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Preface

Hintikka’s theory of interrogative models of inquiry is the starting point of this
volume. Interrogative models of inquiry (IMI, for short) present an interesting take
on various epistemic issues including Socratic elenchus, learning theory, abductive
reasoning, social choice theory, and nonclassical and modal logics. This relates
IMI very closely to a variety of different fields, and this relation is perfectly well
displayed by the articles in this volume.

It is important to note that Hintikka’s contribution to logic and formal epistemo-
logy is usually clouded by his work on other fields, such as epistemic logic and game
semantics. Perhaps for this reason, IMI does not seem to be very popular among
researchers. One of the goals of producing this volume is to change this tendency
by showing that IMI has influence on many different subfields in logic and formal
philosophy.

This volume also demonstrates it very clearly that IMI in itself is a very
rich theory. Helping in understanding its (current) depth and breadth, the volume
includes both technical and logical articles as well as conceptual and analytical
work.

In short, there are three main goals behind producing this volume: (i) showing
that IMI heavily relates to a wide variety of fields in logic and philosophy, (ii)
underlying the centrality of IMI in Hintikkan thought, and (iii) showing the breadth
and depth of the field. I leave it to the reader to judge how much we managed to
achieve our goals.

*

The volume opens with Hakli’s article on inquiry and justification. Hakli’s
account argues as to how Hintikkan interrogative theory can unite inquiry and
justification. The second paper, by Genot and Gulz, carries the debate over to
learning theory. At first glance, the connection between the learning theory and IMI
is clear, yet Genot and Gulz develop the connection further by resorting to various
game theoretical elements. Then Angere, Olsson, and Genot take an interesting
step and introduce formal epistemological and social choice theoretical issues to
the discussion. They focus on jury sizes and use Bayesian methods to present
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vi Preface

an analytical solution. In my own article, I suggest that Hintikkan inquiry and
Lakatosian method of proofs and refutations share some common themes, which
interestingly include both of them being inconsistency-friendly. This paper relates
IMI to nonclassical logic. Van Bendegem’s article considers mathematical practice
and its connection to problem solving which can be seen as a Hintikkan inquiry.
Antonelli presents a formal application of defeasible logic to IMI and suggests two
different approaches. Urbański and Wiśniewski’s article reminds us of the Socratic
roots of Hintikkan epistemology and in particular of IMI and presents an elaborated
formal structure. Hamami’s article relates IMI to a quite broad field of dynamic
epistemic logic and presents an axiomatic system for dynamic logic of interrogative
inquiry. Naibo, Petrolo, and Seiller discuss an important epicenter of Hintikkan
epistemology and introduce a novel philosophical perspective from a computational
angle.

*

The volume originated within the framework of a research project which was
funded by the French National Research Agency (ANR, Agence Nationale de
la Recherche). The project was conducted at IHPST (Institut d’histoire et de
philosophie des sciences et des techniques) which is a research institute affiliated
with CNRS and the University of Paris 1 Panthéon – Sorbonne. During its two-
year lifespan, I was employed at the project for one year in 2012–2013. The
project produced two international workshops and conferences, numerous monthly
seminars, research visits, conference participations, and a variety of research
articles. Once the project came to an end, there already has been established an
international network of researchers who were heavily influenced by Hintikka’s
philosophy and willing to share their expertise. This volume can be considered as
an output of this network.

For this project and the volume, I am grateful to many people. Gabriel Sandu,
who first developed the idea behind this project, was helpful in every stage of the
project; hosted me and Yacin in Helsinki, and even organized a lunch for us with
Hintikka himself. My colleagues Francesca Poggiolesi, Yacin Hamami, and Henri
Galinon were always there when I needed some help and assistance. I am also more
than thankful to our anonymous reviewers who helped us immensely with their
feedback and guidance.

My deepest special gratitude is for Marco Panza, the director of the project, who
encouraged me immensely for producing this volume. The idea of making this book
belongs to him. Without him, this volume would not have existed.

*

Finally, I hope that this volume will serve as a bridge between Hintikkan theory
of interrogative inquiry and the researchers working on similar fields and show that
there is still a lot left to be worked on.

Bath, UK Can Başkent
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Inquiry and Justification

Raul Hakli

Abstract Traditionally, inquiry and justification have been treated as two distinct
phenomena that are largely independent of each other. Seeing both as interrogative
processes can help to see how they are connected. Inquiry is seen as such in
Hintikka’s model of interrogative inquiry, and justification is seen as such in
the dialectical account of justification. It is argued that processes of inquiry and
justification are not independent of each other: On the one hand, successfully
carrying out processes of inquiry may require engaging in processes of justification.
On the other hand, processes of justification may require engaging in processes of
inquiry. Production of scientific knowledge requires both types of processes.

Keywords Interrogative inquiry • Epistemic justification • Dialectical justifica-
tion • Scientific knowledge

1 Introduction

This essay will study the connections between scientific inquiry and epistemic
justification. Traditionally, justification and inquiry have been seen as two quite
distinct phenomena that are largely independent of each other. Justification has
been a central concern of analytical epistemology, in particular, for the analysis of
knowledge which is usually taken to require justification. Inquiry, on the other hand,
is often associated with discovery of knowledge and has been more of a concern of
philosophy of science. To an extent, these two lines of research have been isolated
from each other.

In philosophy of science there is a traditional distinction between contexts of
discovery and contexts of justification, which not only indicates that inquiry and
justification are separated from each other but also suggests that they should be
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2 R. Hakli

kept so separated. It has been thought that coming up with theories or hypotheses is
different from assessing the extent to which theories or hypotheses are supported by
available evidence.

The focus of philosophy of science has been on activities that concern production
of scientific knowledge whereas the focus of epistemology has been on analysis of
knowledge and on evaluation of alleged instances of existing knowledge. Activities
of knowledge production include steps of discovery, reasoning, and accepting
hypotheses. Justification plays a role in them, but its focus is on evaluating
steps of reasoning and assessing evidential relations between data and hypotheses.
In mainstream epistemology, justification has been important because traditional
analyses of knowledge have taken justification as a necessary criterion that beliefs
must satisfy in order to count as knowledge. Attempts to spell out exactly when
somebody’s beliefs are justified has led to an abundance of theories of justification
(see, e.g., Lammenranta 2004).

There have been attempts to shift focus of epistemology from justification of
beliefs to questions of inquiry. Jaakko Hintikka (2007) criticises epistemologists’
preoccupation with justification and claims that studying how to acquire new
knowledge is more crucial for epistemology than studying how to secure old
knowledge. Provocatively, he suggests an “epistemology without knowledge and
belief”, in which traditional studies focussed on analysis of concepts of belief and
knowledge have been replaced by a logical study of information acquisition.

Related criticisms can be found in the writings of philosophers who have been
influenced by pragmatism such as Isaac Levi (2012) and Christopher Hookway
(2006). Levi (2012, 1) notes in an approval tone that pragmatists like Peirce and
Dewey were not interested in justification of beliefs but justification of changes
of beliefs, that is, justification of steps of inquiry. According to Hookway (2006),
epistemology is committed to what he calls a “doxastic paradigm”, in which the
focus is on beliefs and their evaluation. The epistemologists’ primary interest is
in the state of belief of an agent, not in the process of reasoning that leads to
it. He argues for “epistemology as theory of inquiry”, in which the target for
epistemic evaluation lies, not in the justificatory status of our beliefs, but in our
ability to successfully carry out inquiries. Also Bernard Williams (1973) points out
that our main interest with respect to knowledge is in finding sources of reliable
information rather than in examining whether somebody really knows or merely
believes something that we already know, which has been the central concern in
epistemology. The suggestion for epistemology, then, is to replace the viewpoint of
an examiner with that of an inquirer.

While acknowledging the importance of inquiry, this essay suggests that inquiry
need not replace justification in epistemology, but complement it. The aim is to
argue that there are deep interconnections between inquiry and justification, and
neither of them can be fully studied in isolation. Firstly, as Hintikka (2007, 19–20)
noted and as I will try to argue in more detail below, inquiry is important even in the
context of justification. This is so because in order to settle whether one is justified
in one’s belief or judgement, one may sometimes have to acquire new knowledge.
It is not always enough to simply reflect upon one’s evidence or to evaluate the
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reliability of one’s cognitive faculties. Sometimes, and this happens typically in
scientific contexts, one has to come up with new experiments that can be used to
confirm or disconfirm the content of the belief or the judgement.

Secondly, I would like to claim that inquiry is not independent of justification
either. In order to engage in a successful process of inquiry, one needs to consider
which assumptions and methodological principles are reasonable. In addition, in the
course of inquiry there are several choice points that require assessment of different
sources of information in order to select which of them to trust. These are questions
that concern epistemic justification.

In order to defend these general claims, I will study two accounts or models
of inquiry and justification, respectively. The model of inquiry I will focus on is
Hintikka’s Interrogative Model of Inquiry (IMI), which sees inquiry as a process of
asking questions and drawing logical inferences from the answers received. I will
give a brief description of the model in Sect. 2. In several places, Hintikka (2007,
e.g., p. 3, 8, 22, 224) says that both inquiry and justification are accomplished by the
same interrogative process. However, he does not state explicitly what is the nature
of justification that the process is supposed to accomplish. What does the process of
interrogative inquiry produce that justifies its results? There are several possibilities
here because the nature of justification can be understood in several ways.

I will review some candidates in Sect. 3. My main thesis will be that the best
way to understand Hintikka’s claim is by taking justification to consist of being in
a position to answer critical challenges. Such a view has been called the dialectical
account of justification and it has been defended by several philosophers including
David Annis (1978) and Michael Williams (2001). Even though this model of
justification has not been developed to the same level of technical detail as the IMI,
it could be called the Interrogative Model of Justification (IMJ). This is because
according to the dialectical approach, justification, too, involves a process of asking
questions and answering them. Seeing both inquiry and justification as inher-
ently social processes that involve question-answering dialogues not only reveals
analogies between them but it also shows that they are deeply interconnected. In
particular, it shows how processes of justification may create a need for further
inquiry. In Sect. 4, I will argue that processes of inquiry also create a need to engage
in processes of justification. I will conclude by looking at the consequences of the
presented views for the concept of scientific knowledge in Sect. 5.

2 Interrogative Model of Inquiry

The main idea in Hintikka’s Interrogative Model of Inquiry is to reconstruct
processes of knowledge acquisition as steps of logical reasoning extended with
interrogative steps for obtaining new information. Such reasoning can be repre-
sented using tableau (or sequent calculus) systems in which the conclusion to be
proved is on the right hand side and the initial assumptions on the left hand side.
Using the rules of the system, complex formulas are broken into simpler parts, which
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may involve branching. The goal is to show that the conclusion follows by closing
all the branches in the tableau: If a formula and its negation appear in the same
branch, or if the same formula appears both on the left hand side and the right hand
side, the branch closes.

Hintikka extends the basic model by interrogative steps that are used for bringing
in new information by asking an oracle a question. A question can be asked once its
presupposition has been established. For instance, if in a branch we have formula
A_B on the left hand side, we may consult an oracle and ask whether A is the case or
B is the case. We then add the oracle’s answer to the left hand side and continue the
process. In the basic version of IMI, there is only one oracle and all of its answers
are assumed to be correct and remain constant.

The basic version can be extended by allowing for uncertain answers or several
oracles. Such extensions create the possibility of inconsistent answers. In cases
of inconsistency, the inquirer must select which answers to accept. The answers
that are not accepted at the current stage will still be represented in the tableaux,
but they will be bracketed which means they will not be taken into account when
applying rules, unless they are later unbracketed. A detailed exposition of the rules
that define the deductive, interrogative and bracketing moves of the Interrogative
Model is presented by Hintikka et al. (1999).

In addition to the above definitory rules, there are also strategic rules that tell
the inquirer how to use the definitory rules in an effective way. The content of the
strategic rules is left out of the model in order to keep it general: Different strategic
rules can be used in different types of inquiries. In particular, which answers to
bracket in order to keep the inquiry on secure grounds is an important strategic
question, a question involving epistemic justification (Hintikka 2007, 20–21).

According to Hintikka (2007, 19), the various oracles can represent different
sources of information, like nature (in the sense of providing results to experiments),
human witnesses, research databases, the inquirer’s own memory, or tacit knowl-
edge. The reliability of a source can then be assessed by comparing the source’s
answers to the previous answers from the same source and the knowledge obtained
from the other sources (Hintikka 2007, 214). Emmanuel Genot (2009) presents a
bookkeeping method for keeping track of the answers given by different sources of
information.

3 How Inquiry Produces Justification

Let us now consider how we should understand the nature of justification in light
of Hintikka’s idea that inquiry not only produces scientific discoveries, but also
justification for these discoveries. The variety of existing theories of justification
gives many possible options to select from. For instance, according to reliabilist
approaches, one’s beliefs are justified just in case they are produced by reliable
processes. One might claim that processes of inquiry generally produce reliable
results: Inquiry is a process that systematically eliminates epistemic alternatives, or
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possible worlds, in light of obtained information, and the remaining alternatives are
then the ones that are not ruled out, so we are justified in thinking that the actual
world must be among them.

However, this may not be the right way to think of justification at the level of
generality of the interrogative model of inquiry. This is because reliability crucially
depends on the strategic rules that we use during the inquiry. In particular, it
depends on our theoretical assumptions and our policies to rely on certain sources
of information. If the reliability of the process depends crucially on their reliability,
then the process itself cannot guarantee reliability. It does not guarantee that the
actual world is not among the worlds eliminated. (This is not to say that reliability
cannot play an important role in comparing different methods of inquiry in which
the strategic rules are fixed.)

I suggest instead that the general capacity of the process of interrogative inquiry
to deliver justification lies in its capacity to provide reasons for the conclusions
acquired. Even if such inquiry cannot guarantee reliability it can guarantee that
there are reasons for the way the elimination was carried out. Assuming that
the process of inquiry can be reconstructed by using the IMI, these reasons are,
furthermore, represented in an explicit and communicable form. The interrogative
model provides the inquirer immediate reasons for an accepted proposition in the
form of the premisses from which the conclusion was derived or of information
concerning the sources (together with the strategic judgement that these sources
can be trusted). And if these reasons are not enough to convince someone who
challenges the accepted proposition, one can trace the reasoning all the way back to
the initial assumptions.

But there are still several theories of justification that take the existence of
reasons as a necessary ingredient of justification, in particular, foundationalism,
coherentism, and infinitism. Which one should we choose if we want to integrate
justification and inquiry in the way that Hintikka seems to suggest?

According to foundationalism, an agent’s belief is justified if and only if either
the belief is a so-called basic belief (these are taken to be “given”, “self-justified”
or something similar) or the agent has other justified beliefs that serve as reasons
for the belief. This model of justification would fit well with the IMI only with the
additional assumption that the premisses from which the inquiry starts are basic
beliefs. This is a substantial assumption, however, since the choice of premisses is a
strategic choice left open by the model.

According to coherentism, an agent’s belief is justified if and only if it is
a part of a coherent network of beliefs which mutually support one another.
While the process of inquiry certainly provides support from the premisses to the
conclusions, the reverse direction is not guaranteed. In IMI, the direction of support
follows the direction of reasoning which is from premisses to conclusions, as in
foundationalism. Thus, inquiry does not seem to produce justified conclusions in
the sense required by coherentists.

Finally, according to infinitism, a belief may be justified by an infinite chain of
reasons, but this idea is very difficult to reconcile with the IMI because the model
does not allow for reaching conclusions by infinite chains of reasoning. It thus seems
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that none of these theories fit very well with Hintikka’s view that inquiry produces
justification. Let us turn to an alternative theory that seems better suited for the
purpose.

According to the dialectical account, in order for an agent’s acceptance of a
proposition to be justified, the agent must be able to respond to other agents’ appro-
priate critical questions and challenges by providing reasons for the judgement.
This is in stark contrast to standard individualistic theories like evidentialism and
reliabilism that take justification to be a function of agent’s evidence or of the reli-
ability of the agent’s cognitive processes. Similarly, foundationalism, coherentism
and infinitism are individualistic theories because they only consider the agent’s
internal mental state. In the dialectical approach, the criteria for justification depend
not only on the agent’s internal states and her relation to external environment but
on the social relationships between the agent and other agents, more specifically, on
an interrogative process in which the agent answers questions posed by others. The
agent not only needs to have reasons for her view, she must also be able to articulate
those reasons and be prepared to defend them in response to criticism: Justification
requires that one is in a position to justify one’s views to others.

How far an agent has to go in providing reasons depends on the social context:
Once the agent has given reasons for her view the challenger may ask for further
reasons to accept these reasons. This may continue until the process reaches such
beliefs that have a default justification. Such beliefs can be challenged further too,
but only in so far as the challenges themselves are backed up by positive reasons
to doubt the beliefs with default justification (Williams 2001). Which beliefs enjoy
the default status and which rules govern appropriateness of challenges depend on
the epistemic context in which the dialogue takes place. In science, the context
is provided by the discipline: Certain disciplines (or research paradigms to use a
Kuhnian term) are committed to certain methods and principles that are usually
taken for granted when doing research. A researcher working within a discipline
and presenting her results is assumed to be able to defend her specific assumptions
and the ways she has conducted her experiments but she need not normally be
prepared to defend the general assumptions that are shared in the community. These
are only to be doubted if there is specific reason, for instance, in cases of puzzles
and anomalies that may eventually reveal the inadequacy of the shared assumptions
of the discipline. When accumulated, such problems may lead to the assumptions
being revised or abandoned in favour of some other assumptions.

Note the parallelism with the Interrogative Model of Inquiry: There are definitory
rules saying that if one accepts something, others are entitled to challenge it by
asking for reasons and one will then have to be able to provide acceptable reasons
or retract the claim, unless the proposition enjoys default status in which case it is the
challenge that needs further support. In addition, there are strategic rules that specify
which propositions enjoy default status and which challenges are appropriate. This
is a very general model of justification that can be applied both in everyday
conversations and in scientific debates in different disciplines. Similarly to the IMI,
it leaves open the strategic rules, which here govern default status and criticism that
one can present against a given view. These depend on the epistemic reason-giving
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practices of the relevant epistemic community. (As in the case of methods, all of
this is consistent with the possibility that different epistemic practices could also be
assessed in terms of their reliability.)

This parallelism is not the reason why this model of justification fits so well
with the IMI, however. The reason is that this model of justification explains what
it is in the interrogative process of inquiry that produces justification. As a result
of the process, the inquirer has, in the form of a tableau or a proof tree, an explicit
representation of the reasons that support the inquirer’s conclusion: The premisses,
the steps of inference, the various sources of information, and hopefully also the
strategic rules guiding the inquiry. This information puts the inquirer in a very good
position to defend her results against possible challenges. When a conclusion is
challenged, the inquirer may give reasons for it by saying that the conclusion follows
by application of such and such a rule from such and such propositions that she also
accepts. Or she may say that the conclusion was as an answer to such and such
a question by such and such an oracle that she, in accordance with her strategy of
inquiry, takes to be a reliable source. These replies may again be challenged in which
case the inquirer may have to review the chain of reasoning further, possibly all the
way back to her initial assumptions. Assuming that she has relied on theoretical
and methodological assumptions generally accepted in her epistemic community
she will be able to provide reasons for her own results and point to the direction of
the external sources in cases in which she has relied on testimony.

Of course, the possibility remains that the critic is not satisfied with some of the
inquirer’s assumptions. The critic can question some of the theoretical assumptions
by pointing out to error possibilities that the inquirer has failed to take into account.
The critic can also question some of the methodological assumptions, which may or
may not be explicitly stated by the inquirer: They may be explicitly formulated
strategic rules but in practice they may be merely habits and conventions that
are tacitly or even unconsciously followed during the process of inquiry. Critical
questioning can bring such implicit research heuristics into light and force them
to be articulated into explicit strategic rules. (Of course, the model itself makes
some assumptions like the use of classical logic. Also the selection of the language
in which the inquiry is carried out is an assumption that could in principle be
questioned.)

A situation in which an assumption is questioned creates a need to acquire new
information, which can be modelled in the Interrogative Model of Inquiry by starting
a new tableau with the questioned premiss as the conclusion to be proved. Since
contested assumptions are rarely redundant, they usually cannot be proved from the
remaining premisses alone without consulting oracles for additional information.
Thus, the need to justify assumptions creates a requirement to come up with new
experiments or sources of evidence. In order to successfully complete the process
of justification, a new process of inquiry must be carried out first.

The part of questioning the inquirer’s assumptions and strategies is not as such
accounted for in the standard Interrogative Model of Inquiry. Even though the model
allows the inquirer to ask the oracle further questions, the structure of the oracle’s
epistemic state is left outside of the model. An interesting extension then would be
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a multi-agent—or a multi-inquirer—version in which the agents sometimes take the
role of an inquirer asking questions and sometimes the role of an oracle answering
questions and justifying their results to other inquirers. This kind of a model
with multiple inquirers with different disciplines with their own assumptions and
strategic rules would provide a model of science as a social activity of epistemically
interdependent inquirers.

4 How Inquiry Needs Justification

As we have seen, inquiry produces justification for its conclusions. Of course, this
may not always be the purpose of inquiry. Sometimes inquiry may be used for
pure discovery in which case the strategies of inquiry are different: The goal is not
to maximise reliability of the results but perhaps their novelty (see Kiikeri 1999).
Still, one purpose of inquiry is to produce scientific knowledge, which conceptually
requires justification. Hence questions of justification are present in inquiry as well:
Justification of the conclusions obtained in inquiry depends on the justificatory
status of the assumptions and the reasoning steps of the inquiry.

Justification of assumptions is a problem, because the requirement to have
secure grounds for knowledge quickly leads to scepticism. We have learned from
Descartes’ method of doubt that very little can be known without making any
assumptions. Science would not get off the ground if we were supposed to prove
the existence of the external world before being able to do empirical inquiry: In
order to study the world, an inquirer must assume there is a world to be studied. A
Cartesian sceptic pointing to the error possibility that scientists have overlooked,
namely that there might not be external world, would not be taken seriously in
science, because scientific justification is not foundationalist in nature. That there
is an external world can be seen as a “hinge proposition” (Wittgenstein 1969) that
is necessary to assume in order to be able to gain knowledge about the world.
The dialectical account of justification provides a more accurate picture of the
structure of justification in science because it contextualises the question of which
assumptions can be taken for granted to the type of the inquiry in question. In certain
contexts, for instance in some fields of research, certain assumptions are collectively
accepted as legitimate in that field. The assumptions are not dogmatically believed
but provisionally accepted. They enjoy the default status of justification in that
field and can be relied on as long as there is no positive reason to doubt them.
In other fields, however, they might need to be scrutinised. Even Cartesian sceptical
hypotheses can receive serious consideration in philosophical studies.

The same kind of contextualism may apply to the justification of steps of inquiry
as well: In different fields, different reasoning methods may apply. For example, in
many empirical fields, there are standard statistical methods for data analysis that
serve as reasons to accept the conclusions drawn by the scientists. These methods
are typically not questioned in these fields but are justified by default. If somebody
asks a question about the methods of data analysis, it suffices to give a reference to
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a standard statistics textbook. However, statisticians, mathematicians, philosophers,
computer scientists and others interested in foundations of statistics may certainly
question the validity of standard statistical methods and develop alternative ones. In
contexts of inquiry focussing on methodology of statistics, the standard methods do
not have the default status because it is precisely their justification that is under
study. If sufficient reason to question the standard methods emerges from these
debates, these reasons may be transferred to discussions in the empirical fields
and legitimise questioning the use of the standard methods there as well, thereby
overriding their default status.

Another salient point in which justification is needed in the context of the
Interrogative Model of Inquiry is in the strategic choice of which oracles to trust:
Whose answers to accept and whose to bracket? One possible answer is to consider
the track record of the oracles’ previous answers (Hintikka et al. 1999): In order
to decide whether an oracle’s answer should be accepted we should see how well
its previous answers have been in line with what is known from other sources.
However, there are problems with this suggestion. One obvious problem is that we
may not have a complete track record of a particular oracle available. And even if
we had one, it only tells about past history, not about the current case. Accepting
the answer given by the oracle based on its previous successes brings in the usual
difficulties involved in inductive inference. Moreover, there is a problem similar
to the generality problem often discussed in the context of reliabilism that some
instances of the oracle’s previous answers may not be relevant for estimating its
reliability in this particular case. Consider the case of scientific experts, for instance;
the oracle may be reliable on certain subject matters but not on others.

In the context of IMI, there is a more fundamental problem of using track record
data to estimate the reliability of a source. This concerns the feature of the model that
all information that is not assumed prior to the process, comes from oracles: Thus
there is no independent source of information that could be used to verify answers
obtained from oracles, only other answers obtained from oracles. Therefore, a track
record can only be made relative to other answers but there is no principled way of
saying which answer should be taken as the correct answer against which to compare
the other. If an answer by an oracle differs from its previous answers, how do we
know whether the oracle has forgotten or learned, that is, whether it is now making
an error or whether it has gained more knowledge and now gives more accurate
information? Or if an answer of one oracle differs from an answer given by another
oracle, how do we know which one to trust? We cannot say that we should trust the
one that we have found to be more reliable because their reliability is exactly what
we are trying to find out.

Of course, in case of conflicts, we may always ask yet another oracle. However,
there is no guarantee that we will be better off by just adding new oracles. Even
though methods that rely on finding out a majority opinion may sometimes help,
they make substantial assumptions about the reliability of the sources. For instance,
according to the famous Condorcet Jury Theorem, if the sources are independent
of each other and each source is more likely to give a correct answer rather than
an incorrect one, then the answer of the majority will approach certainty when new



10 R. Hakli

sources are added. However, if the sources are generally unreliable then the majority
will most certainly give us false information.

It seems that we are running in circles: In order to investigate the reliability of
sources we need to have estimates of their reliability prior to the investigation. Of
course, we typically do have prior estimates and we do prioritise certain sources
over others: A naturalist may prioritise nature, a rationalist may prioritise reason
or intuition, a phenomenologist experience, a theist holy scriptures, and so on. The
point is that the model does not offer any guidance as to how these estimates are
arrived at: The evaluation of sources is left as a strategic choice for the inquirer.

However, there is another way of assessing the oracles’ answers, and that is
justification understood in the dialectical sense discussed above. Upon receiving
an answer from a particular source, we may ask the source for reasons for the
answer. This does not resolve the theoretical problem that information only comes
from oracles but it at least provides some principled ways of assessing sources. As
Miranda Fricker (2010) has noted, the ability to support claims by offering reasons
is a crucially important indicator property that helps the inquirer to distinguish good
informants. In the case of nature we may perhaps not be able to ask for reasons
directly but we may at least make more experiments to test the answer. In the case
of human testifiers, we can ask how they know the answer or what makes them think
it is correct. In the case of research reports and other literary sources, we expect to
find descriptions of the experiments and other evidence supporting their results. In
any case, if we want our inquiry to produce justified conclusions we should make
sure that the sources we rely on are justified in theirs. The best way to find out is to
interrogate them for the reasons they have for accepting the conclusions. Eventually,
our aim is to find out whether we can integrate their results with our own inquiry,
whether we can commit to the assumptions and methodological principles that have
guided their research. If we can, then we may decide to accept their answers and
rely on them in our own investigation. But if we doubt their conclusions, premisses,
or methodological principles, and they cannot provide satisfactory reasons for them,
then we may wish to bracket their answers and consult other sources.

Of course, we do not always go very far in asking for reasons, but the integration
remains an ideal, especially in cases of collaborative research in which group
members try to achieve knowledge together. Sometimes we are not even in the
position to evaluate or understand the reasons that others have for their conclusions,
and we can only rely on their expertise. This creates epistemic dependencies
in which the reasons supporting one’s conclusions are distributed over several
sources (see Hardwig 1985). This dependence is illustrated by viewing inquiry and
justification as interrogative processes.

Justification therefore enters inquiry on many levels. In fact, it can be suggested
that questions of justification are inherently present in every stage of scientific
practices, from choice of methods and basic assumptions to selection of questions
to study, instruments to use, experiments to make, datasets to analyse, and so on.
The justificatory principles that guide researchers in all these decisions may not
come from highly general and idealised theories of rationality and justification
studied in traditional epistemology. Rather they concern whether the decisions
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can be convincingly argued for to other researchers in the field sharing similar
background assumptions. The aim of researchers is not to demonstrate infallible
results following from absolutely certain first principles. Rather it is to produce
well-argued but defeasible conclusions from reasonable background assumptions
that are considered fruitful and maybe shared by other researchers in the discipline
but only provisionally accepted.

The combination of interrogative model of inquiry and the dialectical model
of justification illustrates the close relation between inquiry and justification but
it still leaves room for seeing them as distinct activities. Even though questions
of justification are present in every step of inquiry, inquiry can be seen as a
process of searching for conclusions which combines forward steps of reasoning and
interrogation and backward steps of revising strategies, bracketing and unbracketing
previous steps represented in the tableau. Once the inquirers are satisfied with
the current stage of the tableau, they will be able to assert their conclusions by
constructing an argumentative line in which the various bracketed sidesteps are
ignored. Typically this will then be used as the basic structure for a research talk or a
written publication that is delivered to the scientific community in an argumentative
form that exhibits the conclusions as justified in the form required by the dialectical
principles: It presents the conclusions as backed up by reasons derived from
principles and methods assumed to enjoy a default status of justification together
with results obtained from oracles, that is, experiments and previous research,
which are documented in accordance with generally accepted principles. A critical
reader should then be able to find replies to challenges that may rise and sources
for previous research that the study builds on. Should the critic find the reported
evidence wanting, she may present her criticisms, but again in an argumentative
form that provides reasons to doubt the alleged results.

This is why scepticism has no bite in science. The claims made by scientists are
not meant to be absolute but conditional in nature: These are the results arrived
at using these methods given these assumptions. Neither the Pyrrhonian sceptic
who continues to ask for reasons beyond the generally accepted assumptions nor
a Cartesian sceptic who says that there is a logical possibility that the assumptions
may be false will be able to raise a positive reason to doubt the assumptions. Since
they are not prepared to make any commitments themselves, they will not be able
to argue that an alternative hypotheses might be more plausible than the ones made
by the inquirers. Only other inquirers will be in a position to do that. If they are
successful, revisions will be in place. The self-correcting nature of science follows
from the interdependence between inquiry and justification: Inquiry aims to start
from reasonable, default-justified premisses and to proceed by reasonable steps
using acceptable principles in order to produce justified conclusions that survive
critical scrutiny. However, sometimes the conclusions turn out to be problematic, in
which case we may need to go back and revise or bracket some of our assumptions
or the answers we have received from oracles. Justification in scientific context does
not depend on static support structures between premisses and conclusions. Instead,
science is a continuous self-correcting enterprise consisting of social processes of
inquiry and justification continuously interacting and influencing each other.
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5 Conclusions: Producing Scientific Knowledge

We have seen that, on the one hand, inquiry requires justification because its ultimate
aim is to produce scientific knowledge, because scientific knowledge requires
justification, and because the justification of the produced knowledge depends on
the justification of its premisses and its methods. On the other hand, justification
requires inquiry because justification is a product of inquiry. Moreover, processes
of justifying one’s conclusions may also create a need for inquiry because when
an agent is trying to defend her views dialectically, it may turn out that existing
evidence does not support them to a sufficient degree. Hence, more evidence is
needed to settle the issue, which thus suggests new experiments and avenues of
further inquiry, eventually leading either to finding stronger evidence for one’s
results or a revision of one’s starting points and improvement of the theories.

Given the dialectical approach to epistemic justification and Hintikka’s model
of inquiry, both justification and inquiry can be seen as social activities in which
agents dialectically pose questions and give answers to them. The picture that
emerges displays science as a collaborative enterprise in which scientific knowledge
is produced. Individual agents sometimes take the role of an inquirer in pursuit of
new knowledge asking for questions and making challenges and sometimes the role
of an oracle answering questions and justifying their results to other inquirers who
are asking questions and making challenges. Various special sciences differ in their
methods and practices, but it can be argued that they all share a common structure
consisting of steps of reasoning and inquiry together with argumentative principles
governing epistemic justification and knowledge production. The combination
of the interrogative model of inquiry and the dialectical model of justification
suggested here aims to model that shared structure. Anything more specific than
that may demand detailed empirical study of actual scientific practices in specific
disciplines if the target is a descriptive model, or substantial methodological
recommendations if a prescriptive model is sought for.

This picture also illustrates the nature of scientific knowledge: It depends on
theoretical and methodological assumptions which may sometimes have to be
corrected in order to meet critical challenges. Dependence on assumptions does
not lead to scepticism, however. We may still have knowledge, it is just that our
knowledge is conditional in form. We may know that from these premisses and
these methodological assumptions these conclusions follow. This is the form of
scientific knowledge, and at least in principle, in the ideal case in which all the
assumptions made explicit, it can be certain. It may turn out that one of the premisses
or assumptions was not justified, or even that it was false. Still the conditional
claim was and remains a piece of scientific knowledge. It is just not very interesting
piece of knowledge once its antecedent turned out to be false, so we need to make
corrections to our assumptions and inquire further.
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The Interrogative Model of Inquiry and Inquiry
Learning

Emmanuel J. Genot and Agneta Gulz

Abstract Hakkarainen and Sintonen (Sci Educ 11(1):25–43, 2002) praise the
descriptive adequacy of Hintikka’s Interrogative Model of Inquiry (IMI) to describe
children’s practices in an inquiry-based learning context. They further propose
to use the IMI as a starting point for developing new pedagogical methods and
designing new didactic tools. We assess this proposal in the light of the formal
results that in the IMI characterize interrogative learning strategies. We find that
these results actually reveal a deep methodological issue for inquiry-based learning,
namely that educators cannot guarantee that learners will successfully acquire a
content, without limiting learner’s autonomy, and that a trade-off between success
and autonomy is unavoidable. As a by-product of our argument, we obtain a logical
characterization of serendipity.

Keywords Interrogative model of inquiry • Inquiry learning • Strategy theorem •
Logic of discovery • Sherlock Holmes

1 Introduction

Epistemological models distinguish contexts of discovery from contexts of justi-
fication, and usually proceed from the assumption that inferences carried in the
former cannot be rationalized. This is often expressed by saying that there can be
no logic of discovery, only a logic of justification—where ‘logic’ is intended in a
broad sense, including e.g. probability theory. However, some models of inquiry
have explicitly tackled discovery of new facts, as part of problem-solving strategies.
In particular, Hintikka’s Interrogative Model of Inquiry (IMI) presents a formal
approach to discovery, and describes inquiry as a two-player game where one player,
Inquirer, asks ‘small’ instrumental questions to the other player, Nature, in order to
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answer a ‘big’ research question. Within this framework, it may be shown that,
for a wide variety of contexts, question-based discovery is grounded in deduction.
Hintikka interprets the IMI as a vindication Sherlock Holmes’ method, in which
deduction guides interrogation.

For the above reasons, Hakkarainen and Sintonen (2002) argue that Hintikka’s
IMI offers an epistemological basis for inquiry-based learning. Proponents of
inquiry-based learning consider that learners’ progresses should not be assessed
solely by evaluating whether they have acquired certain contents. Rather, evaluation
should also take into account how well learners have developed analytical and
experimental strategies to acquire new knowledge. The core assumption shared
by proponents of inquiry-based learning is that children can actually develop
autonomously highly sophisticated learning strategies, that mimic scientific method.
If they are correct, designing learning environments that encourage children to
develop such strategies would be more effective to prepare them to engage as adults
in scientific inquiry, or at the very least in critical thinking, than e.g. relying on rote
learning and normalized testing.

Hakkarainen and Sintonen present an empirical study that supports the descrip-
tive adequacy of the IMI to inquiry contexts, and vindicates the core assumption of
inquiry-based learning. Specifically, they claim that what the IMI characterizes as
strategic reasoning actually occurs in an inquiry-based learning context involving
elementary school children. Based on their observations, they suggest to mine the
IMI for methodological principles, in order to develop new pedagogical practices
and design didactic tools. However, and by their own admission, Hakkarainen
and Sintonen rely on the conceptual apparatus of the IMI alone, and disregard
the formal results which in the IMI characterize knowledge-seeking strategies.
Whether this formal characterization actually supports Hakkarainen and Sintonen’s
methodological proposal thus remains an open question.

This paper addresses this question, and in so doing uncovers a deep method-
ological difficulty for inquiry-based learning. One the one hand, the study carried
by Hakkarainen and Sintonen clearly shows that children engaged in cognitive
processes that undoubtedly displayed the characteristics of discovery processes that
the IMI describes formally as strategic and guided by deduction. On the other hand,
in the light of the formal results of the IMI, these cognitive processes can also be
shown to be such that they cannot be guaranteed to yield successful acquisition of
a determined content. Moreover, the same formal results show that if inquiry-based
learning is ‘scaffolded’ so as to guarantee successful learning of an intended content,
the learner’s autonomy is in fact virtually destroyed. The challenge for inquiry-based
learning methodology, and the design of inquiry learning environments, is that a
trade-off between success and autonomy is unavoidable.

We first introduce the formal model of the IMI (Sect. 2), explain how it
relates strategic questioning to deduction (Sect. 3), and then turn to abduction
in information-seeking strategies, and its relation to deduction (Sect. 4). Each of
these section illustrates the model with one of Hintikka’s favorite Sherlock Holmes
example (the Case of Silver Blaze). Once the model in place, we outline the study
presented by Hakkarainen and Sintonen and discuss whether its conclusions are
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actually supported by the IMI (Sect. 5). Finally, we conclude on the Socratic method,
and how it illustrates the difficulty to promote learners’ autonomy through question-
driven learning.

2 The Game of Inquiry

2.1 Learning and Information-Seeking as Questioning

Early formulations of the IMI date back to the 1980s but we will consider the model
(for this exposition) as a generalization of algorithmic learning-theoretic models
that appeared in the 1990s, esp. the ‘first-order paradigm’ of Martin and Osherson
(1998). Schematically, the latter model characterizes a problem as a pair hT;Qi,
where T is a background theory expressed in some (first-order) language L1; and
Q is a (principal) question—usually, but not necessarily, a binary question—that
partitions possible states of Nature compatible with T , denoted hereafter S.T/.
Nature chooses a state s 2 S.T/ and a data stream (an infinite sequence of basic
sentences of L) that in the limit fully characterizes the features of s expressible in
L; then Nature reveals one datum at a time. A learning strategy is a function taking
as arguments finite segments of the data stream, and returning either an answer in Q
or ‘?’ (suspension of judgment).

The model of Hintikka et al. (2002) generalizes the above by dropping some
idealizing assumptions. Nature, instead of a complete data stream, chooses a set
As of available answers in s, that can be expressed by sentences in L of arbitrary
complexity (and may then be analyzed by ‘analytical’ moves). As determines which
properties and entities are resp. observable and identifiable. The data stream is built
by Inquirer, using instrumental questions to supplement the information T gives her
about s, and may therefore remain incomplete.2 An interrogative learning strategy
takes as argument a finite sequence of data, and outputs a (possibly empty) subset
of ‘small’ questions (aimed at generating the extension of the data sequence) along
with the current conjectured answer to Q (or suspension of judgment). Finally,
Q may be a why- or how-question about some q 2 L, in which case Inquirer
assumes that q holds, and aims at finding conditions which, together with T , entail

1A first-order language L can express statements about individuals, their properties and relations;
combinations of such statements (with Boolean operators not, and, or, and if. . . then. . . ); and their
existential and universal generalizations (with quantifiers there exists . . . and for all. . . respectively).
A basic sentence of L contains only individual names and relations symbols, i.e. no Boolean
operator other than (possibly) an initial negation, and no quantifier. In what follows, we implicitly
restrict the meaning of ‘deduction’ to ‘first-order deduction’—i.e. relations between premises and
conclusions couched in some first-order language.
2Introducing As weakens the assumptions that: (a) data streams are always complete in the limit;
(b) all predicates (names) of L denote observable qualities (identifiable objects); and: (c) a datum
needs no analysis. The IMI also drops the idealization that: (d) Nature always chooses s in S.T/,
and: (e) all answers in As are true in s. Cases where (d–e) hold define the special case of Pure
Discovery (cf. Sect. 3.1).
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q. The answer to such a why- or how-question ‘compacts’ the whole line of inquiry
whereby q is shown to be entailed by T together with ad explanandum conditions
(Hintikka and Halonen 1997; Hintikka 2007, ch. 7) (also, Sect. 4.2).

The success of Inquirer’s strategy depends in part on the set of questions she is
ready to ask at a given point (which evolves throughout inquiry), and in part on As.
Hintikka calls range of attention the set of yes-no questions Inquirer considers at
any given time (Hintikka 1986), but the role of this set of questions is left implicit
in the results presented by Hintikka et al. (2002). We will make it explicit, since it is
critical to understand how the IMI bears upon learning practices of empirical agents.

Together with T , the answers to instrumental questions induce an information bi-
partition over S.T/: the first cell comprises scenarios compatible with the answers,
and the other, those which are not. At the outset, the first cell is identical with S.T/:
all possible states compatible with T are indiscernible from each other, and s is
assumed to be one of them. The partition is refined when new answers are accepted.
Answers gradually ‘hack off’ scenarios incompatible with them. The assumptions
that T and As are truthful may be revised in the course of inquiry, thereby
reopening possibilities. Instrumental questions may also trigger ‘sub-inquiries’ (e.g.
why- and how-questions, or questions with statistical answers requiring parameters
estimation) about some problem hT 0;Q0i—where T 0 extends T with some of the
answers already obtained from As when investigating hT;Qi—possibly suspending
investigations of hT;Qi proper.

An inquiry about hT;Qi terminates when Inquirer is able to tell whether the first
cell of the partition (compatible with the answers and T) is identical with some
qi 2 Q, i.e. suffices to identify s ‘enough’ to answer Q. This may sometimes
be impossible (e.g. for inductive problems) but one can then strengthen T with
additional assumptions (including e.g. extrapolations for unobserved values). It is
also sometimes possible to devise methods that rather than waiting for an answer
to Q, emit an initial conjecture and adopt a policy for changing it later in face of
new data.3 The model handles retraction of answers by ‘bracketing’ and excluding
them from further information processing, which may re-open Q by preventing
identification of s. Bracketing can also be extended to handle revisions of T (Genot
2009). Reasoning probabilistically from answers known to be uncertain is discussed
in Hintikka (1987). Bracketing and probabilistic reasoning will be discussed in more
details in Sect. 3.1.

3An example is the halting problem, in which one must determine whether the current run of a
program p, that may execute either finitely many instructions, or loop an instruction indefinitely,
is finite or infinite. An ‘impatient’ method that conjectures that p is currently at the beginning of
an infinite run, and repeats this conjecture indefinitely unless p stops (in which case the method
changes its assessment) solves the problem in the above sense on every possible run. Kelly (2004)
discusses in details the relation between the halting problem and empirical inductive problems.
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2.2 The Sherlock Holmes Sense of “Deduction”

An example from Sherlock Holmes inquiry in The Case of Silver Blaze ideally
illustrates the type of reasoning the IMI captures. In this short story, Holmes assists
Inspector Gregory in the investigation of the theft of Silver Blaze (a race horse)
and the murder of his trainer. The principal question is: who stole Silver Blaze
and killed his trainer? During the night of the theft, a stable-boy was drugged
and Silver Blaze’s trainer was killed. Gregory holds a suspect, Fitzroy Simpson,
and has already settled the following (instrumental) questions: Does Simpson have
motive? Did Simpson have an opportunity to commit the theft and the murder? Does
Simpson own a weapon that could have been the murder weapon? and Can Simpson
be placed at the crime scene? All these questions have received a positive answer.
Simpson is indebted from betting on horses. He visited the stables the evening before
the theft, stopped the maid carrying the food, and was eventually driven out by the
stable-boy and a watchdog. He owns a weighted walking stick that could have been
the murder weapon. And finally, a scarf has been found near the victim’s body, that
the stable-boy and the maid recognized as Simpson’s.

Gregory’s questioning strategy is a staple of crime fiction: it’s a by-the-books
strategy, that may be applied to any case of homicide, as it uses questions applicable
to almost every potential suspect, once some descriptions (“the murder weapon”,
“the crime scene”) have been specified for the current investigation. This strategy
keeps questioning simple, as there are no strategic dependencies between questions.
It gives a basis for quasi-probabilistic inferences, as a high ‘yes’ count increases
suspicion (culprits usually have one), and a high ‘no’ decreases it (innocents usually
have one). Although the former count may result from a coincidence, the probability
remains low as long as answers are statistically independent. A conclusion put
forward as a consequence of applying this strategy is acceptable provided that
scenarios where answers would not be independent—i.e. when either the high ‘yes’
or ‘no’ counts have hidden common causes—are ruled out. In such scenarios, the
method is known to be unreliable, as it may conclude to the guilt of a innocent who
has been framed, or to the innocence of a culprit who has carefully premeditated
and executed his plot. But as long as hidden common cause are not suspected, the
hypothesis of Simpson’s guilt is strengthened by Gregory’s reasoning.

Holmes describes the case as one where “[t]he difficulty is to detach the
framework of fact—of absolute undeniable fact—from the embellishments of
theorists and reporters” (Conan Doyle 1986, p. 522). Holmes’ own expectations are
instrumental in his decision to investigate,4 but he does not favor any hypothesis,
even for the sole purpose of testing it first. In particular, although Holmes conceded
that Simpson’s guilt is the ‘natural’ hypothesis, he does not consider it as the
first to be investigated. Instead, he proceeds trying to identify the thief, narrowing

4Holmes confesses that “[he] could not believe it possible that the most remarkable horse in
England could long remain concealed [and] expected to hear that he had been found, and that
his abductor was the murderer” (Conan Doyle 1986, p. 522).
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down the range of suspects without explicitly listing them, attempting instead to
find discriminating properties, using yes-no questions. One of them is whether the
dog kept in the stables has barked at the thief. Holmes does not ask the question
explicitly, but obtains an answer from Gregory in the following dialogue:

“Is there any point to which you would wish to draw my attention?” “To the curious incident
of the dog in the night-time.” “The dog did nothing in the night-time.” “That was the curious
incident,” remarked Sherlock Holmes.” (Conan Doyle 1986, p. 540)

The definite description “the curious incident” can refer to either of two circum-
stances: the watchdog’s barking at the thief, or failing to do so. However, only
one circumstance is compatible with Simpson’s guilt, since the watchdog kept in
the stables is the very dog that the stable-boy set after Simpson in the preceding
evening. Eventually, Holmes sums up the conclusions he drew learning that the dog
had barked against Simpson in the evening, and remained silent during the night:

I had grasped the significance of the silence of the dog, for one true inference invariably
suggests others. The Simpson incident had shown me that a dog was kept in the stables, and
yet, though someone had been in and had fetched out a horse, he had not barked enough to
arouse the two lads in the loft. Obviously the midnight visitor was someone whom the dog
knew well. (Conan Doyle 1986, p. 540)

Holmes’ instrumental question may seem irrelevant to those who do not anticipate
his reasoning, and Holmes’ reputation plays a role in their judgment: the horse’s
owner does not consider the incident significant, but Gregory and Watson do,
knowing that Holmes seldom attends to insignificant facts. Holmes trusts his
assumptions and reports about the facts, and conservatively so: the ‘yes’ count vs.
Simpson could make one doubt that the dog is a good watchdog, but Holmes never
contemplates ‘bracketing’ this assumption. Finally, Holmes’ conclusion reduces
the set of potential suspects by ruling out Simpson without tracking probabilities,
because there is no range of suspects over which distribute them.

3 Deduction in Inquiry

3.1 Pure Discovery

The inquiry game described in Sect. 2.1 is with asymmetric information: Inquirer
does not know whether her assumptions are correct (formally, if s 2 S.T/), nor
which answers are available (in As), and whether those available are reliable.
Nevertheless, as illustrated by Sherlock Holmes’ method in The Case of Silver
Blaze, one can take evidence at face value as long as possible, then follow a line
of deductions, possibly taking educated guesses, rather than considering from the
outset several cases in parallel. Indeed, Holmes usually reconsiders his grounds
for accepting evidence, or relying on background assumptions, only in the face
of contradictory evidence. His method amounts to address (at least initially) any
problem-solving situation as what Hintikka calls a problem of Pure Discovery (PD):
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[Pure discovery] means a type of inquiry in which all answers are known to be true, or at
least can be treated as being true. If so, all we need to do is to find out what the truth is; we
do not have to worry about justifying what we find. (Hintikka 2007, p. 98)

A distinctive feature of the IMI is to take Pure Discovery (hereafter PD) as the
‘default’ mode of inquiry: PD reasoning is maintained as long as it is possible
to do so, uncertain answers are disregarded whenever possible, and attempts are
made to reach conclusions that involve only whatever premises and answers one
can ‘treat as being true’. However, a given context can turn out not to be a PD-
context in a variety of ways, and Inquirer’s strategy must be modified accordingly.
Contradiction may arise between expectations based on deductions from T , and
answers to some questions. Or multiple sources may give incompatible answers to
the same questions. Or some action undertaken on the basis of conclusions arrived
at earlier stages of inquiry, may fail to produce the expected result. Even if none
of the above occurs, it may prove impossible to deduce a unique answer to the
principal question Q from T and answers to instrumental questions. One then may
have to settle for partial answers, weighted by the amount of justification available
for them.

The IMI handles contexts in which conflicts occur mainly through defeasible
reasoning. When premises in T turn out to be unsafe, i.e. when grounds for
justification cannot be ignored anymore, or when answers are deemed uncertain,
they can be ‘bracketed’ (Hintikka et al. 2002; Genot 2009) so that no further
inquiry step depends on them: no consequence is inferred from them, and no
further question is asked using them as presuppositions. ‘Bracketing’ allows for
the circumscription of a ‘safe’ PD subcontext, and for maintaining PD behavior for
as long as possible, and is reversible: premises and answers can be reinstated in the
light of further evidence. Moreover, if one’s current evidence proves insufficient, and
no complete answer can be obtained, the IMI accommodates probabilistic reasoning,
as a ‘logic of justification’ (Hintikka 1987, 1992). Subsequently, the IMI addresses
the issues arising in PD-contexts, before considering any other type of context.

Mismatch between Inquirer’s range of attention and the contextually available
answers (represented by As) is the prime issue of interrogative inquiry. Mismatch
occurs when either Inquirer asks a question which has no answer in As, or fails to
ask a relevant question whose answer is in As—as with Gregory, failing to ‘ask’
about the dog. A related issue is the strategic problem of choosing the next best
‘small’ question given one’s current information (T and past answers). Mismatch
is an issue in PD and non-PD contexts alike, as it encompasses the use of ‘control’
questions which can be answered given one’s current information. How Inquirer
addresses these problems depends on how she manages her range of attention.
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3.2 Building Blocks of Interrogative Strategies

The IMI counts inferential and interrogative moves on a par with each other.
Hintikka calls presupposition of a question the statement that opens a question,
i.e. makes possible to ask it meaningfully. Specifically, disjunctions make whether-
questions possible, by determining a range of alternatives, and existential statements
make possible to ask what-, where-, which- and who-questions. Subsequently, the
fundamental ‘rule’ of the game of inquiry is that a question can be asked as soon as
its presupposition has been inferred (making it available for an interrogative move).
With our extended notion of range of attention, the rule can be rephrased as: a
question enters the Inquirer’s range of attention when its presupposition is obtained
by an inferential move. This ‘rule’ is critical in how the IMI captures the dynamics
of discovery of new facts through ‘small’ questions, as a goal-directed process.

Questioning strategies supervene on one’s current information (T and the
answers accepted so far), which is mined out for open questions. Inquirer is not
assumed to be aware of all the consequences of her current information. For exam-
ple, Inquirer’s information partition may exclude that “neither A nor B” holds in the
state of Nature s, which in turn entails that “either A or B” holds in s. But the question
whether A or B holds will not enter Inquirer’s range of attention before she has
established that T entails that “A or B” holds. Once Inquirer performs the inference,
she may choose to raise the question “Which of A or B holds?”—or a sequence
of yes-no questions about A and B—and use it to refine her information partition.
If no answer is obtained, she may need to reason by cases, or mine T (and past
answers) to find equivalences between A and B on the one hand, and some A0 and B0
on the other, so as to reformulate her questions. The same holds mutatis mutandis
for statements like “There is an x s.t. �.x/”—where �.�/ stands for some description
which qualifies x. Such statements open wh-questions about the x (object, person,
location, etc.) satisfying the description. If one fails to obtain an answer, one
can introduce some ‘arbitrary’ name ˛ standing for the (so far unknown) object
satisfying the description, avoiding any other assumption about ˛ other than �.˛/,
until (possibly) a referent for ˛ is identified. Again, it may be possible to mine T to
obtain a description  .�/ such that T (possibly together with past answers) entails
that “If x is s.t.  .x/, then it is s.t. �.x/” and ask the question about  .�/ instead.

In the case of Silver Blaze, Gregory’s strategy is based on a deduction from his
background knowledge, providing him with a testable reformulation of the question
Is Simpson guilty? The derivation could be obtained from a general truth formulated
as follows: if x is a murderer, then x has a motive, had the opportunity, owns a
murder weapon, and was present at the crime scene. Gregory’s strategy can be
viewed as an application of modus ponens, that assumes the natural hypothesis
(Simpson is the culprit) and derives observable consequences. It thus uses ‘small’
yes-no questions that test properties occurring in the consequent of the general truth.
The strategy only warrants a partial answer, because the general truth is not an
equivalence, as someone may satisfy the description in the consequent without being
a murderer.
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Holmes formulates a different question (Who stole Silver Blaze and killed his
trainer?) and the way he arrives at the instrumental question that specifies it, and
the conclusion(s) he draws from the answer, all proceed from deductive inferences.
But Holmes’ ‘small’ question has the form Is it the case that A or not?, where A is:
“the dog barked at the thief”, and the possibility to ask it depends on the language
he uses alone (irrespective of the current information state). Generally, for some
language L, any grammatically correct statement A or description �.a/ built with
the vocabulary of L (where a is a proper name or an indexical like ‘this’ or ‘that’)
can in principle be built into a yes-no question without the need of further inference
from one’s current information.5 How the question whether the dog barked entered
Holmes’s range of attention, but not Gregory’s, is trivially deductive: the deduction
that A or not A from any background theory T would be valid, and thus its being
deductive does not suffice to explain how it was arrived at.

