ANGIOTENSIN II RECEPTOR BLOCKADE: PHYSIOLOGICAL AND CLINICAL IMPLICATIONS ## PROGRESS IN EXPERIMENTAL CARDIOLOGY Edited by Naranjan S. Dhalla, Ph.D., M.D. (Hon.), D.Sc. (Hon.) - S. Mochizuki, N. Takeda, M. Nagano, N.S. Dhalla (eds): Volume 1: The Ischemic Heart. 1998. ISBN 0-7923-8105-X. - N.S. Dhalla, P. Zahradka, I. Dixon. R. Beamish (eds): Volume 2: Angiotensin II Receptor Blockade: Physiological and Clinical Implications. 1998. ISBN 0-7023-8147-5. ### ANGIOTENSIN II RECEPTOR BLOCKADE PHYSIOLOGICAL AND CLINICAL IMPLICATIONS #### Edited by NARANJAN S. DHALLA, Ph.D., M.D. (Hon.) Distinguished Professor and Director MRC Group in Experimental Cardiology Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre Faculty of Medicine, University of Manitoba Winnipeg, Canada #### PETER ZAHRADKA, Ph.D. Associate Professor Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre Faculty of Medicine, University of Manitoba Winnipeg, Canada #### IAN M.C. DIXON, Ph.D. Assistant Professor Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre Faculty of Medicine, University of Manitoba Winnipeg, Canada #### ROBERT E. BEAMISH, M.D. Professor Emeritus Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre Faculty of Medicine, University of Manitoba Winnipeg, Canada #### Library of Congress Cataloging-in-Publication Data Angiotensin II receptor blockade: physiological and clinical implications / editors, Naranjan S. Dhalla . . . [et al.]. p. cm.—(Progress in experimental cardiology; 2) "The Manitoba Cardovascular Forum on Angiotensin Receptor Blockade in Winnipeg was convened October 18–20, 1996"—Pref. Includes index. ISBN 978-1-4613-7631-6 ISBN 978-1-4615-5743-2 (eBook) DOI 10.1007/978-1-4615-5743-2 1. Angiotensin converting enzyme—Inhibitors—Congresses. 2. Angiotensin—Congresses. I. Dhalla, Naranjan S. II. Manitoba Cardovascular Forum on Angiotensin Receptor Blockade (1996: Winnipeg, Man.) III. Series. [DNLM: 1. Hypertension—drug therapy congresses. 2. Heart Diseases—drug therapy congresses. 3. Receptors, Angiotensin—antagonists & inhibitors congresses. 4. Angiotensin II—physiology congresses. 5. Renin-Angiotensin System—physiology congresses. WG 340 A5885 1998] RC684.A53A54 1998 616.1'2061—dc21 DNLM/DLC for Library of Congress 98-15948 CIP Copyright © 1998 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers, New York in 1998 Softcover reprint of the hardcover 1st edition 1998 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC Printed on acid-free paper. #### **CONTENTS** Contributing Authors xi Dedication xxxv Preface xli Acknowledgments xliii #### A. PHARMACOLOGICAL INTERRUPTION OF RENIN-ANGIOTENSIN IN HYPERTENSION - Pharmacological Interruption of the Renin System and the Kidney: Lessons from Comparative Pharmacology 3 NORMAN K. HOLLENBERG - 2. The Brain Renin-Angiotensin System and Salt-Sensitive Hypertension 15 SHEREENI J. VEERASINGHAM AND FRANS H.H. LEENEN - AT₁ Angiotensin Receptor Blockade and Angiotensin-Converting Enzyme Inhibition: Effects on Vascular Remodeling and Endothelial Dysfunction in SHR 33 ERNESTO L. SCHIFFRIN, JIN-S. LI AND ALI M. SHARIFI - 4. Cellular Physiology of Angiotensin II Receptors in Vascular Smooth Muscle Cells 41 - P. ZAHRADKA, D. WILSON, L. SAWARD, L. YAU AND P.K. CHEUNG - Angiotensin II Enhanced the Expression of Inhibitory Guanine Nucleotide Regulatory Protein in Vascular Smooth Muscle Cells: Blockade by AT₁ Antagonist 51 MADHU B. ANAND-SRIVASTAVA AND ANURADHA PALAPARTI - Comparison of the Inhibitory Actions of Angiotensin AT₁ Receptor Antagonists in the Peripheral Vascular Bed 65 HUNTER C. CHAMPION, DAVID G. LAMBERT, TRINITY J. BIVALACQUA, DENNIS B. MCNAMARA AND PHILIP J. KADOWITZ - Angiotensin II Receptor Antagonists in Patients with Renal Failure and on Hemodialysis 87 DONALD ALLAN AND PETER BOLLI - 8. The Place of Angiotensin II Antagonists in Relation to the Canadian Hypertension Society Guidelines 93 - S. GEORGE CARRUTHERS - Translating Clinical Guidelines for Management of Heart Failure and Hypertension into Clinical Practice 105 SIMON W. RABKIN - Cough Induced by Pharmacological Modulation of the Renin-Angiotensin-Aldosterone System. Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Antagonists 115 YVES LACOURCIÈRE AND JEAN LEFEBVRE #### B. ANGIOTENSIN BLOCKADE AND CARDIOVASCULAR DISEASE - Angiotensin II Receptors AT₁ and AT₂: New Mechanisms of Signaling and Antagonistic Effects of AT₁ and AT₂ 129 TADASHI INAGAMI, SATORU EGUCHI, SATOSHI TSUZUKI AND TOSHIHIRO ICHIKI - Angiotensin Receptor Antagonists and Cardiovascular Remodeling K. SABRI, C. CHASSAGNE, B.I. LEVY, I.L. SAMUEL AND L. RAPPAPORT - 13. Intersubject Variability in the Pharmacokinetics of Losartan 153 IACQUES TURGEON - 14. Functional Analysis of Tissue Renin-Angiotensin System Using "Gain and Loss of Function" Approaches: In vivo Test of in vitro Hypothesis 163 RYUICHI MORISHITA, MOTOKUNI AOKI, HIDETSUGU MATSUSHITA, SHIN-ICHIRO HAYASHI, SHIGEFUMI NAKAMURA, NOBUAKI NAKANO, TADAHIKO NISHII, KEI YAMAMOTO, NARUYA TOMITA, ATSUSHI MORIGUCHI, JITSUO HIGAKI AND TOSHIO OGIHARA - Exploring the Difference Between Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Antagonists. A Focus on Bradykinin 175 COLIN C. BARNES - 16. Role of Cytokines in Septic Cardiomyopathy 185 URSULA MÜLLER-WERDAN, HEIKE SCHUMANN, RALPH FUCHS, HARALD LOPPNOW, CHRISTOPHER REITHMANN, SUSANNE KOCH, URSULA ZIMNY-ARNDT, FRITJOF SCHLEGEL, CHANG HE, DOROTHEA DARMER, PETER JUNGBLUT, JOSEF STADLER, JÜRGEN HOLTZ AND KARL WERDAN - 17. In Pursuit of Optimal Care and Outcomes for Patients with Congestive Heart Failure: Insights from the Past Decade 221 TERRENCE MONTAGUE, KOON TEO, LAUREL TAYLOR, FINLAY MCALISTER, MARGARET ACKMAN AND ROSS TSUYUKI FOR THE INVESTIGATORS AND STAFF OF THE HEART FUNCTION CLINIC, UNIVERSITY OF ALBERTA HOSPITALS, AND THE CLINICAL QUALITY IMPROVEMENT NETWORK (COIN) - Atherosclerosis: Implications of Angiotensin II and the AT-1 Receptor 233 M.R. (PETE) HAYDEN AND SURESH C. TYAGI - Influence of AT₁ Receptor Inhibition on Cardiac Function and Structure of Diabetic Rats 245 PETER ROSEN, CARSTEN HONACK, KARSTEN MÜSSIG, WILHELM BLOCH AND KLAUS ADDICKS - Role of Myocardial Tissue Angiotensin (Ang.) II in Cardiac Pathology 261 I.C. KHATTER, M. PASKVALIN, M. HA, S.D. SETH AND S.B. LAL #### C. ANGIOTENSIN BLOCKADE AND CARDIAC HYPERTROPHY AND HEART FAILURE - Mechanical Stress, Local Renin-Angiotensin System and Cardiac Hypertrophy. An Overview 269 RICKY MALHOTRA AND SEIGO IZUMO - Role of Renin-Angiotensin System in Cardiac Hypertrophy and Failure 283 QIMING SHAO, VINCENZO PANAGIA, ROBERT E. BEAMISH AND NARANIAN S. DHALLA - Effect of Angiotensin-Converting Enzyme Inhibition and of Angiotensin II Receptor Blockade on the Development of Cardiac Hypertrophy in Rats 311 HEINZ-GERD ZIMMER, WOLFGANG ZIERHUT AND MICHAEL IRLBECK - Effects of Inhibition of Angiotensin-Converting Enzyme on Myocardial and Myocyte Remodeling in Chronic Volume Overload-Induced Cardiac Hypertrophy in the Dog 323 SANFORD P. BISHOP AND LOUIS J. DELL'ITALIA - 25. The Site of Angiotensin Generation: Focus on the Heart 345 LARISSA M. DE LANNOY AND A.H. JAN DANSER - Angiotensin II-Mediated STAT Signal Transduction: Studies in Neonatal Rat Cardiac Fibroblasts and CHO-K1 Cells Expressing AT_{1A} Receptors 357 G. JAYARAMA BHAT AND KENNETH M. BAKER - Cardiac Angiotensin II Subtype 2 Receptor Signal Transduction Pathways: Embryonic Cardiomyocytes and Human Heart 367 SIMON W. RABKIN - Angiotensin II Stimulates Contractility and C-fos Gene Expression in Isolated Atrial Human Myocardium 385 STEPHEN WIESE, STEPHEN SCHMIDT-SCHWEDA, ERNST-MARTIN FÜCHTBAUER, FRIEDHELM BEYERSDORF AND CHRISTIAN HOLUBARSCH - 29. Stimulation of the Na⁺/Ca²⁺ Exchanger by Angiotensin II 395 CHERRY BALLARD-CROFT AND STEPHEN SCHAFFER - Developmental Regulation of the Cardiac Renin-Angiotensin System: Expression and Association with Growth and Apoptosis 403 DAVID E. DOSTAL, RACHEL A. HUNT, CHRIS E. KULE AND KENNETH M. BAKER - Angiotensin II-Regulated Apoptosis in Cardiovascular Remodeling 415 MASATSUGA HORIUCHI, HIROYUKI YAMADA, MASAHIRO AKISHITA AND VICTOR J. DZAU - The Role of Angiotensin II in Stretch-Activated Signal Transduction of the Normal, Hypertrophied, and Failing Adult Heart 423 RICHARD A. WALSH #### D. ANGIOTENSIN BLOCKADE AND REMODELING OF HEART IN MYOCARDIAL INFARCTION - Role of Angiotensin II Receptor Blockade During Remodeling After Myocardial Infarction 437 BODH I. JUGDUTT - 34. Local Angiotensin II and Tissue Repair Post-Myocardial Infarction 451 - 35. Losartan Pretreatment Inhibits an Early Activation of Matrix Metalloproteinases in Acute Myocardial Infarction 459 NAOKI MAKINO, KAZUHIRO MASUTOMO, SHOJI OHTSUKA, MASAHIKO NOZAKI, HIROSUKE MATSUI AND TOMOJI HATA - The Role of Angiotensin II in Post-Translational Regulation of Fibrillar Collagens in Fibrosed and Failing Rat Heart 471 IAN M.C. DIXON, HAISONG JU AND NICOLE L. REID - Characteristics and Mechanisms of Angiotensin II-Related Myocardial Damage 499 JEFFREY R. HENEGAR, GREGORY L. BROWER AND JOSEPH S. JANICKI - Comparison of Direct Angiotensin II Receptor Blockade with Converting Enzyme Inhibition in the Rat Model of Heart Failure 515 EUGENE MORKIN, THOMAS E. RAYA, JAMES J. MILAVETZ, CYNTHIA S. JOHNSON AND STEPHEN GOLDMAN - 39. Effects of Captopril on Myocardial Oxidative Stress Changes in Post-MI Rats 527 NEELAM KHAPER, MICHAEL F. HILL, JULIETA PICHARDO AND PAWAN K. SINGAL - Role of Angiotensin in Angiogenesis and Cardiac Fibrosis in Heart Failure 537 SURESH C. TYAGI, MELVIN R. HAYDEN AND JOHN E. HALL - 41. Role of Angiotensin II in
Myocardial Ischemia/Reperfusion Injury 551 GIUSEPPE AMBROSIO AND ISABELLA TRITTO 42. Effects of Angiotensin II Receptor Antagonist on Cardiac Remodeling in Cardiomyopathic Hamster Hearts 561 HIDEAKI KAWAGUCHI, MASASHI WATANABE AND AKIRA KITABATAKE Index 571 #### **CONTRIBUTING AUTHORS** Margaret Ackman Division of Cardiology University of Alberta Edmonton, AB T6G 2G7 Canada K. Addicks Anatomical Institute of the University of Cologne Joseph-Stelzmann-Str. 9 D-50931 Cologne Germany Masahiro Akishita Cardiovascular Division Department of Medicine Brigham and Women's Hospital Harvard Medical School 75 Francis Street, Thorn-12 Boston, MA 02115 USA Donald Allan Section of Nephrology Health Sciences Centre University of Manitoba 820 Sherbrook Street Winnipeg, MB R3A 1R9 Canada Giuseppe Ambrosio Sezione di Cardiologia R Dipartimento di Medicina Clinica Via Eugubina 42 06122 Perugia Italy Madhu B. Anand-Srivastava Department of Physiology Faculty of Medicine University of Montréal C.P. 6128, Succ. centre-ville Montréal, PQ H3C 3J7 Canada Motokuni Aoki Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Kenneth M. Baker Weis Center for Research Geisinger Clinic 100 North Academy Avenue Danville, PA 17822 **USA** Cherry Ballard-Croft Department of Pharmacology University of South Alabama School of Medicine Mobile, AL 36688 USA Colin C. Barnes Department of Medicine, Section of Nephrology McMaster University Henderson General Hospital 711 Concession Street Hamilton, ON L8V 1C3 Canada Robert E. Beamish Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Friedhelm Beyersdorf Dept. of Cardiovascular Surgery University of Freiburg Hugstetter Strasse 55 D-79106 Freiburg Germany G. Jayarama Bhat Weis Center for Research Geisinger Clinic 100 North Academy Avenue Danville, PA 17822 **USA** Sanford P. Bishop Departments of Pathology and Medicine The University of Alabama at Birmingham 1670 University Boulevard Birmingham, AL 35294-0019 USA Trinity J. Bivalacqua Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 USA W. Bloch Anatomical Institute of the University of Cologne Joseph-Stelzmann-Str. 9 D-50931 Cologne Germany Peter Bolli Section of Nephrology Health Sciences Centre University of Manitoba 820 Sherbrook Street Winnipeg, MB R3A 1R9 Canada Gregory L. Brower Department of Physiology and Pharmacology Auburn University 240B Greene Hall Auburn, AL 36849-5517 USA S. George Carruthers N587—Department of Medicine London Health Sciences Centre 375 South Street London, ON N6A 4G5 Canada Hunter C. Champion Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 USA C. Chassagne INSERM U127 IFR Circulation Université D. Diderot Hôpital Lariboisière 41, bd Chappelle 75475 Paris Cedex France PoKee Cheung Department of Internal Medicine University of Manitoba St. Boniface General Hospital C5013—409 Tache Avenue Winnipeg, MB R2H 2A6 Canada Marc A. Czapla Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 **USA** A.H. Jan Danser Cardiovascular Research Institute COEUR Department of Pharmacology, Room EE1418b Erasmus University Dr. Molewaterplein 50 3015 GE Rotterdam The Netherlands Dorothea Darmer Institute of Pathophysiology University of Halle-Wittenberg Magdeburger Straße 18 D-06112 Halle Germany Larissa M. de Lannoy Cardiovascular Research Institute COEUR Department of Pharmacology Erasmus University Dr. Molewaterplein 50 3015 GE Rotterdam The Netherlands Louis J. Dell'Italia Departments of Pathology and Medicine The University of Alabama at Birmingham 1670 University Boulevard Birmingham, AL 35294-0019 **USA** Naranjan S. Dhalla Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Ian M.C. Dixon Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada David E. Dostal Weis Center for Research, 26-11 Geisinger Clinic 100 North Academy Avenue Danville, PA 17822 USA Victor J. Dzau Cardiovascular Division Department of Medicine Brigham and Women's Hospital Harvard Medical School 75 Francis Street, Thorn-12 Boston, MA 02115 USA Satoru Eguchi Department of Biochemistry Vanderbilt University School of Medicine Nashville, TN 37232-0146 USA Ralph Fuchs Department of Medicine I Klinikum Großhadern University of Munich Marchioninistrasse 15 D-81377 München Germany Ernst-Martin Füchtbauer Max-Planck-Institute of Immunobiology Stübeweg 51 D-79106 Freiburg Germany Steven Goldman Department of Medicine Veterans Affairs Medical Center and University Heart Center University of Arizona 1501 N. Campbell Avenue Tucson, AZ 85724 USA M. Ha Section of Cardiology Departments of Medicine and Pharmacology and Therapeutics University of Manitoba Room GF328 Health Sciences Centre 700 William Avenue Winnipeg, MB R3E 0Z3 Canada John E. Hall Department of Physiology and Biophysics University of Mississippi Medical Center 2500 North State Street Jackson, MS 39216 USA Tomoji Hata Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Shin-ichiro Hayashi Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Melvin R. (Pete) Hayden Department of Cardiovascular Sciences Camdenton Medical Center P.O. Box 1140 Highway 5 North Camdenton, MO 65024 USA Chang He Department of Medicine II Klinikum Großhadern University of Munich Marchioninistrasse 15 D-81377 München Germany Jeffrey R. Henegar Department of Physiology and Pharmacology Auburn University 240B Greene Hall Auburn, AL 36849-5517 USA Jitsuo Higaki Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Michael F. Hill Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Norman K. Hollenberg Departments of Medicine and Radiology Brigham and Women's Hospital and Harvard Medical School 75 Francis Street Boston, MA 02115 USA Jürgen Holtz Institute of Pathophysiology University of Halle-Wittenberg Magdeburger Straße 18 D-06112 Halle Germany Christian Holubarsch Dept. of Cardiology and Angiology University of Freiburg Hugstetter Strasse 55 D-79106 Freiburg Germany Carsten Hönack Department of Clinical Biochemistry Diabetes Research Institute Auf'm Hennekamp 65 D-40225 Düsseldorf Germany Masatsugu Horiuchi Cardiovascular Division Department of Medicine Brigham and Women's Hospital Harvard Medical School 75 Francis Street, Thorn-12 Boston, MA 02115 **USA** Rachel A. Hunt Weis Center for Research Geisinger Clinic 100 North Academy Avenue Danville, PA 17822 USA Toshihiro Ichiki Department of Biochemistry Vanderbilt University School of Medicine Nashville, TN 37232-0146 **USA** Tadashi Inagami Department of Biochemistry Vanderbilt University School of Medicine Nashville, TN 37232-0146 **USA** Michael Irlbeck Department of Physiology University of Munich D-80336 Munich Germany Seigo Izumo Cardiovascular Division Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215 USA Joseph S. Janicki Department of Physiology and Pharmacology Auburn University 106 Greene Hall Auburn, AL 36849-5517 **USA** Cynthia S. Johnson Department of Medicine Veterans Affairs Medical Center and University Heart Center University of Arizona 1501 N. Campbell Avenue Tucson, AZ 85724 **USA** Haisong Ju Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Bodh I. Jugdutt Division of Cardiology Department of Medicine University of Alberta 2C2.43 Walter Mackenzie Health Sciences Centre Edmonton, AB T6G 2R7 Canada Peter Jungblut Max-Planck-Institute for Infection Biology Monbijoustrasse 2 D-10117 Berlin Germany Philip J. Kadowitz Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 USA Hideaki Kawaguchi Department of Laboratory Medicine and Department of Cardiovascular Medicine Hokkaido University School of Medicine N-15, W-17, Kita-ku Sapporo 060 Japan Neelam Khaper Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Jagdish C. Khatter Section of Cardiology Departments of Medicine and Pharmacology and Therapeutics University of Manitoba Room GF328 Health Sciences Centre 700 William Avenue Winnipeg, MB R3E 0Z3 Canada Akira Kitabatake Department of Laboratory Medicine and Department of Cardiovascular Medicine Hokkaido University School of Medicine N-15, W-17, Kita-ku Sapporo 060 Japan Susanne Koch Chair of Cardiac Intensive Care Medicine Department of Medicine III Klinikum Kröllwitz Martin-Luther-University of Halle-Wittenberg Ernst-Grube-Straße 40 D-06097 Halle Germany Chris E. Kule Weis Center for Research Geisinger Clinic 100 North Academy Avenue Danville, PA 17822 USA Yves Lacourcière Hypertension Research Unit Le Centre Hospitalier Universitaire de Québec Pavillon CHUL 2705, boulevard Laurier Sainte-Foy, PQ G1V 4G2 Canada S.B. Lal Department of Pharmacology All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India David G. Lambert Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 USA Frans H.H. Leenen Hypertension Unit, H360 University of Ottawa Heart Institute and Depts. of Medicine and Pharmacology University of Ottawa 1053 Carling Avenue Ottawa, ON K1Y 4E9 Canada Jean Lefebvre Hypertension Research Unit Le Centre Hospitalier Universitaire de Québec Pavillon CHUL 2705, boulevard Laurier Sainte-Foy, PQ G1V 4G2 Canada B.I. Lévy INSERM U141 IFR Circulation Université D. Diderot Hôpital Lariboisière 41, bd
Chappelle 75475 Paris Cedex France Jin-S. Li MRC Multidisciplinary Research Group on Hypertension Clinical Research Institute of Montréal University of Montréal 110 Pine Avenue West Montréal, PQ H2W 1R7 Canada Harald Loppnow Chair of Cardiac Intensive Care Medicine Department of Medicine III Klinikum Kröllwitz Martin-Luther-University of Halle-Wittenberg Ernst-Grube-Straße 40 D-06097 Halle Germany Naoki Makino Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Ricky Malhotra Department of Internal Medicine Division of Nephrology University of Michigan Medical Center Ann Arbor, MI 48109 USA Kazuhiro Masutomo Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Hirosuke Matsui Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Hidetsugu Matsushita Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Finlay McAlister Division of Cardiology University of Alberta Edmonton, AB T6G 2G7 Canada Dennis B. McNamara Department of Pharmacology Tulane University School of Medicine 1430 Tulane Avenue New Orleans, LA 70112 USA James J. Milavetz Department of Medicine Veterans Affairs Medical Center and University Heart Center University of Arizona 1501 N. Campbell Avenue Tucson, AZ 85724 USA Terrence Montague Department of Patient Health Human Health Division Merck Frosst Canada Inc. P.O. Box 1005 Pointe-Claire-Dorval, PQ H9R 4P8 Canada Atsushi Moriguchi Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Ryuichi Morishita Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Eugene Morkin Department of Medicine Veterans Affairs Medical Center and University Heart Center University of Arizona 1501 N. Campbell Avenue Tucson, AZ 85724 USA Ursula Müller-Werdan Chair of Cardiac Intensive Care Medicine Department of Medicine III Klinikum Kröllwitz Martin-Luther-University of Halle-Wittenberg Ernst-Grube-Straße 40 D-06097 Halle Germany Karsten Müssig Department of Clinical Biochemistry Diabetes Research Institute Auf'm Hennekamp 65 D-40225 Düsseldorf Germany Shigefumi Nakamura Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Nobuaki Nakano Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Tadahiko Nishii Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Masahiko Nozaki Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Toshio Ogihara Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Shoji Ohtsuka Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Anuradha Palaparti Department of Physiology Faculty of Medicine University of Montréal C.P. 6128, Succ. centre-ville Montréal, PQ H3C 3J7 Canada Vincenzo Panagia Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada M. Paskvalin Section of Cardiology Departments of Medicine and Pharmacology and Therapeutics University of Manitoba Room GF328 Health Sciences Centre 700 William Avenue Winnipeg, MB R3E 0Z3 Canada Julieta Pichardo Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Simon W. Rabkin Department of Medicine University of British Columbia D404—2733 Heather Street Vancouver, BC V5Z 3J5 Canada Lydie Rappaport INSERM U127 IFR Circulation Université D. Diderot Hôpital Lariboisière 41, bd Chappelle 75475 Paris Cedex France Thomas E. Raya Department of Medicine Veterans Affairs Medical Center and University Heart Center University of Arizona 1501 N. Campbell Avenue Tucson, AZ 85724 USA Nicole L. Reid Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Christopher Reithmann Department of Medicine I Klinikum Großhadern University of Munich Marchioninistrasse 15 D-81377 München Germany Peter Rösen Department of Clinical Biochemistry Diabetes Research Institute Auf'm Hennekamp 65 D-40225 Düsseldorf Germany K. Sabri INSERM U127 IFR Circulation Université D. Diderot Hôpital Lariboisière 41, bd Chappelle 75475 Paris Cedex France Jane-Lise Samuel INSERM U127 IFR Circulation Université D. Diderot Hôpital Lariboisière 41, bd Chappelle 75475 Paris Cedex France Laura Saward Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Stephen W. Schaffer Department of Pharmacology University of South Alabama School of Medicine Mobile, AL 36688 USA Ernesto L. Schiffrin MRC Multidisciplinary Research Group on Hypertension Clinical Research Institute of Montréal University of Montréal 110 Pine Avenue West Montréal, PQ H2W 1R7 Canada Fritjof Schlegel Chair of Cardiac Intensive Care Medicine Department of Medicine III Klinikum Kröllwitz Martin-Luther-University of Halle-Wittenberg Ernst-Grube-Straße 40 D-06097 Halle Germany Stephan Schmidt-Schweda Dept. of Cardiology and Angiology University of Freiburg Hugstetter Strasse 55 D-79106 Freiburg Germany Heike Schumann Institute of Pathophysiology University of Halle-Wittenberg Magdeburger Straße 18 D-06112 Halle Germany S.D. Seth Department of Pharmacology All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India Qiming Shao Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Ali M. Sharifi MRC Multidisciplinary Research Group on Hypertension Clinical Research Institute of Montréal University of Montréal 110 Pine Avenue West Montréal, PQ H2W 1R7 Canada Pawan K. Singal Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Josef Stadler Department of Surgery Technical University of Munich Ismaninger Straße 22 D-81675 München Germany Masahiro Sugano Department of Bioclimatology and Medicine Medical Institute of Bioregulation Kyushu University 4546 Tsurumihara Beppu 874 Japan Yao Sun Division of Cardiology Department of Internal Medicine University of Missouri Health Sciences Center MA432 Medical Science Building Columbia, MO 65212 USA Laurel Taylor Division of Cardiology University of Alberta Edmonton, AB T6G 2G7 Canada Koon Teo Division of Cardiology University of Alberta Edmonton, AB T6G 2G7 Canada Naruya Tomita Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Isabella Tritto Sezione di Cardiologia R Dipartimento di Medicina Clinica Via Eugubina 42 06122 Perugia Italy Ross Tsuyuki Division of Cardiology University of Alberta Edmonton, AB T6G 2G7 Canada Satoshi Tsuzuki Department of Biochemistry Vanderbilt University School of Medicine Nashville, TN 37232-0146 USA Jacques Turgeon Quebec Heart Institute Laval Hospital Research Centre 2725 chemin Ste-Foy Ste-Foy, PQ G1V 4G5 Canada Suresh C. Tyagi Department of Physiology and Biophysics University of Mississippi Medical Center 2500 North State Street Jackson, MS 39216 USA Shereeni J. Veerasingham University of Ottawa Heart Institute and Depts. of Medicine and Pharmacology University of Ottawa 1053 Carling Avenue Ottawa, ON K1Y 4E9 Canada Richard A. Walsh Cardiovascular Center University of Cincinnati College of Medicine P.O. Box 670542 231 Bethesda Avenue, Rm 3354 Cincinnati, OH 45267-0542 USA Masashi Watanabe Department of Laboratory Medicine and Department of Cardiovascular Medicine Hokkaido University School of Medicine N-15, W-17, Kita-ku Sapporo 060 Japan Karl Werdan Chair of Cardiac Intensive Care Medicine Department of Medicine III Klinikum Kröllwitz Martin-Luther-University of Halle-Wittenberg Ernst-Grube-Straße 40 D-06097 Halle Germany Stephan Wiese Dept. of Cardiology and Angiology University of Freiburg Hugstetter Strasse 55 D-79106 Freiburg Germany David Wilson Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Hiroyuki Yamada Cardiovascular Division Department of Medicine Brigham and Women's Hospital Harvard Medical School 75 Francis Street, Thorn-12 Boston, MA 02115 **USA** Kei Yamamoto Department of Geriatric Medicine Osaka University Medical School 2-2 Yamada-oka Suita, Osaka 565 Japan Lorraine Yau Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Peter Zahradka Institute of Cardiovascular Sciences St. Boniface General Hospital Research Centre 351 Tache Avenue Winnipeg, MB R2H 2A6 Canada Wolfgang Zierhut Department of Physiology University of Munich D-80336 Munich Germany Heinz-Gerd Zimmer Carl-Ludwig-Institute of Physiology University of Leipzig Liebigstraße 27 D-04103 Leipzig Germany Ursula Zimny-Arndt Max-Planck-Institute for Infection Biology Monbijoustrasse 2 D-10117 Berlin Germany # Arnold Naimark, OC, BSc (Med), MD, MSc (Man), LLD (Mt. All, Toronto), FRS (Can), Winnipeg, Canada This book is dedicated to Dr. Arnold Naimark, who in his capacity as President of the University of Manitoba, promoted the development of the Institute of Cardiovascular Sciences at the St. Boniface General Hospital Research Centre. His extraordinary vision, enthusiastic support, invaluable advice, and superb leadership have helped in making Winnipeg headquarters for the International Society for Heart Research during 1972–1989 and the International Academy of Cardiovascular Sciences (1996–Present). #### A TRIBUTE TO ARNOLD
NAIMARK OC, BSc (MED), MD, MSc (MAN), LLD (MT, ALL, TORONTO), FRS (CAN) The accomplishments of Dr. Arnold Naimark are legion in number and boundless in breadth. Surely they are the issue of genius—a gift most difficult to define. Over a hundred years ago, Henri-Frédéric Amiel came close when he wrote: "Doing easily what others find difficult is talent; doing what is impossible for talent is genius". With an exceptional intellect, enormous energy, and a talent for practicality, he cast a mantle over medicine, science, administration, research, philosophy, education, and business. He is a renaissance man in the age of molecular biology. Dr. Naimark was born and educated in Winnipeg. He achieved great distinction during his undergraduate studies, winning medals, scholarships and prizes. As an undergraduate he enrolled in a special program of research and study leading to the degree of Bachelor of Science in Medicine, which was awarded concurrently with the Doctor of Medicine degree in 1957. During his undergraduate studies, Dr. Naimark became interested in pursuing an academic career in medicine and physiology. He was greatly influenced by the unique approach to medical education fostered by his mentor Professor Joseph Doupe. The "Doupe school" is regarded by many leaders in scientific medicine, in Canada, and abroad, as the seminal influence in their careers. Following graduation, Dr. Naimark alternated periods of advanced research training with specialist training in internal medicine. His scientific interests turned to respiratory physiology and the work leading to his Master of Science degree won the Prowse Prize in Clinical Research. A residency in Internal Medicine was followed by research fellowships at the Cardiovascular Research Institute at the University of California in San Francisco where he undertook studies on the respiratory and metabolic changes during intensive physical work. In 1962, a McLaughlin Travelling Fellowship took him to the Royal Postgraduate Medical School at the Hammersmith Hospital in England where he served as a Registrar in Medicine and Visiting Scientist and participated in pioneering studies on blood flow in the lung. On returning to the University of Manitoba, Dr. Naimark joined the Departments of Physiology and Internal Medicine and the medical staff at the Winnipeg General Hospital. In 1964, he was admitted as a Fellow of the Royal College of Physicians and Surgeons of Canada. He began an intensive process of reorienting the Department of Physiology from its clinical emphasis to a focus on basic research and graduate training, which resulted in it becoming one of the leading departments in the world. In the hospital, he jointed Dr. Reuben Cherniack in developing a leading laboratory for the investigation of respiratory disease and the first clinical unit in the world devoted exclusively to intensive respiratory care. In undergraduate education, Dr. Naimark spearheaded a major reform of the undergraduate curriculum. In 1967, he was appointed Professor and Head of the Department of Physiology. In addition to his local professional activities, Dr. Naimark participated actively in national and international societies. As President of the Canadian Physiological Society, he fostered links with other scientific societies, stimulated new programs, and launched a new journal, Physiology Canada. He also participated actively in the Canadian Society for Clinical Investigation and during his Presidency of the Society, initiated a major organizational reform to provide for broader disciplinary and regional representation. Following his appointment to the Deanship of Medicine in 1971, Dr. Naimark reorganized the Faculty into four major divisions. In addition, a Department of Family Medicine and the Northern Medical Unit were established, new research and teaching facilities were constructed, extramural funding increased significantly, and the Faculty's full-time clinical professoriate was greatly expanded. Affiliation agreements with the major teaching hospitals and several community hospitals were executed. On the national scene, he was elected President of the Association of Canadian Medical Schools. Under his leadership, the structure and mission of the Association were significantly altered, and it became more heavily involved in national policy and issues affecting biomedical research and education. During this period, Dr. Naimark was elected the Sir Arthur Sims Commonwealth Professor and undertook an extended period as a visiting professor in Australia and New Zealand. His interest in international development included the establishment of exchange programs with the National University of Columbia and Ben-Gurion University of the Negev. While Dean of Medicine, Dr. Naimark was elected to the Board of Governors by the Senate of the University of Manitoba, which marked the beginning of his active involvement in issues affecting higher education generally. In 1981, he was appointed President and Vice-Chancellor of the University. During his tenure, major new academic programs were established in a variety of disciplines. The University expanded its links with other institutions, became a prominent participant in national networks of centres of excellence, and greatly expanded its links with the community. Several prominent new buildings were added to both the Fort Garry and Bannatyne campuses, and the University's endowment was increased nearly sixfold. Dr. Naimark not only devoted his energies to his own university but also has been active in university affairs nationally. As a Board Member of the Association of Universities and Colleges of Canada, Dr. Naimark had special responsibility for national research policy. He is past-Chairman of the Council of Western Canada University Presidents, President of the AUCC, Chairman of the Association of Commonwealth Universities, Member of the Research Council of Canadian Institute for Advanced Research, Canadian Vice-President of the Inter-American Organization for Higher Education, and Director of the Corporate-Higher Education Forum. He is currently the founding Chairman of the Canadian Health Services Research Foundation. Dr. Naimark's greatest strength lies in his ability to comprehend several diverse arguments, identify the major issue, and state the problem in simple but most eloquent words. His memory of events, choice of words, and compassionate approach have earned him great respect from both medical and lay people. Dr. Naimark has published extensively in his scientific discipline and produced many articles of a more general nature. He has been a visiting professor and invited speaker on many occasions, has served on the editorial board of several journals, and has been a consultant to universities and government agencies in the field of medical research and education. He was appointed by the Government of Manitoba to chair the Health Advisory Network. He was a Governor of the University of Manitoba and was a Director of the Health Sciences Centre and St. Boniface General Hospital of Winnipeg and continues to serve on a variety of national committees of both governmental and nongovernmental bodies and agencies concerned with health care, higher education, and research. He is a director of several private corporations, and as founding Chairman of the North Portage Development Corporation, he spearheaded the largest urban redevelopment program in Manitoba's history. Dr. Naimark has received several awards and distinctions including appointment as an Officer of the Order of Canada, the award of honorary degrees, the Ben Gurion University of the Negev Distinguished Service Award, the G. Malcolm Brown Award of the Medical Research Council and the Royal College of Physicians and Surgeons of Canada, the Sir Arthur Sims Professorship of the Royal College of Surgeons of England, the Osler Award of the Canadian Society of Internal Medicine, the Queen Elizabeth Silver Jubilee Medal, and the 125th Anniversary of Confederation Medal. #### PREFACE The relationship between angiotensin II and hypertension was established in 1898 when angiotensin II was shown to modulate systemic blood pressure. Over the intervening decades, a complete characterization of the renin-angiotensin system (RAS) has been achieved, and our understanding of its biochemistry and physiology has led to the directed development of agents such as ACE inhibitors and receptor antagonists capable of controlling hypertension. More recently, it was shown that angiotensin II is secreted within certain tissues and that these tissue-specific systems operate independently of the systemic RAS. The novel concept that angiotensin II regulates a number of cardiovascular processes that are unrelated to blood pressure has renewed the interest of both basic and clinical scientists in angiotensin II. The association between angiotensin II and cardiac growth, in particular, has indicated that therapies currently in use for hypertension may have direct application to the treatment of heart failure. The Manitoba Cardiovascular Forum on Angiotensin Receptor Blockade in Winnipeg was convened October 18–20, 1996 to examine the clinical and basic aspects of angiotensin receptor biology as they apply to hypertension and heart failure. In addition, the potential treatment of these conditions using specific angiotensin receptor antagonists was addressed within the context of their immediate therapeutic application and future potential. Three distinct concepts were highlighted within the framework of this conference: (1) With respect to clinical application, it was generally agreed that angiotensin receptor blockade presents a viable alternative to ACE inhibition for the treatment of both hypertension and heart failure. The universality of this approach is still questionable; however, since clinical trials using losartan have yet to provide an evaluation of the long-term effects of its use. Nevertheless,
