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Preface

Materials are fundamental building blocks of products and devices. Humans
initially used materials that nature provided in finished or semi-finished
forms such as flints, wood and natural fibres. This eventually progressed to
engineering materials with sophisticated and heterogeneous structures due
to both composition and processing. Continued harnessing of engineered
materials and products in a timely and cost-effective manner requires the
rapid development of new/improved processing techniques as well as in-
depth understanding and accurate control of materials chemistry, processing,
structure, property, performance, durability and, more importantly, their
relationships. This scenario usually involves multiple length and timescales
and multiple processing and performance stages, which are, sometimes,
accessible only via multiscale modelling. In the past, materials modelling
has contributed greatly to our understanding of materials science and to
advances in various technologies. However, many of the activities are usually
confined within rather separate disciplines or communities, e.g. applied
mathematics, physics, chemistry, materials, engineering or medicine, each
of which usually concentrates on isolated problems involving rather narrow
scales or aspects of materials. It is therefore essential to bring together
modelling expertise across all the length/timescales to develop multiscale-
linking methodologies to fulfil future industrial demands. Recent years have
seen rapid development of computational technologies, both in terms of
hardware and software. It is now possible to attempt seriously multiscale
modelling and simulation using even desktop computers, and to predict
accurately complex materials behaviours via computational methods. Under
the theme of ‘Multiscale Modelling’, a wealth of new results has appeared
that are either specific to one given scale or establish connections between
different scales. A psychological barrier has been broken, taking advantage
of the progress in available computing power, which now allows some overlap
between different simulation methods: the realisation that thermodynamics
and purely continuum frames cannot solve all problems; and the present
drive in nanostructures/nanotechnology and in energy/environmental
issues.

xi



Prefacexii

This book aims to provide a guiding tool for both academic researchers,
who are developing or wish to apply appropriate modelling methodologies
for a specific phenomenon in materials science, and industrialists, who would
like to gain a comprehensive knowledge of multiscale materials modelling
for product and/or process design and optimisation. The chapters are contributed
by internationally recognised experts in the field, and cover the spectrum of
scales in modelling methodologies. I wish to take the opportunity to thank
all the contributing scientists and the staff at Woodhead Publishing Limited
for untiring assistance in bringing the book to publication.

Professor Z. Xiao Guo
Department of Materials

Queen Mary University of London
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1.1 Introduction

Most, if not all, of the properties of solids can be traced to the behavior of
electrons, the ‘glue’ that holds atoms together to form a solid. An important
aim of the condensed matter theory is thus calculating the electronic structure
(ES) of solids. The theory of ES is not ony helpful in understanding and
interpreting experiments, but it also becomes a predictive tool of the physics
and chemistry of condensed matter and materials science.

Many of the structural and dynamical properties of solids can be predicted
accurately from ab initio (first-principles) electronic structure calculations,
i.e. from the fundamental quantum theory. Here the atomic numbers of
constituent atoms and some structural information are employed as the only
pieces of input data. Such calculations are routinely performed within the
framework of density functional theory in which the complicated many-
body motion of all electrons is replaced by an equivalent but simpler problem
of a single electron moving in an effective potential.

A general formulation of the quantum mechanical equations for ES including
all known interactions between the electrons and atomic nuclei in solids is
relatively simple, but we are still not able to solve these equations in their
full generality. A great many approximations must be performed, which, in
many cases, leads to a comprehensive solution. Its analysis brings us then
some understanding of various phenomena and processes in condensed matter.
The ES problem is computationally very demanding. This is why practical
ES calculations in solids were rather rare prior to the availability of larger
high-speed computers.

Since the 1980s, ES theory has exhibited a growing ability to understand
and predict material properties and to use computers to design new materials.
A new field of solid-state physics and materials science has emerged –
computational materials science. This has achieved a considerable degree of
reliability concerning predictions of physical and chemical properties and
phenomena, thanks in large part to continued rapid development and availability
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of computing power (speed and memory), its increasing accessibility (via
networks and workstations), and to the generation of new computational
methods and algorithms which this enabled. State-of-the-art ES calculations
yield  highly precise solutions to the one-electron Kohn–Sham equation for
a solid and provide an understanding of matter at the atomic and electronic
scale with an unprecedented level of detail and accuracy. In many cases, we
are able not only to simulate experiment but also to design new molecules
and materials and to predict their properties before actually synthesizing
them. A computational simulation can also provide data on the atomic scale
that are inaccessible experimentally. In contrast to semi-empirical approaches
–  the adjustable parameters of which are fitted to the properties of the
ground state structure and, therefore, may not be transferable to non-equilibrium
configurations – ab initio calculations are reliable far from the equilibrium
as well.

In multiscale modelling of materials, the role of ab initio electronic structure
calculations is twofold: (i) to study the situations where the electronic effects
are crucial and must be treated from first principles and (ii) to provide data
for generation of interatomic potentials. In this chapter, we will discuss both
these aspects. Let us note that there exists a vast literature devoted to multiscale
modelling of materials. Recent reviews may be found for example in1,2 and
in the Handbook of Materials Modeling edited by S. Yip3, the latest
developments are documented in the proceedings of various meetings on
multiscale modelling of materials (the latest one took place in September
2006 in Freiburg, Germany4).

1.2 Basic equations of electronic structure

calculations

In a solid where relativistic effects are not essential, we may describe the
electron states by the non-relativistic many-electron Schrödinger equation

        
HH e,{ }  = Ra Y YE [1.1]

with the Hamiltonian

        

HH e,{ }
2

e,{ } ,
= –   +  ( ) +  1

| – |
,R R r

r ra aS S ¢S—
i i i i i j i j

V [1.2]

where {Ra} are the instantaneous positions of the atomic nuclei, {ri} denote
positions of electrons, the V ie,{ } ( )R ra  is the potential experienced by the ith
electron in the field of all nuclei at the positions {Ra} with the atomic
numbers Za, i.e.

V
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and the last term in equation [1.2]  represents the electrostatic electron–
electron interaction (the prime on the summation excludes i = j). Let us note
that here and throughout the chapter we use Rydberg atomic units with

  h  = 1, 2me = 1 and  e2 = 2, where me and e denote the electron mass and
charge, respectively.

1.2.1 Density functional theory

An important approach to the many-electron problem is the density functional
theory (DFT), which was awarded by the Nobel Prize for Chemistry in 1998.
In 1964, Hohenberg and Kohn5 provided two basic theorems establishing
formally the single-particle density r(r) as a variable sufficient for a description
of the ground state of a system of interacting electrons. According to their
first theorem, the knowledge of the ground-state single-particle density r(r)
implicitly determines (to within a trivial constant) the external potential
acting on the electron system. Since in turn the external potential fixes the
many-body Hamiltonian H, then, rather remarkably, the knowledge of r(r)
gives the entire Hamiltonian. Once the Hamiltonian is known from r(r), all
ground-state properties of the system are implicitly determined.

This is a great reduction of the many-electron problem as the single-
particle density is a function of three variables only. All ground-state
characteristics of the system in general and the total ground-state energy in
particular may, therefore, be considered as functionals of only one function
– the single-particle density r(r).

According to the second theorem which has the form of a variational
principle, the total energy of the N-electron system, EEEEE [r], is minimized by
the ground-state electron density, if the trial r(r) are restricted by the conditions

r(r) ≥ 0 and N[r] ∫ Ú r(r) d3r = N.

Thus, the determination of the ground-state electron density and the total
energy becomes extremely simple compared to the problem of solving the
3N-dimensional Schrödinger equation: we just vary the density r(r), a function
of only three variables, regardless of the number of particles involved, until
we find the minimum of EEEEE [r].

The DFT has emerged as an extremely powerful tool for analyzing a large
variety of many-body systems as diverse as atoms, molecules, bulk and
surfaces of solids, liquids, dense plasmas, nuclear matter and heavy ion
systems. It is also a basis of all modern electronic structure calculations.

The DFT variational principle yields the Kohn–Sham equation having,
formally, the same form as the one-particle Schrödinger equation

Hsyi(r) ∫ [– —2 + Veff(r)]yi(r) = eiyi(r), [1.4]

Here Hs is the effective one-electron Hamiltonian and yi(r) are one-electron
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wavefunctions, ei are corresponding eigenenergies and Veff is the effective
potential for electrons which is, in general, non-local. It may be expressed as

V V
E

eff ext
3 xc(  = ( ) +  

2 ( )
| – |

 d + 
[ ]

( )
,r) r

r
r r

r
rÚ ¢

¢ ¢
r d

dr
r

[1.5]

where Vext(r) is the external potential due to atomic nuclei and external fields
and Exc[r] is the so-called exchange-correlation energy functional containing
the non-classical part of the electron–electron interaction and the difference
between the kinetic energy of interacting and non-interacting electron systems6.
The one-particle density is given by

r y(  =  | ( ) | ,
=1

2r) rS
i

N

i [1.6]

where the sum is over the N lowest (occupied) one-electron energy states.
Equations [1.4]–[1.6] must be solved self-consistently, i.e. the density

r(r) must correspond to the correct effective potential Veff(r). The ground-
state energy is then given by

        
EE  =  – 

( ) ( )
| – |

 d d – ( ) ( )d  + [ ]
=1

3 3
xc

3
xcS ÚÚ Ú¢

¢ ¢
i

N

i V Ee r r r rr r
r r

r r r r r

[1.7]

with

V
E

xc
xc( ) = 

[ ]
( )

r
r

d r
dr [1.8]

being the so-called exchange-correlation potential.
The most important problem in the DFT consists in the fact that the exact

energy functional (its exchange-correlation part Exc) is not known. For realistic
calculations, various approximations were used. The simplest of them is the
local-density approximation (LDA) proposed already by Kohn and Sham7.
The Exc[r] is written as

Exc[r] = Ú r(r) exc[r(r)] d3r, [1.9]

where exc[r(r)] is the exchange-correlation energy per particle in a
homogeneous system of density r. Here an inhomogeneous system is replaced
by a piece-wise homogeneous system.

The LDA has been remarkably successful in describing the ground-state
properties of a large range of physical systems. It has proved to be surprisingly
powerful in both a wide variety of cohesive properties and band structure
calculations. This is the basis of its current acceptance and widespread
utilization.
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Nevertheless, in systems with strong density gradients, the LDA is not a
very good approximation. For example, fundamental band gaps in
semiconductors and insulators are typically underestimated by 40 %. LDA
fails to reproduce the correct ground state in iron and cannot be applied in
so-called heavy-fermion systems.

There have been several attempts to improve upon the LDA. In the
generalized gradient approximation (GGA) (see e.g.8 and references therein)
an expression similar to [1.9] is used, but with exc[r] replaced by a local
function of the density and the magnitude of its gradient, exc[r, | —r |]. The
weighted-density approximation (WDA)9 includes true non-local information
through Coulomb integrals of the density with model exchange-correlation
holes. The self-interaction corrected (SIC) methods10,11 try to remedy LDA
by explicitly removing the self-interaction terms in the electrostatic and
exchange-correlation energies. The SIC–LDA approach better describes inner
core electrons and is successful in treating materials with f-electrons12,13 and
transition metal oxides14. The so-called GW approximation15 is formulated
by means of a perturbation expansion of the one-particle Green function and
approximates the electron self-energy by the product of an electron propagator
(G) and a screened Coulomb interaction (W). The conceptual simplicity of
this method is an advantage, but it is difficult to remove uncontrolled
approximations. Finally, let us mention a very effective scheme called LDA
+ U16. It includes the on-site Coulomb interaction (U) for the description of
correlation effects in localized d- and f-bands and seems to be appropriate
e.g. for Mott insulators16,17. Regrettably, it seems that none of the proposed
methods for going beyond the LDA leads to systematically improved results
in a parameter-free manner.

1.2.2 Methods of electronic structure calculations for
perfect solids

Solving the one-electron problem [equations [1.4]–[1.6]] is greatly simplified
if we can suppose that the arrangement of the nuclei is periodic, i.e. that
the effective potential obeys the periodicity condition Veff(r + T) = Veff(r),
where T is an arbitrary translation vector of the crystal lattice. A direct
consequence of this condition is the famous Bloch theorem stating that each
solution of equation [1.4] may be labelled by a vector k such that yk(r) =
exp (ik · r)uk(r), where uk is a function having the same period as the crystal
lattice, i.e. uk(r + T) = uk(r). Therefore, it is sufficient to find the wave
function yk(r) in the so-called primitive cell, which is the smallest region
generating the entire crystal by repetition in the space. Due to the periodicity
condition, the region of k-vectors may be limited to a primitive cell of the
reciprocal lattice, known as the first Brillouin zone (BZ)18.
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To solve the Kohn–Sham equation [1.4], we expand the one-electron
wave function as

ynk(r) = S
i

 ci,nkcik(r), [1.10]

where the basis functions cik(r) satisfy the Bloch condition and form a
complete set, and n is a counting index (band index). For the coefficients
ci,nk we obtain (from now on, we drop the subscript s in the one-electron
Hamiltonian Hs)

S
j

 [·cik | H | cjkÒ – enk·cik | cjkÒ] cj,nk = 0, [1.11]

where

· Ò Úc c c ci j i jk k k kr r r|  = ( ) ( ) d , * 2

W

· Òc ci jHk k|  | = ( )  ( ) d* 3c ci jHk kr r r
WÚ , [1.12]

W being the volume of the primitive cell. The energies enk are determined by
the well-known secular equation

det [·cik | H | cjkÒ – enk·cik | cjkÒ] = 0. [1.13]

The Bloch theorem enables us to calculate the electronic wave functions and
electron energies by effectively block-diagonalizing the matrix of the
Hamiltonian, with each block (corresponding to a particular k) having a
manageable size. The size of each block is the number of selected basis
orbitals per atom, multiplied by the number of atoms in the unit cell. The
blocks are smallest when there is only one atom per unit cell; in this case,
some methods yield a block size as small as 9 ¥ 9, corresponding to one s
orbital, three p orbitals and five d orbitals.

Various methods used in ES calculations may be distinguished according
to the choice of the basis functions {ci}. The better we choose them (according
to the character of the problem), the smaller is the number needed for a
description of the one-electron wave functions ynk. One uses augmented
(APW) or orthogonalized (OPW) plane waves, linear muffin-tin orbitals
(LMTO), linear combination of atomic (LCAO), Gaussian (LCGO) and
augmented Slater-type (LASTO) orbitals, augmented spherical waves (ASW),
etc. The Korringa–Kohn–Rostoker (KKR) method proceeds by the use of
the Green function of the Kohn–Sham equation [1.4] and is also called the
Green function (GF) method. The pseudopotential approach, applied mostly
to solids containing no d- or f-elements, is also widely used. A detailed
description of these methods may be found in many books and articles,
e.g.18–22, to name but a few.
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After choosing an appropriate basis, the system of equations [1.4]–[1.6] is
solved iteratively to selfconsistency, i.e. the electron density r(r) must generate
the effective one-electron potential Veff(r). The quality and speed of the
convergence of such calculations is related not only to the choice of a suitable
basis, but also to the sophistication of the iterative process, where as a
plausible input atomic-like potentials are usually employed and input and
output potentials or densities are appropriately mixed before starting a new
iteration. Sometimes hundreds of iterations are needed, e.g. in metallic materials
with a high peak in the density of states alternating above and below the
Fermi energy, or in most surface problems.

1.3 Illustrative examples

As an illustration of materials science problems which may be investigated
by ab initio electronic structure calculations, we present a study of magnetism
of iron and its changes during phase transformations and a calculation of
theoretical tensile strength in metals and intermetallics. Further, we show
how the ab initio results may be employed to generate semi-empirical
interatomic potentials for large-scale computer simulations of defect
configurations. The last example demonstrates how computer modelling may
be applied in positron annihilation studies of nanocrystalline materials.

1.3.1 Structure and magnetism of iron and iron
overlayers

The behaviour of iron at tetragonal deformation is intimately connected with
the properties of iron overlayers on various metallic substrates23–25. We
performed ab initio calculations of ES and total energy of iron along tetragonal
(Bain’s) deformation paths at various volumes26 and used them to understand
and predict the structure and magnetic ordering of iron overlayers on (001)
substrates.

We start with the bcc structure and consider it as a tetragonal one with the
c/a ratio equal to 1. Subsequently, we perform a tetragonal deformation
(uniaxial deformation along the [001] axis), i.e. we change the c/a ratio and
the structure does indeed become tetragonal. However, at c/a = 2 , we
arrive at the fcc structure, which again has cubic symmetry. The points c/a
= 1 and c/a = 2  correspond to the only higher-symmetry structures along
the tetragonal deformation path and, therefore, symmetry-dictated extrema
of the total energy may be expected here27,28.

We calculate total energy of iron along the tetragonal deformation paths
keeping the atomic volume constant; the region of atomic volumes studied
extends from V/Vexp = 0.84 to V/Vexp = 1.05 (Vexp is the experimental atomic
volume). We include non-magnetic (NM), ferromagnetic (FM) and two
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antiferromagnetic states, namely the single-layer antiferromagnetic one
(AFM1), in which the (001) planes have alternating magnetic moments
(≠Ø≠Ø …), and the double-layer one (AFMD), where the pairs of (001)
planes have alternating magnetic moments (≠≠ØØ …).

For the electronic structure calculations, we used the full-potential linearized
augmented plane waves (FLAPW) WIEN97 code described in detail in29.
For the exchange-correlation energy, we employed the GGA. Further details
of the calculations may be found in26.

The total energy of iron as a function of volume and tetragonal deformation
may be seen in Fig. 1.1. Here we show only those states the energies of
which are the lowest for a given configuration. We can clearly see the
‘horseshoes’ dividing the plane into the AFM1, AFMD and FM regions. The
global minimum energy is in the FM region at c/a = 1, V/Vexp = 0.985, which
corresponds to the bcc structure. The calculated equilibrium volume is about
1.5 % lower than the experimental value, which may be considered as a very
good agreement.
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1.1 Total energy of iron (per atom) as a function of c/a and volume
relative to the FM bcc equilibrium state energy calculated within the
GGA. Only states with minimum energy are shown. The contour
interval is 20 meV/atom. Thick lines show the FM/AFMD and AFMD/
AFM1 phase boundaries. The straight lines correspond to constant
lateral lattice parameters of various (001) substrates, as described in
the text. The crosses composed from the vertical and horizontal error
bars centered at those straight lines represent the structures of Fe
films on the corresponding substrates found experimentally. One of
these crosses is out of the line; it stands for the experimental
structure of Fe/CuAu(001) films found in35 and its center is denoted
by an open circle. The other two open circles show the experimental
structures where no error bars were given. Smaller open circles
combined with asterisks represent the theoretical results found in26.
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The total energy profile of bulk iron presented in Fig. 1.1 enables us to
predict easily the lattice parameters and magnetic states of iron overlayers at
(001) substrates. Let us suppose that the pseudomorphic iron overlayers
adopt the lattice dimensions of the substrate in the (001) plane and relax the
interlayer distance (characterized by c/a). If the lattice constant of an fcc
substrate is equal to asub then, in the coordinates x = c/a, y = V/Vexp and z =
E (the total energy of iron per atom), the surfaces corresponding to a fixed
asub in the (001) planes are the planes y = kx, where k = ( 2 /8)( / )sub

3
expa V .

The configuration and magnetic state of iron overlayers on a (001) substrate
correspond to the energy minimum constrained to this plane, provided that
the effect of the substrate/overlayer interface is not very strong. In Fig. 1.1,
these planes for different values of asub are displayed by straight lines together
with available experimental results and our theoretical predictions.

The experimental point for Fe films on Ag(001) is taken from30. It
corresponds to a slightly distorted bcc structure and lies in the FM region, in
agreement with experimental findings31. Our theoretical point is within the
experimental limits. A similar situation takes place for Fe films on Pd(001)32

and Rh(001)33.
As with Cu3Au(001) substrate,  there are two experimental findings for

thin films. One of them34 lies at the straight line for the Cu3Au substrate in
Fig. 1.1, and our theoretical point is within the experimental limits. The
other one35 is somewhat shifted from the Cu3Au line. The structure of the
films corresponds again to a tetragonally strained FM bcc phase, in agreement
with experiment35.

Fe films on Cu84Al16(001) are reported to be fcc with the volume of
12.15 Å36. The corresponding point lies very close to the phase boundary
between the FM and AFMD ordering in the fcc region. This is also in accordance
with experimental findings – up to 4 ML, high-spin FM state is reported, for
higher thicknesses a low-spin and/or AFM phase was found36. Here we do
not have enough calculated results to find out the theoretical point, but it will
probably not be too much higher than (c/a,  V/Vexp) = (1.44, 1.05).

Another system close to the FM/AFMD phase boundary is Fe films on
Cu(001). This fact confirms a conclusion of Ref.25 that FM and AFMD
phases are energetically almost degenerate along the line corresponding to
the lattice constant of Cu and somewhat favored over the AFM1 phase, and
that this is closely connected with a variety of magnetic states found in the
Fe films on Cu(001). Our theoretical point lies in the AFMD region and is
not very far from the experimental result37 (see Fig. 1.1).

Finally, the straight line for Fe films on Ni(001) is, for lower volumes,
close to the AFMD/AFM1 phase boundary. However, the experimental point38

is distinctly in the AFMD region, and our theoretical prediction lies again
within the experimental limits. In reality, however, magnetic polarization
due to FM Ni substrate may induce FM order in the film39.
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Let us note that the AFMD structure may be considered to be a close
approximation of the spin-spiral state with q = (2/p/a)(0, 0, 0.6) (a is the
lattice constant) found as a ground state of the fcc iron40. Recent calculations
of Tsetseris41 with non-collinear magnetic moments show that the inclusion
of non-collinearity does not change the picture presented above too much.

1.3.2 Theoretical tensile strength in metals and
intermetallics

Recently, theoretical calculations of strength of materials became possible
using ab initio ES calculations. The first paper dealing with ideal tensile
strength from first principles was that of Esposito et al.42, using unrelaxed
structures in Cu. Paxton et al.43 and Xu and Moriarty44 calculated shear
strength for unrelaxed shear deformation. Since then several further ab initio
calculations of properties of the systems far from the ground state have been
carried out, exploring their stability, etc., but the results were not employed
to obtain the strength.

Probably the first ab initio simulation of a tensile test, including the
relaxation in perpendicular direction to the loading axis, was performed by
Price et al.45 for uniaxial  loading of TiC along the [001] axis. Later, our
group at the Institute of Physics of Materials in Brno in collaboration with
the group at the University of Pennsylvania, Philadelphia, initiated systematic
ab initio studies of theoretical strength and stability in metals and intermetallic
compounds under extreme conditions. In46, we obtained the theoretical tensile
strength for [001] and [111] uniaxial loading in tungsten. The calculated
results compared very well with the experiment performed on tungsten whiskers
by Mikhailovskii et al.47. Further, we calculated ideal tensile strength in
NiAl48 and Cu49. These results established a basis for further calculations of
ideal strength. Li and Wang computed the ideal tensile strength in Al50 and
in b -SiC51. The theoretical group at the University of California at Berkeley
calculated ideal shear strength in Al and Cu under fully relaxed conditions52,
performed a thorough theoretical analysis of the problem of strength and
elastic stability53 and, amongst others, verified our values of ideal tensile
strength for tungsten54.

Recently, we have simulated a tensile test in prospective materials for
high-temperature applications, namely in transition metal disilicides MoSi2
and WSi2 with C11b structure, including the calculation of tensile strength
for [001] loading and the analysis of bonds and their changes during the
test55,56. A table summarizing most ab initio values of theoretical tensile
strength for various materials is given in57. An extensive review of semi-
empirical and ab initio calculated values of uniaxial and hydrostatic tensile
strengths as well as of shear strengths may be found in58. Ab initio calculations
of theoretical tensile and shear strength are also reviewed in the article59,
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which is, however, limited mostly to the results obtained in the author’s
group.

In this chapter, let us illustrate the calculation of theoretical tensile strength
in the case of tungsten46. The strain-dependence of the total energy E of
tungsten during a tensile test with loading along the crystallographic axes
[001] and [111] is shown in Fig. 1.2. As tungsten is elastically nearly isotropic
(C44 ª C¢), the energy curves for small deformation are nearly identical.
However, a strong anisotropy for higher deformations is seen in Fig. 1.2.
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stresses), are indicated. The extrema of the curves correspond to
higher-symmetry structures (sc stands for simple cubic).
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It was shown by Craievich et al.27 that, for the volume-conserving tetragonal
deformation (Bain’s) path, the total energy exhibits symmetry-dictated extrema
for structures of higher symmetry, namely for bcc and fcc in this case. The
same is true for the Bain’s path corresponding to uniaxial loading23,60. The
total energy of tungsten has a minimum at the bcc structure and a maximum
at the fcc structure, with an inflexion point in between which corresponds to
the maximum of applied stress (see Fig. 1.2) and, if any other instability of
the material does not occur before reaching the inflexion point, also to the
theoretical tensile strength of 29 GPa (for a more detailed discussion of
possible instabilities, see e.g.46,61).

The trigonal deformation curve (for loading along the [111] axis) passes
from the bcc structure to simple cubic (sc) structure28,62,63, again with an
inflexion point in between. As the structural energy difference Esc – Ebcc =
1492 meV/atom is about three times higher than the Efcc – Ebcc = 463 meV/
atom, the E vs 1 + e3 curve for the [111] loading must rise much higher and
further than that for the [001] loading (see Fig. 1.2). Consequently, the
inflexion point is obtained at higher strain and with a higher value of stress
(40 GPa) than for the tetragonal deformation.

Thus, a marked anisotropy of calculated ideal tensile strength in the [001]
and [111] loading directions may be understood in terms of structural energy
differences of nearby higher-symmetry structures occuring at the deformation
path. It is in contrast with a nearly perfect elastic isotropy of tungsten at
small deformations. Both values of theoretical tensile strength are comparable
in magnitude with the shear moduli C¢ ª C44 ( exp¢C  = 163 GPa).

Calculated tensile strengths agree quite well with the experimental value
of 24.7 ± 3.6 GPa obtained by Mikhailovskii et al.47. They measured the
tensile stress in tungsten whiskers grown along the [110] direction. The
experimental value is slightly lower than the calculated results, not very far
from our theoretical strength of 29 GPa for [001] loading direction. We have
also calculated the E vs 1 + e3 curve for the [110] loading. However, this
curve is even steeper than that for the [111] loading and the stress at the
inflexion point is very high ( 110

ths  ª 54 GPa). Probably the material breaks
down due to some other instability before reaching the inflexion point, similar
to the finding for Al64.

1.3.3 Generation of interatomic potentials for large-scale
computer simulations of defect configurations

While significant progress has been made in first-principles ES calculations,
there is still a wide range of problems for which we have to resort to simpler
schemes of total energy evaluation. Namely, first-principles calculations rapidly
become intractable if the ES and atomic configuration are to be determined
in a selfconsistent way for a system having more than about 500–1000 atoms
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in the repeat cell. Instead, frequently semi-empirical tight-binding models
are employed. They can reproduce important features of the underlying ES
and yield plausible atomic configurations65–67. In even more complicated
cases, when thousands of atoms need to be relaxed, phenomenological models
are usually used. In these treatments, the total energy is taken as a chosen
function of atomic positions. Examples are pair potentials68, many-body
central-force potentials (embedded atom method69, Finnis–Sinclair (FS)
potentials70), glue model71, and empirical potentials for covalent solids72.

Both tight-binding approaches and phenomenological models contain
adjustable parameters which are usually determined to reproduce some
properties of the equilibrium ground state, and it is assumed that they are
transferable to low-symmetry configurations such as regions of crystal defects.
However, there is no guarantee that parameters fitted to equilibrium state
will be applicable in non-equilibrium configurations. A significant improvement
is to include into the fitting procedure some high-energy configurations
calculated by first-principles methods. This may enhance the accuracy and
transferability of these parameters considerably since other regions of
configurational space that are not accessible experimentally are taken into
account.

In a way, semi-empirical approaches are ‘less fundamental’ than the ab
initio ES calculations. They should capture the physics necessary for the
phenomena studies, but should not try to be all-embracing. For example,
many-body central-force potentials69,70 cannot describe directional bonds.
However, they are sufficient in most close-packed structures, where angularly
dependent forces are not important. In those cases, they are capable by
discovering phenomena which are not purely crystallographic in nature, as
e.g. the appearance of the bcc structure at some grain boundaries in copper73.
When directional bonds are important, as e.g. in semiconductors or in bcc
metals, we have to use some tight-binding model or even ab initio calculations.
But if significant changes in the electronic structure occur with the change of
atomic configuration (e.g. onset or disappearance of ferromagnetism), then
only the first principles electronic structure calculations can reveal the
underlying physics. Therefore, the choice of the appropriate method depends
on the phenomenon studied and information sought.

As an example of a successful modelling using the central-force potentials
for a binary system, we present a combined ab initio and atomistic study of
segregation of Bi to the grain boundaries in Cu74,75. Here many-body FS
potentials were used and, due to lack of experimental information, the Cu–
Bi potential has been fitted so as to reproduce the equilibrium density, the
bulk modulus and the tetragonal shear modulus calculated for a hypothetical
L12 compound Cu3Bi from first principles. It was a crucial step in determining
appropriate potentials for the Cu–Bi system. These potentials were validated
by comparison between the calculated structures and the images obtained by
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high-resolution electron microscopy. Now, ab initio results are currently
used for constructing many-body central-force potentials in various systems
(see e.g.76 and the references therein).

To improve the semi-empirical description by inter-atomic interactions,
an approach based on bond-order potentials (BOPs)77 has been developed. It
is, essentially, a tight-binding scheme decomposing the bond energy explicitly
in terms of the contribution of the individual bonds which an atom makes
with the neighbouring atoms. This is, of course, an approximation as this
energy has a many-body character. The adjustable parameters are fitted using
both the results of ab initio ES calculations and the macroscopic properties
of the ground state. After fitting, again, the whole scheme must be carefully
tested to ensure, for example, that the correct ground state is reproduced by
the calculations (i.e. no configuration has a lower energy than the ground
state), structural energy differences are given satisfactorily, etc. The best
testing is performed on some configurations which are far from equilibrium.
It turns out that the energy profiles along certain transformation paths are
very useful for this purpose. They preserve a small unit cell and, therefore,
the total energies along those paths may be calculated both ab initio and by
using a ‘less fundamental’ scheme. In this way, the ab initio results constitute
‘benchmarks’ for any ‘less fundamental’ approach.

Figure 1.3 shows the total energy profile of molybdenum along the trigonal
deformation path which connects continuously the bcc (p = 1), simple cubic
(sc, p = 2) and fcc (p = 4) structures28. Here the calculations employing the
BOPs79,80 are compared with those performed ab initio using the FLAPW
method29 and also FS type central-force many-body potential78. The extrema
for p = 1, 2 and 4 are dictated by symmetry28. However, additional minima
found in the vicinity of p = 4 for Mo are specific to this material; they were
also found for Nb79 and W28, but not for Ta81. These additional minima are
well reproduced by BOPs. However, the central-force potentials exhibit larger
deviations. They lead to a local minimum for the fcc structure in Mo while
ab initio calculations and BOPs suggest that in Mo the fcc structure corresponds
to a local maximum with subsidiary minima on each side of this maximum.
Clearly, this feature is rather subtle since only small energy differences are
involved, and it demonstrates that BOPs are capable of capturing such features,
even though the corresponding structures are very far from the equilibrium
bcc lattice.

After such testing, the developed BOPs may be used, with a high level of
confidence, to simulate atomic configurations of extended defects, such as
grain boundaries, dislocations, etc., where only relatively simple situations
with a not very large number of independent atoms can be treated from first
principles82,83. Recently, such a study employing a quantum-mechanically
derived BOP has been performed to model the core structure and glide of the
screw dislocations in molybdenum80. On the basis of atomistic simulations
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using BOP for iridium, a mechanism of athermal dislocation cross slip has
been proposed and the origin of brittle cleavage in iridium has been
explained84,85. Very recently, a BOP for MoSi2 has been constructed and
tested86,87.

1.3.4 Positron annihilation studies of nanocrystalline
materials

Positrons are used to investigate so-called open-volume defects in solids,
such as vacancies and their clusters, dislocations, grain boundaries, etc.,
where the electron density is ‘less-than-average’. Such defects are attractive
for positrons as the repulsion of the atomic nuclei is weaker there, and the
positron can relax into the additional volume due to the defect with considerable
energy advantage. In this way, positron samples the ‘free volume’ in the
solid and its wavefunction is usually strongly localized in the region of the
defect88–90. It turns out that the response of the positron is defect-specific
and, therefore, different types of defects can be distinguished.

Probably the most common positron annihilation technique used in defect
studies is the positron lifetime spectroscopy (PLS). In open-volume defects,
the positron lifetime increases considerably (for example, in monovacancies
it is about 1.6 times higher than in the defect-free bulk material). To associate
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1.3 Comparison of calculations of the energy (meV/atom) of
molybdenum deformed along the trigonal deformation path using
BOPs, ab initio electronic structure calculations (DFT-LDA) and
Finnis–Sinclair type central-force potentials (FS). The atomic volume
is equal to the experimental value.
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measured lifetimes with particular defects, positron lifetime calculations are
often indispensable. At present, reliable models of many types of defects
based on atomistic simulation are available. It is therefore advisable to
investigate positron trapping at defects with realistic atomic configurations
which may appear in real materials, rather than at elementary defects with
simplified geometry as has been done frequently so far.

In this section we demonstrate a suitable computational technique applied
to a model sample of nanocrystalline Ni (the details are published elsewhere91).
The formula to calculate the positron lifetime t reads92

1/  = ( ) ( ) [ ( )]d0
2

e p e
3t p gr c n n nÚ r r r r [1.14]

where r0 is the classical electron radius, c is the velocity of light, ne and np

are, respectively, electron and positron densities, and g stands for the so-
called enhancement factor which describes the pileup of electrons around
positrons. The enhancement factor is closely connected with the electron–
positron (e–p) correlation function and increases with decreasing electron
density. The positron lifetime also increases with decreasing electron density
and saturates at a value of 500 ps. This fact somewhat limits the potential of
PLS in the case of large vacancy clusters (voids) because the lifetime
corresponding to positrons trapped at such clusters changes only minimally
with their size. Nevertheless, there are many defects where this limitation
does not apply.

Atomic superposition method

The electron density to be used in equation [1.14] and the positron crystal
potential are usually obtained from ab initio electronic structure calculations.
However, for systems having large number (thousands) of non-equivalent
atoms, this procedure is unmanageable. A method devised to perform positron
calculations in such systems is the atomic superposition technique (ATSUP)93.
It is a non-selfconsistent technique which makes use of the atomic densities
and electron Coulomb potentials of all atomic species in the system considered
in order to approximate the electron density and Coulomb potential in the
defect region by numerical superposition on a three-dimensional (3D) mesh,
according to the atomic configuration of the system, supposing its periodicity.
The positron potential is constructed as a sum of two parts: Vp = – Ve

Coul  +
Vcorr, where Ve

Coul  is the electron Coulomb potential originating from the
superposition of Coulomb atomic potentials (the negative sign is due to the
opposite charge of positrons) and Vcorr is the positron correlation potential
which depends on the electron density ne. The Schrödinger equation for
positrons is then solved numerically on the 3D mesh using the conjugate
gradient method93. As an output of the calculations, we get the positron
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wavefunction and energy as well as the positron lifetime and momentum
distribution of annihilation photons characteristic for the defect studied. The
calculated positron lifetime may be compared with experimental results. A
great advantage of the ATSUP technique consists in its high computational
speed; therefore, quite large atomic configurations may be treated.

Some model (virtual) samples of materials may contain an excessive
number of atoms (even hundreds of thousands or more). Such samples are
too large to be considered as one cell for positron calculations, and smaller
parts (‘cuts’) containing regions of interest have to be examined. However,
such cuts (generally parallelepipeds) are not periodic and the ATSUP technique
has to be modified. Explanations of the changes needed are given in94. Here
we mention the basic points only.

First, a shallow potential well is created for positrons by adjusting the
positron potential at the sides of the cut and, in this way, physically reasonable
behavior of the positron wave function in this region is achieved. Second, as
the cut may contain more positron traps, we extend the procedure for solving
the Schrödinger equation so that it is possible to look for more positron
states. We also employ a multigrid approach to speed up the calculations.

Defects in nanocrystalline Ni

In this study, we investigated the nanocrystalline sample of Ni described in
detail by Van Swygenhoven et al.91. It was constructed as follows: First, the
simulation cell volume was filled with nanograins (seeds) with random location
and crystallographic orientation. Subsequently, the grains were allowed
to grow until they touched each other. The sample was then relaxed for
50–100 ps at 300 K using molecular dynamics with second-moment
(tight-binding) potentials according to Cleri and Rosato95. As a result, a
computer sample of nanocrystalline Ni was obtained. It contained about 1.2
million atoms and 15 grains, the average grain size being 12 nm. Its average
density amounted to 96 % of that of the perfect bulk Ni. Many high-angle
grain boundaries were present. However, the sample did not contain any
large vacancy clusters and only small free volumes (up to the size of one
vacancy) associated with grain boundaries (GBs) were found.

So far, we have examined only several GBs and one triple junction (a
common point of three or more GBs). Table 1.1 contains the results of our
lifetime calculations for several positron lowest states at selected GBs (they
are identified by the grain numbers of adjacent grains). Most calculated
lifetimes are in the interval of 117–126 ps except for the GB 13–14. This GB
exhibits slightly lower lifetimes (110–118 ps) than the triple junction and
other GBs as it is close to a twin GB and has a slightly denser atomic
arrangement and, therefore, smaller amount of free volume (Figs 1.4 and
1.5). All these values exceed the calculated bulk positron lifetime in Ni



Multiscale materials modelling18

(100 ps) only slightly and correspond to rather shallow positron traps. The
sites of positron localization (maxima of the positron density) are marked by
large spheres in Figs 1.4 and 1.5. In the case of GB 1–14, we have found a
vacancy (with a positron lifetime of 162 ps) close to the GB (Fig. 1.4).

Up to now, we have analyzed a small fraction of GBs existing in the
sample and found one vacancy only (see Table 1.1). This would correspond

[011] (111)

Grain 1 Grain 14

1.4 A part of the grain boundary 1–14. The sites of positron
localization are marked by large spheres. The vacancy is located a
little bit aside from the GB. The orientation of some atomic planes is
also indicated.

1.5 A part of the grain boundary between grains 13 and 14 together
with the sites of positron localization. A pair of two twin atomic lines
is indicated by solid lines.

Grain 14

Grain 13
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to a vacancy concentration of about 1 ppm which may not be too far from
reality.

The experimental lifetime spectra on nanocrystalline Ni96 exhibit two
components. Depending on the sample preparation procedure the first one
ranges from 151 to 178 ps and its intensity varies from 43 to 80 %. This
component is attributed to vacancy-like defects which are supposed to be
associated with grain boundaries97. It seems, therefore, that in the measured
samples positrons are trapped predominantly by defects having a size of
about one vacancy.

The longer lifetime component found in measured samples varies from
300 to 400 ps. It corresponds to larger vacancy agglomerates, which do not
appear in the computer sample due to the manner of its construction (see
above and91), and we do not discuss it here in detail. Other examples of
positron calculations and experiments in nanocrystalline materials may be
found, e.g., in94,98.

With regard to the comparison of theoretical calculations with experimental
data, we concluded that the measured samples contain vacancies and vacancy
clusters whereas the computer sample seems to be rather dominated by
shallow traps (that have not been yet observed experimentally), though vacancy-
like defects are also present. The real nanocrystalline samples certainly contain
many shallow positron traps as there is a large volume fraction of GBs in
such samples. From the point of view of PLS, the comparison of theory and
experiment is complicated by the fact that the trapping efficiency for these
shallow traps is not known; it seems that it is quite low (compared, e.g., to
that for vacancies), which prevents these traps from being observed by PLS.

It would be desirable, of course, to construct a computer sample which
would be closer to the measured samples. At the least a realistic description
of larger vacancy agglomerates is needed. Furthermore, the influence of
different preparation conditions on the structure of GBs would also be worthy
of study. For these purposes, our sample may be considered as a good start.
It may be expected that, by changing the conditions of computer simulations
and improving the description of interatomic interactions, we will arrive, by
trial and error, at more and more realistic computer samples.

1.4 Conclusions

The significance of ab initio (first-principles) electronic structure calculations
lies in the high reliability of predictions of new properties and phenomena.

Table 1.1 Calculated positron lifetimes for selected grain boundaries and triple
junction (last column) in the computer sample of nanocrystalline Ni

Grain boundary 1–7 1–14 13–14 3–7–15
Lifetime (ps) 118–126 117–123, 162 110–118 119–125
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There are no adjustable parameters and well-defined approximations are
introduced on the most fundamental level. Many macroscopic material
characteristics may be determined in this way, e.g. cohesive energy, elastic
constants, some strength characteristics, magnetic susceptibility, transport
coefficients, etc. Specifically, in this chapter we have discussed the total
energies of iron as a function of volume and tetragonal distortion and found
the minimum energies and borderlines between various magnetic phases.
The calculated contour plot has been used for understanding and prediction
of lattice parameters and magnetic states of Fe films on various metallic
substrates; our theoretical results are in a very good agreement with available
experimental data. Further, we have shown that, using ab initio electronic
structure calculations, the theoretical tensile strength of single crystals may
be reliably determined and its anisotropy may be understood in terms of
structural energy differences of nearby higher-symmetry structures occuring
at the deformation paths.

The first-principles calculations may also be used for ‘measurements in
the computer’. Thus, computer simulations can substitute a real experiment
and, more importantly, provide data on an atomic scale that are not accessible
experimentally.

The information available from the first-principles calculations allows us
both to test and construct simpler models which, in turn, may be used in very
extensive atomic level studies, while the state-of-the-art first-principles
calculations can only be made for a relatively small number of atoms (less
than ª 500–1000). These simpler models employ an energy description using
approximations pertinent to the level of physics investigated and concentrate
on mechanisms and functional forms of physical relations. However, extensive
tests of these ‘less fundamental’ models must always be carried out using
higher levels of approximations. To achieve full understanding of the
phenomena studied, it is often imperative to combine simpler methods with
the first-principles calculations on the one hand and experiment on the other.
This approach is being increasingly applied in multiscale modelling of
materials3,4.
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2.1 Introduction

A dislocation is a line defect in a crystal, marking the edge of a surface
across which the atoms have been displaced by a lattice vector   

r
b , and have

then been allowed to rebond (Fig. 2.1). When such a line moves, it leaves
behind additional surface across which relative atomic positions have changed
irreversibly, as opposed to elastic distortion, where the atomic bonds are not
broken, and where atomic positions recover when the forcing term is removed.
Because it can occur in atomistically small increments, dislocation motion is
nature’s main mechanism for the irreversible (plastic) deformation of crystalline
solids, and discrete dislocation dynamics (DDD) may be characterized as the
attempt to describe the many aspects of plasticity in terms of a collection of
dislocation lines moving and interacting in certain prescribed ways.

The theory of dislocations as filamentary topological line defects in an
elastic continuum is well developed, and provides a satisfactory description
of the elastic fields far away from the line. At the line itself, however, the
filament idealization becomes unphysical and must be supplemented by a
description of the dislocation core, the nature of which determines many of
the detailed properties of a dislocation. Heuristic non-singular core models
can be constructed in the context of the continuum approximation by distributing
the source strength (i.e. the Burgers vector   

r
b ) over a finite core region. In

2
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2.1 Schematic of a dislocation in a continuous medium. The material
on the negative side of a surface bounded by the curve s(x) is
displaced by the Burgers vector     

r
b , where the positive side is related

to the line direction by the right-hand rule. The discontinuity in
displacement across the surface creates a line source of elastic
strain, the properties of which are independent of how the surface is
defined.
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reality, the core region of a physical dislocation extends only over a few
interatomic spacings, and is thus properly treated at the atomistic level.
Nevertheless, the continuum theory has value – once the detailed properties
of a dislocation have been understood from atomistic theory (or measured
experimentally), they can be fed as parameters into the continuum line model
to provide a formalism of great predictive power. The numerical implementation
of this formalism in the context of modern computers defines the field of
DDD simulation, the aim of which is to establish honest connections between
fundamental dislocation theory, theoretical models, and experiments.

The movement of a dislocation in the presence of a stress field sij changes
the elastic energy of the crystal. Thus, one can define an elastic force per unit
length   

r r
f b s = (   )  ◊ ¥ ¢s ˜  acting on* the dislocation, where   

r r r
¢s s s = d /d / |d / d |x x

is the local tangent to the dislocation. At any given time step, the typical
DDD simulation will calculate the spatially varying stress sij acting on the
dislocations in the problem, determine the local elastic forces, and then
move the dislocations in accord with some response model. When iterated,
this process generates the evolution of the dislocation configuration. Assuming
that the response model has either been obtained from atomistic theory or
introduced phenomenologically, and that the applied stress field is known,
the repeated calculation of the stress field generated by the dislocations
themselves is the primary numerical challenge.

In principle (and given unlimited computer resources), continuum DDD
simulations can be done at a high level of accuracy, taking careful account
of contributions from dislocations far away, interface corrections, crystal
anisotropy, and so on. This may very well be the future of the field. The
situation today, however, is that many of the physical parameters entering
into a DDD simulation are known only very approximately. Our discussion
therefore places primary emphasis on making useful predictions within the
current approximate context, and less on the elaborate formalisms needed to
calculate smaller, for now largely irrelevant, effects.

The literature on dislocations is vast and impressive, and the reader is
referred to the excellent standard texts1–4 for background information. In
addition to these classics, there is an excellent new book5 and another
forthcoming6 focussing specifically on the simulation of dislocations. Our
more modest aim here is to provide a snapshot of current activity in numerical
DDD modeling, in particular as it refers to three-dimensionally curving
dislocations. Thus, Section 2.2 reviews only briefly the relatively recent rise

*Since a dislocation is a displacement field, not a mechanical object, this force must be
interpreted in the most general sense as the change in the energy of the elastic field with
respect to a change in the dislocation configuration. Similarly, the dislocation velocity
describes the translation of the displacement-field pattern, not the motion of the atoms in
the core.
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of DDD simulation as a useful tool. The field is still in flux and is developing
rapidly. We therefore find it appropriate to devote considerable space in
Section 2.3 to a discussion of the main technical issues that have been in play
regarding the numerical implementation of the continuum theory. Section
2.4 gives an overview of a few of the current applications of DDD simulation.
The concluding section comments on future research directions, in particular
on the need to improve the coupling between the continuum DDD approach
and the atomistic regime.

2.2 Brief history

There are two relatively easy ways of calculating the stress field produced by
a dislocation filament: Brown’s formula7,8 and the Peach–Koehler formalism9.
Brown’s formula expresses stress in terms of a line integral simple enough
to admit of a number of interesting analytical solutions, as detailed by Lothe10.
It has the virtue of applying to anisotropic media in general, but can only
determine the stresses in the plane of a planar dislocation configuration. The
Peach–Koehler equation, on the other hand, can be used to calculate stresses
everywhere from an arbitrary dislocation configuration, but applies only to
isotropic media. The first significant DDD simulations were carried out by
Bacon11 and Foreman12, who applied Brown’s formula to the relaxation by
glide of a single dislocation. Development along these lines was reported in
several pioneering papers13–16 and reached its highest level of sophistication
in the work of Duesbery and collaborators17–19. At this time, Kubin, Canova,
and coworkers20–22 introduced the use of the Peach–Koehler formalism as
part of an ambitious effort to address problems involving large numbers of
dislocations interacting in three dimensions. Their seminal work has stimulated
a remarkably rapid expansion in the number of different DDD codes that
have appeared, in the technical sophistication of the algorithms, and in the
variety of physical problems to which they have been applied.

The code described in Refs20–22 simulates dislocation dynamics on a discrete
lattice. Most earlier11–19 and later workers have found it preferable to represent
dislocations by a nodal description, that is as a series of points through
which the dislocation passes (Fig. 2.2). One of the first 3D codes to take this
approach was that of Zbib and coworkers23,24, who approximate a dislocation
as a piecewise continuous chain of straight segments connecting the nodal
points. In addition, these authors expanded the idea, already proposed in
Refs20–22 of using ‘rules’ to incorporate strong local interactions such as
dislocation annihilation, jog creation, and junction formation into DDD
simulations25. The depiction of a dislocation as literally consisting of straight-
line filaments chained end to end has the difficulty that the stress diverges at
the corners where the segments meet, and the simple cutoff regularization
adopted in23,24 led to numerical instabilities when line segments less than
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about 10 nm in length were used. A different 3D nodal code developed
concurrently by Schwarz26–29 avoided this difficulty by applying the Peach–
Koehler formalism to continuously curving dislocations having a core of
finite thickness. In addition to making it possible to simulate dislocation
behavior down to the nanometer scale, the implementation of Refs 26–29
was the first to be fully parallelized to run on a modern supercomputer.

A reformulation of the problem in the language of the finite-element
method30–32 has since evolved into yet another simulation program31,33,34.
Ghoniem and collaborators35,36 have further refined this approach by using
cubic splines fitted to the nodal points to define generalized coordinates.
While mathematically quite formidable, their parametric method is claimed
to have the advantage of requiring fewer points to describe smoothly curving
dislocations than a straight-line interpolation scheme.

The new century has seen an acceleration of activity, leading to numerous
enhancements in the capabilities of the DDD codes described above, and to
a plethora of new applications. Perhaps best exemplifying the rapid pace of
development is the recent effort of a group headed by Bulatov and Cai37,38

to develop a new parallel DDD code capable of running efficiently on tens
of thousands of processors. This ambitious project is specifically aimed at
very large ‘grand challenge’ calculations such as the realistic prediction of
strain hardening and dislocation patterning in metals. A third parallel code,
also aimed at large-scale calculations, is being developed by Ghoniem and
coworkers39.

2.3 Implementation

The development of a DDD simulation program involves a number of technical
and practical aspects which will be outlined in the present section. We will
concentrate on issues that currently seem to be generating the most discussion,
neglecting several interesting but more specialized subjects such as 2D systems
of dislocations40–42, anisotropy43–45, and dislocation–inertia effects46,47. The
typical object of our scrutiny (Fig. 2.2) thus consists of a collection of three-
dimensionally curving dislocations, moving in a friction-limited way under
the influence of applied stresses, and interacting via their stress fields with
themselves, with each other, and with any boundaries that may be present.

2.3.1 Discretization and motion

Although all nodal codes specify the dislocation configuration by a sequence
of points (referred to variously as mesh points, nodes, knots, or tracking
points), they adopt slightly different procedures for interpolating between
the points and for assigning velocities to the points. Let us describe a dislocation
line by a parametric equation   

r r
s s t = ( , )x , and assume that its field translates
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with a well-defined velocity at every value of the running parameter x. We
further suppose that this local line velocity is related to the elastic force per
unit length acting on the dislocation by some general response model

  d /d  = ( )
r r
s t fL [2.1]

Although   L ( )
r
f  can in principle be a very general function of the state of the

dislocation and its environment, it is usually assumed to have the form of a
mobility model: that is, the line velocity is determined locally by a balance
between the elastic force per unit length   

r
f  and a dissipative force linear in

  d /d
r
s t , which arises from thermally activated motion over the Peierls barrier,

electron/phonon drag, and other microscopic mechanisms1,48. If dislocation
inertia effects are to be included, equation [2.1] must be replaced by an
equation second order in time.

The most obvious way of defining the motion29 is to assign to each node
the velocity given by equation [2.1]. A somewhat different method is to
concentrate the elastic and drag forces at the nodal points. That is, one
calculates the change in the energy as well as the work done against the
dissipative forces when a particular nodal point is displaced, and then moves
the point with the velocity for which these balance37. Thus:

B
SJ

J

C

2.2 A sample DDD calculation of moderate size, representing a
dislocation network as it might appear in a microcrystal. Strongly
interacting structures and special points include junctions (J), bound
crossed states (C), superjogs (SJ), and boundary termination points
(B), as well as numerous more complicated states involving several
dislocations interacting strongly. The dots represent a typical choice
of nodal points.
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While it requires additional assumptions about the behavior of the dislocation
between the nodes to define   

r
fi  and the mobility function   M fi( )

r
 (the inverse

of the local drag coefficient), such an implementation has the significant
advantage that special points such as junction branch-points, superjog corners,
and boundary termination points can be included in a natural way37. Yet a
third popular approach has been to pick the node velocities so as to enforce
the balance between the elastic and the dissipative forces over each dislocation
loop as a whole. In the simple version30,31,33, line segments are linearly
interpolated between the nodes, the local forces are integrated over all of the
segments, and the total elastic and irreversible contributions are equated to
determine the effective nodal-point velocities via a matrix diagonalization.
In the more general version developed by Ghoniem and coworkers35,36, cubic
splines are used to interpolate between the nodes, the mobility constant is
replaced by a mobility tensor, and generalized coordinates and forces are
defined to represent a given dislocation loop. These algorithms are typically
presented in the language of the finite-element method, although they have
no mechanical content beyond that discussed here.

Once it has been decided how to assign an instantaneous velocity to each
of the nodes, forward Euler differencing or some more sophisticated explicit–
implicit time-discretization method49,50 can be applied to evolve the line
configuration. Surprisingly, elementary forward Euler differencing seems to
work quite well*, producing convergent behavior and results which more or
less appear to agree from program to program. Whether more refined methods
perform more efficiently remains to be investigated.

In the absence of any detailed numerical analyses, a common-sense way
of aiming for stability and accuracy is to require that the distance moved per
time step by any nodal point be small compared to the distance between it
and its neighbors. This means that the maximum time step is related to the
minimum scale to be resolved (i.e. the minimum allowed node spacing dmin)
by Dt µ dmin. If this node spacing is applied throughout, the number of
nodes also scales as 1/dmin, implying that the computational cost scales at
least as rapidly as 1/ min

2d . To mitigate these costs, all modern nodal codes
follow the strategy introduced in Ref.29 of adaptively modifying the nodal-
point density on the line, reducing it where the line curvature is low, and
increasing it in regions of strong interaction, where the local line configuration
varies rapidly.

*This is unlikely to be true in situations for which inertial effects are important.
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2.3.2 Regularization of the self-interaction

The field that any curved, infinitely concentrated topological line defect
exerts on itself is logarithmically divergent (Fig. 2.3). This infinite self-
interaction is artificial, and it must be regularized by taking into account the
physical nature of the core region. Although for DDD simulations it is obviously
desirable to connect this task to the microscopic scale in terms of a Peierls–
Nabarro model or a more detailed atomistic calculation, current regularization
schemes are all based on replacing the idealized dislocation filament by a
finite distribution of the dislocation source strength (i.e. the Burgers vector).
Any such regularization leads to a self-interaction proportional to (1/R) [ln
(8R/a0) + O(1)]10,51, where R is the radius of curvature of the filament, a0 is
a measure of the width of the core distribution (the core ‘radius’), and O(1)
signifies terms of order 1. The exact interpretation of a0 and of the O(1) term
depends on the details of the assumed source distribution. In particular, the
connection of a0 to the microscopic physics has so far been limited to the
assumption that     a b0   | |�

r
. Because this could easily be off by a factor of

two, DDD simulations can at this time claim only limited absolute accuracy,
no matter what specific core model is assumed. As illustrated by Fig. 2.4a,

P

R

+ d
– d

2.3 Regularization of the self-interaction. The line integral for the
stress at P diverges as the integration along the dislocation
approaches P. To avoid this, the dislocation strength is distributed
over a finite core or band to produce a finite local contribution to the
stress at P. The figure shows the simplest such procedure, where the
field acting at P is taken to be a weighted average of the fields
generated from the two split halves. Note that connecting the points
by straight lines, arcs of a circle, or splines will yield slightly different
results for finite dmin. As implied in the figure, the finite core
treatment must be carried out for a distance along the line which is
large compared to the core radius. Other dislocations and the parts
of the line farther away contribute an additional non-local stress at P.
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2.4 Contributions to the glide force per unit length acting at the
indicated point on an fcc glide loop. The loop radius R functions as a
measure of the physical length scale. (a) The values of the force
exerted by an isolated loop on itself are shown assuming a0 = b/2
(top line), a0 = b (middle line), and a0 = 2b (bottom line). The range
roughly indicates the current core error. (b) The contributions to the
force per unit length from the local arc (slanted line), from the rest of
the ring containing the indicated point (upper horizontal line), and
from a neighboring ring (lower horizontal line). The local
contribution is seen to dominate non-local contributions except at
the smallest scales. (c) The contribution to the force per unit length
from the dislocation loop itself (slanted line), and from the surface
correction calculated according to Section 2.3.4 (lower line). The
image force is a small correction unless the loop approaches the
surface very closely. (a) and (b) are viewed along the (111) glide
plane normal, (c) is viewed along the (110) direction horizontal to the
(001) surface. Note that the linear variation of the non-local and
image contributions with scale has been removed by plotting fR. The
local term has an additional ln (8R/a0) variation which reduces its
dominance at smaller scales.
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the implied uncertainty in the self force ranges from ± 10 % at micron scales
to ± 20 % at nanometer scales. We shall refer to this currently unavoidable
uncertainty, which fortunately is still small enough so that DDD simulations
can be quantitatively useful, as the current core error. It should eventually
be possible to reduce the current core error in particular systems, perhaps by
fitting a0 to microscopic calculations or to experiments. Until then, however,
the heroic efforts generally required to determine stress fields to better than
10 % accuracy are not worth undertaking.