Two other aspects of the case of Silver Blaze will be significant for our
comparison with empirical data. The first is that Holmes’ initial principal question
is based on a false presupposition—namely, that there is a single individual who
stole Silver Blaze and murdered his trainer. Holmes’ instrumental questions are
selected in order to help answer that question. The information Holmes obtains after
asking about the dog eventually leads him to revise this presupposition. Narrowing
down the range of suspects that satisfy the condition of “not being barked at by
the watchdog”, Holmes comes to suspect, and later establish, that the answers
to the questions Who stole Silver Blaze? and Who killed Silver Blaze’s trainer
cannot be the same. Interestingly, because the deduction of the presupposition of the
instrumental question about the dog is trivial, it is independent of Holmes initially
incorrect assumption that the thief and the murderer are the same individual, which
served as presupposition for his principal question.

The second significant aspect is that Holmes’ mention of “the curious incident
with the dog in the night-time” can be viewed as an implicit suggestion to
Gregory—to consider a control question (Did the dog bark at the thief?) and
revise his conclusions in the light of its answers. At the time Holmes asks about
the dog, Gregory has accepted the positive answer to the question Is Simpson
guilty or not? But pending some assumptions about watchdogs shared by Gregory
and Holmes, assuming that Simpson is guilty leads to expect that the dog has
barked in the night (because the dog barked at Simpson earlier in the evening).
This expectation is incompatible to what is known to have happened, and thus
constitutes a reductio of the assumption that Simpson is guilty. Gregory needs
then to revise either the background assumptions that the watchdog is well-trained,
and barks at unauthorized visitors even after a first encounter; or the assumption
that coincidences that would make Simpson appear guilty can be neglected. In the
latter case, new questions may enter Gregory’s range of attention; such as: How did

5 If A or �.a/ include vague terms (or imprecise categories), disambiguation is needed to obtain an
answer, but sequence of yes-no questions (further specifying a ‘prototype’ in the current context)
will suffice.
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Simpson’s scarf ended at the crime scene?—a question that, incidentally, Holmes
later raises and answers, considering as relevant the fact that it is a scarf, and not
that it is Simpson’s.

4 Deduction Abducted

4.1 Strategic Reasoning in Interrogation

The previous section has presented informally the relation between selection of
questions, and deduction. Let us now consider how the IMI formally characterizes
this relation. Hintikka describes the strategic problem of interrogative inquiry
(neglecting the distinction between statements and propositions they express) in the
following terms:

Strategic knowledge will in interrogative inquiry ultimately come down to a method
answering questions of the following form: Given the list of the propositions one has
reached in a line of inquiry, which question should one ask next? In view of the need
of presuppositions, this amounts to asking: Which proposition should one use as the
presupposition of the next question? (Hintikka 2007, p. 98)

Hintikka et al. (2002) present three formal results that can be combined to answer
this question: the Deduction Theorem, the Yes-No Theorem, and the Strategy
Theorem. The Deduction Theorem simply states that if a statement expressing an
answer qi 2 Q can be established interrogatively to hold in s assuming T , then
that statement can be established to hold deductively (without using questions)
from T and a finite subset A0

s of As. Equivalently: answers act as additional
premises, and interrogative reasoning reduces to deduction from T strengthened
by a finite set of answers.6 The Deduction Theorem is in fact rather trivial. It is
an immediate consequence of the definition of what problems and solutions are,
in learning-theoretic models. Nevertheless, it implicitly refines this definition, as
solving problems requires to raise the ‘small’ questions, whose answers will be
instrumental to solve a problem. The role of instrumental question generating the
data stream is usually left implicit in learning-theoretic models. Notice that the
Deduction Theorem shows how one can come to accept some answer qi that does
not in fact hold in s, i.e. if s is not in S.T/, when e.g. T [ A0

s is consistent.
Perhaps more surprising, the Yes-No Theorem is no less straightforward. It states

that a statement expressing an answer qi can be established interrogatively from T
and As iff that statement can be established interrogatively from T and As using
yes-no questions only. The Yes-No Theorem is best understood as stating that every

6Because of the possibility of mismatch, the converse of the Deduction Theorem only holds on the
condition that elements of As needed to obtain (interrogatively) qi from T are answers to questions
in Inquirer’s range of attention.
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interrogative argument can be reconstructed with yes-no questions alone.7 But the
Yes-No Theorem also implies that it is possible in principle to solve interrogatively
a problem hT;Qi without any non-trivial deduction from T . Trivial deductions
from T are also necessary to formulate control questions: if one ‘goes along’
with expectations based on T , and takes its consequences at face value, one will
not test for potential contradictions (assuming that T itself is consistent). Hence,
contradictions between T and facts can only be revealed using yes-no questions
trivially deduced from T .

Finally, the Strategy Theorem rests on an observation about deductive proofs.
Obtaining the shortest proof for a conclusion c from a set of premises P (when
c actually follows from P) requires to: (a) examine the least number of cases;
and: (b) introduce the smallest number of (arbitrary) names. Proof rules that open
cases and introduce names in deductive reasoning, are the same as inferential
rules that open questions in interrogative reasoning. Taking P D T and c to
be a statement expressing some qi in Q, answers in As eliminate cases, and
dispense from introducing arbitrary individuals. Given the Deduction Theorem,
this means that, when qi can be interrogatively established given T and As, the
shortest interrogative derivation is identical with the shortest deductive derivation
of a statement expressing qi from T and a finite subset A0

s of As. More informally:
the best selection of questions, which depends on the best strategy for obtaining
presuppositions in T , mirrors the best strategy to select premises from T [ As.
Therefore, anticipations about deductions from a strengthened theory T can guide
the selection of questions whose answers could actually strengthen T . In a slogan:
deductive skills carry over to interrogative skills.

As long as some conclusion c and some set of premises P are formulated in a first-
order language L, there is always a finite proof that c follows deductively from P;
when it does. However, first-order consequence is not fully decidable: there may not
be a finite proof that c does not follow from P, when it does not. Subsequently, the
Strategy Theorem entails that there cannot be any general mechanical (algorithmic)
method for solving interrogative problems by: (1) trying first to deduce some a
statement that expresses some qi 2 Q from T; (2) use questions to strengthen T
with As if step (1) is not successful; and: (3) if step (2) is also unsuccessful, reiterate
(1) and, if necessary, (2) with some potential answer qj ¤ qi in Q. However, it does
entail that having some idea about which cases compatible with T would have to be
ruled out to deduce a statement that expresses some qi 2 Q from a strengthened
version of T , gives a good idea of which question one should ask to establish
interrogatively qi from T (if answers were obtained).

7 This understanding eschews the issue of possible mismatch between As and Inquirer’s range of
attention. In the left-to-right direction, every whether-question about A or B, or wh-question about
�.�/, that receives (say) answer A or �.a/ suffices for the yes-no questions about A or �.a/ to enter
Inquirer’s range of attention for the purpose of reconstructing an argument. The antecedent of the
right-to-left direction holds when the yes-no questions are already in the range of attention (the
consequent is satisfied trivially).
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4.2 Abduction and Yes-No Questions

Hintikka has suggested that the Strategy Theorem offers important insights about
abduction (Hintikka 1988, 2007, ch. 2), esp. in contrast with inference to the best
explanation (IBE). The latter occurs when Inquirer accepts (defeasibly) one of the
answers, without having established it interrogatively. Such a reasoning can be
rationalized, e.g. by assuming a probability distribution over the refined partition;
and an acceptance rule that fires if probabilities are raised (conditional on past
answers) over a fixed threshold. Gregory’s strategy is an illustration of IBE so
construed, where the acceptance rule ‘fires’ because the answers are independent,
and the probability of a coincidence is low. If the probabilistic constraints are precise
enough, the outcome of IBE can be uniquely determined, but involves (probabilistic)
justification, and is definitely non-PD.

By contrast abduction, as Hintikka’s understands it, routinely occurs in PD

contexts (or contexts that Inquirer still assumes to be PD). Abduction occurs
when Inquirer anticipates a (possible) deductive derivation from some strengthened
version of T , and attempts to steer the course of the investigation towards obtaining
the answers that strengthen T in the desired fashion. Abduction thus depends on the
‘deductive insight’ that answers to some instrumental questions will strengthen T
enough to reduce the admissible states to those in which some qi 2 Q holds.

Unfortunately, abduction involving yes-no questions cannot always be fully
rationalized. In particular, yes-no questions that do not ‘break down’ questions
whose presuppositions are inferred from T and previous answers, involve what looks
like ‘intuitive leaps’. The difficulty also affects probabilistic IBE: a relevant partition
of cases, over which probabilities are distributed, depends on T , but on occasion
must be imposed by ‘abductive’ yes-no questions (Genot and Jacot 2012). With
respect to our reconstruction of Gregory’s reasoning, asking about the dog would be
as ‘abductive’ for the purpose IBE, as it is for reasoning deductively. Furthermore,
introducing yes-no questions is, as we said, the only way to reveal inconsistencies,
and can now be seen to be ‘abductive’ as well.

Let us illustrate that last point with the example of Holmes and Gregory.
Either one accepts that Simpson is guilty, as Gregory does, or one does not, as
Holmes does. Acceptance of an answer by a given inquirer i, given a set Ti of
background assumptions for that inquirer, eliminates all the scenarios in S.Ti/ that
are incompatible with that answer. If TGregory includes only scenarios where the
watchdog is well-trained, then the answer to Holmes’ question about the dog rules
out all the scenarios in which Simpson is guilty. Gregory could in principle bracket
the assumption that the dog is well-trained, maintain acceptance of Simpson’s
guilt, and reshuffle probabilities. The same holds mutatis mutandis about THolmes,
although Holmes has not accepted Gregory’s guilt in the first place, and disregards
(non-extreme) probabilities.

Whether one reasons deductively or probabilistically, raising a yes-no question
about the dog depends on the insights into whatever effect the possible answers
to that questions would have—which scenario they would eliminate, or how they
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would affect the probabilities of certain events. We said earlier that Holmes’
question could be viewed as an implicit suggestion that Gregory should revise
his current assumptions, and we can now be more precise: pointing out that the
dog did not bark implicitly questions the grounds for the step at which Gregory
‘jumped’ from a high probability of Simpson’s guilt, to full acceptance. It shows
that Simpson’s guilt may not be the best explanation of what has happened, after all.
Holmes’ actually suggests to Gregory another, different reasoning line, by (subtly)
manipulating Gregory’s range of attention.

Hintikka has explicitly reconstructed Holmes’ reasoning in The Case of Silver
Blaze as an answer to a why-question (Hintikka 2007, ch.7, §2). As we mentioned
in Sect. 2.1, answering a why-question compacts a line of inquiry. In that case,
the statement that “a dog was kept in the stables, and yet [. . . ] had not barked
enough to arouse the two lads in the loft” answers the question: Why is the thief
the dog’s master? Hintikka shows that the above statement can be extracted from
the proof that the thief is the watchdog’s master—the only person that “the dog
knew well” that could have visited the stables. In Hintikka’s reconstruction, this
statement is an interpolation formula, i.e. a formula that follows from the premises,
entails the conclusion, and comprises only vocabulary common to them. Hintikka’s
reconstruction furthermore uses an extremely parsimonious first-order language,
with two properties, one relation, and two names. Let us consider an informal
equivalent of this reconstruction. The information (a) that no dog barked at the thief
and (b) that there was a watchdog, provide ad explanandum conditions, alongside
the general truth that watchdogs bark at strangers, but not at their masters. Once the
stable-boys are ruled out—one had been drugged, and the other two where asleep
in the loft—the only individual fitting the description ‘master to any watchdog kept
in the stables’ is Silver Blaze’s trainer. Once Holmes has reached this conclusion,
the principal question also changes. Learning about the dog incident makes Holmes
‘bracket’ his own expectations that the thief is an assassin (cf. footnote 4).

The crux of Holmes’ interrogative reasoning is how he picks premises (a) and
(b). Since (a) is vacuously true (and uninformative) if no dog is indeed kept in the
stables, one needs (b) to draw a useful conclusion. Holmes explains that the incident
with the dog barking at Simpson in the evening implied (b), and that then learning
(a) implied, together with the general truth that watchdogs bark at strangers, that
the thief was not a stranger. And while the Strategy Theorem allows to reconstruct
Holmes’ line of reasoning, it does so vacuously, because it depends on a yes-no
question that enters Holmes’ range of attention (but not in Gregory’s) without being
inferred from his background information. Actually Holmes’ picking premise .a/
and anticipating its effect also depends on anticipating the answer to that question.
Although .a/ is part of the common ground that Holmes, Gregory and Watson share,
its usefulness (as constraint on the information partition) is only revealed after .b/ is
learned. The same goes for the ‘general truth’ that watchdogs abstain from barking
at their masters alone.
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5 Abduction and Collaborative Learning

5.1 The CSILE Study and Its Conclusions

The study reported by Hakkarainen and Sintonen (hereafter HS) in (HS 2002)
followed elementary school pupils, who had to complete science projects presented
as broad questions. Examples of such questions given by HS are: “how to explain
gravity?”, “how did the universe begin, and how will it evolve?” and “how do
cells and the circulatory system in the human body work?”. In order to foster
collaboration, but also to gather process data, the pupils where tutored in the use
of the CSILE software environment, that lets users register notes in a database, with
either informative or interrogative content. Once registered, a note is accessible to
all other users, even if it is addressed by one user to another specifically. Informative
content is revisable, and constitutes a knowledge base for the group. Interrogative
content is registered in notes labeled either as “Problem” or “I Need To Understand”
(HS 2002, p. 32).

How-questions are similar to why-questions, and presuppose that what has to
be explained is indeed the case. But children had first to make sense of the
presuppositions of the how-questions submitted to them. Specifically, they had to
recover definitions for terms such as “gravity” and “cells”, identify what the definite
description “the circulatory system” refers to, theories articulating those definitions,
as well as a theory entailing that the universe has an evolution. Since the CSILE
knowledge base was initially empty, the pupils’ first entries were of interrogative
content, aimed at breaking down the presuppositions of the broad how-questions
into manageable ‘small’ questions, without a definite idea of the meaning of those
presuppositions. And according to HS, one distinctive advantage of the IMI over
other epistemological models, is its ability to capture the dynamics engendered by
such circumstances:

[In] actual problem-solving situations, an agent has to start generating questions and
theories before all necessary information is available. In the interrogative process, initially
very general, unspecified and “fuzzy” questions are transformed to a series of more specific
questions. As a consequence, the process of inquiry often has to start with a ‘theory to work
with’ that is transformed into a more sophisticated one as the process goes on. [. . . ] The
dynamic nature of inquiry is, further, based on the fact that new questions emerge in the
process of inquiry that could not be anticipated when the principal question was first raised.
(Hakkarainen and Sintonen 2002, p. 39)

The methodology of HS’s study tracks the co-evolution of theories and questioning
strategies, from the data collected within the CSILE environment. First, children’s
questions, entered in the “Problem” and “I Need To Understand” categories of the
CSILE database, were classified as principal and instrumental. Principal questions
included the initial questions of the science project, and questions that triggered
subordinated lines of inquiry. Second, the evolution of the knowledge produced,
i.e. the proposed answers to the initial questions—entered through notes category
in the CSILE database—was correlated to the formulation of questions (both
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principal and instrumental). Third, a “deepening of explanation scale” was defined,
which assigned scores to students based on whether “in-depth advancement in
a student’s search for explanatory scientific information” (HS 2002, p. 33) was
observed. Finally, the scores were validated by appeal to experts, namely “three
internationally regarded philosophers of science from well-known Canadian and
Finnish universities” (HS 2002, p. 34). The aim of this evaluation was to determine
whether children had moved from “initial intuitive theories [to] a new conceptual
understanding” (HS 2002, p. 38) mirroring the scientific theories describing the
phenomena they had to explain. Individual reasoning strategies were not explicitly
studied, but the CSILE environment allowed to track how children monitored each
others’ questions. HS express the general conclusion of their study as follows:

The study indicated that CSILE students participated in extended processes of question-
driven inquiry and systematically generated their own intuitive theories. The epistemic value
of CSILE students’ knowledge-seeking inquiry seems partially to be based on a process in
which social communication pushed a student to pursue question-driven inquiry further than
he or she might originally have been able to go. [CSILE] appeared to foster engagement in
higher-level practices of inquiry [and] epistemological awareness concerning the process of
inquiry. (HS 2002, pp. 38–39)

Based on these conclusions, HS take the IMI to be empirically validated, as
descriptively adequate. Furthermore, they express the view that the IMI should be
considered a methodological basis by educators who often insist on the importance
of encouraging questioning, and mined for suggestions on how to develop pedagog-
ical models and didactic tools:

It appears to us that what is new about the interrogative approach is to emphasize question-
transformation as the very foundation of scientific inquiry. [. . . ][W]e do not have well-
developed culture of question asking at school and it is very difficult to get students to
follow the questions that emerge through their process of inquiry. In this regard, pedagogical
models and computer tools elaborated by relying on the interrogative approach appear to be
very valuable. (HS 2002, p. 41)

HS do not give further suggestions as to what kind of features those tools should
include, that could facilitate question-transformation, and the evolution of theory-
formation. This lack of specific suggestion is actually not surprising, for the IMI

cannot actually back any general recommendation.

5.2 Range of Attention and Serendipity

The conclusions that HS draw with respect to inquiry learning in general, actually
generalize the experts’ opinion about the outcome of the CSILE study. HS summa-
rize the outcome of the expert evaluation as follows:

According to the experts’ overall evaluation, CSILE students’ research questions were at
a high level of sophistication, and, if successfully answered, were likely to produce new
conceptual understanding. Moreover, two out of the three experts noticed the student-
generated research questions formed a pattern, which allowed the students to answer their
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main research questions by generating a series of more specific questions. Although the
third expert agreed with the other experts that many of the CSILE students research
questions were valuable, he criticized some of the questions as being based on wrong
presuppositions. (HS 2002, p. 39)

Our analysis of the case of Silver Blaze should make conspicuous that criticism
of questions based on “wrong presuppositions” can be mitigated by adopting a
means-end analysis of the process of discovery and problem-solving. Indeed, we
have seen that Holmes’ instrumental questions, in the case of Silver Blaze, were
based on the wrong presupposition that some unique individual was both a thief and
a murderer. But they nonetheless lead to a reformulation of the principal question
and a revision of the initial assumptions. And once the problem redefined, answers to
these questions crucially contributed to solve it. Similarly, the “pattern” that allowed
children to answer the main research questions crucially included re-formulations
of questions, that promoted better understanding. Interestingly, HS insist on the fact
that such reformulations often occurred in the CSILE study under the influence of
others:

Many comments by others were apparently intended to show that a student did not
genuinely focus on his or her principal research question but wandered unproductively
around peripheral areas of the topic. Through social interaction pointing out inadequate
presuppositions, these students were guided to focus on more productive research questions,
for example: “I think that you should describe and tell more in your theory about how the
UNIVERSE will change in the future, and less about how the people will change in the
future and how they will know more about the universe in the future because that is not
really the question you are researching” (HS 2002, pp. 38–39)

HS view such circumstances as an aspect that the IMI is conceptually better equipped
to capture than other models. They are right, insofar as the above example, and
similar observed cases, introduce explicit suggestions to alter the course of inquiry
by formulating different instrumental questions. The effect of such interventions
is similar to the intended effect of Holmes’ mention of “the curious incident. . . ”
of which we have indeed shown that the IMI captures the strategic import.
However, the descriptive adequacy of the IMI does not warrant the methodological
conclusion that “pedagogical models and computer tools elaborated by relying
on the interrogative approach appear to be very valuable”. More accurately, the
conclusion is unwarranted if “valuable” insights pertain to the ability of a group
of inquirers to auto-regulate the course of inquiry. Let us see why.

The trigger of Holmes’ line of reasoning can be characterized descriptively as
an instance of serendipity, defined as “observing an unanticipated, anomalous, and
strategic datum which becomes the occasion for developing a new or extending an
existing theory” (Barber and Merton 2004, p. 260). The concept of serendipity has
been introduced in the sociology of science in order to overcome the descriptive
limitations of epistemological models which leave out discovery. Interestingly, the
IMI is able to characterize loci of serendipity, and even to further qualify inferentially
their “strategic” nature, which is generally taken to be self-evident, and is left largely
unexplained, in sociological discussions. In our example, Gregory is not aware of
the ‘datum’ that the dog did not bark, while Holmes is. However, there does not
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seem to be any discernible reason explaining why Holmes becomes aware of that
datum by himself, or explaining why Gregory needs Holmes. Holmes suggests
at one point that the issue might be Gregory’s lack of imagination,8 which can
hardly be fixed by some systematic method. Holmes’ own reasoning strategy can
be vindicated on purely deductive grounds, and his ‘abducted’ deduction can be
analyzed with the formal model of the IMI. But the model also supports the view
that Holmes’ discovery is not the outcome of some systematic method. Introducing
yes-no questions is indeed informed by one’s deductive skills, yet these skills cannot
be mechanized in general.

The latter has some important consequences for the conclusions drawn by HS.
The general case under which fall the problems they studied is the case of a
problem hT;Qi where T is empty, Q receives a formulation in a language whose
interpretation is not yet fixed for the Inquirer, and As is such that Q may actually
be solved—i.e. one of the answers to Q is derivable from some subset A0

s of
As. Because T is empty, the only presuppositions that can be derived from it are
presuppositions of yes-no questions. hT;Qi will be solved when some subset A0

s
of As is obtained, such that one of the answers to Q can be derived from that
subset together with T and that answer is actually derived. In such cases, how T
is strengthened depends exclusively on the range of attention of the Inquirer, which
is in turn determined by the associations that the Inquirer will make on the basis of
the linguistic formulations of Q—in Holmes’ words, the Inquirer’s imagination.

In a multi-agent setting, the interaction between inquirers induces a dynamics
in the inquirers’ ranges of attention that is absent from the single-agent case. And
indeed this is why the likes of Gregory and Lestrade are willing to consult Sherlock
Holmes, as his presence more often than not results in corrections in the course
of inquiries in which they stall. However, transitioning from single-agent inquiry
to multi-agent inquiry incurs no guarantee that pooling the ranges of attention
of all the inquirers will result in an auto-regulated ‘collective’ range of attention
sufficient to recover the set A0

s from which one then could derive an answer to Q
in a solvable problem hT;Qi with empty T . To put it differently, increasing the
number of inquirers does not mechanically increase the odds that serendipitous yes-
no questions will enter the range of attention of inquiry learners reasoning from
initially insufficiently specified theories. The IMI offers no formal vindication of
the pre-theoretic intuition that collaborative inquiry improves upon solitary inquiry
for the purpose of raising appropriate questions.

8Inspector Gregory, to whom the case has been committed, is an extremely competent officer. Were
he but gifted with imagination he might rise to great heights in his profession. On his arrival he
promptly found and arrested the man upon whom suspicion naturally rested. (Conan Doyle 1986,
p. 527)
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6 Conclusion

The formal results of the IMI can certainly help to understand post hoc the children’s
inferences in the CSILE study, but the Strategy Theorem cannot rationalize (in
general) the occurrence of yes-no questions that one needs to complete an initially
empty background knowledge. The methodological import of the IMI is not
noticeably better that the methodological import of less dynamic epistemological
models. The IMI certainly supports the conclusion that “science educators [should]
focus more on engaging students in sustained processes of question-driven inquiry
than just examining contents of their current beliefs so as to facilitate their
conceptual advancement” (HS 2002, p. 41). However, it offers little guidance
regarding the design of collaborative-learning environments that would promote
and nurture the development of successful interrogative learning strategies and
successful interrogative problem-solving strategies.

The IMI does however warrant the following conclusion: a guaranty that an
inquiry learner will be able to solve interrogatively a problem can always be
obtained by manipulating the learner’s range of attention. But manipulation of the
learners’ range of attention is tantamount to the transmission of strategic knowledge.
A paradigmatic example of this manipulation, is how Socrates teaches Meno’s slave
all the geometry the illiterate boy needs to demonstrate that the diagonal of the
square is incommensurable to its side (Hintikka 2007, ch.4, §8). Socrates uses only
yes-no questions when doing so, and nonetheless manages to convey the required
knowledge in geometry. Each time the slave is probing the consequences of an
erroneous guess, he could well be said to be progressing in the demonstration. But
his progress can only converge to the correct solution if monitored by Socrates.
Socrates’ own range of attention builds upon deductive skills, namely his ability to
find the best derivation of the solution to the problem at hand. The transmission of
Socrates’ strategic knowledge suffices for the slave to complete the demonstration,
because the derivation is constructive, and Socrates transmits the skills required to
perform the construction.

Thus, the IMI makes conspicuous the conundrum that the inquiry learning
methodology has faced since Socrates. One the one hand, increased guidance—
transmission of strategic knowledge—can help learners reach solutions, but incurs
the risk that they will wait for tutors to formulate questions. On the other hand,
lack of guidance favors autonomy, but incurs the risk of unproductive research,
that proceeds from poorly grounded questions. Pace Hakkarainen and Sintonen, the
conceptual apparatus of the IMI cannot warrant more substantial methodological
conclusions. However, perhaps more surprisingly, the IMI can offer some insights
as to why one cannot in general leverage epistemological models to obtain general
pedagogical and didactic principles applicable to inquiry learning. These insights
are made possible by a deeper conceptual understanding into the nature and
strategic role of serendipity. Indeed, it follows from the Strategy Theorem and the
Deduction Theorem that, short of pre-existing knowledge, interrogative problem-
solving requires not only deductive skills, but also ingenuity and good luck.
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Inquiry and Deliberation in Judicial Systems:
The Problem of Jury Size

Staffan Angere, Erik J. Olsson, and Emmanuel J. Genot

Abstract We raise the question whether there is a rigorous argument favoring one
jury system over another. We provide a Bayesian model of deliberating juries that
allows for computer simulation for the purpose of studying the effect of jury size and
required majority on the quality of jury decision making. We introduce the idea of
jury value (J-value), a kind of epistemic value which takes into account the unique
characteristics and asymmetries involved in jury voting. Our computer simulations
indicate that requiring more than a >50 % majority should be avoided. Moreover,
while it is in principle always better to have a larger jury, given a >50 % required
majority, the value of having more than 12–15 jurors is likely to be negligible.
Finally, we provide a formula for calculating the optimal jury size given the cost,
economic or otherwise, of adding another juror.

Keywords Jury size • Bayesian model • Computer simulation • Deliberation •
Voting

1 Introduction

The size of deliberating juries in court varies somewhat for different countries. In
the English speaking world, the number is usually 12, except in Scotland which
has a 15-juror system. Yet there is a growing debate regarding the possibility of
downsizing juries. A bigger jury is more expensive and difficult to administer than a
smaller one, and, at least in smaller countries, a big jury can be difficult to assemble
given the constraint that the same juror should not serve in consecutive trials. The
pressure to downsize has led to some court cases where it has been ruled that
smaller juries are admissible. Thus in the case Williams v. Florida (399, U.S. 78,
1970), the US Supreme Court ruled that the relevant part of the constitution, the
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Sixth Amendment, does not require juries to be composed of any specific number
of jurors. In particular, six jurors should be allowed because “the essential feature
of a jury obviously lies in the interposition between the accused and his accuser
of the common sense judgment of a group of laymen” and, furthermore, “[t]he
performance of this role is not a function of the particular number of the body that
makes up the jury”. The court added: “And, certainly the reliability of the jury as a
factfinder hardly seems likely to be a function of its size.”1

This ruling, which overturned the earlier Supreme Court decision Thompson
v. Utah (170, U.S. 343, 349, 1898) to the effect that the jury guaranteed by the
Sixth Amendment consists “of twelve persons, neither more nor less”, stands in
stark contrast to a recent evaluation of the Scottish 15 jury system which found
that system to be, in the words of Cabinet Secretary for Justice Kenny MacAskill,
“uniquely right” (Forsyth and Macdonnell 2009). In the consultation process, some
advantages of 15-person juries were noted as being that people still have confidence
in the system, larger juries lead to fairer verdicts, they are less likely to be influenced
by prejudice, they allow for majority verdicts and are composed of a greater cross
section of the public. Against this were arguments that 15-person juries often lead
to unwieldy discussions and that the juror pool is being stretched by the requirement
of having so many jurors for each trial (Forsyth and Macdonnell 2009).

Given what seems to be a deep disagreement on the relationship between jury
size and jury competence, it would be desirable to find a rigorous argument for
either position, one than both parties to the debate were rationally obliged to accept.
Obviously, we want jury deliberation to be as reliable a process as possible: we want
someone to be convicted just in case he or she in fact did it. These considerations
suggest the use of the famous Condorcet jury theorem, stating, among other things,
that a larger voting body gives rise to a more reliable majority vote. It would seem,
in the light of this mathematical result, that a deliberating body should be as large
as possible, time and money permitting.

Unfortunately, the application of the Condorcet theorem to deliberating bodies is
highly problematic. Condorcet’s assumptions include that of independence of vot-
ing, which tends to be violated by deliberating bodies: in the process of deliberation,
jurors will become increasingly influenced by each others’ views. Furthermore, the
theorem, in its standard formulation, requires everyone’s likelihood of individually
coming to the right answer to be above 50%. While one may, optimistically, hold
that individual jurors tend, on average, to be right more often than not, it is not clear
how the presence of the occasional statistical outliers affects the result. It is obvi-
ously not enough that a majority of the jurors have a chance of more than 50% to be
right, since this is compatible with almost 75% of the votes finally cast to be wrong.2

In an effort to overcome some of these limitations this paper proposes a different
model, called Laputa, which allows for a process of group deliberation and inquiry.
The model does not assume that jurors cast their final votes independently but

1Williams v. Florida, reprinted as pp. 3–70 in Jacobstein and Mersky (1998).
2See List and Goodin (2001) for generalized versions of the Condorcet theorem. See also Goodin
(2003) for an extended discussion.
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only that jurors, where they contribute to the deliberation process, do so based on
their own evidence rather than based on the evidence they received from others
in the group.3 Laputa is fundamentally Bayesian and decision-theoretic in nature.
Naturally, the jury process has been investigated from similar perspectives before,
beginning with Kaplan (1968). However, these studies, as far as we can tell, have
not taken into account the deliberation process and its possible effect on the voting
outcome which is not surprising given the mathematical complexity any such study
would have to grapple with. In the present article, the computational problem is
solved by focusing on the method of computer simulation rather than on that of
analytical proof. In our understanding of juror inquiry, we settle for a model which
in certain respects generalizes Jakko Hintikka’s well-known interrogative model of
inquiry. We will offer some remarks about the relations between Hintikka’s model
and our modeling assumptions, and give further details in the discussion section.

2 A Probabilistic Model of Jury Deliberation

There are several features that set juries apart from many other deliberative bodies
and that will play a role in motivating our model:

1. Random selection of jurors. While the exact process whereby the jurors are
selected varies widely, the usual case is that they are selected randomly from
a precompiled list of eligible jurors. There may be various screening processes
designed to exclude jurors that whose impartiality could be questioned. Also, it is
considered desirable that the jurors come from varied backgrounds and provide
a representative sample of the population. For example, a jury consisting of only
Wall Street bankers, or only Mexicans, or only women, would be considered
inappropriate.

2. Layman jurors. The jurors are supposed to be laymen and not experts.
3. Binary question. The jury’s task is to deliberate on the question whether the

accused is guilty or not. There is, in general, no third alternative.4

4. Restricted evidence. There are some restrictions on the evidence that the jury can
appeal to in the process of deliberation. The jury is supposed to be present in
court to hear all the evidence presented there. This evidence includes not only
the written or spoken material presented but also the observed reactions of the

3For more details on Laputa and its interpretation, see Olsson (2011, 2013). See also Olsson and
Vallinder (2013) and Vallinder and Olsson (2013a,b).
4In the Scottish legal system, a jury can also give the verdict “not proven”. As some commentators
(e.g. Luckhurst 2005) have noted, including this verdict alongside the not guilty verdict has no
legal consequence: in both cases the accused goes free and cannot be tried again for the same
offence. Instead it is common to argue that the value of the not proven verdict is not legal but
social: it allows the jury, for better or worse, to acquit the defendant while leaving a stain on
his or her character. Alternatively, it can be used to “expose a poor investigation and highlight
the failings of an incompetent prosecutor” (Luckhurst 2005). Since the “not proven” verdict has
no legal consequence we have decided not to take it into account in this study of legal decision
making.
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accused, the witnesses, and so on. Juries are often instructed to avoid learning
about the case from any source other than the trial (such as from media accounts)
and to refrain from conducting their own investigations (such as independently
visiting a crime scene). Parties, lawyers, and witnesses are not allowed to speak
with jury members. Jurors are, however, allowed to appeal to their own general
life experience in the process of deliberation.

5. Public announcements within the jury. Finally, while in the deliberation room,
any contribution to the discussion made by some juror is available to all the
other jurors. It would be unusual, and probably inappropriate, for some jurors to
discuss matters “in private” without the knowledge of the other jurors.

As we propose to model jury deliberation, at every point in time a juror may,
with varying degrees of competence, conduct inquiry, communicate with the other
jurors, or both. Conducting inquiry here means consulting memory or notes about
what happened at the trial or about other relevant things, such as the juror’s own life
experience. It does not include conducting investigations outside the court. Inquiry
results in a reason for or against the guilt of the accused. As we conceive of reasons,
they need not be interpreted as conclusive. If a juror has conducted inquiry, he or
she may announce the result to the other jurors in the form of a pro or con reason
(vis-à-vis guilt). These other jurors will react to the information by updating their
cognitive states. This process will continue until time is up, at which point the jurors
cast their individual votes.5

In the light of this initial characterization of the jury deliberation process we
need to represent the following in the language of probability theory: (a) a juror’s
reliability, (b) a juror’s cognitive state, and (c) how a juror’s cognitive state is
updated as the effect of receiving a pro/con reason. Let us start with jurors’
reliability. A juror can be more or less reliable in retrieving information from
memory or notes. A juror’s reliability in this regard can be modeled as the (objective)
probability that any result of inquiry is true. At the outset, we allow for different
jurors to have different levels of competence—from being wrong all of the time, to
being right all of the time, and everything in-between.

We assume that a juror’s cognitive state consists of three things: an assessment
of the accused’s guilt/innocence, a self-assessment, and an assessment of others.
The assessment of guilt or innocence is represented as a subjective probability
(“credence”) in the proposition that the accused is guilty, i.e. a number between 0
and 1. A number close to 1 means that the juror thinks the accused is probably guilty.
A number close to 0 means that the juror thinks the accused is probably innocent.
The self-assessment records how reliable (trustworthy) the juror considers his or
her own inquiry to be. Here we generalize a common assumption of Hintikka’s

5In some jury systems, such as the American, the condition specifying when the deliberation has
come to an end does not refer to time but to some other feature of the situation, such as the jurors
having reached a unanimous verdict. We have decided to leave the study of such jury systems for
another paper. Having said this, the simulation results we present below count indirectly against the
American system, and it seems unlikely, in light of these results, that the latter should be a serious
competitor to e.g. the Scottish jury system as regards the quality of collective decision making.



Inquiry and Deliberation in Judicial Systems: The Problem of Jury Size 39

interrogative model of inquiry by allowing an inquirer to be less than fully confident
in the results or her inquiry (see Sect. 6 for a detailed discussion). The assessments
of others record, for each other juror, how reliable (trustworthy) the juror in question
considers those other jurors to be.

While it is easy to represent the assessment of the accused’s guilt or innocent
in probabilistic terms, it is less clear how to model probabilistically a juror’s self-
assessment or assessment of others. Our main idea is that a juror’s trust in a source
(own inquiry or other jurors) can be represented as a credence in the reliability of
the source. Thus, a juror’s self-assessment can be thought of as the juror’s credence
in the proposition that she is a reliable inquirer. We assume that a juror’s trust in a
source to be represented as a trust function, i.e. an assignment of a credence to every
possible degree of reliability. For instance, a juror may assign a credence of 0.7 to the
hypothesis that the source is telling the truth 90% of the time. Trust functions offer
a probabilistic representation of a critical aspect of Hintikka’s interrogative model,
namely that reasoning from any evidence whatsoever always takes into account the
evidence (cf. Sect. 6).

Let us now turn to the question of how juror’s cognitive states should be updated.
A juror reacts to reasons emanating from inquiry or other jurors by only taking
into account (a) whether the reason is a pro or con reason (vis-à-vis guilt), (b)
her own (prior) credence in the guilt of the accused, and (c) her (prior) trust in
the source. Internal details of reasons or arguments are abstracted from. This is
an idealization yet one without which the model would probably become utterly,
and unworkably, complex. Here, our model departs slightly from Hintikka’s own,
which usually emphasizes the fine structure of reasons in insisting on strategic
aspects of reasoning. But this apparent departure actually allows us to generalize
Hintikka’s model, as will be explained in Sect. 6. Independent support for making
this idealization can be found in the Persuasive Argument Theory (PAT) tradition
in social psychology, as explained in Olsson (2013).6 Moreover, it receives some
support from the fact that jurors are supposed to be laymen and not experts: experts
are more likely to care about the fine structure of reasons than are laymen. Above
all, this way of construing the updating of cognitive states in response to reasons is
supported by our statistical approach to the jury problem, as soon to be explained.

The single source case. Let g be the proposition that the accused is guilty.
Suppose that a juror receives a pro reason from a source ˛. We can then compute
the posterior credence in g (i.e. the credence in g after receiving information from
some source) as well as the reliability of the source:

CtC1.g/ D Ct.g j ˛ gives a pro/con reason /

CtC1(˛ is reliable to degree r) D
Ct(˛ is reliable to degree r j ˛ gives a pro/con reason)

6For more on the PAT tradition see Isenberg (1986).
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The many sources case. Suppose that a juror receives information from
many sources ˛1; : : : ; ˛n at the same time. How can we calculate the following
probabilities?

CtC1.g/ DCt.g j ˛i gives a pro/con reason ; : : : ;

˛n gives a pro/con reason /

CtC1.˛i is reliable to degree r/ DCt.˛i is reliable to degree r j
˛1 gives a pro/con reason ; : : : ;

˛n gives a pro/con reason/

We recall that the jurors have been chosen randomly from the population
of eligible candidates that are representative of the entire population. In the
normal course of events, this selection process should ensure a certain degree of
independence of thinking among the jurors, so that the fact that one juror at a given
point in the deliberation notes or remembers something from the trial will not by
itself make it more likely that another juror will note or remember that same thing.
We also recall that jurors give pro/con reasons directly as they find evidence in their
own notes or recollections. These two considerations together justify assuming a
principle we call source independence:

.SI/ Each juror assumes that the other jurors are reporting independently,
conditional on the truth/falsity of g.

Using source independence, the result of receiving information from multiple
sources is calculable from data about the individual sources, just as in the single-
source case (cf. Olsson 2013). The bottom line is that assuming source independence
makes the model computationally workable and at the same time it seems reason-
ably realistic given the way in which jurors are selected and assumed to interact.

Now that we have a probabilistic model of the deliberation process, let us return
to our main problem: to evaluate the effect of jury size on the jury’s competence.

Clearly we cannot solve this problem by looking at just a few deliberation
processes while varying the size of the jury. If we do, we would not know whether
the effect of adding more jurors was due to the size or to something else (difference
in initial credence, individual competence, and so on). We need a way to study the
effect of size per se. The solution to this problem is to study a large number of
varied deliberation processes for a jury of a particular size and assess the average
competence over all these processes. The competence pertaining to the jury size
under consideration is the average, or expected, competence over all these particular
deliberation processes.

This suggestion raises a worry regarding the practical possibility of performing
all these competence calculations by hand. We propose to solve the computational
issue by means of computer simulation. Our Laputa model has been implemented
in a computer program that bears the same name and which automatically generates
juries, allows the members to deliberate, in the idealized sense previously described,
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and, finally, collects data about the average reliability of the juries of the given
size. Laputa can study millions of juries and deliberation processes in this fashion.
Such considerations of scale also give an additional justification for treating reasons
as “black boxes” without any internal structure because any persuasive effect that
derives from the internal structure of reasons will be but a drop in a vast statistical
ocean, or so we conjecture.

When Laputa generates a jury and a deliberation process it has to select initial
values for various parameters. These parameters are, for each juror:

• prior credence in g, i.e. credence in g after court proceedings but before jury
deliberation

• competence, i.e. probability that a result of inquiry is correct
• inquiry activity level
• communication activity level
• trust function for inquiry
• trust functions for other jurors

We configured Laputa to select these values according to a beta distribution with
mean 2=3 and mode 3=4. This corresponds to the values ˛ D 4, ˇ D 2, and its
shape is plotted below.

The Beta distribution is congenial to Bayesianism, and has several useful
properties:

• Unlike the normal distribution, it is naturally clamped to Œ0; 1�, and so does not
need to be truncated. The normal distribution is not, as it is, possible to use to
generate numbers in the interval Œ0; 1�, but beta distributions with ˛ � ˇ are
similar to normal distributions.

• It simplifies several calculations, since it interacts well with conditionalization.
• It has a straightforward statistical interpretation: for an inquirer beginning with a

uniform distribution on all possible frequencies of a property P in a population,
the beta distribution with parameters ˛, ˇ gives the credence that inquirer should
assign each frequency, given that he or she has observed ˛�1 instances of P and
ˇ � 1 instances of not-P in that population.

For these reasons, we will use the above distribution whenever we want one
whose expected value and peak are both between 1=2 and 1, symbolizing “some-
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what better than average.” This modeling decision corresponds to the limited degree
of optimism embodied in applications of the Condorcet jury theorem, although it
does not place any restrictions on the competences of individual jurors, but only on
their statistical mean.

3 Epistemic Value in a Jury Situation

We will refer to the kind of epistemic value we aim to study as Jury value (J-value,
for short). J-value should take into account: (i) the fact that it is the final state
and not the difference between the final and initial states that is important, (ii) the
fact that it is the majority’s opinion that counts, rather than the average opinion,
and (iii) the fact that the jury situation is importantly asymmetric, as embodied in
Blackstone’s principle “better that ten guilty persons escape than that one innocent
suffer” (Blackstone 1769).7

Since we are dealing with majority voting it is important to settle on what we
are to mean by “majority”. Different justice systems differ in how large a majority
is required for a verdict, from a simple >50 % majority up to unanimity. Requiring
unanimity among 20 jurors will result in fewer verdicts than requiring unanimity
among, say, three jurors. A justifiable expectation, therefore, is that the value of
having a certain number of jurors may depend on the size of the required majority.
Hence we will have to take into account different required majority sizes when we
measure the expected J-value of a certain jury size.

Another parameter that is important for J-value is the credence required for
voting for or against the guilt of the accused. In most legal traditions, a greater
confidence is required for a conviction than for an acquittal.

In a survey of American judges, the mean credence associated with the concept
“beyond a reasonable doubt” was about 90% certainty (McCauliff 1982). For this
reason we have chosen 0:9 as the credence in the guilt of a suspect required for a
given juror to vote accordingly.

In the kind of trial we are dealing with, there are five possible relevant outcomes
of a round of deliberations:

• conviction of the guilty .CG/
• conviction of the innocent .CI/
• acquittal of the guilty .AG/
• acquittal of the innocent .AI/
• no verdict .NV/

In the last case, we assume that the deliberations have to continue for another
round. In epistemological terms, this corresponds to status quo, an outcome that

7This principle has reappeared in many guises both before and after Blackstone, with a varying
number of guilty acquittals held to be better than one innocent conviction. Cf. Volokh (1997).
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may itself be connected with various costs. We refer to the J-value of outcome X
as J.X/. Since it is always better to get the right verdict than no result at all, and
always better to get no verdict than to get the wrong verdict, we postulate that the
conditions

J.CG/ > J.NV/

J.AI/ > J.NV/

J.NV/ > J.AG/

J.NV/ > J.CI/

hold. These inequalities give rise to the following qualitative structure among J-
values, where an arrow from outcome O1 to outcome O2 signifies that O2 has a
higher value than O1:

How can we determine the outcome values more specifically? We could, of
course, simply assign them conventionally, but we think that a better approach
would be to try to ground them in specific features of the jury process. Since J-value
is to be interpreted as a kind of epistemic value, it is not the practical consequences
of the various outcomes that are to be assessed. We can think of the epistemic value
of an outcome as the value it would have, from the point of view of an idealized
judge, to be told the corresponding verdict. Still, the practical consequences are
connected to the epistemic ones: the judge is generally obliged to follow the verdict
of the jury, so if the judge is given the verdict that the suspect is guilty, the judge has
to convict him or her, purely on basis of the epistemic situation.

This means that, from the perspective of the idealized judge, epistemic and
practical value coincide. This is fortunate for us since it means that we can identify
the J-values using decision theory. In general, utilities are determined only up
to an affine transformation, and so it should be possible to assign two of the
values arbitrarily. Interestingly, the particulars of the jury situation suggest more
structure. The Blackstone ratio says that we should prefer acquitting 10 guilty men
to convicting one innocent. What does this mean in terms of utilities? In order for
Blackstone’s principle to be interpretable at all, we have to assume that these are
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additive across cases. Thus the combined J-value of two verdicts will have to be the
sum of the J-values of the individual verdicts.

Additive quantities have a clearly defined zero, which is the value of a type of
situation S such that J.nS/ = J.S/, where nS is the occurrence of n instances of S.
In our case, NV is such a situation: it gives the judge no information at all and two
verdicts, both of which are uninformative, contain exactly the same information as
one. Therefore, we may set J.NV/ D 0.

We still have the freedom to choose a scale for J-value arbitrarily. For reasons of
mathematical simplicity we settle for J.CI/ D �10. Using this value, together with
the Blackstone ratio, we may draw the conclusion that the value of AG must be such
that

J.CI/ < 10 J.AG/:

Since we assumed J.AG/ < J.NV/, it follows that J.AG/ must be between 0 and
�1. Given the intuitive disvalue in acquitting the guilty, we set J.AG/ to �1. While
this is tantamount to judging that convicting the innocent is exactly as bad as letting
10 guilty men go, it only constitutes an infinitesimal deviation from the Blackstone
principle.

J.CG/, the value of a correct conviction, is difficult to assess, and there seems
to be little empirical work upon which one could rely for guidance. J.CG/ should
certainly exceed J.NV/, the value of not arriving at a verdict, but how it should
relate to J.AI/, the value of an innocent acquittal, seems impossible to determine on
an a priori basis. Indeed, the literature contains arguments for J.CG/ > J.AI/ (Tribe
1971) as well as for J.CG/ < J.AI/ (Milanich 1981), and even for J.CG/ � J.AI/
(Connolly 1987).

Since we have assumed additivity, there is an alternative way in which we
characterize J.CG/. Let n be the total number of guilty suspects sent through the jury
system for which a verdict is reached, and let c and a be the number of convictions
and acquittals, respectively. By definition, we have n D c C a. The value J.CG/ can
be calculated as the limit, as n ! 1, of the ratio

� D � c

a

such that one should be indifferent between .a/ adopting the jury system in question
and .b/ not making any verdicts at all. In short, � records the number of guilty
convictions it takes to undo the disvalue of one guilty acquittal.

One J-value remains to be assessed: J.AI/, the value of acquitting the innocent.
We have already decided upon a degree of reasonable doubt. As it turns out, this
degree in conjunction with the other J-values are sufficient to fix J.AI/ as well. To
be rational, any juror should vote for conviction whenever the expected utility of
doing so is greater than that of acquittal. Letting p be the juror’s credence in the
suspect’s guilt, we should therefore have that
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p J.CG/C .1 � p/ J.CI/ > p J.AG/C .1 � p/ J.AI/

iff p > 0:9. From this we derive that we therefore must have J.AI/ D 9� � 1.
Collecting our findings, we get the following table of J-values for the various

outcomes:

Suspect

Verdict Guilty Innocent

Conviction � �10
No verdict 0 0

Acquittal �1 9�� 1

Setting � to 1, we get J.AI/ D 8, corresponding to an assessment according to
which each correct acquittal is as good as 8 correct convictions. For J.AI/ D J.CG/,
we need to set � D 1=8. A lower value produces assessments for which a correct
conviction is better than a correct acquittal. However, such low values of �make the
value of a correct conviction, as compared to an incorrect acquittal, strangely low,
as pointed out in Connolly (1987).

Finally, the asymmetry between guilt and innocence means that the ratio of
suspects who are actually guilty to those who are actually innocent will influence the
result. Unfortunately, this is a figure which is extremely hard to assess in the present
context. Despite its imperfections, the legal process is the best source we have for
assessing the ratio in question. However, that source is unavailable in the present
context because it is precisely the legal process that is currently under scrutiny.
As an approximation, however, we may use the conviction rate, i.e. the percentage
of cases brought to a jury which finally lead to conviction rather than acquittal.
While this number varies from country to country, and also varies depending on
the type of crime in question, it lies around 80% both in the U.S. and the U.K.
(United States Courts 2010; Ministry of Justice 2011) Even if the actual number
of guilty defendants deviates from this number, we have no evidence to suggest
that such deviation would vary systematically in either direction. Given our limited
knowledge, using 80% as an approximation of the percentage of guilty defendants
seems to be at least a reasonable option.

4 Simulations Based on J-Value

We instructed the simulation program Laputa to compute, for each jury size, the
average expected J-value over 1,000,000 juries of that size, each deliberating for
15 steps (“round table discussions”), with � set to 1. We refer to such an expected
value, for n jurors, as EŒJn�. Running the simulation, we get the graph depicted in
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Fig. 1 Expected J-values of different majorities and number of jurors

Fig. 1 (with number of jurors along the x-axis, and the resulting expected J-value,
for different majority sizes required, along the y-axis).

The addition of more jurors clearly increases the J-value, at least for >50 %
and 70% required majority. When we require a 90% majority, the difficulty of
getting a conviction means that fewer deliberations will lead to a verdict, and since
this has a J-value of 0, the expected J-value will go to 0 as well. For a >50 %
required majority, adding more jurors makes the J-value approach 2.4, which is the
theoretical maximum for the case where 80% of the defendants are actually guilty
and � D 1. For a 70% required majority, the maximum seems to lie around 2:0.
As we see, the advantage of adding more than 15 jurors should, in many cases, be
negligible. One curious feature of the data is the “sawtooth” appearance of all curves
in Fig. 1. We can explain this effect as follows. A>50 % required majority translates
into a bigger majority required for a jury with an even, as opposed to an odd, number
of jurors. With a 2-member jury, the only way to achieve >50 % majority is through
unanimity, whence there will be fewer verdicts than with just a single juror. For 4
members, it translates into 75%, while for 5, it requires only 60%. Hence, there
will be fewer verdicts for an even number of jurors. Since the J-value of no verdict
is zero this will tend to decrease the expected J-value for cases involving an even
number of jurors, thus accounting for the sawtooth appearance of the curve.

To substantiate this hypothesis, the probability of not reaching a verdict can be
measured using Laputa. The results are given in Fig. 2.

As expected, higher requirements on majorities give rise to a greater probability
of not reaching a verdict. What may not be quite as expected, however, is that this
probability decreases as the number of jurors is increased, in sharp contrast to what
would be the case if the inquirers voted independently.

Our results so far indicate that no more than a>50 % majority should be required
for a conviction, even in criminal cases. We may further strengthen the support
for this conclusion by showing that it holds independently of the proportion of
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Fig. 2 Probability of NV for different majorities and number of jurors

Fig. 3 Expected J-values when defendant is innocent

defendants who are actually guilty in relation to all defendants. In Fig. 3 we have
plotted the same data as in Fig. 1 under the assumption that no defendants are guilty.

Apart from the maximum J-value being 8 (the value of a correct acquittal) in this
case the curves are almost indistinguishable from those in Fig. 1. This adds further
support to the validity of our method since, as we noted, the proportion of actually
guilty suspects is difficult to approximate in a non-circular manner.

Altering the parameters so that � D 0:125 D J.AI/ and rerunning the
experiments gives the results presented in Fig. 4.

Here the scale is different and the maximum expected J-value attainable is 0:125
rather than 2:4. Apart from this, the graph is reminiscent of the one preceding it.
The main difference lies in the fact that, when � D 0:125, a very small number of
jurors tends to give negative J-value, whereas a jury with a single juror (or with three
jurors, in case we require only >50 % majority) is worse than no jury at all. This
is due to the fact that, as � decreases, correct convictions begin to affect the result
more than correct acquittals. Since voting for conviction requires greater certainty
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Fig. 4 Expected J-values for � D J.AI/ D 0:125

than voting for acquittal, there will always be fewer correct convictions than correct
acquittals. Making the latter count for less will therefore make it harder to offset the
cost of incorrect verdicts.

There are several reasons why adding more jurors is beneficial to jury compe-
tence. One of them is that since more jurors means more results of inquiry, and
these results get communicated to the whole jury, everyone will be better informed.
But there is also the factor that, generally, discussion tends to strengthen everyone’s
held opinions, and thus push their beliefs farther into certainty territory. Thus, after
the deliberation process, more jurors will be willing to vote for guilt, reducing
the number of unsuccessful attempts to reach a verdict as well as the number of
erroneous acquittals.

The fact that discussion itself tends to strengthen prior opinion is obvious when
a juror hears his or her own view echoed by the other jurors. But even hearing
a divergent view can strengthen a juror’s prior opinion, if he or she is willing to
attribute the divergence to a general lack of credibility or even distrust on the part of
the juror expressing the contrary opinion. For example, when a juror is convinced
that g, hearing that not-g from some other juror may be interpreted by the first
juror, via his or her trust function, as evidence to the contrary. This follows from the
Bayesian treatment of trust used in Laputa and is, we believe, in accordance with
human psychology.

