen to be located within
the same catchment region of an energy minimum. Let nk be the number of
conformations in the kth group, and the average 〈· · · 〉k is taken over nk con-
formations in the kth group. The second moment matrix in equation (12.5)
can be divided into two terms

aij =
K∑

k=1
fk(〈qi〉k − 〈qi〉)(〈qj〉k − 〈qj〉)+

K∑
k=1

fk〈(qi − 〈qi〉k)(qj − 〈qj〉k)〉k

= aJAMij +
K∑

k=1
fkakij

= aJAMij + 〈akij〉fk (12.24)

where

L =
K∑

k=1
nk , fk = nk

L
(12.25)

and 〈· · · 〉fk denotes anaverageweightedby fk . Thefirst andsecond terms in the
right-hand side of Equation (12.24) come from JAMmotions and fluctuations
around each minimum, respectively. These two terms are also the second
moment matrices. In case hierarchical model is to be used, the matrix akij can
be divided further by repeating the same operation in Equation (12.24). In this
model, qi(t) can be given as

qi(t) =
O∑
χ=1

vJAMiχ σ JAMχ (t)+
K∑

k=1

P∑
ε=1

vkiεσ
k
ε (t) (O ≤ K,P ≤ 3N − 6) (12.26)
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where {σ JAMχ (t)} and {σ k
ε (t)} represent JAM mode variables and principal

mode variable of the intra-substate motion around the kth energy minimum.
The integers O and P represent the numbers of degrees of freedom that are
necessary to describe JAM motion and intra-substate motion around energy
minimum, respectively. The matrices {vJAMiχ } and {vkiε} are determined as the
eigenvectors of the matrices {aJAMij } and {akij}, respectively.
This model was applied to the analysis of 1 nsec MD trajectory of

human lysozyme in water. As a physical model of the lowest-level substate,
“protein rotamer state” was introduced. The protein rotamer state is defined
as that all the main-chain and side-chain rotamers in protein are in the same
states. From the analysis of intra-substate motion, each conformational sub-
space is shown to be nearly harmonic and mutually similar. By examining
the anharmonicity factor and the shapes of the probability distribution func-
tions, three types of modes are identified (a) multiply-hierarchical modes,
(b) singly-hierarchical modes, and (c) harmonic modes. Harmonic modes
have parabolic energy surface whose anharmonicity factors are ∼1. The
multiply- and singly-hierarchical modes showed that anharmonicity factors
are greater than one.Along the axis of themultiply-hierarchicalmodes, differ-
ent levels of energy barriers coexist (see Figure 12.1 and Table 12.1 for details).
The multiply-hierarchical modes correspond to large-amplitude PC modes,
which are found to be important in proteins to function [5].

12.7 Application of JAM Concept

One of the important features revealed by the JAM model is that protein
dynamics along large-amplitude principal modes take place mainly as the
transitions among conformational subspace. Current computer power is still
not sufficient to observe the large transitions many times within the limited
simulation time. However, fast vibrational motion within a substate con-
verges relatively fast. Let A be an arbitrary dynamical variable. Suppose the
average ofAwith the subspace k, 〈A〉k , is determined by the short simulation.
In the JAM model, the ensemble average of A, 〈A〉, can be given by

〈A〉 =
M∑
k=1

fk〈A〉k (12.27)

where fk is the statisticalweight of the substate andM the number of substates.
If a certain experimentally observable or determinable quantityQi is defined
as a functional of 〈A〉, we have

Qi ≡ Qi[〈A〉] (12.28)
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(a)

(b)

(c)

FIGURE 12.1
Free energy surface is schematically shown for (a) multiply-hierarchical, (b) singly-hierarchical,
and (c) harmonic modes, respectively. (Reproduced from Kitao A., Hayward S., and Go N.
Proteins, 33, 496, 1998. With permission.)

In the JAM model, Qi is rewritten as

Qi = Qi

[ M∑
k=1

fk〈A〉k
]

(12.29)

In this method, the ensemble average within a substate k, 〈A〉k , is obtained by
MDsimulation or normalmodewith a force field. The statisticalweights fk are
determined so as to minimize the difference between a set of experimentally
determined quantities and that of the calculated ones. Once a set of fk is
obtained, ensemble averages of other quantities, for example, the second
moment matrix, can be calculated.
This ideawasused todetermine thedynamic structure of a protein based on

NMRrelaxationparameters [23]. In this case the statisticalweights arefitted to
reproduceNMRorder parameter, S2. Order parameterswere calculatedusing
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TABLE 12.1

Principal Mode Category.

Multiply-hierarchical Singly-hierarchical
mode mode Harmonic mode

Principal mode # 1–30 31–300 301–6117
Probability
distribution

NonGaussian
multiple peak

Gaussian like
single peak

Gaussian

Anharmonicity
factor

>2 >1 ∼1
% in # of modes 0.5 4.5 95.0
% in total MSF 82.1 15.0 2.9
RMSF (Å) >0.08 0.08–0.015 0.015>
Packing topology Significant change No change No change
Fluctuation of
dihedral angles

Large change in both
main chains and side
chains

Large change mainly
in surface side chains

Small change

Source: Reproduced from Kitao A., Hayward S., and Go N. Proteins 33, 496, 1998. With
permission.

the averaging scheme of our JAM model, which is based on the method by
Henry and Szabo [38], as the following: The order parameter, S, is given by

S2 =
〈
r−6nm

〉−1 [3
2
tr (〈�〉)2 − 1

2
(tr 〈�〉)2

]
(12.30)

The element of the tensor �(t) is defined as

�αβ(t) = 1
r3nm(t)

{rnm(t)}α {rnm(t)}β
r2nm(t)

(12.31)

where rnm(t) = |rnm(t)| = |rn(t)− rm(t)| and the vector rnm(t) is a bond vector
between two atoms, that is, proton and nitrogen atoms. In the JAM model,
Equation (12.30) can be rewritten as

S2 = 〈r−6nm〉−1

3
2
tr

( M∑
k=1

fk 〈�〉k
)2
− 1
2

(
tr

M∑
k=1

fk 〈�〉k
)2 (12.32)

The average of tensor � within the kth substate, 〈�〉k , is determined from
a molecular simulation. Once a set of fk is determined, various quantities,
such as directions and amplitudes of atomic fluctuations, can be obtained.
Figure 12.2 shows the results of the dynamic NMR refinement of human
CD2. The dominant modes determined were found to resemble the structure
change upon counter-receptor binding.
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(a)

(b)

FIGURE 12.2
(See color insert following page 136) Dynamic domain motions in (a), the first and (b) second
JAM mode in free human CD2. The residues shown in blue, red, and green represent fixed-
domain, moving-domain, and bending residues, respectively, as determined by DynDom
(Hayward S., and Berndsen H.J. Proteins, 30, 144, 1998). The arrows represent the axes of domain
motions. The moving-domains rotate around these axes. The figure created by using the pro-
grams DynDom (de Groot B.L., Hayward S., van Aalten D.M., Amadei A., and Berendsen H.J.
Proteins, 31, 116, 1998) and Rasmol (Sayle R., and Milner-White E.J. Trends Biochem. Sci., 20, 374,
1995). (Reproduced from Kitao A., and Wagner G. Proc. Natl Acad. Sci. USA, 97, 2064, 2000. With
permission.)

12.8 Application of the Normal Mode Concept to the Dynamics
Crystallographic Refinement

Isotropic B-factor refinement is the most popular crystallographic refine-
ment method in protein structure determination. In the B-factor refinement,
atomic motion is assumed to be isotropic. Anisotropic B-factor refinement
requires more parameters to be determined. The number of parameters can
be highly reduced in the normal mode refinement [6, 24, 25, 39] by using
normal modes as a basis set of fitting parameters although atomic fluctu-
ations are treated anisotropically. In the formulation by Kidera and Go [39],
the second moment of nonmass-weighted Cartesian coordinate of nth atom,
the 3 × 3 matrix 〈�rn�rtn〉, is given by the sum of the internal motion
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expressed by the normal mode basis set and the external rigid-body motion
in translation/liberation/screw (TLS) model as

〈�rn�rtn〉 =
(
ϕIn

)t
�IϕIn +

(
ϕEn

)t
�EϕEn (12.33)

where ϕIn is a K × 3 submatrix of nonmass-weighted normal mode eigen-
vector, that is, the basis set of fitting to consider internal motion, and K is the
number of normal mode variables employed in the refinement. The matrix
ϕEn is a 6× 3 matrix employed as the basis set of translational and librational
motion in TLS model [40]. The matrix �I is a K × K matrix whose elements
are fitting parameters. The maximum number of independent parameters is
1
2K(K + 1), however, only a small number of off-diagonal elements are prac-
tically employed to reduce the number of parameters. �E is a 6 × 6 matrix,
parameters for external motion and the number of independent parameters
is 21. These parameters for internal and external motions are determined to
reproduce experimental determined electron density map.
Using the normalmode refinement, the internalmotion of human lysozyme

in its crystal environment is reported to be highly anisotropic. Determined
atomicfluctuationswere in goodagreementwith thosedeterminedbynormal
mode [6]. Joti et al. studied nonlinear temperature dependence of atomic
fluctuations of human lysozyme in crystal and analyzed the details of the
“glass transition,” also termed glasslike transition or dynamical transition, at
around 150 to 200 K [41]. They classified the temperature dependence of the
Debye–Waller factor into three types, harmonic, glassy, and shifted, as shown
in Figure 12.3. They also showed that anisotropic protein motion in crystal is
well predicted by anisotropic network model (ANM) [42].

12.9 Neutron Scattering

Neutron scattering experiments essentially measure the total dynamic struc-
ture factor, S(k,ω), where k and ω correspond to the momentum and energy
transfers between incident neutron and sample, respectively. This spectrum
canbe calculatedbymolecular simulation relatively easily because it is related
to time correlation function directly and the time range of spectrum over-
laps with simulation time range. Incoherent and coherent scattering give the
information on auto- and cross-correlation, respectively. Because the inco-
herent scattering length of hydrogen is one order of magnitude larger than
the coherent scattering length of all the other atoms in protein, coherent
contribution is negligibly small, that is, S(k,ω) ≈ Sinc(k,ω), if particu-
lar treatment is not done in experiment. Sinc(k,ω) can be defined as the
Fourier transform of a time correlation function, the intermediate scattering
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FIGURE 12.3
Aschematic explanation of the temperature dependence of the Deby–Waller factors observed in
x-ray diffraction (solid line) and incoherent spectroscopy (dotted line). (a) Harmonic response.
When all the conformational substates are occupied throughout the temperature range, a
glass transition is not observed in x-ray diffraction but is observed in incoherent experiments.
(b) “Glassy” response. When a certain substate is not occupied at low temperature but are
occupied at high temperatures, dynamic transition may be observed even in x-ray diffraction
after “glassy” transition. (c) “Shifted” response. When the temperature is further increased after
“glassy” transition, large coordinate shifts at some loci that diminish the population in the ori-
ginal position at low temperatures are observed. In this case, the MSF decrease again after the
“glassy” transition. (Reproduced from JotiY., NakasakoM., KideraA., andGoN.ActaCrystallogr.
D, 58, 1421, 2002. With permission.)

function, Iinc(Q, t):

Sinc (k,ω) = 1
2π

∫ +∞
−∞

dt exp (−iωt) Iinc (k, t) (12.34)

Iinc(k, t) =
∑
n

b2inc,n〈exp(−ik · rn(0)) exp(ik · rn(t))〉 (12.35)
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where binc,n and rn(t) are the incoherent atomic scattering length and position
vector of atom, respectively. Analytical solution can be obtained from
Equations (12.34) and (12.35) in the case of NMA [26]. The spectrum can
also be calculated easily from MD trajectory and LMA in classical treatment.
The comparisonbetweenexperimental andcalculated spectrahasbeen star-

ted from 1980s (see review [26]). The main problem was that the spectrum
in the low-frequency region (<50 cm−1) differed significantly. The normal
mode gives relatively high density in this frequency range, whereas the
density decreases as the frequency goes lower in experiment. This incom-
patibility was reasonably explained by considering the environmental effect
as friction [10]. If frictional effect is considered as Langevin mode, the spec-
tral density becomes lower than expected in normal mode in low-frequency
region because low-frequency normal modes overdamp [9].
Recent high-resolution measurement enables us to compare experimental

and simulated spectra in more detail [27]. Possibility of adjusting force–field
parameters from the comparison was suggested. Since strong neutron source
projects are ongoing, it is expected to get information that is more useful
in the near future by the combination of neutron scattering experiment and
molecular simulation.

12.10 Concluding Remarks

Normalmode concept and its extensions are very useful to investigate protein
dynamics. As shown in this chapter, they are useful not only for simu-
lation itself and for the analysis of simulation data, but also to analyze
various experimental data and to get more detailed information of protein
energy landscape. Although normal mode concept is quite simple, it still has
potentiality to extend to other future analysis.
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13.1 Introduction

An elementary definition is that normal modes are dynamically independent
linear combinations of coordinate displacements, representing a direction in
the relevant configuration space. Each mode obeys a wave equation in time,
that is, it executes harmonic motion; the time dependence of each original
coordinate is expressed as a sum of harmonic oscillations with different
frequencies.
A harmonic system is rigorously described by normal modes. Physically

challenging problems are anharmonic. However, in many instances har-
monic approximations are possible, and extremely valuable. The truncation
of an expansion of the total potential energy, U(r), at second order in the
displacements, δr, of the coordinates from a minimum of U is the stand-
ard procedure. The approximations are useful so long as the system remains
close to theminimum, which, if the potentialwell is truly confining, canmean
forever. The example most relevant to the current discussion is a crystal at
low temperature.
In a remarkable article [1], Rahman et al. made the harmonic expansion

of U about snapshot configurations of an atomic glass, taken from molecu-
lar dynamics simulation; such configurations are not minima of the potential.
Consequently, the curvature of U is negative along some normal mode dir-
ections, leading to imaginary frequencies and unstable modes. Substitution
of Im− ω into textbook harmonic formulae leads to unphysical divergences.
The resolution, of course, is that the system does not remain near the expan-
sion point, but moves away along the unstable directions, invalidating the
ill-behaved expressions. The question of how to use these unusual modes
remains.
Rahman et al. simply ignored the small number of Im − ω and calcu-

lated what is probably the most important dynamical quantity in atomic
fluids, the velocity correlation function, as if the systemwere truly harmonic;
excellent agreement with simulation was obtained. In a harmonic system
the self-diffusion constant, D, the integral of the velocity correlation, van-
ishes. However, if D is small, as in a glass, the true velocity correlation may
be well represented by one with D = 0. In addition, they speculated that
the number of Im − ω might be correlated with D, as both vanish in the
harmonic case.
Developing a theory of transport coefficients, for example, D or the shear

viscosity η, in supercooled, glass-forming liquids [2] is an outstanding prob-
lem in physical chemistry. The dynamic range between room temperature
and the glass transition is approximately 15 decades! Both theory and sim-
ulation become problematic below the mode-coupling [3] temperature, Tc,
whereD extrapolates to zero from above, and relaxation has slowed by typic-
ally 3 to 4 decades from room temperature. Rereading Rahman et al. in 1988,
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it appeared to me [4–6] that the unstable modes were an interesting, novel
basis for a theory of transport, and my students and I subsequently spent
considerable effort developing the idea. In thiswork, the Im−ω are employed
with no reference to harmonic dynamics. Later, I realized that LaViolette and
Stillinger [7] had discussed the number of unstable modes as an indicator of
melting in 1985.
Diffusion is now routinely described in terms of the unstable instantan-

eous normal modes (INM), as the normal modes of snapshot, nonminimum
configurations have [8] come to be named. More generally, liquids at low
temperature are described [9, 10] in terms of the potential energy landscape
(PEL), the topology of the total potential energy, U(r), regarded as a surface
over the 3N coordinates of a systemofN atoms. The stationary points of order
K are important “waypoints” on the landscape. Minima haveK = 0, ordinary
transition states have K = 1, and K > 1 corresponds to higher-order saddles.
Reaction pathways for diffusion lead from minima to transition states, and
thence to connected neighbor minima.
AKthorder stationarypointhasK unstablemodes, establishing the intimate

connection between the PEL and the unstable INM. The connection extends
to diffusion. For example, in a low temperature “hopping” mechanism, the
system spends long periods near a local minimum, with occasional activated
passages over transition states to neighbor minima. Obviously the activation
is signaled by the presence of an Im − ω, where there had been none, and
it might be hoped that the number of Im − ω could express the frequency
of barrier crossing, and thence diffusion. There is no reason why the same
ideas could not be applied to other aspects of dynamics, but so far the focus
has been on diffusion, and the discussion here will maintain that priority.
Furthermore, we will consider classical diffusion only, although the import-
ance of the transition states, and hence Im − ω, must hold for the quantum
case as well.
In general, dynamical problems are more difficult than equilibrium prob-

lems. A central aim of nonequilibrium statistical mechanics is to express
dynamics in terms of equilibrium averages. Most static (thermodynamic)
averages at low temperature are dominated by contributions of configura-
tions near the minima. Dynamics, however, is determined by the reaction
pathways, transition states, and barriers on the PEL. How [11] can such
information be found in a static average reflecting properties of the minima?
The most fundamentally important aspect of the INM theory of diffusion is
that, despite the obvious dynamical association, unstable mode properties are
static averages that get no contributions from the minima by construction.
In the following, I will describe the current state of the connection between

imaginary frequency, unstable modes, and relaxation dynamics in liquids.
The basic idea that D can be expressed with the unstable modes has stood
up to themost rigorous analysis. However, despite the efforts ofmanygroups,
there is no agreement on a single definitive theory of the underlying physics.
Much remains to be done.
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13.2 Unstable Modes and Diffusion

The INM are the eigenfunctions of the Hessian, the matrix of second deriv-
atives of U(r)with respect to the mass-weighed coordinates, evaluated at an
instantaneous liquid configuration. The frequencies are the square roots of
the eigenvalues. Away from a minimum (notably at a transition state) some
of the modes are unstable. The fraction of unstable modes, denoted fu, is a
measure of anharmonicity, as is D; we will argue that these two anharmonic
quantities are related.
The averaged distribution of unstable frequencies, or density of states, is

denoted as 〈ρu(ω)〉. In plotting the full (Re and Im frequencies) density of
states, the Im − ω are conventionally represented as negative-ω, and the
distribution is normalized to unity. One may do the same for translational,
rotational, etc. densities of states. Here we will simply use positive ω, with
the understanding that it means |ω|. Then the integral of 〈ρu(ω)〉 equals fu.
For molecules one might calculate, by an appropriate projection method

[12], the fraction of unstable translational modes out of all translational
modes, sinceD is apropertyof center-of-mass translation.Asa consequenceof
being calculated away fromaminimum, the INMdepend [13] upon the choice
of coordinates. The question of the optimal choice remains unresolved. In the
following, wewill assume that atomic Cartesian coordinates are adequate for
molecular systems.
Motion in most of the 3N directions on the PEL is impossible, with a sharp

increase in U as molecules repel in the densely packed liquid. Unstable dir-
ections with downward curvature of U are special and lie along the reaction
pathways for diffusion. La Nave et al. [14–16], have argued very simply, that
diffusion occurs in a 3Nfu-dimensional subspace of the 3N-dimensional PEL,
which indeed predicts D ∝ fu, regardless of the details.
A detailed INM theory of D requires three steps:

1. A theory of 〈ρu(ω)〉 or fu
2. A related theory of D
3. Consequent establishment of the connection between D and the

unstable modes

Step 1 allows deduction of PEL properties, a subject of interest in its own
right, by interpreting simulated 〈ρu(ω)〉with the theory. In [5,10], a statistical–
mechanical theory based upon the stationary points of the PEL, it is not
necessary to calculate the Hessian for some applications. The instantaneous
configuration may be mapped to, or associated with, the nearest station-
ary point. The order, K, is equal to the number of unstable modes, and
fu = 〈K〉/3N.
Because of the roughness and complexity of the PEL, “nondiffusive” Im−ω

[5] exist, which are absent from tractable models and have nothing to dowith
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diffusion. At this point it is desirable to clarify some terminology and basic
concepts. A truly harmonic system has no diffusion and no Im−ω. Note that
a parabolic barrier is sometimes called harmonic, but in the present context
upward curvature, for confinement, is implied. The presence of some types of
anharmonicity, for example, through the functional form of a smooth confin-
ing potential, need not change the situation. Another type of anharmonicity,
for example, a “bump”on the surfaceof aglobalwell, will introduce Im−ωbut
maintainD = 0; this constitutes a nondiffusivemode. Transition states on the
PEL are physically linked to diffusion, represent strong anharmonicity, and
possess Im − ω. A theory of D should be based upon modes associated with
the transition states or reaction coordinates for diffusion— not the “bumps.”
Consequently, there is a very important additional step 4 “diffusive”

unstable modes must be extracted from numerically determined 〈ρu(ω)〉, for
input to the theories. We now describe two approaches to Steps 1 to 3, and
the matter of the nondiffusive modes will be addressed in the next section.

13.2.1 Statistical Mechanics on the PEL

Stillinger et al. [10, 17] observed that any liquid configurationmay bemapped
to a local minimum of the PEL, named inherent structure (IS) with energy
Um, by steepest descent minimization. Correspondingly, each minimum has
a basin of attraction; the landscape is composed of the basins. They further
suggested that the canonical configurational integral bewrittenas a sumof the
contributions of the basins. The partition function, Q, is then fully described
by the distribution in energy, 	(Um), of the IS and by the averaged basin-
constrained partition function, 〈Qm(Um,T)〉, for basins with Um (used as the
zero of energy)

Q(T) =
∫
dUm	(Um)〈Qm(Um,T)〉e−βUm (13.1)

where β = 1/kBT. The vibrational free energy, Avib(Um,T), is defined by the
relation, 〈Qm(Um,T)〉 ≡ exp(−βAvib(Um,T)). The volume, V, or density, ρ,
dependence of significant quantities in the canonical ensemble, is left implicit.

13.2.1.1 The Partition Function and the Im− ω Density of States
To facilitate a theory of the unstable modes, we [5] proposed that the
PEL be partitioned into the basins of all the stationary points, not just the
minima. Here we further develop that idea. A basin defined by the Stillinger
IS-mapping can be further decomposed into subbasins with the stationary
pointmapping [18–20]. The basin-constrainedQm, for a particularminimum,
is then itself a sum

Qm = Qmm +
∑
s∈m

Q′mse−β(Us−Um) (13.2)
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where Qmm or Q′ms is calculated in the subbasin belonging to the minimum
or to the saddle s.
The basin of attraction of a saddle will overlap several IS-basins; the basin

of a one dimension transition state forms subbasins in the IS-basins of the
minima to the left and to the right. Thus we write

Q′ms =
1

m(s)
Qms (13.3)

where m(s) is the number of minima whose basins “share” the saddle, and
Qms is calculated in the entire basin of the saddle, not just the subbasin it
forms with the IS-basin of a particular minimum. Then,

Q(T) = Qm(T)+Qs(T) =
∫
dUm	(Um)e−βUm [〈Qmm(Um,T)〉 + S′(Um,T)]

(13.4)

where S′(Um,T) is the saddle sum averaged over basins with minimum
energy near Um

S′(Um,T) =
〈∑
s∈m

1
m(s)

Qmse−β�Us

〉
(Um,T) (13.5)

and �Us = Us −Um.
With the saddles introduced explicitly auseful approximation to thedensity

of statesmay bewritten down immediately. Writing both fu(T) and 〈ρu(ω,T)〉
in the form

X(T) =
∫
dUm	(Um)e−βUm X̄(Um,T)/Q(T) (13.6)

we have

〈ρ̄u(ω,Um,T)〉 =
〈∑
s∈m

1
3Nm(s)

Qmse−β�Usρu,s(ω)

〉
(Um,T) (13.7)

where ρu,s(ω) is the nonnormalized distribution of unstable frequencies for a
particular saddle, s; its integral is Ks, so

f̄u(Um,T) =
〈∑
s∈m

Ks
3Nm(s)

Qmse−β�Us

〉
(Um,T) (13.8)

Toput the focuson frequency, we introduce the total distributionofunstable
frequencies of all the saddles associated with a minimum,

nm(ω) =
∑
s∈m

ρu,s(ω) (13.9)
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which integrates to
∑

s∈m Ks. Then

〈ρ̄u(ω,Um,T)〉 =
〈

1
3Nm(s)

Qmse−β�Us

〉
(ω,Um,T)〈nm(ω,Um)〉 (13.10)

For a single minimum, the contribution of a particular saddle to the
frequency-dependent average of saddle quantities is weighted, at a partic-
ular ω, by the value of ρu,s(ω). An average over minima with values near
Um is also taken. We have assumed that the average over minima of the
product of nm(ω) with the frequency-dependent saddle average may be fac-
torized. As discussed in Section 13.2.1.4, the number of saddles connected to
a minimum diverges in the thermodynamic limit and each quantity becomes
self-averaging. Furthermore, different functions ρu,s(ω)will be found for dif-
ferent configurationswithin the domain of a single saddle. In d = 1, the single
unstable frequency decreases to zero from its value at the transition state as
the inflection point, the border of the saddle basin, is approached. Thus, we
regard ρu,s(ω) as a best representation of the entire saddle basin.
In the same spirit, note that extracting a mean, effective saddle order from

the sum in Equation (13.8) leaves the same sum, S′ (Equation [13.5]), that
enters the partition function,

f̄u(Um,T) = Ke(Um,T)
3N

S′(Um,T) (13.11)

Thus, we define a frequency-dependent saddle sum

S′(ω,Um,T) =
〈

1
m(s)

Qmse−β�Us

〉
(ω,Um,T)

1
Ke(Um,T)

〈nm(ω,Um)〉 (13.12)

such that S′(Um,T) =
∫
dωS′(ω,Um,T), and so

〈ρ̄u(ω,Um,T)〉 = Ke(Um,T)
3N

S′(ω,Um,T) (13.13)

In the thermodynamic limit the most probable IS energy, denoted Um(T),
dominates all the Um-integrals. Putting everything together yields

Q(T) = Qm(T)(1+ S(T)) (13.14)

〈ρu(ω,T)〉 = Ke(T)
3N

S(ω,T)/(1+ S(T)) (13.15)

where
S(ω,T) = S′(ω,T)/Qm(T) (13.16)

S(T) = ∫
dωS(ω,T), and for a function of both Um and T, f (T) =

f (Um(T),T); wehavedropped the angle brackets on theQ. Finally, integrating
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Equation (13.15) and eliminating S in terms of fu

〈ρu(ω,T)〉 = (Ke(T)/3N)− (fu(T))S(ω,T) (13.17)

The maximum value of fu is Ke(T)/3N, attained when the system is always
near a saddle. It is important to distinguish between Ke, which is an average
over saddles only in the saddle sum, and 〈K〉, the average order of the station-
ary point to which the thermal configuration maps, including K = 0 minima;
Ke > 〈K〉.
The above represents an attempt at a somewhat more careful derivation of

the unstable density of states than the one in Reference 6. There we proposed
the “equivalent minima model,” in which the connected saddle sum S′, the
number of connected saddles s(m), and the partition function for a minimum
subdomain Qmm are independent of m. That is, the local landscape looks the
same fromallminima. In addition,we let all saddleshave the sameK andm(s),
and a given saddle have the same ω for all unstable directions. Then a saddle
may be indexed by its unique ω, and Equations (13.14) to (13.16) immediately
reduce to their counterparts in Reference [5] — indeed we have deliberately
put them in the same form. Thequantity 〈nm(ω,T)〉/〈K(T)〉becomesn(ω) from
Reference 5, the distribution in frequency of saddles, normalized to s(m).
The central role of the saddle sum, S, emphasizes the intimate connection

between unstable modes and the saddles on the PEL. Observing an unstable
modewith frequencyω requires that the one-dimensional coordinate exists on
the PEL, expressed by 〈nm(ω)〉, and that the system visits the saddle to which
it belongs, largely governed by 〈(1/m(s))Qmse−β�Us〉(ω,T)/Qm(T); these are
the components of S.

13.2.1.2 The Composite Landscape

It is difficult to make much progress with the PEL viewpoint without recog-
nizing the composite nature of the landscape. Correlations in liquids are short
ranged, exceptnear the critical point orpossibly theglass transition.However,
in the 3N-dimensional configuration space, every displacement in principle
involvesmotions of all the atoms, whichmight appear to imply high collectiv-
ity. The way out of this apparent contradiction is to recognize that the liquid
may be regarded [21] as a collection of Nr weakly interacting local regions
containing z ∼ O(1) atom each, with well defined local landscapes.
The stationary points of the PEL are built-up [5] from the local states— this

is explicit in the [22, 23] random energy model. The entire system changes
its state when a region changes its local state [17], so IS transitions involve
small numbers of neighbor molecules. A simple, useful viewpoint is that
aKth order saddle arises whenK local regions are on local first-order saddles.
Consequently, 〈K〉,Ke ∼ O(N), and [5, 19, 20, 24], the energy spacing of
saddles of adjacent order is characteristic of the activation energy of a single
local region. From Equation (13.15), it is seen that the former condition is
required to have 〈ρu(ω)〉 an intensive quantity.
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Thinking in terms of the PEL without the composite picture, one might
imagine that there are large fluctuations in the number of Im − ω associated
with the IS transitions. However, with many local regions independently
moving fromminimum to saddle to minimum, it is seen that the fluctuations
become negligible as usual for large Nr.
A simple alternative to working out the combinatorics of the composite

landscape, which we will follow, is to assume that 〈ρu(ω,T)〉 may be calcu-
lated in a single local region. It is plausible that the dominant saddles in a
local region are ordinary transition states, K = 1. Then replacing Ks in the
saddle sum by a mean value is not an additional approximation. The results
derived above still hold, with the substitutions Ke = 1, N = z, m(s) = 2, and
〈nm(ω,T)〉/Ke(T)→ s(T)n(ω,T), where s(T) ∼ O(1) is the averaged number
of transition states connected to aminimum in a local region, and n(ω) is now
the normalized distribution of their unstable frequencies. Then

〈ρu(ω,T)〉 = 1
3z
S(ω,T)/(1+ S(T)) (13.18)

where
S(ω,T) = 1

2G(ω,T)s(T)〈n(ω,T)〉/Qm(T) (13.19)

and
G(ω,T) = 〈Qmse−β�Us〉(ω,T) (13.20)

alternatively,

〈ρu(ω,T)〉 = ((3z)−1 − fu(T))S(ω,T) (13.21)

13.2.1.3 The Functional Form of the Density of States

For sufficiently large T at constant density, the Boltzmann factor in G(ω,T)
is equal to unity and the distribution of unstable frequencies and the basin-
constrained saddle partition function take on the properties characteristic of
the “top of the landscape” [25, 26]. Thus, the density of states has a high-T
limiting form, 〈ρu(ω,T = ∞)〉. As T is decreased, the Boltzmann factor will
cut off the contributions of saddleswith higher activation energy, and saddles
with a given ω will acquire different Qms, changing the ω-dependence of
G(ω,T) and hence that of 〈ρu(ω,T)〉. Thus [27],

〈ρu(ω,T)〉 = a(T)G(ω,T)〈ρu(ω,T = ∞)〉 (13.22)

where all the ω-independent factors are swept into a(T). We expect that, to a
good approximation, G reflects the averaged Boltzmann factor.
Empirically, simulated densities of states are fit well [27] by the form

− ln[〈ρu(ω,T)〉/ω] = a1(T)+ (a2ω2/T)a3(T) + f∞(ω) (13.23)
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where f∞ describes the high-T frequency dependence and a2 is
T-independent. The density of states contains an explicit factor ofω, removed
on the left-hand sideofEquation (13.23), arising from the Jacobian in the trans-
formation from eigenvalues to frequencies (square root). In the theory, it is
contained in n(ω).
With some high-T data for an estimate of 〈ρu(ω,T = ∞)〉, which may be

refined [27] iteratively, the coefficients are easily determined from simula-
tion data. If the dominant T-dependence of the ω-dependence is indeed due
to the Boltzmann factor, comparing the theory and the empirical function,
a plausible estimate is

ln[〈e−β�Us〉(ω,T)] = −(a2ω2/T)a3(T) (13.24)

In principle, Equation (13.24) contains a large amount of information about
the microscopic barriers on the PEL. If barrier height fluctuations are small,
ln[〈e−β�Us〉(ω,T)] = −β〈�Us(ω,T)〉. Further assuming that 〈�Us(ω,T)〉 =
c1(T) + c2ω2, corresponding to a simple d = 1 model with larger curvature
corresponding to higher barriers, and c1 being the energy above theminimum
at the inflection point where ω = 0, one obtains a3 = 1. In fact, this is the case
in unit-density Lennard–Jones (LJ) above the melting point [28], and approx-
imately [29] for the [30] center-of-mass modes, which we have proposed as
diffusive in supercooled CS2. The exponent a3 rises to ≈2 as T falls below
Tc in unit-density LJ, and we have interpreted this [27] in terms of growing
roughness (barrier height fluctuations) on the lower regions of the PEL. The
crossover of a3 from 1 to 2 was also found [31] in molten salts.
A calculation [32] of the averaged distribution of unstable frequencies in

the d = 1 soft potential model indeed yields a3 = 1 at high T and a3 = 2 as
T → 0. The two limiting behaviors are associated with low and high local
stress, with symmetric and asymmetric potential energy profiles along the
reaction coordinates, respectively. A linear combination of the corresponding
two terms is [33] a good alternative to Equation (13.23) as a fit to simulation
data at all T.
We argued [6] that analysis of fu(T) could reveal the distribution of barrier

heights, and obtained plausible results in unit-density LJ. A related approach
was given by Straub and Thirumalai [34] and applied to biomolecules. It
would be a wonderful development if vital PEL information, intimately tied
to dynamics, could be reliably deduced from normal mode analysis. The
analysis needs to be repeated with all diffusive modes, however. Our simple
idealizations are not capable of interpreting data influenced by nondiffusive
modes.