The highly non-trivial issues involved in defining a particular core
distribution and computing the associated total force per unit length have
recently been analyzed in impressive detail by Cai et al.52. Historically, the
earliest regularization method was the purely heuristic procedure proposed
by Brown53 of splitting the line in half in the glide plane, as shown in Fig.
2.3, and taking the self-stress to be the average of the two at P. A more
serious analysis was provided by Gavazza and Barnett51, who considered a
distribution which essentially puts all of the source strength on the surface of
a hollow tube of radius a0 surrounding the dislocation center. They found
that the Brown procedure was not entirely correct, but could be made correct
by multiplying the field from the inner and outer arc by 1 – d/2R and 1 +
d/2R, respectively. This modified Brown splitting procedure is easy to
implement computationally and, although its application has only been justified
for smooth curves lying in a single glide plane, it is used in most calculations.
A different distribution, the so-called standard core model, in which the
source strength is distributed across a flat ribbon lying in the glide plane, has
been proposed by Lothe10. Being much more difficult to implement numerically,
however, the standard core model has not been used for DDD simulations.
Very recently, Cai et al.52 have obtained relatively simple explicit expressions
for the case where the source strength is distributed axisymmetrically as a
specific function f r a a( / )/2

0
2

0
3 , where a0 is again a core size parameter, and

the functional form is given numerically. This remarkable result is also well
suited for computation37, and its application to non-planar dislocations is
rigorously justified.

The differences between these three regularization schemes may turn out
to have some significance when matching to the atomistic core structure
becomes a reality. Until that time, there is not much reason to choose one
over the others, especially since DDD simulations are in any case limited by
the current core error.

We conclude this section by mentioning two finite-core implementation
details of proven practical importance. First, in evaluating the self-force
acting at a particular point P, it is customary to apply the distributed-core
model only near P, since the contributions from regions far away are adequately
approximated by the simpler singular-core expressions. In making a separation
between a local (regularized) contribution and a non-local contribution, it is
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crucial29 to extend the finite-core model over a distance an order of magnitude
larger than the core size. Failure to do this results in numerical instability,
and in particular the common1 analytical procedure of simply cutting off the
singular line integral a distance a0 from P is computationally unacceptable.
Secondly, to evaluate the self-force at a nodal point requires some information
about the line configuration between the points. Most implementations simply
connect the dots by straight lines. More sophisticated approaches have been
to fit a circle to each node and its two neighbors29, or to fit a cubic spline to
each node and its two nearest neighbors36. Except for special points, the line
can be assumed to be a smooth curve. For smooth regions, it is to be expected
that interpolation with a circle or a spline will provide higher accuracy;
equivalently, it should require significantly fewer nodal points to attain a
given accuracy.

2.3.3 Approximations and ‘rules’

The task of evolving dislocation configurations like that shown in Fig. 2.2
can quickly become gargantuan unless approximations are made. Fortunately,
problems involving curving dislocations often present a clear hierarchy of
effects that makes it possible to begin with rather elementary models, and
then to move on to the more computationally challenging refinements as the
problem becomes better understood, or as the current core error is reduced.
The contributions to the force acting at a particular point P on a dislocation
line can be loosely categorized as (i) the applied stress field driving the
dislocation motion, (ii) the local self-stress generated by the line in the
neighborhood of P in accord with whatever regularization procedure is adopted,
(iii) the non-local field arising from the rest of the dislocation configuration,
and (iv) the ‘image’ corrections arising from the presence of surfaces and
interfaces. The simple estimates shown in Figs 2.4b and c demonstrate that
the last two of these contributions are typically rather small compared to the
first two*, basically because the force per unit length at P is proportional to
(1/R) (ln (8R/a0) + O(1)), while the contribution from an element (or an
image) a distance D away from P is proportional to 1/D.

While the above implies that non-local or image contributions will be
rather weak over most of a typical 3D dislocation configuration, it also
implies that such contributions can never be neglected if another dislocation

*We emphasize that this presupposes that curvature plays an important role, and that the
dislocations far away are randomly organized or (better yet) arranged into low-energy
structures54. It is in fact not difficult to find exceptions, such as systems of straight
parallel dislocations interacting two-dimensionally, or problems involving large-scale
coherent dislocation arrays, such as the misfit array in plastically relaxed strained layers.
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(or an interface) should happen to approach the dislocation to within a distance
D ~ R/ln (8R/a0). In the case of two lines, such a strong interaction event
often leads to a very complicated evolution, the interactions first affecting
the local curvatures, which then in turn affect the further evolution of the two
lines. Typically, two strongly interacting lines will end up either repelling
each other locally, or undergoing an attractive dynamical instability leading
to local annihilation or the formation of a bound state such as a junction, a
bound crossed state, or a dipole. The analogous effects of an interface on an
encroaching dislocation will be a local repulsion or attraction. In the typical
3D problem (Fig. 2.2), strong interactions will certainly occur as the dislocations
move around three-dimensionally and try to cross other dislocations or to
impinge on an interface. Although they happen only sporadically, strong
interactions play a crucial qualitative role in reshaping the topology of the
dislocation tangle via line–line reconnection, branched-structure formation,
and line–surface reconnection. Accordingly, if one wishes to treat non-local
and image forces as small corrections to the applied and the local ‘line-
tension’ forces, one needs to come up with a way of including the topology-
changing effects of the occasional strong-interaction event.

With a properly designed DDD code, it is possible to follow each strong
interaction to smaller and smaller scales, with the nature of the final
configuration becoming obvious well before atomistic scales are reached.
Indeed, in a striking demonstration of the power of the elastic continuum
approximation, Shenoy et al.55 have shown that a suitably refined DDD
simulation, which allows for dissociation of the core and for anisotropy,
yields a Lomer–Cottrell lock structure which is in almost perfect agreement
with that obtained by atomistic calculations. Obviously, this is not practical
for the situation shown in Fig. 2.2, since the required scale refinements, and
consequent reduction in time step, lead to a drastic slowing of the simulation
each time a strong interaction needs to be resolved. The strategy adopted by
DDD codes to get around this difficulty is to replace the details of the strong
interactions with approximate ‘rules’ that mimic their effects as closely as
possible.

The replacement of strong interactions by rules is illustrated in Fig. 2.5.
The initial idea of applying rules20–22 was expanded and refined by Rhee
et al.25 who utilized traditional qualitative estimates to develop a complete
set of criteria for the processes illustrated, as well as a model for the important
process of cross-slip. While their work refers to bcc crystals, it is just as
applicable to the fcc case, and has formed the basis for further developments.
Later, it was shown by Wickham et al.56 that realistic criteria for the application
of the junction-forming rule can be obtained by applying classical junction
analysis to the initial configuration of the two strongly interacting dislocations.
These authors also discovered that most attractive interactions do not in fact
create junctions at all, but rather result in the formation of ‘bound crossed
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states’ (Fig. 2.5d). This work has been further analyzed and extended to the
bcc case by Madec and collaborators57,58.

To extend the case-by-case approach illustrated in Fig. 2.5 to more
complicated strong interactions (some of which may be seen in Fig. 2.2)
leads to rapidly escalating difficulties in implementation. A more recent
focus, therefore, has been on replacing the rules shown in Fig. 2.5, which
apply only to isolated strong interactions, by a primitive rule set that will

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2.5 Rules commonly found in DDD simulations. The encounter (a) is
turned into a line–line reconnection (b) if the Burgers vectors are the
same. If the two lines are originally on intersecting glide planes, two
superjogs are created by this process. If the Burgers vectors are
different, a junction (c), a bound crossed state (d), or a locally
repulsive interaction (e) is invoked, depending on the initial
configuration. The repulsive lines are allowed to pass through each
other (f) when the force becomes large enough. A line approaching
an attractive (e.g. free) surface is reconnected to the surface as in (g).
A line approaching a repulsive (e.g. rigid) surface is prevented from
entering the surface as in (h).
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automatically approximate the proper behavior of strongly interacting
dislocations in arbitrarily complicated situations such as the simultaneous
interaction of several lines, multiple junctions, and so on. Schwarz59 has
formulated and tested such a rule set for his implementation in which each
nodal point can have only two branches. Here, structures such as junctions
and crossed points are handled by coupling nodal points together dynamically.
Simple stability tests are used to create, merge, or destroy the coupled points,
which are then moved using nodal dynamics. Cai et al.38, whose implementation
allows for nodes with more than two branches, have independently formulated
a somewhat similar set of rules allowing for the creation, splitting, and
merging of nodal points having more than two arms. The main difference
seems to be that the coupled-point formulation treats a junction as two
distinct interacting dislocations, whereas in the multibranch approach the
two dislocations simply combine to make another branch with its own
properties. Both primitive rule sets seem to approximate arbitrarily complicated
multi-dislocation interactions in a satisfactory manner, although the approach
of Ref.38 appears to be simpler to implement.

2.3.4 Non-local and image fields

One can take the view that a satisfactory approximation is obtained if, for
any point P on the dislocation, one evaluates only the applied and local
fields, and perhaps the non-local fields generated by the lines in the immediate
neighborhood of P. If this approximation is supplemented by the rules illustrated
in Fig. 2.5, the remaining (and much more more tedious to compute) non-
local and image contributions are then usually corrections of order 10 %. On
the theoretical side, one can argue that this is comparable to the current core
error and hence not worth worrying about; on the experimental side, few
observations of dislocation behavior can be interpreted to even this degree of
accuracy. Nevertheless, methods for the accurate calculation of the non-local
and the image fields are of interest in their own right, and will become
essential as DDD simulations attain greater absolute accuracy. Thus,
considerable attention has been paid to developing these methods.

Finding the non-local stress field acting at a particular point P is a
straightforward matter of summing over the fields of the line elements
connecting those nodal points not involved in the evaluation of the local
contribution. The main issue is efficiency, since a naive summation for all N
nodal points requires N2 field contributions to be evaluated. To facilitate the
calculation, therefore, the dislocation content of regions far away from P is
usually represented in terms of a multipole expansion. The initial formulation
of this idea24 has by now been superseded by very sophisticated adaptions39,60

of the fast multipole method61, which carry out the summation in an optimized
way, turning an O(N2) problem into an O(N) calculation with well-defined
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error bounds. Even with such impressive machinery, however, the evaluation
of the non-local contribution makes up the bulk of the computational load of
large DDD simulations. To justify such an effort, it has been asserted that
significant spurious effects (such as artificial pattern formation) can arise
from small errors in the long-range fields or from the imposition of a long-
range cutoff. More recently, it has been suggested62,63 that patterning arises
from the action of long-range dislocation interactions. Such ideas appear to
originate in the study of 2D problems; in the 3D world exemplified by Fig.
2.2, they seem neither credible64 nor supported by experience57,65. At this
stage, therefore, it seems unlikely that the relatively small fields generated
by distant dislocations can significantly affect 3D dislocation behavior.

Image effects are more difficult to evaluate, and in particular the proposition
that they lead to only modest corrections is somewhat counter-intuitive. For
one thing, a dislocation can actually intersect a boundary, in which case the
image fields acting on the dislocation become infinite. For another, it seems
natural to expect that image forces should play a dominant role for dislocations
in nanoscale systems, for which the surface to volume ratios become very
large. The issue is particularly important for the study of small confined
structures. That is, it will be computationally very demanding to carry out
DDD simulations in nanocrystals, micro-electromechanical structures (MEMS),
or microelectronic devices if image effects are in fact dominant.

Although the problem of straight dislocations in the presence of a plane
surface or interface has been studied extensively66–68, the more general problem
presented by curved dislocations and non-planar boundaries is a difficult one
and, with few exceptions69, only free surfaces have been considered in the
context of DDD simulations. As illustrated in Fig. 2.6, the problem can then
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2.6 Schematic of the free-surface image problem. The stress field 
  
s ij

•

from continuous dislocations in the infinite medium is supplemented
by a stress field 

    
s ij

image  which guarantees zero traction on the surface
W.
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be stated rather simply. One first finds the stress field s ij
•  which would be

generated by the dislocations in an infinite medium. Since dislocations in an
infinite medium must be continuous, this requires the artificial extension of
any dislocations intersecting the surface, as shown, where the arbitrariness
resulting from the fact that the continuation can have any shape is removed
once the image fields have been added. In order to satisfy the free-surface
boundary condition sijnj = 0 on the surface W, the traction s ij jn•  exerted by
s ij

•  must now be cancelled by adding the effects of an equal and opposite
traction. The problem, therefore, is to find the additional ‘image field’ s ij

image

created inside the body by a surface-traction –s ij jn• . Finite-element
methods33,70,71, boundary-element methods72, and methods based on
distributions of surface loops73,74 have been implemented as a general way
of solving this problem. While these methods can in principle be applied to
arbitrary free surface shapes and to anisotropic media, they require
diagonalization of a large matrix many times during a typical DDD simulation.
Thus, they are well suited for calculating slowly varying mean fields over
simple boundaries, but are rather impractical for dealing with dislocations
close to or intersecting the boundary71.

In contrast to the general free-surface problem, the special case of an
isotropic medium with an infinite plane free surface can be treated relatively
easily in terms of the Boussinesq–Cerruti Green’s function formalism75–78.
In this special case, it is computationally feasible to keep accurate track of
image corrections, even for the singular case of a dislocation intersecting the
boundary. Such studies provide insight into the importance of image corrections
more generally. For example, Fig. 2.4c shows the calculated image force
relative to the self-force for a loop of radius R, the center of which is a
distance 2R from the surface. Clearly, the image correction is relatively
small, on the scale of the current core error, and (as discussed in the preceding
section) a strong interaction does not in fact occur unless D < R/ln (8R/a0).
The behavior of a dislocation loop approaching a free surface is therefore
well approximated by ignoring the surface until the loop approaches to within
a distance R/ln (8R/a0) � O(R/10). Once it is closer than this, the rule
pictured in Figs 2.5g and 2.5h is applied, and the dislocation experiences
either a surface reconnection or a local repulsion, depending on the nature of
the surface. The more extreme case of a curved dislocation actually intersecting
a surface has been studied in detail by Liu and Schwarz79. They have found
that the main effect of the image field is to maintain the angle of entry of the
dislocation into the surface at a particular80 value*. All other effects are at
the current core error level of accuracy, as shown by the quantitative study
illustrated in Fig. 2.7.

*Approximation schemes which try to produce this behavior in a more or less sophisticated
way can be applied29,79,81.
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What about our intuitive notion that the image forces become very large
in nanostructures? This is indeed the case. However, the line tension forces
also increase as the scale is reduced and the curvatures become higher. As a
result, the image corrections remain relatively small even down to the nanoscale.
Similar qualitative behavior may be expected for other kinds of interfaces or
other interface geometries, the implication being that image effects in general
lead to rather modest corrections even in nanoscale structures and even for
dislocations intersecting the boundaries*. A striking example of what one
can accomplish with DDD simulations even if image corrections are ignored
entirely83 is shown in Fig. 2.8.

2.3.5 Periodic boundary conditions

In many of the larger calculations, e.g. those simulating the mechanical
properties of bulk metals or the plastic relaxation of a strained layer, one is

*An interesting apparent exception to this is the finding of Wang et al.82 that the image
force can have a strong effect on the cross-slip of a dislocation intersecting the surface.
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2.7 Nanometer-scale stationary loop configuration of a (111)  
1
2   [01 1]

dislocation intersecting a (001) free surface. The loop is subjected to
a biaxial strain exx = eyy = 1.2 ¥ 10–2, and is viewed along the glide-
plane normal. The complete loop is the stationary configuration in an
infinite medium; half-loop 1 is computed taking accurate account of
the image corrections via a highly refined B–C calculation79; half-loop
2 ignores image corrections except those acting directly at the
intercept points; half-loop 3 ignores image corrections entirely. The
scale markers are in units of 10 nm.
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b

(a) (d)

(b) (e)

(c) (f)

2.8 (111) plan-view of dislocations in CoSi2 islands as observed by in
situ transmission electron microscopy, and as predicted by a DDD
simulation in which the island geometry is approximated as a
truncated cone and image corrections are ignored completely. The
pictures were taken in a g = <220> dark field condition for the Si
substrate, showing the dislocations as lines of strong bright and dark
contrast. The scale bar on each picture represents 250 nm. (a) Initial
entry of the dislocations, recorded at the growth temperature of
850 ∞C. (b) Observed configuration after holding the specimen at
850 ∞C for 30 minutes. The island shows a more symmetrical and
developed dislocation array, although the center remains unrelaxed.
(c) A second, smaller island, this time fully dislocated, recorded after
cooling the specimen. The small circular features within each island
are pinholes which form during growth. (d) Series of position

snapshots showing the calculated evolution of a single 
    
b = 1

2
 [100]

dislocation loop introduced at the island edge. The motion of the
dislocation slows down drastically as it grows into the center. (e)
Calculated transient configuration resulting from the introduction of
six sets of dislocation loops, each containing the three possible

  

1
2

 [110] Burgers vectors for the (111) interface plane. (f) Fully relaxed

pattern predicted by the simulations. Additional loops introduced
into the island will not grow. The location or order in which the
dislocation loops are introduced does not affect the final
configuration.
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not interested in the effect of boundaries per se. Rather, the goal is to eliminate
or at least clearly identify the effects arising from the finite size of the
calculation. One approach is to place a real boundary such as a free surface
around the computational sample, and to probe only the properties near the
center. This approach presumably yields correct results when the measured
properties become independent of the sample size, but is extremely inefficient.
A more elegant approach which has received quite a bit of attention is the
use of periodic boundary conditions. As was pointed out long ago in a
different context84, the use of periodic boundary conditions in a tangle code
poses the danger illustrated in Fig. 2.9. That is, a loop growing through a
rectilinear boundary can undergo a strong interaction with its own replica. In
the illustration, the loop reconnects to its replicas to form two infinite lines.
The dynamics of two lines is very different from that of a loop, and this kind
of topological contamination can lead to incorrect results even when it is far
from obvious that it is taking place.

An obvious way of minimizing self-interaction errors is to rotate the
periodicity box as shown in Fig. 2.10b, so that the replica enters on a different

2.9 Sequential snapshots of a dislocation loop growing under
periodic boundary conditions when it can re-enter on the same glide
plane. By reconnecting to itself it goes over into two infinite lines,
which behave in a manner completely different from that of a loop in
an infinite system.
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(a)

(b)

(c)

2.10 Periodic boundary conditions in DDD simulations. (a) The replica
re-enters on the same glide plane. The figure is essentially Fig. 2.9
viewed edge on. (b) Rotation of the periodicity box allows the replica
to enter on a harmless glide plane. (c) Definition of the periodicity
box edges in terms of lattice vectors permits an infinity of
satisfactory solutions, making it easy to avoid self-interactions for
many slip systems at once.
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glide plane85. Since the line must re-enter on an equivalent glide plane, the
possible rotation angles form a discrete set, and the idea is to choose a value
which avoids strong self-interactions for as many passes through the box as
possible. It is not in general possible to apply this trick to more than one
glide-plane normal, and a more flexible solution86 is to define the edges of
the periodicity box in terms of suitable lattice vectors (Fig. 2.10c). This
offers an infinity of choices that automatically satisfy the re-entrant condition
for an arbitrary crystal structure, making it quite easy to choose the periodicity
box such that multiple slip systems evolve with minimal self-interactions.
The added flexibility comes at a cost: the periodicity box is now defined by
a non-orthogonal triad of vectors, and the algorithmic implementation is
significantly more complicated.

It is worth pointing out that the use of periodic boundary conditions
embeds certain periodicities by fiat, via the initial conditions. This may
make it difficult to interpret computed dislocation patterns, when and if
DDD simulations reach the point where such structures actually become
manifest. Certainly one would expect any structure on the scale of the
periodicity box to reflect the effects of the artificially applied periodicity.
Thus it may turn out that a technique which reinjects dislocations in a more
random manner will be required to produce convincing results.

When using periodic boundary conditions, it is in principle possible to
evaluate long-range fields exactly by summing the periodic image of each
element over all of space. Cai et al.87 have calculated such sums for
orthorhombic periodicity volumes. By storing the results in a lookup table,
the calculation can be made very efficient. Their method has not yet been
extended to lattice-vector periodicity volumes.

2.4 Some current applications

As the usefulness of DDD simulation becomes manifest, the technique is
being applied to an ever-expanding range of systems. A complete survey is
beyond the range of a short review, and would in any case be obsolete by the
time that this article appears in print. This section is therefore limited to a
few topics reflecting the author’s particular interests, and chosen to illustrate
the potential range of applications for DDD simulations.

2.4.1 Bulk plasticity

Although the mechanical properties of crystalline materials exhibit great
variability, some aspects of the idealized deformation behavior shown in
Fig. 2.11 are often observed54,88,89. After an initial elastic response, the material
yields and enters an easy glide regime (I) where dislocations move primarily
on a single set of glide planes (single slip), growing and multiplying in a
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relatively unimpeded fashion. The transition to the hardening regime (stage
II) is marked by the activation of a secondary slip system, leading to a rapid
increase (storage) in the density of dislocations capable of interfering with
the motion of the primary slip dislocations via the strong interactions of
junction and crossed-state formation, and of superjog formation due to
annihilation between dislocations on intersecting glide planes. In the dynamic
recovery stage III, the annihilation of these stored dislocations due to cross-
slip and climb processes takes on increasing importance, and the hardening
rate decreases. These stages are accompanied by the development of an
internal heterogeneous dislocation structure progressing from the formation
of dipole and multipole bundles (stage I), to sheet-like structures (stage II),
to two- and three-dimensional cellular patterns of dislocation walls (early
stage III), to mosaic structures resembling the polycrystalline state (late
stage III). The elucidation of these phenomena has long been considered the
Holy Grail of metallurgy, and has been the prime motivator in the development
of large-scale DDD simulation codes.

The computational cost of evolving a late-stage patterned structure such
as that shown in Fig. 2.12 is formidable. The number of nodal points required
to describe the structure is of order rD3/dmin, where r is the line-length
density, D is the size of the sample box, and dmin is the minimum scale to be
resolved. If the maximum displacement during a time step is of order 0.01dmin,
it takes 100D/dmin steps for a dislocation to cross the sample. For typical
values r = 1014 m–2, D = 10 m, and dmin = 0.01 m, one is then facing the task
of evolving ten million nodal points for hundreds of thousands of time steps.
While most of the current codes have produced impressive-looking pictures
of dislocation tangles, it seems that only a massively parallel, grand challenge
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2.11 The idealized single-crystal strain-hardening behavior.
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approach of the type currently being pursued at Lawrence Livermore National
Laboratories37,38 offers any hope of obtaining a structure like that shown in
Fig. 2.12 by brute-force simulation. Figures 2.13 and 2.14 show the most
recent results obtained as of this writing91.

A more indirect course is to use DDD simulations to seek insight into
individual hardening processes, and to evaluate the parameters entering classical
hardening models. Particularly noteworthy here are recent efforts to determine
the effectivess of interactions between intersecting slip systems in impeding
dislocation motion, data which are usually expressed in terms of a hardening
matrix. The mechanism-oriented approach has led to several qualitatively
new discoveries. As mentioned earlier, it has recently been found that
dislocations with differing Burgers vectors are more likely to form bound
crossed states than to form the extended junctions usually considered56–58.
Multi-junctions in which more than two dislocations combine to form structures
with multiply-branched endings also seem to appear naturally during the
simulations, and their existence has secretly been confirmed experimentally92.
Perhaps most significantly for hardening theory, it has been found that the
creation of superjogs by the annihilation of intersecting dislocations93 is at
least as potent a hardening mechanism as junction formation94,95. Similar
observations have been made in the context of layer plasticity both on the
basis of experiment96 and DDD simulations97. Insights into the mechanisms
leading to patterning or its effect on work-hardening, however, are still
lacking.

1 mm

[100]

[010]

2.12 TEM micrograph90 of the dislocation cell structure in a Cu
crystal deformed in tension along the [001] direction. The resolved
shear strain is 0.52.
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2.13 Simulated dislocation microstructure in a 10 mm cubed cell
under periodic boundary conditions91. Single-crystal Mo under
uniaxial tension at a strain rate 1 s–1.
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2.14 Stress–strain curves for different loading directions, showing
anisotropy in strain hardening rate91. Single-crystal Mo under
uniaxial tension at a strain rate 1 s–1
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2.4.2 Film plasticity

The mechanical behavior of thin films98,99 has significant technological
implications in microelectronics, electro-optics, magnetic recording, and many
other areas. Because of its strong connections to technology, research in film
plasticity has traditionally been carried out by two largely separate communities
focused on semiconductor multilayers and on thin metal films, respectively.
Strain-relaxed SiGe layers on Si substrates, for example, are used to provide
a new kind of crystalline substrate enabling the development of novel
microelectronic devices. Such semiconductor multilayers are easily grown
in single-crystal form, and the prototypical phenomenon of interest is the
one-time plastic relaxation of a single-crystal strained layer on an unstrained
substrate. Copper or aluminum films, on the other hand, serve as the electrical
interconnects between devices, and must maintain their integrity under repeated
thermal-stress cycling. Furthermore, they typically grow only in polycrystalline
form, so that the prototypical phenomenon of interest is the plastic response
of a polycrystalline film to cyclic loading. Although film plasticity involves
at least as many complications as bulk plasticity, it is computationally more
accessible: dislocation patterning of the type observed in bulk plasticity does
not seem to occur100, and compared to bulk calculations the number of nodal
points required for a simulation is less by a factor of h/D << 1, where h is the
film thickness and D the sample size.

The plastic relaxation of a single-crystal strained layer is mediated by the
motion of dislocations threading the layer, leaving behind an array of misfit
dislocations in the interface (Fig. 2.15). In order to be useful for further
processing, the strained layer must relax as completely as possible, leaving
as few dislocations threading the layer as possible. While this goal has been
a major focus of research and development efforts for many decades, theory
for even this relatively simple problem has been limited to the
phenomenological application of two basic ideas. The first is the fact that a
minimum critical stress must exist in a layer before a dislocation can grow
into it101–103. Since the critical stress is inversely proportional to the layer
thickness, thin layers are harder to deform plastically. The second idea is that
misfit dislocations can block the propagation of threading dislocations104,105,
and thus prevent the strained layer from relaxing to its lowest energy state.
DDD simulations have proven very useful in going beyond this elementary
picture and, as shown in Figs 2.16 and 2.17, have in fact been able to predict
not only the observed degree of strain relaxation, but also the dislocation
patterns obtained in well-controlled layer relaxation experiments106. Indeed,
in this application DDD simulations have reached the point of serving as a
practical engineering tool for substrate development. More fundamentally,
such simulations have identified several additional mechanisms limiting layer
plasticity. Thus, bulk hardening mechanisms such as junction formation and
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superjog creation are found to play a significant role, and the interactions
between dislocations on parallel glide planes are found to be at least as
important as blocking in determining the lowest strain to which a given layer
can relax97.

The plastic behavior of metal films is much less well understood. A typical
cyclic loading curve107,108 has the form of a hysteresis curve as shown in Fig.
2.18. Here the differential thermal expansion of film and substrate leads to
a cyclic application of strain to the film as the temperature is raised and
lowered. Such curves are sensitive to grain size, to grain orientation, to
previous strain history, and to the nature of the film surfaces. At higher
temperatures, the plastic response is further complicated by the emergence
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2.15 Typical geometry for the relaxation of a capped fcc layer. (a) The
pyramid shows the crystallographic directions appropriate to the fcc
structure. The base of the pyramid is parallel to the plane of the
layer, which coincides with the (001) plane of the crystal. The faces
of the pyramid define the {111} set of glide planes, while the edges
coincide with the <011> set of allowed Burgers vectors. (b) Same-
perspective view of two intersecting glide planes, (111) and   (111) , in
the capped layer. A loop introduced on the (111) plane is shown at
several steps of its evolution leading to two independently
propagating arms T connected by misfit segments M at the
interfaces. One of the threading arms is about to encounter a
blocking misfit dislocation M1 on a   (111)  glide plane. (c) Plan view
of an idealized relaxed layer, showing the typical cross-hatched
pattern of misfit dislocations that relieve the strain.
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of grain-boundary diffusion as an important relaxation mechanism. The
characteristic hysteretic irreversibility seen in Fig. 2.18 may reflect the dynamics
of an internal dislocation network as it responds to loading and unloading, or
it may reflect the conditions under which grain boundaries emit and absorb
dislocations, or it may reflect stress relief by grain-boundary diffusion, but
most likely it represents a complicated mixture of all three.

Even an exploratory DDD simulation of a single grain requires one to
introduce models for the nucleation, annihilation, and transmission of
dislocations by the grain boundaries. A promising approach to including
transmission of dislocations through grain boundaries has been explored by
De Koning et al.109,110, while Hartmaier et al.111,112 have proposed a unified
DDD model in which grain-boundary diffusion is pictured in terms of the
climb of discrete dislocations in the boundary. So far, however, DDD
simulations have explored only the cyclic loading of a pre-existing dislocation
structure in a grain with hard walls113–115 and in a single-crystal layer with
impenetrable top and bottom interfaces116,117. The results have been
encouraging, appearing to exhibit the effects of grain size (Hall–Petch effect),
and the hysteresis arising from the formation of internal dislocation
configurations stabilized by junctions and superjogs (Bauschinger effect).
But observations of actual dislocation behavior in grains clearly show
dislocations being emitted and absorbed by the grain boundaries118–120, and

(a) (b)

2.16 (a) Plan view TEM image of the final dislocation configuration of
a 104 nm Si0.8Ge0.2 strained layer grown epitaxially on a Si substrate.
The layer is allowed to relax by first injecting dislocations via helium
implantation, and then annealing. The round features are coalesced-
helium structures that have formed below the SiGe/Si interface. (b)
Representative sample of the dislocation configuration predicted by
DDD simulation for the same thickness and applied strain. The scale
is the same as that of Fig. 2.16a.



Modelling of dislocation behaviour at the continuum level 51

are thus not necessarily in accord with such hard-wall models. Espinosa and
collaborators121 have formulated a somewhat more promising model, in which
a grain boundary can act as a source capable of emitting a limited number of
dislocations. This model has had some success in predicting grain-size effects
in films. The interaction of dislocations with grain boundaries is currently a
fashionable topic, and the development of a model suitable for DDD simulations
is an urgent priority.

2.4.3 Microelectronic devices

Although the subject has been largely ignored by the dislocation community,
the nucleation and migration of dislocations has sporadically been a very
serious problem for the microelectronics industry122. The core of a dislocation
can getter impurities, causing it to act as an intermittent short in a logic or
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2.17 (a) The solid symbols show the strain relaxation percentage
100(l – efinal)/einitial observed in helium-implanted and annealed
Si0.8Ge0.2 layers. Circles refer to UHVCVD-grown layers, squares to
RTCVD-grown layers. The open symbols show the behavior of layers
that were not implanted. The x symbols show residual strains
predicted by DDD simulations. (b) The data for implanted samples
compared with the theoretical results when plotted in the form
efinal/ecrit.
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memory device. Figure 2.19 shows an area of a chip which has developed
such a ‘killer defect’ at an early stage of processing, rendering the entire
wafer useless. The stakes are currently being raised, as developers explore a
variety of ingenious ways of using high stresses per se as a way of improving
device performance123. In such applications, dislocations are not merely a
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2.18 Stress-evolution as a function of temperature for Cu films with a
thickness of 0.5 mm. The film stress was measured by the wafer-
curvature technique. Solid circles refer to a film with a capping layer,
open circles to a film with a free surface. From Ref.108, data from
Ref.107.

2.19 Dislocation in a section of a partially processed wafer.
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problem to be eliminated, they present an unavoidable complication. Failure
to predict and control their behavior can carry huge financial penalties.

The microelectronics application is not as specialized as it may seem,
since the issues it raises also arise in treating dislocations in nanocrystals,
MEMS structures, epitaxial islands, and other nanoscale confined systems.
In all instances, the challenge is to understand the nucleation and evolution
of just a few dislocations in a very complicated environment. For this kind
of problem a DDD simulation must be able to propagate dislocations in an
arbitrarily defined geometry, and to accept arbitrarily complicated stress
fields from a concurrent or ancillary finite-element calculation (Fig. 2.20).
In addition, the microelectronics problem tends to involve a variety of different
interfaces between crystalline and non-crystalline materials. Thus, the
calculation of image effects is prohibitively complicated, and one is forced
to approximate them as discussed in Section 2.3.4. As we have been at pains
to emphasize (and as illustrated by Fig. 2.8), this is not necessarily a bad
approximation. Indeed, it is found in practice that the DD simulation is the
easy part of the problem: a greater limitation is the determination of the
stress fields in a particular device after it has undergone processes such as
deposition, implantation, oxidation, etching, and chemical-mechanical
polishing. At present, these stress fields are only crudely estimated by current
process-modeling codes, so that agreement on the order of that seen in Fig.
2.21 has actually come as an encouraging surprise.

In the microelectronics context, dislocations can be observed to nucleate
at various edges and corners. One can apply DDD simulations to this
phenomenon using the following strategy. Given the geometry of interest
and assuming that one knows the associated stress field, one can place
dislocation test loops at various locations. If the loop is large enough, it will
grow into a stable configuration. If it is too small, it will shrink and disappear.
The unstable stationary state separating these regimes represents the transition
configuration which must be surmounted to activate dislocation nucleation.
By finding the size and location of the smallest transition configuration, one
can estimate whether dislocation nucleation is likely to occur and where it
will take place. By following the evolution of a nucleated loop, one can
determine the final dislocation configuration produced by the nucleation
event. Since the critical loop sizes involved in thermal nucleation are likely
to be on the nanometer level, such estimates are only qualitative. Nevertheless,
it has been demonstrated127 that the ‘test loop’ strategy is of considerable
utility (Fig. 2.22). Beyond this heuristic approach, the atomistic study of
dislocation nucleation has recently drawn great interest. Such studies have
only been done for dislocations nucleated by nanoindenters, and Fig. 2.22
raises the intriguing prospect of using standard processing techniques to
provide a simpler environment in which to study nucleation in a controlled
way.
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2.5 Extensions of current discrete dislocation

dynamics trends

There are many other DDD topics that are of current concern, or remain to
be explored. These can perhaps be divided into three main categories. The
first is the extension of simulations to include important physical effects
which are either well understood theoretically, or for which good
phenomenological models exist. Cross-slip129 is already included in most

2.20 State of the art DDD simulation of the evolution of a dislocation
in a complicated silicon structure. The stress calculation is done via
the Finite Element Method. Only the surface tiles are shown. The
structure represents one-fourth of an idealized dynamic random
access memory (DRAM) structure.
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2.21 Wedge-shaped ‘bird’s-beak’ structure formed by the oxidation of
a silicon wafer partially covered by a silicon nitride mask. Very large
stresses are generated as the oxidation process penetrates under the
mask and pushes the nitride mask upwards, causing dislocations to
be nucleated. The solid lines show the bird’s beak shape predicted by
the process-modeling code TSUPREM4124, as well as the equilibrium
dislocation loop calculated via DDD simulation125. The simulation
used the geometry and stress-fields produced by the process-
modeling calculation as input. The dots are obtained by scanning a
TEM image of an actual structure grown with the process conditions
assumed in the calculations126.

500 nm

SiN pad

2.22 (a) Dislocation pileup produced by a 0.5 mm thick 10 mm ¥ 10 mm
Si3N4 pad on a silicon substrate. The pad exerts an intrinsic stress of
order 1 GPa on the Si substrate, generating a non-uniform field in
the substrate large enough to nucleate dislocations at the pad edges
and corners. The pad (dark area) is shown in plan view. The inset
shows the pileup structure predicted by a DDD simulation allowing
repeated loop nucleation at the most favorable point indicated by the
loop-test procedure. The stress field was computed using the
techniques described in Ref.128, for the pad dimensions and intrinsic
stress appropriate to the figure. The estimated critical loop radius
was of order 2 nm.
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codes, but it is not difficult to list other important mechanisms that need
similar attention. Thus dislocation dissociation is important in the context of
modeling strong dislocation interactions more completely55,130,131, it is a
vital mechanism in determining the properties of superalloys132, and it is
central to understanding the evolution of stacking faults in strained
semiconductor layers133–135. Dislocation climb136 is of importance in a number
of contexts, especially those involving the plastic response of crystals damaged
by radiation or by ion implantation. Dislocation pinning by local obstacles137–

139 and dislocation freezing by the gettering of impurities140,141 are also
important in these contexts.

The second area represents opportunities to improve the absolute accuracy
of the simulations. This includes the formally well-defined tasks of including
elastic anisotropy, accurate long-range fields, and image corrections. As we
have discussed, the third of these has been well studied for free surfaces, but
the case of elastically mismatched interfaces, important in small structures
and in metal films, has been largely ignored. As we have emphasized above,
all of these effects are often on the scale of the current core error. Thus, a
more important task at present may be to match DDD simulations done with
simple configurations to atomistic calculations to see if the effective core
radius can be determined. Also needed are better numbers for mobility,
cross-slip probabilities, and dislocation–obstacle interactions, presumably
derived from direct measurement or from atomistic calculations138,142–144.
An interesting commentary on the issue of connecting microscopic calculations
to DDD simulations has been given by Bulatov145.

Lastly, there are important phenomena that we do not yet know how to
include in a DDD simulation at all. Primary among these is dislocation
nucleation, which is currently the subject of intense investigation at the
fundamental level146–148. DDD simulations may be able to tell us where
dislocations are most easily nucleated and what they do after they appear,
but at present they can predict the behavior of a stressed material only in
terms of the evolution of a known initial dislocation structure. How a single
crystal of pure copper subject to a nanoindenter, or a strained SiGe layer
taken to annealing temperatures, come to be filled with dislocations is still a
mystery. One factor known to promote dislocation nucleation is crystal damage,
from radiation, ion implantation, or mechanical surface damage. In the first
two cases, it is common to form small prismatic loops149,150, which apparently
can unfault151 to nucleate glide dislocations. The processes by which crystal
damage, which tends primarily to form sessile defects, can nucleate glide
behavior are poorly understood and need further atomistic study before they
can be included in DDD simulations. The presence of interfaces or free
surfaces also leads to intriguing unresolved issues. It is not known for instance
what the structure of a dislocation lying in a crystal/oxide interface should
be. The interaction of dislocations with grain boundaries is not well understood.
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Finally it is known that the dislocation properties themselves can change at
an interface, and indeed just the addition of an impurity layer to a free
surface can drastically change the plastic behavior of both semiconductor
and metal layers152,153.

Among the various scales dealt with by multiscale modeling, dislocation
dynamics has an especially heterogeneous character dictated by the great
variety of different things a dislocation can do, each of which must be
included in a phenomenological way in any simulation. Since DDD simulation
is also the youngest field in the multiscale modeling canon, it is not surprising
that activity continues at a fever pitch. As the laundry list of topics presented
in this section shows, an enormous amount of work remains to be done
before the field of DDD simulation can be said to have reached its full
potential.
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3.1 Introduction

When speaking about structures within the context of processing/structures/
properties relationships in materials science and engineering, this almost
always refers to the microstructures of materials. Different processing
conditions lead to different microstructures and thus to variations in properties.
A microstructure may contain a wide variety of structural features such as
phases of different compositions and/or crystal structures, grains of different
orientations, domains of different structural variants, domains of different
electrical or magnetic polarizations, as well as structural defects such as
interphase boundaries, grain boundaries, domain walls, cracks, surfaces, and
dislocations. The length scales of these structural features range through
anstrons (crack tips), nanometers (interfacial width, dislocation core, nuclei,
small domains and grains), and microns (grains and domains).

Microstructures evolve during materials processing or in service at high
temperatures as a result of phase transformations or particle or domain
coarsening. The common processing variables are temperature and composition.
Microstructures can also be modified by external fields such as an applied
stress or electrical or magnetic field. The time scale for microstructure evolution
in materials typically spans from seconds to days or even months. One of the
main goals for materials design is to capture the optimum microstructures
having the most desirable properties during processing and to freeze their
evolution during applications.

As one can imagine, finding an optimum microstructure requires exhaustive
and costly experimentations in the processing parameter space of temperature,
composition, and time. As a result, there has been increasing interest in the
recent past in utilizing computer simulations and modeling to reduce the
number of time-consuming experiments. Due to the complexity of
microstructures and their evolution, as well as the time and spatial scales that
are involved, however, one cannot rely on a single available computational
method to directly predict the microstructure evolution of a system starting

3
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with arbitrarily specified initial state, temperature, composition, and time.
The discussions in this chapter will be limited to computer simulations at the
microstructure level, which requires the knowledge of structures and properties
of individual structural features in a microstructure, much of which can, in
principle, be obtained using atomistic level first-principles calculations
discussed in other chapters in this book. In particular, this chapter discusses
one of the microstructure evolution models, the phase-field approach for
modeling microstructure evolution processes.

The phase-field approach has received tremendous attention since the
early 1990s due to its flexibility to model a wide variety of materials processes
and microstructure evolution. A phase-field model requires information on
the structures and properties of individual structural features in a microstructure
as input and predicts the microstructure evolution based on fundamental
thermodynamic and kinetic principles. This chapter is not intended to be a
review of the phase-field method; it serves rather as a brief explanation of
the method. A number of reviews on the method have already appeared in
the last few years1–3. Because of the personal interest of the author, the
discussions are focused on solid-state processes and microstructure evolution.

3.2 Model description

3.2.1 Representation of a microstructure

In order to model the formation and evolution of a microstructure, it is
necessary to be able to digitize a microstructure on a computer. In a phase-
field model, a set of continuous fields is employed to represent a microstructure.
These are typically uniform inside a phase or domain sufficiently far away
from the interfaces or walls. The field variables have the same uniform
values in the same phase or the same types of domains within a given
microstructure. Different values of the field variables, for example 0 and 1,
distinguish different phases or domains. Across the interfaces between different
phases or domains, the field variables vary continuously from one uniform
value corresponding to one type of phase or domain to another uniform
value corresponding to another phase or domain. Therefore, the interfaces in
a phase-field model are diffuse and possess a certain thickness. The variation
of a field variable across an interface is schematically shown in Fig. 3.1.

Field variables can be either conserved or non-conserved, depending on
whether they satisfy the local conservation law, ∂f/∂t = – — · J where f is a
field variable and J is the corresponding flux. For example, composition and
temperature fields are both conserved while long-range order parameter fields
describing ordered domain structures are non-conserved. It is easy to understand
that the artificial phase field in solidification modeling of a single-component
liquid is non-conserved since its value can go from 0 to 1 for the whole
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system. Conserved and non-conserved variables require different kinetic
laws for their evolution as discussed below.

Field variables can be physical or artificial. Physical fields refer to well-
defined order parameters which can be experimentally measured. The interfacial
width described by a physical field is also expected to reflect the actual
interfacial width in a microstructure. In phenomenological theories of phase
transformations, order parameters are used to characterize the nature and the
critical temperatures of phase transformations which produce the
microstructures. A well-known example is the long-range order parameter
for order–disorder transformations. The corresponding order parameter field
can be employed to describe the antiphase domain structures which result
from ordering. Another example is a composition field which describes a
two-phase microstructure with differences in compositions between the two
phases. A composition field is also sufficient to describe the morphological
evolution during phase separation through either nucleation and growth or
spinodal decomposition or during precipitate coarsening in a binary alloy.
Other examples of physical order parameters include electric polarization
for a ferroelectric phase transition and magnetization for a ferromagnetic
phase transition. On the other hand, artificial fields are introduced for the
sole purpose of avoiding tracking the interfaces during a microstructure
evolution. Essentially all phase-field models of solidification employ an
artificial field called the ‘phase field’. The interfacial width described by
artificial fields has no directional relationship to the physical width of a real
interface. The thermodynamic and kinetic coefficients in the phase-field
equations are chosen to match the corresponding parameters in the conventional
sharp-interface equations through sharp- or thin-interface analyses4–8.

l

f = 0

f = 1

3.1 A schematic diagram showing the distribution of a field variable
across an interface. f = 0 and f = 1 represent two phases separated
by a diffuse interface with a thickness roughly l.
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Field variables can be a scalar or a vector, and they can be a single
component or multicomponent. For example, a long-range order parameter
for order–disorder transition and composition for phase separation are scalars
while polarization and magnetization are polar and axial vectors, respectively.
An ordered phase such as the B2 phase based on a body-centered-cubic
(bcc) lattice can be characterized by a single scalar long-range order
parameter while the physical characterization of an L12 ordered phase on a
face-centered-cubic (fcc) lattice requires a scalar order parameter with three
components9–12. Many examples of microstructures require more than one
type of order parameters. For example, precipitation of an ordered intermetallic
phase in a disordered matrix, a fundamental process in many technologically
important alloy systems such as Al-alloys for automotive applications and
Ni-base superalloys for aerospace applications, involves both ordering and
compositional clustering, and thus the characterization of the resulting
precipitate microstructures requires both composition and order parameter
fields. Another example is a composite microstructure of ferroelectric and
ferromagnetic crystals which requires two types of field variables, the electric
polarization and magnetization. Some examples of field variables for a
number of common phase transformations and microstructures are listed in
Table 3.1.

3.2.2 Thermodynamics of microstructures

Within the diffuse-interface context13, the total free energy of an inhomogeneous
microstructure is written as a functional of all the field variables that characterize
the phase transitions, domain structures, and defects. In general, it contains
four types of energetic contributions, i.e.

Table 3.1 Examples of field variables

Microstructure Field variables

A isostructural two-phase system either from Composition c(r)
nucleation and growth or from spinodal
decomposition in a binary system

Order–disorder transitions and antiphase Long-range order
domain structures parameter h(r)

Precipitation of ordered intermetallic phases c (r ) and h (r )
in a disordered matrix in a binary alloy

Ferroelectric transitions and domain structures Pi (r)

Ferromagnetic transformations and magnetic Mi(r)
domain structures

Martensitic transformations and martensite
    
e ij

o

microstructures
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where flocal is the local bulk chemical free energy density that is a function
of one or more of the order parameters: ci (composition of component i), hI

(long-range order parameters), pi (polarization component i), mi (magnetization
component i), eij (strain component ij), and fi (order parameters or fields
describing the distribution of grains, dislocations, etc). fgra is the gradient
energy density, i.e. the energy penalty for the inhomogeneities in the order
parameter fields. It is non-zero only at and around interfaces, and therefore
its introduction automatically includes the domain-wall energy contribution.
fappl represents the coupling potential energy between applied fields such as
applied stress, electric field, or magnetic field and the corresponding order
parameters such as strain, polarization, and magnetization. The last term in
equation [3.1] includes contributions from any one or more of the long-range
interactions such as elastic, electrostatic, and magnetostatic interactions. It is
the competition among the different contributions to the total free energy
that is responsible for the formation of the many fascinating microstructure
patterns observed during various phase transformations. Due to the importance
of various energetic contributions in the phase-field modeling, each individual
term in equation [3.1] is briefly discussed below.

Local bulk chemical free energy density

The actual bulk chemical free energy as a function of temperature, strain,
and composition and/or other thermodynamic parameters is typically not
available for most systems. Free energies cannot be directly measured
experimentally. They are very difficult to compute from first principles,
although there have been recent attempts to obtain free energies of pure and
binary systems by combining first-principles calculations, lattice dynamics,
and statistical thermodynamics14. Therefore, most of the exiting phase-field
simulations have employed double-well or multi-well functions with regard
to the order parameters or the Landau-type of free energy models with the
coefficients fitted to experimentally-measured phase transition temperatures,
single-crystal properties, etc. The main difference among different phase-
field models lies in the construction of f as a function of field variables for
different phase transformations and microstructure evolution processes.

To illustrate some examples of free energy functions, let us start with a
simple and familiar system of spinodal decomposition and formation of a
two-phase binary system described by a composition field. The most commonly
employed model is a simple double-well potential:

f A c B c = –  
2

 + 
4

 2 4 [3.2]
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where A and B are constants. At equilibrium, equation [3.2] describes two
phases with compositions + /A B  and – /A B , respectively. The spinodal
compositions are given by + /3A B  and – /3A B . Another possibility is
a regular solution model:

f (c) = jc (1 – c) + RT [c ln(c) + (1 – c) ln(1 – c)] [3.3]

where R is the ideal gas constant, T is the absolute temperature, and j is a
material constant related to heat of mixing. For an ideal solution, j is equal
to zero. If j is negative, a single homogeneous phase is stable. Otherwise, a
homogeneous state is not stable with respect to phase separation to two
phases through either nucleation and growth or spinodal decomposition.

Similarly, for an order–disorder transition described by a long-range order
parameter, one could use the following simple model free energy:

f T T = 1
2

 (  – ) + 1
4

 o c
2 4a h bh [3.4]

where ao and b are phenomenological coefficients and Tc is the instability
temperature at which the high-temperature phase becomes unstable with
respect to ordering. The equilibrium value for the order parameter as a
function of temperature is given by

h a be o c= ( )/± T – T [3.5]

To illustrate the role of strain in phase transformations in a homogeneous
system, let us consider a simple model system with two degenerate states for
the product phase and characterized by a single-order parameter, h (Fig.
3.1). The transformation is assumed to be second order and the strain is
purely dilatational, i.e. the transformation involves only volume changes
(dijeij where i and j are Cartesian indices, 1, 2, and 3). Assuming that the
coupling between the strain (eij) and the order parameter (h) is linear-quadratic
[15], the thermodynamics of the system can be described by

f T T ij ij ijkl ij kl = 1
2

 (  –  ) + 1
4

 – + 1
2

 o c
2 4 2a h bh g h d e l e e [3.6]

where g represents the degree of coupling between the order parameter and
strain and lijkl is the elastic modulus tensor. The phenomenological coefficients
ao and b can be obtained by fitting experimentally measured thermodynamic
properties under a clamped boundary condition (eij = 0). The first two terms
represent the bulk free energy as a function of order parameter at eij = 0. The
third and fourth terms describe the strain contribution to the total free energy
with dij the Kronecker-delta function defined as

d ij

i j

i j
 = 

1 if  = 

0 if   π
Ï
Ì
Ó
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Equation [3.6] can also be viewed as an expansion to fourth order with
respect to the order parameter and to second order in strain. Including only
terms to second order in strain is equivalent to assuming linear elasticity. In
the equation, the Einstein summation convention is employed, i.e. repeated
indices imply summation.

The transformation strain, also called the eigenstrain or stress-free strain,
is given by

e d g hi j i jkl klso 2 = [3.7]

which can be obtained by minimizing the free energy with respect to strain,
eij. In equation [3.7], sijkl is the compliance tensor. It displays a quadratic
dependence of strain on the order parameter, a result of linear-quadratic
coupling in the free energy expression.

One can also formulate the local free energy as a function of order parameter
at a given stress state:

f T T ij ij ijkl i j kl ij ij = 1
2

 (  – ) + 1
4

 –  + 1
2

  – o c
2 4 2a h bh g h d e l e e s e

[3.8]

where sij is the stress tensor. Eliminating eij from equation [3.8], we have the
free energy as a function of stress:

g T T sijkl ij kl ij ij = 1
2

 (  – ) + 1
4

 – 1
2

 – o c
2 4 oa h b h e e s e¢ [3.9]

where b ¢ = b – 2g 2dijsijkldkl. The above discussion shows that it is important
to specify the mechanical boundary conditions for determining the coefficients
in the free energy expression.

For real alloy systems in binary and multicomponent systems, the free
energies as a function of composition can, in principle, be obtained using the
CALPHAD approach (Calculations of Phase Diagrams)16,17. The empirical
CALPHAD approach employs regular-solution-type of free energy models
and optimizes the thermodynamic parameters using existing experimental
data and information from first-principles calculations for pure, binary, and
sometimes ternary systems18–20. However, it should be cautioned that the
non-equilibrium segments of the CALPHAD free energies are not necessarily
unique or even correct. Moreover, in many cases, order parameters other
than composition are involved in a given process, and hence additional effort
is often required to incorporate the thermodynamic database in a phase-field
model. There have been numerous efforts to use thermodynamic databases
in phase-field simulations12,21–27. For example, two types of approaches have
been proposed for the case of modeling the morphological evolution and
coarsening kinetics of g ¢ precipitates in Ni-base alloys.

One approach is to construct the thermodynamic database in terms of the
site-occupation probabilities of different species on the four sublattices of a
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fcc lattice using the CALPHAD approach and convert it to a free energy in
terms of physical long-range order parameters and composition that can be
directly used in a phase-field simulation12. The advantage of such an approach
lies in the physical nature of the long-range order parameters that correspond
to the fcc–L12 ordering, and the interfacial width reflects the actual physical
width between the precipitates and matrix. The main disadvantage of this
approach is its difficulty modeling large three-dimensional microstructures
due to the relatively small physical width of the interfaces and the need to
resolve the composition and order parameter profiles across such a small
interfacial width in a numerical simulation. Furthermore, the approach is
limited to systems in which the physical order parameters can be clearly
defined based on site occupation probabilities.

The other approach is to borrow the ideas from phase-field models for
solidifications using artificial order parameters. Since thermodynamic databases
are represented using regular-solution-type of free energy models as a function
of composition for each individual phase, artificial phase-fields are required
to connect the free energies for all the individual phases to obtain a single
free energy function. For the particular example of precipitation of g ¢ in Ni-
base alloys, one can obtain two free energy functions as a function of
composition, one for the precipitates and one for the matrix, i.e. f g¢(cg ¢, T)
and f a(ca, T)26. To link the two free energy functions as well as to distinguish
the four possible types of antiphase domains for the g ¢ precipitates, four
artificial fields, hi(x, t)(i = 1, 2, 3, 4), are required, in addition to the physical
field, composition c. Only one of the order parameters is equal to 1 within a
g ¢ precipitate, and they are all zero in the matrix. They vary smoothly from
1 to 0 across the interface between g ¢ and a. The single free energy function
in terms of composition and artificial fields can then be written as

f (c, h1, h2, h3, T) = (1 – h(h1, h2, h3, h4))fa(ca , T )

+ h(h1, h2, h3, h4)f g ¢(cg ¢, T) + g(h1, h2, h3, h4) [3.10]

where ca and cg ¢ are the mole fraction of Al atoms in a and g ¢ phases,
respectively, T is the absolute temperature, g(h1, h2, h3) is a double- or
multi-well potential which is zero at 0 and 1 for the artificial order parameters.
The function h(h1, h2, h3, h4) is a monotonously changing function from 0
to 1. It is required to have the following properties:

h h h hi ii i
(0) = 0, (1) = 1, d /d | = d /d | = 0=0 =1h hh h [3.11]

These properties ensure that the equilibrium values, 0 and 1 for the phase
fields, are not affected by the chemical free energies fg ¢(cg ¢, T) and fa(ca, T).
An example which satisfies the conditions is

h( , , , ) = 3( + + + ) –  2( + + + )1 2 3 4 1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3h h h h h h h h h h h h

[3.12]
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According to Steinbach et al.28 and Kim et al.6, one may regard the interfacial
region to be a mixture of the two phases with compositions ca and cg ¢ and
with the same chemical potential, i.e. ca and cg ¢ satisfy the following set of
equations for a binary system

c = [1 – h(h1, h2, h3, h4)] ca + h(h1, h2, h3, h4) cq ¢ [3.13]

∂
∂

∂
∂

¢
¢

¢

f c
c

f c
c

a
a

a

q
q

q

( )
 = 

( )
[3.14]

The main advantage of this approach is the fact that for an interface at
equilibrium, the contribution of the actual chemical free energy, f g ¢(cg ¢, T)
and fa(ca, T), i.e. Df (see Fig. 3.2), to the total interfacial energy, is eliminated
at equilibrium because of conditions [3.13] and [3.14]. The interfacial energy
and interfacial width are entirely determined by the double- or multiwell
potential depth (Fig. 3.3) and the gradient energy coefficient in the artificial
phase field. As a result, a larger interfacial width may be employed to fit the
same interfacial energy (see the next section for the qualitative relation
between interfacial width and the double-well potential depth, equation [3.16]),
thus increasing the length scale of a phase-field simulation even with the
usual numerical methods using uniform grids. It is also shown that it is
reasonably straightforward to extend the model multicomponent systems29.
However, the implementation of this model requires the numerical solution
to the above coupled equations [3.13] and [3.14] for ca and cg ¢ for each set
of c and artificial fields at each time step, and this process can be
computationally very expensive. Furthermore, the depth of the double-well
potential (w) cannot be made too small compared to the actual chemical
driving force (described by f g ¢(cg ¢, T) and fa(ca, T)), i.e. Df in Fig. 3.2, for
phase transformations during a phase-field simulation, and thus the interfacial
width that one can use is also limited. Otherwise numerically stability may
develop in a phase-field simulation, leading to incorrect path for the

f

c

a g

Df

3.2 Illustration of schematic free energy curves of solid and liquid. Df
is the maximum excess chemical free energy across an interface.
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microstructure evolution. Finally, such a formulation is physically less appealing
since the order parameters are artificial, and artificially increased interfacial
width may have consequences on the kinetics of microstructure evolution,
e.g. the kinetics of coarsening.