its use is recommended in cases where the side effects of ACE inhibition are severe. (2) It has been clearly established that local production of angiotensin II in the heart and vasculature is an important factor in tissue remodeling. In particular, it has become evident that angiotensin II mediates the changes in cell phenotype that are associated with hypertension and heart failure, as well as the synthesis of extracellular matrix that accompanies these conditions. (3) Significant movement has been made with respect to our understanding of the intracellular signaling pathways that are activated by the AT₁ and AT₂ receptor subtypes. These pathways include mediators such as PI3-kinase and the JAK/STAT proteins, which indicate there is substantial overlap with those systems previously associated solely with tyrosine kinase receptors. While the functional significance of the AT₁ receptor in cardiac and vascular tissues has been understood for a number of years, an increased awareness that the AT2 receptor also contributes to cardiovascular physiology was demonstrated. The goal of the Manitoba Cardiovascular Forum was to promote an exchange of ideas among basic scientists, clinicians, and practitioners, with the aim of improving our understanding of the processes that lead to the development of hypertension and heart failure. This book, which is a collection of papers based on the presentations made at this conference, deals with the most recent developments in the molecular biology, cellular physiology, and structure-function relationships of angiotensin II and its receptors. These papers also discuss the current therapeutic uses for angiotensin receptor antagonists and consider their potential future applications. It is our hope that this book will be informative to the students, scientists, and practicing clinicians who are attempting to extend our knowledge in the field of hypertension and heart failure and are devoted to improving cardiovascular health. Naranjan S. Dhalla, Peter Zahradka Ian M.C. Dixon, Robert E. Beamish Winnipeg, Manitoba, Canada #### **ACKNOWLEDGMENTS** The idea of organizing a symposium on Angiotensin II Receptor Blockade in Winnipeg, Canada was developed during discussions with Ms. Claire da Costa of Merck Frosst Canada. Our cordial thanks go to Ms. Dawn Graham and Ms. Patricia Hedden of Merck Frosst Canada Inc. for their enthusiastic support of this Conference under the banner of Manitoba Cardiovascular Forum—Angiotensin II Receptor Blockade: Physiological and Clinical Implications (October 18-20, 1996). This conference was sponsored by the International Society and Federation of Cardiology and the International Academy of Cardiovascular Sciences for promoting the scientific basis of cardiology. The help provided by Dr. Garry Ross in having this Conference recognized under the MRC/PMAC Program is highly appreciated. The collaboration of Mr. Ivan Berkowitz of Winnipeg in coordinating all events associated with this meeting is gratefully acknowledged. It would have been virtually impossible to organize this Conference without the cooperation and hard work of Ms. Susan Zettler, Ms. Florence Willerton, and Ms. Beverly Hartung. We are grateful to Merck Frosst Canada Inc. for their generous donation in support of the Manitoba Cardiovascular Forum as well as publication of this book. Special thanks are due to Mr. Robert Holland and Ms. Melissa Ramondetta and their editorial staff at Kluwer Academic Publishers for their patience, interest, and hard work in assembling this volume. The help of Ms. Susan Zettler for the preparation of this book is highly appreciated. A. PHARMACOLOGICAL INTERRUPTION OF RENIN-ANGIOTENSIN IN HYPERTENSION ## PHARMACOLOGICAL INTERRUPTION OF THE RENIN SYSTEM AND THE KIDNEY: LESSONS FROM COMPARATIVE PHARMACOLOGY ### NORMAN K. HOLLENBERG Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Summary. Pharmacological interruption of the renin system has played a crucial role in our understanding of this system's contribution to normal physiological processes and in the pathogenesis of disease. Blocking the system pharmacologically is a crucial line of investigation, a function ordinarily played by glandular ablation and hormone replacement. The pharmacological agents, on the other hand, are often plagued by actions which contribute to ambiguity. In the case of the renin system, the angiotensin-converting enzyme (ACE) inhibitors have multiple additional actions beyond blocking angiotensin (Ang) II formation, including kinin formation and consequent promotion of nitric oxide and vasodilator prostaglandin release. The development of Ang II antagonists and renin inhibitors has provided pharmacological alternatives and improved information on specificity of action. Although concern has been expressed that the alternatives to ACE inhibition may lack some therapeutic features, it is suspected that blockade at the renin or the Ang II receptor levels will block the system more effectively, and thus may provide a positive alternative. The renin inhibitor is more effective because the interaction of renin with its substrate is a rate-limiting step in the process. The possibility that non-renin—non-ACE dependent Ang II generation contributes to blocking the Ang II receptor is real and will be the subject of substantial investigation in the near future. # I. WHY THE SPECIAL ROLE FOR PHARMACOLOGIC INTERRUPTION OF THE RENIN SYSTEM? The rules of logic discovered by Koch in the Nineteenth Century made it possible to create order from the chaos that followed recognition that microorganisms are ubiquitous and can cause disease [1–3]. The application of these rules of logic made it possible to prove beyond reasonable doubt that a specific organism could be responsible for a specific disease. It was all too easy to suggest-based on the presence of a microorganism—that the microorganism might be the cause of a disease. These rules of logic apply equally to a wide variety of biological phenomenon, including hormones and their actions. Haber pointed out that the fundamental evidence linking a hormone to its possible actions involved the ablation: replacement experiment [4]. If removal of a hormone led to a constellation of findings and replacement of the hormone reversed that constellation, powerful support is lent to the possibility that the hormone was responsible for the action. But what if extirpation of the organ leads to rapid demise, or the hormone action is autocrine or paracrine? The ablation experiment cannot be applied easily. It is here, Haber pointed out [4], that interruption of the system by pharmacological or immune mechanisms has come to replace the ablation experiment in fulfilling Koch's postulates. The case of the renin system and the kidney provides an excellent example. The kidney is not only the source of renin, but it is also a major responding organ; nephrectomy removes not only the source of the hormone but also the response. Pharmacological interruption of locally acting paracrine systems has proven so important in medicine and biology that it is difficult to imagine our attempting to function without the information it provides. Identification of receptor subtypes for histamine, serotonin, dopamine, acetylcholine, catecholamines, and most recently angiotensin (Ang) II and the development of specific blockers has proven pathogenesis and has led to new approaches to treatment. On the other hand, pharmacological agents never enjoy the specificity that the ablation: replacement experiment provides. In the case of the renin system, the problem of specificity was recognized early: The Ang II antagonists available in the 1970s were not competitive antagonists, but rather were partial agonists with substantial residual angiotensin-like activity [5]. As a consequence, they were useful in defining the direction of a response, but not the magnitude Angiotensin-contenting enzyme (ACE) inhibitors were also complicated, because they blocked a major pathway involved in kinin degradation. Kinin accumulation could lead to vasodilatation, thereby mimicking the effect of Ang II disappearance [6]. Issues related to the specificity and the magnitude of the renal response to pharmacological interruption continue to this day [7]. #### II. THE KIDNEY: PHYSIOLOGICAL LESSONS FROM ACE INHIBITION Before the development of ACE inhibitors, it was recognized that restriction of dietary sodium intake resulted in renal vasoconstriction, a fall in renal blood flow, and a change in the pattern of the intrarenal distribution of blood flow. However, the mediator responsible for these effects remained obscure [8]. The exquisite sensitivity of the renal blood supply to Ang II made the renin-angiotensin system (RAS) an attractive candidate [9,10]. When pharmacological interruption of the RAS became possible, studies in animals quickly confirmed that Ang II played a major role in the renal vascular response to restriction of sodium intake [11]. In the first study reported, Freeman, et al. [11] employed the partial agonist, saralasin, to explore the control of the renal circulation in the dog. In dogs ingesting liberal sodium and potassium intake, saralasin did not increase renal perfusion. In dogs in which a volume contraction had been achieved, either by combining a low-salt diet with a diuretic or by partial occlusion of the thoracic inferior vena cava, saralasin increased renal blood flow. In a series of studies that followed shortly, a strategy was adopted to deal with the lack of specificity and limitations of the two classes of drugs available. An increase in renal blood flow was documented in both the dog and the rabbit when either class of agent, an ACE inhibitor and an Ang II antagonist, was employed [5,12,13]. Perhaps the least equivocal study among the several reported was that performed by Kimbrough, et al. [14]. They studied unanesthetized, trained dogs to avoid the
complicating effects of anesthesia and infused the Ang II antagonist and ACE inhibitor directly into the renal artery to avoid the complicating drop in blood pressure. They documented a virtually identical 29% increase in renal perfusion in response to both classes of blocker, with a smaller but still substantial increase in glomerular filtration rate, but only when the agents were administered to the dog in balance on a reduced sodium intake. A striking increase in sodium excretion also occurred. Neither agent influenced renal perfusion, glomerular filtration rate, or sodium excretion in animals ingesting a high-sodium intake. The essentially identical vascular and functional influence of a converting enzyme inhibitor and the angiotensin analog made it very likely that the renal vascular and functional response reflected Ang II entirely. Thus in the simplest and most gentle model of volume deficit—that induced by restriction of salt intake, without complicating diuretic use—the entire renal response was attributed to the direct action of angiotensin on renal blood supply. Information became available rapidly on the role of Ang II in the renal response to larger volume deficits. Studies in animal models documented an enhanced response to pharmacological interruption in a variety of states, including partial occlusion of the thoracic inferior vena cava, hemorrhage, and congestive heart failure [14-17]. Where examined, the increase in renal perfusion induced by ACE inhibitors or Ang II antagonists was associated with an increase in glomerular filtration rate, urine flow rate, and sodium excretion. Angiotensin clearly had contributed to the overall renal response, including sodium retention. In general, it appeared that pharmacological interruption had not entirely reversed the renal response in these settings. It was likely, under these circumstances, that an additional effector system or systems may have contributed a direct action of the sympathetic nerves on the renal blood supply, or it may be a reflection of reduced arterial perfusion pressure during pharmacological interruption of the renin system. Studies in man quickly confirmed observations from animal experimentation. Saralasin and ACE inhibition with teprotide produced an identical increase of approximately 20% in renal blood flow in normal human subjects on a low salt diet [18,19]. Since the only shared action involved Ang II, the only likely conclusion to be drawn from these studies was that angiotensin-mediated vasoconstriction had been reversed. The studies in normal man, however, differed from those in animals in one important way. Whereas in animals on a high-salt diet, ACE inhibition did not alter renal blood flow [5,11–13], in some humans, renal blood flow rose despite suppression of the RAS by a substantial sodium intake [18]. This was an unexpected and somewhat puzzling observation. Further investigation has provided insight into why some normal humans respond with an increase in renal blood flow to ACE inhibition despite a high salt diet, whereas others do not. Individuals whose renal blood flow increases with ACE inhibition differ from those whose renal blood flow is unresponsive in one important way; the responders have a parent who has hypertension, presumably essential in origin [20]. The offspring of hypertensives respond not only to ACE inhibition but also to calcium channel blockade [21] in a quantitatively similar fashion. This is unlikely to be a nonspecific influence, since the offspring of hypertensives do not show a potentiated renovascular response to acetylcholine, a vasodilator that does not depend on reversal of the impact of endogenous vasoconstrictors for its action [21]. These observations in the normotensive offspring of hypertensives, as it turned out, shed new light into the pathogenesis of a group of patients that Gordon Williams and I have been studying since the 1960s—the nonmodulators [22]. In brief, normal individuals show a large, reciprocal shift in renal vascular and adrenal responsiveness to Ang II with changes in salt intake. The normal modulation process in healthy individuals also upregulates the adrenal response on a low-salt diet and enhances the renal vascular response on a high salt diet [22]. Thus an increase in angiotensin-mediated control in these systems reflects not only an increase in the plasma concentration but also a shift in response to any plasma Ang II concentration. When this normal bit of physiology had been worked out, it became apparent to us that a group of essential hypertensives that we had been studying failed to show this normal modulation process. Hence, we called them "nonmodulators". Not surprisingly, given the important role that aldosterone and renal hemodynamics play in normal renal sodium handling, these individuals cannot handle a salt load normally, will retain more sodium at any given sodium intake, and have salt-sensitive hypertension. ACE inhibition corrects this abnormality in renal and adrenal control, returns renal sodium handling to normal, and controls blood pressure in these patients. As to the mechanism, multiple lines of evidence suggest that the problem is familial and, indeed, genetic [22]. A family history of hypertension in multiple family members is striking; there is remarkable concordance in the renal vascular response to Ang II in siblings and evidence of similar alterations in the offspring of hypertensives, as reviewed above. Although there has been considerable inconsistency, polymorphisms involving the angiotensinogen (AGT) gene have provided the most promising leads in recent research on the genetics of hypertension [23–26]. The polymorphisms identified to date involve a location in the gene that is unlikely to be functionally significant: The M235T and T174M loci may be markers in disequilibrium with variants that influence AGT production or efficacy as a substrate, and there might be more than one etiologic mutation at this locus. Unfortunately, we are still ignorant as to regulation of AGT gene expression, but a number of lines of investigation have suggested that tissue expression will be more important than AGT plasma concentration as a functional determinant. This possibility is strongly supported by a recent study [23] on the relationship between AGT genotype and the renovascular response to Ang II in caucasians. Plasma AGT did not vary with genotype, but renal vascular responsiveness did. Specifically, normal subjects and patients with hypertension who are homozygous for threonine at codon-235(TT) showed a blunted renovascular response to Ang II despite a high salt diet, which is indicative of nonmodulation. This polymorphism can account for the unusual responses to ACE inhibitors and calcium channel blocking agents in the normotensive offspring described above. This field, then, has moved a long way from two decades of confusion about the determinants of responsiveness. #### III. THERAPEUTIC IMPLICATIONS OF ACE INHIBITION One approach employed by historians to highlight unanticipated involves asking a rhetorical question: What might have been reasonably expected on a certain date? In 1972, when ACE inhibition was first emerging, surely no one would have guessed that 25 years later the ACE inhibition story would involve as many therapeutic triumphs as it has. Difficult hypertension requiring three or more drugs for hypertension control was identified early as a reasonable target [27-30]. Targets that followed were scleroderma renal crisis [31,32], congestive heart failure [33-36], myocardial remodelling after myocardial infarction [37,38], diabetic nephropathy [39], and in all likelihood, other forms of progressive renal injury [40]. The experience with treatment of "difficult" hypertension in the late 1970s and early 1980s is instructive to review, since it is easy to forget how remarkable the advent of ACE inhibition was. Hypertension clinics of any size rapidly accumulated a series of patients in whom hypertension is difficult to treat. The process in these patients is known as refractory or resistant hypertension. Such patients generally had very high blood pressure, often required three or more drugs to achieve even partial blood pressure control, and often had abnormalities of renal excretory function either as the primary reason for hypertension or as a consequence of prolonged, substantial blood pressure elevation. In such patients, activation of the RAS is often evidenced. The report by Studer, et al. in 1981, among the first on the subject, was instructive [20]. Using captopril, they treated 19 patients in whom standard triple therapy—a combination of large doses of a beta blocker, vasodilator, and diuretic had been unsuccessful. Despite triple drug therapy, mean systolic pressure remained above 180 mm Hg and diastolic pressure remained at 110 mm Hg. Among the patients with essential hypertension, more than 80% achieved goal blood pressure, and mean diastolic pressure was reduced to below 100 mm Hg. The regimen was associated with a sharp reduction in symptoms related to prior drug therapy, general well being, and well maintained renal and cardiac function. Treatment was simplified, and difficult or refractory hypertension had to be redefined. Although far less common, the problem of scleroderma renal crisis provided an even more dramatic example. The first report describing the maintenance of renal function and control of blood pressure in two patients with unequivocal scleroderma renal crisis treated with captopril [31] was followed by a series of reports describing twenty-three patients [32]. Of the twenty-three, seven lost sufficient renal function and required maintenance hemodialysis, two died, and the remainder stabilized [32]. This is a remarkable contrast to earlier literature in which few patients survived more than a few weeks, and survival beyond six months demanded bilateral nephrectomy and hemodialysis. Although no
controlled evaluation has ever been performed and despite difficulty in performing a controlled study in patients with a rare disease, there is no question that ACE inhibition has changed the natural history of disease associated with a rapid downhill course. Current interest in the specific underlying pharmacological mechanisms by which ACE inhibition achieved therapeutic goals reflects not only the pleasure that we share in understanding a process, but also a more specific and practical issue. With the emergence of alternatives for blocking the renin system, we have a new choice and an unambiguous need to understand its mechanisms. Calling the responsible enzyme "ACE" reflects our narrow, provincial view [6]. The enzyme is a peptidyl dipeptide hydrolase and has a wide range of substrates, among them bradykinin, as pointed out above. Thus it engages prostaglandin release and the nitric oxide pathway. Much of the energy invested to this point on mechanisms has reflected this fact, and a strong suspicion is held by many that the kinin pathway makes a very substantial contribution to the therapeutic efficacy of ACE inhibition. Should that be the case, alternatives for blocking the renin system via renin inhibition or competitive Ang II antagonists would have limited therapeutic application. Another view is possible. No pharmacologist examining the renin cascade would have chosen to block the ACE step. The first step—the renin:angiotensinogen interaction—is rate limiting, and remarkably specific, which would have made it a much more attractive alternative. The Ang II receptor provides a second attractive target [7]. Because Ang II formation can be catalyzed by a number of serine poteases, which are ubiquitous, pharmacological interruption at the Ang II receptor level has the distinct potential advantage of blocking the action of Ang II, whatever the pathway of its formation. The fact that ACE inhibition came along before the two alternatives was not a product of a planned program, but rather was an unanticipated by-product of snake toxin pharmacology. This was a happy accident, but an accident nonetheless. #### IV. THERAPEUTIC IMPLICATIONS OF PHARMACOLOGIC ALTERNATIVES With its specificity and efficacy, renin inhibition would have been a very attractive approach to pharmacological interruption of the renin system. The interaction of renin with its substrate, angiotensinogen, is the rate-limiting step. However, because of limited bioavailability of the agents developed, cost of synthesis, and rapid development of a pharmacological alternative—the Ang II antagonist class—attempts to develop renin inhibitors for clinical application appear to have ceased. The Ang II antagonists, on the other hand, have gained substantial momentum. Several dozen AT, receptor antagonists were developed by several dozen pharmaceutical firms. Presently two are marketed in Western Europe or the U.S.A., and at least another eleven agents are under active clinical investigation [41]. During development of these agents, there have been several focuses of interest beyond blood pressure reduction. The first focus directly involved the possibility that the lack of specificity of ACE, and thus of ACE inhibition, contributed to one of its more frequent, annoying, and disruptive side effects, cough. One widely held concept was that cough reflected bradykinin accumulation or accumulation of other cough-promoting factors, such as substance P [42]. A study designed to address this issue found that the incidence of cough in losartan-treated patients was essentially identical to cough in thiazidetreated patients: As the patient population was selected for the study not only because they were believed to have suffered from ACE inhibitor-induced cough, but also because they showed cough on rechallenge with an ACE inhibitor, the finding was especially persuasive [43]. The AT₁ receptor antagonists had passed their first important test beyond blood pressure efficacy with this successful study. Interest in the kidney and the possibility that AT, receptor antagonists will prevent nephropathy is greater than interest at the same stage in the evolution of ACE inhibitor therapy [40]. There are a number of reasons. Evidence of the potential efficacy of these agents in animal models of renal injury and in humans with proteinuria appeared early [44,45]. Although end-stage renal disease (ESRD) is far less common than acute myocardial infarction and other cardiovascular endpoints, it is enormously costly. Identification of stages, especially the earliest stages, and assessment of progression is relatively easy. All make renal injury an attractive therapeutic target with implications that may go well beyond the specifics of ESRD prevention. For these reasons, many of our colleagues have urged the pharmaceutical firms involved in AT₁ receptor antagonist development to pursue studies on the kidney, and many of these companies have shown interest. All have had to address an issue raised in the piquant title of a recent review [46] which is, "will Ang II receptor antagonists be renoprotective in humans?" This essay reflects a substantial body of current thinking. The analysis was based on a range of considerations, the majority of which seem to favor ACE inhibition as these considerations suggest that angiotensin is not the primary determinant [46]. ACE inhibitors block alternative pathways that influence extracellular matrix protein degradation and the rate of development of glomerulosclerosis. Macrophage infiltration, thought by many to contribute to the pathogenesis of nephropathy, is also ACE inhibitor responsive. Blocking the AT₁ receptor opens the short feedback loop, thereby leading to renin release and increased Ang II formation. With the AT₁ receptor blocked, this sequence could lead to unopposed activation of the AT2 receptor, with unknown but potentially negative consequences. Although all of these considerations favor ACE inhibition over Ang II AT, antagonist action, each is a construct based on a slim database, generally obtained in vitro. Perhaps the most important consideration in Ichikawa's analysis involved glomerular hemodynamics, especially glomerular capillary pressure, which for many goes beyond the construct level. In brief, this analysis suggests that much of the ACE inhibitor-dependent improvement in natural history reflects the salutary effect of ACE inhibition to reduce glomerular capillary pressure via bradykinin-mediated efferent arteriolar dilatation. Thus, the kininase action of ACE inhibitors is crucial, and the reduction in Ang II formation is less important or perhaps even irrelevant. On the other hand, one can make an equally compelling argument for greater potential efficacy of Ang II antagonists, based on more effective blockade of the renin system [7]. Moreover, much of the most important data reviewed above were obtained in vitro or in small animal models. If studies in rats never predicted responses in humans, we would probably never do studies in rats. If studies in rats always predicted what would happen in humans, we could not justify studies in humans. Is this an area in which there might be important species differences? This issue was addressed specifically in a recent editorial on ACE inhibition and the kidney [7]. To isolate species differences, one has to apply an essentially identical protocol to multiple species. Such studies have been done. Bradykinin antagonists blunted the renal vasodilator response to ACE inhibitors in the dog and in the rat, but not in the rabbit. In accord, an Ang II antagonist somewhat blunted ACE inhibitor-induced renal vasodilation in the rat and dog but completely blocked it in the rabbit. ACE inhibition increased prostaglandin release in rat and canine kidneys, but not that of the rabbit. In an elegant study Roman, et al. [47] showed that in the rat, it was medullary perfusion that was primarily kinin dependent. Thus, apparent species differences may be primarily anatomical, reflecting the relative contribution of medullary perfusion to total renal blood flow: In this feature, humans resemble the rabbit far more than they do the rat or dog [7]. We cannot extrapolate from studies in a limited range of species, especially the rat, to control mechanisms in humans, even in health and much less so when disease is superimposed. What about information on the control of the renal circulation in humans and the mechanisms by which ACE inhibition might influence the renal circulation? Although there are powerful limitations in the approach that can be employed in humans, several lines of evidence provide an answer. The striking influence of salt intake on the renal vasodilator response to ACE inhibition reviewed earlier supports a dominant role for the Ang II mechanism. More recently, comparative pharmacology has strengthened that conclusion substantially. If the renal vasodilatation induced by ACE inhibitors in humans included a substantial component because of bradykinin, prostaglandins, or nitric oxide, one would anticipate that the renovasodilator response to renin inhibitors would be substantially less. To our surprise the renal vasodilator response to a renin inhibitor, enalkiren, exceeded expectations from early experience with ACE inhibitors [7]. To address this issue, we performed a range of follow-up studies. To ascertain whether the observation represented an idiosyncracy of one renin inhibitor, we studied a second and an identical result. Because of the notorious risk of employing historic controls, we performed a study in which patients received an ACE inhibitor, a renin inhibitor, or a vehicle during the same week. This study was coded and double blind. To avoid an idiosyncracy of one ACE inhibitor, we employed three, each at the top of the dose-response curve. The findings all provided support for a surprising but unambiguous conclusion. Although our original premise was reasonable and
supported by a wealth of information in animal studies, the renovasodilator response to renin inhibition is approximately 140 ml/min/1.73 m², substantially larger than the response to ACE inhibition, typically in the 90-100 ml/min/1.73 m² range. Although the fundamentals of pharmacology would favor more effective pharmacological interruption of the renin system at the rate-limiting step as the explanation, and thus would favor our drawing that conclusion from these data, there is an alternative interpretation. The two renin inhibitors were structurally related, as most drugs in a class are, and it is possible that they share a renovasodilator action through a mechanism unrelated to a reduction in Ang II formation. In the case of the renin cascade, we have the potential for a "tie breaker". If, indeed, the renin inhibitors operated via this cascade, one would anticipate a similar or larger renovasodilator response to Ang II antagonists when the studies were performed in the same way. This is precisely what we found in studies performed with an identical model, protocol, and technique. Two Ang II antagonists induced a renovasodilator response that matched or slightly exceeded the response to renin inhibition in healthy humans on a low-salt diet [48,49]. From this observation we would draw several conclusions. The renal hemodynamic response to ACE inhibition has underestimated, systematically, the contribution of Ang II to renovascular tone. The effectiveness of renin inhibition suggests that this response represents interruption of primarily renin-dependent, additional non-ACE-dependent pathways. In healthy humans, there might be a small contribution from proteolytic pathways that bypass both renin and ACE. In disease, on the other hand, the latter pathway may provide a more substantial contribution. The final conclusion is that therapeutic trials with Ang II antagonists offer far more promise than did ACE inhibitors, despite the gloomy predictions. They are more effective blockers. #### REFERENCES - 1. Nuland SB. 1988. Doctors: The biography of medicine. 238-262. New York: Alfred A. Knopf. - 2. McGrew RE. 1985. Encyclopedia of medical history. 25-36. New York: McGraw Hill Book. - 3. Lyons AS, Petrucelli RJ. 1987. Medicine: An illustrated history. New York: Harry N. Abrams Inc. Publishers. - 4. Haber E. 1976. The role of renin in normal and pathological cardiovascular homeostasis. Circulation 54:849-861. - 5. Mimran A, Guiod L, Hollenberg NK. 1974. The role of angiotensin in the cardiovascular and renal response to salt restriction. Kidney Internat 5:348-355. - 6. Nasjletti A, Chovrio-Colina J, McGiff J. 1975. Disappearance of bradykinin in the renal circulation of dogs: Effects of kininase inhibition. Circ Res 37:59-65. - 7. Hollenberg NK, Fisher NK. 1995. Renal circulation and blockade of the renin-angiotensin system. Is angiotensin-converting enzyme inhibition the last word? Hypertension 26:602-609. - 8. Wesson LG Jr. 1969. Physiology of the humans kidney. New York: Grune and Stratton. - 9. Schmid HE Jr. 1962. Renin, a physiologic regulator of renal hemodynamics. Circ Res 11:185- - 10. Hollenberg NK, Solomon HS, Adams DF, Abrams HL, Merrill JP. 1972. Renal vascular response to angiotensin and norepinephrine in normal man: The effect of salt intake. Circ Res 31:750-757. - 11. Freeman RH, Davis JO, Vitale SJ, Johnson JA. 1973. Intrarenal role of angiotensin II: Homeostatic regulation of renal blood flow in the dog. Circ Res 32:692-698. - 12. Burger BM, Hopkins T, Tulloch A, Hollenberg NK. 1976. The role of angiotensin in the canine renal vascular response to barbiturate anesthesia. Circ Res 38:35-48. - 13. Kimbrough HM, Vaughan ED, Carey RM, Ayers CR. 1977. Effect of intrarenal Ang II blockade on renal function in conscious dogs. Circ Res 40:174-178. - 14. Lachance JG, Arnoux E, Brunette MG, Carriere S. 1974. Factors responsible for the outer cortical ischemia observed during hemorrhagic hypotension in dogs. Circ Shock 1:131-144. - 15. Slick GL, DiBona GF, Kaloyanides GJ. 1975. Renal blockade of angiotensin II in acute and chronic sodium-retaining states. J Pharmacol Exp Ther 195:185-193. - 16. Carriere S, Lachance JG, Arnoux E, Brunette MG. 1975. Mechanisms responsible de l'ischemie renale corticale externe au cours de l'hypotension hemorragique chez le chien. (Proceedings: Mechanisms responsible for external renal cortical ischemia during hemorrhagic hypotension in dogs.) J Urol Nephrol Paris 81:720. - 17. Hall JE, Guyton AC, Trippodo NC, Lohmeier TE, McCaa RE, Cowley AW Jr. 1977. Intrarenal control of electrolyte excretion by angiotensin II. Am J Physiol 232:F538-F544. - 18. Hollenberg NK, Williams GH, Taub KJ, Ishikawa I, Brown C, Adams DF. 1977. Renal vascular response to interruption of the RAS in normal man. Kid Int 12:285-293. - 19. Hollenberg NK, Meggs LG, Williams GH, Katz J, Garnic JD, Harrington DP. 1981. Sodium intake and renal responses to captopril in normal man and essential hypertension. Kidney Int 20:240-245. - 20. Uneda S, Fujishima S, Fujiki Y, Tochikubo O, Oda H, Asahina S, Kaneko Y. 1984. Renal hemodynamics and the RAS in adolescents genetically predisposed to essential hypertension. J Htn 2:437-439. - 21. Blackshear JL, Garnic D, Williams GH, Harrington DP, Hollenberg NK. 1987. Exaggerated renal vascular response to calcium entry blockade in first degree relatives of essential hypertensives: Possible role of intrarenal Ang II. Hypertension 9:384-389. - 22. Hollenberg NK, Williams GH. 1995. Abnormal renal function, sodium-volume homeostasis and renin system hypertension: The evolution of the nonmodulator concept. In Hypertension: Pathophysiology, diagnosis, and management, 2nd ed. Vol. 2. Edited by JH Laragh and BM Brenner, 1837-1856. New York: Raven Press. - 23. Hopkins PN, Lifton RP, Hollenberg NK, Jeunemaitre X, Hallouin M-C, Skuppin J, Williams CS, Dluhy R.G, Lalouel J-M, Williams RR, Williams GH. 1996. Blunted renovascular response to Ang II is associated with a common variant of the AGT gene and obesity. J Hypertens 14:199-207. - 24. Jeunemaitre X, Soubrier F, Koeletsey YV, Lifton RP, Williams CS, Caru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P. 1992. Molecular basis of human hypertension: role of AGT. Cell 71:169-180. - 25. Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark AJ. 1994. Linkage of the AGT gene to essential hypertension. N Engl J Med 330:1629-1633. - 26. Hegele RA, Brunt JH, Connelly PW. 1994. A polymorphism of AGT gene associated with variation in BP in a genetic isolate. Circulation 90:2207-2212. - 27. Ferguson RK, Vlasses PH, Koplin JR, Shirinian A, Burke IF Jrs. Alexander JC. 1980. Captopril in severe treatment-resistant hypertension. Am Heart J 99:579-585. - 28. Studer A, Luscher T, Siegenthaler W, Vetter W. 1981. Captopril in various forms of severe therapyresistant hypertension. Klin Wochenschr 59:59-67. - 29. Case DB, Atlas SA, Marion RM, Laragh JH. 1982. Long-term efficacy of captopril in renovascular and essential hypertension. Am J Cardiol 49:1440-1446. - 30. Raine AE, Ledingham JG. 1982. Clinical experience with captopril in the treatment of severe drugresistant hypertension. Am J Cardiol 49:1475-1479. - 31. Lopez-Ovejero JA, Saal SD, D'Angelo WA, Cheigh JS, Stenzel KH, Laragh JH. 1979. Reversal of vascular and renal crises of scleroderma by oral angiotensin-converting enzyme blockade. N Engl J Med 300:1417-1419. - 32. Thurm RH, Alexander JC. 1984. Captopril in the treatment of scleroderma renal crisis. Arch Intern Med 144:733-735. - 33. Dzau VI, Colucci WS, Williams GH, Curfman G, Meggs L, Hollenberg NK. 1980. Sustained effectiveness of converting enzyme inhibition in patients with severe congestive heart failure. N Engl J Med 302:1373-1379. - 34. Creager MA, Halperin JL, Bernard DB, Faxon DP, Melidossian CD, Gavras H, Ryan TJ. 1981. Acute regional circulatory and renal hemodynamic effects of converting-enzyme inhibition in patients with congestive heart failure. Circulation 64:483-489. - 35. The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429-1435. - 36. Captopril Multicenter Research Group. 1983. A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J Am Coll Cardol 2:755-763. - 37. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 319-386. - 38. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. 1991. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406-H1414. - 39. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. 1993. The effect of angiotensin-convertingenzymeinhibition on diabetic nephropathy. N Engl J Med 329:1456-1462. - 40. Hollenberg NK, Raij L. 1993. Angiotensin-converting enzyme inhibition and renal protection. An assessment of implications for therapy. Arch Intern Med 153:2426-2435. - 41. Wexler RR, Greenlee WJ, Irvin JD, Goldberg MR, Prendergast K, Smith RD. 1996. Non-peptide Ang II receptor antagonists: the next generation in antihypertensive therapy. J Med Chem 39:625- - 42. Israili ZH, Hall WD. 1992. Cough and angioneurotic edema with ACE inhibition therapy. Ann Intern Med 117:234-242. - 43. Lacourciere Y, Brunner HR, Irwin R, Karlberg BE, Ramsay LE, Snavely DB, Dobbins TW, Faison EP, Nelson EB. 1994. Effects of modulators of the renin-angiotensin-aldosterone system on cough. Losartan Cough Study Group. J Hypertension 12:1387-1393. - 44. Lafayette RA, Mayer G, Park SK, Meyer TW. 1992. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest 90:766-771. - 45. Gansevoort RT, de Zeeuw D, de Jong PE. 1994. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system?