5 Calculating the Optimal Jury Size

Since, at least in the case of a >50 % required majority, the addition of further
jurors is conducive to epistemic jury competence, the question of an optimal jury
size will have to involve a weighing against other values. While economy is an
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obvious value that may need to be given due weight, there are further values that
concern the judicial process without being epistemological in kind. For instance, it
is of interest for the defendant as well as the prosecutor that the trial proceeds as
quickly as possible, and a greater number of jurors tends to slow down the process.

To simplify the problem, we will assume that the combined costs of adding more
jurors are linear for each round of deliberation. When it comes to economic costs,
this is probably indeed the case. With regards to other types of cost, it may at least be
an admissible approximation. Let c be the non-epistemic disvalue of adding another
juror; thus the total value of adding n jurors will be �nc. The interesting case will be
when c > 0, as this will require an actual weighing of J-value against other values.

There is of course an extensive literature in value theory and economics about
how to weigh or combine values.8 A central theorem in this context was proved by
Harsanyi (1955): when combining independent utilities, each of which satisfies the
von Neumann-Morgenstern axioms, the only consistent choice is to use a weighted
sum. We have already assumed J-value to be such a utility, and in the absence of
any other well-developed theory of value, it is reasonable to take non-J-value to be
in this class as well. Since we are only combining two forms of value, the weighing
will be determined by a single number w D wc=wJ, where wJ is the weight attached
to jury value, and wc the weight attached to other values. But this means that we
can simply include w in c by measuring non-J-value using the same scale as J-
value, so the total expected value of a practice, when applied to n persons, will be
V.n/ D EŒJn� � nc.

This is applicable primarily when the majority required is 50%. For higher
majorities, the probability of NV becomes significant, and each such verdict also
carries the costs of another round of deliberations, so the full formula would be
given by the equation

V.n/ D EŒJn� � nc C P.NV/ V.n/

which can be solved to yield

V.n/ D EŒJn� � nc

1 � P.NV/

The probabilities P.NV/ were given in Fig. 2 above. In order to be able to
calculate a maximum, we need to represent both these functions and EŒJn� as a
continuous and differentiable. This will, of course, involve a conventional choice on
our part of which function to use. Among the usual functions available, those of the
shape

A C BeCnCD

8See, for example, Keeney and Raiffa (1976) and Broome (1991).
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Fig. 5 EŒJn� and J�.n/ for 50% majority

Fig. 6 Optimal Jury sizes depending on cost of adding a new juror

turn out to approximate the functions we want to model best. Fitting such an
exponential functions to the data points of the >50 % required majority series of
Fig. 1 gives a function

J�.n/ D 2:4 � 1:1753 e�0:2150n

with a root mean square error of 0.075. We have plotted both EŒJn� and J� in Fig. 5.
Using J� and similar continuous approximations of the J-value, we can find the

optimal jury size by a simple optimization. Differentiating V.n/ with respect to n
and setting this to zero to find the maximum, for each possible cost c of adding a
single juror, gives Fig. 6.

We have assumed that there has to be at least one juror. With a 90% majority
required, this is also the best number of jurors to have. For 70% and 50% majorities,
the optimal number depends on c. For example, if the addition of a single juror has
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practical disvalue equal to a hundredth of the value of obtaining a correct conviction,
i.e. c D 0:01 (remembering that we have assumed � D 1), a 50% majority system
is best served by having around 15 jurors, and a 70% majority system by having
around 18.

As in the case of �, the determination of c will depend on personal values as well
as on particularities of the specific justice system, such as the expense involved in
adding a further juror. For this reason, it may very well be the case that what jury
size is optimal differs not only between different countries but also within the courts
belonging to one and the same country. What the present model gives us is a way to
calculate such optima in a way that depends on these particular circumstances.

6 Discussion

In this section, we first discuss the consequences of our model, and second, explain
how our modelit can be seen as generalizing generalizes Hintikka’s model of
interrogative inquiry (IMI) in certain respects. As we noted, several legal theorists
have proposed to use formal decision theory for the purposes of investigating the
jury process (Kaplan 1968; Connolly 1987; Arkes and Mellers 2002). Such attempts
were severely criticized in Tribe (1971) for illegitimately disregarding the ritual
aspects of a trial. This objection may indeed be well-founded so long as the purpose
of a formal treatment is to replace the jury system, in this case with one based on
decision theory. The purpose of our study is not to replace judicial procedure but to
suggest possible ways in which that procedure could be improved.

For instance, our study indicates that requiring more than 50% majority should
be avoided. This is a very stable recommendation which holds even if we count
an incorrect conviction as a hundred times worse than a correct one. For another
example, we suggested that having more than 15 jurors should be expected to add
little perceptible epistemic value to the deliberation process. In the same vein, we
could ask what degree of certainty should be required for a juror to vote for guilt.
In the American justice system, jurors are informed about the “beyond reasonable
doubt” requirement. In some states, they are, in addition, instructed how to interpret
it (see Diamond 1990). Such instructions could potentially be based on simulations
of the type we have been studying.

Since J-value is interderivable with the degree of certainty required for convic-
tion through eq, changing this value affects the relationship between the values of
J.CG/ and J.AI/ as well. When we allow p (the required credence in question) to
vary, we have the more general determination

J.AI/ D p.�C 1/

1 � p
� 10

of the value of acquitting the innocent, given a value of �. This is useful, since
despite the fact that people generally report 90% certainty as what they require
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for reasonable doubt, actual studies show that they tend to vote on much lower
certainties. According to Dane (1985), measuring the jurors’ value judgments and
then calculating the threshold from these results in an astonishingly low threshold
of roughly 52%. As shown in Dhami (2008), the same result is obtained even if the
jurors were told to judge the defendant innocent unless they were 90% certain of his
truth. Not only is this an excellent illustration of how badly we tend to estimate our
own degrees of belief; it also highlights the importance of doing experiments with
a wide range of parameter values, especially if we are interested in measuring the
effectiveness of actual juries as opposed to merely ideal ones.

If, following the findings (Dane 1985; Dhami 2008), p is set to 5%, we get the
following relationship between � and J.AI/:

J.AI/ D 13� � 107
12

From this it follows that as long as � � 8 3=13, J.AI/ will be positive, and at
� D 107, J.CG/ and J.AI/ will be equal. The resulting expected J-values for the
latter case are given in Fig. 7, for the majority amount of 50%.

The shape of the curve is certainly similar to the shape of the >50 % required
majority curve in the earlier figures, which means that our choice of an inverse
exponential function as an approximation for use in the optimization problem
remains valid.

However, because of the connection between p and �, it is hard to compare
cardinal values with the case p D 0:9. At first sight it might, for instance, seem
like setting p D 0:52 would be much better than setting it at 0:9, since the expected
J-values are significantly higher for each possible number of jurors. But which part

Fig. 7 Expected J-values when p D 0:52
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of this increase is caused by lowering p and which part is caused by increasing the
values of CG and AI? There seems to be no way to separate these factors.9

So what if we were not to adjust �, but only p? This would give us J-
values in the same interval as before, but it would mean that we require jurors to
systematically contradict decision-theoretic rationality. It also would not solve the
fundamental problem: subjective probabilities and values are conceptually linked, so
an adjustment of probabilities is generally impossible unless we adjust our values
as well (cf. Jeffrey 1990).

It is important to see why this does not affect the conclusions we have reached so
far: we have only compared jury methods using the same J-value assignments to one
another, and in these cases the method we have given for calculating the optimal size
of a jury remains valid. The difficulty arises only when we try to evaluate scenarios
not only on the basis of the values the jurors have, but also on the basis of the values
the jurors should have. Then it seems that we would need some kind of second-order
value judgment which might be difficult to elicit in an objective manner.

Now for the second topic in this discussion. Let us explain why we consider
our model to be a generalization, in certain respects, of the interrogative model
of inquiry. In Hintikka’s ‘standard model’, a lone inquirer attempts to answer
some principal research question, using her background knowledge, and answers to
instrumental questions. The model essentially deals with the case of pure discovery,
“a type of inquiry in which all we need to do is to find out what the truth is [and] we
do not have to worry about justifying what we find” (Hintikka 2007, p. 98). In such
cases, inquiry terminates when the inquirer’s background knowledge, together with
the answers to instrumental questions she has gathered, implies deductively one
of the answers to the principal question. The IMI illuminates the strategic role of
deduction in the selection of questions and how the goal of inferring deductively
an answer from strengthened assumptions guides the selection of instrumental
questions.

Jury deliberation, as modeled here, departs from pure discovery in at least
two respects. The first concerns an assumption of restricted evidence. Evidence is
essentially restricted to what transpired in court. In IMI terminology, at the time
of deliberation, it is neither neither possible to ask new instrumental questions, nor
to obtain answers to such questions previously asked. The second—the potential
unreliability of information sources—is captured by assigning a credence to infor-
mation coming from inquiry or other jurors. Simply put, jury deliberation, unlike
pure discovery, requires taking into account information which is both incomplete
and uncertain.

While the IMI already accommodates reasoning from uncertain answers, it does
so by either introducing probabilities, attached to uncertain answers, as reflecting
their relative justification (Hintikka 1987), or by introducing means to disregard

9It is, of course, always possible to scale the J-values so that they have the same maximum and
minimum, thereby achieving an illusion of compatibility. But without an independent argument for
why these maxima and minima should be the same such an approach seems woefully ad hoc.
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(possibly provisionally) some background assumptions or instrumental answers
when their justifications are questioned (Hintikka et al. 2002; Genot 2009). Thus
there is a sense in which IMI, unlike the present model, pays attention to the “finer
structure of reasons”. A common feature of these mechanisms, though, is that they
encapsulate information about the sources of these answers. It has been argued that
tracking multiple sources, IMI style, can in particular account for reasoning patterns
that prima facie violate Bayesian rationality (Hintikka 2004), or vindicate some of
the controversial axioms of AGM-style belief revision in some contexts, but not in
others (Genot 2009).

An approach to jury deliberation based on the above mechanisms is possible in
principle, but would in practice require tracking the many parameters that contribute
to a single juror’s epistemic evaluation. Our model represents this the step using only
three parameters: the (current) credence assigned to the proposition that the accused
is guilty, the (current) self-assessment of reliability, and the (current) assessment of
other jurors’ reliability. These three parameters allow us to abstract from the finer
structure of reasons in the case of individual reasoning, but it is presumably more a
change in the level of process description, than a true divergence between models.

Abstracting from the details of the process by which jurors arrive at possibly
uncertain answers to the principal question of guilt allows us “zoom out” to features
that are specific to the multi-agent case, and to represent them explicitly. Simply
put, one juror’s preliminary answer to the principal question, at a given stage of
deliberation, is at the next stage publicly announced, and becomes for all jurors
part of the evidence to consider. New items of evidence are considered in the light
of the trust one has in their sources (modeled by a trust function), and the total
information is aggregated into a new preliminary answer, and a new assessment of
trust. Hence, our model remains, we believe, compatible with the main tenets of
Hintikka’s interrogative model. In addition, it also genuinely generalizes Hintikka’s
model to the multi-agent case, and is to our knowledge the first systematic attempt
at proposing and implementing such a generalization formally.

7 Conclusion

We have given a Bayesian model of deliberating juries for the purpose of studying
the effect of jury size on group competence. We introduced the notion of J-
value which takes into account the unique characteristics, asymmetries and values
involved in jury voting. Our simulation results indicate that requiring more than
a >50 % majority should be avoided. Of the jury systems currently in use, it
seems that only the Scottish system does not require more than a >50 % majority.
The British system, by contrast, requires a 10–2 (or 83%) majority, whereas the
American prescribes unanimity. A further result of our study is that while it is in
principle always better to have a larger jury, given a required majority of>50 %, the
value of having more than 12–15 jurors is likely to be negligible. More specifically,
the optimal size of a jury appears to depend logarithmically on the non-epistemic
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cost of adding another juror. The Scottish system could potentially be further
motivated by setting the value of a correct conviction to be the same as the disvalue
of an incorrect acquittal, and the disvalue of adding a further juror to be a tenth of
the value of a correct conviction. However, when different values are considered,
different jury systems emerge as optimal.

These remarks are meant to be little more than suggestive hints as to how our
approach could be relevant in practical cases. The extent to which our results
apply to actual jury systems is an open question that we hope to be able to pursue
in future work. Such an investigation would presumably involve addressing two
limitations of our study. One concerns the fact that a jury trial is naturally divided
into two stages: one stage at which the jurors listen to evidence presented at the
court proceedings, and another at which they engage in closed room deliberations.
It would be interesting to try to mimic these two stages in future simulations. A
second limitation has to do with the problem of freeriding. Forming an independent
judgment as to whether or not the defendant is guilty requires the weighing of
evidence for or against the proposition in question, which in difficult cases can be a
time and resource consuming activity. It is therefore attractive for a juror to decide to
rely on the judgment of the other jurors rather than to form an independent opinion.
If every juror delegates responsibility to the others, we have a serious freeriding
problem, which may make the jury unable to reach a reliable majority verdict.
Conceivably, as the size of the jury grows, the temptation to free ride increases, thus
negatively affecting group competence. Various measures can be taken to counteract
this mechanism of social psychology, e.g. regularly reminding the jurors during the
deliberation process of the great responsibility involved in serving in a jury, the
importance of making an independent assessment and the dangers of group think.
Our model as presented presupposes that such steps have been successfully taken.
However, it might be interesting to take a more general strategy where the possibility
of freeriding is part of the model.10
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Inquiry, Refutations and the Inconsistent

Can Başkent

Abstract In this paper, I discuss the connection between Lakatosian method of
proofs and refutations, Hintikkan models of interrogative inquiry and paraconsis-
tency. I bridge these different schools with dialectic, and their underlying reliance
on the inconsistent.

Keywords Lakatos’s proofs and refutations • Hintikka’s interrogative models of
inquiry • Paraconsistency

1 Introduction

In this paper, I argue that Lakatos’s methodology of scientific research programs
as exemplified in Proofs and Refutations and Hintikka’s interrogative models of
inquiry share various epistemic and logical qualities. I furthermore claim that
paraconsistency is one of such qualitative similarities between the Lakatosian and
the Hintikkan research programs even though neither of the philosophers was
explicitly committed to this view.1

The organization of this paper is as follows. First, I discuss the epistemic
and methodological similarities between Hintikka’s inquiry and Lakatos’s research
program. Then, I analyze those similarities from the view point of inconsistency-
tolerant, paraconsistent logical approach.

What I claim here does not reject Lakatos’s or Hintikka’s results, but it questions
the choice of underlying logic (which is the classical logic) which they used in
their frameworks. My arguments unearth the hidden logical commitments of both
philosophers, which I think is evident in their works but not widely discussed.

1It is important to note that Hintikka recently made some suggestions to combine IF logic – which
does not entirely fall within the scope of this paper – with paraconsistent logics (Hintikka 2009;
Carnielli 2009).
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I am not directly arguing that both philosophers favor inconsistency-tolerant logics.
Instead, I claim that their methodological frameworks make me question their
commitment to classical logic, and that their systems have some aspects that
intrinsically admit paraconsistency.

I now start with reviewing Lakatos’s and Hintikka’s frameworks from inconsis-
tency – tolerant point of view.

2 Hintikka and Lakatos

Hintikka’s model of interrogative inquiry is a well-known example of a dynamic
epistemic procedure that results in knowledge increase. Simply put, in an interroga-
tive inquiry, the inquirer is given a theory and a question. He then tries to answer
the question based on the theory by posing some questions to nature or an oracle. In
an interrogative inquiry, the inquirer has two options. He is allowed to ask questions
to nature/oracle, conceived as a truthful source of information, or alternatively draw
conclusions by using the given base theory and the answers he has already received.

The interrogative models of inquiry has largely been studied by the Helsinki
School, and the major arguments of this research program can be found in a series of
articles (Hintikka 1984, 1987, 1988, 2007; Hintikka and Harris 1988; Hintikka et al.
2002; Halonen and Hintikka 2005; Garrison 1988; Genot 2009). Recently, Carnielli
studied the connection between interrogative models and paraconsistency, which
also influenced the current paper (Carnielli 2009). Carnielli, after Hintikka’s recent
sympathy towards paraconsistency (Hintikka 2009), remarks that “the problem
of coping with contradictory information belongs to interrogative games”, which
seems to agree with our perspective in this work (Carnielli 2009).

The procedure that interrogative inquires follows is simple. Yet, it admits some
hidden assumptions that are not widely discussed. The first hidden assumption
of Hintikkan inquiry is its reliance on classical logic and its rules of derivation.
However, the epistemic procedure of interrogative inquiry does not require such a
commitment to classical logic by- and in-itself.

In order to illustrate our argument, consider the following aspect of inquiry. In
inquiry, players are allowed to bracket out some answers to eliminate them from the
procedure if they think those answers are not relevant or do violate the consistency
of the system. Hintikka writes:

An important aspect of this general applicability of the interrogative model is its ability to
handle uncertain answers – that is, answers that may be false. The model can be extended
to this case simply by allowing the inquirer to tentatively disregard (“bracket”) answers
that are dubious. The decision as to when the inquirer should do so is understood as a
strategic problem, not as a part of the definition of the questioning game. Of course, all
the subsequent answers that depend on the bracketed one must then also be bracketed,
together with their logical consequences. Equally obviously, further inquiry might lead the
inquirer to reinstate (“unbracket”) a previously bracketed answer. This means thinking of
interrogative inquiry as a self-corrective process. It likewise means considering discovery
and justification as aspects of one and the same process. This is certainly in keeping with
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scientific and epistemological practice. There is no reason to think that the interrogative
model does not offer a framework also for the study of this self-correcting character of
inquiry.
(Hintikka 1962, p. 3)

In an earlier paper, I focused on the epistemological redundancy of bracketing in
Hintikkan inquiry where I argued that the existence of inconsistencies is natural (and
even desirable) in a dialogical inquiry. Yet, we can still make meaningful deductions
under the presence of inconsistencies rendering the working system a paraconsistent
one (Başkent 2014). Other problems of the bracketing in Hintikkan inquiry include
epistemic, game theoretical and heuristic problems where the heuristic issues are
quite central also for Lakatos.

Epistemically, there seems to be a major problem in bracketing. In an inquiry
or a dialogue game, how can we know which answers to ignore beforehand? How
can we know what to reject or accept? This epistemic problem empties the notion of
bracketing. In other words, if inquiry is a procedure during which we want to acquire
and learn some information, this implies that we did not have that information
before. In an epistemic inquiry, we are supposed to be searching and looking for
some information that we did not have before. We cannot discard some responses
in favor of or against some questions or propositions – simply because we do not
know the answer. If we knew, we would not ask.

A game theoretical response can be given to eliminate this problem, arguing
against my point. Namely, in an inquiry, we simply choose the assumptions and
responses that help us win the game. If we can win the game with a particular set
of assumptions, then we adopt these assumptions as they give us a win. If we fail to
win the game with that particular set of assumptions and the previous answers we
received in the inquiry, we simply select another set of assumptions and answers,
and keep playing, and repeat the procedure if necessary.

However, this objection undermines the agency of the players. In a game
theoretical setting, each player follows a strategy to choose their moves. By
definition, a strategy is predetermined and preset before the game based on some
understanding of rationality and players’ priors (and perhaps some probabilistic
calculus). Borrowing the concepts of traditional game theory, therefore, a player’s
strategy considers all possible ways of plays for the opponent, and includes ways to
respond to them (to counter-act the possible attacks). A strategy is pre-determined,
and fully inclusive of all the possibilities – at least theoretically. An unexpected
move of the opponent, a new piece of information and its consequences and many
other possibilities, should therefore be already included in the strategy, by definition.
Players decide, and set their strategy, and determine how they will play before
they start playing the game. If we allow them to exercise their choice of moves
based on their a posteriori success, that means that they did not have an a priori
strategy before the game-play. Simply put, a game theoretical player is rational, and
constructs a strategy based on his priors, as opposed to deciding how to play during
the game. Therefore, such an objection clashes with the basic definition of a strategy
– a function that tells the player which move to make at each state based on what
moves the other players have made (Başkent 2011).
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Finally, bracketing suffers from various central problems from a heuristic point
of view. First, let us remember the Lakatosian concept of “proofs that do not
prove” which is directly relevant and helpful to our investigation. Lakatosian
methodology of proofs and refutations, as exemplified in Proofs and Refutations
for instance, discusses the significant roles of (unsuccessful) thought experiments,
informal proofs and unsound deductions in mathematical reasoning among many
other things (Lakatos 1979, 2005; Başkent and Bag̃çe 2009). “Proofs that do not
prove” are the proofs that are wrong in some ways, yet help us develop better
proofs or improve the current false proof. Lakatos discusses this idea in detail,
and explains its role in concept formation with many historical examples. For
Lakatosian epistemology, in an evolutionary and practice based sense, mathematical
concepts develop, improve and then they are falsified, proven and disproven along
their conceptual development. Mathematical activity continues, and the concepts are
redeveloped, the proofs are re-examined. In short, “proof attempts” help us improve
the proofs. However, if we bracket “proofs that do not prove”, we risk the growth
of (mathematical) knowledge, and lose the opportunity to learn from our mistakes
(Başkent 2014).

I already discussed the above points in an earlier work (Başkent 2014). Now, my
focus is the self-correcting character of inquiry which bears some similarities to
Lakatosian methods that include informal proofs, thought experiments and quasi-
empirical view of mathematical activity, bridging the two as we shall see.

In my understanding, what Hintikka alludes in the above lengthy quote is that
a scientific theory revises itself to exclude inconsistencies or incoherencies, and
interrogative inquiry, as a special case of this phenomenon, follows a similar
procedure. In Hintikka’s perspective, this is the point that prevents him from being a
pluralist logician – disallowing multiple conclusions in the deductive relation of the
logic he uses. In short, whenever there seems to be a problem within the theory, the
theory utilizes its own internal tools to fix itself. Some call it belief revision, some
call it epistemic updates, there are various other logical methods which operate with
a similar method to achieve a similar goal (Genot 2009; Garrison 1988).

However, note that this procedure itself is paraconsistent even though it aims at
preserving the consistency at the end. Recall that paraconsistency is the umbrella
term for the logical systems where inconsistencies do not trivialize the system. In
paraconsistent systems, we can have ';:' 6`  for some '; . Dialogues can
be thought of an example of paraconsistent phenomena (Rahman and Carnielli
2000; Rahman and Tulenheimo 2009). A careful approach to terminology is in
order here. Paraconsistency is usually confused with dialetheism which is the view
that suggests that some contradictions are true. Paraconsistency is a rather proof-
theoretical approach whereas dialetheism is a semantical one. Additionally, it would
be wise to underline the fact that logicians often distinguish contradictions from the
inconsistent (Carnielli et al. 2007). For the purposes of this paper, we will assume
that contradictions create inconsistencies. We will not suggest that every inconsis-
tency is caused by a contradiction. Moreover, for the technically oriented reader,
as they will realize throughout the paper, we will refrain ourselves from explicitly
committing to a specific form of paraconsistent logic. Paraconsistent logics form a
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broad spectrum of logical formalisms motivated by various philosophical insights,
and produce relatively different mathematical results. It should be clear that our
philosophical treatment of the subject, at this stage, does not necessarily require
any explicit commitment to a specific branch or understanding of paraconsistent
school of logic, and more importantly we are, at least currently, not suggesting
a paraconsistent logic for Hintikkan inquiry or Lakatosian method of proofs and
refutations.

For Hintikka, an inquiry, in its broadest generality, can have some inconsistent
statements which might have arisen from the dialogue or inquiry, yet, we must
not include them in our deductive process. However, this means that, under the
presence of inconsistencies, we still make some meaningful deduction – even if this
deduction attempts at excluding those very inconsistencies and contradictions. We
will perhaps ignore inconsistencies epistemologically, yet, logically they are simply
there in the form of a set of contradictory answers perhaps. There can be thought
of various choice mechanisms that determine which propositions and responses we
need to include or exclude from the deductive process of the inquiry. Moreover,
the decidability of the logical system (if it is first-order or propositional) makes
a distinctive difference whether we can determine which responses to include or
exclude from the procedure in order to maintain a coherent and consistent system.
Yet, aside from the computational aspects of it and its difficulties, the very decision
of bracketing some of contradictory statements is taken under the very existence of
the same contradictory statements. This is a working paraconsistent procedure.

The crucial point here, as I underlined earlier, is that Hintikka thinks that the
system will eventually correct itself. For him, after some thought-experiments or
quasi-empirical observations, we will reach the true statements with an inquiry even
if we may have hit some inconsistencies along the way. Here, again, notice that the
very existence of the inconsistencies along the way does not trivialize the model.
Hintikka does not seem to enjoy epistemic inconsistencies, yet he does not logically
exclude them from his system in a convincing way.

A very similar issue appears in Lakatosian methodology as well. First, let us
briefly recall Lakatosian method of proofs and refutations. Lakatosian methodology
follows a simple yet well-defined road map which consists of the following
methodological steps which I borrow from Corfield (1997):

1. Primitive conjecture.
2. Proof (a rough thought experiment or argument, decomposing the primitive

conjecture into subconjectures and lemmas).
3. Global counterexamples.
4. Proof re-examined. The guilty lemma is spotted. The guilty lemma may have

previously remained hidden or may have been misidentified.
5. Proofs of the other theorems are examined to see if the newly found lemma

occurs in them.
6. Hitherto accepted consequences of the original and now refuted conjecture are

checked.
7. Counterexamples are turned into new examples, and new fields of inquiry

open up.
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As the above account identifies, Lakatos’s method of proofs and refutations is
a quite systematic account of mathematical discovery with a strong emphasis on
mathematical practice. There are various strong criticisms towards Lakatos from
mathematical angles, yet I will now dwell into them in this paper (Koetsier 1991).

One of my favorite passages of Proofs and Refutations discusses the Cauchian
revolution of rigor in mathematics versus axiomatic Euclidean methodology.

The Cauchy revolution of rigour was motivated by a conscious attempt to apply Euclidean
methodology to the Calculus. He and his followers thought that this was how they could
introduce light to dispel the ‘tremendous obscurity of analysis’. Cauchy proceeded in
the spirit of Pascal’s rules: he first set out to define the obscure terms of analysis - like
limit, convergence, continuity etc. - in the perfectly familiar terms of arithmetic, and then
he went on to prove everything that had not previously been proved, or that was not
perfectly obvious. Now in the Euclidean framework there is no point trying to prove what
is false (My emphasis), so Cauchy had first to improve the extant body of mathematical
conjectures by jettisoning the false rubbish. (. . . ) What was considered by the rigourists to
be hopeless rubbish, such as conjectures about sums of divergent series, was duly committed
to the flames. ‘Divergent series are’ wrote Abel, ‘the work of the devil’. They only cause
‘calamities and paradoxicalities’. (. . . ) The idea of a proof which deserves its name and still
is not conclusive was alien to the rigourists.
(Lakatos 2005, p. 137, footnotes are omitted)

Even though the above quote is taken from a discussion which is quite different
than ours, it is still clear that Lakatos endorses the importance of contradictions for
the increase of mathematical knowledge. The legitimate presence of such “paradoxi-
calities” do not collapse or trivialize the system. For Lakatosian methodology, under
these circumstances, mathematicians still prove theorems – even sometimes with
“proofs that do not prove” or with informal proofs. The existence of contradictions is
therefore central for Lakatosian methodology to operate. At the end, contradictions
perhaps are not included in the final theory for various metaphysical commitments
that I shall not discuss here, yet, during the course of their development, the
contradictions are appreciated and acknowledged, and perhaps even expected and
desired in Lakatosian methodology.

There can be suggested various ontological and epistemological reasons why
contradictions, thus inconsistencies, are carefully excluded from the final theory. To
the best of my knowledge, neither Lakatos nor Hintikka discusses the origins of their
ontological commitment to classical Boolean logic, and the role of this commitment
in their methodology in detail. Nevertheless, this commitment does not constitute an
essential and unchangeable component of their methodology and research programs.
The dialectic and discussive nature of their methodology necessarily requires an
inconsistency-tolerant framework.

Now, going back to the similarities between Lakatosian and Hintikkan method-
ologies, one of the most important similarities between Lakatosian method and
Hintikkan method becomes obvious after a brief look at the aforementioned
road-map of Lakatosian methodology: Lakatosian methodology is also a self-
correcting inquiry under the presence of inconsistencies. As we observed, for
Hintikkan methodology that is an important aspect of an interrogative inquiry.
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For Lakatos, similarly, the process of mathematical discovery corrects itself by
dealing with counter-examples, proofs that do not prove and similar anomalies
and monsters. Lakatos goes further and introduces various methods for the self-
correcting procedure. He employes three main strategies to implement the method of
proofs and refutations: monster-barring, exception-barring and lemma incorporation
(Başkent 2012).

The method of monster-barring deals with the objects which are not in mind
when the conjecture is first suggested. The method of exception-barring accepts
that the theorem in its stated form is not valid due to the emergence of some
genuine counterexamples targeting the correctness of the theorem itself. Lemma
incorporation depicts the way we turn the counterexamples into new examples, and
how those new examples are helpful for the modified and re-formulated version
of the theorem. Note that even if these methods try to maintain a consistent
and coherent logical system for the theory, in an a priori fashion they accept
inconsistencies first, and go on with further deductions in a coherent way – this
is what makes this system paraconsistent. Proofs and Refutations provides various
cases and examples for Lakatosian reasoning with inconsistencies. In Proofs and
Refutations various contradictory situations are discussed, solved, discussed again
and resolved.

Now, Hintikka alludes to similar notions when he considers the Socratic method
of elenchus: it is a dialogue, it is dialectic and there is a strategic component similar
to Lakatos’s. In Hintikka, the strategic and game theoretical elements are clearer and
carefully underlined.

Another main requirement that can be addressed to the interrogative approach - and indeed
to the theory of any goal-directed activity - is that it must do justice to the strategic aspects
of inquiry. Among other things, it ought to be possible to distinguish the definitory rules of
the activity in question from its strategic rules. The former spell out what is possible at each
stage of the process. The latter express what actions are better and worse for the purpose of
reaching the goals of the activity. This requirement can be handled most naturally by doing
what Plato already did to the Socratic elenchus and by construing knowledge-seeking by
questioning as a game that pits the questioner against the answerer. Then the study of the
strategies of knowledge acquisition becomes another application of the mathematical theory
of games, which perhaps ought to be called “strategy theory” rather than “game theory” in
the first place. The distinction between the definitory rules - usually called simply the rules
of the game - and strategic principles is built right into the structure of such games.
(Hintikka 2007, p. 19)

The terminology and the context are different between the Hintikkan inquiry and
the Lakatosian method. Yet, as the above quote illustrates, the strategic element is
obvious in both. Additionally, there is another underlying tone of paraconsistency
in elenchus, yet, in order to maintain our current focus, we will not dwell on this
connection in this work (Carnielli 2009).

Lakatosian and Hintikkan methods share various qualities including their
reliance on inconsistency. Yet, I need to argue somehow more on their understanding
of inconsistency. I will achieve it in the next section.



64 C. Başkent

3 Hintikka, Lakatos and the Inconsistent

In another work, I argued that Hintikka’s approach to inquiry in his interrogative
models is misleading in excluding inconsistencies. I claimed that inconsistencies
are epistemically central for knowledge increase in dynamic epistemic procedures
such as dialogues and dialectics (Başkent 2014).

A similar approach can be taken to analyze the Lakatosian methodology in the
context of philosophy and methodology of mathematics. For this, we first need to
remember the dialectical roots of Lakatosian method of proofs and refutations (PR,
for short), and then the intrinsic relationship between dialectic and paraconsistency.
In short, I will claim that Lakatosian methodology, via dialectic, is paraconsistent in
nature – even though Lakatos himself did not make such a claim. Moreover, what
renders Lakatosian philosophy paraconsistent also applies to Hintikkan method of
inquiry. Let me now elaborate.

The relationship between PR and dialectic has been pointed out earlier by
several authors (Kiss 2006; Kvasz 2002). For Lakatos, to improve the proof and
the theorem, we need counter-examples and disproofs or proofs that do not prove.

Proofs that do not prove hint out an essential element of Lakatosian method of
PR. For increase in knowledge, to improve the theorem and its proof, to revise the
theory, we indeed rely on a proof that does not prove what it is set out to prove.
In Lakatosian method, proofs are generally examined by raising counter-examples
to them which in effect create a contradiction, thus an inconsistency. The proof
is put forward, then after some quasi-empirical testing, some counter-examples
are developed. At this moment of the method of PR, the method itself admits an
inconsistency. Alas, PR chooses a strategy in which the proof, the proof that does not
prove, is revised and improved. Granted, Lakatos strives to achieve consistency and
coherence by his method. Any application of the method of proofs and refutations,
with its negative and positive heuristics and protective belt, aims at a consistent and a
coherent theory. I call this the meta-logical commitment of Lakatosian methodology.
In other words, Lakatosian methodology is not committed to paraconsistency or
dialetheism for that matter. Nevertheless, it needs inconsistencies to operate at the
object level. They can be counter-examples, they can be various components of
the theorem, their lemmata or their concepts which create an inconsistency. In
Lakatosian methodology, when the proofs do not work as intended, it is not because
of a simple error. Lakatos details them carefully in his work (Lakatos 2005, 1979).

What the method of proofs and refutations suggests as a next step after coming
across to inconsistencies is not a counter-argument to my claim that Lakatosian
methodology is paraconsistent in essence. The reason is quite simple. The decision
to revise the theory by using the method of proofs and refutations (and more
importantly to determine the specific ways to achieve this revision based on
the mathematical object theory at hand) is taken under the very existence of
inconsistencies. I argued along these lines earlier.

Another way of looking at this issue is to investigate the dialectic roots of
Lakatosian method. As mentioned in Corfield’s outline of the method of proofs and



Inquiry, Refutations and the Inconsistent 65

refutations (Sect. 2), the occurrence of counter-examples is an indispensable aspect
of the method of PR. We can see the counter-examples as anti-theses where the
initial proof attempts and immature theorems are the theses. Then, the Lakatosian
dialectic operates and produces a synthesis using both thesis and anti-thesis. Lakatos
himself often explicitly employs Hegelian method in his work as well (Lakatos
2005, p. 145–6).

However, the very same Hegelian method is paraconsistent. The observation
that dialectic is a paraconsistent methodology can be traced back to Hegel himself
(Ficara 2013; Kvasz 2002; Priest 1989). The core idea, as we already applied to
Lakatosian methodology, is the fact that dialectic requires the presence of contra-
dictory opinions, and operates under the very inconsistencies, yet produces a sound
output. In this paper, I will not repeat the arguments in detail as to why dialectic can
be considered as a dialetheic (and a paraconsistent) system. Yet, I will underline why
dialectic, and in general dialogical systems are paraconsistent following Jaśkowski’s
argument for discussive logics (Jaśkowski 1999). In a dialogue, assume that a player
received two answers p and :p at different times. Nevertheless, it is completely
possible that there exists a proposition q which is nowhere true in the model. Thus,
q may not be deducible under the presence of a contradiction. Therefore, for some p
and q, we observe p;:p 6` q. Thus, the dialogue is paraconsistent. It does not entail
that in all dialogues we have contradictory answers and a proposition that still does
not follow. Yet, it means that the logic we use to formalize such systems should be
in fact inconsistency-friendly. This is a call for extending the classical logic to an
inconsistency-friendly, paraconsistent logic. In a paraconsistent logic, the classical
logic can be a special case of the paraconsistent system, which serves our aim here.
The argument we presented here for logical systems applies to dialectic and to logics
that can describe dialectic reasoning as well, which after all applies to Hintikkan
inquiry and Lakatosian method of PR. Notice that we are not describing a logic of
dialectics here, instead, we use the fact that any formal system that uses dialectical
reasoning intrinsically can descriptively be analyzed within a paraconsistent logical
framework. Thus, it would not be wrong to claim that procedures and processes
that use dialectical way of reasoning fit and embed in paraconsistent logic. In short,
if the Lakatosian method has dialectic roots, and dialectic itself is paraconsistent
in nature, then the method of proofs and refutations enjoys being a paraconsistent
methodology. This argument (via dialectic) indirectly shows that Lakatosian method
of PR is paraconsistent.

Another argumentation from paraconsistent logic can also be given (Priest
and Thomason 2007). An intriguing aspect of paraconsistency is the view that it
considers the “consistent” as a special case of the “inconsistent” as I briefly pointed
out earlier.

The Euclidean conception of proof cannot characterise the history of mathematics. Lakatos’
conception of proof as a fallible enterprise, starting from things that appear to be true,
but which are subject to revision in the light of counter-examples, appears much more
plausible. (. . . ) Mathematicians and logicians are undoubtedly much more self-conscious
about formulating the starting points, their axioms. But the axioms are no infallible
epistemological bedrock. They are merely places where proof may stop, pro tem; they are
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still liable to be challenged by appropriate counter-examples. And this is just as true of the
axioms of logic as those of mathematics. The development of paraconsistent logic can be
seen as a clear case of this.
(Priest and Thomason 2007)

This line of thought constitutes another argument for the paraconsistency of
Lakatosian methodology. Namely, even if its overall goal is to establish a consistent
and coherent theory, proofs and refutations may admit inconsistencies, and the
consistent case is merely a special case for the broader inconsistency-tolerant
framework of proofs and refutations.

This establishes that the Lakatosian method of proofs and refutations is
inconsistency-tolerant and in fact paraconsistent.

�

So far, I have discussed the Lakatosian method of proofs and refutations (PR, for
short) and its relations to paraconsistency. Now, I will argue that the same elements
that render Lakatosian method paraconsistent applies to Hintikka’s interrogative
models of inquiry (IMI, for short) as well.

In order to achieve this, I will explicitly identify some of the common elements
in PR and IMI that relate them to paraconsistency and dialetheia.

• Both PR and IMI is about knowledge increase caused by (quasi-)empirical
testing.

• When the empirical test produces a contradictory result, both PR and IMI has
a constructive strategy to follow instead of rendering the model trivial, and
resetting the procedure.

• Both PR and IMI have some erotetic aspects where questions themselves are
central to the inquiry.

• Both PR and IMI are seen as activities.

Notice that the above list is not exhaustive and it can easily be applied to various
other dialogical, erotetic and discussive systems.

Let us now elaborate more on those points.

Both PR and IMI is about knowledge increase caused by empirical testing In
PR, testing the hypothesis is essential. In fact, this is the point where Lakatos’s
philosophy converges to empiricism. Lakatosian approach tests the hypothesis,
experiments on it, produces counter-examples that are directed towards the theo-
rems, the hypothesis or its concepts or definitions.

In IMI, the hypothesis or the initial question is tested by asking questions to the
oracle or nature from whom the right answers are collected. It can be argued that
the empirical aspects of IMI are not as strong as in PR. Yet, this line of criticism
mistakenly considers IMI as an analytical method where questions essentially
support the deductive procedure.

What distinguishes PR as a methodology in mathematics is its quasi-empirical
aspects that diverge from analyticity. In IMI, on the other hand, Hintikka distin-
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guishes two ways to increase knowledge. One is the deductive and analytical method
based on the previous answers obtained in the inquiry and the rules of logic. Second,
and the most important one for our purposes here, is the inquiry part where the
inquirer poses questions to the nature or oracle. This breaks the chain of analyticity,
and constitutes an empirical or quasi-empirical test. A rational inquirer would not
ask analytical or deductive questions. He simply would ask the question for which he
needs answers for. Therefore, those answers cannot be a part of his original theory.

I must emphasize that my understanding of “quasi-empiricisim” extends to
formal sciences as well. In IMI, a question to the oracle constitutes a quasi-empirical
testing if the subject matter is a mathematical theorem or a theoretical physical
result.

When the empirical test produces a contradictory result, both PR and IMI
has a constructive strategy to follow The purpose of the (empirical or quasi-
empirical) experiments in PR and IMI is indeed to test the hypothesis. In some
cases, the tests can produce some results that may contradict the hypothesis which
is being tested. This is a perfectly routine modus operandi for PR and IMI. Namely,
in questioning and in experimentation, the inquirer/tester can be wrong, and this
is perfectly understandable and expectable. Yet, from a formal perspective, this
creates, what I call, an instant contradiction. At that particular moment when the
results of the tests are received, what we have is an inconsistent system. Yet, as we
have emphasized throughout this paper, this contradiction does not render neither
PR nor IMI trivial. In fact, both PR and IMI has a well-defined strategy to follow
under such instant inconsistencies.

Both PR and IMI have some erotetic aspects Both PR and IMI posit a metaphys-
ical stand when it comes to question generation. In PR, for example, it is not clear
or precisely defined, how one can develop the right tests and quasi-experiments that
can produce the clever counter-examples. Similarly, in IMI, it is not clear how the
initial question(s) directed to the nature/oracle are formulated in the first place. Such
ontological aspects of PR and IMI fall outside the domain of this paper, yet, both PR
and IMI does not explain how those questions are generated. Question generation is
what separates PR and IMI from analytical or purely deductive procedures. Notice
that some of such questions – the ones that cause revisions or updates – cause
inconsistencies. Thus, taken as a metaphysical and formal system, PR and IMI
can produce those questions which create inconsistencies. This means that both are
inconsistency-tolerant and paraconsistent.

Both PR and IMI are seen as activities Lakatos’s emphasis on mathematics
as a quasi-empirical science and an activity can be traced throughout Proofs
and Refutations (Lakatos 2005). The broader picture of the game of proofs and
refutations points to an activity which is continuous, perhaps never ending process
of constructing, deconstructing and reconstructing the concepts, theorems and
proofs. From a dialectical perspective, PR being an activity is crucial as well.
The activity continues, concepts are dialectically formed, and de-formed, and re-
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formed ad-infinitum. Moreover, mistakes happen, theorems are falsified, concepts
are redefined. Activity also takes the form of quasi-experimentation as we already
mentioned.

�

Now, let me elaborate how the features above appear in IMI, and render it
inconsistency – tolerant.

First of all, I argue that IMI also conducts empirical testing as part of its
methodology. IMI has two methods for knowledge increasing: deduction and
questioning. In this paper, we leave the analytical discussions on deduction and
knowledge increase aside, and focus on the questioning aspect of IMI. In IMI,
questions, in fact, answers to those questions, introduce new elements to the inquiry,
furthermore these questions/answers are the only way to introduce new information.
It is an entirely different question how the answers and their data are processed,
selected or omitted in an inquiry (Hintikka 2007, p. 221). Moreover, it can also be
argued that selecting the data just to maintain the consistency cannot be incorporated
to interrogative inquiries (Başkent 2014).

However, the question – answer procedure of inquiry contains empirical ele-
ments. Even if the way that the questions are generated requires a metaphysical
commitment, the way that they are answered is empirical and a posteriori in a broad
sense. Otherwise, epistemically and game theoretically, then questioning makes no
sense – why would a rational agent ask a question whose answer does not have the
potential to bring along new information or ask an irrelevant question? Clearly, our
argument does not entail that all answers require such an empirical procedure. Yet,
our thesis simply point out that question – answer protocol allows empirical testing,
even if it may not necessitate it per se.

Second, I briefly discussed bracketing in Hintikka’s IMI as a strategy to avoid
contradictions. Either with bracketing, or instead without using bracketing and
replacing it with some choice procedure, IMI functions with contradictions. Even
if the end-result for Hintikka is ideally a consistent system without contradictions,
the very existence of bracketing acknowledges their role, existence and emergence
in IMI. Similar to Lakatos’s various methods to maintain the consistency, Hintikkan
IMI has its own slightly less sophisticated way of maintaining the consistency and
coherence of its system.

Third, the erotetic aspects of question generation is a crucial point of both IMI
and PR. However, Hintikka himself does not say much about it when it comes to
IMI. Yet, we believe, question generation in IMI is directly related to rationality of
the inquirer. Clearly, the inquirer can raise any questions that the oracle can answer
with yes/no answers. This does not rule out that the inquirer shall direct trivial or
analytical questions to the oracle. What restricts the inquirer from asking trivial
questions is the rationality element of the player, the inquirer. Assuming that he is
committed to winning the game of inquiry, the inquirer will try to ask relevant and
non-trivial questions, and try to maximize his gain from the questions. Ideally, he
will receive consistent and coherent answers. However, in reality, in an empirical or
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computationally challenging inquiry, the inquirer can receive contradictory answers,
and it is perfectly normal. Similar to Jaśkowski’s argument we mentioned earlier,
IMI admits inconsistencies (Başkent 2014).

Hintikka also discusses the probabilistic aspects of the question-answer activity
of IMI (Hintikka 1987). This portrays a bit more realistic picture of IMI, and in a
different way underlines the role of questions in IMI.

Finally, as Garrison also emphasized, Hintikkan IMI has some similarities as an
activity to Laudan and Lakatos (Garrison 1988). It can be argued that in Hintikka,
the activity aspect of the process can be most easily seen in the question formation.
After all, the deduction is straight-forwardly defined, and the only creative room
in the process is the activity of asking and forming questions. This creativity can
perhaps be overshadowed by a know-it-all oracle, and this most certainly shortens
the period of the activity. Instead of experimentation and various back-and-forth
questioning, the oracle – ideally – produces the correct answer immediately and
instantly. Nevertheless, this procedure renders still IMI as a dialog and an activity.

Notice that the activity aspect of Lakatosian PR is much more evident than
that of Hintikkan IMI, and in fact the process of PR relies on the quasi-empirical
activity as the generator of counter-examples. Yet, knowledge generation as an
activity is a quite broad approach to various formalisms, and what I have tried to
accomplish in this paper can be considered very similar to Garrison’s attempt to
unite Hintikkan IMI with Laudan’s conception of science as a problem-solving, and
question-answering activity (Garrison 1988).

In conclusion, I argued that Lakatosian PR and Hintikkan IMI share various
aspects that render both inconsistency-tolerant frameworks.

4 Conclusion

Lakatos’s and Hintikka’s methods differ on a variety of points. Yet, within the scope
of this paper, they are united on their approach to the inconsistent. However, I argued
that their reading of the inconsistent, within their own goals and framework, is
misleading, even if Hintikka later showed some interest towards paraconsistency.
In fact, both PR and IMI rely heavily on the existence of (perhaps temporary)
inconsistencies and contradictions.

The role of dialectics both in Hintikka and Lakatos is an interesting direction
to pursue, and we restricted ourselves to briefly touching to that issue. Much more
can be said, and especially in Lakatosian case studies, a more detailed outline of
Lakatosian dialectic can be given within a broader framework which goes beyond
the limits of a single research paper.

Also, more importantly, philosophers change their opinions and they revise their
ideas – sometimes paraconsistently, sometimes classically perhaps. So did Hintikka.
In Hintikka (2009), the Hintikka we read is quite different than what is represented
in this paper as he considers (even remotely) the possibility of combining IF logic
with paraconsistent logics to create a common framework.
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Finally, the ideas we presented in this paper can easily extend to broader issues
in philosophy of mathematics suggesting a paraconsistent view of the subject. We
leave such investigations to a future work.
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Jaśkowski, S. (1999). A propositional calculus for inconsistent deductive systems. Logic and
Logical Philosophy, 7(1), 35–56 (translated from the 1948 original).



Inquiry, Refutations and the Inconsistent 71

Kiss, O. (2006). Heuristics, methodology or logic of discovery? Lakatos on patterns of thinking.
Perspectives on Science, 14, 302–317.

Koetsier, T. (1991). Lakatos’ philosophy of mathematics: A historical approach. Amsterdam/New
York: North-Holland.

Kvasz, L. (2002). Lakatos’ methodology between logic and dialectic. In G. Kampis, L. Kvasz,
& M. Stölzner (Eds.), Appraising Lakatos: Mathematics, methodology and the man. Dor-
drecht/Boston: Kluwer.

Lakatos, I. (1979). Mathematics, science and epistemology. Cambridge: Cambridge University
Press.

Lakatos, I. (2005). Proofs and refutations. Cambridge: Cambridge University Press.
Priest, G. (1989). Dialectic and dialetheic. Science & Society, 53(4), 388–415 (Winter).
Priest, G., & Thomason, N. (2007). 60% proof – Lakatos, proof and paraconsistency. Australasian

Journal of Logic, 5, 89–100.
Rahman, S., & Carnielli, W. A. (2000). The dialogical approach to paraconsistency. Synthese, 125,

201–231.
Rahman, S., & Tulenheimo, T. (2009). From games to dialogues and back. In O. Maher, A.

Pietarinen, & T. Tulenheimo (Eds.), Games: Unifying logic, language and philosophy (pp.
153–208). Dordrecht: Springer.



The Heterogeneity of Mathematical Research

Jean Paul Van Bendegem

Abstract The core thesis of this contribution is that, if we wish to construct formal-
logical models of mathematical practices, taking into account the maximum of
detail, then it is a wise strategy to see mathematics as a heterogeneous entity.
This thesis is supported by two case studies: the first one concerns a mathematical
puzzle, the second one concerns Diophantine equations and belongs to mathematics
proper. The advantage of the former is that the connection with logical modeling is
pretty clear whereas the latter mainly demonstrates the difficulties one will have to
overcome. A link is made with Hintikka’s method of analysis and synthesis.

Keywords Heterogeneity in mathematics • Logical modeling • Analysis and
synthesis • Explanation

1 Introduction

In recent years enormous progress has been made in the field of the logical
modelling of knowledge and how knowledge is shared. Not only do we have
completely worked-out logics for the epistemic states of an individual agent but
also of a group of agents that can have common knowledge, that can rely on
external resources and other related properties.1 The success of these logics is to
a large extent, though not solely, determined by their applicability in computer
sciences and economical games where the notion of agent is pretty well described
and reduced to its relevant epistemic features. However, if we turn to the ‘real’
sciences then a different story needs to be told. Any real episode in the history of
the sciences is a true challenge for these logical models as so many factors enter
into the picture. In addition, the interesting part of the scientific process is not

1It is a futile attempt to present an exhaustive list of references, but let me just mention Van
Benthem (2011) as a nice overview of a major part of the field.
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so much the sharing of knowledge but the obtaining of such knowledge, i.e., the
discovery process. One might argue, and rightfully so, that for that process too,
many logics have been developed, ranging from inductive logics over abduction
logics to logics of questions (and answers) and logics of inquiry.2 Again the problem
seems to be that too many factors enter into the picture and that, as far as discovery is
concerned, all too often historical records are lacking that describe any such event in
sufficient detail. If, instead of the sciences, we now turn to mathematics then, more
or less, a similar story needs to be told unfortunately. Although one might have
hoped that mathematics is sufficiently different from the sciences so that perhaps
the task of developing logical models might turn out to be somewhat easier or more
straightforward, such is not the case.3 As an illustration, I quote here Johan Van
Benthem (2010):

In this brief note, I put together current logics of agency with mathematical activities, and
discuss what issues arise. I have no deep results to offer, and indeed, I mainly find challenges
to my own dynamic logics, rather than sweeping insights into mathematics. (pp. 278–279)

The complexity of the task is thus an important obstacle to confront and
the central thesis of this paper will be that a crucial factor that contributes to
this complexity is the heterogeneity4 of the field of mathematics that makes a
uniform logical treatment as good as impossible. Or, conversely, unless we develop
models that take into account this heterogeneity, chances seem slim for interesting
applications of dynamic (social) epistemic logics to mathematics. In addition, a
case will be made for different forms of heterogeneity that can occur, e.g., in the
search process for a proof, in the connection between theorem and proof or between
theorem and background theory, and also in the search for an explanation of a proof
or theorem. In short, heterogeneity is itself heterogeneous.

The paper is structured as follows. In the next section, the most elaborate part of
the paper, I present two problems. The first problem is a small-scale mathematical
question that stands more or less on its own, and does not require full-fledged
mathematical resources but already indicates (different forms of) heterogeneity
within one single mathematical issue. Nevertheless a lot of logical details can
be derived from this simple example as will be shown. The second problem is
situated within ‘real’ mathematics and this generates a different picture where

2The comment in the first footnote applies here as well.
3Although the relevant literature in this case is far more manageable than that mentioned in the
previous footnotes, I will nevertheless restrict myself to the work of Jaakko Hintikka relevant for
this paper and that, in first instance, are the book and the paper on the method of analysis and
synthesis, resp. Hintikka and Remes (1974) and Hintikka (2012). For a more general presentation,
see Van Bendegem (2014).
4I prefer the term ‘heterogeneity’ over ‘diversity’ because in contexts where we use ‘diversity’
it is not a priori excluded that all the items that are supposed to be diverse share some common
characteristics, whereas the usage of ‘heterogeneity’ takes into account the possibility that such
common elements need not be present or, if nevertheless they are, are deemed less important than
the differences.
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(again different forms of) heterogeneity is (are) fully present and only a listing
can be presented of ingredients necessary to enrich the logical models so as to be
applicable. These two case studies should be seen as an invitation to logicians to
try and capture these elements in their models. The third and final section discusses
some mainly philosophical consequences of the heterogeneity thesis thus inviting
philosophers of mathematics, and especially those involved with the study of
mathematical practice, ‘to join forces’. The appendix to the paper briefly discusses
a third problem that I did not include into the core of the paper as my analysis of the
problem was mistaken, a fact that I considered worth reporting.

2 Two Case Studies

2.1 The First Case Study

The first case study, as mentioned above, concerns a rather simple, self-contained,
not so challenging and straightforward mathematical problem.

Given is the following sequence:

• a0 D 0; a1 D 1; a2 D 2 and a3 D 6

• anC4 D 2anC3 C anC2 � 2anC1 � an (*)

It is required to prove that every an is divisible by n.
The status of this problem is, among mathematicians, rather clear, I would

assume: this is a nice puzzle, rather than a genuine mathematical problem, that
probably requires some ingenuity to find the answer but only presupposes general
mathematical knowledge.5 The reason why I believe I can make this claim is
because this problem was presented in a Flemish journal Wiskunde & Onderwijs
(Mathematics & Education) whose primary audience is mathematics teachers in
(mainly) secondary schools. In addition the problem has been taken from a rubric in
the journal, labelled Zoekersrubriek (a sort of problems corner).