13.2.1.4 The Escape Rate and D

The self-diffusion coefficient is influenced by the global structure of the PEL.
However, simple local relations between D(T) and R(T), the averaged rate
of escape of the system from a basin, are worth exploring. The “IS Markov
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approximation” [35, 36], D(T) = 〈(δR)2〉R(T)/6N, where 〈(δR)2〉 is the mean-
squaredisplacementof successive IS, is quantitatively accuratebelowTc in the
unit-density LJ liquid. This makes sense because the dynamical mechanism
below Tc is expected to be long stays in the basins with infrequent transitions,
so memory of earlier transitions is lost. An alternative [37], based on the idea
that a transition randomizes the velocity correlation, gives D/T ∝ 〈ω−2m 〉Rloc
at low T, where Rloc is calculated for a single local region. The entire system
rate is extensive and 〈(δR)2〉 is∼ O(1) because only themolecules in one local
region move in a transition. In the composite picture, Rloc is intensive and
R(T) = NrRloc(T). Either way, D is intensive.
In low-dimensionalmodels involvingmotion among sites (analogous to IS)

with widely varying properties there are large differences between the mean
escape rate and the inverse mean waiting time. However, because a min-
imum must be connected to saddles corresponding to rearrangements in all
Nr local regions, the number of saddles connected to a minimum diverges in
the thermodynamic limit. Themeanwaiting time in a specific IS is then equal
[23] to the inverse of a self-averaging sum over s(m) contributions, which is
just the averaged rate. That is, rate and inverse time are equivalent in 3N
dimensions. We now calculate R(T) in a way that emphasizes its connection
to 〈ρu(ω,T)〉.
Barrier crossing has been extensively studied in one dimension. The rate,

denoted r, of crossing a specific barrier is conveniently referred [38] to the
transition state theory expression with the correction factor κ

r = κ(ωs)
(ωm
2π

)
e−β�Us (13.25)

where ωm and ωs are the normal mode frequencies for the reaction coordin-
ate evaluated at the minimum and at the transition state, respectively. For
one-dimensional reaction coordinates in higher dimensions, one must mul-
tiply by the cross section at the barrier top and divide by the cross section at
the minimum. The cross sections are essentially the contributions to the con-
figurational integral of the perpendicular degrees of freedom, and express
the entropic effects. Multiplying and dividing by the lengths which give the
contribution of the reaction coordinate itself, and noting that the momentum
integrals inQ are the same forminimumand saddle, the rate is seen to contain
the basin-constrained partition functions,

r = �mQms

�sQmm
κ(ωs)

(ωm
2π

)
e−β�Us (13.26)

The harmonic approximation is very useful for stable coordinates, �m =
(2πkBT/meω

2
m)

1/2, where me is an effective mass.
Consistent with the calculation of 〈ρu(ω)〉we are considering local regions

with first-order saddles, in which case a single ω suffices for a saddle index.
The total local rate Rloc, the sum of the contributions of all the connected
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transition states, may be expressed as a frequency integral. Then, using the
harmonic �m and invoking the dominance of themost probable IS energy, the
fully averaged rate is

R(T) = Nr(kBT/2πme)
1/2
∫
dω

κ(ω)

�s(ω)
G(ω,T)s(T)〈n(ω,T)〉/Qm(T) (13.27)

The crucial observation is that the PELquantities in Equation (13.27) are those
entering S(ω,T), which determines 〈ρu(ω)〉. Using Equations (13.18) to (13.21)
and multiplying and dividing by fu to obtain a normalized distribution of
unstable frequencies we find

R(T) = Nr
(2kBT/πme)

1/2

((3z)−1 − fu(T))
[∫

dω
κ(ω)

�s(ω)
(〈ρu(ω)〉/fu)

]
fu (13.28)

Equation (13.28) involves several approximations, and it is still not clear
what to use for κ and �s. Previously [29] we have considered transition
state theory (κ = 1) and the low-friction limit of Kramers theory. Little is
known about �s. We tried [29] simply applying the harmonic formula for
stable modes, although there is no justification. There is no natural cutoff to
the integral over an unstable degree of freedom and the extent of the saddle
region should enter.
The essential observations for the exploitation of Equation (13.28) are

as follows. In supercooled liquids Arrhenius or “super (stronger than)-
Arrhenius” [10] T-dependence of transport coefficients swamps any weak,
for example, power law, behavior. Everything multiplying the integral has
weak T-dependence if 3z fu � 1, which is so in the interesting low-T regime.
The ratio, κ(ω)/�s(ω), will be some low power of ω times additional explicit
and implicit weak functions of T. Once constants are taken out, the integ-
ral in the square brackets will be given by a low moment of the normalized
unstable distribution, for example, 〈ωu〉, which is also weakly T-dependent.
Thus the strong T-dependence of the escape rate, which will dominate over a
broad dynamic range as in supercooled liquids, is determined by the unstable
fraction fu.
Further approximations are required to obtain D. The IS-Markov approx-

imation yields

D(T) = 〈(δR)
2〉(kBT/2πme)

1/2

(1− 3zfu(T))
[∫

dω
κ(ω)

�s(ω)
(〈ρu(ω)〉/fu)

]
fu (13.29)

and the strong T-dependence of D is that of fu.
Other linear [37] relations D(R) will modify the details but not this fun-

damental conclusion. Nonlinear relations [39] confirm the crucial role of fu,
but allow D to have a significantly different strong T-dependence. Above Tc
weak T-dependence such as that found in simple kinetic theories is import-
ant. The approach of Reference 37 does a remarkable job [40] of describing
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FIGURE 13.1
Center-of-mass and projected translational unstable densities of states vs. ω (psec−1) for CS2,
P = 1 atm. Two projected densities, with distinctive broad high-(−ω) tails extending beyond the
left boundary of the figure, are shown for 298 (top) and 135 K. The narrower COM densities, top
to bottom, are 298, 244, 193, 165, and 135 K.

unit-density LJ from below Tc to very hot (melting is Tm ≈ 1.8 reduced LJ
units) T = 20. Any attempt to describe T > Tc must consider that, at constant
density, both D/T and fu reach constant plateau values at high T. Thus, for
example, D/T ∝ fu is a plausible relation while D ∝ fu is not, although both
are essentially equivalent in the deeply supercooled regime.
The directions that lead from a minimum to a transition state, the reaction

pathways for diffusion, have a special role in diffusion. Observing an Im−ω
depends both on the existence of these directions, and the probability that the
system visit them, expressed by the saddle sum S. This is the physical reason
behind the connection of D and fu. The argument works even in the entropic
transport case, exp(−β�Us) ≈ 1, where a discussion of energy barrier cross-
ing makes no sense — the system must nonetheless visit the “zero barrier”
reaction pathways both to exhibit unstable modes and to diffuse.
Perhaps the most comprehensive test [29] of our basic idea is a simulation

study of seven densities and eight temperatures of normal and supercooled
liquid CS2, covering almost three decades of D. For a molecular system, dif-
fusive translational modesmust be somehowdefined.Aswill be discussed in
Section 13.3, both of these aims are well met by analyzing aHessian of center-
of-mass derivatives only. Figure 13.1 shows how simply projecting onto a
translation leaves a broad, weakly T-dependent nondiffusive tail, while the
center-of-mass modes lack the tail and vanish beautifully with decreasing T.
We first tried D(T, ρ) = c(ρ)fu(T, ρ) and D(T, ρ) = c′(ρ)〈ωu(T, ρ)〉fu(T, ρ),

the latter being approximately derived [29] from low-friction Kramers theory.
Both gave excellent fits, with the latter being slightly better at the normal
freezing density, 1.46 g/cc, and the two lower densities, and vice versa
for the four higher densities. Nevertheless, as T decreases 〈ωu〉 becomes
virtually constant, with the two formulae equivalent, and D(T, ρ) =
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TABLE 13.1

Parameters in Equations (13.30) and (13.31).

ρ (g/cc) 1.42 1.44 1.46 1.485 1.51 1.534 1.55

α 1.012 1.009 0.990 0.919 0.905 0.907 0.905
c′′ 1.11 1.19 1.20 1.02 0.98 1.19 1.19
γ 0.981 0.962 0.945 0.914 0.908 0.878 0.878

c′(ρ)〈ωu(T, ρ)〉fu(T, ρ) is the best overall description. We investigated the
possibility of a nonlinear relation D( fu)with a third fit

D(T, ρ) = c′′(ρ)(〈ωu(T, ρ)〉fu(T, ρ))α (13.30)

which gave both α ≈ 1 and, for D in Å/psec, c′′ ≈ 1; thus we also considered

D(T, ρ) = (〈ωu(T, ρ)〉fu(T, ρ))γ (13.31)

The results of the fitting are shown in Table 13.1. The best representation
D( fu) is very close to linear. It is remarkable that Equation (13.31), with no
multiplicative constant and a single parameter, provides a nearly quantitative
description of diffusion. The quality of the unstable mode theory can be seen
in amaster plot of ln(D) vs. 〈ωu〉fu for all 56 data points in Figure 13.2. Clearly
for the entire temperature and density range, determining the static average
〈ρu(ω)〉 is a viable alternative to the dynamic calculation of the mean-square
displacement. This validates the basic theoretical idea and is a significant
point for the ongoing challenge of simulating deeply supercooled liquids,
where dynamics is much more difficult than statics. Since fu(T) is the fre-
quency integral of 〈ρu(ω,T)〉, its functional form (Section 13.2.1.3) allows a
PEL interpretation of the T-dependence of D, another outstanding question.

13.2.2 The Random Energy Model

Unstable modes and dynamics are conveniently analyzed within a random
energy model (REM) of liquids [5, 22, 23], which provides a detailed realiza-
tion of the composite landscape. A simple analytic expression for fu results,
reducing thedependenceof the theoryuponcomputer simulationandnumer-
ical analysis. We proceed analogously to the protein REM of Bryngelson and
Wolynes [41].Alocal regionhas a ground statewith fixed energy and ν excited
states with random energies. Neighbor regions have a fixed interaction if
they are both in the ground state and a random interaction otherwise. In
this manner the states of the entire system, their energies, and their distri-
butionG(U) are built-up from local contributions. Varying basin-constrained
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FIGURE 13.2
Log–log INMmaster plot for seven densities and eight temperatures of liquid CS2.

partition functions have not been incorporated, so the statistical weight of
a state is determined entirely by the Boltzmann factor. The REM is indeed a
model, not an approximation to a formally exact startingpoint, andadditional
desired features must be put in by hand.
Assuming that dynamics consists of a series of local rearrangements, each

state of the entire system might be connected to νNr neighbors, the num-
ber reachable by a change in a single region. However, since not all pairs of
states in a local region need be connected, we let [23] the number of connec-
ted neighbors, denoted Ncn, equal cνNr, anticipating that the connectivity
fraction c < 1.

13.2.2.1 The Fraction of Unstable Frequencies, Dynamics, and Tc

The states of the REM are identified with all the stationary points. This
is a different viewpoint from that taken in the intuitive discussion of the
composite landscape, where only minima entered. In Reference 41 it was
suggested that a minimum is a REM state with all the connected neigh-
bors at higher energy. We made [5] the obvious generalization that a Kth
order stationary point has K neighbors with lower energy and Ncn − K with
higher energy. It is then easy to calculate fu (so far there are no frequencies in
the REM)

fu(U) = p<c (U) =
∫ U

−∞
dU ′Gc(U ′;U) (13.32)

where Gc(U ′;U) is the energy distribution of states connected to a state with
energy U. The fraction of unstable modes for states with energy U is equal
to the probability, p<c , that a connected neighbor has a lower energy. In the
thermodynamic limit, fu(T) = fu(U(T)).
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With a physically motivated approximation to Gc(U ′;U)we found [23]

fu(T) = 1
2

(
1− erf

(
δ

2T

))
T→0=⇒ T

δ
√
2π

e−δ2/(4T2) (13.33)

where δ ∼ O(1) is thewidth of the distribution of local state random energies.
Equation (13.33) exhibits super-Arrhenius behavior with activation energy
Eact = δ2/4T. At high T, fu → 1/2, because at that point the thermal energy
approaches the center of the symmetric Gaussian density of states where
p< = p> = 1/2. The averaged saddle order obeys 〈K〉 = Ncnfu. Themaximum
possible order of an individual saddle is Ncn, while the maximum of the
thermal average is Ncn/2. In a liquid the maximum order is the dimension
of the configuration space, 3N, but Ncn = 3N(cν/3z) ≤ 3N. Thus, the REM
incorporates a coarse-graining, expressed by the factor (cν/3z), in that only
directions that lead to new states are kept.
Making [41] a simple Metropolis anzatz for the rate of transitions among

the states, and dividing R into contributions from neighbors with lower and
higher energy, R< and R>, one immediately sees that R< = R0Ncnfu, where
R0 is the baseline rate absent any barrier. There is no Boltzmann factor for a
downward transition, and Ncnfu is simply the number of states with lower
energy. This is the most transparent possible relation R( fu). More elaborate
arguments yield R> ∝ fu, and again we believe generally that D ∝ R. Thus
the REM provides a second derivation of the essential result, D ∝ fu.
Transitions among the minima do not provide a useful dynamical descrip-

tion above Tc, and it has been suggested [19, 20, 24] that one should consider
“saddle dynamics.” Since the REMstates include theminima and the saddles,
our secondderivationmayhelp explainwhyD ∝ fu still holds aboveTc, when
D is no longer [35] proportional to the escape rate from the minima.
If Tc is the point where D extrapolates to zero from above and D ∝ fu, then

[42] Tc may be determined from fu. Careful analysis of Equation (13.33) yields
[23] the estimate, Tc ≈ 0.26δ. Furthermore, it is seen that plotting 〈K〉/Ncn
vs. T/δ will allow data on different materials to be represented by a master
curve; δ and Ncn are determined by fitting the number of diffusive unstable
modes to Ncn times Equation (13.33). Figure 13.3 demonstrates the master
plot for 〈K〉 in unit-density LJ and the number of center-of-mass modes for
our seven densities of CS2. The data collapse is essentially perfect above Tc.
The calculated parameters are given in Table 13.2. With increasing density in
CS2, δ increases from 236 to 486 K. The maximum saddle order or number of
connected neighbors is remarkably constant between the two materials and
among the different densities. Correspondingly, the coarse-graining factor,
cν/3z = cνNr/3N, equals 0.21 for LJ and 0.23 to 0.22 for CS2; about 20% of
directions lead to new states.
Since δ ∝ Tc, a master curve is also predicted with use of the independent

variable T/Tc. This has been verified very recently by Angelani et al. [43] for
soft spheres with several power-law potentials.
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FIGURE 13.3
Natural log-linear REM/INM master curve of fractional saddle order 〈K〉/Ncn and simulation
data vs. dimensionless temperature T/δ , N = 108, unit-density LJ (solid triangles) and seven
densities of CS2. Arrow denotes Tc.

TABLE 13.2

Parameters for Master Plot.

Liquid δ Ncn cν/3z Tc

LJ(1 atom/σ 3) 1.59 ε 66 0.21 0.41ε
CS2(1.420 g/cc) 236 K 74 0.23 61 K
CS2(1.440 g/cc) 265 K 71 0.22 69 K
CS2(1.460 g/cc) 300 K 71 0.22 78 K
CS2(1.485 g/cc) 343 K 71 0.22 89 K
CS2(1.51 g/cc) 394 K 71 0.22 102 K
CS2(1.534 g/cc) 448 K 71 0.22 116 K
CS2(1.551 g/cc) 486 K 71 0.22 126 K

All systems are N = 108 and density is within parentheses.

Forunit-densityLJ thevalueTc = 0.41 is in reasonable agreementwithwhat
we have published [44], 0.47, but somewhat lower. For CS2, 1.46 g/cc, 78 K is
very close to our estimate [45] of 75K.However, the data that gave the original
Tc are represented very accurately by Equation (13.33). The different Tc arise
from fitting data over different temperature ranges. Fitting simulation data to
Equation (13.33) and then using Tc ≈ 0.26δ is a good way to obtain consistent
Tc on different materials, from simulations covering different temperature
ranges and densities.

13.2.2.2 The Configurational Entropy Sc
The configurational entropy is given by Boltzmann’s equation, Sc =
kB ln(	(T)), where 	(T) is the number of thermally accessible states. It is a
static quantity, easily calculated from the unconditional distribution G(U) in
the REM, which is believed [21] relevant to dynamics in supercooled liquids.
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It cannot be overemphasized that expressing dynamics in terms of statics
is a primary goal of nonequilibrium statistical mechanics. Equation (13.32)
provides a simple, intuitive way to understand how D and Sc are related.
Roughly, the states with energy less than the thermal energy, which determ-
ine fu and thus D, are also the accessible states. As T is decreased and most
of the connected neighbor states lie above the thermal energy, both fu and Sc
decrease according to simple REM formulae.
Using our approximate connected neighbor distribution we found [23]

ln( fu(T)) = 0.65z(Sc(T)/N)− (1.16+ 0.65 ln(ν)) (13.34)

The linear relation between diffusive ln( fu) and (Sc/N) had been earlier dis-
covered in simulation studies of water [14, 15] and SiO2 [16] by La Nave
et al. [46]. The slopes (which were determined by fitting the data provided
by Emelia La Nave) are 0.96, z ≈ 1.5 and 16.2, z ≈ 25, respectively [46]. The
conclusion that silica is more collective than water is reasonable, but such a
small z is puzzling for water. The theory is in a preliminary stage, but we now
know how to begin interpreting the “La Nave plot.”

13.3 Diffusive and Nondiffusive Unstable Modes

Tractable landscape models are simple, with unstable modes directly linked
to the reaction pathways for diffusion. They cannot provide a literal rep-
resentation of the PEL, which is rough and too complex to be visualized,
with nondiffusive modes. As mentioned earlier, a bump on the surface of
a multidimensional harmonic well is also a region of Im − ω, obviously
not related to diffusion. Consequently, the INM theories under discussion
should not be directly compared to simulation. Our optimistic point of view
is that one may proceed nevertheless by extracting diffusive unstable modes,
regarded as arising from a PEL which has been simplified to the level of
available theories. They should be representative of the regions close to the
reaction pathways. Center-of-mass modes in CS2 [29, 30] have already been
mentioned, and now we discuss the matter of diffusive modes in general.
In 1993, we observed [5] that a substantial number of unstable modes per-

sisted in the unit-density LJ crystal, where D ≈ 0; these modes are obviously
nondiffusive. The relation D ∝ fu has too weak T-dependence, and does not
show the drop to ≈0 upon solidification, although the discontinuity is sub-
stantial. We wrote: We therefore suggest that the excess value �fu, the difference
between fu in the liquid and in the crystal, is a better indication of barrier crossing
than is fu itself. In other words, fu in the crystal expresses anharmonicities in the
minima, while fu in the supercooled liquid contains the contributions of the anhar-
monicities plus that of barrier crossing. Thus, replacement of fu with�fu shouldmake
our association of unstable modes with barrier crossing more correct. The problem
of the nondiffusive modes, and the appropriate way to deal with it, was part
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of the agenda from the very beginning of INM theory. The original suggestion
of employing �fu has not been much pursued, although it remains perfectly
valid.
The density of states in Equation (13.23) contains explicit exponential

T-dependence. After performing the ω integral to obtain fu, however, only
a power law remains. Arrhenius or super-Arrhenius T-dependence of D, an
essential feature of supercooled liquids, might still be found in exp(−a1(T)),
but such was not the case in unit-density LJ. Our second attempt to isolate
the diffusive modes was to postulate [6] that they are the unstable modes
with |ω| above a lower cutoff, denoted ωc. Then, D ∝ exp(−(a2ω2c/T)a3(T)),
further associating super-Arrhenius with a3 > 1. The resulting fu gave [6] a
quantitative representation of D in unit-density LJ.

13.3.1 Potential Energy Profile Based Methods

By calculating the potential energy as the system is moved from the instant-
aneous configuration along an INM eigenfunction, one may calculate [47] a
one-dimensional potential energy profile. The profiles may be categorized as
single well (SW), double well (DW), and shoulder — a shoulder in a global
single well. Stable modes are essentially pure SW, while unstable modes are
of DW and shoulder type. A “three flavor” theory [48] results, replacing the
two flavor version with Re − ω and Im − ω. Bembenek and Laird noted [49]
that the DW, which naturally present a picture of barrier crossing, are obvi-
ous candidates for diffusivemodes. The shoulders are obvious candidates for
the aforementioned nondiffusive bumps. However, they also noted that, in
unit-density LJ and in smooth spheres, the DW did not reproduce the strong
T-dependence of D at low T.
Bembenek and Laird found that the DW modes exhibit a lower |ω| cutoff,

validating our original hypothesis. Collectivity of the INM, that is, delocaliza-
tion, ismaximal as |ω| → 0, andminimal (local) at the high-|ω| extremes. They
proposed that the delocalized DW modes are diffusive, and found them to
vanish below a characteristic temperature identifiedwith the glass transition;
the proposal remains speculative. Analytic calculations in the soft potential
model [32] verify the existence of the cutoff.
The success of first schemes for diffusive modes is material-dependent.

Ribeiro and Madden [31] found that the DWmodes were not notably super-
ior to all the Im − ω in molten salts; with no attempt to identify diffusive
modesD is ∝ fu. While simply taking DWmodes does not work very well in
atomic liquids, or [48] CS2, it provides a superb description ofwater. An addi-
tional translational projection is not even necessary, probably because strong
coupling of translation and rotation makes them equivalent. With the DW,
Sciortino and Tartaglia [42] obtained the same Tc as was found by analyzing
diffusion data. La Nave et al. [14, 15] demonstrated a master plot of ln(D) vs.
fu, which collapsed data for six densities and five temperatures on a single
curve; they also refined the INM estimate of Tc. This study, and ours [29] on
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CS2, are the two most rigorous tests extant of the relation of unstable modes
and diffusion.
The excellence of the center-of-mass modes [29] for describing diffusion in

CS2, superior to the DW prescription, has already been mentioned. The rota-
tions are highly anharmonic, in ways that have nothing to do with diffusion.
However, projecting onto translation, or projecting the DW onto translation
does not eliminate their contribution. A mode that is mainly a nondiffusive
rotation still enters the density of states if it has any translational compon-
ent, and corrupts the diffusive modes. Use of the center-of-mass Hessian
eliminates the rotations from step one.
It is not surprising that the DW are more useful in some systems than

in others — the surprise is that they are useful at all. The eigenfunctions
used to calculate the one-dimensional profiles that classify the modes into
the three flavors are calculated at the snapshot configuration. They are not
updated as the atoms are moved, and quickly deviate from the true reaction
pathways, with a strong increase in U as atoms are pushed close together
in a dense liquid. Thus, [48, 50] only a small part of the profile near the
origin is meaningful. A DW requires that the system start near the barrier
top, so downward curvature in both directions will be apparent before the
unphysical rise in U begins. Barrier heights estimated from the DW profiles
are [48] too small, since the curves turn upward before the true minima are
reached. Conversely, no profile that starts close to a minimum, with upward
curvature in both directions, ever turns over to form a DW, as will happen for
a reaction pathway.
It is thus seen that the flavors are really indicators of progress along the

reaction pathway. DW and SW arise from normal coordinates along which
the snapshot configuration is near a barrier top or near a minimum, respect-
ively. Similar reasoning shows that shoulder modes result from bad reaction
coordinates followingwhen the snapshot is near an inflection point. Thus the
lower cutoff on the DW is explained; if the system is near the inflection point,
where |ω| = 0, a shoulder mode, not a DW, is recorded.
With the new perspective, a different argument may be made that the

DW are diffusive. The modes closest to the barrier tops best characterize
the saddles, and give the directions in which the smallest displacement will
lead to a new IS.

13.3.2 Landscape Based Methods

13.3.2.1 Escape Modes

In a simple scenario, minimizing configurations obtained by moving away
from the top of a DW profile in both directions would lead to two different,
connected neighbor IS. Gezelter et al. [51] showed that in some cases the
same IS is found in bothminimizations, and named the correspondingmodes
“false barriers.” They used this observation to criticize the entire unstable
mode approach to diffusion. Using it to find better diffusive modes was left
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[15, 16, 52] to the Rome group, who defined the diffusive “escape” modes as
the DWminus the false barriers.
In water D follows fesc even better than fdw. An essentially perfect rep-

resentation of D is attained [15] by subtracting fesc(ice), that is, the original
suggestion [5] of �fu. Similarly good results are found [16] in silica, includ-
ing reproduction of the fragile-to-strong transition. The good performance of
the escape modes in two substances is significant and encouraging, given the
patchwork of different schemes for different materials discussed so far.
In fitting D to a best power law, the results cited are D ∝ ( fesc)2 in water

[15] and D/T ∝ ( fesc)1.3 in SiO2 [16]. This nonlinearity could be due to
effects described in [39] the generalized REM, or to the presence of weak
T-dependencenot expressedby fesc. One immediatelynotes the appearanceof
D/T for SiO2. InCS2 with the center-of-massmodeswe foundD ∝ (〈ωu〉fu)1.0.
However, leaving out the unstable frequency leads to a power of 1.4 at the
lowest density. Attempting a representation of D/T would give a different
power. The value of α is not meaningful unless enough decades are available
to swamp the weak T-dependence.

13.3.2.2 Saddle Order

The minima of the squared gradient, |∇U|2, include all the stationary points
on the PEL, minima and saddles [19]. It has been pointed out [53] that the
minimaactually found in liquidsarenotusually true saddles (inflectionpoints
in d = 1). However, the “false saddles” have similar properties to the true
saddles, sowe regardall theminimaof |∇U|2 as generalized stationarypoints.
Just asminimization ofU associates an instantaneous configurationwith an

IS, minimization of |∇U|2 yields an associated generalized stationary point
[19, 20]. It is then possible to calculate the averaged saddle order, 〈K(T)〉;
dividing by 3N gives the fractional order, 〈k(T)〉, analogous to fu. Since taking
contributions to fu from nearby saddles only can be regarded as simplifying
the PEL, emphasizing features related to the reaction pathway and diffusion,
〈k(T)〉 is a plausible diffusive unstable fraction.
Investigations in “modified LJ” and in the binary LJ mixture [19, 20] have

established that 〈k(T)〉 extrapolates to zero at the same temperature as that
of D, that is, the static average 〈k(T)〉 may be analyzed to determine the
dynamical Tc. One might further say [19, 20, 24] that the system occupies
the borders of the IS basins on the PEL above Tc (K finite) and is close to the
minima (K→ 0) below Tc.

13.3.2.3 Partial Minimization

Minimization algorithms proceed in a stepwise fashion, and any quantity
calculated from the configurationmay be evaluated as a function of the num-
ber of steps, n. We found [54] that the problematic unstable modes in the LJ
crystal are removed by 3 to 4 steps, while unstable modes in the liquid, after
an initial sharp drop, persist for tens of steps (Figure 13.4).



BICH: “c472x_c013” — 2005/10/19 — 19:25 — page 274 — #22

274 T. Keyes

0 2 4 6

f u
f u

(a)

0 4 8 12 16
n

(b)

0

0.04

0.08

0.12

0.04

0.08

0.12

0.16

FIGURE 13.4
The fraction of imaginary frequency modes in unit-density LJ vs. the number n of conjugate
gradient minimization steps for (a) the crystal (T = 0.4, 0.8, 1.2, 1.6, 1.7, and 1.75) and (b) the
supercooled liquid (T = 0.4, 0.8, 1.2, 1.6, and 2.0), with T increasing from bottom to top.

If nondiffusive modes in the liquid are anything like those in the crystal
it is clearly suggested that they are eliminated by the first few steps and
one should seek a relation between D and fu(n),n ≈ 3−4. The value of n
employed to representDmust include the sharp drop in nondiffusive Im−ω
but avoid larger n where diffusive modes are removed as well. A systematic
procedure is to fit fu(n) for the supercooled states to a double exponential,
fu(n) = ff ∗exp(−kf ∗n)+fdif∗exp(−kdif∗n), to account for fast (f ) nondiffusive
and slow diffusive decay with n. The coefficient fdif, represents the fraction
of diffusive unstable modes.
Figure 13.5 shows fdif, fu(3), fu(4),D/T, and [19, 24] 〈k〉 in unit-density LJ;

liquid and crystal data are included. With most of the data from above Tc
comparisonwithD/T is essential, so all quantities will have a high-T plateau.
Asuperb representationofD/T, includingvanishing in the crystal, is achieved
with fu(3), fu(4), or fdif; fdif lies between fu(3) and fu(4), and is closer to fu(4).
The saddle fraction falls below the others at the lowest T. Analysis of D(T)
gives Tc = 0.48. Values obtained from different calculations with fu(n) are
Tc(4) = 0.47, Tc(dif ) = 0.46, and (inset in Figure 13.5) limn→∞ Tc(n) = 0.47.
We believe that the PEL features that cause nondiffusive modes occur

far from the reaction pathways and are associated with large gradients.
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Comparison of D/T(+), 0.34 fdif (©), 0.375fu(4) (×) (liquid and crystal) and 0.44〈k〉 ( ). Inset is
the minimization-step number dependence of Tinmc (n).

By contrast, gradients along the reaction pathways are small or, as a transition
state is approached, vanishing. Since minimization algorithms utilize the
gradient, the first few steps act to quench the nondiffusive modes and bring
the system close to a reaction pathway, while the subsequent steps approach
a minimum along the pathway. Partial minimization simplifies the apparent
landscape to a large extent such that the original one-dimensional idea linking
D and fu applies.

13.4 Summary and Conclusions

Our thesis is that the rate of slow relaxation in liquids is a function of the
number, or fraction, of unstablemodes. Focusing on diffusion, then, there is a
relationD( fu(T)). Additional T-dependence, which clearly exists, is assumed
to be weak in the sense of not influencing anArrhenius plot covering several
decades.
Three independent arguments, all invoking the intimate connection

between unstable modes and reaction pathways on the PEL, lead to a linear
relation:

1. Astatisticalmechanical theory of the unstable density of states, which
is then seen to contain the information needed to express the rate of
escape from a local minimum.
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2. A dynamical random energy model of motions among saddles and
minima in which a state with K neighbors of lower energy is a Kth
order saddle.

3. A simple physical argument that for liquids diffusive motion in most
directions is impossible, and the unstable eigenfunctions are the rare
exceptions.

For 1 and 2wemust also argue thatD is proportional to the rate of escapeR.
The threederivations cover bothT < Tc andT > Tc. Of course, there aremany
approximations and a nonlinear relation is also possible [39].
The best tests of the theory [14, 29] involve about three decades of D, with

most of the data above Tc. Under these circumstances “weak” T-dependence
is important. More fundamentally, a diffusive unstable fraction must be
employed. Then, essentially perfect INM representations of D have been
achieved. If a scheme for diffusive modes that is broadly applicable emerges
from the current suggestions, onemay hope to calculateD via an equilibrium
(Monte Carlo) simulation in a liquid that is too slow for dynamical simulation
(molecular dynamics). This would be the culmination of the entire enterprise.
The unstable density of states is a rich source of landscape information in its

own right. It would be very interesting if the coefficient a3 in Equation (13.23)
could be interpreted in an unambiguous fashion. A crucial problem for the
Stillinger thermodynamic formalism is evaluation of the anharmonic vibra-
tional free energy. I am hopeful that the inherently anharmonic unstable
modes can be used in that problem, leading to INM thermodynamics.
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14.1 Introduction

In recent years, great progress has been made in the development of highly
sophisticated, accurate computational methods to study the structure and
reactions of small molecules. The application of these methods to biological
macromolecules (e.g., proteins and nucleic acids) faces enormous challenges
due to computational demands. Knowledge of the atomic motions and their

281
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collective or correlated character in proteins plays an important role in under-
standing their biological functions [1], and thus approximate computational
methods are used to simulate the protein dynamics, for example, molecular
dynamics (MD) and normal mode analysis (NMA).
Molecular dynamics simulations can produce the motions of individual

molecules in models of solids, liquids, and gases. The key idea is to describe
howpositions, velocities, and orientations changewith time [2]. In theoretical
studies of proteins and nucleic acids, these represent a realistic description of
molecular motion, including small and large structural fluctuations and con-
formational transitions. The early MD applications were limited to biological
molecules in vacuo. The advent ofnewsupercomputer technologies and recent
theoreticaldevelopments aremaking itpossible to studybiomolecules in solu-
tion and to extend the simulations to times on the order of nanoseconds [1].
The well-known limitations of MD are due to the approximate nature of the
force fields and the absence of quantum effects.
NMA has long been used as a tool for interpreting vibrational spectra of

small molecules [3, 4]. The frequencies obtained from NMA can be directly
related to experimental infrared (IR) and Raman measurements, and the
derived normalmodes can be used in characterizing the dynamic behavior of
molecules. Although NMA is a quantum method, it is approximate, because
only the harmonicmotion of the systemaround a single potentialminimum is
taken into account. Qualitative and semi-quantitative estimates can be made
for many properties of macromolecules, such as the magnitude of atomic
fluctuations, displacement covariance matrix, and vibrational entropy [5, 6].
However, there are a number of bottlenecks associated with an application
of NMA to biomolecular systems that contain more than 10,000 atoms. In
particular, the calculation and storage of the mass-weighted second derivat-
ive matrix (Hessian) scales quadratically with the size of the system and the
diagonalization scales as the cube of the dimension of the Hessian.
For very large molecular systems in which straightforward diagonaliza-

tion is not feasible due to limited computational resources, it is still possible to
obtaina smallnumberofmodesbyusing iterativediagonalizationapproaches
[7–9], however, this approach still requires the complete Hessian. In proteins
low-frequency modes are particularly interesting because they are related
to functional properties [10]. To date, approximate coarse-grained protein
models [11, 12] have been developed to address this region of the spec-
trum. Various methods to performed NMA and quasi-harmonic analysis
of large molecular systems in full and reduced Cartesian bases, have been
described [5, 13, 14].
In our previous study [15] we introduced the driven Molecular Dynamics

(DMD)method to performNMAwithout a calculation of the Hessianmatrix.
We demonstrated how frequencies and normalmodes could be obtained, and
the method was validated on two small molecules and several advantages
of this method over the conventional Hessian-based methods for very large
systems were noted. Recently, we applied DMD to a 20-residue protein and
concluded that this method has considerable potential for the study of large
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systems, where the Hessian-basedmethod is not feasible [16]. In this chapter,
we review the algorithm of the DMD method and discuss its application to
the same protein, Trp-cage. We examine properties calculated from DMD
frequencies and normal modes and compare them to those obtained from
standard NMA.
Another important advantage of DMD over the Hessian-based NMA is

the ability to study the dynamics beyond the harmonic region. One can
rigorously quantify such fundamental phenomena as anharmonic motion
and mode coupling, which are relevant to studying functional properties of
biological macromolecules. A particularly useful application of anharmonic
DMD is simulation of so-called two-dimensional infrared (2D-IR) experi-
ments broadly aimed at studying energy transfer in time and frequency
domains. In this chapter, we present new results of a small peptide, dialanine,
and show how DMD can be readily extended to explore the dynamical
motions of relevance to these experiments.

14.2 Driven Molecular Dynamics

14.2.1 Theory

Harmonically driven MD calculations were reported in the 1970s and early
1980s to simulate multiphoton absorption in the IR [17, 18]. In those studies,
applied to diatomic molecules, the external driving force was not aimed at
determiningnormalmodes, but at creating a highly excitedmolecule. Follow-
ing thebasic characteristic ofnormalmodes, a classical systemexecuting small
amplitude motion about a minimum, can be driven resonantly at the normal
mode frequency of the unperturbed system. The DMD method employs an
external, sinusoidal driving term that can be used to scan the spectrum in
a continuous wave fashion and determine resonant absorptions, which are
the normal mode frequencies for weak signals [15]. The molecular motions,
induced by driving at resonant frequencies, correspond to the normal mode
vibrations.
The Hamiltonian of a molecular system in a DMD simulation consists of

the molecular Hamiltonian, H0 and a driving term U(q, t;ω)

H(p,q, t;ω) = H0(p,q)+U(q, t;ω) (14.1)

where q and p represent the 3N atomic Cartesian coordinates and momenta,
respectively. In this equation, H0 = T + V, where T is the kinetic energy and
V is the molecular potential. The driving term depends only on internuclear
distances rij and is given by

U(q, t;ω) =
∑
i<j

λijrij sin(ω t) (14.2)
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FIGURE 14.1
Example of energy profiles for Trp-cage protein: (a) nonabsorbing high-frequency mode (ω =
2000 cm−1), (b) nonabsorbing low-frequency mode (ω = 33.5 cm−1), (c) moderately absorbing
mode (ω = 35.0 cm−1), and (d) strongly absorbing mode (ω = 36.5 cm−1).

where λij are the small coupling constants. Hamilton’s equations of motion
for Cartesian coordinate α of atom i are

∂H
∂pα,i

= q̇α,i = pα,i
mi

,

− ∂H
∂qα,i
= ṗα,i = − ∂V

∂qα,i
−∑
j �=i
λij

αi−αj
rij

sin(ω t),

i = 1, . . . ,N, α = x, y, z
(14.3)

If, as assumed, ω is a normalmode frequency, then the system should respond
to the driving force by executing motion that is a specific linear combination
of Cartesian displacements corresponding to the nth normal mode, provided
the driving is not too hard, that is, the motion remains in the small amplitude
limit. The absorption measure that we adopt is the average total internal
energy of the molecule after a finite time of driving, which is given by

〈E〉 = 1
t

t∫
0

H0(τ )dτ (14.4)

At nonresonant frequencies, the absorbed energy is small and oscillatorywith
time, while on resonance it increases rapidly with time (Figure 14.1). The
absorption energy is also a good measure for estimating the stability of the
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calculation with respect to the driving force. This issue is discussed in further
detail in Section 14.3.

14.2.2 Computational Implementation

The driving term and its derivative (Equations [14.2] and [14.3]), which are
easy to evaluate, can be readily incorporated into any MD simulation pro-
gram. We implemented the driving scheme into the fourth-order velocity
Verlet integration program of TINKER [19]. TINKER is a user-friendly clas-
sicaldynamicsprogrampackage thatwasdevelopedspecifically formodeling
biopolymers. It has the ability to use several common force field parameter
sets, and it includes a variety of algorithms for geometry optimization, NMA,
potential surface scanning, and solvation effects.
The scanning procedure to obtain the normal mode frequencies and corres-

ponding normal mode vibrations is straightforward. The system is initially
at rest at the equilibrium structure. The driving force is chosen to be weak
enough so that excitation restricted to the harmonic potential. During the
simulation the absorption energy (Equation [14.4]) is monitored to identify
a resonant frequency. For each frequency the trajectory is propagated for
several picoseconds. The spectrum is scanned with a uniform step 
ω. The
normal mode vectors for the resonant frequencies are calculated from the
mass-weighted coordinates obtained from any time in the trajectory, after
significant absorption of energy has occurred. If the frequencies alone are
known, for example, from a spectral analysis of the velocity autocorrelation
function, they can be used directly with DMD to obtain the normal mode
vectors by driving exactly at the known frequencies. The usual mass-scaled,
normalized normal modes can be obtained from the Cartesian coordinates of
each atom. The components of the mass-scaled normal mode are given by

yα,i =
m1/2
i (qα,i − q(0)α,i )√∑i=1,N

α=x,y,z mi(qα,i − q(0)α,i )2
(14.5)

where q(0)
α,i is the reference value of coordinate qα,i andmi is themass of atom i.