Gradient energy and interfacial energy

As mentioned above, in the diffuse-interface description, the free energy of
an inhomogeneous system, such as a microstructure, also depends on the
gradient energies. The magnitude of gradient energy is specified by the
gradient energy coefficient which characterizes the energy penalty due to the
field inhomogeneity at the interfaces. Examples of interfaces include solid–
liquid interphase boundaries during solidification, grain boundaries, matrix–
precipitate interfaces during precipitation reactions and precipitate coarsening,
and domain walls in ordered phases, ferroelectric crystals, and ferromagnetic
systems. For a given free energy model and a given set of gradient energy
coefficients, the specific interfacial energy (interfacial energy per unit area)
can be calculated for an equilibrium interface. It is important to realize that
the integral of the gradient energy term only counts part of the interfacial
energy. The total interfacial energy for a flat interface should be calculated
from13

g  =  = –  +  d  =  +  dlocal equil gra
3

gra
3D DF

S
f f f r f f rÚ Ú[ ] [ ] [3.15]

where S is the interfacial area and fequil is the bulk equilibrium free energy
density as a function of composition represented by the common tangent line
for a binary system, or it is the homogeneous bulk free energy density if the
flat interface is a ferroic domain wall or a grain boundary. Analytical expressions
for the interfacial energy in terms of free energy parameters and the gradient
energy coefficients are only available for very simple cases where an analytical

0 1/2 1 h

w

f(h)

3.3 Illustration of a double-well potential with potential depth of w.
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solution for the equilibrium profile of field variable across the interface can
be derived. For example, for a simple double-well potential with a single
phase-field variable or a simple composition field, the equilibrium profile is
described by a hyperbolic tangent function.

For more general cases, the interfacial energy has to be computed
numerically. However, in general, the interfacial energy (s), interfacial width
(l), the total well depth of a free energy model (D f), and the gradient coefficient
(a) obey the following set of relationships:

s a l a s l  ,   / ,  ~ µ µD D Df f f [3.16]

The last relation in [3.16] is particularly useful in estimating the interfacial
width if one has the knowledge on the bulk thermodynamics of a system and
the interfacial energy.

In crystalline solids, interfacial energies are generally anisotropic. The
interfacial energy anisotropy is usually a function of temperature with the
degree of anisotropy larger at low temperatures. The type and degree of
interfacial energy anisotropy affect the particle shapes or interface orientations
during microstructure evolution. A number of approaches have been proposed
to describe the interfacial energy anisotropy in phase-field models. One
straightforward and most often employed approach to introduce interfacial
energy anisotropy is to make the square-root of the gradient coefficient have
the same directional dependence as the interfacial energy (according to relation
[3.13]). Another approach is to add higher-order gradient energy terms30–33.
For phase-field models with only physical order parameters, the interfacial
energy anisotropy can be introduced naturally and physically through the
proper introduction and coupling of gradient terms which take into account
the underlying crystalline symmetry. This is particularly true for modeling
the anistropic domain wall energies for ordered intermetallic phases9,11,
ferroelectric domain structures, and ferromagnetic domain structures.

Non-local interactions

The non-local contributions refer to the long-range interactions such as elastic
interactions, electrostatic interactions, and magnetostatic interactions. While
the bulk chemical free energy depends only on the volume fraction of each
phase or domain, the energies associated with these long-range interactions
are both functions of the volume fraction and morphologies of the coexisting
phases or domains34–36. Therefore, they very often play dominant roles in the
formation of microstructure patterns in solid states.

These long-range interactions can be obtained by solving the corresponding
mechanical and electrostatic, and magnetostatic equilibrium equations for a
given microstructure. For example, for the long-range elastic interactions,
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the following mechanical equilibrium equation has to be solved under given
mechanical boundary conditions:

∂
∂ ºÎ ˚
s

s l e e hi j

j
i j i jkl kl klr

r r r c = 0 with ( ) = ( ) ( ) –  ( , , )o [3.17]

where sij is the local elastic stress, rj is the jth component of the position
vector, r, lijkl(r) is the elastic stiffness tensor which varies with space, ejk(r)
is the total strain state at a given position in a microstructure, and e kl

o  is the
local stress-free strain or transformation strain or eigenstrain which is also a
function of position through its dependence on field variables. The resulting
elastic energy is a function of phase-field variables and thus the microstructure36.
Various levels of approximations and different approaches have been proposed
to solve the elasticity equation [3.17] with arbitrary distribution of eigenstrains,
i.e. microstructure. For the case of homogeneous approximation and periodic
boundary conditions, it was shown by Khachaturyan and Shatalov37 that an
analytical solution for the displacements, strains, and thus the strain energy
could be obtained in the Fourier space. Therefore, in the case of homogeneous
approximation, the elastic energy computation does not incur any significant
computation. For systems with small elastic homogeneity, first-order
approximations may be employed38,39. For large elastic inhomogeneities,
first-order approximations are not sufficient and it is numerically more
expensive to compute the elastic energy contributions. However, recently a
number of approaches have been proposed for obtaining elastic solutions in
systems with large elastic inhomogeneity40–43. Obtaining elasticity solutions
for microstructures or domain structures in thin films is usually more difficult
than for a bulk system with periodic boundary conditions. However, for
simplified cases, analytical or efficient numerical methods can be designed.
For example, in a film with a rigid or pre-described substrate strain, Li et al.
showed that elastic solutions can be obtained analytically or at least semi-
analytically44,45 by assuming the same elastic constants between the film and
substrate. The elastic interactions arising from surface stresses in epilayers
have been obtained by a similar approach using Fourier transforms46. Recently,
it has been shown that the interactions between precipitates and structural
defects such as dislocations can be described using the same approach as
discussed above47–50. This eigenstrain concept, widely used in micromechanics,
for describing defects has been successfully applied to modeling the formation
of Cottrell atmosphere and nucleation of a coherent precipitate around an
edge dislocation47,48 as well as dislocation motion49,50.

For a system involving long-range electrostatic interactions, the local
electric displacement satisfies the following electrostatic equilibrium equation
with appropriate boundary conditions:
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where Di and Ei are the ith components of the electric displacement field and
the electric field, respectively, rf is the local free charge and rt is the local
total charge which includes the bound charge associated with electric
polarization, p. Similar to elastic interactions, these equations can be analytically
solved using Fourier transforms for periodic boundary conditions. For
magnetostatic interactions, the structure of the equilibrium equation is almost
exactly the same as the electrostatic equilibrium and can also be solved using
Fourier transforms36.

3.2.3 Evolution equations

In all phase-field models, the temporal and spatial evolution of the field
variables follows a set of kinetic equations. All conserved fields, ci, evolve
with time according to the Cahn–Hilliard equation51, or simply the diffusion
equation in the case that no gradient energy is introduced for the conserved
variable, whereas the non-conserved fields, hp (including polarization), are
governed by the Allen–Cahn equation52, i.e.
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where Mij and Lpq are related to atom or interface mobility. F is the total free
energy of a system which is a functional of all the relevant conserved and
non-conserved fields given by equation [3.1]. The evolution of magnetization
is assumed to follow the Landau–Lifshits–Gilbert equation (see e.g.53):
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where m is magnetization vector, ms is the saturation magnetization, go is the
gyromagnetic ratio, g is the damping constant, and Heff is the effective
magnetic field.

In order to relate the phase-field parameters to the experimentally measurable
thermodynamic and kinetic properties, one has to examine the phase-field
equations in the sharp- and/or thin-interface limit. This is particularly true
for phase-field models with artificial field variables for which the corresponding
kinetic parameters are not directly related to the measurable physical properties.
A sharp-interface analysis4 matches the phase-field parameters at the limit of
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zero interfacial thickness to experimentally measured thermodynamic and
kinetic properties while a thin-interface analysis5,6,8 allows the variation of
the phase-field variable over a certain thickness for the interface. It has been
shown by Karma and Rappel5 that a phase-field simulation using the thin-
interface asymptotics permits one to use a larger interface width and thus
larger grid size.

3.2.4 Input parameters

Phase-field modeling requires the input parameters for determining the
thermodynamics of a microstructure and its kinetics of evolution. Therefore,
the parameters that are needed include those that enter or are required to
determine the bulk chemical free energy as a function of order parameters as
discussed in the last section. The elastic constants and the lattice parameter
dependence as a function of order parameters are necessary to determine the
elastic energy contribution to the thermodynamics of a microstructure. For
ferroelectric and ferromagnetic crystals, the lattice parameter dependence on
polarization and magnetization is described by the electrostrictive or
magnetostrictive coefficients. The interfacial or domain-wall energies together
with the bulk free energy density are used to determine the gradient energy
coefficients. For a number of special cases such as diffusional ordering and
phase separation on a fixed crystalline lattice, it is possible to calculate the
gradient energy coefficients using interatomic interaction energies. Furthermore,
diffusional mobility of different atomic species involved in microstructure
evolution process as well as the mobility of interface or domain-wall motion
determines how fast the field variables and thus the microstructures evolve
as a function of time. It is also possible to use the CALPHAD approach to
determine the databases for diffusional mobilities in binary or multicomponent
systems using diffusivity information from experiments and first-principles
calculations of relatively simpler systems. The typical input parameters needed
for a phase-field simulation are summarized in Table 3.2.

3.2.5 Numerical solutions

The evolution profiles of the field variables, and thus the microstructure
evolution, are obtained by numerically solving the systems of evolution
equations subject to appropriate initial and boundary conditions. Most of the
phase-field simulations employ the second-order finite-difference discretization
in space using uniform grids and the forward Euler method for time stepping
to solve the phase-field equations for simplicity. It is well known that in such
an explicit scheme, the time step has to be small to keep the numerical
solutions stable. Dramatic savings in computation time and improvement in
numerical accuracy can be achieved by using more advanced numerical
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approaches such as the semi-implicit Fourier Spectral method54,55. Spectral
discretization is particularly convenient and attractive for systems with long-
range interactions. In addition, to effectively resolve the interfacial dynamics,
particularly for a system involving very different characteristic spatial scales,
e.g. very large domain sizes with very few interfaces, adaptive mesh schemes
are desirable. The usual practice of spatial adaptation is accomplished either
through local mesh refinement and coarsening56 or though mesh moving or
transformation57. Very recently, based on the real-space moving mesh methods
proposed in58–60, preliminary versions of adaptive schemes are being developed
that allow one to maintain the applicability of the spectral codes61. This is
achieved by working with both a computational space with uniform grids
and a real space with adaptive grids. Based on test simulations on isolated
domains in a matrix, it is possible to achieve an order of magnitude improvement
in efficiency due to the smaller number of grid points required to achieve the
same accuracy despite the significant overhead involved in evolving the
moving mesh.

3.3 Advantages and disadvantages

The phase-field method offers a number of advantages. First of all, with the
phase-field approach, one is able to model the evolution of arbitrary
morphologies and complex microstructures without explicitly tracking the
positions of interfaces. This is particularly true for modeling three-dimensional
microstructures for which conventional front-tracking approaches would have
been very difficult. Secondly, it can be applied to essentially all types of
microstructure problems related to vastly different materials processes by
appropriately choosing either physical or artificial field variables. For example,

Table 3.2 Required input parameters in a phase-field simulation

Thermodynamics kinetics Input parameters

Bulk free energy density function All the parameters required to construct bulk
free energy density function such as
transition temperatures, susceptibilities,
equilibrium compositions at given
temperature, heat capacities, etc.

Interfacial energies Local free energy density and gradient energy
coefficients

Elastic energy Elastic constants, compositional dependence
of lattice parameters, electrostrictive
coefficients, magnetostrictive coefficients

Kinetic coefficients Diffusional mobilities, interface, grain
boundary, or domain-wall mobilities
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it has been successfully applied to solidification, solid-state phase
transformations, coarsening and growth, and many others (see review1–3).
Third, the phase-field model can describe different processes such as phase
transformations (driven by bulk free energy reduction) and particle coarsening
(driven by interfacial energy reduction) within the same formulation. It is
relatively straightforward to incorporate the effect of coherency and applied
stresses as well as electrical and magnetic fields. Finally, it is possible to link
phase-field models with thermodynamic and kinetic databases for obtaining
the materials parameters12,21–27 or to derive the free energy models from
microscopic models62–64. One of the main disadvantages of the phase-field
approach is the fact that the method is still computationally very intensive,
particularly for three-dimensional systems. Therefore, it is essential that
efficient and accurate numerical algorithms should be developed and
implemented. Furthermore, it relies on more fundamental calculations such
as first-principles calculations or experimental data for the input parameters.
Finally, the physical size that a phase-field simulation can handle is, in many
cases, limited by the usually small physical width of real interfaces in
microstructures as compared to phase and domain sizes. Although the thin-
interface analysis is able to significantly increase the artificial interfacial
width that one can use in a phase-field simulation, and thus the physical size
of a simulation, there is still a limit on the width that one can use in phase-
field simulations as discussed in the last section. Another strategy is to
employ the adaptive mesh approach to increase the length scale for a phase-
field simulation.

3.4 Recent developments and future opportunities

Phase-field models have been applied to many different materials processes.
Since the review articles were published in 20022, there have been a number
of new developments which are worth mentioning. One of the new directions
is the increasing effort in developing multiscale models to predict
microstructure evolution starting from first principles. For example, it was
recently shown that it is possible to obtain all the necessary thermodynamic
information for the input to a phase-field model from first-principles
calculations combined with cluster expansions; it includes the bulk free
energies of matrix and precipitate phases, the interfacial energy and its
anisotropy, and the lattice mismatch14. It has also been shown that it is
feasible to obtain the fundamental properties of solid–liquid interfaces such
as interfacial energies and mobilities as well as their anisotropies65 for input
to phase-field simulations of solidifications66. Recently, Shen and Wang
showed that the g-surface can be obtained from first-principles calculations
and can then be used in phase-field simulations of dislocation motion67. For
modeling the evolution of relatively complex microstructures, such information-
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passing from one level to another seems to be the most realistic approach for
multiscale modeling.

For applications to more complicated systems such as multicomponent
alloys, it is not possible to obtain all the necessary structural, thermodynamic,
and kinetic parameters directly from first-principles atomistic calculations.
As a result, phase-field models are increasingly relying on existing or future
thermodynamic, kinetic, and crystallographic databases obtained from empirical
modeling. As outlined above, it is possible to directly construct the free
energy function of a phase-field model from existing databases using the
CALPHAD method12, 21–27. The compositional dependence of atomic mobilities
from databases can also be incorporated (see for example25,26). However, in
order to take into account the effect of elastic energy in solid-state processes,
additional databases, such as the crystallographic lattice parameters and elastic
constants, have to be constructed. An attempt to construct lattice parameter
databases is already underway68. With independently assessed reliable
databases, it will be possible to predict the microstructure evolution in complex
multicomponent alloys using the phase-field method.

Another new direction is the phase-field crystal model proposed by Elder
et al.69,70. It describes the crystal structures and microstructures on atomic or
subatomic length and diffusive time scales. The main advantage of this
approach is its ability to model both plastic and elastic deformations with a
time scale larger than atomistic molecular dynamics simulations. It has been
employed to model epitaxial growth, material hardness, grain growth,
reconstructive phase transitions, and crack propagation. The main disadvantage
will be the small length scale and the difficulty in constructing the local free
energy density for a real material.

There is also increasing interest in exploring problems involving non-
periodic low-dimensional systems such as thin films and surfaces45,46,71–83

and interactions between phase and defect microstructures such as
dislocations47,84–86, etc.

Three-dimensional phase-field simulations are very computationally
intensive, and thus they require innovative numerical algorithms. Furthermore,
many of the practical microstructures have compositional or structural domains
which are much larger than the width of the interfaces. Despite the effort to
increase the artificial interfacial width that one can employ in a phase-field
model, for example, using the thin-interface analysis, in many cases, numerical
methods using uniform grid sizes will not be sufficient to perform three-
dimensional phase-field simulations with the desirable system size. Therefore,
it is important that efficient adaptive numerical algorithms be developed.
However, it is particularly challenging to develop adaptive algorithms for
systems in which the interfaces are abundant in a microstructure and long-
range interactions such as elastic interactions are involved. A recent model
combining a moving mesh method with the spectral method seems to be
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promising for systems involving long-range interactions, but the amount of
interfaces is low61.

There have been a number of existing studies on nucleation and growth
using the phase-field method63,87–90. Clearly, significant effort is still required
to establish a robust, physical, and quantitative approach to induce both
homogeneous nucleation in the bulk and heterogeneous nucleation around
defects within the phase-field approach.

It is possible to combine the phase-field modeling of microstructure evolution
and effective property calculation of a microstructure to obtain the temporal
evolution of properties43 or to simply use the microstructure evolution obtained
from a phase-field simulation in a constitutive model to predict the materials
behavior, e.g. to use a strengthening model to predict the effect of microstructure
on alloy strengthening. It is expected that there will be increasing effort
linking microstructure evolution to property prediction.
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4.1 Introduction

The key challenge in multiscale computer simulation of polycrystalline
materials consists in the development of the concepts and algorithms that
link the different length and time scales controlling the evolution of complex
systems. As a minimum, there are three levels that must be considered. First,
the electronic and atomic levels, the ‘microscale’, which encompasses the
nature of chemical bonding and all relevant atomic-level processes and
mechanisms. Second, the level broadly defined as the ‘mesoscale’ focuses
on the critical role played by material microstructure including, for example,
the grain-boundary microstructure in polycrystals, porosity, precipitates, any
dislocation substructures and cracks. Finally, the results of the mesoscale
simulations provide the basis for a continuum description of the material,
and thus enable macroscale simulations, for example, in the form of a finite-
element or phase-field approach.

Here we demonstrate for the simple model case of grain growth how a
rigorous computational and theoretical framework can be formulated which
permits physical insights gained from atomic-level simulations to be transferred
into the mesoscale and, ultimately, linked to the continuum level. This transfer
requires quantification of the results of the atomic-level simulations by
formulation of a theoretical model. This then enables examination of the
statistical mechanics of the process in a realistic system, i.e. without the
well-known time and length-scale restrictions inherent to the atomic-level
simulations. These mesoscale simulations then provide the foundation for
the formulation of a continuum theoretical framework, with input parameters
extracted from the mesoscale simulations.

Grain growth is the process by which the average grain size in a polycrystal
increases in time. The significance of this process comes from the profound
influences of the average grain size and the grain-size distribution on a wide
range of properties of polycrystalline materials. Grain size is a key parameter
in sintered ceramics as well as metal and alloy microstructures and usually
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has to be controlled during thermo-mechanical processing in order to ensure
optimization of mechanical properties. The conventional picture of grain
growth, derived from extensive studies of coarse-grained polycrystals, is
that the process is driven by the reduction of the total area of the grain
boundaries (GBs) in the material (for recent reviews, see Atkinson, 1988;
Humphreys and Hatherly, 1995). The underlying mechanism involves
curvature-driven GB migration, i.e. the motion of the GBs towards the center
of their curvature. This curvature arises from the fact that the Herring relation
(Herring, 1951) for the dihedral angles between the GBs joined at the triple
junctions cannot be satisfied unless the GBs are curved. For a given grain
diameter, d, this curvature is of the order of 1/d. Nanocrystalline materials
are therefore particularly unstable against grain growth, as evidenced by the
observation of grain coarsening even at relatively low temperatures (Gleiter,
1989). A better understanding of the thermodynamic stability of their grain
microstructure is obviously essential if they are to be useful for any applications
at even moderate temperatures.

Quantitative experimental investigations of grain growth, particularly non-
destructive ones, are difficult not only for a nm grain size but even for
coarse-grained materials. Also, the classical theoretical treatments of grain
growth have encountered considerable difficulties in fully incorporating the
dynamical topological features of evolving microstructures during grain
coarsening (Burke and Turnbull, 1952; Feltham, 1957; Smith, 1964; Hillert,
1965; Louat, 1974). This has led to extensive computer simulations of curvature-
driven grain growth mostly in two-dimensional (2D) model systems. Largely
inspired by the investigation of isotropic systems, such as soap froth (Smith,
1964), these simulations have used a variety of approaches, such as
GB-dynamics models (Kermode and Weaire, 1990; Weaire and Lei, 1990),
vertex models (Fullman, 1952; Thompson et al., 1987; Kawasaki et al.,
1989; Weygand et al., 1998), Potts models (Anderson et al., 1984, Grest et
al., 1985; Anderson and Grest, 1989), Voronoi tessellation (Kurtz and Carpay,
1980; Kumar et al., 1992), mean-field models (Rivier, 1983; Fradkov et al.,
1985; Beenakker, 1988) and continuum diffuse-interface models describing
the energy stored in the GBs by a Ginzburg–Landau equation (Chen and
Yang, 1994; Chen, L.-Q., 1995; Fan and Chen, 1995).

All these simulation models share the common feature of being mesoscopic
in nature, i.e. the objects treated dynamically are the GBs and grain junctions
rather than the atoms of which they are composed. Mesoscale simulations
therefore require GB properties as input parameters, such as the energy and
mobility of each GB for a given misorientation between neighboring grains
and information on the energy and mobility of the triple junctions (Galina et
al., 1987; Gottstein et al., 1999). While they are therefore computationally
highly efficient, mesoscale simulations are limited by the fact that they
require at the outset a full knowledge of the physical laws governing the
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evolution of the microstructure. They therefore provide neither a test of the
actual validity of the assumed grain-growth mechanism nor insights on the
possible activation of other mechanisms that may have been overlooked. For
example, the triple junctions are usually assumed to be much more mobile
than the GBs, ensuring that at any instant the Herring relation (Herring,
1951) is satisfied at every triple junction. While recent experimental evidence
has cast doubt on the general validity of this assumption (Galina et al.,
1987), within the framework of mesoscale simulations alone this important
issue cannot be addressed.

By contrast with mesoscale simulations, the only physical input required
for atomic-level simulations is the interatomic force law specifying how the
atoms interact with each other. Given the dramatic increases in computer
power during recent years, atomistic simulations of polycrystalline materials,
albeit with a nm grain size, have now become feasible for the first time
(Phillpot et al., 1995; D’Agostino and Van Swygenhoven, 1996, Keblinski et
al., 1997, 1998; Schiotz et al., 1998, 1999; Van Swygenhoven et al., 1998,
2000; Haslam et al., 2001, 2002, 2003, 2004). In a recent molecular-dynamics
(MD) simulation study of grain growth in a nanocrystalline-palladium model
microstructure, Haslam et al. (2001) showed that in addition to the conventional
growth mechanism by curvature-driven GB-migration, grain rotations play
an equally important role, by eliminating the common GB between neighboring
grains while leading to grain coalescence. These insights can be incorporated
into mesoscale simulations in which, instead of the atoms, the objects that
evolve in space and time are the GBs, grain junctions and grain orientations,
with a timescale controlled by that associated with GB migration, and the
grain rotations and a length scale given by the grain size. These mesoscale
simulations, incorporating physical insight and input GB parameters obtained
by MD simulation, enable the investigation of the topology and long-time
grain-growth behavior in a physically realistic manner.

Here we demonstrate for the simple model case of grain growth how a
rigorous hierarchical computational and theoretical framework can be
formulated that permits physical insights gained from atomic-level simulations
to be transferred into the mesoscale, and ultimately be linked to the continuum
level. The atomic level–mesoscale linkage requires quantification for transfer
to the mesoscale of the results of the atomic-level simulations by formulation
of a theoretical model. The mesoscale simulations then enable examination
of the statistical mechanics of the process in a realistic system, i.e. without
the well-known time and length-scale restrictions inherent to the atomic-
level simulations. Input parameters extracted from these simulations
subsequently provide the basis for the formulation of a continuum theoretical
framework.

The chapter is organized as follows. In addition to describing the MD
simulation approach, Section 4.2 summarizes the most important results of
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the MD simulations of grain growth, including the underlying atomic-level
mechanisms thus elucidated. The section also reviews how MD simulation
has been used to determine GB energies and mobilities. Section 4.3 offers a
detailed description of our mesoscale simulation approach that, in Section
4.4, is validated by a comparison against the evolution of the same system
studied in the MD simulations. We then determine the topology and kinetics
of grain growth in a 2D polycrystal containing thousands of grains and in the
presence of both GB migration and grain rotations (Section 4.5). In this
section we also illustrate how some of these results can be captured analytically
within an extended von Neumann–Mullins theory of grain growth. Finally,
the discussion in Section 4.6 offers a perspective on how the atomistic and
mesoscale simulations complement each other in elucidating grain growth,
and how the effects of external stress might be incorporated within a general,
hierarchical multiscale simulation framework.

4.2 Molecular dynamics simulation of

grain growth

As described in detail in the paper by Haslam et al. (2001), a textured,
columnar microstructure is ideal for this study because, while providing a
fully 3D treatment of the underlying GB physics, its evolution during grain
growth is only a 2D problem (in the x–y plane) and hence computationally
highly efficient. Only a few lattice planes (their number being determined by
the truncation radius of the interatomic potential) need to be considered in
the periodically repeated texture (z) direction, and the evolution of such a
microstructure is easily visualized and analyzed. Furthermore, such a
microstructure can be considered as a physical realization of the 2D
microstructures on which virtually all of the theory of grain growth has been
developed and for which most mesoscopic simulations have been performed,
including those described in this chapter (see Sections 4.3 and 4.5).
Experimentally, such 2D microstructures can, at least in principle, be realized
in the form of unsupported, textured thin films.

4.2.1 Simulation approach

As described in detail in the paper by Haslam et al. (2001), an initial
microstructure containing 25 periodically repeated grains with an average
grain diameter of d = 14 nm was chosen for this study. An embedded atom
method (EAM) potential parameterized for Pd (Foiles and Adams, 1986)
was used throughout. This particular choice was motivated by the earlier
extensive MD simulations of nanocrystalline Pd by the Argonne group
(Keblinski et al., 1999(a, b); Yamakov et al., 2000). This potential was fitted
to give the correct zero-temperature lattice parameter (a0 = 3.89 Å), cohesive
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energy, elastic constants and vacancy-formation energy. Based on free-energy
simulations, the melting point for this potential was estimated to be about
1400 K (Foiles and Adams, 1986), which is considerably lower than the
experimental value of 1825 K. However, in the previous simulations of GB
diffusion in Pd (Keblinski et al., 1999a), no signs of GB-induced melting at
1400 K were detected for even rather long simulation times, suggesting
that the melting point may be significantly higher, probably closer to
Tm ª 1500 K.

The initial microstructure shown in Fig. 4.1(a) was generated using a 2D
Voronoi construction (Voronoi, 1908; Chen D., 1995) to define the shapes
and the relative sizes of polygons (Weaire and Kermode, 1984). A 3D periodic
polycrystal is then formed by filling each of these polygons with a 3D
perfect-crystal fcc lattice with a chosen orientation (for details, see Haslam
et al., 2001). As the common texture (or tilt) axis in the z direction Haslam
et al., chose the <001> direction; all GBs in the system are therefore <001>
tilt boundaries. This direction was chosen because the energies of <001> tilt
GBs do not exhibit cusps for certain ‘special’ misorientations (Wolf, 1990;
Wolf and Merkle, 1992) and thus avoid any issues related to the distinct
behaviors of ‘special’ and ‘random’ high-angle GBs during grain growth. To
introduce GBs into the system, each grain must be assigned a tilt angle about
<001> that differs from those of its neighbors. In principle, these angles
could be chosen randomly; this would yield a microstructure inevitably
containing some GBs with very small misorientation angles, i.e. with a
spacing between the GB dislocations that can become comparable to, or
even larger than, the length of the GB segment itself. So as to avoid this
problem, Haslam et al. limited themselves to larger misorientation angles,
by generating only misorientations such that each GB segment contains at
least three or four dislocation cores; this has the additional advantage that
the GBs are more clearly visible in our simulations (as continuous lines of
miscoordinated atoms; see Fig. 4.1(a)). In practice, the random set of grain
orientations was refined using a Monte-Carlo procedure to avoid such low-
angle GBs; for the resulting set of grain orientations, the minimum
misorientation angle between any two grains was 14.9∞ (Haslam et al., 2001).
It is important to note that, since the GB plane is fixed by the Voronoi
construction, the tilt GBs thus obtained are generally asymmetric.

4.2.2 Grain-growth mechanisms

The comparison of Fig. 4.1(b) with 4.1(a), showing the positions of only the
miscoordinated atoms in one of the 6(001) planes in the simulation cell at the
end and beginning of the simulation, illustrates the overall evolution of this
microstructure at T = 1400 K over a period of 7.2 ns, corresponding to
approximately 1.4 million MD time steps. We note that most of the
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miscoordinated atoms in the grain interiors are associated with dislocation
cores; the remainder indicates the presence of vacancies and interstitials.

As seen from Figs 4.1(a) and (b), during the 7.2 ns of the MD simulation
the system evolved from an initial microstructure containing 25 grains with
relatively narrow distributions in the grain sizes and shapes, to one consisting
of only 11 grains with far broader distributions in both. The final microstructure

4.1 (a) The 25 grains in the initial microstructure with average grain
diameter of 14 nm are clearly delineated by the miscoordinated
atoms. (b) After simulation for 7.2 ns (ª 1.4 million time steps) at
T = 1400K, considerable grain growth has taken place and only 11
grains remain. The simulation-cell borders are delineated by the
dashed lines; however, the plots are extended into the periodically
repeated regions to show more clearly the initial size and shape of
each grain.
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is clearly dominated by one highly elongated grain that is far larger than any
of the grains in the initial microstructure; this dominant grain has the same
orientation as the initial grain number 9 (see Fig. 4.1(a)).

As described in detail in the paper of Haslam et al. (2001), this grain is the
result of grain-coalescence events following coupled grain rotation and GB
migration involving, among others, grains 5, 8, 9, 14 and 16. The four
snapshots in Fig. 4.2 illustrate the time evolution of this process from the
viewpoint of the perfectly coordinated atoms in the grain interiors, showing

(a) t = 0 (b) t = 1.1 ns

(d) t = 1.83 ns(c) t = 1.47 ns
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4.2 Atomic-level mechanism of the first rotation-coalescence event
from the viewpoint of the atoms in the grain interiors (i.e. all the
miscoordinated atoms, located in the white regions, were omitted).
The solid lines indicate <110> directions. (a) Initial configuration of
grains 8, 14 and 16, with q8–14 ª 18∞; (b) after t = 1.11 ns, q8–14 ª 11∞;
(c) after t = 1.47 ns, q8–14 ª 9∞; (d) after t = 1.83 ns, q8–14 ª 4∞. Notice
the decreasing areas of grains 8 and 16, and the initially decreasing
and later increasing area of grain 14; these indicate that the rotation-
coalescence and GB-migration mechanisms of grain growth are
intimately coupled.
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the rotation of grain 14 towards its coalescence with grain 8 and resulting in
the elongated grain 8–14. In the initial configuration in Fig. 4.2(a) the two
grains are misoriented by ª 18∞. According to Fig. 4.2(b), during the first 1.1
ns grains 8, 14 and 16 shrink due to GB migration; also, as indicated by the
solid lines, grain 14 has already undergone some significant rotation towards
the orientation of grain 8. The interplay between migration and rotation is
further illustrated in Fig. 4.2(c) in which it can be seen that grain 14, while
continuing to rotate, has actually grown again, by the mechanism of GB
migration; it is also interesting to note that the inclination of the GB between
grains 8 and 14 has changed during this process. Finally, the coalescence of
grains 8 and 14 is evident in Fig. 4.2(d) with the two grains now being
closely aligned, with the low-angle GB between them having been reduced
to a single dislocation (the core of which shows up as the white spot in the
center of the new grain 8–14).

A complementary view of these events discussed by Haslam et al. (2001)
from the viewpoint of the miscoordinated atoms situated mostly in the GBs
demonstrates that the rotation–coalescence mechanism may be viewed as an
‘unzipping’ of the GB between the two grains, i.e. the gradual increase in the
spacing between the GB dislocations until the GB has disappeared, leaving
behind the new, dislocation-free perfect-crystal grain 8–14. This coalescence
event becomes the trigger for subsequent grain growth in the vicinity of the
large, elongated grain.

The above observations demonstrate that grain growth can be triggered
by the coalescence of two neighboring grains, resulting not only in the
elimination of the GB between them but also the elimination of two triple
junctions on two of their neighboring grains. This, in turn, leaves behind a
highly curved GB on each of these grains, resulting in their destabilization
and subsequent disappearance by a relaxation process that involves a region
of considerable size in the vicinity of these two grains (for details, see
Haslam et al., 2001).

In a different region of this model system, the simulations yielded an
example of grain growth dominated entirely by the conventional mechanism
of curvature-driven GB migration. This is illustrated in Fig. 4.3, which shows
how grain 23 is being ‘eaten up’ by its neighbors. The snapshots in Figs
4.3(a)–(d) reveal that after only 1.06 ns, grain 23 has already shrunk
considerably (Fig. 4.3(b)) and, after 1.52 ns, it has completely disappeared
(Fig. 4.3(d)).

Insight into the underlying driving forces may be gained from an analysis
of the energetics of the GBs in the vicinity of grain 23. It turns out that the
GBs delineating grain 23 have either qij ≥ 30∞ or qij £ 20∞. To distinguish
these, in Fig. 4.3(a) the GBs are labeled either as ‘H’ (indicating ‘high-
angle’) or ‘L’ (indicating ‘low-angle’). The structures of the low-angle GBs
consist of identifiable dislocation cores, although these cores are rather closely
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spaced due to the low-angle cutoff of 14.9∞ imposed when generating the
initial microstructure; by contrast, in the high-angle GBs the miscoordinated
atoms are distributed continuously all along the interface.

The comparison of Figs 4.3(a) and (b) reveals that during the shrinkage of
grain 23, the high-angle, high-energy GBs (whose continuously disordered
structure consists of completely overlapping dislocation cores) shorten and
move significantly while, simultaneously, the inclination of the GB 23–17
changes, presumably in order to lower the energy of this high-angle GB.
Remarkably, the lower-angle, lower-energy GBs (i.e. those exhibiting a discrete
dislocation structure) migrate rather little; also, the lengths of the dislocation
GBs 23–6 and 23–15 remain almost unchanged while the dislocation GB
between grains 17 and 22 increases its length significantly (i.e. without
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(a) t = 0

(c) t = 1.32 ns
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4.3 Four snapshots illustrating grain growth by curvature-driven GB
migration. (a) t = 0; (b) after t = 1.06 ns; (c) after t = 1.32 ns; (d) after
t = 1.52 ns. In (a), the GBs surrounding the disappearing grain 23 are
labeled ‘H’ (indicating a ‘high-angle’ GB, defined here by qij ≥ 30∞)
and ‘L’ (indicating a ‘low-angle’ GB, defined by qij  £ 20∞).
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having to migrate). Finally, in Fig. 4.3(c) the high-angle GB between grains
22 and 23 has disappeared completely, leaving behind an unstable quadruple
junction; the latter subsequently decomposes into two triple junctions while
grain 23 disappears and a new GB between grains 15 and 17 is formed.

This analysis demonstrates a major role of the high-angle, high-energy
GBs during the disappearance of grain 23 by curvature-driven GB migration;
this role seems to be the result of not only their higher energy but also their
higher mobility, consistent with theoretical arguments summarized by
Humphreys (1998). Their role as ‘drainable’ energy reservoirs in the polycrystal
becomes clear from Figs 4.3(a) and (b): on balance, the shrinkage of grain 23
eliminates a fraction of the high-energy GB area altogether while converting
another fraction into a low-energy, dislocation GB. We therefore conclude
that grain growth by curvature-driven GB migration is dominated by the
high-energy GBs in the system: the large amount of energy released by their
elimination or conversion into lower-angle GBs, coupled with their high
mobility, represent the relaxation mechanism by which the polycrystal lowers
its energy towards that of the single crystal.

4.2.3 Topological discontinuities during grain growth

In mesoscale simulations of microstructural evolution it is well known that
processes and events which discontinuously change the topology of the evolving
microstructure represent major computational hurdles towards making the
simulations physically realistic. Such discontinuities are usually associated
with GB segments that become too small to be considered as independent
elements of the microstructure with well-defined physical properties. To
overcome such topological bottlenecks in the simulation, physical assumptions
and specific mechanisms must usually be introduced which transform the
microstructure into a state from which it can continue to evolve in a physically
meaningful manner.

Two such topological instabilities are well-known to occur during grain
growth (Kermode and Weaire, 1990). The first is known as a T2 event by
which a small, three-sided grain disappears. The second is a neighbor-switching
event (now commonly referred to as a T1 event) during which two grains
which were initially neighbors of each other separate along the common GB
and move apart while, simultaneously, two other grains which were initially
not neighbors move towards each other to form a new, common GB. It has
been suggested that neighbor switching can occur not only during grain
growth but also during high-temperature plastic flow (Ashby and Verrall,
1973; Zelin and Mukherjee, 1996).

Several T1 and T2 events were observed in the MD simulations of Haslam
et al. (2001). An example of a T1 event can be seen in Figs 4.3(c) and (d),
illustrating the mechanism by which grains 22 and 23 lose each other as
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neighbors while grains 15 and 17 move towards each other to now become
neighbors. The saddle-point configuration for the switch involves the four-
grain junction clearly seen in Fig. 4.3(c); however, immediately after the
switch the grain 23 disappears. Another example of a T1 process is discussed
in more detail in the paper of Haslam et al., as is a T2 event associated with
the instability and subsequent disappearance of three-sided grains.

4.2.4 Extracting grain-boundary properties from
atomistic simulations

As illustrated in the sections that follow, the transfer of insights gained from
the MD simulations into a mesoscale representation of the system requires
the analysis and quantification of both the driving and retarding forces
controlling both GB migration and grain rotations. In turn this requires
determination of the free energies and their derivatives with respect to the
misorientation angle of all the GBs surrounding each grain. In addition one
needs to determine the GB mobilities as well.

From the microscopic point of view the GBs are 2D regions separating
two perfectly coordinated crystalline regions (the grains), their most obvious
feature being the loss of perfect-crystal nearest-neighbor coordination of the
GB atoms. In covalent materials such as Si, this loss gives rise to the formation
of dangling bonds. Generally, the existence of the GBs in the system can be
characterized by the Gibbsian excess energy per unit area, g = (EN(GB) –
EN(id))/A. This energy is readily determined by evaluating the energy of a
system of N atoms containing the GB, EN(GB), and subtracting from it the
energy of an N-atom perfect-crystal reference system, EN(id), that does not
contain the interface of area A.

The GB energies shown in Fig. 4.4 were obtained for the 25-grain <100>
columnar model system by Haslam et al. (2001) (see Section 4.2 and Fig.
4.1). The scatter of the data in Fig. 4.4 is due to the fact that the asymmetric
tilt GBs in the system include a distribution in GB inclinations for any given
misorientation. The solid line in Fig. 4.4 represents a least-square fit to a
well-tested, empirical extension of the Read–Shockley equation (Read and
Shockley, 1950), to high misorientation angles, qij, between two grains i and
j (Wolf, 1989):

g (qij) = gmax sin (2qij) {1 – r ln [sin (2qij)]} [4.1]

where gmax is the plateau value and r is a measure of how steeply the GB-
energy rises at small angles. The value of the parameters gmax and r fitted for
<001> tilt GBs in palladium are gmax = 1.01 Jm–2 and r = 0.693 (Haslam
et al., 2001).

The GB mobility, which characterizes the viscous motion of a GB in
response to a driving force acting on the boundary, is another key input
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parameter for the mesoscale simulations. Two distinct MD approaches have
been developed to study GB motion in pure materials. In the first one,
Schonfelder et al. (1997) applied external strain (in the elastic regime) on a
bicrystal to drive GB migration (see Fig. 4.5(a)). In this simulation the
driving force for GB migration is given by the difference between the stored
elastic energies in the two grains at fixed elastic strain. Indeed, as shown in
Fig. 4.5(b), this simulation showed that for a given strain the two GBs
present in the 3D periodic simulation cell move approximately with constant
velocity towards each other, thereby enlarging the energetically favored grain
at the expense of the grain with the higher elastic-energy density. These
simulations also showed good linearity in the velocity–driving force relationship
(see Fig. 4.5(c)), the slope of which is proportional to the GB mobility. The
same simulation method was also used recently by Zhang et al. (2004). A
second type of MD simulation method was developed by Upmanyu et al.
(1998, 1999) and relies on capillarity (i.e. GB curvature) rather than elasticity
to drive GB migration.

Very much like the GB energy, the GB mobility also depends on the GB
misorientation and the crystallographic orientation of the GB plane.
Unfortunately, however, current knowledge and understanding of this property
is very much limited by the lack of good experimental results and paucity of
simulation results. Based on the existing MD simulations and experimental
data it is known that high-angle GBs have very high mobility that, like the
GB energy, is independent of the GB misorientation (Humphreys and Hatherly,
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4.4 Variation of the energy gij, of a GB between two grains i and j, as
a function of the misorientation angle qij for <001> tilt GBs in Pd
obtained from the simulation of 24-grain polycrystal containing 24
hexagonal grains with a uniform grain shape and a grain size of
~ 14 nm. The solid line represents a least-squares fit of the data to
equation (4.1). The larger scatter of the data points for any given
misorientation is due to variation of the GB energy with the
inclination of the GB plane (see Haslam et al., 2001).
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1995). Also, there is credible evidence (Humphreys, 1998) that the mobility
of <001> tilt GBs with qij in the range 10–20∞ increases with misorientation
and saturates at about 20∞. Finally, there is little evidence of any dependence
of the mobility on qij for angles smaller than typically about 10∞; moreover,
for qij  ª 5∞ the mobility is thought to be about 10–100 times lower than for
high angles. An empirical expression for the variation of the GB mobility
with the misorientation capturing this dependence was given by Humphreys
(1998):
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4.5 (a) Schematic representation of a bicrystal simulation-cell used in
a typical MD simulation study of elastically driven GB migration. Due
to the 3D periodic border conditions imposed on the simulation cell
the system will contain two identical GBs. (b) MD bicrystal
simulation result of a Cu model system at T = 800 K and 0.04 elastic
strain showing the average positions of the two GBs versus time
(taken from Schonfelder et al., 1997). Despite the stochastic nature of
the GB migration process the displacement–time behavior of each
GB is well represented by a linear relationship with slopes giving the
drift velocities. (c) GB velocity averaged over the two GBs versus the
elastic driving force at T = 800 K.
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where mmax is the mobility of the high-angle GBs; B, q0 and n are materials
parameters. For our mesoscale simulations an estimate for palladium gives
mmax = 6.5 ¥ 10–8 m4 J–1 s–1, whereas the values used for the other parameters
are those given by Humphreys (1998), i.e. B = 5, n = 4 and q0 = 20∞.

4.3 Mesoscale simulation methodology

The physical insights into the atomic-level mechanisms involved in grain
growth gained from MD simulations can be transferred to the microstructural
length and time scales, enabling mesoscale simulations of grain growth in
which there are no atoms but merely GBs and grain junctions, with energies
and mobilities that depend solely on the misorientations between the grains
and the GB-plane inclinations. The inherent time scale of such simulations
is therefore given by that associated with the processes of grain rotation and
GB migration rather than by the vibrations of the atoms, and the inherent
length scale is the grain size rather than the interatomic separations.

By contrast with Newton’s law of motion coupling the acceleration of the
atoms to the forces acting on them, the force laws governing GB migration
and grain rotation are inherently viscous rather than conservative. A constant
driving force for migration, P (in our case represented by the product of GB
energy and GB curvature), results in a constant drift velocity, v, rather than
an acceleration, according to (Humphreys and Hatherly, 1995)

v = mP [4.3]

where m is the GB mobility.
The viscous force law in equation [4.3] is predicted by reaction-rate theory

assuming that the mobility is independent of both the driving force and the
details of the mechanism of GB migration. As described below, a similar law
can be formulated for the angular velocity of some rotating grain, w, with
respect to an axis through its center of mass.

We finally note that, since little is known about the role of the GB-plane
inclination in either the GB energy or GB mobility, throughout our mesoscale
simulations we have ignored these possibly important two GB degrees of
freedom. Moreover, we have assumed throughout that the triple junctions
can move effortlessly in response to a driving force, thus ignoring any effects
that a finite triple-junction mobility might have on the grain growth.

4.3.1 Theory of diffusion-accommodated grain rotation

The MD simulations revealed that for a grain size in the range of a few
nanometers the microstructure evolves via two concurrent growth mechanisms,
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(i) the conventional grain growth–grain shrinkage mechanisms mediated by
GB migration and (ii) grain growth by the grain rotation–grain coalescence
mechanism. In order to incorporate the latter into a mesoscopic representation,
a phenomenological theory is required that analytically and quantitatively
captures the MD observations.

The theoretical basis for incorporation of grain rotation into mesoscale
simulations is provided by the theory of diffusion-accommodated grain rotation
developed previously (Moldovan et al., 2001). Since, as we shall demonstrate,
the correct treatment of these grain rotations is essential to the successful
linking of the atomic scale and the mesoscale, we briefly review the pertinent
feature of this theory.

Considering a columnar microstructure of column height unity, the
cumulative torque acting on some grain i with respect to its center of mass
is given by (Harris et al., 1998; Moldovan et al., 2001)

t
g
q = 

d
d

S
j

j
j

j
L [4.4]

where Lj denotes the length of the GB between grain i and some other grain
j, with energy gj. qj is the misorientation angle across the GB. As observed
in the MD simulations, analogous to GB migration grain rotation is a viscous
process; i.e. the angular velocity of the grain, w, with respect to an axis
through its center of mass is given by

w = Mt [4.5]

where M is the ‘rotational mobility’ of the grain. As an extension of the theory
of diffusion-accommodated GB sliding by Raj and Ashby (1973), our theory
of GB-diffusion or lattice-diffusion accommodated grain rotation yields a
general expression for the grain-size dependence of M (Moldovan et al., 2001)

M(R) = C/R p [4.6]

where p = 5 for GB-diffusion accommodation and p = 4 for accommodation
via lattice diffusion through the grain interiors. C is a physical parameter that
depends on material properties, temperature T, the grain shape and the
accommodation mechanism (Moldovan et al., 2001). For example, for GB-
diffusion accommodated grain rotation and a regular-hexagonal grain shape,
C = 95WDGBd/kBT, where W is the atomic volume, d the diffusion width of
the GBs along the periphery of the grain, DGB the GB self-diffusion coefficient
and kB Boltzmann’s constant.

4.3.2 Mesoscale representation of the system
The mesoscale representation of the microstructure consists of a network of
interconnected GB segments that delimit the grains forming the microstructure.
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Such an initial structure is usually generated via a Voronoi construction, with
2D periodic border conditions applied to the simulation cell (Weygand et al.,
1998). Analogous to the meshing in finite-element simulations, the GB network
is discretized by two sets of mesh points (or nodes; Weygand et al., 1998),
one coinciding with the triple points and the other discretizing the GBs. Each
node is linked to neighboring nodes by straight segments. For example, a
triple-point node is connected to three neighboring nodes while a GB node
is connected to only two other nodes (either or both of which may be associated
with triple points). The introduction of the GB mesh allows GB curvature to
be modeled in terms of a series of straight segments. This also permits the
equilibrium condition at the triple points, given by Herring (1951) relation,
to be fulfilled.

Each grain is assigned an initial orientation with respect to a fixed coordinate
system in the plane of the simulation cell; therefore, each GB is characterized
by the misorientation angle between two neighboring grains. Even in a columnar
2D microstructure the full GB texture covers a large parameter space, consisting
of both the relative misorientations of any two neighboring grains and the
inclination of the GB plane with respect to a reference direction. Regardless
of the actual texture of the system, the development of a mesoscale
representation requires prior knowledge of the misorientation dependence of
both GB energies and mobilities. So as to enable a direct comparison with
the MD system, we assume all GBs to be <001> tilt boundaries. In practice,
to account for the four-fold rotation symmetry of the <001> texture, initial
grain orientation angles are assigned randomly within the 0–90∞ interval. As
further discussed in Sections 4.4 and 4.5, the dependence of the GB energy
and GB mobility on the GB misorientation functional forms given by equations
[4.1] and [4.2] and Fig. 4.4 are assumed.

In our 2D system, grains can rotate about the fixed texture axis in either
the clockwise or counterclockwise direction. Any such rotation leads to a
decrease in the total excess energy of the GBs delimiting the grain. According
to equation [4.4] the GBs with the largest contribution to the cumulative
torque are those with the smallest misorientation angle, as they have the
largest value of the gradient dg (q)/dq. The rate of grain rotation is given by
equation [4.5], with a rotational mobility, M, that depends strongly on the
average grain size (see equation [4.6]).

4.3.3 Variational functional approach and implementation

As a rigorous, formal basis for our mesoscale simulations we adopted the
theoretical approach of Needleman and Rice (1980) based on a variational
principle for dissipative systems. (For a broader discussion of this principle
within the framework of ‘thermomechanics’, see Ziegler, 1977.) This principle
was originally formulated for GB and surface diffusion in the context of void
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growth (Needleman and Rice, 1980) and later adapted for the simulation of
curvature-driven grain growth by Cocks and Gill (1996) and Gill and Cocks
(1996). Their modification describes the rate of power dissipation due to the
competition between the reduction in the GB energy and the viscous drag
during GB migration. Based on the Cocks and Gill formulation of the functional,
Cleri (2000) developed a stochastic formulation that enables a velocity Monte-
Carlo (VMC) simulation approach using the variational functional as a
transition-rate generating probability. Building on the work of Cocks and
Gill (1996) and Cleri (2000), we have recently incorporated anisotropic GB
properties (Moldovan et al., 2002a) and grain rotations into this approach
(Moldovan et al., 2002b). In the following we briefly describe this
comprehensive mesoscale methodology for the simulation of grain growth.

To incorporate grain rotations into the simulation model, additional terms
have to be added to the functional describing curvature-driven GB migration
(Cocks and Gill, 1996). These terms describe the competition between the
reduction in GB energy due to the rotation and the related energy dissipation
during the viscous rotation. In addition to the velocity field, {v}, of all the
GB and triple-point nodes, the dissipated-power functional,
P({v},{w},{r},{f}), therefore includes also a set of grain-rotation rates,
{w}. Here {r} represents the set of time-dependent coordinates of the GB
and triple-point nodes, while {f} is the set of grain orientations. This extended
functional reads:
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where the first sum is taken over all the GB segments, Nsgm, of lengths li used
to represent the discretized GB network; the second sum includes all Ng

grains in the system (see also equations [4.3]–[4.5]). The subscripts 1 and 2
in the first two terms in equation [4.7] (describing the energy balance during
curvature-driven GB migration) indicate that the values of the quantities are
taken at the two end points of each segment; si1 and si2 are the tangent unit
vectors at the ends of segment i, considered to point away from the end of
the segment. vi1 and vi2 are the velocities of the nodes associated with segment
i. vi

n
1 and vi

n
2  are the normal components of the velocities at the end points

of segment i. gi and mi, the GB energy and mobility of segment i, depend on
the misorientation across the segment.

We use Cleri’s velocity Monte-Carlo approach (Cleri, 2000) to find the
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set of GB-node velocities, {v}, that minimizes the variational functional at
each time step. The grain angular velocities, {w}, are given by equation
[4.5]. Since the GBs are discretized, the Herring relation for the triple-point
angles (Herring, 1951) is satisfied in every time step, an assertion verified in
our simulations. This results in the GBs being curved, providing the necessary
driving force for GB curvature-driven grain growth.

In addition to the well-known T1 and T2 topological discontinuities
associated with neighbor switching and the disappearance of three-sided
grains (Weaire and Kermode, 1984; see also Section 4.2.3), grain coalescence
gives rise to the topological discontinuities associated with the disappearance
of a GB and the delimiting two triple junctions. In practice, this topological
discontinuity is incorporated in our simulations by considering two neighboring
grains as having coalesced when the misorientation of their common GB is
less than a certain minimal angle; at that point, the appropriate topological
rearrangements are carried out. This minimal angle can be rationalized by
considering the dislocation spacing, d, in a low-angle GB given by d =
b/sinq ~ b/q where b is the Burgers vector. As seen in the MD simulations,
to be physically meaningful any GB segment of length LGB should contain at
least two dislocations (see Section 4.2.1). The condition that d < LGB/2
therefore defines a minimum misorientation angle, qmin ~ 2b/LGB. For example,
for a grain size of d = 100 nm and a regular hexagonal grain shape, this
yields a value of qmin ~ 0.5∞; by comparison, for d  = 14 nm, as is the case
for the 25-grain Pd system considered in the MD simulations, qmin ~ 2.7∞.

4.3.4 Dimensional analysis of characteristic length and
timescales

In conventional grain-growth simulations (representing coarse-grained
materials) in which growth occurs solely by the mechanism of curvature-
driven GB migration, no absolute length scale is present. However, in
nanocrystalline materials the simultaneous presence of both GB migration
and grain rotation introduces a physical length scale into the system, in the
form of a physical grain size, Rc. Next we estimate the value of this physical
length scale by using dimensional analysis (for details, see Moldovan et al.,
2002b).

For this purpose let us consider a single representative term in equation
[4.7]. In the presence of both GB migration and grain rotation, this term has
the form, P = Pmig + Prot = [g v + (v2/m)l] + [tw + (w 2/M)]. To write P in
dimensionless form we express (i) the GB energy, g, in units of gmax (see
equation [4.2]), (ii) the GB mobility, m, in units of mmax (see equation [4.3]),
(iii) the length, l, of a GB segment in units of the initial average grain radius,
R0, and (iv) the time, t, in units of t0 = R0

2 /gmaxmmax.
Having chosen these fundamental physical quantities as reference units,
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the reduced-units representation of all the other physical quantities of interest
are: v0 = gmaxmmax/Ro for the node velocity v, w0 = gmaxmmax/ R0

2  for the
angular velocity w, and t0 = R0gmax for the torque t. This choice allows us to
define the dimensionless variables g*  = g/gmax, m* = m/mmax, R* = R/R0, v*
= v/v0, t* = t/t0 and w* = w/w0. Using these, the above sum of the two
representative variational-functional terms can be written in dimensionless
form as follows:
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where P0 = ( max
2g  mmax)/R0 and M* = (R0/R)p (see (Moldovan et al., 2002c).

It is important to notice that here we have introduced the dimensionless
parameter h = ( / )max 0

–3C m R p . The time evolution of the microstructure
described by this functional therefore depends on the value of the parameter
h, which can be written as follows:
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is a characteristic physical length scale which depends on the GB characteristics
such as the mobilities, diffusivities and temperature. For example, for a
hexagonal grain shape C = 95dDGB W/kT (Moldovan et al., 2001) and equation
[4.10] yields:
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with the same meaning of the physical quantities involved as defined in
Section 4.3.1. In particular, we recall that p = 5 (4) for GB-diffusion (lattice-
diffusion) accommodation of grain rotation.

According to equation [4.10], the physical length scale Rc is essentially
the ratio of two materials constants, one characterizing the grain rotational
mobility (see equations [4.5] and [4.6]) and the other the GB mobility.
Interestingly, Rc does not depend on the topological or geometrical
characteristics of the microstructure, such as the average grain size or the
grain-size distribution. Therefore, given that the rates of GB-migration and
grain-rotation-induced grain growth are proportional to these respective
mobilities, Rc may be viewed as a reference grain size in a typical microstructure
at which the rates of the two growth mechanisms contribute about equally to
the growth.
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According to equation [4.9], h may be viewed as the ratio of two lengths:
the average initial grain size R0, which depends on the initial microstructure,
and the physical length scale Rc determined solely by the temperature and
material properties, such as the GB mobility, mmax, and the materials constant
C. Moreover from the characteristic term of the variational functional in
dimensionless form we infer the existence of two limiting values of the
parameter h. Whereas h = • characterizes the growth solely due to the grain
rotation-coalescence mechanism, h = 0 describes the growth due to GB
migration alone. Thus, when R0 >> Rc, h is small and the growth is GB-
migration dominated; by contrast, when R0 << Rc, h is large and the growth
is grain-rotation dominated.

We finally mention that the parameter h can be viewed analogous to the
Reynolds number in the analysis of the Navier–Stokes equations describing
the incompressible flow of viscous fluids in hydrodynamics. The Reynolds
number characterizes the relative importance of inertial and viscous forces;
at a certain value of the Reynolds number the flow regime changes from
laminar to turbulent flow. It is also interesting to recall that the Reynolds
number is used to characterize the flow similarity; for example, the flows
around two geometrically similar bodies will be identical (in dimensionless
variables) if the Reynolds numbers for the two bodies are the same. Introduction
of the parameter h has similar implications. In particular, a certain critical
value of h marks the transition from GB-migration-dominated to rotation-
dominated growth and can be used to study similarity of the growth.

4.4 Validation of mesoscale simulations

In the mesoscale methodology described above, the objects that evolve in
time and space are the GBs and grains, rather than the atoms themselves.
Instead of the vibration periods of the atoms and the interatomic distances,
the characteristic mesoscale time and length scales are therefore governed
by the relevant microstructural processes themselves; in the case of grain
growth these are the GB mobilities, the grain-rotational mobilities and the
grain size. Having thus discarded the atoms from the MD simulation and
having replaced Newton’s law of motion by a collective, viscous force law,
a critical test of our mesoscale methodology is its ability to reproduce the
microstructural evolution observed in the MD simulations. To validate our
mesoscale approach, here we describe mesoscale simulations of grain growth
for exactly the same 25-grain columnar microstructure with an initial grain
size of 14 nm that was investigated by MD simulation (see Section 4.2).