Kidney International 45:861-867. - 46. Ichikawa I. 1996. Will Ang II A1 be renoprotective in humans? Kidney Intern 50:684-692. - 47. Roman RJ, Kaldunski ML, Scicli AG, Carretero DA. 1988. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am J Physiol 255:F690-F698. - 48. Price D, DeOliveira J, Fisher N, Hollenberg N. 1996. Contribution of Ang II to renal hemodynamics in healthy men: the renal vascular response to eprosartan, an Ang II antagonist. ASN Program Abstract #A1688 from 29th Annual Meeting in New Orleans, Nov. 3-6. J Am Soc Nephrol 7:1587. - 49. Price D, Porter L, DeOliveira J, Fisher N, Gordon M, Laffel L, Williams G, Hollenberg N. 1996. The paradox of the low-renin state: hormonal and renal responses to an Ang II antagonist, Irbesartan, in diabetic nephropathy. ASN Program Abstract #A0591 from 29th Annual Meeting in New Orleans. J Am Soc Nephrology 7:163. # THE BRAIN RENIN-ANGIOTENSIN SYSTEM AND SALT-SENSITIVE HYPERTENSION SHEREENI J. VEERASINGHAM and FRANS H.H. LEENEN University of Ottawa Heart Institute, Ottawa, Ontario, Canada Summary. An intrinsic tissue renin-angiotensin system (RAS) has been described in the brain. This review provides an overview of the localization of the enzymes, peptides, and receptors of the brain RAS and the organization of angiotensinergic pathways involved in cardiovascular regulation. Centrally administered exogenous angiotensin (Ang) II increases sympathetic neuronal activity, decreases the gain of the baroreflex, and induces vasopressin release. Ang II generated by the brain can cause similar changes through effects in nuclei from the forebrain to the brainstem. In salt-sensitive hypertension, both brain ouabain-like compounds ("ouabain") and the brain RAS appear to play an essential role. Both central and high sodium intake activate brain "ouabain" followed by stimulation of the brain RAS and sympathoexcitatory and hypertensive responses. The actual pathways involved have not yet been established, but appear to involve the ventral anteroventral third ventricle region, the anterior hypothalamic area, and the paraventricular nucleus of the hypothalamus. #### INTRODUCTION In 1961, Bickerton and Buckley first reported that circulating Angiotensin (Ang) II is able to act on the central nervous system to increase blood pressure [1]. Since then a number of Ang II sensitive sites in the brain have been demonstrated. Moreover, besides the classical circulatory renin-angiotensin system (RAS), intrinsic tissue RASs have emerged, including that in the heart and brain. The brain RAS and central actions of the circulatory RAS are involved in central cardiovascular regulation and body fluid homeostasis, cyclicity of reproductive hormones, sexual behavior, and perhaps neuronal development and differentiation, and learning and memory [2-4]. This review (1) provides an overview of the localization of the brain RAS and the organization of angiotensinergic pathways, and (2) describes the role of brain Ang II in salt-sensitive hypertension. #### LOCALIZATION OF THE BRAIN RAS All components of the RAS have been identified in brain tissue, including angiotensinogen, the precursor for angiotensins, the protease renin, which cleaves angiotensinogen to the decapeptide Ang I; and the angiotensin-converting enzyme (ACE), which converts Ang I to the octapeptide Ang II. Expression of the mRNA for angiotensinogen, renin and ACE has been demonstrated in the brain of several species, including rats, and is consistent with the concept of a local brain RAS [5,6]. Incubation of brain homogenates with renin generates Ang I, implying that the precursor angiotensinogen is present locally [7]. In addition angiotensinogen has been identified immunohistochemically [8]. Following initial reports on central renin activity [7,9], the presence of brain renin that is independent of circulating renin, distinct from other proteases, active in vivo and inhibited by renin specific antibodies was confirmed [10,11]. Brain ACE is similar to peripheral ACE with respect to molecular weight, optimum pH, chloride dependency, and inhibition by various inhibitors [12]. However, ACE isozymes with different molecular weights have been demonstrated in the brain [13,14]. Brain ACE is ubiquitous in distribution and, like that of peripheral sources, is nonspecific in action, i.e., in addition to converting Ang I to Ang II, ACE of central origin degrades kinins and neuropeptides such as substance P. Four main angiotensin receptor subtypes have been described [15,16]. Three of these—namely, the AT₁, AT₂, and AT₄ receptors—are distributed in the brain as well as in peripheral tissue. Central areas involved in cardiovascular regulation, body fluid homeostasis, and neuroendocrine function exhibit a predominance of AT₁ receptors [17-19], which bind Ang II with high affinity. Angiotensinogen, detected immunocytochemically, is predominantly located in astrocytes and ependymal cells [20], and angiotensinogen mRNA detected by in situ hybridization is localized mainly in astrocytes [21]. However, angiotensinogen immunoreactive neurons have also been identified [22], and the presence of angiotensinogen has been demonstrated in CSF as well [23]. The site of synthesis of brain angiotensins is as yet unresolved. Bunnemann et al. [21] suggested that angiotensinogen may be produced in astrocytes and converted to Ang I by renin in the extracellular fluid or alternatively may be taken up by neurons and converted intraneuronally. Renin and ACE activity have been colocalized in synaptosomes, supporting the concept of intraneuronal synthesis [24]. However, renin has also been detected in oligodendrocytes, and ACE has been detected extracellularly [2,25]. After conversion of Ang I to Ang II by ACE, Ang II is further acted on by aminopeptidases to form the heptapeptide Ang III, which is converted to the hexapeptide Ang IV. Ang II is the first biologically active molecule in this cascade and acts as a neurotransmitter/neuromodulator. An alternate pathway exists whereby Ang I is converted to the nonapeptide des-Asp¹, Ang I which is acted on by ACE to form Ang III. The presence of these angiotensin peptides in the brain despite the blood brain barrier and their presence in nephrectomized rats [26] indicate that the peripheral RAS does not contribute to these peptides. Angiotensin peptides that have also been isolated from neuronal cell cultures further strengthen the concept of an intrinsic brain RAS [27]. Details of studies demonstrating the presence of RAS peptides and enzymes in the brain have been extensively reviewed elsewhere [28,29]. The components of the brain RAS are distributed in areas that mediate cardiovascular regulation and body fluid homeostasis, including septal nuclei, the preoptic region, hypothalamic nuclei, the midbrain, and nuclei of the medulla oblongata [21]. The presence of the brain RAS in other discrete regions such as the basal ganglia suggests a role in other functions. We briefly describe the localization of the components of the brain RAS in areas that regulate cardiovascular function and fluid homeostasis. Central areas with a cardiovascular regulatory role in which all components of the RAS are present include the median preoptic area; the supraoptic, paraventricular, dorsomedial, and ventromedial hypothalamic nuclei; the midbrain preriaqueductal gray; the locus ceruleus; the nucleus tractus solitarius; the dorsal motor nucleus of the vagus; and, in very low concentrations, the cerebral cortex [21]. Among these areas the highest concentrations of angiotensinogen immunoreactivity and Ang II nerve cell body and terminal immunoreactivity were found in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) [8]. In the preoptic area high levels of angiotensinogen immunoreactivity were found to be concentrated in glia with no neuronal angiotensinogen present [21]. In the circumventricular organs (CVOs) an apparent topoloigcal mismatch is observed [21]. Angiotensinogen immunoreactivity is absent in CVOs that are implicated in cardiovascular and neuroendocrine function, such as the subfornical organ (SFO), area postrema (AP), and the organum vasculosum laminae terminalis (OVLT). However, angiotensinogen mRNA is demonstrable in the rostral part of the SFO, the AP, and the median eminence. Ang II receptors in CVOs of rat brain have been characterized by ¹²⁵Iautoradiography [30,31]. The highest binding densities were localized in the SFO and AP, with considerable aggregation also found in the OVLT and median eminence. CVOs express a deficient blood brain barrier and have a high capillary density, fenestrated capillaries, large perivascular spaces, and specialized ependymal cells (tanycytes), enabling them to detect circulating substances and tranduce the information to neural messages [32]. Circulating Ang II, like other peptides, cannot cross the blood brain barrier and, not surprisingly, localizes specifically to CVOs [33]. This may explain very low amounts of demonstrable angiotensinogen in CVOs, as the CVOs that express very high Ang II binding sites, SFO and OVLT, have been implicated in the action of blood-borne and CSF-borne Ang II. The amygdaloid complex is another area in which there is a mismatch of the components of the RAS. The bed nucleus of the stria terminalis and the central Figure 1. Schematic diagram of a longitudinal section of the rat brain showing Ang II-containing cell bodies (black circles), Ang II receptors (shaded areas), and angiotensinergic pathways (lines). (Adapted from Steckelings et al [3].) nucleus of the amygdala lack demonstrable Ang II receptors, and the medial amygdaloid nucleus lacks detectable Ang II immunoreactivity but contains other components of the RAS [21]. While other areas contain all other components of the RAS, they lack demonstrable Ang II receptors. They include the nuclei of the band of Broca, medial septal nuclei, and anterior and lateral
hypothalamic areas [21]. #### ANGIOTENSINERGIC PATHWAYS Steckelings et al. [3] summarized the major localization of Ang II neuronal perikarya, receptors, and fibers (figure 1). To demonstrate angiotensinergic pathways, anatomical tracing in combination with immunohistochemical staining for angiotensins has been used. Lind et al. [34] demonstrated two major angiotensinergic efferent pathways from the SFO, one projecting to the median preoptic nucleus (MnPO) and the other to the PVN. The SFO also has an afferent projection arising in perifornical parts of the lateral hypothalamic area [34]. In addition, [hamandas et al. [35] demonstrated that 46% of SFO neurons retrogradely labelled from the SON were also labelled for angiotensin. Fewer cells demonstrating both markers were demonstrable in the MnPO and OVLT. The presence of these pathways is supported by electrophysiological and microinjection studies [35,36]. Lind et al. [37] suggested that angiotensinergic projections may include those from the PVN to presympathetic neurons in the intermediolateral cell column of the spinal cord as well as from the PVN to the posterior pituitary. #### CENTRAL ACTIONS OF ANGIOTENSIN II Central cardiovascular and body fluid regulating actions of angiotensins may be achieved by either actions of brain angiotensins or actions of blood-borne Ang II on CVOs. In this review we focus on central actions of Ang II generated by the brain. Ang II is the principle bioactive peptide of the brain RAS. Whereas a role for Ang III and IV in mediating cardiovascular actions of the brain RAS is gradually emerging [38,39], this will not be discussed. Acute intracerebroventricular (icv) administration of Ang II into the third or lateral ventricles induce cardiovascular and behavioral responses, including pressor responses in a number of species, including rats [40-43]. Pressor responses to centrally administered Ang II may be attributed to an increase in sympathetic neuronal activity as well as release of arginine vasopressin (AVP). In rats with peripheral blockade of AVP, icv Ang II increases renal sympathetic nerve activity and blood pressure (figure 2) [44]. Peripheral sympathectomy results in a prolonged latency for the pressor response to icv Ang II. This implies the presence of a fast component in the pressor response that is induced by sympathetic neural activation [45]. Inhibition of AVP's actions by peripheral V, receptor blockade, vasopressin antibodies, or hypophysectomy attenuates the pressor response to icv Ang II [46,47]. Furthermore, in rats with diabetes insipidus that lack vasopressin, pressor responses to central Ang II are depressed [48]. Combined peripheral α-adrenoceptor and V₁ receptor blockade completely prevents the pressor response to central Ang II [46]. This confirms a role for both sympathetic activation and vasopressin release in the pressor response to icy Ang II. In addition to increasing sympathetic activity and AVP release, centrally injected Ang II may induce the release of a humoral inhibitor of the Na⁺K⁺ ATPase, as indicated by a decrease in 86Rb-uptake when rat arteries were incubated with plasma supernate of dogs treated with icv Ang II [49,50]. The release of this humoral inhibitor was blocked by central saralasin pretreatment, which is consistent with the involvement of central Ang II receptors in its release [50]. Microinjection of Ang II into the ventrolateral medulla (VLM) of rats elicits cardiovascular changes that parallel, but are of smaller magnitude than, those produced by microinjection of the excitatory amino acid, L-Glu. Ang II injected into the caudal VLM produces depressor and bradycardic effects that are opposite to the pressor and tachycardic effects elicited by injection into the rostral ventrolateral medulla (RVLM) [51]. Ang II responsive sites in the RVLM were localized to the subretrofacial nucleus, which contains neurons that project to sympathetic preganglionic neurons of the intermediolateral cell column [52,53]. Chan et al. [54] have shown that 30% of RVLM neurons with spinal projections are excited by iontophoretic application of Ang II. Sasaki and Dampney demonstrated that microinjection of Ang II into the RVLM increases renal sympathetic nerve activity [55]. Figure 2. Peak increases in MAP, RSNA, and HR in response to icv administration of 0.3M NaCl (3.8 µl/min for 10 min), ouabain (0.6 µg), and Ang II (30 ng) following pretreatment with icv aCSF (white bars), Fab fragments (66 µg, hatched bars), or losartan (10 µg, black bars). Arginine vasopressin antagonist $(30 \mu g/kg)$ iv) was administered prior to each treatment. Values are mean \pm sem. n = 7-8 *p < 0.05 vs aCSF. (Adapted from Huang and Leenen [44].) In cats and rabbits, topical application or microinjection of Ang II antagonists into the VLM produced blood pressure and heart rate changes opposite to those evoked by Ang II [55,56]. Bilateral injection of an Ang II antagonist into the RVLM in normotensive rats reduced blood pressure to virtually spinal levels [57]. These studies all support the concept for a role of the brain RAS in modulation of tonic sympathetic drive generated by vasomotor neurons of the VLM. Ang II action in the VLM also appears to be involved in modulation of phasic cardiovascular function. In anesthetized rats, microinjection of Ang II into the RVLM suppressed the baroreflex response. This effect could be prevented by coadministration of either the nonpeptide AT₁ or AT₂ receptor antagonist, losartan, or PD 123319, respectively [58]. In the same study, microinjection of PD 123319 to block effects of endogenous Ang II elicited an enhancement of baroreflex responses, whereas losartan had no significant effect, indicating a role for AT₂ receptors. In anesthetized rabbits, saralasin, a peptide Ang II receptor antagonist, facilitated sympathetic baroreflex function and decreased resting renal sympathetic nerve activity when microinfused into the RVLM and inhibited baroreflex response when microinfused into the caudal VLM [59]. The presence of Ang II receptors associated with vagal efferents within the nucleus tractus solitarius (NTS), the first relay station of the baroreflex pathway, is also consistent with a modulatory role of the brain RAS in baroreflex function [60]. Microinjection of Ang II into the NTS of anaesthetized rats resulted in depressor responses at low doses (1 ng) or a pressor response at higher doses (10 ng) accompanied by bradycardia [61,62]. Bilateral microinjection of the Ang II antagonist, (Sar¹,Thr⁸) Ang II, into the NTS enhanced baroreflex-mediated bradycardia [63]. In conscious rats microinjection of saralasin had a similar effect [64]. Overall these studies suggest that Ang II decreases the gain of the baroreflex. While pressor responses to Ang II in the NTS appear to be mediated by sympathetic activation, the attenuation of reflex bradycardia has been attributed to a decrease in parasympathetic activity. #### CIRCULATING ANG II Circulating Ang II, as previously mentioned, binds to receptors in CVOs and causes centrally mediated effects. Microinjection of 0.1 ng or less of Ang II into the SFO, the third ventricle close to the OVLT, or the AP induces pressor responses [65-67]. It is likely that the pressor effects of circulating Ang II are mainly mediated by the SFO and area postrema, whereas the OVLT and MnPO are more involved in the pressor responses to CSF Ang II [4]. #### THE BRAIN RAS AND SALT-SENSITIVE HYPERTENSION The brain RAS contributes to the development and maintenance of certain forms of hypertension, particularly salt-sensitive hypertension. The spontaneously hypertensive rat (SHR) and the Dahl salt-sensitive (Dahl S) rate are genetic models of salt-sensitive hypertension in which a hyperactive brain RAS has been implicated. In these models high salt intake exacerbates the development of hypertension, and the latter appears to depend on brain Ang II, leading to an increase in sympathetic outflow. The extent of the involvement of a tonically active brain RAS in the development of hypertension in SHR on a regular salt diet is still unresolved. On the one hand, studies on biochemical aspects of the brain RAS are consistent with increased activity of the brain RAS in SHR. Angiotensinogen content is greater in young (four weeks old) SHR than in age matched normotensive control Wistar Kyoto (WKY) rats in the preoptic area, SFO and OVLT [68]. Angiotensinogen content in the septum, preoptic nuclei, and PVN [68,69] is increased in adult SHR when compared to WKY rats. Renin activity is higher in ten-week-old SHR in the pituitary but markedly lower in several central regions, including the SFO and the periaqueductal central grey [69]. Ang II immunoreactivity in adult SHR is twice as much that of WKY rats in the SON and PVN [70]. However, Ang I and Ang II content was lower in the hypothalamus in adult stroke-prone SHR when compared to WKY rats [71]. SHR also exhibit increases in Ang II receptors. Autoradiography demonstrates the number of Ang II binding sites in the SFO is greater in young and adult SHR than in age-matched WKY rats [72]. On the other hand, studies evaluating the hemodynamic consequences of blockade of the brain RAS have provided conflicting results. Central antisense oligodeoxynucleotide inhibition of angiotensinogen mRNA in adult SHR decreases angiotensinogen in the brain stem and hypothalamus and lowers blood pressure to normotensive level up to 24h after administration [73]. Peripheral administration of the antisense oligodeoxynucleotide at the same dose does not change blood pressure significantly consistent with a central action. Central injection of recombinant adeno-associated virus-antisense to AT₁ mRNA decreased blood pressure by ~20 mmHg in adult SHR for up to 9 weeks and slowed the development of hypertension in young SHR [74]. Icv administration of the ACE inhibitor, captopril, attenuated the development of hypertension in SHR [75]. However,
centrally administered ACE inhibitors may also increase brain bradykinin or neuropeptides [76,77]. Adult SHR also exhibit a greater decrease in blood pressure following acute injections of losartan, an AT₁ receptor antagonist, into the anterior hypothalamus or following acute injections of an Ang II peptide antagonist, (Sar¹,Ile⁸) Ang II, into the RVLM when compared with blood pressure in age-matched WKY rats [78,79]. In contrast, in adult SHR, neither icv AT, receptor blockade using losartan nor combined AT, and AT, receptor blockade using saralasin and (Sar¹,Thr⁸) Ang II caused a significant decrease in blood pressure [80,81]. Chronic icv administration of losartan (1 mg/kg/d) did not affect either the development or maintenance of hypertension or sympathetic hyperactivity in SHR on a regular salt diet (figure 3) [82,83]. At a higher dose (10 mg/kg/d), icv or sc administration caused a similar decrease in resting blood pressure, indicating that the depressor effect was due to leakage of losartan out of the central nervous system and blockade of peripheral AT, receptors [82]. The evidence so far indicates that the activity of the brain RAS is higher in SHR than in WKY rats and appears to be involved in acute blood pressure regulation. However, chronic central blockade of AT, receptors appears not to affect the development or maintenance of hypertension in SHR on a regular salt diet. Our studies have focused on the role of brain endogenous ouabain-like compound(s) ("ouabain") and its interaction with the brain RAS in the development of salt-sensitive hypertension. In salt-sensitive Dahl S rats and SHR, centrally released "ouabain" plays a critical role in the development or exacerbation of hypertension when these rats are fed a high salt diet. The increase in blood pressure by high sodium is associated with decreases in sympathoinhibition and increases in sympathoexcitation, resulting in an Figure 3. Resting MAP at 9 weeks of age in Dahl S rats (upper panel) and SHR (lower panel) on regular (0.4% NaCl, white bars) or high (8.0% NaCl, black bars) salt diet for 4 weeks treated chronically with icv vehicle, losartan (1 mg/kg/d, los), or Fab fragments (200 µg/d, fab). Values are mean ± sem. n = 7-8. *p < 0.05 vs other groups. (Adapted from Huang and Leenen [83,94].) increase in sympathetic neuronal activity. In these studies sympathetic activity was estimated by assessment of renal sympathetic nerve activity and cardiovascular responses to air jet stress and to icv injection of guanabenz, an α_2 -adrenoceptor agonist. SHR on a high salt diet exhibit an enhanced response to guanabenz which possibly reflects an upregulation and/or decreased α2-receptor occupancy in the anterior hypothalamus as a result of decreased norepinephrine release from sympathoinhibitory neurons [84,85]. Dahl S rats and SHR on high dietary salt intake exhibit increases in hypothalamic, pituitary, and pons "ouabain" content, compared to their normotensive controls [86,87]. Concomitant chronic icv administration of Fab fragments, which bind ouabain and related steroids with high affinity [88,89] prevents sodium-induced sympathoexcitation and increase in blood pressure [90,91]. In similar doses, Fab fragments administered iv are ineffective in preventing sodium-induced increases in blood pressure, indicating that the actions of "ouabain" are central. Although there is a small increase in brain "ouabain" content in normotensive rats on a high salt diet, there is no attendant increase in sympathetic activity or blood pressure, and icv Fab fragments do not change blood pressure. It is possible that the "ouabain" concentrations in WKY/Dahl R rats on a high salt diet do not reach the threshold required for an increase in blood pressure. Alternatively, salt-sensitive rats may also have an increased sensitivity to "ouabain" and, therefore, may respond at lower central "ouabain" concentrations. The brain RAS appears to play a critical role in salt-induced hypertension in both SHR and Dahl S rats. SHR on a high-salt diet exhibit an enhanced depressor response to icv injection of captopril compared to SHR fed a regular salt diet [92]. Microinjection of losartan into the anterior hypothalamus elicits a larger depressor response in SHR on a high-salt diet vs. a regular salt diet [93]. Recent studies in our laboratory demonstrated that chronic blockade of central AT₁ receptors by icv losartan prevents exacerbation of hypertension in both SHR and Dahl S rats on a high-salt diet (figure 3) [83,94]. Chronic central infusion of CV-11974, a nonpeptide AT₁ receptor antagonist, prevented the development of hypertension in Dahl-Iwai salt-sensitive rats on a high salt diet [95]. These studies suggest that hyperactivity of the brain RAS contributes to the exacerbation of hypertension in SHR, Dahl S, and Dahl-Iwai salt-sensitive rats on a high-salt diet. Chronic blockade of either brain "ouabain" by icv administration of Fab fragments or brain Ang II receptors by icv administration of losartan affects sodium induced changes in sympathetic activity and blood pressure in SHR and Dahl S to a similar extent [83,94]. SHR on a high salt diet treated with chronic icv infusion of Fab fragments and/or losartan do not exhibited an enhanced decrease in renal sympathetic nerve activity to icv guanabenz. Responses were comparable to that seen in SHR with control icv infusion on a regular salt diet. In addition, both chronic icv Fab fragments and losartan treatment normalize dietary salt-induced enhanced sympathetic responses to air jet stress. This suggests that the dietary salt-induced increase in sympathoinhibition and increase in sympathoexcitation is mediated by central "ouabain" and Ang II. SHR on a high salt diet treated chronically with icv Fab fragments exhibited larger sympathoexcitatory and pressor responses to acute icv injection of Ang II than responses of rats receiving control infusion (figure 4). This is consistent with the concept that blockade of brain "ouabain" decreases the activity of the brain RAS, which leads to a decreased occupancy and/or upregulation of Ang II receptors, resulting in enhanced responses to exogenous Ang II [83]. Consistent with findings in SHRs, in Dahl S rats on a high salt diet, chronic blockade of either brain "ouabain" or AT, receptors for 4 weeks prevents sodiuminduced exacerbation of hypertension to a similar extent [94]. In Dahl S rats on a high salt diet, chronic icv infusion of Fab fragments or losartan normalized the sodium-induced enhancement of mean arterial pressure (MAP) and renal sympathetic nerve activity responses to icv guanabenz and air jet stress [94]. This finding is also consistent with the concept of an interaction of brain "ouabain" and brain Ang II in mediating sodium-induced sympathoexcitation and hypertension. We hypothesized that a high dietary salt intake in salt-sensitive rats may alter central control of blood pressure by transiently or intermittently increasing CSF Figure 4. Peak increases in MAP, renal sympathetic nerve activity (RSNA), and heart rate (HR) in response to icv Ang II (30 ng) in SHR on regular (0.5% NaCl, white bars) or high (8.0% NaCl, black bars) salt diet treated chronically with icv vehicle, losartan (1 mg/kg/d, los), or Fab fragments (200 µg/d, fab), Values are mean ± sem. n = 7-8. *p < 0.05 vs icv vehicle on same diet. (Adapted from Huang and Leenen [83].) sodium concentration, causing an increase in central "ouabain" and sympathetic outflow [90]. However, to what extent such an increase in central sodium indeed occurs in still controversial [96,97]. In normotensive rats, acute icv administration of hypertonic saline, ouabain and, Ang II cause similar sympathoexcitatory and pressor responses which are all abolished by icv pretreatment with the AT₁ receptor blocker, losartan [44]. Fab fragments, on the other hand, only block responses to hypertonic saline and ouabain (figure 2) [44]. This would suggest that an increase in central sodium concentration increases brain "ouabain", which exerts its sympathoexcitatory and pressor effects mostly via brain Ang II. Chronic increases in CSF sodium in normotensive, salt-resistant Wistar rats cause an increase in both central "ouabain" sympathoexcitation and blood pressure, mimicking the effects of high dietary sodium in salt-sensitive rats [98]. Concomitant icv infusion of either Fab fragments or losartan abolished the sympathoexcitation and the increase blood pressure, supporting the role of both brain "ouabain" and the brain RAS in mediating the effects of acute or chronic increase in central sodium [98]. Thus, if changes in central sodium concentrations do indeed occur on high sodium intake, they cause a similar pattern of central changes as those caused by high sodium intake in SHR and Dahl S and may therefore play a major role. High sodium intake may cause increases of CSF sodium which are larger in salt-sensitive rats than in resistant rats. In addition salt-sensitive rats may show larger responses to similar increases in CSF sodium. The central pathways that mediate sympathoexcitation and hypertension induced by either central sodium administration or a high sodium diet have yet to be identified. An area that has been implicated in these effects is the anteroventral third ventricle (AV3V) region. An interaction of brain "ouabain" and brain Ang II in this region is supported by histological findings. Ouabain immunoreactive neurons have been demonstrated in the paraventricular and supraoptic nuclei of the hypothalamus [99]. Dense immunoreativity to ouabain in nerve terminals is observed in the AV3V, including the OVLT, the SFO, and median eminence [100]. In these areas Ang II receptors and other components of the brain RAS are also densely distributed [21,101]. Studies that utilized electrolytic lesions of the AV3V showed that this region mediates the pressor effects of acute icv injections of hypertonic saline, Ang II, and ouabain