14.3 Applications

14.3.1 The Harmonic Limit: Trp-Cage

The efficiency and accuracy of DMD was tested on a 20-residue protein (304
atoms) Trp-cage [20] (PDB code: 1L2Y). In both NMA and DMD simula-
tions, the potential function of Trp-cage was described with the assisted
model building and energy refinement (AMBER) force field ff98 para-
meter set for nucleic acids [21]. The structure was energy-minimized by
quasi-Newton nonlinear optimization [22] until the RMS gradient was less
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than 10−6 kcal mol−1 Å−1. The structural and dynamical properties of this
molecule, such as B-factors, root-mean square (RMS) fluctuations, vibrational
entropy, and cross-correlations coefficients were calculated using the DMD
method and compared to ones from standardNMA[16].All calculationswere
carried out in vacuo.

14.3.1.1 The Driving Parameter λ

The driving parameter λij in Equation (14.2) determines the strength of the
driving force. For simplicity, we choose λij to be the same for all interatomic
distances. The driving force applied to all interatomic distances ensures that
all normal modes will be excited. At a resonant frequency the molecule
absorbs energymonotonically, as the trajectory propagates, and at somepoint
it can exceed the harmonic limit. In the case of comparison of properties
derived from the frequencies and normal modes for the two methods (DMD
and standard NMA), it is desirable to keep molecular vibration in the small
amplitude region. Driving beyond the harmonic limits is another feature of
the DMD method, since it offers the study of coupled anharmonic motion.
We discuss this issue in Section 14.3.2.
We tested several driving parameters by analyzing the average absorption

energy as a function of frequency [16]. We decreased the driving parameter
until the shape of the function did not change. Finally we chose the driving
parameter λ = 0.04 cm−1/Å for the 5 psec simulation. This convergence test
is important to identify spurious absorption peaks at very low frequencies.

14.3.1.2 Spectral Density and Resolution

The frequency spectrum was determined in a simple way by a uniform scan
in the range from 0 to 4000 cm−1. The choice of a frequency step size is essen-
tially dictated by the frequency resolution. In most of the DMD calculations
presented here, the Trp-cage frequency spectrum is scannedwith a frequency
step size equal to 1 cm−1, each trajectory is propagated up to 5 psec with a
0.5 fsec integration step, unless stated otherwise.
The Trp-cage spectrum from DMD calculations along with the power

spectrum obtained by the Fourier transform of the velocity autocorrelation
function, generated in a standard MD simulation are shown in Figure 14.2.
Also the results from the standard NMA are included. Unlike the discrete
frequencies in NMA, the frequency distributions in the MD and DMD simu-
lations are quasi-continuous. In order to better compare the discrete Hessian
NM spectrum with the MD and DMD densities, the Hessian normal mode
distribution has been represented as a sumofGaussianswith a resolution cor-
responding to the Fourier transform limit of a 5 psec trajectory. These three
spectra are not strictly equivalent; however, they should agree in the posi-
tions of the peaks, and there is good agreement on the scale of resolution of
this figure. All spectra have been normalized so that the highest peak value
is equal to one.
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The resolving power of the DMDmethod is shown in Figure 14.3. As seen,
there are three normal mode frequencies in the range from 40 to 44 cm−1 that
are separated by 1 to 2 cm−1. The spectrumwas scannedwith a 0.25 cm−1 step
and λ = 0.0004 cm−1/Å, and each trajectory was run for up to 40 psec. As the
trajectory was propagated, wemonitored the average absorption energy. The
resolving power of DMD increases significantly in going from 10 to 40 psec.
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TABLE 14.1

Comparison of the Computed Normal Mode Eigenvalues and
Eigenvectors from DMD Calculation and Standard NMA.

Hessian DMD Overlapa Hessian DMD Overlapa

8.72 8.75 0.997 31.97 32.00 0.992
10.70 10.75 0.973 34.89 35.00 0.991
15.60 15.75 0.954 36.67 36.75 0.997
17.10 17.00 0.987 40.39 40.25 0.772
21.60 21.50 0.936 41.39 41.25 0.995
23.74 23.75 0.989 43.38 43.25 0.987
25.78 25.75 0.987 45.33 45.25b 0.697
27.80 27.75 0.956 47.89 48.00 0.996
29.24 29.25 0.988

a Overlap is defined as a dot product between the normalized Hessian
and DMD normal mode vectors.
b The average absorption energy for this mode is very low at 40 psec
and therefore the overlap is low. DMD simulation was performed up to
40 psec with 0.25 cm−1 frequency step and λ = 0.0004 cm−1 Å−1.

After 30 psec the two peaks separated by 2 cm−1 are clearly resolved. To
resolve the peaks separated by 1 cm−1, the trajectory has to be propagated
for up to 40 psec.
To quantify how a given DMD normal mode compares with the Hessian

normal modes, the overlap between the two corresponding vectors can be
calculated. Resolved DMD normal mode frequencies and their overlaps with
the normal mode frequencies from standard NMA for the lower part of the
spectrum (up to 50 cm−1) are collected in Table 14.1. Inmost cases the overlap
is more than 0.95, indicating good accuracy of DMD normal modes. Only at
40 cm−1, the density of DMD normal modes is higher and overlap is only
0.77. In such a case, the DMDmethod provides normal mode vectors, which
are mixed, showing characteristics of the eigenvectors of desired frequency
as well as those of the neighboring frequencies. To resolve these frequencies,
the trajectory has to be propagated for longer time and scanned with a very
small frequency step. Note that for longer propagation time smaller driving
parameters should be used, to preserve small amplitude behavior. Longer
propagation time results in increase of CPU, so it is important to determine
whether typical properties from a NMA can be accurately obtained with a
“low resolution” scan of the frequencies. In the next section we demonstrate
that average molecular properties of proteins, such as RMS fluctuations and
B-factors can be obtained accurately even from a very low resolution DMD
calculation.

14.3.1.3 Atomic Fluctuations

The DMD normal modes for the resonant frequencies are calculated from
the Cartesian coordinates that are obtained from the trajectory, anytime after
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significant absorption of energy has occurred. Using these normal modes
and the frequencies, several properties can be calculated. The magnitude of
atomic fluctuations is sensitive to the value of the vibrational frequencies. The
widely used classical expression for the atomic fluctuation of atom k is given
by [5]

〈
x2k〉 = kBT
3N−6∑
i=1

|yki|2
Mkω

2
i

(14.6)

where ωi is the frequency of mode i, yki is the corresponding projection of
normal mode i on the Cartesian coordinates of atom k, andMk is mass. Since
the present implementation of DMD does not resolve exact NM frequencies
but resonant frequencies extracted from the uniform scan of the spectrum,
the sum in Equation (14.6) can be formally replaced by an integral

〈
x2k〉 =
kBT
Mk

∫ ωmax
0 (1/ω2)W(ω)(yk(ω))2dω∫ ωmax

0 (W(ω)/Nf)dω
(14.7)

whereW(ω) is a weighting function (see below). The integral in the denomin-
ator of Equation (14.7) is a normalization factor, whereNf equals the number
of normal modes (3N − 6 for N atoms). In evaluating the integrals a simple
discretization scheme is used: theweight factorsW(ω) are 0 for nonabsorbing
frequencies and 1 for absorbing ones. In the present case, ωmax is 4000 cm−1.
At nonresonant frequencies, the absorbed energy of the molecule is small

and oscillatory with time. In our calculations, the oscillatory baseline was
about 10−4 (of a normalized integrated spectrum), andall driving frequencies,
exceeding this threshold value are considered as absorbing frequencies. With
this condition, Equation (14.7) reverts back to a discrete form

〈
x2k〉 =
Nf

Nm
kBT

Nm∑
i=1

|yki|2
Mkω

2
i

(14.8)

where Nm is the number of absorbing frequencies. We tested the integrated
values with respect to the threshold value and found stable and accurate
results relative to the exact ones, provided the threshold was low enough so
thatNm was about twice larger [16] thanNf . With this condition, very few true
normal modes are missed in the above equation. There will be approximate
copies of normal modes appearing in the sum; however, the normalization in
this sum approximately (and evidently accurately) accounts for this.
Measures of atomic fluctuations of Trp-cage protein obtained with 5 psec

DMD simulation are collected in Table 14.2 and compared to the exact results.
Formost properties the error is 10% or less. (If exact normalmode frequencies
are used, the agreement of the DMD and Hessian results is nearly perfect.
The error is 2%.) The RMS fluctuations averaged over the heavy atoms (C, N,
and O) are in the range 0.36 to 0.58 Å; backbone atoms tend to have smaller
fluctuations, and side chain atoms tend to have larger fluctuations. There is
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TABLE 14.2

RMS Fluctuations [〈
r2k 〉]1/2 in Å.
DMD Hessian

Method Meana Minimum Maximum Meana Minimum Maximum

All atoms 0.48 (0.19) 0.21 1.47 0.51 (0.21) 0.24 1.59
Backbone 0.36 (0.11) 0.21 0.61 0.36 (0.10) 0.24 0.58
Side chains 0.51 (0.21) 0.23 1.47 0.55 (0.23) 0.28 1.59
N 0.40 (0.14) 0.21 1.20 0.42 (0.15) 0.25 1.34
C 0.44 (0.10) 0.21 1.10 0.44 (0.10) 0.24 1.22
O 0.45 (0.09) 0.29 0.75 0.49 (0.12) 0.29 0.89
H 0.53 (0.15) 0.23 1.47 0.58 (0.16) 0.30 1.59
Cα 0.37 (0.11) 0.21 0.61 0.37 (0.11) 0.26 0.58

a The numbers are averages over all Trp-cage atoms for a particular class.
Numbers in parentheses are standard deviations.

an increase in the magnitude of the fluctuations as one goes from the center
of the protein out toward the terminal groups.
The atomic fluctuations are related to temperature-dependent crystallo-

graphic factors (B-factors) according to the well-known expression

Bk = 8π2
〈
r2k 〉
3

(14.9)

Figure 14.4 shows the B-factors at T = 300 K for all atoms and α-carbon
atoms of the Trp-cage protein calculated from the Hessian normal modes
(Equation [14.6]) and the DMD normal modes (Equation [14.8]). The agree-
ment between the standard Hessian and DMD simulations is very good,
lending support to theuse ofDMDmethod for further investigation of protein
dynamics.

14.3.1.4 Correlation of Atomic Motion

Cross-correlation coefficients are a general indication of the degree of the
collective motion in protein. The cross-correlation coefficient between atoms
k and j is defined as [1]

Ckj =
〈
rk ·
rj〉

(〈
r2k 〉〈
r2j 〉)1/2
(14.10)

These coefficients range from a value of −1 (completely anticorrelated
motions) to a value of +1 (completely correlated motions). They reflect cor-
relation of displacements along a straight line. In other words, two atoms
moving exactly in phase and with the same period, but along perpendicular
lines will have a cross-correlation of zero. Initially, the calculation was done
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FIGURE 14.4
A comparison of B-factors calculated by NMA (Hessian) and low resolution DMD simulation at
T = 300 K for all atoms and Cα atoms of Trp-cage.

using the 1 cm−1 low resolution DMD data set of frequencies and modes;
however, the results were not in satisfactory agreement with an exact normal
mode calculation. The reason for this is that cross-correlation coefficients are
sensitive to the orientation of modes, and thus accuracy of these modes is
essential. For most proteins, accurate values of 〈
x2k〉 can be obtained with
as few as 30 lowest-frequency normal modes. Indeed, it has been shown that
low-frequency normal modes of proteins, with frequencies under 30 cm −1,
are responsible formost of their atomic displacements [23]. In a different set of
DMD calculations we carried out the driving at exact normal mode frequen-
cies up to 200 cm−1. Using these, we calculated the cross-correlations of the
fluctuations of all backbone Cαs and did obtain accurate cross-correlations
coefficients, plotted in Figure 14.5(b) next to the exact normal mode res-
ults. Obviously, a finer scanning grid and longer time trajectory are needed.
Figure 14.5(c) is a result of the high resolution (40 psec simulation) DMD
scan performed up to 100 cm−1 with 0.25 cm−1 frequency step. There is good
agreement with the exact results in Figure 14.5(a).

14.3.1.5 Entropy

Dynamical techniques are useful for understanding the internal motions of
complex systems as well as for evaluating thermodynamic properties. As
far as proteins (and other biomolecules) are concerned, the computational
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(a) (b) (c)

– – –

FIGURE 14.5
(See color insert following page 136) Cross-correlation maps for Cα atoms from (a) Hessian
normal modes and frequencies, (b) DMD normal modes at exact Hessian frequencies, and (c)
DMD normal modes at frequencies obtained from the high resolution DMD calculation.

estimate of entropy is of basic interest in protein folding and ligand binding.
In this chapter, we test the calculation of the absolute entropy of Trp-cage
using the driven MD approach. The resonant frequencies obtained from the
same 5 psec simulation are used in the standard expression for the entropy
[1], modified for the number of absorbing frequencies (factor Nf/Nm, see
Equations [14.6] to [14.8])

Sv = Nf

Nm

Nm∑
j

[
�ωj

T(e�ωj/kBT − 1) − kB ln(1− e
(−�ωj/kBT))

]
(14.11)

For example, the DMD (Hessian) absolute values of entropy of Trp-cage for
temperatures 300, 500, and 1000 K are 0.807 (0.820), 1.293 (1.286), and 2.154
(2.159) kcal mol−1, respectively. As seen, the two methods are in very good
agreement.

14.3.2 Beyond the Harmonic Limit: Dialanine

In the previous section we validated the DMD method on Trp-cage protein.
All calculations were carried out within the harmonic limit. We calculated
several properties based on DMD normal mode frequencies and correspond-
ing normal mode vectors. The results were in very good agreement with the
ones calculated using standard NMA method. In our previous study [16],
we already discussed the possibility to extend the DMD method beyond
the harmonic limit. Mild driving (small λ) is used to extract the normal
modes; harder driving can be used to study anharmonic effects. Again, the
DMD method has to be tested first on small benchmark systems. From the
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earlier studywe know that Trp-cage spectrum is congested from overlapping
peaks associated with different structural domains. In order to understand
the anharmonic processes better, wedecided to study a smallermolecular sys-
tem, dialanine, for which experimental results have also been reported [24].
Here we study anharmonic coupling between the two amide-I oscillators of
dialanine in the gas phase. The potential function of dialanine was described
with the chemistry of Harvard molecular mechanics (CHARMM)27 force
field parameter set [25, 26]. In order to describe the bond stretching in a
more realistic fashion, we use the Morse potential function (according to
the option available in TINKER). As was done for Trp-cage protein, the
structure was optimized until the RMS gradient was less than 10−6 kcal
mol−1 Å−1.

14.3.2.1 Anharmonic Driving of Interatomic Distances

We first determined the normal modes of dialanine using TINKER with the
harmonic andMorse descriptions of the bond stretching. According to NMA,
most of the contribution to the amide-I band is from theCO stretch [24]. Using
the standardharmonic forcefield, weobtainedamide-I frequencies 1677.3 and
1683.9 cm−1, which are similar to those reported earlier [24]. The mode that
gives rise to the higher frequency transition is localized more on the acetyl
end of dialanine, while the lower frequency amide-I mode arisesmainly from
the amino end. With the Morse-type potential the resulting amide-I normal
mode frequencies are 1674.7 and 1712.3 cm−1, respectively.
By increasing the driving parameter λ to perform hard driving, we observe

red shifts in absorption spectra. The resulting anharmonic modes can then
be analyzed. We performed uniform frequency scan in the range 1600 to
1750 cm−1 with a step size of 1 cm−1. Each trajectory was run up to 20 psec.
Figure 14.6 shows absorption energy profiles for the two CO stretches for the
indicated λ parameters in the range from 0.4 to 40 cm−1 Å−1. As seen, with
increasing λ, the absorption energy growsmonotonically, reaching thousands
ofwavenumbers. Forλ > 4 cm−1 Å−1, there arenoticeable red shifts observed
along with substantial broadening of the lines. The effects of the red shift and
line broadening are more dramatic for λ in the range 30 to 40 cm−1 Å−1.
Certainly, harder driving induces both large amplitude motion and interac-
tions of neighboring units. Frequency shifts are mostly generated by internal
vibrational interactions between amide and other modes. As expected, nor-
mal modes and absorption frequencies for λ < 4 cm−1 Å−1 are in very good
agreement with the ones obtained by standard NMA. For λ < 4 cm−1 Å−1,
the overlap between the DMD and Hessian normal modes is about 0.98,
while in the anharmonic case the overlap substantially decreases due to the
mode coupling.
It is important to mention that the above discussion is for driving of

interatomic distances. Therefore, the intensities in the spectrum are not pro-
portional to the transitiondipolemomentsbut to theaverageabsorbedenergy,
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FIGURE 14.6
Dialanine spectrum in the range 1660 to 1730 cm−1. The two peaks correspond to CO stretch.
Hessian values are shown as sticks at 1674.7 and 1712.3 cm−1. The driving parameters λ are in
cm−1/Å units.

and they reflect the resonance. In thenext section, weextend theDMDmethod
for interaction of the molecule with the electric field.

14.3.2.2 Electric Dipole-Driven Dynamics

In order for a particular vibrationalmode to absorb electromagnetic radiation,
the vibrational motion associated with that mode must produce a change in
the dipole moment of the molecule. To simulate IR absorption experiments,
we implemented a dipole-driving scheme into TINKER. Here, the driving
term (see Equation [14.2]) is given by

U(q, t;ω) = �ε(t;ω) · �µ(q) (14.12)

where �ε(t;ω) is the frequency and time-dependent electric field vector. �µ(q)
is the electric dipole of the molecule, whose first derivative with respect to
the Cartesian coordinates enters the equations of motion of Section 14.2.
In preliminary tests, we observed that mild driving with sinusoidal

dipole-driving term does produce the correct IR spectrum for Trp-cage and
dialanine [27]. Here, we employ pulsed driving, which is of particular relev-
ance to 2D-IR experiments used for determining a variety of structural and
energetic properties of molecules. In our calculations here, a Gaussian pulse
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(See color insert following page 136) Scheme of the 2D-IR experiment for dialanine using the
DMD dipole-driving method. The spectrum and structure was recorded at 
t = 4.0 psec with
perpendicularly polarized pump and probe pulses.

centered at frequency ω is used

�ε(t;ω) = �ε0e−(t−t0)2/2
τ 2 cos[ω(t− t0)] (14.13)

where �ε0 determines the direction and strength of the electric field, and t0
is an arbitrary reference time. Technically, the driving begins (laser is on) at
t = −2t0 and finishes (laser is off) at t = 0. The reference time is adjusted so
that the field starts off with a small intensity (typically 5% of the maximum),
rises to the maximum, and dies off at the same small intensity.
The sequence of excitation, time delay, and “probing” (depicted in

Figure 14.7 for dialanine) is simulated as follows. The system is initially at rest
at the equilibrium structure. For a given pump frequency ω, the electric field
is given by Equation (14.13). After the pulse is turned off, the system evolves
for a period of time (
t), and then the system is “probed.” In the absence of
anharmonicities the dynamics is trivial and, in fact, one dimensional since a
harmonic oscillator continues to absorb at a single frequency (no detuning)
and does not “communicate” with other normal modes. However, in real
systems, anharmonicities play an important role in the dynamics.
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The “probe” spectrum is obtained theoretically by calculating the Fourier
transform of the dipole–dipole correlation function averaged over the spatial
orientations of the field

C(t;
t) = 〈�µ(
t) · �µ(t+
t)〉 (14.14)

where 
t is a time delay between the pump pulse and the probing. Thus,
only a single electric field pulse is used in these calculations. The classical
dependence of dipole µ is determined and saved. The averaging is done
to reflect the molecule’s random orientation in the laboratory frame. This
requires integrating several dipole-driven trajectories with the field direction
uniformly sampled on a coarse spherical polar grid (typically 3 polar and
6 azimuthal angles, resulting in 18 orientations). Controlling the orientation
of the dipole with respect to the pump can simulate polarization-specific
experiments. A parallel response is measured by projecting the dipole onto
the direction of the pump field, while a perpendicular response is obtained
by taking the dipole’s component orthogonal to the field. 2D spectra can be
obtained by scanning the pump frequency and collecting spectra for each
pump frequency. Another dimension can be introduced by varying the time
delays between the driving and probing.
As an example, we study the IR absorption spectrum of dialanine for a

fixedpumpfield. In the simulated experiment, aGaussianpumppulse (band-
width 40 cm−1, full width at half maximum ∼220 fsec) centered at frequency
1675 cm−1 with the field strength of 0.13 V/Å is used to excite the system.
The total energy absorbed is roughly 1400 cm−1. The probed spectrum is
shown in Figure 14.7, in the range from 1650 to 1750 cm−1(with resolu-
tion 3 cm−1). The spectra were recorded at a time delay of 4 psec with the
polarization of the probe pulse parallel and perpendicular to the polariz-
ation of the pump pulse. The two peaks correspond to amino end (lower
amide-I) and acetyl end (higher amide-I) CO stretches. A qualitatively differ-
ent picture can be observed in the two cases of pump-probe polarization.
The parallel response shows significant red shifts and line broadening in
both modes, while the perpendicular response is still relatively harmonic.
It is evident that there is strong anisotropy present in dipole transitions of
dialanine.

14.4 Summary and Conclusions

DrivenMD offers a simple classical scheme for extracting the vibrational nor-
malmodeswithout an explicit knowledge of the secondderivativematrix, the
Hessian. The standard setup and diagonalization of the Hessian is replaced
by a resonant excitation of the molecule (at a frequency ω) using a sinus-
oidal time-dependent perturbation. To solve the dynamics, one only needs to
propagate a single classical trajectory for a given frequency, under conditions
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of mild driving, scanning the frequency, and locating the resonances, that is,
the normal mode frequencies, thus determine the harmonic spectrum. The
normal mode vectors are extracted from instantaneous atomic displacements
along the trajectory at an identified resonance.
In the application to Trp-cage protein presented here, we showed in several

critical tests that DMD is a competitive alternative to conventional matrix
diagonalization. Unlike Hessian-based methods, the CPU effort in DMD
scales linearly with the number of atoms for a given force field, while the act-
ive memory and disk storage are representative of standard MD. The quality
of the normal modes, both the frequency and spatial motion, can be optim-
ized by a careful analysis of the absorbed energy and atomic displacements
along the trajectory. The DMD approach provides an accurate description
of averaged quantities such as atomic fluctuations and entropy in compar-
ison to the Hessian normal mode results, even from low resolution data. For
more detailed properties, such as cross-correlation coefficients, accurate res-
ults require driving at exact normal mode frequencies or performing a fine
scan. Obviously, to obtain these frequencies in a straightforward scan would
be computationally very time consuming, but favorable for parallel compu-
tation. A variety of spectral deconvolution methods could also be applied to
the spectrum. Another approach to obtain accurate frequencies is to use the
velocity autocorrelation function from a standardMD calculation with popu-
lar signal processing methods (e.g., filter diagonalization techniques [28, 29]
and harmonic inversion schemes [30, 31]).
Perhaps the most attractive feature of DMD, and a clear advantage over

Hessian techniques, is the ability to include anharmonic effects directly into
the driving scheme. This flexibility allows for simulation of interesting experi-
ments in vibrational spectroscopy. Using an electric field as an activemedium
for dipole-driven dynamics, we studied field response and the ensuing time-
dependent energy transfer in dialanine. Extending these in vacuo simulations
to liquid phase is straightforward and is a subject of ongoing work.
A few final remarks are in regards to future developments and compu-

tational efficiency of DMD. It is, in principle, possible to combine DMD
as described in this chapter with an electronic structure algorithm to yield
a so-called direct ab initio DMD mechanism. If made practical, such a
merger would be a tremendous step forward in biological macromolecule
dynamics, allowing to carry out studies of systems for which force fields are
either thought to be inaccurate or simply not available. However, even the
most efficient and scalable electronic structure methods, such as the popular
QM/MM [32] and linear scaling DFT approaches [33], cannot produce thou-
sands of energies (and gradients) on the fly in a short time, as required by
an MD algorithm. An alternative way to combine the two pieces would be to
generate theHessian using an electronic structuremethod anduse it as a force
field in the dynamics. One would obtain the eigenvalues and corresponding
eigenvectors of the raw Cartesian Hessian using DMD. Of course, the anhar-
monic effects are missing, but that could actually be an advantage if one were
interested purely in extracting the normal modes. All the interferences and
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line broadening due to mode coupling are eliminated by definition of the
Hessian. We are currently pursuing this development on a number of related
applications.
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15.1 Introduction

The harmonic (or normal mode (NM)) approximation has been a power-
ful tool for the analysis of few and many-body systems where the essential
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dynamics of the system consists of small oscillations about a well-defined
mechanically stable structure. The concept of NMs is appealing in science
because it provides a simple view for complex systems such as solids and pro-
teins. Though it had been believed that NMsmay be too simplistic to analyze
the dynamics of proteins, it is by nomeans always true; the experimental data
of neutron scattering for proteins (B-factor) indicate that the fluctuations for
each residue arewell represented by a simplifiedmodel usingNMs [1]. It was
also shown that such a large-amplitude motion as the hinge-bending motion
in a protein is well described by a NM [2]. Importantly, NMs have been used
to refine the x-ray structures of proteins [3]. Recently, large proteins or even
protein complexes can be analyzed by using NMs [4–6].
In this chapter, we are concerned with vibrational energy relaxation (VER)

in a protein. This subject is related to our understanding of the functionality of
proteins.At themost fundamental level, wemust understand the energy flow
(pathway) of an injected energy, that is channeled to do useful work. Due to
the advance of laser technology, time-resolved spectroscopy can detect such
energy flow phenomena experimentally [7]. To interpret experimental data,
and to suggest new experiments, theoretical approaches and simulations are
essential as they can provide a detailed view of VER. However, VER in large
molecules itself is still a challenging problem in molecular science [8]. This
is because VER is a typical many-body problem and estimations of quantum
effects are difficult [9]. There is a clear need to test and compare the validity
of the existing theoretical methods.
Wehere employ twodifferentmethods to estimate theVER rate in a protein,

cytochrome c (see Section 15.2 for details). One is the classical equilibrium
simulation method [10] with quantum correction factors (QCFs) [11, 12]. The
second is the reducedmodel approach [13], whichhasbeen recently employed
by Leitner’s group [14, 15]. The latter approach is based on NM concepts,
whichdescribesVERas energy transfers betweenNMsmediatedbynonlinear
resonance [16].We concludewith adiscussionof the validity andapplicability
of such approaches.

15.2 Cytochrome c

Cytochrome c (cyt c) is one of the most thoroughly physicochemically char-
acterized metalloproteins [17, 18]. It consists of a single polypeptide chain
of 104 amino acid residues and is organized into a series of five α-helices
and six β-turns. The heme active site in cyt c consists of a 6-coordinate low-
spin iron that binds His18 and Met80 as the axial ligands. In addition, two
cysteines (Cys14 andCys17) are covalently bonded through thioether bridges
to the heme (see Figure 15.1). Crystal structures of cyt c show that the heme
group, which is located in a groove and almost completely buried inside the
protein, is nonplanar and somewhat distorted into a saddle-shape geometry.
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Cys14
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Cys17
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Feheme

C-D bond

FIGURE 15.1
(See color insert following page 136) The structure of cytochrome c in the vicinity of the heme
group, showing the thioether linkages and nonplanar heme geometry.

The reduced protein, ferrocytochrome c (ferrocyt c), is relatively compact and
very stable, due to the fact that the heme group is neutral.
The vibrational mode we have chosen for study is the isotopically labeled

CD stretch in the terminal methyl group of the residue Met80, which is
covalently bonded to Fe in heme (see Figure 15.1). Our simulation model
approximates the protein synthesized by Romesberg’s group, [19] though
their protein contains three deuteriums in Met80 (Met80-3D). The CH and
CD stretching bands are located near 3000 and 2200 cm−1, respectively. In
contrast with themodeling of photolyzed CO inmyoglobin [10], essentially a
diatomic molecule in a protein “solvent,” we are interested in the relaxation
of a selected vibrational mode of a protein. As a result, the modeling is more
challenging: There is no clean separation between the system and bathmodes
because the CD bond is strongly connected to the environment.

15.3 QCF Approach

The classical Landau–Teller–Zwanzig (LTZ) theory of VER is attractive in that
it allows us to base our estimate of the VER rate on a classical force autocorrel-
ation function that contains the interaction coupling between the system and
bathmodes to all orders. TheHamiltonian for sucha system is of theCaldeira–
Leggett–Zwanzig form, where “bath” coordinates are represented as NMs of
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the bath alone.1 The relaxing oscillator is introduced as a local “system”mode,
coupled to the bath at all orders, including “bilinear” coupling.
Efforts have been made to introduce quantum effects through the use

of “QCFs.” The dynamics of the classical system are computed, and the
quantumeffects areadded a posteriori in amanner that accounts for theequilib-
riumquantumstatistical distributionof the contributingquantummechanical
degreesof freedom. This approach is summarizedbelowandapplied to estim-
ate the rate of VER for the CD bond in the terminal methyl group of Met 80
in cyt c.

15.3.1 Fermi’s Golden Rule

Our starting point for computing the rate of VERof theCD stretchingmode in
cyt c is Fermi’s “golden rule” formula. The vibrational population relaxation
rate can be written as [13, 20]

1
T1
= tanh(β�ωS/2)

β�ωS/2

∫ ∞
0

dt cos(ωSt)ζqm(t) = tanh(β�ωS/2)
β�ωS/2

ζ̃qm(ωS)

(15.1)

where the force–force correlation function ζqm(t) is defined as

ζqm(t) = β

2mS
〈F(t)F(0)+ F(0)F(t)〉qm (15.2)

its Fourier transform is ζ̃qm(ω), F(t) is the quantummechanical force applied
to the system mode considered, mS is the system (reduced) mass, ωS is the
system frequency, β is an inverse temperature, and the above bracket means
a quantum mechanical average. Note that in the classical limit � → 0, the
prefactor in front of the integral in Equation (15.1) becomes unity, and the
expression reduces to thewell-known classical VER formula. The issue is that
this limit does not represent well the VER for high frequency modes because
of quantum effects (fluctuation), whereas it is difficult to calculate ζqm(t).
Rather than using the population relaxation rate 1/T1, we could compute

the rate of transition between pairs of vibrational quantum states

kqmn→n−1 =
2n

β�ωS[1+ e−β�ωS ] ζ̃qm(ω) (15.3)

where n is the vibrational quantum number. In the limit that β�ωS � 1 as we
consider here, the splitting between vibrational levels is large compared with

1As shown below, the classical LTZ formula can be considered as a classical limit of the quantum
mechanical population relaxation rate 1/T1. This result is derived by using both Fermi’s golden
rule andBader–Berne theory [20]. Though the transition rate kn→n−1 itself canbederivedwithout
any assumption on the bathHamiltonian, the Bader–Berne result stems from the assumption that
the bath Hamiltonian is an ensemble of harmonic oscillators.
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the thermal energy. At equilibrium, the system oscillator will be ground state
dominated, and we find that

1
T1
� 2ζ̃qm(ωS)

β�ωS
� kqm1→0 (15.4)

For such a system, we are free to consider the rate of vibrational relaxation in
terms of the ensemble averaged relaxation rate 1/T1 or the microscopic rate
constant kqm1→0 — the results will be equivalent.
In the limit that β�ωS → 0, on the other hand, the splitting between states

becomes much smaller than the thermal energy and the results are not equi-
valent. The rate constant kqm

1→0 diverges, while the population relaxation rate
1/T1 is well behaved

1
T1
� ζ̃qm(ωS) (15.5)

In this chapter, we will present our results in terms of 1/T1.

15.3.2 Quantum Correction Factor

While ζqm(t) is difficult to compute for all but the simplest systems, it is often
possible to compute the classical analog

ζcl(t) = β

mS
〈F(t)F(0)〉cl (15.6)

for highly nonlinear systems consisting of thousands of atoms. The above
bracket denotes a classical ensemble average. The challenge is to relate the
quantummechanical correlation function to its classical analog. An approach
explored by Skinner et al. has proved to be quite productive [12]. It involves
relating the spectral density of the quantum system to that of the analogous
classical system as

ζ̃qm(ωS) = Q(ωS)ζ̃cl(ωS) (15.7)

whereQ(ωS) is referred to as the “QCF.” TheQCFmust obey detailed balance
Q(ω) = Q(−ω)eβ�ω and satisfy the “classical” limit that asβ�ω becomes small,
theQCFapproachesunity. Using this result, wemayrewriteEquation (15.1) as

1

TQCF
1

� Q(ωS)

β�ωS
ζ̃cl(ωS) (15.8)

Note that the classical VER rate is defined as 1/Tcl
1 ≡ ζ̃cl(ωS).

The QCF for a one phonon relaxation mechanism is

QH(ω) = β�ω

1− e−β�ω
(15.9)
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FIGURE 15.2
Density of statesρ(ω) for cyt c in vacuum(solid line) and inwater (dashed line) at 300K calculated
by INM analysis.

However, as theCD stretchingmode falls in the transparent region of theDOS
(Figure 15.2), a 1:1 Fermi resonance (linear resonance) is not the possible
mechanism of VER. As such, the lowest order mechanism available for the
VER of the CD mode should involve two phonons.
We have employed Skinner’s QCF approach for two-phonon relaxation

[12]. If the two-phonon mechanism assumes that two lower frequency bath
modes, having frequencies ωA and ωS−ωA, are each excited by one quantum
of vibrational energy, the appropriate QCF is

QHH(ωS) = QH(ωA)QH(ωS − ωA) (15.10)

Alternatively, if the assumed two-phonon mechanism is one that leads to the
excitation of one bath vibrational mode of frequency ωA, with the remaining
energy �(ωS − ωA) being transferred to lower frequency bath rotational and
translational modes, the appropriate QCF is

QH–HS(ωS) = QH(ωA)
√

QH(ωS − ωA)eβ�(ωS−ωA)/4 (15.11)

The functions QH,QHH,QH–HS are called the harmonic, harmonic–harmonic,
and harmonic–harmonic–Schofield QCF, respectively.

15.3.3 NM Calculations for Cyt c

To compute the QCF requires a knowledge of, or guess at, the mech-
anism of VER. Likely bath modes must be identified and a combination
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of those modes must meet a resonance condition enforced by the con-
servation of energy in the transition. The candidate modes are identified
using quenched normal mode (QNM) or instantaneous normal mode (INM)
calculations.
In Figure 15.2, we show the density of states (DOS) for cyt c in vacuum

and in water at 300 K. These are the INM spectra, so they contain some
negative (actually imaginary) components. The basic structure of this DOS
is similar to that of other proteins such as myoglobin [10, 16]. The libra-
tional and torsional motions are embedded in lower frequency regions below
2000 cm−1, and vibrational motions are located in higher frequency regions
around 3000 cm−1. There is a transparent region between 2000 and 3000 cm−1;
the peak due to the CD mode falls in this region near 2200 cm−1. The VER of
this CD mode is our target in this study. Note, furthermore, that the spectra
in vacuum and in water are very similar. This indicates that water solvent
might not affect the simulation results. This conjecture will be confirmed
below.

15.3.4 Application to VER of the CD Bond in Cyt c

Bu and Straub [11] employed the QCF approach to estimate the VER rate of
a CD bond in the terminal methyl group of Met80 in cyt c (Figure 15.1). Their
calculations were done using the programChemistry at HARvardMechanics
(CHARMM) [21], and cyt c was surrounded by water molecules at 300 K. In
this work, we have used molecular dynamics simulations of cyt c in vacuum
at 300 K to compute the classical autocorrelation function for the force acting
on the same CD bond. The results have been used to make estimates of both
1/Tcl

1 and 1/TQCF
1 .