What follows is a description of my search for a proof. I do not claim that
it is paradigmatic in any sense. The only thing I need is one possible scenario
to see what ingredients I will minimally need for such a description to be as
complete as possible.6 I have divided that search into separate episodes as each
part required a different look on the problem. This is already a first manifestation of
the heterogeneity I am referring to: as we progress in our search for a solution we

5Corresponding to a MSc degree in mathematics.
6That being said, in one of the following issues of the journal the solutions that readers had sent in
are discussed and presented. My solution corresponded to the solution presented there so it was not
a ‘bizarre’ attempt but rather what one might expect. Interestingly enough, there was a remarkable
difference: the proof presented in the journal used mathematical induction. I will come back to this
point later on in the paper.
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change strategies and end up with different questions and different methods. Let us
call this ‘type I heterogeneity’. We do not seem to be dealing with a single problem
but with a connected chain of related but sufficiently different subproblems.

The first strategy that comes to mind is to translate the condition ‘an is divisible
by n’ into a workable formula. The obvious answer is to assume that the general
form of an must then be kn:n—which leads to the equality an D kn:n—, and then
examine what properties the k’s must have. That however turns out not to be helpful
at all for the recurrence relation for the an’s becomes more complicated for the kn’s.
The reason is obvious: if we want to replace an by kn:n, anC1 by knC1:.n C 1/, up to
anC4 by knC4:.n C 4/, we will find a recurrence relation that involves both the k’s,
indexed by n, and the n’s themselves. A single unknown has now been replaced by
a set of two (related) unknowns.

The second strategy is to see whether there is a pattern to be found among the k’s
for the initial values. And that produces an intriguing picture.

Calculate the first terms of the sequence:

• a0 D 0 D 0:0, so k0 D 0 (some arbitrariness is present here, as k0 could be
anything, but let us ignore this for the moment)

• a1 D 1 D 1:1, so k1 D 1

• a2 D 2 D 1:2, so k2 D 1

• a3 D 6 D 2:3, so k3 D 2

• a4 D 12 D 3:4, so k4 D 3

• a5 D 25 D 5:5, so k5 D 5

• a6 D 48 D 8:6, so k6 D 8

• a7 D 91 D 13:7, so k7 D 13

• . . .

A few remarks are in order. One might interpret this strategy as a form of ‘career
induction’, whereby a finite number of initial cases are examined to see whether
the property, viz., the divisibility of an by n, is indeed present. However the main
object of this second strategy is not to check this property but to find indications for
a pattern in the k’s. This has an important consequence as it means that we are now
dealing with a different kind of problem: given the initial values of a particular
series, what could the general form of that series be? Notice how different this
question is from the original question where a pattern is given and one has to show
that the pattern has a particular property.

The third strategy to answer this new question is to rely on general mathematical
knowledge and, once these initial values have been calculated, I assume that every
mathematician will produce the same answer: the values

0; 1; 1; 2; 3; 5; 8; 13; : : :

are the initial values of the Fibonacci series (with or without the initial 0 but that
does not matter). If that would be the case, then we do have a pattern for the k’s,
namely
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knC2 D knC1 C kn

If the initial pattern were not recognized directly, it is interesting to note that
today dedicated websites exist, such as https://oeis.org/, the On-Line Encyclopedia
of Integer Sequences, that allow one to enter an initial series of values and the
program produces possible patterns that satisfy these values. This third strategy,
being successful, now leads to yet another problem, namely to prove that an must
have the form kn.n, where kn is an element out of the Fibonacci series. However,
in this particular case, the problem can be inverted: assume that an D kn.n, where
kn is an element out of the Fibonacci series, and prove that the original recurrence
relation for the an’s will be satisfied. This turns out to be a ‘nasty’ piece of work that
I will not reproduce here in full, merely some initial and intermediate steps and then
the endresult:

Start with anC4 D 2anC3 C anC2 � 2anC1 � an and replace all a’s by the explicit
expression and, after some rearrangements, this formula appears:

knC4:n C 4knC4 D n:.2knC3 C knC2 � 2knC1 � kn/C 6knC3 C 2knC2 � 2knC1

Suppose we would rearrange this formula such that it takes the form A.n + B D 0.
This equation will certainly be satisfied if A D B D 0. This invites to look at the
following two equations:

knC4 D 2knC3 C knC2 � 2knC1 � kn .��/
4knC4 D 6knC3 C 2knC2 � 2knC1

But, if the k’s satisfy the Fibonacci series then that means that the above two
equations are ‘rewrites’ of the basic recurrence relation, namely knC2 D knC1 C kn.
This turns out to be the case, a rather routine exercise. As an illustration take the
first equation:

knC4 D knC3 C knC2
D knC3 C knC3 � knC1
D 2knC3 � knC1

Add and subtract knC2 on the right hand side:

knC4 D 2knC3 C knC2 � knC2 � knC1

Finally replace the second occurrence of knC2 by knC1 + kn and the result follows.
A similar calculation proves the other equation.

For the discussion that follows it is helpful to summarize the process in its major
successful (thus ignoring the dead ends) steps:

• Step 1: Reformulate the problem so that it can be mathematically manipulated;
• Step 2: Find a pattern in a variable relying on ‘career induction’;

https://oeis.org/
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• Step 3: Use external resources to identify the pattern;
• Step 4: Prove that the pattern does indeed satisfy the premisses of the problem.

Let me comment on each of these steps.

• Step 1: What we are asked to show is a statement of the form

.8an/A.an/

where A(an) is the statement that ‘an is divisible by n’.7 This statement can be
reformulated into an equivalent statement of the same form, namely,

.8an/B.an/

where B(an) is now the statement that ‘an D kn.n’. It is now clear that
(8an)(A(an)�B(an)), and one might think that little has been achieved, as a proof of
A must also be a proof of B and inversely so.

So what is there to gain in reformulating a problem into an equivalent version?
Clearly the answer must be sought in the fact that different statements deal with
different predicates and concepts and this may prove to be important in the search
for a proof. What does seem exceptional in this particular case, is that B(x) is an
explication or definition of A(x): B(x) simply tells us what it means to be divisible.
That being said, this process invites us to reflect upon the following matter: given a
statement A(x), what are the B(x)’s that are equivalent? The straightforward answer
must be: an infinite number of them.8 A possible restriction could be to look in this
first phase of the proof search at those B(x)’s that are ‘close’ to A(x).9 This invites
us to consider a notion of distance. How could we determine what the distance is
between two equivalent statements? One possibility is to define the distance in terms
of the length of the proof that shows A(x) and B(x) to be equivalent. As it must be
clear, this is a tricky notion. Must we not talk about the shortest proof? And can
we determine such a thing? Even in the case of a well-defined formal language,
the choice and formulation of axioms and the choice of the underlying logical

7This is a slightly sloppy notation using a variable that itself contains an index, but no need at this
point to have a totally correct presentation and I assume that everyone sees how it can be repaired
quite easily I dare say.
8Given a statement A(x), it is easy to show that A(x) is equivalent to A(x) � (A(x) � A(x)). If
we define the latter statement as A(x).3/ and A(x).n/ as A(x) � A(x).n�1/, then all A(x).2nC1/ are
equivalent to A(x). Of course, none of these statements carries any interest.
9There is no inherent necessity to start with this strategy. Perhaps here an important difference
can be found between recreational mathematics and professional mathematics. In the latter case,
I assume, one will not look for equivalent statements that are ‘close’ but also look for equivalent
reformulations that ‘transport’ the problem from one mathematical domain into another.
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machinery can have a tremendous effect on the length of a proof, witness the work
of Parikh, especially his (1973). But what to do in the context of real mathematical
practice, where even a well-defined formal language is not always available? There
is definitely some vagueness lurking in the background here, but for cases where
the proofs only count a small number of lines, this seems feasible. So the first step
already introduces a concept that is important to include in an epistemology of the
search for proofs.10

• Step 2 and step 3: Our attention has now shifted from B(x) itself to the
‘behaviour’ of the kn’s. The core question here now is how we can recognize
a general pattern on the basis of an initial segment?

Just as in the first step, if the question is formulated in such a general way,
then we face the classical (non-mathematical) induction problem: is not any initial
segment compatible with an infinite number of continuations so how is one to make
a choice? Again the issue of resources should be taken very seriously in this context.
It is not the case that mathematicians consider every possible continuation but as
soon as these particular numbers appear it is clear that the Fibonacci sequence
‘forces’ itself upon us. Of course, we do not have the guarantee that this will
happen every time so what we have witnessed in recent times is the emergence of
dedicated websites such as the already mentioned OEIS website that have become
important aids in mathematical research. From the formal epistemological point of
view, it is well-known how to deal with common and shared knowledge but such a
database has, in relation to the community of mathematicians, a different structure
and plays a different role. Individual mathematicians can store in their memories
a set of sequences but this will only be a small part of the full content of such a
database. Therefore the database is an external element and, as such not so much
common knowledge, as common meta-knowledge, namely that mathematicians
know that such a database exists and can be consulted. In addition, it requires
specific tools how to query such an information source. In the case of OEIS it is
quite simple: submit the initial finite sequence. Although in some cases, quite a
number of alternatives are proposed, it remains a feasible task to see whether one

10Interestingly enough, whether or not one succeeds in formally pinning down such a distance
measure, real mathematical practice is already dealing with this problem as the following example
shows. Billey and Tenner (2013) argue for so-called fingerprint databases where a formula can
be tested for equivalent formulations to save time and not fall into the trap of having seemingly
discovered a novelty: “There are examples throughout mathematical history of theorems having
been discovered, and subsequently rediscovered independently—sometimes over and over again”
(p. 1035). The informal distance measure they employ is the number of lines of the proof that
demonstrates the equivalence.
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of them actually does the job.11;12 There is more: the answer OEIS provides are
possible continuations of the sequence plus a mathematical contextualization, i.e.,
what theorems are known about that sequence, to what domains does it belong, and
so forth. This additional information will surely increase the probability of finding
an answer to the original problem.13

• Step 4: The last step is almost trivial. Since we have an explicit form for the kn’s
and thereby for the an’s, it is now sufficient to prove that the original recurrence
relations are satisfied, as this is equivalent to answer the original question.

There is however one very important remark to make: the endresult, i.e., the
proof of the original question will mainly consist of this step.14 The previous steps
are not taken up in the proof, which makes it clear that the proof itself is not in
any case a summary of the search process but a rendition of the final stage of
that process and thus is highly uninformative (at least in this case). It is extremely
typical that the solution mentioned in the aforementioned journal, Wiskunde &
Onderwijs, starts with a definition of the Fibonacci series and then continues by

11It is undeniably an enormous task to set up such a database as the number of mathematically
meaningful possibilities to continue a finite fragment can be staggering. Take, e.g., the initial
sequence 1, 2, 4, 8, 16. Of course the first thing that comes to mind is powers of two. But another
well-known continuation is 31, 57, 99, 163, . . . , where the numbers are equal to the maximum
number of regions one can divide a circle into, given all the lines connecting n points on the
circumference of the circle. Now the entry for this sequence gives 47 possibilities. This is, as said,
tractable but at the same time it is extremely interesting to see in what other mathematical contexts
the sequence appears. This is a second-order effect of the use of such databases that should be
taken into account in a formal model.
12The need for such dedicated databases is clearly becoming a matter of prime importance in the
development of mathematics, witness a recent study of the National Academy of Sciences, see
National Research Council (2014).
13The few remarks made here are just the beginning of a far-reaching exploration. One of the
anonymous referees of this paper made a number of important suggestions concerning this matter.
I list a few of them. Is it necessarily the case that every mathematical problem includes such a
search phase? It is a deep question and I do not have a convincing answer at the moment either
way. Are there philosophical and computational implications? There I am quite confident that the
answer must be positive. No database, if sufficiently large, escapes the ‘big data’ issue: how should
one organize the data to make efficient data mining possible? Philosophically, such issues have a
direct connection with the way(s) a mathematical community is organized, who is having access
to data sources and who can change, improve and delete data. This, by the way, relates nicely to
work being done recently on the Polymath phenomenon, see, e.g., Nielsen (2012). Finally, one
may wonder whether this type of search process is proper to mathematics? I think not. Is it proper
to the exact sciences? Probably, since the problem how one should store qualitative data is far more
complicated than the storage of quantitative data. In short, much work needs to be done.
14This point will be taken up again in Sect. 3.2, where Hintikka’s approach is discussed in relation
to the analysis and synthesis process in mathematics. I will not develop this point any further in this
paper but a connection can and should be made between on the one hand the distinction between
the search process for the proof and the proof itself and on the other hand the well-known and
strongly debated distinction between the context of discovery and of justification.
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mathematical induction. It is truly striking that throughout the search no mention
was made of mathematical induction, but rather of a form of scientific induction,
namely to guess or derive a general pattern on the basis of a finite set of data.
This implies that in a model for a community of mathematicians, it cannot be
solely (finished) proofs that circulate among them but it must be much more than
that.

To summarize, as far as this case study is concerned, if we want to develop
formal models of mathematical practice, we will need formal counterparts for
(a) a concept of proof-related distance of equivalent statements, (b) a structured
notion of searchable resources or, more generally speaking, of databases, and (c)
the ‘translation’ for the proof search to the final proof (as it usually appears to
the community of mathematicians). I see no intrinsic reason for the impossibility
of successfully implementing these three tasks. If, however, as will be done in
the next subsection, we move to ‘real’ mathematical problems the size of the task
does, I believe, become impressive (although I would continue to claim it remains
manageable, hence possible).

2.2 The Second Case Study

This case study concerns Diophantine equations and illustrates a quite curious
property that mathematicians are very familiar with but not necessarily non-
mathematicians, namely the fact that there need not be any structural similarity
between the theorem that needs to be proven and the proof itself. This is what I
consider to be a form of heterogeneity but now between statements of theorems and
proofs. Let us call this ‘type II heterogeneity’.

Consider the following group of equations:

x3 C y3 C z3 D n for 29 � n � 33

Obviously the five equations are highly correlated as there is a simple and neat
way to formulate them in a single statement, as I have done. I first list the results
without comments:

• x3 C y3 C z3 D 29 has at least two simple solutions: x D 3; y D z D 1 and
x D 4; y D �3; z D �2;

• x3 C y3 C z3 D 30 has a smallest solution: x D �283059965; y D
�2218888517; z D 2220422932;

• x3 C y3 C z3 D 31: no solutions;
• x3 C y3 C z3 D 32: no solutions;
• x3 C y3 C z3 D 33: as it happens this problem is still open and, apparently, no

one seems to have an idea how to handle it.

Why have I chosen this specific example? Basically because I do not happen to
be the only one to be struck by this curious phenomenon, see, e.g., Poonen (2008)
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and Stoll (2010), inspired by Poonen, and the Cut-the-knot website (http://www.
cut-the-knot.org/): problems that, when formulated, are really close15 together, turn
out to be entirely different in terms of their solutions. Actually, it even seems to be
worse: one has the impression that there is no pattern at all present here. Just ask
yourself how you would handle the cases n D 28 or 35?16 But there is more: how
these results have been obtained are as diverse as well. Let me briefly go through
the proofs (if indeed that is what we can call them).

The easiest cases are n D 31 and 32. The fact that there are no solutions is simply
based on modulo arithmetic, in this case modulo 9. Write an arbitrary number n as
9k + m, then n reduces to m (mod 9), where 0 � m � 8. If we take the third power of
n then, modulo 9, only m3 will remain so we only have to check what the residues
are of m3 for 0 � m � 8:

m 0 1 2 3 4 5 6 7 8

m2 0 1 4 9 16 25 36 49 64

m3 0 1 8 27 64 125 216 343 512

m3.mod9/ 0 1 �1 0 1 �1 0 1 �1

So m3 (mod 9) is to be found between –1 and 1. Therefore if we add three third
powers, their sum modulo 9 will be between –3 and 3. As 31 and 32 are equal to 4,
resp. 5 (mod 9), they can never be the sum of three cubes. That is easy.

The cases n D 29 and 30 are the outcome of computer searches, i.e., extensive
computations. Of course not that extensive for the n D 29 case where the solutions
are relatively small. However for the n D 30 case, really clever algorithms had to
be used to find this solution that still required a quite serious amount of calculating
time. See Beck et al. (2007) for details about the algorithm. To be sure, we have
no proofs here, just an answer to the question: is there a solution? If the question
would be whether we know all solutions to a particular equation, then the best result
to date is that for the cases n D 1 and 2, we have an explicit parameterization thus
generating all possible solutions:

For the case n D 1 (Mahler 1936):

.9t4/3 C .3t � 9t4/3 C .1 � 9t3/3 D 1

15Note that the meaning of ‘close’ is not the same as used before in this paper (when discussing the
‘distance’ between equivalent statements). A possibility for determining a distance between two
formulae A(x, c) and B(y, d) where x and y are a set of variables and c and d a set of constants is
to simply count the number of symbols that need to be replaced to transform one formula into the
other. For the formulas we are looking at here, the distance is minimal as only one constant needs
to be replaced. To define such a measure for arbitrary formulas is, of course, quite another matter
and will not be tackled here.
16I have skipped the case n = 34 for a small search immediately leads to the solution n D 34 D 27
+ 7 D 27 + 8 – 1 D 33 + 23 –13, hence x D 3, y D 2 and z D –1.

http://www.cut-the-knot.org/
http://www.cut-the-knot.org/
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For the case n D 2 (attributed to Werebrusov in 1908 according to Mordell
(1942)):

.1C 6t3/3 C .1 � 6t3/3 C .�6t2/3 D 2

It is highly typical for such problems that from time to time another solution
is found for some particular n. This is related to the fact that the algorithms can
sometimes be speeded up if the number n has particular properties. So, e.g., there is
a solution known now for n D 52:

x D 60702901317; y D 23961292454; and z D �61922712865

The situation we are faced with here can be best summarized, I believe, by the
fact that we have no idea how to handle the open case, n D 33. What is one supposed
to do, apart from a massive and clever calculation? There seem to be no general
strategies available, no overarching concepts that have a uniting force and no general
theory that groups all these equations.17 And yet that last statement is not entirely
true. There is another way to look at these problems.

I started out by presenting this problem as belonging to the domain of Diophan-
tine equations. But instead of writing down the formula in the form

x3 C y3 C z3 D n

we can simply inverse it (fully realizing that since identity is supposed to be
symmetric this should make no difference but notation in this case is not without
its importance) and then, I claim, we see something else18:

n D x3 C y3 C z3

What we have here now is a problem about the decomposition of natural numbers
and the question is not whether this equation has Diophantine solutions but rather
what natural numbers can be written as the sum of three cubes, and that is an
altogether different question (about basically the same equation). This claim is
supported by the fact that a series of ideas and proof techniques enter into the
picture that were not directly associated with our previous approach. Let me just
sketch some such elements.19

The more general problem, well known in number theory is this: given a number
k, how many kth powers does one need to represent any natural number n? The

17This observation will be further developed in Sect. 3.3, where I discuss briefly the problem of
mathematical explanation.
18‘We see’ here means that the equation in this form will be identified in the mathematical literature
as belonging to a different domain than the equation in its original form.
19See Watkins (2014), pp. 207–209, for a nice summary.
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answer is usually indicated by the function g(k) D the number of kth powers needed
to represent n. For k D 2, we know that g(2) D 4, i.e., any natural number can be
written as the sum of four squares, the famous result of Lagrange. Edward Waring in
1770 asked the general question stated above. Waring himself proposed an explicit
formula for g(k), without proof:

g.k/ D b.3=2/kc C 2k � 2

where bxc is the so-called floor function, i.e., the largest integer smaller than x.
However a second function appears in this context and that changes things in a
rather dramatic way. The function G(k) D the smallest number of kth powers needed
to represent n from a certain finite number N onwards. Why is such a function
interesting? Here is one reason: if it turns out that G(k) << g(k) then it is more
interesting to work with G(k). After all, we are interested in all natural numbers
and, if there is an initial finite fragment where behaviour is different from the long-
run perspective, then, since it is finite, this can be dealt with separately. In the case
k D 3, we now know that g(3) D 9 and G(3) � 7, for a given N, and the conjecture is
that G(3) D 4, at present known to be the lower limit of G(3) (in the sense that there
is no N such that all numbers, larger than N are the sum of three cubes).

It is indeed the case that we have a more general framework to deal with the
original problem and general theorems and the like but it is clear what the price is
to be paid: our original question simply disappears in the background as no longer
interesting. The cases we have been discussing for n D 29 up to n D 33 are in the
finite part where the G-function does and will not care about. So, although we have
a theory available, it does not help us with our original problem as there will be
no theorems or computational results for such small values.20 I would consider this
to be another manifestation of heterogeneity: a shift in theoretical background can
reduce the importance of a problem (or, of course, the inverse, i.e., enhance it). Let
us call this ‘type III heterogeneity’. Let me end here the presentation of this second
case study and see where a similar thought exercise as in the first case study will
lead us.

To be honest, I would not know where to start. This example seems so far off
from existing logical models (up to my knowledge) that it is hard to see how one
could deal with them. Every case for n D 29 up to and including n D 33 seems to
require a different treatment. Some are easy to solve (with proofs), some are results
of calculations that do require proofs to show that the shortcuts in the algorithm
do what they claim to do, some are unknown. Cases can be formulated in different
theories and approaches that do not really simplify matters for problems that are
important and relevant in the one framework cease to be so in the other one. All
that being said, I do stick with my original claim about the feasibility of logically

20This does not exclude, of course, that the proofs of those theorems use interesting concepts and
proof methods that might turn out to be relevant for the original problem.
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modelling what is going on here in its full complexity. I do not see any fundamental
reason why such an undertaking could not be successful. My strongest argument is
this: in previous publications, e.g., Van Kerkhove and Van Bendegem (2004), we
have proposed a(n informal) model for understanding mathematical practice, based
on an earlier proposal of Philip Kitcher.21 It consists of a seventuple <M, P, F, PM,
C, AM, PS>, containing the following elements:

• a mathematical community M of individual mathematicians m1;m2; : : : ;mi;
• a research program P within the framework of which specific problems

p1; p2; : : : ; pj; : : : can be formulated;
• a formal language F, wherein axioms, definitions, and a body of formal proofs

f1; f2; : : : ; fk; : : :, can be expressed, that provide typical answers to the above
problems; note that here too metamathematical considerations can play their part;

• a set PM of proof methods pm1; pm2; : : : ; pml; : : :

• a set C of concepts c1; c2; : : : ; cn; : : :

• a set AM of argumentative methods: am1; am2; : : : ; ams; : : :

• a set PS of proof strategies ps1; ps2; : : : ; pst; : : :

I will not do the exercise here but it seems obvious that the second case study
can be accommodated in such an extended model or, at least, certain parts of it.
Let me just mention one reason why I believe that such models are well suited
to accommodate heterogeneity. The elements of the seventuple are not linked to a
particular mathematical problem but rather form the ingredients that constitute the
problem. One might expect that several proof strategies and methods will be used,
that different concepts will occur and that the background theory and the language
wherein it is expressed have an impact as well. To remain within the kitchen
metaphor: a cookbook may appear quite homogeneous in its direct appearance—
after all, recipes do tend to have a fixed schema that occurs over and over again—but
on the level of the ingredients, it is quite heterogeneous and, once the recipe has to
be executed, that heterogeneity surfaces as many of the ingredients require separate
and specific treatment.22 Thus the challenge will be to bring the logical models
together with Kitcher-like less formal or informal models to obtain (probably) some
hybrid form wherein mathematical practice in all its heterogeneity can be expressed.
Let me now turn to philosophical matters.

21Kitcher (1983) proposes a model consisting of a quintuple <L, M, Q, R, S>, containing:a
language L, a set of accepted statements S, a set of accepted reasonings R, a set of important
questions Q, and a set of philosophical or metamathematical views M.
22It is not an unreasonable thought to equate the cookbook with a foundational theory such as ZFC
and the daily activities of a mathematician or group of mathematicians with the actual cooking. Or,
to put it in other words, the homogeneity that characterizes such theories as ZFC does not transfer
to the daily practices. I briefly return to this matter in the final paragraph of the conclusion of this
paper.
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3 Some Philosophical Thoughts About Heterogeneity and
Mathematical Practice

3.1 About Problem-Solving

No doubt many readers will have wondered why I ignored the vast literature about
problem-solving, specifically in mathematics. Where is Georg Pólya, to name but
one of the founding fathers? Should he not have been included? The answer is
of course yes, if we would have been aiming at a full-fledged presentation of
what mathematicians do when they do mathematics. But the aim of this paper is
more modest: what elements are needed to make existing logical models richer
(and thereby closer to actual practice), taking into account the heterogeneity of
the mathematicians’ activity? It would however be unwise to put all this material
aside as irrelevant. As it happens, some elements that occur in problem-solving
literature have already been included into logical models. Take, e.g., the very basic
idea of splitting up a problem P into a set of subproblems Pi, such that, if all Pi

are solved, thereby the original problem is solved.23 This idea is to be found not
merely in problem solving contexts, but also in the domain of artificial intelligence,
where distributed problem solving is a core issue, with or without cooperation and
argumentation. However, without going into details here, it is my impression that
such proposals go together with some form of homogeneity. If we think in terms of
a community of agents or mathematicians in our particular case, then it is clear that
every agent is interchangeable with every other agent: the only characteristics that
matter are those that identify that agent’s position in the network and its access to
other agents. That does not seem to hold in real-life situations. So, granted that all
the literature about problem-solving strategies and about artificial networks with
distributed knowledge is indeed important and relevant and needs to be studied
closely and in depth, one should not expect to get final answers here. These models
too will need to be made richer in order to deal with the case studies we have
presented here.

In addition very often the focus is on mathematical problem-solving in educa-
tional context (as was the case originally for Pólya as well) and not often enough
on professional mathematics. Of course, as I have tried to show by the second
case study, on that level things do become more complex and more difficult to
handle. And what is surely required is to combine this literature with personal
experiences by mathematicians themselves. A recent fine example is the ‘story’ told
by Cédric Villani in (2012). The book contains not only the genesis of the proof of
a theorem but also includes conversations, e-mail exchanges, discussions, dreams,

23Note, incidentally that this is another variation on the theme of the equivalences that I mentioned
in the first case study for in such a case P � (P1 & P2 & . . . & Pn) and the proof of the equivalence
should be short, which is often the case. Just think of a problem about natural numbers where the
problem is split up in the even case and the odd case. But do note that this does not imply that each
Pi will be treated in the same manner.
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wrong tracks, dead ends, partial successes and the final result, which won him the
Fields medal in 2010. Although one must realize that such a story is to be considered
more a reconstruction, a retelling than an actual, factual rendition of what happened,
it does nevertheless contain valuable elements that need to be incorporated in the
models we are looking for. Let me however look in the next subsection at another
attempt that deserves our proper attention.

3.2 Hintikka Method of Analysis and Synthesis

The reason why I am having a closer look at the work of Jaakko Hintikka in relation
to mathematical practice is that he is surely one of the principal researchers to
have examined throughout his career closely the relations between logical models
and mathematics.24 In particular, I will have a look at the [2012] paper. A fuller
analysis would also require at least the seminal [1974] book, jointly written with
Unto Remes, to be discussed. The object of the paper is a logical analysis of
the (Greek) method of analysis and synthesis. The commonly shared (but not
necessarily completely correct) view is that analysis proceeds from the conclusion
upwards to the premisses whereas synthesis makes the opposite move as it proceeds
from the premisses downwards. If both happen to meet at a certain point in the
reasoning then a proof has been found. Hintikka’s claim is that the Beth tableau
method is an excellent way of logically formulating this idea. A formal example
is not really needed here: in a tableau we write down the premisses on the left-side
and the conclusion on the right-side and then we reason in both halves of the tableau
until the same formula appears at both sides.25

However, this method by itself is not sufficient:

We have to introduce an epistemic element into the reasoning. In mathematical practice,
this element is often tacit. It can be made explicit by adding to the usual first-order logic an
‘it is known that’ operator K. (p. 59)

I will return to this ‘tacit’ element in the conclusion of this paper. As the tableaus
are extended with the K operator, Hintikka turns the tableau method as an instrument
for the search of proofs into a problem-solving tool. This also happens by the

24An additional reason is that part of this paper has been presented at the LoQI conference (Logic,
Questions and Inquiry. A conference on Hintikka’s Interrogative Model of Inquiry), organized
by the IMI project (Interrogative Model of Inquiry), funded by the ANR (Agence Nationale de
Recherche), held in Paris, 30 May – 1 June 2013. For my purpose here, I have selected some of his
works specifically relevant for the discovery and justification processes in mathematics.
25Note that I did not, as Hintikka indeed does not as well, refer to the premisses being true and the
conclusion being false, though of course a tableau can always be construed in that fashion. The
point here is that, if we forget about true and false, what we do in the left-side of the tableau is
to reason from the premisses, whereas in the right-side of the tableau we reason starting from the
conclusion. If a formula appears at both sides, a connection has been made between premisses and
conclusion.
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introduction of the possibility to ask questions, especially in those cases, where
the conclusion is not necessarily known and can only be introduced as a question
(thereby making the link with the topic of the previous subsection). Of special
interest is the clarification by this extension between ‘knowns’ and ‘unknowns’ in a
mathematical problem. It is mentioned a few times in the paper that geometry and
algebra should not be treated on a par in this context. In geometry it is not clear how
in a geometrical figure or diagram known and unknown can be brought together
whereas in algebra known and unknown can occur together in a single equation.
This distinction between the two domains must add to the heterogeneity that I am
arguing for.26 Let us call this ‘type IV heterogeneity’.

What does seem clear is that, if we make the move from geometry to algebra,
other extensions will be needed of the basic tableau method and of the extended
method Hintikka proposes. To make my point clear: take another look at the second
case study. What would be in the right-side of the tableau? Obviously the existential
statement (9x, y, z)( x3 + y3 + z3 D n), for a particular n. This formula can be
instantiated, producing a3 + b3 + c3 D n, for some a, b and c, but it is not clear
at all what further analysis can be done. Take one specific example: why would
anyone come up with the idea of applying a modulo 9 reasoning to the problem? Or,
more precisely, why 9, as modulo reasoning is fairly commonplace in this particular
domain? Referring back to the extension of the Kitcher model we proposed, it would
imply that at least search strategies should be incorporated. To achieve that, game
semantics, another of Hintikka’s projects, could be an excellent first start.

Let me now turn to a final topic in this section, a ‘hot’ topic as it were in present-
day philosophy of mathematics, namely mathematical explanation.

3.3 A Brief Excursion About Explanation

Vital and essential for the one, nonexistent for the other, no matter what one’s view
is in this discussion, mathematical explanation needs our attention. I will not repeat
here the two major proposals—Kitcher’s seminal idea of unification and Steiner’s
equally seminal idea of a characterizing property, see Mancosu (2011) for details—
that circulate at present, but I think that the two case studies show that these two will
not prove to cover the whole domain, under the supposition, of course, that there is
such a thing as mathematical explanation. And, if asked for a reason for that belief,
my answer would once again be the heterogeneity of the mathematical enterprise.
Let me have a look at the two cases.

26I must repeat that the focus of the paper is on geometry, therefore one should not expect any
issue of heterogeneity being addressed here. And the particular subdomain of geometry Hintikka
is looking is thereby a fairly homogeneous domain. This is definitely not meant as a critique! The
object of the paper after all is to understand what it needs to better model the relations between
geometrical figures and reasoning about those figures rather than presenting a full-fledged model
of mathematical practice.
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In the first case, while I was searching for the solution and the Fibonacci series
appeared ‘out of the blue’ as it were, I was puzzled and did not understand why this
was the case. At first sight there is nothing in the final proof that explains this curious
phenomenon. At least, I could not identify any element in the proof itself that could
serve as (part of) an explanation. But what I did not mention in Sect. 2.1 is that some
mathematicians sent in a solution to the problem to Wiskunde & Onderwijs that used
the characteristic polynomial27 of the recurrence relation.

The above proof has no explanatory value whatsoever and it does not really
matter what notion of mathematical explanation is being used. I do of course realize
that this is a challenging and slightly provocative statement but I think it stands up.
There is at first sight no unification present here or some overarching concept, so
no Kitcher-like idea, and there is no essential or characteristic property involved,
so no Steiner-like idea, therefore the two major views tell me this proof must be
considered to be non-explanatory.

There is, of course, one very interesting feature that must strike any mathemati-
cian: the k’s satisfy the very same equation as the a’s, namely (**). That produces
the idea that the a’s are also somehow related to the Fibonacci series. How to
show that? Relying on the general background knowledge of a (rather) well-trained
mathematician, he or she will come up with the idea of the characteristic polynomial
for a recurrence relation, as mentioned above.

This is based on the idea that the original equation can always be rewritten as
follows:

anC4 D 2anC3 C anC2 � 2anC1 � an

anC4=an D 2anC3=an C anC2=an � 2anC1=an � 1

If the ratio anC1=an has a limit, say g, and if we replace anC2=an by
.anC2=anC1/.anC1=an/ and so forth for the other terms in the equation, and then
take the limit, then we get:

g4 D 2g3 C g2 � 2g � 1 or
g4 � 2g3 � g2 C 2g C 1 D 0

This last equation can be rewritten as (this is elementary algebra):

.g2 � g � 1/2 D 0

and (one of) the solution(s) of the equation g2 � g � 1 is precisely the golden ratio,
which can also be defined as the limit of the ratio knC1=kn, and the connection is
made. So, after all, there is a core property, namely the characteristic polynomial,
that gives (part of) an explanation. However, firstly, I did not use that property in

27Not to be confused with Steiner’s use of characteristic!
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the proof that I constructed, which is strange.28 Secondly, it is not immediately clear
how the original problem should be answered using that property. That in itself
would generate another search process. It seems more likely to expect that a full
explanatory proof will require more than this one concept (assuming that the above
can already count as a partial explanation, because not everyone, mathematician and
non-mathematician alike, shares this idea). For one thing, it is not clear at all how
the characteristic polynomial relates to the divisibility of the a’s by n.29

If we now turn to the second case study, it seems clear to me that here little
or nothing can be said. The modulo 9 reasoning to exclude the cases for n D 9k
+ 4 or 9k + 5 can be taken to have explanatory power but for the other cases
explanations of whatever sort seem really far away. Of course, in most cases,
we only have calculations and not proofs but I see no immediate reason why a
calculation by itself could not have explanatory power. In addition, it seems highly
unlikely that some unifying account could be found that would do the job. Precisely
due to the heterogeneity of this problem, explaining what is going on here seems
a futile undertaking. This last statement should not be interpreted in a negative
way: it provides us with examples where one can defend that the proofs and/or
calculations do not explain why. One of the reasons why I discussed in Sect. 2.2
the reformulation of the original question into Waring’s problem was to show that
there could be a unifying theory. Unfortunately in that more general framework the
original question became an unimportant element in the margin. That being said, the
possibility was present that moving the problem from one domain to another might
produce an explanation that was not available in the first domain. Can this be seen as
anything else but another sign of the heterogeneity? Let us call this (derived) ‘type
V heterogeneity’.

Let me address one final matter in this section.30 In Sect. 3.2 I discussed several
possible extensions of the tableau method, primarily an analytical tool, changing
it into a problem-solving strategic tool. Could the method be further extended to
include the explanatory aspects of the proof one is looking for as well? On the
one hand I see no principal or fundamental argument for a negative answer. On the

28I call this ‘strange’ because it reminds me of Sherlock Holmes (a character also very dear to
Jaakko Hintikka) and the curious incident with the dog in the night-time: if the characteristic
polynomial is indeed a core element in the explanation of what is going on here, why then does
it not appear in the proof itself (or, formulated differently, why is there at least one proof where it
does not play any part)? Or let me put matters in this way: if, instead of the Fibonacci sequence
some other sequence P had appeared during my search, I would not have been amazed or surprised
as I did not have any expectations at that moment. All I needed was to find some pattern such that
the k’s satisfy it.
29It is actually tempting to think that the designers of the problem worked backwards to find the
initial recurrence relation. It should therefore not surprise us that Fibonacci appears but, even if
that were the case, the explanatory question would remain. What we now would like to obtain is
an explanation why the recurrence relation of the an’s takes that particular form and not another.
30This paragraph is the result of a remark of one of the anonymous referees of this paper. In the
first version there was no real link between Sects. 3.2 and 3.3. This, I believe, has now become
clearer.
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other hand, I do think that the analyticity will be severely weakened. When one is
convinced that explanation is not a mere property of a proof but involves concepts
that are related to the proof yet are not determined by it, then elements are introduced
that are more likely to be synthetic rather than analytical. I refer to my paper Van
Bendegem (to appear) where I discussed this matter in relation to the contingent
nature of mathematical knowledge.

4 To Conclude

In Hintikka (2012), the paper I discussed in Sect. 3.2, we read the following:

In general, it does not make much difference if an interpreter tries to evoke the holy cow
called mathematical practice. If such practice is not haphazard, it must be governed by some
tacit rules which must be discussed on a par with explicitly codified ones. (p. 51)

Whether or not we are dealing here with ‘a holy cow’ is not the issue, rather
I believe that this quote makes two very important claims: the first one is that
mathematical practice is governed by tacit rules and the second one that the tacit
rules should be treated in the same way as the explicit ones. The fact that they
are tacit entails that work needs to be done to make them explicit. One should
not be amazed if mathematicians do not recognize them when faced with them.
After all, if they are tacit, you are not supposed to consciously know that they are
at work. But the fact that they have to be treated on a par entails the following.
Since we use logical models for understanding the explicit practice and/or results
of mathematical research, it follows that Hintikka subscribes to the idea that formal
and logical models will be needed to understand the tacit rules. There is a clear
agreement here between this view and what is proposed here in this paper. And, of
course, on a more general level, Hintikka makes clear and defends the importance
of the study of mathematical practice, no matter what animal, holy or otherwise,
corresponds to it.

The core thesis of this paper is that, if we want to further explore the multiple
relations between logic and mathematics, then it will be necessary to take into
account what I have called at various places in the paper ‘heterogeneity of
mathematics’. I recall the five types that we already identified in this paper, merely
on the basis of two small case studies:

• Type I: The search process to find a solution to a mathematical problem
typically falls apart in different stages that require different strategies, including
reformulations of the problem;

• Type II: The proximity of mathematical problems need not be related to a
proximity of the corresponding proofs or similar problems can require different
proofs and distinct problems can be solved by similar proofs;

• Type III: A mathematical problem can change drastically when transposed from
one mathematical background to another, up to the point of its disappearance or
becoming uninteresting;
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• Type IV: Mathematical theories that form the background for a (set of) problems
are to be considered different because of the different proof strategies and related
concepts that are being used;

• Type V: Mathematical explanation, whatever it might be, depends (though
perhaps not solely) on proof and it thus ‘inherits’ its heterogeneity.

If all these types are ignored, i.e., if homogeneity is too much emphasized,
then inevitably we will turn back again to published proofs, the final outcomes
of a process that suggests a homogeneity but in actuality has eliminated all the
heterogeneous elements. This leaves us wondering where the result came from and,
before one knows it, special realms, Platonic heavens and the like, have to be created
in order to explain what is, after all, a human process. That being said, what I have
not shown is that such homogeneity is to be avoided at all costs. Perhaps the detailed
heterogeneity of everyday mathematical practice needs to be counterbalanced or
complemented by something that allows us to get a larger view that unites rather
than diversifies. Is that not precisely an implicit aim of foundational studies, e.g.,
set theory, category theory, univalent foundations or homotopy type theory? If so,
then this provides an unexpected justification of such studies from the perspective
of mathematical practice.

Appendix

This paper is the perfect occasion to set something straight. In previous publications,
most notably in Van Bendegem (2004), I claimed that in mathematics one always
had to deal with the ‘unexpected’. One might think up very nice general schemes
but trust mathematics to come up with exceptions that relativize the generality
and its accompanying claim. (I guess that here was one of the starting points for
thinking about heterogeneity). I call these proofs ‘from the unexpected’ and my
prime example was the following:

Consider a real-valued function f from R to R. No special properties or
requirements are needed. One is asked to prove an easily stated theorem about f,
namely that f is always the sum of a symmetric function g, i.e. a function g such
that g.�x/ D g.x/ and an anti-symmetric function h, i.e., a function h such that
h.�x/ D �h.x/.

I did not manage to solve this problem when I first encountered it. There is very
little material to use but on the other hand the fact that it applies to any function
f, without any qualifications, seems strange. That being said, it does seem a really
strong property. No matter what function you can come up with, it is decomposable
into two functions with a highly specific property. That seems odd. The first strategy
seemed to be to write f(x) as the sum of two functions g(x) and h(x),

f.x/ D g.x/C h.x/
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and further suppose that, e.g., g(x) is symmetric. The object would then be to
show that f.x/� g.x/ is anti-symmetric. However, that much is clear, at least at first
sight, this is never going to work. Since f(x) can be any function at all, why would
the difference between an arbitrary function, f(x), and a function with a specific
property, g(x), itself have a specific property? I did not continue this line of attack
and got nowhere. When I afterwards saw the solution to the problem, I felt ‘cheated’
in first instance, as the solution makes use of an algebraic identity, namely:

f.x/ D Œ.f.x/C f.�x//=2�C Œ.f.x/ � f.�x//=2�

Call the function between square brackets on the left side of the right hand side
expression g(x) and the function between square brackets on the right side of the
same expression h(x) and you are done. Of course, one understands immediately
why f can be arbitrary: no specific properties are required. End of story. Though not
exactly.

While writing this paper, I re-examined the problem and it turns out that my
original strategy, that I abandoned too quickly, would have led me to the correct
result by a completely straightforward argument. So suppose that you do want to
investigate the function f(x) – g(x) and want to show it is anti-symmetric, or:

f.�x/ � g.�x/ D �.f.x/ � g.x//

Given that g.�x/ D g.x/ this simplifies to:

f.�x/ � g.x/ D �f.x/C g.x/

and this gives an explicit expression for g(x):

g.x/ D .f.�x/C f.x//=2

which is precisely the answer we were looking for, if we now calculate what h(x)
must look like. On the one hand, it means that I can no longer use this example,
which need not be a problem as proofs from the unexpected are plentiful but on the
other hand there is an important conclusion to be drawn from this example. Often
we abort attempts too soon on the basis of a projected estimate and, once again, we
are talking about resources: is it worthwhile to continue a reasoning or calculations
if the prospects of success seem rather slim at that moment? Or, as we would say in
everyday language: I gave up too quickly.

References

Beck, M., Pine, E., Tarrant, W., & Jensen, K. Y. (2007). New integer representations as the sum of
three cubes. Mathematics of Computation, 76(259), 1683–1690.

Billey, S. C., & Tenner, B. E. (2013). Fingerprint databases for theorems. Notices of the AMS,
60(8), 1034–1039.



94 J.P. Van Bendegem

Hintikka, J. (2012). Method of analysis: A paradigm of mathematical reasoning? History and
Philosophy of Logic, 33(1), 49–67.

Hintikka, J., & Remes, U. (1974). The method of analysis: Its geometrical origin, its general
significance. Dordrecht: Reidel.

Kitcher, P. (1983). The nature of mathematical knowledge. New York: Oxford University Press.
Mahler, K. (1936). Note on hypothesis K of Hardy and Littlewood. Journal of the London

Mathematical Society, 11, 136–138.
Mancosu, P. (2011). Explanation in mathematics. In E. N. Zalta (Ed.), The Stanford encyclopedia

of philosophy (Summer 2011 ed.). Stanford: Stanford University Press. http://plato.stanford.
edu/archives/sum2011/entries/mathematics-explanation/

Mordell, L. J. (1942). On sums of three cubes. Journal of the London Mathematical Society, 17,
139–144.

National Research Council (2014). Developing a 21st century global library for mathematics
research. The National Academies Press: Washington, D.C.

Nielsen, M. (2012). Reinventing discovery. The new era of networked science. Princeton University
Press: Princeton.

Parikh, R. J. (1973). Some results on the length of proofs. Transaction of the AMS, 177, 29–36.
Poonen, B. (2008). Undecidability in number theory. Notices of the AMS, 55(3), 344–350.
Stoll, M. (2010). How to solve a Diophantine equation. ArXiv:1002.4344v2 [math.NT].
van Bendegem, J. P. (2004). The creative growth of mathematics. In D. Gabbay, S. Rahman,

J. Symons, & J. P. van Bendegem (Eds.), Logic, epistemology and the unity of science (LEUS)
(pp. 229–255). Dordrecht: Kluwer Academic.

van Bendegem, J. P. (2014). The impact of the philosophy of mathematical practice on the
philosophy of mathematics. In L. Soler, S. Zwart, M. Lynch, & V. Israel-Jost (Eds.), Science
after the practice turn in the philosophy, history, and social studies of science (pp. 215–226).
London: Routledge.

van Bendegem, J. P. (to appear). Contingency in mathematics: Two case studies. In L. Soler (Ed.),
Contingency in Science. Pittsburgh: University of Pittsburgh Press.

van Benthem, J. (2010). Logic, mathematics, and general agency. In P. E. Bour, M. Rebuschi, &
L. Rollet (Eds.), Construction — Festschrift for Gerhard Heinzmann (pp. 277–296). London:
College Publications.

van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge
University Press.

van Kerkhove, B., & van Bendegem, J. P. (2004). The unreasonable richness of mathematics.
Journal of Cognition and Culture, 4(3–4), 525–549.

Villani, C. (2012). Théorème vivant. Paris: Grasset.
Watkins, J. J. (2014). Number theory: A historical approach. Princeton: Princeton University Press.

http://plato.stanford.edu/archives/sum2011/entries/mathematics-explanation/
http://plato.stanford.edu/archives/sum2011/entries/mathematics-explanation/


Interrogative Inquiry as Defeasible Reasoning

G. Aldo Antonelli

Abstract This paper presents an account of interrogative inquiry based on defeasi-
ble inference rules. With any such account, the main issue is the proper identification
of the class of conclusions that are warranted on the basis of a set of such rules.
In particular, the main formal features that any such account needs to satisfy are
identified, and two different approaches are presented, the second one of which
satisfactorily meets all desired properties. The approach is based on the author’s
previous work on defeasible logics.

Keywords Non-Monotonic Logic • Default Rules • Defeasible Inference •
Models of Inquiry

1 The Original Model

Hintikka (1984) introduces the Interrogative Model of Inquiry (IMI) as a dynamic
model of scientific inquiry, which, contrary to traditional approaches to the logic
of science, is conceived as providing a logic of discovery rather than a logic of jus-
tification. According to the proposed model, science proceeds by asking questions
and seeking answers to those questions, rather than by deriving deductively valid
consequences from first principles.

In presenting Hintikka’s IMI framework, we assume that the Inquirer works with
a background theory, T , investigating properties of a given model M of T . The model
plays the role of the external world being investigated and the background theory
is assumed to be true in the model. Among the question that the Inquirer can pose,
some are yes/no questions, which can be represented in the form “A?” for a given
sentence A (in the language of T), whereas other questions can be characterized as
wh-questions of the form “9xB.x/?”.

From a more abstract point of view, we can conceive of IMI as introducing a
ternary relation T W M � A, where T is theory, M a structure in the same signature
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as T , and A a sentence in the language of T . Here T plays the role of a background
theory, and A represents the answer to a question which is asked with respect to a
model M. The question receives a positive answer if the sentence A is true in the
given model of T .

More formally, we can say that T W M � A holds iff A can be obtained as the last
member of a finite sequence of “moves” A1;A2; : : : ;An, each one of which is:

• A member of the background theory T; or
• A deductive consequence of previous sentences in the sequence (a “deductive”

move); or
• A sentence Ai such that M ˆ Ai (an “interrogative” move).

According to the model, the “Inquirer” is allowed to perform either a deductive
or an interrogative move in order to reach the conclusion A. However, this model
is quickly recognized to be too general, in that no restrictions are imposed on the
kind of interrogative moves that the Inquirer is allowed to ask. On this model, for
instance, we could recover true arithmetic (i.e., the set of sentences true in the
standard model arithmetic N D .N; 0; 1;C;	/), by means of inquiries of the form
T W N � A, where A is a sentence of arbitrary arithmetical complexity and T some
appropriate arithmetical theory (e.g., Peano arithmetic). Accordingly, completely
unrestricted inquiry is not a suitable model of scientific discovery, and (as Hintikka
himself quickly recognized) one need to search for appropriate restrictions on
the class of questions of the form “A?” that the Inquirer is allowed to pose. A
natural approach is then to impose such restrictions based on the complexity of the
question “A‹:”

Restrict the question to sentences A 2 †n for various quantifier prefixes †n.

The most basic form of restricted inquiry is atomistic inquiry, in which interrogative
moves are restricted to atomic formulas. This case is well understood from classical
model theory, since it reduces T W M � A to the notion of model consequence
T [ �.M/ ˆ A, where �.M/ is the atomic diagram of M. But even this basic
constraint may prove not to be restrictive enough in that the assumption that for
each model M either T W M � A or T W M � :A (where only atomic queries are
allowed) is, by a well known result, equivalent to the condition that every embedding
between models of T is elementary.

A restriction to …2 inquiry is considered by Hintikka (1988). Whereas atomistic
inquiry provides a model of observational science, …2 inquiry provides a model of
experimental science. Scientists are interested in correlations established through
controlled experiments. Such experiments are aimed at the discovery of a function
f .x/ D y giving the mode of dependence of y on x, as in the case, e.g., of
Gay-Lussac’s law correlating temperature and pressure of an ideal gas. Clearly,
the dependence of y upon x can be described by a …2 statement of the form
8x9yR.x; y/, and so …2 inquiry can be construed as providing a model of a law-
like correlation subjected to experimental verification. We know, of course, that no
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single experiment can pin down the whole graph of a function f , as only initial
segments can be subject to direct confirmation, whereas proposed correlations can
be ruled out by means of experiments. Thus, there are serious limitations to the
usefulness of this kind of inquiry as well.

2 Presuppositions

Interrogative moves can be constrained by their presuppositions. Many different
constructions can act as presupposition triggers (factives, definite descriptions, etc.).
Questions are among the most extensively studied presupposition triggers. Consider
the following “loaded” questions:

• When did you stop smoking?
• What is the force required to accelerate a body of mass 1 kg that is at rest in a

vacuum to the speed c D 2:998 	 108 m=s?

Hintikka’s IMI restricts interrogative moves to those whose presuppositions appear
as previous steps in the interrogative game. This treatment of presupposition does
not seem to do justice to their nature.

Presuppositions have been widely studied, since they are significantly different
from both direct semantic entailments and Gricean implicatures. Like implicatures
they are cancelable, but only when embedded. In the following example the
presupposition trigger is embedded under a negation (and immediately canceled):

I didn’t stop smoking — in fact I never was a smoker.

The presupposition of a yes/no question “A?” is usually identified with the
disjunction of its possible answers, A _ :A. Similarly, the presupposition of a
wh-question “A.x/?” is identified with the corresponding existentially quantified
statement 9xA.x/. However, in the context of questions, at least, presuppositions are
meta-linguistic in nature: they express necessary conditions for the question to be
asked. To require that presuppositions appear as previous steps in the interrogative
process is to treat them on a par with ordinary conclusions. This is a shortcoming
that we try to address in what follows.

3 Defeasible Inquiry, I

Hintikka (1988) makes the case for defeasible inquiry by introducing the possibility
that the output of interrogative moves—Nature’s answers—might be considered
less than certain. This corresponds to the possibility that the outcome of some
experiment might later be determined to be invalid or contradicted by further
experiments.
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This possibility provides the motivation for developing a logic of defeasible
inquiry. It is often suggested that inductive logic already provides such a model.
However, the process of defeasible inquiry exhibits features that are significantly
different from traditional inductive logic, in that while inductive logic deals with
uncertain inferences from indubitable premises (observations), deafeasible inquiry
deals with certainty-preserving inferences from uncertain premises (defeasible
interrogative moves).

In order to accommodate such a model, Hintikka (1988) and Hintikka et al.
(2002) develop a particular kind of sequent calculus. The first thing to notice about
such a calculus is that the deductive component must be subclassical. In fact, the
sequent ` A _ :A is not in general derivable (otherwise the presupposition of every
yes-no question would be satisfied). The deductive component is supplemented by
an interrogative component, which allows for the output of past interrogative moves
to be pre-empted along with any later deductive moves that rely on it.

Rather than rehearsing Hintikka’s proposal, in what follows we provide an
account of defeasible inquiry which is explicitly based on defeasible inference rules
(see Antonelli 2005), whose antecedents represent the presupposition that needs
to be fulfilled for the rule to be applied. In this way, we will be closely following
Hintikka’s admonition that defeasible inquiry is certainty-preserving inference from
defeasible premises.

There are, however, significant differences between the present proposal and
Hintikka’s. Model-oriented inquiry uses a classical model M as an oracle, with the
consequence that the answer to each question is definitely true in M. It follows that
the model-oriented paradigm needs to be abandoned to accommodate defeasible
inquiry. Accordingly, we propose that we move from a model-based paradigm to one
that is rule-based. According to the proposal, “nature” supplies a stock of inference
rules that allow the tentative adjunction of certain propositions to the inquirer’s
knowledge base—but only provided the corresponding presupposition is met. The
presupposition is here represented by the antecedent of the rule.

What leads to additional complexity in the case of the rule-based approach is the
possibility of conflicts. These arise in two ways: we can have conflicts between
tentative conclusions and “hard facts”; or we can have conflicts between two
tentative conclusions. The two different kinds of conflicts call for different measures
to be undertaken in order to restore consistency. One leading intuition is that in the
case of conflicts between tentative conclusions and hard facts, as represented in a
background theory T , the hard facts should always prevail.

Another aspect in which the rule-based paradigm differs from Hintikka’s original
approach is that presuppositions of any kind are allowed, not just disjunctions or
generalizations of the possible answers to a given questions. In this sense, the rule-
based approach is more general, but of course nothing prevents that in applications
only antecedents representing presuppositions to a given question might be allowed.
It is worth pointing out that antecedents of defeasible inference rules are not unlike
presuppositions, in that they play a role that is intermediate between object-language
and meta-language.
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We now come to some of the technical details of the proposal. First of all, we
assume a background language L with an associated classical consequence relation
ˆ. We notice that other choices are possible, of course, and that in many cases one
might want to proceed with a consequence relation that does not satisfy explosion,
for instance, and with a relevant or more generally para-consistent consequence
relation. We do not explore such options here, as the approach we pursue is modular,
and it does not depend on the details of the consequence relation. A para-consistent
consequence relation can always be adopted as a drop-in replacement for ˆ.