[102-104]. This region is also crucial for the development of saltsensitive hypertension [105,106]. Excitotoxic lesions of the ventral AV3V, including the OVLT, did not affect pressor responses to acute icv injection of Ang II but attenuated responses to acute icv hypertonic saline or ouabain administration [107]. Ventral AV3V lesions prevent hypertension induced by chronic icv administration of hypertonic saline [108]. Ang II binding in the OVLT is increased in SHR when compared to WKY rats [109]. The firing rate of MnPO neurons that are Ang II responsive is higher and the threshold current required to evoke SFO stimulationinduced excitation is lower in SHR [110]. In SHR on a regular salt diet, losartan microinjected into the MnPO did not change resting blood pressure but attenuated pressor responses to acute icv injection of hypertonic saline and ouabain [111,112]. However, microinjection of either Fab fragments or losartan into the MnPO of SHR reversed sodium-induced exacerbation of hypertension [111,112], indicating that ouabain release and activation of AT₁ receptors within the MnPO mediates saltsensitive hypertension. Another area which has been implicated in mediating salt-sensitive hypertension is the anterior hypothalamic area (AHA). SHR on a high salt diet exhibit increases in the number of α_2 -adrenoceptors and decreased stores and turnover of noradrenaline in the AHA compared to SHR on a regular salt diet [113-115]. A decrease in noradrenaline release in the AHA, which consequently decreases sympathoinhibition, may contribute to salt-sensitive hypertension. As the AHA has reciprocal connections to the OVLT in the ventral AV3V [116], mechanisms in these areas may act along the same pathway to mediate salt-sensitive hypertension. Local osmotic stimulation of the PVN increases the release of Ang II assessed by microdialysis in this nucleus [117]. Hypertension in Dahl S rats on a high salt diet is attenuated by lesions of the PVN [118]. Thus, several nuclei/areas have been identified to be involved in the sympathoexcitatory and hypertensive responses to central sodium and high salt intake in salt-sensitive rat strains. However, at present it is still quite unclear what the actual stimulus is and what the actual pathways are leading to sympathoexcitation. #### CLINICAL RELEVANCE It is evident from the findings presented in this review that the brain RAS contributes substantially to the development and maintenance of salt-sensitive hypertension in rats. To what extent this also applies to humans has not yet been evaluated. Further studies in both animals and humans are needed to establish the dose-response relationships for chronic oral treatment with blockers of the RAS varying in penetration into the brain. When the brain RAS contributes significantly, one may expect better responses to blockade of both peripheral and brain RAS as compared to only peripheral blockade. #### ACKNOWLEDGMENT The authors' work described in this review was supported by operating grants from The Medical Research Council of Canada. Frans H.H. Leenen is a Career Investigator of the Heart and Stroke Foundation of Ontario. #### REFERENCES - 1. Bickerton RK, Buckley IP. 1961. Evidence for a central mechanism in angiotensin-induced hypertension. Proc Soc Exp Biol Med 106:834-836. - 2. Phillips MI. 1987. Functions of angiotensin in the central nervous system. Annu Rev Physiol 49:413-435. - 3. Steckelings U, Lebrun C, Qadri F, Veltmar A, Unger T. 1992. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol 19(Suppl 6):S72-S79. - 4. Muratani H, Teruya H, Sesoko S, Takishita S, Fukiyama K. 1996. Brain angiotensin and circulatory control. Clin Exp Pharmacol Physiol 23:458-464. - 5. Dazu VJ, Ingelfinger J, Pratt RE, Ellison KE. 1986. Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains. Hypertension 8:544-548. - 6. Whiting P, Nava S, Mozley L, Eastham H, Poat J. 1991. Expression of angiotensin converting enzyme mRNA in rat brain. Mol Brain Res 11:93-96. - 7. Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, Genest J. 1971. Renin in dog brain. Am J Physiol 221:1733-1737. - 8. Healy DP, Printz MP. 1984. Distribution of immunoreactive angiotensin II, angiotensin I, angiotensinogen and renin in the central nervous system of intact and nephrectomized rats. Hypertension 6:1130-1136. - 9. Fischer-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S. 1971. Angiotensin and renin in rat and dog brain. I Exp Med 133:353-361. - 10. Hirose S, Yokosawa H, Inagami Z. 1978. Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 274:392-393. - 11. Speck G, Poulson K, Unger T, Retting R, Bayer C, Scholkens BA, Ganten D. 1981. In vivo activity of purified mouse brain renin. Brain Res 219:371-384. - 12. Printz MP, Ganten D, Unger T, Phillips MI. 1982. Minireview: the brain renin-angiotensin system. Exp Brain Res Suppl 4:3-52. - 13. Strittmatter SM, Thiele EA, Kapiloff MS, Synder SH, 1985. A rat brain isozyme of angiotensinconverting enzyme. J Biol Chem 17:9825-9832. - 14. Hooper NM, Turner AJ. 1987. Isolation of two differentially glycosylated forms of peptidyldipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J 241:625-633. - 15. Wright JW, Harding JW. 1995. Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269-295. - 16. Unger T, Chung O, Csikos T, Culman J, Gallinat S, Gohlke P, Hohle S, Meffert S, Stoll M, Stroth U, Zhu Y. 1996. Angiotensin receptors. J. Hypertens. 14(Suppl 5):S95-S103. - 17. Obermuller N, Unger T, Culman J, Gohlke P, Bottari SP. 1991. Distribution of angiotensin II receptor subtypes in rat brain nuclei. Neurosci Lett 132:11-15. - 18. Tsutsumi K, Saveedra JM. 1991. Characterization and development of angiotensin II receptor subtypes (AT₁ and AT₂) in rat brain. Am J Physiol 216:R209-R216. - 19. Lenkei Z, Corvol P, Llorens-Cortes C. 1995. The angiotensin receptor subtype AT_{1A} predominates in rat forebrain areas involved in blood pressure, fluid homeostasis and neuroendocrine control. Mol Brain Res 30:53-60. - 20. Deschepper CF, Bouhnik J, Ganong WF. 1986. Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res 355:195-198. - 21. Bunnemann B, Fuxe K, Ganten D. 1992. The brain renin-angiotensin system: Localization and general significance. J Cardiovasc Pharmacol 19(Suppl 6):S51-S62. - 22. Imboden H, Harding JW, Hilgenfeldt U, Celio MR, Felix D. 1987. Localization of angiotensinogen in multiple cell types of rat brain. Brain Res 410:74-77. - 23. Moffett R.B. 1987. Angiotensinogen in cerebrospinal fluid corresponds chromatographically to the gamma form of plasma angiotensinogen. J Neurochem 49:841-845. - 24. Paul M, Printz MP, Harms E, Unger T, Lang RE, Ganten D. 1985. Localization of renin (EC 3.4.23) and converting enzyme (EC 3.4.15.1) in nerve endings of rat brain. Brain Res 334:315- - 25. Inagami T, Clemens DL, Celio MR, Brown A, Sandru L, Herschkowitz N, Hoffman LH, Kasselberg AG. 1980. Immunohistochemical localization of renin in mouse brain. Neurosci Lett 18:91-98. - 26. Ganten D, Hermann K, Bayer C, Unger T, Lang RE. 1983. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221:869-871. - 27. Raizada MK, Phillips MI, Gerndt J. 1982. Primary culture from fetal brain incorporates ³Hisoleucine ³H-valine into immunoprecipitable angiotensin II. Neuroendocrinology 36:64-67. - 28. Phillips MI, Weyhenmeyer J, Felix D, Ganten D, Hoffman WE. 1979. Evidence for an endogenous brain renin-angiotensin system. Fed Proc 38:2260-2266. - 29. Saavedra JM. 1992. Brain and pituitary angiotensin. Endocrinol Rev 17:227-262. - 30. Mendelsohn FAO, Quirion R, saavedre JM, Aguilera G, Catt KJ. 1984. Autoradiographic localization of angiotensin receptors in rat brain. Proc Natl Acad Sci 81:1575-1579. - 31. Gehlert DR, Speth RC, Wamsley JK. 1986. Distribution of (125I) angiotensin II binding sites in the rat brain: a quantitative autoradiographic study. Neurosci 18:837-856. - 32. Gross PM, Weindl A. 1987. Peering through the windows of the brain. J Cereb Blood Flow Metab 7:663-672. - 33. Van Houten M, Schiffrin EL, Mann JFE. 1980. Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. Brain Res 186:480-485. - 34. Lind RW, Swanson LW, Ganten D. 1984. Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res 321:209-215. - 35. Jhamandas, JH, Lind RW, Renaud LP. 1989. Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res 487:52-61. - 36. Akaishi T, Negoro H, Kobayashi S. 1981. Electrophysiological evidence for multiple sites of actions of angiotensin II for stimulating paraventricular neurosecretory cells in the rat. Brain Res 220:386- - 37. Lind R.W., Swanson L.W., Sawchenko P.E. 1985. Anatomical evidence that neural circuits related to the subfornical organ contain angiotensin II. Brain Res Bull 15:79-82. - 38. Wright JW, Harding JW. 1992. Regulatory role of brain angiotensins in the control of physiological and behavioural responses. Brain Res 17:227-262. - 39. Wright JW, Bechtholt AJ, Chambers SL, Harding JW. 1996. Angiotensin III and IV activation of brain AT(1) receptor subtype in cardiovascular function. Peptides 17:1365-1371. - 40. Severs WB, Daniels-Severs AE 1973. Effects of angiotensin on the central nervous system. Pharmacol Rev 25:415-449. - 41. Brosnihan KB, Berti GA, Ferrario CM. 1979. Haemodynamics of central infusion of angiotensin II in normal and sodium-depleted dogs. Am J Physiol 237:H139-H145. - 42. Fink GD, Bryan WJ. 1980. Forebrain control of fluid and electrolyte
homeostasis and angiotensin sensitivity in rabbit. Am J Physiol 239:R372-R376. - 43. Fitzsimons JT. 1980. Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87:117-167. - 44. Huang BS, Leenen FHH. 1996. Sympathoexcitatory and pressor responses to increased brain sodium and ouabain are mediated via brain ANG II. Am J Physiol 270:H275-H280. - 45. Falcon JC, Phillips MI, Hoffman WE, Brody MJ. 1978. Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am J Physiol 235:H392-H339. - 46. Unger T, Rascher W, Schuster C, Pavlovitch R, Schomig A, Dietz R, Canten D. 1981. Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin. Eur J Pharmacol 71:33-42. - 47. Haack D, Moehring J. 1978. Vasopressin-mediated blood pressure response to intraventricular injection of angiotensin II in the rat. Pflugers Arch 373:167-173. - 48. Hutchinson JS, Schelling P, Moehring J, Ganten D. 1976. Pressor action of centrally infused angiotensin II in rats with hereditary hypothalamic diabetes insipidus. Endocrinology 99:819-823. - 49. Buckley JP, Doursout M, Yang-Yan L, Chelly JE. 1986. Central angiotensin II mechanisms and the sodium pump. J Hypertens. 4(Suppl 6):S465-S467. - 50. Doursout MF, Chelly JE, Liang YY, Buckley JP. 1991. The ouabain-dependent Na⁺-K⁺ pump and the brain renin-angiotensin system. Clin Exp Hypertens 14:393-411. - 51. Muratani H, Averill DB, Ferrario CM. 1991. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol 260:R977-R984. - 52. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ. 1984. Rostral ventrolateral medulla: selective projections to the thoracic anutonomic cell column from the region containing Cl adrenaline neurons. J Comp Neurol 228:168-185. - 53. Dampney RAL, Czachurski J, Dembowski K, Goodchild AK, Seller H. 1987. Afferent connection and spinal projections of the pressor region in the rostral ventrolateral medulla of the cat. J Autonom Nerv Syst 20:73-86. - 54. Chan RKW, Chan YS, Wong TM. 1991. Responses of cardiovascular neurons in the rostral ventrolateral medulla of the normotensive Wistar Kyoto and spontaneously hypertensive rats to iontophoretic application of angiotensin II. Brain Res 556:145-150. - 55. Sasaki S, Dampney PAL. 1990. Tonic cardiovascular effects of angiotensin II in the ventrolateral medulla. Hypertension Dallas 15:274-283. - 56. Andreatta SH, Averill DB, Santos RAS, Ferrario CM. 1988. The ventrolateral medulla: a new site of action of the renin-angiotensin system. Hypertension Dallas 11(Suppl I):I163-I166. - 57. Ito S, Sved AF. 1996. Blockade of angiotensin receptors in rat rostral ventrolateral medulla severely reduces sympathetic vasomotor tone. Am J Physiol 270:R1317-R1323. - 58. Lin KS, Chan JYH, Chan SHH. 1997. Involvement of AT2 receptors at NRVL in tonic baroreflex suppression by endogenous angiotensins. Am J Physiol 272:H2204-H2210. - 59. Saigusa T, Iriki M, Arita, J. 1996. Brain angiotensin II tonically modulates sympathetic baroreflex in rabbit ventrolateral medulla. Am J Physiol 271:H1015-H1021. - 60. Allen AM, Lewis SJ, Verberne AJ, Mendelsohn FA. 1988. Angiotensin receptors and the vagal system. Clin Exp Hypertens 10:1239-1244. - 61. Rettig R, Healy DP, Printz MP. 1986. Cardiovascular effects of microinjection of angiotensin II into the nucleus tractus solitarii. Brain Res 364:233-240. - 62. Fow JE, Averill DB, Barnes KL. 1994. Mechanisms of angiotensin-induced hypotension and bradycardia in the medial solitary tract nucleus. Am J Physiol 267:H259-H266. - 63. Compagnole-Santos MJ, Diz D, Ferrario CM. 1988. Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension 11:I167-I171. - 64. Michelini LC, Bonagamba LG. 1990. Angiotensin II as a modulator of baroreceptor reflexes in the brainstem of conscious rats. Hypertension 15:I45-I50. - 65. Simpson JB, Routtenberg A. 1973. Subfornical organ: site of drinking elicitation by angiotensin II. Science 181:1172-1175. - 66. Phillips MI. 1978. Angiotensin in the brain. Neuroendocrinology 25:354-377. - 67. Lowes VL, McLean LE, Kasting NW, Ferguson AV. 1993. Cardiovascular consequences of microinjection of vasopressin and angiotensin II in the area postrema. Am J Physiol 265:R625-R631. - 68. Printz MP, Healy DP. 1983. Changes in brain angiotensinogen during development of hypertension. Clin Exp Hypertens A5:1037-1046. - 69. Naruse M, Naruse K, McKenzie JC, Schelling P, Inagami T. 1985. Regional distribution of renin and angiotensin in the brain of normotensive (WKY) and spontaneously hypertensive (SHR) rats. Brain Res Bull 333:147-150. - 70. Weyhenmeyer JA, Phillips MI. 1982. Angiotensin-like immunoreactivity in the brain of the spontaneously hypertensive rat. Hypertension 4:514-523. - 71. Hermann K, McDonald W, Unger T, Lang RE, Ganten D. 1984. Angiotensin biosynthesis and concentrations in the brain of normotensive and hypertensive rats. J Physiol 79:471-480. - 72. Saavedra JM, Correa FMA, Kurihara M, Shigematsu K. 1986. Increased number of angiotensin II receptors in the subfornical organ of spontaneously hypertensive rats. J Hypertens 4(Suppl 5):S27- - 73. Wielbo D, Senia C, Gyurko R, Phillips MI. 1995. Antisense inhibition of hypertension in the spontaneously hypertensive rat. Hypertension 25:314–319. - 74. Gyurko R, Wielbo D, Phillips, MI. 1993. Antisense inhibition of AT₁, receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 49:167-174. - 75. Okuno T, Nagahama S, Lindheimer MD, Oparil S. 1983. Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril. Hypertension 5:653-662. - 76. Skidgel RA, Erdos EG. 1987. The broad substrate specificity of human angiotensin I converting enzyme. Clin Exp Hypertens 9:243-260. - 77. O'Sullivan JB, Harrap SB. 1995. Resetting blood pressure in spontaneously hypertensive rats: the role of bradykinin. Hypertension 25:162-165. - 78. Yang RH, Jin H, Chen S, Wyss JM, Oparil S. 1992. Blocking hypothalamic AT₁ receptors lowers blood pressure in salt-sensitive rats. Hypertension 20:755-762. - 79. Chan RKW, Chan YS, Wong TM, 1994. Effects of [Sar¹, Ile8]-angiotensin II on rostral ventrolateral medulla neurons and blood pressure in spontaneously hypertensive rats. Neurosci 63:267- - 80. Bruner CA, Kuslikis BI, Fink GD. 1987. Effect of inhibition of central angiotensin pressor mechanisms on blood pressure in spontaneously hypertensive rats. J Cardiovasc Pharmacol 9:298-304 - 81. DePasquale MJ, Fossa AA, Holt WF, Mangiapane ML. 1992. Central Dup753 does not lower blood pressure in spontaneously hypertensive rats. Hypertension 19:668-671. - 82. Kawano Y, Yoshida K, Matsuoka H, Teruo O. 1994. Chronic effects of central and systemic administration of losartan on blood pressure and baroreceptor reflex in spontaneously hypertensive rats. Am J Hypertens 7:536-542. - 83. Huang BS, Leenen FHH. 1996. Brain "ouabain" and angiotensin II in salt-sensitive hypertension in spontaneously hypertensive rats. Hypertension 28:1005-1012. - 84. Koepke JP, Jones S, Dibona GF. 1988. Sodium responsiveness of central α2-adrenergic receptors in spontaneously hypertensive rats. Hypertension 11:326-333. - 85. Wyss JM, Yang R, Jin H, Oparil S. 1988. Hypothalamic microinjection of alpha2-adrenoceptor agonists causes greater sympathoinhibition in spontaneously hypertensive rats on high sodium diet. I Hypertens 6:805–813. - 86. Leenen FHH, Harmsen E, Yu H, Ou C. 1993. Effects of dietary sodium on central and peripheral ouabainlike activity in spontaneously hypertensive rats. Am J Physiol 264:H2051-H2055. - 87. Leenen FHH, Harmsen E, Yu H. 1994. Dietary sodium and central vs. peripheral ouabain-like activity in Dahl salt-sensitive vs. salt-resistant rats. Am J Physiol 267:H1916-H1920. - 88. Butler VP Jr, Smith TW, Schmidt DH, Haber E. 1977. Immunological reversal of the effects of digoxin. Fed Proc 36:2235-2241. - 89. Balzan S, Montali U, Biver P, Ghione S. 1991. Digoxin-binding antibodies reverse the effect of endogenous digitalis-like compounds on Na,K-ATPase in erythrocytes. J Hypertens 9(Suppl 6):S304-S305. - 90. Huang BS, Leenen FHH, 1994. Brain "ouabain" mediates the sympathoexcitatory and hypertensive effects of high sodium intake in Dahl salt-sensitive rats. Circ Res 74:586-595. - 91. Huang BS, Leenen FHH, 1995. Brain "ouabain", sodium and arterial baroreflex in spontaneously hypertensive rats. Hypertension Dallas 25:814-817. - 92. Takata Y. 1986. Brain renin-angiotensin system contributes to the salt-induced enhancement of hypertension in SHR. Clin Exp Hypertens 8:1146-1170. - 93. Oparil S, Yang RH, Jin HG, Chen SJ, Meng QC, Berecek KH, Wyss JM. 1994. Role of anterior hypothalamic angiotensin II in the pathogenesis of salt sensitive hypertension in the spontaneously hypertensive rat. Am J Med Sci 307(Suppl I):S26-S37. - 94. Huang BS, and Leenen, FHH. 1997. Role of brain "ouabain" and Ang II in salt-sensitive hypertension in Dahl S rats. (abstract) Clin Invest Med 20:S41. - 95. Teruya H, Muratani H, Takishita S, Sesoko S, Matayoshi R, Fukiyama K. 1995. Brain angiotensin II contributes to the development of hypertension in Dahl-Iwai salt-sensitive rats. J Hypertens 13:883-890. - 96. Nakamura K, Cowley AW Ir. 1989. Sequential changes of cerebrospinal fluid sodium during the development of hypertension in Dahl rats. Hypertension 13:243-249. - 97. Mozaffari MS, Jirakulsomchok S, Oparil S, Wyss JM. 1990. Changes in cerebrospinal fluid Na+ concentration do not underlie hypertensive responses to dietary NaCl in spontaneously hypertensive rats. Brain Res 506:149-152. - 98. Huang BS, Veerasingham SJ, Leenen FHH. 1998. Brain "ouabain", angiotensin II and baroreflexes impairment in centrally sodium loaded rats. Am J Physiol 43:H1269-H1276. - 99. Yamada H, Ihara N, Sano Y. 1987. Morphological
evidence of endogenous digitalis-like substance (EDLS) in the rat and macaque hypothalamus, using digoxin-immunohistochemistry. Endocrinol Japan 34:319-323. - 100. Yamada H, Ihara N, Takahashi H, Yoshimura M, Sano Y. 1992. Distribution of the endogenous digitalis-like substance (EDLS)-containing neurons labeled by digoxin antibody in hypothalamus and three circumventricular organs of dog and macaque. Brain Res 584:237-243. - 101. Plunkett LM, Shigematsu K, Kurihara M, Saavedra JM. 1987. Localization of angiotensin II receptors along the anteroventral third ventricle area of the rat brain. Brain Res 405:205-212. - 102. Hartle DK, Lind RW, Johnson AK, Brody MJ. 1982. Localization of the anterior hypothalamic angiotensin II pressor system. Hypertension 4(Suppl II):159-165. - 103. Buggy J, Huot S, Pamnani M, Haddy F. 1984. Periventricular forebrain mechanisms for blood pressure regulation. Fed Proc 43:25-31. - 104. Takahashi H, Iyoda I, Takeda S, Sasaki S, Okajima H, Yamasaki H, Yoshimura M, Ijichi H. 1984. Centrally induced vasopressor responses to sodium-potassium adenosine triposphatase inhibitor, ouabain, may be mediated via angiotensin II in the anteroventral third ventricle in the brain. Jpn Circ J 48:1243-1250. - 105. Goto A, Ganguli M, Tobian L, Johnson MA, Junichi I. 1982. Effect of an anteroventral third ventricle lesion on NaCl hypertension in Dahl salt-sensitive rats. Am J Physiol 243:H614-H618. - 106. Sanders, BJ, Johnson AK. 1989. Lesions of the anteroventral third ventricle prevent salt-induced hypertension in the borderline hypertensive rat. Hypertension 14:619-622. - 107. Veerasingham SJ, Leenen FHH. 1997. Excitotoxic lesions of the ventral anteroventral third ventricle and pressor responses to central sodium, ouabain and angiotensin II. Brain Res 749:157- - 108. Veerasingham SJ, Leenen FHH. 1997. The ventral anteroventral third ventricle mediates central sodium and ouabain induced hypertension (abstract). FASEB J 11:Abs 2846. - 109. Stamler JF, Raizada, MK, Ferrows RE, Phillips. MI. 1980. Increased specific binding of angiotensin II in the organum vasculosum of the laminae terminalis area of the spontaneous hypertensive rat brain. Neurosci Lett 17:173-177. - 110. Tanaka J, Yamamuro Y, Saito H, Matsuda M, Nomura M. 1995. Differences in electrophysiological properties of angiotensinergic pathways from the subfornical organ to the median preoptic - nucleus between normotensive wistar-kyoto and spontaneously hypertensive rats. Exper Neurol 134:192-198. - 111. Budzikowski AS, Leenen FHH. 1997. Brain "ouabain" in the median preoptic nucleus mediates sodium sensitive hypertension in SHR. Hypertension 290:599-605. - 112. Budzikowski AS, Leenen FHH. 1997. "Ouabain" and angiotensin II in the median preoptic nucleus. (abstract) Hypertension 30(3):500. - 113. Wyss JM, Chen YF, Jin H, Gist R, Oparil S. 1987. NaCl sensitive SHR exhibit reduced hypothalamic noradrenergic input following NaCl loading. Hypertension 10:313-320. - 114. Chen YF, Meng Q, Wyss JM, Jin H, Oparil S. 1988. NaCl loading reduces anterior hypothalamic norepinephrine turnover in NaCl sensitive sponstaneously hypertensive rat. Hypertension 11:55-62. - 115. Klangkalya B, Sripairojthikoon W, Oparil S, Wyss JM. 1988. High NaCl diet increases anterior hypothalamic α2 adrenoceptors in SHR. Brain Res 451:77-84. - 116. Johnson AK, Gross PM. 1993. Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678-686. - 117. Qadri F, Edling, W, Wolf A, Gohlke P, Culman J, Unger T. 1994. Release of angiotensin in the paraventricular nucleus in response to hyperosmotic stimulus in conscious rats: a microdialysis study. Brain Res 637:45-49. - 118. Goto A, Ikeda T, Tobian L, Iwai J, Johnson MA. 1981. Brain lesions in the paraventricular nuclei and catecholaminergic neurons minimize salt hypertension in Dahl salt-sensitive rats. Clin Sci 61:535-555. AT₁ ANGIOTENSIN RECEPTOR BLOCKADE AND ANGIOTENSIN CONVERTING ENZYME INHIBITION: EFFECTS ON VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION IN SHR ## ERNESTO L. SCHIFFRIN, JIN-S. LI and ALI M. SHARIFI MRC Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montréal, University of Montréal, Montréal, Québec, Canada Summary. Small arteries of different vascular beds exhibit structural and functional remodeling in spontaneously hypertensive rats (SHR) compared to those of Wistar-Kyoto control rats (WKY). These differences may be reduced by treatment with angiotensin I-converting enzyme inhibitors (ACEI). It is unclear whether this beneficial effect is the result of inhibition of the generation of angiotensin (Ang) II by ACEI or the result of increased bradykinin accumulation or other mechanisms. To evaluate the role of Ang II, SHR were treated for twelve weeks with the AT, angiotensin receptor antagonist losartan or with the angiotensinconverting enzyme inhibitor enalapril once blood pressure had been elevated for some time, at ten weeks of age. Losartan induced a dose-dependent blood pressure reduction, which was associated with a blunting of cardiac and aortic hypertrophy, similar to that elicited by enalapril. Small arteries from the coronary, renal, mesenteric, and femoral circulations exhibited a dose-dependent blunting of remodeling under losartan treatment, accompanied by abolition of the impairment of endothelium-dependent relaxation, as was also found in rats treated with enalapril. Treatment with AT₁ selective Ang II receptor antagonists is able to induce regression of cardiovascular hypertrophy and endothelial dysfunction in genetic hypertension in the rat similar to that induced by ACEI. This suggests that part of the mechanism whereby ACEI exert their beneficial effects is via inhibition of Ang II generation. Elevated peripheral resistance is the hallmark of high blood pressure, and it is in large measure the result of energy dissipation at the level of so-called resistance arteries, which include small arteries (vessels with lumen diameters of $100-300\,\mu m$) and even smaller arterioles [1]. Small arteries present significant changes in structure and function in hypertension [2,3]. Structurally they exhibit what is called "eutrophic remodeling" [4], that is a reduction in the lumen and external diameter with normal media cross-section (or volume of the media per unit length), combined with some degree of growth. There is controversy on whether vessels have the same number of smooth muscle cells, whether there is cell hyperplasia or cell hypertrophy [5,6]. The more frequent change found in small arteries is that slightly larger and more numerous cells are restructured around the lumen of the blood vessel resulting in a smaller lumen and outer diameter, with a predominant eutrophic remodeling component and a limited component of growth [7]. How this re-arrangement occurs is unknown, but may result from changes in cell adhesion molecules or intercellular matrix deposition or spatial arrangement of fibrillar material. These changes have been well described in spontaneously hypertensive rats (SHR) [6-11]. These changes may be involved in the pathogenesis of elevated blood pressure, although this is still unclear [2,12-14], and may also participate in mechanisms underlying some of the complications of hypertension, particularly at the level of the coronary microcirculation. SHR exhibit these alterations in the structure and function of small arteries in many vascular beds, including such pathophysiologically critical ones as the heart and kidney [15-17], and in the brain [15,18]. Associated with eutrophic or hypertrophic remodeling, these vessels present impaired endothelium-dependent relaxation as a result of acetylcholine-induced contractions through production of endothelium-derived contracting factor (EDCF) [19,20]. Factors implicated in the induction of structural changes in small arteries in hypertension include hyperplasia or cell hypertrophy in response to Ang II [21], other vasoactive peptides, or other agents such as catecholamines may play a role. Thus for some time it has been thought that treatment with agents that interrupt the renin-angiotensin system could result in regression of vascular remodeling in hypertension. The mechanisms involved in the production of functional changes in small arteries remain unclear. Endothelial vasorelaxant dysfunction may involve reduced nitric oxide production or enhanced degradation of nitric oxide because of the effect of superoxide anions [20] or may involve excess production of vasoconstrictor endoperoxides (EDCF)[19]. Whether treatment that interrupts the RAS would improve these abnormalities has not been definitively established. Therefore, there has been interest in determining whether some antihypertensive drugs that block the RAS may improve the structure and function of small arteries in vascular beds, such as the renal or the coronary circulations, which may be involved in major long-term complications of hypertension. Correction of structural alterations of small arteries in SHR has been demonstrated in previous studies using angiotensin-converting enzyme inhibitors (ACEI) [13,14,15,17,22,23]. The favorable effect of ACEI may be due to inhibition of Ang II generation or kinin degradation or may be due to other potential effects of these agents. Some studies performed using the Ang II antagonist losartan [24] and more recent studies with the Ang II receptor antagonist D8731 [25] have suggested that improvement of small artery structure may be induced by prolonged treatment with specific Ang II antagonists. The latter study [25] documented prevention of structural vascular changes in several important vascular beds with this Ang II receptor antagonist that was similar to prevention of the same with the angiotensin-converting enzyme inhibitor lisinopril. In these studies prevention of the development of vascular damage in SHR was the objective, and treatment was initiated at four weeks of age. There have,
however, been few attempts to learn whether regression of vascular changes in critical vascular beds could be achieved with Ang II receptor antagonists once hypertension, with its attendant adaptive vascular alterations, had already developed. Treatment of SHR with calcium channel antagonists [17,26], ACEI [17,26,27], or Ang II receptor antagonists [28] has resulted in correction of abnormal endothelial function along with the regression of vascular remodeling. We have examined the effects of the Ang II antagonist losartan on small artery structure at the level of four vascular beds. Coronary, renal, mesenteric and femoral, were evaluated in SHR which had already become hypertensive, and which were treated from weeks of age for a period of 12 weeks [28], in comparison to effects of the ACEI enalapril given for a similar period of time. Of the vascular beds investigated, the coronary and renal small arteries may be critical in relation to hypertensive complications, whereas mesenteric and femoral small arteries may contribute to elevated peripheral resistance. These resistance-sized arteries were investigated after they were mounted on an isometric wire-myograph, as performed in most studies in the past [6,8,9,11,13-17,22,24,25,27]. In addition, mesenteric arteries were investigated isobarically in a pressurized chamber, which may represent a more physiological approach for the study of these vessels [7,19,26,29], in order to compare results with those obtained isometrically. #### **METHODS** SHR were housed individually and treated from 10 weeks of age for 12 weeks with losartan or enalapril administered in the drinking water, with the concentration of drug adjusted daily to ensure a dose of 20 or 50 mg/kg per day of losartan or 10 mg/ kg per day of enalapril. Blood pressure of treated and untreated SHR and of agematched Wistar-Kyoto (WKY) control rats was measured every two weeks with the tail-cuff method after warming the rats, which were slightly restrained in a plexiglass cage. Rats were killed by decapitation, and tissues were immediately dissected, blotted dry, and weighed. Coronary, renal arcuate, and femoral arteries were obtained as described previously [16,17]. They were mounted on an isometric wiremyograph and measurements performed as described already in detail [11, 16,17,27]. The vessels were contracted with 10 µmol/l norepinephrine and relaxed with a single maximal concentration of 10 µmol/l acetylcholine to evaluate endotheliumdependent contraction. Mesenteric small arteries obtained from the same rats were mounted as pressurized preparations, at a intravascular pressure of 45 mmHg [7]. The function of the vascular endothelium was evaluated by extraluminal application of acetylcholine (10 µmol/L) in PSS containing 10 µmol/L norepinephrine. Measurements were performed on the pressurized vessels after they were deactivated with 10μmmol/L ethyleneglycol-bis-(β-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) for 10 minutes. #### RESULTS #### Effect of treatment on blood pressure, and on heart and aorta weight Systolic blood pressure measured with the tail-cuff method in rats treated with losartan or enalapril rose significantly less (p < 0.01) than that of untreated SHR At 22 weeks of age, blood pressure of SHR treated with a low dose of losartan (20 mg/kg per day in the drinking water) rose to 181 ± 1 mmHg, that of SHR treated with a high dose of losartan (50 mg/kg per day in the drinking water) rose to 156 ± 4 mmHg. That of SHR reated with enalapril (10 mg/kg per day in the drinking water) rose to 148 ± 4mmHg. whereas the blood pressure of untreated SHR rose to 210 ± 2mmHg. Blood pressure of WKY rats was unaffected by treatment. The weight of the heart, which was significantly elevated in SHR relative to body weight (4.41 ± 0.08 mg/g body weight), was dose-dependently reduced under treatment with losartan (to $3.47 \pm 0.06 \,\mathrm{mg/g}$ at the high dose, p < 0.01) and significantly reduced to a similar degree by enalapril (3.67 \pm 0.06 mg/g), p < 0.01). The weight of 2 cm segments of thoracic aorta of SHR (12.7 \pm 0.2 mg/100 g body weight) were significantly reduced as well by treatment in a dose-dependent manner (to 9.5 \pm 0.1 mg/100 g by the higher dose of losartan, and to 10.3 \pm 0.3 mg/100 g by enalapril, both p < 0.01 vs. untreated SHR), whereas there were no changes in WKY when corrected for weight. #### Effect of losartan or enalapril on structure of small arteries Small arteries from the coronary, renal (arcuate arteries), mesenteric, and femoral circulations, whether studied on the wire-myograph or as pressurized preparations, exhibited the expected combination of eutrophic and mild hypertrophic remodeling [4,7,8,11]. Lowering of blood pressure with losartan or enalapril did not significantly affect lumen diameter, but a significant dose-dependent reduction in media width to lumen diameter ratio was found in the four vascular beds examined on the wire myograph from SHR treated with losartan (figure 1) and in the mesenteric arteries studied as pressurized preparations (not shown). Similarly, enalapril treatment resulted in a significant decrease in media to lumen ratio in the four vascular beds, without significant change in lumen diameter (figure 1). #### Effect of treatment on endothelial function of small arteries Wire-mounted mesenteric small arteries of WKY contracted with a submaximal concentration of methoxamine were completely relaxed by 10 µmol/L acetylcholine. In contrast, and as expected [19,30], arteries from untreated SHR exhibited contractions when stimulated with this dose of acetylcholine. Small arteries from losartan or enalapril-treated SHR showed an abolition of these contractions elicited by elevated concentrations of 10 µmol/L acetylcholine, whereas responses to the endothelium-independent vasodilator nitroprusside were similar in treated or untreated SHR. Pressurized, precontracted mesenteric small arteries from WKY were almost completely relaxed by 10 µmol/l acetylcholine (>95%), whereas those from untreated SHR relaxed significantly less (<80%). Pressurized mesenteric small arter- Figure 1. Bar graphs show the media width to lumen diameter ratio of small arteries dissected from the coronary, renal cortical, mesenteric, and femoral vasculature from Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), the latter treated or not with a low dose of losartan (Los (L), 20 mg/kg per day in the drinking water), a high dose of losartan (Los (H), 50 mg/kg per day), or enalapril (Enal, 10 mg/kg per day) and studied on an isometric wire-myograph. *p < 0.05, **p < 0.01 vs. WKY; # p < 0.05, ## p < 0.01 vs. SHR. (Drawn in part using data from Li J-S et al. [28].) ies from losartan or enalapril-treated SHR showed a normalization of relaxation in response to acetylcholine (>90%). #### **DISCUSSION** Chronic administration of the ACEI enalapril or the orally active, nonpeptidic selective Ang II AT₁ receptor antagonist losartan to SHR results in a dose-dependent regression of hypertrophy. However, correction of endothelium-dependent dysfunction in small arteries occurs already at the lower dose of losartan, which is associated with only a moderate degree of correction of small artery structure. This may indicate that normalization of the impairment of endothelial function may precede correction of structure, as already suggested by other studies in which shortterm treatment with a calcium channel blocker normalized endothelium-dependent relaxation at a time when no correction of vascular structure was detectable [31]. It is difficult to know whether blood pressure lowering is a necessary condition for regression of hypertensive cardiovascular changes. In other studies using the ACEI perindopril, regression of vascular hypertrophy was dose-dependent and parallel to blood pressure lowering [15], as with losartan in the study reported here. This would support the view that structural regression is determined in large measure by blood pressure lowering. With losartan there may, however, slightly greater reversal of hypertrophy than with the ACEI cilazapril and the calcium channel antagonist mibefradil [17] or even with enalapril in this study. Other studies have shown similar effects of ACEIs and other AT₁ receptor antagonists [25]. Losartan appears to exert its effect on vascular growth [32] by blockade of the AT₁ angiotensin receptor and thus by interruption of the RAS, which may explain the similarity of its results with ACEI. Bradykinin accumulation may contribute to the effects of ACEI, but these results suggest that in relation to structural regression, bradykinin, which does not accumulate under the angiotensin antagonist, plays at most a minor role. The improvement in endothelial dysfunction (production of endothelium-derived contracting factor or EDCF) [19,30] after treatment with ACEI has sometimes been attributed to the beneficial effects of kinin accumulation. This would be expected with ACE inhibition but not with angiotensin receptor blockade. The improvement found in SHR treated with losartan may be a consequence of blood pressure lowering or of some other phenomenon. Angiotensin AT₁ subtype receptors are present in the endothelium of arteries [33], and their blockade could result in the improvement of endothelial function reported in this study. Endothelial effects of AT₁ blockade could also result from the unopposed action of angiotensin peptides on AT2 receptors, which are not blocked by losartan. In the kidney, AT2 receptor stimulation via generation of cGMP antagonizes AT₁ receptor stimulation of PGE₂ production [34]. The vasorelaxant and antigrowth effects of cGMP could contribute to the results of treatment with losartan, resulting in effects similar to or even greater than those induced by ACEIs. In conclusion, both the orally active, nonpeptidic selective angiotensin AT₁ receptor antagonist losartan and the ACEI enalapril induced