In Figure 15.3, the force autocorrelation function and its power spectrum
are shown for four different trajectories. We have observed that the force
fluctuation and the magnitude of the power spectrum for cyt c in vacuum
is very similar to those computed for cyt c in water. We conclude that the
effects of water on the VER rate are negligible. With the CD bond frequency
ωS = 2133 cm−1, we find 1/Tcl

1 = ζ̃cl(ωS) � 1 psec−1, that is, the classical VER
time is about 1 psec.
To apply QCFs for two-phonon relaxation, Equations (15.10) and (15.11)

to this situation, we need to know ωA. We have found that the CD mode is
strongly resonantwith two lower frequencymodes, 1655th (685.48 cm−1) and
3823rd (1443.54 cm−1) modes because |ωS − ω1655 − ω3823| = 0.03 cm−1. We
might be able to choose ωA = 1443.54 or 685.48 cm−1.
In Figure 15.4, we show the ωA dependence of the normalized QCF,

that is, Q̃ = Q/(β�ωS) = Tcl
1 /T

QCF
1 at 300 K and at 15 K. If we choose

ωA = 1443.54 cm−1 at 300 K, Q̃ = 2.3 for the harmonic–harmonic QCF and
2.8 for the H–HS QCF. Thus, we have TQCF

1 = Tcl
1 /Q̃ = 0.3 ∼ 0.4 psec. It

is interesting to note Q̃ at 15 K varies significantly depending on the QCF
employed. We will discuss this feature in Sec. 15.4.4.
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FIGURE 15.3
Left: Classical data for the force–force correlation function. Middle: Fourier spectra for the correl-
ation function. Right: Magnification of the middle figures around the CD bond frequency. These
data are taken from four different trajectories of the equilibrium simulation.

15.3.5 Fluctuation of the CD Bond Frequency

We have discussed the fluctuation of the frequency for the CD bond [11]. In
the equilibrium simulation, the INM analysis has been employed for each
instant of time to generate a time series ωCD(t) for the CD bond frequency.
From this time series, we can calculate the frequency autocorrelation function

C(t) = δωCD(t)δωCD(0) = 1
T

∫ T

0
dτδωCD(t+ τ)δωCD(τ ) (15.12)
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FIGURE 15.4
Normalized HH and H–HS QCF at 300 K (a) and at 15 K (b) as a function of the bath mode
frequency ωA.

where the overline means a long time (T) average, and δωCD(t) = ωCD(t) −
ωCD(t). The correlation time is defined as

τc = 1
(�ω)2

∫ ∞
0

C(t)dt (15.13)

where (�ω)2 = C(0). From Figure 15.5, we found �ω � 8.5 cm−1 and
τc � 0.2 psec. Since �ωτc � 1, according to Kubo’s analysis [22], the line
shape should be homogeneously broadened, that is, its shape is Lorentzian.
We also confirmed that the potential barrier of the methyl group to rotate is
significantly greater than the thermal energy (barrier height � 3 kcal/mol >
thermal energy � 0.6 kcal/mol).
These results support the validity of employing a NM type study of VER

in cyt c as the structure of cyt c is rather rigid around the CD bond and the
dynamics of the bond, on the scale of VER, should be well modeled by NMs.
Of course, to describe VER amongNMs, wemust include nonlinear coupling
terms. In the next section, we discuss this reduced model approach for VER
in cyt c.

15.4 Reduced Model Approach

The QCF approach is attractive in that it allows us to base our estimate of the
VER rate on a force autocorrelation function that contains the nonlinearity of
the coupling between the system and bath modes to all orders. To obtain an
estimate of the VER based on a more accurate representation of the system’s
quantum dynamics, we expand the potential as a Taylor series in the NMs
of the system and bath. In this representation, the system and bath coordin-
ates are “NMs;” to second order in the expansion of the potential energy,
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FIGURE 15.5
The frequency autocorrelation function calculated from the instantaneous normalmode analysis.
The data up to 20 psec were used to calculate the correlation function.

the system and bath modes are uncoupled and noninteracting. The interac-
tion “coupling” between the system and bath modes first appears at third
order. In this section, we describe a perturbation theory estimate of the rate
of VER of the CD mode that represents the system–bath coupling to lowest,
third order in the system and bath coordinates.

15.4.1 Reduced Model for a Protein

The reducedmodel approach utilizes the NMpicture of a protein, expanding
the residual term perturbatively as [23]

H = HS +HB + V3 + V4 + · · · (15.14)

HS = p2S
2
+ ω

2
S
2

q2S (15.15)

HB =
∑

k

p2k
2
+ ω

2
k
2

q2k (15.16)

V3 =
∑
k,l,m

Gklmqkqlqm (15.17)

V4 =
∑

k,l,m,n

Hklmnqkqlqmqn (15.18)

Thus the force applied to the system mode is

F = − ∂V
∂qS
= −3

∑
k,l

GS,k,lqkql − 4
∑
k,l,m

HS,k,l,mqkqlqm + · · · (15.19)
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where we have used the permutation symmetry of Gklm and Hklmn. If it is
enough to include the lowest order terms proportional to Gklm, substituting
them into Fermi’s golden rule Equation (15.1), we can derive an approximate
VER rate as [13]

1
T1
� 1

mS�ωS

1− e−β�ωS

1+ e−β�ωS

∑
k,l


 γ ζ

(+)
k,l

γ 2 + (ωk + ωl − ωS)2
+ γ ζ

(+)
k,l

γ 2 + (ωk + ωl + ωS)2

+ γ ζ
(−)
k,l

γ 2 + (ωk − ωl − ωS)2
+ γ ζ

(−)
k,l

γ 2 + (ωk − ωl + ωS)2


 (15.20)

where we have included a width parameter γ to broaden a delta function,
and defined the following:

ζ
(+)
k,l =

�
2

2

(A(2)k,l )
2

ωkωl
(1+ nk + nl + 2nknl) (15.21)

ζ
(−)
k,l =

�
2

2

(A(2)k,l )
2

ωkωl
(nk + nl + 2nknl) (15.22)

A(2)k,l = −3GS,k,l (15.23)

nk = 1/(eβ�ωk − 1) (15.24)

15.4.2 Maradudin–Fein Formula

There exists another well-known formula to describe the VER rate, the
Maradudin–Fein (MF) formula [24, 14],

W =Wdecay +Wcoll (15.25)

Wdecay = �

2mSωS

∑
k,l

(A(2)k,l )
2

ωkωl
(1+ nk + nl)

γ

γ 2 + (ωS − ωk − ωl)
2 (15.26)

Wcoll = �

mSωS

∑
k,l

(A(2)k,l )
2

ωkωl
(nk − nl)

γ

γ 2 + (ωS + ωk − ωl)
2 (15.27)

with a width parameter γ . Note that Equations (15.20) and (15.25) are equi-
valent in the limit of γ → 0 as shown by Kenkre et al. [25]. However, they
disagree with a finite width parameter such as γ ∼ 100 cm−1. In this chapter,
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we use the MF formula and consider its classical limit (�→ 0) defined as

W cl
decay =

1
2mSβωS

∑
k,l

(A(2)k,l )
2

ωkωl

(
1
ωk
+ 1
ωl

)
γ

γ 2 + (ωS − ωk − ωl)
2 (15.28)

W cl
coll =

1
mSβωS

∑
k,l

(A(2)k,l )
2

ωkωl

(
1
ωk
− 1
ωl

)
γ

γ 2 + (ωS + ωk − ωl)
2 (15.29)

We note some properties of the formula: Wdecay ≥ W cl
decay and Wcoll ≤ W cl

coll,
which is derived from

1/(ex − 1)+ 1/(ey − 1)
1/x + 1/y ≥ 1 (15.30)

1/(ex − 1)− 1/(ey − 1)
1/x − 1/y ≤ 1 (15.31)

for x, y > 0. We can define an effective QCF as

Qeff = W
W cl =

Wdecay +Wcoll

W cl
decay +W cl

coll

(15.32)

This should be compared with the normalized QCFs [Q̃ = Q(ωS)/(β�ωS)]
found in the literature.

15.4.3 Third-Order Coupling Elements

To apply the MF theory to the case of CD bond relaxation in cyt c, we must
numerically compute the third-order coupling elements. As the protein has
more than 103 modes, there are more than 106 third-order coupling elements
representing the coupling of the “system” CD bond to the “bath” modes of
the surrounding protein and solvent.
We have employed the finite difference approximation

A(2)mn = −
1
2

∂3V
∂qS∂qm∂qn

� −1
2

∑
ij

UimUjn
Kij(�qS)− Kij(−�qS)

2�qS
(15.33)

where Uik is an orthogonal matrix that diagonalizes the (mass-weighted)
Hessian matrix at the mechanically stable structure Kij, and Kij(±�qS) is
a Hessian matrix calculated at a shifted structure along the direction of a
selected mode with a shift ±�qS.
Note that, in the large number of coupling elements, most are small in

magnitude. Of those that are larger, most fail to meet the resonance condition
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FIGURE 15.6
VER rates for the CDmode (ωCD = 2129.1 cm−1) and the other lower frequencymodes (ω3330 =
1330.9 cm−1, ω1996 = 829.9 cm−1, ω1655 = 685.5 cm−1) as a function of γ at 300 K (a) and at
15 K (b).

and do not contribute significantly to the perturbative estimate of the VER
rate (see Reference 13 for the details).

15.4.4 Width Parameter

We show the width parameter γ dependence of the VER rate in
Figure 15.6.2 We consider other lower frequencymodes (ω3330 = 1330.9 cm−1,
ω1996 = 829.9 cm−1, and ω1655 = 685.5 cm−1) as well as the CD mode
(ωCD = 2129.1 cm−1) for comparison. From the former analysis of the fre-
quency autocorrelation function Equation (15.12), we might be able to take
γ � �ω ∼ 3 cm−1 for the CDmode, andwe have T1 � 0.2 psec, which agrees
with the previous result with QCFs: TQCF

1 = 0.3 ∼ 0.4 psec.
We also see that the lower frequency modes have longer VER time, a few

psec, which agrees with the calculations by Leitner’s group employing the
MF formula [15]. The main contribution to the VER rate at γ = 3 cm−1 comes
from 1655thmode (685.5 cm−1), a heme torsion, and the 3823rd (1443.5 cm−1)
mode, an angle bend in Met80 (∼20%). Interestingly, we can conceive a peak
around γ = 0.03 cm−1. Given this width parameter, the contribution from
the two modes is more than 90%. We can say that 1655th and 3823rd modes
are resonant with the CD mode because they satisfy the resonant condition
(|ω1655+ω3823−ωCD| � 0.03 cm−1) and the coupling elements between them
is relatively large (|A(2)1655,3823| � 5.1 kcal/mol/Å3).
This close resonance does not necessarily lead to the conclusion that it

forms the dominant channel for VER of the CD stretch. There is a competing

2Note two limiting cases of γ dependence: 1/T1 ∝ γ when γ is very small, and 1/T1 ∝ 1/γ when
γ is very large. This is easily recognized from the Lorentzian form.
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near-resonance involving the 3330th mode (1330.9 cm−1), an angle bending
mode of Met80, and the 1996th mode (829.9 cm−1), a stretch-bend mode in
Met80. While the resonance is not close (it is within 31.7 cm−1), the coupling
element is quite large (|A(2)3330,1996| � 22.3 kcal/mol/Å3).With a larger value of
γ = 30 cm−1, this combination of bathmodes becomes the dominant channel
for VER of the CD stretch. Clearly, the uncertainty in our force field, used
to compute the vibrational frequencies, and the value of γ , which is rather
poorly defined, prevents us from concluding that one or another of these two
channels will dominate VER of the CD stretch at room temperature.
In Figure 15.7(a), we show the effective QCF calculated from

Equation (15.32) at 300 K, which is Qeff � 2.3 for the CD mode with
γ = 3 cm−1. This value better agrees with the (normalized) HH QCF
[Equation (15.10)], compared to the H–HS QCF [Equation (15.11)]. The Qeff
for the other modes are more or less unity, which indicates that these modes
behave classically at 300 K.3 In contrast, as is shown in Figure 15.7(b), Qeff
at 15 K is very large (Qeff � 40), which implies that the classical VER
rate becomes small because it is proportional to the temperature (see also
Figure 15.8). A similar trend is found in the right of Figure 15.4, where the
HH QCF (Q̃ � 40) is comparable to Qeff. On the other hand, the H–HS QCF
gives an exponentially large value of Q̃, showing strong deviations fromQeff.
We should bear in mind that different QCFs lead to significantly different
conclusions at low temperatures.

3We notice an interesting behavior for 1655th mode, that is, Qeff becomes very much smaller
than unity at γ � 0.03 cm−1. In this case, we observe that Wcoll �Wdecay because of the
resonance: ω1655 + ω3823 − ωCD � 0 (actually 0.03 cm−1). In such a case, Qeff becomes less than
unity because Wcoll ≤Wcl

coll.
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15.4.5 Temperature Dependence

In Figure 15.8, we show the temperature dependence of the quantum and
classical VER rate calculated by the MF formula and the classical limit of
the MF formula. At high temperatures (∼1000 K), the quantum VER rate
agrees with the classical one, but they deviate at low temperatures. The
former becomes constant due to the remaining quantum fluctuation (zero
point energy) whereas the latter decreases as ∝ (temperature). The “cross
over temperature” where the VER behaves classically is smaller for the lower
frequency modes compared to that of the CD mode as expected.

15.5 Discussion

15.5.1 Comparison with Experiment

Here we compare our results with the experiment by Romeberg’s group [19].
Theymeasured the shifts andwidths of the spectra for different forms of cyt c;
the widths of the spectra full width at half maximum (FWHM) were found
to be �ωFWHM � 6.0 ∼ 13.0 cm−1. From the discussions of Section 15.3.5, we
can theoretically neglect inhomogeneous effects, and estimate the VER rate
simply as

T1 ∼ 5.3/�ωFWHM (psec) (15.34)

which corresponds to T1 � 0.4 ∼ 0.9 psec. This estimate is similar to
the QCF prediction using Equation (15.8) (0.3 ∼ 0.4 psec) and the reduced
model approach using Equations (15.20) or (15.25) (0.2 ∼ 0.3 psec). We note
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that this value should be compared to the VER time of the C–H stretch
in N-methylacetamide-D [CH3(CO)ND(CH3)] [26], which is also sub psec.
Further experimental studies, for example, on temperature dependence
of absorption spectra or on time-resolved spectroscopy, will clarify the
methodology that is more applicable.
Romesberg’s group studiedMet80-3D (methioninewith three deuteriums),

while we have examined Met80-1D (methionine with one deuterium). In the
case of Met80-3D, there are three peaks in the transparent region. It should
be possible to consider the VER of each of the three modes, to make a more
direct comparison of the predictions of our theoreticalmodelswith the results
of their experimental studies.

15.5.2 Validity of Fermi’s Golden Rule

We next discuss the validity of our approaches. Since our starting point is the
perturbative Fermi’s golden rule, our two approaches should have a limited
range of validity. Naively speaking, the force applied on the CDmode should
be small enough, but how small should it be?
We follow Kubo’s derivation of a quantum master equation using the pro-

jection operator technique [22]. He derived an equation for the evolution of
the system density operator σ(t)

∂

∂t
σ(t) = − 1

�2

∫ t

−∞
dτ [q(t)q(τ )σ (τ )�(t− τ)− q(t)σ (τ )q(τ )�(−t+ τ)

+ σ(τ)q(τ )q(t)�(−t+ τ)− q(τ )σ (τ )q(t)�(t− τ)] (15.35)

The interaction Hamiltonian is assumed to be Hint = −qF , as in our case,
that is, q is the system coordinate and F contains the bath coordinates. We
have defined the force autocorrelation function �(t) = TrB{ρBF(t)F(0)} =
〈F(t)F(0)〉. Note that Equation (15.35) is just a von Neumann equation using
the projection operator technique, and it is not a master equation yet.
If �(t) decays fast, we can replace σ(τ) in the integral with σ(t), and the

dynamics becomes an approximate Markovian dynamics. If this approxima-
tion is valid, Fermi’s golden rule describes the relaxation dynamics of σ(t)
[22]. The validity of the golden rule relies on the validity of the Markov
approximation.
From Equation (15.35), the relaxation rate of σ(t) can be estimated as

1/τr ∼ (〈q2〉F2/�2)τc (15.36)

where we have assumed
�(t) � F2e−|t|/τc (15.37)

The Markov approximation [σ(τ) � σ(t)] holds for
τr � τc (15.38)
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TABLE 15.1

The Parameters in Equation (15.39) for Various
Molecules in AKMA Units (Unit Length = 1 Å, Unit
Time = 0.04888 psec, Unit Energy = 1 kcal/mol).

〈q2〉 F2 τ c ε

CD in cyt c 0.01 5.0 1.0 0.5
HOD in D2O 0.01 5.0 1.0 0.5
CN− in water 0.002 1.0 0.5 0.01
CO in Mb 0.002 1.0 1.0 0.02

Source: The data for HOD in D2O is taken from R. Rey and
J.T. Hynes, J. Chem. Phys. 104, 2356 (1996); for CN−
in water from R. Rey and J.T. Hynes, J. Chem. Phys.
108, 142 (1998); for CO inMb fromD.E. Sagnella and
J.E. Straub Biophys. J. 77, 70 (1999).

We have a criterion for the validity of the Markov approximation

ε ≡ 〈q2〉F2τ 2c /�2 � 1 (15.39)

Inour case aswell as the case ofHODinD2O, the ratio is “just” small (seeTable
15.1). Applying Fermi’s golden rule to these situations should be regarded as
a reasonable estimate of the VER rate. As alternative approaches that avoid
this underlying Markov approximation, one can employ more “advanced”
methods as mentioned in Section 15.6.

15.5.3 Higher-Order Coupling Terms

So far, we have only included the third-order coupling terms to describe the
VER of the CDmode. However, we must be concerned with the relative con-
tribution of higher-ordermechanism, for example, the contribution due to the
fourth-order coupling terms in Equation (15.18). This is a very difficult ques-
tion. As there are many terms (∼109) included, we cannot directly calculate
all of them for cyt c. We have found that it is not sufficient to include only the
third-order coupling terms to reproduce the fluctuation of the force on the CD
bond. However, this does not necessarily mean that the VER rate calculated
from the third-order coupling terms is inadequate.
The main contribution from the fourth-order coupling terms to the VER

rate and the force fluctuation are written as

�

(
1

T1

)
∼
∑
k,l,m

|HS,k,l,m|2
ωkωlωm

δ(ωS − ωk − ωl − ωm) (15.40)

and

�〈δF2〉 ∼
∑
k,l,m

|HS,k,l,m|2
ωkωlωm

(15.41)
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respectively. Even if �〈δF2〉 becomes large, �(1/T1) is not necessarily large
because of the resonance condition (ωS−ωk −ωl−ωm � 0). It is a future task
how to evaluate the effects due to higher-order coupling terms. It might be
interesting to compare the classical limit using the reduced model approach
and the LTZ approach because there is no ambiguity about how to choose
QCFs [29].

15.6 Summary

In this chapter, we have examined VER in a protein from the QCF approach
and the reduced model approach, and compared the results. For the CD
mode in cyt c (in vacuum) at room temperature, both approaches yield sim-
ilar results for the VER rate, which is also similar to an estimate based on an
experiment by Romesberg’s group. Our work demonstrates both the feasibil-
ity and accuracy of a number of theoretical approaches to estimate VER rates
of selected modes in proteins.
The QCF approach is appealing in that the calculation of the force auto-

correlation function is straightforward and feasible, even for systems of
thousands of degrees of freedom. Moreover, the classical force autocorrela-
tion function includes all orders of nonlinearity in the interaction between the
system oscillator and the surrounding bath. Aweakness of the QCF approach
is that we do not know which QCF to choose a priori. We must assume
a mechanism for VER before computing the rate. Moreover, the temperat-
ure dependence of the rate of VER is sensitive to the mechanism, whether
it involves few phonons or many phonons. The choice of the form of the
QCF can make a significant difference in the predicted rate of VER at lower
temperatures.
On the other hand, the reduced model approach is appealing in that the

quantum dynamics of the reduced system is accurately treated. Using the
reduced model approach, there are two ways to estimate the quantummech-
anical force autocorrelation function: (1)numerical calculationof thequantum
dynamics for a model Hamiltonian of a few degrees of freedom, including
all orders of nonlinearity in the potential and (2) analytical solution for the
quantumdynamics usingperturbation theory that includesmanybathmodes
but only the lowest-order nonlinear coupling between the system and bath
modes. We have employed the latter approach through the use of the MF
formula. Aweakness of our reduced model approach is that the method neg-
lects the higher-order coupling elements beyond third order, which cannot
be justified a priori [30, 31].
We have pursued a comparative study in which we seek consensus in the

estimates of 1/T1 the results of the QCF approach and the perturbation the-
ory. Arather remarkable result of our study is that while the absolute value of
the quantum corrections to the classical VER theory are large (on the order of
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a factor of 40), the results of the QCF and the perturbation theory approaches
are in close agreement. This is all the more remarkable given the fact that
the results of the perturbation theory require a calculation of the third-order
coupling constants and the estimation of the “lifetime” parameter γ . As we
have shown, the dominant channel for VER, derived from the perturbation
theory, depends upon the choice of γ . For smaller γ = 3 cm−1, the dominant
mechanism is a close resonance (within 0.1 cm−1), a combination of a heme
torsion and Met80 angle bending mode, with a weak coupling. For larger
γ = 30 cm−1, the dominant mechanism appears to be a less perfect reson-
ance (within 31.7 cm−1), a combination of a different angle bending mode
and a bend-stretch mode in Met 80, with a strong coupling. Such detailed
knowledge of γ is essential to predict a mechanism for VER.
Our study raises two important questions. (1) What is the optimal set

of coordinates for modeling and interpreting VER in proteins? In the QCF
approach, we treated the relaxing bond (CD bond) as a local mode that is
coupled to vibrational modes of the bath. In the reduced model approach, on
the other hand, we treated all the vibrational modes including the relaxing
mode (CD mode) as NMs that are coupled to each other with the third-
order nonlinear coupling terms. Our numerical results showed that the two
approaches give similar results for the VER rate of the CD bond or mode,
but it remains to be seen that this is a kind of coincidence or there is a the-
oretical ground of their equivalence (if the QCF is appropriately chosen) (2)
What is the physical origin of the width parameter γ and how to calculate
it? In this study, we suggested to use the relation γ � �ω where �ω rep-
resents the fluctuation of the CD mode (or bond) frequency. We think this
is reasonable but there is few theoretical explanation to this. If the VER rate
does not significantly depend on γ , this is not a serious problem, but this is
not always the case. Thus we need an “ab initio” way to derive the width
parameter γ . One appealing way is to regard γ as a hopping rate between
potential basins (inherent structures) [32, 33]. Recent advances may provide
a theoretical underpinning for the direct calculation of the “lifetime” width
parameters [34].
The results of our study are derived through the use of an approximate

empirical energy function (force field), which has not been “tuned” to provide
accurate frequencies of vibration for all protein modes. Our predicted rates
of VER depend sensitively on the closeness of the resonance between the
system and bath modes. Clearly, we must resort to the reparameterization of
the empirical potential to fit with experimental data or higher levels of theory
(ab initio quantum chemistry calculation) in an effort to refine our estimates
of the frequencies of vibration and the details of nonlinear coupling between
vibrational modes of the protein. This is a challenge for both experimental
and theoretical studies.
Recent advances in experiment and theory make the present time an excit-

ing one for the detailed study of protein dynamics. A variety of methods
have been applied to examine VER in molecules, including nonequilibrium
MD methods [35], time-dependent self-consistent field methods [31, 36],
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mixed quantum–classical methods [37], and semiclassical methods [38, 39].
In addition, it is now possible to compute spectroscopic observables such as
absorption spectra or 2D-IR signals [40, 41] as probes of protein structures and
dynamics. Extensions of these studies will provide us with an increasingly
detailed picture of the dynamics of proteins and its relation to structures and
functions.
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16.1 Introduction

Normal modes of proteins provide a useful starting point for describing
dynamics [1–5], thermodynamics [6–8], and for interpreting vibrational spec-
tra [9–12]. Going beyond the harmonic approximation and exploring the
limits of its validity begins with examining anharmonicity. In the limit of
infinitesimally tiny atomic displacements the normal modes describe the
vibrations exactly. As displacements exceed this infinitesimal limit, anhar-
monic corrections become increasingly important and can appreciably affect,
for instance, the vibrational thermodynamic properties of a molecule [13],
as well as the vibrational spectrum [9–12]. Anharmonicity also gives rise to
vibrational energy transfer. The transfer and storage of vibrational energy
mediate kinetics of chemical reactions [14–22], including photochemical
reactions in proteins [23–27], allosteric transitions [28], and charge transfer
reactions [14, 29].Aproperdescriptionof vibrational energyflow inmolecules
generally requires a quantum mechanical treatment. We address herein the
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quantum mechanical transfer of energy among normal modes of hydrated
cytochrome c and photoactive yellow protein (PYP) by anharmonic decay.
The calculations provide insight into the vibrational lifetimes themselves,
their temperature dependence in different spectral regions, the influence of
hydration water on energy transfer, and, for the case of PYP, the influence of
vibrational energy transfer on photoisomerization kinetics.
To illustrate principles of vibrational energy transfer in a protein, we exam-

ine anharmonic decay of vibrational states in cytochrome c. One particular
focus of this part of the chapter is the influence of hydration water on
energy transfer in a protein. The analysis here extends our recent work on
myoglobin [30], as well as earlier work on bovine pancreatic trypsin inhib-
itor [9, 10] and other studies on myoglobin [31, 32], for which anharmonic
matrix elements coupling someof thenormalmodeswere carriedout. Import-
ant insights into the role of anharmonicity in vibrational spectra and energy
flow were gained from these early studies. Roitberg et al., demonstrated the
importance of anharmonic corrections to vibrational spectra of low temper-
ature proteins and their interpretation [9, 10]. Computational work by Kidera
et al. on myoglobin has highlighted the important role played by Fermi res-
onances that spatially overlap in classical vibrational energy transfer [31, 32].
Prior to studying myoglobin [30], we calculated the anharmonic decay and
dephasing rates of the vibrational states of helical and coil segments of myo-
globin consisting of 10 to 24 amino acids [33–35]. This work identified a
propensity for certain vibrational modes to overlap in space, depending on
the range of frequency and their spatial extent (vide infra), a property that
restricts the flow of vibrational energy in proteins. This work on vibrational
energy transfer complements simulations on vibrational energy flow inmyo-
globin and cytochrome c, which have also provided connections between
protein structure and the typically anisotropic flow of energy [36–40].
Proteins are of course aperiodic systems, a property that influences pro-

tein vibrations and energy transfer. Indeed, most normal modes of proteins
are localized to a relatively small number of atoms of the protein, mean-
ing that the vibrational amplitude for most atoms in most vibrational modes
is exponentially small. It turns out that because most vibrational modes of
proteins are spatially localized, the anharmonic decay rate is typically only
weakly temperature dependent, as discussed below. We have observed this
to be the case for the vibrationalmodes ofmyoglobin above 500 cm−1, or even
lower [30], andweshall see that the situation isquite similar forhydratedcyto-
chrome c. This trend is consistent with the nearly temperature-independent
anharmonic decay rates of high-frequency modes in both myoglobin [41–43]
and myoglobin–CO [44] found in pump-probe studies over temperatures
from 10 to 310K.
We also examine vibrations and energy transfer in PYP. The relevance of

vibrations and energy transfer to protein function is illustrated by the primary
events of many photoactive proteins. In bacteriorhodopsin, for example,
ultrafast experiments and simulations reveal that reorganization dynamics
of the protein following the sizable charge redistribution in the chromophore
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FIGURE 16.1
PYP chromophore and nearby surroundings.

upon photoexcitation occurs by numerous local, small-amplitude motions
of charged groups and dipoles throughout the protein [23–25]. The protein
does not have time for significant conformational change during the brief
period between photoexcitation and isomerization of the chromophore; pro-
tein motions responding to charge redistribution of the chromophore are
thus largely vibrational. Some of these collective oscillations are dynam-
ically coupled to, and in effect become part of, the reaction coordinate.
The dynamic coupling may appear as oscillations in fluorescence decay
as the wave packet recrosses the transition state [14] during the course of
conformational isomerization.
Ultrafast studies [26, 45, 46] on PYP reveal a similar picture. Mataga

et al. [26, 45] have observed coherent oscillations with at least two char-
acteristic frequencies. PYP is a small water-soluble protein of a halophilic
photosynthetic bacterium, Ectothiorhodospira halophila, which functions as
a photoreceptor for negative phototaxis, specifically avoidance of blue
light [47–49]. PYP belongs to a family of blue-light receptor proteins,
Xanthopsins [47–49], which contain as their light-sensitive chromophore
trans-p-coumaric acid in PYP, a deprotonated coumaric acid thioester
(Figure 16.1). The chromophore is positioned in PYP by hydrogen bond-
ing at the head part, O−-phenyl-, and by covalent bonding at the tail part,
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–CO–S–,whichundergoesultrafast twistingbyflipping the thioesterbond fol-
lowing photoexcitation [47–49]. This twistingmotion is coupled to vibrations
of the protein matrix. Coherent oscillations appearing in fluorescence decay
curves provide information about the frequencies and the nature of these
coupled vibrations. Mataga et al. [26, 45] identified coherent oscillations in the
fluorescence decay of PYP of roughly 50 and 140 cm−1. Site-directed muta-
tions of the protein can shift the frequency and amplitude of the oscillation as
well as the decay rate itself, and correspondingly the rate of conformational
change of the chromophore. The amplitude of the lower frequency oscilla-
tion appears to be more sensitive to changes in protein environment, though
both disappearwhen PYP is denatured [26, 45]. Mataga et al., suggest that the
140 cm−1 is more localized to the chromophore [26], which our analysis cor-
roborates. Recent ab initio calculationson the isolated chromophorebyMataga
et al. [21] provide an assignment of the 140 cm−1 mode. We shall see below
that the twisting motion of the chromophore is in fact enhanced by coupling
to the protein matrix, and that the energy transfer time from this vibration is
comparable to the time for decoherence and on the same timescale as fluores-
cence decay. The rate of conformational change thus appears to be mediated
by the rate of transfer of excess vibrational energy from modes closely asso-
ciated with conformational change. We discuss how energy transfer appears
to us to influence the reaction kinetics at the conclusion of this chapter.
A number of simulations [50–53] and ab initio studies [54, 55] on PYP have

described PYP dynamics when the chromophore is in its cis and trans con-
formation, and how the protein aids in stabilizing the transition state [56, 57].
In the following section, we identify and characterize by analysis of nor-
mal modes and their lifetimes, the specific vibrations of PYP that appear as
oscillations in fluorescence decay measurements [26]. We have recently char-
acterized these vibrations for PYP in the absence of hydration water [27]; we
consider here the effect of hydration water on the coupled vibrations of the
chromophore and protein matrix.
In the following section we summarize the computational methods. In

Section 16.3.1, we present results of our calculations of anharmonic decay
rates of vibrational states of cytochrome c, where we discuss the influence
of temperature and hydration. In Section 16.3.2, we present a normal mode
analysis on hydrated PYP in the S1 state, as well as results for the vibrational
lifetimes. Concluding remarks follow in Section 16.4.

16.2 Computation of Vibrational Lifetimes

Structures for tuna cytochrome c and PYP were obtained from the Protein
Data Bank. We adopt the force fields contained in the program MOIL [58]
for the protein, apart from the PYP chromophore. The all-atom model for
the PYP chromophore in the S1 state has been set up with the partial charges
reported in Reference 52, which accounts for the charge redistribution in the
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chromophore upon photoexcitation with a dipole transition of 8.74 D. Other
force field parameters were adopted from MOIL, with some modification to
fit low-frequency normal modes (<200 cm−1) of the isolated chromophore to
ab initio DFT calculations (B3LYP/6-31G*) in the S1 state, specifically for the
isolated chromophore terminated with an ethyl group attached to the sulfur.
We shall improve this fit to higher vibrational frequencies in future work.
Values for all the force field parameters that we use to model the S1 state of
the PYP chromophore are presented in the appendix.
Each protein was then placed in a cubic box, 50 Å on each side, which was

filled with water molecules and heated to 300 K over 10 psec. Five struc-
tures were then saved at each subsequent picosecond, and all but the nearest
200 water molecules to the protein were removed for normal mode ana-
lysis. Results reported here use the first structure; all were found to give
similar results and the same conclusions were reached for each. We note
that 200 hydration water molecules are convenient for computation. This
number is likely sufficient for function, providing the protein stability and
flexibility [59–61]. However, partial thermodynamic properties of these pro-
teins may still change upon addition of more water, perhaps to 400 or 500
molecules [8, 59]. Futureworkwill provide amore systematic study of hydra-
tion with even more waters, but in this study we already see the influence of
hydration water with a substantial number of molecules.
In describing the normal modes of a protein, it is instructive to compare

them conceptually with those of a simple model of a polymer, such as a
chain of atoms, both periodic and aperiodic. In a harmonic periodic chain,
the normal modes carry energy without resistance from one end of the 1D
crystal to the other. On the other hand, the vast majority of normal modes of
an aperiodic chain are spatially localized [62]. Proteinmolecules, which are of
course not periodic, canbebetter characterized as an aperiodic chain of atoms,
and most normal modes of proteins are likewise localized in space [1–3, 30].
If a normal mode α is exponentially localized, then the vibrational amplitude
of atoms in mode α decays from the center of excitation, R0, as

|eα(Rn)| ∝ exp(−|Rn − R0|/ξ) (16.1)

where |eα(Rn)| is the magnitude of the displacement of atom n, located atRn;
ξ is the localization length; andR0 is the position of the atom overlapping the
largest component of the normal mode vector.
We also examine the lifetimes of the normal modes. We compute the vibra-

tional energy transfer rate from mode α, Wα , with the golden rule as we
have carried out for other peptides and proteins [30, 33–35]. We consider here
only cubic anharmonic terms in the potential energy written as the sum of
terms that can be described as decay and collision, the former typically lar-
ger except at low frequency where both terms are comparable. Truncation at
cubic terms is valid at low temperature, and gives a first estimate for mode
lifetimes under other conditions. For the analysis of PYP, where we address
fairly low frequency at 300 K, results that we obtain should be taken as a
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rough approximation to the vibrational energy transfer rate, which may well
be different due to neglect of higher-order anharmonicity. The anharmonic
decay rate of vibrational mode α is then the sum of the decay and collision
terms given by [63],

Wdecay
α = �π

8ωα

∑
β,γ

|�αβγ |2
ωβωγ

(1+ nβ + nγ )δ(ωα − ωβ − ωγ ) (16.2a)

W coll
α = �π

4ωα

∑
β,γ

|�αβγ |2
ωβωγ

(nβ − nγ )δ(ωα + ωβ − ωγ ) (16.2b)

where nα is the occupation number of mode α, which at temperature T we
take to be

nα = (e�ωα/kBT − 1)−1. (16.3)

The matrix elements �αβγ appear as the coefficients of the cubic terms in
the expansion of the interatomic potential in normal coordinates, computed
numerically as

�αβγ = (∂2V/∂Qα∂Qβ |Q0+δQγ−∂2V/∂Qα∂Qβ |Q0−δQγ )/2δQγ (16.4)

where Qα is a mass-weighted normal coordinate, and Q0 is the equilibrium
position of the protein in normal coordinates.

16.3 Vibrational Energy Transfer in Proteins

16.3.1 Cytochrome c

Figure 16.2(a) shows thenormalizeddensity of normalmodes of cytochrome c
hydrated by 200 water molecules. The density is very close to that for cyto-
chrome c without water, and we show only the density for the hydrated
protein. Vibrational frequencies of cytochrome c range from about 5 to
1850 cm−1, and higher frequency modes above 3000 cm−1 corresponding to
CH, NH, and OH stretches. Only modes lying within the band of frequencies
up to ≈2000 cm−1 will be considered.
In the normal mode representation, a wave packet centered at a certain

frequency, ω, can diffuse throughout the entire protein if the localization
lengthof vibrationalmodesof frequency≈ω is extended. If, on theotherhand,
the normal modes of frequency ≈ω are localized, energy remains trapped
in the region in which it is introduced until freed by anharmonic interac-
tions. The anharmonic interactions themselves are influenced by the extent
of localization of the normal modes, as discussed below, and it is therefore of
interest to compute the localization length, ξ . We plot the localization length,
averaged over modes of cytochrome c in 50-cm−1 intervals, in Figure 16.2(b).
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FIGURE 16.2
(a) Normal mode density for cytochrome c hydrated with 200 water molecules (black), and
for water modeled by the TIP3 potential (gray); (b) localization length, ξ (Å), for hydrated
cytochrome c.