As described above, in the simultaneous presence of both growth
mechanisms the variational functional depends explicitly on the dimensionless
parameter h. Therefore, for our mesoscale simulations to correspond formally
to the conditions used in MD simulations, we have to determine the appropriate
value of h corresponding to R0 = 14 nm.
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Inserting the values of the relevant physical parameters summarized in
Table 4.1 into equation [4.11] and assuming p = 5, our estimate for palladium
at 1400 K yields Rc ª 0.839 nm and, hence, a value of h ª 0.0036. This is the
value used in our mesoscale simulations of the 25-grain columnar palladium
polycrystal. In addition, the time must be converted from reduced units to
physical units, t0 = R0

2 /gmaxmmax (see Section 4.3.4). For R0 = 14 nm and the
values from Table 4.1 for gmax and mmax, we obtain t0 = 2.98 ns.

Figures 4.6(a)–(h) compare the MD time evolution of the 25-grain system
(Figs 4.6(a)–(d)) with the mesoscale model for h = 0.0036 (Figs 7.6(e)–
(h)). The snapshots in Fig. 4.6(a) and (e) taken after 1.0 ns reveal excellent
agreement between the two systems. Most importantly, both models predict
a substantial decrease in the area of grain 23 (compare with the initial structure
in Fig. 4.1(a)). Also, both models reveal a substantial change in the shapes
and areas of grains 13, 17 and 24; moreover, the shape changes of grains 17
and 20 are well reproduced by the mesoscale model. Although, as the two
systems evolve further, some small deviations start to develop between their
evolution-paths, the mesoscale model predicts the disappearance of grain 23
by GB migration at about the same time as seen in the atomistic model.
Moreover, it correctly describes the coalescence of grains 8 and 14 and of
grains 16 and 9 and captures essentially the same time evolution of the
system even after 3 ns.

This comparison demonstrates the ability of the mesoscale model to
reproduce correctly the evolution of the MD system even in the presence of
the grain rotations (Moldovan et al., 2003a). However, great care is required
in determining the appropriate values for the parameter h and the physical
timescale characterizing the mesoscale model.

Table 4.1 Values of the parameters in equation [4.11] (in which we
assume p = 5) used to estimate the characteristic grain size Rc for
palladium at 1400 K. The temperature T, atomic volume W(T) at that
temperature and initial grain size R0 are fixed at the beginning of the
simulation. The product DGBd of the GB diffusion constant and the
diffusion width, the maximum GB mobility mmax and maximum GB
energy gmax were determined from independent simulations as
described in Section 4.2.4 (see also Haslam et al., 2001)

Parameter Value

T 1400 K
W(T) 15.5 ¥ 10–30 m3

R0 14 ¥ 10–9 m
DGBd 6 ¥ 10–19 m3 s–1

mmax 6.5 ¥ 10–8 m4 J–1 s–1

gmax 1.01 J m–2
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4.6 Four snapshots of the 25-grain system evolving by both MD (left-
hand column) and mesoscale simulations for h = 0.0036 (right-hand
column). This value of h corresponds to the physical parameters of
the MD simulation shown in Fig. 4.1. Each snapshot gives the time in
physical time units appropriate for the system at 1400 K.

(a)

(b)

(c)

(d)

t = 1.00 ns

(e)

(f)

(g)

(h)

t = 1.00 ns

t = 2.38 ns t = 1.51 ns

t = 2.58 ns t = 2.25 ns

t = 2.89 ns t = 2.47 ns
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4.5 Mesoscale simulation results

We are now ready to present our results of mesoscale simulations obtained
for polycrystals containing thousands of grains and wide distributions in the
grain misorientations, grain sizes and grain shapes. This allows us to investigate
in a statistical manner the effects of the presence of both the GB migration
and grain-rotation-coalescence mechanisms on the kinetic, topological and
morphological aspects of grain growth. (For a full set of simulation results
and a detailed discussion, see Moldovan et al., 2002(a, b, c).)

4.5.1 Grain growth by rotation-coalescence alone

We first focus on a (hypothetical) system evolving exclusively via the grain-
rotation-coalescence mechanism. To explore the generality of this particular
mechanism we consider two different functional forms for the misorientation
dependence of the GB energy, g (q): (i) a realistic functional form for the
<001> tilt GBs expressed as the extended Read–Shockley (ERS) formula in
equation [4.1] and (ii) a simplified triangular (T) shape g (q)/gmax = 4q/p for
0 < q < p/4 and g(q)/gmax = 2 – 4q/p for p /4 < q < p/2. Moreover, to improve
the correlation between the value of the growth exponent, n (see below), and
the grain-rotational-mobility parameter p in equation [4.6], we have performed
simulations for p = 3, 4 and 5 employing both of these functional forms for
g (q). While the cases for p = 5 and p = 4 find direct physical interpretation
in terms of a diffusion-accommodation mechanism (see Section 4.3.1 and
Moldovan et al., 2001), the value p = 3 is primarily of mathematical interest.

We first investigate the growth kinetics. Figure 4.7 shows a log–log plot
of the time variation of the average grain area, A(t), normalized to the initial
average grain area, A(0), for the systems with various values of the parameter
p and for g (q) given by both the ERS and T forms. We follow the time
evolution of the total number of grains from initially 10 000 until only about
300 grains remain. After some transition period, which is different for each
value of p, each system reaches a scaling regime in which the growth is
characterized by a power law (i.e. A(t ) ~ tn) with a growth exponent n.
Interestingly, the growth kinetics for the two rather different functional forms
of g (q) are very similar. This suggests that the growth exponent assumes a
universal value in a way that is similar to the growth exponent in isotropic
GB systems (e.g. soap froth).

Moldovan et al., (2002c) developed a theoretical model based on the
mean-field approach that predicts that the exponent, n, which under certain
conditions is universal, depends only on the parameter p in equation [4.6],
i.e. on the specific accommodation mechanism, according to

n
p

 = 2
 –  1

[4.12]
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Table 4.2 summarizes the simulation findings together with the theoretically
predicted values of n. One can see that the growth exponents for both functional
forms of g (q) are almost the same and in very good agreement with the
theoretically predicted exponents given by equation [4.12].

These simulation results, corroborated by our analytical derivation (see
Moldovan et al., 2002c), thus suggests the existence of a new universal
coarsening exponent, n, characterizing the growth in 2D domain structures
by the mechanism of grain-rotation-induced grain coalescence. This coarsening
exponent depends only on the parameter p characterizing the size dependence
of the rotational mobility of the grains.

    

A t
A

( )
(0)

p = 5 (T)

p = 5 (ERS)

p = 4 (ERS)

p = 3 (ERS)

100

10

1
0.0001 0.001 0.01 0.1 1 10 100

Time [A(0)2/gmax C]

4.7 Time variation of the average grain area (normalized using the
initial value) for various values of the parameter p. In these
simulations both the extended Read–Shockley (ERS) and triangular
(T) formulas are used for the GB energy dependence on the
misorientation.

Table 4.2 Analytical and simulated values for the growth exponents n
characterizing the time dependence of the average grain area, A(t) ~ tn, for
the system evolving in the presence of grain rotation only. Simulation results
are reported for two functional types of the misorientation dependence of the
grain boundary energy g (q)

n (simulation)

g (q): extended g (q): triangular
p n (Eq. 4.12) Read–Shockley shape

5 0.50 0.50 ± 0.02 0.51 ± 0.02
4 0.66 0.66 ± 0.02 0.67 ± 0.02
3 1.0 0.99 ± 0.02 0.95 ± 0.02
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4.5.2 Grain growth by simultaneous GB migration and
grain rotation

We now consider growth under the combined effects of both grain rotation
and GB migration. As derived by dimensional analysis in Section 4.3.4, the
parameter of the model that has to be ‘tuned’ in order to set the system in
various growth regimes is h, given by equations [4.8] and [4.9].

We first analyze the growth law to determine the range of h values for
which grain rotation and GB migration compete on an equal basis. We then
perform a detailed analysis for one particular value of h (h = 0.025) in this
crossover regime. Figures 4.8(a) and (b) reveal that the value of the growth
exponent, n, in the growth law for the average grain area A(t) ~ tn, depends
strongly on the parameter h. Specifically (see Fig. 4.8(b)), we find that for
h < 0.001, n ª 0.71, i.e. the value for the system in the presence of GB
migration only (Moldovan et al., 2002a). By contrast, for h > 0.3 we find
n ~ 0.50, i.e. the value for growth by grain-rotation-coalescence only (see
also Fig. 4.7 and Table 4.2). In the range 0.001 < h < 0.3, n decreases
smoothly from n = 0.71 to n = 0.5, the middle of the crossover (in the linear-
log representation of n vs. h, see Fig. 4.8(b)) corresponding to a value of
h ª 0.025.

By rewriting equation [4.9] (with p = 5) as R0 = Rc/h1/2 one can adopt the
alternate view of the crossover regime in terms of the initial average grain
size R0. We find that the GB-migration-dominated regime corresponds to
large grain sizes, i.e, R0 > 31Rc(h < 0.001), while for R0 < 1.82Rc(h  > 0.3)
the system is in the grain-rotation-dominated regime. When considering
these values one should bear in mind that, provided the growth process is
followed over a long time such that significant changes of the average grain
size occur, a continuous change from rotation-dominated to migration-
dominated growth is obtained. In our simulations for growth in the scaling
regime (evolution from 5000 to 500 grains) the average grain size increases
by roughly a factor of three.

Figure 4.9 shows four snapshots of evolving microstructures with different
values of h ranging between 0 and •; all snapshots contain about 700 grains
evolved from initially 10 000 grains. It is interesting to see that in the presence
of grain rotation only (h = • ; see Fig. 4.9(a)), most of the grains become
rather elongated. In addition, close inspection of this microstructure indicates
the presence of a relatively small number of small grains. One can, therefore,
anticipate a narrower grain-size distribution compared with the cases when
GB migration is present. By contrast, for h = 0 (see Fig. 4.9(b)) there are no
significantly elongated grains in the microstructure. In this sense the
microstructure strongly resembles the isotropic microstructure shown in Fig.
4.9(d). However, there are some differences due mainly to the triple-point
angles deviating from 120∞, which is a consequence of the presence of both
low-angle and high-angle GBs in the system.



Mesoscale modelling of grain growth and microstructure 109

The morphology of the microstructure is quite different when both GB
migration and grain rotation are present (see the system for h = 0.025 in Fig.
4.9(c)). This microstructure exhibits characteristics of both microstructures
in Figs 4.9(a) and (b). For example, one can see the presence of some
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4.8 (a) Time variation of the average grain area (normalized to the
initial value) for a system characterized by various values of the
parameter h. Notice that h = • system evolves in the presence of
grain-rotation coalescence only while h = 0 system evolves in the
presence of curvature-driven GB migration only. (b) h dependence
of the grain-growth exponent, n, for the system evolving in the
presence of both grain rotation and GB migration.
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elongated grains, the signature of grain rotation; also, the presence of some
rather small grains compared to the average grain size reflects a broader
distribution of the grain sizes which is a characteristic of GB migration only
(see Fig. 4.9(b)). We also find that in the presence of GB migration (both
with and without grain rotation), the dihedral angles between boundaries at
the triple junctions quickly assume their equilibrium values and the Herring
relation (Herring, 1951) is satisfied.

It is well-known that for curvature-driven grain growth, the average grain
size <R> is a valid scaling parameter, which reduces the grain-size distribution

4.9 Four typical snapshots of the microstructure when only about 700
(from initially 10 000) grains are left in a system evolving under
various growth conditions. (a) Grain rotation only (h = •); (for this
system the straight GB model was used in the simulations); (b)
curvature-driven GB migration only (h = 0); (c) Simultaneous grain
rotation and GB migration (h = 0.025); and (d) isotropic system, i.e.
GB migration only in a system with isotropic GB properties.

h = • h = 0

(a) (b)

h = 0.025 Isotropic GBs

(c) (d)
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function, f (x) = f (R/<R>), at different times to a common curve. Interestingly,
our simulations reveal that this is still valid even for h π 0. Figure 4.10
compares f (x) for h = •, h = 0.025 and h = 0 evaluated by averaging over a
number of configurations while the system grew in the scaling regime. For
comparison, we also show the log-normal distribution function fitted to the
distribution in the presence of GB migration only (h = 0).

The shapes and peak positions are different for the three distribution
functions. The distribution function for h = • is narrower than for the other
two systems and has a higher peak value. The peak position is around the
reduced grain size xm ª 0.8, i.e. smaller than the corresponding peak values
for the other systems. Notice also that for h = • the distribution function
drops more quickly to zero at small grain sizes, showing an apparent cutoff
at xc ª 0.2. The presence of GB migration (for h = 0 and h = 0.025) leads to
a widening of the grain-size distribution and a shift of the peak positions
towards larger reduced grain sizes. Moreover, GB migration tends to eliminate
the cutoff threshold xc at small grain sizes; i.e. grains which are much smaller
than the average start to be present more frequently in these systems. One
can understand this by recalling that under GB migration small grains will
shrink continuously until they disappear (by a T2 event or by a combination
of T1 and T2 events). However, when only grain rotation takes place, there
is no mechanism by which a grain can decrease its size. Rather, a grain may
either disappear or may only increase its size by discrete coalescence events
with its neighboring grains. Moreover, since the rotational mobility depends

h = •

0.025
0
log-normal

0 0.5 1 1.5 2 2.5
x = R/·RÒ

f(
x)

1.5

1.2

0.9

0.6

0.3

0

4.10 Grain-size distribution functions vs. reduced grain size, x =
R /<R>, for h = •, h = 0.025 and h = 0. For comparison, the log-
normal distribution fitted to the distribution for GB migration only is
shown.
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so strongly on the average grain size (see equation [4.6]), small grains will
be more likely to undergo coalescence events, and therefore disappear or
grow faster, than larger ones.

Finally, we mention that there is no consensus on the precise form of the
grain-size distribution of a microstructure evolving under curvature-driven
grain growth. While experimental data suggest that a log-normal distribution
function is appropriate, neither theoretical models nor simulation studies
(see, e.g. Fig. 4.10) have reproduced such a distribution. Therefore, the
deviations from the log-normal distribution are not surprising.

4.5.3 Extended von Neumann–Mullins relation

The mechanistic insights and GB parameters extracted from the atomic-level
simulations, properly transferred into a mesoscopic conceptual and
computational framework, have provided novel insights into not only the
physics but also the statistical mechanics of grain growth. The ultimate goal
of our multiscale simulations is, of course, to capture all these insights
theoretically in the form of an analytic formulation of the process of grain
growth. In the following we describe a simple theoretical framework capable
of capturing the above simulation results.

For a system with isotropic GB properties evolving by curvature-driven
GB migration, von Neumann (1952) derived the key equation

d
d

 = 
3

 (  – 6)
A
t

m
nn p g

[4.13]

relating the rate of area change of a grain to its number of sides, n, and to the
product of the GB energy g  and mobility m. Equation [4.13], known as the
von Neumann–Mullins (VNM) relation, allows a simplified description of a
coarsening structure in an isotropic system in terms of only two variables:
the area, An and the topological class, n, i.e. the number of sides of each
grain. According to equation [4.13], the rate of area change for each grain is
independent of the boundary shapes and of the rates of growth of the
neighboring grains.

Focusing on the effect of GB anisotropy on grain growth, Moldovan et al.
(2002a) recently investigated the adherence of curvature-driven grain growth
to an extended, averaged VNM relation:
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Here <gnmn> is the average value of g m for the GBs surrounding the grains
of topological class n, and <qn> is the average value of the triple-point
angles of the n-sided grains; <…> indicates an average over all grains with
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n sides. One can see that equation [4.14] reduces to the VNM relation for
isotropic systems by simply substituting <qn> = 2p /3 and <gnmn> = g m.

We point out that equation [4.14] requires input from simulation, specifically
the averaged quantities <gnmn> and <qn>, whereas the VNM relation requires
no simulation input. Our simulations reveal that, although the growth is
considerably more complex in a system with anisotropic GB properties, the
growth process can still be rationalized in terms of groups of grains belonging
to the same topological class.

In the presence of both GB migration and grain rotation, two processes
contribute to the change of the grain area. While GB migration leads to a
continuous and smooth change of the area, growth due to the rotation–
coalescence mechanism is sudden and discrete. Any rotation–coalescence
event therefore changes the topological classes of the four grains involved.
The validity of equation [4.14] is therefore not affected, except for the fact
that the ‘lifetime’ of a given grain within its topological class is limited by
any rotation–coalescence events in which the grain might participate.

Figure 4.11 shows the time evolution, over a relatively short period of
time, of the average area, <An(t)> – <An(0)>, of n-sided grains in the scaling
regime for the system with h = 0.025. One should notice that only grains that
do not change their number of sides are considered when calculating <An(t)>.
Although the rate of area change of individual grains in a topological class
varies, the rate of change of the average area of the grains in each topological
class is approximately constant. Figure 4.11 reveals that the average area of
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4.11 Time evolution of the average grain area, <An(t)> – <An(0)>, of
n-sided grains for h = 0.025. Only grains that do not change their
number of sides during the entire time interval of the averaging are
used when calculating <An(t)>.
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a six-sided grain does not change; by contrast, the average areas of grains
with n < 6 decrease and those with n > 6 increase. Moreover the rates of
average area change do not increase linearly with n, by contrast with the
prediction from the VNM relation (see equation [4.13]).

Figure 4.12 shows the simulation results for the rates of area change for
grains belonging to various topological classes n, for both the isotropic
system and for a system with h = 0.025. In addition the rates predicted from
equation [4.13] and from the extended averaged VNM relation [4.14] are
shown. The VNM relation is followed almost perfectly for the isotropic case.
Although the average rate of grain-area change shows some deviation from
linearity and is not at all represented by the VNM relation, for h = 0.025 the
extended averaged VNM relation fits the simulation results well. This
demonstrates that, although the degree of complexity increases in the
simultaneous presence of anisotropic GB properties and grain rotation, the
growth of grains which are not involved in any grain-rotation–coalescence
events can still be rationalized in terms of groups of grains belonging to
same topological class.

4.6 Summary and conclusions

For the simple model case of grain growth in a columnar polycrystalline
microstructure, we have formulated a rigorous computational and theoretical
framework which permits physical insights gained by MD simulation (see
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4.12 Growth rates of the average areas of n-sided grains for the
isotropic system and for the system with h = 0.025. The simulation
results are well represented, respectively, by the von Neumann–
Mullins relation (equation [4.13]; dotted line) and by the extended
von Neumann–Mullins relation (equation [4.14]; solid line).
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Fig. 4.13(a)) to be transferred from the atomic level into the mesoscale (see
Fig. 4.13(b)). This transfer requires quantification of the MD observations,
for example, on the observed grain-growth mechanism(s) within a theoretical
model. This model incorporates mesoscale physical properties, such as the
GB energies and mobilities, extracted from the MD simulations as input
parameters. This then enables examination of the statistical mechanics of the
process in a realistic system, i.e. unencumbered by the well-known time and
length-scale restrictions inherent to the MD simulations. Ideally, these
mesoscale simulations enable the formulation of a continuum theoretical
framework, with input parameters extracted from the mesoscale simulations,
which quantitatively captures the insights into both the physics and statistical
mechanics of the process gained from the simulations. In our simple model
case, a generalized VNM relation was shown to capture analytically a key
aspect of the mesoscale simulation results.

The centerpiece of our hierarchical multiscale approach consists of the

4.13 Multiscale simulation approach for polycrystalline materials
illustrated for the case of grain growth in a polycrystalline fcc metal
with a columnar microstructure. In (b) the objects of the mesoscale
simulation that evolve in time and space are the discretized grain
boundaries rather than the atoms. Instead of the vibration periods of
the atoms and the interatomic distances, in (a), the related
microstructural time and length scales are therefore given by the
mobilities of the GBs and grains and by the grain size. The meshing
of the grain interiors in (c) is necessary for determining the
inhomogeneous stress distribution within the microstructure, while
the atomic-level simulations are needed to establish the physical (i.e.
mechanistic) basis for microstructural processes and to provide
grain-boundary input parameters for the mesoscale simulation. The
new paradigm for materials simulation is thus shifted from the
continuum level down to the microstructural length and timescales,
thus permitting atomic-level insights to be fully incorporated without
losing the advantages of the finite-element approach.
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mesoscale methodology described in Section 4.3. It differs from the MD
approach in two fundamental aspects. First, the mesoscale methodology
naturally incorporates the rate-limiting microstructural time and length scales
governed, respectively, by the GB and grain-rotational mobilities and by the
grain size, rather than by atom-vibration periods and interatomic distances
(compare Figs 4.13(a) and (b)). The well-known limitations of atomistic
simulations pertaining to small system size and short inherent timescales are
thus overcome.

Second, by contrast with Newton’s law of motion coupling the acceleration
of the atoms to the forces acting on them, the force law governing
microstructural evolution is, by nature, viscous rather than conservative.
Similar to the principle of maximum entropy production, a rigorous dynamical
approach based on the functional of virtual-power dissipation can be formulated
(Ziegler, 1977). This dissipative-dynamics approach uniquely defines the
many-body path taken by the evolving system.

As an outlook we briefly describe how the effects of applied stress might
be incorporated into the hierarchical multiscale approach outlined in this
chapter. By meshing the grain interiors such that the grain-interior nodes
link up with the already discretized GBs and grain junctions delimiting each
grain (Fig. 4.13(c)), the inhomogeneous stress distribution arising from some
externally applied stress can be computed using the finite-element approach.
In an elastically anisotropic system, these stresses can provide an additional
driving force for GB migration (Schoenfelder et al., 1997) that acts against
or in support of the capillarity driving force. At elevated temperatures, these
stresses can also induce diffusion fluxes through the GBs and the grain
interiors and, hence, give rise to diffusion creep and thus facilitate GB-
diffusion accommodated processes, such as GB sliding and grain rotation
(see Moldovan et al., 2003b; Ding et al., 2005).

Conceptually, this type of mesoscale approach may be viewed as a dynamical
finite-element method (FEM) approach implemented, however, at the level
of the rate-determining level of the materials microstructure. Operationally
it increases the number of degrees of freedom in a conventional FEM simulation
by the microstructural degrees of freedom associated with the GB network.
The new paradigm for the simulation of engineering materials is thus shifted
from the continuum level down to the critical microstructural length and
timescales, thus permitting atomic-level insights to be fully incorporated
without losing any of the strengths of the FEM-based continuum approach
for the simulation of engineering structures.

We anticipate that over time this type of multiscale simulation methodology
will have a major impact on the ability to simulate the properties of complex
materials. The resulting novel class of simulations will provide a physical
basis for realistic simulations of the complex interplay between diverse
microstructural processes which limit the lifetime of engineering structures
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subjected, for example, to materials fatigue and degradation. It will also
provide a valuable tool for the rational design of materials with carefully
tailored microstructures suitable for specific applications.

4.7 Acknowledgments

The work presented in this review chapter is part of a coordinated effort by
the Argonne team during the period from 2000–2004. During this period we
have enjoyed many stimulating discussions with our colleagues Andrew
Haslam (now at Imperial College, London), Vesselin Yamakov (now at the
National Insitute for Aerospace, Hampton, VA) and Simon Phillpot (now at
the University of Florida). We are very grateful for their contributions that
made this a most stimulating environment and team. D. Moldovan was
supported by Louisiana Board of Regents (grant LEQSF(2003-06)-RD-A-
13) and by NSF (grant CMS-0407785). D. Wolf was supported by the US
Department of Energy, Office of Science under contract W-31-109-Eng-38.

4.8 References

Anderson M.P. and Grest G.S. (1989), Computer-simulation of normal grain-growth in 3
dimensions, Phil. Mag. B 59, 293–329.

Anderson M.P., Srolovitz D.J., Grest G.S. and Sahni P.S. (1984), Computer-simulation of
grain-growth. 1. Kinetics, Acta Metall. 32, 783–791.

Ashby M.F. and Verrall R.A. (1973), Diffusion-accommodated flow and superplasticity,
Acta Metall. 21, 149–163.

Atkinson H.V. (1988), Theories of normal grain-growth in pure single phase systems,
Acta Metall. 36, 469–491.

Beenakker C.W.J. (1988), Numerical-simulation of a coarsening two-dimensional network,
Phys. Rev. A. 37, 1697–1702.

Burke J.E. and Turnbull D. (1952), Recrystallization and grain-growth, Prog. Metal.
Phys. 3, 220–244.

Chen D. (1995), Structural modeling of nanocrystalline materials, Comput. Mater. Sci. 3,
327–333.

Chen L.-Q. (1995), A novel computer-simulation technique for modeling grain-growth,
Scripta Metall. et Mater. 32, 115–120.

Chen L.-Q. and Yang W. (1994), Computer-simulation of the domain dynamics of a
quenched system with a large number of nonconserved order parameters – the grain-
growth kinetics, Phys. Rev. B 50, 15752–15756.

Cleri F. (2000), A stochastic grain-growth model based on a variational principle for
dissipative systems, Physica A 282, 339–354.

Cocks A.C.F. and Gill S.P.A. (1996), A variational approach to two dimensional grain-
growth. 1. Theory, Acta Mater. 44, 4765–4775.

D’Agostino G. and Van Swygenhoven H. (1996), Structural and mechanical properties of
a simulated nickel nanophase, Metastable Phases and Microstructures, MRS Symposia
Proceedings No. 400, Pittsburgh, 293–298.

Ding R., Moldovan D., Yamakov V. Wolf D. and Phillpot S.R. (2005), Effects of



Multiscale materials modelling118

microstructural inhomogeneity on dynamic grain growth during large-strain grain
boundary diffusion-assisted plastic deformation, Model. Simul. Mater. Sci. Eng. 13,
1129–1151.

Fan D. and Chen L.-Q. (1995), in the Proceedings of the American Ceramic Society
Annual Meeting, Cincinnati, Ohio (1995).

Feltham P. (1957), Grain-growth in metals, Acta Metall. 5, 97–105.
Foiles S.M. and Adams J.B. (1986), Thermodynamic properties of fcc transition metals

as calculated with the embedded-atom method, Phys. Rev. B 40, 5909–5915.
Fradkov V.E. Kravchenko A.S. and Shvindlerman L.S. (1985), Experimental investigation

of normal grain-growth in terms of area and topological class, Scripta Metall. 19,
1291–1296.

Fullman, R.L. (1952), in Metal Interfaces, Cleveland, ASM, OH: 179.
Galina A.V. Fradkov V.E. and Shvindlerman L.S. (1987), Influence of mobility and of

triple grain junctions on grain boundary migration, Phys. Met. Metall. 63, 165–168.
Gill S.P.A. and Cocks A.C.F. (1996), A variational approach to two dimensional grain

growth. 2. Numerical results, Acta Mater. 44, 4777–4789.
Gleiter H. (1989), Nanocrystalline materials, Prog. Mater. Sci. 33, 223–315.
Gottstein G., Sursaeva V. and Shvindlerman L.S. (1999), The effect of triple junctions on

grain boundary motion and grain microstructure evolution, Interface Sci. 7, 273–283.
Grest G.S., Srolovitz D.J. and Anderson M.P. (1985), Computer-simulation of grain-

growth. 4. Anisotropic grain-boundary energies, Acta Metall. 33, 509–520.
Harris K.E., Singh V.V. and King A.H. (1998), Grain rotation in thin films of gold, Acta

Mater. 46, 2623–2633.
Haslam A.J., Phillpot S.R., Wolf D., Moldovan D. and Gleiter H. (2001), Mechanisms of

grain-growth in nanocrystalline fcc metals by molecular-dynamics simulation, Mater.
Sci. Eng. A 318, 293–312.

Haslam A.J., Phillpot S.R., Moldovan D., Wolf D. and Gleiter H. (2002), Combined
atomistic and mesoscale simulation of grain growth in nanocrystalline thin films,
Comput. Mater. Sci. 23, 15–32.

Haslam A.J., Moldovan D., Yamakov V., Wolf D., Phillpot S.R. and Gleiter H. (2003),
Stress-enhanced grain-growth in a nanocrystalline material by molecular-dynamics
simulation, Acta Mater. 51, 2097–2112.

Haslam A.J., Yamakov V., Moldovan D., Wolf D., Phillpot S.R. and Gleiter H. (2004),
Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics
simulation, Acta Mater. 52, 1971–1987.

Herring C. (1951), in The Physics of Powder Metallurgy ed. W.E. Kingston, New York:
McGraw-Hill, 143.

Hillert M. (1965), On the theory of normal and abnormal grain growth. Sur la theorie des
croissances granulaires normale et anormale. Zur Theorie des normalen und des anomalen
Kornwachstums, Acta Mater. 13, 227–238.

Humphreys F.J. (1998), in Grain Growth and Recrystallization in Polycrystalline Materials,
Proc. 3rd Int. Conf., eds H. Weiland, B.L. Adams and A.D. Rollett, Warrendale PA:
TMS Publ., 13.

Humphreys F.J. and Hatherly M. (1995), Recrystallization and Related Annealing
Phenomena, Oxford: Pergamon.

Kawasaki K., Nagai T. and Nakashima K. (1989), Vertex models for two-dimensional
grain-growth, Phil. Mag. B 60, 399–421.

Keblinski P., Phillpot S.R., Wolf D. and Gleiter H. (1997), Amorphous structure of grain
boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics
simulation, Acta Mater. 45, 987–998.



Mesoscale modelling of grain growth and microstructure 119

Keblinski P., Wolf D. and Gleiter H. (1998), Molecular-dynamics simulation of grain-
boundary diffusion creep, Interface Sci. 6, 205–212.

Keblinski P., Wolf D., Phillpot S.R. and Gleiter H. (1999a), Self-diffusion in high-angle
fcc metal grain boundaries by molecular dynamics simulation, Phil. Mag. A 79, 2735–
2761.

Keblinski P., Wolf D., Phillpot S.R. and Gleiter H. (1999b), Structure of grain boundaries
in nanocrystalline palladium by molecular dynamics simulation, Scripta Mater. 41,
631–636.

Kermode J.P. and Weaire D. (1990), 2d-froth – A program for the investigation of 2-
dimensional froths, Comput. Phys. Commun. 60, 75–109.

Kumar S., Kurtz S.K., Banavar J.R. and Sharma, M.G. (1992), Properties of a three-
dimensional Poisson–Voronoi tesselation: A Monte Carlo study, J. Stat. Phys. 67,
523–551.

Kurtz S.K. and Carpay F.M.A. (1980), Microstructure and normal grain-growth in metals
and ceramics. 1. Theory, J. Appl. Phys. 51, 5725–5744.

Louat N.P. (1974), Theory of normal grain-growth, Acta Metall. 22, 721–724.
Moldovan D., Wolf D. and Phillpot S.R. (2001), Theory of diffusion-accommodated

grain rotation in columnar polycrystalline microstructures, Acta Mater. 49, 3521–
3532.

Moldovan D., Wolf D., Phillpot S.R. and Haslam A.J. (2002a), Mesoscopic simulation of
two-dimensional grain growth with anisotropic grain-boundary properties, Phil. Mag.
A. 82, 1271–1297.

Moldovan D., Wolf D., Phillpot S.R. and Haslam A.J. (2002b), Role of grain rotation
during grain growth in a columnar microstructure by mesoscale simulation, Acta
Mater. 50, 3397–3414.

Moldovan D., Yamakov V., Wolf D. and Phillpot S.R. (2002c), Scaling behavior of grain-
rotation-induced grain growth, Phys. Rev. Lett. 89, 206101–4.

Moldovan D., Wolf D. and Phillpot S.R. (2003a), Linking atomistic and mesoscale
simulations of nanocrystalline materials: quantitative validation for the case of grain
growth, Phil. Mag. 83, 3643–3659.

Moldovan, D., Wolf D., Phillpot S.R., Mukherjee A.K. and Gleiter H. (2003b), Grain-
boundary diffusion-controlled stress concentration in polycrystals, Phil. Mag. Lett.
83, 29–38.

Needleman A. and Rice J.R. (1980), Plastic creep flow effects in the diffusive cavitation
of grain-boundaries, Acta Metall. 28, 1315–1332.

Phillpot S.R., Wolf D. and Gleiter H. (1995), Molecular-dynamics study of the synthesis
and characterization of a fully dense, 3-dimensional nanocrystalline material, J. Appl.
Phys. 78, 847–861.

Raj R. and Ashby M.F. (1975), On grain boundary sliding and diffusional creep, Metall.
Trans. 2, 1113–1127.

Read W.T. and Shockley W. (1950), Dislocation models of crystal grain boundaries,
Phys. Rev. 78, 275–289.

Rivier N. (1983), On the structure of random tissues or froths, and their evolution, Phil.
Mag. B. 47, L45–L49.

Schiøtz J., Di Tolla F.D. and Jacobsen K.W. (1998), Softening of nanocrystalline metals
at very small grain sizes, Nature 391, 561–563.

Schiøtz J., Vegge T., Di Tolla F.D. and Jacobsen K.W. (1999), Atomic-scale simulations
of the mechanical deformation of nanocrystalline metals, Phys. Rev. B 60, 11971–
11983.



Multiscale materials modelling120

Schoenfelder B., Wolf D., Phillpot S.R. and Furtkamp M. (1997), Molecular-dynamics
method for the simulation of grain-boundary migration, Interface Sci. 5, 245–262.

Smith C.S. (1964), Mev. Mod. Phys. 36, 524–532.
Thompson C.V., Frost H.J. and Spaepen F. (1987), The relative rates of secondary and

normal grain-growth, Acta Metall. 35, 887–890.
Upmanyu M., Smith R.W. and Srolovitz D.J. (1998), Atomistic simulation of curvature

driven grain boundary migration, Interface Sci. 6, 41–58.
Upmanyu M., Srolovitz D.J., Shvindlerman L.S. and Gottstein G. (1999), Misorientation

dependence of intrinsic grain boundary mobility: Simulation and experiment, Acta
Mater. 47, 3901–3914.

Van Swygenhoven H., Spaczer M. and Caro A. (1998), Role of low and high angle grain
boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics
simulation study, Nanostruct. Mater. 10, 819–828.

Van Swygenhoven H., Farkas D. and Caro A. (2000), Grain-boundary structures in
polycrystalline metals at the nanoscale, Phys. Rev. B 62, 831–838.

Von Neumann J. (1952), in Metal Interfaces, Cleveland, OH: ASM, 108.
Voronoi G. (1908), Nouvelles applications des parametres continus a la theorie des formes

quadratiques, Z. Reine Angew. Math. 134, 199–287.
Weaire D. and Kermode J.P. (1984), Computer-simulation of a two-dimensional soap

froth. 2. Analysis of results, Phil. Mag. B 50, 379–395.
Weaire D. and Lei H. (1990), A note on the statistics of the mature 2-dimensional soap

froth, Phil. Mag. Lett. 62, 427–430.
Weygand D., Brechet Y. and Lepinoux L. (1998), A vertex dynamics simulation of grain-

growth in two dimensions, Phil. Mag. B 78, 329–352.
Wolf D. (1989), A Read-Shockley model for high-angle grain-boundaries, Scripta Metall.

23, 1713–1718.
Wolf D. (1990), Structure-energy correlation for grain-boundaries in fcc metals. 3.

Symmetrical tilt boundaries, Acta Metall. 38, 781–790.
Wolf D. and Merkle K. (1992), in Materials interfaces, atomic-level structure and properties,

eds D. Wolf and S. Yip, London: Chapman and Hall, 87.
Yamakov V., Phillpot, S.R., Wolf, D. and Gleiter, H. (2000), in Computer Simulation

Studies in Condensed Matter Physics, Vol. XIII eds D.P. Landau, S.P. Lewis and H.B.
Schuettler, Berlin: Springer, 195.

Zelin M.G. and Mukherjee A.K. (1996), Geometrical aspects of superplastic flow, Mater.
Sci. Eng. A 208, 210–225.

Zhang H., Mendelev M.I. and Srolovitz D.J. (2004), Computer simulation of the elastically
driven migration of a flat grain boundary, Acta Mater. 52, 2569–2576.

Ziegler H. (1977), An Introduction to Thermomechanics, Amsterdam: North-Holland.



121

5.1 Introduction

A basic principle of materials science is that the macrosocopic behavior of
complex, heterogeneous materials depends mainly on the properties, volume
fraction and spatial arrangement of the different phases and interfaces at
length scales from nanometers to microns. This fact has led to the development
of a number of simulation strategies which are grouped under the umbrella
of continuum micromechanics, as the assumptions of continuum mechanics
are valid in the range of length scales of interest. In contrast to other continuum
mechanics approaches to materials, which develop constitutive equations for
structural materials on the basis of fundamental considerations (deformation
kinematics, thermodynamics, etc.), continuum micromechanics provides
physically-based models in which the macroscopic behavior is linked to the
details of the microstructure, and thus shows the route to optimize the behavior
of materials for specific applications.

The basic strategy in continuum micromechanics is the simulation of the
behavior of a representative volume element (RVE) of the microstructure of
the material. The volume element should contain all the necessary information
about the statistical description of the microstructure and, in addition, the
RVE size should be large enough so that the average properties of this
volume element are independent of its size and position within the material.
Once the RVE has been defined (Section 5.2), the bridging of length scales
(which stands as the central aim of continuum micromechanics) is carried
out by obtaining the macroscopic (or effective) properties of the material
from the analysis of the behavior of the RVE. This has been achieved
traditionally through two different methods: homogenization techniques
(Section 5.3) and the numerical simulation of the RVE behavior (Section
5.4). Combinations of the two techniques can be used to carry out multiscale
modeling of materials and structures, and they are presented in Section 5.5
of this chapter. Future trends and expected developments in this area are
briefly noted in the last section of this chapter.
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Unless otherwise indicated, bold lowercase roman and greek letters stand,
respectively, for first- and second-order tensors, and bold capital letters for
fourth-order tensors. In addition, the different products are expressed as
(A:�)ij = Aijkhakh, A::B = AijkhBijkh, and (� ƒ �)ijkh = aijakh. Finally,
  �  represents the volumetric average of �.

5.2 Representative volume element

5.2.1 Concept of critical representative volume element

Continuum micromechanics relies on the simulation of the behavior of an
RVE of the microstructure of the material. Evidently, the accuracy of the
solution and the computer time required to solve the problem increase with
the size of the RVE, and it is important to define clearly the meaning of RVE
and also to provide analytical or numerical methods to determine its critical
size.

Drugan and Willis (1996) identified two different ways to define the RVE.
The first definition, based on the statistical nature of the material microstructure,
defines the RVE as the smallest material volume statistically representative
of the microstructure. The second definition is more pragmatic and defines
the RVE just for a given material property or behavior. In this case, the RVE
is the smallest volume of the heterogeneous material whose behavior represents
accurately the actual macroscopic behavior. Accuracy is determined by the
maximum allowed error between the exact value and that obtained from the
RVE. This concept of critical RVE is more useful from the practical viewpoint
and is normally used. Moreover, Drugan and Willis (1996) also introduced
the concept of critical size of the RVE in the statistical sense. This guarantees
the accuracy of the property obtained by averaging the results given by
different RVEs of the same size, although the individual results may not be
so precise. The critical size of the RVE in the statistical sense is always
smaller, and very often it is cheaper, computationally, to simulate many
small RVEs than a large one.

The critical RVE size to determine a material property with a prescribed
accuracy depends on two parameters: the material microstructure and the
phase properties. Analytical expressions to estimate that critical RVE size in
the statistical sense have been rigorously developed only for specific cases.
For instance, Monetto and Drugan (2004) determined the critical RVE size
for the elastic behavior of an isotropic and homogeneous dispersion of
ellipsoidal inclusions or voids embedded in a continuous matrix. They found
that the critical size of the RVE was surprisingly small and that estimates of
the elastic constants obtained on averaging the results provided by RVEs
containing a few dozens of inclusions or voids were within 5 % of the exact
value.
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Analytical estimates of the critical RVE size are, however, exceptional
and normally it has to be determined numerically for each given property in
a heterogeneous material. The basic strategy is to compute the desired
macroscopic property in RVEs with increasing size until the results converge
to the actual value of an infinite size RVE (Gusev, 1997; Zohdi and Wriggers,
2001). The critical size is then determined as a function of the desired accuracy
in the predictions. This methodology has been employed to determine the
critical RVE size (in the statistical sense) for the elastic properties of a
matrix containing a homogeneous dispersion of spherical inclusions or voids
(Gusev, 1997), the thermo-elastic constants of aligned short-fiber composites
(Hine et al., 2002) or the tensile deformation of an elasto-plastic matrix
reinforced with aligned ellipsoidal inclusions (Pierard et al., 2007). The
results obtained by Hine et al. (2002) for a random dispersion of aligned
short fibers with an aspect ratio of 30 and a volume fraction of 0.15 are
shown in Fig. 5.1, in which the average value of the longitudinal elastic
modulus is plotted as a function of the number of fibers in the RVE. Three
different realizations were generated and simulated for each number of fibers
in the RVE, and the error bars in Fig. 5.1 show the 95 % confidence interval.
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5.1 Estimations of the longitudinal elastic modulus of a short-fiber
reinforced composite as a function of the number of fibers in the
RVE. The solid circles stand for the average value and the error bars
represent the 95 % confidence interval. The composite was made up
of a homogeneous dispersion of aligned fibers with an aspect ratio
of 30 embedded in a continuous matrix (see Hine et al., 2002, for
details).



Multiscale materials modelling124

These results show that RVEs with only 30 fibers were large enough to give
predictions deviating only a few percent from the exact value provided that
they were averaged over various realizations. Of course, bigger RVEs presented
lower scatter, and the predictions obtained with 125 fibers in the RVE were
practically superimposed. Thus, the optimum size of the RVE has to be
determined in each case from the computational effort to generate and simulate
many RVEs of small size or a few large ones. It is important to notice,
however, that there is a minimum size of the RVE at which increasing the
number of realizations does not improve the estimation of the property (Zohdi
and Wriggers, 2001).

In general, the critical RVE size increases with the contrast in the phase
properties, and larger RVEs are necessary to predict with the same accuracy
the tensile deformation of a sphere-reinforced composite if the matrix behaves
as an elasto-plastic solid than in the purely elastic case (González et al.,
2004). However, the critical factor controlling the RVE size is the development
of percolation, which is very sensitive to the spatial arrangement of the
phases. This behavior is typical of conductivity problems but may also arise
in the simulation of the mechanical behavior, when plastic deformation or
damage leads to the localization of the deformation in bands which propagate
rapidly across the RVE. The macroscopic properties change suddenly once
percolation has traveled through the RVE, and thus the effective response
does not converge univocally to the exact value as the RVE size increases.

5.2.2 Microstructure generation and representation

As important as the size of the RVE to obtain the actual properties of the
material is to ensure that the phase arrangement within the RVE reproduces
faithfully the microstructure of the material. In general, the spatial distribution
of the phases in the RVE can be obtained using different approaches. The
first option is simply to reproduce in the RVE the phase arrangement provided
by the microstructrural analysis of the material. This methodology was limited
until very recently to materials with a two-dimensional microstructure, which
were easily analyzed using quantitative metallography. The extension to
materials with three-dimensional microstructure can be carried out by automated
serial sectioning (Sidhu and Chawla, 2006) and X-ray computed
microtomography (Youssef et al., 2005). Automated serial sectioning works
by taking optical micrographs after successive polishing cycles, from which
a layer of material of controlled thickness is removed. The micrographs are
analyzed using conventional image analysis software and segmented to black
and white images, while retaining the true morphology of the phases in the
microstructure. The segmented serial sections are stacked, and the three-
dimensional microstructure is reconstructed. X-ray computed microtomography
is based on X-ray radiography and provides detailed information at the micron
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level in three dimensions of the spatial arrangement of the phases within the
material. According to the Beer–Lambert law, each element in the recorded
projection corresponds to a line integral of the attenuation coefficient along
the beam path. The resulting image is a superimposed information of a
volume in a plane. Three-dimensional images can be obtained by recording
a large number of radiographs while the specimen is rotated between 0∞ and
180∞. The spatial density distribution is then reconstructed by using a standard
filtered back-projection algorithm.

These options to generate RVEs provide very realistic microstructures,
but they are not suitable for all types of materials and often require very
expensive experiments. A second approach to generate realistic RVEs uses
the experimental data provided by two- and three-dimensional microstructural
characterization techniques to compute two-point, three-point and higher-
order correlation functions. These correlation functions are an important
class of statistical descriptors that characterizate the spatial arrangement and
heterogeneity of microstructural features (Tewari et al., 2004). This information
can be used to reconstruct microstructures which, although not identical to
the original material, show similar features as defined by the statistical
correlation functions. Starting from an initial realization of the microstructure,
the method proceeds to find a realization in which the calculated correlation
functions best match the target functions. This is achieved by minimizing the
sum of squared differences between the calculated and the target functions
via stochastic optimization techniques (Torquato, 2001). The simulation of
the properties of the generated microstructures is very useful to establish a
direct link between microstructural statistical parameters which define the
spatial arrangement of the phases and the macroscopic behavior. The
disadvantage of the method is that the available reconstruction algorithms do
not always provide a good representation of the original microstructure.

Finally, RVEs of model microstructures are often very helpful in numerical
experiments in which the particular effect of one or more parameters is
systematically analyzed. Recent examples of this methodology include the
analysis of particle clustering on the tensile properties of sphere-reinforced
metal–matrix composites (Segurado et al., 2003) or the influence of interface
strength and toughness on the ductility of composites (Segurado and LLorca,
2005).

5.3 Homogenization techniques

Homogenization models were the workhorse to simulate the mechanical
behavior of multiphase materials prior to the arrival of digital computers.
They are still widely used because of the simplicity of their basic assumptions
and their ability to describe accurately the overall or ‘effective’ behavior,
particularly in the elastic regime. In addition, they often provide analytical
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solutions for the constitutive equation of the materials, which can be used in
structural analysis codes to assess the mechanical response of components.
Detailed information on the homogenization tools available to simulate the
behavior of heterogeneous materials can be found in Nemat-Nasser and Hori
(1999) and Torquato (2001).

5.3.1 Basic equations

The central aim of the homogenization techniques is to describe the
effective properties of the material from the mechanical properties and the
microsocopic arrangement of the constituents. This bridging of the length
scales is carried out by volume averaging and is denominated homogenization.
Mathematically

  
� � � �  = 1  ( )d       and       = 1  ( )dW W W W

W WÚ Úx x [5.1]

where �(x) and �(x) are, respectively, the strain and the stress at a point in
the material whose coordinates are given by the position vector x, and   �  and
  �  stand for the macroscopic (or effective) strain and stress. The inverse
operation, which provides the stresses and strains at a given point of the
material from the effective properties, is denominated localization, and it is
expressed as

  � � � = ( ) = ( ):      and      ( ) = ( ):x A x x B x s [5.2]

where A(x) and B(x) are the strain and stress concentration tensors. Evidently,
the operations of homogenization and localization cannot be carried out
exactly because of the complexity of the real materials, and it is necessary to
make simplifications which lead to different homogenization models. The
most important one is the mean-field approach, which approximates the
stress and strain fields by phase-wise constant fields, �i and �i. Thus

  � � � �i i i i = :      and       = :A B [5.3]

where Ai and Bi stand now for the strain and stress concentration tensors of
the phase i. It follows from equation [5.1] directly that the stress and strain
concentration tensors are related to each other by

I A B =   =  
=1 =1
S S
i

N

i i
i

N

i if f [5.4]

where N is the number of phases, fi the volume fraction of phase i, and I the
identity tensor.
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5.3.2 Linear behavior

If all the phases in the material are elastic, their constitutive equation can be
expressed as

�i = Li : eeeeei [5.5]

where Li is the elastic stiffness tensor of phase i, and then the effective
elastic stiffness tensor L (which relates the effective stress   �  with the effective
strain   � ) can be computed as

L L A =  :
=1
S
i

N

i i if [5.6]

The problem of obtaining the macroscopic properties of the heterogeneous
material is thus reduced to determining the strain concentration tensors of
the i phases in the material, which are related to each other through equation
[5.5], and depend on the volume fraction, shape, spatial distribution and
constitutive equation of each phase. Two obvious solutions are the Voigt and
the Reuss models; the first one assumes that Ai = I, " i and leads to the well-
known ‘rule of mixtures’ or isotrain approach, while Bi = I, " i in the second
one, leads to the ‘inverse rule of mixtures’ or isostress model. However,
these models (which lead to upper and lower bounds for the elastic properties)
are normally very poor approximations, and better ones have been developed
over the years.

The simplest one – within the framework of linear elasticity – is based on
the pioneer work of Eshelby (1957), who analyzed the stress distribution in
an elastic and isotropic ellipsoidal inclusion embedded in an elastic, isotropic
and infinite matrix which is subjected to a remote strain   � . Eshelby showed
that the strain field within the inclusion was constant and given by (Eshelby,
1957; Hill, 1965)

  � �i i i i m i m = :       where       = [  + : : (  –  )]dil dil –1 –1A A I S L L L [5.7]

where Lm and Li stand for stiffness tensors of the matrix and of the inclusion,
respectively, and Si is the Eshelby’s tensor for the inclusion, whose components
depend on the inclusion shape as well as on the matrix elastic constants.

The elastic stiffness tensor of the effective material, L, can be obtained
easily from equations [5.4], [5.6] and [5.7] as

L L L L A =  + [(  – ): ]m i m
dilfi i [5.8]

where the superindex dil in the strain concentration tensor of the inclusion
indicates that this expression is only exact when fi Æ 0, according to the
hypotheses included in the work of Eshelby.

There are many variations of Eshelby’s method to take into account the
distortion in the matrix and inclusion stress fields induced by the presence of
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neighbor particles. They can be used to compute the elastic properties of the
heterogeneous material when the inclusion volume fraction is finite. One of
the most popular ones is the Mori–Tanaka method (1973), which was
reformulated by Benveniste (1987) in the context of the strain concentration
tensors. Following Benveniste (1987), the inclusion strain concentration tensor,
A i

MT , can be obtained by interpolation between the strain concentration
tensors for dilute conditions ( )dilA i  and when fi Æ 1 (   )MTA Ii Æ . The simplest
interpolation can be written as

A A I Ai i i i if fMT dil dil –1 =  : [(1 – )  + ] [5.9]

and the effective elastic properties in the case of a two-phase material can be
computed as

L L L L A =  + [(  – ): ]MT
m i i m if [5.10]

where fi is the volume fraction of inclusions. The elastic constants provided
by the Mori–Tanaka method provide an excellent solution in the case of a
heterogeneous material with a matrix-inclusion topology in which the ellipsoidal
inclusions (with the same orientation, aspect ratio and properties) are dispersed
in a continuous matrix (Segurado and LLorca, 2002). For multiphase materials
with matrix-inclusion topology (e.g the aspect ratio, orientation or properties
of the inclusions are different), the best solution is provided by a two-step
homogenization. Accordingly, the RVE is decomposed into grains, each one
being viewed as a two-phase composite, whose properties are determined by
the Mori–Tanaka method. The overall aggregate properties are computed by
applying the Voigt or Reuss schemes over all the grains (Fig. 5.2) (Pierard
et al., 2004).

Another important mean-field approximation to the elastic properties of
multiphase materials is the self-consistent method, which is particularly
appropriate when the various phases form an interpenetrating network. This
model was developed by Kröner (1958) to compute the effective elastic
properties of polycrystalline solids. All the phases in the material are assumed
to be embedded in an effective medium, whose properties are precisely the
ones sought. The corresponding strain concentration tensor for each phase is
obtained from Eshelby’s dilute solution (equation [5.7]) substituting the matrix
elastic constants by those of the effective medium, L. Mathematically

A I S L L Li i i
SC –1 –1 = [  + : :(  – )] [5.11]

and introducing equation [5.11] into equation [5.6] leads to

L L I S L L L =  ( :[  + : :(  – )] )
=1

–1 –1S
i

N

i i i if [5.12]

which stands for a non-linear set of equations for the components of L which
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can be solved numerically to obtain the elastic constants of the heterogeneous
medium. Of course, Eshelby’s tensor Si depends on the shape and volume
fraction of each phase as well as on the elastic constants of the effective
medium given by L.

Finally, it is possible to compute upper and lower bounds for the effective
properties of the heterogeneous materials using the variational principles of
the theory of elasticity and the information available on the microstructure.
The simplest ones are the Voigt and Reuss bounds (Hill, 1963), which take
into account only the volume fraction of each phase (one-point limits) and
are normally of very little use. Hashin and Shtrikman (1963) derived much
tighter bounds employing variational principles which involve polarization
fields. These two-point bounds are the best possible ones for the effective
elastic constants of two-phase materials which present a statistically isotropic
microstructure given only the volume fraction information. They were improved
more recently by three-point bounds (Torquato, 2001) which incorporate
information about the phase arrangement through certain statistical correlation
parameters.

2nd
homogenization

1st
homogenization

Grain
decomposition

5.2 Schematic of the two-step homogenization of multiphase
composites with a matrix-inclusion topology.
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5.3.3 Non-linear behavior and damage

All the techniques described above can be extended to study the mechanical
behavior if one or more phases exhibit a non-linear behavior. Extension of
these methods to deal with elasto-plastic phases requires a linearization
procedure to re-write the local constitutive laws in such a way that
homogenization schemes valid for linear elasticity might apply, and the
effective stiffness tensor can be computed from those of each phase through
the chosen linear approximation. The schemes for the analysis of elasto-
plastic materials were reviewed recently by Ponte-Castañeda and Suquet
(1998) and Chaboche et al. (2005); they can be divided into two main groups,
depending on whether they are based on the use of the tangent or on the
secant stiffness tensors of the phases.

Secant formulations deal with the plastic deformation within the context
of non-linear elasticity, and the relationship between stress and strain in each
phase is given by a secant stiffness tensor. They are only valid for monotonic
and proportional loading, but they have been very popular because they are
easy to implement. Predictions based on the tangent method were introduced
in the seminal work of Hill (1965), who linearized the local constitutive laws
written in rate-form and introduced an instantaneous elasto-plastic tangent
modulus to compute the mechanical response through a step-by-step iterative
procedure. This initial approach led, however, to too stiff predictions of the
flow stress, and the origin of this error was traced to the anisotropic nature
of the tangent stiffness tensor during plastic deformation. More precise
estimations of the composite behavior were obtained by making use of isotropic
or transversely isotropic projections of the tangent operator of the matrix
instead of the anisotropic one in some steps of the computation of the
macroscopic tangent operator (González and LLorca, 2000; Chaboche et al.,
2005).

Although homogenization methods have been used exhaustively to compute
the internal stresses in multiphase materials during deformation, their
application to compute the mechanical behavior of materials, including
progressive damage, has been very limited. This is because the mean-field
approximations provide average magnitudes of the stress and strain fields in
each phase, while damage is normally triggered by the extreme values.
Moreover, damage leads to the rapid localization of the deformation, but this
phenomenon cannot be captured easily by homogenization methods. Regardless
of these limitations, homogenization models have been used to simulate the
effect of interface decohesion and reinforcement fracture in composite materials.
The standard strategy was to introduce progressively a new phase as the
critical condition for damage was reached. Broken or decohered reinforcements
were often represented by penny-shaped cracks or a transversally isotropic
phase with zero stiffness perpendicular to the fracture plane, and various
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algorithms were developed to redistribute the load shed by the damaged
reinforcements into the matrix and the intact reinforcements (Estevez et al.,
1999; González and Llorca, 2000).

5.4 Computational micromechanics

Computational micromechanics obtains the macroscopic or effective behavior
of the heterogeneous material by solving the boundary value problem for an
RVE of the microstructure by numerical methods. The simulations carried
out within this framework provide the local values of the field variables, and
thus can take into account accurately the nucleation and growth of damage
and the subsequent localization of the strain upon deformation. These major
advantages over the homogenization methods were hindered up to a few
years ago by the power of digital computers, which limited the size of the
RVE. In fact, most simulations were carried out in materials and loading
conditions amenable of two-dimensional analyses (e.g. transverse loading of
fiber-reinforced composites) or with simplistic RVEs formed by one or two
microstructural features (particles, grains) and periodic boundary conditions
(Brockenborough et al., 1991; LLorca et al., 1991). Despite these limitations,
the simple computational micromechanics models developed in the 80s and
90s were very useful to clarify the relationship between some microstructural
details (for instance, phase shape, volume fraction and aspect ratio) and the
mechanisms of non-linear deformation and damage in heterogeneous materials.

5.4.1 Numerical strategies

Advances in computing power and parallel developments of new simulation
tools have opened the field of computational micromechanics to analyze the
RVE of real materials of a size above the critical one. The numerical strategies
to solve the boundary value problems have to be computationally efficient
and easy to use with complex geometries. Fast Fourier transform algorithms
(Moulinec and Suquet, 1994) and the boundary element method (Ingber and
Papathanasiou, 1997) fulfill these conditions and have been used occasionally
but the finite element method (FEM) is the standard tool for these simulations.
The application of the FEM in computational micromechanics has been
driven by the development of mesh generation programs, which lead to the
quasi-automatic discretization of the RVE, and by the possibility of
implementing complex constitutive equations for the different phases and
interfaces (finite deformations, crystal plasticity, damage and fracture models,
etc.).