a regression of cardiovascular hypertrophy in the heart and small arteries of pathophysiologically critical vascular beds, such as the coronary and renal circulations, and simultaneously improved endothelial dysfunction. Neither the present nor previous studies conclusively demonstrate whether the effects of ACEI or AT, receptor antagonism are superior. On the other hand, if beneficial effects such as those mentioned occur in hypertensive humans treated with these drugs, as has already been demonstrated with ACEIs [35-38], this class of agents could have a significant beneficial effect on blood vessels of hypertensive humans, and could improve outcome, which remains to be demonstrated. #### **ACKNOWLEDGMENTS** The work from the author's laboratory was supported by a group grant from the Medical Research Council of Canada to the Multidisciplinary Research Group on Hypertension, by a grant from the Fondation des maladies du coeur du Québec, and by a Medical School Grant from Merck and Co. Inc., West Point, New Jersey. #### REFERENCES - 1. Bohlen HG. 1986. Localization of vascular resistance changes during hypertension. Hypertension - 2. Mulvany MJ, Aalkjaer C. 1990. Structure an function of small arteries. Physiol Rev 70:921-971. - 3. Schiffrin EL. 1992. Reactivity of small blood vessels in hypertension. Relationship with structural changes. Hypertension 19 (Suppl II) 1-9. - 4. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD. 1996. Vascular remodeling (letter to the editor). Hypertension 27:505-506. - 5. Lee RMKW, Garfield RE, Forrest JB, Daniel EE. 1983. Morphometric study of structural changes in the mesenteric blood vessels of spontaneously hypertensive rats. Blood Vessels 20:57-71. - 6. Mulvany MJ, Hansen PK, Aalkjaer C. 1978. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and in increased number of smooth muscle cell layers. Circ Res 43:854-864. - 7. Laurant P, Touyz RM, Schiffrin EL. 1997. Effect of pressurization on mechanical properties of mesenteric small arteries from spontaneously hypertensive rats. J Vasc Res 34:117-125. - 8. Mulvany MJ, Korsgaard N. 1983. Correlations and otherwise between blood pressure, cardiac mass and resistance vessel characteristics in hypertensive, normotensive and hypertensive/normotensive hybrid rats. J Hypertens 1:235-244. - 9. Mulvany MI, Baandrup U, Gundersen HIG. 1985. Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a 3-dimensional dissector. Circ Res 57:794-800. - 10. Baumbach GL, Heistad DD. 1989. Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13:968–972. - 11. Deng LY, Schiffrin EL. 1992. Effects of endothelin-1 and vasopressin on small arteries of spontaneously hypertensive rats. Am J Hypertens 5:817-822. - 12. Izzard As, Heagerty Am. 1995. Hypertension and the vasculature: arterioles and the myogenic response. J Hypertens 13:1-4. - 13. Christensen KL, Jespersen LT, Mulvany MJ. 1989. Development of blood pressure in spontaneously hypertensive rats after withdrawal of long-term treatment related to vascular structure. J Hypertens - 14. Mulvany MJ, Persson AEG, Andresen J. 1991. No persistent effect of angiotensin converting enzyme inhibitor treatment in Milan hypertensive rats despite regression of vascular structure. J Hypertens 9:589-593. - 15. Thybo NK, Korsgaard N, Eriksen S, Christensen KL, Mulvany MJ. 1994. Dose-dependent effects of perindopril on blood pressure and small-artery structure. Hypertension 23:659–666. - 16. Li J-S Schiffrin EL. 1995. Effect of chronic treatment of adult spontaneously hypertensive rats with an endothelin receptor antagonist. Hypertension 25:495-500. - 17. Li J-S, Schiffrin EL. 1996. Effect of calcium channel blockade or angiotensin converting enzyme inhibition on structure of coronary, renal and other small arteries in SHR. I Cardiovasc Pharmacol 28:68-74. - 18. Baumbach GL, Heistad DD. 1989. Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13:968-972. - 19. Diedrich DA, Yang Z, Bühler FR, Lüscher TF. 1990. Impaired endothelium-dependent relaxations in hypertensive small arteries involve the cyclooxygenase pathway. Am J Physiol (Heart Circ Physiol) 258: H445-H451. - 20. Tschudi MR, Mesaros S, Lüscher TF, Malinski T. 1996. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Hypertension 27:32–35. - 21. Gibbons GH, Pratt RE, Dzau VJ. 1992. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-\$\beta\$1 expression determines growth response to angiotensin II. J Clin Invest 90:456-461. - 22. Harrap SB, Van der Merwe WM, Griffin SA, McPherson F, Lever AF. 1990 Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension 16:603-614. - 23. Lee RMKW, Berecek KH, Tsoporis J, McKenzie R, Triggle CR. 1991. Prevention of hypertension and vascular changes by captopril treatment. Hypertension 17:141-150. - 24. Morton JJ, Beattie EC, MacPherson F. 1992. Angiotensin II receptor antagonist losartan has persistent effects on blood pressure in the young spontaneously hypertensive rat: lack of relation to vascular structure. J Vasc Res 29:264-269. - 25. Shaw LM, George PR. Oldham AA, Heagerty Am. 1995. A comparison of the effect of angiotensin converting enzyme inhibition and angiotensin II receptor antagonism on the structural changes associated with hypertension in rat small arteries. J Hypertens 13:1135-1143. - 26. Dohi Y, Criscione L. Pfeiffer K, Lüscher TF. 1994. Angiotensin blockade or calcium antagonists improve endothelial dysfunction in hypertension: studies in perfused mesenteric resistance arteries. J Cardiovasc Pharmacol 24:372-379. - 27. Deng LY, Schiffrin EL. 1993. Effect of antihypertensive treatment on response to endothelin of resistance arteries of hypertensive rats. J Cardiovasc Pharmacol 21:725-731. - 28. Li J-S, Sharifi MA, Schiffrin EL. 1997 Effect of AT, angiotensin receptor blockade on structure and function of small arteries in SHR. J Cardiovasc Pharmacol 30:75-83. - 29. Schiffrin EL. 1995. Vascular structure in L-NAME-induced hypertension: Methodological considerations for studies of small arteries in hypertension. J Hypertens 13:817-821. - 30. Deng LY, Li J-S, Schiffrin EL. 1995. Endothelium-dependent relaxation in small arteries from essential hypertensive patients. Comparison with spontaneously hypertensive rats. Clin Sci 88:611- - 31. Li J-S, Schiffrin EL. 1997. Effect of short-term treatment of SHR with the novel calcium channel antagonist mibefradil on function of small arteries in SHR. Am J Hypertens 10:94-100. - 32. Chiu AT, Roscoe WA, McCall DE, Timmermans PBMWM. 1991. Angiotensin II AT-1 receptors mediate both vasoconstriction and hypertrophic responses in rat aortic smooth muscle cells. Receptor 1:133-140. - 33. Caputo L, Benessiano J, Boulanger CM, Lévy BI. 1995. Angiotensin II increases cGMP content via endothelial angiotensin II AT₁ subtype receptors in the rat carotid artery. Arterioscl Thromb Vasc Biol 15:1646-1651. - 34. Siragy HM, Carey RM. 1996. The subtype-2 (AT₂) angiotensin receptor regulates renal cyclic guanosine 3',5'-monophosphate and AT, receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest 97:1978-1982. - 35. Schiffrin EL, Deng LY, Larochelle P. 1994. Effects of a beta blocker or a converting enzyme inhibitor on resistance arteries in essential hypertension. Hypertension 23:83-91. - 36. Schiffrin EL, Deng LY, Larochelle P. 1995. Progressive improvement in the structure of resistance arteries of hypertensive patients after 2 years of treatment with an angiotensin converting enzyme inhibitor. Comparison with effects of a beta blocker. Am J Hypertens 8:229-236. - 37. Thybo NK, Stephens N, Cooper A, Aalkjaer C, Heagerty AM, Mulvany MJ. 1995. Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 25:474-481. - 38. Schiffrin EL, Deng LY. 1995. Comparison of effects of angiotensin converting enzyme inhibition and beta blockade on function of small arteries from hypertensive patients. Hypertension 25:699-703. ### CELLULAR PHYSIOLOGY OF ANGIOTENSIN II RECEPTORS IN VASCULAR SMOOTH MUSCLE CELLS P. ZAHRADKA^{1,2}, D. WILSON^{1,2}, L. SAWARD^{1,2}, L. YAU^{1,2}, and P.K. CHEUNG³ Summary. Angiotensin (Ang) II operates both as a systemic hormone modulating blood pressure and as a paracrine factor that is synthesized in response to stress. Regardless of its origin, the response of cardiovascular tissues to Ang II is mediated by specific cell surface receptors. In vascular tissues, two angiotensin receptors have been characterized according to their sensitivity to the specific antagonists losartan and PD123319 [1]. The AT₁ receptor (losartan-sensitive) accounts for the majority of Ang II binding activity in adult tissue. It is significant, however, that upon injury and during fetal development, the proportion of AT, receptors (PD123319-sensitive) increases [2]. Until recently the AT₁ receptor has been regarded as the principal mediator of the responses evoked by Ang II. As a consequence the AT₂ receptor has been studied less intensively and fewer details of its biological functions have been defined. The developmental regulation of AT2 receptor expression, however, suggests that it may be important in ontogeny. Furthermore, the generation of an AT2 receptor knockout mouse has revealed that this receptor, although its absence is not lethal, governs both the drinking response and motility [3]. In our laboratory, which has made use of porcine tissue for its studies, the application of antagonists specific to either the AT, or the AT, receptor has revealed that both receptors are independently required for VSMC growth. This
review will, therefore, summarize recent advances in our understanding of Ang II-mediated SMC growth with respect to the role of individual angiotensin receptor subtypes and their associated signaling systems. Since both receptors have also been found essential for the vascular response to injury, an emphasis has been placed on defining the relationship between SMC growth and Ang II as it applies to the development of coronary artery disease and restenosis. ¹ Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Departments of ² Physiology and ³ Medicine, University of Manitoba, Winnipeg, Manitoba, Canada #### THE RENIN-ANGIOTENSIN SYSTEM IN RESTENOSIS Perhaps one of the most profound advances in the clinical treatment of occlusive coronary artery disease has been the advent of coronary angioplasty [4]. While the initial intervention is highly successful (>90%), there is a significant problem with late (4 to 10 months) failure which may reach as high as 40% [5,6]. This regression is caused primarily by the formation of a secondary occlusion or restenosis that differs significantly from the original atherosclerotic lesion. Restenosis is a proliferative disease of the arterial wall that occurs in response to vascular trauma and is characterized by migration and rapid luminal proliferation of cells originally in the medial smooth muscle layer, deposition of extracellular matrix, and infiltration of neutrophils and macrophages [7,8]. Cellular stress (vascular damage) has been linked to activation of the reninangiotensin system [9]; therefore, it seemed appropriate to examine the role of angiotensin (Ang) II in the formation of the restenotic lesion. A porcine coronary artery culture model (modified from Koo and Gotlieb [10]) was used to examine the effect of balloon angioplasty on the contribution of Ang II to the formation and proliferation of a neointima. Using this model of restenosis, we were able to demonstrate that neointimal proliferation is suppressed in a concentrationdependent manner by losartan (AT₁ antagonist), reaching a maximum inhibition of 70% at 10 µM [11]. A similar effect was observed with PD123319 (AT₂ antagonist), with a 76% reduction at 10 µM. A combination of both losartan and PD123319, on the other hand, showed no additional improvement. Interestingly, while it has been shown that ACE inhibitors successfully reduce stenosis in rodent models [12,13], they have proven ineffective in our porcine model. In fact, captopril produced a slight increase in the magnitude of the neointima following balloon angioplasty [11]. The importance of species-specific responses should be considered carefully in light of the MARCATOR study, which demonstrated that the clinical use of ACE inhibitors was largely ineffective in reducing restenosis postangioplasty [14]. The observed species-specificity for ACE inhibitors may be explained by the presence of alternative pathways (figure 1) for the synthesis of Ang II [15]. The importance of a chymase-dependent system has recently been recognized in humans [16-18]. It may, therefore, be predicted that receptor antagonists will be more effective in preventing restenosis since they block the cell response directly. It may be prudent, however, to consider a recent report by Huckle et al. [19] that compared the utility of AT₁, AT₂ and, dual AT₁/AT₂ receptor blockade in both the rat and the pig. These investigators showed the AT₁ antagonist (L-158,809) produced a significant reduction in neointimal area in the rat (37%) while having a minimal effect in the pig (12%). Although the latter was not statistically significant, a 12% reduction in neointimal thickness could theoretically increase flow by approximately 50%. While little effect was observed by these authors with AT2 or AT1/AT2 antagonists, evidence that AT2 receptor blockade will effectively prevent neointimal formation has, nevertheless, been reported [20]. It is, therefore, tempting to speculate that Figure 1. An overview of angiotensin II metabolism. restricting the interaction of Ang II with its receptors might limit the development of restenosis post-angioplasty, regardless of whether the vascular source of Ang II is ACE-dependent or not. #### THE SMOOTH MUSCLE RESPONSE TO ANGIOTENSIN II Vascular smooth muscle cells (VSMC) express both AT₁ and AT₂ receptor subtypes as demonstrated through ligand binding and Northern blotting experiments [21,22]. In adult vascular tissues, the AT₁ receptor clearly predominates, as indicated by the insensitivity of the Ang II binding sites to PD123319 [23]. This disparity in receptor number has led to increased interest in the AT₁ receptor as a target for therapeutic intervention and interest in using specific receptor antagonists, such as losartan. Numerous studies have demonstrated that the AT₁ receptor is involved in both the contractile and the proliferative responses to Ang II [24,25]. Based on these reports, it has been assumed that the AT, receptor almost exclusively mediates the biological responses associated with Ang II. This interpretation has provoked little debate because information concerning AT2 receptor function is lacking. More recently, however, we have observed that both receptor subtypes may be required for a complete smooth muscle cell (SMC) response to injury [11]. Similar results have been reported by Levy et al. [26] who found that vascular hypertrophy and fibrosis could be reduced by AT₂ receptor blockade as well as by AT₁ receptor antagonists. Since the studies reported to date have shown the AT₁ and AT₂ receptors do not stimulate the same intracellular responses, we propose that these receptors mediate distinct signaling pathways and that activation of both receptors may be necessary to evoke cell proliferation. Methods to assess the alteration in cell growth state can be readily applied to studies at the tissue or animal level, but a comprehensive and detailed characterization of the molecular mechanisms that regulate these processes is more effectively achieved with cells in culture. Two cell culture systems have, therefore, been employed in the course of our studies. Our initial studies used rat aortic A10 SMCs to monitor the stimulation of growth by Ang II. The results supported the premise that the AT₂ receptor is an important factor in angiotensin-dependent growth [27]. Additional studies with A10 SMCs have established that AT2 receptor density varies with cell-growth state [28]. This latter point was corroborated by Kambayashi et al. [29] who observed that AT2 receptor expression was induced by placing rat aortic SMCs into serum-reduced conditions. Experimental conditions designed to achieve quiescence, as described by Saward and Zahradka [28] and Kambayashi et al. [29], were not previously employed by other investigators; consequently, a contribution of AT2 receptors to SMC growth may not have been detectable. Regardless, our results [28] and those of Kambayashi et al. [29] clearly indicate that establishment of a quiescent state, which requires a period of 3 to 7 days in reduced serum, should be considered as an essential protocol for studies designed to survey AT2 receptor function. Our second culture system employed porcine coronary artery SMCs [30] which proliferate in response to Ang II, as determined by assays for protein, RNA and, DNA synthesis [Saward and Zahradka, submitted]. Evidence that SMCs traverse the cell cycle and proceed through mitosis has also been obtained. Transition through the cell cycle was confirmed by experiments (PCNA immunostaining, thymidine uptake) which established that S phase is not reached sooner than 36 hours, while an increase in cell number is not observed before 96 hours after addition of the Ang II. These data demonstrated that SMC proliferation is activated by Ang II, although passage through the cell cycle is relatively slow. The experiments with porcine artery SMCs were subsequently extended to characterize the receptor contribution to angiotensin-mediated SMC proliferation. As was observed with the A10 cell and organ culture systems, the proliferation of coronary artery SMCs was inhibited by PD123319, supporting the evidence that AT₂ receptor activation is important for cell growth [31]. Interestingly, losartan was also observed to inhibit SMC growth, exhibiting an efficacy that is comparable to, but not additive with, that of PD123319. Since these antagonists are highly selective for their respective receptors, a new paradigm must be developed to justify the involvement of both angiotensin receptor subtypes in the control of cell proliferation. To account for these observations, we have postulated that the AT₁ and AT₂ receptors operate through independent intracellular signaling systems, each activating distinct processes that are obligatory for cell cycle progression. Thus, the redundancy in receptor function that is perceived when an endpoint such as cell growth is used to monitor the response to Ang II may not be evident when shortterm responses are considered. As part of our effort to define the contribution of the AT₁ and AT₂ receptors to SMC growth and proliferation, two unrelated systems, prostaglandins and phosphatidylinositol 3-kinase (P13K), were investigated for their potential to operate as intracellular mediators for Ang II. #### PROSTAGLANDINS AS MEDIATORS OF SMC GROWTH Prostaglandins operate as paracrine factors for endothelial smooth muscle communication and also function as intracellular mediators for specific growth factors [32]. Previously, we reported that prostaglandin synthesis was required for bradykinin-dependent inhibition of A10 SMC growth [33]. Prostaglandins also serve as signaling intermediates following treatment with Ang II since indomethacin inhibits growth stimulation of both A10 and porcine coronary artery SMCs by Ang II [27, Saward, Yau and Zahradka, unpublished]. To verify that indomethacin interferes specifically with
prostaglandin synthesis, Ang II was tested for its ability to provoke the release of arachidonic acid by coronary artery SMCs. In this experiment, it was observed that Ang II caused an increase in arachidonic acid release that was blocked in the presence of an AT2 receptor antagonist [Saward, Yau, and Zahradka, unpublished]. This indirect assessment of prostaglandin production indicates that Ang II may stimulate phospholipase activity via the AT₂ receptor. A comprehensive evaluation of the various prostanoids produced in response to Ang II is ongoing. Although the prostaglandin(s) produced in response to Ang II remains to be identified, we have investigated whether the direct addition of a specific prostaglandin in vitro could influence SMC growth. Prostacyclin (PGI2) had no detectable effect on cell growth. On the other hand, the ability of PGE2 to induce c-fos protooncogene expression, trigger MAP kinase phosphorylation, stimulate DNA synthesis, and increase cell number suggests that PGE2 may indeed activate cell cycle progression [Yau and Zahradka, unpublished]. These data clearly establish that the synthesis of specific prostaglandins in response to Ang II has the potential to promote SMC growth. #### PHOSPHATIDYLINOSITOL 3-KINASE: A UNIQUE MEDIATOR OF THE VASCULAR RESPONSE TO ANGIOTENSIN II Evidence that receptor antagonists block the angiotensin-mediated proliferative response of SMCs in both primary culture and an organ culture model suggests that excess Ang II may promote the development of certain vascular pathologies. Alternatively, either circulating or local Ang II could intensify the response originating from other hormonal factors. For this reason, reliance upon a single therapeutic approach may not be tenable. Treatment strategies may be improved if common intracellular mediators could be identified and their activity suppressed. We have, therefore, been interested in defining common signal transduction pathways that are activated in response to both Ang II and other hormonal agents. PI3K is a fundamental intracellular signaling component that is associated with tyrosine kinase (TK) receptors [34]. Phosphorylation of the tyrosine moiety within the SH2 domain of a TK receptor or a coupling protein, such as IRS-1, produces a docking site for the p85 subunit of PI3K which is followed by activation of the Figure 2. Phosphatidylinositol 3-kinase is activated by tyrosine kinase (TK) receptors. catalytic p110 subunit (figure 2). In contrast, G protein-coupled receptors operate by stimulating GTP/GDP exchange, causing the release of the Gα subunit, which leads to increases in second messengers, such as cAMP and Ca2+. Recent evidence that TK and G protein receptors do not operate through mutually exclusive systems is supported by reports that tyrosine phosphorylation also occurs when G protein receptors are activated [35,36]. The identification and characterization of a PI3K isoform (p110 γ) that is activated by $G_{8\gamma}$ subunits independently of p85 [37] provides a candidate enzyme for the coupling of TK and G protein receptor-mediated signaling. The potential for a connection between PI3K and G protein receptors raises the possibility that PI3K activation may influence SMC growth in response to Ang II. This prospect was tested and confirmed by experiments that showed that wortmannin and LY294002, both potent inhibitors of PI3K, blocked Ang IIstimulated hyperplasia [38]. An analysis of phosphatidylinositol 3-phosphate (PI-3P) production 15 minutes after treatment of SMCs with Ang II revealed that PI3K activity was significantly increased. This increase in PI-3P could be prevented by treatment with an AT₁ receptor antagonist (losartan). Participation of the p85/p110 PI3K in the cellular response to Ang II was indicated by a transient increase in p85 tyrosine phosphorylation which peaked at 15 minutes and returned to basal levels by 30 minutes. Immunocytochemistry localized the p85 subunit to the perinuclear region in quiescent cells. After 15 minutes of Ang II stimulation, however, p85 was uniformly distributed throughout the cell. Concurrent with the decrease in p85 phosphorylation at 30 minutes, p85 relocalized to the perinuclear region. These data were confirmed by a subcellular fractionation that showed p85 increased in the membrane fraction of Ang II-treated SMC concomitant with a decrease in the cytoskeletal fraction. To confirm that the changes in p85 generated by Ang II are coupled to PI3K activity, PI3K activity was measured in vitro after immunoprecipitation of p85. The increased synthesis of PI-3P that was observed with the immunoprecipitate from an Ang II-treated cell lysate clearly establishes that the early response of PI3K to Ang II is mediated by p85, and not G_{by}, subunits. The available data strongly support the existence of a direct relationship between PI3K and G protein activation. To explore this possibility, the coupling of PI3K to prostaglandin receptors, which are also G protein-coupled, was examined. Not only did addition of PGE2 to quiescent SMC stimulate the production of PI-3P, but also it produced a translocation of the p85 subunit [Yau and Zahradka, unpublished]. Furthermore, the PI3K inhibitors wortmannin and LY294002 prevented prostaglandin-mediated SMC growth. Thus, it appears likely that activation of PI3K is indispensable for certain aspects of G protein receptor function. The data described above suggest that G protein receptors can stimulate the activity, phosphorylation, and migration of the p85/p110 isoform of PI3K and that this pathway is vital for both Ang II and prostaglandin-mediated SMC growth. Although these results establish that PI3K activation is an early event, we have also noted that PI3K inhibitors effectively prevent cell proliferation if they are added to cells more than 60 minutes following stimulation with Ang II [Saward and Zahradka, unpublished]. These data support the possibility that either p85/p110 PI3K activity is continuous over extended periods after Ang II stimulation or PI3K (either p85/p110 or p110y) is sequentially activated by autocrine factors, such as prostaglandins, which are produced as cells progress through the cell cycle. A comprehensive analysis of p85/p110 and p110 γ over a broad time course will be necessary to define the function of the individual PI3K isoforms with respect to G protein-coupled receptors. #### **SYNOPSIS** Ang II is a vasoactive hormone that is synthesized in response to specific disease states or a chronic reduction in blood pressure brought about by physical trauma. This process represents a mechanism that may have evolved to augment the autonomic systems that modulate acute changes in blood pressure. While Ang II exists as a blood-borne hormone that affects all tissues, a local renin-angiotensin system has been identified in many tissues. The synthesis (or release) of Ang II at the tissue level occurs in response to numerous stimuli. This review has described a number of observations that indicate angiotensin receptors and their associated intracellular signaling systems play an important role in the growth stimulation of smooth muscle, which may be involved in hypertension and restenosis. First, we have indicated that either the AT_1 or the AT_2 receptor may serve as a useful target for interventions designed to reduce the neointimal proliferation that occurs subsequent to balloon angioplasty. Second, we have established that (1) a relationship exists between changes in AT2 receptor expression and SMC Figure 3. A model for activation of distinct signaling pathways by AT₁ and AT₂ receptors. growth state, and (2) both AT₁ and AT₂ receptor subtypes must be activated for Ang II-dependent stimulation of SMC proliferation. We have also confirmed that several intracellular events that are influenced by Ang II are mediated by specific receptor subtypes. Based on this information, a model that links both PI3K activation with the AT₁ receptor and prostaglandin synthesis with the AT₂ receptor has been developed (figure 3). Experimental data indicating Ang II stimulates tyrosine phosphorylation of IRS-1 (Saward and Zahradka, in preparation), which agree with recent reports by Saad et al. [39] and Du et al. [40], have been incorporated into this model, since this observation provides a possible mechanism for coupling p85/p110 PI3K to the AT₁ receptor. Finally, we have found that inhibitors of specific signal transduction processes also have the capacity to interfere with SMC growth. In particular, inhibition of PI3K, which functions as a key signal transduction molecule for both tyrosine kinase and G protein-coupled receptors, can prevent cell growth in the presence of multiple growth factors. This feature of PI3K has made it valuable to research groups attempting to control tumor growth. It also makes it a candidate for the therapeutic intervention of cardiovascular conditions linked to hypertrophy or hyperplasia. #### **ACKNOWLEDGMENTS** The research described in this report was funded by the Medical Research Council Group in Experimental Cardiology. Additional support was provided as scholarships to D.W. (University of Manitoba), L.S. (Medical Research Council, Manitoba Health Research Council) and L.Y. (Medical Research Council, St. Boniface Research Foundation). #### REFERENCES - 1. Chang RS, Lotti VJ. 1991. Angiotensin receptor subtypes in rat, rabbit and monkey tissues. Relative distribution and species dependency. Life Sci 49:1485-1490. - 2. Viswanathan M, Tsutsumi K, Correa FMA, Saavedra JM. 1991. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Comm 179:1361-1367. - 3. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744-747. - 4. King SB III. 1996. Angioplasty from bench to bedside. Circulation