To determine ξ with Equation (16.1), we calculate ln |eα(Rn)| for all atoms and
plot it against |Rn − R0|. A linear fit gives ξ . In this way, we have calculated
ξ for all the normal modes of cytochrome c in 50 cm−1 intervals. At suffi-
ciently low frequency, below about 150 cm−1, the normal modes appear to
be essentially delocalized over the protein, with ξ ≈ 18 to 20 Å, comparable
to the protein radius. Above 300 cm−1 ξ has decreased to values between
2.5 and 6 Å.
In many cases, it is difficult to assign a normal mode of hydrated cyto-

chrome c to the protein or to the surrounding water. In Figure 16.3 we plot
the projection of a normal mode onto atoms of cytochrome c as a function of
mode frequency up to 2000 cm−1. (We note that the frequency of the bend-
ing mode of an individual water molecule modeled by the TIP3 potential
lies above 2000 cm−1.) A normal mode that is uniformly distributed over
both the atoms of the protein and the atoms of the water molecules would
project about 0.6 onto cytochrome c. The plot reveals significant scatter in
the projection with mode frequency, so we also plot a running average over
ten modes to examine any trends. We observe that the vibrational modes
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FIGURE 16.3
Projection of the normal modes of hydrated cytochrome c onto atoms of the protein (dots).
A running average over 10 points is also plotted to observe trends (gray).

project around the strongly mixed value of about 0.6 up to about 300 cm−1,
then again from about 450 to 750 cm−1. In these regions the modes typically
involve vibrations of the protein and hydrationwaters as awhole, rather than
protein atoms or water atoms, though, again, there is significant fluctuation
around these averages. Between about 300 and 450 cm−1, the vibrational
modes project typically more strongly onto the protein. This region corres-
ponds to a relatively low vibrational density of water, separating the higher
density translational modes at low frequency, and the librational modes from
about 450 to 1000 cm−1 (see Figure 16.2[a]) [64, 65]. Most vibrational modes
above about 750 cm−1 can be characterized as protein modes.
In Figure 16.4 we plot the anharmonic decay rate for cytochrome c as a

function of frequency at 15 and 135 K.We consider first cytochrome cwithout
hydration water. Particularly noteworthy is the fairly weak sensitivity of the
decay rates to temperature above about 500 cm−1. Significant temperature
dependence of the anharmonic decay rate implies that energy is flowing dir-
ectly into low-frequencymodes. The small temperature dependence suggests
that, given the high density of low-frequency modes, matrix elements coup-
ling a given high-frequency mode to a pair of other modes are small if the
frequency of one of the pair is small. For the matrix element coupling a triple
of modes to be appreciable, the three modes must overlap in space [30, 31].
As mode frequency increases, the normal mode vibrations generally become
more localized. If energy in a high-frequency localized mode, α, decays into
a low-frequency mode of the protein, the rest of the energy must decay into
a localized mode whose frequency is similar to ωα . However, as we shall
illustrate, localized modes with similar frequencies rarely overlap in space.
As a consequence, energy transfer to a localizedmodewith similar frequency
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FIGURE 16.4
Rates of anharmonic decay of vibrational states of cytochrome c, averaged over 100 cm−1
intervals.

and the remainder to a low-frequency mode occurs slowly, and the anhar-
monic decay rate from high-frequency modes is only weakly dependent on
temperature.
Temperature-independent anharmonic decay rates of high-frequency

modes of globular proteins have been observed in time-resolved spectro-
scopic studies. Pump-probe vibrational spectra of the amide I band of
myoglobin, between 1600 and 1700 cm−1, measured at temperatures from
6 to 310 K reveal decay rates ranging only from ≈0.5 to 1 psec−1 [42], sim-
ilar to the values we calculate for cytochrome c and myoglobin. Similarly,
pump-probe studiesonmyoglobin–COreveal that thedecayof theCOstretch,
about 1950 cm−1, is also essentially independent of temperature over the same
temperature range [44].
To examine the role of hydration on vibrational lifetimes of the protein, we

have computed theanharmonicdecay rateofmodesof cytochromechydrated
by 200watermolecules, andplotted the results in Figure 16.4. Modes that pro-
ject largely only onto protein or water atoms are designated as protein and
water modes, respectively, while others are designated as mixed. Specific-
ally, a mode with projection of �0.8 onto protein atoms is a protein mode,
while �0.2 is a water mode. Low-frequency modes are found to be strongly
mixed, as already noted. In the amide I region, water only slightly affects the
vibrational energy transfer rate. Direct energy transfer to water modes by, for
example, a 2:1 Fermi resonance is possible but unlikely since the density of
water modes is relatively small above about 700 cm−1 (see Figure 16.2 and
Figure 16.3). There appears to be some effect of water molecules on the rate at
frequencies from 1400 to 1500 cm−1, due largely to the shifting of frequencies



BICH: “c472x_c016” — 2005/10/19 — 18:13 — page 334 — #10

334 Xin Yu and David M. Leitner

8

6

4

2

0 200 400

∆v (cm–1)

P
 (

∆v
)

600

FIGURE 16.5
Probability, P(�ω), of finding a pair of vibrational modes of hydrated cytochrome c with fre-
quency difference�ω, when at least one of the modes is localized with frequency ω in the range
1000 < ω < 2000 cm−1. Dashed line corresponds to any pair of modes with frequency differ-
ence �ω, regardless of their distance from one another in space. Solid line (black for hydrated,
gray for dehydrated cytochrome c) corresponds to pairs of modes whose largest components are
restricted to lie within 2 Å of each other.

of protein acceptor modes by water; the acceptor modes are more of pro-
tein character (75%) than water character. There is a noticeable rise in the
anharmonic decay rate of protein modes from 300 to 1200 cm−1, roughly by
a factor of 2 and with a sizable temperature dependence, which we find to
be due almost entirely to the presence of water acceptor modes. The density
of water acceptor modes up to about 700 cm−1 is typically high and energy
flow into them from protein modes of frequency below 1200 cm−1 is possible
by low-order anharmonic coupling.
One important consequence of strong localization of normal modes is that

frequencies of normal modes whose localization centers overlap in space are
generally very different [30, 33, 66–68]. This trend gives the appearance of
“repulsion” of mode frequencies between pairs of nearby localized modes.
The influence of spatial localization of two normal modes in cytochrome c on
the frequency difference of these vibrational modes is shown in Figure 16.5.
We locate the largest component of each normal mode, α, and calculate the
probability, P(�ω), that for another mode, β, whose largest component lies a
certain distance away from the largest component ofmode α, the difference in
frequencybetween them is�ω = |ωα−ωβ |.Weconsider only localizedmodes,
α, whose frequency, ωα , falls between 1000 and 2000 cm−1. Probabilities are
calculated for �ω in intervals of 20 cm−1 to �ω = 600 cm−1. The dashed
histogram is an average over all pairs of modes, regardless of the distance
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between the largest components of modes α and β. We observe that for any
pair of modes α and β there is a somewhat greater chance that the difference
between their vibrational frequencies is small, say, less than 100 cm−1, than
large, say, 300 to400 cm−1. However, ifweonly considerpairs ofmodeswhose
largest components overlap atoms that lie less than 2 Å from each other, we
obtain the solid-line histogram, black for hydrated and gray for dehydrated
cytochrome c. There we see that if pairs of localized modes lie close in space,
there is a propensity for their frequency differences to be large, in this case
around 500 cm−1, rather than small, say, below 200 cm−1. The propensity
appears somewhat stronger for the dehydrated protein but is quite similar
for the hydrated protein. The apparent mode repulsion diminishes as we
consider modes whose largest components lie farther away from each other.
For distances between 4 and 5 Å, for instance, we find P(�ω) to be nearly the
same as the dashed histogram.

16.3.2 Photoactive Yellow Protein

Our discussion of cytochrome c has addressed fairly general trends concern-
ing how the vibrational energy transfer rate varies with vibrational mode
frequency, temperature, and hydration. In our analysis of PYP, we focus
instead on the dynamic interactions between the chromophore and protein
matrix, energy flow rates from “chromophore” and “isomerization” modes,
and the influence of hydration water. The PYP chromophore is illustrated in
Figure 16.1. The projections of normal modes of PYP onto the chromophore
include all chromophore atoms through C10 displayed in Figure 16.1, and
projections onto the thioester group include C8, C9, S, and O.
To address dynamic interactions between the chromophore and protein

matrix, we turn first to the projection of vibrational modes of PYP onto the
chromophore and thioester group, plotted in Figure 16.6. The projections
plotted in Figure 16.6 are a running average over 24 modes to more easily
observe trends in how they vary with mode frequency. Figure 16.6(a) shows
projectionsonto the chromophore forPYPwithouthydrationwater (gray) and
with 200watermolecules (black). Normalmodes of the isolated chromophore
(terminated by –SCH2CH3), are indicated with asterisks. We observe, for
dehydrated PYP, a sizable projection of modes of PYP onto the chromophore
at frequencies that correspond quite well to the normal mode frequencies of
the isolated chromophore. The situation is similar for the projections of the
vibrational modes of hydrated PYP onto the chromophore, whose values we
have rescaled by the ratio of all atoms in the system to just protein atoms,
so that they can be compared directly with those for dehydrated PYP. We
observe that for hydrated PYP the peaks in the projections are, in some cases,
shifted.
Conformational change of the chromophore upon photoexcitation occurs

largely at the thioester group (we include in this group the atoms S, C8, C9,
and O in Figure 16.1). Thus, we also consider projections onto this group in
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FIGURE 16.6
(a) Projection of normal modes of hydrated (black) and dehydrated (gray) S1 PYP onto chromo-
phore; (b) projection of normal modes of hydrated (black) and dehydrated (gray) S1 PYP onto
thioester group. Projections for the hydratedprotein have been rescaled to fit the same scale as the
dehydrated protein, as described in the text. Vibrational frequencies of the isolated chromophore
are indicated (asterisks).

Figure 16.6(b). Turning first to dehydrated PYP, we find significant projection
for normal modes near 135 cm−1, not far from the 125.26 cm−1 mode of the
isolated chromophore. The projection of thesemodes onto the thioester group
of about 0.017 is more than three times higher than what it would be, 0.005,
if the vibration were uniformly distributed over the protein. It also makes a
relatively large contribution to the projection onto the whole chromophore,
which is 0.028, or about 60% of the projection onto the whole chromophore.
This can be compared to the projection of the nearby 125.26 cm−1 mode of the
isolated chromophore onto the thioester group of only 19%. The vibrations
of atoms involved in conformational change are thus of larger amplitude,
relative to the vibrational amplitude of all the chromophore atoms, when
the chromophore is embedded in the protein as opposed to isolated. Turning
now to hydrated PYP, we find that this projection is shifted to lower fre-
quency, and is also broadened over a range from about 90 to about 130 cm−1.
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105 cm–1 191 cm–1 Isolated chromophore
125 cm–1

133 cm–1

FIGURE 16.7
Thedirection of atomicdisplacements of thePYPchromophore for vibrationalmodes of hydrated
PYP at 105, 133, and 191 cm−1 is shown. The minimized structure is in black and the displaced
structure is in gray. Twisting of the S–C bond of the thioester group is significantly greater for
the 105 and 133 cm−1 modes than that of a corresponding mode of the isolated chromophore at
125 cm−1, also shown. The latter involves instead twisting of the phenyl ring, which moves less
when the chromophore is embedded in the protein. The isolated chromophore is terminated by
–SCH2CH3 (terminal methyl group not shown in the figure).

We have examined the vibrational modes themselves in the main peaks over
this range, and each appears to be characteristic of an “isomerization” mode
(cf. Figure 16.7 and below), quite similar to the analogous “isomerization”
modes near 135 cm−1 of dehydrated PYP.
The direction of the displacements of the chromophore atoms of dehyd-

rated PYP in the vibrational modes near 130 cm−1 is consistent with this
mode being at least one of the “isomerization” modes [27]. We find similar
“isomerization”modes for hydrated PYP near 130 cm−1, too, but the range in
frequency of suchmodes is broader than for dehydrated PYP, and they extend
down to about 100 cm−1. The direction of the displacements of chromophore
atoms for two suchmodes is shown in Figure 16.7. Also plotted in Figure 16.7
is the nearby 125 cm−1 mode of the isolated chromophore. There is for this
latter mode some tendency toward isomerization, but this motion is clearly
enhancedwhen the chromophore is embedded in the protein, that is the amp-
litude of displacement of atoms in the direction of isomerization is enhanced.
Dynamical coupling between the chromophore and protein apparently helps
to guide isomerization. This is particularly so for the hindered rotation of O,
which moves in a direction opposite to that of S, with the overall twisting
motion in the direction of conformational change. In contrast, we see for the
isolated chromophore significantly more rotation of the phenyl group, which
is less pronounced when the chromophore is embedded in the protein due
to anchoring by hydrogen bonds at the anion. We also plot in Figure 16.7 the
direction of atomic displacements for a vibrational mode at 191 cm−1, a mode
that, as seen in Figure 16.6, also projects strongly onto the thioester group. In
contrast to the vibrational modes from 105 to 135 cm−1, we observe that the
motion of O and S is in the same direction, rather than opposite. The vibra-
tional modes near 191 cm−1, despite strong projection onto the chromophore,
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FIGURE 16.8
Energy transfer rate from normal modes of hydrated (black curve) and dehydrated (gray) PYP.

contribute less to isomerization than the modes from 105 to 135 cm−1, which
appear to be those that give rise to the ≈140 cm−1 oscillation observed in the
fluorescence decay.
We now turn to the lifetimes of PYP vibrational modes. Vibrational energy

transfer rates computed for hydrated and dehydrated PYP are plotted in
Figure 16.8 at 300 K for frequencies up to 200 cm−1. The results plotted are
running averages over 8 modes to make more visible trends in the energy
transfer rate with frequency. The energy transfer rates for the hydrated pro-
tein are typically faster than for dehydrated PYP, more so as the frequency
increases toward 200 cm−1. Up to this frequency, the computed lifetimes
range from about 400 fsec to about 1 psec for dehydrated PYP, while they
range from about 200 fsec to about 1 psec for hydrated PYP. The lifetimes of
the computed ≈130 cm−1 vibrational modes are fairly similar for PYP with
or without hydration water, about 300 to 400 fsec.
Excess energy in a vibrational mode of, say, 130 cm−1 may flow via anhar-

monic coupling to other modes that largely overlap the chromophore, thus
keeping much of the energy in this part of the protein. The energy may also
be redistributed tomodes that overlap the chromophoremuch less. The latter
case leads to cooling of the chromophore via transfer of energy to the protein
matrix or water. There is of course no sharp distinction between a vibrational
mode of PYP that it is a chromophore mode or not. Nevertheless, taking
the peaks in projections in Figure 16.6(a) to represent bands of chromophore
modes, we attempt to identify howmuch of the energy flows tomodeswithin
these peaks and how much flows elsewhere. We find, for example, that the
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rate of energy transfer from the “chromophore”modesnear 100 to 130 cm−1 to
protein modes outside this band (and outside other bands of “chromophore”
modes), amounts to about half of the total energy transfer rate from the≈100
to 130 cm−1 modes computedwith all acceptingmodes. The rest of the energy
flows largely to other modes in the 100 to 130 cm−1 band and into a very low-
frequency mode corresponding to translation of the chromophore within the
protein. The time for energy to flow out of the chromophore is about half the
lifetime of any vibrational mode in the 100 to 130 cm−1 band, so roughly 600
to 700 fsec for hydrated PYP, close to the measured 700 fsec coherence time
for the 140 cm−1 oscillation [26].
Mataga et al. [26], also observed a second coherent oscillation in their

fluorescence decay measurements. The second oscillation has a frequency of
40 cm−1 for wild type PYP and is quite sensitive to mutation, the shift in fre-
quency upon mutation being considerably greater than that for the 140 cm−1
mode, which lies within a few cm−1 of this value for wild type PYP and sev-
eral mutants. Mataga et al. [26], argue that this mode is more a protein matrix
vibration than the mode near 140 cm−1, since the damping of this oscillation
appears to be more strongly affected by mutation than the oscillation near
140 cm−1. Normal mode analysis reveals that this oscillation is indeed less
localized on the chromophore than is the ≈140 cm−1 oscillation. We see in
Figure 16.6 that projections onto the chromophore for modes in the range 40
to 80 cm−1 are smaller than the projections around 100 to 130 cm−1. It is also
not as easy to identify a particular oscillation that might correspond to the
values reported in Reference 26; several peaks in the projection appear that
roughly correspond to the isolated chromophore vibrations near 40, 50, 80,
and 90 cm−1. One possibility could be the vibrations near 50 for hydrated
PYP, which correspond roughly to the 52.52 cm−1 mode of the isolated chro-
mophore. Still, the observed oscillation in the range 40 to 80 cm−1 may in
fact correspond to different sets of vibrations. This interpretation is consist-
ent with that of recent ab initio calculations on the isolated chromophore by
Mataga et al. [46]. They found that the lower frequency oscillation was diffi-
cult to characterize by a singlemode of the chromophore, but suggested that it
might correspond to an out-of-plane mode of the isolated chromophore near
55 cm−1 [46].

16.4 Concluding Remarks

We have illustrated some general properties of vibrational energy transfer
in proteins by anharmonic decay with a case study of cytochrome c, as well
as properties that specifically influence photoisomerization kinetics in PYP.
For cytochrome c, we considered how rates of vibrational energy transfer
vary with vibrational mode frequency, and how they are influenced by the
spatial extent of the vibrational modes over the protein, temperature, and
hydration. We analyzed the normal modes of S1 PYP to identify vibrations
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associated with isomerization, which appear as oscillations in fluorescence
decay measurements [26]. We also computed energy transfer rates in PYP
and vibrational cooling of the chromophore.
The normal modes of cytochrome c range from about 5 to about 1850 cm−1,

and again from 3000 to 4000 cm−1, the latter corresponding to hydrogen atom
vibrations. Most normal modes of cytochrome c, as for other globular pro-
teins, are localized, that is, the vibrational amplitude is sizable for a relatively
small number of atoms of the protein. For cytochrome c, vibrational modes
above 150 cm−1 are localized. Energy is transferred from the localized normal
modes by anharmonic coupling, and localization of these modes influences
the possible pathways by which energy can flow. We have seen that two loc-
alizedmodes whose centers of excitation are close in space tend to have quite
different frequencies, that is, localized modes at higher frequencies appear
to “repel” one another. Thus modes with similar frequencies rarely overlap
in space. Since energy transfer requires Fermi resonances among spatially
overlapping modes in a protein, “mode repulsion” influences the pathway
and rate of anharmonic decay of higher frequency, localized modes. Anhar-
monic matrix elements coupling, for example, two high-frequency modes
and a low-frequency mode are usually small because of mode repulsion, and
energy transfer from a high-frequency mode to a mode of similar frequency
and the remainder to low-frequency modes often occurs very slowly. Energy
flows preferably to modes of intermediate frequencies provided resonances
are available. As a result, lifetimes of higher frequency modes are typically
only weakly dependent on temperature. This trend is consistent with the
nearly temperature-independent vibrational energy transfer rates of high-
frequency modes in both myoglobin [42] and myoglobin–CO [44] from 10 to
310 K found in pump-probe studies.
The small temperature dependence of the energy transfer rate is influenced

by hydration water. The influence of hydration water on the rate of vibra-
tional energy transfer from the experimentally well-studied amide I region
is small, due to a low density of water modes that can accept vibrational
energy by low-order anharmonicity, but hydration water plays a greater role
in energy transfer at lower frequency. Below 1200 cm−1, vibrational modes
of the hydration water accept vibrational energy from the protein. Even at
higher frequency, in the range 1400 to 1500 cm−1, we find that hydration
water influences energy transfer in the protein, not so much by directly
accepting energy from the protein but instead, by tuning resonances and
pathways.
Our work on S1 PYP has examined dynamical coupling between the

chromophore and surrounding protein matrix and its role in guiding
photoisomerization, in particular the twisting of the thioester group, by ana-
lysis of normal modes and energy transfer among them. Experimental and
computational studies of fast photochemical reactions in proteins, in partic-
ular ultrafast studies and simulations on bacteriorhodopsin [23–25], reveal
that a large charge redistribution in the chromophore upon photoexcitation
is followed by many local, small-amplitude motions of charges and dipoles.
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Charge rearrangement in the chromophore sets in motion collective oscilla-
tions of the protein, some ofwhich couple to, and are thus part of, the reaction
coordinate. Such a picture also describes the photoisomerization of PYP. The
collective dielectric response of the protein appears to be coupled to coher-
ent wave packet motion on the chromophore, which has been observed to
occur with at least two characteristic frequencies in PYP and several mutants
by Mataga et al. [26, 45, 46]. Our vibrational analysis on wild type PYP, sum-
marized here, and two mutants in earlier work [27], provides information
about the dynamical coupling that underlies the observed oscillations in the
fluorescence decay.
We find that modes with frequencies near 100 to 130 cm−1 project signific-

antly onto the thioester group where conformational change largely occurs.
The vibrations appear to correspond to the oscillation observednear 140 cm−1
for wild type PYP and several mutants by Mataga et al. [26], which they
argued substantially overlaps the chromophore. The vibrational modes near
100 to 130 cm−1 computed for PYPproject more onto the thioester group than
does the nearby 125 cm−1 mode of the isolated chromophore. Enhancement
of the twisting motion of the thioester group for the≈100 to 130 cm−1 modes
of the protein (Figure 16.7) reveals the significance of dynamical coupling
between the chromophore and protein scaffolding in guiding isomerization.
This significance is further revealed by analysis in an earlier study [27] of the
P68Amutant, for which we found the overlap of modes near 130 cm−1 onto
the thioester group to be smaller, consistent with the observed [26] slower
fluorescence decay of P68A.
We have also computed vibrational energy transfer rates in PYP and cool-

ing times for the vibrational modes near 100 to 130 cm−1. Vibrational energy
flow mediates rates of photoisomerization [16, 20] and PYP appears to be no
exception. The faster component of fluorescence decay has a time constant of
238 fsec [26], corresponding to about 130 cm−1. If there is a small barrier, the
excess vibrational energy that the “isomerization” modes from about 100 to
130 cm−1 may have following photoexcitation can assist reaction before deac-
tivation by vibrational energy redistribution. The 3.1 psec component [26] of
the fluorescence decay of PYP is on the same scale as the computed time of
about 0.7 to 1 psec for vibrational energy transfer to and from isomerization
modes of 100 to 130 cm−1, the difference likely due to the presence of a barrier
of perhaps 1 kcalmol−1.
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Appendix: Force Field for Chromophore

The form of the potential energy function is

E =1
2

∑
bonds

Kr(r − r0)2 + 1
2

∑
angles

Kθ (θ − θ0)2 + 1
2

∑
impropers

Kϕ(ϕ − ϕ0)2

+ 1
2

∑
dihedrals

Kφ((1+ cos(nφ + φ0)))+
∑

nonbonded
i−j pairs

qiqj
Rij

+
∑

nonbonded
i−j pairs

εij

((
Rmin,ij

Rij

)12
− 2

(
Rmin,ij

Rij

)6)
(A.1)

For all bonds, valence angles, and improper torsions, force constants
(Kr,Kθ ,Kϕ) and equilibrium values (r0, θ0,ϕ0) must be defined. For
each dihedral term, three parameters are needed: the force constant Kφ , the
periodicityn, and thephaseφ0. For electrostatic nonbonded interactions, each
atom needs to be assigned a proper partial charge qi [53]. The van der Waals
parameters are the usual atom-type dependent parameters: well depth εij,
and minimum interaction radius, Rmin,ij.

TABLE 16.A1

Stretching Parameters for the
Chromophore: Force Constant
Kr (kcal mol−1 Å−2) and
Equilibrium Distance r0 (Å).

Bond Kr r0

C9–O2 570.0 1.229
C8–C9 317.0 1.493
C8–C7 317.0 1.510
C7–C4 317.0 1.510
C4–C3 469.0 1.400
C4–C5 469.0 1.400
C3–C2 469.0 1.400
C5–C6 469.0 1.400
C2–C1 469.0 1.400
C6–C1 469.0 1.400
C8–H8 367.0 1.080
C7–H7 367.0 1.080

(continued)
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TABLE 16.A1

Continued

Bond Kr r0

C3–H3 340.0 1.080
C5–H5 340.0 1.080
C2–H2 340.0 1.080
C6–H6 340.0 1.080
C9–S 450.0 1.364
C1–O1 450.0 1.364
S–Cβ 222.0 1.810
Cβ–Cα 260.0 1.526

TABLE 16.A2

Bending Parameters for the Chromophore: Force
Constant Kθ (kcal mol−1 rad−2) and Equilibrium
Angle θ0 (degree).

Valence angle Kθ θ0

Cβ S C9 70.0 120.0
S Cβ Cα 50.0 108.6
C8 C9 S 70.0 120.0
O2 C9 S 80.0 126.0
O2 C9 C8 80.0 120.4
C9 C8 C7 63.0 120.0
C8 C7 C4 63.0 120.0
C7 C4 C3 70.0 120.0
C7 C4 C5 70.0 120.0
C4 C3 C2 85.0 120.0
C4 C5 C6 85.0 120.0
C3 C4 C5 85.0 120.0
C2 C1 C6 85.0 120.0
C3 C2 C1 85.0 120.0
C5 C6 C1 85.0 120.0
C2 C1 O1 70.0 120.0
C6 C1 O1 70.0 120.0
H8 C8 C7 35.0 120.0
H8 C8 C9 35.0 120.0
H7 C7 C8 35.0 120.0
H7 C7 C4 35.0 120.0
H3 C3 C4 35.0 120.0
H5 C5 C4 35.0 120.0
H3 C3 C2 35.0 120.0
H5 C5 C6 35.0 120.0
H2 C2 C1 35.0 120.0
H6 C6 C1 35.0 120.0
H2 C2 C3 35.0 120.0
H6 C6 C5 35.0 120.0
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TABLE 16.A3

Tortional Parameters for the Chromophore: Force Constant Kφ
(kcal mol−1), Multiplicity n, and Phase φ0 (degree).

Dihedral angle Kφ n φ0

Cβ S C9 C8 0.1 2 180
S C9 C8 C7 2.65 2 180
O2 C9 C8 C7 0.1 3 0
C8 C7 C4 C5 2.65 2 180
C8 C7 C4 C3 2.65 2 180
C7 C4 C3 C2 5.3 2 180
C7 C4 C5 C6 5.3 2 180
C9 C8 C7 C4 2.65 2 180
C3 C2 C1 C6 2.65 2 180
C3 C2 C1 O1 2.65 2 180
C4 C3 C2 C1 5.3 2 180
H3 C3 C4 C5 0.1 2 180
H3 C3 C2 C1 0.1 2 180
H5 C5 C4 C3 0.1 2 180
H5 C5 C6 C1 0.1 2 180
H2 C2 C3 C4 0.1 2 180
H2 C2 C1 C6 0.1 2 180
H6 C6 C5 C4 0.1 2 180
H6 C6 C1 C2 0.1 2 180

TABLE 16.A4

Improper Torsion Parameters for the Chromophore: Force Constant
Kϕ (kcal mol−1 rad−2) and Equilibrium Value ϕ0 (degree).

Improper torsion Kϕ ϕ0

C9 C8 O2 S 100.0 0.0
C4 C3 C7 C5 90.0 0.0
C1 C2 C6 O1 150.0 0.0
C8 H8 C7 C9 45.0 0.0
C7 H7 C8 C4 45.0 0.0
C3 H3 C4 C2 145.0 0.0
C2 H2 C1 C3 145.0 0.0
C5 H5 C4 C6 145.0 0.0
C6 H6 C1 C5 145.0 0.0
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17.1 Introduction

Correlated motions in biological macromolecules provide a key to under-
standing and regulation of function. For example, binding to proteins of small
molecules [1] as well as of other macromolecules [2] frequently occurs via
structural rearrangements accomplished by concerted displacements of sev-
eral structural elements. Thus, dynamic cross-correlations between distant
sites were shown to have important implications for the design of pro-
tease inhibitors [3]. Establishing a consistent framework connecting structure,
energy landscape, dynamics, and function, however, is still a challenge [4, 5].
Experiments do not offer direct access to atomic description of correlated
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motion, and the experimental data need to be interpreted in the framework
of an appropriate model [6–9]. The determination of correlated motions by
computational means is more straightforward. They can be predicted from
one representative structure using a description of intramolecular interaction
at different levels of detail (normal mode analysis, Gaussian network model)
[10–14] or deduced from an ensemble of structures using multivariate statist-
ics [7,15–19].Moleculardynamics (MD) simulation is onemeansof generating
ensembles. However, large-scale correlated motions, in principle, amenable
to simulation, pose a sampling problem [4,20], since the amplitude of signi-
ficant motions is large, while the energy landscape is still rugged. This results
in slow timescales of motion along these directions in conformational space.
Extrapolation of motions along collective coordinates obtained from nor-

mal mode or simplified normal mode calculations are very instructive, and
examples can be found elsewhere in this book. The most important collect-
ive coordinates are in many cases astonishingly stable and similar results can
be obtained with different methods or approximations. That the directions
of the slowest frequency normal mode (obtained at 0 K) should be similar
to those obtained from principal component analysis of MD trajectories at
nonzero temperature canbynomeansbe taken for granted, since themolecule
in an MD trajectory does sample the potential energy surface close to a local
minimum, which is explored by normal mode calculations (see Figure 17.1).
The simple extrapolation of motion along normal modes or principal com-
ponents of motion poses the additional problem that the resulting structures
are necessarily distorted and hence need to be minimized. An in-detail study
of the energetic landscape of the region around thenative structure or ofmajor
structural transition is therefore difficult to achieve.
Schematically, one can imagine the energy surface in the direction of a low

frequencymode as illustrated in Figure 17.1, being essentially flat in thenative
basin, with many minima and subminima.

17.2 Extended Sampling Methods

17.2.1 Principal Component Analysis

Principal coordinates of motion [16,21–23] rely on an approximation of
the configurational density ρ(x) in the vicinity of a stable structure by a
multivariate Gaussian:

ρ(x) ≈ Z−1 exp
[
−1
2
(x − xori)TC−1(x − xori)

]
(17.1)

with the partition function

Z :=
∫
d3Nx exp

[
−1
2
(x − xori)TC−1(x − xori)

]
(17.2)
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FIGURE 17.1
Schematic representation of an energy surface along a single component of motion, with regions
sampled by different methods.

C is the covariance matrix:

C = 〈(x − xori)(x − xori)T〉 (17.3)

xori is the native structure (the reference structure), and N is the number of
atoms. Forprincipal component restraint (PCR) of proteindynamics oneoften
uses only a subset of atoms, for example, the Cα atoms [16,23].
The principal components of motion (in the following also referred to as

“modes”) are the eigenvectors vi, i = 1, . . . , 3N of the covariance matrix C.
They are collective coordinates and define a set of coordinate axes in conform-
ational space. The coordinates qk of a structure x in such a space (mode-space
coordinates) are given by

qk = (x − xori) · vk (17.4)

where xori is the structure defining the origin of mode space, usually the
average structure.
In these coordinates, the equation for the configurational density is much

simplified:

ρ(x) ≈ Z−1 exp
[
−1
2
qT�q

]
(17.5)

where � is the diagonal matrix of the eigenvalues of C.
By expressing the dynamics in principal coordinates q a “coarse-grained”

description of dynamics can be derived in a simple way: we separate the
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important coordinates c = {q1, . . . ,qD} and neglect unimportant coordinates
s = {qD+1, . . . ,qN}, or, in the terminology of [16], we separate the essential
subspace c and the near-constraints coordinates s. The important coordinates
correspond to the D largest eigenvalues of C or, equivalently, to the D smal-
lest eigenvalues ofC−1.D is thus the number of coordinates necessary for our
coarse-grained description, or the dimension of the essential subspace. The
chapter by Liu et al. in this book describes one way of using principal com-
ponents for extended sampling, by coupling them to a seperate temperature
bath. Themethods described in this chapter act on themotion in the direction
of the principal components in a more direct way. The general procedure for
these three methods is similar:

1. Obtain a description of the dynamics of molecule in the form of principal
components of motions of an extensive MD trajectory.

2. Superpose the frames of the trajectory by a least-squares fitting procedure
[24] onto a reference structure xref, usually the starting structure of the
trajectory. The appropriate way of fitting and possible artifacts of fitting
methods were the subject of several studies [25–28]. In short, the fitting
procedure can introduce artifactual correlations between distant parts in
the molecule. Because of insufficient sampling of side-chain motions, only
a subset of the atoms (usually only theCα atoms) are included in the analysis
and the definition of the principal components.

3. Select a number of principal components.
4. Calculate a new trajectory, with modified dynamics to enhance sampling.

The general aim of the three methods is similar, to obtain an increased
sampling of conformational space by modifying the first principal com-
ponents of motion. The methods use direct constraints or restraints
(pseudo-potentials)modifying thedynamics; other possibilities are discussed
elsewhere in this book.
Constraints do not modify the Hamiltonian governing the dynamics of the

system since no additional potential needs to be introduced. In contrast, the
conformational flooding and the PCR methods deliberately add potentials
to the system to destabilize the starting conformation. There are further
differences in the implementation and in the scope of possible applications.

17.2.2 Constraint Method

Berendsen and coauthors developed an approach based on constraints in
the direction of principal components [29–31]. These constraints force the
system to move along one or some of the first principal components (termed
“essential coordinates” in the original paper). All the other coordinates move
freely according to the conventional equations of motion. This results in a
broader sampling of the essential subspace than in a comparable conventional
MD simulation without constraints.
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FIGURE 17.2
Schematic representation of the effect of a holonomic constraint along a single principal com-
ponent of motion. The unimportant, “near-constraint” directions s are not affected by the
constraint. The black arrow corresponds to the free dynamic step in each case, the dashed
arrow to the correction applied, and the dash–dot arrow to the resulting displacement in prin-
cipal coordinates. The reference structure is at the origin. (a) Simulation at constant value
of the principal coordinate c. (b) Reduction of principal coordinate c. (c) Increase principal
coordinate c.

Nonstationary holonomic (i.e., time-independent) constraints are used,
such as a constant step motion along a direction in the essential subspace or a
constant step expansion or contraction of the length of the radius between a
fixed reference position and the actual position, both defined in the essential
subspace. In a radius expansion (or reduction), the radius spanned by the
coordinates along a few eigenvectors (in their paper, the authors use the first,
second, and fourth) is increased (or reduced, respectively) by a small amount
at each timestep (e.g., 0.004 Å). Figure 17.2 shows the principle for the applic-
ation of these constraints for an expansion, reduction, and a simulation at a
fixed value of the projection onto a principal direction c.
The authors proposed a three-phase protocol to sample conformational

space:

1. An expansion phase, where the size of projection onto the eigenvector
is increased; the expansion step is 5000 steps (10 psec). To do this, the
projections on the eigenvectors are corrected in the radial direction of the
expansion sphere in such a way that they fulfill the constraint.

2. Second, a constrained sampling phase, where the positions of the essential
coordinates are fixed and 5000 steps (10 psec) of MD are performed.

3. Third, a relaxation phase, with 20 psec of free dynamics.

The procedure was then iterated, using the final structure of one cycle as the
starting point and center of the expansion sphere.
In a latermodification of this basic algorithm, a newposition resulting from

a regular MD step was only accepted if it was at least as far away from the
center of the expansion sphere as the coordinates of the previous timestep,
in the subspace of the first three eigenvectors. In the case where the distance
decreases, a correction is applied in this subspace. This correction is applied
such that the position after correction is at the same distance in the subspace
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as the previous position. When the distance from the center did not increase
spontaneously any more [30] or the rate of increase was very small [31], the
cycle was finished and a new cycle was started with the current position as
starting point and new center of the expansion sphere.