Recall the basic intuition that Nature provides the inquirer with a stock of
defeasible rules, allowing the inference of a conclusion whenever the presupposition
is met. This leads us to the following definition.

Definition 3.1. A defeasible inference rule has the form AÝ B where A, B are
formulas of L (soÝis not nested). We use �;�; : : : for sets of defeasible rules.

Formally, we frame the problem of defeasible interrogative inquiry so conceived
as the problem of characterizing the class of defeasible consequences of a given
theory. Since the set of defeasible conclusions of a theory might contain conflitcs,
solving the problem of defeasible interrogative inquiry requires a principled way
of settling such conflicts. In other words, what is needed is a way to flesh out the
(incomplete) definition below.

Definition 3.2. Given an L -theory T , a (finite) set � of rules of the form AÝ B
and a formula C, we write T W � � C to mean that C follows from T in conjunction
with �.

This leads us to identify the problem of defeasible inquiry as the problem
requiring us to: .i/ identify the desirable properties of the relation T W � � C;
and .ii/ provide a precise implementation of the relation T W � � C satisfying
those properties. We take up each of these two tasks in turn.

Fortunately, the desirable formal properties of defeasible consequence relations
were already identified in the mid-1980s by Gabbay (1985), who promoted the
following three:

• Reflexivity: If A 2 T then T W � � A.
• Cut: If T W � � A and T C A W � � B then T W � � B
• Cautious Monotony: If T W � � A and T W � � B then T C A W � � B.

In particular, the import of the last two properties is a sort of cumulativity:
Augmenting the theory with the adjunction of a “theorem” does not lead to any
increase (Cut) or decrease (Cautious Mononotony) in inferential power. The process
of inquiry is thus, in a sense, stable.

It is sometimes argued that the requirement of Cautious Monotony is too
restrictive, and that it should be replaced by the more liberal requirement of
“rational” monotony below.

• Rational Monotony: If T W � � A and T W � 6� :B then T C B W � � A.
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But a convincing counter-example, due to Stalnaker (1994), can be adapted to the
case at hand. The counter-example involves three composers, Verdi, Bizet, and Satie.
Suppose we are originally told, by a reliable, but still defeasible source that Verdi
is Italian, while Bizet and Satie are French. This defeasible information can be
represented by means of defeasible inference rules whose antecedent is tautologous.
So let� comprise >Ý I.v/, >ÝF.b/ and >ÝF.s/. Our background knowledge,
which provides us with strict, non-defeasible information is in turn embodied in a
theory T , stating that the relation “x is a compatriot of y,” C.x; y/, is a congruence
with respect to the two incompatible properties I and F and also that Verdi and Bizet
are compatriots: C.v; b/ (the fact that strict information is false is irrelevant; all that
matters is that in the presence of conflicts between defeasible conclusions and strict
information it is the former that are retracted). The information at hand does not
license the inference that Verdi is Italian, because of the competing inference that
he could have been French: T W � 6� I.v/. Similarly, the information does not
license the information that Bizet is French, because (symmetrically) he could have
been Italian: T W � 6� F.b/. However, there is no reason not to infer that Satie is,
in fact, French: T W � � F.s/. The crucial observation is that these two facts (i.e.,
T W � 6� I.v/ and T W � 6� F.b/) do not allow us to reject the conclusion that Verdi
and Satie might be compatriots: T W � 6� :C.v; s/. However, if we were to add this
un-refuted hypothesis to our background knowledge, we would lose the conclusion
that Satie is French

T C C.v; s/ W � 6� F.s/;

since now all three composers must be of the same nationality, either Italian or
French. So rational Monotony fails.

We saw that the basic problem in defeasible inquiry with defeasible rules is
the principled adjudication of conflicts, either between defeasible conclusions or
between defeasible conclusions and facts entailed by the background theory. A
particular example concerns rules that are, directly or indirectly, self-defeating. In
fact, having relaxed the role of presuppositions, it might be that a rule’s conclusion
defeats thay rule’s presupposition: AÝ :A. Similarly, one can have a pair of rules
such as:

AÝ B; BÝ :A:

Obviously complex patterns of defeating rules are possible, which are not easily
detected. One way to deal with such internal conflicts is by adopting a Minimal
constraint on inference:

The presupposition of the rule must be met both before and after the rule is
applied.
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The minimal constraint points us in the right direction: when trying to identify
the conclusion sets that can be derived from a theory T W �, we should characterize
them as minimal fixed points.

Definition 3.3. It is convenient to use the notations:

• cons.�/ D fB j AÝ B 2 �g;
• S ˆT A iff S [ T ˆ A.

Definition 3.4. A Conclusion set (or simply a C-set) for a theory T W � is a minimal
solution to a fix-point equation, i.e., a set C 
 � of rules s.t.:

(i) C D fAÝ B 2 � j cons.C / ˆT A & cons.C / 6ˆT :Bg;
(ii) C is minimal in the sense that if: D D fAÝ B 2 � j cons.D/ ˆT A &

cons.C / 6ˆT :Bg, then C 
 D .

Notice the occurrence of C in (ii).

We pause to remark that this is not an explicit definition, but indeed it is a fixpoint
condition: C is the set of rules whose presuppositions are met in C and whose
conclusions are not defeated in C , and it is minimal among the sets D of conclusions
that meet their own presuppositions and that are not conflicted in C . The first result
that we prove is that C-sets exist.

Theorem 3.1. Every theory T W � has a C-set.

Proof. A C-set C for T W � can be obtained by means of a non-deterministic
inductive construction as the limit of the chain C0 
 C1 
 � � � as follows:

• Put C0 D ¿.
• For CnC1, select a maximal subset �0 
 � of rules s.t.:

1. cons.Cn/ˆT A for each AÝ B in �0;
2. cons.Cn [�0/ is consistent with T .

Put CnC1 D �0.

Define C D S
n�0 Cn; then C is a C-set for T W �.

By induction on n we show first that the sequence is increasing, i.e., Cn 
 CnC1.
The case for n D 0 is obvious, since C0 D ¿ 
 C1. Assume Cn 
 CnC1 to
show CnC1 
 CnC2. Let AÝ B 2 CnC1; then cons.Cn/ ˆT A and by inductive
hypothesis also cons.CnC1/ ˆT A. Moreover, if cons.CnC1 [ CnC2/ ˆT :B, then
cons.CnC1 [ CnC2/ is inconsistent, against the choice of CnC2. So by maximality
AÝ B 2 CnC2.

Having shown that the Cn sequence is increasing, we put C D S
0�n Cn. We need

to show that C is a C-set. First we notice that cons.C / is consistent (provided T
itself is; if T is inconsistent then ¿ is the unique C-set for T W �). Next we need to
show that C satisfies the fix-point equation from Definition 3.4:

C D fAÝ B j cons.C / ˆT A & cons.C / 6ˆT :Bg:
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We take up the two inclusions in turn. If cons.C / ˆT A and cons.C / 6ˆT :B then
there is n � 0 such that cons.Cn/ ˆT A, and moreover B must be T-consistent with
cons.Cn [ CnC1/, otherwise cons.CnC1/ ˆT :B whence also cons.C / ˆT :B
since CnC1 
 C . By maximality, AÝ B 2 CnC1 
 C .

If, conversely, AÝ B 2 C , then for some n � 0 we have AÝ B 2 CnC1, so
that cons.Cn/ ˆT A, from which also cons.C / ˆT A. It remains to show that
cons.C / 6ˆT :B. If, by reductio, cons.C / ˆT :B, then there is m � 0 such that
cons.Cm/ ˆT :B. Now let p D max .n C 1;m/, so that cons.Cp/ ˆT B ^ :B,
against the consistency of C .

It remains to establish the minimality condition from the second part of Defini-
tion 3.4. Suppose that D satisfies:

D D fAÝ B j cons.D/ ˆT A & cons.C / 6ˆT :Bg:

In order to establish that C 
 D it suffices to shows Cn 
 D by induction on
n. Obviously C0 D ¿ 
 D . Assume Cn 
 D and let AÝ B 2 CnC1. Then
cons.Cn/ ˆT A, whence by inductive hypothesis also cons.D/ ˆT A. Moreover
cons.C / 6ˆT :B (since AÝB 2 CnC1 
 C and C satisfies the fix-point condition,
as already shown). Hence AÝ B 2 D as desired. ut

We now consider some examples of theories T W � and their C-sets. We beging
with the case of self-defeating rules, which is handled quite well.

Example 3.1. Let� contain AÝ:A as its only member. Then for any T , the theory
T W � has a unique C-set C D ¿.

This is because if C is a non-empty C-set then it must contain the rule AÝ :A
as its only member. If C is a C-set, then it must satisfy the two conjuncts of the
fix-point equation, so that cons.C / ˆT A, i.e., :A ˆT A, whence by contraposition
in classical logic :A ˆT ::A, i.e., cons.C / ˆT :.:A/, and the second conjunct
fails. Similarly, if the second conjunct holds, the first one must fail. Hence, C D ¿.

Example 3.2. If � contains AÝ B and T D f:Bg Then ¿ is the only C-set, and so
in particular cons.C / [ f:Bg 6ˆT :A. So modus tollens fails.

Example 3.3. If T D fAg and � contains AÝ B and CÝ :A, then T W � has one
C-set, fAÝ Bg.

This holds because the only rule potentially defeating AÝ B is CÝ :A, which
is never triggered, as the consequent is not T-consistent.

One important feature of C-sets is that they need not be unique. It is indeed easy
to find theories that have multiple C-sets. This is potentially problematic if we are
interested in identifying the sentences that are warranted by a theory T W � on the
basis of that theory’s C-sets.

Proposition 3.1. C-sets need not be unique.

Proof. We exhibit an example. Let T D fAg and � contain the rules AÝ B and
AÝ :B. It is easy to check that any C-set for T W � must trigger exactly one
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of the two rules; obviously they cannot both be triggered, as the consequents are
conflicting; and at least one must be triggered if a C-set is to satisfy the fix-point
equation. Consequently T W � has exactly two C-sets:

• C1 D fAÝ Bg;
• C2 D fAÝ :Bg. ut

Notice that C1 \ C2 D ¿. If � contained also AÝ C then C1 \ C2 D fAÝ Cg.
An important tool in the analysis of C-sets is the following theorem, which shows

that any C-set can be written as the result of a pseudo-inductive process, i.e., it can
be decomposed in stages. In particular, the theorem allows us to “stratify” a C-set
into layers. As we will see, Minimality plays a crucial role in the proof.

Theorem 3.2 (C-set Decomposition). Suppose C 
 � and C0;C1; : : : are sets
such that:

• C0 D ¿;
• CnC1 D fAÝ B j cons.Cn/ˆT A & cons.C / 6ˆT :Bg.

Then C is a C-set iff C D S
n�0 Cn.

Proof. For the “if” direction, suppose C D S
n�0 Cn, to show that C is a C-set.

First we show that C satisfies the fix-point equation:

AÝ B 2 C , AÝ B 2 S
n�0 Cn

, 9n � 0 W AÝ B 2 Cn

, 9n � 0 W cons.Cn/ ˆT A & cons.C/ 6ˆT :B

, cons.C / ˆT A & cons.C / 6ˆT :B:

Next we show that the minimality condition is met. Suppose

D D fAÝ B j cons.D/ ˆT a & cons.C / 6ˆT :Bg:

To show that C 
 D it suffices to prove
S

n�0 Cn 
 D by induction on n. Obviously
C0 D ¿ 
 D . If Cn 
 D (by the inductive hypothesis) and AÝ B 2 CnC1, then
cons.Cn/ ˆT A and cons.C/ 6ˆT :B. Then cons.D/ ˆT A, whence AÝ B 2 D
as required.

For the “only if” part, suppose C is a C-set for T W �. We need to show C DS
nC1 Cn. First we argue as follows:

AÝ B 2 S
n�0 Cn , 9n � 0 W AÝ B 2 Cn

, 9n � 0 W cons.Cn/ ˆT A & cons.C / 6ˆT :B

, cons.
S

n�0 Cn/ ˆT A & cons.C / 6ˆT :B:

It follows that
S

n�0 Cn D fAÝ B j cons.
S

n�0 Cn/ & cons.C / 6ˆT :Bg and by
the minimality of C we have C 
 S

n�0 Cn. For the converse inclusion it suffices to
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show Cn 
 C by induction on n. The case for n D 0 is obvious as C0 D ¿. Assume
Cn 
 C and let AÝB 2 CnC1. Then cons.Cn/ ˆT A and cons.C / 6ˆT :B, so that
cons.C / ˆT A and finally AÝ B 2 C . ut

The theory as developed so far is essentially a “normal” version of Reiter’s
Default logic (1987).

We now come to main task of the theory, that of identifying the set of conclusions
that are warranted by T W �. This gives us a notion of C-consequence�, which can
then be assessed with respect to the three properties of Reflexivity, Cut, and Cautious
Monotony.

Definition 3.5. T W � � A if and only if cons.C / ˆT A for every C-set C for
T W �.

The following is obvious, but we enter it into the record nonetheless.

Proposition 3.2 (Reflexivity). If A 2 T then cons.C / ˆT A for every C-set for
T W �.

Proposition 3.3 (Cut). If T W � � A and T C A W � � B then T W � � B.

Proof. We use Decomposition to show that (under the hypotheses) every C-set for
T W � is also a C-set for T C A W �. Assume T W � � A and T C A W � � B.
Let C be a C-set for T W �, so that, in particular, cons.C / ˆT A. We want to show
cons.C / ˆT B, and in turn it suffices to show that C is a C-set for TCA W � as well,
for then cons.C / ˆTCA B, and Cut in classical logic delivers that cons.C / ˆT B.
Observe that:

EÝ F 2 C , cons.C / ˆT E & cons.C / 6ˆT :F

, cons.C / ˆTCA E & cons.C / 6ˆTCA :F;

where the first equivalence obtains because C is a C-set for T W �, and the second
equivalence is justified as follows: since cons.C / ˆT A, we have cons.C / ˆTCA E
if and only if cons.C / ˆT E (by Cut and Monotonicity on classical logic) and
similarly cons.C / 6ˆTCA :F if and only if cons.C / 6ˆT :F. We conclude that C
satisfies the fix point equation for C-sets for T C A W �:

C D fEÝ F j cons.C / ˆTCA E & cons.C / 6ˆTCA :Fg:

To show that C is a C-set for T C A W � we need to show that it is minimal, i.e.,
that if

D D fEÝ F j cons.D/ ˆTCA E & cons.C / 6ˆTCA :Fg;

then C 
 D . Since C is a C-set for T W �, by the Decomposition theorem, let C DS
n�0 Cn, where C0 D ¿ and CnC1 D fEÝ F j cons.Cn/ ˆT A & cons.C / 6ˆT
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:Fg. So it suffices to prove Cn 
 D by induction on n. The case for n D 0 is trivial,
so suppose Cn 
 D and let EÝ F 2 CnC1. Then:

1. cons.Cn/ ˆT E, and since Cn 
 D , also cons.D/ ˆTCA E, by monotony of
classical logic;

2. since cons.C / 6ˆT :F but cons.C / ˆT A by hypothesis, also cons.C / 6ˆTCA

:F, by Cut in classical logic.

We conclude that EÝ F 2 D , as desired. ut
Proposition 3.4. Cautious Monotony fails for�.

Proof. We use a classic counter-example due to Makinson (1994): Consider T D ¿
and � comprising >Ý A and A _ BÝ :A (where > is a propositional constant
for truth). Then T W � � A since the unique C-set for T W � contains the first rule.
Further, also T W � � A _ B, but T C A _ B W � 6� A because now ¿ is a C-set for
the theory. ut

4 Defeasible Inquiry, II

The failure of Cautious Monotony for the notion of consequence based on C-sets
prompts us to seek a more general notion, which we refer to as General C-sets.

Definition 4.1. A general C-set for T W � is a pair .CC;C �/, where:

(i) CC;C � 
 � and CC \ C � D ¿;
(ii) CC D fAÝ B j cons.CC/ˆT A & cons.� � C �/ 6ˆT :Bg;

(iii) C � D fAÝ B j cons.CC/ˆT :Bg.

Just like C-sets are solutions to fixpoint equations, general C-sets are simultane-
ous solutions to systems (in fact, pairs) of fixpoint equations.

Definition 4.2. Given pairs of sets of rules, the relation .CC;C �/ � .DC;D�/
denotes point-wise inclusion CC 
 DC and C � 
 D�.

We now proceed to establish existence and uniqueness results for general C-sets.
The comparison is to the existence of multiple C-sets for the same theory which was
established din the previous section.

Theorem 4.1. Every T W � has a �-least (i.e., unique minimal in the � ordering)
general C-set.

Proof. An inductive construction gives the desired general C-set. Put:

• CC
0 D C�

0 D ¿;
• CC

nC1 D fAÝ B j cons.CC
n /ˆT A & cons.� � C�

n / 6ˆT :Bg;
• C�

nC1 D fAÝ B j cons.CC
nC1/ˆT :Bg.
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We first establish that:

.a/ The sequence .CC
n ;C

�
n / is �-increasing.

Proof. by induction on n. Obviously C0̇ D ¿ 
 C1̇ . So assume CC
n 
 CC

nC1 and
similarly C�

n 
 C�
nC1. To show CC

nC1 
 CC
nC2 assume AÝ B 2 CC

nC1; then by
definition cons.CC

n / ˆT A and cons.� � C�
n / 6ˆT :B. By inductive hypothesis,

cons.CC
nC1/ ˆT A and since C�

n 
 C�
nC1, also cons.� � C�

nC1/ 6ˆT :B. It follows
that AÝ B 2 CC

nC2. And since CC
nC1 
 CC

nC2 (as just shown), also C�
nC1 
 C�

nC2.

.b/ .CC;C �/ D .
S

n CC
n ;

S
n C�

n / is a general C-set for T W �.

Proof. We first show that at each stage n > 0 the members of the sequence are
disjoint (this is obvious for n D 0). Given the definition of C�

nC1, it suffices to show
that if AÝB 2 CC

nC1 then cons.CC
nC1/ 6ˆT :B, for then CC

nC1 
 �� C�
nC1 follows,

i.e., CC
nC1 and C�

nC1 are disjoint. But given .a/, just proved, we have that AÝ B 2
CC

nC1 implies cons.CC
n / 6ˆT :B, and since C�

n 
 C�
nC1, also cons.CC

nC1/ 6ˆT :B,
as desired.

Next we show CC D fAÝ B j cons.CC/ ˆT A & cons.� � C �/ 6ˆT :Bg.
So suppose AÝ B is such that cons.CC/ ˆT A and cons.� � C �/ 6ˆT :B.
From the latter, since the sequence is increasing, there is a greatest m such that
cons.� � C�

m / ˆT :B (put m D 0 if cons.�/ 6ˆT :B). So for all m0 > m we
have cons.� � C�

m0/ 6ˆT :B. On the other hand, since cons.CC/ ˆT A, there is
n � 0 such that cons.CC

n / ˆt A. Put k D max.m; n/ C 1. Then cons.CC
k / ˆT A

and cons.� � C�
k / 6ˆT :B, so that AÝ B 2 CC

kC1 
 CC.
Conversely, if AÝ B 2 CC then for some n we have AÝ B 2 CC

nC1 so that
cons.CC

n / ˆT A and cons.� � C�
n / 6ˆT :B. From the former, cons.CC/ ˆT A.

From the latter, since C�
n 
 C �, also cons.� � C �/ 6ˆT :B.

And finally we show C � D fAÝB j cons.CC/ˆT :Bg. This follows from the
following equivalences, for AÝ B 2 �:

cons.CC/ ˆT :B , 9n W cons.CC
n / ˆT :B

, 9n W AÝ B 2 C�
n

, AÝ B 2 C �:

And finally, the last item:

.c/ .CC;C �/ is �-least among general C-sets for T W �.

Suppose .DC;D�/ also satisfies .i/, .ii/, and .iii/ from Definition 4.1. It suffices to
show .CC

n ;C
�
n / � .DC;D�/ for then .CC;C �/ � .DC;D�/ follows. We proceed

by induction on n, with the case for n D 0 being obvious. To show CC
nC1 
 DC, let

AÝ B 2 CC
nC1. Then cons.CC

n / ˆT A and cons.� � C�
n / 6ˆT :B. By inductive

hypothesis cons.DC/ ˆT A and cons.� � D�/ 6ˆT :B, so AÝ B 2 DC.



Interrogative Inquiry as Defeasible Reasoning 107

To show C�
nC1 
 D�, let A Ý B 2 � and cons.CC

nC1/ ˆT :B; then
cons.DC/ ˆT :B by the inclusion just established, and AÝ B 2 D�. Obviously
.CC;C �/ is also unique, for if .DC;DC/ where also a minimal C-set, then
.CC;C �/ � .DC;D�/, and viceversa, whence .CC;C �/ D .DC;D�/. This
concludes the proof of the theorem. ut

As a corollary to this existence and uniqueness theorem we obtain a Decomposi-
tion result which will be useful later on.

Corollary 4.1 (Decomposition). If .CC;C �/ is the least general C-set for T W �
then .CC;C �/ D .

S
n CC

n ;
S

n C�
n / as in the proof of Theorem 4.1 above.

We are now ready to define the corresponding notion of defeasible consequence.

Definition 4.3. T W � �G A iff cons.CC/ ˆT A where .CC;C �/ is the least
general C-set for T W �.

We now show that �G, so defined, satisfies all three properties of Reflexivity,
Cut, and Cautious Monotony. The first is immediate, while the others will follow
from a conservativity result.

Proposition 4.1 (Reflexivity). If A 2 T then T W � �G A.

Proof. Immediate, since if A 2 T then cons.CC/ˆT A for every general C-set for
T W �. ut

The following result gives us a conservativity result, whose two halves give us
the validity of Cut and Cautious Monotony.

Theorem 4.2 (Conservativity). If .CC;C �/ is the least general C-set for T W �,
and .DC;D�/ is the least general C-set for T CA W �, and moreover cons.CC/ˆT

A, then:

1. .DC;D�/ � .CC;C �/;
2. .CC;C �/ � .DC;D�/.

So in particular .CC;C �/ D .DC;D�/ and T W � and T C A W � have the same
least general C-set.

Proof. We deal with each part in turn. For (1), using decomposition (Corollary 4.1),
we let CC D S

n CC
n and C � D S

n C�
n . Similarly, let DC D S

n DC
n and D� DS

n D�
n . Further, since cons.CC/ ˆT A, pick k � 0 such that cons.CC

m / ˆT A for
all m � k. It suffices to show:

.DC
n ;D

�
n / � .CC

kCn;C
�
kCn/;

by induction on n. The basis for n D 0 is trivial, since DC
0 D ¿ 
 CC

k and likewise
D�
0 D ¿ 
 C�

k . For the inductive step, assume the results holds for n, in order to
show:

.DC
nC1;D

�
nC1/ � .CC

kCnC1;C
�
kCnC1/:
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Let EÝ F 2 DC
nC1; then we have both:

.a/ cons.DC
n / ˆTCA E; and .b/ cons.� � D�

n / 6ˆTCA :F.

From the former, cons.CC
kCn/ ˆTCA E, and since cons.CC

kCn/ ˆT A, also
cons.CC

kCn/ ˆT E. From the latter: since D�
n 
 C�

nCk by the inductive hypothesis,
also cons.� � C�

nCk/ 6ˆTCA :F, by monotony of classical logic, and even
cons.� � C�

nCk/ 6ˆT :F. So EÝ F 2 CC
nCkC1 as desired, and DC

nC1 
 CC
nCkC1.

For D�
nC1 
 C�

nCkC1, let E Ý F 2 D�
nC1. Then cons.DC

nC1/ ˆTCA :F;
but DC

nC1 
 CC
nCkC1 (as just shown), so cons.CC

nCkC1/ ˆTCA :F. And since
cons.CC

nCkC1/ ˆT A, also cons.CC
nCkC1/ ˆT :F by Cut in classical logic.

Therefore, EÝ F 2 C�
kCnC1 as desired. This proves part (1).

For part (2) we need to show .CC;C �/ � .DC;D�/, and we proceed by
induction to show that .CC

n ;C
�
n / � .DC;D�/ for each n. The basis for n D 0

holds trivially as before. For the inductive step, assume .CC
n ;C

�
n / � .DC;D�/ to

show .CC
nC1;C�

nC1/ � .DC;D�/. If EÝ F 2 CC
nC1, then:

.a/ cons.CC
n /ˆT E; and .b/ cons.� � C�

n / 6ˆT :F.

From the former and the inductive hypothesis, cons.DC/ ˆT E, whence by
monotonicity of classical logic also cons.DC/ ˆTCA E. If now for reduction
EÝ F … DC it must be that cons.� � D�/ ˆTCA :F. By inductive hypothesis
C�

n 
 D� so also cons.� � C�
n / ˆTCA :F.

But CC \ C � D ¿ by definition, and C�
n 
 C �, so also CC \ C�

n D ¿, i.e.,
CC 
 ��C�

n . By hypothesis, cons.CC/ˆT A so that cons.��C�
n /ˆT A, and by

Cut for classical logic the last line of the previous paragraph gives cons.��C�
n / ˆT

:F, against .b/. We conclude that EÝ F 2 DC, i.e., CC
nC1 
 DC.

Finally, to prove C�
nC1 
 D�:

EÝ F 2 C�
nC1 only if cons.CC

nC1/ˆT :F

only if cons.DC/ˆT :F since CC
nC1 
 DC

only if cons.DC/ ˆTCA :F

only if EÝ F 2 D� ut

Theorem 4.3 (Cut). If T W � �G A and T C A W � �G B then T W � �G B.

Proof. Suppose T W � �G A and T C A W � �G B; let .CC;C �/ be the least
general C-set for T W �. Since T W � �G A, by hypothesis cons.CC/ˆT A, and we
want to show cons.CC/ˆT B.

If we now let .DC;D�/ be the least general C-set for T C A W �, then
by hypothesis cons.DC/ ˆTCA B. By Conservativity (Theorem 4.2, part (1)),
DC 
 CC, so that also cons.CC/ ˆTCA B. But since cons.CC/ˆT A, by Cut in
classical logic cons.CC/ˆT B. This shows T W � �G B. ut
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Theorem 4.4 (Cautious Monotony). If T W � �G A and T W � �G B then T CA W
� �G B.

Proof. Assume T W � �G A and T W � �G B, and let .DC;D�/ be the least general
C-set for TCA W �. We need to show cons.DC/ ˆTCA B. Let .CC;C �/ be the least
general C-set for T W �. Then cons.CC/ ˆT B. By Conservativity (Theorem 4.2,
part (2)), CC 
 DC, so by Monotony in classical logic cons.DC/ˆT B, and also
cons.DC/ ˆTCA B, as required. ut

General C-consequence embodies a cautious or skeptical approach. While
conflicts between defeasible rules and hard facts are always resolved in favor of
the latter, in the presence of conflicting rules, General C-consequence withholds
commitment. It is precisely this feature that allows for the crucial property of
Cautious Monotony to hold. Consider the following examples.

Example 4.1. Consider T D fAg and � D fAÝ B;AÝ :Bg. Then T W � 6�G B
and T W � 6�G :B since both defeasible rules are potentially conflicted. The least
general C-set is ¿.

Example 4.2. Consider T D ¿ and � D f>Ý B;AÝ :Bg. Then T W � 6�G B,
since (again) both rules are potentially conflicted. But notice, in comparison, that on
the account of consequence for the original notion of a C-set, T W � � B.

One could make the case that in this case the original notion of C-consequence
delivers intuitively preferable results, since the only way to trigger the second rule is
if the first is triggered as well, but in such a case the second rule would be conflicted;
by contrast, the first rule is always triggered and therefore does not depend on the
second rule.

5 Conclusions

Based on the construal of defeasible interrogative inquiry as defeasible inference
rule, we have provided two frameworks, broadly inspired by Antonelli (2005),
giving rise to two distinct notion of consequence: C-consequence and general C-
consequence. In defeasible inference rules of the form AÝ B, the antecedent A
plays a meta-theoretic role similar to that played, in Hintikka’s framework, by the
presupposition of a question. But our proposal differs from Hintikka’s in that the
resulting notion of consequence is supra-classical thereby allowing the inquirer to
use the full power of classical logic. In contrast, Hintikka’s notion, as pointed out,
has to be subclassical, since the presupposition A _ :A of a yes/no question of the
form A‹ need not be satisfied in each case.

But the most distinctive feature of our notion of consequence lies in its formal
properties. After identifying the appropriate version of Gabbay’s three desiderata of
Refleixvity, Cut, and Cautious Monotony, we have shown that the last one fails for
C-consequence, and that it is only the general version that meets all three. Cautious
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Monotony is crucial because it allows the interrogative process to proceed in a
cumulative manner, by the progressive accumulation of intermediate results that
can be later employed in order to establish new ones.
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On Search for Law-Like Statements as
Abductive Hypotheses by Socratic
Transformations

Mariusz Urbański and Andrzej Wiśniewski

Abstract We define a mechanism by which abductive hypotheses having the form
of law-like statements are generated. We use the Socratic transformations approach
as the underlying proof method.

Keywords Erotetic logic • Socratic proofs • Abduction • Law-like statements

1 Aims

If, as Jaakko Hintikka (2007, p. 38) claims, abduction constitutes the central prob-
lem in contemporary epistemology, then designing an adequate logic of abduction
is one of the most important challenges faced by contemporary logic. The logical
structure of the well-known Peircean scheme of abductive reasoning is this: from an
observation that A (an abductive goal), and from the known rule that if H, then
A, infer H (an abductive hypothesis, or an abducible; cf. Peirce (1958, 5.189)).
However, this schema may be elaborated in detail in different ways, which lead
to different models of abduction (see Urbański (2016)).

Slightly expanding the Peircean scheme, we may claim that the aim of abductive
reasoning is to fill, by means of a hypothesis H, a certain gap between some dataset
X (a database, a belief set, a body of knowledge) and a goal A, unattainable from
X. Let us stress that both abductive hypotheses and goals may be, depending on the
type of abductive reasoning, propositions, laws, rules, or even theories (cf. Gabbay
and Woods (2005) and Magnani (2004, 2009)). One important issue in research on
abduction is whether filling this gap is intrinsically of explanatory character or not.
If so, then abduction is, as a matter of fact, a version of the Inference to the Best
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Explanation (IBE), understood in the sense of Harman (1965) or Lipton (2004), or
according to some refined accounts of IBE, for example Kuipers’ (2004) Inference
to the Best Theory. If not, then abduction may serve explanatory as well as predictive
or purely deductive, or in fact any other purposes. An example of this second stance
is the algorithmic perspective, proposed by Gabbay and Woods, according to which
an abductive hypothesis H “is legitimately dischargeable to the extent to which it
makes it possible to prove (or compute) from a database a formula not provable (or
computable) from it as it is currently structured” (Gabbay and Woods 2005, p. 88).

We shall follow the latter point of view and focus on computational issues,
however with substantial explanatory flavour. Our purpose is to find a mechanism
by which one can arrive at abductive hypotheses having the form of law-like state-
ments (LLSs for short). We shall use the Socratic transformations (ST) approach
(Wiśniewski 2004c) as a proof method on which hypotheses generation mechanism
will be based.

Our aim is not trivial. On the one hand, approaches to abduction based on
different proof methods do not produce LLSs as outcomes; examples include
Analytic Tableaux method (Aliseda 1997, 2006), sequent calculi (Mayer and Pirri
1993), dynamic proof method of adaptive logics (Meheus et al. (2002) and Meheus
and Batens (2006); it should be noted that Gauderis and Van de Putte (2012)
offer account on abduction of generalizations within the adaptive logic framework).
The same holds for the approaches based on the ST method proposed so far (see
Urbański (2003), and Wiśniewski (2004b)). On the other hand, even though we
agree that there is more to abduction than just IBE (cf. Hintikka (2007, pp. 41–44)),
there are also close affinities between abduction and search for an explanation (see
Thagard (1995, 2007)). As a result, a mechanism which enables a “computation” of
explanatory abductive hypotheses in the form of LLSs seems highly attractive.

In this paper we shall not consider the problem of evaluation of abductive
hypotheses. This is a somewhat different issue which can be satisfactorily dealt with
by computer science rather than logical means. A convincing example is offered in
papers by Komosinski et al. (2012, 2014), where multi-criteria dominance relation
approach is employed.

2 Socratic Transformations

The ST approach offers a formal explication of the idea of solving logical problems
of entailment or derivability by pure questioning, that is, by transforming the
relevant initial question into consecutive questions without making any use of
answers to the questions just transformed. Such Socratic transformations may be
either successful or unsuccessful. Roughly, a successful transformation ends with
a question of a specified final form, which can be answered in only one rational
way. A successful transformation is a Socratic proof. Socratic transformations are
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guided by erotetic rules1 which have only questions as premises and conclusions.
These rules form the core of erotetic calculi.

We appeal here to the interrogative idea for a reason. We share Hintikka’s
conviction that “the interrogative approach can be argued to be a general theory of
reasoning” (Hintikka et al. 1999, p. 47). Questions play far more important role in
problem solving than it is typically recognized. Moreover, when explicit operations
on questions, in the roles of premises or conclusions, are allowed in formal modeling
of such processes, the payoff is a substantially more robust insight both into their
real structure and into their computational properties. In order to justify these claims
by some case-study examples we refer the reader to, int. al., Wiśniewski (2004a),
Bolotov et al. (2006), Leszczyńska (2007), and Urbański and Łupkowski (2010).
However, although Jaakko Hintikka is nowadays one of the best-known advocates
of the interrogative idea, we rely here on different assumptions and on a different
approach to the logic of questions.

We shall show how the ST approach works on the example of the EPQ calculus,
on which our abductive mechanism will be based (see Sect. 3). EPQ is an erotetic
counterpart of Pure Calculus of Quantifiers (PQ). Our presentation of this calculus
will be based on the one given in Leszczyńska-Jasion et al. (2013). Detailed account
on ST can be found, e.g., in Wiśniewski (2004c) and Wiśniewski and Shangin
(2006). For elaboration of an erotetic background of ST, which is Inferential Erotetic
Logic, see Wiśniewski (1995, 2013).

2.1 Language

Let us start with a language L of PQ with : (negation), ! (implication),
^ (conjunction) and _ (disjunction) as primitive connectives, and both 8 (general
quantifier) and 9 (existential quantifier). The language L contains individual
parameters, but it does not contain function symbols or identity. By a term of L
we mean an individual variable or a parameter. We assume the usual notions of
well-formed formula (wff) and sentence of L. Now, let us extend L with a question-
forming operator ‹ and the sign `. The resulting language L� has two disjoint
categories of meaningful expressions: declarative well-formed formulas (hereafter:
d-wffs), and questions. Questions of L� are based on sequences of atomic d-wffs of
L�, that is, expressions of the form:

S ` A

where S is a finite sequence (possibly empty) of sentences of L, and A is a sentence
of L. A pure sentence is a sentence of L with no individual parameters. Note that

1“Erotetic” comes from Greek “erotema” which means “question”.
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atomic d-wffs of L� are (single-conclusioned) sequents. A sequent is called pure if
it contains only pure sentences.

In what follows we will refer to atomic d-wffs of L� simply as to sequents, yet
always having in mind that only sequents with single sentences of L in the succedent
are taken into consideration. We use Greek lower case letters �,  , �, ! (possibly
with subscripts) as metavariables for sequents, and Greek upper case letters ˆ, ‰,
� as variables for sequences of sequents.

A question of the language L� is an expression of the form:

‹ .ˆ/

where ˆ is a non-empty finite sequence of sequents; the terms of this sequence are
called constituents of the question, and we say that the question is based on the
sequence.

Some notational conventions will be useful. The following:

S 0 T

stands for the concatenation of sequences S and T of PQ-formulas. By

S 0 A

we refer to the concatenation of S and the one-term sequence hAi, where A is a
PQ-wff. The concatenation of sequences ˆ and ‰ of sequents is referred to as:

ˆI‰
whereas the inscription:

ˆI�
denotes the concatenation of a sequence of sequents ˆ and the one-term sequence
h�i, where � is a sequent. Of course, the inscription:

ˆI�I‰
refers to the concatenation of ˆI� and a sequence of sequents ‰. Any of S, T , ˆ,
and ‰ can be empty.

Thus when ˆ D h�1; : : : ; �ni, the corresponding question can be written as:

‹ .�1I : : : I�n/

and we will proceed that way. If ˆ D h�i, then we write the question as:

‹ .�/

and we say that the question is based on a single-conclusioned sequent.
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A question of the form: ‹ .S1 ` A1I : : : I Sn ` An/ can read: “Is it the case that: A1
is PQ-entailed by S1 and : : : and An is PQ-entailed by Sn?”; due to the completeness
of PQ, “PQ-entailed by” can be replaced by “PQ-derivable from.” (By entailment
by/derivability from a sequence we mean entailment by/derivability from the set of
all the terms of the sequence.) When n D 1, the question pertains to the claim of a
single sequent.

2.2 The Calculus EPQ

In a Socratic transformation one transforms a question into another question. Here
is the list of erotetic rules that govern the relevant transformations of questions of
L�:

L˛ W ‹ .ˆI S 0 ˛ 0 T ` CI‰/
‹ .ˆI S 0 ˛1 0 ˛2 0 T ` CI‰/ R˛ W ‹ .ˆI S ` ˛I‰/

‹ .ˆI S ` ˛1I S ` ˛2I‰/

Lˇ W ‹ .ˆI S 0 ˇ 0 T ` CI‰/
‹ .ˆI S 0 ˇ1 0 T ` CI S 0 ˇ2 0 T ` CI‰/ Rˇ W ‹ .ˆI S ` ˇI‰/

‹ .ˆI S 0 ˇ�

1 ` ˇ2I‰/

L:: W ‹ .ˆI S 0 ::A 0 T ` CI‰/
‹ .ˆI S 0 A 0 T ` CI‰/ R:: W ‹ .ˆI S ` ::AI‰/

‹ .ˆI S ` AI‰/

L8 W ‹.ˆI S 0 8xiA 0 T ` BI‰/
‹.ˆI S 0 8xiA 0 A.xi=�/ 0 T ` BI‰/ R8 W ‹.ˆI S ` 8xiAI‰/

‹.ˆI S ` A.xi=�/I‰/
provided that xi is free in A, provided that xi is free in A,
� is any parameter and � is a parameter which

does not occur in S nor in A

L9 W ‹.ˆI S 0 9xiA 0 T ` BI‰/
‹.ˆI S 0 A.xi=�/ 0 T ` BI‰/ R9 W ‹.ˆI S ` 9xiAI‰/

‹.ˆI S 0 8xi:A ` A.xi=�/I‰/
provided that xi is free in A, provided that xi is free in A,
and � is a parameter which � is any parameter
does not occur in S;A;T;B

L	 W ‹.ˆI S 0 	 0 T ` CI‰/
‹.ˆI S 0 	� 0 T ` CI‰/ R	 W ‹.ˆI S ` 	I‰/

‹.ˆI S ` 	�I‰/

We shall call rules R˛ and Lˇ branching rules, as the resulting “question-
conclusion” has more constituents than the “question-premise”. Consequently,
we will call the remaining erotetic rules non-branching rules (in particular, the
quantificational rules of EPQ are non-branching). The letters “L” and “R” indicate
that the appropriate rule “operates” on the left or right side of the turnstile `. For
brevity, we have used the ˛, ˇ–notation. This is explained in the following table (see
Smullyan (1995)):
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˛ ˛1 ˛2 ˇ ˇ1 ˇ2 ˇ�

1

A ^ B A B :.A _ B/ :A :B A

:.A _ B/ :A :B A _ B A B :A

:.A ! B/ A :B A ! B :A B A

ˇ�
1 may be called the complement of ˇ1.

Rules L	 and R	 cover the cases of quantifiers in the scope of negation and
dummy quantification according to the following table:

	 	�

:8xiA 9xi:A

:9xiA 8xi:A

8xiA, where xi is not free in A A

9xiA, where xi is not free in A A

It is easily visible that the rules of EPQ are designed in such a way that each
constituent of the “question-conclusion” is PQ-valid if and only if each constituent
of the “question-premise” is PQ-valid. On the other hand, it can be shown that each
application of a rule of EPQ retains validity (in the sense of Inferential Erotetic
Logic) of the corresponding erotetic inference. For a justification of the above claims
see Wiśniewski (2004c) and Wiśniewski and Shangin (2006).

The concept of Socratic transformation is given by the following definition:

Definition 1. A sequence hs1; s2; : : :i of questions is a Socratic transformation of
a question ‹ .S ` A/ via the rules of an erotetic calculus EPQ iff the following
conditions hold:

(i) s1 D ‹ .S ` A/;
(ii) si, where i > 1, results from si�1 by an application of an erotetic rule of EPQ.

Consider the following example (Leszczyńska-Jasion et al. 2013, p. 977) of
a Socratic transformation of sequent ` 9xP.x/ _ 9xQ.x/ ! 9x.P.x/ _ Q.x//:

Example 1.

1.‹.` 9xP.x/_ 9xQ.x/ ! 9x.P.x/_ Q.x// Rˇ

2.‹.9xP.x/_ 9xQ.x/ ` 9x.P.x/_ Q.x/// Rˇ

3.‹.9xP.x/ ` 9x.P.x/_ Q.x// I 9xQ.x/ ` 9x.P.x/_ Q.x/// L9

4.‹.P.a/ ` 9x.P.x/_ Q.x// I 9xQ.x/ ` 9x.P.x/_ Q.x/// R9

5.‹.P.a/;8x:.P.x/_ Q.x// ` P.a/_ Q.a/ I 9xQ.x/ ` 9x.P.x/_ Q.x/// Rˇ

6.‹.P.a/;8x:.P.x/_ Q.x//;:P.a/ ` Q.a/ I 9xQ.x/ ` 9x.P.x/_ Q.x/// L9

7.‹.P.a/;8x:.P.x/_ Q.x//;:P.a/ ` Q.a/ I Q.a/ ` 9x.P.x/_ Q.x/// R9

8.‹.P.a/;8x:.P.x/_ Q.x//;:P.a/ ` Q.a/ I Q.a/;8x:.P.x/_ Q.x// ` P.a/_ Q.a// Rˇ

9.‹.P.a/;8x:.P.x/_ Q.x//;:P.a/ ` Q.a/ I Q.a/;8x:.P.x/_ Q.x//;:P.a/ ` Q.a//

The last question of the above sequence has an interesting property: the affir-
mative answer to it is, in a sense, evident, as all the constituents of this question
express some basic facts about (PQ) entailment. Thus, the answer to the first
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question of the sequence is also affirmative: it is true that 9xP.x/ _ 9xQ.x/ !
9x.P.x/ _ Q.x// is entailed by the empty set, and the sequence of Example 1 is
not just a transformation: it is a successful transformation, that is, a proof.

Definition 2. Let S ` A be a pure sequent. A finite Socratic transformation
hQ1; : : : ;Qni of question ‹ .S ` A/ via the rules of EPQ is a Socratic proof of sequent
S ` A in the calculus EPQ iff for each constituent � of Qn:

(a) � is of the form T 0 B 0 U ` B, or
(b) � is of the form T 0 B 0 U 0 :B 0 W ` C, or
(c) � is of the form T 0 :B 0 U 0 B 0 W ` C.

Constituents/sequents of the form (a), (b) and (c) are called successful.

In what follows by a successful (unsuccessful) Socratic transformation we will
mean a Socratic transformation which is (which is not) a Socratic proof.

Calculus EPQ pertains to the Pure Calculus of Quantifiers in the following sense:

Theorem 1. Let S ` A be a pure sequent. S ` A is provable in EPQ iff S ` A is
PQ-valid.

The reader will find the proof in Wiśniewski and Shangin (2006).

3 A View from EPQ

Now we are in a position to define an abductive mechanism which makes use of
EPQ. We assume that the initial question of a Socratic transformation is based on
a pure sequent (i.e. a sequent which involves only parameter-free sentences). This
is not required by EPQ (only Socratic proofs are supposed to start that way), but we
impose this restriction for a reason.

A law-like statement (LLS) is a first-order sentence of the form:

8xi1 : : :8xin.A.xi1 ; : : : ; xin/ ! B.xi1 ; : : : ; xin//

where A.xi1 ; : : : ; xin/ and B.xi1 ; : : : ; xin/ are parameter-free sentential functions
which involve xi1 ; : : : ; xin as the only free variables. We consider LLSs which are
expressions of L. Let A.xi=�/ designate a sentence which results from a sentential
function Axi (xi is here the only free variable of A) by the replacement of (each
occurrence of) variable xi by parameter � . According to the rules of EPQ, a wff of
the form A.xi=�/ occurs in a constituent of a question of a Socratic transformation
of the considered kind due to an application of any of the rules: L8, R8, L9, R9, and
is always a sentence. Moreover, such a formula never occurs in an initial question
(sequent) of a Socratic proof (because the initial question has to be based on a pure
sequent).
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We introduce the following rule of abduction:

(abd)
‹.ˆI S0A.xi=�/

0T ` B.xi=�/I‰/
‹.ˆI S0A.xi=�/0T 08xi.Axi ! Bxi/ ` B.xi=�/I‰/

Observe that we require that � must replace xi both in Axi and in Bxi; in other
words, it is required that the appropriate sentential functions (recall that each of
them occurs in a sequent in the scope of a quantifier) must share a free variable
and that this variable has been replaced by � in both cases. In general, this is not
univocal, but since we are going to extend a given Socratic transformation which
starts with a question based on a pure sequent, univocality is retained.

Rule (abd) is supposed to be applied when we have an unsuccessful constituent
in the last question of a completed Socratic transformation. Of course, it is not the
case that (abd) is always applicable; for example, (abd) is not applicable to the
last term of the following unsuccessful Socratic transformation (in order to improve
readability, from now on we highlight a formula which the rule indicated to the right
operates on):

1. ‹( 9x1Px1 ` 8x1Px1/ L9
2. ‹.P�1 ` 8x1Px1 / R8
3. ‹.P�1 ` P�2/

Observe that rule (abd), if applicable, enables us to “compute” a LLS given that
� is the only parameter of A.xi=�/ and B.xi=�/ (recall that a LLS must be parameter-
free). If there are more parameters involved, the situation is more complicated (see
below). Of course, unlike other rules, (abd) does not preserve joint validity from
top to bottom.

Definition 3. By an abductive extension of an unsuccessful finite Socratic transfor-
mation s D Q1; : : : ;Qn of ‹.S ` A/ via EPQ we mean a finite sequence of questions
Q�
1 ; : : : ;Q

�
n ;Q

�
nC1; : : : ;Q�

u such that:

1. Qi D Q�
i for i D 1; : : : ; n,

2. Q�
mC1 results from Q�

m by (abd) for m D n; n C 1; : : : ; u � 1,
3. rule (abd) is applied only with respect to unsuccessful constituents,
4. if rule (abd) has been applied with respect to k-th constituent of m-th (n � m <

u) question, then rule (abd) is not applied with respect to k-th constituent of any
question with an index greater than m.

By a proto-abducible of an abductive extension of s we mean any wff introduced
to a constituent of a question of s by means of an application of rule (abd). We say
that an abductive extension is completed if each constituent of the last question of it
is either successful or involves a proto-abducible left of the turnstile.

Clause 4 of Definition 3 amounts to the requirement that (abd) is applied
only once with respect to a given unsuccessful constituent of the last question of
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s (observe that (abd) is not a branching rule). In the case of a completed abductive
extension of s rule (abd) has been applied to each unsuccessful constituent of the
last question of s (these constituents are rewritten to consecutive questions and are
dealt with step by step).

Example 2 (space between lines indicates where the analysed unsuccessful ST ends;
the proto-abducible is underlined).

1. ‹.8x1Px1 ` 8x1Rx1 / R8
2. ‹. 8x1Px1 ` R�1/ L8
3. ‹.8x1Px1; P�1 ` R�1 / (abd)

4. ‹.8x1Px1;P�1;8x1.Px1 ! Rx1/ ` R�1/

Observe that 8x1Px1 ² 8x1Rx1, but f8x1Px1;8x1.Px1 ! Rx1/g � 8x1Rx1.

Example 3.

1. ‹.8x1.Px1 ! Rx1/ ` 8x1.Px1 ! Gx1/ / R8
2. ‹.8x1.Px1 ! Rx1/ ` P�1 ! G�1 / R!
3. ‹. 8x1.Px1 ! Rx1/ ;P�1 ` G�1/ L8
4. ‹.8x1.Px1 ! Rx1/; P�1 ! R�1 ;P�1 ` G�1/ R!
5. ‹.8x1.Px1 ! Rx1/;:P�1;P�1 ` G�1I (abd)

8x1.Px1 ! Rx1/; R�1 ;P�1 ` G�1 /

6. ‹.8x1.Px1 ! Rx1/;:P�1;P�1 ` G�1I
8x1.Px1 ! Rx1/;R�1;P�1;8x1.Rx1 ! Gx1/ ` G�1/

Again, we have f8x1.Px1 ! Rx1/;8x1.Rx1 ! Gx1/g � 8x1.Px1 ! Gx1/.
The above unsuccessful transformation 1–5 of Example 3 can also be extended

to:

6’. ‹.8x1.Px1 ! Rx1/;:P�1;P�1 ` G�1I
8x1.Px1 ! Rx1/;R�1;P�1;8x1.Px1 ! Gx1/ ` G�1/

In this case, however, the proto-abducible is trivial, that is, it is identical with the
sentence which stays right to the turnstile in the initial question (sequent).

Now, observe that in both cases we can “add” the proto-abducible to the
“premises” of the initial sequent and we receive a successful Socratic transformation
of the question obtained in this way (see Examples 4 and 5).
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Example 4.

1. ‹.8x1Px1;8x1.Px1 ! Rx1/ ` 8x1Rx1 / R8
2. ‹. 8x1Px1 ;8x1.Px1 ! Rx1/ ` R�1/ L8
3. ‹.8x1Px1;P�1; 8x1.Px1 ! Rx1/ ` R�1/ L8
4. ‹.8x1Px1;P�1;8x1.Px1 ! Rx1/; P�1 ! R�1 ` R�1/ L!
5. ‹.8x1Px1;P�1;8x1.Px1 ! Rx1/;:P�1 ` R�1I

8x1Px1;P�1;8x1.Px1 ! Rx1/;R�1 ` R�1/

Example 5.

1. ‹.8x1.Px1 ! Rx1/;8x1.Rx1 ! Gx1/ ` 8x1.Px1 ! Gx1/ / R8
2. ‹.8x1.Px1 ! Rx1/;8x1.Rx1 ! Gx1/ ` P�1 ! G�1 / R!
3. ‹. 8x1.Px1 ! Rx1/ ;8x1.Rx1 ! Gx1/;P�1 ` G�1/ L8
4. ‹.8x1.Px1 ! Rx1/; P�1 ! R�1 8x1.Rx1 ! Gx1/;P�1 ` G�1/ L!
5. ‹.8x1.Px1 ! Rx1/;:P�1;8x1.Rx1 ! Gx1/;P�1 ` G�1I L8

8x1.Px1 ! Rx1/;R�1; 8x1.Rx1 ! Gx1/ ;P�1 ` G�1/

6. ‹.8x1.Px1 ! Rx1/;:P�1;8x1.Rx1 ! Gx1/;P�1 ` G�1I L!
8x1.Px1 ! Rx1/;R�1;8x1.Rx1 ! Gx1/; R�1 ! G�1 ;P�1 ` G�1/

7. ‹.8x1.Px1 ! Rx1/;:P�1;8x1.Rx1 ! Gx1/;P�1 ` G�1I
8x1.Px1 ! Rx1/;R�1;8x1.Rx1 ! Gx1/;:R�1;P�1 ` G�1I

8x1.Px1 ! Rx1/;R�1;8x1.Rx1 ! Gx1/;G�1;P�1 ` G�1/

The above observation can be generalized. The following holds:

Theorem 2. Let S ` A be a pure sequent, s be a finite unsuccessful Socratic
transformation of ‹.S ` A/ via the rules of EPQ, and s� be a completed abductive
extension of s such that all the proto-abducibles of s� are parameter-free. Let S� be
a sequence of all the proto-abducibles of s�. The sequent S0S� ` A is provable in
EPQ and thus A is CL-entailed by the set made up of all the terms of the sequence
S0S�.

Proof. Let us observe that we can assign to each unsuccessful constituent of the
last question of s exactly one proto-abducible, namely that one which is introduced
when rule (abd) is applied with respect to this constituent. To put it differently: if
i-th constituent of the last question of s is unsuccessful, then there exists a proto-
abducible which was introduced in s� when rule (abd) was applied with respect to
i-th constituent of a question of s� of an index equal or greater to the index of the last
question of s (recall that (abd) is a non-branching rule, and, since s� is completed,
each unsuccessful constituent of the last question is “dealt with” in some question
of s�).
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We take s and modify it as follows:

(a) we replace each sequent, T ` C, which is a constituent of a question of s, with
the sequent T 0S� ` C; note that S ` A transforms into a pure sequent S0S� ` A.
Then we proceed analogously as in s;

(b) we take the leftmost unsuccessful constituent of the last question of the
transformation received from s in the above manner. Since S� always occurs
left of the turnstile, this constituent is a sequent of the form:

U0A.xi=�/
0W 08xi.Axi ! Bxi/

0Z ` B.xi=�/

Now we apply rule L8 with respect to the above constituent and we obtain
the following constituent (of the same index) in the next question:

($) U0A.xi=�/
0W 0 < 8xi.Axi ! Bxi/;A.xi=�/ ! B.xi=�/ >

0 Z ` B.xi=�/

In the next step we apply rule L! with respect to ($) and we obtain two “new”
successful sequents at the place where ($) has occurred;

(c) we repeat the procedure described in (b) with regard to the leftmost unsuccessful
constituent of the question obtained at the previous step.