In most of the applications of the FEM to computational micromechanics,
the phase arrangements are discretized using ‘standard’ continuum elements,
the mesh being designed in such a way that element boundaries (and, where
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required, special interface elements) are located at all interfaces between
constituents. This approach can model any microgeometry, and it is readily
available in commercial codes, but the need to resolve the microfields in
regions with large strain gradients (for instance, between closely packed
reinforcement particles) may lead to very large models.

An alternative approach is given by the Voronoi Cell FEM, which is
especially suited to analyze material with matrix inclusion-topology (Moorthy
and Ghosh, 1996). The number of degrees of freedom in the analysis is
drastically reduced through the use of a special class of hybrid finite elements
which are specifically formulated to model the deformation, stress and strain
fields in a heterogeneous region consisting of a single inclusion or void
together with the surrounding matrix on the basis of some appropriate analytical
theory. The mesh for the hybrid elements is obtained by Voronoi tesselations
based on the positions of the reinforcements, where each Voronoi cell contains
an inclusion embedded in the matrix and stands for a basic hybrid finite
element (Fig. 5.3). Large planar multi-inclusion arrangements in the elasto-
plastic regime have been analyzed with this methodology (Ghosh et al.,
1997), and further developments included damage by fracture of the inclusions.
The extension to three-dimensional microstructures has been reported recently
(Ghosh and Moorthy, 2004).

Another strategy for the discretization uses a regular three-dimensional
array of hexahedral elements or voxels. Each element is assigned to one
phase according to the information provided by the three-dimensional
reconstruction of the microstructure obtained by serial sectioning or X-ray
microtomography (Guldberg et al., 1998; Geandier et al., 2003). Of course,
the ragged phase boundaries induced by the cubic discretization can lead to
very high local maxima, and good spatial resolution, i.e. a high number of
voxels, is necessary for the accuracy of the results, leading sometimes to
very large models.
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5.3 Two-dimensional Voronoi cell finite-element mesh and detail of
one Voronoi finite element.
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Finally, it is important to notice that computational micromechanics
simulations often involve very large models, with complex non-linear behavior
in the phases, so one area of concern is the development of more efficient
tools to solve the boundary value problem. This has led to the use of iterative
solvers, such as the conjugate gradient method, in which an analytical solution
of the stress microfields is given as the starting point to speed up the
convergence. Another approach is the domain decomposition method, an
iterative strategy which takes advantage of supercomputers based on multiple
independent processors (Zohdi and Wriggers, 2001). The model is split into
smaller subdomains, whose behavior is solved separately in different computers
using approximate boundary conditions. The solutions of all subdomains are
assembled and new boundary conditions are assigned to each one. This
process is repeated iteratively until continuity in stresses and displacements
at the surfaces shared by two subdomains is achieved. More details about the
current numerical strategies in the area of computational micromechanics
can be found in Zohdi and Wriggers (2005).

5.4.2 Boundary conditions

The effective properties of an RVE of finite size subjected to far-field
homogeneous deformation depend on the actual boundary conditions. For
instance, the elastic constants derived under imposed displacements are always
higher than those obtained under imposed forces, the differences decreasing
as the size of the RVE increases and both converging to the actual values in
the limit of an RVE of infinite size. Both types of boundary conditions can
be applied to an RVE (whose size is larger than the critical one) to estimate
upper and lower bounds for the elastic properties of the heterogeneous material
(Zohdi and Wriggers, 2001). Intermediate values for the macroscopic behavior
between those provided by imposed displacements or forces can be obtained
with the embedded cell method (Dong and Schmauder, 1996): the RVE is
embedded in a large cell of a homogeneous medium, which stands for the
action of the rest of the material on the RVE, and whose properties are the
solution sought. An initial estimation (as given, for instance, by the self-
consistent scheme) is used to solve the boundary value problem and to
compute the effective behavior of the RVE. This result is used as the new
estimation for the effective properties of the homogeneous medium and the
process is repeated until convergence is achieved.

Huet and coworkers (Huet, 1990; Hazanov and Huet, 1994) demonstrated
that the effective elastic constants derived under periodic boundary conditions
are always bounded by those obtained under imposed forces or displacements,
and thus provide a better approximation of the actual effective properties of
the heterogeneous material for a given size of the RVE, which is normally
limited by the available computational resources. Computational
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micromechanics simulations carried out with periodic boundary conditions
also require periodicity in the microstructure, and this enabled the
approximation of the heterogeneous material by an indefinite extension of a
periodic RVE in the three dimensions of space. Simple RVE (made up of one
or two features) are able to simulate regular microstructures with bcc, fcc,
hcp, etc. symmetries, while materials with random microstructures can be
studied by means of RVE containing a random dispersion of the relevant
features in the microstructure (grains, inclusions, fibers, etc.). An example of
a periodic RVE corresponding to a composite material made up of random
and homogeneous dispersion of aligned ellipsoidal inclusions is plotted in
Fig. 5.4. The prismatic RVE (with an aspect ratio of 3, equal to the one of the
ellipsoids) was built from the computer-generated ellipsoid distribution by
splitting the ellipsoids intersecting the prism faces into the appropriate number
of parts which were copied to the opposite faces, leading to the ‘ellipsoids in
box’ prism in Fig. 5.4.

Periodic RVE fill the space by translation along three perpendicular axes,
and periodic boundary conditions have to ensure that opposite faces of the
RVE must fit each other like parts of a jigsaw puzzle in both undeformed and
deformed situations. This condition is shown graphically in Fig. 5.5 for a
cubic RVE, and it is enforced numerically by imposing the same finite element
discretization on opposite faces of the RVE and linking the corresponding
degrees of freedom within each pair of faces. In the case of the cubic RVE

5.4 Prismatic periodic RVE of a random and homogeneous dispersion
of aligned ellipsoids. The volume fraction of ellipsoids is 25 %. The
finite-element discretization is shown on the surface of the ellipsoidal
inclusions (Pierard et al., 2007).
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in Fig. 5.5 of volume L3, if three concurrent edges of the cube stand for the
axes of coordinates x1, x2 and x3, the periodic boundary conditions can be
expressed as a function of the displacement vector u as

u u u

u u u

u u u

(x , x , 0) –  = (x , x , L)

(x , 0, x ) –  = (x , L, x )

(0, x , x ) –  = (L, x , x )

1 2 3 1 2

1 3 2 1 3

2 3 1 1 2

[5.13]

where u1, u2 and u3 are the displacements of the master nodes. Of course,
periodic boundary conditions are more expensive than symmetric ones in
terms of computing time and memory requirements because the linking of
paired degrees of freedom in opposed faces degrades the band structure of
the stiffness matrix. However, symmetric boundary conditions only allow
deformation patterns which are compatible with the imposed symmetry while
any homogeneous deformation state can be imposed on the periodic RVE by
choosing adequately the displacement of the master nodes on each face.

5.4.3 Constitutive equations and damage

The behavior of the different phases and interfaces in the RVE is a critical
factor to determine accurately the macroscopic properties. There is a wide
range of constitutive equations available to simulate the thermo-mechanical
properties of bulk materials within the framework of the FEM, and very
often they can be directly used in computational micromechanics simulations.
Nevertheless, the material within the RVE may be very different from that
found in bulk samples, and it is sometimes necessary to use more sophisticated
models. This includes, for instance, strain gradient plasticity theories to
account for size effects in plastic deformation on the mm scale (Hutchinson,
2000) or crystal plasticity models to include the effects of textures in the
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5.5 Deformation of a cubic RVE with periodic boundary conditions.
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behavior of single crystal and polycrystalline metals (Delannay et al.,
2006).

In addition, the onset and propagation of damage within the RVE can be
simulated by using the appropriate fracture models for the different phases
and interfaces. In this context, failure by interface decohesion in a metal–
ceramic composite was analyzed by means of interface elements at the particle/
matrix interface (Segurado and LLorca, 2005). The interface behavior was
simulated by a cohesive crack model with two parameters: the interfacial
strength and the interfacial toughness. The patterns of interface decohesion
predicted by the numerical model at the microscopic level were in good
agreement with experimental findings (Fig. 5.6), and the simulations also
revealed the effect of the interface properties (strength and toughness) on the
effective tensile properties of the composite. Following this line of research,
other authors have studied the influence of ductile matrix failure (LLorca
and Segurado, 2004; Drabek and Böhm, 2005) and particle fracture
(Eckschlager et al., 2002; Segurado and LLorca, 2002) on the effective
properties of heterogeneous materials.

5.5 Multiscale coupling

The techniques based on homogenization methods and the numerical analysis
of an RVE can be coupled to carry out multiscale simulations of the behavior
of materials within the framework of continuum micromechanics. The most
important developments in this area are briefly noted below, together with
significant examples which show the potential of these methods to bridge
the length scales in the analysis of the mechanical performance of heterogeneous
materials.

(a) (b)

20 mm

5.6 Interface decohesion in an 6061 Al alloy reinforced with alumina
spheres. (a) Experimental observations. (b) Numerical simulations of
an RVE containing a random and homogeneous dispersion of elastic
spheres embedded in an elasto-plastic matrix (Segurado and LLorca,
2005).
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5.5.1 Asymptotic homogenization and finite elements

One of the first multiscale methods was based on the assumptions of multiscale
homogenization techniques or multiple scale expansion methods. Detailed
theoretical developments can be found in Guedes and Kikuchi (1990) and
Fish and co-workers (Fish et al., 1997; Wentofr et al., 1998; Fish and Shek,
2000; Fish and Yu, 2001) and only the main assumptions and results will be
presented here. Basically, the mechanical behavior is studied on the structure
and material microstructure length scales. The former is computed by FEM
while the latter is determined through an approximate solution for the
displacement field and assuming that the microstructure of the heterogeneous
material is periodic, as shown in the RVE depicted in Fig. 5.7. Let R and r
= R/V be the position vectors at the macro and microscale, respectively, and
V << 1 a small positive number that relates the length scales at the micro and
macro levels. The mathematical asymptotic homogenization theory is used
to solve a multiscale problem by coupling finite element problems on several
length scales. Any macroscopic variables that exhibit explicit dependence on
both micro and macro position vectors, such as the macroscopic displacement
field on the heterogeneous material, can be asymptotically expanded in the
following way

u R r R u R u R r,  =  = ( ) + ( , ) + 0 1 2

V VÊ
Ë

ˆ
¯ O [5.14]

where u0(R) represents the macroscopic displacement field, and u1(R, r) the
periodically first-order fluctuations or perturbations due to the microstructure.
They are usually known as slow and fast variables, respectively. This asymptotic
expansion can be considered an approximate solution to the boundary problem
when the ratio between length scales V is sufficiently small. In that case, u(R,
r) displays a slow global variation in R and a fast variation in the vicinity V

r = R/V
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5.7 Schematic strategy of the multiscale simulation based on the
finite element method and asymptotic homogenization.
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around R. Taking into account the mathematical chain rule for spatial
differentiation in connection with the small displacement theory framework,
the strain field is computed as

  
�( , ) = grad  = Grad  + 1 gradR r u u u

s s s

V

  = Grad + grad + grad  + 0 1 1s s su u uV
r

º [5.15]

where grad  = Grad  + grad–1s s su u uV  is the composed gradient operator and
Grads u and grads u stand for the field gradients with respect to the macroscopic
and microscopic position vectors, respectively. The asymptotic expansion of
the stress field can be computed assuming linear elastic behavior with the
constitutive equation in analogy with the former equation leading to

�(R, r) = L : �(R, r) = L : grad
s
u

= �1(R, r) + V�2(R, r) + … [5.16]

where L is the local fourth-order stiffness tensor, �1 = L : (Gradsu0 + gradsu1)
and �2 = L : Gradsu1. Finally, neglecting V2 and higher-order terms in equation
[5.14] and including f as the macroscopic body forces vector, the following
hierarchical Navier microscopic and macroscopic differential equations can
be obtained

div�1 = div[L : (Gradsu0 + gradsu1)] = 0 [5.17]

Div�1 + div�2 + f = 0 [5.18]

where   div  = Div  + div–1� � �V  is the divergence differential operator obtained
again from the chain derivative rule. Averaging equation [5.18] over the
volume of W leads to the macroscopic equilibrium equation given by

  
Div 1  d  +  = Div  +  = 1 1

W W
WÚÈ

ÎÍ
˘
˚̇

� �f f 0 [5.19]

as the average value of div�2 disappears due to periodicity of the microstructure
at the local level. Finally, microscopic equilibrium equation [5.17] can be
decoupled assuming linearity and variable separation for the fast variable
u1(R, r) = c(r)Gradsu0 where c(r) is an unknown periodic function in W
which represents the characteristic deformation modes in the RVE. After
some manipulation algebra, the homogenized fourth-order stiffness tensor,
L , can be computed from the mean value of   �

1  as

  
� � = 1 d1

W W
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Each mathematical model on the micro and macroscale can be solved separately
using the finite element method. Firstly, c(r) is computed by solving the
equilibrium equation on the microscopic scale [5.17], and afterwards L  can
be determined from equation [5.20] and used as the homogenized constitutive
stiffness to solve the Navier equations at the macroscopic level [5.15].
Analogous expressions for the homogenized constitutive equation were
proposed to incorporate material non-linear effects and damage (Fish et al.,
1997; Lee et al., 1999; Fish and Yu, 2001).

It is important to notice that the scale parameter V does not appear explicitly
in the equilibrium equation at both levels, but the multiscale simulations
carried out within this framework are restricted to very small values of V,
when the macroscopic fields are practically constant at the microscopic length
scale. These conditions are not fulfilled in presence of high stress and strain
gradients (in presence of cracks, corners, stress singularities, etc., …), and
more recent developments in multiscale modeling have been directed to
accounting for non-uniform macroscopic deformation fields within the
microstructural RVE (Fish and Shek, 2000; Kouznetsova et al., 2002).

Relevant examples of multiscale modeling using asymptotic homogenization
and finite elements can be found in Fish and Shek (2000). These authors
studied the behavior of a large structure, a composite diffuser casing, made
up of a woven fiber fabric embedded in a non-linear elasto-plastic matrix
which obeys the von Mises yield criterion. Three different scales were coupled
in the study (structural, local and material) which was solved using an efficient
finite element multigrid solver.

5.5.2 Mesh superposition methods

Another way to solve multiscale problems is the mesh superposition method,
which was initially introduced by Fish (1992) to study three-dimensional
phenomena in heterogeneous materials, such as the interlaminar stresses that
appear in laminated composites. In this method, an additional mesh is
superimposed on a global or macroscopic mesh in those regions where detailed
information of the stress and strain fields is necessary at the microstructural
level, Fig. 5.8. A composed hierarchical displacement field u can be split
into a global displacement uG and a local displacement uL in the regions of
interest

u = uG + uL in the local region and [5.21]

u = uG in the global region. [5.22]

uL can be viewed as a relative displacement of the local mesh with respect
to the global mesh or a kinematic enhancement of the displacement field. A
necessary condition is to enforce homogeneous displacement compatibility
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at those points lying on the interface between the meshes, uL = 0 at ∂W. The
main advantage of this method is the ability to model accurately the
heterogeneous material microstructure in regions with high gradients (crack
tips, interfaces, etc.) while the rest of the structure is analyzed by coupling
the FEM with asymptotic homogenization techniques.

Derivation of the Navier equations from the total displacement field
u = uG + uL and the implementation using the weak formulation and the
virtual displacement principle is straightforward. This leads to the following
system of equilibrium equations
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[5.23]

where KL and KG stand for the stiffness matrices that can be computed from
the local and global meshes and KGL is the stiffness matrix that couples the
displacement degrees of freedom of the local and global meshes, and f is the
nodal forces vector.

∂W
W

u = uG

u = uG + uL

5.8 Schematic strategy of the mesh superposition technique.
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An efficient implementation of the former equations in a finite element
code has to take account of several aspects. Firstly, the data structure must
be manipulated or renumbered in order to decrease the amount of physical
space allocated during the computations. Secondly, the classical sparse structure
of the stiffness matrix is destroyed by the presence of the KGL coupling
terms, and efficient iterative solvers must be used instead of direct solvers
(e.g. Gauss–Seidel). Detail of additional computational strategies to solve
such a system of equations can be found in Fish and Shek (2000).

Takano et al. (1996) studied the mechanical behavior of textile composite
materials using mesh superposition techniques coupled with damage mechanics
to evaluate strength at the mesoscale, while Takano and Okuno (2004) applied
this strategy with the asymptotic homogenization theory to study interface
cracks in coated materials. Finally, Kawagai et al. (2006) used an automatic
image-based modeling and finite element mesh superposition technique to
study the behavior near the crack tips and/or the interfaces of porous solids.

5.5.3 Embedded cell methods

Embedded cell methods are conceptually similar to mesh superposition
techniques. Basically, the model includes a detailed representation of the
microstructure in those regions in which it is necessary to have information
of the stress and strain fields at the local level. These core regions are
embedded within the homogeneous medium, which stands for the homogenized
description of the heterogeneous material. The finite element discretization
in the core regions is much finer, and is able to capture the fast variations in
the fields which occur as a result of the presence of sharp interfaces, cracks,
damage, etc. The homogenized material is discretized with a coarse mesh
(not superposed on the finer one, as in the mesh superposition method)
which only has to capture the slow variations in the fields, Fig. 5.9. The
coarse mesh transmits the macroscopic far fields to the core by enforcing the
displacement continuity at the interface between the core and the embedding
region. Of course, the constitutive equation of the material in the embedding
region has to be in accordance with the homogenized behavior of the core
region, and it is normally computed by using a suitable homogenization
model. Nevertheless, the difference in the constitutive equations between the
core and the embedding region leads to the formation of spurious boundary
layers in which the stress and strain fields in the core region are affected by
the jump in stiffness. The thickness of these boundary layers for elastic
materials is of the order of the microstructural details in the core region
(particle or grain size) but may be larger in non-linear problems.

Embedded cell approaches are very useful to simulate fracture because
the processes which control the mechanical behavior occur in a very localized
region near the crack tip, while the rest of the sample can be easily (and
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accurately) represented by a homogeneous material. Due to the limitations in
computational power, embedded cell approaches to simulate fracture in
composite materials were initially limited to two dimensions (Wulf et al.,
1996; Boselli et al., 2001) and they could only provide qualitative information
about the interaction of the crack path with the microstructure. More recent
analyses have extended these results to three dimensions, providing quantitative
results of the influence of the microstructure (properties and spatial arrangement
of the phases) on the actual fracture toughness of the material.

An example of this methodology is presented in González and LLorca
(2006), which simulated the fracture behavior of a fiber-reinforced composite
beam in presence of a notch perpendicular to the fibers by means of a
multiscale model based on an embedded cell approach in three dimensions.
The beam representation included two zones: one core region around the
notch tip, where full details of the composite microstructure (including the
matrix, reinforcements and interfaces) were resolved, and another one
surrounding this region where the composite was represented by a linear
thermo-elastic, transversally-isotropic homogeneous solid (Fig. 5.10). The
damage and fracture micromechanisms which controlled the onset of fracture

5.9 Schematic strategy of the embedded cell methodology.
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(namely, plastic deformation of the matrix, brittle fiber fracture and fiber/
matrix frictional sliding) were included in the behavior of the different phases
and interfaces around the notch root, and the corresponding micromechanical
parameters governing their behavior were measured independently. The
mechanical response of the beams was computed through the finite element
method, and it was found that the multiscale computational model reproduced
– within the available experimental and numerical data – the main deformation
and failure micromechanisms. Moreover, the experimental load–CMOD curves
(Fig. 5.11) were accurately reproduced by the multiscale model up to the
maximum load, which demonstrates the capability of this strategy to simulate
the fracture behavior of complex, heterogeneous materials.

5.6 Future directions

Continuum micromechanics is a very active research area because it provides
a unique tool with which to establish the relationship between the macroscopic
behavior of materials and the microstructural features on the mm length
scale. Nevertheless, significant developments are necessary in all the areas
outlined in this chapter to attain the final goal of predicting the macroscopic
behavior of materials from the properties and spatial distribution of the
different phases and interfaces at the microscopic level. They include accurate
algorithms to generate realistic microstructures of RVE from the information
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5.10 Embedded cell model to simulate fracture of a fiber-reinforced
composite notched beam subjected to three-point bending. P is the
applied load and M and Q stand for the corresponding bending
moment and shear forces.



Multiscale materials modelling144

provided by high-order statistical correlation functions, the extension of
homogenization methods to finite deformations and to phases and interphases
which present a highly non-linear behavior, and the development of faster
and more efficient numerical strategies to analyze larger RVEs, among many
others. Multiscale simulations of materials and structures will benefit from
all these advances.
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6.1 Introduction

6.1.1 Overview

This chapter summarizes how we have approached introducing microstructure,
or ‘granularity’, into microelectronics processing and reliability modeling
and simulation. We think it is a good approach to consider for introducing
‘grain-focused’ modeling and simulation into other application domains as
well. As discussed herein, we think grain-focused modeling will play an
important role; it complements continuum and discrete/atomistic modeling
efforts and is particularly relevant to multiscale modeling studies. The material
in the chapter is somewhat parochial, in that the majority of the background
references are to our efforts. Other groups have done similar work, e.g. in
process simulation and in including microstructure in models, but our current
grain-focused work grew out of our experiences and modeling efforts in
microelectronics relevant modeling, so our cited background is more directly
relevant to the material presented.

This section motivates the chapter and provides some microelectronics
context. Section 6.2 discusses some approaches to modeling the formation
and/or evolution of structures that might be of interest in microelectronics,
particularly those that are useful in motivating and defining our approach to
grain-focused modeling. Section 6.3 presents our approach to grain-focused
modeling; what we call the grain-continuum (GC) approach. Section 6.4
summarizes some examples that demonstrate the usefulness of the GC approach.
Section 6.5 presents some opportunities in GC modeling.

6.1.2 A virtual wafer fab

The performance of an integrated circuit (IC), as with many products, depends
upon the details of its structure, i.e. the shapes, sizes, compositions and
microstructures of the sub-structures that constitute the product after fabrication

6
Grain–continuum modelling of material

behaviour

M A X  O.  B L O O M F I E L D  and  T I M O T H Y  S.  C A L E,
Rensselaer Polytechnic Institute, USA



Grain–continuum modelling of material behaviour 149

and packaging. ICs are largely designed based upon the lessons learned over
the years, e.g. how processing and materials interact with circuit design to
determine what can be accomplished. It is well-known that the functional
density of ICs has been scaling according to an observation made by Moore1,
which is referred to as Moore’s Law. In general, the designs for each new IC
generation drive the introduction of processes and materials into IC fabrication.
Processes and materials are introduced only after extensive, expensive, largely
experimental R&D efforts verify that their introduction will result in the
expected IC performance and required IC reliability2,3.

In the IC design process, the performance and reliability of the yet-to-be-
fabricated ICs are predicted using two classes of models. The first class
consists of models developed using experience and data from previous IC
generations, then extrapolated to the new geometries. The second class consists
of models that are developed during the process and materials R&D needed
for the IC under development. The models use as-drawn circuit structures in
general, with experimental information introduced to account for the realities
of the process line. Considerable expertise is required to evaluate the suitability
of an introduced process or material, because decisions as to their
implementation need to be made well before the ICs are manufactured:
preferably before the design has been finalized. These decisions are largely
made on the basis of information obtained from short flows and reliability
studies on circuit structures, e.g. transistors, test circuits and interconnects.
A short flow consists of a small number of process steps designed to test a
proposed process sequence and/or to generate a circuit structure to be used
in reliability testing. Interconnects are the wires that connect devices
(transistors) to make circuits and transfer information between the outside
world and the IC. These interconnects are formed using a structure that
contains many layers of metal and dielectric materials above the active region
(where the transistors are)3,4, in what is called the multilevel metallization
(MLM)4–6.

The semiconductor industry established a roadmapping effort in the mid-
1990s in order to organize the development of each new generation of ICs,
and to reduce the burden on individual IC companies. The International
Technology Roadmap for Semiconductors (ITRS)2,5 has organized the funding
of research and development needed to continue IC performance improvement
according to Moore’s Law. Even with the ITRS, the introduction of a new
generation of ICs is extremely expensive. In addition, the delays experienced
in the introduction of low dielectric permittivity materials show that even an
organized, multifaceted, worldwide R&D effort is no guarantee of unqualified
success. Advances become particularly difficult when a goal pushes component
properties to incongruous limits. New IC generations, as well as the expected
increase in specialized IC designs within each generation, will involve
introducing new materials and processes at greater rates than can be realized
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using experimental approaches. Analogous concerns are seen in other
technology domains.

A ‘holy grail’ for ICs has been the Virtual Wafer Fab (VWF): software
that designs, fabricates, and predicts the performance and reliability of ICs7,8.
A VWF would use the materials’ properties and structures to predict the
performance/reliability of designed ICs that are generated in silico by process
models. Development using a VWF would clearly be much less expensive
than the design–process–performance–reliability feedback loop that is currently
used to advance to a new IC generation. In addition to being far less expensive,
a VWF would allow more design options to be evaluated during the time
period between IC generations.

Progress towards a VFW is being made, though there is no roadmap. A
sequence of changes in wafer state, or process steps, can be assembled
schematically to demonstrate an idealized or as-drawn IC (or its parts)9.
Each change in wafer state is achieved in a process or unit operation. Unit
operations that modify the topography of the wafer surface, on the scale of
microns, are common, e.g. one unit operation may etch sub-micron features
into the surface, whereas another might deposit material to fill part or all of
existing features. Models, some more physics-based than others, exist for
many of the hundreds of unit operations that are used to fabricate an IC, i.e.
they predict the change in wafer state due to that unit operation. To simplify
discussions, we usually refer to a change in wafer state, though there are
across-wafer variations and across-die variations at each process step. (A die
is the ‘IC-to-be’, and can be seen as the centimeter-scale rectangular patterns
on an in-process wafer’s surface.) Not surprisingly, a range of IC performance
is expected, even on the same wafer. Though the focus of this chapter is on
the micron and sub-micron scales of features on wafer surfaces and grains in
films, it is important to note that models for variations at the wafer and die
scales are also important2. Process simulations can provide reasonable
predictions of the geometries, dimensions, and compositions of IC sub-
structures that result from short flows, i.e. a small number of unit operations.
With enough effort, models, data, and computational power, such predictions
can be extended to more steps and larger simulation domains. For a review
of process simulations, see for example Refs 10–13.

Microstructures, properties, and the performance and reliability of IC
structures cannot be predicted in the general case. We are particularly far
from understanding interfaces, e.g. their roles in the performance and stability
of structures14–16. Models that relate process model outputs to properties and
performance/reliability are just being developed. Process modeling results
are still useful, as empirical information exists through which crucial properties
and performance/reliability can be estimated from what can be computed or
measured. The industry has made it this far using such empirical models, in
combination with physics-based models, to develop increasingly functional
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ICs. It will make sense at some point in time to build a software structure
that can be populated with a mixture of physics-based models, empirical
models’ and databases. At a high enough level of predictability, this would
become a VWF that would then be updated as models and information
improve.

6.1.3 Grain-focused modeling

Though realization of a VWF will require significant advances in several
areas, we focus on introducing ‘granularity’ into models17, i.e. start including
microstructural information as well as shapes, dimensions, and compositions
into process, property, performance, and reliability models. In turn,
microstructures are determined by the materials and fabrication processes
used. Product development time and expense would be significantly reduced
through the use of simulation tools that are able to reliably predict
microstructural characteristics and the resulting performance properties.
Accurate predictions by these simulation tools would also require reliable
models for the proposed materials and processes. While considerable progress
in process and materials modeling has been made in recent years, there are
many challenges that remain before we can accurately predict the properties
of processed materials and the performance of products that rely on them.

One well-recognized hurdle to the development of predictive processing,
property and performance models and software is our limited ability to predict
film microstructure. Recent meetings (e.g. see Refs 18–20 devoted to modeling
materials and processes across length and timescales have made it clear that
atomic scale (atomistic) simulators need to be combined with continuum
simulators to form multiscale simulators that can predict microstructure.
Implementing accurate materials and process models in such simulators will
accelerate the development of products that depend upon microstructured
materials, e.g. in microelectronics, aerospace, structural materials, and consumer
products. Atomic scale simulations can in some situations provide enough
information to explain product performance, e.g. if performance is limited
by very localized phenomena that can be identified and analyzed. On the
other hand, the structures to be analyzed are often on the order of tens to
hundreds of microns or even larger (mesoscale to macroscale), and are not
reasonably addressed by atomistic simulators. The timescales involved in
product fabrication and reliability (lifetime) are also usually beyond what
can be reasonably addressed using atomistic simulators. In turn, larger scale,
continuum models and simulators can in some situations provide enough
information to explain product performance; however, continuum approaches
usually do not represent all of the phenomena needed for accurate predictions.
So, the consensus is that atomistic and continuum simulators should exchange
information and be solved simultaneously. Finally, the combined atomistic
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and continuum simulators should be able to run on computational facilities
that can be routinely accessed in a corporate environment, as well as on
computers used to develop process and materials models.

Software capable of combined continuum and discrete simulations relevant
to the microelectronics industry is not available2. Our research has focused
on a representation that we consider to lie between continuum and discrete
approaches. This chapter is intended to motivate, define, and demonstrate a
grain-focused approach to process and materials modeling, which we label
GC modeling. The goal is to provide engineers with microstructure-centric
models that can deal with the large volumes often needed to interpret
performance and reliability results. In addition, the GC model ideally should
provide procedures to include atomistic information.

6.1.4 Focus on copper

To focus this chapter, we deal with copper-based MLM structures used in
ICs. The global experience and expectations of Cu-based MLM make it clear
that the microstructures of the Cu and associated (barrier, adhesion, and
seed) films are critical2,5. As indicated in Fig. 6.121, the resistivity of Cu
interconnects is increasing (a negative for performance) as ICs feature sizes
shrink, because shrinking the lines (a) increases the relative size of the
surface scattering term, and (b) increases the size of the grain boundary
scattering contribution21–23. The latter occurs because the grain size is
constrained by the line width. Figure 6.1 shows that at 45 nm line widths,
grain boundary scattering is the largest contribution to the electrical resistivity
of Cu21. This is because the grain sizes are getting to be same size as the
mean free path of electrons in Cu (~ 40 nm). Figure 6.2 highlights this issue
for very small metal interconnects. Note the significant jumps in resistance

Parameter set:
R = 0.5, p = 0.6
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6.1 Measured resistivity vs line width, compared to resistivity models
that include surface or grain boundary scattering (from Ref. 21).
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upon moving a probe from one grain to an adjacent grain24, which indicates
that electrons are scattering significantly at that particular grain boundary.
Grain structures can also impact the reliability of the Cu interconnects, i.e.
how long they last during use in products25–27. In addition to these motivations,
there are phenomena related to grain structure that affect both processing
and reliability, e.g. Cu grain growth after electrochemical deposition28–31

(see Section 6.4.3). In short, grains and grain boundaries are playing ever
larger roles as IC components shrink.

To impact IC design and fabrication, the models we use should improve
our understanding of how grain structures arise; how they evolve in time
during processing, storage, and use; and how they might be tuned to improve
performance. Experimental observations of grain structures are possible32,33,
as shown in Fig. 6.334; however, they are difficult. Characterization techniques
are often destructive, require sample preparation that can alter grain structures,
and only give limited information about shape and size. This is an ideal
situation for computer-based modeling to play a role in a process and/or
material optimization cycle. Further, simulation of grain structures can help
in the interpretation of measured data, e.g. the reconstruction of 3D structures
from 2D measurements35, such as sequences of cross-sectional images like
that in Fig. 6.3b. By reducing the need for experiments, grain-focused simulation
tools will increase the efficiency of material, process, and performance model
development.
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showing resistivity jumps between grains24.
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6.2 Representations and models

6.2.1 Overview

From our perspective, structural modeling and simulation can be broken
down into two major subtasks. First, there must be a way to represent the
structure, both at one time and as it evolves in time. Second, a model of the
appropriate physical process must be applied in the case of an evolving
structure. In this section we review the aspects of structure and process
modeling that are particularly relevant to this chapter. It is broken down first
by the approach to the first task, that of representation, and then further
subdivided by the model physics.

(a)

(b)

100 nm

200 nm

6.3 (a) Top and (b) side cross-sectional TEM images of a Cu thin film,
showing individual grains (from Ref. 34). (The Greek letters are not
relevant to this work.)
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6.2.2 Discrete representations

Discrete models treat solids as atoms36–39 or aggregates of atoms
(‘discs’40–43 or clusters44), and can provide information on film microstructure
and its evolution. Atomistic approaches to film evolution are based upon
either solving a dynamics problem for each atom during a brief period of
time (molecular dynamics (MD)38,45), or using hopping probabilities for
atoms as they move to find lower energy states (Monte Carlo (MC)46,47).

MD methods can be used to calculate parameters that directly affect structural
evolution, such as grain boundary migration rates or vacancy cluster diffusion
coefficients48. Alternatively, MD methods can be applied to both deposition
and evolution of existing structures directly. However, such MD structure
simulations are computationally very expensive and are thus not suitable for
typical processing times (minutes to hours) or for the length scale of typical
manufactured structures (tens of nanometers and up, even for modern
transistors). Consequently, in MD deposition simulations, fluxes must be
chosen to be unrealistically high in order to simulate growth of several
atomic layers, and artifacts such as large roughnesses result from the high
deposition rates. Moldovan et al.49 have applied MD methods to direct
simulation of nano-grained structures of up to 100 nm square by only treating
a few atomic layers periodically in the third dimension. Huang and coworkers
have studied atomic diffusion on and mechanical deformation of surfaces
using a combination of molecular dynamics and density-functional theory
based ab initio calculations50–52.

MC techniques are often applied to atomic representations directly. Kinetic
lattice MC (KLMC) simulations are used to study deposition and diffusion
on lattices or templates. Whereas MD methods model systems on the timescale
of atomic vibrations, KLMC deals with the far greater timescale of atomic
jumps. KLMC can simulate much larger systems (billions of atoms) for
longer times, and is used to simulate thin film growth under more realistic
deposition rates than MD. The essence of KLMC is to determine the jump
rate of all atoms in the system, then to pick one atom (using a distribution
weighted by its jump rate), and then to move it appropriately. MC models
based on transport and deposition of many-atom aggregate particles (clusters)
have been used to model film growth over length scales representative of IC
topographies40–44,53,54. These models yield understanding of film profiles,
but their contribution to understanding microstructure is not clear. Potts
models, a kind of MC approach, in which clusters of atoms are treated as
entities with their own orientation and updated based on transition probabilities,
have been used in both 2D55,56 and 3D57,58 to examine grain structure evolution.
Potts models, as well as other types of cellular automata-based models, do
not extend well to systems with coupled fields, including those with applied
voltages and externally imposed strains.



Multiscale materials modelling156

The validity of KLMC models depends on the underlying assumptions
regarding atomic mobility, including both the type and rates of the allowed
jump processes. This information can be experimentally or theoretically
determined. A number of studies of diffusion of atoms on surfaces exist,
especially for metal on metal and Si on Si (e.g. see Refs 59–61). There have
been many studies of Cu on Cu, e.g. see Ref. 62 for a review, and estimates
are available for most of the jump parameters needed to model film growth
and evolution.

Because of the importance of the initial stages of deposition, nucleation
has been the subject of numerous studies. Most attention has been given to
nucleation during physical vapor deposition (PVD), in which deposited atoms
impinge and condense directly onto a surface, as during deposition by
evaporation or most sputtering processes. Many groups have reported MC
simulation models for nucleation38,63–71. Reviews of both experimental and
theoretical studies of nucleation phenomena can be found in Refs 38 and 72.
Less attention has been given to the nucleation and initial phases of growth
by chemical vapor deposition (CVD)73–81. This is largely due to the complexity
of modeling gas phase and surface chemistries in CVD. (See Section 6.4.2
for additional discussion of PVD and CVD.)

Huang and co-workers developed ADEPT47,82–86 to simulate thin film
deposition. Figure 6.4 summarizes an ADEPT-based study of the trend in
texture formation during Al deposition82,87. ADEPT has gone through several
stages of development: (a) single lattice in three dimensions85, (b) dual
lattices in three dimensions82, (c) multiple lattices in two dimensions47, and
(d) multiple lattices in three dimensions87. ADEPT is now capable of simulating
texture competition during thin film deposition, under realistic deposition
rates, at the atomic level, and in three dimensions87. In the current
implementation, an efficient numerical algorithm of three consecutive 2D
mappings has been implemented. Simulations of 0.2 micron thin film deposition
are possible on standalone PCs.

(a) (b) (c)

6.4 ADEPT simulation results of (a) grain nucleation, (b) low-energy
texture dominance, and (c) columnar growth. Lighter shades indicate
lower energies.
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6.2.3 Continuum representations

These approaches represent films as continua, with each continuum being a
single material, perhaps with spatially varying properties. The material
interfaces which bound each continuum can be moved according to materials
fluxes. A common use of this representation is for ‘feature scale’ topography
evolution during processes used to fabricate ICs. Continuum representations
are particularly useful in the context of multiscale simulation, because they
interface naturally with the representations of phenomena in reactor scale
simulations, which are often also continuous in nature, being finite-element
or finite-difference based.

Several (IC-oriented) continuum simulators have been developed to study
the evolution of thin films10,88–92. EVOLVE, developed by Cale and co-
workers7,13,93–95 has been used to simulate a variety of deposition, etch, and
reflow processes, i.e. to determine the topography and composition of processed
films and surfaces10,16,94. EVOLVE uses explicit representations of materials
in 2D, while calculating transport of materials in 3D92. One of its strengths
is the ability to incorporate complex chemistries7,95. Figure 6.5 shows an
example of EVOLVE’s predictive ability for the CVD of tungsten using the
hydrogen reduction of tungsten hexafluoride96. Discussions of continuum
process integration studies, in which several unit operations are simulated, to
correspond to a short flow in the process line, have been reported on97,98.

Topography simulations on 3D surfaces are sometimes required. Most 3D
topography codes use level-set methods99–101 to avoid numerical difficulties
due to changes in topology. Level-set methods are based upon representing
an interface implicitly, as a contour or level set in a scalar field, and reducing
the explicit motion of the interface to the time evolution of the scalar field
under a differential equation99–101. The computational overhead of representing
a field in d dimensions to track a (d – 1) dimensional interface is deemed to

(a) (b)

6.5 (a) SEM of W lines deposited using the H2 reduction of WF6.
(b) EVOLVE result96.
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be made up for by not having to deal explicitly with several geometrically
troublesome issues, such as topological changes in the structure. Borucki
and co-workers developed a 3D topography code that uses level sets for
surface evolution7,11,102–105.

For example, Figure 6.6 shows the results of a simulated plasma enhanced
CVD of silicon dioxide to fill gaps between lines. Details can be found in
Refs 11, 104 and 105. A 3D topography simulator was required because the
focus of that study was the corner region and tunnel formed during this fill
process. It is quite reasonable that a corner region, being wider on the diagonal,
requires a thicker deposited film to close relative to a straight run of ‘trench’
between lines. The more interesting reliability issue explained using this
simulation is that the tunnel formed by the void in the deposit is open to the
environment. This ‘tunnel entrance’ is due to one line ending while the other
continues. Process fluids (gases/liquids) can enter the tunnel during downstream

Starting structure (top view, angle view)

Tunnel

Hole

At ‘hole’ closure
(top view, ‘front’ view, ‘side’ view)

At closure of lines
(top view, ‘front’ view, ‘side’ view)

6.6 3D/3D PETEOS simulation over a structure designed to
demonstrate the closure of holes in corner regions and particularly
the tunnels formed when one line ends and an adjacent line
continues. Side views of closed regions are transparent. Figure taken
from Ref. 11.
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processes and fill the gap formed during deposition. This caused the dielectric
to ‘pop off’ at these regions of the IC.

The phase field method106,107 is another implicit method for representing
continua, that is conceptually similar to level-set methods in some ways.
Phase field methods conceptualize the boundary of materials as having a
finite thickness (e). This interface thickness is advantageous in formulating
field-based models of certain processes, such as solidification from melts106,107

and phase separation of binary materials106. One disadvantage of the finite
interface thickness is that the underlying mesh or grid must have a length
scale of the order of e in the neighborhood of the interface.

6.2.4 Grain-continuum representation

Continuum simulators have been extremely useful for process design; however,
they capture only the evolution of surfaces and interfaces. Microstructures
such as nano-voids and grain boundaries are not represented. This limitation
becomes more serious in applications of semiconductor materials processing
because of the ever smaller feature sizes in ICs. A GC representation retains
more information than a continuum representation of a microstructured system.
One key feature is that each grain is a continuum surrounded by a grain
boundary that is ‘honored’ by the mesh that represents the films and structures.

One way to approach GC representation is through an explicit representation
of the boundaries between continua, by either segments in 2D or polygons in
3D. Frost and Thompson108 used such an explicit network model in 2D to
study the evolution of grain size distributions. Zhang and Adams developed
FACET109, which explicitly tracks grain boundaries and surfaces in 2D through
the use of line segments. Roosen and Carter110 and Moldovan et al.49 performed
coarsening simulations on polygonal grains, using network models. Kuprat
et al.111 reported on an explicit, 3D, moving boundary grain structure evolution
code (GRAIN3D) that uses the Los Alamos Grid Toolbox (LaGriT)112 and
has demonstrated it for grain boundary motion under mean curvature113.
Many complex operations are needed to maintain an explicit topology during
evolution114–116, and implicit approaches (e.g. level sets) are used by most
codes to evolve 3D structures of any complexity.

Phase field methods that use multiple order parameters117 to designate
poly-phase systems are implicit methods that we include under the heading
of GC. As in the two-phase variant, poly-phase field interfaces have finite
thicknesses that must be resolved spatially118. Moreover, the formulation
and solution of the appropriate Cahn–Hilliard119 and Ginzberg–Landau120

equations for the evolution of the order parameters become more difficult
with additional phases117,121, with the required energy parameters relying on
phase diagrams of higher order systems that are more difficult to calculate117.

Finally, level-set methods can implicitly represent the boundaries of grains.
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The traditional level-set method96 relies on a single level set to track one
type of interface. However the multiple level-set method, as will be discussed
in detail in the next section, allows for the use of multiple scalar functions to
represent many grains in a structure.

6.2.5 Discrete and continuum

There are a few reports in the literature in which discrete and continuum
approaches have been combined to some extent. The trade-offs made deal
with the degree of detail and explicitness with which the atomic scale
information is determined and ‘passed to’ the continuum simulator. The goal
is to get physics from atomic scale discretizations to the micron scale, mesoscale
(10 to 100 micron) and macroscale (100 micron to millimeters and larger).
In general, it seems reasonable to do this by representing small volumes of
the system under study at the atomic level. These volumes will be at places
where structures and/or processes at the atomic scale significantly influence
the structure and/or process being studied.

Ortiz and co-workers122–126 have solved model problems using a quasi-
continuum approach123,124,126. In carefully constructed systems of crack-tips
in single crystals, atomistic representations in the form of kinetic Monte
Carlo simulations were linked directly to finite-element simulations using
highly refined meshes and identifying ‘key’ atomic locations. The resulting
simulations predict dislocation shedding from crack-tips, and crack-tip
propagation. An extension of the method to finite temperatures has also been
proposed127. These multiscaling procedures average sampled atomistic
information, and hand it to larger scale solution procedures; note that this
approach takes advantage of the fact that finite-element representations of
continua are discrete. Refs 122 and 124 contain reviews of quasi-continuum
methods.

Level-set methods have been used to study epitaxy in ‘2 + 1 dimensional’
types of simulations by Ratsch and co-workers128,129 and by Chopp130. In
these island dynamics studies, level sets are used to represent a continuum in
two dimensions, on a small number of discrete atomic layers that act as a
third dimension. The continuum representation is modeled based on rate
equations, while the discrete information (namely the monolayer information)
is injected into the simulation in the form of nucleation events, with probabilities
based on the continuum information such as concentrations of adatoms.

Bloomfield et al.131 used an encapsulation procedure on the discretely
represented islands that resulted from KLMC simulations to obtain continuum
representations of the islands. This set of islands is the starting point for GC
vapor phase deposition simulations that result in poly-granular films.
Encapsulation is discussed further in Section 6.4.2.
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6.3 Grain-continuum approach

6.3.1 Overview

The heart of the GC approach is the view that a microstructured material
consists of multiple phases that are distinct from each other and each can be
modeled as a continuum. As used here and in the discussion to follow, the
term phase indicates any material in which a property of interest is continuous.
To apply this terminology to a polycrystalline material, the phase property is
chosen to be crystallographic orientation, and a phase becomes identified
with a grain or perhaps a set of grains with a common orientation. The desire
to retain the internal continuum nature of each phase seems to make the
discrete building-block approaches, such as the lattice or aggregate
representations38–46 discussed in Section 6.2.2, unsuitable. The phase field
and level-set techniques discussed in Section 6.2.3 allow for only one type
of interface in a given model, and seem to limit their applications to two
phases.

6.3.2 Multiple level sets

We think a ‘true’ GC representation can be achieved by extending the level-
set method to include multiple scalar fields, as done by Merriman et al.132.
In this multiple level-set (MLS) representation, each phase has its own scalar
field represented on a grid or mesh throughout the computational domain.
This MLS representation allows each phase to have its own properties
represented as fields, distinct from each other, but continuous in space. As
with the traditional level-set method, the sign of the scalar variable at a given
point indicates whether that point is inside or outside a phase. It is worth
noting that there can be parts of the zero contour for a given j that are not
connected to each other, which would indicate a distributed phase. Whether
using one level-set field or multiple level-set fields, the mapping of the
motion of an explicit phase to the implicit representation of that phase is
accomplished by the applying the following level-set equation, of the Hamilton–
Jacobi type99–101, to the scalar representing that phase:

∂
∂

◊ —j j
t

v +    = 0 [6.1]

Here, j represents the level-set field associated with the phase being evolved,
and v is the velocity of the boundary of that phase. The (d – 1)-dimensional
boundary of the phase moves in d-dimensional space as the scalar function
evolves and changes position of the contour where j equals zero. This equation
reduces the task of tracking the evolving phase to determining the velocities
throughout the model domain, finding the gradients of j, and integrating j
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in time. Equation [6.1] must be solved for each phase with non-zero velocities.
For the common situation in which the velocity is only known as the speeds
in the normal directions on the surface(s), the least intuitive part of the task
is probably constructing a velocity field away from interface, but there are
well-defined procedures for extending the velocities at the interface into the
domain133,134.

There are several highly efficient integration schemes for Equation [6.1]
that account for the fact that the physical situation represented by the scalar
fields requires that information move only downwind, i.e. away from boundary
of the phase. When the fields are represented on regular grids, fast-marching
methods are often employed to update points on the grid in the correct
order101,133. When finite-element meshes are used to represent the fields,
streamline upwinding Petrov–Galerkin (SUPG)135 methods can be employed
to ensure the correct information flow.

Non-physical situations can be represented when using MLS fields132,136,
such as a point being inside multiple materials at the same time. To prevent
such a situation from occurring, the scalar variables must be subject to a set
of constraints. These constraints are usually applied by integrating the individual
fields for a short time, then reconciling the fields to get rid of any overlaps
that occur. Ideally, whatever velocity field is computed for each side of a
given interface will be equal and opposite (as they represent the same interface,
just from different points of view) and overlaps can only occur due to numerical
error.

Numerical errors can build up in the field away from the zero levels and
may cause instabilities in the integration schemes. Usually some sort of
redistancing scheme is used to keep the fields well-conditioned away from
the zero level contours without moving the position of the zero level contours
themselves137,138. With an appropriate choice of scalar field, such as that of
the signed distance to the interface, the same Hamilton–Jacobi solver used to
integrate Equation [6.1] can be used to maintain the condition of the field137,138.

6.3.3 PLENTE

PLENTE139 is software that implements a grain-focused, MLS method to
represent and track distinct phases as they change in time (similar to Ref
132). PLENTE is a parallel, finite-element code that uses an unstructured
tetrahedral mesh to represent multiple phases, all or some of which might be
grains in a microstructure. PLENTE discretizes the n scalar functions that
represent the n phases in a given simulation, using the unstructured mesh to
allow local refinement of the representation to achieve finer resolution of the
geometric details in interesting regions of the structure. In order that all the
information in the system comes from the interfaces and moves into the
domain, we use a SUPG technique. The SUPG method used to solve the
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Hamilton–Jacobi equation (Equation [6.1]) was first formulated for triangular
elements (in 2D)135 and extended to tetrahedral meshes (in 3D)136.

PLENTE interacts with process simulators to determine the rates of evolution
of 3D structures. Several examples are discussed in Section 6.4. To illustrate
the basic concept, we consider the simple electroless deposition (ELD) model
(process simulator) that was used to generate the simulation summarized in
Fig. 6.7*. We start by generating hemispherical nuclei distributed randomly
along a rough surface (see Fig. 6.7a). PLENTE then gets the specified linear
growth rate from the model. Here the model is simply that the free surface
of the nuclei grows with a uniform, constant velocity and that sub-surface
interfaces have zero growth. PLENTE then evolves the islands for a small
time step and represents the new structure (see Fig. 6.7b). It then gets new
growth rates (in this case, the same growth rate on triangles that are exposed
to the source), and the cycle is repeated until a given film thickness is
attained. Figure 6.7c shows the resulting 3D polycrystalline film. To retain
the polycrystalline nature of the resulting film requires a GC representation
In addition, PLENTE stores information regarding the grains. For example,
suppose the by-products of deposition build up in the solution and act as
contaminants. The contaminant concentrations can be tracked as a function
of position inside each grain, and used in further process simulation, or even
in a performance or reliability calculation. Figure 6.8 shows an example of
a grain that has been ‘pulled out’ of the polycrystalline film generated in Fig.
6.7 and can act as an input for such analysis.

*Although the reason for discussing this simulation here is to demonstrate what PLENTE
does, we also note that the model used is a reasonable start toward a more complete
model. Based on evidence of spherical grains, such as those seen in the micrograph
shown in Fig. 6.7d, we concluded that the ELD process could be adequately modeled by
assuming isotropic deposition.

(a) (b) (c) (d)

6.7 (a) Initial structure for ELD simulation, showing distribution of
hemispherical nuclei on 5 nm RMS rough surface. (b) Onset of
coalescence during ELD simulation as described in the text. (c) Fully
coalesced grain structure. Note that only the grain surfaces are
shown here. (d) Micrograph141 showing spherical nuclei during
electroless deposition of copper.



Multiscale materials modelling164

Computational burden is an important issue in any proposed simulation
effort. PLENTE employs the Message Passing Interface (MPI) libraries140 to
spread its computational workload across many processors in parallel. Each
phase (or set of phases) may be placed on a separate processor, allowed to
evolve in time, and then reconciled on a master processor. A primary advantage
of this parallelization is observed when the information needed to calculate
the grain boundary velocities on a given grain is contained in the shape of
that grain, and so simulation time for evolving the structure remains
approximately constant as more grains are added to the simulation. Interaction
with other codes can be done either from the master, such as is done when
PLENTE uses the process simulators discussed in Section 6.4, or can be
done by each slave as necessary, such as is done when employing a separate
mesh coarsening code.

Most process simulation codes that PLENTE needs to interact with require
explicit representations of the system. PLENTE must be able to extract an
explicit representation of the system geometry, in the form of a surface mesh
or a volume mesh. The normal procedure in the single level-set method is to
find the zeros of the level-set scalar functions on the grid lines or mesh edges
of the grid or mesh used to represent the function, and then connect those
points appropriately with triangles or quadrilateral patches (or with line

6.8 Example grain, ‘pulled’ for inspection from a polycrystalline film
during a deposition simulation using PLENTE.
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segments in 2D problems). This procedure is quick and gives good answers;
however, it should be noted that it is an over-specified system because the
MLS method represents each interface twice (once for each phase that makes
up the interface). When the errors associated with the finite resolution of the
underlying field representation are not exactly equal, direct extraction of the
interface from the scalar fields can create two different representations of the
interface. There are various techniques to resolve these differing points of
view on where the interface lies, and this is still a field of ongoing research,
as discussed in Section 6.5.3.

6.4 Grain-continuum examples

6.4.1 Overview

It is common to make a distinction between processes that involve grain
structure formation and processes that involve grain structure evolution. In
the context of this chapter, formation problems involve processes in which
grains are being grown as material is being added to a free surface, whereas
grain evolution problems involve processes that move existing grain boundaries.
Most process simulations fall into the category of formation, in which granular
films are deposited from a gas or a liquid that contains a source of material.
Most reliability simulations fall into the category of evolution, in which
existing grains change shape and the boundaries between grains move. Although
in the examples below, the distinction between formation and evolution is
kept for the sake of clarity, we note that this distinction is not necessary
within a GC simulator such as PLENTE. Because a gas or liquid is represented
as just another phase, albeit with significantly different properties than the
solid phases, the same data structures may be used for both types of problems
and grain formation becomes a special case of evolution. Thus, PLENTE can
deal with cases in which both formation and evolution are important aspects
of the same system. We also summarize an example GC simulation on a
microstructured, but not polycrystalline, material.

6.4.2 Grain formation

Deposition model

In microelectronic processing, deposition of polycrystalline thin films is
often done at low pressure from a vapor phase. In the case of PVD, the vapor
contains atoms or clusters of atoms of the material to be deposited that
adsorb directly onto the growing film. In the case of CVD, the vapor contains
a metastable precursor that first adsorbs and then undergoes a reaction that
produces the deposition material. By-products of this reaction step are volatile
and leave the surface. In PVD, material from the vapor phase tends to stick
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(close to) where it hits the substrate; the sticking probability is close to 1. In
CVD, depending upon the reactivity of the precursor and the temperature of
the substrate, the precursor may desorb and leave the surface before having
a chance to react and deposit. In a typical CVD process, the probability that
a given precursor molecule reacts on any given visit to the substrate surface
is 0.001 or less.

Though the impetus behind this chapter is to explain the role of grain-
focused modeling, it is worthwhile summarizing a basic transport model,
which will be essentially the same for continuum and GC representations.
Consider low-pressure deposition processes at the feature and/or grain scale.
At conditions typical of low-pressure deposition processes, e.g. PVD or
CVD, the gas is rarefied enough that particles are likely to strike one of the
feature ‘walls’ or other solid surface (grain boundary) before striking another
particle. Thus, transport is ‘line-of-sight’ or ballistic. More details of the
basis for and limitations of the ballistic transport and reaction model (BTRM)
can be found in Refs 7, 94 and references therein. The mathematical
representation of the basic BTRM, which suffices for the purposes of this
chapter, is a set of integro-differential equations that represent diffuse transport
and chemical reactions. Ignoring surface diffusion to keep things simple, the
integral equations
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predict the growth rates of surfaces (∂R are surfaces in the domain R) as
functions of species fluxes from a source7,91,142. This integral equation expresses
the total flux of a species (�a,t) to a point (x) on the surface due to the flux
of that species both from the source (�a,1) and from other parts of the surface
(x¢) due to re-emission of material that did not react (stay at x¢). The functions
Ri represent the rate that the i-th species is produced by all the heterogeneous
reactions in the system, based on the fluxes (�a,t), the coverages (x) of
adsorbed species, and the temperature. The function q(x¢, x) is called the
transmission probability and is non-zero only if x and x¢ can see each other,
and it is a function of the distance between x and x¢ and the angles each
surface makes relative to the line segment that connects the two points
(analogous to radiation heat transfer). The function gi(q, f) is a distribution
function that gives the relative number of molecules leaving x¢ at the specified
angles, i.e. it indicates the fraction of flux re-emitted in a differential solid
angle around the direction (q, f)7,92,142. It is a constant for diffuse (also
known as cosine or random) re-emission.

Accurate predictions of film deposition and topography evolution for
specific processes rely on having knowledge of the distributions of the fluxes
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of incoming species (flux distributions) and the relevant reaction rate
expressions. Once estimates are available for these constitutive relations,
film profile evolution can be simulated. Several flux distributions have been
used; simple ones are discussed in Refs 7, 92 and 142. References 7, 95 and
143 demonstrate the use of complex reaction rate expressions, that may
involve several surface species and several surface reactions. Often, for
simple, single-component systems such as PVD, the reaction rate is well-
characterized by a sticking probability or sticking factor. This corresponds to
a reaction rate expression

Ri i i
at = –s h [6.3]

where si is the sticking factor for species i, ranging from 0 to 1.
PLENTE has been used to guide the simulation of deposition from the

vapor phase by interfacing with code based upon EVOLVE to solve the
BTRM’s integral equations, i.e. it has served as part of a traditional continuum
3D/3D process simulator to simulate deposition and etch processes. More
specifically, PLENTE has been used as a 3D/3D topography simulator much
like ASSET was used (see Section 6.2.3). Though representing and solving
such problems on 3D surfaces is computationally expensive, it is really just
a (difficult, expensive, but easy to understand) extension of work done using
process simulations on 2D surfaces (surfaces that can be represented by
cross-sections). The problem gets much more difficult when polycrystalline
nature of films is studied.

Grain formation

Consider using the BTRM to model grain growth from post-nucleation through
polycrystalline film formation. Figure 6.9 shows the concept behind the

6.9 Schematic representation of a key concept behind the BTRM,
redistribution of unreacted species.
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BTRM, as applied to growing grains, i.e. moieties (atoms/molecules) from
the source strike the surface and either react or desorb, perhaps multiple
times, before either reacting or returning to the source. There is also line of
sight transport between grains, and between the bare substrate and the grains.