17.2.3 Conformational Flooding

The “conformational flooding” method [23] employs a biasing potential
defined along the most important collective degrees of freedom, thereby
deliberately destabilizing the initial conformation in order to trigger con-
formational transitions by lowering free energy barriers separating different
stable conformations. Given an initial conformationof the system, themethod
is designed to identify one ormore “product states,” whichmay be separated
from the initial state by high energy barriers. It provides an approximate (or
at least plausible) reaction path.
An effective “coarse-grained” Hamiltonian for dynamics of the system is

defined by the first principal components c:

Heff = 1
2β
−1cT�c (17.6)

The idea of conformational flooding is to destabilize the structure by adding
a potential to this Hamiltonian that is localized at the stable conformation
(i.e., the minimum of the effective Hamiltonian). The suggested “flooding”
potential [23] is of the form:

Vfl = wfl exp
[
− 1
2c

T�flc
]

(17.7)

�fl defines the shape of the potential in the space of principal coordinates, and
wfl is an energy constant. Since this potential is to modify Heff, one requires
that �fl = �/(βwfl), which ensures that the sum Heff + Vfl is quartic at the
center of the conformational substate [23]. Shape and effect of this potential
are schematically shown in Figure 17.3.

17.2.4 Principal Component Restraints

The structure xori plays a central role in the extended sampling methods
described above. It defines the reference point to convert coordinates from
Cartesian into collective coordinates, and it serves as a reference structure for
the best-fitting procedure that needs to be applied to calculate the direction of
constraints or potentials. The PCRMDmethod (PCR–MD) [32] is designed to
reduce this role, by separating the structure xori defining the origin of collect-
ive coordinate space from the reference structure xref. In particular, the xori is
not fixed but can float freely.



BICH: “c472x_c017” — 2005/10/19 — 20:48 — page 355 — #7

Collective Coordinate Approaches 355

c

c

E

E

Heff

Vfl

Heff + Vfl

FIGURE 17.3
Schematic representation of an effective Hamiltonian along a single principal component of
motion, with flooding potentials with different strengths. (Adopted from H. Grubmüller, Phys.
Rev. E 52 [1995] 2893–2907. With permission.)

PCR–MD is a method for both efficient and tailored sampling along col-
lective degrees of freedom. Similar to the conformational flooding method,
PCR–MD uses an additional potential. This is achieved by introducing PCRs,
which act on an ensemble of MD trajectories that proceed otherwise inde-
pendently in parallel. In contrast to the conformational flooding method, the
restraints do not act on a single trajectory — they cannot even be defined
on an individual trajectory. In addition, the restraints can be used not only
to destabilize the initial conformation but also to directly impose a specific
variance of the projections of a conformational ensemble onto the prin-
cipal components. The restraints directly specify the target variances over a
structure ensemble projected onto the principal components for an arbitrary
number of modes simultaneously. The PCR–MDmethod was first applied to
study the dynamics of the PH domain of β-spectrin [33,34].
The size of the conformational space covered by a family ofM structures in

the kth collective coordinatemaybe characterized by the variance of themode
space coordinates qk,i, defined with reference to the instantaneous average
structure 〈x〉 of the ensemble of trajectories:

qk,i = (xi − xori) · vk = (xi − 〈x〉) · vk (17.8)

where i is the index of a structure in the ensemble. The variance of a mode
space coordinate is then:

σ 2(qk) = 〈q2k〉i − 〈qk〉2i =
1
M

M∑
i=1

q2k,i =
1
M

M∑
i=1

q2k,i (17.9)
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FIGURE 17.4
Schematic illustration of PCRs. (a) A single free (unrestrained) MD trajectory projected into the
first two principal components. (b) An ensemble of trajectories restrained by variance PCRs to
a particular variance (indicated by ellipses) is free to move in principal component space as a
whole. (c) For the restraint in Equation (17.11), the shape of the ellipsoid can vary but the sum
of the half-axes would remain constant. (d) In addition to the variance restraints, the location
of the ensemble is restrained by the potential of Equation (17.13). (e) The restraint defined in
Equation (17.12) acts only if one or several members of the ensemble are more than a specified
distance from the center of the ensemble. For clarity, force arrows are only shown for these,
whereas differentiation of Equation (17.12) gives forces for all members.

since the average mode space coordinate 〈qk〉i vanishes. PCRs are implemen-
ted as a set of potentials EPCR, restraining different functions of the variances
ofD collective coordinates, and of other functions of the projections onto prin-
cipal coordinates. The actions of the different restraint terms are illustrated in
Figure 17.4.
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The variance restraint is harmonic in the difference of the variances σ 2(qk)
and target values λk :

Evar = wvar
D∑
k=1
{〈q2k,i〉i − λk}2 = wvar

D∑
k=1
(σ 2(qk)− λk)2 (17.10)

where wvar is a weighting factor for the variance term. In contrast to the
“conformational flooding” [23] and the constraint [29–31] methods, the ref-
erence structure xref enters the restraints only indirectly in the best-fitting of
the ensemble, to re-calculate the average structure 〈x〉 at every MD or min-
imization step. PCRs in this form do not impose any structural restraints but
restrain exclusively the variance of an ensemble (i.e., the distance from the
instantaneous average) and not the distance from a reference structure. The
ensemble of structures may be seen as a cloud in conformational space free to
move as a whole, and it is only the size of the cloud along selected directions
that is restrained.
Instead of using a separate restraint for each eigenvector direction, the

cumulative variance in several directions can be restrained. In this case, the
modes and the eigenvalues are not assumed to be known exactly, and one
only imposes a restraint on the “essential subspace” as a whole:

Ecum = wcum
( D∑
k=1

σ 2(qk)−
D∑
k=1

λk

)2
(17.11)

A third type of restraint enforces the homogeneity of the structural ensemble
and prevents outliers by imposing a maximum size of the projection for each
structure in the ensemble:

Eext = wext
D∑
k=1

M∑
i=1


[(qk,i)− nσ σ (qk)][(q2k,i)− nσ σ 2(qk)]2 (17.12)

where nσ is the maximum deviation from the average structure, specified as
number of variances, and 
 is the Heaviside step function. Another type of
restraint can be used to tie the average structure to a reference point in mode
space [32], effectively restricting the location of the cloud to the vicinity of a
reference structure xref.

Eavg = wavg
D∑
k=1
[(〈x〉 − xref) · vk]2 (17.13)

PCRs are used in conjunction with standard MD simulation, very similar to
conformational flooding. In the implementation in X-PLOR [35], we use the
Langevin dynamics option with an explicit friction and random force term
to simulate at constant temperature. The potential energy is composed of a
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FIGURE 17.5
Mode-specific response to PCR. A target variance of 20 Å2 was applied with a weight of
0.1 kcal mol−1 Å−4 to mode 1, 3, 10, 30, or 100, respectively. The resulting variances in mode
space are shownas a function of simulation time. The target variance is shownas a straight dotted
line. (Adopted from R. Abseher and M. Nilgee, Proteins 26 [1996] 314–322. With permission.)

standard MD force field Ephys and the PCR energy terms:

mi,l
d2

dt2
xi,l(t) =− ∂

∂xi,l
(Ephys[+wvarEvar + wavgEavg + · · · ])

+ fi,l(t)−mi,lbi,l ddtxi,l(t) (17.14)

where xi,l(t) are the Cartesian coordinates of atom i in ensemble member l at
time t,mi,l the atommass, fi,l(t) a random force, and bi,l the friction coefficient.
The weights on the different terms need to be set empirically. In the study

of the PH domain,wvar was set to 0.1 kcal mol −1 Å−4. This valuewas applied
successfully also with systems other than the PH domain for calculations
in vacuo. Below 0.03 kcal mol−1 Å−4, the target diversity was not reached
within 100 psec time equivalent even for the softest modes. Computational
experiments like the one illustrated in Figure 17.5 may be used to further
optimize wvar.
The target diversities λwere chosen to be equal or comparable to the eigen-

values of a covariance matrix of the 9 nsec reference trajectory. In general,
the choice will depend on the application; whether the native state diversity
should be reproduced or large-scale transitions be triggered. The native state
variances depend on the system, system size, and the simulation method.
The method is implemented in a modified version of the program X-plor

[35] and will be available in X-plor–NIH [36] in the near future. An ensemble
of trajectories can be calculatedwith ease in X-plor by switching off any inter-
actions in the force field Ephys between different members in the ensemble in
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the same way as it is implemented [37] in Chemistry of Harvard Molecular
Mechanics (CHARMM) [38].

17.3 Applications

The advantage of using only the first principal components to define the
constraint forces or additional potentials is that the perturbation to the ener-
getics of the system is small. This was tested for the constraint method and
the PCR–MD method by calculating standard structure validation paramet-
ers with PROCHECK [39], which showed that the quality of the structures
in constrained or restrained trajectories were virtually identical to those of
reference simulations without additional forces.

17.3.1 Characterization of the Free Energy Surface Around the Native
Structure

One of the first applications of the extended sampling techniques was the
characterization of the “free energy basin” around the native structure of HPr
from Escherichia coli by the constraint method [31]. The analysis defined the
boundaries of the free energy basin in the space of principal components
of motion. The motions in the essential subspace within this basin showed
a diffusion-like behavior. Using the conformational flooding method for a
model protein, Grubmüller [23] derived acceleration rates and estimates of
transition rates. He also suggested using the conformational floodingmethod
to examine the stability of structures (experimental structures or homology
models). The advantage would be that instabilities could appear much faster
than in standard MD calculations [40].
The PCR–MD method was used to characterize the energy surface sur-

rounding the native structure of the β-spectrin PH domain by probing the
resistance of the structure to PCRs in different directions [32]. A clear sep-
aration of soft and stiff modes could be demonstrated, and the order of the
rates of reaction to restraints corresponded to the eigenvalues of the original
9 nsec MD trajectory. This result could be used to design a new method
to define the essential subspace — the directions in collective coordinates
where the system is “softest,” that is, where the system reacts easiest to an
external force.

17.3.2 Rapid Conformational Sampling

The PCR method has been applied extensively to the more modest goal of
rapid conformational sampling [41] (see Figure 17.6). The advantage of per-
turbations in the direction of large amplitude collective coordinates is that
they are (by definition) of low energy.
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FIGURE 17.6
Conformational sampling using PCR–MD of an ensemble of 10 spectrin PH domains. The
restraint-free 9 nsec reference trajectory of a single PH domain molecule that had been used
for the determination of modes is displayed in both Figures (small black dots). (a) PCR–MD
run with both mode space variance and position restraints; sampling during the first 10 psec
(gray squares) and during further 40 psec (empty squares). A 100 psec subtrajectory of the 9 nsec
trajectory (same computational effort as 10 psec PCR–MD of an ensemble of 10 structures) is
shown as small circles. The NMR structure ensemble (pdb access code 1 mph) is indicated as
triangles. (b) PCR–MD run with variance restraints only; sampling during the first 10 psec (gray
circles) and during further 40 psec (empty circles). 10 psec MD of an ensemble of 10 structures
without PCRs (larger dots) starting from the same initial conditions. (Adapted from R.Absecher
and M. Nilgres, Proteins 39 [2000] 82–88.).

As the other methods, PCR–MD assumes the knowledge of principal com-
ponents and variances from an initial restraint-free trajectory. This limits
its use for “rapid” conformational sampling. The PCR summation restraint
(Equation 17.11) does not require this level of detail; it suffices to specify a
number of eigenvector directions that onewants to restrain and the sumof the
target variances along these directions. In order to use PCR–MD to sample
conformational space, the true variances need not be known and one can
simply use a value larger than the current value.
A calculation with prion protein [42] solvated in a shell of water illustrates

the use of PCR–MD for sampling. In this case, the first ten eigenvectors
calculated from a reference trajectory were used as target directions. All cal-
culationswere performedwith the CHARMM19 force fieldwith TIP3Pwater,
force shifting and a nonbonded cutoff of 14 Å. Ten trajectories were run in
parallel. The calculations were run in cycles, where every cycle consisted of
1 psec PCR–MD followed by 1 psec free MD. The target value for the sum
of the projections for the next cycle was set to twice the value at the end
of 1 psec free MD. No PCR term was used in the first cycle, and a total of
50 cycles were calculated. The weight on the PCR term was recalculated at
the beginning of each cycle such that the PCR energy had a specified value.
Four calculations were run with energies of 500, 200, 100, and 0 kcal mol−1,
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FIGURE 17.7
Conformational sampling with the cumulative PCRs of Equation (17.11). The calculations were
performed at “constant energy”; at the beginning of each cycle, the weight on the PCRs was
adjusted such that the PCR energy had a specified value (0, 100, 200, or 500 kcal mol−1). (a) The
sums of the variances along the ten principal components at the end of each cycle consisting of
1 psec restrained dynamics and 1 psec free relaxation, against the cycle number. (b) Structure
ensembles after cycle 20. The structure plots were generated with MolMol [43].

respectively. Figure 17.7 shows the sum of the variances at the end of each
cycle, and the structures at the end of cycle 50. In a similar way, using stand-
ard PCRs, the PCR–MD method was used extensively to presample protein
conformations for rigid-body protein–protein docking calculations [41].

17.3.3 Large Conformational Motions: Allosteric Transitions, Unfolding,
Folding

One of the original applications of conformational flooding was the iden-
tification of distant minimum conformations in a model protein [23]. In
principle, all methods described in this chapter can be applied to identify
and study allosteric transitions or other large conformational changes that
have so far been studied with other methods, such as the conformational
transition between Ras–GDP and Ras–GTP [44–46].
Protein folding and unfolding are highly cooperative processes. One can

therefore presume that collective motions play an important role in folding
andunfolding. The results of one study [47] have evidenced a clear correlation
between the directions of the deformationmotions that occur in the first stage
of the unfolding process and a few specific essential motions characterizing
the 300 K dynamics of the protein.
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FIGURE 17.8
Projections of conformational space onto the first to first two principal components of motion
derived from a standard MD trajectory of the same system. The initial state is an ensemble
of ten partially “denatured” SH3 domain structures from Src, obtained by heating the x-ray
crystal structure to 1000 K. The starting structures are indicated by the black squares, the final
structures by gray disks. (a) Projections of standard MD trajectories, run at 300 K, onto the
principal components. The trajectories sample the conformational space around the starting
structures but donot get closer to the native x-ray crystal structure (at position 0,0). (b) Projections
of an ensemble of trajectories, using only PCRs on variance (Equation [17.10]). Although the
restraints act only on the instantaneous average and do not use the knowledge of the x-ray
crystal structure, the final structures cluster around the native structure.

The PCR–MD method was used to study the folding from structures of
src-homology 3 (SH3) domains showing various degrees of disorder [48] (see
Figure 17.8). Several increasingly disordered structural ensembles obtained
by thermal unfolding or randomization of the coordinates of the native struc-
ture of the domain were used as starting points. In combination with a
standard MD force field the PCRs were sufficient to generate native struc-
ture in disordered structural ensembles. The study clearly demonstrated the
important role of the reference structures xref and xori on the results of the
calculations. In the PCR–MD method the bias is small since xori is always
the instantaneous average over the structure ensemble. In a similar spirit, the
constraint methodwas applied to study folding at atomic detail and to obtain
a folding landscape for cytochrome C [49]. These folding simulations allow
an exploration of the folding funnel in the wider vicinity of the minimum
represented by the native structure.
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17.4 Conclusions

The main use of the discussed methods will be the exploration of conform-
ational space around the native structure. Since the forces or constraints
act along the principal components of motion (by definition low energy
directions), these methods have the advantage that small forces are suffi-
cient to provoke large conformational differences, and that the structures
therefore remain in energetically favorable regions of conformational space.
Structures obtained from simple projections onto normal modes or principle
components are, in contrast, locally distorted and need to beminimized (e.g.,
[50]). The PCR–MD method has been used to take into account flexibility
in protein–protein docking [41], but the approaches may also be useful for
small-molecule docking. However, little use has beenmade of these methods
up to now, outside the groups that had originally proposed them.
The convergence achieved with the PCR–MD method for folding simu-

lations, when used to reduce the variance of a structure ensemble, toward
the correct structure from rather distorted initial structures indicates that
applications of extended sampling methods are possible in cases of struc-
ture refinementwith sparse data, and structure prediction. Onewould expect
improvements with better implicit solvent models (e.g., the generalized Born
model [51–54]). Similarly, themethodmay be useful as a refinement approach
for structures from ab initio 3D structure prediction.
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18.1 Introduction

18.1.1 Biomolecular Simulations and Enhanced Conformation Sampling

The atomic simulation of biomacromolecular systems has become an indis-
pensable tool in structural biology [1]. In general, such simulations involve
solving the Newton’s equations of motion:

d⇀xi
dt
= ⇀vi,

d⇀v
dt
=

⇀

f i
mi
= −

⇀∇ iV(⇀x1,⇀x2, . . . ,⇀xNa)

mi
, i = 1, . . . ,Na

(18.1)

where {⇀xi, i = 1, . . . ,Na} are the atomic coordinates, Na the number of
atoms, and V(⇀x1,

⇀x2, . . . ,
⇀xNa) the potential energy function. As a result, we

obtain the trajectory of the system, {⇀xi(t), i = 1, . . . ,Na}, for a period of time
t = [0, ttot].
For any specific biological question, it is well known that the adequateness

of this tool persistently relies on two issues (1) whether the potential energy
function V(⇀x1,

⇀x2, . . . ,
⇀xNa) is of appropriate accuracy for the question, and

(2) whether the parts of the conformational space relevant to the question can
be sufficiently sampled within the time period t = [0, ttot], so that reliable
ensemble averages can be obtained.
The above two issues are closely related: more detailed potential energy

functions (hopefully with higher accuracy) usually require more expens-
ive computations for each energy and energy derivative evaluation of a
single conformation, resulting in shorter ttot or, equivalently, more restricted
sampling in the conformational space given the same amount of computa-
tion. Thus, depending on the problem at hand, we frequently need to trade
accuracy for efficiency, or vice versa.
During the last few decades, tremendous progresses have been made to

addressboth themodel accuracyandsamplingefficiency issues in atomic sim-
ulations of protein dynamics. Some of the techniques have been developed
for specific purposes, while others with a general purpose that atomic sim-
ulations employing them can address problems of wider range and with
more biological significance. Among them, techniques achieving enhanced
conformational sampling have found wide applications.

18.1.2 A Qualitative Picture of the Conformational Energy Landscape

To rationalize different strategies to accelerate conformational sampling, we
start from the following well-known qualitative features of protein energy
landscapes [2–4].
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First, at ambient temperature, only a tiny fraction of the entire space
spanned by all the atomic degrees of freedom is physically accessible to a
macromolecule.
Second, using kBT as a measure of the energy barriers separating differ-

ent local minima, the energy landscape within the accessible regions dictates
numerous local conformational states. The activation barriers separating the
numerous potential energy minima within each local state are much lower
than kBT, while the activation barriers separating different local conforma-
tional states are much higher than kBT. Thus, in a molecular dynamics (MD)
simulation, the timescales required to achieve equilibrium sampling within
individual local conformational states and between different local states are
widely separated. At typical timescales accessible by atomic simulations, we
may observe excessive sampling within local conformational states (diffus-
ive relaxations), and rarely observe transitions between different local states,
although the latter processes are often of more functional significance [5, 6].
Third, there may be dominating paths (associated with lower activ-

ation barriers than other paths) for the rare transitions between local
states, and identifying such paths often produces important insights into
mechanisms.

18.1.3 Objectives and Basic Strategies for Enhanced Conformation
Sampling

In enhanced sampling simulations, one major objective is to achieve the
frequent observation of conformational transitions between local conform-
ational states, which usually take place at much longer timescales and thus
are rarely observable in conventional simulations.
Besides this objective, for some problems we may also be interested in

obtaining information about the thermodynamically dominating transition
paths connecting different local states. Not all enhanced sampling techniques
have been designed with the latter goal in mind. We note that a number
of progresses have been made to address the specific question of identify-
ing transition paths and obtaining the associated activation barriers [7, 8].
A discussion of these techniques is out of the scope of this chapter.
The fundamental principle behind ideas to achieve accelerated transition

is the transition state theory, according to which the frequency or rate of
transition is proportional to e−�G �=/kBT , in which �G �= is the free energy of
activation and kBT the Boltzmann constant times the temperature. Given the
total amount of computational costs, two basic strategies can be employed to
accelerate the escape from local conformational states in a simulation: sim-
ulating the system at higher temperatures [9, 10], or deforming the potential
energy function [11–15]. With each strategy, a number of techniques have
been developed, each having its advantages and disadvantages in the differ-
ent aspects discussed in the next two paragraphs. Frequently, these strategies
are integrated with parallel simulations of multiple copies of the system
[9, 10, 16–18].
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For an enhanced sampling technique to be practically useful, the acceler-
ation of rare transitions is necessary but not sufficient. As we have already
mentioned, only a tiny fraction of the space spanned by all degrees of free-
dom are physically accessible to the system. Thus, for any method adopting
either of the abovementioned strategies, an additional key to achieve effi-
cient enhancement is to avoid overexpanding the accessible conformational
space while increasing the transition rate in the transformed simulation.
Otherwise, the majority of the conformations sampled in the transformed
simulation would be physically irrelevant for the system at ambient
temperature.
Besides the above, the disturbance on the equilibrium within the local

conformational states should also be minimized.
Thus, wehave the following aspects to consider indeveloping and choosing

enhanced sampling techniques for particular goals: the degree of acceleration
of conformational transitions rarely observable in conventional simulations;
the proportion of physically relevant conformations among all the sampled
conformations; the degree of disturbance of the equilibrium within local
conformational states; and in some cases, the correspondence between the
sampled transition paths and the dominating transition paths in the physical
process of interest.
In this chapter, we will focus on those enhanced sampling techniques that

employ collective coordinates obtained from (quasi-) harmonic approxima-
tions of protein dynamics, with specific emphasis on the amplified collective
motion (ACM) technique described by us recently [19].

18.2 Using Collective Coordinates for Enhanced
Conformation Sampling

18.2.1 Collective Coordinate Descriptions of Protein Dynamics

We refer to other chapters (e.g., Chapter 17 by Nilges and Abseher) in this
book for an introduction of collective coordinates and protein dynamics. For
our discussions, we classify these collective coordinate models into three
types (1) The traditional normal mode analysis (NMA) of obtaining eigen-
vectors and eigenvalues of the Hessian matrix at a strict minimum on the
potential energy surface [20]; (2) Essential dynamics (ED) analysis or prin-
ciple component analysis (PCA) of a predefined group of conformations
[4, 5, 21], usually obtained from MD simulation trajectories or determined
under different experimental conditions; (3) The coarse-grained Gaussian
elastic networkmodel (GNM) [22–25] and its anisotropic version (ANM) [26].
Recently, Ming et al. have developed a quantized elastic deformationalmodel
[27, 28] that combines and enhances the ANM and the vector quantization
method for computing intrinsic deformationmotions of protein structures by
using low-resolution electron density maps.
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The reason for employing collective coordinates to enhance sampling can
be readily understood. It has been repeatedly demonstrated that within each
local state, dynamics along the few lowest frequency (the softest few) col-
lective coordinates often accounts for the majority of the conformational
fluctuations. The higher frequency coordinates are strongly restricted and
large deformations along these degrees of freedom are highly unfavorable.
Qualitatively speaking, transforming the set of atomic coordinates into an
appropriate set of collective coordinates partitions the conformational space
into two subspaces; fluctuations in one correspond to larger scalemotions that
may lead to transitions into different local conformational states and in the
other to conformational equilibration in the same local conformational states.
Thus proper usage of collective coordinate may achieve efficient sampling
with a balance among the aspects discussed above: the acceleration of min-
imum escaping, the expansion of the accessible conformational space, the
disturbances on local conformational equilibriums, and the distortions on
transition paths.

18.2.2 Enhanced Sampling Methods Employing Collective Coordinates

Collective coordinates have been employed as basis sets for efficient sampling
in a number of studies, including Monte Carlo simulations using normal
modes as variables so that sampling step size could be scaled by normalmode
amplitudes [29]. The Berendsen group developed an “essential dynamics”
simulation method. In this method, protein motions are constrained to move
along the essential collective modes, while the motions along the other
degrees of freedom obey the usual equations of motions [30]. De Groot et al.
have applied this technique in the study of a 13-residue peptide hormone
guanylin [31] and an 85-residue protein HPr [32]. The region of conforma-
tional space obtained from the essential dynamics sampling includes the area
sampled by the normal MD and extends beyond.
Collective coordinates can also be applied to guide the design of a deformed

potential energy function. In the conformational flooding scheme [11] and
chemical flooding methods [14] (see also Chapter 17 by Nilges and Abseher
in this book) according to the collective modes obtained from short MD sim-
ulations, a coarse-grained description of conformational substate is derived,
from which bias potential can be constructed. The bias potential destabil-
izes the initial conformation and lowers free energy barriers of structural
transitions, as in umbrella sampling [15]. Thus complex conformational
transitions and chemical reactions may be observed and followed in a
simulation.
Collective coordinates have been combined with ensemble sampling by

Abseher and Nilges [18]. These authors applied restraints in essential sub-
space on an ensemble of MD trajectories that proceed, otherwise independ-
ently in parallel. The results show that weak restraints on the ensemble
variance suffice for an increase in sampling efficiency along collective modes
by two orders of magnitudes.
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18.3 The Amplified Collective Motion Method

18.3.1 The Weak Coupling Method for Constant Temperature
MD Simulations

The temperature in an atomic simulation is controlled by coupling to external
thermostats. At time t, the kinetic energy of the molecular system is

K(t) =
Na∑
i=1

1
2
mi

⇀v
2
i (t) (18.2)

and the instantaneous temperature of the system is

T(t) = 2K(t)
NdofkB

(18.3)

where, mi and
⇀vi(t) are atomic mass and velocity of atom i, respectively.

Na is the number of atoms, Ndof the number of unconstrained degrees of
freedom in the simulation, and kB the Boltzmann constant. In an equilibrated
simulation the thermodynamic temperature of the system corresponds to the
average of T(t) over time.
Different thermostats can be applied to control the temperature of the

system so that the simulation samples a canonical ensemble at constant tem-
perature. For our purpose, we describe the weak-coupling method briefly
[33]. This thermostat is one among the most commonly used in MD simula-
tions of macromolecules. In this thermostat, we assume that the relaxation
of the system temperature toward the temperature of the external bath (T0)
follows the first-order kinetics:

�T(t) = T(t)− T0 = �T(0)e−t/τT (18.4)

in which τT is the temperature relaxation time, a larger τT indicating aweaker
coupling. The exchanges of energy between the system and the thermostat
are represented by applying a scaling factor s on the atomic velocities

⇀v
scaled
i (t) = s⇀vunscaledi (t), i = 1, . . . ,Na (18.5)

The scaled velocities are employed to integrate the equations of motions. It
can be derived that the scaling factor should be

s =
√
1+ �t

τT

[
T0
T(t)
− 1

]
(18.6)
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where�t is theMD time step, if the scaling factor s is uniformly applied on all
degrees of freedom and the temperature relaxation follows Equation (18.4).
In the case of simulations with constraints, for example, bond lengths con-
strained by SHAKE [34], the scaling factor is computed after applying
constraints on the velocities in a timestep, which are then employed to rescale
the unconstrained velocities of the next time step.

18.3.2 The ACM Scheme

In the ACM scheme, we couple the motions in the lower frequency sub-
space to a higher temperature. This is done according to the scheme shown
in Figure 18.1.
Since we will be representing the lower frequency subspace by residue

degrees of freedom instead of atomic degrees of freedom (see the later
section), first we obtain the center-of-mass velocities of individual residues
{⇀vresα ,α = 1, . . . ,Nr} from the atomic velocities {⇀vi, i = 1, . . . ,Na}, where Nr is
the number of residues in the protein.

Overall atomic
velocities

Residue
center-of-mass

velocities

Decomposition
by projection

Remaining
components

Remaining
components

Components in the higher
frequency sub space

Components in the
low frequency

subspace

Rescaled

Rescaled overall
atomic velocities

Rescaled

Weak coupling to higher
temperature bath

Weak coupling to ambient
temperature bath

Decomposition

FIGURE 18.1
A schematic representation of the amplified collective motion simulation algorithm. See text for
detailed descriptions.
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Now, suppose that anl-dimensional lower frequencysubspace	 is spanned

by an orthonormal basis set {⇀ylα ,α = 1, . . . ,Nr, l = 1, . . . ,nl}, the projection of
{⇀vresα } onto 	 gives {⇀vresα,	}, the desired velocity components to be coupled to
the higher temperature:

⇀v
res
α,	 =

nl∑
l=1
cl
⇀y
l
α (18.7)

cl =
Nr∑
β=1

(
⇀v
res
β .⇀y

l
β) (18.8)

The dot product in Equation (18.8) is carried out with respect to the three

Cartesian components of {⇀vresβ } and {⇀y
l
β} for residue β.

Now, for each atom i of residueα, wefinish thedecomposition of its velocity
{⇀vi, i ∈ α} into lower and higher frequency subspaces by

⇀vi = ⇀v
slow
i + ⇀v

fast
i with ⇀v

slow
i = ⇀v

res
α,	

⇀v
fast
i = ⇀vi − ⇀v

slow
i , ∀i ∈ α, α = 1, . . . ,Nr

(18.9)

Weapply theweak-couplingmethod to these twopartsof thevelocities, sep-

arately. For {⇀v
slow
i } and {⇀v

fast
i }, the reference temperatures of the thermostats

are Tl and Th, respectively. The corresponding temperature scaling factors
sl and sh can be computed separately according to Equation (18.6), and the
scaled velocities obtained as

⇀

V
scaled

i = sl
⇀

V
slow

i + sh
⇀

V
fast

i , i = 1, . . . ,Na (18.10)

The above ACM scheme is quite different from conventional simulations
at elevated temperatures. There, the acceleration of transitions between dif-
ferent local conformational states is achieved at the cost of destabilizing local
interactions and extending the accessible conformational space.As the overall
density of states increases rapidly with increased temperature, unselectively
putting all degrees of freedom at higher temperature usually decreases the
overall efficiency of the sampling, because the majority of the sampled con-
formations is irrelevant to the physically allowed conformations at ambient
temperature. ACM increases the chance of escaping a local trap by increasing
the temperature of only a few collective modes supposed to dominate con-
formational transitions. With this, sampled configurations are dominated by
the physically allowed ones.
To our knowledge, the idea of accelerating sampling by coupling different

degrees of freedom to different temperature baths has been first proposed
for the molecular dynamics docking (MDD) method [35, 36]. There, by
employing a higher temperature bath for overall translation and rotational
degrees of freedom and ambient temperature bath for the internal degrees
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of freedom of the substrate, an efficient search in the translational and rota-
tional subspace of the substrate is achievedwithout disturbance of its internal
structure. The Berendsen thermostat has been employed in these studies. In
another novelMD simulation, the protein and solvent have been simulated at
different temperatures [37] using theNose–Hoover thermostat [38, 39], not for
enhanced sampling, but to demonstrate the key roles of solvent in controlling
functionally important fluctuations.
As in conventional constant temperature simulations, usage of the weak-

coupling thermostat in ACM is one among a number of possible choices.
Other thermostats such as the Nose–Hoover [38, 39] or Nose–Hoover chain
[40] can be used as well. Both the weak-coupling and the Nose–Hoover
thermostats require sufficient energy exchanges between different degrees
of freedom coupled to the same temperature bath for efficient thermody-
namics equilibriation. As the lower frequency subspace is spanned by only a
few degrees of freedom and as there may not be enough mixing within this
lower-dimensional subspace, the Nose–Hoover chain thermostat may be a
more appropriate choice.
In practice, there are enough energy exchanges between different modes

in the lower frequency space to establish thermoequilibrium, and that makes
the weak-coupling scheme appropriate even for this lower-dimensional sub-
space. The sources of mixing include that the higher and lower frequency
subspaces are not completely decoupled, and that there exists mixing of
modes between the lower and higher frequency motions as the conforma-
tion evolves. Both factors cause ACM to produce a perturbed ensemble in
which the actual averaged temperature of motions in the lower frequency
subspace is lower than the targeted temperature of the thermostat, and a nar-
row spectrum of modes that have frequencies just above the lower frequency
subspaces to have temperatures higher than the ambient temperature.
Aweakness of ACM is that so far there is not yet any strict theory on how

to obtain exact thermodynamic averages from this ensemble. Empirically, we
may expect that the transition frequencies observed in the ACM simulation
could be related to true transition rates after corrections with respect to the
elevated temperature of the motions in the lower frequency subspace. To
obtain exact free energybarriers, theACMpaths canbeused toderive reaction
coordinates formore strictmethods, such as umbrella sampling. Because only
a small number of modes are separated out, the averaged temperature of
the system as a whole is solely dependent on the thermostat coupled to the
higher frequency subspace. The above rationalizations are consistent with
observations in example simulations discussed in this chapter.

18.3.3 Using ANM to Guide Atomic Simulations in the ACM Scheme

A significant simplification in previous approaches using collective coordin-
ates as a basis set for enhanced sampling is to fix the basis set for the low
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frequency subspace during sampling and ignore its dependence on conform-
ational states. This is largely because the basis set is either from strict NMA
or from PCA of a predefined set of conformations. By such approaches to
update, the low frequency subspace either requires local energy minimiza-
tion first or requires a prior knowledge of the dominating fluctuations of the
conformations to be sampled.
InACM,weemploy simplifiedNMA,whichdoesnot requireminimization,

but does not assume conformation independence of the modes. In the ACM
method, the collective modes obtained by the coarse-grained model ANM
[26] are employed to guide the atomic-level MD simulation. By ANM, the
collective modes are estimated using a single protein conformation without
carrying out a long simulation. These modes can be updated frequently dur-
ing the simulation since computation of the collective modes using theANM
is rapid, which allows us to give up the severe assumption that the essential
dynamics subspace is invariant in the conformational space.
Usage ofANM to obtain the lower frequency subspace in theACM scheme

also relies on previous observations that the subspace is usually insensit-
ive to the details of the model for describing the intramolecular interactions
[5, 25, 41]. Thus, this subspace obtained by coarse-grained ANM can be reas-
onably used to guide simulations employing atomic molecular mechanics
force field. In fact, in the T4 lysozyme example discussed below, the three
slowest ANM modes obtained from a single conformation also cover more
than 80% of the first two principle components obtained using a set of about
40 crystal structures [19].
Compared to conventional MD, the additional computational costs in the

ACM algorithm mainly involve the diagonalization of the ANM Hessian
matrix. For residue-based analysis, the computational cost of the algorithm is
O (N2

r ) [42]. The updation of theANMmodes does not need to be carried out
for every time step. For one of the examples discussed later in this chapter,
the S-peptide analog, the additional computational cost is ignorable, and for
another example, the T4 lysozyme, the computational cost is increased by
about 10% compared to conventional MD in ACM with the ANM modes
updated every 100 time steps [19].