It is clear that the above procedure terminates in a finite number of steps and
thus produces a finite Socratic transformation of ‹.S0S� ` A/. Since unsuccessful
constituents are eliminated step by step, we end with a Socratic proof of S0S� ` A.
Therefore, by soundness of EPQ, A is PQ-entailed by the set made up of all the terms
of S0S�. This completes the proof. �

In order to obtain a general scheme we need a method of extraction of LLSs from
proto-abducibles which involve parameters.

Since, by definition, both parts of an LLS must share variables, for our purposes
we consider the case in which all the proto-abducibles introduced by (abd) are of
the form:

.#/ 8xi.A.xi; xi1=�1; : : : ; xin=�n/ ! B.xi; xi1=�
0
1; : : : ; xin=�

0
n//

where xi; xi1 ; : : : ; xin are distinct variables, �i need not be distinct from � 0
i (although

can be), and �1; : : : ; �n, as well as � 0
1; : : : ; �

0
n, need not be pairwise distinct. Again,

(#) is univocal due to the fact that a given unsuccessful Socratic transformation is
the starting point. If (#) is a proto-abducible of the considered kind and �i D � 0

i for
1 � i � n, then the following

8xi1 : : :8xin8xi.A.xi; xi1 ; : : : ; xin/ ! B.xi; xi1 ; : : : ; xin// (1)

is the abducible corresponding to (#). If, however, �i ¤ � 0
i for some (but not all) i,

where 1 � i � n, then the abducible corresponding to (#) falls under the schema:
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8xj1 : : :8xjk 8xi.9xjkC1
: : : 9xjn A.xi; xj1 ; : : : ; xjn/ (2)

! 8xjkC1
: : :8xjn B.xi; xj1 ; : : : ; xjn//

where xj1 : : : xjk are all the variables among xi1 ; : : : ; xin which are replaced in (#) by
the same parameters in the antecedent and the consequent, and xjkC1

: : : xjn are all
the variables among xi1 ; : : : ; xin which are replaced in (#) by distinct parameters in
the antecedent and the consequent. Finally, if �i ¤ � 0

i for all i, where 1 � i � n, then
the abducible has the form:

8xi.9xi1 : : : 9xin A.xi; xi1 ; : : : ; xin/ ! 8xi1 : : :8xin B.xi; xi1 ; : : : ; xin// (3)

Note that in either case the abducible involves the “original” variables which
were replaced by parameters during the initial Socratic transformation. Note also
that in each case the abducible constitutes an LLS.

Example 6 (for brevity, we use x for x1, and y for x2).

1. ‹.8x9yPxy ` 9y8xPxy / R9
2. ‹.8x9yPxy; 8y:8xPxy ` 8xPx�1/ L8
3. ‹.8x9yPxy;8y:8xPxy;:8xPx�1 ` 8xPx�1 / R8
4. ‹.8x9yPxy;8y:8xPxy; :8xPx�1 ` P�2�1/ L:8
5. ‹.8x9yPxy;8y:8xPxy; 9x:Px�1 ` P�2�1/ L9
6. ‹.8x9yPxy;8y:8xPxy; :P�3�1 ` P�2�1 / (abd)

7. ‹.8x9yPxy;8y:8xPxy;:P�3�1;8y.:P�3y ! P�2y/ ` P�2�1/

The abducible is 8y.9x:Pxy ! 8xPxy/. Observe that the abducible is CL-
equivalent to 8x8yPxy.

In order to obtain a Socratic proof of

8x9yPxy;8y.9x:Pxy ! 8xPxy/ ` 9y8xPxy

it is sufficient to add the abducible left of the turnstile in the initial sequent of
Example 6, proceed as above, apply rule L8 to the abducible w.r.t. �1, apply rule
L!, apply rule L:9 to :9x:Px�1 just obtained, apply rule L8 to 8x::Px�1 w.r.t.
�3, and apply rule L8 to 8xPx�1 w.r.t. �2.

One can prove the following:

Theorem 3. Let S ` A be a pure sequent. Let s be a finite unsuccessful Socratic
transformation of ‹.S ` A/ via the rules of EPQ, and let s� be a completed abductive
extension of s such that all the proto-abducibles of s� are of the form (#) specified
above. Let S�� be a sequence of all the abducibles which correspond to the proto-
abducibles of s�. Then the sequent S0S�� ` A is provable in EPQ and thus A is
CL-entailed by the set made up of all the terms of the sequence S0S��.
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Proof. If an abducible falls under the schema (1), we proceed similarly as
in the proof of Theorem 2. Suppose that an abducible is of the form (2) or
of the form (3). One can get from it :A.xi=�; xi1=�1; : : : ; xin=�n/ as well as
B.xi=�; xi1=�

0
1; : : : ; xin=�

0
n/.

An unsuccessful Socratic transformation can be abductively extended if only rule
(abd) is applicable to the unsuccessful constituents of the transformation, regardless
of whether entailment/derivability holds in the initial sequent. Hence a practical
problem arises: at which point one should give up in applying the rules of EPQ

and apply rule (abd)? There is no general solution to this problem. A practical
advice might be: if you end with a question whose unsuccessful constituents
involve only atomic sentences right of the turnstile, and atomic sentences as well as
compound formulas of the form 8xiD (where xi is free in D) left of the turnstile,
try to apply rule (abd). When you end with a completed abductive extension,
the relevant abducibles either describe prospective goals of further deductions
from accessible premises/databases (if these deductions are successfully completed,
a positive solution to the main problem is arrived at) or are hypotheses to be tested
(if tested with a success, you know that your problem can be resolved by means of
new data).

By the way, the mechanism sketched above can be applied in proof-heuristics.

4 A View from EAPQ

The calculus EAPQ (‘A’ stands for ‘applied’) differs from EPQ in language: now indi-
vidual constants may occur in sequents, including the sequents to be (Socratically)
proven. Moreover, instead of rules L8 and R9 of EPQ, we now have:

LA8
‹.ˆI S08xiA0T ` BI‰/

‹.ˆI S08xiA0A.xi=
/0T ` BI‰/
provided that xi is free in A; 
 is a parameter or an individual constant

RA9
‹.ˆI S ` 9xiAI‰/

‹.ˆI S08xi:A ` A.xi=
/I‰/
provided that xi is free in A; 
 is a parameter or an individual constant

The remaining rules of EAPQ are those of EPQ.
The practical difference is that we are now able to consider abduction of LLSs

on the basis of premises in which individual constants occur (and thus we touch the
problem of explanation of facts by laws). The formal mechanism of abduction is the
same as in the case of EPQ, however. The rule (abd) is not modified, so these are
only the shared parameters that count.
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A weakening of the rule (abd) in the following way:

(abd0)
‹.ˆI S0A.xi=
/

0T ` B.xi=
/I‰/
‹.ˆI S0A.xi=
/0T 08xi.Axi ! Bxi/ ` B.xi=
/I‰/

where 
 is a parameter or an individual constant

raises a formal problem, since A.xi=
/ and B.xi=
/ are not univocal with respect
to initial premises in which individual constants occur. Moreover, philosophical
generality connected with the use of parameters is lost. On the other hand, some
examples are appealing (see Examples 7 and 8).

Example 7.

1. ‹. Pa ` Ra / (abd0)
2. ‹.Pa;8x1.Px1 ! Rx1/ ` Ra/

Example 8.

1. ‹.Pa ! Ra ` Pa ! Ga / R!
2. ‹. Pa ! Ra ;Pa ` Ga/ L!
3. ‹.:Pa;Pa ` GaI Ra ;Pa ` Ga / (abd0)
4. ‹.:Pa;Pa ` GaI Ra;Pa;8x1.Rx1 ! Gx1/ ` Ga/

A possible solution is to restrict (abd0) to atomic sentences which share an
individual constant and are parameter-free. Now A.�/ stands for a parameter-free
atomic sentence in which individual constant � occurs, and similarly for B.�/. We
would have (abd) and the following:

(abd00)
‹.ˆI S0A.�/0T ` B.�/I‰/

‹.ˆI S0A.�/0T 08xi.Axi ! Bxi/ ` B.�/I‰/
Example 9.

1. ‹. Pa _ Ra ` Ga/ L_
2. ‹. Pa ` Ga I Ra ` Ga/ (abd00)
3. ‹.Pa;8x1.Px1 ! Gx1/ ` GaI Ra ` Ga / (abd00)
4. ‹.Pa;8x1.Px1 ! Gx1/ ` GaI Ra;8x1.Rx1 ! Gx1/ ` Ga/

Observe that is not required that the “shared” individual constant occupies the
same position in A and in B (see Example 10).
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Example 10.

1. Pab ` Rca (abd00)
2. Pab;8x1.Px1b ! Rcx1/ ` Rca

A generalization of (abd00) to the case when there are more shared individual
constants is obvious. It is unclear, however, how to define abductive extensions of
unsuccessful Socratic transformations, because a “mixed” case (shared parameters
and shared individual constants) may arise.

5 Concluding Remarks

The algorithmic perspective offers a very broad account on abductive reasoning.
One may even claim that it is too generous, and this claim can be expressed
in Hintikka’s (2007, p. 45) terms of distinction between definitory and strategic
rules of inference as follows. In the algorithmic perspective focus on effective
computability of a solution to an abductive problem may lead to overrating move-
by-move correctness of a reasoning, determined by the definitory rules. This, in
turn, results in underestimating the role of strategic rules, constituting the essence of
abduction as an ampliative reasoning (Hintikka 2007, pp. 45–52). Thus procedures
defined within the algorithmic perspective may fail to meet the criteria for full-
fledged abduction. In our opinion there are two possible ways of responding to
such a claim. The first one would involve conceptual considerations on the very
nature of abduction, which we do not pursue in this paper. The second one is
of slightly functional but still legitimate character. Our purpose here was to find
a mechanism by which abductive hypotheses in the form of law-like statements
can be generated. Bearing in mind the distinction between abductive process and
product (Aliseda 2006, p. 32) we do not claim that this mechanism is itself
abductive, that is, that we described some kind of mental logic of abduction. What
we did is this: psychological adequacy apart, we characterized an effective way of
computing formulas of well-defined form of law-like statements, which may play
the role of abducibles in certain contexts.
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A Dynamic Logic of Interrogative Inquiry

Yacin Hamami

Abstract We propose a dynamic-epistemic analysis of the different epistemic
operations constitutive of the process of interrogative inquiry, as described by
Hintikka’s Interrogative Model of Inquiry (IMI). We develop a dynamic logic of
questions for representing interrogative steps, based on Hintikka’s treatment of
questions in the IMI, along with a dynamic logic of inferences for representing
deductive steps, based on the tableau method. We then merge these two systems
into a dynamic logic of interrogative inquiry which articulates a joint treatment of
questions and inferences, providing thereby a unified framework representing the
informational dynamics of interrogative inquiry. We provide sound and complete
axiomatic systems for the three dynamic logics that we introduce, we compare our
framework with existing approaches, and we finally propose several directions for
further work.

Keywords Interrogative model of inquiry • Dynamic epistemic logic •
Question • Inference

1 Introduction and Motivation

The process of inquiry is one of the major topics of investigation in the formal
and philosophical studies of rational agency. Notable approaches to the formal
modelling of inquiry comprise the learning theory of Kelly (1996), the game-
theoretic account of Hintikka (1999), the abductive perspective of Aliseda (2006),
and the approach from belief revision theory of Genot (2009). Undoubtedly,
questions play a crucial role in the human activity of inquiry as a means to obtain
information, as exemplified in the contexts of conversation or communication. Some
authors have even argued that any form of inquiry can be seen as a questioning
procedure (Collingwood 1940; Hintikka 2007). The process of information-seeking
by questioning has been commonly referred to as interrogative inquiry.
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The key figure associated to the logical and philosophical investigations of
interrogative inquiry is Jaakko Hintikka. His approach has been organized around
the development of the so-called Interrogative Model of Inquiry (IMI) (Hintikka
1988, 1999, 2007) which represents interrogative inquiry as a game between two
players called the Inquirer and Nature. The game is played on a fixed model
M and the role of the Inquirer is to answer a given question, or to establish a
given conclusion, from a background theory T . To this end, the Inquirer can make
interrogative moves, which consist in putting questions to Nature and registering
the answers as additional premises, or deductive moves, which consist in drawing
logical inferences from the information already obtained by the Inquirer. Thus,
according to the IMI, an interrogative inquiry is a sequence of interrogative
and deductive steps, which respectively consist in asking questions and drawing
inferences.

The background assumption of this paper is that the development of a theory
of interrogative inquiry, and a formalization of the IMI, can be carried out in the
program of logical dynamics of information and interaction (van Benthem 2011).
This assumption is supported by (i) the recent developments on dynamic logics of
questions and inferences, (ii) the possibility to represent interrogative inquiry as a
temporal process via the notion of protocol, and (iii) the capacity to account for
the social dimension of interrogative inquiry using multi-agent systems, logics for
interaction, and game-theoretic frameworks. However, such an enterprise must start
by understanding the informational dynamics of interrogative inquiry.

This is precisely the aim of this paper: to develop a dynamic-epistemic analysis
of the different operations of information acquisition constitutive of the process
of interrogative inquiry. Our ambition is to inscribe our investigation both in the
program of logical dynamics and in the line of Hintikka’s approach to interrogative
inquiry. This is motivated by the fact that (i) the IMI offers a framework for
investigating interrogative inquiry in the program of logical dynamics and (ii) the
framework of Dynamic-Epistemic Logics (DEL) offers the necessary tools and
methodology to develop a formally precise account of the informational dynamics
of interrogative inquiry.

This paper is organized as follows. In Sect. 2, we develop a logical modelling
of interrogative steps under the form of a dynamic logic of questions based on
Hintikka’s representation of questions. In Sect. 3, we develop a dynamic logic of
inferences which represents deductive steps as tableau construction steps following
Hintikka’s representation of inferences in the IMI. In Sect. 4, we represent the
combination of interrogative and deductive steps in a dynamic logic of interrogative
inquiry which articulates a joint treatment of questions and inferences, and which
aims thereby to capture the informational dynamics of interrogative inquiry as
described by the IMI. Our main technical results are sound and complete axiom-
atizations for these three logics, describing precisely the epistemic effects of the
different epistemic operations constitutive of the process of interrogative inquiry.
Section 5 is a brief comparison of our dynamic-epistemic analysis of interrogative
inquiry with other approaches. Section 6 ends this paper with some concluding
remarks and suggestions for further work.
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2 Modelling Interrogative Steps: A Dynamic Logic
of Questions

For representing interrogative steps as questions in the IMI, Hintikka adopts a
representation of questions based on his own work on the semantics and pragmatics
of questions (Hintikka 1976). The aim of this section is to develop a dynamic-
epistemic modelling of interrogative steps based on this representation. Thus, after a
brief presentation of Hintikka’s approach to the representation of questions, we will
show how the methodology of dynamic-epistemic logics can fruitfully be adopted
to make explicit the informational dynamics of interrogative steps in interrogative
inquiry according to the conceptual description of the IMI. Our approach will
consist in the development of a suitable dynamic logic of questions for which we
will provide a sound and complete axiomatic system.

2.1 Hintikka on Questions: Propositional Question,
Presupposition and Oracle

The treatment of questions and answers which underlines the IMI is based on what
we will call Hintikka’s theory of questions, which originated in Hintikka (1976) and
has been developed further in Hintikka (1999, 2007). This theory is the basis for the
definition of the definitory rule for questioning of Interrogative Logic1 (henceforth,
IL) which aims to govern the possible interrogative steps that the inquirer can make
in an interrogative inquiry. In the perspective of developing a dynamic logic of
questions based on Hintikka’s theory of questions, it will be useful to present this
theory at work in the interrogative rule of IL in order to understand how, according
to the IMI, the notions of propositional question, presupposition, and oracle operate
in the mechanics of interrogative steps.2

IL was designed to capture the reasoning of an inquirer aiming to find out
unknown aspects of a given model M, representing the actual world. In this rea-
soning process, the inquirer can make requests for information about the model M.
According to the IMI, these requests for information are conceived as questions to a
particular source called the oracle. Thus, the IMI must incorporate a representation

1‘Interrogative Logic’ refers to the logical system developed by Hintikka et al. (1999) which
provides a logical theory of interrogative reasoning as an extension of first-order logic with a rule
for questioning.
2Hintikka’s theory of questions involves an additional important notion: the desideratum of a
question which specifies “the epistemic state that the questioner wants to be brought about (in
the normal use of questions)” (Hintikka 2007, p. 25). This notion plays a limited role in the
propositional case since, as soon as the oracle picks an answer among the set of possible answers
of a propositional question and delivers it to the inquiring agent, the agent is automatically brought
in an epistemic state that satisfies the desideratum of the propositional question. For this reason,
we do not consider the notion of desideratum in this paper.
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of questions and answers. The role of Hintikka’s theory of questions is precisely
to fill this task. According to this theory, a question is identified by its set of
possible answers. In the propositional case, a propositional question Q is simply
identified with a finite set of formulas that we denote by Q D .�1; : : : ; �k/ where
�1; : : : ; �k are propositional formulas, and is read as “which one of the following
holds: �1,. . . ,�k?”. Among propositional questions, yes-no questions are questions
of the form .�;:�/.

The notion of question comes with the important notion of presupposition.
According to Hintikka, a question can be meaningfully asked only if its presuppo-
sition has been established by the inquirer.3 In the case of propositional questions,
the presupposition of a question Q D .�1; : : : ; �k/ is simply the disjunction of all its
possible answers.

Finally, the oracle is formalized, in IL, via an answer set ˆ, containing all the
available answers from the oracle, and satisfying the following hypotheses (Hintikka
et al. 1999, p. 48): (1) there is only one oracle, (2) the set of answers the oracle will
provide remains constant throughout the inquiry, (3) all of the oracle’s answers are
true, and known by the inquirer to be true. We now have all the ingredients to state
the definitory rule for questioning of IL:

If the presupposition of a question occurs on the left side of a subtableau, the inquirer may
address the corresponding question to the oracle. If the oracle answers, the answer is added
to the left side of the subtableau. (Hintikka 1999, p. 51)

In IL, the left side of the initial tableau contains all the initial premises. Then,
during the inquiry, the left side records all that has been established by the inquirer,
either through logical inferences or by questioning. Thus, what the definitory rule
for questioning says is the following: as soon as the inquirer has established the
presupposition of a question Q, she has the possibility to address the corresponding
question to the oracle, and if she chooses to do so, the obtained answer will depend
on the information available to the oracle. The definitory rule for questioning of IL
has then a strong dynamic-epistemic flavor: the left side of the tableau represents
the epistemic situation of the inquirer, the action of questioning having for effect to
modify this epistemic situation. We will now show how this dynamics can be made
explicit in the logical framework of a dynamic logic of questions.

2.2 A Dynamic Logic of Questions

Our task is now to develop a dynamic logic of questions which (i) accounts for the
dynamic and epistemic aspects of interrogative steps in interrogative inquiry and (ii)
adopts the representation of questions provided by Hintikka’s theory of questions.

3Notice that the notion of presupposition plays a crucial role in the limitations of the inquiry
process: “[T]he limits of inquiry are obviously determined to a large extent by the available
presuppositions of questions and answers. [. . . ] It follows that all doctrines concerning the
limitations of scientific or other kinds of knowledge-seeking will have to be discussed by reference
to the presuppositions of questions and questioning”. (Hintikka 2007, p. 84).
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2.2.1 The Static Component

We have seen in the previous section that a question is identified with its set of
possible answers. Our first step is to define what we mean by a possible answer. To
this end, we define an inquiry language I which delimits the scope of the formulas
that can be the answers to some questions. Since we focus on the propositional case,
we will only consider propositional questions, i.e., questions for which a possible
answer is simply a propositional formula. In this case, the inquiry language I is the
propositional language:

Definition 1 (Inquiry language I ). Let P be a countable set of atomic proposi-
tions. The inquiry language I is given by

� WWD p j :� j .� ^ �/

where p 2 P.

The static language that we consider is the language of epistemic logic4 to which
we add an oracle operator:

Definition 2 (Epistemic language EO). Let P be a set of atomic propositions. The
epistemic inquiry language EO is given by

' WWD p j :' j .' ^ '/ j K' j ˆ�

where p 2 P and � 2 I .

In EO, formulas of the form K' are read as “the agent knows that '” and formulas
of the form ˆ� are read as “� is in the answer set of the oracle”.

In epistemic logic, the knowledge of the agent is encoded into an epistemic model
M D hW;�;Vi. How can we represent the oracle in this case? We shall first recall
that the oracle refers to the source of information about the actual world. Usually, the
actual world is represented by a designated world in a given epistemic model. Since
all the worlds of an epistemic model M D hW;�;Vi can be potentially designated
to be the actual world, we will need to associate an oracle answer set to each world
w in W. Thus, we will define the oracle as a function:

ˆ W w 2 W 7! ˆ.w/ 2 P.I /:

Following Hintikka, we will make the following assumptions on the oracle: for each
world w 2 W, (1) there is only one oracle associated to w (represented by the answer
set ˆ.w/), (2) the answer set ˆ.w/ remains constant throughout the inquiry, (3) the
oracle’s answers are true. We then define the notion of epistemic inquiry model as
follows5:

4See Appendix A for a brief presentation of epistemic logic.
5We provide here a general definition for epistemic inquiry models. We will then restrict it with
additional requirements when we will define our intended class of models.
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Definition 3 (Epistemic inquiry model). An epistemic inquiry model is a tuple
M D hW;�;V; ˆi where:

– hW;�;Vi is an epistemic model,6

– ˆ W W ! P.I / is a function representing the oracle which associates to each
world w 2 W a set of formulas ˆ.w/ 
 I .

In the definition of epistemic inquiry models, we already integrate the hypothesis
(1) on the oracle. We will integrate hypothesis (3) when we will define our intended
class of models, and hypothesis (2) in the next section. We now define the semantics
for the language EO:

Definition 4 (Semantics for EO). Let M D hW;�;V; ˆi be an epistemic inquiry
model. The semantics for EO is given by the semantics for the epistemic language7

E plus the following semantic definition for the oracle operator ˆ

M;w ˆ ˆ� iff � 2 ˆ.w/:

In this work, we will impose the following restrictions on epistemic inquiry
models: let M D hW;�;V; ˆi be an epistemic inquiry model,

Veridicality for the oracle: we will require that the oracle is always truthful, i.e.,
for all w 2 W, if � 2 ˆ.w/, then M;w ˆ � .

Coherence property for the oracle: we will require a coherence property for the
oracle, i.e., for all w 2 W, if � 2 ˆ.w/, then � 2 ˆ.u/ for all u 2 W such that
u � w and M; u ˆ � .

The veridicality property corresponds to the hypothesis (3) on the oracle. The
intuitive meaning of the coherence property is the following: if in the world w the
oracle is able to provide the information � about w, then it is able to provide the
information � in all the worlds epistemically indistinguishable from w by the agent
in which � is true. This aims to reflect the idea that the informative power of the
oracle is uniform on the epistemic range of the agent.

Thus, our intended class of models EI, which is a subclass of the class of
epistemic inquiry models, is defined as follows8:

Definition 5 (Class of models EI). Let M D hW;�;V; ˆi be an epistemic inquiry
model. M 2 EI if and only if M satisfies the veridicality and coherence properties
for the oracle.

6As defined in Appendix A. In all this paper, we make the common assumption that the
indistinguishability relation � is an equivalence relation.
7The semantics for the epistemic language E is defined in Appendix A.
8In the following, by ‘epistemic inquiry models’ we will mean models of this class.
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2.2.2 The Dynamic Component

In the dynamic component, we aim to provide a semantic definition for a dynamic
operator which would represent the action of making an interrogative step. To
this end, we first need to extend our previous language into an epistemic inquiry
language EI by adding a dynamic ‘question to the oracle’ operator (henceforth,
question operator):

Definition 6 (Epistemic inquiry language EI ). Let P be a set of atomic proposi-
tions. The epistemic inquiry language EI is given by

' WWD p j :' j .' ^ '/ j K' j ˆ� j Œ.�1; : : : ; �k/‹�'

where p 2 P, �; �1; : : : ; �k 2 I and k � 2.

In this language, formulas of the form Œ.�1; : : : ; �k/‹�' are read as “' is the case
after the inquiring agent has addressed the question ‘which one of the following
holds: �1,. . . ,�k?’ to the oracle”.

The semantic definition for the question operator will be built from two
components: the first one is the definition of the question operation on epistemic
inquiry models, the second one is the definition of the precondition to this operation.
In order to define the question operation, we first have to recall how an epistemic
model is modified after an incoming of hard information9:

Definition 7 (Hard information update). Let M D hW;�;V; ˆi be an epistemic
inquiry model and let � 2 I . The epistemic inquiry model Mj� D hW 0;�0;V 0; ˆ0i
is given by

– W 0 WD fw0 2 W j M;w0 ˆ �g,
– �0 WD � \ .W 0 	 W 0/,

– V 0 WD V � W 0,
– ˆ0 WD ˆ � W 0.

We then represent the effect of asking a question to the oracle under the form
of a conditional incoming of hard information: if the answer to the question
is available to the oracle, then the action of asking a question will lead to a
hard information update with the answer.10 Formally, this ‘question to the oracle’
operation (henceforth, question operation) is defined as follows:

9For a presentation of the notion of hard information update, along with a general presentation
of Dynamic Epistemic Logic (DEL) and Public Announcement Logic (PAL), we refer the reader
to the textbook (van Ditmarsch et al. 2007) and the monograph (van Benthem 2011). PAL has
been developed by Plaza (1989) and independently by Gerbrandy and Groeneveld (1997). A more
general approach is the one of Baltag et al. (1998) which provides a general account of multi-agent
updates through epistemic events.
10This presupposes that there is at most a unique answer to a given question. This assumption will
be introduced shortly, when we will model the precondition for the agent to be able to address a
question to the oracle.
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Definition 8 (Question operation). Let .M;w/ be a pointed epistemic inquiry
model where M D hW;�;V; ˆi, let Q D .�1; : : : ; �k/ be a propositional question
and let A D f�1; : : : ; �kg \ˆ.w/. The model M.�1;:::;�k/‹.w/ is obtained as follows

– if A D ;, then M.�1;:::;�k/‹.w/ WD M,
– if A ¤ ;, then M.�1;:::;�k/‹.w/ WD Mj V

A where
V

A denotes the conjunction of
all the formulas in A.

Notice that, after a question operation, the answer sets associated to the remaining
worlds of the considered epistemic inquiry model are left unchanged by the
operation. This feature corresponds to the hypothesis (2) on the oracle. Notice also
that one can easily check that the result of applying a question operation to an
epistemic inquiry model yields an epistemic inquiry model, i.e., the veridicality and
coherence properties for the oracle are preserved in the resulting model.

The second component of the definition of the question operator is the precondi-
tion to the question operation. It is through the notion of precondition that we will
introduce the last element of Hintikka’s theory of questions that we need to integrate
in our framework: the notion of presupposition.

As we have seen in the questioning rule of IL, the agent must have established
the presupposition of a question in order to be able to address it to the oracle. In
our epistemic framework, this can be translated as follows: the agent must know the
presupposition of a question in order to be able to address it to the oracle. Formally,
if M D hW;�;V; ˆi is an epistemic inquiry model, w 2 W represents the actual
world and Q D .�1; : : : ; �k/ is a propositional question, then the following condition
must be satisfied in order for the inquiring agent to ask the question Q:

M;w ˆ K.�1 _ � � � _ �k/:

In this paper, we will adopt a stronger notion of presupposition for propositional
questions. If Q D .�1; : : : ; �k/ is a propositional question, instead of requiring
that the agent knows that at least one of the possible answers to Q is the case,
we will require that the agent knows that one and only one of the possible answers
to Q is the case.11 Our proposal can then formally be stated as follows: if M D
hW;�;V; ˆi is an epistemic inquiry model, w 2 W represents the actual world
and Q D .�1; : : : ; �k/ is a propositional question, the following condition must
be satisfied in order for the inquiring agent to address the question to the oracle:

11This is arguably a strong idealization of the questioning process since it limits substantially the
questions that the agent can address to the oracle. The interest of the idealization is to simplify
the dynamics of questioning insofar as there is only one choice available to the oracle when it
comes to answer a given question. However, the idealization can be withdrawn by introducing in
the framework an explicit representation of the way the oracle chooses its answer to a question
when several alternative answers are available. We leave aside such refinements of the questioning
process, as this would make heavier the formal presentation of our dynamic logic of questions.
We choose to focus instead in this paper on the interaction between the informational dynamics of
questions and inferences.
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M;w ˆ Kpresup.Q/ where

presup.Q/ WD .�1 _ � � � _ �k/ ^
^

j1¤j2 and j1;j22�1;k�

:.�j1 ^ �j2 /:

We thereby get the precondition to the question operation with respect to
the pointed model .M;w/ and the question Q. Thus, we integrate the notion of
presupposition under the form of a precondition to the question operation on
the model, the precondition being that the agent knows the presupposition to the
question. We now have all the ingredients to provide the semantic definition of the
dynamic question operator:

Definition 9 (Semantics for EI ). Let M D hW;�;V; ˆi be an epistemic inquiry
model. The semantics for the epistemic inquiry language EI is given by the
semantics for the epistemic language EO plus the following semantic definition for
the question operator

M;w ˆ Œ.�1; : : : ; �k/‹�' iff M;w ˆ pre.Q/ implies M.�1;:::;�k/‹.w/;w ˆ ';

where pre.Q/ WD Kpresup.Q/ and Q D .�1; : : : ; �k/.

2.3 Soundness and Completeness

First of all, we define the logic EI aiming to characterize syntactically the formulas
of EI that are valid on the class of models EI:

Definition 10 (Logic EI). The logic EI is built from the static epistemic logic EL12

plus the following axioms

1. ˆ� ! � (veridicality for the oracle)
2. ˆ� ! K.� ! ˆ�/ (coherence property for the oracle)

and the reduction axioms for the question operator of Table 1.

Table 1 Reduction axioms for the question operator

Œ.�1; : : : ; �k/‹�p $ pre.Q/ ! p

Œ.�1; : : : ; �k/‹�:' $ pre.Q/ ! :Œ.�1; : : : ; �k/‹�'

Œ.�1; : : : ; �k/‹�' ^  $ pre.Q/ ! Œ.�1; : : : ; �k/‹�' ^ Œ.�1; : : : ; �k/‹� 

Œ.�1; : : : ; �k/‹�ˆ� $ pre.Q/ ! ˆ�

Œ.�1; : : : ; �k/‹�K' $ pre.Q/ ! �V
1�i�k :ˆ�i ^ K'

� _
�W

1�i�k .ˆ�i ^ K.�i ! Œ.�1; : : : ; �k/‹�'//
�

12The axioms for EL are provided in Appendix A.



138 Y. Hamami

The first four axioms of Table 1 express the usual relationship between a
dynamic-epistemic operator and boolean connectives. The fifth axiom describes
the precise epistemic effect of asking a question on the informational state of
the inquiring agent: if the agent knows ' after having asked the question Q D
.�1; : : : ; �k/, this means that either the answer to Q is not available to the oracle
and the agent knew ' before asking the question, or the answer �i to Q is available
to the oracle and the agent happens to know ' as the result of receiving the answer
�i, i.e., as the result of a hard information update with �i.13 The following theorem
says that the logic EI is sound and complete with respect to the class of models EI:

Theorem 1 (Soundness and completeness of EI). For every formula ' 2 EI :

ˆEI ' if and only if `EI ':

Proof. The soundness and the completeness of the static part is proved by a standard
completeness-via-canonicity argument (see chapter 4 of Blackburn et al. (2002)).
We start by proving the soundness of the reduction axioms of EI. Consider the first
axiom: Œ.�1; : : : ; �k/‹�p $ pre.�1; : : : ; �k/ ! p.

Let .M;w/ be a pointed epistemic inquiry model. Assume that M;w ˆ
Œ.�1; : : : ; �k/‹�p and M;w ˆ pre.�1; : : : ; �k/. By the semantic definition of the
question operator, we have that M.�1;:::;�k/‹.w/;w ˆ p. Then, we have to consider
two different cases:

– For all i 2 �1; k�, �i … ˆ.w/: in this case M.�1;:::;�k/‹.w/ WD M and we thereby
have that M;w ˆ p.

– There exists i 2 �1; k� s.t. �i 2 ˆ.w/: in this case M.�1;:::;�k/‹.w/ WD Mj�i so we
get that Mj�i;w ˆ p and thereby that M;w ˆ p.14

In the other way around, assume that M;w ˆ pre.�1; : : : ; �k/ ! p and assume also
that M;w ˆ pre.�1; : : : ; �k/. Then, we have that M;w ˆ p and we can directly see
that, in all cases, M.�1;:::;�k/‹.w/;w ˆ p.

The soundness of the other reduction axioms can be proved in a similar way.15

Finally, the completeness part is proved by a standard DEL-style translation
argument: by working inside out, the reduction axioms translate the dynamic
formulas into corresponding static ones. Then, we appeal to completeness for the
static base logic. ut

13Of course, it might also be possible, in this second case, that the agent knew ' before asking the
question Q.
14Since we have by hypothesis M;w ˆ pre.�1; : : : ; �k/, we know that if there exists i 2 �1; k�
such that �i 2 ˆ.w/, this �i is unique, i.e., there is no j 2 �1; k� with j ¤ i such that �j 2 ˆ.w/.
This is the reason why we can write in this case that M.�1;:::;�k/‹.w/ WD Mj�i.
15The proof of the soundness of the fifth axiom appeals to the coherence property for the oracle.
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3 Modelling Deductive Steps: A Dynamic Logic of Inferences

According to the IMI, the second key epistemic operation constitutive of interroga-
tive inquiry is logical inference. Hintikka’s favorite way for representing inferences
is based on the tableau method, seeing inferences as tableau construction steps.
Following Hintikka, our objective will be to show how this view on inferences
can be put in a dynamic-epistemic perspective in order to achieve an explicit
representation of the informational dynamics of deductive steps in the process of
interrogative inquiry. To this end, after a brief presentation of the tableau method,
we will develop a tableau-based dynamic logic of inferences for which we will
provide a sound and complete axiomatic system.

3.1 Inferences as Tableau Construction Steps

Deductive steps in the IMI, and in IL, are represented as tableau construction
steps according to the usual rules of tableau construction. We now provide some
background on the tableau method in the propositional case. The presentation that
we adopt is based on the notion of unsigned semantic tree from Smullyan (1968)
(henceforth referred to as semantic tree or tableau), which is defined as follows:

Definition 11 (Semantic tree). A semantic tree for � 2 I is a binary tree whose
nodes are labelled with formulas of the inquiry language I , which has for root �
and which is generated by the following tableau construction rules:

In this work we will represent semantic trees as indexed sets of branches, where
branches are sets of formulas. Thus, if T is a semantic tree with root � 2 I , we
identify T with the indexed set fR;Bigi2N, where R D f�g and Bi 2 P.I / for
all i 2 N, such that

– B0; : : : ;Bn are the non-empty sets of formulas corresponding to the n C 1

branches of T ,
– Bi D ; for all i > n.

We will denote by STrees.I / 
 P.I /N the class of all semantic trees on the
inquiry language I . For convenience reasons, we sometimes abuse notation and
just write T D fR;B0; : : : ;Bng. Closure rules for branches and semantic trees are
defined as follows:

Definition 12 (Closure rules). Let T 2 STrees.I /. We say that a branch Bi of
T is closed if there exists a formula ' 2 I such that ' 2 Bi and :' 2 Bi. We say
that T is closed if all its branches are closed.
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In the IMI, the tableau method is used to make logical deduction from previously
acquired knowledge. The following theorem says that this method is sound and
complete16:

Theorem 2 (Soundness and completeness of the tableau method). Let � be a
finite subset of I and let � 2 I . � logically entails � if and only if there exists a
closed tableau with root

V
� ^ :� .

Proof. See D’Agostino (1999). ut

3.2 A Tableau-Based Dynamic Logic of Inferences

In order to develop a tableau-based dynamic logic of inferences, we will adopt the
same methodology as in the previous section, i.e., we will go from the static to the
dynamic: in the static component, we will introduce the suitable static structures
necessary (i) to represent the notions of explicit and implicit knowledge and (ii)
to deal with semantic trees in a modal framework; in the dynamic component, we
capture the informational dynamics associated to inferences by representing the
different stages of an inferential process according to the tableau method.

3.2.1 The Static Component

First, we shall define the notions of implicit and explicit knowledge. To this end,
we will adopt the same approach as the one of dynamic logics of inferences
(Velázquez-Quesada 2009; van Benthem and Velázquez-Quesada 2010), i.e., we
will use the two-level semantic-syntactic format proposed in van Benthem (2008).
According to this approach, implicit knowledge is represented in the same way
knowledge is usually represented in epistemic logic using possible world semantics,
and explicit knowledge is represented syntactically via a set of formulas associated
to each world in the model. We introduce the following terminology: we refer
to sets of (true) formulas associated to each world in the model, representing the
explicit information that the agent has about each of these worlds, as local explicit
knowledge; we say that a formula � is global explicit knowledge if � is local explicit
knowledge in all the worlds present in the agent’s epistemic range.

Then, we also want to represent the ongoing inferential process that the agent is
engaged in in order to acquire explicit knowledge. To this end, we will associate a
semantic tree to each world in an epistemic model. We refer to the semantic trees
associated to each world in the model as local inferential processes, and we say

16Since we are working in the propositional case, the tableau method constitutes here a decision
procedure for checking that a formula � is logically entailed by a finite set of premises �
(D’Agostino 1999).
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that a semantic tree represents a global inferential process when it is present in the
different worlds of the agent’s epistemic range.17

We now define the tableau epistemic language T E 0 by adding to the language
of epistemic logic a modal operator E to express explicit knowledge, along with two
operators R and Bri to express the basic properties of semantics trees:

Definition 13 (Tableau epistemic language T E 0). Let P be a set of atomic
propositions. The tableau epistemic language T E 0 is given by

' WWD p j :' j .' ^ '/ j K' j E� j R� j Bri�

where p 2 P, � 2 I and i 2 N.

In this language, K' is read as “the agent implicitly knows that '”, E� is read
as “the agent explicitly knows locally that �”, KE� is read as “the agent explicitly
knows globally that �”, R� is read as “� is the root of the semantic tree entertained
by the agent”, and Bri� is read as “the formula � is present on the ith branch of the
semantic tree entertained by the agent”.

Local explicit knowledge will be represented by sets of formulas associated to
each world in the epistemic model, and the ongoing inferential processes will be
represented by semantic trees also associated to each world in the model, leading to
the following definition of tableau epistemic models:

Definition 14 (Tableau epistemic model). A tableau epistemic model is a tuple
M D hW;�;V;E;Ti where:

– M D hW;�;Vi is an epistemic model,18

– E W W ! P.I / is a function which associates to each world w 2 W a set of
formulas of the inquiry language I ,

– T W W ! P.I /N, is a function which associates to each world w 2 W a set
T.w/ D fR.w/;Bi.w/gi2N 2 P.I /N.

The tableau epistemic language T E 0 is interpreted on tableau epistemic models
as follows:

Definition 15 (Semantics for the tableau epistemic language T E 0). Let .M;w/
be a pointed tableau epistemic model where M D hW;�;V;E;Ti. The semantics
for the tableau epistemic language T E 0 is given by the semantics for the epistemic
language E plus the semantic definitions for the operators E, R and Bri

M;w ˆ E� iff � 2 E.w/

17The hypotheses that we will adopt in this section will turn out to make the notions of local and
global explicit knowledge collapse into one unique notion of explicit knowledge, which will be the
counterpart of the notion of implicit knowledge. It will also have for effect to make collapse the
notions of local and global inferential processes into one unique notion of inferential process.
18Here again, we assume that the indistinguishability relation is an equivalence relation.
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M;w ˆ R� iff � 2 R.w/

M;w ˆ Bri� iff � 2 Bi.w/

In this work, we will impose the following restrictions on tableau epistemic
models: let M D hM;�;V;E;Ti be a tableau epistemic model,

Veridicality for local explicit knowledge: for all w 2 W, if � 2 E.w/, then
M;w ˆ � .

Coherence property for local explicit knowledge: for all w 2 W, if � 2 E.w/
and u � w with u 2 W, then � 2 E.u/.

Structural property for semantic trees: for all w 2 W, if � 2 R.w/, then (i)
there is no � 0 ¤ � such that � 0 2 R.w/ and (ii) T.w/ D fR.w/;Bi.w/gi2N is a
semantic tree with root � .

Coherence property for semantic trees: for all w 2 W, (i) if � 2 R.w/ and
u � w with u 2 W, then � 2 R.u/, and (ii) if � 2 Bi.w/ and u � w with u 2 W,
then � 2 Bi.u/.

The intuitive idea behind the coherence property for local explicit knowledge is
to ask for local explicit knowledge at a world w to be preserved in all the worlds
epistemically indistinguishable from w by the agent. This assumption is also made
in the recent literature on dynamic logics of inferences (Velázquez-Quesada 2009;
van Benthem and Velázquez-Quesada 2010). The structural property for semantic
trees makes sure that T.w/ 2 STrees.I / for all w 2 W, which means that T.w/
has indeed the structure of a semantic tree. The coherence property for semantic
trees intervenes in our framework consistently with the coherence property that we
imposed on local explicit knowledge. It then follows from this requirement that the
same semantic tree is associated to the different worlds present in the epistemic
range of the agent. Our intended class of models TE is then defined as follows19:

Definition 16 (Class of models TE). let M D hW;�;V;E;Ti be a tableau
epistemic model. M 2 TE if and only if M satisfies the veridicality and coherence
properties for local explicit knowledge and the structural and coherence properties
for semantic trees.

It is important to notice that, since we require local explicit knowledge to be
true, all global explicit knowledge is also implicit knowledge, i.e., the following
principle is valid on our intended class of models: KE� ! K� . Besides, due to the
coherence property and the fact that we consider the epistemic indistinguishability
relation to be an equivalence relation, we have that local and global epistemic
knowledge coincide, i.e., the following principle is valid on our intended class of
models: KE� $ E� . We obtain thereby a unique notion of explicit knowledge,
equivalently represented by the operators E or KE, which is the counterpart of
the notion of implicit knowledge represented by the operator K. In the same way,
by assuming the coherence property for semantic trees and by considering the

19In the following, by ‘tableau epistemic models’ we will mean models of this class.
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epistemic indistinguishability relation to be an equivalence relation, we necessarily
have that local and global inferential processes coincide, yielding a unique notion of
inferential process whose function is to transform implicit knowledge into explicit
knowledge.

Expressing the Closure of Semantic Trees in the Language T E 0

The tableau epistemic language T E 0 allows us to express the closure of the
semantic tree entertained by the agent. To see this, assume that the agent entertains
a semantic tree with root

V
� ^ :� . We first consider the finite set T.�; �/ of all

the formulas in I that can occur as a node of a semantic tree with root
V
� ^ :� :

T.�; �/ WD ˚
� 0 2 I

ˇ
ˇ � 0 occurs as a node of some T 2 STrees.I /�;�

�
:

We denote by STrees.I /�;� the set of all semantic trees with root
V
� ^ :� .

The closure of the ith branch of a semantic tree with root
V
� ^ :� can

then be expressed by: closed.Bi/�;� WD W
� 02T.�;�/ .Bri�

0 ^ Bri:� 0/, and its
emptiness can be expressed by: empty.Bi/�;� WD V

� 02T.�;�/ :Bri�
0. Finally, since

a semantic tree with root
V
� ^ :� has a maximum number of branches that

we denote by n�;� C 1, we can form the following formula: closed.�; �/ WDV
0�i�n�;�

�
closed.Bi/�;� _ empty.Bi/�;�

�
. The following proposition shows that

this formula expresses the closure of semantic trees in our framework:

Proposition 1. Let M be a tableau epistemic model with M D hW;�;V;E;Ti.
For all w 2 W, M;w ˆ R .

V
� ^ :�/ ^ closed.�; �/ if and only if T.w/ 2

STrees.I /�;� and T.w/ is closed.

Proof. See Appendix B. ut

Expressing the Structural Properties of Semantic Trees in the Language T E 0

The main issue regarding completeness for the static fragment of our tableau-based
dynamic logic of inferences will be to express, in the axioms, the structural property
for semantic trees. It turns out that this can be done in the language T E 0. To this
end, we need to introduce the notion of a � -tree impossible configuration:

Definition 17 (� -tree impossible configuration). Let X be a finite subset of Br WD
fBri� j i 2 N and � 2 I g [ f:Bri� j i 2 N and � 2 I g. We say that X is a � -tree
impossible configuration if for any T D fR;Bigi2N 2 STrees.I / with root �
there exist � 0 2 I and i 2 N such that (i) � 0 2 Bi and :Bri�

0 2 X or (ii) � 0 … Bi

and Bri�
0 2 X. The set ImpConf.�/ 
 T E 0 is defined as follows:

ImpConf.�/ WD
n^

X
ˇ
ˇ
ˇ X is a � -tree impossible configuration

o
:
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Intuitively, a finite subset of Br can be seen as a (partial) description of an element
T 2 P.I /N by stipulating the presence or absence of certain formulas in some
branches of T . A � -tree impossible configuration is then such a description that
is ‘incompatible’ with any semantic tree with root � . This allows us to express the
structural property of semantic trees through the following axiom stating that if
� is the root of the semantic tree entertained by the agent, then this tree cannot
be (partially) described by a � -tree impossible configuration: R� ! :� for � 2
ImpConf.�/. The following proposition shows that this axiom is indeed valid on
the class of models TE:

Proposition 2. Let M be a tableau epistemic model with M D hW;�;V;E;Ti. For
all w 2 W, we have M;w ˆ R� ! :� for � 2 ImpConf.�/.

Proof. See Appendix B. ut
The following lemma says that given T 2 P.I /N such that T is not a
semantic tree with root � , we can always construct a � -tree impossible configuration
‘compatible’ with T . This lemma will play a key role in the completeness proof for
the static fragment of our tableau-based dynamic logic of inferences.

Lemma 1. Let T D fR;Bigi2N 2 P.I /N. If T is not a semantic tree with root
� , then there exists a � -tree impossible configuration X such that (i) if :Bri�

0 2 X
then � 0 … Bi and (ii) if Bri�

0 2 X then � 0 2 Bi.

Proof. See Appendix B. ut

3.2.2 The Dynamic Component

In the previous section, we have presented a language able (i) to represent the
distinction between explicit and implicit knowledge and (ii) to describe static prop-
erties of the semantic tree entertained by the agent. In the dynamic component, we
want to extend this language in order to represent inferential processes dynamically
as model operations. To this end, we need to introduce three kinds of model
operations: one dealing with tableau construction steps, representing progression
steps in inferential processes, one dealing with tableau creation steps, representing
the creation of a new inferential process, and one dealing with drawing conclusions,
representing the final step of acquisition of explicit knowledge concluding an
inferential process.

Operation of Tableau Construction

The tableau construction operation aims to represent a unitary step of progression
in an inferential process. It consists in expanding a semantic tree, present in all the
worlds of the agent’s epistemic range, by applying the suitable tableau-constructing
rule to a formula present in the tree. Formally, the tableau construction operation
takes as input a branch and a formula, and is defined as follows:
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Definition 18 (Tableau construction operation). Let .M;w/ be a pointed tableau
epistemic model with M D hW;�;V;E;Ti, let i 2 N and let ˛ 2 I such that (i)
˛ 2 Bi.w/ and (ii) no construction rule has already been applied to ˛ in the branch
Bi.w/. The model M.i;˛/.w/ D hW 0;�0;V 0;E0;T0i is given by

– W 0 WD W, �0WD�, V 0 WD V , E0 WD E, for every u 2 W such that u œ w,
T0.u/ WD T.u/,

– for every u 2 W such that u � w, T0.u/ is such that Bl.u/0 WD Bl.u/ for all l ¤
i and l ¤ n C 1; 20 and Bi.u/0 and BnC1.u/0 are obtained in the following way:

^: if ˛WD˛1 ^ ˛2, then Bi.u/0WDBi.u/ [ f˛1; ˛2g and BnC1.u/0WDBnC1.u/,
:^: if ˛WD:.˛1^˛2/, then Bi.u/0WDBi.u/[f:˛1g and BnC1.u/0WDBi.u/[

f:˛2g,
:: if ˛ WD ::˛1, then Bi.u/0 WD Bi.u/ [ f˛1g and BnC1.u/0 WD BnC1.u/.

Notice that the result of applying a tableau construction operation on a tableau
epistemic model is still a tableau epistemic model: this is due to the fact that (i) this
operation is done according to the tableau construction rules and (ii) the coherence
property for semantic trees is preserved by a tableau construction operation since the
modifications on semantic trees are done in a uniform way on the epistemic range
of the agent.

Operation of Tableau Creation

The tableau creation operation consists in representing the creation of a new
inferential process by the agent, in which she aims to show that a given formula
logically follows from a finite set of premises. Formally, this operation takes as
input a formula � 2 I (the conclusion to be established) and a finite set of formulas
� 
 I (the premises), and is defined as follows:

Definition 19 (Tableau creation operation). Let .M;w/ be a pointed tableau
epistemic model with M D hW;�;V;E;Ti, let � be a finite subset of I and let
� 2 I . The model MC.�;�/.w/ D hW 0;�0;V 0;E0;T0i is given by

– W 0 WD W, �0WD�, V 0 WD V , E0 WD E,
– for every u 2 W such that u œ w, T0.u/ WD T.u/,
– for every u 2 W such that u � w, T0.u/ WD fR.u/;B0.u/g with R.u/ WD

fV� ^ :�g and B0.u/ WD fV� ^ :�g.

Thus, the tableau creation operation with input .�; �/ consists in replacing the
semantic tree entertained by the agent with a new semantic tree with root

V
� ^:� .

In other words, this creation operation represents the starting point of an inferential
process which aims to establish that � logically follows from premises � . Such

20Here n C 1 is the index of the first empty branch of T.u/ D fB0.u/; : : : ;Bn.u/g.
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an inferential process can lead to the acquisition of � as explicit knowledge under
certain conditions, as described by the next operation of tableau conclusion.

Operation of Tableau Conclusion

The tableau conclusion operation consists in modelling the final step of an
inferential process by which the agent can acquire explicit knowledge through
logical deduction. More precisely, if the agent entertains a semantic tree with rootV
� ^:� such that (i) the tree is closed, which means that the agent has established

that � logically follows from � , and (ii) premises � are explicit knowledge, the
agent can infer or conclude � from � , which we represent by an acquisition of �
as explicit knowledge. Formally, the tableau conclusion operation takes as input a
formula � 2 I and a finite set of formulas � 
 I , and is defined as follows:

Definition 20 (Tableau conclusion operation). Let .M;w/ be a pointed tableau
epistemic model with M D hW;�;V;E;Ti such that (i) T.w/ is a closed tableau
with root

V
� ^ :� and (ii) � 
 E.w/, where � is a finite subset of I and

� 2 I . The model M�.�;�/.w/ D hW 0;�0;V 0;E0;T0i is given by

– W 0 WD W, �0WD�, V 0 WD V ,
– for all u œ w, E0.u/ WD E.u/,

– for all u � w, E0.u/ WD E.u/ [ f�g,
– T0 WD T.

Notice that applying a tableau conclusion operation to a tableau epistemic model
yields a tableau epistemic model: (i) due to the soundness of the tableau method
(Theorem 2) and the explicit knowledge of the premises � , the formula � added to
the sets of explicit knowledge is true in all the worlds of the agent’s epistemic range
and (ii) the tableau conclusion operation preserves the coherence property for local
explicit knowledge.

Syntax and Semantics for the Tableau Epistemic Language

We now extend our previous tableau epistemic language with three dynamic
operators for tableau construction, tableau creation, and tableau conclusion:

Definition 21 (Tableau epistemic language T E ). Let P be a set of atomic
propositions. The tableau epistemic language T E is given by the BNF for the
language T E 0 plus the following ones

Œ.i; ˛/.�;�/�' j ŒC.�; �/�' j Œ�.�; �/�'

where i 2 N, ˛; � 2 I and � is a finite subset of I .