93:1621-1629. - 5. Califf RM, Fortin DF, Frid DJ, Harlan WR III, Ohman EM, Bengston JR, Nelson CL, Tcheng JE, Mark DB, Stack RS. 1991. Restenosis after coronary angioplasty: An overview. J Am Coll Cardiol 17:2B-13B. - 6. McBride W, Lange RA, Hillis LD. 1988. Restenosis after successful coronary angioplasty. New Engl J Med 318:1734–1737. - 7. Liu MW, Berk BC. 1991. Restenosis following coronary balloon angioplast. Role of smooth muscle cell proliferation. Trends Cardiovasc Med 1:107-111. - 8. Carter AJ, Laird JR, Farb A, Kufs W, Wortham DC, Virmani R. 1994. Morphological characteristics of lesion formation and time course of smooth muscle cell proliferation in a procine proliferative restenosis model. J Am Coll Cardiol 24:1398-1405. - 9. Osterrieder W, Müller RKM, Powell JS, Clozel J-P, Hefti F, Baumgartner HR. 1991. Role of angiotensin II in injury-induced neointima formation in rats. Hypertension 18(Suppl II):60-64. - 10. Koo EW, Gotlieb AI. 1991. Neointimal dynamics in the porcine aortic culture. I. Cellular dynamics over 1 month. Lab Invest 64:743-753. - 11. Wilson D, Saward L, Zahradka P, Cheung PK. Non-peptide angiotensin II receptor antagonists prevent post-angioplasty neointimal proliferation in a porcine coronary artery culture model (submitted). - 12. Dusting GJ, Hyland R, Hickey H, Makdissi M. 1995. Angiotensin-converting enzyme inhibitors reduce neointimal thickening and maintain endothelial nitric oxide function in rabbit carotid arteries. Am J Cardiol 76:24E-27E. - 13. Fingerle J. Muller R.M., Kuhn H., Pech M., Baumgartner HR. 1995. Mechanism of inhibition of neointimal formation by the angiotensin-converting enzyme inhibitor cilazapril. A study in balloon catheter-injured rat carotid arteries. Arterioscl Thromb Vasc Biol 15:1945-1950. - 14. Faxon DP. 1995. Effect of high dose angiotensin-converting enzyme inhibition on restenosis: Final results of the MARCATOR study, a multicenter, double-blind, placebo-controlled trial of cilazapril. J Am Coll Cardiol 2:362-369. - 15. Shiota N. Okunishi H. Fukamizu A, Sakonjo H, Kikumori M, Nishimura T, Nakagawa T, Murakami K, Miyazaki M. 1993. Activation of two angiotensin-generating systems in the ballooninjured artery. FEBS Lett 323:239-242. - 16. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. 1990. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348-22357. - 17. Urata H, Hoffmann S, Ganten D. 1994. Tissue angiotensin II system in the human heart. Eur Heart J 15:68–78. - 18. Wolny A, Clozel J-P, Rein J, Mory P, Vogt P, Turino M, Kiowski W, Fischli W. 1997. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ Res 80:219-227. - 19. Huckle WR, Drag MD, Acker WR, Powers M, McFall RC, Holder DJ, Fujita T, Stabilito II, Kim D, Ondeyka DL, Mantlo NB, Chang RSL, Reilly CF, Schwartz RS, Greenlee WJ, Johnson RG Jr. 1996. Effects of subtype-selective and balanced angiotensin II receptor antagonists in a porcine coronary artery model of vascular restenosis. Circulation 93:1009-1019. - 20. Janiak P, Pillon A, Prost J-F, Vilaine J-P. 1992. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension 20:737-745. - 21. Nickenig G, Sachinidis A, Ko Y, Vetter H. 1996. Regulation of angiotensin AT1 receptor gene expression during cell growth of vascular smooth muscle cells. Eur I Pharmacol 297:307–312. - 22. Ichiki T, Kambayashi Y, Inagami T. 1996. Differential inducibility of angiotensin II AT2 receptor between SHR and WKY vascular smooth muscle cells. Kidney Int Suppl 55:S14-S17. - 23. Viswanathan M, Saavedra JM. 1994. Angiotensin II receptor subtypes and growth. In Angiotensin receptors. Ed. JM Saavera and PBMWM Tionmermans, 205-219. New York: Plenum Press. - 24. Chiu AT, Roscoe WA, McCall DE, Timmermans PBMWM. 1991. Angiotensin II-1 receptors mediate both vasoconstrictor and hypertrophic responses in rat aortic smooth muscle cells. Receptor - 25. de Blois D, Viswanathan M, Su JE, Clowes AW, Saavedra JM, Schwartz SM. 1996. Smooth muscle DNA replication in response to angiotensin II is regulated differently in the neointima and media at different times after balloon injury in the rat carotid artery. Role of AT1 receptor expression. Arterioscler Thromb Vasc Biol 16:1130-1137. - 26. Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Poitevin P, Samuel JL. 1996. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418-425. - 27. Saward L, Zahradka P. 1996. The angiotensin type 2 receptor mediates RNA synthesis in A10 vascular smooth muscle cells. J Mol Cell Cardiol 28:499-506. - 28. Saward L, Zahradka P. 1996. Insulin is required for angiotensin II-mediated hypertrophy of smooth muscle cells. Mol Cell Endocrinol 122:93-100. - 29. Kambayashi Y, Nagata K, Ichiki T, Inagami T. 1996. Insulin and insulin-like growth factors induce expression of angiotensin type-2 receptor in vascular-smooth-muscle cells. Eur J Biochem 239:558-565. - 30. Saward L, Zahradka P. 1997. Coronary artery smooth muscle cell culture: migration of heterogeneous cell populations from vessel wall. Mol Cell Biochem 176:53-59. - 31. Saward L, Zahradka P. 1995. Both the AT1 and AT2 receptors mediate smooth muscle cell growth by angiotensin II (abstract). J Mol Cell Cardiol 27:A103. - 32. Franceschi C, Bartolini G, Orlandi M, Minghetti L, Licastro F, Chiricolo M, Tomasi V. 1990. Prostanoids as second messengers of polypeptide growth factors. Agents Actions 29:39-47. - 33. Yau L, Pinsk M, Zahradka P. 1996. Inhibition of RNA synthesis by bradykinin involves both B1 and B2 receptor subtypes. Arch Biochem Biophys 328:115-121. - 34. Kapellar R, Cantley LC. 1994. Phosphatidylinositol 3-kinase. BioEssays 16:565-576. - 35. Leduc I, Haddad P, Giasson E, Meloche S. 1995. Involvement of a tyrosine kinase pathway in the growth-promoting effects of angiotensin II on aortic smooth muscle cells. Mol Pharmacol 48:582- - 36. Schieffer B, Bernstein KE, Marrero MB. 1996. The role of tyrosine phosphorylation in angiotensin II mediated intracellular signaling and growth. J Mol Med 74:85-91. - 37. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. 1994. A novel phosphatidylinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77:83-93. - 38. Saward L, Zahradka P. 1997. Angiotensin II activates phosphatidylinositol 3-kinase. PI3K is essential for vascular smooth muscle cell proliferation. Circ Res 81:249-257. - 39. Saad MJA, Velloso LA, Carvalho CRO. 1995. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J 310:741-744. - 40. Du J, Sperling LS, Marrero MB, Phillips L, Delafontaine P. 1996. G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: Thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. Biochem Biophys Res Comm 218:934-939. # ANGIOTENSIN II ENHANCED THE EXPRESSION OF INHIBITORY GUANINE NUCLEOTIDE REGULATORY PROTEIN IN VASCULAR SMOOTH MUSCLE CELLS: BLOCKADE BY AT, ANTAGONIST ## MADHU B. ANAND-SRIVASTAVA and ANURADHA PALAPARTI Department of Physiology, Faculty of Medicine, University of Montreal and Groupe de recherche sur le système nerveux autonome Summary. In the present studies, we have investigated the effect of angiotensin (Ang) II on guanine nucleotide regulatory protein (G protein) expression and functions in A-10 vascular smooth muscle cells (VSMCs). Ang II treatment of VSMC enhanced the levels of inhibitory guanine nucleotide regulatory protein (Gi) as well as Gi mRNA in a concentration-dependent manner as determined by immunoblot and Northern blot analysis, respectively. However, the GTPγS-mediated inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity and the receptor-mediated inhibition of adenylyl cyclase by Ang II and C-ANP₄₋₂₃ [des(Gln¹⁸, Ser¹⁹, Gln²⁰, Leu²¹, Gly²²) ANF₄₋₂₃-NH2] (C-ANP₄₋₂₃) were attenuated in Ang II-treated cells. On the other hand, Gs protein expression and functions were not altered by Ang II treatment. Losartan treatment of the cells was able to partially restore the Ang II induced enhanced expression of Gi protein as well as the attenuated responsiveness of adenylyl cyclase to Ang II and C-ANP₄₋₂₃ inhibition. The results suggest the implication of AT₁ receptor in Ang II-induced increases of Giα protein expression in vascular smooth muscle cells. #### INTRODUCTION Ang II, a vasoactive peptide and a key component of renin-angiotensin system, elicits a wide variety of biological responses, including vasoconstriction, stimulation of aldosterone secretion, and renal sodium reabsorption [1]. In addition, Ang II is a growth promoting factor for several cell types, such as fibroblasts, adrenocortical cells, cardiac myocytes, and vascular smooth muscle cells [2,3]. Ang II induces cell hypertrophy in cultured aortic smooth muscle cells as a result of increased protein synthesis [4,5] which is associated with increased expression of the growth associated nuclear proto-oncogene, c-fos, c-jun and c-myc [6,7]. Ang II also stimulates tyrosine phosphorylation of multiple substrates [8], including mitogen-activated protein kinase (MAPK) [8-10]. Ang II elicits its physiological effects by interacting with two distinct receptor subtypes, designated as AT₁ and AT₂ [11], based on their interaction with nonpeptide antagonists, losartan and PD123177, respectively [12]. The presence of AT₁ receptor subtype has been shown in rat vascular tissues. However, a small proportion of AT₂ receptors is also present in rat aorta [13,14]. Most of the physiological effects of Ang II are mediated by AT₁ receptors. AT₁ receptors are coupled to several second messenger systems, such as
stimulation of phospholipase C (PLC) [15], D (PLD) [16], and A2 (PLA2) [17] and inhibition of adenylyl cyclase/ cAMP [18-20] and plasma membrane calcium channels [21]. The activation of PLC results in the formation of two second messengers, inositol triphoshate (IP3) and diacylglycerol (DAG). DAG activates protein kinase C (PKC), shown to phosphorylate various proteins, including inhibitory G-binding proteins, Gi [22,23]. The phosphorylation of Gi regulatory protein uncouples the inhibitory hormone receptor from adenylyl cyclase and thereby attenuates the hormone-mediated inhibition of adenylyl cyclase. Adenylyl cyclase/cAMP system is composed of three components: receptor, catalytic subunit, and guanine nucleotide regulatory proteins (G proteins). The G proteins act as transducers and, in the presence of guanine nucleotides, transmit the signal from the hormone-occupied receptor to the catalytic subunit. The hormonal stimulation and inhibition of adenylyl cyclase are mediated through the stimulatory (Gs) and inhibitory (Gi) guanine nucleotide protein, respectively [24,25], resulting in the increased or decreased formation of cAMP, respectively. G proteins are heterotrimeric, consisting of α , β , and γ subunit. The α subunit binds and hydrolyzes GTP and confers specificity in receptor and effector interactions [25]. Four different isoforms of Gs have been identified which appear to be products of alternate splicing of a common precursor [26,27]. On the other hand, three distinct forms of Gi α , namely, Gi α -1, Gi α -2, and Gi α -3, have been identified and shown to be products of three different genes [28,29]. Genetic linkage between the Ang II gene and hypertension has been established [30]. Levels of Ang II have been reported to be elevated in hypertensive human beings [31]. Transgenic mice overexpressing Ang II have also been shown to have elevated blood pressure [32,33]. In addition Ang II has been shown to be differentially regulated in tissues involved in blood pressure regulation [34]. We have recently demonstrated increased expression of Giα protein and Giα mRNA and associated functions in spontaneously hypertensive (SHR) and deoxycorticosterone acetate (DOCA)-salt hypertensive rats as compared to their control rats [35,36]. The enhanced expression of Gia and associated functions in SHR were restored towards control level by angiotensin-converting enzyme (ACE) inhibitor [37], which inhibits the conversion of Ang I to Ang II and thereby decreases the levels of Ang II. Taken together, it is possible that the enhanced levels of Ang II reported in hypertension [31] may be responsible for the observed enhanced expression of Gi proteins in hypertensive rats [35,36]. To examine this possibility, the present studies were undertaken to examine the effect of Ang II treatment, in the absence or presence of losartan, on the expression of G proteins and adenylyl cyclase activity in vascular smooth muscle cells (VSMC, A-10). #### MATERIALS AND METHODS #### Cell culture and incubation Pure VSMC (A-10) from embryonic thoracic aorta of rat was obtained from American Type Culture Collection, Rockville, MA, USA. The cells were plated in 7.5 cm² flasks and incubated at 37°C in 95% air and 5% CO₂ humidified atmosphere in Dulbecco's modified Eagle's medium (DMEM) (with glucose, L-glutamine, and sodium bicarbonate) that contained antibiotics and 10% heat-inactivated fetal calf serum (FCS). The cells were passaged, upon reaching confluence, with 0.5% trypsin containing 0.2% EDTA and utilized between passages 5 and 15. Confluent cell cultures were starved by incubation for 3h in DMEM without FCS at 37°C. These cells were then incubated with different concentrations of Ang II for 24h at 37°C, as described previously [38]. The treatment with different concentrations of losartan was done in the presence of 10⁻⁷M Ang II. After incubation, cells were washed twice with ice-cold homogenization buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). The VSMC were scraped into ice-cold homogenization buffer using a rubber policeman and collected by centrifugation at 4°C for 10 min at 600 × g. The cells were then homogenized in a Dounce homogenizer (10 strokes), and the homogenate was used for adenylyl cyclase assay and immunoblotting. #### Adenylyl cyclase activity determination Adenylyl cyclase activity was determined by measuring [32P]-cAMP formation from $[\alpha^{-32}P]ATP$, as described previously [35,36]. Briefly, the assay medium contained 50 mM glycylglycine, pH 7.5; 0.5 mM MgATP, $[\alpha^{-32}P]$ ATP (1.5 × 10⁶ cpm); 5 mM MgCl₂ (in excess of the ATP concentration); 100 mM NaCl, 0.5 mM cAMP; 1 mM 3-isobutyl-1-methyl xanthine; 0.1 mM EGTA; 10 µM GTPγS and an ATPregenerating system consisting of 2mM phosphocreatine, 0.1 mg of creatine kinase/ ml, and 0.1 mg of myokinase/ml in a final volume of 200 µl. Incubations were initiated by the addition of the membrane preparations (20-30 µg) to the reaction mixture, which had been thermally equilibrated for 2min at 37°C. The reactions conducted in triplicate for 10 min at 37°C, were terminated by the addition of 0.6 ml of 120 mM zinc acetate. cAMP was purified by co-precipitation of other nucleotides with ZnCO₃, by addition of 0.5 ml of 144 mM Na₂CO₃, and subsequent chromatography by the double-column system, as described by Salomon et al. [39]. Under the assay conditions used, adenylyl cyclase activity was linear with respect to protein concentrations and time of incubation. Protein was determined essentially as described by Lowry et al. [40] with bovine serum albumin as standard. #### Immunoblotting Immunoblotting was performed as described previously [36,41]. After SDS-PAGE, the separated proteins were electrophoretically transferred to nitrocellulose paper (Schleicher and Schuell) with a semi-dry transbot apparatus (Bio Rad) at 15 V for 45 min. After transfer, the membranes were washed twice in phosphate-buffered saline (PBS) and incubated in PBS containing 8% dehydrated milk at room temperature for 2h. The blots were then incubated with antisera against G proteins in PBS containing 3% dehydrated milk and 0.1% Tween-20 at room temperature for 2h. The antibody-antigen complexes were detected by incubating the blots with goat anti-rabbit IgG (Bio-Rad) conjugated with horseradish peroxidase for 2h at room temperature. The blots were washed three times with PBS before reaction with enhanced-chemiluminescence (ECL) Western-blotting detection reagents from Amersham. Quantitative analysis of the G proteins was performed by densitometric scanning of the autoradiographs employing the enhanced laser densitometer, LKB Ultroscan XL, and quantified using the gel scan XL evaluation software (version 2.1) from Pharmacia (Quebec, Canada). #### Total RNA extraction Total RNA was extracted from VSMC, as described earlier [41,42]. #### Radiolabelling of the probes cDNA inserts encoding for Gi α 2, Gi α 3 and Gs α were radiollabeled with [α - 32 P]dCTP by random priming, essentially as described by Feinberg et al. [43]. Specific activities of the labelled probes ranged from 1 to 3 \times 10⁸ cpm/ μ g of DNA. The 32-mer oligonucleotide recognizing the 28 S rRNA was end-labeled with [γ - 32 P]ATP using T4 polynucleotide kinase, as described by Sambrook et al. [41]. #### Northern analysis DMSO/glyoxal-treated total RNA was resolved on 1% agarose gels and transferred to nylon membrane, as described previously [41,42]. Filters, after prehybridization at 65°C for 6h in hybridization solution (600 mM NaCl, 8 mM EDTA, 120 mM Tris at pH 7.4, 0.1% sodium pyrophosphate, 0.2% SDS, heparin 500 U/ml), were then hybridized overnight in hybridization solution containing dextran sulphate (10% w/v) and the cDNA probe at 1 to 3 × 106 cpm/ml, as described previously [41,42]. Filters were then rinsed at 65°C for 2 × 30 min in 300 mM NaCl, 4 mM EDTA, 60 mM Tris at pH 7.4, and 0.2% SDS, and 1 × 30 min in 150 mM NaCl, 2 mM EDTA, 30 mM Tris at pH 7.4, and 0.1% SDS. Autoradiography was performed with X-ray films at -70°C. In order to assess the possibility of any variations in the amounts of total RNA in individual samples applied to the gel, each filter was hybridized with the ³²P end-labelled oligonucleotide, which recognizes a highly conserved region of 28S ribosomal RNA. The blots that had been probed with the G protein cDNA were de-hybridized by washing for 1h at 65°C in 50% formamide, 300 mM NaCl, 4 mM EDTA and 60 mM Tris at pH 7.4, and Figure 1. Determination of the levels of Gi α -2 (A) and Gi α -3 (B) proteins in membranes from control and angiotensin (Ang) II-treated vascular smooth muscle cells by immunoblotting. Vascular smooth muscle cells (VSMCs) were incubated in the absence (lane 1) or presence of 10⁻⁷M Ang II for 24h as described under Methods. Membranes were prepared as described under Methods and were used for immunoblotting. The membrane proteins were resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis and transferred to nitrocellulose that was then immunoblotted using AS/7 antibody for Giα-1 and Giα-2 or EC/1 antibody for Giα-3 and were detected by using ECL Western blotting, as described under Methods. The autoradiograms are representative of three separate experiments. Reproduced from [38] with permission. rehybridized overnight at room temperature with the oligonucleotide. Quantitative analysis of the hybridization of bound probes was performed by densitometric scanning of the autoradiographs by employing the enhanced laser densitometer, LKB Ultroscan XL, and quantified using the gel scan XL evaluation software (version 2.1) from Pharmacia (Quebec, Canada). #### **MATERIALS** ATP, cAMP, and other chemicals necessary for total RNA extraction, and Northern blot analysis were obtained from Sigma Chemical Co. (St. Louis, MO., USA). Creatine kinase (EC.2.7.3.2), myokinase (EC.2.7.4.3),
GTP and GTPys were purchased from Boehringer-Manheim (Canada). 3-Isobutyl-1-methyl-xanthine (IBMX) was purchased from Aldrich Chemicial Corporation (Milwaukee, Wisconsin). [α-32P]ATP, $[\alpha^{-32}P]dCTP$, and carrier-free [32P]orthophosphate were purchased from Amersham Corp. (Oakville, Ontario, Canada). Ang II and C-ANP₄₋₂₃ were from Peninsula Laboratories Inc. (CA., USA). #### RESULTS #### Effect of Ang II treatment on G protein expression We have recently shown an augmentation of Gi α -2 and Gi α -3 protein levels in hearts and aorta from SHR and DOCA-salt HR [35,36]. The enhanced expression of Gi protein was restored towards control levels by captopril treatment [37] indicating that Ang II may be responsible for the observed increases in Gi protein expression. In order to investigate this possibility, the effect of Ang II on Gi protein levels was investigated by immunoblotting using specific antibodies against different isoforms of Gi proteins. As shown in figure 1A, AS/7 antibodies, which react with Figure 2. Effect of various concentrations of Ang II treatment on the levels of Giα-2 and Giα-3 in membranes from vascular smooth muscle cells (VSMCs). VSMCs were incubated in the absence or presence of various concentratons of Ang II for 24hr as described under Methods. The levels of Giα-2 (A) and Giα-3 (B) proteins were determined by immunoblotting using antibodies AS/7 and EC/1, respectively, as described under Methods. Quantification of G proteins was performed by densitometric scanning using an enhanced laser densitometer (LKB). The values are mean ± SEM from three separate experiments. both Giα-1 and Giα-2, recognized a single protein of approximately 40 KDa, referred to as $Gi\alpha$ -2 ($Gi\alpha$ -1 is absent in VSMC) [44], while antibodies EC/2 detected a single protein of 41 KDa, referred to as Gia-3, on immunoblots of both VSMC from control and Ang II treated cells (figure 1B). However, the relative amounts of immunodetectable Giα-2 and Giα-3 were significantly increased in a concentration dependent manner in cells pretreated with Ang II, as determined by densitometric scanning (figure 2A and B). Figure 2 (continued) #### Effect of losartan on Ang II induced enhanced expression of G protein To examine if the enhanced expression of Gi protein by Ang II is mediated through AT₁ receptor, the effect of losartan, an AT₁ receptor antagonist was investigated. The results are shown in figure 3. Losartan reduced the Ang II-induced enhanced levels of Giα-2 (figure 3A) and Giα-3 (figure 3B) in a concentration dependent manner. At 10^{-4} M, losartan decreased the Gi α -2 and Gi α -3 protein levels by about 30%. We have also determined the mRNA levels of Giα-2 and Giα-3 in control and Ang II-treated cells by using cDNA probes of Gi α -2 and Gi α -3. Ang II at 10^{-7} M was also able to enhance the mRNA levels of $Gi\alpha$ -2 and $Gi\alpha$ -3 by about 25–30%, and losartan was also able to reduce the enhanced mRNA levels of Giα-2 and Giα-3 in a concentration dependent manner. At 10⁻⁴M, losartan decreased the expression of enhanced Giα-2 and Giα-3 mRNA by about 25-30% (figure 4A, B). Figure 3. Effect of losartan on Ang II-induced enhanced expression of $Gi\alpha$ -2 and $Gi\alpha$ 3 proteins in vascular smooth muscle cells (VSMCs). VSMCs were incubated in the absence or presence of 10^{-7} M Ang II alone or in combination with various concentrations of losartan for 24 hr as described under Methods. The levels of $Gi\alpha$ -2 (A) and $Gi\alpha$ -3 (B) proteins were determined by immunoblotting using AS/7 and EC/1 antibodies as described under Methods. Quantification of G proteins was performed by densitometric scanning using an enhanced laser densitometer (LKB). Values are means \pm SEM of three separate experiments. On the other hand, Ang II treatment of the cells did not alter the levels of Gs protein or $Gs\alpha$ mRNA (data not shown). #### Effect of Ang II treatment on Gi functions In order to investigate if the augmentation of $Gi\alpha$ proteins by Ang II treatment is also reflected in Gi functions, the effect of Ang II and C-ANP₄₋₂₃, which inhibit adenylyl cyclase activity through Gi regulatory protein [18,20,45,46], was examined in control and Ang II-treated cells. The results are shown in figure 5. Ang II and C-ANP₄₋₂₃ inhibited adenylyl cyclase activity by about 30 and 35% in control cells, respectively, which was completely attenuated by Ang II treatment. Losartan at 10^{-6} M was able to restore the inhibition by about 40–45% when the inhibition of adenylyl cyclase by C-ANP₄₋₂₃ or Ang II was taken as 100%. In addition the receptor-independent Gi functions, as determined by examining the effect of low concentration of GTP γ S on forskolin-stimulated adenylyl cyclase, were also attenuated by Ang II treatment (data not shown). #### DISCUSSION The present studies demonstrate that Ang II treatment of the vascular smooth cells for 24h enhanced the expression of $Gi\alpha-2$ and $Gi\alpha-3$ proteins, whereas the Figure 4. Effect of losartan on Ang II-induced enhanced expression of Giα-2 and Giα-3 mRNA in vascular smooth muscle cells (VSMCs). VSMCs were incubated in the absence or presence of 10^{-7} M Ang II alone or in combination with various concentrations of losartan for 24 hours as described under Methods. The mRNA levels of Giα-2 (A) and Giα-3 (B) were determined by Northern blotting using cDNA probes of Gia-2 and Gia-3 as described under Methods. Quantification of Gi mRNA was performed by densitometric scanning using an enhanced laser densitometer (LKB). Values are means ± SEM of three separate experiments. expression of Gsa was unchanged. These results are in agreement with the data reported earlier [47], where systemic infusion of Ang II resulted in the augmented levels of Gia-2 and Gia-3 proteins in glomerular and mesenteric vascular smooth muscle membranes. The levels of $Gi\alpha$ -2 and $Gi\alpha$ -3 mRNA were also increased by Ang II treatment. This may not be due to variation in the amounts of total RNA loaded in individual samples applied to the gels because hybridization with an oligonucleotide that recognizes a highly conserved region of the 28S RNA showed a similar amount of 28S RNA loaded from control and Ang II-treated cells (data not shown). These results suggest that the genes for $Gi\alpha$ -2 and $Gi\alpha$ -3 enhanced by Ang II treatment may be responsible for the observed increase in protein levels. The reduction in the Ang II-induced levels of Giα protein by losartan suggest the involvement of AT₁ receptor in Gi protein synthesis. The AT₁ receptor-mediated increase of protein synthesis has been shown previously [45,48]. The mechanism(s) responsible for Ang II-mediated Gi protein synthesis is not known and remains to be explored. However, one possible mechanism may be PKC, because staurosporin, a PKC inhibitor, was able to inhibit Ang II-induced enhanced expression of Gia protein in VSMC (Anand-Srivastava et al., unpublished observations). Our results on G protein expression are in agreement with those of Sims et al. [47], who have shown that Ang II infusion in rats resulted in enhanced protein levels of Gi α -2 and Figure 5. Effect of losartan on Ang II-induced attenuation of C-ANP₄₋₂₃ and Ang II-mediated inhibition of adenylyl cyclase in vascular smooth muscle cells (VSMCs). VSMCs were incubated in the absence (control, or presence of 10⁻⁷M Ang II alone (or in combination with 10⁻⁶M losartan () for 24 hr as described under Methods. Adenylyl cyclase activity was determined in the absence or presence of 10⁻⁵M Ang II or 10⁻⁷M C-ANP₄₋₂₃ in the membranes prepared from these cells as described under Methods. Basal adenylyl cyclase activity was taken as 100%. Values are means ± SEM. of three separate experiments. Gi α -3 in systemic and renal vasculature. The enhanced expression of Gi α proteins in cultured adrenal cells in response to Ang II has also been demonstrated [49]. A relationship between the levels of G protein and functions has been reported by several investigators [35,50]. Increased level of Gia proteins and increased responsiveness of adenylyl cyclase to ANP, oxotremorine, and Ang II inhibition in aorta and heart from SHR and DOCA-salt hypertensive rats has recently been shown [35,36]. Similarly decreased levels of Gia-2 and complete attenuation of ANP receptor-mediated inhibition of adenylyl cyclase in platelets from SHR have also been reported [50]. However, the increased levels of Giα-2 and Giα-3 from Ang II treatment were not reflected in increases in Gi functions. On the other hand, the C- ANP₄₋₂₃ and Ang II receptor-mediated inhibitions of adenylyl cyclase were completely attenuated by Ang II treatment. Several mechanisms may be involved in the observed attenuation of adenylyl cyclase inhibition by C-ANP₄₋₂₃ and Ang II. One of the possibilities may be that Ang II treatment has resulted in the down regulation of ANP as well as Ang II receptors in the vascular smooth muscle cells [51,52]. Alternatively the Gi protein levels, although enhanced by Ang II treatment, may have been phosphorylated by Ang II mediated activation of PKC, another signaling pathway of Ang II action. The phosphorylation of Gi protein may, therefore, result in the uncoupling of receptors from adenylyl cyclase. The phosphorylation of Giα proteins and the uncoupling of inhibitory hormone receptors from adenylyl cyclase by PKC has been reported [23]. Taken together, it may be possible that the observed attenuation of ANP-C and Ang II receptor-mediated inhibition of adenylyl cyclase caused by Ang II treatment may be attributed to be downregulation of the receptors or/and to the phosphorylation of Giα protein, which may be responsible for the uncoupling of these receptors from adenylyl cyclase. The partial reversal of the ANP-C and Ang II receptor-mediated adenylyl cyclase inhibition by losartan may be due to
its competitive binding, thereby preventing Ang II-mediated desensitization. However, the inability of losartan to completely restore the attenuated responsiveness of adenylyl cyclase to C-ANP₄₋₂₃ may be due to the low concentrations of losartan used in these studies, which may not have been enough to saturate all the AT₁ receptor subtype, Alternatively it may be because some effects of Ang II are being produced via a non-losartan sensitive AT₂ receptor subtype. Or perhaps it is by some other mechanism. In conclusion we have shown that treatment of vascular smooth muscle cells with Ang II enhanced the levels of Giα-2 and Giα-3 proteins and mRNA but not levels of Gs α . The enhanced levels of Gi α proteins were not associated with increased Gi functions. The Ang II-induced enhanced levels of Gi and attenuated inhibition of adenylyl cyclase by C-ANP₄₋₂₃ and Ang II were restored partially towards control levels by losartan, suggesting the implication of AT₁ receptor subtype in the observed effects of Ang II. #### NOTES - 1. This work was supported by grants from the Medical Research Council of Canada and Quebec Heart - 2. Dr. Anand-Srivastava was a recipient of the Medical Research Council Scientist Award from the Medical Research Council of Canada during the course of these studies. Abbreviations: C-ANP₄₋₂₃, a ring deleted analog of atrial natriuretic factor C-ANP₄₋₂₃ [des(Glu¹⁸, Ser¹⁹, Glu²⁰, Leu²¹, Gly²²)ANP₄₋₂₃-NH₂]. Gi, inhibitory guanine nucleotide regulatory protein, Gs, stimulatory guanine nucleotide regulatory protein, AngII, angiotensin II. GTPγS, guanosine 5'-0-(3thiotriphosphate) FSK, forskolin, DOCA, deoxycorticosterone acetate. #### REFERENCES 1. Paul M, Bachmann J, Ganten D. 1992. The tissue renin-angiotensin system in cardiovascular disease. Trends Cardiovasc Med 2:94-99. - 2. Schelling P, Fischer H, Ganten H. 1991. Angiotensin and cell growth: A link to cardiovascular hypertrophy. J Hypertens 9:3-15. - 3. Sadoshima II, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT₁ receptor subtype. Circ Res 73:413-423. - 4. Geisterfer AA, Peach MJ, Owens GK. 1988. Angiotensin induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749-756. - 5. Berk BC, Vekshtein V, Gordon HM, Tsuda T. 1989. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305-314. - 6. Naftilan AJ, Pratt RE, Dzau VJ. 1989. Induction of platelet-dervied growth factor A-chain and cmyc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. I Clin Invest 83:1419-1424. - 7. Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B. 1989. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca²⁺ mobilization and protein kinase C activation. J Biol Chem 264:526-530. - 8. Molloy CI, Taylor DS, Weber H. 1993. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268:7338-7345. - 9. Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Kokoyama M. 1992. Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71:620-630. - 10. Duff JL, Berk BC, Corson MA. 1992. Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 188:257- - 11. Timmermans PBMWM, Wong PC, Chin AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 12. Bumpus FM, Catt KJ, Clin AT, de Gasparo M, Goodfriend T, Husain AD, Peach AJ, Taylor DG, Timmermans PBMWM. 1991. Nomenclature for angiotensin receptors. Hypertension 17:720- - 13. Viswanathan M, Tsutsumi K, Correa FMA, Saavedra JM. 1991. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179:1361-1367. - 14. Chang RSL, Lotti VI. 1991. Angiotensin receptor subtypes in rat, rabbit and monkey tissues: Relative distribution and species dependence. Life Sci 49:1485-1490. - 15. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA, Alexander RW. 1996. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 161:5901-5906. - 16. Lassègue B, Alexander RW, Clark M, Griendling KK. 1991. Angiotensin II-induced phosphatidyl choline hydrolysis in cultured vascular smooth muscle cells: Regulation and localization. Biochem I 276:19-25. - 17. Alexander RW, Gimbrone MAJ. 1976. Stimulation of prostaglandin E synthesis in cultured human unblilical vein smooth muscle cells. Proc Natl Acad Sci USA 73:1617-1620. - 18. Anand-Srivastava MB. 1989. Angiotensin II receptors negatively coupled to adneylate cyclase in rat myocardial sarcolemma: Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 38:489-496. - 19. Anand-Srivastava MB. 1983. Angiotensin II receptors are negatively coupled to adenylate cyclase in rat aorta. Biochem Biophys Res Comun 117:420-428. - 20. Pobiner BF, Hewlett EL, Garrison JC. 1985. Role of Ni in coupling angiotensin receptors to inhibition of adenylyl cyclase in hepatocytes. J Biol Chem 260:16200-16209. - 21. Ohya Y, Sperelakis N. 1991. Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res 68:763-771. - 22. Tsuda T, Alexander RW. 1990. Angiotensin II stimulates phosphorylation of nuclear lamins via protein kinase C-dependent mechanism in cultured vascular smooth muscle cells. J Biol Chem 265:1165-1170. - 23. Katada T, Gilman AH, Watanabe Y, Banes S, Jakobs KH. 1985. Protein kinase C phosphorylates the inhibitory guanine nucleotide binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431-437. - 24. Gilman AG. 1984. G proteins and dual control of adenylate cyclase. Cell 36:577-579. - 25. Stryer L, Broune HR. 1986. G-proteins: A family of signal transducers. Annu Rev Cell Biol 2:391- - 26. Robishaw ID, Smigel MD, Gilman AG. 1986. Molecular basis for two formsof the G-protein that stimulates adenylate cyclase. J Biol Chem 261:9567-9590. - 27. Bray P, Carter A, Simons C, Guo V, Puckert C, Kamholz J, Spiegel A, Nirenberg M. 1986. Human cDNA clones for four species of G alphas signal transduction protein. Proc Natl Acad Sci USA 83:8893-8897. - 28. Jones DT, Reed RR, 1987. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262:14241-14249. - 29. Itoh H, Kozaka T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K. 1986. Molecular cloning and sequence determination of cDNAs for alpha of the guanine nucleotide-binding proteins Gs, Gi and Go from rat brain. Proc Natl Acad Sci USA 83:3776-3786. - 30. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvo P. 1992. Molecular basis of human hypertension: Role of angiotensinogen. Cell 71:169-180. - 31. Walker WG, Whelton PK, Saito H, Russel RP, Hermann J. 1979. Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulato subjects. Hypertension 1:287-291. - 32. Ohkubo H, Kawakami H, Kakehi Y, Takumi T, Arai H, Yokota Y, Iwai M, Tanabe Y, Masu M, Hata J. Iwao H. Okamoto H. Koyoyama M. Nomura T. Katsuki M. Nakanishi S. 1990. Generation of transgenic mice with elevated blood pressure by introductionsof the rat renin cord angiotensinogen genes. Proc Natl Acad Sci USA 87:5153-5157. - 33. Kimura S, Mullins JJ, Bunnemann B, Metzer R, Hilgenfeldt U, Zimmermann F, Jacob H, Fuxe K, Ganten D, Kaling M. 1992. High blood pressure in transgenic mice carrying the rat angiotensinogen gene. EMBO J 11:821-827. - 34. Campbell DJ, Habener JF. 1986. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31-39. - 35. Anand-Srivasava MB, de Champlain J, Thibault C. 1993. DOCA-salt hypertensive rat hearts exhibit altered expression of Gi proteins. Am J Hypertens 6:72-75. - 36. Anand-Srivastava MB. 1992. Enhanced expression of inhibitory guanine nucleotide regulatory protein in spontaneously hypertensive rats: Relationship to adneylate cyclase inhibition. Biochem I 288:79-85. - 37. Pandey SK, Anand-Srivastava MB. 1996. Modulation of G-protein expression by angitotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive rats: Relationship with adenylyl cyclase. Am J Hypertens 9:833-837. - 38. Palaparti A, Anand-Srivastava MB. 1996. Modulation of ANF-R2/ANP-C receptors by angiotensin II in vascular smooth muscle cells. Am J Hypertens 9:930-934. - 39. Salomon Y, Londos C, Rodbell M. 1974. A highly sensitive adenylyl cyclase assay. Anal Biochem 58:541-548. - 40. Lowry OH, Roseborough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193:265-275. - 41. Marcil J, Thibault C, Anand-Srivastava MB. 1997. Enhanced expression of Gi protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 29. - 42. Thibault C, Anand-Srivastava MB. 1992. Altered expression of G-protein mRNA in spontaneously hypertensive rats. FEBS Letters 313:160-164. - 43. Feinberg AP, Vogerstein B. 1983. A technique for radiolabeling DNA restriction endonuclease fragment to high specific activity. Anal Biochem 132:6-13. - 44. Clark CJ, Milligan G, McLellan AR, Connell JMC. 1992. Guanine nucleotid regulatory protein levels and functions in spontaneously hypertensive rat vascular