18.3.4 The Amplified Collective Motion-Assisted Minimum Escaping
(ACM-AME) Scheme

One problemwhen theACM scheme is applied that some degrees of the sys-
tem are always at higher temperature. And because the higher and lower
frequencies subspaces are not completely decoupled with the true molecular
mechanics Hamiltonian, there are continuous exchanges of energies between
the higher and lower temperature parts. In the ACM-AME scheme [44], a
simulation is partitioned into alternative excitation and relaxation phases.
The ACM method is only applied in an excitation phase to drive the system
out of a minimum to correspond to a local conformational state. The system
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is reequilibrated (probably in a different local conformational state) by a
conventional simulation at ambient temperature in the subsequent relaxation
phase.
For the switching between the relaxation phase and the excitation phase,

we use the root mean square (RMS) deviation of the current time-averaged
[43] structure from a reference structure representing the local minimum
in a coarse-grained sense as our criterion. The reason to use the current
time-averaged structure instead of the current structure is to remove large
instantaneous fluctuations in this RMSdeviation so that it can be employed as
a robust criterion. Usinga time-averagedstructurefilters out the contributions
of higher frequency fluctuations to the RMS deviations. Such fluctuations are
small for individual degrees of freedom but within a local minimum con-
tribute significantly to the overall RMS deviations because there are a large
number of such degrees of freedom.
In enhanced sampling, we do not know in advance, which local minima

the systemwould fall into during the simulation. Thus the reference structure
is not fixed but time-dependent. In fact, it corresponds to a time-averaged
structure determined at some previous time point.
We start from a relaxation phase and the starting structure is the initial

reference structure {⇀x
p
i , i = 1, . . . ,Na}. At time t, the current time-averaged

structure {⇀x
τ

i (t), i = 1, . . . ,Na} is computed as

⇀x
τ

i (t) = ⇀x
τ

i (t−�t)e−�t/τ + ⇀xi(t)(1− e−�t/τ ), i = 1, . . . ,Na (18.11)

Here, {⇀xi(t), i = 1, . . . ,Na} are the coordinates at time t, and τ the timescale
covered by the averaging. Then we compute the RMS deviation of {⇀xτi (t)}
from {⇀xpi (t)},

δ(t) =
√∑Na

i=1 |
⇀x
τ

i (t)− ⇀x
p
i |2

Na
(18.12)

The overall translations and rotations are eliminated by superimposing
both {⇀xτi (t−�t)} and {⇀x

p
i (t)} onto {⇀xi(t)} before applying Equations (18.11)

and (18.12).
As the simulation goes on in a relaxation phase, δ(t)would increase gradu-

ally through diffusive relaxation until the system falls into a trapped local
conformational state. We assume that if in a predefined time period trelaxation,
δ(t) increased to greater than a predefined threshold δmin, the system has
been going through the diffusive relaxation process in the conformational
space and we update the reference structure, that is, replacing the old {⇀xpi }
by {⇀xτi (t)}. If not, we assume the system has reached equilibrium in a local
conformational state and the simulation switches into the excitation phase.
The excitation phase ends until δ(t) exceeds δmax, roughly the displacements
required for the system to escape a local minima.
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The physical meanings of τ , δmin, and trelaxation are the following: τ corres-
ponds to the cutoff in the frequency filter for eliminating the instantaneous
fluctuations in the RMS deviations; δmin, in an average sense, represents the
size of a local conformational minimum measured by the filtered RMS devi-
ations; and trelaxation, also in an average sense, represents the relaxation time
for reaching equilibrium within a local conformational state. δmax is roughly
the displacement required for the system to escape a local minima.
Because of the above physical meanings and the two type of processes

(namely, fluctuations within the same local conformational state and trans-
itions across different conformational states) that take place in widely separ-
ated time scales, coverdifferent frequency ranges andcorresponds todifferent
amplitudes of conformational change, the parameters τ , δmin, and trelaxation
need only to be chosenwithin their respective physical ranges and their exact
values are not critical.
For a particular system, these parameters can be estimated by short trial

simulations before theACM-AME scheme is employed for lengthy sampling.
First, to determine τ , we can compare the fluctuations of the filtered RMS
deviation δ(t) computed with different values of τ . With τ increasing, δ(t)
as a function of time gets smoother. At a physically meaningful value of
τ , higher frequency fluctuations of δ(t) have been eliminated so that δ(t)
becomes an essentially monotonically increasing function of time at small t
and then reaches a plateau value, which is almost constant (i.e., without rapid
fluctuations). Then, in a short trial simulation, larger than necessary values
for trelaxation and δmin can be used, so that the relaxation phases are sufficiently
long and δ(t) can increase to its plateau values within each relaxation phase.
Then trelaxation can be chosen as the approximate time for δ(t) to reach its
plateau value, and δmin can be chosen as slightly larger than the observed
plateau value of δ(t). δmax is not critical as long as it is large enough to ensure
a high probability for the system to escape from the previous local state, while
it is still of reasonable magnitude so that the simulation does not inefficiently
spend too long in the excitation phases.

18.4 Examples

18.4.1 Interdomain Motions of Bacteriophage T4 Lysozyme

Bacteriophage T4 lysozyme (T4L) consists of two domains, the N-terminal
and C-terminal domains, connected by a long α-helix. Between the two
domains there is a deep cleft, corresponding to the binding site for the
enzyme’s substrate, oligosaccharide [45].
Experimental structures [46, 47] as well as theoretical studies [48],

have revealed a hinge-bending type domainmotion opening or closing up the
cleft. The first two largest amplitude collective modes determined from the
MD trajectories of T4L have been identified as being the closure and twisting
modes [48].
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Starting from a crystal structure of T4L determined at 1.7 Å resolution [49],
we carried out simulations on this molecule in a box of explicit water with
both conventional MD simulations and ACM simulations. Both simulations
started from the same equilibrated configuration and lasted for 3 nsec each.
Details of the calculations have been presented elsewhere [19].
The conventional MD at 300 K (S300) was performed using an isothermal–

isobaric simulation algorithm [33]. The ACM simulation (SACM) was oth-
erwise the same as the control simulation, except for modifications to the
temperature-coupling scheme according to ACM.
In ACM, we selected the three slowest collective modes obtained from

ANM analyses (nl = 3), which were done every 100 time steps according
to the new current configuration of the protein. These three degrees of free-
dom were coupled to a higher temperature bath (Th = 800 K), and the other
modes coupled to an ambient temperature bath (Tl = 300 K). The actual aver-
age temperatures were 751 and 299 K for the collective modes and the rest,
respectively. As the number of degrees of freedom at higher temperature is
negligible compared to the total number of degrees of freedom, the temper-
ature averaged over all degrees of freedom of the system in SACM is almost
the same as in S300.
ComparingACMand conventionalMD, theACM simulations produce lar-

ger fluctuations asmeasured by the root-mean-square fluctuations (RMSF) of
the Cα atoms from residues 1 to 162 in the two simulations (Figure 18.2[a]).
More importantly, the increased motions mainly come from the interdo-
main motion. While the Cα atom RMS deviations from the starting structure
for the overall protein (residues 1 to 162) is larger in the ACM simulation
(Figure 18.2[b]), the RMS deviations computed separately for theN-terminal
domain (residues 13 to 65, Figure 18.2[c]) andC-terminal domain (residues 75
to 162, Figure 18.2[d]) are comparable in theACM as in the conventional sim-
ulation.We also showed that the secondary structures aswell as the structures
of each domain have been well maintained in both simulations.
The trajectories from both simulations can be visualized on a two-

dimensional plane spanned by the first two eigenvectors obtained by PCA
analysis. The analysis has been performed on a cluster of 38 x-ray crystallo-
graphic structures, whichmay be representatives of accessible conformations
of T4L under physiological conditions [47]. The first mode corresponds to a
closure motion and the secondmode to a twisting of the two domains. Along
the first mode there seem to be two distinct clusters of the x-ray structures:
structures to the left are open structures and structures to the right closed.
The two eigenvectors contribute about 90% to the total positional variations
among the experimental structures [48]. Figure 18.3 shows that the MD sim-
ulation (S300), which started with a closed structure, sampled mostly in an
intermediate region between the two clouds of the x-ray structures, without
reaching positions corresponding to either the most open or the most closed
configurations in the x-ray cluster. The ACM simulation (SACM), sampled
a significantly wider area in the plane than the normal MD and the x-ray
clusters.
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FIGURE 18.2
Properties of the conventional constant temperature (dotted lines) and the ACM (solid lines)
simulations of the bacteriophage T4 lysozyme. (a) RMS fluctuations of Cα atoms from residues
1–162; (b) atomic positional RMS deviations from the starting structure of the Cα atoms from
residues 1–162; (c) RMS deviations of the Cα atoms of the N-terminal domain (residues 13–65);
and (d)RMSdeviations of theCα atomsof theC-terminal domain (residues 75–162). (Reproduced
from Zhang, Z., Shi, Y. and Liu, H., Biophys. J., 84, 3583, 2003. With permission.)

18.4.2 Folding of an S-Peptide Analog

A 15-residue α-helical analog of Ribonuclease A S-peptide [50], the native
structure of this peptide consists of α-helix (residues 4 to 12), N-terminal
(1 to 3), and C-terminal (13 to 15) random coils. Simulations of this peptide at
lower temperature (278K)maintained its stable helical native structure, while
at a higher temperature (358 K), a 20 nsec simulation completely unfolded the
peptide [51].
Four groups of simulations of this peptide in solution (solvent effects

described by an implicit generalized Born/surface area (GB/SA) model
[52,53]) were carried out [19] (1) conventional simulations at 274 K; (2) ACM
simulations starting from its native structure (noted as NA and NA_ACM,
respectively); (3) conventional simulations at 274 K; and (4)ACM simulations
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starting from the unfolded conformations (noted as UN and UN_ACM,
respectively). In the ACM simulations, either the slowest 3 or the slowest
5 ANM modes were coupled to the higher temperature (Th = 358 K), the
other modes coupled to the lower temperature (Tl = 274 K). The collective
modes were recalculated either every 10 or every 25 time steps according to
the new current configuration of the peptide. Multiple simulations within
each group produced similar results, and results of one simulation from each
group are discussed briefly here.
Thehelix is stableduring theNAsimulations (Figure18.4[a]). TheNA_ACM

simulations also kept the native α-helix well, although with significantly lar-
ger structural fluctuations (Figure 18.4[b]). In theUNsimulations, the peptide
maintains persistently large RMS deviations (Figure 18.4[c]), no transitions
to native-like helical structures could be observed. In eight of ten UN_ACM
simulations with varying number of slower modes, varying intervals in
updating the slower modes, and different initial velocities, the unfolded
peptide refolds into the native helix (Figure 18.4[d]). The refolding time
(the first time when the RMS derivations from the native structure is below
0.1 nm) ranged from 20 to 90 nsec. After refolding, the UN_ACM simulations
are similar to the NA_ACM simulations (Figure 18.4[b]). In two UN_ACM
simulations, refolding has not been observed within 100 nsec.
For this peptide, the average effective potential energy (including the

GB/SA effective free energy of solvation) of the denatured structures
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RMS deviations of the backbone atoms of residues 4 to 12 from the native structure (dotted
lines) and from a denatured starting structure (solid lines) in different groups of the simulations.
(a) A conventional simulation starting from the native structure (NA); (b) an ACM simulation
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(−2808.2 ± 30.6 kJ mol−1) is higher than that of the native structures
(−2831.3 ± 29.8 kJ mol−1). The energies averaged over the ACM simula-
tions (−2828.2± 31.1 kJ mol−1 for NA_ACM and−2814.9± 32.1 kJ mol−1 for
UN_ACM) have only slightly larger fluctuations than that in the conventional
simulations, likely caused by a few collective modes that have been coupled
to a higher temperature. However, the average energy values in the ACM
simulations are still in a reasonable range.
These results are consistent with our purpose in designing the ACM

method, that is, to assist the system to escape unfolded local conformational
states by expanding the sampling region selectively, without stepping into
irrelevant high-energy regions of the conformational space.
The refolding processes repeatedly observed in UN_ACM simulations give

some implications on the folding/unfolding pathways of the peptide. The
forming and breaking of five native i + 4 → i hydrogen bonds (Phe8: NH-
Ala4: CO [HB1], Leu9: NH-Ala5: CO [HB2], Arg10: NH-Ala6: CO [HB3],
Glu11: NH-Lys7: CO [HB4], and His12: NH-Phe8: CO [HB5)] were observed
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to correspond well with the folding/unfolding process. They were more
stable in NA than in NA_ACM simulations, and remained unformed in
UN simulations. In UN_ACM simulations, the hydrogen bonds near the
N-terminal formed earlier than those near the C-terminal in refolding pro-
cesses. Consistently, in a higher temperature-driven unfolding simulation,
the latter hydrogen bonds have been observed to break earlier in unfolding
processes [51].

18.4.3 ACM-AME Sampling of Peptide Conformations

We comparedACM-AMEwith conventional simulations as well as an altern-
ative scheme that elevates the temperature of all degrees of freedom during
theexcitationphase (amplifiedoverallmotion-assistedminimumescaping, or
AOM-AME) [44]. Simulations on fourpeptides starting fromnonnative exten-
ded or all helical structures with difference schemeswere performed. Among
the four systems tested, the native structures of the S-peptide analog and
the E6-interacting peptide are helical, while the β-peptide is two β-strands
connected by a turn, and the villin headpiece subdomain (HP-36) is a small
alpha protein containing three secondary structural elements. The following
aspects of the results were looked at in detail: the energies of sampled con-
formations, the diversity of sampled conformations, and the deviations of
the sampled conformations to the corresponding native structures. Details of
the results have been reported elsewhere [44] and we summarize the results
below.

(1) Energies: We consider the effective energies consisting of intramolecu-
lar potential energy and the effective free energy of solvation computed by
the GB/SA model, that is, Etot = Eintra-mol + Esolvation. In the normal MD
simulation starting from extended structures, the energies always dropped
rapidly during the initial phase of the simulations, soon becoming flat and
fluctuating around at values obviously higher than the averaged energies
of the native simulations. The ACM-AME simulations, however, produced
much larger fluctuations in energies, occasionally sampling conformations
with instantaneous energies lower than the averages of the native simula-
tions. This has been observed in the simulations on the S-peptide analog,
the β peptide, and HP-36 (starting from a all helical conformation). That is,
the ACM-AME scheme does introduce much more frequent escaping from
local energy minima. Comparisons between theACM-AME energies and the
normal MD energies as functions of simulation time also indicate that the
increase in sampling in the ACM-AME scheme is not trade-off by excessive
sampling in nonrelevant, high-energy regions. This is contrary to the AOM-
AME scheme, by which although the simulations do not seem to be trapped
in any energyminimum, much of the sampling is within uninteresting higher
energy regions of the conformational spaces. Our study also indicated that for
longer chains that fold into several secondary structure segments, applying
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ACM-AME to an extended starting structure may not be a good choice; there
the initial local contacts formed from the extended starting structure may
dominate the low frequency subspace in the initial phase of the simulation,
thus destabilized by the ACM scheme.
(2) Conformation Clusters: The number of conformation clusters (clustered

on the atomic positional RMS deviation basis) as functions of simulation time
should directly reflect the degree of enhancement in sampling. In the ACM-
AME simulations, the number of clusters formed by sampled conformations
increased almost at a constant rate, with the sampled conformations relat-
ively evenly distributed in different clusters. Only at very later phases of the
ACM-AME simulations the rate slows down, as certain conformation clusters
were being revisited, rather than that the systems have been trapped in local
minima. For the S-peptide analogwe seem to observe near convergence of the
ACM-AME simulations, because the sampled conformations aremore evenly
distributed in different conformational clusters and the rate of sampling new
conformations are very slow near the end of the simulations. For the simu-
lations in the other systems our simulations did not seem sufficiently long
to explore the entire low energy parts of their conformational spaces and the
rates of sampling new conformations remained high at the ends of the sim-
ulations. In the normal MD simulations, the same number of conformation
clusters quickly reach a plateau value and rarely increase with the length of
the simulation. This is not unexpected for a frustrated landscape, onwhich the
escape from local minimamay take orders of magnitude of longer simulation
time thanwe performed. Thus themajority of sampled conformations belong
to a few clusters, not diversely distributed among different conformational
clusters.
(3) Near Native Conformations: Successful ab initio folding of a peptide or

protein requires both an accurate energy function and sufficient exploration
of the energy landscape. For the S-peptide analog, the smallest Cα RMS devi-
ation from the native structure is below 2 Å. We also observed correlations
between the energies and RMS deviations from the native structure, both as
functions of simulation time. We believe that for this particular short peptide,
the global minimum of our energy function correspond to the native helical
structure. The simulations of the other systems sampled near native conform-
ations with 2 to 4 Å backbone RMS deviations from the native structure, but
we cannot tell the near native structure from the trajectories by the effective
energies.

18.5 Summary

Based on a general qualitative picture of protein energy landscape, we
emphasize that there are the followingmajor considerations in enhanced con-
formation sampling techniques: to accelerate rare conformational transitions;
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to avoid sampling in the mass of irrelevant higher energy part of the
conformational space; to avoid disturbing the local conformational equilib-
riums; and in some cases, to sample along the dominating transition paths.
Collective coordinates obtained from various NMA technologies reflect the
local landscape, the lower frequency space leading to pathways along which
to deform the local conformational states is the easiest. Various enhanced
strategies have been developed to take advantages of this property.
We discussed in detail the ACM scheme, in which the lower frequency

modes obtained from the coarse-grained ANM model are employed to
guide the sampling in atomic simulations. The main advantage brought
about by the ANM model is that we can update the lower frequency sub-
space locally as the system samples different part of the conformational
landscape. We further described the ACM-AME scheme, in which the ACM
is applied repeatedly to assist minimum escaping in the simulation. The
examples discussed include applying ACM to interdomain motions of lyso-
zyme, unfolding and refolding of a short helical peptide, and applying
ACM-AME to conformational searching of a number of small peptides.
As an enhanced sampling technique, the ACM method may be used

to explore large-scale functional motions of proteins. As it increases
the efficiency of conventional molecular dynamics with little additional
computational burden, its applications may include providing alternat-
ive conformations for structure-based inhibitor design or molecular dock-
ing, generating conformations better satisfying experimental constraints,
or producing low-activation-barrier transition pathways between different
conformational states from which new insights into the mechanisms of
function-related protein dynamics can be obtained.
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Association energy, 121
Asymmetrical inhibited state, myosin, 127
Atomic

coordinates, 138, 371
displacement vectors, Cartesian, 217

389
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Atomic (contd.)
displacements, direction of, 337
fluctuations, 289

application of DMD, 288–289
magnitude of, 282

fluids, 254
glass, 254
liquids, 271
simulations in the ACM scheme, using

ANM, 375–376
structures, flexible fitting, 129–133

ATP, 172, 179
molecule, 175

ATP-binding
proteins, 400
sites, 173

ATP-bound
conformer, 172
proteins, 180

Autocorrelation function, frequency, 313
Average absorption energy, 286
Averaged saddle order, 268
Avogadro’s number, 68

B
Backbone, 4, 291

collective motions, 30
motiona, 99

Bacteriophage T4 lysozyme, interdomain
motions of, 378–380

Barrier crossings, 9, 263, 270
Base pair, 189, 195

rearrangements, 125
of DNA structures, 196

Base-pair
interactions, 77
parameters, distributions of, 201
sequence, 188
steps, 201, 206

Base sequence, DNA, 189
Basis, 216

set, 35
Cartesian, 221
normal mode, 247

Bath modes, 306
Bend–stretch mode, 319
Bending

deformations, 191, 197, 202, 203
modes, cyclic DNA, 195
motion, 194
parameters, 343

Berendsen thermostat, 375
B-factors, 49–51, 59, 158–162, 174, 181,

286–291
curves, 141

experimental, 55, 176
factors, 178

profiles, features of, QEDM, 142
isotropic, 246
predictions, 185

Bias potential, 371
Binary LJ mixture, 273
Binding sites, 176, 177
Biochemical function, 158
Biological

fibers, 148
molecules, molecular motions of, 112
structures, dynamic description, 155
systems, global distortions of, 127

Biomacromolecular systems, atomic
simulation of, 368

Biomolecular assemblies, 66–67
Biomolecular dynamics, 138
Biomolecules, 66, 282

spectroscopic signature of, 83
Biopolymers, 74
Block, 70

copolymer, poly d(A5T5)
Lanczos approach, 96
matrices, 116
normal mode, 55, 163; see also BNM

BLZPACK, 22
BNM, 55, 69, 96

method, 70
BNM/RTB, 70
Boltzmann

constant, 47, 114, 369
factor, 261, 262, 267, 268
equation, 269

Bond lengths, 373
virtual, 178

Bonded energy terms, 68
Born

approximation, generalized, 92
model, generalized, 363

Born–von Karman theory, 159, 163
Bound ligand, 71
Bragg

approximation, 162
intensity, unperturbed, 164
peaks, effect of displacement on,

161–164
reflections, 158
spots, 162

Breathing mode, 121
uniform, 226

Brillouin zone, 163
Brownian mode, 9–11, 13

analysis, 14
B-values, 164
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C
Ca-ATPase, dynamics and conformational

changes of, 14
Caldeira–Leggett–Zwanzig form, 303
Canonical ensemble, 372
CAP, 198
Capsid

overall shrinking of, 227
structures, 217

Cartesian interpolation, 118
Catabolite activator protein, Escherichia

coli, 198; see also CAP
Catalysis, role of dynamics in, 157
Catalytic residues, experimantally

identified, 52
CCMV, 120, 214

elastic NMA, 398
irreps of poliovirus, rhinovirus, and, 228
native form of, 121
structure of the swollen, 229
swelling, NM study of, 226

CD
bond frequency, fluctuation of the,

308–309
stretch, 303

Cell entry, 230
Center-of-mass

derivatives, 265
modes, 262, 268, 273

Central
node, 177
protruberance, 81

Chain
deformability, 202
thermostat, 375

Chaperonin, 129
Characteristic temperature, 271
CHARMM, 68, 76, 93, 217, 359

AdK, 94
cyt c, 307
icosahedral viruses, 229
to construct “crystals”, 163

CHARMM19 force field, 360
Chemical

flooding, 371
proficiency, 155

Chromatin, organization of, 188
Chromophore, 67, 68, 326, 335

conformational change upon
photoexcitation, 335

force field for, 342
isomerization of, 327, 328
translation of the, 339
vibrational cooling of, 340

C–H stretch, VER time of the, 316
Class average, single model refinement,

144

Classical
diffusion, 255
equilibrium simulation method, 302
VER formula, 304

Closed form, 119
Closure pathways, 157
CO bound myoglobin, active site of, 74
Coarse grained, 83

models, 100
NMA, 54

Code-book vectors, 128, 129
Collective coordinate, 371

models, 370
Collective coupling, 44
Collective motions, 7, 69, 361
Collective polymeric motions, 189
Collective-mode description, 234

variables, linear conbination of, 235
Compact protein, 11
Complex molecular systems, 67
Composite landscape, 267

PEL, 260–261
Configuration space, 6
Configurational density, equation for, 351
Configurational entropy, REM, 269–270
Conformal fluctuations, range of local, 188
Conformation clusters, 384
Conformational change, 102, 176, 328

characterizing, 18
comparison with, 94–95
direction of, 337
functional dynamics of, 118
large, 361
large-scale, 215
pathway, 119, 125
quality of description, 101
small amplitude of, 177

Conformational correlations, Twist–Rise
206

Conformational coupling, effect of local,
205

Conformational dynamics, 139
of large structures, 42

Conformational energy landscape,
qualitative picture of, 368–369

Conformational equilibration, 371
Conformational flexibility, 75, 76
Conformational flooding, 354, 357, 371
Conformational jumps, 18
Conformational mechanism, 195
Conformational reorganization, 119
Conformational space, projections of, 362
Conformational state, trapped local, 377
Conformational substate, 2, 3
Conformational transformations, 69, 282
Conformational transitions, 2, 236

local, 92
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Conformational variable, 197
Conformations, 43
Conformers, distances between, 176
Conjugate gradient methods, 22
Connected neighbors, 267, 268, 270
Connectivity

fraction, 267
matrix, 46

Constrained sampling phase, 353
Contact matrix, 173

pseudoinverse of the, 174
Convergence criteria, iterative procedure,

24
Convergence criterion, 28, 119

iterative methods, 26
Cooperativity, 175
Corkscrew rotations, of pentameric

modules, 223
Correlation

coefficient, 176, 180
flexible fitting, 131
linear, 178

function, velocity, 254
of atomic motion, application of DMD,

290–291
Counterions, 190
Coupled pertubed Kohn–Sham, 68; see also

CPKS
Coupled perturbed Hartree–Fock, 68; see

also CPHF
Coupling, 30
Coupling elements, third-order, 312
Coupling terms, higher order, VER of the

CD mode, 317
Covariance matrix, 47, 48, 164, 282, 358
Cowpea Chlorotic Mottle Virus, 120; see

also CCMV
pH induced swelling in, 120–122

CPHF, 68
C-phycocyanin dimer, 11, 12
CPKF, 68
Cross-correlation

coefficient, 290, 297
maps, 406

Cryo-electron density map, 121
Cryo-EM, 113, 127, 131, 138

density, 229
experiment, 129
maps, 132
structural refinement, QEDM-assisted,

144–146
structures, 125
technique, 140

Crystal contacts, 158
Cumulative projections, 15
Cumulative variance, 357
Curved DNA, twisting of, 206

Cutoff
distance, 56, 123, 172–177, 181

increasing, 179
longer, 184
nonbonded, 217
strong dependence on, 185

separation, 53
Cutting enzymes, 202, 206
Cyclophilin A, 157
Cyt c, 302, 317

CD bond in, 307
CD mode in, 318
NM calculations for, 306–307
spectra for different forms of, 315

Cytochrome c, 302, 339; see also cyt c
anharmonic decay rate, 332
energy flow in myoglobin and, 326
normal mode density, 331
structure of, 407
vibration energy transfer, 330

Cα–Cα separations, 129
Cα atoms, 31
Cα-ENM, 99, 102, 104

modes, description of AdK
conformational change with, 103

Cα-only representation, 223
Cα-RMS, 103

D
Davidson’s modification, 22
Debye–Waller

factor, 117, 248
temperature factors, 174
type terms, 162

Deformations, 6
frequency of, 202

Deformed x-ray structure, flexible fitting,
131

Degree of acceleration, 370
Degree

of collectivity, 51
Degrees of freedom, 19, 23, 45, 240, 379

collective, 354
Dehydrated PYP, 338
Density

functional theory, 71
maps

19-A◦ cryo-EM, 142
low-resolution, 140

of states, 4, 223, 256, 271–272, 374
functional form of, 261–162
Gaussian, 268
unstable, 260
useful approximation to the, 258

Dephosphorylated myosin, 126
Dephosphorylation, 127
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Description
of conformational change, number of

modes required for, 101
with approximate modes,

conformational change of AdK,
101–103

DFT calculations, 74, 329
DHFR, 93

conformational change, 104
normal modes of, 103

Diagonalization in a mixed basis, 23; see
also DIMB

DIAGRTB, 96
Dialanine, 228, 294, 295, 406

application of DMD, 292
IR absorption spectrum of, 296

Dielectric constant, distance-dependent,
217

Difference vector, conformational, 131
Differential flexibility, 142
Diffraction equation, 161
Diffuse scattering, 158, 161, 162

calculation of, 163
refinement, 160
qualitative inspection of, 164

Diffusion
INM theory of, 255
reaction pathways for, 256

Diffusive motion, 276
Diffusive relaxation, 377
Diffusive translational modes, 265
Diffusive unstable fraction, 273
Diffusive unstable modes, 270
Dihedral angle space, 18, 239
Dihedral basis set, 225–227
Dihedral flexibility, 229
Dihydrofolate reductase, 93; see also DHFR
DIMB, 23–27, 33, 96, 113

applications of, 27
method, 28–34

Dimensionality reduction methods, 155
Dimer

deformability, properties of long
polymers, 200

steps, 201
Dimeric interactions, 121
Dimeric representation, 188
Dipole–dipole correlation function,

Fourier transform of the, 296
Dipole-driving scheme, 294
Dipole

moment, 294
transition, 329

Displacement vectors, 7
Distance restraints, 193
Distribution of contacts, 49

Disulphide-bond formation, 49; see also
DsbA

DMD, 282
advantage of, 283
mechanism, 297
method, resolving power of, 287
normal mode, 288
theory, 283–285

DNA
circle, 202
circular, 194
homopolymers, 100-bp, 205
loops, 197, 206

formation, 188
molecules, cyclic, 200
linear, 193
looping, protein-mediated, 189
shift, slide, and rise, 196
Twist of, 192

DNase I, 200
Docking

protein–protein, flexibility in, 363
rigid-body, protein–protein

Domain motion, hinge-bending type, 378
Dominating paths, 369
Double well, 271; see also DW
Double-window technique, 26, 36
Driven molecular dynamics, 282, 285; see

also DMD
Driving force, 286
Driving parameter, 288, 293

application of DMD, 286
Driving term, 283
Drug design, 157
DsbA, 49, 50
DW prescription, 272
Dynamic domain, 234
Dynamical random energy model, motion

among saddles, 276
Dynamical transition, 247

E
E6-interacting peptide, 383
Eckart condition, 192
Ectothiorhodospira halophila, 327
ED, 370
EEF1 solvation model, 80
Effective free energy, of solvation, 381, 383
Effective frequency, 241
Effective Hamiltonian, 355

theory, 96
Effective number of modes, 99
EF-G, 123

conformational change, 132
Eigenvalue problem, 69
Eigenvectors, overlap between, 80
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Elastic
constants, 191, 205
force constants, 192

field, 203
imbalance of, 140

Elastic modes, 78
Elastic network

calculations, 178
Hamiltonians, 117
model, 18, 42, 70, 79–83, 113, 114, 129,

172; see also ENM
icosahedral viruses, 229
predictive power, 181

NMA, 123
NMA, 126

Elastic NMA, 139, 141
of CCMV, 122

Elastic sphere model, 222
Elastic strain energies, ENM, 115
Electric dipole-driven dynamics,

application of DMD, 294–296
Electron

cryomicroscopy, 138; see also cryo-EM
density maps, 138
microscopy, 128

Electronic structure algorithm, 297
Electrostatic interactions, 80
Electrostatic potential, 97
Electrostatic terms, 68
Elongation factor G, 123; see also EF-G
EM density maps, 84
Empirical energy function, 319
EN

models, 59, 60
NMA, residue-level, 55

End-point conformers, 144
Energy

barriers, 2, 369
function, 99
in the transition, conservation of, 307
landscape, 118, 155

anharmonicity of, 241
multiple minima, 242

minimization, 92, 93
transfer, influence of hydration water,

326
Enhanced conformation sampling,

objectives and basic strategies for,
369

Enhanced sampling techniques, 370
ENM, 18, 31, 92, 102
Ensemble

average, 243, 244
variance, weak restraints on, 371
variation within, 158

Entropy, 229
application of DMD, 291

Enzymatic reactions, 155
Enzyme-mediated catalysis, 155
Equations of motion, 7
Equilibrium

fluctuations, 49
of C–O and Fe–C, 72

Equivalent minima model, 260
Escape modes, 272–273
Escherichia coli, 93, 359

5′-nucleotidase, 172
70S ribosome structure

Essential
dynamics, 138, 370, 371; see also ED
subspace, 239, 352, 357

Eukaryotic cells, 146
Excitation phase, 377, 378
Expansion phase, 353
Experimental structural determinations,

137
1E8X, porcine protein, 173
Extreme conformers, 146
1E8Y, human protein, 173

F
F-actin, 147

model, refinement of, 148
False features, 145
FAS, 142, 144
Fast modes, physical meaning of 50–53
Fatty acid synthase, human, 142; see also

FAS
Fermi

resonance, 306, 326, 333, 340
Fermi’s golden rule, 304–305, 311

validity of, 316–317
Ferrocytochrome c, 303
Fiber diffraction, 148

model, canonical B-DNA, 190
refinement, 148

50S ribosome
30S and, Comparison between BNM

and ANM, 79–82
subunit, 397

Figure-8 forms, 204
Filament assembly, 126
5-fold axis, 223
5′-nucleotidase, 173
Fixed-value spring constants, 173
Flexibility, 82, 129

degree of, 81
lack of, 226
petameric unit’s, 122

Flexible
docking, of crystal structures, 146
fitting, 130, 133, 400
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Flooding potential, 354
Fluctuation
Fluctuations, anisotropic, 54

dynamics, 43
icosahedrally symmetric, 58
predictions, nodes in, 184
probability distribution of, 47
vector of, 46
vectors, instantaneous, 45

Fluorescence decay measurements, 328,
340

second coherent oscillation, 339
Fluorescence-resonance energy transfer,

84; see also FRET
Fold type, 97
Folding, 42, 362

residues, 52
critical for, 59

Folding/unfolding, 383
Foot-and-mouth disease virus, 214
Force

autocorrelation function, quantum
mechanical, 318

constant matrix, mass-weighted, 8
Fourier transform, 247
Fractional saddle order, 269
Fragile-to-strong transition, 273
Free energy

barriers, 354, 375
surface, 244

characterization of the, 359
of activation, 369
vibrational, 257

Free human CD2, dynamic domain
motions, 405

Frequency
spectra, comparison of, 228
vibrational, 8

Friction matrix, 10
effective, 239

Functional
forms, 42

transitions between different, 61
motions, 133

G
G-actin, 147
GAMESSUS, 68
Gaussian elastic network model, 370
Gaussian network model, 42; see also GNM
Generalized Born model, 380
Generalized stationary points, 273
Genomes, 43
Geometry optimization, algorithms for,

285
Glass transition, 247, 248

model, 271
Glassy response, 248
Global bending, 207
Global twisting rigidity, 204, 205
GNM, 42, 44, 60, 159, 181, 173–175

calculation, 50
computation, 56
dynamics, 59
mode shapes, 59
paper, original, 49
description of, 390
EN of, 45
mean square residue fluctuations, 176
protein domain dynamics, 185
slow and fast modes in, 391
statistical mechanics of, 46–48
types of coupling models, 163

Golden rule, 329
Gp120, affinity of CD4 for, 105
Gram–Schmidt orthogonalization, 36
Group

theoretical methods, NMA, 216
theory methods, 228

H
Haldane–Pauling theory, 156
Half-turn increments, 207
Hamilton’s equation of motion, 284
Hamiltonian, 352

coarse-grained, 354
cyt c, 318
molecular mechanics, 376

Hammerhead ribozyme
ANM, BNM, and classical NMA for, 78
comparison between BNM and ANM,

74–79
overlap between eigenvectors, 396
structure of the, 395

Harmonic approximation, 2, 254
NMA, 66
problems arising from, 119

Harmonic modal analyses, 138
Harmonic model, 4
Harmonic springs, 113
Harmonic well, multidimensional, 270
HCG, 55

structure, 56
Heaviside step function, 53, 139
Heavy meromyosin, 126; see also HMM
Helical peptide, 385
Helical structures, 383
Helix bending motions, 13
Hemagglutinin, 157

A, 55
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Heme, 74
active site, 302
–CO system, 74
group, 71
molecule, 32
torsion, 313

Hemoglobin
application of DIMB, 32–33
T-form of, 91

Hessian
center-of-mass, 272
conformational change of AdK, 93
eigenfunctions of the, 256
flexible fitting, 131
transformed, 217
matrix, 19

diagonalization of the, 18, 21, 26, 115
eigenvector of the initial, 24
formula for, 68
modification to the, 22
perturbation added to the, 23
subdivision of the, 25
ways of partitioning, 31
ways of subdividing, 32

normal mode, 287, 288
distribution, 286
overlap between DMD and, 293

Hierarchical coarse-graining, 55; see also
HCG

Hierarchical modes, 243, 244, 245
Hierarchical synthesis scheme, 146; see also

HSS
Highest correlations, 180
Hinge bending motion, 22
HIV-1 protease, 97
HK97, 214

bacteriophage, 56
GNM, 57

viral capsid, application of GNM, 393
HMM, 126, 127
Holmes model, 148
Holo-NCS, crystal structures of apo- and,

389
Holonomic constraints, nonstationary, 353
Hookean potential, 115

single parameter, 92
Hookean springs, 159
1HP1, 402, 403
HSS, 146
Human

CD2, dynamic NMR refinement of, 245
lysozyme, 242, 243

internal motion of, 247
1-nsec MD, 240

Hydrated protein, 335, 338
Hydrated PYP, 336

Hydrogen
atom, bonded, 30
bonds, 383
–deuterium exchange, 42, 53
vibration, 8

I
Icosahedral form, 56
Icosahedral group, NMA, 216
Icosahedral symmetry, 133, 214

systems with, 217
Icosahedral viruses, 120, 121

NM calculations on, 228
Ideally imperfect crystal, 161
iGNM DB

data stored in, 60
visualization of data stored in, 394
database of GNM results 58–59

Imaginary frequencies, 254
Important subspace, 239
Improper torsion parameters, 344
Influenza virus hemagglutinin, 128
Inherent structure, 257; see also IS
Inhibitor binding, 92
Initial guess vector, 24, 34–35
INM, 255

analysis, 308
master plot, log–log, 267
theories, 270
thermodynamics, 276
collectivity of the, 271

Instantaneous normal modes, 255; see also
INM

Interaction
matrix, 6
nonlinearity of, 6

Interdomain motion, 379
Interfacial energies, 121
Intermediate structures, 117
Inter-molecular interactions, 181
Internal mode, lowest frequency, 28
Interprotomer interactions, 214
Inter-residue contacts, 46
Intersubstate transitions, 236
Inter-subunit hinge, FAS, 142
Intramolecular interactions, 376
Intramolecular potential energy, 383
Intrinsic curvature

DNA ring puckering, 197
enzyme cutting patterns, 198

Invariants, 49
Inverse mean waiting time, 263
IR

measurements, polarized, 74
spectrum, Trp-cage, 294
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IS, 257
basins, 273
Markov approximation, 262–264
transitions, 260
-basins, 258
-mapping, 257