In T E , Œ.i; ˛/.�;�/�' is read as “' is the case after the application of a tableau
construction rule to the formula ˛ in the ith branch of the semantic tree with rootV
� ^ :� entertained by the agent”, ŒC.�; �/�' is read as “' is the case after the
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creation of a new semantic tree with root
V
� ^ :�”, and Œ�.�; �/�' is read as “'

is the case after the agent has concluded � from premises � ”.
The precondition for a tableau construction operation is the following: the

formula ˛ to which the operation is applied has to be present on the ith branch of the
semantic tree with root

V
� ^:� entertained by the agent, and no construction rule

has already been applied to ˛ in this branch. This latter condition can be expressed
in the language T E . To see this, notice first that we can describe exactly the
configuration of a semantic tree with root

V
� ^ :� : since there are finitely many

formulas that can occur in such a tree, and a maximal number of branches for such
a tree, we can consider the conjunction of formulas in Br saying for each formula
in T.�; �/ and each branch whether the formula is present or not in the branch.
Then, notice also that there are finitely many configurations for a semantic tree with
root

V
� ^ :� . Let NC.i; ˛/.�;�/ denote the disjunction of the formulas expressing

the exact configurations of the semantic trees with root
V
� ^ :� in which no

construction rule has already been applied to ˛ in the ith branch. Such a formula
expresses that the semantic tree entertained by the agent is such that no construction
rule has already been applied to ˛ in its ith branch. Formally, the precondition for
a tableau construction operation can be expressed in the tableau epistemic language
T E as follows:

cons.i; ˛/.�;�/ WD R
�^

� ^ :�
�

^ Bri˛ ^ NC.i; ˛/.�;�/:

Since the agent can always create a new semantic tree, there is no precondition for
a tableau creation operation. For a tableau conclusion operation with input .�; �/,
the precondition is threefold: (i) the agent has to entertain a tree with root

V
� ^:� ,

(ii) the tree has to be closed, assuring that � logically follows from � , and (iii) the
agent must have explicit knowledge of the premises � . Formally, the precondition
of a tableau conclusion operation can be expressed in T E as follows:

conc.�; �/ WD R
�^

� ^ :�
�

^ closed .�; �/ ^
^

� 02�
E� 0:

This leads to the following semantics for the dynamic operators of tableau
construction, creation, and conclusion:

Definition 22 (Semantics for the language T E ). Let .M;w/ be a tableau epis-
temic model where M D hW;�;V;E;Ti. The semantics for the tableau epistemic
language T E is given by the semantics for the language T E 0 plus the following
semantic definitions for the tableau construction, creation, and conclusion operators

M;w ˆ Œ.i; ˛/.�;�/�' iff M;w ˆ cons.i; ˛/.�;�/ implies M.i;˛/.w/;w ˆ '

M;w ˆ ŒC.�; �/�' iff MC.�;�/.w/;w ˆ '

M;w ˆ Œ�.�; �/�' iff M;w ˆ conc.�; �/ implies M�.�;�/.w/;w ˆ ':
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3.3 Soundness and Completeness

First of all, we define the logic TE0 aiming to characterize syntactically the formulas
of the static language T E 0 that are valid on the class of models TE:

Definition 23 (Logic TE0). The logic TE0 is built from the axioms and rules for
the static epistemic logic EL plus the following axioms

1. E� ! � (veridicality for local explicit knowledge)
2. E� ! KE� (coherence property for local explicit knowledge)
3. R� ! KR� (coherence property for semantic trees)
4. Bri� ! KBri� (coherence property for semantic trees)
5. R� ^ R� 0 ! ? for � ¤ � 0 (structural property for semantic trees)
6. R� ! :� for � 2 ImpConf.�/ (structural property for semantic trees)

We now show that the logic TE0 is sound and complete with respect to the class
of models TE:

Theorem 3 (Soundness and completeness of TE0). For every formula ' 2 T E 0:

ˆTE ' if and only if `TE0 ':

Proof. The soundness part is obtained directly by checking that the axioms of TE0

are valid on the class of models TE. The completeness part is obtained by a standard
completeness-via-canonicity argument (see chapter 4 of Blackburn et al. (2002)).
To this end, we define the canonical model of the logic TE0 as the tuple MTE0 D
hWTE0 ;�TE0 ;VTE0 ;ETE0 ;TTE0i, where WTE0 , �TE0 and VTE0 are defined as usual,
and ETE0 and TTE0 are defined as follows:

– ETE0.w/ WD f� 2 I j E� 2 wg,
– TTE0.w/ WD fR.w/;Bi.w/gi2N where R.w/ WD f� 2 I j R� 2 wg and

Bi.w/ WD f� 2 I j Bri� 2 wg.

To complete the argument, all we have to do is to check that MTE0 2 TE. From the
axioms 1:, 2:, 3: and 4:, we can easily show that MTE0 satisfies the veridicality and
coherence properties for local explicit knowledge and the coherence property for
semantic trees. It remains to show that, for every w 2 WTE0 , TTE0.w/ satisfies the
structural property for semantic trees: if � 2 R.w/, then (i) there is no � 0 ¤ � such
that � 0 2 R.w/ and (ii) TTE0.w/ WD fR.w/;Bi.w/gi2N is a semantic tree with root
� . Assume that � 2 R.w/. By axiom 5:, we get that there is no � 0 ¤ � such that
� 0 2 R.w/. Now assume towards a contradiction that TTE0.w/ is not a semantic tree
with root � . By Lemma 1, there exists a � -tree impossible configuration X such that
for any � 0 2 I : (i) if :Bri�

0 2 X then � 0 … Bi.w/ and (ii) if Bri�
0 2 X then � 0 2

Bi.w/. Clearly X 
 w, and since w is a maximal TE0-consistent set of formulas,
we get

V
X 2 w. Let � WD V

X. Since X is a � -tree impossible configuration, we
have that � 2 ImpConf.�/ and thereby, from axiom 6:, we get that R� ! :� 2 w.
From R� 2 w and R� ! :� 2 w we get that :� 2 w. Hence, we have that � 2 w
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and :� 2 w which is a contradiction since w is a maximal TE0-consistent set of
formulas. We conclude that for every w 2 WTE0 , TTE0.w/ is a semantic tree with
root � . ut

We then obtain the logic TE by extending the static logic TE0 with the reduction
axioms for the dynamic operators of tableau construction, creation, and conclusion:

Definition 24 (Logic TE). The logic TE is built from the static logic TE0 plus the
reduction axioms for the tableau construction (Table 2),21 tableau creation (Table 3),
and tableau conclusion (Table 4) operators.

We can now show that the logic TE is sound and complete with respect to the
class of models TE:

Theorem 4 (Soundness and completeness of TE). For every formula ' 2 T E :

ˆTE ' if and only if `TE ':

Table 2 Reduction axioms for the tableau construction operator

Œi; ˛� p $ cons.i; ˛/ ! p

Œi; ˛�:' $ cons.i; ˛/ ! : Œi; ˛� '

Œi; ˛� .' ^  / $ cons.i; ˛/ ! Œi; ˛� ' ^ Œi; ˛�  

Œi; ˛�K' $ cons.i; ˛/ ! K Œi; ˛� '

Œi; ˛�E� 0 $ cons.i; ˛/ ! E� 0

Œi; ˛�R� 0 $ cons.i; ˛/ ! R� 0

Œi; p�Bri0�
0 $ cons.i; p/ ! Bri0�

0

Œi;:p�Bri0�
0 $ cons.i;:p/ ! Bri0�

0

Œi; ˛1 ^ ˛2�Bri0�
0 $ cons.i; ˛1 ^ ˛2/ ! Bri0�

0 for i0 ¤ i

Œi; ˛1 ^ ˛2�Bri�
0 $ cons.i; ˛1 ^ ˛2/ ! Bri�

0 for � 0 ¤ ˛1; ˛2

Œi; ˛1 ^ ˛2�Bri�
0 $ > for � 0D˛1 or � 0D˛2

Œi;:.˛1 ^ ˛2/�Bri0�
0 $ cons.i;:.˛1 ^ ˛2// ! Bri0�

0_ for � 0 ¤ :˛1;:˛2
.Bri�

0^ empty.Bi0 /�;�^: empty.Bi0�1/�;� /

Œi;:.˛1 ^ ˛2/�Bri0 :˛1 $ cons.i;:.˛1 ^ ˛2// ! Bri0 :˛1 for i0 ¤ i

Œi;:.˛1 ^ ˛2/�Bri:˛1 $ >
Œi;:.˛1 ^ ˛2/�Br0:˛2 $ cons.i;:.˛1 ^ ˛2// ! Br0:˛2
Œi;:.˛1 ^ ˛2/�Bri0 :˛2 $ cons.i;:.˛1 ^ ˛2// ! Bri0 :˛2_ for i0 > 0

.empty.Bi0 /�;� ^ :empty.Bi0�1/�;� /

Œi;::˛�Bri0�
0 $ cons.i;::˛/ ! Bri0�

0 for i0 ¤ i

Œi;::˛�Bri�
0 $ cons.i;::˛/ ! Bri�

0 for � 0 ¤ ˛

Œi;::˛�Bri˛ $ >

21For readability reasons, the subscripts .�; �/ have been omitted in the dynamic operators and in
the preconditions of the formulas present in Table 2.
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Table 3 Reduction axioms for the tableau creation operator

ŒC.�; �/� p $ p

ŒC.�; �/�:' $ : ŒC.�; �/� '
ŒC.�; �/� .' ^  / $ ŒC.�; �/� ' ^ ŒC.�; �/�  
ŒC.�; �/�K' $ K ŒC.�; �/� '
ŒC.�; �/�E� 0 $ E� 0

ŒC.�; �/�R� 0 $ ? for � 0 ¤ .
V
� ^ :�/

ŒC.�; �/�R .V� ^ :�/ $ >
ŒC.�; �/�Bri�

0 $ ? for i > 0

ŒC.�; �/�Br0� 0 $ ? for � 0 ¤ .
V
� ^ :�/

ŒC.�; �/�Br0 .
V
� ^ :�/ $ >

Table 4 Reduction axioms for the tableau conclusion operator

Œ�.�; �/� p $ conc.�; �/ ! p

Œ�.�; �/�:' $ conc.�; �/ ! : Œ�.�; �/� '
Œ�.�; �/� .' ^  / $ conc.�; �/ ! Œ�.�; �/� ' ^ Œ�.�; �/�  
Œ�.�; �/�K' $ conc.�; �/ ! K Œ�.�; �/� '
Œ�.�; �/�E� 0 $ conc.�; �/ ! E� 0 for � 0 ¤ �

Œ�.�; �/�E� $ >
Œ�.�; �/�R� $ conc.�; �/ ! R�

Œ�.�; �/�Bri� $ conc.�; �/ ! Bri�

Proof. The soundness part is proved by checking that all the reduction axioms are
valid on the class of models TE. The completeness part is proved by a standard
DEL-style translation argument: by working inside out, the reduction axioms
translate the dynamic formulas into corresponding static ones. Then, we appeal to
completeness for the static base logic TE0. ut

4 Combining Questions and Inferences: A Dynamic Logic of
Interrogative Inquiry

Asking questions and making inferences are two different, but complementary, ways
to obtain information. In daily life, people use a combination of both questions and
inferences when they are involved in information-seeking processes. This is also
the case in scientific practice which shows a subtle interplay between theoretical
and experimental works, taking respectively the form of logical deduction in mathe-
matical frameworks and questions put to Nature, i.e., observations and experiments.
According to the IMI, the interaction between questions and inferences lies at the
heart of the informational dynamics of interrogative inquiry, as Hintikka puts it:
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Deduction (logic) and interrogation appear as two interacting and mutually reinforcing
components of inquiry. Neither is dispensable. Questions are needed to bring in substan-
tially new information, and deductions are needed both for the purpose of spelling out the
consequences of such information and, more importantly, for the purpose of paving the way
for new questions by establishing their presuppositions. [. . . ]

[. . . ] there is no absolute sense in which one of the two intertwined components of
interrogative inquiry, deductions and questioning, is more important or more difficult,
absolutely speaking. (Hintikka 1999, p. 35)

Using the terminology introduced in the two previous sections, Hintikka’s
description of the informational dynamics of interrogative inquiry can be rephrased
as follows:

– By asking questions, the agent can acquire new explicit knowledge that does
not logically follow from previously acquired one. In our framework, asking
questions is also the only way for the agent to acquire implicit knowledge, i.e.,
to eliminate epistemic possibilities.

– By making inferences, the agent can potentially acquire any explicit knowledge
that logically follows from previously acquired one. In particular, inferences can
be used to acquire explicit knowledge of the presuppositions of questions.22

From a logical perspective, capturing the informational dynamics of interrogative
inquiry requires a joint treatment of questions and inferences. In the two previous
sections, we have treated questions and inferences separately by developing on
one hand a dynamic logic of questions, and on the other hand a dynamic logic of
inferences. We will now merge these two systems into a dynamic logic of questions
and inferences, which will be the straightforward combination of the two systems
developed in the previous sections. We will argue that this system captures all
the information acquisition operations constitutive of the process of interrogative
inquiry, as described by the IMI, and we thereby refer to it as our dynamic logic
of interrogative inquiry. We will illustrate the functioning of our framework with a
concrete example.

4.1 A Dynamic Logic of Interrogative Inquiry

Combining our previous dynamic logic of questions and dynamic logic of inferences
is, for the most part, straightforward. Two points deserve particular attention:
one is to define the question operation while working with implicit and explicit
knowledge; the other is to introduce explicit knowledge into the precondition to the
question operation. We will deal with these two issues when they will appear in the
presentation of the system. First of all, we define the interrogative inquiry language
T EI as the combination of the languages T E and EI :

22In our framework, the precondition for asking a question is to have (explicit) knowledge of
its presupposition. Thus, the operation of “paving the way for new questions by establishing
their presuppositions” is here represented by the acquisition of explicit knowledge of the
presuppositions of questions.
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Definition 25 (Interrogative inquiry language T EI ). Let P be a set of atomic
propositions. The interrogative inquiry language T EI is given by the combination
of the BNF for the languages T E and EI .

Then, an interrogative inquiry model is defined as a tableau epistemic model plus
an oracle function:

Definition 26 (Interrogative inquiry model). An interrogative inquiry model is a
tuple M D hW;�;V;E;T; ˆi where:

– M D hW;�;V;E;Ti is a tableau epistemic model,
– ˆ W W ! P.I / is a function representing the oracle which associates to each

world w 2 W a set of formulas ˆ.w/ 
 I .

The restrictions that we put on the class of interrogative inquiry models are the
same as before, yielding our intended class of models TEI

23:

Definition 27 (Class of models TEI). Let M D hW;�;V;E;T; ˆi be an interroga-
tive inquiry model. M 2 TEI if and only if M satisfies the veridicality and coherence
properties for the oracle, the veridicality and coherence properties for local explicit
knowledge, and the structural and coherence properties for semantic trees.

The model operations of tableau construction, tableau creation, and tableau
conclusion are defined in the same way as in the previous section. However, the
question operation needs to be adapted to the implicit and explicit knowledge
setting. Our proposal to do so is the following: when the answer to a question is
available to the oracle, (i) the model undergoes a hard information update with the
answer and (ii) the answer becomes explicit knowledge. Formally, this leads to the
following definition for the question operation:

Definition 28 (Question operation). Let .M;w/ be a pointed interrogative inquiry
model where M D hW;�;V;E;T; ˆi, let Q D .�1; : : : ; �k/ be a propositional
question, and let A D f�1; : : : ; �kg \ˆ.w/. The model M.�1;:::;�k/‹.w/ is obtained as
follows

1. if A D ;, then M.�1;:::;�k/‹.w/ WD M,
2. if A ¤ ;, then M.�1;:::;�k/‹.w/ WD hW 0;�0;V 0;E0;T0; ˆ0i where

– W 0 WD fw0 2 W j M;w0 ˆ V
Ag,

– �0 WD � \ .W 0 	 W 0/,
– V 0 WD V � W 0,
– E0 W W 0 ! P.I / with

– E.u/0 WD E.u/ [ A for all u 2 W 0 s.t. u � w,
– E.u/0 WD E.u/ for all u 2 W 0 s.t. u œ w,

– T0 WD T � W 0, ˆ0 WD ˆ � W 0.24

23In the following, by ‘interrogative inquiry models’ we will mean models of the class TEI.
24One can easily check that the question operation preserves the class of models TEI.
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The semantics for the language T EI is directly obtained from the semantics for
the languages T E and EI except for the question operator since we need to adapt
its semantic definition to the implicit and explicit knowledge setting. To this end, it
seems natural to say that, in order to ask a question, the agent needs to have explicit
knowledge of the presupposition of the question. Formally, this amounts to change
the operator K into E in the precondition to the question operation:

Definition 29 (Semantics for the language T EI ). Let .M;w/ be a pointed
interrogative inquiry model where M D hW;�;V;E;T; ˆi. The semantics for the
language T EI is given by the semantics for T E and the semantics for EI in which
the semantic definition of the question operator is replaced by the following one

M;w ˆ Œ.�1; : : : ; �k/‹�' iff M;w ˆ pre.Q/ implies M.�1;:::;�k/‹.w/;w ˆ ';

where pre.Q/ WD E presup.�1; : : : ; �k/ and Q D .�1; : : : ; �k/.

4.2 Soundness and Completeness

We first define the logic TEI from the logics TE and EI and additional reduction
axioms:

Definition 30 (Logic TEI). The logic TEI is built from the axioms and rules of
inference of the logics TE and EI, along with the additional reduction axioms of
Table 5.

We can now show that the logic TEI is sound and complete with respect to the
class of models TEI:

Theorem 5 (Soundness and completeness of TEI). For every formula ' 2 T EI :

ˆTEI ' if and only if `TEI ':

Table 5 Additional reduction axioms for the logic TEI

Question operator

Œ.�1; : : : ; �k/‹�E� $ pre.Q/ ! E�

where � ¤ �i for all i 2 �1; k�

Œ.�1; : : : ; �k/‹�E� $ pre.Q/ ! E� _ˆ�

where � D �i for some i 2 �1; k�

Œ.�1; : : : ; �k/‹�R� $ pre.Q/ ! R�

Œ.�1; : : : ; �k/‹�Bri� $ pre.Q/ ! Bri�

Tableau construction, creation, and conclusion operators
�
.i; ˛/.�;�/

�
ˆ� 0 $ cons.i; ˛/.�;�/ ! ˆ� 0

ŒC.�; �/�ˆ� 0 $ ˆ� 0

Œ�.�; �/�ˆ� 0 $ conc.�; �/ ! ˆ� 0
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Proof. The soundness part is proved by checking that all the reduction axioms
are valid on the class of models TEI. The completeness part is proved by a
standard DEL-style translation argument: by working inside out, the reduction
axioms translate the dynamic formulas into corresponding static ones. Then, we
appeal to completeness for the static base logic. ut

4.3 General Remarks

Our dynamic logic of interrogative inquiry inherits the representations of questions
and inferences from the two logical systems developed in the previous sections:
it represents questions following Hintikka’s theory of questions and represents
inferences as tableau construction steps. In this way, it is in direct line with
Hintikka’s treatment of questions and inferences in the IMI.

It also accounts for the informational dynamics of interrogative inquiry as
described at the beginning of this section: a question has for effect, when the answer
is available to the oracle, (i) to modify the explicit knowledge of the inquiring
agent by adding the answer to the sets of explicit knowledge and (ii) to modify
her implicit knowledge by eliminating the worlds from the epistemic range of the
agent incompatible with the obtained answer. Since the information obtained by
questioning comes from the oracle, asking questions can bring in new explicit
knowledge that does not logically follow from previously acquired one. Then,
inferences can be used to acquire explicit knowledge by spelling out the logical
consequences of previously acquired explicit knowledge. Finally, the precondition
to the question operation in the semantics for the question operator integrates in our
framework the necessity for the inquiring agent to establish the presupposition of a
question as explicit knowledge in order to address it to the oracle. The process of
establishing presuppositions of questions is itself a mixture of information obtained
through questions and inferences.

Thus, our dynamic logic of interrogative inquiry offers a working formal
framework representing the operations of information acquisition constitutive of the
process of interrogative inquiry, as described by Hintikka’s IMI. It also provides
a first dynamic-epistemic account of the relation between the epistemic actions of
asking questions and drawing inferences. We now illustrate our framework with an
example bringing into play the different dynamic operations that we introduced.

4.4 An Illustrative Example

In the following example, the goal of the inquiring agent is to answer the yes-no
question .p ^ q;:.p ^ q//, i.e., to acquire explicit knowledge of the conjunction
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p ^ q or its negation. We present below one possible path of actions to achieve this
goal, using the different epistemic operations of our dynamic logic of interrogative
inquiry:

p,q p,¬q

¬p,q ¬p,¬q

Φ(w) = {p,q}
E(w) = {p⊕¬p}

We consider an initial situation in which the agent has no
implicit knowledge and no explicit knowledge about p and
q. We let w denote the actual world in which p and q are
true (the top-left world in the picture). The answer to the
question of the inquirer in the actual world w is then p^q.
The oracleˆ.w/ at world w has information about p and q,
but not about the conjunction p^q. Thus, one possible way
for the agent to achieve her goal is to first ask if p is the
case, then ask if q is the case, and then deduce p^q. To this
end, the agent first needs to establish the presupposition
p˚:p (‘˚’ denotes exclusive disjunction) of the question
.p;:p/‹. Since the presupposition is a tautology, the agent

does not need any background explicit knowledge as she can create a tree with root
:.p ˚ :p/, construct the tree fully, and use the conclusion operation to acquire
explicit knowledge of p ˚ :p. The situation resulting from these operations is
depicted on the left.

p,q p,¬q

Φ(w) = {p,q}
E(w) = {p⊕¬p,p,q⊕¬q}

Having established the presupposition of the ques-
tion .p;:p/‹, the agent can address the question to
the oracle. Since p is in the answer set of the oracle
ˆ.w/, asking the question .p;:p/‹ has for effect
(i) to eliminate the worlds in which p is false and
(ii) to provide the agent with explicit knowledge
of p. The agent can then repeat the same operation
as before for establishing the presupposition q ˚ :q of the question .q;:q/‹. The
resulting situation is depicted on the right.

p,q

Φ(w) = {p,q}
E(w) = {p⊕ ¬ p,
p,q⊕¬q,q,p∧q}

p∧q∧¬(p∧q)

p ,q

¬p ¬q

⊗ ⊗

¬(p∧q)

The agent can then ask the question .q;:q/‹,
which results in the elimination of the world
in which q is false, and in the acquisition of
q as explicit knowledge. At this point, the
agent has implicit knowledge about p^q, but
not explicit knowledge. To acquire explicit
knowledge, she needs to create a semantic
tree with root p ^ q ^ :.p ^ q/ and construct
the tree fully. Then, the agent knows that

p ^ q follows logically from premises p and q, and since she has explicit knowledge
about p and q, she can conclude or infer p ^ q. The resulting epistemic situation is
depicted on the left. The agent has thus answered the question .p ^ q;:.p ^ q// and
thereby achieved her initial inquiry goal.
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5 Comparison with Other Approaches

There exist several approaches in the literature to the logical modelling of questions,
inferences, and their relation. In this section, we relate the present work to some of
them, emphasizing on the comparison with existing DEL approaches.

Questions. There have been many contributions to the logical studies of questions
and answers since the 1970s (see Harrah (1984), Wiśniewski (1995), and Groe-
nendijk and Stokhof (1997)). Our approach to the logical modelling of questions did
not consist in developing a new representation of questions. Rather, one of our goals
was to inscribe our work in the line of Hintikka (1976) and to show how Hintikka’s
theory of questions can be put in a dynamic-epistemic perspective. Currently, there
exist three main DEL approaches to the representation of questions: the dynamic
logic of questions of van Benthem and Minică (2012), the logic of questions
and public announcement of Peliš and Majer (2011), and the inquisitive dynamic
epistemic logic of Ciardelli and Roelofsen (2015). The present work diverges from
these developments with respect to two important points: (i) the representation
of questions on which it is based and (ii) the general context in which the role
of questions is investigated. Our particular interest in the process of interrogative
inquiry leads then to two specific contributions of our approach: (i) an account
of the epistemic action of questioning for non-logically omniscient agents and (ii)
an analysis of the relation between the epistemic actions of asking questions and
drawing inferences.

Inferences. Two recent DEL approaches to the representation of inferences are
the dynamic logic of inference and update of Velázquez-Quesada (2009) and the
dynamic logic of awareness of van Benthem and Velázquez-Quesada (2010). Our
tableau-based dynamic logic of inferences departs from these two frameworks by
implementing a specific method for carrying out inferential processes, namely the
tableau method, providing thereby the inquirer with a sound and complete method
for making logical deduction. In the propositional case, the tableau method has
the important advantage to provide the inquirer with a decision method for making
logical deduction.

Logic of interrogative inquiry. As far as we know, there does not exist any
DEL approach neither to the representation of the action of questioning for non-
logically omniscient agents, nor to the joint treatment of questions and inferences.
Consequently, the closest system to our dynamic logic of interrogative inquiry is the
Interrogative Logic (IL) of Hintikka et al. (1999). Although IL has been a source of
inspiration for the development of our dynamic logic of interrogative inquiry, the
two systems differ in scope: IL is designed as a proof system for a general theory
of reasoning with rules for deduction and questioning, while our dynamic logic of
interrogative inquiry aims to analyze and formalize the informational dynamics of
the process of interrogative inquiry. Thus, our system accounts for a number of
features left asides, or left implicit, by IL, in particular (i) the explicit dynamics of
the epistemic actions of asking questions and drawing inferences, (ii) the distinction
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between explicit and implicit knowledge in the representation of interrogative and
deductive steps, and (iii) the behavior of the epistemic action of questioning in the
absence of logical omniscience.

6 Conclusion and Further Work

In this work, we have proposed a logical analysis of the informational dynamics
of the process of interrogative inquiry, as described by the IMI. This has resulted
in the development of a dynamic logic of interrogative inquiry which represents
interrogative and deductive steps as epistemic actions modifying the informational
state of the agent.

As mentioned in the introduction, this work is only a first, but necessary, step
towards the development of a theory of interrogative inquiry in the program of
logical dynamics of information and interaction. We then see two main research
directions for further work: (i) to overcome the limitations of the present framework
and (ii) to work towards a full-fledged theory of interrogative inquiry.

One of the main limitations of our approach concerns the assumptions we made
on the oracle, in particular regarding our choice of inquiry language. Thus, one
straightforward way to extend our system is to enrich our inquiry language, which
was only the propositional language, to an epistemic language, expressing higher-
order information, and/or to a first-order language. In the former case, this would
allow to deal with the process of interrogative inquiry about what other agents know
and believe, which plays an important role in multi-agent settings where agents
reason and act while taking in account the informational states of the other agents.
In the latter case, this would open several issues relative to the logical representation
of questions and inferences in the first-order case, and would allow to discuss topics
addressed by Hintikka within the framework of interrogative logic, such as the
issue of identifiability (see Hintikka (1999, p. 64)). Another limitation concerns our
restrictive focus on knowledge. This can be overcome by adapting our framework
to situations in which the inquirer is seeking information towards other kinds of
epistemic attitudes than knowledge. Interesting cases comprise the probabilistic one,
in which the agent attributes probabilities or degrees of belief to formulas, but also
different forms of doxastic or justification-based epistemic attitudes.

How to develop a full-fledged theory of interrogative inquiry from our dynamic
logic of interrogative inquiry? From a technical point of view, it seems that all the
necessary logical tools are already available to account for the temporal, social,
and interactive dimensions of the process of interrogative inquiry. The temporal
dimension can be represented using the methodology of van Benthem et al. (2009)
which proposes a new system of dynamic-epistemic logic with protocols, and which
has been applied in van Benthem and Minică (2012) to questioning procedures.
The social dimension can be accounted for by extending our dynamic logic of
interrogative inquiry to the multi-agent case, i.e., by introducing suitable group
actions along with operations of interaction and communication between agents.
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Finally, the interactive dimension can be represented by adopting a game-theoretic
approach. Recently, Ågotnes et al. (2011) have shown that a dynamic-epistemic
account of questions can nicely be incorporated into a game-theoretic framework in
order to represent question-answer games. The IMI being formulated by Hintikka
in game-theoretic terms, this suggests that a formalization of the IMI is reachable
from our dynamic logic of interrogative inquiry, linking back our dynamic-epistemic
approach with the original formulation of the IMI.
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Technical Appendix

A Epistemic Logic

We provide here the formal bases of epistemic logic.25 We first define the language
of epistemic logic E as follows:

Definition 31 (Epistemic language E ). Let P be a countable set of atomic propo-
sitions. The epistemic language E is given by

' WWD p j :' j ' ^ ' j K' where p 2 P:

In this language, formulas of the form K' are read as “the agent knows that '”.
We will write ? for p ^ :p and > for :?. We now define the notion of epistemic
model:

Definition 32 (Epistemic model). Let P be a countable set of atomic propositions.
An epistemic model is a tuple M D hW;�;Vi where:

– W is a non-empty set of worlds,
– � 
 W 	 W is a binary equivalence relation representing the epistemic

indistinguishability relation of the agent,26

25We refer the reader to Fagin et al. (1995), Blackburn et al. (2002), van Ditmarsch et al. (2007)
and van Benthem (2011) for general presentations and overviews of epistemic logic.
26In all this paper, we make the common assumption that the indistinguishability relation is an
equivalence relation.
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– V W W ! P.P/ is an atomic valuation function indicating the atomic
propositions that are true at each world.

We refer to pairs .M;w/, where M is an epistemic model and w is a world in
M, as pointed epistemic models. The intuitive idea behind the use of the epistemic
indistinguishability relation is the following: if w denotes the actual world and u is
a world such that u � w, then this means that, given all what the agent knows, she
cannot tell between w and u which one is the actual world. Finally, the epistemic
language E is interpreted on epistemic models as follows:

Definition 33 (Semantics for E ). Let M D hW;�;Vi be an epistemic model. The
semantics for the epistemic language E is given by

M;w ˆ p iff p 2 V.w/

M;w ˆ :' iff not M;w ˆ '

M;w ˆ ' ^  iff M;w ˆ ' and M;w ˆ  

M;w ˆ K' iff for all u such that u � w we have M; u ˆ ':

The set of valid formulas of E on the class of epistemic models can be
axiomatized using the following axiomatic system EL:

Definition 34 (Logic EL). The logic EL is given by the following axiomatic
system:

1. all classical propositional tautologies
2. K.' !  / ! .K' ! K /
3. K' ! '

4. K' ! KK'

5. :K' ! K:K'
6. from ' and ' !  , infer  
7. from ', infer K'

Then, we have the following completeness result for EL with respect to the class
of epistemic models:

Theorem 6 (Completeness for EL). EL is strongly complete with respect to the
class of epistemic models.

Proof. See Blackburn et al. (2002). ut

B Proofs of Propositions 1, 2 and Lemma 1

Proof (Proposition 1). Assume that M;w ˆ R .
V
� ^ :�/ ^ closed.�; �/.

By the structural property for semantic trees, we directly have that T.w/ 2
STrees.I /�;� . Since n�;� C 1 is the maximal number of branches of a semantic
tree in STrees.I /�;� , we have to show that for any i 2 �0; n�;� �, Bi.w/ is
either closed or empty. Let i 2 �0; n�;��. Since M;w ˆ closed.�; �/, we have
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M;w ˆ closed.Bi/�;� _ empty.Bi/�;� . If M;w ˆ closed.Bi/�;� , this means that
M;w ˆ Bri�

0 ^ Bri:� 0 for some � 0 2 T.�; �/, and we get that Bi.w/ is closed.
If M;w ˆ empty.Bi/�;� , this means that no element of T.�; �/ is in Bi.w/, and
we get that Bi.w/ is necessarily empty. We conclude that T.w/ 2 STrees.I /�;�
and T.w/ is closed. Now assume that T.w/ 2 STrees.I /�;� and T.w/ is closed.
We directly have that M;w ˆ R .

V
� ^ :�/. Then, since T.w/ is closed, we

have that for all i 2 �0; n�;��, Bi.w/ is either closed or empty, and thereby that
M;w ˆ closed.�; �/. ut
Proof (Proposition 2). Assume that M;w ˆ R� . Let � 2 ImpConf.�/. We want to
show that M;w ² �. Assume towards a contradiction that M;w ˆ �. Since M;w ˆ
R� , we have by the structural property of semantic trees that T.w/ D fR;Bigi2N
is a semantic tree with root � . Since � 2 ImpConf.�/, this means that there exist
� 0 2 I and i 2 N such that (i) � 0 2 Bi and :Bri�

0 is one of the conjuncts of � or
(ii) � 0 … Bi and Bri�

0 is one of the conjuncts of �. Since we assumed that M;w ˆ �,
this means that (i) � 0 2 Bi and M;w ˆ :Bri�

0 or (ii) � 0 … Bi and M;w ˆ Bri�
0,

which is a contradiction given the semantics of the operators Bri. We conclude that
M;w ˆ :�, and thereby that R� ! :� for � 2 ImpConf.�/ is a valid principle
on the class of models TE. ut
Proof (Lemma 1). Let T D fR;Bigi2N 2 P.I /N s.t. T is not a semantic tree
with root � . Then, for every semantic tree T � D fR�;B�

0 ; : : : ;B
�
n g with root

� , there exist � 0 2 I and i 2 N such that (i) � 0 2 B�
i and � 0 … Bi, or (ii)

� 0 … B�
i and � 0 2 Bi. We construct X as follows: for each semantic tree T � D

fR�;B�
0 ; : : : ;B

�
n g with root � , (i) if there exists � 0 such that � 0 2 B�

i and � 0 … Bi

we let :Bri�
0 2 X, and (ii) if there exists � 0 such that � 0 … B�

i and � 0 2 Bi we
let Bri�

0 2 X. By construction, we have that X is a � -tree impossible configuration
such that (i) if :Bri�

0 2 X then � 0 … Bi and (ii) if Bri�
0 2 X then � 0 2 Bi. ut
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Verificationism and Classical Realizability

Alberto Naibo, Mattia Petrolo, and Thomas Seiller

Abstract This paper investigates the question of whether Krivine’s classical
realizability can provide a verificationist interpretation of classical logic. We argue
that this kind of realizability can be considered an adequate candidate for this
semantic role, provided that the notion of verification involved is no longer based
on proofs, but on programs. On this basis, we show that a special reading of
classical realizability is compatible with a verificationist theory of meaning, insofar
as pure logic is concerned. Crucially, in order to remain faithful to a fundamental
verificationist tenet, we show that classical realizability can be understood from
a single-agent perspective, thus avoiding the usual game-theoretic interpretation
involving at least two players.

Keywords Verificationism • Realizability semantics • Classical logic • Untyped
proof theory • Axiomatic theories

1 Introduction

Since the 1970s, Michael Dummett and Dag Prawitz proposed basic desiderata that
a general verificationist theory of meaning should satisfy. In a successive number
of papers and monographs, they tried to show that classical logic fails to meet such
desiderata (see, in particular, Dummett 1973 and Prawitz 1977). The outcome of
their analysis is that classical operators fail to convey meaning in a verificationist
setting and, a fortiori, that classical logic is philosophically flawed.

On the other hand, since intuitionistic logic meets the meaning-theoretic desider-
ata, Dummett and Prawitz exploited this theory to advocate a form of logical
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revisionism: a correct linguistic practice should not be based on classical forms of
reasoning but rather on intuitionistic ones. In the last decades, several solutions have
been proposed to avoid Dummett’s and Prawitz’s conclusion about the untenability
of classical logic from an inferentialist and anti-realist perspective (we can mention,
for instance, the works of A. Weir, S. Read, I. Rumfitt, G. Restall, T. Sandqvist).

Yet, with the only exception of Bonnay (2007), these solutions did not take into
account some recent developments of the computational theory of classical logic and
almost none of them focused in particular on classical realizability semantics. The
aim of this paper is to contribute to fill this lacuna by investigating a way of assessing
the philosophical significance of the so-called Krivine’s classical realizability.
More precisely, we consider the problem of whether classical realizability can
provide a verificationist interpretation of classical logic. In order to do this we
will analyse realizability semantics not only with respect to the Dummett-Prawitz’s
verificationism, but also with respect to Hintikka’s one. We argue, in particular,
that even if classical realizability seems to be much more closer to Hintikka’s
verificationism, in fact, a special reading of classical realizability can make it
compatible also with the Dummett-Prawitz’s perspective. Unfortunately, this special
reading is too narrow, and it cannot be extended to proper (classical) mathematical
theories, something which is possible instead with the standard reading of Krivine’s
classical realizability.

The paper is organized as follows. In Sect. 2, the notion of realizability semantics
is introduced by analyzing Kleene’s realizability for intuitionisitic logic. First, its
compatibility with the different verificationist approaches it is investigated. Then, a
comparison with Krivine’s realizability for classical logic is provided. It is shown,
in particular, that even if both of these two frameworks consider realizers as
computable entities like programs, the latter adopts a wider and richer perspective,
allowing to define not only correct programs, but also wrongful ones. In Sect. 3, we
introduce some technical concepts and definitions needed to tackle the philosophical
question of the relationships between classical realizability and the verificationist
theory of meaning. After a brief survey of the syntax of classical realizability,
we show how a two-agents based dialogical interpretation can be considered as
a natural framework to model the computational behavior of classical proofs.
We then compare it with a similar computational setting called “untyped proof
theory”. In Sect. 4, we investigate the possibility to use classical realizability as a
framework for an anti-realist account of classical logic. Some substantial differences
occur between classical realizability and Dummett’s verificationism. Nonetheless,
we are able to show that Krivine’s realizability can be made compatible with a
single-agent based perspective, not incompatible, in principle, with a Dummettian
perspective. In the final section, we show how classical realizability represents a
setting flexible enough to provide a computational account of many mathematical
axioms and theories. However, our account of classical logic is jeopardized in
this extended mathematical setting. We conclude by pointing out some difficulties
encountered by our proposal when proper axioms are added to the underlying
classical system.
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2 The Idea of Realizability Semantics

2.1 Kleene’s Number Realizability

Historically, the notion of realizability was introduced by Kleene (1945) in order
to give a formal semantics for intuitionistic logic and intuitionistic arithmetic. The
main source of inspiration for this type of semantics was the finitist explanation
of mathematical statements, and in particular existential ones, as it was given by
Hilbert and Bernays (1934, p. 32). According to this explanation, a statement of the
form 9xA.x/ is considered to convey an “incomplete communication”, waiting for
the exhibition of a witness t. Only when a finitist method for obtaining t is given,
the communication is completed and the statement A.t/ can then be effectively
asserted (cf. Kleene 1973). In particular, Kleene’s idea was that finitist methods
were nothing but effective algorithmic methods, eventually representable in a formal
setting by (partial) recursive functions. The semantics obtained in such way was
thus a semantics based on essentially intensional objects – i.e. algorithms –, rather
than on explicitly extensional ones, as in the case of standard algebraic or relational
semantics, like Kripke models for intuitionistic logic. This is particularly clear when
we represent (partial) recursive functions by using Kleene’s normal form theorem:
a recursive function f is represented in a unique way by coding the way in which it
computes, that is its computational tree:

f .Ex/ ' U.y:T.e; Ex; y// (1)

where T is the Kleene-predicate expressing that the function f , coded by the Gödel
number e, when applied to the list of arguments Ex, is computed according to a com-
putational tree, coded by the Gödel number y; the result of the computation, when
it exists, is then extracted by the function U, and , which is the minimalization
operator, guarantees that the computational tree considered is the one having the
smallest code.

This way of representing recursive functions allows one to describe them not
only with respect to what they do – i.e. with respect to the values that are obtained
when the functions are applied to certain arguments – but also with respect to how
they compute – i.e. with respect to the steps that are accomplished in order to obtain
the expected values. Moreover, recursive functions can enumerated, so that for each
natural number n there exists a recursive function f , so that (1) can be rephrased in
the following way:

fng.Ex/ ' U.y:T.n; Ex; y//:

Kleene’s realizability consists in associating a formula of intuitionistic logic or
arithmetic – proper axioms included – to a natural number n codifying (by a Gödel
numbering) a recursive function f which guarantees that A holds. It is for this reason
that Kleene’s realizability is also known under the name of “number realizability”.
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The fact that n 2 N realizes, or forces, a formula A is noted by n � A, and
inductively defined in the following way (see Sørensen and Urzyczyn (2006), p. 243
and Troelstra and van Dalen (1988), p. 196, with slight modifications):

• n � t D s iff t and s rewrite to the same numeral n1;
• n � A ^ B iff n D 2q � 3r, where q � A and r � B;
• n � A _ B iff n D 3q and q � A, or n D 2 � 3q and q � B;
• n � A ! B iff for each m, such that m � A, fng.m/ is defined and fng.m/ � B;
• n � 9xA.x/ iff n D 2m � 3r, where r � A.m/;
• n � 8xA.x/ iff for all m, fng.m/ is defined and fng.m/ � A.m/.2

Notice that 2q � 3r is an injective pairing function and that without loss of
generality we can consider the formula A.x/ of the two last clauses to contain
only x free. Moreover, according to these realizability clauses the set of realizers
is consistent, since 0 D 1 cannot be realized. And since by definition ? � 0 D 1,
the following clause holds:

• n � ? for no n.

2.2 Realizers as Verifiers

What is peculiar to realizers is that they reflect, at the level of functional operations,
the syntactic structure of the realized formulas: there thus exists specific realizers
for each formula. In this sense, Kleene’s realizability seems to offer a finer-grained
semantics with respect to usual algebraic or relational ones, where it is the whole
structure that renders true or false the whole set of formulas. In particular, when
theorems are considered, algebraic and relational semantics assign them the same
semantic value3 – i.e. the top element of an algebra or the set of all possible worlds
of a Kripke frame – with the risk of trivializing, or at least impoverishing, the way
in which logical and mathematical theories are understood.4

In Kleene’s realizability, on the contrary, the semantic value of a formula A
corresponds to the set of its realizers – i.e. jAj D ft 2 N j t � Ag – which provide

1A numeral n stands for a term of the language of arithmetic of the form

s.: : : s
„ƒ‚…
n times

.0/ : : :/:

In other words, numerals are terms denoting natural numbers, written in a canonical form.
2This means that the numbers realizing universal formulas correspond to total recursive functions.
3The semantic value of a formula A is that feature allowing one to determine the semantic notions
associated to A, like meaning and truth (cf. Dummett 1991, pp. 24, 30–31).
4It is worth noting that the difference we sketched between Kleene’s realizability semantics and the
algebraic or relational semantics can be taken as a particular instance of the difference between
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‘witnesses for the constructive truth of existential quantifiers and disjunctions,
and in implications [carry] this type of information from premise to conclusion
by means of partial recursive operators. In short, realizing numbers “hereditarily”
encode information about the realization of existential quantifiers and disjunction’
(Troelstra 1998, p. 408). This means, in particular, that the disjunction and the
existential properties (for intuitionistic arithmetic) are satisfied (see Sørensen and
Urzyczyn 2006, p. 243). Kleene’s realizability could then be thought as a formal
way of capturing the intuitionistic notion of truth, as corresponding to the possession
of a construction, and thus respecting the BHK interpretation. Since this is obtained
by interpreting intuitionistic arithmetic over a fragment of arithmetic itself, then
Kleene’s realizability could be see as a formal and rigorous characterization of the
BHK interpretation, namely by using the technique of inner models.5

The idea that Kleene’s realizability can be seen as a definition of the intuitionistic
notion of truth, in the same way as Tarski’s notion of satisfiability is seen as a
definition of the classical notion of truth, seems to be corroborated by the fact that
Kleene’s realizability allows us to exclude classical principles. For example, by a
simple application of the excluded middle, the formula

8x.9yT.x; x; y/ _ :9yT.x; x; y// (2)

is shown to be provable, and thus valid, in classical arithmetic. On the contrary,
according to Kleene’s realizability, the validity of (2) corresponds to the existence of
a total recursive function deciding 9yT.x; x; y/, which correspond to the possibility
of deciding the halting problem. But this is known to be impossible. Thus, there
are no realizers for (2). And since there are no realizers for ? too, by applying a
classical reading of the metalanguage expressions in which the realizability clauses
are formulated, we can then conclude that the negation of (2) holds.6

However, since realizers correspond to recursive functions, they not only seem to
serve in order to establish intuitionistic truths, but they also seem to convey an effec-
tive method, or procedure, in order to verify these truths. Kleene’s realizers can then
be seen as verifiers, and thus, to know the semantic value of a formula corresponds
to know how to verify it. In this way, Kleene’s realizability can be considered as
a framework allowing one to respect a verificationist account of the semantics of
linguistic expressions, similar to the one proposed by J. Hintikka (1996, § 10).

construction-oriented semantics and conditional-oriented semantics studied by Fine (2014, § 1).
According to Fine, the first has to be considered as an exact semantics, while the latter an inexact
one. The reason is that, in the first case, the semantical entities are wholly, or exactly, relevant
for establishing the truth of a given statement. On the contrary, in the second case, the semantical
entities are relevant for establishing the truth of a statement only in a loose and inexact way, which
is made particularly evident by the fact that in this kind of semantics the monotonicity of the forcing
relation holds (see Fine 2014, p. 551).
5We due this observation to Göran Sundholm.
6The idea is that, according to the standard practice in intuitionistic logic, we consider :A as
defined by A ! ?.
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2.2.1 A Comparison with Hintikka’s and Dummett’s Verificationism

According to Hintikka, in the case of first-order logic, the truth values of a formula
are defined with respect to a given domain of objects by the existence of winning
strategies for two players games; where one player (the Verifier) tries to verify
the formula, while the other one (the Falsifier) tries to falsify it. Differently from
usual algebraic or relational semantics, this definition does not simply look at truth
as coming out from some kind of structural and ‘abstract relationship between
sentences and facts’, but it also gives an operational definition of it (Hintikka 1996,
p. 22). In particular, the idea is that linguistic games are constituent of the use
of the notion of truth, and since the rules of a game are, in principle, learnable
and teachable, the definition of truth which is given is based on an activity of
justification of a certain sentence with respect to a certain set (or domain) of
objects (cf. Bonnay 2004, p. 107; Boyer and Sandu 2012, p. 822–823). However,
the simple existence of a winning strategy does not assure that such a notion of
truth can be accessible to human agents. The reason is that, in the case of first-
order logic, winning strategies for the Verifier correspond to Skolem functions,7

and these functions do not necessarily correspond to constructive strategies. More
precisely, if one does not want to look only for a definition of truth, but also for
its knowability, it is necessary to guarantee the epistemic accessibility to the set
of truths. As proposed by Hintikka, this can be achieved by restricting the set
of winning strategies to those that can be effectively played by some idealized
human agent, namely those that correspond to recursive functions (see Hintikka
1996, p. 214–215).8 It would be therefore natural to consider Kleene’s realizers as
methods of verifications, in Hintikka’s sense, guaranteeing – at least in principle –
an access to the truth value of a formula. As Hintikka himself says, ‘the technical
interpretation of my [constructivistic] interpretation [of logic and mathematics] does
not stray very far from Gödel’s Dialectica interpretation of first-order elementary
arithmetic or from Kleene’s realizability interpretation’ (Hintikka 1996, p. 235).

Still, Hintikka’s verificationism is not the only form of verificationism existing.
Intuitionistic principles and theorems are often justified by making appeal to another
form of verificationism, i.e. Dummett’s verificationism. This proposal results to be
more radical that Hintikka’s one, since any appeal to a given domain of objects is
rejected, and the verification procedures which are allowed are only those acting

7Notice that the strategies adopted by the Falsifier correspond, instead, to Kreisel’s counterexam-
ples (Boyer and Sandu 2012, p. 823). In this sense, if we focus on the winning strategies for the
Falsifier – instead of the winning strategies for the Verifier – Hintikka’s framework can be adapted
for justifying a form of falsificationism.
8It is worth noting that an idealized human agent is not an agent totally freed from any kind of
contingent constraints: on the contrary, she possess the very same epistemic capacities that any
other concrete human beings possess, the only difference being that her capacities are perfect. More
precisely, like every concrete human being, she can deal with only a finite amount of resources and
information, and her actions can be performed only in a finite amount of time and space; however,
unlike concrete human beings, her finite capacities are not subject to any fixed bound.
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at a linguistic-inferential level. More precisely, the idea is that a verification for a
formula A consists in an effective method for obtaining a canonical proof of A, that
is a proof terminating with an introduction rule for the principal connective of A.
This method, in general, is composed of two steps: (i) the exhibition of a (possibly)
non-canonical proof of A, and (ii) the application of the normalization algorithm to
this proof, in order to obtain a (new) proof satisfying the so-called introduction form
property (see Dummett 1973, p. 240; Tieszen 1992, p. 72).9

The crucial difference of Dummett’s verificationism with respect to Hintikka’s
verificationism is that, by grounding the process of verification on the notion of
proof, a verifier cannot transcend human epistemic capacities, since a proof is, by
definition, something which is connected to our linguistic capacities. In other words,
the idea is that we are always in a position to recognize a proof when we see one
(Kreisel 1962, p. 202), since when a set of linguistic expressions (i.e. signs) is given,
it is possible, by means of mechanical, syntactical, calculation on these expressions
alone, to decide whether or not the given set of expressions is a proof of a certain
sentence (Sundholm 1994, p. 144).10 This guarantees in particular the satisfaction of

9A non-canonical proof is called by Dummett a demonstration; its relation with a canonical proof
is explained in the following manner:

We [. . . ] require a distinction between a proof proper – a canonical proof – and the sort of
argument which will normally appear in a mathematical article or textbook, an argument
which we may call a ‘demonstration’. A demonstration is just as cogent a ground for
the assertion of its conclusion as is a canonical proof, and is related to it in this way: a
demonstration of a proposition provides an effective means for finding a canonical proof.
(Dummett 1973, p. 240)

According to Dummett, the notion of canonical proof is the semantic key concept of the notion of
meaning. More precisely, to know the meaning of a sentence A corresponds to know the conditions
for its (direct) assertion, which corresponds, in turn, to know what counts as a canonical proof of
A. Thus, grounding the notion of truth on that of canonical proof is a way to assigning priority
to the notion of meaning with respect to the notion of truth. Furthermore, as Dummett remarks,
the conditions for the truth of a sentence and those for its correct assertion do not, in principle,
collapse: possessing an effective method for obtaining a canonical proof does not necessarily mean
to be able to concretely execute this method and, eventually, get access to this proof (cf. Dummett
1998, p. 122–123). The reason is that human agents could be subject to contingent limitations –
e.g. space or time limitations – which do not allow them to terminate the execution of the procedure
(e.g. in the case of the normalization, this procedure corresponds to an algorithm of exponential size
complexity, which is unfeasible for concrete human agents with limitation of space). Therefore, it
is only when idealized human agents are considered that the collapse between the two notions
could obtain.
10It has been argued that the decidability of the notion of proof is in fact an excessively strong
assumption. For example, Sundholm (1986, p. 493) argues that the proof relation is only a semi-
decidable notion, since ‘we recognize a proof when we see one, but when we don’t see one that
does not necessarily mean that there is no proof there.’ However, prominent representatives of this
form of verificationism, especially Dummett himself, have firmly advocated the decidability of the
notion of proof. A quite exhaustive list of places in which Dummett supports this idea can be found
in Sundholm (1983, p. 155).
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Dummett’s manifestability requirement: when a sentence is true, we should always
be in a position to manifest our recognition of its truth.

A question which naturally arises is to understand if Kleene’s realizability
is compatible with Dummett’s form of verificationism, as well as whether it
is compatible with Hintikka’s one. But answering this question corresponds, in
fact, to answer another question, that is, to understand whether the intuitionistic
notion of truth specified by Kleene’s realizability is complete with respect to the
intuitionistic notion of proof. The answer to this question is negative, since there
exist natural numbers realizing formulas which are not provable in intuitionistic
logic or arithmetic. In particular, it can be shown that for every closed formula A,
either A or :A is realizable (see Sørensen and Urzyczyn 2006, pp. 244–245). This
result is, in fact, nothing but a generalization of the way in which we showed the
negation of (2) to be realizable: either there is a realizer for A or, if there is not,
since ? is never realized, then any arbitrary number can realize :A. The very same
negation of (2) is an example of a sentence which is realizable, but not provable.

But there is also a second aspect which prevents Kleene’s realizability from being
compatible with Dummett’s verificationism. Differently from the case of proofs,
it is not possible to decide whether a given number n realizes or not a certain
formula A (see Dummett 1977, p. 320; Sørensen and Urzyczyn 2006, p. 244–
245). For example, consider the formula 8x.x D x/. This formula is realized by
every Gödel number corresponding to a total recursive function. But the set of total
recursive function is not enumerable by a total recursive function, and a fortiori not
decidable. Hence, Kleene’s realizability cannot satisfy Dummett’s manifestability
requirement, since a formula A could be realized by a certain realizer t and we
would not recognize it as such.11

2.3 From Intuitionistic to Classical Realizability

The previous discussion pointed out the following situation: even if Kleene’s real-
izability has been conceived as a semantics for intuitionistic logic and arithmetic,
it contains in fact several classical features as, for instance, the classical reading of
its defining clauses – and especially the interpretation of ? as the absence of any
realizer, which induces meta-level reasonings using classical logic (cf. von Plato
2013, p. 103) – or the fact of relying on the notion of recursive function, which is

11It is worth noting that some authors, like van Atten (2014, § 4.5.2), considers that an essential
aspect of the BHK interpretation is that the concepts ‘that figure in meaning explanations [. . . ] have
to do with our cognitive capacities’. In particular, the idea is that the concept of construction which
figures in the BHK interpretation should be conceived such that we recognize a construction when
we see one. Accepting this reading of the BHK interpretation – which means indeed to assume that
Dummett’s verification is a declination of it – would then mean to accept that Kleene’s realizability
is not a formal version of the BHK interpretation, as claimed before.
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defined with respect to a classical logic background.12 One can find confirmation of
this aspect in the fact that Kleene’s realizability allows one to judge as true some
principles that are not intuitionistically acceptable, like Markov’s principle, i.e.

8x.P.x/ _ :P.x// ! .:8x:P.x/ ! 9xP.x//

where P is a predicate on natural numbers, or a limited version of the excluded
middle, i.e.

A _ :A

where A is a closed formula (see Dummett 1977, § 6.2).13 However, the presence
of these classical features is not yet sufficient for a direct and straightforward use
of Kleene’s realizability as a semantics for classical logic: as we have already seen,
with such a semantics it is not possible to realize a classical principle like (2).14

Nevertheless, it would be possible to get a realizability semantics for classical
logic by using Kleene’s realizability (or some little modification of it) in association
with a special kind of parametrized negative translation – similar to Friedman’s
one (see Friedman 1978) – as showed by Oliva and Streicher (2008). However,
what we are interested in here is a more direct way of expressing a realizability for
classical logic. We will focus our attention on what is called Krivine’s classical
realizability (see Krivine 2009), and we will give it a conceptual analysis, by
trying to understand, in particular, its connections with the verificationist approaches
sketched before.

At a first sight, Krivine’s realizability can be considered to share two fundamental
features with Kleene’s realizability: (i) it makes appeal to a computational-based
notion of realizer, and (ii) this notion is revealed to be broader than that of proof.