PLENTE can create new nuclei in the simulation from structural information
from experiments, from atomistic simulations, and/or from statistical
instructions about the times, sizes, shapes, and locations for insertion. Figure
6.10 summarizes a PVD simulation that PLENTE guided, starting from the
set of discretely represented nuclei shown in Fig. 6.10a, which were generated
using a Monte Carlo code63,70,71. The first step in the process is to convert the
discrete islands into continuum representations, by encapsulating136 them.
Encapsulation forms a boundary representation fitted to an atomistic
representation (such as an island, or piece of a crystal/grain). The boundary
needs to be consistent with the other elements in the structure. This procedure
results in a GC phase, which represents an island or grain. This procedure is
repeated until all atomistic representations are represented as continua; we
then have a GC representation. We find the easiest stage in a deposition
simulation to do this is as soon as the individual crystallites reach a length
scale that is large enough to be represented by the level-set representation on
a mesh that is appropriate for the larger scale problem under study. For this

1 mm

a b

c d

e f

6.10 (a) Islands from an MC simulation. (b) The ‘encapsulated’
islands. (c) Impinging islands during growth. (d) Final grain-
continuum film. (e) Void volume at the substrate surface. (f) SEM
cross-section of PVD tantalum oxide film144.
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reason, it can be advantageous to refine the level-set meshes in PLENTE in
regions of grain nucleation and island formation.

The result of encapsulating the islands shown in Fig. 6.10a is shown in
Fig. 6.10b. Then PVD simulation starts. A 3D view factor code (FVIEW)105

is used to determine the transmission probabilities needed to compute how
much of the source flux arrives at each discretized area of the surface105.
Finally the islands impinge upon each other to form a continuous film, as in
Fig. 6.10d. Figure 6.10e shows the void volume near the original substrate.
Figure 6.10f is a cross-section of a PVD tantalum oxide film after flashing
with gold to provide conductivity144. The existence of voiding near the original
substrate surface is indicated.

The void formation noted in the previous paragraph will reasonably be a
function of the sticking factor of the reacting species. Figure 6.11 shows the
result of deposition simulations using PLENTE to look at the effect of sticking
factor145. The reactivity of a precursor is varied from extremely high (very
fast reactions or essentially unity) sticking factor to very small sticking
factor, corresponding to s of Equation [6.3] taking on values of 1.0, 0.5, and
0.0. Deposition takes place onto a series of small nuclei on a flat substrate.

(a) (b)

(c) (d)

(e) (f)

6.11 Simulated grain structure and cross-sections of Cu CVD: (a, b)
high (s = 1.0), (b, c) moderate (s = 0.5) and (d, e) low (s = 0.001)
precursor reactivity as noted in text. Void volume decreases as
deposition rates become more isotropic.
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In this simulation, both FVIEW and the feature scale simulator EVOLVE are
required, in order to calculate the redistribution of unreacted precursor. Notice
that the film becomes denser as the reactivity of the precursor goes down.
The reason for this phenomenon is that when the precursor is allowed to
desorb before it has a chance to react, it may go on to visit other parts of the
structure that are normally shadowed in the higher sticking factor case. This
phenomenon explains why there are significant voids near the substrate in
the high sticking factor case but none in the low sticking factor.

6.4.3 Porous dielectrics

Using a GC simulator such as PLENTE, we can address issues on non-
homogeneous substrates as well as the monolithic substrates in the above
examples. Though the focus of this chapter is polycrystalline films, the GC
approach and PLENTE really address a wider ranger of problems, such as
those that deal with more general microstructure. One of the recent goals in
the IC industry has been to reduce the relative dielectric permittivities of the
dielectric materials used in MLM stacks. This decrease can be done by
including empty pores in the material, bringing the effective dielectric constant
of the material closer to unity. However, the presence of pores and pore
networks can raise processing issues. As examples, we look first at etching*
porous substrates followed by a barrier deposition into the resulting trenches
cut into the porous substrates.

Figure 6.12 shows an example of the etching of a porous substrate. In this
simulation, a porous dielectric layer is being etched through a mask by high-
energy argon ions (Ar+) extracted from a plasma in a process called ion
milling. This type of physical etch process has the advantage of being quite
anisotropic while not using chemically reactive species that can contaminate
the pore structure. In our PLENTE simulation of this phenomenon, the incoming
argon ions are modeled as being mono-directional, coming in perpendicular
to the surface of the wafer. Because the dielectric material is so soft, the
selectivity towards the dielectric versus the underlying etch stop is chosen to
be quite good for a physical etch (20:1) and 1:0 for the substrate versus the
mask. As can be seen in Fig. 6.12, the substrate is ablated away by the
incoming ions. When a pore is opened up, it is treated as exposed surface and
the interior surface of the pore is etched based on its angle with the incoming
ions. Several pores are opened up on the sidewall creating overhangs that, as
we will see, present some problems for further processing, as well as the

*In contrast to deposition, etching processes are subtractive, removing material. However,
we include etching in the same category as deposition because both involve the motion
of a free surface, but do not include the motion of solid–solid interfaces, such as the
evolution of grain boundaries.
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opportunity for trapping process materials. The pore structure here is only
13% pore fraction with a non-connected pore network. Any problems
associated with opening up individual pores would be compounded for
interconnected pore networks. Additionally, due to the small but finite selectivity
of the substrate with respect to the etch stop layer, impressions of the pores
in the etched material can still be seen on the etch stop after completion
(Fig. 6.12c).

As seen above, etching through porous substrates can create re-entrant
surfaces. This phenomenon is problematic for several reasons, among them
that the etched trench must be sealed with a barrier layer, just as in the
example above of PVD into a dual damascene trench. Figure 6.13 shows a
PLENTE PVD simulation into just such an etched structure (after removing
the mask). Although the simulation is performed in three dimensions, a
cross-section is shown to expose the pore structure. The deposited material

(a) (b) (c)

6.12 A porous dielectric etching simulation completed using PLENTE,
at various times. The process is ion milling using Ar+ ions, with a 20
to 1 selectivity of the dielectric to the etch stop. Even with this
reasonably good selectivity, impressions of the pore structure can
still be seen on the etch stop after etching is complete.

6.13 A cross-section view of a simulation of the subsequent vapor
deposition of a liner layer into a trench etched into a porous
substrate after mask removal. As can be seen by the magnified
section, etching these types of pore structures can open up areas
that are difficult to deposit onto effectively.
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is tantalum, and deposited to a thickness of 165 nm on the flats surrounding
this 1 micron deep trench. This thickness corresponds to a minimum thickness
on the sidewall of 2.5 nm. However, as can be seen in the magnified section
of Fig. 6.13, showing a pore, parts of the interior of the pore can be completely
shadowed, having no deposition at all. The failure to create a continuous
diffusion barrier can be a severe problem in terms of producing working ICs.

6.4.4 Grain evolution

Although examples of grain evolution do arise during processing, some of
the most important examples of evolution involve its impact on reliability.
Of particular interest are the phenomena of curvature-driven grain boundary
migration31 and electromigration146. As an example, we look at curvature-
driven grain boundary motion. Lifshitz and Slyozov147 showed theoretically
that the grain boundary velocity is related to the pressure difference caused
by the curvature, with the grain boundary mobility taken as the proportionality
constant. In this case, atoms are transported only the short distance across a
grain boundary (on the order of a few lattice constants) moving from one
lattice to another where it is energetically favorable due to the curvature.
This phenomenon can be thought of as being driven by the increase in the
coordination number of adatoms as they move from convex to concave
surfaces. Alternatively it can be thought of as being driven by reducing the
total area of grain boundary surfaces in a volume, trading surface energy for
a lower volume energy.

Using the approach of Turnbull148, an expression for the migration rate
(v) of a small section of grain boundary can be written as follows:

v p
bf
kT

G
kT

 =  exp –
W D( ) [6.4]

In this equation, b is the boundary displacement associated with an atomic
exchange, W is the volume change associated with the atomic exchange, f is
the Debye frequency, DG is the free energy change associated with the
exchange, k is the Boltzmann factor, T is the absolute temperature, and p is
the driving ‘pressure’ for the exchange. The right hand side may be expressed
as a product of p and a mobility M, itself a product of a fundamental mobility
M0 and an Arrhenius factor
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Here Q is the activation enthalpy for atomic motion across the grain boundary.
The driving pressure is the heart of understanding the grain boundary migration
phenomenon. From an energetics viewpoint, the driving pressue is the ratio
of the change in free energy to change in position of the boundary149
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Here dG is the change in energy when a unit area moves a distance dr. For
the case of an isotropic grain boundary, in which the energy per unit area (g)
is constant, the Gibbs–Thompson relation p = gk can be applied to write
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Using this formulation of grain-boundary migration to obtain migration rates
and using PLENTE to integrate the motion of grain structure geometry, we
have performed a study of coarsening due to curvature-driven grain-boundary
migration in micron-sized Cu lines145. The parameter values used in the
evolution model are taken from the literature (or calculated from known
values) and are representative of copper. Initial grain structures were unrelaxed
polycrystalline Cu structures grown in simulation using an isotropic ELD
model136 (see Section 6.3.3). There are 30 grains per periodic length in the
initial structure, as shown in Fig. 6.14a. As the simulation progresses (Figs
6.14c to g), grain boundaries move and the structure coarsens, with larger
grains eventually ‘swallowing’ smaller grains. (The small black circles in
Figs 6.14c to f are discussed in Section 6.5.3) As each grain is swallowed,
the number of grains in the simulation decreases by one, until at 1800 minutes
of simulation time, there are only 13 grains left in the line.

The phenomenon of larger grains growing at the expense of smaller grains
has the effect of reducing intermediate sized grains from the simulation at
first, splitting the distribution into increased numbers of large and small
grains, as seen in the grain size distribution curves in Fig. 6.14b. As the
simulation progresses further, the balance continues to shift to the larger
grains, until at 1000 minutes, the number of grains is reduced to the point
that the statistics of the distribution break down due to sample size.

Fair agreement was found when the grain size distributions at selected
times were compared against experimental data on similarly processed lines31.
On the other hand, experimental Cu films indicate highly faceted grains
developing, as shown in Fig. 6.15; the model needs to be improved. Curvature-
driven grain boundary motion is driven by interfacial energy, much like the
coarsening of soap froths is driven by the surface tension of the walls between
bubbles108. However, unlike the case of air trapped in soap bubbles, the
crystalline material that makes up grains has an orientation, so not all interfacial
planes have the same surface energy. Because anisotropic surface energies,
as functions of grain boundary parameters, are not well known, the model
used in the simulation that yielded Fig. 6.14 used an isotropic energy and
thus does not predict facet formation.
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6.5 Opportunities

6.5.1 Overview

Although much of the formalism for grain continuum simulation is in place,
there are still challenges to meet and opportunities to address new phenomena
on several fronts. Some of the biggest challenges are technological and have
been touched upon briefly in the previous sections. These are software needs
and include the ability do the following:
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6.14 (a) Starting structure for a curvature-driven grain boundary
simulation. (b) grain-size distributions at various times throughout
the simulation. (c, d, e, f, g) Snapshots taken at selected times during
the simulation31,145.
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1. Quickly and robustly extract consistent interfaces from the over-specified
system represented by our MLS approach.

2. Construct volume meshes in structures of complex, non-manifold
topologies in order to calculate process and evolution models on them.

3. Rapidly and accurately calculate and efficiently store the large numbers
of view factors needed for ballistic transport calculations

In addition to the above GC/PLENTE-focused software opportunities and
introducing other process models (both inside and outside of microelectronics),
perhaps the opportunity with the highest risk and highest reward is interfacing
PLENTE with atomistic simulators. Such a marriage would allow more
accurate information regarding local physical phenomena, e.g. surface and
interface diffusivities and energies, to be introduced into grain-continuum
simulations.

6.5.2 Software opportunities

Efficient and robust meshers are required by both PLENTE and many of the
supplemental codes that we desire to use, such as finite-element solvers.
Current mesh generation methods are labor intensive and can account for
half of the time and cost of an analysis. Shephard and co-workers150–154 have
developed techniques to automatically generate and adapt meshes for general
non-manifold 3D domains. These procedures are well suited to dealing with
the multi-material domains to be considered in this research. Parallel versions
capable of generating meshes with hundreds of millions of elements are on
the horizon and preliminary versions are under development151,152.

One of the issues that the MLS method faces is that of consistent extraction.
In the MLS method, each phase is associated with a level-set scalar, with the
zero level indicating the boundary of that phase. Because an interface is, by
definition, the boundary of two phases, the exact position of an interface is
determined by more than one zero level. When these zero levels agree within

2 mm 2 mm 2 mm

(a) (b) (c)

6.15 Electrochemically deposited Cu films (1 mm thick), after self-
annealing at room temperature at (a) 0.75, (b) 8, and (c) 48 hrs31.
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machine precision, the interface is single valued. However, when three or
more phases (two or more interfaces) come together (a third- or higher-order
junction), it is not uncommon for the precise position of the zero levels to
diverge, as shown in Fig. 6.16 for a 2D case. This is not a problem of
accuracy, as the errors are within the previously established bounds, i.e.
below the resolution of the mesh. The problem is that the representation
errors are not identical in all of the representations of the interfaces. Upon
extraction of the interfaces, the resulting explicit representation can be left
with regions of space that do not correspond to any particular phase, including
not belonging to a ‘vacuum phase’. Also, the discretizations of the involved
phase boundaries may differ, making an explicit ‘knitting together’ of the
problematic regions very difficult. These extractions are referred to as
inconsistent. This situation is troublesome because, when the explicit structure

6.16 An explicit set of interfaces (black solid lines) can be
represented as contours in scalar fields, themselves represented on a
finite-element mesh (light dotted lines). However the re-extracted
interfaces (dashed lines) do not come together at triple points and
higher order junctions, leaving regions that do not correspond to any
physical situation.
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is needed by a process simulation code, applying boundary conditions to
inconsistent parts of the structure will be problematic.

To circumvent this problem, Bloomfield et al.136 proposed a voxel extraction
(VE) method, in which the extraction from the implicit representation to an
explicit surface mesh first passes through an explicit volume representation.
This method gives consistent extractions as well as producing volume meshes
of all the phases, but the results are limited to ‘Manhattan’ geometries, i.e.
are constructed of faces that lie only in a limited number of planes, resembling
a city skyline. The same authors later proposed the conformal voxel extraction
(CVE) method155 that avoids the Manhattan geometry limitations of the
original VE method. In the CVE method, a volume mesher is used to create
a space-filling mesh that meets certain internal constraints, making use of
information from the inconsistent extraction. The elements in this mesh are
then used to map the implicit representation to an explicit volume representation,
and finally an explicit, consistent surface representation is extracted from
the explicit volume representation. In Fig. 6.17, the CVE method is applied
in two dimensions to the problematic structure from Fig. 6.16. As a side
benefit of this extraction method, the space-filling voxelation mesh is a
volume mesh (in 3D problems) for the explicit extraction, addressing the
software need listed above of completing the (perhaps problematic) task of
creating an interface fitted mesh for the extraction.

The third technological challenge listed becomes an issue in low pressure
simulation, when applying the BTRM (See Section 6.4.2). It should be noted
that, although the application of the BTRM to simulate the evolution of 3D
surfaces is a straightforward extension of its application to 2D surfaces, the
problem can quickly become huge. For non-unity sticking factors, Equation

6.17 The conformal voxel extraction procedure, as applied to the
implicit representation shown in Fig. 6.16. First, consistent
elements from the directly extracted sets (left) are identified
(solid lines). Next, a space filling mesh (middle) is created using
these elements as internal constraints and each voxel is
assigned to a phase (shading). Finally, the conformal voxel
extraction (solid line, right) is derived by comparing neighboring
voxels, and compared to the structure used to initialize the
implicit representation (dashed line, right).
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[6.2] is solved iteratively, using a fixed-point iteration in the fluxes (and
surface coverages when appropriate). To solve this problem, the view factor
matrix q is required for whatever geometry is being considered. It is this
view factor matrix which places a computational limit on the size of problems
that can be reasonably addressed. Note that this matrix has size N2 where N
is the number of points sampled on the surface, often corresponding to the
number of patches or triangles (in 3D) or segments (in 2D) that are used to
represent the surface. The number of non-zero entries in this matrix is highly
dependent upon the shape of the surface being represented. The problem of
determining and representing view factors efficiently is beyond the scope of
this chapter.

Recently a Boltzmann transport equation (BTE) based alternative to solving
low-pressure transport and reaction models has been presented156,157. Gobbert
et al. introduced the kinetic transport and reaction model (KTRM), formulated
as a discontinuous Galerkin problem. BTEs are solved over a domain as a
boundary value problem using the heterogeneous chemical reaction rate
expressions and re-emission models as boundary conditions. The solution to
the KTRM is the particle density functions at each point in the system, which
contain the information about transport in the system. Two strong advantages
of the KTRM, for systems for which it applies, are that collisional flows can
be studied and process transients can be followed. However, solutions require
discretizing the empty space between the surfaces as well as the surfaces.
For collisonless transport, this is a computational expense not required by
the BTRM. For cases in which both the BTRM and KTRM are valid, it is
unclear whether the KTRM (recently developed) or the BTRM will be preferred.
With their different strengths, it is likely that both may find a long-term
place in 3D vapor deposition simulation.

6.5.3 Interface between atomistic and grain-continuum
simulators

To get atomistically derived information into PLENTE, parts of the simulation
domain need to be represented atomistically. We term the flip side of the
encapsulation procedure discussed in Section 6.4.2 as atomation. We have
implemented an atomation functionality in PLENTE that can take a set of
GC representations as input. It constructs a set of atomic positions that
represent the occupied points for the lattices associated with the grain(s) in
a neighborhood of a requested sample point. During the atomation procedure,
a distribution of defects such as vacancies or substitutional impurities can be
imposed upon the atomated structure, based on information stored in the GC
representation. One approach to incorporating the effect of atomic scale
phenomena into PLENTE, or another GC implementation, is indicated by
the black rings in the first four ‘still shots’ in Fig. 6.14c through Fig. 6.14f.



Grain–continuum modelling of material behaviour 179

At any one of these time steps, PLENTE would call support software to
identify key locations, such as these points on grain boundaries. These points
(small volumes on the GC scale) would be atomated and passed to an atomistic
simulator, e.g. ADEPT, to get improved rate parameters or actual rates. In
Fig. 6.14c, the black ring identifies a higher-order grain junction where
atomistically-derived information might be needed. As time progresses, the
junction indicated by the black ring in Fig. 6.14 moves in space, and finally
disappears as one of the grains is consumed. The decision making code
clearly needs to be adaptive.

A large portion of any effort to interface GC with atomistic simulators
efficiently will be to provide the interface code with the ability to make
decisions and guide the atomistic simulations using information from the
GC simulation. The code that decides when atomistic information is needed
should also manage, cache, and interpolate simulation results using a database,
so that multiple requests for similar information can be filled without repeated
atomistic computation. Ideally, if a similar atomistic simulation had already
been run then the information desired should be looked up or interpolated
from previous results. A large part of such an interface code would be the
ability to decide if existing information in its database is similar enough to
use in a ‘current’ request for atomistically derived information. The design
of the database itself would be important for both efficiency and accuracy158,159.

This marriage of GC (PLENTE) and atomistic (ADEPT) codes will allow
concurrent simulation from the atomistic to the meter scales. For example,
PLENTE interacts with programs that deal with larger scales (e.g. COMSOL160

for structural or equipment scale models), taking inputs such as fluxes, reactant
compositions, or mechanical forces from these simulations (simultaneous
solution is preferred143,161,162). ADEPT takes its inputs from models, tools
(e.g. VASP), and previous results.

In addition to spanning a wide range of the spatial scales of interest to
materials scientists, process engineers, and product engineers, this approach
may help to deal with timescale issues associated with bridging discrete and
continuum simulators. PLENTE uses structural and rate information at one
time to predict small changes in structure, which occur over a time step that
in turn depends upon the rate of structural evolution136. PLENTE then evolves
the structure under study, and re-computes the structure and rates for the
next time step. Consider again a specific time step in a PLENTE evolution
simulation, such as one shown in Fig. 6.14. To determine how the system
evolves during the next time step, PLENTE seeks structural and rate
information. PLENTE calls code that decides what part of that information
needs to be atomistically derived, allocates the needed resources, then gathers
and returns the information to PLENTE. PLENTE then takes a time step,
and the process is repeated. The short timescales typical of atomistic simulations
are appropriate for such an application; i.e. instantaneous rates and structures
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needed at a specific time during the solution of transient partial differential
equations.

One of the research efforts needed to develop such an environment is to
determine the level of detail that should be represented in the GC, i.e. what
should be represented atomistically, for a given material and process. This
balance will depend upon the targeted film characteristic or performance
property. As more experimental information on grain boundaries becomes
available, such a combined GC/atomistic approach will help determine how
to represent grain-boundaries to the problem-dependent level needed.
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7.1 Introduction

7.1.1 Mobile dislocations in ductile metals

Understanding the mechanisms of plasticity on the nanoscale is a subject of
much recent interest. For example, nanoscale plasticity is relevant in the
interpretation of nano-indentation experiments (Gerberich et al., 1996; de la
Fuente et al., 2002), and in the understanding of the enhanced hardness that
comes from nano-crystalline materials (Valiev, 2002) and nano-layered coatings
(Yashar and Sproul, 1999). The great difficulty associated with obtaining
detailed experimental observations from such small-scale processes has led
to a reliance on atomistic modeling, either with empirical interatomic potentials
or with more accurate density functional theory (DFT) calculations. Such
modeling ranges from the determination of the details of dislocation core
structures (from which certain plastic behaviour can be explained or predicted)
to large-scale simulations of plastic deformation. Examples include simulations
of single crystal ductile fracture (Abraham et al., 1998b, 2002), nano-indentation
into single crystals (Kelchner et al., 1998; Lilleoden et al., 2001, 2003;
Zimmerman et al., 2001; de la Fuente et al., 2002; Gerberich et al., 2002; Li
et al., 2002; Van Vliet et al., 2003) and nano-layered materials (Saraev and
Miller, 2005, 2006), and the yielding of a nano-crystalline sample (Schiotz
et al., 1998; Van Swygenhoven, 2002; Yamakov et al., 2002, 2004; Schiotz
and Jackobsen, 2003; Van Swygenhoven et al., 2004).

In many of these simulations, there exists a significant challenge to obtaining
accurate results. Specifically, the long-ranged stress fields associated with
the boundary conditions make it difficult to perform an atomistic simulation
that is not in some way affected by artificial constraints imposed by practical
limits on the system size. For example, small atomistic models or the use of
periodic boundary conditions to mimic an infinite system are not suitable for
nano-indentation simulations. First, the finite size of the atomistic system
means the model is of an unrealistically thin layer, leading to an artificial
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‘substrate’ effect. Second, periodic boundary conditions lead to a model, not
of a single indenter, but of a periodic array of indenters whose interactions
can be significant1.

This challenge has led to so-called ‘concurrent’ or ‘coupled’ multiscale
approaches, which are the focus of this chapter. In this class of multiscale
approaches, a certain critical part of a body is modeled atomistically and
coupled directly to a ‘coarse-grained’ or ‘continuum’ region elsewhere. The
goal of such an approach is to retain fully atomistic detail only where it is
needed, while modeling a large enough system to provide realistic boundary
conditions and long-ranged elastic interactions. Such a multiscale approach
is distinct from so-called ‘hierarchical’ approaches in which modeling is
done at one length scale to extract key data for use in coarse-grained models
at larger scales. Reviews of coupled methods may be found in articles by
Curtin and Miller (2003) and Liu et al. (2004).

In a coupled approach, the underlying atomistic model may be a simple
pair potential, an effective medium theory like the embedded atom method
(EAM) or glue models, or a full DFT treatment. In addition, the atomistic
model may be a zero-temperature equilibrium structure calculation or a
molecular dynamics model. In the interest of brevity, we will refer simply to
the ‘atomistic’ model, and make any additional important details clear from
the context. It is obviously the case that the accuracy of a concurrent model
is limited by the accuracy of the underlying atomistic model, and so it is
common to think of the fully atomistic treatment of the same problem (if
such a treatment were computationally tractable) as the ‘exact’ solution that
the multiscale approach seeks to represent. The hope of accurately predicting
real material behaviour rests on the shoulders of the underlying inter-atomic
model, and hence on the subject matter of other chapters. The book by Finnis
(2003) is an excellent treatment of the subject of inter-atomic force models.

Most coupled methods take the generic form illustrated in Fig. 7.1, where
there is a clear partition of the model into an atomistic region WA, a continuum
region WC, and an interface between them, ∂WI. In general, there will be
some prescribed displacements, u = u  along part of the boundary ∂Wu and
possibly some applied tractions T = T  on ∂WT. The atomistic region is such
that in the limit where it becomes large, the exact underlying atomistic
model is recovered. The continuum is typically modeled by a linear elastic
or hyperelastic finite-element mesh with a strain energy function derived
from the underlying atomistics. The key to the accuracy of such approaches,
however, is the design of the atomistic/continuum interface, where forces are
transmitted to and from the atoms. By necessity, such an interface represents
a degree of approximation in the model, and the nature of this approximation

1See Saraev and Miller (2006) for discussion of a specific example of such a spurious
effect.
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will determine the magnitude and extent of so-called ‘ghost forces’ that arise
in the vicinity of the interface. Additional considerations are necessary if the
model is dynamic: spurious wave reflections from the interface can render
the model useless, and much effort has been spent on developing interfaces
with suitably low impedance (Rudd and Broughton, 1998, 2005; Cai et al.,
2000; E and Huang, 2001; Park et al., 2005; Qu et al., 2005) or on using a
thermostat to mitigate the effects of the reflected waves (Dupuy et al., 2005;
Shiari et al., 2005).

However, even within the framework of a coupled model with a well-
designed interface, an additional limitation persists when we try to model
deformation in ductile solids. In many such problems, there are a large
number of mobile dislocations in the model that are either initially present or
that are generated during the deformation. Often these dislocations experience
high, long-ranged stresses within a material with relatively low lattice resistance
to motion. As such, dislocations want to move over long distances, but they
cannot be accommodated by the continuum regions of most coupled methods.
The apparent solution to this problem is simply to make the atomistic region
very large, encompassing the whole domain of potential dislocation mobility.
This unfortunately defeats the very purpose of using the coupled model in
the first place. It is this detail of coupled models on which we want to focus
in this chapter: How do we deal with dislocations in a coupled atomistic/
continuum framework?

In passing, we mention that there are several coupled methods for which
the atomistic/continuum interface is less clearly defined (see, for example,
Wagner and Liu, 2003; Datta et al., 2004; Park et al., 2005b, c) because the
continuum and atomistic regions fully overlap and a projection operation is
used to prescribe the connection between the two. These methods would face
the same challenges discussed here with respect to dislocations, arising from
the boundary of the atomistic region instead of from an explicit atomistic/

WC

    u,
∂Wu

WA

    T,
∂WT

u

7.1 The generic coupled multiscale boundary value problem. Adapted
from Shilkrot et al. (2002).
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continuum interface. We focus our attention on the two methods that have
been developed to solve this specific problem of mobile dislocations: the
quasicontinuum (QC) method (Tadmor et al., 1996; Shenoy et al., 1998 a, b)
and the coupled atomistic and discrete dislocation (CADD) method (Shilkrot
et al., 2002, 2004).

7.1.2 Illustrating the problem

Figure 7.2 shows two MD simulation results for nano-indentation into a
copper single crystal coated with a thin single crystal of nickel (Saraev and
Miller, 2006). The crystals were initially defect-free, with the only dislocations
present in the model being a crisscrossing pattern of misfit dislocations in
the Ni–Cu interface. The only difference between the two simulations is the
location of the center of the indenter relative to the positions of the misfit
dislocations in the interface; however, we can see that there is a substantial
qualitative difference in the final dislocation structure which is formed.

The challenge to modeling this indentation example with a multiscale
technique is that it is not possible to know in advance where the dislocations
will form and move during the simulation. If the atomistic region of the
simulation is too small, it will artificially affect how the dislocation structure
evolves. If it is too large, on the other hand, it will quickly render the
multiscale approach intractable.

Another slightly more quantitative example comes from fracture mechanics.
Suppose we have a 2D crack loaded in mode I, which has just emitted a
dislocation from its tip. How large does the atomistic region around the
crack tip need to be to allow this dislocation to move to its position of
equilibrium? We can estimate this based on the stress field around the crack
tip, which we know from linear elasticity to go as t  µ K rI / 2p  where KI
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7.2 Molecular dynamics simulations of nano-indentation into a Cu
single crystal coated with a thin single crystal of Ni. Atoms are only
shown if they are in a region where slip has taken place, as
measured by a slip vector analysis (Zimmerman et al., 2001) and
shown by the contours. Adapted from Saraev and Miller (2006).
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is the stress intensity factor due to the loading and r is the distance from the
crack tip. This is roughly the stress driving the dislocation, which will move
away from the crack tip until this stress has decayed to below the Peierls
stress of the crystal. A typical bulk, polycrystalline aluminum alloy has a
fracture toughness in the range of KIC = 20 MPa m , but perhaps more
appropriate in this case is a value of about KIC = 0.5 MPa m  reported by
Miller et al. (1998) for the advance of an atomistically modeled crack tip in
a single crystal of Ni. Assume the crack is loaded well below this critical
value, such that KI = 0.1 KIC = 0.05 MPa m . Now, take a typical value of
the Peierls stress to be tPeierls = 20 MPa as reported by Olmsted et al. (2001)
and we find that the equilibrium distance for the dislocation is at r = 1 mm.
Requiring an atomistic region with a 1 mm radius, which even in 2D contains
on the order of 107 atoms, is clearly not computationally efficient.

In this chapter, we discuss two specific solutions that have been developed
to address the issue of mobile dislocations in coupled methods. The first is
to use a model that can continually adapt the size and shape of the atomistic
region as necessary to accommodate the evolving defect structure. In this
way, a fully atomistic treatment can follow dislocation cores as they emerge
into the model. This approach was developed within the framework of the
QC method, and so we discuss it here in that context. The second method to
treat dislocations is to keep the atomistic region fixed, but use an algorithm
that automatically detects dislocations as they approach the atomistic/continuum
interface and converts them to linear elastic defects. These are then passed
into the continuum region and treated using the methods of discrete dislocation
(DD) models (see Chapter 2). As such, this approach assumes that once the
dislocations have left the initial atomistic region, their important effect is
their elastic interactions with the rest of the model, and the details of their
atomistic core can then be ignored. The CADD method has been developed
to effect this coupling between an atomistic region and a DD region, and we
review the method here with particular emphasis on the dislocation detection
and passing components.

Throughout the chapter, we will focus on a very simple 2D indentation
example to illustrate the problem and solution associated with each method.
We leave the discussion of the many applications of these methods to other
recent reviews (Miller and Tadmor, 2002; Curtin and Miller, 2003; Tadmor
and Miller, 2006) and the original references (Shenoy et al., 1998a; Shilkrot
et al., 2002). An open-source implementation of the QC method is available
for download from www.qcmethod.com.

7.2 Automatic adaption: the QC method

As we have said, the focus in this chapter will be on ways to deal with
dislocations in multiscale approaches. The adaptive meshing strategies
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implemented in the QC approach and discussed in Section 7.2.3 can, in
principle, be applied to other multiscale approaches such as those of Rudd
and Broughton (2000, 2005) and Abraham et al. (1998a). However, because
this adaptive methodology is currently only implemented in QC, we will
focus on the QC formulation specifically. Before turning to the question of
adaption, it is helpful to briefly review the details of the QC method itself,
and for that purpose we follow closely the review presented by Tadmor and
Miller (2006).

7.2.1 The ‘exact’ atomistic problem

For the time being, we focus on lattice statics solutions. We are looking for
equilibrium atomic configurations for a given model geometry and externally
imposed forces or displacements. For the interested reader, there has been
much recent work in developing a finite temperature, dynamic QC
implementation (Shenoy et al., 1999; Dupuy et al., 2005).

We assume that there is some reference configuration of N atomic nuclei,
initially forming a lattice. Thus, the reference position of the ith atom in the
model Xi is found from an integer combination of lattice vectors and an
origin atom position, X0

Xi = X0 + liA1 + miA2 + niA3 [7.1]

where (li, mi, ni) are integers and Aj is the jth Bravais lattice vector. In
principle, the QC method does not depend on having a crystalline reference
configuration, but rather depends on having an efficient and unambiguous
method for determining the locations of all the atoms in the reference body.
The Bravais lattice is perhaps the simplest such prescription.

The deformed position of the ith atom xi is then found from a unique
displacement vector ui for each atom

xi = Xi + ui [7.2]

The displacements ui, while only having physical meaning on the atomic
sites, can be treated as a continuous field u(X) throughout the body with the
property that u(Xi) ∫ ui. This approach, while not the conventional one in
atomistic models, is useful in effecting the connection to continuum mechanics.
Note that for brevity we will sometimes refer to the field u(X) to represent
the set of all atomic displacements {u1, u2, …, uN} where N is the number
of atoms in the body.

We assume that the underlying atomistic model is such that we can write
the total potential energy of the system of atoms as a sum over well-defined
site energies Ei associated with each atom i. Specifically,

E E
i

N

i
tot

 = 1
=  ( )S u [7.3]
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where Ei is the site energy of atom i, which depends on the displacements u
through the relative positions of all the atoms in the deformed configuration.
In addition to the potential energy of the atoms, there may be energy due to
external loads applied to atoms. Thus, the total potential energy of the system
(atoms plus external loads) can be written as

F( ) = ( ) –   tot
 = 1

u u f uE
i

N

i iS [7.4]

where fiui is the potential energy of the applied load fi on atom i. Thus the
‘exact’ fully atomistic solution is the set of displacements u that minimize
the function F subject to the external loads fi and constraints ui = u i  on a
subset of the atoms in the body.

7.2.2 The continuum region

The essential idea of the QC method is to re-write the energy of equation
[7.3] such that it remains acceptably accurate but computationally more
efficient. First, we can think of the sum as being re-written as a sum over
atoms in the ‘atomistic’ region and another over the atoms in the ‘continuum’
region as illustrated in Fig. 7.1. Practically speaking, such a decomposition
will initially be made by fiat during the setup of the model, but will then be
able to evolve based on criteria (to be discussed later) that quantitatively
determine whether or not a certain region needs to be treated atomistically.
Thus, we have the decomposed sum

E E E
i i i i

tot  =  ( ) +  ( )
A C

S S
ŒW ŒW

u u [7.5]

The first sum must be performed exactly as in the fully atomistic model. The
second sum, which is generally over a very large number of atoms, is made
computationally tractable by use of the finite-element method, as we will
outline presently.

A small subset of the atoms in the problem are chosen as so-called
‘representative atoms’ or ‘repatoms’. In the atomistic region, all atoms are
chosen, while in the continuum region a relatively small fraction are chosen,
as shown in Fig. 7.3. A finite-element mesh is drawn between the repatoms,
and the constraint is imposed that only the displacements of the repatoms are
degrees of freedom in the problem. For any atom lying between the repatoms,
the displacements are constrained to follow an interpolated displacement
field found from the finite-element shape functions.

This first approximation of the QC, then, is to replace the energy Etot by
Etot,h:

E E E
i i i i

tot,h h h =  ( ) +  ( )
A C

S S
ŒW ŒW

u u [7.6]
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In this equation the atomic displacements are now found through the
interpolation functions and take the form

u uh
 = 1

 =  
rep

S
i

N

i iS [7.7]

where Si is the interpolation (shape) function associated with repatom i, and
Nrep is the number of repatoms, Nrep << N. Note that the formal summation
over the shape functions in equation [7.7] is in practice much simpler due to
the compact support of the finite-element shape functions. Specifically, shape
functions are identically zero in every element not immediately adjacent to
a specific repatom. Also note that in the atomistic region, this interpolation
is actually not used since there are no atoms inside elements in that region.

Introducing this kinematic constraint on most of the atoms in the body
will achieve the goal of reducing the number of degrees of freedom in the
problem, but notice that for the purpose of energy minimization, equation
[7.6] still requires a sum over all the atoms in WC to compute the total energy.
It is necessary to reduce the computational effort required to find the total
energy.

A key feature of a simple Bravais lattice is that every atomic site sees the
same neighbor environment as any other site. Figure 7.4 shows a Bravais
lattice undergoing a uniform deformation. It is useful to characterize the
deformation by the deformation gradient, F, defined by

F X
x
X

I u
X

( )   =  + ∫ ∂
∂

∂
∂ [7.8]

where I is the identity tensor. For a uniform deformation, F is constant
throughout the body. Clearly, even if the resulting deformation is quite large,
the equivalency of all the atomic neighbor environments is preserved as
shown in Fig. 7.4(b). To compute the energy of all the atoms in some region
of this deformed crystal (assuming it to be infinite in extent), we need only

(a) (b) (c)

7.3 (a) A dislocation in an otherwise perfect crystal experiences
severe deformation variations only around the dislocation core. (b)
Schematic representative atom selection, with the region around the
core treated atomistically. (c) Mesh for the QC method.
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compute the energy of one atom, and multiply by the number of atoms in the
region.

In QC, we make use of this fact and employ finite-element shape functions
that ensure a uniform deformation gradient within each element. Thus, we
approximate the energetic contribution of all the atoms in the element as the
number of atoms in the element multiplied by the energy of one such atom,
embedded in an infinite crystal experiencing the deformation gradient of the
element. The energy is therefore approximated by

E E E n E
i i

M
tot,h QC h

=1
   =  ( ) +  ( )

A

C

ª S S
ŒW

u ˆ F
m m m [7.9]

where MC is the number of elements filling the space between the repatoms
of the continuum region. The weighting function nm is the number of atoms
within element m, and ˆ FE( )  is the energy of a single atom in an infinite
crystal deformed by the deformation gradient F. The energy ˆ FE( )  can be
efficiently computed by building a small crystallite of atoms, deformed
according to F and just large enough to completely fill the cutoff sphere of
an atom at its center.

Note that there is an additional level of approximation here, because
atoms near the boundaries of the elements will generally see a non-uniform
environment if some of their neighbors reside in other elements. In the
multiscale literature, this is sometimes referred to as the ‘local’ approximation,
reflecting the fact that it assumes that we can compute the energy of an atom
armed only with the knowledge of the local (pointwise) value of the deformation
gradient. In fact, the nature of atomic models (at least those that are more
sophisticated than simple near-neighbor pair potential descriptions), is that
they are inherently non-local. That is to say, the energy of an atom depends
on neighbors a finite distance away, typically up to some cutoff distance on
the order of the third or fourth neighbors for metallic systems. Clearly, if the

(b)(a)

A2

A1

FA2

FA1

7.4 A simple Bravais lattice in (a) deforms uniformly under
deformation gradient in (b). Every atom in either the reference or the
deformed lattice sees an equivalent neighbor environment, as shown
for two atoms in each lattice.



Multiscale materials modelling198

deformation of a region is uniform up to this distance from the atom in
question, then this atom’s energy will be accurately obtained from the local
approximation. However, if there are significant deviations from the uniform
deformation gradient within that range, the local approximation will breakdown.
The calculation of the total energy of a uniformly deformed region of a
crystal in this way is related to the Cauchy–Born rule (Ericksen, 1984)
which is essentially the assumption that a uniform deformation on the
continuum length scale prescribes the same uniform deformation of the
underlying atomic lattice.

Equation [7.9] provides the essential framework for the static (zero T) QC
method. Using it to approximate the total potential of the system in equation
[7.4] leads to a function of only the positions of the repatoms, and so
differentiation with respect to the repatom positions permits minimization of
F, and ultimately one can find the displacements for the equilibrium solution.

7.2.3 Automatic adaption

The key aspect of QC that we wish to focus on here is mesh adaption. As a
specific illustration, we have run the example indentation simulation provided
with the QC code V1.2 at www.qcmethod.com (‘Punch-Example’). A block
of single crystal fcc aluminum, with the dimensions and orientation shown
in Fig. 7.5, is modeled using the embedded atom potentials of Ercolessi and
Adams (1994). A flat square indenter of width 10 Å is modeled by simply
prescribing the displacement of five atoms along the top surface of the
crystal. This displacement is incremented by 0.2 Å between relaxations of
the model to simulate quasi-static loading. The inset in Fig. 7.5 shows the
initial atomistic region below the indenter.

As we shall see, the result of this simulation will be the nucleation of a
pair of Shockley partials from beneath each corner of the indenter. The
nucleated defects want to move some distance from the indenter, perhaps
into the region that is currently modeled using the continuum approximation.
However, the continuum region cannot support dislocations, because the
deformation around a dislocation core varies too rapidly on the atomic scale.
At the very least, we must adapt the mesh in the continuum region down to
the atomic scale, in order to accurately capture the displacement field around
a dislocation core. Even this is not enough, since the local approximation
inherent to the continuum region is no longer valid. The goal, then, is to
implement an algorithm within QC that can automatically update both the
degree of mesh refinement and the status of a repatom as either ‘atomistic’
(and hence fully non-local) or ‘continuum’ (and therefore reasonably
approximated by the local assumption).

We first turn our attention to the question of mesh refinement. To this end,
the QC makes use of the finite-element literature, where considerable attention



Coupled atomistic/continuum modelling of plasticity 199

has been given to adaptive meshing techniques for many years. A scalar
measure is defined to quantify the error introduced into the solution by the
current density of repatoms. Elements in which this error estimator is higher
than a prescribed tolerance are targeted for adaption, while at the same time
the error estimator can be used to remove unnecessary nodes from the model.
The error estimator of Zienkiewicz and Zhu (1987), originally posed in
terms of errors in the stresses, is re-cast for the QC in terms of the deformation
gradient. Specifically, we define the error estimator to be

e e
e

e e
e
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 (  –  ) : (  –  ) d
1/2

W WÈ
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where We is the volume of element e, Fe is the QC solution for the deformation
gradient in element e, and F  is the L2-projection of the QC solution for F,
given by

F F =  
=1

avg
rep

S
i

N

i iS [7.11]

Here, Si is the shape function for node i, and Fi
avg  is the matrix of nodal

values of the projected deformation gradient F . Because the deformation
gradients are constant within the linear elements used in the QC, the nodal
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7.5 The initial mesh for the illustrative indentation example using QC.
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values Fi
avg  are simply computed by averaging the deformation gradients

found in each element touching a given repatom. Clearly, if neighboring
elements all have the same Fe, then Favg ª Fe and ee is small. On the other
hand, if the deformation gradient varies rapidly between neighboring elements,
adaption is triggered by this criterion as required.

Refinement then proceeds by adding new repatoms within the targeted
elements, depending on the type of element considered. For example, in a
2D, 3-node triangular element, new repatoms are added at the nearest atomic
sites to the midpoints on the three element sides. Notice that since repatoms
must fall on actual atomic sites in the reference lattice, there is a natural
lower limit to element size; if the nearest atomic sites to the mid-sides of the
elements are the atoms at the element corners, the region is fully refined and
no new repatoms can be added. In Fig. 7.6, we see a number of adaption
steps due to the increased variation in the deformation gradient as the indentation
proceeds.

The question of whether a repatom should be treated locally or non-
locally is probed using the so-called non-locality criterion in QC. As we
have stressed above, simply having a large deformation in a region does not
in itself require a non-local repatom, as the local formulation will exactly
describe the energy of any uniform deformation, regardless of the severity.
The key feature that should trigger a non-local treatment of a repatom is a
significant variation in the deformation gradient on the atomic scale in the
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7.6 Adapted QC mesh for various indentation depths, d.
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repatom’s proximity. Thus, the non-locality criterion is implemented as follows.
A cutoff, rnl, is empirically chosen to be between two and three times the
cutoff radius of the inter-atomic potentials. The deformation gradients in
every element within this cutoff of a given representative atom are compared,
by looking at the differences between their eigenvalues. The criterion is
then:

max   –  < 
, ;a b k

k
a

k
bl l e [7.12]

where l k
a  is the kth eigenvalue of the right stretch tensor U F Fa a a= T  in

element a, k = 1...3, and the indices a and b run over all elements within rnl

of a given repatom. The repatom will be kept local if this inequality is
satisfied, and made non-local otherwise. In practice, the tolerance e is
determined empirically. A value of 0.1 has been used in a number of tests and
found to give good results. The effect of this criterion is clusters of non-local
atoms in regions of rapidly varying deformation, forming the ‘atomistic’
regions, WA, in the QC simulation.

Figure 7.7 shows the load–displacement curve for the indentation example.
At an indenter depth of 5.0 Å, we see the load drop corresponding to the
nucleation of defects, and in Fig. 7.8 we see the atomistic region just before
and just after this load drop. The contours behind the atoms show the out-of-
plane displacements, revealing the width of the stacking fault between the
two partials. It is clear how the atomistic region has grown to follow the
dislocations as they move into the continuum, a process that will continue as
the dislocations travel deeper into the crystal.
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7.7 Load–displacement curve for the QC indentation example.
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7.3 Kinematically identifying dislocations – the

CADD method

7.3.1 The CADD formulation

An alternative approach to the problem of mobile dislocations is to recognize
that once a dislocation has nucleated and moved away from the critical
region of interest, the details of the dislocation core structure are of secondary
importance. The main effect that needs to be captured with respect to these
dislocations is their long-ranged elastic interactions with the atomistic region
and the externally applied boundary conditions.

Continuum models of dislocation mechanics which treat dislocations as
line defects in an elastic material exist in many forms, typified by the work
of Van der Giessen and Neeldeman (1995), Zbib et al. (1998), Kubin and
Canova (1992), Fivel and Canova (1999), Cleveringa et al. (1997), Weygand
et al. (2002) and others and here we refer to these models collectively as DD
methods. In these methods, the long-ranged interactions between the
dislocations are modeled to the accuracy of linear elasticity, which tends to
be suitable as long as the defects are at least a few nanometers apart. Smaller-
scale phenomena and short-range dislocation interactions are described by a
set of constitutive rules. The rules dictate, for instance, the conditions required
for dislocation nucleation, the minimum dislocation separation for annihilation,
the strength of dislocation junctions, the dislocation mobility, and dislocation/
obstacle interactions. Suitable values for the parameters in these rules can be
obtained, in principle, through detailed atomistic simulations.

These DD methods are continuum-based models that can be used to treat
general boundary conditions and complex model geometries. As such, they
can be used to model the continuum side of a coupled multiscale approach
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7.8 QC indentation result (a) just before and (b) just after the
nucleation of dislocations from the indenter corners.
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with very little modification to the multiscale methodology. However, the
difficulty comes when dislocations want to move between the two regions,
either from the atomistic region to the continuum or vice versa. With a
suitably robust algorithm to effect this passing of dislocations between the
regions, the problem of mobile dislocations can be treated with an extremely
small atomistic region and no need for automatic mesh adaption.

The CADD model was developed with exactly this goal in mind, and we
discuss it here. Our emphasis is on the feature of CADD which makes it
suitable for treating mobile dislocations: the algorithm for detecting and
passing defects as they move across the atomistic/continuum interface. First,
we present a brief overview of the CADD approach, the details of which can
be found in Shilkrot et al. (2002). We focus our attention on the zero-
temperature, static implementation of CADD, with quasi-static loading achieved
by incrementally increasing boundary loads or displacements on previous
equilibrium solutions. A dynamic, finite temperature CADD model has been
successfully implemented (Shiari et al., 2005) and used to study nano-
indentation.

In Fig. 7.9, we see the essential details of the CADD model. In contrast to
Fig. 7.1, the continuum region WC now contains Nd discrete dislocations.
The solution we seek consists of the atom positions xA, dislocation positions
di and continuum displacements u, stresses s, and strains e.

WC

    u,
∂Wu
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∂WT
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II III
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    ũ, I∂W

    u ũ û =  + ,
pad atoms

7.9 The augmented boundary value problem of CADD (which
includes discrete dislocations in the continuum) is solved by
superposition of two linear solutions (I and II) with the non-linear
atomistic solution (III). Adapted from Shilkrot et al. (2002).
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The continuum region is linear elastic, and requires the anisotropic elastic
moduli, computed a priori from the atomistic model for an appropriately
oriented crystal of the material. As we shall see below, the algorithm for
passing dislocations to the continuum also requires a list of all dislocation
Burgers vectors permitted to exist in the continuum, which is again determined
from knowledge of the crystal structure.

The continuum problem is divided into two complementary problems
(Fig. 7.9) and solved using the method of van der Giessen and Needleman
(1995). Problem I consists of dislocations in an infinite elastic continuum
and is solved by superposition of the analytical elastic fields due to the
individual dislocations at positions di, yielding a total field denoted as the
~ field. Problem I generates tractions T̃  along ∂WT and displacements ũ
and ũ I  along ∂Wu and ∂WI that differ from the values of T  and u  prescribed
by the boundary conditions and the uI imposed by the atomistic region.
Problem II consists of a linear elastic continuum with no dislocations but
subject to ‘corrective’ tractions T̂ T T̃ =  –   on ∂WT and displacements
û u ũ =  –   on ∂Wu and û u ũ =  – I I  on ∂WI. All discontinuities and
singularities of the dislocations are contained in the ~ fields of Problem I, so
the fields of Problem II, denoted as ^ fields, are smooth and obtainable
numerically by the finite-element method. The total fields in the continuum
are the superposition of the fields from Problems I and II: u = ũ û +  � =
  ̃ ˆ� � +  and � =   ̃ ˆ� � + . For a given displacement along the atomistic/continuum
interface ∂WI (which is known at any instant from the atoms defining this
interface) and a set of dislocation positions, this solution is directly obtained
from the inverted stiffness matrix of the finite-element model and a simple
summation since all parts of the continuum are linear. From this solution, the
stress anywhere in the continuum can be found and used to obtain the Peach–
Koehler force on each discrete dislocation. The displacement of any atom in
the continuum region can be also be obtained, if needed, using the reference
crystal structure, the field ũ , and the interpolated field û .

Forces on the atoms in Problem III are computed based on a physical
interpretation of atomic forces in such a way that spurious forces at the
atomistic/continuum interface are eliminated. First, the positions of the pad
atoms (shown as unfilled circles in Fig. 7.9) are found from interpolation of
the continuum displacement fields. This pad is at least twice the cutoff radius
of the interatomic potentials to ensure that atoms on ∂WI do not ‘see’ the free
surface created by the cut. Forces on the atoms in WA and on ∂WI  are then
the forces as obtained from a purely atomistic description of the material
including the pad atoms. A close-up of the interface is shown in Fig. 7.10.

With the forces on the atoms and dislocations obtained as described above,
the system can then be iteratively driven to equilibrium by an algorithm that
finds the solution for which these forces are zero.
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7.3.2 Detecting dislocations

The CADD model is deliberately designed so that the atomistic region can
be very small, and it is therefore expected that dislocations generated within
the atomistic region will move into the continuum region. Likewise, it is
possible that dislocations may move in the other direction, after being generated
from sources in the continuum or due to a reversal of the driving stresses as
the deformation evolves. As a dislocation in the atomistic region approaches
the interface, however, spurious forces will be generated: the elastic continuum
is not able to properly accommodate the shear deformation associated with
the Burgers vector of the dislocation. It resists this shear by a fully elastic
response, whereas in the true atomistic case the non-linear response leads to
softening under this shear, which permits continued glide of the dislocation.

In order for the dislocation to pass through the interface we must be able
to detect its approach and then artificially move across the interface, converting
it to a discrete dislocation. This requires not only detection of the dislocation’s
presence, but an unambiguous identification of its Burgers vector and slip
plane, so that once in the continuum its further motion will be properly
characterized. At the same time, the atomistic core structure must be eliminated

7.10 The atomistic/continuum interface of CADD. Light grey elements
are the continuum, white region is the atomistic region. The dark
elements are the detection band and the light grey circles in the
continuum region are the pad atoms.
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from the atomistic region. In this section, we focus on this feature of the
CADD model: how can we suitably detect and pass dislocations across the
atomistic/continuum interface?

Although the continuum region is linear elastic, a dislocation in the atomistic
region may fortunately move quite close to the atomistic/continuum interface
before there are significant spurious effects from the interface. This can be
inferred from the size of the region around a dislocation core in which there
are significant deviations from linear response. As was shown by Miller and
Phillips (1996), this core region is only a few Burgers vectors wide2. The
compactness of the core region makes it possible leave the detection of
dislocations until they have come to within a few atomic layers of the interface3.

To detect dislocations approaching the interface, we define a thin ‘detection
band’ of finite elements in the atomistic region some short distance from the
interface, as shown by the darkly shaded elements in Fig. 7.10. As the atoms
move during the deformation of this region, the elements in the detection
band deform, and standard finite-element shape functions permit the efficient
calculation of a deformation gradient, F, for each detection element.

Let us first consider the effect of a single dislocation on one of these
elements in an initially perfect crystal. This is illustrated by the shaded
element in Fig. 7.11, where a dislocation has passed through the center of the
crystal and sheared the top with respect to the bottom. In the limit where the
dislocation has traveled far from the element of interest, the effect is to move

2For dislocations which dissociate into partials, there is of course a larger region of non-
linearity due to the stacking fault between the partials.  In that case, we mean that the non-
linearity of the dislocation dies off quickly as one moves away from either partial, and not
into the stacking fault.
3Recent work by Dewald and Curtin (2005) has shown that there are other important and
sometimes significant errors due to the discreteness of the lattice and ambiguities associated
with the precise location of the dislocation core. These errors need to be dealt with
carefully to preserve the ‘seamlessness’ of the interface.
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7.11 The effect of slip on elements drawn between atomic planes.
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atom 3 exactly one Burgers vector along the slip direction with respect to
atoms 1 and 2, creating a uniform pure shear deformation in the element. For
a generally oriented slip plane and Burgers vector in that plane, this leads to
a Lagrangian strain matrix of

E
b m m b b mp sym

2= 
(   )

 + 
(   )(   )

2

ƒ ƒ ƒ
d d

[7.13]

where b is the Burgers vector, m is the slip plane normal, sym implies the
symmetric part of the matrix and ƒ implies the tensor product. For the
example shown in Fig. 7.11, we have b1 = (d, 0), m1 = (0, 1) and the strain
matrix becomes
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By contrast, if the slip had occurred along the vertical slip plane passing
through the shaded element we would have b2 = (0, d ) and m2 = (– 1, 0),
leading to the strain matrix
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This strain matrix is a unique signature of the particular slip system defined
by the combination of b and m. For problems of interest here, we know the
crystal structure and orientation, as well as the set of expected dislocations
in that particular crystal. For example, in an fcc crystal there are 24 possible
slip planes (four slip planes, three Shockley partials on each, each of which
can be positive or negative). If we are given a particular strain matrix in an
element of the detection band, it is a relatively quick and straightforward
calculation to compare it to this small library of ‘special’ strain matrices
associated with dislocation motion.

As a dislocation passes through an element in the detection band, it will
be deformed due to three contributions: the displacements associated with
any dislocations that have previously passed through that element, the
displacements associated with the new dislocation, and an additional elastic
deformation associated with the loading and geometry of a particular problem.
In general, we can safely assume that this last elastic contribution will be
small, with components on the order of 1% or less (compared to components
of Ep like those shown above, which are on the order of 50 %), and these can
be ignored for our purposes. Recall that the detection band is immediately
adjacent to the continuum region that is assumed to be linearly elastic, and
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so if this assumption of a small elastic part is violated then in fact the entire
model is called into question. Thus we assume that there are only two important
contributions to the displacements of the detection band: that due to previously
passed dislocations and that due to the new defects.

Any displacement due to previous dislocations is already known and
stored in the ũ  field defined in the decomposed problem I of Fig. 7.9.
Subtracting the ũ  displacements due to the continuum dislocations, we have
the relevant intermediate configuration x̂ X û =  +  where û u ũ =  –  . The
deformation gradient F used to identify new slip is then defined as

F
x̂
X

I
û
X

 =  =  + 
∂
∂

∂
∂ [7.16]

where within each detection band element û  is interpolated using equation
7.7. From F we can obtain the strain as

E F F I = 1
2

 [  –  ]T [7.17]

We can now detect dislocations as follows. We first build the library of
ideal strain matrices, E i

p  for i representing all the possible slip systems in
our crystal. For convenience, an additional ‘dislocation’ is defined with Burgers
vector b = 0, corresponding to no slip in the element and E i

p  = 0. During a
simulation, with each update of the atomic positions, we compute the actual
strain in each detection band element, and identify the slip in each element
as being due to the dislocation which minimizes the L2 norm of the difference
between the actual elemental strain and the dislocation plastic strain:

L i i i2,
p p= (  – ) : (  – )E E E E [7.18]

If the dislocation minimizing this norm has b = 0 then the element is undergoing
only elastic deformation and no real dislocation is detected. Otherwise, it is
assumed that the core of the detected dislocation is at the centroid of the
element under consideration.

At this point, the location of the dislocation core, its Burgers vector and
its slip plane are all known. What remains is to ‘convert’ this dislocation to
a discrete dislocation and pass it across the interface.