smooth muscle cells. Biochem Biophys Acta 1136:290-296. - 45. Anand-Srivastava MB, Srivastava AK, Cantin M. 1987. Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase: Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem 262:4931-4934. - 46. Anand-Srivastava MB, Sairam MR, Cantin M. 1990. Ring deleted analogs of atrial natriuretic factor inhibits adenylate cyclase/cAMP system: Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem 265:8566-8572. - 47. Sims C, Ashby K, Douglas JG. 1992. Angiotensin II induced changes in guanine nucleotide binding and regulatory proteins. Hypertension 19:146–152. - Giasson E, Meloche S. 1995. Role of P⁷⁰S⁶ protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 270:5225–5231. - Begeot M, Langlois D, Spiegel AM, Saez JM. 1991. Regulation of guanine nucleotide binding regulatory proteins in cultured adrenal cells by adrenocorticotropin and angiotensin II. Endocrinol 128:3162–2168. - Anand-Srivastava MB. 1993. Platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein relation with adenylyl cyclase activity. Circ Res 73:1032–1039. - 51. Chabrier PE, Roubert P, Lonchampt MO, Plas P, Braquet P. 1988. Regulation of atrial natriuretic factor receptors by angiotensin II in rat vascular smooth muscle. J Biol Chem 263:13199–13202. - 52. Anderson KM, Murahashi T, Dostal DE, Peach MJ. 1993. Morphological and biochemical analysis of angiotensin II internalization in cultured vascular smooth muscle cells. Am J Physiol 264:179–188. # COMPARISON OF THE INHIBITORY ACTIONS OF ANGIOTENSIN AT₁ RECEPTOR ANTAGONISTS IN THE PERIPHERAL VASCULAR BED HUNTER C. CHAMPION, DAVID G. LAMBERT, TRINITY J. BIVALACQUA, DENNIS B. MCNAMARA, and PHILIP J. KADOWITZ Tulane University School of Medicine, New Orleans, LA, USA Summary. The effects of nonpeptide angiotensin AT₁ and AT₂ receptor antagonists on pressor responses to the angiotensin peptides were investigated in the cat and the rat. Under constant flow conditions, injections of angiotensin (Ang) I, Ang II, Ang III, Ang I-(3-10), (Pro¹¹,D-Ala¹²) Ang I and Ang IV into the hindlimb perfusion circuit caused dose-dependent increases in perfusion pressure, while Ang I-(4-8) was without effect. The order of potency was Ang I = Ang II = Ang III > $(Pro^{11}, D-Ala^{12})$ Ang I > Ang I-(3-10) = Ang IV. Losartan, EXP 3174, and candesartan decreased vasoconstrictor responses to Ang II in a selective manner. EXP 3174 (1 mg/kg iv) and candesartan (1 mg/kg iv) shifted the dose-response curve to Ang II to the right in a nonparallel manner, whereas losartan shifted the curve to the right in a parallel manner. The AT2 receptor antagonist PD 123,319 had no significant effect on vasoconstrictor responses to the angiotensin peptides in the regional vascular bed of the cat. In the rat, candesartan decreased pressor responses to Ang II, whereas PD 123,319 had no effect on the response to the peptide. These results indicate that vasoconstrictor responses to Ang peptides in the regional vascular bed of the cat and pressor responses to Ang II in the systemic vascular bed of the rat are mediated by the activation of AT, receptors, whereas AT, receptors play little, if any, role in the mediation or modulation of responses to Ang II in the cat or the rat. #### INTRODUCTION Angiotensin (Ang) II has potent vasoconstrictor activity in a number of regional vascular beds in a variety of species [1–3]. Ang II is formed from Ang I by the angiotensin-converting enzyme (ACE) located on the surface of pulmonary capillary endothelial cells [1–6]. Recent studies, however, have suggested that in addition to the pulmonary capillary, bed, there is significant ACE activity in the upstream resistance vessel elements within the pulmonary, hindlimb, and mesenteric vascular beds of the cat [7-9]. Binding studies have revealed the existence of at least two different Ang II receptor subtypes, AT1 and AT2 [10,11]. AT1 receptors have been found in many tissues, including vascular smooth muscle, liver, and kidney [12-17]. AT₂ receptors have been found in bovine cerebellum and uterus and in rat adrenal medulla [10,11,13,18]. The function of the AT2 receptor in vivo is uncertain, although recent evidence suggests that this receptor subtype may play a role in fetal growth and development [19] and has been reported to mediate a vasodepressor response to Ang II and Ang III in the rat [20]. The AT, receptor, however, is believed to be responsible for most, if not all, cardiovascular responses to Ang II [7-9,21-24]. ACE inhibitors and Ang receptor antagonists have been used to counteract the hypertensive, cardiac, and vascular hypertrophic effects of Ang II [25]. The development of Ang receptor blocking agents was aided by the discovery of imadazole analogs, which were nonpeptide Ang II receptor antagonists [10,26]. DuP 753 (losartan), a nonpeptide Ang II receptor antagonist, was developed from these studies and is used in the treatment of hypertension [10,26]. Candesartan is a recently synthesized nonpeptide Ang II receptor antagonist displaying high affinity for the AT₁ subtype [27-31]. Candesartan is the metabolite of the orally active compound TCV-116 and is 30-100 fold more potent than the parent compound [29,32,33]. Candesartan inhibits Ang II-induced aldosterone secretion in rats [33] and decreases arterial pressure in renal hypertensive rats [31]. Candesartan has been reported to shift the dose-response curve for Ang II to the right in a nonparallel fashion and reduce maximal contractile responses to Ang II in rabbit aortic strips [28]. The present study was undertaken to investigate and compare the effects of AT₁ and AT₂ receptor blocking agents on responses to Ang peptides in the cat and the rat. #### MATERIALS AND METHODS #### Regional vascular bed experiments For experiments in the regional vascular bed of the cat, adult cats of either sex weighing 2.0 to 5.4kg were sedated with ketamine hydrochloride (10-15 mg/kg im) and were anesthetized with pentobarbital sodium (30 mg/kg iv). Supplemental doses of pentobarbital were given during the course of the experiment to ensure a uniform level of anesthesia. The trachea was cannulated, and the animals were ventilated with a Harvard model 607 ventilator at a volume of 40-60 ml at 15-22 breaths/m. The animals were maintained at 37°C with a heating blanket. An external jugular vein was catheterized for the intravenous (iv) administration of drugs, and a carotid artery was catheterized for the measurement of systemic arterial (aortic) pressure. For constant-flow perfusion of the hindquarters vascular bed, a 3to 4-cm segment of distal aorta was exposed through a ventral midline incision and was cleared of surrounding connective tissue by blunt dissection. After administration of heparin sodium (1000 U/kg iv), the abdominal aorta was ligated, and catheters were inserted into the aorta proximal and distal to the ligature. Branches of the aorta distal to the origin of the external iliac arteries were ligated to restrict blood to the hindlimbs. Blood was withdrawn from the proximal catheter and pumped at a constant flow rate with a Sigmamotor model T-8 pump into the distal aortic catheter. Perfusion pressure was monitored from a lateral tap in the perfusion circuit located between the pump and the distal aortic catheter. Hindlimb perfusion pressure and systemic (aortic) pressures were measured with Statham P23 transducers and were recorded on a Grass model 7 polygraph. Mean pressures were derived by electronic averaging, and the flow rate was set so that hindquarters perfusion pressure approximated systemic arterial pressure and was not changed during an experiment. The flow rate was determined by timed collection and ranged from 24 to 30 ml/m. Agonists were injected directly into the hindlimb perfusion circuit distal to the pump in small volumes (30 and 100 µl) in a random sequence, and the hindlimb vascular bed was denervated by ligating and cutting the lumbar sympathetic chain ganglia between L3 and L4. These procedures have been described previously [9,23,24]. #### Mesenteric vascular bed experiments For experiments in the mesenteric vascular bed, the cats were anesthetized and instrumented in a manner similar to that described for the hindlimb experiments. For constant-flow perfusion of the mesenteric vascular bed, the superior mesenteric artery was approached through a midline abdominal incision and carefully cleared of surrounding connective tissue. The mesenteric vascular bed was denervated by ligating and cutting the perivascular nerves to the small intestine as they course along the superior mesenteric artery. Following the administration of heparin sodium (1000 U/kg), the femoral artery was cannulated and connected to the inlet side of the perfusion circuit. The outlet side of the perfusion circuit was connected to a catheter that was inserted into the superior mesenteric artery. Blood flow to the small intestine was maintained constant with a Sigmanotor model T-8 perfusion pump. Superior mesenteric arterial perfusion pressure was measured by a lateral tap in the perfusion circuit that was located between the pump and the outlet side of the perfusion circuit. Superior mesenteric arterial perfusion pressure and systemic arterial pressure were measured with Statham P23 pressure transducers and were recorded on a Grass model 7 polygraph. Mean pressures were derived by electronic averaging, and the perfusion rate was set so that superior mesenteric arterial perfusion pressure approximated systemic arterial pressure and was not changed during the experiment. The flow rate was determined by timed collection and ranged from 26-36 ml/min. The agonists used in these experiments were injected, in small volumes (30
and 100 µl), directly into the superior mesenteric artery perfusion circuit distal to the pump. These procedures have been described previously [8]. #### Systemic arterial pressure experiments For experiments on systemic arterial pressure in the rat. Sprague-Dawley rats of either sex weighing 340-540g were anesthetized with pentobarbital sodium (50 mg/kg ip). Supplemental doses of pentobarbital were given as needed to maintain a uniform level of anesthesia. The trachea was cannulated, and the rats breathed room air spontaneously or were ventilated with room air enriched with 95% O2 and 5% CO₂ with a Harvard model 683 rodent ventilator at a tidal volume of 2.4-2.6 ml at a rate of 30-35 breaths/m. Catheters were inserted into the external jugular vein for the iv administration of drugs and into the carotid artery for the measurement of systemic arterial (aortic) pressure. Systemic arterial pressure was measured with a Viggo-Spectramed pressure transducer and was recorded on a Grass model 7 polygraph. Mean pressure was derived by electronic averaging. #### **Materials** DuP 753 (losartan potassium: Dupont-Merck, Wilmington, DE) was dissolved in 0.9% NaCl, and EXP 3174 (Dupont-Merck) was dissolved in a 5% NaHCO₃/ dextrose (50:50) solution. Candesartan (CV-11974) was dissolved in a 1N Na₂CO₃/ 0.9% NaCl solution (1:20). PD 123,319 (Research Biochemicals Inc., Natick, MA), acetylcholine chloride, Ang I, Ang II, Ang III, Ang IV, norepinephrine hydrochloride (Sigma Chemical Co., St. Louis, MO), (Pro¹¹,D-Ala¹²) Ang I (generously provided by Dr. Leland Loose of Pfizer, Inc., Groton, CT), and endothelin-1 (Peptide Research Labs, Tulane University, New Orleans. LA) were dissolved in 0.9% NaCl. Captopril (Bristol Myers-Squibb, Princeton, NJ) was dissolved in 0.9% NaCl. U46619 (Upjohn, Kalamazoo, MI) was dissolved in 100% ethanol at a concentration of 10 mg/ml and was diluted in 0.9% NaCl. BAY K 8644 (Miles, New Haven, CT) was dissolved in a 1:4 solution of cremophor EL and tris(hydroxymethyl) aminomethane (Tris) and Tris·HCl (50 mM, pH 7.4). The resulting suspension was warmed, and polyethylene glycol and Tris (pH 7.4) were added to make a stock solution that was stored in a brown bottle in a freezer. Working solutions of all agonists were prepared on a frequent basis, stored in brown stoppered bottles, and kept on crushed ice during the course of an experiment. #### Statistical analysis Responses were measured in absolute units (mmHg) as mean ± SE and were analyzed using a one-way analysis of variance and Scheffe's F test with a Bonferroni correction or a paired t-test [34]. A P value of less than 0.05 was used as the criterion for statistical significance. #### RESULTS #### Responses to Angiotensin peptides in the hindlimb vascular bed of the cat Under constant flow conditions, injections of Ang I, Ang II, Ang III, Ang IV, Ang I-(3-10), and (Pro¹¹,D-Ala¹²) Ang I into the hindlimb perfusion circuit caused dose-related increases in hindlimb perfusion pressure (figure 1). Injection of Ang I-(4-8) had no significant effect on hindlimb perfusion pressure (figure 1). When doses of the peptides are expressed on a nmol basis to take molecular weight into account, increases in hindlimb perfusion pressure in response to Ang I, Ang II, and Figure 1. Dose-response curves comparing the increases in perfusion pressure in response to intraarterial injections of angiotensin I, II, III, I (3-10), I (4-8), IV, and (Pro¹¹, D-Ala¹²) Ang I in the hindlimb vascular bed of the cat. Doses are expressed on a nmol basis to take molecular weight into account. n indicates number of animals. Ang III were similar (figure 1). The dose-response curve for (Pro¹¹,D-Ala¹²) Ang I was approximately 2 log units to the right of the dose-response curves for Ang I, Ang II, and Ang III. The dose-response curves for Ang I-(3-10) and Ang IV were similar and were three log units to the right of the dose-response curves for Ang I, Ang II, and Ang III (figure 1). #### Influence of losartan (DuP 753) and EXP 3174 The effects of the angiotensin AT₁ receptor antagonist, losartan (DuP 753), and its active metabolite, EXP 3174, on responses to Ang II were compared in the hindlimb vascular bed of the cat, and the results are shown in figure 2. Following administration of DuP 753 in a dose of 2.5 mg/kg iv and EXP 3174 in a dose of 1 mg/kg iv, responses to injection of Ang II into the hindlimb perfusion circuit were reduced significantly (figure 2). When the slopes of the dose-response curves for Ang II were compared before and after administration of DuP 753, (2.5 mg/kg iv) the curve was shifted to the right in a parallel manner which suggests that the blockade of responses to Ang II was competitive in nature (figure 2). When the slopes of the dose-response curves for Ang II were compared before and after Figure 2. Influence of losartan (DuP 753; 2.5 mg/kg iv; A) and EXP 3174 (1 mg/kg iv, B) on responses to angiotensin II in the hindlimb vascular bed of the cat. The peptides were injected directly into the hindlimb perfusion circuit, and responses were determined before and 20 minutes after administration of the receptor antagonist. n indicates number of animals. administration of EXP 3174, the curve for Ang II was shifted to the right in a nonparallel manner which suggests a non-competitive blockade. Responses to norepinephrine were not altered after administration of DuP 753 or EXP 3174 (data not shown). #### Influence of candesartan on responses to Angiotensin II The effects of the newly developed nonpeptide AT₁ receptor antagonist candesartan (CV11974) on responses to Ang II were investigated in the hindlimb vascular bed of the cat. These results are shown in figure 3. Following administration of candesartan in doses of 3µg/kg iv and 1 mg/kg iv, responses to injections of Ang II were reduced significantly (figure 3). When the slopes of the dose-response curves for Ang II were compared before and after administration of the low dose of candesartan, the curve was shifted to the right in a parallel manner suggesting that the blockade was competitive in nature (figure 3). When dose-response curves for Ang II were compared before and after administration of candesartan in a dose of 1 mg/kg iv, the curve for Ang II was shifted to the right in a nonparallel manner suggesting a noncompetitive blockade (figure 3). Responses to norepinephrine were not altered after administration of candesartan in doses of 3 µg/kg iv and 1 mg/kg iv (data not shown). Figure 3. Influence of candesartan in doses of 3 µg/kg iv (A) and 1 mg/kg iv (B) on responses to angiotensin II in the hindquarters vascular bed. Responses to the peptide were determined before and 20 minutes after administration of the receptor antagonist. n indicates number of animals. ## Influence of captopril on responses to the Angiotensin peptides The effects of the ACE inhibitor captopril on responses to Ang I and Ang II were studied in the hindlimb vascular bed of the cat. These results are shown in figure 4. Following administration of captopril in a dose of 4 mg/kg iv, responses to Ang I were reduced significantly at a time when responses to Ang II were not altered (figure 4). In a manner similar to that observed with Ang I, responses to Ang I-(3-10), the precursor for Ang IV, were reduced significantly after administration of captopril (data not shown). Responses to Ang IV and (Pro¹¹,D-Ala¹²) Ang I were not altered after administration of captopril (data not shown). ## Duration of AT₁ receptor blockade The duration of the inhibitory effects of DuP 753, EXP 3174, and candesartan on pressor responses to Ang II was assessed in the hindlimb vascular bed of the cat. The results of these experiments are shown in figure 5. Four hours after administration of DuP 753 in a dose of 2.5 mg/kg iv, EXP 3174 in a dose of 1 mg/kg iv, and candesartan in a dose of 1 mg/kg iv, responses to Ang II were reduced significantly at a time when responses to norepinephrine were not altered (figure 5). ## Influence of AT₂ receptor blockade The effects of the AT₂ receptor antagonist PD 123,319 on responses to the angiotensin peptides were investigated in the hindlimb and mesenteric vascular beds Figure 4. Influence of captopril (4mg/kg iv) on responses to angiotensin I (A) and angiotensin II (B) in the hindlimb vascular bed of the cat. n indicates number of animals. * significantly different from control (p < 0.05). of the cat. The results of these experiments are shown in figure 6. Following administration of PD 123,319 in a dose of 5 mg/kg iv, responses to Ang II, Ang III, or Ang IV were not changed significantly in the hindlimb vascular bed of the cat (figure 6). Following administration of PD 123,319 in doses of 10 and 20 mg/kg iv, Figure 5. Influence of time on the inhibitory effects of DuP 753, EXP 3174, and candesartan on responses to angiotensin II $(0.3 \mu g)$ and norepinephrine $(1 \mu g)$ in the hindlimb vascular bed of the cat. n indicates number of animals. * response is significantly different from control (p < 0.05). responses to Ang II, Ang III, and Ang IV were not altered in the mesenteric vascular bed of the cat (figure 6). ## Effects of candesartan and PD 123319 in the systemic vascular bed of the rat The effects of candesartan on changes in systemic arterial pressure in response to Ang II were investigated in the rat. These data are summarized in figure 7. Injections of Ang II in doses of $0.1-3\,\mu g/kg$ iv caused dose-related increases in systemic arterial pressure. The increases in systemic arterial pressure in response to Ang II were reduced significantly following administration of candesartan in a dose of $1\,\mathrm{mg/kg}$ iv (figure 7). There was little tendency for the blockade to be sur- **Figure 6.** A, Influence of PD 123,319 on responses to angiotensin II, III, and IV in the hindlimb vascular bed of the cat. B, Influence of PD 123,319 in doses of 10 and $20 \,\mathrm{mg/kg}$ iv on responses to angiotensin II and III
in the mesenteric vascular bed of the cat. n indicates number of animals. * response is significantly different from control (p < 0.05). mounted when larger doses of Ang II were injected after administration of the AT_1 receptor antagonist (data not shown). The AT_1 receptor blockade induced by candesartan was long in duration, and pressor responses to Ang II were inhibited at intervals up to 3 hours after administration of the AT_1 receptor antagonist (data not shown). Although pressor responses to Ang II were reduced for periods up to 3 hours after administration of candesartan, increases in systemic arterial pressure in response to iv injections of norepinephrine were not altered during this same time period (data not shown). The effects of the AT₂ receptor antagonist PD 123319 on responses to Ang II were investigated in the rat. These data are summarized in figure 7. Increases in systemic arterial pressure in response to Ang II were not changed by the adminis- Figure 7. Influence of candesartan (A) and PD 123,319 (B) on responses to angiotensin II in the systemic vascular bed of the rat. n indicates number of animals. * response is significantly different from control (p < 0.05). tration of PD 123319 in a dose of 10 mg/kg iv (figure 7). The subsequent administration of candesartan (1 mg/kg iv) significantly attenuated pressor responses to Ang II (data not shown). Increases in systemic arterial pressure in response to norepinephrine were not altered by candesartan or PD 123,319 (data not shown). The chemical structures for losartan, EXP 3174, candesartan, and PD 123,319 are shown Figure 8. Chemical structures of the angiotensin AT, receptor antagonists losartan (DuP 753), EXP 3174, and candesartan (CV-11974). in figure 8. The postulated sites of action of the angiotensin peptides and AT receptor antagonists are shown in figure 9. #### DISCUSSION Results of the present investigation demonstrate that the nonpeptide angiotensin AT₁ receptor antagonists, DuP 753, EXP 3174, and candesartan have significant inhibitory effects on increases in hindquarters perfusion pressure in response to Ang II. Inasmuch as blood flow was maintained constant, the increases in perfusion pressure reflect increases in regional vascular resistance and show that vasoconstrictor responses to Ang II are antagonized by DuP 753, EXP 3174, which is an active metabolite of DuP 753, and candesartan. Vasoconstrictor responses to Ang II did not change over the period of time the experiments were carried out and were not altered by sodium meclofenamate or phentolamine, indicating that responses to the peptide were reproducible and were not modulated by the release of products in the Figure 9. A, Diagram depicting the proposed sites of action of the angiotensin peptides in the cat and rat. Data from the present study suggest that Ang II, Ang III, and Ang IV cause vasoconstriction in the cat and rat by acting on the AT, receptor and that losartan (DuP 753), EXP 3174, and candesartan (CV-22974) are selective antagonists for the angiotensin AT, receptor. Data from the present study suggest that (Pro¹¹, D-Ala¹²) Ang I causes vasoconstriction that is resistant to ACE inhibition, but blocked by AT₁ receptor antagonists. The role of the AT₂ and AT₄ receptors in mediating responses to the angiotensin peptides is uncertain. Bottom: Amino acid sequences for angiotensin (Ang) I, II, III, IV, and I-(4-8). cyclooxygenase pathway or mediated in part by the release of norepinephrine from adrenergic terminals [7,9]. The inhibitory effect of DuP 753 on responses to Ang II was overcome when larger doses of the peptide were injected, and the shift to the right of the doseresponse curve was parallel, suggesting that the DuP 753-induced blockade was competitive in nature. In addition to being a potent and competitive antagonist for Ang II, DuP 753 did not significantly effect vasoconstrictor responses to vasopressin, norepinephrine, neuropeptide Y, and U46619; biphasic responses to endothelin-1; or vasodilator responses to acetylcholine. These data indicate that the inhibitory effects of DuP 753 on responses to Ang II were highly selective, since responses to vasoactive agents, which act by a variety of receptor-mediated mechanisms, were not altered. Moreover, DuP 753 had a long duration of action in that responses to Ang II in the hindquarters returned to only about 50% of control 4 hours after administration of the antagonist in a dose of 2.5 mg/kg iv. Although responses to Ang II returned gradually toward control value during the 4 hours of the experiment, responses to norepinephrine remained unchanged, indicating that the responsiveness of the vascular bed was not changed during the time that experiments were carried out. DuP 753 and other AT₁ receptor antagonists used in these studies had no significant effect on baseline pressures in the aorta and in the hindquarters vascular bed, suggesting that the nonpeptide AT, receptor antagonists had little, if any, agonistic activity in the cat and that Ang II did not play a major role in regulating vascular tone under baseline conditions in the cat. The results of the present studies in the hindquarters vascular bed of the cat are in agreement with studies in the pithed rat, a preparation in which the influence of autonomic reflexes has been removed and increases in diastolic pressure in response to Ang II are measured. In the pithed rat, DuP 753 shifted the Ang II dose-response curve to the right in a parallel manner without altering responses to norepinephrine or vasopressin. In a similar manner, DuP 753 shifted the Ang II dose-response curve in a parallel manner without altering contractile responses to norepinephrine or potassium chloride in the isolated rabbit aortic strip. The results of studies in the pithed rat, the rabbit aortic strip, and the cat hindquarters indicate that DuP 753 is a potent selective, competitive angiotensin AT, receptor antagonist which possesses little agonistic activity [23]. DuP 753 is metabolized to EXP 3174 in the rat. DuP 753 and EXP 3174 both inhibit responses to Ang II in the pithed rat and in isolated rabbit aortic strips. However, the properties of the blockade differ in that EXP 3174 is a noncompetitive antagonist. It has been reported that DuP 753 produced a biphasic inhibition of the pressor response to Ang II with a transient peak inhibition at 5 min followed by a gradual increase in blockade, suggesting the formation of an active metabolite in the rat [21,26,35]. Although it is not known if DuP 753 is metabolized to EXP 3174 in the cat, the inhibitory effects of the metabolite EXP 3174 on responses to Ang II were investigated in the hindquarters vascular bed [23]. Following administration of EXP 3174 in a dose of 1 mg/kg iv, responses to Ang II were reduced markedly, and there was little tendency for responses to the peptide to return toward control values during the 4 hours that responses were followed. Responses to norepinephrine remained unchanged over this same time. The EXP 3174-induced blockade was selective in that responses to U46619, endothelin-1, vasopressin, and norepinephrine were unchanged. The EXP 3174-induced blockade was not overcome until doses of Ang II that were much larger than those administered during the control period were injected. However, when high doses of the peptide were injected, the blockade was overcome. These data indicate that peptide doses that are required to overcome the EXP 3174 blockade are much larger than required DuP 753 doses. These data, consistent with results in the pithed rat and rabbit aortic strip, indicate that the EXP 3174 blockade is noncompetitive in nature [23]. However, when the dose of EXP 3174 was reduced to 0.1 mg/kg iv, a different pattern of effect on responses to Ang II was observed in the hindquarters vascular bed. Although responses to the peptide were reduced markedly, the blockade was readily overcome when larger doses of the peptide were injected, and the shift to the right of the Ang II dose-response curve was parallel, suggesting that the antagonism is competitive at the low dose studied. The reason for the difference in results regarding the nature of the blockade in the rat and the cat is uncertain, but may be attributed in part to the species or to the experimental preparation employed. Moreover, in studies in the rat, responses to Ang II were measured in terms of increases in arterial pressure, and since cardiac output was not measured, changes in systemic vascular resistance were not compared before and after administration of the nonpeptide antagonist. In the present study the inhibitory effects of the antagonists on responses to Ang II were investigated in the denervated hindquarters vascular bed in which blood flow was maintained constant with a pump. Although there may be differences in the nature of the blockade induced by EXP 3174 in different experimental preparations, studies in the literature indicate that EXP 3174 is approximately 20-40-fold more potent than DuP 753. This compares favorably with the present study in the hindquarters vascular bed where EXP 3174 is estimated to be approximately 10-30-fold more potent than DuP 753. Moreover, as observed with DuP 753, EXP 3174 had no significant effect on systemic arterial or hindquarters perfusion pressure, indicating that the antagonist had little, if any, agonistic effect. These data are in agreement with the studies in the rat [23]. EXP 3174 is formed from DuP 753 when the 5-hydroxymethyl group is oxidized to a 5-carboxylic acid group on the imidazole ring. Although DuP 753 is converted to EXP 753 in the rat, it is unknown if the compound is metabolized to EXP 3174 in the cat. Moreover, when the DuP 753-induced blockade was followed over time, there was no apparent biphasic pattern of inhibition with a gradual increase in the blockade developing after 5 min, as observed in experiments in the conscious rat. In the hindquarters vascular