12Think of the fact that it is possible to define a recursive function by making appeal to the principle
of the excluded middle, as for example

f .x/ Ddf

	
1 if the Goldbach conjecture is true
0 if the Goldbach conjecture is false

However, there are also other, and more critical, aspects of the notion of recursive function which
are inherently classical. For example, the regularity condition, which is used in order to define
a function f from a relation R by minimization, states that 8Ex9yR.Ex; y/. Here, the existential
quantifier is understood classically, in the sense that there is no algorithmic procedure for extracting
the witness, otherwise the definition of algorithmic procedures via the notion of recursive functions
would be circular (cf. Heyting 1962, p. 195). For further details about the non-constructive aspects
of the definition of recursive functions see Coquand (2014) and Sundholm (2014).
13Note that Kreisel (1973, p. 268) seems to have in mind a very similar situation when he asks
if the ‘(logical) language of the current intuitionistic systems [have been] obtained by uncritical
transfer from languages which were, tacitly, understood classically’.
14This means, in particular, that Kleene’s realizability does not allow one to realize the principle of
excluded middle for open formulas.
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Nevertheless, Krivine’s realizability cannot be taken as a simple extension of
Kleene’s realizability. The reason is that the way in which (i) and (ii) are conceived
is radically different from Kleene’s realizability.

As it concerns point (i), the notion of computation considered by Krivine is
a broader notion than that considered by Kleene. In particular, an algorithm is
no longer identified with a recursive functions on natural numbers. In Kleene’s
realizability we have that the computational aspects are mainly focused on the inputs
and outputs of a function. This is particularly clear in the case of the implication and
the universal quantifier: given a certain input, if there is no output, the condition is
not satisfied, and thus the formula not realized. According to this interpretation,
a function is then conceived essentially in a set-theoretical way: it is reducible
to a set of pairs of natural numbers. In this sense, the domain and the codomain
of a computable function are already fixed from the beginning – in both cases they
correspond to the set of natural numbers – and thus a computable function has to
be considered as a typed entity. On the contrary, in Krivine’s classical realizability,
algorithms are considered to be entities having a deeper intensional nature. Their
behavior is not established in advance by making appeal to a ready-made notion of
type, but it is manifested only when the algorithm is executed – or better, tested –
within a given context (possibly composed by other algorithms). It is only after that
its behavior has been manifested that it will be possible to assign a certain type to the
algorithm. Moreover, this type will not be assigned in an absolute and unchangeable
way, since this assignment depends from the context in which the algorithm is tested.

As it concerns point (ii), in Krivine’s realizability the number of realizers
exceeds the number of proofs. However, differently from what happens in Kleene’s
realizability, this does not mean that there exist formulas which are realized but not
valid in the theory under consideration.15 It means, instead, that the set of realizers of
a formula does not contain only proofs, but also other kind of objects. These objects
correspond, in particular, to what can be called tentative proofs, that is (deductive)
arguments whose inferential steps are not totally justified, and thus not necessarily
logically correct.16 The presence of this kind of objects is mainly concerned by the
attempt of avoiding computationally trivial interpretations of negative formulas.

As we have seen, in Kleene’s realizability the formula ? is never realized. The
consequence is that negative formulas :A are either never realized, or they are
realized by every (partial) recursive function. In both cases, their computational
content is lost, since it is completely trivialized, namely it would not be possible

15This does not mean that Krivine’s realizability always guarantees the theory to be complete with
respect to the notion of (classical) proof. This depends indeed from the language in which the
(classical) theory is presented. If it is a first-order theory, then completeness holds, but if it is a
second-order theory, this could no more be the case (as it depends from the way in which the
predicate variables are interpreted in the model). Our presentation of Krivine’s realizability rests
on a second-order theory (see Sect. 3). The possible lack of completeness is then due to the fact
that a second-order language is adopted, and not to the way in which the notion of realizability is
conceived.
16Indeed, as Prawitz (2006, p. 511) remarks, ‘an invalid proof is not really a proof’.
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to distinguish two negative formulas on the basis of their computational content. In
order to avoid this situation, it has to be possible to define a set of realizers also
for ?. But since ? correspond to a(n always) false formula, and verifying a false
formula is contradictory, the idea is then to liberalize the notion of realizers, by
defining them not only in terms of verifiers, but also in terms of falsifiers. In this
sense, Krivine’s realizability seems to be much closer to Hintikka’s verificationism
than Kleene’s realizability, since according to Hintikka, the verification-games are
defined with respect to two players, the Verifier and the Falsifier (even if the concep-
tual priority is eventually assigned to the Verifier, since what counts is the definition
of the truth of a formula, and this relies on the definition of the winning strategies
associated to that formula). In Sects. 4.3 and 4.4 we will take a step further and we
will try to understand if, from the point of view of Krivine’s realizability, this two
players perspective could become compatible also with Dummett’s verificationism.

3 Krivine’s Classical Realizability

3.1 Definitions

The change of perspective induced by Krivine’s realizability with respect to the
computational account of realizers confers to this framework a greater flexibility
than Kleene’s realizability. In particular, Krivine’s realizability can be applied to
the case of classical logic – and even extended to proper mathematical theories,
like arithmetic and set theory (see Sect. 5) – by exploiting the fact that to every
axiom can be assigned a different term-constant codifying a certain programming
operation. For example, if we take Peirce’s law

..A ! B/ ! A/ ! A

to be the axiom distinguishing classical logic from intuitionistic logic, it
is possible to associate it with a program instruction corresponding to the
call-with-current-continuation control operator of the programming
language SCHEME, as shown by Griffin (1990). Similarly, the axiom of countable
choice is associated to a program instruction akin to the quote instruction of the
programming language LISP (Krivine 2003). We will come back later to these
examples (see Sects. 3.2 and 5).

The fundamental notion of computation on which Krivine’s account rests on
three key ingredients: terms, stacks, and processes. From a syntactical point of view,
terms are composed by purely �-terms enriched by two sorts of constants:

(i) instructions, noted with 	, and ranging over a non-empty set K , containing
at least the constant cc which corresponds to the control operator
call-with-current-continuation.

(ii) continuations, noted with k� , and where � ranges over the set of stacks.
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Stacks are lists of closed terms, the last element of which is a stack constant ˛;
we here suppose that the set of possible stack constants is a singleton f˘g, where ˘
somehow stands for the empty stack. Notice however that some models considered
by Krivine, among which the threads model (Krivine 2012), use several distinct (and
even an infinite number of) stack constants. Terms and stacks are defined by mutual
induction according to the following Backus-Naur grammar:

Terms t; u WWD x �x:t .t/u 	 k� (	 2 K )

Stacks � WWD ˘ t � � (t closed)

The system obtained in this way is usually called �c (see Krivine 1994, 2003,
2009).

It is worth noting that Krivine’s classical realizability has been mainly conceived
for theories formulated in second-order logic. For this reason, among the set of
terms the operators of pair construction, projection, injection, and case analysis
do not appear: at the second-order level they become definable (see Sørensen and
Urzyczyn 2006, pp. 280–281). As already mentioned, terms correspond to programs
for verifying given sentences, as in the case of Kleene’s realizability. From the
morphological point of view, they can be divided into two categories: those that
contain continuations and those that do not. A term containing no continuation
constants is called a proof-like term. Intuitively, such a term corresponds to a
(logically correct) proof, and thus it can be considered as a verifier in Dummett’s
sense. We will return to this point in Sects. 3.3.2 and 3.3.

Stacks, on the contrary, correspond to the evaluation contexts of programs, as
they are the environments within which programs “react” and exhibit a specific
behavior. Finally, processes are obtained by letting (closed) terms and stacks
interact. Thus, contexts can be seen as tests for programs. Given a (closed) term t
and a stack � , a process is noted by t?� . Computation is then defined by exploiting
an evaluation relation on processes, noted with  , and defined in the following
rewrite rules:

�x:t ? u � �  tŒx WD u� ? � (pop)

.t/u ? �  t ? u � � (push)

cc ? t � �  t ? k� � � (grab)

k� 0 ? t � �  t ? � 0 (restore)

An examination of these clauses shows that in order to calculate the result of
an evaluation it is not needed to know how the context � is made, with the only
exception of the grab rule. In this case, it is not the form or the structure of the
term17 that determines the computational action which has to be executed, but the

17Notice that under the Curry-Howard correspondence for intuitionistic logic a term representing a
program corresponds to a proof written in intuitionistic natural deduction. This means that the form
of the term reflects the form of the proof, namely the order of application of the inference rules.
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form of the context. This means, in particular, that the computational process does
not immediately reduce to the computation of a value when an argument is given
to a term but it passes through the interaction between the term and the context
in which it is asked to be evaluated. We will try to clarify this point in the next
section by studying the cc instruction, which is a constant and thus has no proper
internal structure: its computational behavior will then depend only from the context
in which it is evaluated or tested.

3.2 Dialogues

The way in which realizability semantics operates, and more precisely the way in
which processes and their evaluations have to be understood, can be explained in
term of dialogues – or better, disputes – between two agents: the prover – i.e. the
term –, which has to produce a construction of a certain sentence A, and the skeptic –
i.e. the stack – which doubts of the existence of this construction and thus tries to
challenge the prover with respect to A. Consider the following example, involving
Peirce law and inspired by Sørensen and Urzyczyn (2006, pp. 144–145).

1. The prover asserts ..A ! B/ ! A/ ! A, which corresponds to affirming that
a construction cc of ..A ! B/ ! A/ ! A holds thanks to the application of a
0-ary rule.

2. The skeptic does not agree with this assertion, and tries to challenge it by
proposing to the prover the following problem: to exhibit a construction of A,
given a construction of .A ! B/ ! A. In order to do this, she provides a term t
realizing .A ! B/ ! A, asks the prover to provide a term a realizing A – using
cc and t –, and prepares herself to challenge the fact that a realizes A with a test
a0 for A.

This situation corresponds to considering a process cc ?t � a0 � ˘, where a0 � ˘ is
the context of the challenge, that is the set of presuppositions from which the skeptic
moves in order to challenge the prover.18

3. In order to continue the dispute, the prover makes use of the presuppositions of
the skeptic and claims A ! B (for a more detailed justification of this step see
p. 185). This claim corresponds to the introduction of a continuation constant
ka0�˘, coming out from the result of the evaluation of the process cc ?t � a0 � ˘ via
the grab rule, which gives t ? ka0�˘ � a0 � ˘.

18We will try to clarify later what do we mean here for ‘presuppositions’ (see Sect. 4.4). For the
time being, it is sufficient to remark that since a context is a list of closed terms, it cannot be a set of
hypothesis, as hypotheses correspond to free variables. Moreover, while hypotheses do not presup-
pose any epistemic attitude towards their truth or falseness, presuppositions are believed to be true.
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Fig. 1 The term cc is a realizer of Peirce’s law

From the point of view of processes, this amounts to saying that it can be given as
an argument to the term t, that is, one could consider the application .t/ka0�˘, which
via the push rule reduces to t? ka0�˘ � a0 � ˘. But this brings us in a situation where we
do not know for sure what will happen. Indeed, the way the process t ? ka0�� � a0 � ˘
will reduce depends on how the term t is constructed.

Without going into the details, we can notice that t is a realizer of .A ! B/ ! A.
As we will see in Sect. 3.3.1, this means that any process of the form t ? u � a0 � ˘,
with u a realizer of A ! B and a0 a test for A, will win the dispute. In other terms,
when given a realizer of A ! B as an argument, the term t reduces to a realizer
of A. This can be done in two ways (see Fig. 1). First, t could be a term that does
not use its given argument, e.g. t “throws away” the argument, that is t is of the
form �x:u, where x does not appear in u.19 In that case, the skeptic provides, in
the end, a realizer a of A, and the dialogue continues directly at step 5. The second
possibility is that t actually uses its argument to compute its output. The dialogue
then continues as follows.

4. At some point during the reduction process, one reaches a step of the form ka0�˘?
a � � 0, where a is a realizer of A. The prover claims that ka0�˘ is indeed a realizer
of A ! B, but the skeptic considers its use to be unjustified. She then challenges
the prover to provide, given a construction a of A, a construction of B.

5. Since the skeptic gives to the prover a construction a of A, the prover comes
back to the first challenge, and uses exactly this construction a in order to satisfy
it. In case the computation went through step 4. above, this corresponds to the
evaluation of ka0�˘ ? a � � 0 into a ? a0 � ˘ by the restore rule. In case the term t

19Notice that the condition that x does not appear in u is not necessary for t not to use its argument.
In other words, t could not use the argument in the computation, even if x appears in u. For instance,
consider the term t � �x:.�y:a/x, where x and y do not appear in a. Then t is of the form �x:u,
where x appears in u, but we have the following reduction sequence: �x:.�y:a/x ? ka0

�˘ � a0 � ˘ 
.�y:a/ka0

�˘ ? a0 � ˘ �x:a ? ka0
�˘ � a0 � ˘ a ? a0 � ˘.
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provided by the skeptic did not use its argument, the computation reaches a?a0 �˘
without using the restore rule, since tŒx WD ka0�˘� reduces to a term a realizing A.

The prover has thus been able to meet the challenge of the skeptic because, by
appealing to the presuppositions held by the skeptic, she has been able to transform
an attack of the latter into its own defense. And since in order to do this the prover
used only information coming from the skeptic (namely, a and a0), the skeptic
cannot but accept them. It is in this sense that we can say that the prover possesses
a winning strategy.

However, this possibility of switching the role of a move in a dispute is
not the only aspect which characterizes the dialogical account of classical logic.
There is in fact another aspect which is linked to the use of contexts, and which
essentially distinguishes intuitionistic dialogues from classical ones. When we look
at intuitionistic dialogues, we can notice that the prover always replies to the
challenge that the skeptic advanced in the immediately previous step. The defense
of the prover consists then in setting up a function which returns a value for every
argument proposed by the skeptic (see for more details Sørensen and Urzyczyn
2006, § 4.6). When we look at classical dialogues, we can notice, instead, that the
prover can move back to a previous challenge and reply to it, by making reference to
the context in which this challenge was previously made, thanks to the restore rule.

3.3 Classical Realizability and Untyped Proof Theory

We expose here the realizability interpretation of classical logic. This follows a well-
known technique consisting in typing terms a posteriori, i.e. assigning types to terms
according to their interactive behavior, that is, what they effectively compute. For
instance, the lambda term �x:x could be typed by A ! A, for any formula A. This
induces subtyping, which means that a given term can be assigned to several types
at the same time.

3.3.1 Realizability Interpretation

Let us indicate with ƒ the set of terms, and with † the set of stacks.
Once the processes and their reductions defined, they are used to interpret

formulas. More precisely, we define the realizability relation t � A, where t is a term
and A a formula. The definition proceeds by induction, however differently from the
definition given in the case of Kleene’s realizability, this definition requires two
semantic values and not just one. In particular, one defines for each formula A, what
can be called its falsity value kAk � † – corresponding to its set of falsifiers – and
its truth value jAj � ƒ – corresponding to its set of verifiers. In order to define those
sets, one needs to fix once and for all a so-called pole which is a subset ‚ � ƒ?†

of processes which is closed under anti-evaluation: if t ? �  u ? � and u ? � 2 ‚,
then t ? � 2 ‚. This last condition is quite natural since it is meant to ensure that
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if a process t ? � reduces to an element of ‚, the process t ? � is itself an element
of ‚. We develop further the intuitions behind the pole in the second part of this
section. So, once this pole fixed, one defines:

• the set T‚, where T is a subset of ƒ, as f� 2 † j 8t 2 T; t ? � 2 ‚g;
• the set ‚S, where S is a subset of †, as ft 2 ƒ j 8� 2 S; t ? � 2 ‚g.

For convenience, the set of formulas is extended with a predicate symbol PF for
all function F W Nk ! P.†/ mapping a k-tuple to a set of stacks. If we want to
realize the axioms of Peano arithmetic, we can consider first-order closed terms to be
interpreted on natural numbers, i.e. we have a map ��� from first-order closed terms
to natural numbers. For further details about these definitions we refer to Guillermo
and Miquel (2014). The truth value jAj of a formula is defined from the falsity value
kAk of A by jAj D ‚kAk. The falsity value of a formula is defined by induction
(which uses the truth value in the case of the implication).

k PF.e1; : : : ; en/k D F.�e1�; : : : ; �en�/

kA ! Bk D jAj � kBk D ft � � j t 2 jAj; � 2 kBkg
k8x Ak D

[

n2N
kAŒx WD n�k

k8X Ak D
[

FWNn!P.†/

kAŒX WD PF�k

The relation “t realizes A” is then defined by t � A , t 2 jAj.
Example 1. In order to give better intuitions, let us illustrate this definition for the
case of implication. Suppose that one wants to show that a given term t realizes a
formula A ! B, i.e. one wants to prove that t � A ! B. This amounts to providing
a proof that t 2 jA ! Bj, i.e. t 2 ‚kA ! Bk. So, one wants to show that, for
any element � 2 kA ! Bk, the process t ? � is an element of ‚. Using the above
definition, it is in fact possible to know more about � , namely that � is of the form u�
� 0, where u � A and � 0 2 kBk. This means that we are trying to prove that t?u�� 0 2
‚. Since ‚ is closed under anti-evaluation, this implies that .t/u?� 0 2 ‚, since the
latter reduces to t ? u � � 0 by a push rule. Since this can be deduced for all � 0 2 kBk,
this means that .t/u � B, i.e. .t/u is a realizer of B. In conclusion, a realizer t of A !
B is a term such that for every realizer u of A, the application .t/u is a realizer of B.

The definition of the realizability interpretation through falsity values reinforces
the interpretation of evaluation contexts as falsifiers, that is as counterexamples that
when opposed to the corresponding verifiers they produce a deadlock, i.e. something
corresponding to a sort of antinomic situation.20 Moreover, it has to be noticed that
in analogy with the untyped setting – exposed below, the notion of termination is not

20Strictly speaking, these antinomic situations do not imply the incoherence of the system itself.
The reason is that, as we already mentioned, verifiers, as well as falsifiers, are only posits. In this
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an absolute and unchangeable one, but it depends on which processes configurations
have been chosen to represent the terminating states, or better, the terminable ones.
In other words, the pole ‚ is chosen as an arbitrary set of process closed under
anti-evaluation.

3.3.2 Classical Realizability as an Untyped Proof Theory

In Naibo et al. (2015) the notion of untyped proof theory is introduced in order
to describe a general framework for dealing with an abstract mathematical (and
in particular, geometrical) notion of proof from which it is possible to generate
a class of deductive systems suitable both for logical and proper mathematical
theories. More precisely, an untyped proof theory represents a very abstract model
of computation, based only on two fundamental notions, that of execution and that
of termination. In this sense, the idea is to describe a logical or mathematical theory
from a computational point of view, in a similar vein as it is done in the theory of
constructions of Kreisel (1962, 1965) and Goodman (1970, 1973a,b).21

We first recall the general definition of such a framework and then explain to what
extent it relates to Krivine’s realizability. An untyped proof theory is given by:

• A set of untyped paraproofs …;
• A notion of execution Ex W … �… ! …;
• A notion of termination given by a set of untyped proofs �.

This definition accounts for a number of so-called dynamical models of linear
logic such as Geometry of Interaction (Girard 1989), Ludics (Girard 2001), and

sense, it is not astonishing to conceive two logically incompatible situations together: the resulting
conflict between these two situations would be only a conflict in principle, not an actual one. On the
contrary, a genuine incoherence is obtained when two contrary evidences are present, namely when
it is possible to exhibit two proofs of two opposite propositions, respectively (see Miquel 2009a,
p. 81). This way of understanding incoherence is the same professed by Hilbert: incoherence is
definable only at the level of ‘concrete objects’ (Hilbert 1926, p. 376), i.e. at the level of finitary
arithmetic, and not at the level of logic.
21Notice that while the notion of execution seems to be (in a form or another) universally accepted
as a fundamental ingredient of the notion of computation, the notion of termination needs some
explications. In some more specific and “concrete” models of computation, like the one represented
by partial recursive functions, termination is not a necessary notion (think precisely of the
partiality condition). Following Kreisel (1972), this represents an analysis of mechanical effective
computability, in the sense that the execution has to be performed by mechanical following a finite
list of instruction. However, nothing is said about who has to follow this list of instruction. If it is
a human-agent that has to follow it, then the number of steps that she can perform must be finite,
since finiteness is a property defining human-agent (see note 8). This means that each execution
has to terminate. The notion of termination seems then to be linked to the analysis of what Kreisel
calls human effective computability. Beside this computational aspect, termination plays a second
key role in the present context. From a meaning theoretic point of view, termination ensures us that
we are not transcending the capacities of the human agent, thus allowing us to respect the pivotal
desideratum of an anti-realist theory of meaning.
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Interaction Graphs (Seiller 2014). From the notions of termination and execution,
one derives a notion of orthogonality over the set of untyped paraproofs, i.e. it is
possible to define ‚ � …	… as the set fa � b j a; b 2 …;Ex.a � b/ 2 �g. From this
notion of orthogonality, then one defines the interpretation of formulas in a similar
fashion as in the realizability case.22

The classical realizability setting is very close to the untyped proof theory
framework, except for the loss of symmetry. Where realizability considers two
disjoint sets of terms and stacks, untyped proof theory considers a single set of
paraproofs. This can be explained by the fact that untyped proof theory is meant
for interpreting linear logic formulas, while classical realizability is meant for
interpreting classical logic. Linearity allows for the consideration of one-element
stacks exclusively, that is, those being naturally identified with the term they contain.
Modulo this difference, everything works in the same way. In particular, the notion
of execution in classical realizability is simply the evaluation of processes. While,
as it concerns the notion of termination, even if in classical realizability it is not
considered explicitly,23 the pole of classical realizability corresponds to the induced
orthogonality in untyped proof theory. In this sense, classical realizability can be
understood as an instance of untyped proof theory.

Moreover, classical realizability and untyped proof theory share the possibility of
representing incomplete or logically incorrect (deductive) arguments as well as their
computational counterparts, that is, wrongful programs.24 As explained in Naibo
et al. (2015), the approach undertaken by untyped proof theory differs from the usual
techniques adopted in standard proof theory, as it considers a set of objects – the
paraproofs – which is much larger than the set of proofs. More precisely, among the
set of paraproofs, only a limited subset can be mapped to logically correct and closed
derivations,25 while the others represent aborted or logically incorrect derivations.

22Notice, however, that one defines the interpretation of linear logic formulas, and not classical
logic formulas, as it will be clarified below.
23Although the pole is sometimes defined from a set of processes which could be understood as a
notion of termination (see Guillermo and Miquel 2014). For instance, one can take an arbitrary set
of processes � and then define a pole ‚� by simply considering the closure of � with respect to
anti-reduction.
24We use the terminology of “wrongful programs” as opposed to “proved programs”. Indeed,
programs corresponding to proofs in a formal system are proved in the sense that they do exactly
what they are expected to. More precisely, the corresponding proof can be understood as a
certificate that ensures the program is well-behaved (i.e. produces the right type of output when
given the right type of input), and terminates. With this idea in mind, a wrongful program is a
program which is proved using a incorrect arguments: it is therefore provided with an unreliable
certificate of well-behaviour and termination.
25Notice that in this sense a proof is considered as a closed (logically) valid derivation (or
argument), respecting the definition given in Prawitz (2006, p. 511).
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In other words, this means that the set of logically correct and closed derivations –
i.e. the set of proofs – can be interpreted as a specific subset of the set of paraproofs,
which are shown to share a specific common property. The set of winning paraproofs
is then defined as the set of those paraproofs satisfying this property. Although
all interpretations of proofs are winning paraproofs, it is not clear in general if
a winning paraproof is the interpretation of a proof. In the specific framework
of Ludics (Girard 2001), the winning paraproofs are defined as those that do not
use a specific non-logical axiom rule named daimon, which allows to derive any
sequent of the form A where A is a positive formula. A similar situation appears in
classical realizability, since not every term corresponds to a proof. More precisely,
the only terms which can be associated to proofs are those that do not contain
any continuation constant, that is the so-called proof-like terms (see p. 174): every
proof corresponds to a proof-like term, even if the converse is not true in general (a
proof-like term need not be typeable26). From a more technical point of view, the
proof-like terms are those that correspond to winning strategies in a dispute, like the
one we described in Sect. 3.2. Proof-like terms are then the realizability analogues of
the winning paraproofs. Pushing further this parallel with untyped proof theory, and
especially with Ludics, one can think of the continuation constants as those parts
of programs, or deductive arguments, which make them incorrect. In other words,
continuation constants play a role analogous to the aforementioned daimon rule.

The fact that terms could contain continuation constants plays a crucial role, as it
means that every formula – even those that are not provable – can be associated to a
non-empty set of realizers. In particular, ? – which in a second-order framework is
defined by 8X:X – can be realized by some terms, not corresponding to proofs,
as they contain continuation constants (see, for instance, the term k�x of the
derivation at p. 185). This represents a fundamental aspect differentiating Krivine’s
realizability from Kleene’s one, as it allows one not to trivialize the interpretation of
formulas of the form :A.

Before focusing our analysis on some specific philosophical problems emerging
from classical realizability, it is important to point out a major difference between
the untyped proof theory approach and classical realizability. Although it is possible
to understand classical realizability as an instance of untyped proof theory, there
is a methodological difference between the two of them. Untyped proof theory
somehow works in a top-down fashion: one considers a huge set of paraproofs – i.e.
a specific class of mathematical objects – with a homogeneous notion of execution,
and then shows what logical/computational principles can be interpreted there.
Classical realizability, on the contrary, works in a bottom-up fashion: one extends
syntactically the set of paraproofs with in mind a notion of reduction of processes
that captures a computational principle, e.g. the quote operator (see Sect. 5).

26For instance, the term .�x�y:..y/.x/�z:z/.x/�z:�w:z/�z:.z/z is not typable in System F even
though it is strongly normalizable (Giannini and Ronchi Della Rocca 1988).
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4 Which Theory of Meaning for Classical Realizability?

As we have seen in Sect. 3.3.1, Krivine’s realizability represents an operational
semantics for classical logic, allowing one to assign a computational meaning to
classical principles. It becomes than natural to ask if it is also possible to use
Krivine’s realizability in order to define some kind of anti-realist theory of meaning
for classical logic, and in particular a theory of meaning based on the computational
uses associated to classical principles and classical operators, rather than their truth-
conditions.

4.1 Analogies with the Finitist Interpretation

Let us first remark that it seems not to be an exaggeration to say that Krivine’s
proposal respects, in some sense, the spirit of Hilbert’s finitist programme, which
we have seen to be the starting point of Kleene’s realizability interpretation.
More precisely, like in Hilbert’s account, sentences are meaningful only when
they can be associated – or somehow reduced – to concrete objects or to finitist
operations defined over these objects. In particular, in the realizability setting,
standard Hilbert’s strokes – i.e. j, jj, jjj, etc. – are replaced by terms and contexts,
and since terms and contexts are syntactical objects – that is nothing else but finite
configurations of signs – they are also objects existing in time and space (see Martin-
Löf 1970, p. 9). These objects can thus be considered as concrete as Hilbert’s strokes
are.27

In order to show that Krivine’s realizability can also recover the notion of finitist
operation, the usual identification of this notion with that of primitive recursive
function – as proposed by Tait (1981) – has to be abandoned, and it has to
be replaced with Kreisel’s idea according to which the class of finite operations
corresponds to the class of provably recursive functions in arithmetic (Kreisel 1960;
see also Zach 2015, § 2.3).

The class of provably recursive functions is exactly the class of functions that
Kreisel characterized in establishing his no-counterexample interpretation (Kreisel
1951, 1952). Now, the no-counterexample interpretation, as explicitly stated by
Krivine (2003, p. 260) and, as we implicitly sketched in Sects. 3.2 and 3.3, is the
method inspiring Krivine’s analysis of the computational content of logical and
arithmetical theorems: when a sentence is provable, it is shown that is possible to
extract an effective procedure capable of falsifying every possible counterexample
for that sentence (see Bonnay 2002, for more details). However, this does not mean

27Actually, as C. Parsons remarked, Hilbert’s strokes, as well as syntactical objects in general, are
quasi-concrete objects: they are not simple tokens, but a particular kind of types, the ‘intrinsic
[property of which is] to have instantiations in the concrete’ (Parsons 2008, p. 242).
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that Krivine’s realizability could be eventually neither reduced to be a simple variant
of Kreisel’s no-counterexample, nor to be a simple re-interpretation the finitist
programme. As we already mentioned, Krivine’s realizers are not “ready-typed”
functions but untyped programs, the evaluation of which needs the definition of a
context. Moreover, Krivine’s realizability does not necessarily ask for the extraction
of a witness from an existential statement (Rieg 2014, p. 9). This is because the
finitist operations are not here carried out at the level of individuals denoted by first-
order (closed) terms, but rather at the level of programs for (classically) provable
sentences. In other words, the witness which is looked for is not the one for
statements of the form 9xA.x/, but the one for judgments of the form `C A, for
a certain sentence A and where C is a derivation system for classical logic. It is for
this reason that in what follows we restrict our analysis to the case of propositional
logic.

4.2 Differences with Dummett’s Verificationism

Since the natural witness for a judgement of the form `C A is a proof of A –
or a proof-term codifying a proof of A –, it would then be natural to look at
Dummett’s verificationism as the closest theory of meaning with respect to Krivine’s
realizability semantics. However, it is quite immediate to notice that there is some
important differences dividing these two theories.

As we already remarked, the class of terms in classical realizability do not
correspond to the class of proofs, being it much bigger. Restricting the attention
to the subclass of proof-like terms is still not sufficient for dealing only with proofs,
since, as we said in Sect. 3.3, there is not a perfect correspondence between these
two notions. Moreover, in order to assign a type A to a certain proof-like term –
and thus making it a realizer – it is necessary to make appeal to a set of contexts. In
other words, this means that in classical realizability the understanding of a sentence
A is not based on a single semantic notion – that of a proof of A (or better, that of
a canonical proof of A) – as it is the case for Dummett’s verificationism, but it
requires to make appeal to two semantic notions at the same time: (i) programs –
corresponding in a loose way to proof (when we restrict ourselves to consider
only proof-like terms) – and (ii) contexts. As we have seen, these two notions are
complementary, so that a special kind of bivalence is introduced at the semantic
level: every well-formed object belonging to the realizability level corresponds
either to a program or to a context. Following Dummett (1963), it is exactly the
acceptance of a bivalence principle which commits someone to accept a realist
approach with respect to semantical notions.

The question then arises if it is possible to avoid such a built-in form of bivalence
in classical realizability in order to make it compatible with a verificationist and
anti-realist approach. One first step in this direction is represented by the shift
from the two-agents dialogical perspective presented in Sect. 3.2 to a single-agent
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perspective. By providing an account of classical realizability in terms of a single
agent, one could hope to avoid, at least in principle, bivalence.

4.3 From a Dialogical to a Single-Agent Perspective

As we already mentioned in Sect. 4.1, differently from recursive functions, programs
are not reducible to some particular kind of step-by-step set-constructions on natural
numbers, but they aim at expressing every kind of actions effectively performable
on syntactical objects in general, even on those that would not be considered in
principle as well-typed. It is this general and abstract character that allows one
to assign a computational content even to those formulas that do not correspond
to theorems or axioms, and thus to show it is possible to assign to these formula
a specific semantic value. More precisely, the semantic values are set of terms
which contain continuation constants. This means that the semantic value of a
formula – and in particular its truth value – is obtained under the hypothesis that
some counterexample for another formula is given. Let us clarify this point through
an example.

According to the usual classical semantics, a formula A ! B can be made true
not only when a proof of it is given, but also when a counterexample of A is given. As
we have seen in Sect. 3.2, counterexamples can be represented by stacks. Moreover,
as we have seen in Sect. 3.1, the information present in a stack � can be codified
by a continuation constant k� , and since a continuation constant is a term, then it
is plausible to think this term as typeable with :A. Formally speaking, if � 2 kAk,
then k� is a realizer of :A: for any element � 2 k:Ak, by definition � � t � �,
with t 2 jAj, then the process k� ? t � � reduces to t ? � which belongs to ‚. In this
way, modulo a certain degree of approximation, we can think of A ! B as obtained
through the following derivation in a natural deduction setting where formulas are
decorated in a Curry-Howard fashion28:

k� W :A Œx W A�.1:/ ! elim
.k� /x W ?

df
.k� /x W 8X:X

82 elim
.k� /x W B ! intro (1.)

�x:.k� /x W A ! B

28The deduction system adopted here is described in details in Miquel (2009a, p. 85). The idea is
that by working in second-order logic we obtain a polymorphic type system, that is a system where
terms could be associated to more than one type. Since in this paper we adopted the convention
to present terms in Curry style, this means that the information concerning types is not present in
the terms, and thus polymorphism is not explicitly manifested inside terms – by means of some
abstraction operator –, but remains implicit (see Hindley and Seldin 2008, p. 119–120). It is for
this reason that the rule 82 elim is not associated to any new operation on terms.
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The approximations that we have made in this derivation are mainly two. The first
one is to consider that the falsity value of the formula A is not empty. The second one
is the result of a mismatch between the point of view of realizability and the point of
view of natural deduction. In Krivine’s framework, untyped objects are considered,
and their interaction – like the application of one to the other – is operated at the level
of closed terms.29 In natural deduction, instead, typed objects are considered, and
it is possible to operate also on open terms, i.e. on terms containing free variables.
This implies that the typing relation “:” used in the above derivation contains the
realizability relation, but it is not equivalent to it. More precisely, the idea is that
not every deduction step can be read as expressing a realizability relation between a
term and a formula. For example, x W A does not express a realizability relation, since
x is not a closed term. The premiss and the conclusion of the derivation, however,
can be read as expressing realizability relations. Since �x.k� /x is the �-expansion of
k� , and �-equivalent terms can be identified from the computational point of view,
then we can consider to be equivalent to work with :A instead of A ! B.

Notice also that our type assignment to k� is not obtained by exploiting the
instruction cc, but it is directly extracted from the intuitive reading of the role
played by a context � , i.e. that of a falsifier. However, we can recover Krivine’s
reading of k� once a proof of A is effectively given, i.e. when x is substituted by a
closed term u. Looking then from the structural point of view, it should be noticed
that k� W :A cannot be considered as a dischargeable hypothesis, since k� is by
definition a closed term and not a variable. But it cannot be considered a closed
premiss either, since it has not been justified by a proof, but it comes from the
“reification” of a context. In a certain sense, the role played by k� W :A is that of a
pretension, namely the pretension to accept that it is the case that :A, i.e. to work
as if :A has been proved.

In the dialogical setting, we can interpret the assumption k� W :A as reflecting
the prover’s attitude to think that the skeptic wants to refute her, i.e. to think that the
skeptic believes :A. In turn, this attitude can be seen as the prover’s understanding
of the “context of the game”: from the fact that the skeptic systematically challenges
her claims, the prover evaluates that the skeptic does not only doubts about
her assertions, but wants also to refute them. However, by interpreting :A as a
pretension, we open the way to pass from a dialogical, multi-agent position to
a single-agent-based perspective. This shift is necessary if one wants to stay as
close as possible to a Dummettian theory of meaning. Indeed, the fundamental
divergence distinguishing Dummett’s and Krivine’s settings that we discussed in
Sect. 4.2 remains unchanged even if one switches from the computation reading
of realizability to its dialogical reading: the distinction between the Verifier – i.e.
the prover – and the Falsifier – i.e. the skeptic, provided that we consider negative
hypotheses – reintroduces exactly the same form of bivalence that one finds between
programs and contexts.

29As we mentioned at p. 174, processes usually operate on closed terms.
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4.4 Negative Hypotheses as Postulates

The shift operated by working as if :A has been proved corresponds to consider
that k� W :A plays the role of a postulate, in an Aristotelian sense, i.e. as ‘something
[which is] not in accordance with the opinion’ of the person to whom the discourse
is addressed (Aristotle, Posterior Analytics, 76b32–34; Barnes 1993, pp. 16, 141–
142). From this perspective, the reading of negated assumptions decorated by a
continuation constants becomes clear: they are presuppositions, which are believed
to be true, i.e. special kind of hypotheses to the truth of which an agent commits
herself.

One should carefully distinguish this kind of hypotheses from the usual ones,
that is, like those used in standard natural deduction. Assuming a sentence to be true
can have indeed two different senses: a potential and an actual one. This distinction
is made explicit by Martin-Löf (1991). In the potential sense, assuming that ‘A is
true’ corresponds to assume that the assertion of A is justifiable, i.e. that in principle
there could be found an evidence in favor of it – even if in fact it could occur that this
evidence is not available, nor it will ever be available. By making such of an assump-
tion we are thus keeping open every kind of possibility: both the existence as well as
the non-existence of an evidence in favor of A. On the contrary, in the actual sense,
assuming that ‘A is true’ corresponds to assume that the assertion of A has already
been justified, i.e. that there is an evidence in favor of it. By making such of an
assumption we are thus pretending that an evidence in favor of A effectively exists –
even if it is not the case, in the sense that we cannot prove this existence claim.

As we just said, the first kind of hypothesis corresponds to standard hypothesis
in natural deduction, which are used for the formation of conditional statements. In
order to prove a sentence of the form A ! B, we do not necessarily need to possess a
proof of A. For example, we can prove .A^:A/ ! ?, even if A^:A is not provable
at all (cf. Sundholm 1994, p. 163–164). Following the standard notation adopted in
the Curry-Howard correspondence between proofs and programs, we will decorate
this kind of assumptions using term-variables of the form x, y, z, etc. The proof of
.A ^ :A/ ! ? will be thus decorated in the following way:

Œx W A ^ :A�.1:/ ^ elim2

p2.x/ W :A
Œx W A ^ :A�.1:/ ^ elim1

p1.x/ W A ! elim
.p2.x//p1.x/ W ? ! intro (1.)

�x:.p2.x//p1.x/ W .A ^ :A/ ! ?
where p1 and p2 are the first and second projection, respectively.30

The second kind of hypothesis corresponds, instead, to those hypotheses used
for establishing (proper) admissibility results. In order to establish the validity of an

30Making appeal to projections is for simplicity and shortness of notation. In fact, as we said at
p. 174, these operators can by defined in the second-order setting in which Krivine’s realizability
is conceived.
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inference rule of the form A
B

, it is asked to assume that A has been proved, and
show that under this assumption B can also be proved. This corresponds to take the
sequent A as an hypothesis, and show that B can be concluded. But doing this
seems to generate two sorts of complementary problems. On the one hand, if we
want to discharge this second kind of hypothesis, we have to discharge sequents,
which means that we are dealing with some kind of higher-order rules similar to
those used by Schroeder-Heister (1984). On the other hand, the conceptual distinc-
tion between two kinds of hypothesis risks to be flattened by the following result:

Proposition 1. Let B = f A1; : : : ; Ang, where the Ai stand in the position of
hypothesis. Then, `NJCB � C if and only if `NJ �;A1; : : : ;An C.31

This result concerns the derivability level, while it says nothing about the proof-
structure level. But, as we have seen in the case of the definition of canonical proofs,
proof-structure is an essential ingredient of Dummett’s verificationism: the key-
semantical entities are not proofs in general, but proofs having a particular form,
concerning the order of application of inference rules.

We are thus in a situation, in which, on the one hand, we would like to keep track
of the distinction between the two kinds of hypothesis we have introduced – so
to keep track also of the structural difference between the proofs using one kind of
hypothesis or the other – and, on the other, to respect the result stated in the previous
proposition – and thus treat the second kind of hypothesis as hypothesis acting on
formulas and not on sequents. In order to do this, we can take the second kind of
hypothesis as formulas decorated by a different set of variables than the first kind
of hypothesis. In particular, we can decorate the second kind of hypothesis using
the variables a, b, c, etc., and operating their dischargement using an abstraction
operator different from standard �-abstraction (used for the first kind of hypothesis).
The behavior of this operator can be explained by reflecting on the conditions that
Dummett’s theory of meaning has to satisfy in order to certify his soundness.

4.4.1 A Verificationist Account of Classical Logic

Dummett’s theory of meaning rests on a what is called a fundamental assumption:
the assertion of a sentence A, having � as principal connective, should always be
performable in a direct way, that is, by means of a �-introduction rule (see Dummett
1991, p. 254). In the case of intuitionistic logic, this assumption is respected
by considering assertions performed under zero assumptions, which means that
only the assertions of theorems are considered. This seems a to be indeed a too

31Notice that we consider to work here with a natural deduction presented in a sequent calculus
style. The proof of the proposition can be found in Negri and von Plato (2001, pp. 134–135). In
general, in order to prove the ‘only if’ direction, the idea is to replace every Ai sequent used in
the proof of � C with an identity sequent Ai Ai. While in order to prove the ‘if’ direction, the
idea is to apply a cut rule on the Ai, having Ai and �;A1; : : : ;An C as premisses.
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narrow interpretation of the fundamental assumption. Satisfying the fundamental
assumption when only empty sets of assumptions are considered seems to be just
a minimal test that the verificationist theory of meaning has to pass in order to be
considered as a sound theory. But what about a maximal test? How should it look?

It seems to us that by making appeal to the second kind of hypothesis analyzed
in the previous section this maximal test can be defined, and it would take the form
of a robustness test:

There should exist at least a proposition A that can be directly asserted under the worst
possible (and non-trivial) assumption, i.e. under the assumption that :A is true, in the
sense that an evidence for the refutation of A is supposed to effectively exist (and :A has
not been introduced by a weakening rule).

The formulation of this test suggests that it is possible to restrict our attention to
the use of negative hypotheses, i.e. what we called postulates. Formally speaking,
this means that given derivation of the form:

a W :A
:::

t W A

it should be possible to rearrange the order of the rules so to conclude using an
introduction rule of the principal connective of A.

The problem is that by using again the hypothesis a W :A, it would be possible
to conclude .a/t W ?, which means that under the assumption of the effective
possession of a proof of :A, an inconsistency can be proved. In order to avoid
that the addition of the second kind of hypothesis leads to inconsistency, it would be
sufficient to deactivate a W :A immediately after having derived t W A – so that the
hypothesis cannot be used again –, and then continue to assert A. This corresponds
to use the following inference rule:

Œa W :A�.n:/

:::

t W A
CM (n:)

�a:t W A

where � is an abstraction operator acting exclusively on the second kind of
hypothesis.

This rule corresponds to the principle of consequentia mirabilis, i.e.

..A ! ?/ ! A/ ! A

which with respect to intuitionistic logic is equivalent to the Peirce’s law (see Ariola
et al. 2007, p. 407). This means, in particular, that when CM is added to the system
of intuitionistic natural deduction (NJ), one obtains a system which allows to recover
full classical logic.
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A fundamental feature of such a classical system is that it satisfies a form of
quasi-canonicity of proofs. More precisely, thanks to a result due to Seldin (1989), it
is possible to show that if A is a theorem of classical logic, then there exists a proof
of it using only one occurrence of the CM rule, namely the last one. This means
that the conclusion of the penultimate step of the derivation is also A, and that this
occurrence of A is intuitionistically derived under the only assumption :A. But since
:A is an Harrop formula, then this derivation enjoys the introduction form property,
and thus this immediate sub-derivation of A terminates with an introduction rule of
the principal connective of A.

The classical system obtain via CM does not fully fit in the proofs-as-programs
paradigm: providing a direct computational interpretation of CM is not a trivial
matter. However, a parallel with Kreisel’s no-counterexample interpretation can
shed light on the implicit computational features of the system. In particular,
this should be sufficient in order to guaranteeing that CM can recover those
computational features of classical logic captured by Krivine’s realizability.

The Kreisel’s no-counterexample account

(1) Consider A � 9x8yA0.x; y/ and :A � 8x9y:A0.x; y/, where A is a theorem.
(2) A counterexample to A would consists in a function f such that

8x:A0.x; f .x// (*)

(3) Appealing to the consistency of the system guarantees that there exists a
functional ˆ satisfying the Herbrand normal form of A, i.e.

8fA0.ˆ.f /; f .ˆ.f ///

(4) The functional ˆ represents a counterexample to (*), i.e. a counterexample to
the existence of the function f .

(5) The computability of the procedure is assured by proving ˆ to be recursive.
In this particular example, since A is a †01 formula, then ˆ is even primitive
recursive (see Parsons 1972).

The CM account

(10) Consider A and :A.
(20) A counterexample to A would consists in a proof of :A, which means to take

a W :A
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(30) The existence of a derivation D from :A to A, and the subsequent application
the rule CM, guarantees the consistency of the system, as it allows to transform
any alleged proof of :A into a proof of A, i.e.

�a:.t/a W A

where � is an abstraction operator acting on variables used to indicate
postulates.

(40) The proof-term t represents a counterexample to the existence of any possible
closed proof-term replacing a.

(50) The computability of the procedure is assured by the fact that D uses only
intuitionistic means.

Even if the classical system based on the rule CM is obtained from an analysis of
Krivine’s system �c, it involves nevertheless some significant differences with the
latter. First, it allows one to transform into a rule of inference what in Krivine’s is
treated like an axiom, that is, the classical principle expressed by the Peirce’s law.
This means, at the level of terms, to transform the constant cc into a complex term
making use of the abstraction operator �. This transformation, in turn, has been
made possible by distinguishing between two kinds of hypothesis, which allows
in particular to avoid the use of contexts. The fundamental consequence is that
the sneaking of bivalence is blocked: one does no more need to make appeal to
a dialogical setting, as the only fundamental semantic concept is the one of proof,
as requested by the Dummettian verificationism.

We conclude this section by noting that the � operator acts similarly to the 
of �-calculus (Parigot 1992), with the major difference that in �-calculus the
 operator is paired with a second rule allowing the formation of contexts and the
evaluation of a term in such a context. In the typed setting, these can be seen as an
introduction and an elimination rule for classical negation. On the other hand, in the
classical setting we sketched, there is no appeal to contexts: the meaning of logical
constants is fixed by the intuitionistic rules and CM plays the role of a structural
rule, in the sense that it acts on the structure of derivations – i.e. at a “global” level –
and it allows one to control the discharge of postulates.

5 The Computational Meaning of Axioms

In the previous section, by operating an extension of the notion of hypothesis used
in natural deduction systems, we have been able to offer an understanding of the
logical part of Krivine’s realizability in terms of proof-analysis. In other words,
by the introduction of a derivation system based on two kinds of hypothesis, we
have given a presentation of classical logic which is compatible both with Krivine’s
realizability and Dummett’s verificationism.
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However, as we have already anticipated, Krivine’s realizability can also be used
to give an interpretation – in the sense of assigning a semantical value – to the
axioms of proper mathematical theories. But differently from Kleene’s realizability,
it does not only allow one to interpret the axioms of arithmetic. It covers also the
axioms of set theory.

As we already seen in the case of pure (classical) logic, the interpretation given by
Krivine’s realizability is a computational one. And the notion of computation is, in
turn, based on that of execution. The notion of execution is not a stable one, thought.
In particular, by adding a new proper axiom to the system, a new realizability model
is obtained, because a new constant instruction is added. And when a new instruction
is added also the notion of execution has to be extended.

Consider, for example, the axiom scheme of countable choice, according to which
every countable family of non-empty sets has a choice function. Written in the
language of set theory it takes the form:

8x 2 N 9y 2 S:A.x; y/ ! 9f 2 SN8x 2 N:A.x; f .x//

When we want to add it to second-order arithmetic PA2, we can simply write:

.ACC/ 8x9YA.x;Y/ ! 9Z8xA.x;Z.x//

where Y is a k-ary second-order variable, Z a k C 1-ary second-order variable, and
A.x;Y/ is any arbitrary formula not containing Z free.

The system PA2 C ACC is a theory adequate enough to formalize analysis. In
order to realize ACC, and thus construct a realizability model for this theory, a new
instruction � has to be introduced, behaving in the following way (see Krivine 2003,
p. 271):

� ? t � �  t ? nt � �

where nt is the Church numeral32 corresponding to the natural number nt, which is
the number that has been associated to the term t by a (not necessarily recursive)
enumeration of the set of closed terms. When this enumeration it is a recursive one,
then � can be implemented by means of the quote instruction of LISP.33

32A Church numeral is a representation in pure �-calculus of natural numbers, such that a given
natural number n corresponds to the �-term

�f :�x: .f / : : : .f /
„ ƒ‚ …

n times

x

For more details see Sørensen and Urzyczyn (2006, p. 20).
33Notice that � does not directly realize ACC. What can be proved instead is that there exists a
function F W NkC2 ! }.†/, with }.†/ the power set of the set of stacks †, such that:

�� 8x.8y.Nat.y/ ! A.x;F.x; y/// ! 8Y.A.x;Y///
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The introduction of � induces a modification on program execution, since a
new evaluation clause has to be considered, and new contexts of evaluation can
be created by exploiting the function enumerating closed terms. But in order
to have a full characterization of the execution, it has to be checked whether
the new evaluation clause remains compatible with previously defined program
transformations, in particular with ˇ-reduction (which corresponds to the reduction
defined by the pop and push rules). Actually, this is not the case for the � operator
(see Krivine 2003, p. 271). This means that � leads up to differentiate terms that
otherwise would have been computationally identified. Hence, the identity criterion
for computational entities not only rests on their behavior – rather than on some
pre-fixed features, like their nature or form –, but it also strictly depends from
the situations in which this behavior is manifested. More precisely, when new
instructions are introduced, and the context of computation changes, the behavior
of terms could change as well.

From a philosophical point of view, this phenomenon seems to support a sort
of anti-essentialist point of view, according to which an entity is recognized to
belong to a certain category of objects not because it possess a fixed set of defining
characteristic properties, but because we can use it for performing certain kind
of operations. From the technical point of view, we know instead that the Curry-
Howard correspondence establishes a precise connection between the notion of
ˇ-reduction and that of proof-normalization. The incompatibility of the ˇ-reduction
with certain kinds of instructions suggests then that the proof-normalization does
not play any central role within realizability framework. But since the proof-
normalization is at the core of the possibility of obtaining canonical proofs (see
p. 169), this seems to represent a conclusive evidence in favor of the idea that
Krivine’s realizability is conceptually distinct from Dummett’s verificationism.34

However, this is not a completely astonishing situation. From the verificationist
point of view, assigning a semantic value to proper axioms is a discouraging task,
because assigning a set of canonical proofs to proper axioms is a sort of a counter
sense, since by definition proper axioms are sentences which are accepted (as true)
without any specific proofs to be exhibited. On the contrary, in Krivine’s account, the
meaning of a proper mathematical axiom is not given on the basis of its inferential
behavior, but on the basis of its computational behavior. The latter not being defined

where Nat.y/ � 8X.X.0/ ^ 8x.X.x/ ! X.s.x/// ! X.y//. It is then easy to show that the term
�z.z/� realizes what can be called the intuitionistic countable choice axiom:

.IACC/ 9U8x.8y.Nat.y/ ! A.x;U.x; y/// ! 8YA.x;Y//

where Y is a k-ary second-order variable, U a k C 2-ary second-order variable, and A.x;Y/ is any
arbitrary formula not containing U free. In order to realize ACC it is sufficient to show that ACC
can be obtained from IACC by means of (i) logical equivalences, (ii) the least number principle,
and (iii) the principle of extensionality for functions (see Miquel 2009b, §§ 8.1, 8.2.). It is by
performing these deductive steps that an essential appeal to classical logic is made.
34A similar kind of blindness with respect to proof-structure is advocated by Kreisel (1951,
pp. 155–156, note 1) when he compares his unwinding program with Brouwer’s constructivism.
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in absolute terms, but with reference to a given set of contexts, that is, to those
situations which oppose to the axiom and try to falsify it. The idea is thus to identify
those entities which realize the axiom in spite of all possible attempts made to
refute it. And even if by definition those cannot be proofs, they remains nonetheless
accessible to human agent, since they correspond to operations consisting in an
algorithmic manipulation of a given set of syntactical objects, where the latter
represent the context of evaluation.

Certainly, it could be objected that it would be possible to transform the
mathematical axioms into some kind of inference rules, as we have done for the
Peirce law in the previous section. The problem is that in order to render this
transformation faithful with respect to Krivine’s realizability we have to show that
the so-obtained inference rules possess a computational content, and this is not a
trivial question. For example, when axioms are transformed into inference rules
following the method proposed by Negri and von Plato (2001, § 6; 2011), this
seems not to be possible. On the contrary, when axioms are transformed into rewrite
rules (acting on the formulas involved in the logical inference rules), as proposed by
Dowek and Kirchner (2003), it seems to be possible to preserve the computational
content (see Dowek and Werner 2005; Dowek and Miquel 2007). However, rewrite
rules are not inference rules, and thus it is not clear to which extent this approach is
compatible with Dummett’s verificationist.35 We must then conclude that we lack a
general method for assigning a verification interpretation to Krivine’s realizability,
when it is applied to mathematical theories going beyond pure logic.

6 Conclusion

We have exposed how the compatibility of Krivine’s classical realizability with
Dummett’s verificationism can be obtained only when it is possible to give an
inferential treatment of Krivine’s computational clauses. This seems to be the
case for pure classical logic, as shown in Sect. 4, but not for proper mathematical
theories. Krivine’s approach allows indeed to give a computational meaning to
proper mathematical axioms by assigning them a specific program instruction, while
Dummett’s verificationism seems not to be a suitable framework for dealing with
proper axioms, since axioms are traditionally considered as sentences which are
accepted without asking for a proof of them.

However, it should be noticed that the sensibility of the execution operation to the
addition of new program instructions seems to prevent classical realizability from
being a uniform framework for the treatment of axioms. This represents a major
difference with respect to the untyped framework presented in Sect. 3.3.2, where
the presence of two peculiar ingredients contribute to guarantee the possibility of
working with a general and unique notion of execution. On the one hand, the appeal

35For a detailed discussion of these questions see Naibo (2013, in part. chap. 9).
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to the daimon rule (see p. 181) allows one to define a general notion of axiom,
subsuming all kinds of axioms, being them proper axioms or logical ones. On the
other had, no real distinction is made between terms and sacks: from the point of
view of untyped proof theory, both of these entities correspond to paraproofs, and
are thus treated in an homogeneous way.

It would be then interesting to compare these two frameworks in detail, in order
to understand whether they belong to different philosophical projects or not. In
Naibo et al. (2015) it is claimed, indeed, that the untyped theory framework is not
compatible with a verificationist approach, and this claim is based on the treatment
of the notion of proper axiom. It would be interesting to understand if the same
arguments can be applied also to the case of Krivine’s realizability.
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