7.3.3 Passing dislocations

‘Passing’ a dislocation involves appropriately modifying the displacements
of all atoms and nodes in the problem so that the core of the atomistic
dislocation is eliminated while retaining the slip displacements. This is achieved
by superimposing the continuum elastic displacements of a dislocation dipole
onto those of the atoms and nodes, as illustrated in Fig. 7.12. The original
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dislocation in Fig. 7.12(a) has been identified (location, Burgers vector, slip
plane) by the detection band and the superimposed dipole configuration is
shown schematically in Fig. 7.12(b). This superposition annihilates the atomistic
core at the original position xc and replaces it with a continuum dislocation
at the position xc + d, which is in the continuum region and is added to the
array of continuum dislocations. In practice, it is possible to choose the
vector d to be on the order of a few lattice spacings so that the effect of the
superimposed dipole is short-ranged and confined to a few atoms surrounding
the original core position.

Note that the displacement fields of an elastic continuum dislocation are
not unique, since they require an arbitrary choice of the branch cut across
which there is a displacement jump of one Burgers vector. In the atomistic
region, however, the branch cut has a physical meaning; it corresponds to the
plane along which the dislocation is gliding. As such, this passing procedure
requires careful treatment of the continuum fields to ensure that the branch
cut is correctly aligned with the slip plane. A second important consideration
arises in multiply-connected continuum regions (an atomistic region embedded
completely inside a ‘hole’ in the continuum, such as the problem schematically
illustrated in Fig. 7.13). In this case, the continuum displacement field of the
new dislocation that has been inserted will extend out the other side of the
atomistic region and lead to incorrect results. This is easily remedied by
including a discrete dislocation of opposite sign inside the atomistic region,
which effectively negates the slip discontinuity along the branch cut of the
real defect in the continuum. This ‘image’ defect is not actually present in
the atomistic region, and only enters through the superposition of the dislocation

(a) (b)

xc

d

xc + d

7.12 The dislocation detected in the highlighted detection element in
(a) is ‘passed’ across the atomistic/continuum interface by
superimposing the displacement field of the dipole shown in (b).
Elements are shown between the atoms in the atomistic region to
highlight the effect of the displacement field. Adapted from Shilkrot
et al. (2004).
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fields leading up to the solution, ũ , of the complementary problem depicted
in Fig. 7.9. This image dislocation does have a physical interpretation, however,
as one cannot generate a dislocation inside a bulk material without also
generating one of opposite sign. Inside the atomistic region, some atomic-
scale process has driven the nucleation of the defect and left behind, for
example, a surface step or grain boundary dislocation. The continuum needn’t
know these atomistic details but does require that an image dislocation reside
in the atomistic part of the problem. It is possible to show that the inclusion
of image dislocations outside the continuum domain of interest in this way
still leads to the correct equilibrium solution by the superposition method
described in Fig. 7.9.

7.3.4 Illustrative example

To illustrate the CADD method, we have run the same example as we used
to illustrate the QC method previously. In this case, the initial mesh is as
shown in Fig. 7.14, which models the same fcc Al crystal as the QC simulation,
but with a smaller atomistic region as shown. The same quasi-static loading
and boundary conditions are used, leading to the load–displacement curve
shown in Fig. 7.15. There are a number of differences between the CADD
and QC results shown. The most notable is that the CADD result shows two
load drops instead of one. This is because in the CADD simulation, the
dislocations nucleate first on one side of the indenter, then on the other,
whereas the QC simulation saw both nucleated simultaneously. Since nucleation

(a) (b)

WC WC

WAWA

Du Du=0

7.13 Schematic illustration of a problem where an atomistic region is
embedded in a continuum region. This dislocation in (a) has been
nucleated inside the atomistic region, WA, and passed out through
the right side. Once it is in the continuum region, its displacement
field   ̃u  carries a displacement jump along its branch cut all the way
to the left edge of the model. In (b), an image dislocation is added
inside the ‘hole’ in the continuum region with the same branch cut
as the first dislocation, so that the displacement jumps from the two
defects cancel to the left of WA.
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events are manifestations of instabilities in the material, iterative algorithms
to solve such problems can be very sensitive to slight numerical noise. As
such, the timing and order of nucleation events can be difficult to capture
exactly. The second obvious difference between the two curves is their slight
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7.14 The initial mesh for the illustrative indentation example using
CADD.
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7.15 Load–displacement curve for the CADD indentation example.
Previous QC result shown for comparison.



Multiscale materials modelling212

divergence prior to the first load drop, which comes from the fact that QC
uses a non-linear elastic continuum and CADD is purely linear.

The region under the indenter is shown just before the defects nucleate
and then just after the first and second load drops in Fig. 7.16. The dark line
shows the atomistic/continuum interface, and we can clearly see the deformation
induced as dislocations cross the interface in figures (b) and (c). The dislocations
finally come to rest near the bottom of the crystal, somewhat further down
than predicted by QC. This discrepancy arises because the CADD simulation
is done with an assumption of zero Peierls stress in the continuum. The QC,
on the other hand, has the Peierls stress of the real crystal since the dislocations
always reside in the evolving atomistic region.
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7.16 Deformation beneath the indenter during the CADD simulation.
Contours are of the out-of-plane displacement and reveal the
incipient dislocations at the indenter corners.
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Looking at Fig. 7.16(b) and (c), it appears that the deformation of the
linear elastic finite-element region just below the atomistic/continuum interface
is rather severe. In fact, it is important to remember that this is really just a
convenient visualization. As discussed in Section 7.3.1, the deformation is
broken into û ũ + , the slip discontinuity due to the dislocation is part of ũ ,
and only û  is experienced by the finite elements. In Fig. 7.17, the full
displacement (shown in (a)) is compared with only û  [shown in (b)) after
subtracting off ũ  due to the dislocations residing deep in the crystal. Clearly,
the strain due to û  in the continuum region (below the heavy black line in
the figure) is reasonable for a linear elastic domain.

7.4 Challenges and future directions

The QC and CADD methods have been used to study a large number of
problems, including nano-indentation (Phillips et al., 1999; Tadmor et al.,
1999a,b; Picu, 2000; Shenoy et al., 2000; Smith et al., 2000, 2001; Knap and
Ortiz, 2001, 2003; Miller et al., 2003; Fago et al., 2004; Shiari et al., 2005),
fracture (Miller et al., 1998; Pillai and Miller, 2001; Hai and Tadmor, 2003),
dislocation interactions (Rodney and Phillips, 1999; Hardikar et al., 2001;
Mortensen et al., 2002) and polarization switching in ferroelectrics (Tadmor
et al., 2002). Currently, work at extending and improving the methods continues
on several fronts.

The QC has been extended to a fully 3D approach (Rodney and Phillips,
1999; Knap and Ortiz, 2001, 2003; Fago et al., 2004), however, the issue of
mesh adaption during the simulation becomes extremely challenging in this
case. Mesh adaption requires frequent and robust Delaunay triangulation of
the entire problem, a slow and difficult algorithm in 3D for the highly irregular
meshes that arise (imagine, if you will, the 3D equivalent of Fig. 7.6). One

7.17 (a) Total displacement   ̃u  +   ̂u  and (b)   ̂u  only. The heavy black
line shows the atomistic/continuum interface. Contours show relative
magnitudes of the vertical (Y) component of displacement.
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current area of research aimed at addressing this issue is the use of particle-
based ‘meshless’ methods in place of the finite elements currently used in
QC. Kucherov et al. (2006) have developed a meshless continuum formulation
specifically for use in a multiscale approach and have developed a meshless
version of the QC (Kucherev et al., 2006; Tadmor et al., 2006). The main
advantage to this approach is that the meshless formulation does not require
a structured tessellation of elements but instead uses shape functions based
on a local collection of neighbors called the ‘star’ of each repatom. With
some restrictions that ensure reasonable accuracy, these stars can have a
more or less arbitrary size and shape and can be modified locally and
independently of neighboring stars. As such, adding repatoms in a region
during adaption can be done without expensive re-meshing. In fact, because
the method is meshless, no expensive tessellation of the body (Delaunay,
Voronoi, etc.) ever needs to be computed.

A 3D implementation of CADD is even more challenging, and is currently
not available. The framework of CADD described here, including the solution
approach and the detection algorithm, are in principle fully generalizable to
3D. However, the challenge which has not yet been overcome is how to treat
the problem of dislocation loops. In 2D, dislocations are effectively point
defects, and so passing a defect from the atomistic to the continuum region
is a simple matter of moving it from one point to another. However, a 3D
CADD model would have dislocation loops nucleate and grow from within
the atomistic region. Ultimately, these loops would intersect the atomistic/
continuum boundary at several points. Accurately modeling a dislocation
loop that is partially atomistic and partially in the continuum, not to mention
the book-keeping associated with such an entity, is a significant challenge
indeed.

For all multiscale methods, a critical area of recent interest is the question
of how to accurately treat dynamics and finite temperature. Much progress
has been made, including the coarse-grained molecular dynamics method
(Rudd and Broughton, 1998, 2005), and finite temperature extensions of
both the CADD method (Qu et al., 2005; Shiari et al., 2005) and the QC
method (Shenoy et al., 1999, Dupuy et al., 2005). As well, a number of
authors have developed so called ‘absorbing boundary conditions’ (Cai et
al., 2000; E and Huang, 2001; Park et al., 2005a) aimed at the specific
problem of spurious wave reflections from the atomistic/continuum interface
during dynamic simulations. Specific to the question of modeling mobile
dislocations at finite temperature along the lines discussed here, there are a
few issues which need to be considered further.

The CADD method depends on a constant monitoring of the strains in the
detection band elements and their comparison to the slip library. At finite
temperature, this becomes a more difficult task since thermal fluctuations
are continually introducing strains in the detection band that can often be
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locally and instantaneously very large. The detection algorithm of CADD
works reasonably well at low temperatures (less than about 50 K) with
almost no change. For these temperatures, the thermal fluctuations are small
enough that they only occasionally will falsely trigger the algorithm to detect
a dislocation. These false triggers are screened out by simply making sure
that a trigger corresponds to a correlated motion along a slip plane, and not
a random fluctuation. Specifically, after each trigger an additional step is
implemented by making the detection band a few atomic layers thick and
confirming that slip occurs in all neighboring elements on a slip plane. At
higher temperatures, however, these false triggers happen so frequently as to
severely bog down the detection algorithm. One possible approach that is
currently being explored is to base the detection algorithm on a time-averaged
strain in the detection element rather than an instantaneous strain. The key is
to empirically determine a suitable averaging window; it must be long enough
to smooth out thermal fluctuations but short enough that it doesn’t allow a
dislocation to reach the interface undetected.

A similar challenge is faced by QC when we try to implement mesh
adaption at finite temperature, and the current finite temperature QC model
(Dupuy et al., 2005) does not include adaption for this reason. Like the
detection algorithm of CADD, the non-locality and adaption criteria described
in Section 7.2.3 are based on an instantaneous measure of deformation.
However, thermal fluctuations will routinely trigger these criteria in regions
where adaption is not desired. As such, current research is aimed at a suitable
time-averaged measure of the deformation to allow efficient adaption without
false triggers due to thermal fluctuations.
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8.1 Introduction to carbon nanotube dynamics

Carbon nanotubes (CNTs) were first discovered by Iijima1 in 1991 and that
has since stimulated very broad and intense research into the syntheses and
theoretical analyses of CNTs and their applications. This is due to excellent
mechanical properties such as small size, low density, high stiffness, high
strength, and excellent electronic properties. Yakobson et al.2 studied
CNT behavior under axial compression using the Tersoff–Brenner potential.
Their simulations showed that at large deformations, an abrupt release of
energy is accompanied by a reversible switch into a different morphological
pattern. Yakobson et al.3 also studied CNT behavior under high rate tension
using Tersoff–Brenner’s reactive empirical bond-order (REBO) potential
(see Brenner et al.4). Their research revealed the ability of CNTs to undergo
large elastic deformation when subjected to axial tension.

The above-mentioned investigations were carried out using empirical
molecular dynamics. However, as pointed out by Abraham et al.5,6,7, a more
refined description is necessary, especially in the bond-breaking area. In
other words, potentials due to electron–electron, electron–ion as well as ion–
ion interactions should be considered. In this respect, the tight-binding (TB)
method has the advantage of being quantum mechanical, taking into account
the kinetic energies of both the ions and electrons, as well as the electron–
electron, electron–ion, and ion–ion interactions.

In this chapter, a multiscale model is developed by introducing near and
far regions in order to achieve a seamless coupling between molecular dynamic
(MD) and TB. We will examine the elastic and plastic properties of single-
walled carbon nanotubes (SWCNTs) under axial compression and tension.
This is carried using MD as well as a multiscale technique where a handshaking
region between MD and TB is described and implemented. The interaction
forces between the carbon atoms are calculated based on the second-generation
REBO potential, TB-derived forces as well as long-range Lennard-Jones
potential. A smooth cutoff Lennard-Jones with switch function is also proposed

8
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and investigated. The viability of the presently developed handshaking region
between MD and TB in CNTs under axial compression and tension will be
subjected to validation studies. The detection of sideways buckling due to
the asymmetrical axial compression will be examined in detail. This sideways
buckling phenomenon is observed when using both pure MD and MD/TB
multiscale models.

8.2 Overlap TB/MD multiscale model

8.2.1 Theoretical development

In this theoretical framework, the short-range interaction force between atoms
is modeled using the second-generation REBO potential of Brenner et al.4

In addition, the van der Waals potential (Mao et al.8 and Sinnott et al.9) is
applied. The potential sum is thus

E E E
i j i i j ij =  ( + )

>
REBO vdwS S [8.1]

E V r b V ri j i j i j i j
REBO

R A= [ ( ) + ( )] [8.2]

where VR and VA are pair-additive interactions that represent all interatomic
repulsion and attraction from valence electrons, and bij is the reactive empirical
bond order between atoms.

For SWCNTs, the Lennard-Jones 12–6 potential [10] is used

E r ri j
i j i j
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[8.3]

As pointed out by Mao et al.8, it is advisable to incorporate the van der Waals
potential only if the short-distance potential becomes zero. This is to prevent
an artificial reaction barrier from forming due to the steep repulsive wall of
the Lennard-Jones 12–6 potential in the short range. If Evdw were activated
in the short range as well, the sum effect of (EREBO + Evdw) will be erroneously
high due to the additional accounting, thus forming the artificial force barrier
that restricts unbonded atoms from undergoing chemical reaction. Theoretically,
the above barrier will produce non-smooth potential energy profiles and
inter-atomic forces, leading to a non-smooth optimization problem during
relaxation. Since the non-smooth optimization algorithm is very time-
consuming, it is proposed here to modify the above van der Waals potential
such that it behaves smoothly around the cutoff distance, Dmax. The current
work employs the conjugate-gradient method and truncated-Newton via
Lanczos minimization. Both methods are based on smooth objective
minimization using the gradient of the objective function.
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The original equation can be modified by including switch function S(r)
as shown below

E E S ri jvdw
s vdw=  ( )◊ [8.4]

which must satisfy the following conditions
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where Dmax is the distance at which the REBO potential becomes zero, and
d is the neighbor distance that causes the switch function to vary from zero
to one. The switch function is cubic polynomial and can be calculated by
solving equation [8.5] simultaneously. Finally, we derive a smooth cutoff
van der Waals potential as
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For the quantum mechanical approach, semi-empirical TB is employed.11,12

The electronic structure of the simulated CNTs is calculated by a TB
Hamiltonian so that the quantum mechanical many-body nature of the
interatomic forces is naturally taken into account.

The Hamiltonian of a system of ion cores and valence electrons can be
written in the adiabatic approximation as

Htot = Ti + Te + Uee + Uei + Uii [8.7]

where Ti, Te, Uee, Uei, and Uii are respectively the kinetic energies of the ions
and electrons, and the potential energies due to electron–electron, electron–
ion, and ion–ion interactions. Within the adiabatic one-electron assumption,
the many-body electron Hamiltonian can be reduced to that of one electron
moving in the average field due to the other valence electrons and ions. The
reduced one-electron Hamiltonian H and its nth eigenfunction  Yn  can
therefore be written as

H n n n   =  Y Ye [8.8]
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where en is the energy of the nth single-particle state. The wavefunctions
 Yn  can be approximated by linear combination

  =   Yn l l
n

lcS
a a af [8.9]

where l is the quantum number index and a labels the ions. The computational
load will increase significantly if the basis set,  f al  is not orthogonal.
However, it is possible to obtain a new orthogonal basis set {jla} through
the Löwdin transform

  =   Yn l l
n

lbS
a a aj [8.10]

Hbn = enbn [8.11]

where b bn
l
n= a{ } .

Finally, the Schrödinger equation for the single-particle states becomes

S
¢

¢ ¢ ¢· Ò
l

l l n ll l
nH c

b
b a ab bj j e d d ( | |  – )  = 0 [8.12]

In the general approach, the matrix elements in equation [9.12] are calculated
after fitting a suitable database obtained either from experiments or by first
principles calculation. Once the single-particle energies are known by solving
equation [9.12], the total energy of ion cores and valence electrons can be
written as

Etot = S
n

 en f (en, T) + Uii – Uee = Ebs + Urep [8.13]

where f (en, T) or the band structure energy, Ebs, are the Fermi–Dirac distribution
functions. The Uee term corrects the double counting of the electron–electron
interactions in the first term. The last two terms constitute the effective
repulsive potential, Urep = Uii – Uee. This repulsive potential can be expressed
as a sum of two-body potentials as

U U U rrep ii ee
, >

= – =  ( )S
a b a abF [8.14]

where rab is the distance between atoms located at a and b. This pairwise
potential F(rab) between atoms at a and b can be solved using the transferable
TB potential introduced by Xu et al.13.

The forces   
r
fa (a = 1, 2, …, Nat) that are required in the simulation can be

calculated from the Hamiltonian HTBMD as

H
p
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f T U
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a
e e [8.15]
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and the forces are given as
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Y Y [8.16]

It is found that the second term in Eq. [8.16] is short ranged and can be
solved analytically. The first term, however, is solved using the Hellmann–
Feynman theorem
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where

Hl¢b,lg(rbg) = g(rbg) ·jl¢b | H | jlgÒ | = 0r rbg [8.18]

and g(rbg) is a scaling function. It is important to point out that the Hellmann–
Feynman forces require the full set of eigen-system solutions and are therefore
very computing time intensive.

For the subsequent optimization process, the truncated-Newton method
will be effective if only a small number of inner iterations is sufficient to
produce a converged step. The implementation of preconditioning will
accelerate the convergence of the inner iterations.

The present truncated-Newton method will minimize a twice continuously-
differentiable function, f (x). The first-order optimality condition leads to

—f (x) = 0 [8.19]

—2 f (xx)px = – — f (xx) [8.20]

xk+1 = xk + pk [8.21]

The truncated-Newton method is embedded with the following techniques:

∑ conjugate-gradient method to solve large system, equations [8.20] and
[8.21], iteration is truncated before the exact solution is attained.

∑ line-search method:
for k = 0,1,…

stop if stopping rule satisfied
compute a search direction pk

determine an improved estimate, xk+1 = xk + ak pk.
∑ Trust-region method:

for k = 0,1,…
stop if stopping rule satisfied
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choose pk so as to minimize yk(p) ª f (xk + p),
subject to || p || £ Dk,

compute xk+1 and Dk+1 using pk.
∑ Lanczos shift is used when Hessian matrix, —2 f (x), is indefinite.

8.2.2 Concurrent TB/MD overlap coupling

Sherwood14 demonstrated a successful multiscale approach in the form of a
hybrid quantum mechanics/molecular mechanics (QM/MM) model. They
introduce outer, boundary, and inner regions in order to achieve seamless
coupling. Their subtractive schemes have the advantage of relative simplicity
of implementation, with no requirement for validating the QM/MM interactions.

Rafii-Taber et al.15 introduced a multiscale model for simulating brittle-
crack propagation. Their model seamlessly couples the crack dynamics at
the macroscales and nanoscales via an intermediate mesoscale continuum
using a combination of finite elements (FE) and MD. Abraham et al.5,6

studied the rapid brittle fracture of a silicon slab, flawed by a central microcrack
and subject to uniaxial tension. They labeled the atomic length scale as the
mesoscopic regime, but pointed out that treating bond breaking with an
empirical MD potential may be questionable, and a quantum-mechanical
treatment is highly desirable.

A multiscale method which successfully couples FE or mesh-free
methodology with MD was introduced by Dong et al.16. A multiple-scale
decomposition of the atomic displacements in terms of FE nodal displacements
and MD displacements is first carried out. The total scale is then calculated
based on the usual FE interpolation, MD displacements, and the projection
of the MD displacements onto the FE basis. Dong et al.17 also introduced a
virtual atom cluster (VAC) in the coarse scale treatment, where the number
of quadrature points used in the VAC is far less than the actual number of
atoms. An ‘isoparametric-like’ mesh-free approximation was also formulated,
and this approximation was found to be valid for interpolating a general
class of low-dimensional nano-structured materials such as 2D graphite.

In the presently developed multiscale approach, interpolation scaling is
not required. Both the MD and TB methods utilize the information available
at the atomic locations. However, unlike the TB method, the MD method
does not consider the contributions of valence electrons.

As shown in Fig. 8.1, the TB domain comprises the near and far regions.
The far region constitutes a relatively small sub-domain and is used to achieve
a seamless coupling between the TB (near region) and MD potentials.

The MD method is applied to both the pure MD and TB far regions. The
resultant forces and motions of the atoms in these two regions are therefore
determined by the MD method. The TB method is applied to both the TB
near and far regions, but only the motions of the atoms in the near region are
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determined by the TB method. The model is therefore not affected by the
periodic boundary conditions of the TB analysis as the motions of the atoms
in the TB far region are based on MD calculations. For the TB analysis of the
TB near and far regions, the forces acting on the atoms at the boundary of the
TB far region are derived from the MD analysis. The average width of the
far region is 2.6 Å since it is the standard cutoff radius of carbon. With the
introduction of this far region, the concept of a ‘silogen atom’ is not required
in the present model. Silogen is a terminology used by Abraham et al.5,6 to
describe TB terminating silicon atoms which bond like silicon but are
monovalent like hydrogen.

8.2.3 Nearest distance and density of point

The nearest mutual distance between two carbon atoms will determine whether
their bond is single, double, or if it is non-existent (broken). Thus, it is useful
to calculate the nearest distance among carbon atoms. The nearest distant is
indicated as ndist(i, j). The ndist(i, j) table is derived based on the double
partial sorting of the entire CNT subject to the constraint of the order i < j,
where i and j are the indexes of the atoms. The constraint is required to avoid
the double counting of each pair of atoms. Initially in its undeformed state,
each atom in the CNT will have three nearest mutual distances, and two for
those atoms at the boundary. However, during the simulation, as the CNT
deforms, each atom will have at least one nearest mutual distance. From the
standard graphene pentagon structure (see Fig. 8.2), we have

b = 2a · sin (60∞) ª 1.732a [8.22]

All the distances larger than or equal to the designated nearest distance
cutoff value of 1.732a will be excluded.

Pure MD
region

TB far
region

TB near
region

8.1 Terminology for regions used in the TB/MD overlap multiscale
model.
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The density of point (DOP) is defined here and is calculated so as to
detect the buckling, kink shape occurrences as well as bond breaking. All the
distances larger than or equal to a designated cutoff distance should be
excluded. For instance, if we set the cutoff radius as 2.6 Å, each carbon atom
will initially have a DOP value of 9, indicating that it has nine neighboring
carbons within the cutoff radius. However, when the SWCNTs start to buckle
sideways, it is expected that at the regions of relative larger deformations,
some carbon atoms will have DOP values higher than 9. This region will be
automatically detected and designated as the near region.

8.3 Simulation results of carbon nanotubes under

axial loading

8.3.1 Validation of simulation results and effects of
switch function

In our validation, we apply a velocity of 20 m/s at both ends in order to
obtain the stress–strain relationship. The atoms located at the ends of the
CNT are moved according to this velocity at very small time steps of 1
femto-second (fs). In this MD simulation, the locations of the atoms are
calculated according to Gear’s fifth-order predictor–corrector algorithm. The
whole tube was relaxed by truncated-Newton with Lanczos algorithm or
conjugate-gradient method in order to minimize the energy of CNTs but
without affecting the atoms at the two ends.

To validate the presently developed multiscale model, we carry out several
comparisons with published data of existing methodologies. Of interest in
these comparisons are the Young’s modulus and strain energy.

In the microcanonical ensemble MD simulations of CNTs, strain is derived
as

e = |(L – L0)|/L0 [8.23]

where L0 and L are the undeformed and deformed lengths of the CNT. The
stress is calculated as

s = F/S [8.24]

a
b

8.2 Nearest distances a and b.
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where F is axial force and the cross-sectional area is given by S = p dh, with
d being the CNT diameter and h the thickness, which is usually taken to be
0.34 nm.

For the validation, we compare the strain energy of SWCNT (8,0) undergoing
axial compression. This comparison is made against results obtained via the
quantum generalized tight binding molecular dynamics (GTBMD) method,
as well as MD results computed with Tersoff–Brenner potential reported by
Srivastava18 in Fig. 8.3. The reported results show that collapse occurs at the
respective strains of 0.12 and 0.8–0.9 for GTBMD and MD (using Tersoff–
Brenner potential), whereas the present MD (using second- generation REBO
potential) yields a collapse strain of 0.1. The present results are thus in
reasonable agreement and are actually more refined than those obtained
using the Tersoff–Brenner potential.

Validation of the present MD algorithm is also made for SWCNTs under
axial tension. We examine the stress–strain relations of SWCNT (12,12)
with length-to-diameter ratio, L/D = 9.1. The comparison is made with the
MD (using modified Morse potential) results of Belytschko et al.19, as shown
in Fig. 8.4. The present results yield a slightly higher collapse strain at a
lower stress value.

The third comparison carried out is for the Young’s modulus and is made
against the ab initio results of Kudin and Scuseria20. These results are tabulated
in Table 8.1, and it can be observed that the two sets of results are comparable
with an average discrepancy of about 5 %.

Next we investigate the effects of implementing the switch function into
the Lennard-Jones potential. Obviously, the existence of this switch function
will not affect the results for a SWCNT under axial tension, where all the
atoms are moving away from each other. However, we would expect some
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8.3 Comparison of strain energy curve of SWCNT (8,0) under axial
compression.
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differences for the case of axial compression. From Figs 8.5 to 8.8, we
observe that this is indeed the case.

According to Figs 8.5 to 8.8, we find that both sets of results have the
same collapse strain of 0.1. However, we also find that after the initial
collapse, results via the smooth cutoff Lennard-Jones show lower strain
energy as well as less fluctuation. It is also the same case for maximum
distance ndist (i, j) where results using the smooth cutoff Lennard-Jones
show less fluctuation in maximum distance. Obviously, this switch function
plays an important role immediately after the initial collapse. This observation
was first reported by the present authors in Yeak et al.21.

8.3.2 Carbon nanotubes subject to axial tension

In order to compare the two presently developed MD and TB/MD schemes,
we shall simulate the case of a SWCNT (7,7) with length-to-diameter ratio
L/D = 7.1, and under axial tension. In this problem, the total number of
atoms is 784, with 616 atoms located in the MD region when multiscaling
first occurs. First we perform the pure MD simulation and examine the
elastic and plastic behaviors of the SWCNT.

Belytschko et al.19
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Table 8.1 Comparison of Young’s modulus

CNT geometry Young’s modulus (µ d2E/de2)

Present ab initio20

(4,4) 53.1 56.4
(7,0) 54.6 56.3
(7,7) 52.7 56.5
(12,0) 53.0 55.2

8.4 Comparison of stress–strain curve of a SWCNT (12,12) under
axial tension.



Multiscale materials modelling230

Upon observation of Figs 8.9 to 8.11, it is found that after the ultimate
load point S, the ndist(i, j) tends to converge to two values, namely a minimum
value of 1.3 Å and a maximum value of 1.75 Å. The collapse of the SWCNT
occurs at the point where a sudden drop in strain energy is observed and at
strain e  = 0.235. It is interesting to note that the variations of the maximum
and minimum ndist(i, j) distances are linear for strain values lower than the
ultimate load strain occurring at the point S in the stress–strain curve.

The straight line from the origin to the point P represents the linear elastic
region. The points P and S are calculated using the least squares fitting of
stress–strain data points. The fitting curve is based on s = APe and s = ASe2

+ BSe respectively, where AP, AS, and BS are the fitting coefficients.
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8.5 Strain energy using original Lennard-Jones for SWCNT (8,0) in
axial compression.
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8.6 Strain energy using Lennard-Jones with switch function for
SWCNT (8,0) in axial compression.
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8.7 Nearest distance of SWCNT (8,0) in axial compression using
original Lennard-Jones potential.
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8.8 Nearest distance of SWCNT (8,0) in axial compression using
Lennard-Jones with switch function.
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8.9 Strain energy per atom using MD for SWCNT (7,7) under axial
tension.
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8.10 Stress–strain curve of SWCNT (7,7) under axial tension using
MD.
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8.11 Nearest distance of SWCNT (7,7) under axial tension using MD.

Using the same SWCNT under similar axial tension, we perform the
corresponding multiscale model simulation. This multiscale model involves
handshaking between MD and TB where 56 atoms are located in the far
region and 112 atoms in the near region. Thus, the TB method is used to
solve for 168 atoms, and this requires the solution of an eigensystem of
dimension 672 (168 ¥ 4).

For the multiscale modeling of the axial tension case, the TB near and far
regions are implemented, after detecting from initial MD simulations, the
maximum ndist(i, j) distance exceeding 1.71 Å. From the current comparison
of Figs 8.9 to 8.13, it is observed that for both pure MD and multiscale
simulations, the SWCNT collapses at strain e = 0.235.

From Fig. 8.14, it is observed that after the ultimate load point S, the
minimum and maximum ndist(i, j) distance converges to 1.31 Å and 1.78 Å
respectively. The above results also show that for the multiscale method, the
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8.12 Strain energy per atom using multiscale method for SWCNT
(7,7) under axial tension.
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8.13 Stress–strain curve of SWCNT (7,7) under axial tension using
multiscale method.
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8.14 Nearest distance of SWCNT (7,7) under axial tension using
multiscale method.
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SWCNT collapses at higher strain energy per atom (0.935 eV/atom) compared
with the pure MD case (0.918 eV/atom). Figure 8.15 depicts the collapse
mode of this case study when implementing the multiscale model. As can be
observed, the near and handshaking regions are applied only to the critical
regions so as to significantly reduce the computational time.

8.3.3 Carbon nanotubes subject to axial compression

We now move on to compare the numerical results of a SWCNT under axial
compression using MD and multiscale TB/MD. In this case study, a SWCNT
(7,7) with the length-to-diameter ratio L/D = 7.4 is used. The total number of
carbon atoms is 812, with 644 atoms located in the MD region when
multiscaling first occurs. For the first 800 fs of this simulation, we apply a
constant velocity of 20 m/s to the left boundary, while the other boundary is
subjected to a constant velocity of 20 m/s plus a slight linear velocity increase
along the diameter. After 800 fs, all velocities are set to the constant value of
20 m/s. In the corresponding multiscale simulation, again we initially perform
a full MD analysis. The full MD model will shift to multiscale model after
detecting a DOP higher than 9. The present setting acts as the necessary
trigger to induce the sideways buckling, and avoid the symmetrical modes.

Basically, in the present work, the near and handshaking far TB regions
are implemented after detecting a DOP exceeding 9. In this case study, this
shift occurs at strain, e = 0.0518. Figures 8.16 to 8.18 show the MD results
for the variation strain energy per atom with strain, the stress–strain curve,
and the maximum/minimum ndist(i, j) distances, respectively. The
corresponding multiscale results are presented in Figs 8.19 to 8.21. We
observe that the maximum ndist(i, j) distance behaves in a more stable
manner for the multiscale model.

Near regionFar regionPure MD
region

(a)

(b)

8.15 Multiscale model showing the pure MD, handshaking TB far,
and TB near regions in SWCNT: (a) before collapse and (b) after
collapse.
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8.16 Strain energy per atom using MD for SWCNT (7,7) under axial
compression.
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8.17 Stress–strain curve of SWCNT (7,7) under axial compression
using MD.
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8.18 Nearest distance of SWCNT (7,7) under axial compression using
MD.
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8.19 Strain energy per atom using multiscale method for SWCNT
(7,7) under axial compression.
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8.20 Stress–strain curve of SWCNT (7,7) under axial compression
using multiscale method.
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8.21 Nearest distance of SWCNT (7,7) under axial compression using
multiscale method.
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Figures 8.22 and 8.23 depict the sideways buckling modes when,
respectively, implementing the MD and multiscale models. Comparing these
two figures, we observe that both deformations are very similar at strain
values below e = 0.072. However, at strain values higher than e = 0.072, the
results from the multiscale model show more severe deformations.

(a)

(b)

(c)

8.22 MD results for sideways buckling at strain values of:
(a) e = 0.0569; (b) e = 0.0683; and (c) e = 0.078.

(a)

(b)

(c)

8.23 Multiscale results for sideways buckling at strain values of:
(a) e = 0.0569; (b) e = 0.0683; and (c) e = 0.078.
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8.3.4 A note on minimization schemes

At present, we employ two minimization schemes, namely the conjugate-
gradient method and the truncated-Newton via the Lanczos algorithm. Both
schemes are applicable only to the smooth solution fields. Theoretically, the
truncated-Newton scheme shows superior convergence properties if the starting
coordinates are in the vicinity of the solution.

From the simulation results, we observe that both schemes produce quite
similar results. However, in terms of computational time, we find that the
truncated-Newton method is significantly more efficient.

As can be observed from Table 8.2, the truncated-Newton scheme is
relatively more efficient over the entire simulation range. The conjugate-
gradient method on the other hand, is very computationally intensive, especially
in the bond breaking regime. It is also interesting to note that prior to reaching
the yield strain, the conjugate-gradient method is somewhat faster. Finally,
we present the smoothness of stress–strain curves when using both minimization
schemes.

From Figs 8.24 and 8.25, we note that the conjugate-gradient method
produces results which are somewhat oscillatory (see Fig. 8.25). Results
from the truncated-Newton scheme are significantly smoother. We can thus

Table 8.2 Comparison of computational time

Strain Time consumption (seconds, clock time)

Conjugate-gradient Truncated-Newton21

0–0.118 398 463
0.118–0.236 5952 852
0.236–0.32 25 716 682
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8.24 Smoothness of stress–strain curve when using truncated-
Newton minimization.
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conclude that the truncated-Newton via Lanczos minimization performs
significantly better than the conjugate-gradient method, in terms of both the
smoothness of the results and computational time.

8.4 Introduction to hydrogen interaction with

carbon nanostructures

At present, it is well accepted that physisorption and chemisorption are
the two distinct types of possible interaction between hydrogen and CNTs.
Under most conditions, molecular physisorption is preferred, where the
hydrogen molecules do not dissociate and the interactions between the CNT
and the hydrogen molecules are usually described by weak van der Waals
forces. This interaction is attributed to the exchange and correlation effects
arising from the weak overlap between the electron densities of the nanotube
and the closed-shell H2 molecule22.

Existing experimental data suggest that under certain conditions of energetic
impact and/or high pressure, H2 molecules can approach sufficiently close to
the nanotube wall for possible dissociation, and atomic chemisorption thus
becomes possible23,24. This also substantially weakens the C–C bonds25. Liu
et al.23 showed in their experiments that after treating CNTs with hydrogen
gas under high pressure, there was residual H2 during the desorption cycle
that could be released only upon heating to temperatures above 400 K. They
therefore suspected that these residuals may be related to chemical adsorption.
A more recent experimental process by Ye et al.24 using SWCNTs of high
purity found a first-order phase transition under high H2 pressure, similar to
the hydride phase observed in metal-hydrogen systems.

For chemisorption mechanisms, several interesting schemes have been
proposed recently. Nikolaev et al.26 and Terrones et al.27 put forth an H-
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8.25 Smoothness of stress–strain curve when using conjugate-
gradient minimization.
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activated coalescence mechanism, in which the gas phase H atoms attack the
side of neighboring nanotubes, breaking the C–C bonds and producing defective
sites on adjacent nanotubes. This idea was generated based on the discovery
that under atomic hydrogen atmosphere, single-walled armchair nanotubes
annealed up to 1500 ∞C coalesce with neighboring tubes, resulting in larger
nanotubes with twice and occasionally three times the diameter of the original
ones. They suggested that once these adjacent defects are formed, the strong
thermodynamic force, resulting from the released strain energy, drives the
two neighboring smaller tubes to join together forming larger tubes27. Another
interesting storage mechanism is that of a H atom flipping into the CNT, and
this was proposed by Lee et al.28. However, they assumed that the chemisorption
took place via a hypothetical electrochemical process in solutions, which are
rather different from typical conditions reported for storage experiments.

A frequently used theoretical technique used by many researchers to
investigate chemisorption parameters is to keep the SWCNT fixed while
changing the distances and/or angles of the H atoms with reference to the
SWCNT. For example, Arellano et al.29 kept the SWCNT geometry fixed
while employing a plan-wave basis set, obtaining binding energies of about
–1 eV. Veronica et al.30 kept the SWCNT structure fixed as well, and allowed
the H atom to approach from the center of the nanotube (inner wall) to
several exohedral positions in the radial direction (outer wall). However, this
scheme is usually unable to provide very satisfactory results. This is because
when reaction occurs, the nature of the two bonding atoms determines the
chemical reaction, but they will be modified by the effects of the rest of the
molecules as well. These effects cannot be reflected by this method.

Another method commonly seen in many reported theoretical works is
the use of a finite cluster cut from the actual surface, with the distances
between the atoms forming the cluster kept at their bulk values31,32. One
fundamental problem for the cluster modeling of a surface is the convergence
of the adsorption energy and other properties with respect to cluster size.
Generally, a very large cluster is required. However, if more than a few
molecules are explicitly described by quantum calculation, computational
costs rapidly become prohibitive. The multiscale ONIOM method of Morokuma
and coworkers33–37 can improve this situation, allowing the division of a
large molecular system into several layers and treating them using different
theoretical methods. The advantage of using the ONIOM method is that it
imposes the geometrical constraints of the tube during the geometry
optimization. To date, this multiscale framework has been mostly applied to
large organic molecules and organometallic complexes.

In this chapter, we calculate the energies of fully optimized hydrogenated
nanotubes using two-layer ONIOM2 integrated schemes, which divide the
entire system into two levels. The small section, essential for studying the
properties of the chemisorption, is treated using quantum mechanical density-
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function theory (DFT). The remaining layer constrains the general geometry
and is described by a molecular mechanics method, and the Universal Force
Field (UFF) molecular mechanics model is chosen here. Based on this
methodology, a systematic study of the interaction of H atoms with the
sidewall of CNTs is carried out where the basic and integral features of the
interaction are outlined.

8.5 Hybrid calculations with multiscale ONIOM

scheme

8.5.1 Theoretical development

The multiscale (Own N-layer Interacted Molecular Orbital and Molecular
Mechanics (ONIOM) scheme, a hybrid method developed by Morokuma
and coworkers33–35, allows the partitioning of a chemical system into layers,
and different parts of the layers are treated by different computational levels,
and combined to produce a consistent energy expression, see Fig. 8.26. The
objective of this scheme is to perform a high-level calculation only on a
small part of the system while considering the effects caused by the remainder
at lower levels of theory, with the result being of similar accuracy to a high-
level calculation on the full system, obtained at a reasonable computational
cost.

However, it must be noted that the system is not randomly divided into
different parts, but rather depends on the purpose each region serves and the

Real system

Intermediate model
system

Small model
system

ONIOM: (an onion skin method)
Own N-layer Interacted molecular
Orbital and Molecular Mechanics

First layer:
Bond-formation/breaking takes place
using the ‘high-level’ method

Second layer:
Electronic effects on the first layer
using the ‘middle-level’ method

Third layer:
Environment effects on the first layer
using the ‘low-level’ method

8.26 The onion skin-like layers and models of a three-layer
partitioning scheme36.
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level of interest in particular regions. Due to the division of the system, link
atoms like hydrogen and fluorine are often used to replace the broken bonds.
A typical case is when one is interested in the accurate description of a
particular region of a large organic molecule or a macromolecule, covalent
bonds have to be cut in order to generate the inner model system. This leaves
dangling bonds at the border of the inner layer, which have to be saturated
in order to avoid a chemically unrealistic model. Hydrogen atoms are often
used as the link atoms, and this is one of the critical features of treating the
link atoms in the ONIOM method.

8.5.2 ONIOM link atoms

When the layers are not covalently bound, the model system is identical to
the high-level layer. In that case, the ONIOM formulation does not require
link atoms. However, when covalent bonds do exist, the resulting dangling
bonds should be saturated with link atoms, which are chosen so that they
best mimic the substituent. The link atoms for bonds spanning two regions
are generated from the bond information, where the additional parameters on
the model and real systems are derived to describe the broken bonds, including
scale factors for placement of the link atom and the type of link atom.
Usually the default link atom is hydrogen.

In Fig. 8.27, we provide more details on the treatment of the link atoms
by taking the two-layer ONIOM2 model as an example. In this model, the
atoms are divided into four groups of sets 1, 2, 3, and 4. The atoms present
in both the model system and the real system are called set 1 atoms and their
coordinates are donated by Rmodel, for simplicity this is written as R1. The set

Model system = inner layer + link atoms
Real system = inner layer + outer layer

Real system

X (set 4)

H (set 2)

B (set 3)

Model system

A (set 1)

8.27 Schematic layout for the link atoms in a two-layer ONIOM2
scheme.
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2 atoms are the artificially introduced link atoms, such as hydrogen atoms.
They only occur in the model system and their coordinates are described by
RLAH, and simplified as R2, with ‘LAH’ denoting the link atom hosts, and
they represent the atoms replaced by the link atoms in the model system. In
the real system, they are replaced by the atoms described by Rlink–real, denoted
by R3. Atoms that belong to the outer layer and are not substituted by link
atoms are called set 4 atoms with coordinates Rreal, and simplified as R4. The
geometry of the real system is thus described by R1, R3 and R4, and they are
independent coordinates for calculating the ONIOM energy:

EONIOM = EONIOM(Rmodel, Rlink–real, Rreal)

= EONIOM(R1, R3, R4) [8.25]

For the model system, it is described by Rmodel and the link atom RLAH,
which is defined as a function of Rmodel and Rlink–real, and the explicit functional
form of RLAH dependency can be written as:

RLAH = f (Rmodel, Rlink–real) [8.26]

or

R2 = f (R, R3) [8.27]

Considering the fact that the link atoms are introduced to mimic the
corresponding covalent bonds of the real system, they should follow the
movement of the atoms they replace. A coupling scheme is introduced here
to handle this. If atom A belongs to set 1 (model system) and atom B to set
3 (atoms in the real system but not substituted by the artificially introduced
atoms), the link atom H in set 2 (artificially introduced link atoms in the
model system) is placed onto the bond axis A–B. In terms of the internal
coordinates, the same bond angles and dihedral angles are chosen for both
the set 2 and set 3 atoms. Thus, link atoms are placed along the bond vector
connecting the first to the second atom according to the equation

Rlink = (1 – g)R1 + g ¥ R2 [8.28]

or

Rlink = (1 – g)Rmodel + g ¥ RLAH [8.29]

where g is a scale factor. If the scale factor is one, then the link atom is
placed where the second atom was. More usually, the scale factor is less than
one, in which case the link atom is placed between the original two atoms,
but is always aligned along the bond vector. The scale factor should be
chosen so that the link atom (usually hydrogen) is placed near its equilibrium
bond length from the model atom. For example, when simulating the breaking
of a single carbon–carbon single bond (typical length 1.528 Å for the sp3

hybrid bond) using a hydrogen link atom, we will require a carbon-hydrogen
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(link) bond length of about 1.084 Å, and the scale factor is therefore 1.084/
1.528 ª 0.70938.

In this section, we will use the two-layer ONIOM2 scheme to study the
chemical reaction processes for hydrogen atoms and molecules on the exterior
and interior of the CNT. The whole system is partitioned into the model and
real systems described above, where the atoms involved in the chemical
reaction are treated by a high-level calculation and the rest by a low-level
method. Since the layers of high-level and low-level are covalently bonded,
the resulting dangling bonds due to the partitioning of the system into two
different layers will be saturated with link atoms, which are chosen so that
they best mimic the substituent. As is the practice in the ONIOM method, the
link atoms of hydrogen are used, and this yields good results when the C–C
bond is broken. The Cmodel–Hlink bonds are assigned the same angular and
dihedral values as the Cmodel–Creal in the real system. The scaling factor is
used for obtaining the bond length of Cmodel–Hlink, which ensures that the
number of degrees of freedom remains at 3N-6, so that any method for the
investigation of potential energy surfaces available for conventional methods
can be used for the ONIOM as well.

Theoretically, the ONIOM scheme allows a partition of the molecular
system into two, three, or even more layers, and ‘distributes’ computational
methods of various levels among these layers. The subdomain of greatest
interest forms the innermost layer that is described by the highest level
theory. Subsequent layers or subdomains are treated using progressively
computationally cheaper lower-level approaches. The ONIOM method
approximates the energy of a molecular structure subdivided into n layers as

EONIOM(n(Level(1): Level(2) : … : Level (n)))

= (Level(1), Layer(1)) +  Level ( ),  layer( )
=2 =2
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where Level(i) is the level of theory used for layer i, starting from the highest

Level(1) and ending with the lowest Level(n), while »
j

i

=1
 Layer (j) denotes

the part of molecular structure consisting of layers 1 through i, where the

entire subdomain is given by »
j

n

=1
 Layer ( j). The geometries of the subsequent

subdomains, Layer(1), Layer(1) » Layer(2), Layer(1) » Layer(2) » Layer(3),
etc., represent unmodified cutouts of the entire molecular structure with one
exception, namely, bonds connecting atoms belonging to subsequent layers
are saturated by adding link atoms.
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The idea of partitioning a molecular system into two or more parts or
layers, where the interesting or difficult part of the system (the inner layer)
is treated by a more refined level of theory and the rest of the system by a
lower and therefore computationally less demanding method, is not new.
Literature on hybrid QM/MM (quantum mechanical–molecular mechanics)
methods is moderately extensive. However, a simple QM/MM simulation
without a smoothing scheme suffers a surge in the total energy from time to
time due to the solvent exchange, and such abrupt changes in the total energy
occur during particle exchanges between the QM and MM subsystems. A
smoothing scheme such as that in the ONIOM scheme is thus essentially due
to the large differences in background potential energy calculated by different
levels of theory.

8.5.3 ONIOM energy definition

In the two-layered ONIOM2 method, see Fig. 8.28, the total energy of the
system is obtained from independent calculations

EONIOM2 = E3 + E2 – E1 [8.31]

where E3 denotes energy calculated by the lower level method, while
(E2 – E1) denotes the part of the system in which the energy is calculated
using both the high- and low-level methods. The energy of the real molecular
system, calculated at the low level (E3), is corrected using the energy difference
(DEhigh–low = E2 – E1) between high (E2) and low (E1) levels of calculation on
the inner layer, also called the ‘model system’, see Fig. 8.28. Such a definition
in principle also holds for the first and second derivatives of the energy, and
both geometrical optimization and frequency computation can be performed.
Equation [8.31] can also be seen as a system effect of (E3 – E1) being added
to a high-level computation on the model system (E2). Such a rationale of the
equation led Morokuma and coworkers39 to define a test to gauge the

model real

E1 E3

Size
low

high

E2
EONIOM

Le
ve

l 
o

f 
th

eo
ry

E2 – E1

Approximation

Target
E (high, real)

E (ONIOM, real) = E (low, real)
– E (low, model)

+ E (high, model)

8.28 The two-layer ONIOM method36.
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applicability of the coupling scheme where the ‘S value test’ was performed
on (E3 – E1).

Here we are dealing with a two-layer QM/MM ONIOM combination, for
which the total energy of the system is obtained from three independent
calculations

E E E EONIOM
model
OM

real
MM

model
MM= +  –  [8.32]

where ‘real’ denotes the full system, which only needs to be calculated at the
MM level, and ‘model’ denotes the part of the system that needs to be
calculated at both the QM and MM levels.

8.5.4 Geometry optimization

In the construction of the ONIOM model system, atoms that belong to the
high-level layer have the same coordinates as the corresponding atoms in the
real system. Even during geometry optimizations, these coordinates remain
identical to one another. When no bond exists between the two layers, the
first derivative of the energy with respect to the geometry coordinates can be
obtained according to

∂
∂

∂
∂

∂
∂

∂
∂

E E E EONIOM
model
high

real
low

model
low

 =  +  –  
q q q q

[8.33]

where q stands for the coordinates. The assumption for the link atoms, that
they are connected to the high-level layer with the same angular and dihedral
values as the link atom hosts (the atoms replaced by the link atoms in the
model system), is also used in the geometry optimization. However, in most
cases, there exist bonds between the low-level layer atoms and those of the
high-level layer, and simply using equation [8.33] for geometry optimization
in this case will lead to the loss of one degree-of-freedom for each link
between the high- and low-level layers. This causes problems with dynamic
or frequency calculations. Thus, bond distances between the high-level layer
and the link atoms have to be obtained by scaling the corresponding distances
between the high-level layer and the LAH atoms using equation [8.28] or
[8.29]. The geometrical derivatives of the ONIOM energy can now be obtained
in a similar fashion to the energy, where the correct number of degrees-of-
freedom ensures that the potential energy surface is properly defined, and all
gradients and higher derivatives are available38. In this case, the link atoms
are present, and the Jacobian J must be used to convert the coordinate
system for the model system to that for the real system. The gradient can
thus be written as

∂
∂

∂
∂

◊
∂
∂

∂
∂

◊E E E EONIOM2
model
high

real
low

model
low

 =    +  –    
q q

J
q q

J [8.34]
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or in simpler representation

— — ◊ — — ◊E E E EONIOM2
model
high

real
low

model
low=   +  –    J J [8.35]

where J is the Jacobian, which projects the forces on all the set 2 link RLAH

atoms onto the set 1 Rmodel and set 3 Rlink–real atoms. Adopting equation
[8.28] or [8.29], the differentiation of the vector components of one set 2
atom with respect to the components of Rmodel and Rlink–real yields a simple
Jacobian

∂
∂

R
R

LAH,

link–real,
, = a

b
a bgd [8.36]

∂
∂
R
R

LAH,

real,
, = (1 –  )a

b
a bg d [8.37]

where the indices a and b denote the Cartesian components x, y and z, and d
is the Kronecker delta.

We apply equation [8.34] to the hydrogen storage problem in Section 8.6,
with QM methodology for the model system and an MM method for the real
system. Thus equation [8.34] can be written here as

∂
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◊
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∂

∂
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◊E E E EONIOM
model
QM

real
MM

model
MM

 =    +  –    
q q

J
q q

J [8.38]

From equation [8.32] it follows that the interactions between the QM and
MM layers are included at the MM level, via the Ereal

MM  term. This type of
embedding is referred to as mechanical embedding. In fact, in the ONIOM
scheme, the interaction between any two layers is always included at the
lower of the two associated levels.

The higher-order derivatives can be uniquely defined in a similar fashion
and will be discussed in the next section. Any method for the investigation
of potential energy surfaces based on conventional techniques can therefore
be applied with the ONIOM method.

8.5.5 Second derivatives of ONIOM

For the frequency problem calculation, the second derivatives of the ONIOM
total energy EONIOM with respect to the nuclear coordinates, the Hessian
matrix HONIOM, which is —2EONIOM, can be obtained. The force constant
matrix of the model system at low level Hlow and at high level Hhigh have to
be transformed by applying the Jacobian J and its transpose JT, according to

H ONIOM2 2 ONIOM2= — E

=    +  –     T 2
model
high 2

real
low T 2

model
lowJ J J J◊ — ◊ — ◊ — ◊E E E [8.39]
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Using the same method, the gradient and second derivative expressions can
be derived for three- or n-layer ONIOM partitioning.

In most computations, it is common practice to include an empirical scale
factor (usually ~ 0.89) to the frequencies, which leads to good agreement
with experimental data for a wide range of systems40. The reason is that the
normal vibrational frequencies computed with molecular methods are well
known to be over-estimated due to the incomplete consideration of electron
correlation and the harmonic approximation. In the ONIOM scheme, different
methods are used for different parts of a system, and different scale factors
should therefore be used for the Hessians at different levels. As the ONIOM
combines the Hessian matrices at different theoretical levels, the scaling
process has to be performed for the Hessian matrix at each level

H ONIOM2 2 ONIOM2= — E

=     +    –      2
2 T 2

model
high

3
2 2

real
low

1
2 T 2

model
lowc E c E c E◊ ◊ — ◊ ◊ — ◊ ◊ — ◊J J J J

[8.40]

where c1, c2, and c3 represent the scale factors for different sets, see Figure
8.27. Since the frequency corresponds to the square-root of the Hessian, the
square of the frequency scale factor has to be used for Hessian scaling.

Other derivatives such as the density, dipole moment, and polarization
tensor can be defined as follows:

For the two-layered ONIOM, the density can be obtained as

r r r rONIOM2 real
low

model
low

model
high= –   + [8.41]

When calculating the nuclear magnetic resonance (NMR) chemical shifts,
the elements of a 3 ¥ 3 shielding tensor for a nucleus can be written as37

s mab
b a

E
B

= 
2∂

∂ ∂ [8.42]

where m and B are the nuclear magnetic moment and external magnetic field,
respectively, and the indices a and b denote the Cartesian components x, y,
and z. When isotropic shielding is required, the integrated nuclear shielding
constant can be calculated with an expression analogous to the ONIOM
energy expression

s s s siso
ONIOM2

iso
low,real

iso
low,model

iso
high,model= –  + [8.43]

and the ONIOM2 dipole moment, which is related to the electronic field F41,
is defined as

m =  =  –   + ONIOM2 real
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model
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F F F F
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The polarization tensor for ONIOM2 is
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The third-order hyperpolarizability tensor for ONIOM2 is
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while the infrared intensity is
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and the Raman intensity is
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8.6 Chemosorption of hydrogen atoms onto carbon

nanotubes

Although CNTs are very stable structures, hydrogen may under certain
circumstances still penetrate the CNT wall. Atomic state hydrogen also
penetrates more easily than hydrogen molecules42. It is interesting to note
that there is no energy barrier for hydrogen atoms which have been chemisorbed
at the outside the tube wall, regardless of initial placement. Here, the optimized
structure, activation energy of the reaction, and the transition states (TS)
are calculated using the ONIOM2 scheme. The ONIOM2 simulation
shows that three TS are required for the entire reaction. The transition state
species is verified by frequency analysis. The small model system is treated
by DFT with the hybrid functional B3LYP (Becke’s three-parameter hybrid
method43–48 with the exchange functional of Lee et al.49) in conjunction
with the 6.31G basis set. The UFF50 molecular mechanics is used as the low-
level treatment.

8.6.1 Initial weakening of C–C bond and chemisorption
of one H atom onto a CNT

We will first examine the effects of hydrogen atoms on the geometry structures
and the energy change of the CNT when the H atom approaches the sidewall
of the CNT. Calculations for the adsorption of an H atom by a (5,5) SWCNT
and the reaction path scheme of the H atom to the tube are carried out.
Following optimization of a free (5,5) SWCNT structure, giving an average
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C–C bond length of 1.42 Å, a hydrogen atom is placed at different sites
exterior to the nanotube, and the geometry optimization and energy calculation
of the system is carried out using the ONIOM2 method. As shown in Fig.
8.29(b), after geometry optimization, the H atom was adsorbed at the outer
surface of the tube, and the preferred site for the adsorption is above a carbon
atom (perpendicular to the wall surface). This observation is in accordance
with those reported by Arellano et al.25,29, Bauschlicher et al.51,52, Lee and
Lee53, and Lee et al.54. In the simulation, the atoms which are directly
involved in bond breaking and formation are highlighted and labeled in the
manner shown in Fig. 8.29(c). An inspection of the TS structure of Fig.
8.29(a, d) reveals that the distance between the H atom and C1 is 2.90 Å and
the angle –HC1C2 is 108.49∞. The distance between neighbouring atoms C1

and C2 increases from 1.42 Å for the pure nanotube to 1.553 Å. For the
relaxed system shown in Fig. 8.29(b, e), the calculated H–C1 bond length is
1.11 Å, which is close to the value of 1.10 Å for CH4 molecules. The
chemisorbed H atom results in an increase of the bond length of its neighbour
atoms, where the C1–C2 carbon bond is further elongated to 1.555 Å which
is close to the typical sp3 C–C bond length of 1.545 Å, while that of the C1–
C3 and C1–C13 bonds increases to 1.52 Å. The related overlap population has

(a) Transition state I

(b) Optimized structure of the stable intermediate I

(c) Label of the atoms (d) Transition state parameters (e) Relaxed system parameters
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8.29 Sideview along the SWCNT axis of the optimized structure of
transition state and the optimized structures for the stable
intermediate. The fragments represent the small model system (inter-
atomic distances in Å, bond angles in degrees).

C3
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changed as well. From the small model of the system, we note that the
overlap population between C1–C2 decreases from 0.40 to 0.24, and for the
other two neighboring sets of carbon atoms C1–C3 and C1–C13, it has dropped
from 0.41 to 0.30, indicating that the chemisorbed H atom weakens the
carbon bonds in the vicinity of the chemisorbed site.