Isomerization mode, 337
Isotropic

assumption, 26
fluctuations, 48

Iterative normal mode analysis, 130; see
also NMFF

Iterative technique, conformational
change pathways, 117

J
Jacobian, statistical mechanics on the PEL,

262
JAM, 234

concept, extension of, 243–246
mode, synamic domain motions in, 246

variables, 243
model, 245

extension of NM concept, 241–243
motions, 242

Jumping-among-minima model, 234; see
also JAM

Junctions, ENM, 114

K
Kinase 2, human cyclin-dependent, 172
Kinetic energy coefficients, DNA, 191
Kirchoff

matrix, 46–50, 159, 160
Kramer’s theory, low-friction limit, 264,

265

L
L1 stalk

base of, 81
large displacement of the, 125

L7/L12 stalk, 81
Lanczos

algorithm, iterative, 70
/Arnoldi factorization, 22

Lanczos’s algorithm, 22
Landau–Teller–Zwanzig theory, 303; see

also LTZ
Landscape based methods, unstable

modes, 272–275
Langevin

dynamics, 357

mode, 9–11, 238–239, 249
oscillators, 239

Laplacian matrix, 160
Large

amplitude motions, 5
biomolecular assemblies,

conformational changes of, 133
biomolecular complexes,

structure–function relationships
of, 69

biomolecules, low-frequency motions
in, 75

molecular systems, elastic properties of,
142

-scale deformation, circular DNA, 194
-scale fluctuations, of DNA, 188
-scale transition, 204

Laser spectroscopy, 67
Lattice

defects, 161
dynamics, 163

Least-squares fitting procedure, 352
Librational mode, 332
Librational motion, 307
Ligand, 3

binding, 42, 32, 157
–protein binding, 112
–protein contacts, 173; see also, LPC

Line broadening, 293
Linear DNA, large scale anisotropy of, 200
Linear IR spectroscopy, 68
Linear molecules, bending and twisting

modes, 192
Linear pathway, 121
Linking compliance, bacterial flagellum,

142
Linking number, 192
Local

conformational states, 369
energy minima, 383
minima, 2
moves, 7
packing density, influence of, 48–49

Localization length, 330
Localized

modes, 332
pairs of, 335

vibrations, quantitative characterization
of, 66

Long time average, 309
Long-range normal modes, 148
Lowest frequency modes, 102, 106
Low frequency modes, 80

delocalized, 83
directionality of, QEDM, 141

Low-frequency normal modes, CCMV, 121
Low-frequency protein dynamics, 99
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Low-resolution experiments, 119
Low-resolution model, DNA, 189
Low resolution structural data, 60, 100,

113, 127, 129
LPC, 173
LTZ, 303

approach, 318
Lysozyme, 22

hen egg, 91
white, 45

human, 236, 239
interdomain motions of, 385

M
Macromolecular machine, 123
Macromolecular systems, pathways for

conformational change, 117
Macromolecules, 61
Maradudin–Fein formula, 311–312
Markov approximation, validity of, 317
Markovian dynamics, 316
Mass-scaled normal mode, 285
Mass-weighted friction matrix, 238
Mass-weighted second derivative matrix,

282
Mb–CO

active site of, 72
Applications of NMA, 71–75

MD, 11
MD simulations, 282
MDS, 238
Mean escape rate, statistical mechanics on

the PEL, 263
Mean square fluctuations, 180
Melittin, 236
Mesa area, inward and outward projection

of, 224
Mesa, 223, 225
Met80, 314, 316
Methotrexate, 103
Metropolis anzatz, 268
Microstates, 43
Minicircles, 202

CAP-bound DNA, 199
torsionally relaxed, 198

Minima
anharmonicities in the, 270
transitions among, 268

Minimized structure, poliovirus, 220
Minimum escaping, 371

scheme, amplified collective
motion-assisted, 376 –378; see also
ACM-AME

Minimum subdomain, partition function
for a, 260

Mixed basis, 28
MMTK, 163
Mobilities, residue, 51
MODC, 237
Mode

concentration, 95
-coupling temperature, 254
decomposition, GNM, 50
frequency, 331
repulsion, 340
-space coordinates, 351

Model accuracy, 368
Molecular chaperonin GroEL, NMA, 139
Molecular deformational modes, 138; see

also MDM
Molecular dynamics, 11; see also MD

docking method, 374
Molecular Hamiltonian, 283
Molecular machine, 79

flexibility of, 75
functional cycle of, 69

Molecular mobility, changes in global, 189
Molecular Modeling Toolkit, 163; see also

MMTK
Molecular orbital coefficient, 68
Molecule optimal dynamic coordinates,

237; see also MODC
MolMov DB, 58
Molten salts, 262, 271
Monte Carlo simulation, 276
Mössbauer spectroscopy, 71
Motion description, quality of, 99
mRNA, 123

–30S interface, 81
translocation of, 81

Multidimensional scaling, 238; see also
MDS

Multi-molecular assemblies, 60
Multiple minima problem, 242
Multireference refinement, 145
Multi-resolution scales, 138
Multiscale methods, 119
Multiscale NMA, 117
Multiscale structure, 2
Multivariable analysis, 237
Multivariate Gaussian, 350
Mutagenesis studies, 72
Myoglobin, 71, 73, 96, 333, 340

active site of CO bound, 395
dynamics of, 158

Myosin II, 126
ATPase inhibition, 126–128
Elastic network NMA, 127
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N
NA simulations, 381
Native

CCMV, 122
conformation, pathway from, 230
state

conditions, 43, 44
variance, 358

structure, 43
randomization of coordinates of, 362

Natural minicircle, 195, 197
NCS, 31

modes of, 27
secondary structure, 28
structure of, 389

Near native conformations, 384
Neocarzinostatin, applications of DIMB,

27–32; see also NCS
Network

connectivity, 120
springs, 46
topology, 44

Neutron scattering experiments, 247–249
Newton–Raphson, 93

type algorithm, flexible fitting, 131
Newton’s equations of motion, 19, 20
NM

coordinate, 20, 21
low frequency, 33
representation, cyto c, 330
vector, 21

NMA, 99
applications of, 105–106
at full atomic level, 76
basic theory, 138–139
calculations, classical, 77
CCMV and Rhinovirus, 227–228
coarse grained, 42
conformational change of DHFR and,

103–105
for biological systems, 114
of icosahedral viruses, theory, 215–218
Potential drawbacks of, 221
standard, 91
studies, two classes of, 61
vibrational spectra, 282
with hybrid QM/MM potentials, 67–68

NMFF, 130, 131
flexible fitting, E.coli RNA polymerase,

133
NMR, 71

models, 49
spectroscopy, 157
structures, 115

NMs
calculation of, 33
cartesian displacements of the, 217
iterative procedure, 24, 36

Node
density, relative, 178
shells, 177

Nondiffusive bumps, 271
Nondiffusive modes, 257, 274

statistical mechanics on the PEL, 262
Nondiffusive rotation, 272
Nonlinear approach, 118
Nonlinear molecules, three-dimensional,

222
Nonlinear spectroscopies, 67, 84
Nonnative extended structures, 383
Nonstructural experimental data, 106
Nonsymmetric NMs, dominance of the,

222
Normal mode, 126, 174, 284

approximate low-frequncy, 92
analysis, 18, 42, 155; see also NMA

traditional, 370
basic idea of, 5
calculation, 70
DNA, 192
dominant, 193
eigenvector, 235
frequencies, 204
frequency, matrix of, 238
method, 113–114
physical interpretation of, 6
projection of, 336
refinement, 246

parameters, 148
strong localization of, 334
theory, 19–21
vibrational, 296
slowest frequency, 350
vibrational, 8, 13

Nose–Hoover thermostat, 375
Nucleic acid systems, EEF1 model for, 76
Nucleic acids, 74

fluctuations of, 239
P atoms in, 80

Number of modes required,
conformational change, 95

O
O2 binding, CO and, 71
Off-diagonal sub-blocks, 35
Oligosaccharide, 378
One-electron integrals, 68
Open structure, 118
Order parameters, 244
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400 Index

Orientation of modes, 291
Orphan atoms, 30
Orthogonal transformation matrix, 20
Oscillatory baseline, 289
Oseen tensor, 239
Outliers, 357
Out-of plane bending, DNA, 199
Out-of-plane mode, 339
Overdamped oscillators, 10
Overdamping, 239
Overlap matrix, 79, 82

P
P–P cutoff distance, 82
Pair distribution functions, 177–178
Parabolic barrier, 257
PARAM19, 217
Partial minimization, 273–275
Partition function, 350

GNM, 48
statistical mechanics on the PEL,

257–260
basin-constrained, 263

Pathways, folding/unfolding, 382
P-atom position, 56
PC

mode vector, 242
modes, 240

large amplitude, 243
PCA, 234–238, 350–352, 370, 379
PCR–MD method, 363
PCR, 351, 354–359

methods, 352
term, weight on the, 360
mode-specific response to, 358

PCR-MD method, 359
PCRs, cumulative, 361
Peak range, 179
PEL, 255, 273

deduction of properties, 254
stationary points, 260
transition states on the, 257

Pentameric interactions, 121
Peptide

synthesis, 79
folding of a, 384

Perturbation method, 22–23
Perturbed ensemble, 375
pH sensitivity, structural basis of, 214
Phe 78 side-chain, 32
Phosphoinositide 3-kinase, gamma

subunit of, 172
Photoexcitation, 327, 328, 329
Photoisomerization, 340

Phototaxis, 327
Physical potentials, coarse-grained NMA

with, 69–71
Physically relevant conformations,

proportion of, 370
Physiological ionic strength, 126
Plateau, 384

values, 378
Point symmetry group, 216
Poisson–Boltzmann calculations, 214
Polar hydrogen representation, 221
Polarity, 72
Poliovirus, 220–221

capsid, 404
shapes, 225

half capsid, NM displacements of, 224
frequency spectra of the NMs of, 222
frequency spectra of, 226
residue-averaged fluctuations, 227

Poly d(AT) copolymer, 201
Polymer

gels, 44
network mechanisms, 42

Polymeric sequence, 200
Potential, curvature of, 6
Potential energy

functions, 368
landscape, 254; see also PEL,

properties of, 2
profile, 262, 270
Potential function, ANM, 139
Potential well

harmonic, 2
two-dimensional harmonic, 5

Power-law potentials, 268
Principal component

analysis, 235–238; see also PCA
restraint, 351; see also PCR

Principal components, 352
of motion, 362

Principal coordinate space, 236
Principal mode variable, 243, 236
Principal modes, 241
Prion protein, 360
Pro Mode, 58
Probability

density function, Gaussian, 47
distribution function, 243

Probe spectrum, 296
Pro-capsid, 56
PROCHECK, 359
Profiles of thermal fluctuation, 141
Projected Hessian, 69, 70, 116
Projection operators, 216
Projections, 13
pro-R phosphate, 76
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Index 401

Protein
acceptor modes, 334
cohesiveness, 172
collective conformational change, 31
crystal, 163
crystallography, 162
Data Bank, 235
–DNA complexes, 201
dynamical coupling between the

chromophore and, 337
dynamics, 139

anharmonic aspects of, 237
collective coordinate descriptions of,

370–371
predictions, 177
effects of crystal lattice on, 160

energy landscape, 384
functional motions, 99
Kirchoff matrices, 49
model, simplified, 4

coarse-grained, 282
modes, anharmonic decay rate of, 334
normal modes, 92
partition of, 29
potential energy surface of, 3
–protein interface, 121
reduced model for, 310–311
residues, 175
structure, 128, 246

cooperativity within, 172
low-frequency modes, 140

–water interactions, 92
Proteins

ATP-binding, 172
collective dynamics of, 44
collective dynamics, 60
Cα atoms in, 80
fluctuations of, 239
frequency spectrum of three, 8
large amplitude motions in, 10
large-scale rearrangements in, 112
low-frequency normal modes of , 115,

116, 291
“tight,” 165
vibrational energy transfer in, 326, 339

Proteolysis, 157
Protimer, 221

basis set, 215
Protomer, 213, 214

basis set for the, 226
Proviron capsids, 121
Pseudo-atoms, ENM, 115
Pseudo-diagonal matrix, 192
Pseudo-potentials, 352
Pump–probe

polarization, 296

studies, 326, 340
vibrational spectra, 333

PYP
vibrational modes, lifetimes of, 338
ultrafast studies on, 327
photoisomerization kinetics in, 339
photoisomerization, 341
vibrational energy transfer, 335

Pyramidine–purine steps, 200

Q
QCF, 302, 318

effective, 314
one phonon relaxation mechanism, 305

QEDM, 140, 141
application of, 142
-based refinement, 145

QM/MM
calculations, 74
framework, 83
geometry optimization, 72
Hessian, 69

Quantized elastic deformational model,
140; see also QEDM

Quantum correction factors, 302, 304; see
also QCF

Quantum effects, 9
Quantum master equation, Kubo’s

derivation, 316
Quasi-3-fold axis, 122
Quasi-3-fold interface, 121
Quasi-degenerate modes, 33
Quasi-equivalence symmetries, 122
Quasi-harmonic analysis, 15
Quasi-symmetry, 120
Quenched normal mode, 307

R
Radius expansion, 353
Raleigh–Ritz

method, 92
principle, 71, 146

Raleigh
constant, 22
quotient, 21–22, 33

Random diffusion, 241
Random distribution, 79
Random energies, distribution of local

state, 268
Random energy model, 260, 266; see also

REM
Random variable, Gaussian, 47
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402 Index

Rapid conformational sampling, 359–361
Rare transitions, acceleration of, 370
Ras–GTP, transition between Ras–GDP

and, 361
Ratcheting, 56
Ratchet-like motion, 124, 125
Ratchet-related conformational change,

125
Rate

acceleration, 155
of transition, 304

Reaction
pathway, 272, 255, 265, 270, 274
gradients along, 275

Reciprocal space, 164
Red shifts, 293
Reduced basis, 36
Reduced model approach, 302, 309, 318,

319
Reduced representations, 128, 129
Refinement parameters, 148
Refolding processes, 382
Relaxation phase, 353, 377, 378
Relaxing bond, 319
Relevant normal modes, flexible fitting,

131
REM, 266, 267

formulae, 270 states, 268
Repulsive interactions, 122
Residues, 18, 29, 44, 53, 115

constrained, 51
distances between corresponding, 176
fluctuations, 48

collective nature of, 44
cross-correlation, 51
expected, 49

mean square fluctuation of, 46
most protected, 52
mobility, 59

Resolution scales, 137
Resonance Raman spectroscopy, 71
Resonant frequencies, 285, 289
Rest states, 188
Restoring force, ENM, 115
Restraint-free trajectory, 360
R-factor, 148, 149

value, 121
Ribonuclease

A S-peptide, 380
T1, 49; see also RNAseT1

Ribosome, 42, 74, 82
EM map of the, 129
NMA of the, 124
rearrangements of the, 123

Rigid block basis sets, 215
Rigid body

libration model, 159

side-chains, 31
translations, 13

Ring closure, DNA, 193
Rise, 197

deformation of, 206
RMS, 93

deviations, filtered, 378
fluctuation, 80
fluctuations, 78, 288

RMSD, 176
calculations, 173
low values of, 178

RMSF, 379
RNA, absence of, 221
RNAse T1, 52, 53
Rod domain, 126
Roll–Slide coupling, 204
Roll, 200, 203

angle, 197
value, 196

Root mean energy gradient, 34
Root mean square, 93; see also RMS

gradient, 77
variation, 191
fluctuation, 236

Rotation–translation
modes, 116
of blocks, 55; see also RTB

RTB, 31, 55, 69
algorithm, 58 approach, 96
approximation, 97, 99

conformational change of AdK, 96–98
basis set, 225
method, 113, 115–117, 123, 215
subspace, 70

S
Saddle

average, frequency-dependent, 259
dynamics, 268
order, 273
sum, 261

connected, 260
frequency-dependent, 259

basin of attraction, 258
first-order, 263
number of connected, 260

Search directions, 130
Second moment

matrix, 235, 237
rank of the, 236

Secondary structural elements, 115
Secondary structure, 45

element, 8, 69
segments, 383
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Index 403

Self-diffusion
coefficient, 262
constant, 254

Semiempirical force-fields, 112
Sequence neighbors, 178
70S ribosome

dynamic reorganization of, 123–126
elastic network NMA, 399
structure, 56, 392

SHAKE, 373
Shape-dependent dynamical properties,

133
Shifted response, 248
Shoulder, 271

modes, 272
Shrinkage of capsid, 220
Side-chain

motion, 31
insufficient sampling of, 352

Signaling protein NtrC, 157
Silica, escape modes, 273
Simplified NMA, 376
Simulation algorithm, amplified collective

motion, 373
Single amino acids, internal vibrations of, 8
Single mode analysis, 12
Single model refinement, 144
Single protein conformation, 376
Single well, 271; see also SW
Singular value decomposition, 174; see also

SVD
16S RNA, helix 27 of the, 124
Skinner’s QCF approach, 306
Slide, 203

variation of, 197
Slow modes

minima in the, 53
physical meaning of, 50–53

Slow relaxation, 275
SM, 29
Smoluchowski equation, 10
Smooth muscle HMM, 127
Snapshot configuration, 272
Soft modes, systematic characterization of,

66
Soft potential model, 271
Solid-line histogram, 335
Solubility, changes in, myosin, 127
Solvent viscosity, 239
Spanning coefficients, 76, 78, 80, 82
Sparse matrices, 70
Sparsity ratio, 80
Spectral deconvolution methods, 297
Spectral density and resolution,

application of DMD, 286

S-peptide analog, 376, 383, 384
folding of a, 380–383

Sperm-whale Mb–CO, NMA, 72
Spherical form, 56
Spherical viruses, self-assembly of, 120
Splicing site, 76
Spring constant, 206, 172

alternative types of, 175
fluctuations for different, 181–184

SSM, 55, 70, 146, 147
–HSS, 147

Standard Hessian, 100
Standard method, 29; see also SM
Standard NMA, 286
Standard normal mode calculation, AdK

93
Standing waves, 225
Starting structure, denatured, 382
Stationary point, 255, 257, 267
Statistical weight, 243, 244
Steepest ascent, 131
Steepest descent methods, 22
Stem-III region, 77
Step

function, 4
parameter, 191, 203, 205
base-pair, 189, 190

Steric repulsion, 71
Stillinger thermodynamic formalism, 276
Stokes–Einstein law, 239
Strength of the potential, ENM, 115
Stretch

-bend mode, 314
frequency, 72

Stretching parameters, 342–343
Structural biology, 79
Structural changes, global, 193
Structural data, single particle cryo-EM,

124
Structural determination, 146
Structural flexibility, 139
Structural genomics, 43
Structural heterogeneity, 144, 145
Structural motions, 137
Structural refinement, 148
Structure

ensemble, average over, 362
–function relationships, 112
prediction, 363
refinement, 106

protocols, 130
Subbasins, 257
Sub-blocks, 24, 25
Subpopulation, 145
Substrate binding, 155
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404 Index

Substructures, 70
modes, 146
synthesis method, 55, 70, 146; see also

SSM
Sugar–phosphate backbone, 188, 189, 190
Super Arrhenius T-dependence, 264, 271

behavior, 268
Supercoiled

chains, 202
molecule, 192
negatively, 204

Supercoiling, 207
Supercooled liquid, 269, 271

CS2, 265
deeply, 266

Supercooled states, 274
Superhelical stress, 188
Supramolecular complex structures, 140
Supramolecular structures, 60

applicability of GNM, 55–58
Surface residues, 177
SVD, 174, 237

algorithm, 178
Swelling

pathways, 214
phenomena, 120

Swollen CCMV, 121
Symmetrical active state, myosin, 127
Symmetry coordinates, 215

T
T4 lysozyme, 376
T4L structures, projection of, 381
Target function, 164
Taylor series, 19, 309
Tectonic plate motions, 214
Temperature

factors, crystallographic, 226, 227
-coupling scheme, modifications to, 379

Tetramer, 32
Thermal energy, channeling of, 155
Thermal fluctuations, 117
Thermal unfolding, 362
Thermodynamic limit, 267
Thermostat, 372
Thermus thermophilus, 123
Thioester group, 335, 336, 341

twisting of the, 340
30S ribosome subunit, 396, 397
1000-p sec MD, 241
3-atom molecule, 26
Three flavor theory, 271
Three-phase protocol, 353

Tilt, 200
Time

correlation functions, 11
-averaged structure, 377

TINKER, 285, 294
Tip effect, 140
Tirion’s approach, 99, 101, 104

conformational change of AdK, 98–101
Tirion’s Hessian, 98, 100
Tirion’s modes, 97
TLS-like rigid body definitions, 165
Topological constraints, 44
Topological informations, 99
Toroidal character, 224
Torsional mode

“ free,” 194, 195, 198, 200
global, 199

Torsional motion, 307
Torsional parameters, 344
Torsional stress, 192
Total internal energy, 284
Trajectories, 235
Transcription, regulation of, 188
Transition

dipole moment, 74
direction of, 72

paths, thermodynamically dominating,
369

rates, estimates of, 359
state, 265, 275

state theory, 369
achieving, 156
passages over, 255

Transitions, acceleration of, 374
Translation

–libration screw model, 159
–rotation modes, 28
/libration/screw model, 247; see also

TLS
Translational friction coefficient, 239
Translational modes, higher density, 332
Translocation process, 123, 125
tRNA, 123, 125
Trp-cage, 283, 285

absolute entropy of, 292
protein, 289, 290, 297
spectrum, 286
structure, 287, 405

Twist, 191
and Rise, synchronous variation of, 207
mode, closure and, 381
imposed intrinsic, 202
imposed, 204
localized buildup of, 194
uptake of, 195

Twisting frequencies, normal-mode, 206
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Index 405

Twisting modes
closure and, 378
low-frequency, 204

Twist-to-bend ratio, bacterial flagellum,
142

Two correlation functions, 11
2D-IR signals, 320
Two-phonon

mechanism, 306
relaxation, QCFs for, 307

200-p sec MD, 241

U
Umbrella sampling, 371, 375
Undertwisted molecules, over- and, 204
Unfolded peptide, 381
Unfolding pathways, 61
Unfolding simulations, 383
Uniform radial expansion, and

contraction, 223
Unit-density Lennard–Jones, 262, 265, 268,

269, 274
crystals, 270
liquid, 263

Unit-density LJ
Unligated circle, 195
Unligated DNA circle, 193
Unstable density of states, statistical

mechanical theory of, 275
Unstable frequencies, distribution of, 258
Unstable modes, 254, 270, 273

“diffusive,” 257
Unstable translational modes, 256

V
Valency–adjacency matrix, 159
Validation tests, 145
van der Waals

parameters, 342
separation, 196
stacking, 207
terms, 68

Variance
–covariance matrix, 235
matrix, 164
restraint, 357

Vector
quantization, 128

method, 141
Velocity autocorrelation function

Fourier transform of, 286
spectral analysis of, 285

VER, 302
dominant channel for, 318

in molecules, 319
mechanism for, 318
of the CD mode, 306
rate

approximate, 311
classical, 314
contribution from the fourth-order

terms, 317
effects of water on the, 307
estimate of the, 309
of, 304
perturbation theory estimate of, 310
temperature dependence, 315
for CD mode, 313

Vibrational amplitude, continuous
distribution of, 146

Vibrational echo, 72
Vibrational energy

relaxation, 302; see also VER
transfer rates, 338

PYP, 341
temperature-independent, 338

Vibrational entropy, 282
Vibrational frequencies, 289

computing localized, 83
CO stretch, 73

Vibrational lifetimes, 333
computation of, 328–330

Vibrational modes, 7–9
low-frequency, 138
of F-actin filaments, 147

Vibrational motion, 307
Vibrational spectrum, 325
Villin headpiece subdomain, 383
VIPER, 207
Viral capsids, 42, 120, 122

motions in, 229
NMs of the, 222

Viral proteins, 213; see also VP
Virus properties, dynamic icosahedral, 215
Viruses, flexibility of the, 221

icosahedral symmetry, 120
von Neumann equation, 316
Voronoi cells, 141
vp protein, displacement vectors per, 223
VPs, 213, 214
vp1 protein, 229

W
Water, escape modes, 273
Water, simulation studies of, 270
wave-like conformations, 148
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406 Index

Weak coupling method, 372–373
Width parameter, 313

X
Xanthopsins, 327
X-PLOR, 357, 358
X-ray

cluster, 379
crystallography, 157, 158
scattering, analysis of diffuse, 160

small angle, 84

Y
Young’s modulus, 196

bacterial flagellum, 142

Z
Zero

barrier, 265
eigenvalues, 7
-frequency values, 94
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(a) (b)

FIGURE 2.3
Structure of NCS. (a) Partition of the protein according to its secondary structure elements. (b)
Subdivision of the protein in four equal parts of 237 atoms without any structural considerations.
Each part of the protein is presented by a different color.

 (a)

(b) (c)

FIGURE 2.8
Crystal structures of apo (a) and holo-NCS containing a chromophore (b and c); residue Phe 78
is shown in red and the chromophore in green. In (a) the arrows indicate the motion along mode
9, in the opening direction of the cleft, which is coupled to the upward motion of Phe 78. In (b)
holo-NCS is presented in the same orientation as (a) while in (c) it is rotated by 90˚.
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(d)(c)

(b)

∆Rij Rij

R0
i

R0
ij

R0
j

FIGURE 3.1
Description of the GNM. (a) Schematic representation of the equilibrium positions of the ith and
jth nodes, R0

i and R0
j , with respect to a laboratory-fixed coordinate system (xyz). The instant-

aneous fluctuation vectors, �Ri and �Rj , are shown by the dashed arrows, along with the
instantaneous separation vector Rij between the positions of the two residues. R0

ij is the equilib-
rium distance between nodes i and j. (b) In the EN of GNM every residue is represented by a
node and connected to spatial neighbors by uniform springs. These springs determine the N− 1
degrees of freedom in the network and the structure’s modes of vibration. (c) Three dimensional
image of hen egg white lysozyme (PDB file 1hel [46]) showing the Cα trace. Secondary structure
features are indicated by pink for helices and yellow for β-strands. (d) Using a cutoff value of
10 Å, all connections between Cα nodes are drawn for the same lysozyme structure to indicate
the nature of the EN analyzed by GNM.
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FIGURE 3.3
Physical meaning of slow and fast modes in GNM. (a) Distribution of squared displacements
of residues in the slowest mode as a function of residue index for ribonuclease T1 (RNase T1).
The red arrows identify local minima that correspond to five experimentally identified catalytic
residues: Tyr38, His40, Glu58, Arg77, and His92. (b) Distribution of squared displacements
averaged over the ten fastest modes for the same protein. Here the arrows indicate the residues
shownbyhydrogen/deuteriumexchange tobe themostprotectedand thus important for reliable
folding. A majority of these critical folding residues appear as peaks in the fast modes. (c) Color-
coded mapping of the slowest mode (a) onto the 3D Cα trace of RNase T1 (PDB file: 1bu4 [53])
where red is most mobile and blue least mobile. The side chains of the five catalytic residues are
shown in pink surrounding the nucleotide binding cavity. (d) A similar color-coded mapping of
the fluctuations of the ten fastest modes (b) onto the Cα trace. Here the side chains of the ten
most protected residues from hydrogen deuterium exchange experiments are drawn explicitly
showing thatmost of themare calculated to bemobile (red). The images in c anddwere generated
using VMD [74].
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FIGURE 3.4
Application of GNM to the 70S ribosome structure. The calculations were performed on the
wild type 70S ribosome from E. coli (PDB files 1pnx and 1pny [59]). (a) The slowest nonzero
mode for the 70S ribosome colored from −1 (red) to +1 (blue) is mapped onto the 3D structure
indicating a dramatic break at the interface between the two subunits (50S and 30S). This image
was generated using VMD [74]. (b) The slowest nonzero mode plotted vs. the residue number.
Residues in the 50S subunit (blue) exhibit one direction of motion that is opposed to the motion
in the 30S subunit (red).

(a) (b) (c)

(d) (e) (f)

FIGURE 3.5
Application of GNM to the HK97 bacteriophage viral capsid. (a) The ms fluctuations from the
slowest (threefolddegenerate)mode for theproheadviral capsid coarse-grainedby retainingonly
every 35th residue are colored from most mobile (red) to least mobile (blue). (b) The results for the
slowest (threefold degenerate) mode of the head viral capsid calculated using a similar coarse-
grained procedure of retaining every 35th residue. Both identify pentamer-centered regions at
oppositepoles as themostmobile regions suggestinganexpansionorpuckeringof these residues.
(c) The ms fluctuations for the slowest mode calculated over the entire (107,520 residue) prohead
capsid structure (PDB file 1if0 [62]) and (d) entire (117,600 residue) head capsid structure (PDB file
1fh6 [61]) also demonstrate this high degree of mobility at the poles. (e) The weighted summation
of the 11 slowest modes identifies the 12 pentamers as the most mobile regions responsible for
expansion from the prohead to head form. (f) The slowest nondegenerate, symmetric mode,
mode 31, also identifies these pentamers as highly mobile. These images were generated using
VMD [74].
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(a) (b)

(c) (d)

FIGURE 3.6
Visualization of dynamics data stored in the iGNM DB. The results shown are of the example
phospholipaseA2 (PDB:1bk9 [75]). (a) The slowest motions (slow1) are color-coded and mapped
on structure of 1bk9 in dark blue, green, orange to red in the increasing order of mobility. (b) The
window shows the mobility of the slowest mode with scalable range of view, max/min value info
window and pop-up tag that shows the residue number and coordinates. (c) The experimental
and predicted B-factors are compared. (d) The cross-correlation of residue pairs of all modes.
The perfect concerted motion (+1) is colored dark red while the perfect anticorrelated motion
(−1) is colored dark blue.

His93

His64
Val68

CO

FIGURE 4.1
Active site of CO bound myoglobin. The heme and CO are shown in the line form, and part of
the protein is shown in the ribbon form; the protein is color-coded based on the amino acid type
(red — acidic, blue — basic, green — polar, and white — nonpolar).
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Scissile bond

Mg2+ binding site

FIGURE 4.2
Computed RMS fluctuation using classical NMAmapped onto the structure of the hammerhead
ribozyme. The structural domains and approximate location of the second metal binding site
relative to the scission site are also shown.

BNM–NMA overlap ANM–NMA overlap
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(a) (b)

FIGURE 4.4
Overlap between (a) BNM–NMA and (b) ANM–NMA eigenvectors for the hammerhead
ribozyme.
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Body
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BNM

FIGURE 4.5
Computed RMS fluctuation using (a) BNM and (b) ANM mapped onto the structure of the 30S
ribosome subunit (PDB code 1J5E). The red region has higher fluctuations.

Central protuberance

Body

ANM

Central protuberance

L7/L12 stalk L7/L12 stalk

Body

BNM

Base of L1 stalkBase of L1 stalk

FIGURE 4.6
Computed RMS fluctuation using (a) BNM and (b) ANM mapped onto the structure of the 50S
ribosome subunit (PDB code 1JJ2). The red region has higher fluctuations.
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FIGURE 4.8
Overlap between BNM and ANM eigenvectors for (a) 30S and (b) 50S ribosome subunits.

FIGURE 6.1
Nonlinear conformational change between the open and closed forms of the adenylate kinase
the linear normal mode directions.

FIGURE 6.2
Elastic NMA of the viral capsid proteins of CCMV. (a) Amplitude and direction of motion for
CCMV as obtained from expansion along the breathing mode. (b) Electron density fitting with
the estimated model for swollen CCMV as obtained from NMA. All the graphics were produced
using VMD [62].
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FIGURE 6.3
Elastic network NMA of the 70S ribosome. (a) The x-ray structure of the 70S ribosome (the 30S
subunit in yellowand the 50S in blue). (b) Rearrangements of the 70S ribosomeafter displacement
along the ratchet-like mode. (c) and (d) Two different views, as indicated by thumbnails, of the
atomic displacements along the ratchet-like mode. The atoms are colored according to their
amplitude along the mode. The scale ranges from red (largest conformational rearrangements)
to blue (no motions).

(b)(a)

FIGURE 6.4
Elastic network NMA of the 70S ribosome. The structural rearrangements of the L1 stalk along
the mode 1. (a) This displacement occurs around a pivotal point and several positions of the
L1 stalk along this mode are represented (1) the outer, (2) x-ray structure, (3) the inner. (b) The
magnitude of the structural rearrangements correlated with the L1 stalk motion, with red color
indicating large motion and blue color indicating no motion. Small rearrangements are observed
in H68, which is connected with H69. H69 is known to interact with the tRNAat A, P, and E sites.
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Domain V
Domain I

Domain II
Domain III

Domain IV

(a)

(b)

FIGURE 6.7
Flexible fitting using all-atoms at 10 Å resolution of Elongation G bound to the ribosome with
NMFF. Rigid-body fitted structure (with Situs package) [56] into simulated EM map of the other
conformational state. (b) The final flexibly fitted structure.

FIGURE 8.1
Comparison of the variation within an ensemble derived from NMR (left) and x-ray crystallo-
graphy (right). The plot shows an expanded backbone representation in proportion to the RMS
deviations within each ensemble. The regions of mobility overlap well.
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FIGURE 8.3
On the left is a constructed segment of a 3D lattice of a crystal of the enzyme, adenylate kinase,
and on the right is the calculated reciprocal-space slice showing the calculated Bragg and diffuse
x-ray scattering assuming independent motions within each molecule.

(a) (b)

(c) (d)

(e) (f)

FIGURE 9.1
Three-dimensional representations of representative ATP-binding proteins (a) 1HCL, (b) 1HCK,
(c) 1USH, (d) 1HP1, (e) 1E8Y, and (f) 1E8X. The proteins are colored according to their secondary
structures using Accelrys DS ViewerPro 5.0. The ATP-bound conformers are shown in the right
column. Their unbound counterpart is in the left column. ATP molecules are given with blue
stick representations.
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FIGURE 9.5
Comparison of mean-square fluctuations with B-factors for 1HP1 with different spring constants
at (a) 7 Å and (b) 35 Å cutoff distances.
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FIGURE 9.6
Comparison of mean-square fluctuations in the case of 1HP1 at (a) k = 1 and (b) k = 4.
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FIGURE 11.3
Top view of the Cα-trace of the poliovirus capsid, in which protomers are shown in different
colors. The locations of a 2-fold, two 3-fold, and a 5-fold symmetry axis are indicated.

(a)

(b)

FIGURE 12.2
Dynamic domain motions in (a), the first and (b) second JAM mode in free human CD2.
The residues shown in blue, red, and green represent fixed-domain, moving-domain, and
bending residues, respectively, as determined by DynDom (Hayward S., and Berndsen H.J.
Proteins, 30, 144, 1998). The arrows represent the axes of domain motions. The moving-
domains rotate around these axes. The figure created by using the programs DynDom
(de Groot B.L., Hayward S., van Aalten D.M., Amadei A., and Berendsen H.J. Proteins, 31,
116, 1998) and Rasmol (Sayle R., and Milner-White E.J. Trends Biochem. Sci., 20, 374, 1995).
(Reproduced from Kitao A., and Wagner G. Proc. Natl Acad. Sci. USA, 97, 2064, 2000. With
permission.)
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FIGURE 14.2
Distributions of frequencies calculated by standard NMA (Hessian), MD simulations with and
without the driving terms (DMD and MD, respectively). In the Trp-cage structure the backbone
trace is shown as a yellow tube.
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FIGURE 14.5
Cross-correlation maps for Cα atoms from (a) Hessian normal modes and frequencies, (b) DMD
normal modes at exact Hessian frequencies, and (c) DMD normal modes at frequencies obtained
from the high resolution DMD calculation.



BICH: “c472x_plates” — 2005/11/4 — 16:17 — page 422 — #16

vpump vprobe

vprobe

e
II
probe

Dt

e
II
probe1

0.8

0.6

R
el

at
iv

e 
in

te
ns

ity

0.4

0.2

0
1650 1675 1700

Probe frequency (cm–1)

1725 1750

1

0.8

0.6
R

el
at

iv
e 

in
te

ns
ity

0.4

0.2

0
1650 1675 1700

Probe frequency (cm–1)

1725 1750

FIGURE 14.7
Scheme of the 2D-IR experiment for dialanine using the DMD dipole-driving method. The spec-
trum and structure was recorded at �t = 4.0 psec with perpendicularly polarized pump and
probe pulses.
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FIGURE 15.1
The structure of cytochrome c in the vicinity of the heme group, showing the thioether linkages
and nonplanar heme geometry.
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