The H–C1 overlap population is found to be 0.35, which is higher than
those of the nearest carbon neighbors C1–C2 which is around 0.3. Nevertheless
the mutual distances for C2–C6 and C2–C10 remain almost the same as in a
pure CNT at about 1.41 Å. The corresponding distances for C4–C5 and C11–
C12, on the other hand, diminish to 1.38 Å, while the overlap population
between them increased significantly to 0.53. Bond angles –C3C1C2 and
–C13C1C2 are reduced from 120∞ to 109.4∞, which are in good agreement
with the typical bond angles found in diamond of 109.47∞. For atoms relatively
distant from the H atom, their angles remain as 120∞, which is the typical
bond angle for pure CNTs. Figure 8.30 shows the associated Mulliken charges
for hydrogen and carbon atoms at the adsorption site.

The interaction energy of the H atom with the exterior wall of the (5,5)
SWCNT is summarized in Table 8.3, where the reaction energy includes the
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0.069
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0.037

0.107

0.068

0.023

0.068
0.107

–0.308

0.180

8.30 Mulliken charges for hydrogen and carbon atoms at the
adsorption sites.

Table 8.3 Relative energy of reactants, TS, and reaction products for the reaction
between H atom and SWNT, calculated with ONIOM2(B3lYP/6-31G:UFF) approach

System Method SCF energy
(Hartree)

Reactant: H atom B3lYP/6-31G:UFF –0.5003
Reactant: CNT B3lYP/6-31G:UFF –615.5241
Product: CNT-H B3lYP/6-31G:UFF –616.0784
CNT-H transition state (TS) B3lYP/6-31G:UFF –615.9874

Forward reaction activation energy (eV) 1.01
Reverse reaction activation energy (eV) 2.32
Energy of reaction (eV) –1.31
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calculated energy for the H and CNT reactants, TS, and the products of H–
CNT. For the single H atom, the chemisorption adsorption energy is calculated
as the difference between the energy of the H–CNT and the isolated energies
of the H atom and pure CNT30

Echemisorption = E(CNT – H) – E(CNT) – E(H) [8.49]

where E(CNT – H) denotes the energy of the CNT and the H atom, E(CNT)
the energy of the bare CNT, and E(H) the energy of the single H atom.
According to this definition, a stable system is supposed to have a negative
binding energy. The corresponding chemisorption energy for the reactants,
TS structure, and the stable intermediate I are plotted in Fig. 8.31.

From the calculation, it is found that the adsorption process on the sidewall
of the tube is exothermic, with the H–C bonding energy being –1.31 eV as
indicated in Fig. 8.31. Thus, it is evident that the reactants achieve an
energetically favorable state during the chemical reaction process.

To obtain more insight into the change of electronic structure associated
with this H chemisorption process, the orbital overlap population55 is calculated
for the stable intermediate state I. The orbital overlap population curve indicates
that the H–C1 corresponding to the highest occupied molecular orbital (HOMO)
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8.31 Schematic pathway for the chemisorption of one H atom on a
(5,5) SWCNT.
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are bonding, while those of H–C2 and C1–C2 are antibonding. On the other
hand, the bonds of H–C1, H–C2, and C1–C2 at the lowest unoccupied molecular
orbital (LUMO) energy level are non-bonding, while those of C4–C5,
C11–C12 exhibit strong antibonding. These observations are presented in
Fig. 8.32. In addition, for one H atom chemisorbed, we obtained EHOMO as
–4.45 eV, and ELUMO as –1.20 eV, and Egap is thus 3.25 eV.

It can be seen that when one H atom approaches the sidewall of a pure
CNT, it will eventually be chemisorbed on the tube, resulting in the weakening
of the sp2 bonds between its two nearest carbon atoms, C1 and C2. In addition,
there is large charge transfer occurring from the H atom to C1, filling up the
p valence orbital of C1. In Fig. 8.32, the HOMO depicts C1 exhibiting typical
sp3 hybrid bonds with the nearby carbon atoms, and a covalent s bond forms
between H and C1. During the formation of the H–C bond, the Mulliken
analysis of bond populations, see Fig. 8.30, shows 0.339 electrons transferred
from the neighbouring atoms to C1. It is also noted that 0.17 electrons are
from the H atom, after the H atom has been adsorbed onto the sidewall of the
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system.
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CNT, and this is consistent with earlier reported calculations for fully
hydrogenated nanotubes56.

8.6.2 ONIOM calculations of chemisorption of two
hydrogen atoms onto a CNT

Here we examine the reaction of a second hydrogen atom chemisorbed on
the sidewall of the (5,5) SWCNT. Once again, we carry out simulations
based on the ONIOM2 method for the case of two hydrogen atoms being
chemisorbed, and these simulations start with the stable intermediate structure
I that was obtained in the preceding computation. The second hydrogen atom
is placed close to the tube wall, which can be physically achieved under
high-pressure conditions, or by injecting hydrogen atoms with high kinetic
energies into the reaction cell.

Similar to the results in the previous calculation for the first H atom, the
results here show that the adsorption of the second H atom on the CNT wall
results in a distortion of the CNT structure as well. The energy parameter
variation is shown in Fig. 8.33 while the corresponding configurations are
shown in Fig. 8.34. The distance between C1 and C2 is 1.73 Å for stable
intermediate state II and elongates to 2.50 Å in the final products. Another
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8.33 Schematic pathway for the chemisorption of two H atoms on a
(5,5) SWCNT. Three transition states are found during the reaction.
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important parameter is the distance between the two hydrogen atoms, which
generally decreases in the manner 2.78 Å Æ 2.08 Å Æ 1.97 Å Æ 1.74 Å
from TS II to the final product of 2H–CNT.

From the simulation results, it is noted that the second H atom prefers to
be chemisorbed with C2, which is located at the same layer as C1. The
chemical adsorption energy for the second H–C bond is about –2.82 eV,
which is a dramatic increase in magnitude compared to the corresponding
value for the single H case of –1.31 eV. The average binding energy for

(a) Transition state II

(b) Stable intermediate II

(c) Transition state III

(d) Optimized structure of products

(e) Labels of the atoms
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8.34 Optimized structure for the transition states and the final
products.
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forming the C–H bonds is about –2.07 eV for the entire process. This energy
value has also been previously estimated by Gülseren et al.57 and Han
et al.58. The present results indicate that the adsorption of H atoms on the
outside wall of the (5,5) SWCNT is preferred with carbon atoms which are
perpendicular to the tube axis, and this adsorption is exothermic and stable.
These conclusions are consistent with the observations of Gülseren et al.57,
Han and Lee58, and Yang and Yang32.

From Fig. 8.5, we note that the reaction will follow the process of the H
atoms first approaching sufficiently near the surface of the CNT, which
could happen under high pressure or high kinetic energy injection, and
substantially weakening the C–C p bond of the adjacent tube surface while
forming the first H–C s bond (stable intermediate I). Next the weakening of
the C–C bond results in an unpaired electron in the p orbital of the carbon
atom, thus initiating another H atom to form the second H–C s bond with the
carbon atom (stable intermediate II). This second C–H bond further weakens
the C–C bond and elongates the bond length. The attraction between the
hydrogen atoms reduces the mutual H–H distance and increases the C–C
bond until it eventually breaks and the 2H–CNT products are formed.

It is obvious from the results that the adsorption energy for forming the
C–H bonds is different in the three stages. For the first H atom, it is found
that 1.31 eV is released during the adsorption process, while for the second
H atom forming the C–H bond with the adjacent C–C bond still intact, 2.56
eV of energy is emitted. When the adjacent C–C bond is broken, 0.26 eV is
further released. It turns out that the energy values for the two stable
intermediates and the final products are lower than the energies of the reactants,
indicating that during the chemisorption, the hydrogen ions will be
exothermically adsorbed onto the sidewall of the CNT.

The orbital overlap population plots and the HOMO and LUMO orbitals
for the small model clusters of the stable intermediate state II are studied and
shown in Fig. 8.35. The energies of the HOMO and LUMO are –4.76 eV and
–1.61 eV respectively. The HOMO–LUMO gap in the stable intermediate
state II has dropped to 3.15 eV. The orbital overlap population curve for the
C1–C2 bond shows very strong antibonding at the HOMO level and strong
bonding at the LUMO level, which is consistent with the results of the
surfaces obtained for the HOMO and LUMO orbitals. The properties of the
C2–C3, C1–C6, C1–C10, and C2–C13 bonds at the HOMO and LUMO level
are qualitatively similar to that of the C1–C2 bond, but showing relatively
weak antibonding at HOMO level and weak bonding at the LUMO level.
The situation for the H1–C1 and H2–C2 and H1–H2 bonds is the converse of
that observed for the above C–C bonds. Bonds between hydrogen and carbon
indicate bonding at HOMO, and non-constructive overlap between the two
H atoms gives rise to non-bonding at the HOMO level, but shows antibonding
at the LUMO level.



Multiscale modelling of carbon nanostructures 257

A similar analysis is also carried out for the relaxed atomic structure of
the products, where two H atoms have been adsorbed onto the tube wall and
the electron clouds indicate that the C1–C2 bond is severed. The equilibrium
H1–C1, H2–C2, C1–C2 lengths for the final products are 1.07 Å, 1.07 Å, 2.50
Å, respectively, see Fig. 8.34(d). The present result for the H–C bond length
is consistent with the outcome of Yang and Yang32 where the reported distance
between C and H is 1.09 Å for two hydrogen atoms bonded to two adjacent
carbon atoms on a basal plane of graphite. The H1 and H2 atoms show
positive charges of 0.151, while the neighboring C1 and C2 carbon atoms
show negative charges of –0.216. The overlap population of H1–C1, H2–C2,
and C1–C2 and H1–H2 are 0.364, 0.364, 0.007 and 0 respectively, indicating
that H1 and C1 have formed a covalent bond, and the same can be concluded
for the H2 and C2 atoms. The overlap population between H1 and H2, and
between C1 and C2, is almost zero, inferring the non-binding between C1 and
C2, and between H1 and H2. This result is consistent with the fact that the
C–C bonds in smaller radii nanotubes are under relatively greater strain,
especially those perpendicular to the tube axis59,60. These C–C bonds are
therefore more susceptible to being weakened or broken to form H–C bonds
when H atoms are appropriately introduced. Gang et al.61 predicted that two
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rows of H atoms chemisorbed on selective sites exterior to the smaller armchair
nanotubes will sever the nearest-neighbor C–C bonds of the tube. To verify
the above results, the orbital overlap populations are also calculated for the
products and illustrated in Fig. 8.36. For the optimized structure of the small
model, we obtained EHOMO as –5.35 eV, ELUMO as –0.92 eV, and Egap as 4.43
eV, which is greater than both the stable intermediate states discussed earlier.
The orbital overlap population curve indicates that the H1–C1, H2–C2 bonds
corresponding to the HOMO level are bonding, while those of H1–C2 and
C1–C2 are non-bonding. On the other hand, the LUMO level coincides with
the C4–C5 and C11–C12 bonds exhibiting strong antibonding.

The simulation results illustrate the exothermic nature of the reaction
when H atoms are adsorbed onto the outside of the CNT wall. However, as
dissociating one hydrogen molecule into two hydrogen atoms requires about
4.57 eV (105.269, kcal/mol)58,62 which is higher than the exothermic energy
of 4.13 eV for two H atoms being chemisorbed onto the CNT, the entire
reaction may still be required to absorb a certain amount of energy if we
include the dissociation of the hydrogen molecule into hydrogen atoms.

8.36 Orbital overlap population between hydrogen and carbon atoms
in the small model system of the final product.
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9.1 Introduction

Perhaps the greatest practical challenge to materials modelling is the prediction
of failure in structural materials. Since most of the specific modelling techniques
are covered elsewhere in this book, this chapter looks at structural materials
from the perspective of an applied modeller in an ‘industrial’ context. Here,
modelling is required to make reliable quantitative predictions of a wide
range of different materials and combinations of materials in applications
that span dimensions from nanometers to tens of metres and times from
microseconds to tens of years. Since lives are at risk in many of these
engineering applications, absolute accuracy of predictions is moderated by
conservative design tolerances; ironically, experience suggests that where
reliability is important, a broad physical description is often better than a
very precise empirical relation, which may break down under slightly different
conditions. Moreover, the modelling has to be effective and efficient in
terms of both cost and time.

Griffith first asked the question about why there are such large variations
in the strength of apparently similar materials.1 This question is arguably the
start of multiscale modelling of materials. Writing this chapter in the Griffith
Building of a research organisation descended from the Royal Aircraft
Establishment in which Griffith worked, the same question is arguably just
as valid now as it was in 1920, albeit from a position of greater understanding
about how strong a material might be and why it usually falls far short of that
ideal performance. It seems appropriate, therefore, to focus here upon modelling
the engineering properties of materials from the atomic scale up to the point
of predicting these properties as a constitutive equation input to continuum-
level techniques such as finite element analysis (FEA).

Although modelling aims to use best available theory, modelling structural
materials often exposes severe limitations in ‘fundamental’ theory, such that
empiricism is the only practical approach; this is the case in many structural
properties of metals, for example. For this reason, the multiscale approach of

9
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combining the contribution of physical effects over different scales of dimension
and time to model the structural properties of materials is considered here
from the pragmatic and quite limited perspective of an applied modeller; a
model that ‘works’ is better than an elegant but non-validated theory.

The chapter starts with a brief introduction and review of general aspects
of structural materials and multiscale modelling, and then looks specifically
at different material family types and how modelling at different scales can
be used to predict structural properties, including limitations on current methods.
Finally, future requirements and trends for modelling are discussed. Where
possible, practical examples are used to illustrate how modelling tools have
been used in structural material problems.

9.2 Structural materials

9.2.1 Properties and scales

Structural materials are defined mainly by virtue of their properties of rigidity,
strength, and toughness, and the effect of environmental variables such as
temperature and humidity on those properties. As applications become ever
more demanding, the combination with other properties such as density and
dimensional stability gains in importance, and the complexity of new materials
becomes so great that empirical development becomes prohibitively difficult.2

Moreover, cost is a key issue.
The three main structural material families are described here very loosely

by the terms metal, polymer, and ceramics; fibre-reinforced composites are
not discussed here, but are considered in detail in a sister publication.3 Since
the largest body of research and development has historically been on metals,
it is ironic that the greatest problems for quantitative predictive modelling
remain in that area; namely the dominant effect of dislocations and grain
boundaries upon the strength of metals. For this reason, metals are considered
first, since they challenge the capability of current modelling methods, and
are the subject of the most research attention. Polymers are then discussed
from a deliberately provocative standpoint as an inherently ‘simpler’ structural
material, which might provide novel insights that can be applied across other
materials. Finally, other materials are considered under the catch-all term
‘ceramics’, which is also taken to include key structural materials such as
glasses, concrete, and minerals.

The next step is to consider the spatial scales of dimension that control
structural properties. At the limits of scale are classical continuum methods
and molecular modelling, which are complementary tools that allow some
basic mechanical properties such as elastic modulus to be related directly to
chemical structure. However, the failure of structural materials is determined
by defects and dislocations at a wide range of intermediate scales, so scales



Multiscale modelling of structural materials 263

are considered here very broadly in terms of their physical roles. The atomic/
molecular scale determines the intrinsic properties and upper limiting values
of all structural properties. The nanometer scale of inhomogeneous materials
controls the synergy between adjacent materials and structures. Dislocations
and ‘defects’ at the micron to millimetre scale limit the practical strength of
materials. Finally, the bulk continuum scale above millimetres is the domain
of classical engineering simulations, which use constitutive equations that
embody effects at all the lower scales. In this chapter, the aim is to discuss
in general terms how the three lower scales combine and contribute to the
continuum level.

In engineering terms, scales of time are of equal importance to spatial
scales. The three main engineering time scales are taken here to be those of
shock events from 10–6 to 10–3 s, the quasi-static loading case of 10–3 s to
hours, and the creep scale of hours to tens of years. Clearly, there is a
synergy between the time and spatial domains in terms of mechanisms that
control properties, but each spatial dimension can contribute to any time
scale.

9.2.2 Motivation

Before considering detailed property profiles and modelling strategy in a
problem, the first step in modelling structural materials problems is to scale
the property bounds of general material families and match material types to
an application. The method of Ashby is a valuable practical tool, based upon
an enormous experimental dataset, which develops the simple concept of
property maps of one property against another into a functioning engineering
property database, and also embodies the need for a balance of two or more,
often conflicting, properties.4

Realistically, not all materials have been synthesised and characterised,
and experimental data on those that have is often limited, inappropriate, or
unavailable. The author sees the role of multiscale modelling as helping the
engineer to find the right material chemical composition with the right
morphology to satisfy their specific property requirements. The material
properties then need to be supplied in the right form and to a useful degree
of accuracy for the engineer to use. Another important role of modelling is
to provide a reasonable equation of state or constitutive equation for urgent
problems in the field; again determined by engineering requirements.

A useful discussion of future needs for modelling in structural materials
in the context of mechanics is presented in a recent DOE report.2 Significant
reviews of materials modelling also provide a useful background for the
motivation for modelling efforts at the national and international level.5–7
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9.2.3 Approaches

The most straightforward approach to modelling structural materials that
spans all the scales is sequential; where modelling results at a lower dimensional
scale are used as input to simulations at the next higher scale, in a sequence
from atoms to continuum engineering properties. Inversely, if a problem or
effect is observed at one scale, look at least one level below that for a
solution. This approach is ideal for the applied modeller as a ‘pick-and-mix’
strategy to use methods that are appropriate to each very different problem.
This allows empirical tools to be mixed pragmatically with more ‘fundamental’
methods.

The alternative modelling approach is termed ‘concurrent’, in that all the
different scales are modelled in parallel to include the synergy between
them. The problem here is to couple the different physics and dimensions in
the domains that are used to partition an overall simulation process. This
approach is relatively new, and likely to remain in the research sector for
some time.

In addition to the presentation of individual modelling tools and
combinations of tools in this book, a number of valuable reviews (and the
reference therein) of multiscale modelling of structural materials are
recommended: an edition of the MRS Bulletin gives a clear general overview
of materials research by multiscale computer simulations, which looks at
both methods and specific applications;8 two reviews by Ghoniem outline
the methods used in multiscale modelling, with particularly useful emphasis
on nanomechanics and micromechanics;9,10 Lu and Kaxiras give an elegant
overview of multiscale simulations, which compares the sequential and
concurrent approaches to multiscale modelling, with interesting comments
on the difficulty of bridging time scales from atomic vibrations to engineering
events.11

The above references concentrate on metals. A useful overview of multiscale
modelling of polymers is edited by Kotelyanskii and Theodorou.12 The earlier
handbook by Bicerano presents a more applied series of articles that both
present the modelling methods and give examples to illustrate their
application.13

9.3 Metals

To simplify the discussion on modelling the structural properties of metals
on the basis of scales of dimension, properties are classified as being either
intrinsic to the atomic structure of a material or due to the nucleation and
growth of dislocations under load. Intrinsic properties are determined largely
by energetics at the atomic scale, and dislocations are a consequence of
effects around the micrometer scale.
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9.3.1 Intrinsic properties

Intrinsic properties are taken here to mean the volumetric, thermal, and
small-strain elastic properties of a solid material. These properties are
determined directly by inter-atomic bonding, which is quantified by potential
energy functions in the form of potential wells that have a minimum (negative)
energy at the equilibrium position of atoms in a structure. Potential wells are
calculated as the energy-dependence of some dimensional parameter (inter-
atomic spacing or unit cell volume, for example), with constraints specified
on the overall geometry changes that are allowed in a simulation; whether
atom positions are allowed to relax in the perpendicular axes after imposing
a uniaxial deformation, for example.

Potential wells can be calculated by quantum mechanics, molecular
mechanics, or simply have an empirical form to fit experimental data, obtained
usually from pressure–volume measurements. For metals, the author uses
the plane-wave density functional method CASTEP,14 since it is a reliable
and flexible code with the essential capability for structural properties of cell
minimisation; noting here that most applied modellers do not develop code
and have limited time to test new or different packages. No method is perfect,
but extensive in-house validation and an awareness of the consequences of
the limits of accuracy to any specific composition or property simulation
generally lead to an acceptable predictive capability. The speed of molecular
mechanics is essential for large-scale modelling such as the simulation of
dislocations.

Potential wells predicted by quantum methods are immediately applicable
in the screening of the likely space group that any given alloy composition
might preferentially adopt as its lowest energy state, and predicted values of
density are usually reliable enough for engineering calculations. Possible
phase transitions between space groups can be inferred if potential wells for
different structures cross or the energy difference is of the order of the
thermal energy in the system. For magnetic systems, such as the multiple
transitions in iron, this requires that exchange interactions are included in
the method.

Empirical potential functions are useful for validation purposes, but data
availability limits their use. The ‘universal’ potential function of Rose works
very well for metals, since it has the flexibility to fit the shape and depth of
the well for most materials.15 The analytical form of this potential function
is very useful for calculating intrinsic properties, since expressions can be
derived in terms of a limited number of parameters such as the well depth
(cohesive energy) or the asymmetry of the well about the minimum.

To illustrate the form and use of potential wells, Fig. 9.1(a) compares the
predictions of CASTEP with the empirical potential well for aluminium.16

Figure 9.1(b) then uses the CASTEP potential well to predict the pressure–
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volume–temperature (PVT) equation of state by differentiating energy with
respect to volume to give pressure. The zero temperature well is used for
reference, and pressure is simply scaled with the cohesive energy density as
a function of temperature; this is the depth of the potential well (cohesive
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energy minus thermal energy) divided by the volume at temperature T. Points
in Fig. 9.1b are data from plate impact experiments that were used to
parameterise the empirical well. Such predictions of equations of state are
valuable for dynamic FEA simulations of impact or explosive events, for
example, since plate impact experiments are both expensive and time-
consuming. The form of empirical potential wells can be helpful in compression
at high pressure, since the pseudopotentials of some metals can be unreliable
under these conditions and a good general fit of a Rose-type well can be a
useful cross-reference check.

Pressure–volume relations from a potential well give the bulk elastic
modulus, which can be used to estimate the Debye temperature, qD.17 The
Debye temperature then gives the heat capacity,18 which is used to reduce
the cohesive energy to scale the pressure predictions outlined above. Thermal
expansion coefficients can be calculated from the asymmetry of a potential
well, simply by averaging the volumetric changes at a series of energy
(thereby temperature) points on either side of the well minimum.

A more general extension of the pressure–volume calculations to predict
bulk elastic modulus is to predict the full stiffness matrix using a series of
potential energy wells around the minimum energy equilibrium point with
different deformation constraints. In practice, many metals have redundancy
in the full stiffness matrix, which allows a small number of calculations to
predict a sufficiently populated matrix for engineering calculations. At its
simplest, bulk modulus and C11 calculations with volumetric and uniaxial
deformations can estimate most of the elastic constants and Poisson’s Ratio
or Lamé parameters; to make life easier, this process is automated in the
commercial CASTEP code. Mayer shows how ab initio calculations can be
used to predict elastic constants and thermal expansion in quite complex
Laves phases.19 The experience of the author is that such predictions are
again usually either within experimental error or close enough for acceptable
engineering simulations, provided that all relevant effects such as exchange
interactions are included.

Given that atomistic simulations can provide many intrinsic properties of
metals, how far can this approach be taken towards predicting mechanical
and failure properties under realistic conditions? Griffith showed that whiskers
of glass with diameters of the order microns have strength far higher than
that of bulk material.1 Similarly, metal whiskers such as copper have shear
strengths of about 3 GPa, relative to a typical measured yield stress an order
of magnitude lower.20 This ‘ideal’ elastic strength has been reproduced in ab
initio simulations of shear stress as a function of engineering strain and is
determined by an elastic instability point, at which one or more stresses go
through a maximum.21

The elastic instability is illustrated in Fig. 9.2 for the volumetric strain of
copper, with a maximum in pressure at a volumetric strain of about 0.4 and
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an energy of about 0.4 eV/atom in a CASTEP simulation. The author has
suggested at the simplest level that such an instability point can also be
identified with the melting temperature, Tm, where a material changes from
a solid to a liquid state via the Born criterion as the second derivative of
energy in the potential well tends to zero.22,23 This was also suggested by
Guinea as a development of the properties that can be estimated from the
‘universal’ potential well, in the form of a good correlation between Tm and
the depth of the potential well.24 This issue is discussed in more detail by
Wang, with a broader discussion of the different Born criteria for the
combination of thermal and mechanical energy for instability criteria;25 see
below under dislocations.

Although the elastic instability is important mainly as an ideal reference
strength, the thermal instability for melting may be useful in a more general
manner as a link to predicting phase diagrams for metal alloys by
thermodynamic methods such as ThermoCalc and CALPHAD.26,27 Work
here has shown that the general trends in the liquidus temperature of alloys
over their composition range can be scaled quite well using the maximum in
the differential of volumetric potential functions, although the absolute value
of a transition temperature prediction must be taken with caution due to error
bars. As a general comment, the use of predicted intrinsic properties in
empirical methods is a very practical way to use atomistic simulations at
higher scales, and tools such as JMatPro (a spin-off from the CALPHAD
approach) can provide useful values of applied engineering properties.28
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9.2 Instability criterion in the volumetric potential function of copper.
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9.3.2 Failure through microscale ‘defects’ and
dislocations

After the very positive discussion on predicting intrinsic properties at the
atomic scale, we now need to take a realistic look at properties that actually
determine the use of structural materials; when, how, and why do they fail?
In practice, metals have values of strength (or stress to failure) that are
significantly lower than the ideal values predicted from elastic instability
criteria. Blame is invariably assigned to one of an enormous number of types
of atomic scale defects and dislocations, usually separated by dimensions of
the order of microns, which are either embedded in the material or can
nucleate and grow spontaneously under load.

Historically, Griffith first suggested in 1921 that dimensions are an important
factor in strength and suggested that microscopic cracks are responsible for
the relative weakness of brittle solids. By 1934, dislocations had been identified
in crystalline solids. The consequence of some major incidents such as metal
failure in ships during World War II was a massive effort to understand the
role of dislocations on metal properties. By the early 1950s, numbers of
books reflect a confidence to collate the large body of experimental observations
on dislocations and develop physical models to understand the role of
dislocations on a semi-quantitative level.29,30 By 1968, student texts such as
that of Honeycombe are able to present a coherent picture of the plastic
deformation of metals due mainly to dislocation growth.31 Since then, more
experimental work with ever-increasing levels of refinement and considerable
resources allocated to numerical simulations of deformation in metals still
leaves us not able truly to predict dislocation effects at an ab initio level.

The rather negative tone of that last comment is not meant as a slight to
the excellent work of recent years to develop methods that will eventually
allow defect and dislocation effects to be predicted reliably enough for use
in engineering design and simulations. A brief commentary article in Science
in 1998 perhaps reflects the point where computer simulation of failure in
metals comes-of-age.32 Chapters in this book give a flavour of recent work,
and general literature and web searches using names such as M. Ortiz, E.
Kaxiras, N.M. Ghoniem, and S. Yip yield a considerable body of excellent
overviews of and contributions to developments in microscale modelling.

Current state-of-the-art modelling of dislocation effects is probably the
Livermore work on ParaDis, which uses molecular and dislocation dynamic
simulations on the (currently) most powerful computer in the word to predict
stress–strain curves in metals such as iron and aluminium up to strain of
about 1 %.33 The key role of these large-scale simulations is to help us to
understand critical features of dislocation nucleation and growth, which can
then be used in more practical modelling tools at a more realistic economic
scale; the main concern of the author is that the computational routines that
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control the simulations are not just ‘quick fixes’ that give apparently correct
results, rather than serious underpinning physics. Eventually, the author hopes
that insights from these simulations will contribute to our understanding
sufficiently to allow models to be developed that use ab initio local simulations
of intrinsic properties as input to predict ‘bulk’ properties that incorporate
dislocations. For example, simplification of dislocation modelling to generic
solutions from detailed modelling of the volume immediately surrounding a
dislocation as discrete ‘zones’ within a relatively simple elastic continuum
medium using a ‘concurrent’ approach mentioned in Section 9.2.3.

Clearly, most readers will not be able to use supercomputer simulations or
develop new microscale simulation techniques. However, there are a number
of key issues at a more modest level that warrant more extensive discussion
and are relatively straightforward developments of concepts from the student
textbook level that have been facilitated by calculations at the atomic scale.
Two such important and interrelated issues are dislocation nucleation and
grain size effects.

The search for criteria for the nucleation of dislocations generally follows
two possible routes. The first is a simple Peierls-type stress for initiation of
a local slip-like event that is much lower than the ideal failure stress, but this
route is not popular. The main route is to assume that the ideal elastic instability
criterion is the driver and find ways to combine all the thermodynamic
energy contributions to achieve a local shear instability. Taking the work of
Yip and coworkers as an example, the starting premise is that the Born
criterion of modulus tending to zero is a condition for initiating elastic
instability; they showed that some combinations of modulus and hydrostatic
loading could be used to specify instability conditions.25 Five years later,
this basic idea emerges as an energy-based local elastic stability criterion,
termed the L-criterion, which is used in an elegant combination of molecular
dynamics and FEA computer simulations, nano-indentation experiments and
experimental bubble-raft models to provide atomistic insights into the early
stages of plasticity.34 Although attractive in its elegance, the specific nano-
indentation simulations are also quite limited, in that the nanometer scale of
events around dislocation initiation under the tip of an indenter does not
qualify as a ‘bulk’ process, in the same way as whisker experiments do not
reflect bulk deformation events. This healthy scepticism is expressed well in
a recent article by Miller and Acharya, who simultaneously suggest that a
nucleation criterion based on the magnitude of local stress components is
incorrect and present a criterion motivated from continuum thermodynamic
considerations, based on stress-gradients.35

Stress gradients were used by Cottrell in an early formulation of the Hall–
Petch relation for the effect of grain size, d, on the yield stress, sy, in a
metal36
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where si is the yield stress of a single crystal (due to dislocation nucleation,
perhaps) and ky accounts for unpinning of dislocations. In practice, the Hall–
Petch relation is a loose empirical guide to yield stress in granular materials,
and cannot yet be predicted for any given metal or alloy. Increased interest
in nanocrystalline materials has focused attention on the way the Hall–Petch
relation might break down at very small grain sizes;37 termed the inverse
Hall–Petch effect.

A remarkably simple composite model for the Hall–Petch effects down to
nanograined materials has been suggested by Jiang and Weng.38 Here,
crystalline grains are embedded in a disordered matrix of grain boundaries
with a fixed thickness of about 1 nm around each grain; at larger micrometer
grain sizes, deformation is dominated by the grains; below a critical
‘equicohesive’ grain size, deformation is controlled by the plasticity of the
grain boundaries. The main problem with the model is that some of the input
parameters (such as yield stress due to dislocations in the components) cannot
be predicted. Grain boundaries, in turn, change dislocation dynamics, which
demonstrates the vicious circle of problems for modelling at this scale.

9.3.3 Simplified bridging of scales

Modelling structural materials is not just about detailed modelling with specific
approaches, it is also about a very general understanding of the interrelation
between effects at different scales of dimension. We might be able to put
more than 1010 atoms in a virtual box and simulate a dislocation at intervals
of one micron using molecular dynamics, but could we not use the advances
in atomistic modelling of local intrinsic properties within a very simple
scaling approach to achieve the same effective result, and simultaneously
learn more about the key physics involved in inter-scale processes?

At its heart, micromechanics looks at how mechanical energy density in
a material generates voids or dislocations that can develop into large-scale
cracks and cause failure. It is interesting to look at why the microscale is
associated with ‘defects’ by considering at a very simple level the ‘defect’
surface area that can be generated spontaneously by the application of a
stress, s. Consider a cube of side length d inside a perfect crystal with a
modulus, M, and an energy per unit area of defect or free surface, G. The
elastic energy density inside the cube volume can generate a ‘defect’ when

s G
 = 

12  M
d

[9.2]

Taking the example of a copper-like metal with M ª 130 GPa and
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G ª 1 J/m2 as generic parameters, a yield stress of 250 MPa (the value of si

in the Hall–Petch relation in the composite model38) corresponds to a defect
spacing of d ª 20 mm. The ideal shear strength of copper is suggested to be
about 2.5 GPa with a shear modulus of about 30 GPa, so the minimum defect
spacing corresponds to d ª 57 nm. Unsurprisingly, this spacing corresponds
very well with the maximum flow stress and grain size in both experimental37

and modelling simulations.39

More generally, equation [9.2] raises a problem, since defects can be
generated at any stress and will continue to be generated/grow at that stress
with increasing strain to convert mechanical work into either free surface
(brittle crack growth) or shear dislocations (plastic flow), depending upon
the lowest energy mechanism for G. Why then do ‘defects’ start to form at a
specific stress in a perfect crystal lattice? One simple suggestion is that this
stress corresponds to the point where atoms in the lattice cannot reconfigure
fast enough to maintain a minimum potential energy state, such that new
mechanisms are invoked to absorb or dissipate the energy of deformation.
Can this suggested condition be translated into a nucleation criterion?

Work on the failure initiation criteria of viscoelastic polymers and brittle
inorganic materials has suggested that the stress for the reconfiguration
condition is quantitatively equal to the loss modulus of a material,40 since
this is the stress at which atoms can naturally dissipate energy during the
reconfiguration under strain. Since loss modulus is much smaller than the
storage modulus, this suggests a relation in the loss tangent, tan d

si @ B tan d [9.3]

This suggestion immediately moves dislocation theory out of the realm of
simple elastic potential functions and instability criteria. To a first
approximation, loss tangent is the conversion of mechanical energy to heat
in a deformation cycle. A simple relation can be derived to estimate tand as
a thermomechanical process, where input of mechanical energy changes the
elastic modulus, which then changes the Debye temperature, qD, and changes
the heat capacity to convert mechanical to thermal energy in an irreversible
cycle. To a first approximation, this process is embodied in the simple relation

tan d ª 0.12 aqD [9.4]

where a is the volumetric thermal expansion coefficient. The two parameters
a and qD can be predicted from atomistic calculations (Section 9.1) or measured.
For the copper example, a ª 5 ¥ 10–5 K–1 and qD ª 343 K, such that tan d ª
0.002 and the estimated stress for dislocation nucleation is si ª 260 MPa.
The predicted loss tangent is not unreasonable for a metal, and the predicted
nucleation stress agrees with that from experimental data used in the composite
model for Hall–Petch.38 Note that the expression for tan d is not appropriate
for low temperatures, where extra loss terms may be induced by the gradient
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of heat capacity with temperature in the Debye functions, which are observed
as Bordoni relaxation peaks.41

The combination of scaling of energy density for nucleation and energy
dissipation for initiation is considered for polymers and ceramics later in this
chapter as a more general concept. Clearly it does not embody all the effects
required for a comprehensive treatment of defect/dislocation contributions
to failure; for example, does the kind of inter-atomic bonding (covalent,
metallic, van der Waal’s) determine the tendency to void formation or shear
dislocation? However, it is introduced here to broaden the arguments about
where to go in the search for better models of structural materials beyond the
over-simplistic use of purely elastic potential functions.

9.4 Polymers

9.4.1 Background

A polymer usually consists of a chain of chemically bonded atoms (C, O, N,
Si), which interacts with its neighbours by relatively weak van der Waal’s
forces; a characteristic group of atoms in the chain is called a mer unit. The
elastic modulus in the chain axis is of the order of 100 GPa (a simple trans-
poly(methylene), –CH2–, chain modulus is about 350 GPa,42 for example),
which reduces with the greater cross-sectional area of bulky side groups.
Perpendicular to the chain axis, the modulus is of the order of a few GPa, and
this modulus dominates the mechanical properties of most bulk polymers
due to the additivity rules of compliance. Above the glass transition temperature,
Tg, the polymer modulus drops to an order MPa, characteristic of rubbers.
Polymers have two important structural reference time scales: below Tg, that
of vibrations of individual atomic groups along the chain, t0 ª 10–13 s; above
Tg, the cooperative mode vibrations of the whole chain, which scales with to

approximately in chain length to the power three.
Texts such as that of Ward give a good introduction to the mechanical

properties of polymers.43 Reviews edited by Bicerano13 and Kotelyanskii
and Theodorou12 present the different modelling methods for polymers up to
the continuum scale, and a compilation of references relevant to FEA modelling
of polymers is a useful guide.44

Perhaps the most important practical reference for polymers is the Group
Contribution method of van Krevelen,45 which is an elegant and comprehensive
demonstration of the potential simplicity of modelling using largely empirical
relations developed from a strong foundation in experiment and theory of
polymer physics and chemistry. The remarkable simplicity of the concept of
additivity of the contributions of small groups of atoms to the overall properties
of a complex polymer suggests that the physics of the thermomechanical
properties of polymers has an underlying simplicity. This simplicity is again
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evident in the empirical method of Bicerano,46 which uses little more than
the connectivity of chemical bonding between atoms in a mer unit to predict
many important physical properties.

The objective here is to show that most of the important structural properties
of polymers can be predicted quantitatively across all scales of space and
time/rate to an acceptable degree of accuracy for engineering simulations;
even the highly non-linear dependence on strain, strain rate, and temperature.
Thus, polymers are a good reference point for modelling structural properties
of materials, and can offer fresh perspectives on modelling strategy that has
been traditionally based on metals.

The following section presents a brief outline of how each of the tools
discussed elsewhere in this book can be applied to different aspects of structural
properties of polymers as a hierarchy of scales. A more personal approach to
applied polymer modelling is then presented as an overall scheme of how
energy storage and dissipation control mechanical properties.

9.4.2 Spatial scales

At the atomic scale, the main use of ab initio or semi-empirical quantum
mechanics for polymers is to predict the structure and energetics of strong
chemical bonding in the polymer chain. Stretching of atom–atom bonds is
important to quantify the thermal stability of the polymer, since chain cleavage
is the main mechanism for deterioration of mechanical properties over time
at elevated temperatures. Bending of bond angles along the polymer chain
controls the chain stiffness and the vibrational frequency for groups of atoms
in the chain, 1/to. This is important for understanding structural properties,
since this frequency determines the main Debye temperature of skeletal
modes, q1, which controls the zero point energy of polymers and heat capacity,
which critically has a one-dimensional Debye functional form.47

Quantum mechanics is useful to predict the conformations that are possible
in a polymer chain, in terms of the stable isomeric states that can be adopted
with different combinations of torsional angles in the chain backbone. The
long-term stability of these higher energy states allows polymers to have
stable amorphous structures. Similarly, the activation energy for the onset of
vibrational modes in the polymer chain plays a key role in the low temperature
relaxation spectra of tough engineering polymers.48

The main disadvantage of quantum methods is the small number of atoms
that can be used in a model, which is particularly important for amorphous
polymers. The ONETEP method looks promising for polymer and hybrid
systems, in that the scaling between the number of atoms and computational
size has been reduced to a level where thousands of atoms might be used in
a simulation, and takes quantum methods into the dimensional scale of
nanometers.49 It is not yet clear whether this approach will be able to make
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accurate predictions of mechanical properties that depend predominantly
upon weak intermolecular forces; conventional quantum tools are often unable
to combine these effects adequately with simulations of strong chemical
bonds along the chain backbone.

Molecular mechanics and dynamics have been the main practical modelling
tools for polymers. That atomic-scale simulations can predict many bulk
properties of polymers is due to the relative lack of dislocations and defects
at the micron scale in amorphous polymer structures. The use of empirical
forcefields for weak intermolecular interactions allows properties such as
elastic modulus to be predicted quite well, but simulation times of the order
pico- to nanoseconds do limit the ability of molecular dynamics to reach
equilibrium conditions or to model the important transition from shock to
pseudo-equilibrium conditions.

Initial attempts here to model the equation of state properties of polymers
under shock conditions using molecular dynamics were promising and allowed
effective pressure–volume–temperature relations to be generated, leading to
an understanding of some unusual effects in important polymer systems.16

Figure 9.3 shows pressure–volume simulations for poly(styrene), with
experimental data generated from plate impact experiments shown for reference.
The ‘kink’ at about 20 GPa pressure is suggested to be due to collapse of the
aromatic ring, and was reproduced by quantum mechanics calculations of
activation energy between the two structures and molecular dynamics
simulations of planar and collapsed ring groups; the same ‘kink’ is observed
in many polymers that contain aromatic rings.50
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9.3 Molecular mechanics predictions of impact pressure–volume–
temperature.16
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Molecular mechanics methods have been extended to replace individual
atoms by groups of atoms along a polymer chain. This increases the size and
simulation times that are possible in polymers and is useful in important
problems such as comparing the penetration of small molecules into polymers
over times of the order microseconds.51 However, since failure is often (even
in polymers) associated with events at the micron scale, simulations of
mechanical failure even by these coarser grained approaches are not feasible,
and this is an important limitation on the methods.

Personally, the author uses molecular dynamics simulations of structural
properties of polymers with some reservations. Commercial potential functions
such as COMPASS seem to give good predictions of volumetric properties
(such as density), cohesive energy, and bulk elastic modulus, but the thermo-
mechanical coupling and energy dissipation processes at a molecular level
involved in engineering moduli and time-dependent viscoelastic properties
should be viewed with a healthy scepticism.52

Nanoscale modelling of structural properties of polymers has been the
subject of great interest in recent years, due mainly to the promise of great
gains in strength and toughness of hybrid nanocomposite materials composed
of nanoparticles such as clay or carbon nanotubes, dispersed in a polymeric
matrix. The compilation edited by Baltá-Calleja and Michler gives a good
background to nanostructural effects on the mechanical properties of
polymers.53 In practice, structural properties of synthetic nanocomposites
have not yet realised this great promise, and successes have been due mainly
to improvements in more ‘functional’ attributes such as fire retardation,
increased barrier properties, or electrical conductivity. More conventionally,
reductions in the domain size of the phases in semicrystalline polymers to
the nanometre scale can improve failure characteristics considerably, and
nature uses the nanoscale to create materials such as bone and silk with
excellent mechanical properties; silk is used as an example in Section 9.4.3
below. Modelling may be able to help nanocomposites achieve their potential
for structural properties by identifying where weaknesses occur and how
they might be remedied.

Modelling at the nanoscale is now possible using large-scale molecular
dynamics simulations, which have been able to identify problems in the
dispersion of nanoparticles in polymers. For example, Odegard was able to
predict the elastic properties of silica nanoparticle/polyimide nanocomposites
and show that properties are controlled effectively by an interface region in
the polymer with a thickness of the order 1 nm.54 If the polymer macromolecules
are unable to pack efficiently around the nanoscale inclusions, this interface
region can effectively negate any potential advantages of dispersing more
rigid nanoparticles. From a multiscale perspective the Odegard paper
demonstrates an important effect on moving through modelling scales, since
the perturbation of the molecular structure of the polymer around the
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nanoparticles invalidates the use of continuum approaches to micromechanics,
such as that of Mori–Tanaka, which assume two phases that are perfectly
bonded together.55

A more pragmatic approach to modelling at the nanoscale is to consider
the change in the intrinsic properties of materials due to the thermodynamic
influence and constraints of one material upon the other around an interface,
and how far these changes reach into the material. The author has applied
this approach to bone,56 where hydroxyapatite mineral and hydrated
tropocollagen polymer are assembled in layers with thicknesses of about 2
and 5 nm respectively. By quantifying the enthalpy distribution through the
interface as a pairwise sharing process between adjacent molecular layers, it
was suggested that the energy sharing effect decreased as 2n in the nth
molecular layer. This simple approach allows continuum level models (such
as composite stiffness) to be applied to nanocomposites by including the
effect of interfaces on the individual properties of the components; for bone,
the model shows that the morphology of compact bone has evolved with
almost perfect layer thicknesses for optimal energy sharing, while retaining
the distinct identity of the mineral and polymer phases.

For structural materials, modelling at the micron scale is all about fracture
and failure. The case of composite materials is the subject of a sister
publication.3 The standard textbook in this area for polymers is by Kinloch
and Young, which is also an excellent introduction to the structural properties
of polymers.57 Once a cavitation site has been nucleated, the standard fracture
mechanics approach of elastic energy to generate a propagating crack can (in
principle) be used. However, polymers are highly nonlinear viscoelastic
materials, and caution is urged on anyone wishing to use classical fracture
mechanics on polymers.

The energy density relation for separation of nucleated defects of equation
[9.2] applies quite well to polymers; noting that the lower defect energy is
that of void formation or cavitation in polymers. For a generic polymer glass
(similar to poly(styrene), for example), material parameter values can be
taken approximately to be E ª 3 GPa and G ª 0.15 J/m2. The important case
of defect generation for typically brittle polymers is for stresses below the
macroscopic yield stress, which can be scaled by the empirical rule of thumb,
sy ª 0.02E, to suggest values of inter-cavity distance, d ª 1.5 mm.

The second nucleation condition of equation [9.3] in loss tangent effectively
defines a brittle–ductile transition condition for polymers of tan d > 0.028
for ductility.40 Here, the bulk yield stress due to the ideal elastic instability
condition of van der Waal’s forces between chains is less than the nucleation
stress for voids. Polymers with strong relaxation peaks in loss tangent at low
temperature (such as polycarbonate) have high enough values of tan d to
impart considerable toughness. Thus, atomic scale relaxation processes link
directly with microscale defect nucleation to determine failure properties.
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The author has successfully used the energy balance approach in equation
[9.2] in a wide range of applied problems, such as the design of rubber
particles to toughen intrinsically brittle polymers40 and failure by gradual
accumulation of damage in particulate composites.

9.4.3 A general modelling framework for polymers

Starting from the implication of the van Krevelen45 and Bicerano46 methods
that the physical properties of polymers must have an underlying simplicity,
the author developed the method of group interaction modelling (GIM),40

which is shown schematically in Fig. 9.4.58 The method calculates a small
number of parameters for a characteristic group of atoms in a polymer that
are sufficient to solve an ensemble-average potential function for interatomic
groups normal to the chain axis
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Negative values of cohesive energy, Ecoh, are countered by positive thermal
energy, HT, and the zero point energy of configuration, Hc, to give the volume,
V, relative to the volume at the minimum of the potential well, Vo. Physical
properties are calculated using analytical structure–property relations derived
directly from the potential function.
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This relation suggests that temperature effects can be included directly
into the potential energy well for thermomechanical properties via the thermal
energy of skeletal mode vibrations in the polymer chain as a one-dimensional
Debye function.47 The second key point is that the zero point energy of the
skeletal vibrations takes specific fractional values of 0.04 and 0.106 of the
cohesive energy for crystal and amorphous structures respectively, which are
fractionally additive for semicrystalline polymers; these values are the lowest
‘quantised’ energy levels of kq1/2 and 3kq1/2, where k is Boltzmann’s constant
and q1 is the Debye temperature of skeletal modes.

The Born criterion for elastic instability25 is used directly to predict the
glass transition, Tg, and crystal melt, Tm, temperatures for group interactions
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where N is the number of degrees of freedom per group. Not only is this a
predictive relation for transition temperatures, which has been validated for
Tg using a set of 250 polymers, but it also makes direct quantitative relations
between different states of matter, which is a critical issue for structural
materials.

The potential energy relation predicts pressure and bulk modulus directly
from energy differentials of the potential function, and Fig. 9.5 shows in-
house predictions for the PVT equation of state for semicrystalline high-
density polyethylene, with experimental data from plate impact experiments
at 300 K shown for reference.
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The viscoelastic properties of polymers are apparently very complex, and
GIM calculates these properties simply in terms of energy stored and energy
dissipated during deformation; elastic energy is stored as volumetric changes
against the bulk modulus and elastic modulus reduces as energy is dissipated
by loss mechanisms at a molecular level.

Polymers such as natural silk are also complex in their chemical and
morphological structure, and provide an excellent example of how these
multiple degrees of complexity can be rationalised into a straightforward
modelling process.59 First, the structural complexity is reduced by defining
the fraction of ordered (crystal) and disordered (amorphous) states of a
characteristic peptide segment within the nanoscale morphology. Bulk modulus,
B, is calculated as a function of temperature using the potential function and
the loss tangent through the glass transition peaks in the disordered fraction
is used to predict the tensile modulus, E, using a relation derived from the
loss due to thermomechanical coupling
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where A ª 1.5 GPa–1 is a term that quantifies the effect of a number of
dimensional parameters of the peptide groups on dissipation. For an amorphous
polymer, the tensile modulus in equation [9.7] becomes the rubber-like plateau
modulus, such that elastic modulus is continuous through the glass transition
zone and the dramatic change in modulus is quantitatively predicted from
the energy dissipated by the change in heat capacity (entropy).

Figure 9.6a shows the predicted properties B, E, and tan d as a function of
temperature for a spider dragline silk with an ordered fraction ford of 66 %.
The predictions of dynamic mechanical properties are then transformed into
stress–strain curves to failure by using temperature as a dummy variable to
predict strain and stress from the predicted thermal expansion coefficient.
Other key points are that the yield condition at about 2 % strain is defined by
the same Born instability condition as the glass transition temperature and
that post-yield work hardening is the gradual transformation of rubberlike
disordered states back to crystal or glassy states by mechanical work. Figure
9.6b shows the predicted stress–strain map for a number of model silks with
different ordered fractions.

Detailed discussion of other aspects of GIM are beyond the scope of this
article, but the brief outline presented here is intended to suggest that alternative
approaches to modelling structural materials can raise important issues and
questions about the underlying mechanisms that control structural properties
that are beyond the simple framework of elastic simulations.
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9.5 Ceramics

This disproportionately short section on ceramics does not reflect their
importance as structural materials. Unfortunately, ceramics do not lend
themselves very well generally to multiscale modelling approaches, mainly
because their predominantly brittle bulk fracture properties are not dependent
as much on the microscale as metals or polymers. The main exceptions to
this gross oversimplification are nanograined ceramics60 and ‘superhard’
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9.6 Model for spider silk.59 (a) Predicted dynamic mechanical
properties. (b) Predicted stress–strain relations.
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materials made from nanometer thick layers,61 but the general lack of microscale
effects still pertains.

As a general reference, Introduction to Ceramics by Kingery, Bowen, and
Uhlmann is invaluable, with Chapter 15 giving a good introduction to structural
properties.62 More specifically for inorganic glasses, Feltz gives an excellent
overview of general physico-chemical properties.63

All the atomistic methods discussed for the intrinsic properties of metals
and polymers are generally applicable to ceramics, provided that care is
taken to ensure that quantum or molecular mechanics codes are able to cope
with the specific bonding in any ceramic of interest. Some quantum codes
might have trouble with ionic bonding, and the author has found particular
problems with quantum codes applied to silica-based materials. Oxygen
bonding to the silcon atom seems to be so mobile that large numbers of
different structures are possible without significant changes in the bond
lengths; this can have a significant effect at high stress, where structural
transitions are likely.64

Ceramics are mainly brittle; the covalent and ionic bonding seems to have
a lower energy to create free surface than induce a dislocation. The loss
tangent model for failure stress of equations [9.3] and [9.4] can be scaled
with generic parameters of the order a ª 25 ¥ 10–6 K–1 and qD ª 300 K,
giving tan d for the ratio of failure stress to modulus of about 0.001. Basic
‘strength’ is not much different to metals perhaps, but the toughness, as area
under the stress–strain curve to failure, is small.4

The intrinsic brittleness of ceramics due to low energy dissipation suggests
that the elastic instability criterion is an interesting condition at which to
consider the spacing of defects nucleated at this stress from equation [9.2].
Taking the extreme case of transition metal nitrides with a high modulus of
about 700 GPa and using an ideal elastic instability stress criterion of about
M/30 and a generic G ª 1 J/m2 suggests that the optimum hardness should be
at a spacing of about 15 nm. This is the thickness of layers of different
nitrides reported to give maximum hardness in ‘superhard’ nanolayered
materials.61 Thus, potentially weak interlayer boundaries can promote
dislocation nucleation and allow a ceramic to use the elastic instability criterion
to have properties such as hardness approaching that of ‘ideal’ materials.

9.6 Time scales

Unfortunately, modelling time effects in structural materials is largely empirical,
with little attention drawn to the problem in literature. For modelling purposes,
time can be split very broadly into three main scales that reflect different
energy dissipation or relaxation mechanisms: impact, quasi-static, and creep.
Figure 9.7 shows the specific case of the tensile compliance (inverse of
modulus) of polymers, since polymers have a relatively more straightforward
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generic form than metals. The eventual aim of multiscale modelling is to be
able to predict the complete time response by combining the shortest timescale
of atomic level vibrations with effects under load (such as atomic redistribution,
dislocation nucleation rate and velocity, and phase transitions) to predict the
time- and rate-dependence of mechanical properties. Modelling of time scales
must be linked intimately with scales of spatial dimension and the deformation
mechanism at each scale.

Impact or shock events occur at times less than about 10–3 s, which is
often called primary creep, since a material relaxes from an instantaneous
response to load by means of a redistribution of atoms to attain a lower total
energy state. Although large-scale atomic simulations have made some links
with spatial dimensions in this regime,65 the author finds little practical
insight into important structural effects with modelling time scales of less
than 1 microsecond. In practice, this scale is very important in many engineering
applications and experiments such as plate impact tests are generally modelled
as instantaneous volumetric deformation in the deformation axis (mode 1
bulk, for example). In this mode, mechanical properties are taken to be
dominated by the bulk modulus, and dynamic finite-element calculations
can be made using PVT relations for an equation of state, without a full
constitutive model. Examples in sections 9.3.1 and 9.4.3 for metals and
polymers show how impact equations of state can be generated directly from
atomistic simulations.

Quasi-static loading from 10–3 to 103 s is the relatively stable ‘plateau’
region in time after molecules have redistributed following initial loading
and before the onset of creep. This is the time scale of most laboratory
experiments. Perhaps surprisingly, simulations of intrinsic properties using

9.7 Time domains in polymers.40
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methods such as quantum mechanics can predict the full stiffness matrix and
properties such as Poisson’s Ratio in these time scales very well; the surprise
being that stable properties often do not develop until after about 10–3 s in
practice, and simulations jump straight to the relaxed state in a purely elastic
mode.

Creep is the slow and generally irreversible displacement of molecules
under load. Many empirical or phenomenological models have been developed
to ‘predict’ creep, mainly as a means to extrapolate deformation to times of,
say, one order of magnitude longer than available experimental data. Specialist
literature explores this field in depth for metals66 and polymers,67 but most
models do not fit comfortably within the remit of multiscale modelling. As
an extension to the creep topic, fatigue is probably the single most important
mechanical property that cannot be modelled within the multiscale arena,
and the author does not see much hope of significant advances in the immediate
future. The author has suggested for polymers that creep and physical ageing
can be related directly to the Debye frequency by the combination of mechanical
and thermal energy effects in the activation function for the time- and rate-
dependence of the glass transition, which may be a guide for application to
other material types if this elastic instability condition can be applied to
dislocations.40

9.7 Future trends

The need for improved predictive modelling of structural materials increases
as the combination of properties required for application performance becomes
more demanding. The commercial benefits of reduced costs and risks and
improved effectiveness and efficiency on the technical side need to be combined
with the use of modelling to explore new opportunities for material
compositions and multiscale structures.68

This chapter has already pointed to some major weaknesses in modelling
structural materials: dislocation nucleation and dynamics and bridging between
time scales, for example. Also, ways to tackle these problems have been
suggested; by greater emphasis on energy dissipation mechanisms than purely
elastic processes. However, many more general aspects need to be addressed
at the different scales. On a practical level, experiments need to be formulated
to validate simulations directly with as few uncertain factors as possible.

At the atomic level there is perhaps too much complacency on the methods
after a period of considerable improvements, particularly in the quantum
methods based on density-functional theory. Integration of dissipation
mechanisms and thermal effects is a key requirement for structural properties.
The author firmly believes that analytical methods based upon mean-field
approximations, using energy terms derived from relatively small-scale
quantum simulations, would be a useful development and make practical
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simulations possible for even the smaller and application-oriented development
groups, rather than just major government laboratories: see Section 9.4.3 for
an example of this approach for polymers. One particular effect that stems
from the polymer approach in Section 9.4.3 is the need for a way to quantify
the state of matter (crystal, glass, rubber, liquid, etc.) as an atomic scale
parameter in calculations at higher scales; perhaps simply as distinct zero
point energies with well-defined values within the potential energy well.

At the meso scale around the micron level, there needs to be a move away
from brute-force methods, although they will still be pursued at the national
level as a yardstick from which more refined techniques can evolve. The
physics of coupling between scales depends critically on this scale, and not
just concurrent approaches to modelling strategy. In particular, the link between
time and distance scales is dominated by the evolution of defects and
dislocations in structural materials. It is at this scale that cooperation between
the different disciplines of chemistry, physics, and engineering needs to
search for the simplest possible links between chemical composition and
evolution of structural morphology during deformation. The author has
suggested some simple approaches to this problem in Section 9.3.3, and it is
here where the smaller application-oriented laboratories may make the greatest
contribution.

The macro scale is superficially the strongest area for structural materials,
due to extensive development motivated by commercial use in engineering
design and problem solving. The coupling physics at the lower scales into
macro simulations such as finite-element methods may be the greatest practical
limiting factor for structural modelling.

Overall, the main suggestion of this article is to stand back from the
massive supercomputer simulation approaches and think about properties of
structural materials at a much more basic level. Perhaps the key question
should be ‘how can I calculate the property the engineer needs using the
minimum number of parameters and smallest possible simulations?’

This work was carried out as part of the Weapons and Platform Effectors
Domain of the MoD Research Programme.
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