bed of the cat, the DuP 753-induced blockade decreased in intensity with time. These data may suggest that DuP 753 is not converted to a more active metabolite in the cat and may suggest that the metabolism of the nonpeptide antagonist may differ in the two species. Although some differences were observed with respect to the nature of the Ang II receptor blockade with EXP 3174 in the hindquarters of the cat and in several preparations in the rat, the present data are consistent with the results of Timmermans and coworkers and provide support for the conclusion that "their efforts have culminated in the discovery of DuP 753, an orally active, potent, nonpeptide angiotensin receptor antagonist" [21,26,35]. The present data suggest that nonpeptide antagonists, such as DuP 753, and related compounds may be useful in investigations into the role of Ang II in physiological and pathophysiological processes in the regional circulation in the cat. In terms of clinical effectiveness, it is now well established that losartan is an effective and well-tolerated drug for the treatment of essential hypertension [35]. Candesartan is a newly available AT₁ receptor antagonist which is long acting and very selective for the AT₁ receptor [27-33,36]. The present results show that candesartan inhibits pressor responses to Ang II in the hindquarters vascular bed of the cat. The inhibitory effects of candesartan on responses to Ang II were selective in that responses to norepinephrine were not altered and are consistent with results of studies with DuP 753 and EXP 3174 [23]. The inhibitory effects of the lowest dose of candesartan (3µg/kg iv) were overcome when larger doses of angiotensin were injected, and the shift to the right of the Ang II dose-response curve was parallel. When the dose of candesartan was increased to 1 mg/kg iv, the inhibitory effects of the AT₁ receptor antagonist were not overcome, the rightward shift of the Ang II dose-response curve was nonparallel, and the Ang II dose-response curve exhibited little, if any, positive slope. The duration of the inhibitory effects of candesartan on the responses to Ang II was related to dose, and the recovery half-time $(T^{1}/_{2})$ of the inhibitory effect of the lowest dose studied (3 µg/kg iv) was approximately 90 min, whereas the half-time of the inhibitory effect of the 1 mg/kg iv dose was greater than 6 hr in duration. The inhibitory effects of candesartan on responses to Ang II were selective in that the vasoconstrictor responses to norepinephrine were not altered by the AT₁ receptor antagonist in all doses used in the present study. The selectivity of the inhibitory effects of candesartan was assessed in greater detail. Doses of candesartan, which markedly attenuated responses to Ang II, did not alter pressor responses to U46619 and BAY K8644, vasodilator responses to levcromakalim and acetylcholine, or biphasic responses to endothelin-1. These data indicate that candesartan is a highly selective, potent AT, receptor antagonist in the hindquarters vascular bed of the cat. Candesartan had no significant effect on baseline pressures in the aorta and hindquarters vascular bed, suggesting that the AT₁ receptor antagonist has little agonist activity and that Ang II plays little, if any, role in maintaining baseline pressures in the systemic vascular bed of the cat. The characteristics of the inhibitory effect of Candesartan on responses to Ang II were dependent on the dose of the AT₁ receptor antagonist injected. At the lowest dose used, the shift to the right of the Ang II dose-response curve was parallel. However, at the high dose, the shift to the right of the angiotensin dose-response curve was nonparallel. These data suggest that Candesartan can act as a competitive antagonist at low doses, whereas at high doses, the AT₁ receptor blocking agent has the characteristics of a noncompetitive AT₁ receptor antagonist. The reason for the difference in results obtained with the lowest and higher doses of Candesartan is uncertain, but may be explained by the presence of "spare" angiotensin AT₁ receptors in the resistance vessel elements in the hindquarters vascular bed of the cat. Moreover, if "spare" AT₁ receptors were present, the activation of some fraction of the available AT₁ receptors would still be capable of eliciting a maximal response, and the Ang II dose-response curve would be shifted to the right in a parallel manner after treatment with a low dose of Candesartan [37-40]. Furthermore, when a greater fraction of the available AT₁ receptors are inactivated by the noncompetitive AT₁ receptor antagonist, decreasing the "AT₁ receptor reserve", the peptide can no longer elicit a maximal response and the slope of the Ang II dose-response curve would be decreased [39,40]. The results of the present study showing a parallel shift to the right of the Ang II dose-response curve with the lowest dose of Candesartan studied, along with the data showing a nonparallel shift with the higher doses of the AT, receptor antagonist employed, provide support for the hypothesis that "spare" AT, receptors are present in the resistance vessel elements of the hindquarters vascular bed of the cat. The results of experiments in the rat show that Ang II increases systemic arterial pressure in a dose-related manner. The increases in pressure in response to Ang II and Ang III were markedly inhibited by the administration of candesartan. The AT, receptor blockade was not surmounted when larger doses of Ang II were injected after administration of candesartan. The dose-response curve for Ang II was shifted to the right in a nonparallel manner. Although responses to Ang II and Ang III were markedly attenuated, candesartan had no significant effect on increases in systemic arterial pressure in response to norepinephrine. The inhibitory effects of candesartan on pressor responses to Ang II were long in duration and there was little, if any, tendency for responses to return toward control value 3 hours after administration of the AT₁ receptor antagonist in a dose of 1 mg/kg iv. Increases in systemic arterial pressure in response to norepinephrine did not change during the 3 hours after administration of the AT, receptor antagonist. The present data indicate that candesartan is a selective, potent, long-acting angiotensin AT₁ receptor antagonist and that the AT₁ receptor blockade is noncompetitive in nature in the rat. Although increases in systemic arterial pressure in response to Ang II were markedly inhibited by candesartan, a hypotensive or vasodilator response to the angiotensin peptides was not observed after administration of the AT₁ receptor antagonist. These data suggest that the predominant actions of Ang II are mediated by the activation of AT₁ receptors in the systemic vascular bed of the rat and that noncompetitive blockade of the AT₁ receptor does not unmask a vasodilator response. Moreover, when the dose of candesartan was increased to 10 mg/kg iv in the rat, increases in systemic arterial pressure in response to Ang II were abolished and a vasodepressor response to the peptide was not observed. It has been reported that Ang II and Ang III can produce biphasic changes in systemic arterial pressure in the anesthetized rat and that during AT₁ receptor blockade, pressure increases are eliminated, whereas the depressor responses were enhanced [20]. Moreover, it has also been shown that AT₁ receptor blockade eliminated responses to Ang III, whereas AT2 receptor blockade enhanced pressor responses to Ang III [20]. In the present experiments, biphasic changes in systemic arterial pressure in response to the angiotensin peptides were rarely observed and were not statistically significant when data from all experiments were analyzed. Increases in systemic arterial pressure in response to Ang II were markedly attenuated, but were not reversed by candesartan, and increases in systemic arterial pressure in response to the angiotensin peptides in the rat were not modified by the AT₂ receptor antagonist, PD 123319. These data suggest that angiotensin AT2 receptors do not mediate a depressor response or modulate responses to angiotensin peptides in the systemic vascular bed of the rat. The reason for the difference in results in the present study and previous studies in the literature is uncertain, but may involve differences in anesthesia or experimental procedures employed. The results of the present study showing that candesartan inhibits Ang II-induced pressor in an insurmountable manner are consistent with results in isolated rabbit aorta. The present results are also consistent with results in the anesthetized rat showing that candesartan in a dose of 1 mg/kg iv can produce a 100% decrease in the pressor response to Ang II. The results of the present study extend previous work by showing that candesartan inhibits or abolishes vasopressor responses to angiotensin peptides in the rat in a highly selective manner. The results of experiments with AT₁ and AT₂ receptor antagonists were similar in the rat and in the cat [7-9,24]. The studies in both species indicate that the major actions of Ang II are mediated by the activation of AT, receptors and that after administration of candesartan in a dose of 1 mg/kg iv or greater a nonequlibrium AT₁ receptor blockade is established and, for all practical purposes, vasoconstrictor responses to Ang II are abolished, Although vasoconstrictor responses to angiotensin peptides are abolished by higher doses of candesartan and the AT₁ receptor blockade is highly selective, a vasodilator response to angiotensin peptides is not observed in the regional vascular bed of the cat or in the rat [7-9,24]. A vasodilator response to angiotensin peptides blockade of AT, receptors was not observed and vasoconstrictor responses to the angiotensin peptides were not altered with the administration of the AT, receptor antagonist PD 123,319 in doses of 5, 10, or 20 mg/kg iv
[7-9,24], angiotensin peptides [7-9,24]. The results of an extensive series of experiments with PD 123,319 have been interpreted to suggest that AT₂ receptors do not mediate or modulate responses to Ang II, III, or IV in the hindlimb, pulmonary, or mesenteric vascular beds in the cat or in the hindquarters and systemic vascular beds of the rat [7-9,24]. The mechanism by which angiotensin peptides induce vasoconstriction in the cat have been investigated. Although products of the cyclooxygenase pathway of arachidonic acid do not seem to play a prominent role, products of the lipoxygenase pathway appears to be important in AT₁ receptor-mediated vasoconstriction [41]. Results from experiments in which inhibitors of phospholipase C and protein kinase C reduce responses to angiotensin peptides suggest that the vasoconstrictor response to Ang II in the pulmonary vascular bed of the cat is mediated, in part, by AT₁ receptor activation of phospholipase C and protein kinase C [42,43]. Ang I and Ang I-(3-10) induce vasoconstrictor responses in the regional vascular bed of the cat that are markedly attenuated by ACE inhibitors [8,24]. The vasoconstrictor response to Ang I and Ang II are similar in magnitude and in time course and are not altered by the addition of a time-delay coil to the perfusion circuit in the cat [7-9,24]. These data suggest that angiotensin is readily and efficiently converted to an active peptide in small arteries near or at the site of action of the peptide upstream from the capillary bed [7-9,24]. In terms of relative vasoconstrictor activity in the hindlimb vascular bed of the cat, responses to Ang I, Ang II, and Ang III were very similar when doses are expressed on a nanomole basis to take in account the molecular weight of the peptides [9,24]. Vasoconstrictor responses to Ang I-(3-10) and Ang IV were very similar, and although Ang I-(3-10) and Ang IV have full intrinsic activity, by our criteria, in the hindlimb vascular bed of the cat, dose-response curves for Ang I-(3-10) and Ang IV were 2 log units to the right of the Ang II dose-response curves [8,9,24,44]. The Ang I analog (Pro¹¹,D-Ala¹²) Ang I was threefold more potent than Ang IV in the hindlimb vascular bed of the cat. Responses to (Pro¹¹,D-Ala¹²) Ang I were not altered by ACE inhibitors but were attenuated by AT₁ receptor antagonists. The present studies with Ang I and Ang I-(3-10) suggest that ACE activity is high in the small arteries at or near the site of localization of AT, receptors in the precapillary bed [7-9,24]. These data suggest that this local ACE activity could play a role in the local regulation of vascular tone in the regional vascular bed of the cat [7-9,24]. The data showing similar responses to Ang II and Ang III suggest that the amino acid Arg at position 2 is not required for high affinity activation of AT, receptors in the regional vascular bed of the cat [7,9,24]. The Ang IV dose-response curve is parallel to the Ang II dose-response curve, but it lies two log units to the right of the Ang II curve. The data that supports these facts along with the observation that Ang I-(4-8) has no discernable pressor activity suggest that the amino acid Val in the number 3 position of the peptide is required for high-affinity binding to the AT, receptor and intrinsic activity in the cat [7-9,24]. The observation that vasoconstrictor responses to (Pro¹¹,D-Ala¹²) Ang I are not altered by ACE inhibitors but are blocked by AT₁ receptor antagonists suggests either that other enzymatic pathways, such as the chymase pathway, are involved in the conversion of the analog to an active peptide or that this ACE-resistant analog itself possesses the ability to activate the AT₁ receptor. In conclusion, the results of experiments with the angiotensin peptides described in this chapter are summarized in figure 9. The observation that Ang I, Ang II, Ang I-(3-10), and Ang IV have similar vasoconstrictor activity and that responses to Ang I and Ang I-(3-10) are inhibited by ACE inhibitors suggests that the precursors are efficiently converted to active peptides by ACE at or near the site of action in the hindquarters vascular bed. The active peptides, Ang II and Ang IV, are formed within the arterial segments and induce vasoconstriction by activating AT₁ receptors. Ang II and Ang III have similar vasoconstrictor activity, suggesting that the Asp residue in position 1 is not essential for the full expression of the vasoconstrictor response to the peptide. Ang IV has full intrinsic activity in its ability to induce vasoconstriction in the hindlimb vascular bed. However, the dose-response curve for Ang IV is 2 log units to the right of Ang II suggesting that it has low affinity for the AT₁ receptor and that the Arg residue in position 2 is needed for highaffinity binding to the AT₁ receptor. Since Ang I-(4-8) has no measurable activity, the Val residue in position 3 is essential for activity at the AT₁ receptor. The Ang I analog (Pro¹¹,D-Ala¹²) Ang I is more potent than Ang IV and has full intrinsic activity. Vasoconstrictor responses to the Ang I analog are not blocked by ACE inhibitors, suggesting that the ACE-resistant substrate may be converted to an active peptide by a non-ACE pathway, such as the chymase pathway. It is also possible that the analog may have the capacity to stimulate AT, receptors and induce vasoconstriction. The present results suggest that Ang II, Ang III, Ang IV, and (Pro¹¹,D-Ala¹²) Ang I induce vasoconstriction by activating AT₁ receptors. The data with the AT₂ receptor antagonist PD 123,319 suggest that activation of the AT₂ receptor does not induce vasodilation and that AT, receptors do not mediate or modulate vasoconstrictor responses to angiotensin peptides. The role of the AT₂ receptor and the putative AT₄ receptor in the regulation of vascular tone in the regional vascular bed of the cat is yet unknown. #### REFERENCES - 1. Page III, Bumpus FM. 1974. Angiotensin: Handbook of experimental pharmacology. Berlin: Springer-Verlag. - 2. Peach MJ. 1977. Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 57:313-370. - 3. Regoli D, Park WK, Rioux ND. 1974. Pharmacology of angiotensin. Pharmacol Rev 26:69-123. - 4. Franklin WG, Peach MJ, Gilmore JP. 1970. Evidence for the renal conversion of angiotensin I in the dog. Circ Res 27:321-324. - 5. Yang HYT, Erdos EG, Levin Y. 1970. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochem Biophys Acta 214:374-376. - 6. DiSalvo I, Montefusco CB. 1971. Conversion of angiotensin I to angiotensin II in the canine mesenteric circulation. Am J Physiol 221:1576-1579. - 7. Cheng DY, DeWitt BI, McMahon TI, Kadowitz PI. 1994. Comparison of pressor responses to angiotensin I, II, and III in pulmonary vascular bed of cats. Am J Physiol 266:H2247- - 8. Champion HC, Garrison EA, Estrada LS, Potter JM, Kadowitz PJ. 1996. Analysis of responses to angiotensin I and angiotensin I-(3-10) in the mesenteric vascular bed of the cat. Eur J Pharmacol 309:251-259. - 9. Garrison EA, Santiago JA, Kadowitz PJ. 1995. Analysis of responses to angiotensin peptides in the hindquarters vascular bed of the cat. Am J Physiol 268:H2428-H2425. - 10. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Timmermans PMWM. 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196-203. - 11. Chang RSL, Lotti VJ. 1990. Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Mol Pharmacol 37:347-353. - 12. Whitebread S, Mele M, Kamber B, DeGasparo M. 1989. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284-291. - 13. de Gasparo M, Whitebread S, Mele M, Motani AS, Whitcombe PJ, Ramjoue H, Kamber B. 1990. Biochemical characterization of two angiotensin II receptor subtypes in the rat. J Cardiovasc Pharmacol 16(Suppl 4):S31-S35. - 14. Dudley DT, Panek RL, Major TC, Lu GH, Burns RF, Klinkefus BA, Hodges JC, Weishaar RE. 1990. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38:370-377. - 15. Speth RC, Kim KH. 1990. Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II, paminophenylalanine angiotensin II. Biochem Biophys Res Commun 169:997-1006. - 16. Bauer PH, Chiu AT, Garrison JC. 1991. DuP 753 can antagonize the effects of angiotensin II in rat liver. Mol Pharmacol 39:579-585. - 17. Sechi LA, Grady EF, Griffin CA, Kalikyak E, Schambelan M. 1992. Distribution of angiotensin II receptor subtypes in rat and human kidney. Am J Physiol 262:F236-F240. - 18. Herblin WF, Diamond SM, Timmermans PBMW. 1991. Localization of angiotensin II receptor subtypes in the rabbit adrenal and kidney. Peptides 12:581-584. - 19. Bottari SP, DeGasparo M, Stackelings UM, Levens NR. 1993. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinol 14:123-171. - 20. Scheuer DA, Perrone MH. 1993. Angiotensin type 2 receptors mediate depressor phase of biphasic pressure response to angiotensin. Am J Physiol 264:R917-R923. - 21. Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PBMWM. 1990. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753(AII-1) and PD123177(AII-2). J Pharmacol Exp Ther 255:584-592. - 22. McMahon TJ, Kaye AD, Hood JS, Minkes RK, Nossaman BD, Kadowitz PJ. 1992. Inhibitory effects of DuP 753 and EXP 3174 on responses to angiotensin II in pulmonary vascular bed of the cat. I Appl Physiol 73:2054-2061. - 23. Osei SY, Minkes RK, Bellan JA, Kadowitz PJ. 1993. Analysis of the inhibitory effects of DuP 753 and EXP 3174 on responses to angiotensin II in the feline hindquarters vascular bed. J Pharmacol Exp Ther 264:1104–1112. - 24. Garrison EA,
Kadowitz PJ. 1996. Analysis of responses to angiotensin I-(3-10) in the hindlimb vascular bed of the cat. Am J Physiol 270:H1172-H1177. - 25. Williams GH. 1988. Converting enzyme inhibitors in the treatment of hypertension. N Engl J Med 319:1517-1525. - 26. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 27. Noda M, Shibouta Y, Inada Y, Ojima M, Wada T, Sanada T, Kubo J, Kohara Y, Naka T, Nishikawa K. 1993. Inhibition of rabbit aortic angiotensin II (AII) receptor by CV-11974, a new nonpeptide AII antagonist. Biochem Pharmacol 46:311-318. - 28. Shibouta Y, Nada Y, Ojima M, Wada T, Noda M, Sanada T, Kubo K, Kohara Y, Naka T, Nishikawa K. 1993. Pharmacological profile of a highly potent and long-lasting angiotensin 2-Ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-1H-benzim antagonist, idazole-7-carboxylic Acid (CV-11974), and its prodrug, (±)-1-(Cyclohexyloxycarbonyloxy)-ethyl 2-Ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-1H-benzim idazole-7-carboxylate (TCV-116). J Pharmacol Exp Ther 266:114-120. - 29. Flesch M, Ko Y, Seul C, Dusing R, Feltkamp H, Vetter H, Sachinidis A. 1995. Effects of TCV-116 and CV-11974 on angiotensin II-induced responses in vascular smooth muscle cells. Eur J Pharmacol 289-399-402 - 30. Koh E, Morimoto S, Tomita J, Rakugi H, Jiang B, Inoue T, Nabata T, Fukuo K, Ogihara T. 1994. Effects of an angiotensin II receptor antagonist, CV-11974, on angiotensin II-induced increases in cytosolic free calcium concentration, hyperplasia, and hypertrophy of cultured vascular smooth muscle cells. J Cardiovasc Pharmacol 23:175-179. - 31. Li XC, Widdop RE. 1995. Regional hemodynamic effects of the AT₁ receptor antagonist CV-11974 in concious renal hypertensive rats, Hypertension 26:989-997. - 32. Delacretaz E, Nussberger J, Biollaz J, Waeber B, Brunner HR. 1995. Characterization of the angiotensin II receptor antagonist TCV-116 in healthy volunteers. Hypertension 25:14-21. - 33. Wada T, Inada Y, Sanada T, Ojima M, Shibouta Y, Noda M, Nishikawa K. 1994. Effect of an angiotensin II receptor antagonist, CV-11974, and its prodrug, TCV-116, on production of aldosterone. Eur J Pharmacol 253:27-34. - 34. Snedecor GW, Cochran WG. 1967. Statistical Methods, Ames, Iowa: Iowa State University Press. - 35. Csaika C, Buclin T, Brunner HR, Biollaz J. 1997. Pharmacokinetic-pharmacodynamic profile of angiotensin II receptor antagonists. Clin Pharmacokinet 32:1-29. - 36. Mizuno K, Niimura S, Tani M, Saito I, Sanada H, Takahashi M, Skazaki K, Yamaguchi M, Fukuchi S. 1992. Hypotensive activity of TCV-116, a newly developed angiotensin II receptor antagonist, is spontaneously hypertensive rats. Life Sci 51:PL183-PL187. - 37. Kwok YC, Moore GJ. 1984. Photoaffinity labeling of the rat isolated portal vein: determination of affinity constants and "spare" receptors for angiotensins II and III. J Pharmacol Exp Ther 231:137- - 38. Kwok YG, Moore GJ. 1985. Comparison of angiotensin receptors in isolated smooth muscle tissues by photoaffinity labelling. Eur J Pharmacol 115:53-58. - 39. Nickerson M. 1956. Receptor occupancy and tissue responses. Nature 178:697-698. - 40. Stephenson RP. 1956. A modification of receptor theory. Br J Pharmacol 11:379-393. - 41. Kaye AD, Nossaman BD, Smith DE, Ibrahim II, Imig JD, Kadowitz PJ. 1977. The effects of inhibition of phospholipase A2, 12-lipoxygenase and cyclooxygenase on vasoconstrictor responses in the pulmonary vascular bed of the cat. Am J Physiol, in press. - 42. Kaye AD, Nossaman BD, Ibrahim II, Kadowitz PJ. 1995. Influence of phospholipase C and myosin - light chain kinase inhibitors U73122 and KT5926, and the role of L- and N-calcium channels on vasoconstrictor responses in the pulmonary vascular beds of the cat and rat. Am J Physiol 269:L532- - 43. Kaye AD, Nossaman BD, Ibrahim II, Kadowitz PJ. 1995. Influence of protein kinase C inhibitors on vasoconstrictor responses in the pulmonary vascular beds of the cat. Am J Physiol 268:L507-L513. - 44. Cheng DY, DeWitt BJ, Dent EL, Nossaman BD, Kadowitz PJ. 1994. Analysis of responses to angiotensin IV in the pulmonary vascular bed of the cat. Eur J Pharmacol 261:223-227. ## ANGIOTENSIN II RECEPTOR ANTAGONISTS IN PATIENTS WITH RENAL FAILURE AND ON HEMODIALYSIS ## DONALD ALLAN and PETER BOLLI Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada Summary. Limited experience with the use of the angiotensin II antagonist losartan demonstrated good antihypertensive efficacy in patients with renal impairment irrespective of the degree of renal function. In milder forms of renal impairment, there was no further impairment of renal function and no accumulation of the parent drug or the active metabolite. It has been suggested that this is due to losartan being excreted via the hepatic as well as the renal route and that the former possibly compensates for a reduced renal excretion of the drug. Even though losartan is not dialysable, this feature makes it possible to use the drug in patients on hemodialysis. Angiotensin II antagonists may be useful as an alternative treatment in patients with renal impairment, patients who are on hemodialysis and do not tolerate ACE inhibitors, or patients who have a contraindication to this class of drugs. However there is still insufficient data available on the use of losartan in more severe forms of renal impairment. Angiotensin (Ang) II antagonists exert their pharmacological action by blockade of the AT_1 receptor [1]. Therefore, they do not demonstrate some of the adverse effects typical of angiotensin-converting enzyme (ACE) inhibitors, e.g., chronic nonproductive cough and angioedema [2], which are considered to be the result of accumulation of bradykinin, substance P, or other products consequent to the inhibition of the metabolism of these substances by ACE inhibitors [3]. Consequently, Ang II antagonists offer an alternative to ACE inhibitors in patients in whom interference with the renin-angiotensin system is desirable but has been precluded by adverse affects while they were on ACE inhibitors. In patients with renal disease, there is often progressive deterioration of renal function. Although the detailed causes involved in this process are still largely unknown, they include the involvement of the intrarenal renin-angiotensin system. Postulated mechanisms are among others, glomerular hypertension [4] and glomerular hypertrophy [5] whereby Ang II is considered to contribute by inducing efferent arteriolar constriction and by Ang II exerting a growth promoting effect [6,7]. Indirect evidence for the involvement of the renin-angiotensin system with the previously mentioned mechanisms is provided by the favorable results obtained from treatment with ACE inhibitors [8]. The fact that a greater reduction in glomerular filtration rate at the time of initiation of ACE inhibitor therapy was associated with better protection against a later deterioration in glomerular filtration rate [9] underlies the importance of efferent vasoconstriction in the progression of renal impairment. The presence of proteinuria is associated with an accelerated decline in renal function [10]. Although proteinuria represents a surrogate endpoint, it has been shown that greater reduction in proteinuria is associated with a slowing of the progress of the decline in renal function [11]. ACE inhibitors have also been shown to reduce proteinuria to a greater extent than other antihypertensive drugs [12]. ACE inhibitors have a renal protective effect in many human renal diseases [13]. Although it has been postulated that the benefit of ACE inhibition is in part due to the selective dilation of the efferent arteriole caused by bradykinin, renal blood flow, or renal plasma flow, studies are usually comparable between losartan vs. ACE inhibitors [14]. Ang II antagonists lack this particular mechanism, though their antiproteinuric effect is comparable to that of ACE inhibitors [15]. Therefore it would appear that Ang II receptor antagonists seem to affect surrogate endpoints, such as changes in blood pressure, changes in renal blood or plasma flow, and changes in proteinuria, identical to ACE inhibitors. Thus, it would be logical to expect Ang II receptor antagonists to be renal protective as well. Although to date there are no long-term human studies completed [16], the results obtained from animal studies are consistent with this hypothesis [17-19]. Losartan is the first of a series of Ang II antagonists that have become available for the treatment of hypertension. The long plasma half-life of the active metabolite E3174 provides good 24-hour blood pressure control and an excellent side effect profile [20]. Therefore this drug seems to be well tolerated by most patients. Compared to ACE inhibitors, Ang II antagonists provide a comparable blood pressure lowering effect [20]. There is still limited experience with Ang II antagonists in patients with severe impairment of renal function and in those on hemodialysis. The results of relatively small studies indicate good antihypertensive efficacy and safety of losartan irrespective of the degree of renal function or impairment [21] for a period up to 12 weeks [22]. There was no worsening of renal function, and neither the parent drug nor the active metabolite accumulated in the presence of impaired renal function [23], which may relate to the fact that losartan and its active metabolite, E3174, are excreted up to 35% by the kidney and up to 65% to the hepatic route. As the drug is not dialyzable [24], and since no significant change in the area under the curve occurred with increasing impairment of renal function [23], one could assume that in the presence of reduced renal function, there is a compensatory increase in the hepatic excretion of the drug. The following case report demonstrates the
usefulness of the Ang II antagonist losartan in a patient on hemodialysis. #### CASE PRESENTATION A 39-year-old female with End-Stage Renal Disease (ESRD) and hypertension was presented for discussion. She came to medical attention in 1979 when she developed pre-eclampsia. Unfortunately, shortly following an emergency cesarean section, the neonate succumbed to respiratory failure. A renal biopsy performed on that admission demonstrated IgA glomerulonephropathy. Following the delivery, she became normotensive off all antihypertensives. By 1981, her serum creatinine had risen to 220 umol/L, and it continued to worsen until she developed ESRD and commenced hemodialysis in 1987. In 1988, she underwent a cadaveric renal transplant, but had hyperacute rejection requiring a transplant nephrectomy. In 1991, she developed mild hypertension. She was treated initially with captopril with the dose titrated to 25 mg orally bid, but this had to be discontinued because of a persistent nagging cough. At this point is was possible to dialyze the patient with an AN69 dialyzer, which was more appropriate for this young patient. The use of the AN69 was precluded while the patient was on the ACE inhibitor because of the danger of an anaphylactoid reaction. Nifedipine XL was started, but despite escalating doses, her diastolic blood pressures remained at 100 mm Hg. Clonidine was added, but side effects of dry mouth, fatigue, and postural dizziness, were noted. Noncompliance was suspected because of marked variability in her frequently measured blood pressures. These drugs were discontinued, and she was switched to Verapamil in 1992. Following a parathyroidectomy for worsening of her renal osteodystrophy, she developed hypocalcemia leading to hypotension and congestive heart failure from complete AV nodal block. The verapamil was discontinued, and she was discharged off all antihypertensives while attempting nonpharmacological control. In 1994, she was attempted on amlodipine, but quit taking this because of ongoing headaches. In 1995, she was tried on atenolol, but failed this because of fatigue and insomnia, which made it difficult to manage her four children ranging in age from eight to seventeen. Finally, in 1996, she was placed on losartan and has tolerated this well. Past medical history included several D&C's in 1987-88 with the histology showing a proliferative endometrium. In 1989, she had an abdominal hysterectomy. She has no known allergies. Physical examination revealed that her blood pressures were 136/84 on losartan. Pulse rate was 82. Respiratory rate was 16. Dry weight was 74.5kg with 2.4kg interdialytic weight gains. Fundal examination revealed slight arteriolar narrowing. Cardiovascular and respiratory examinations were normal. Her abdomen was soft with normal bowel sounds hepatosplenomegaly. No renal bruits were audible. Investigations included a chest x-ray demonstrating a slight increase in the cardio-thoracic ratio and a normal EKG. An echocardiogram demonstrated borderline hypertrophy of left ventricular wall thickness. #### CASE DISCUSSION This case illustrates several of the shortfalls of antihypertensive therapy and the usefulness of the angiotensin II receptor blockade class. Telemans et al. reported 5 anaphylactoid reactions occurring in 3 out of 13 patients receiving ACE inhibitors coincidentally dialyzed on Polyacrylonitrile AN69 dialyzers [25]. These serious reactions usually required treatment with intravenous fluids, hydrocortisone, epinephrine, and discontinuation of dialysis. The authors speculated that the negatively charged AN69 dialyzer interacted with the plasma resulting in activation of Hageman factor. Activated Hageman factor converts pre-kallikrein to kallikrein. Kallikrein then cleaves kiningen to bradykinin, which may mediate the anaphylactic symptoms [26]. Because the ACE inhibitors also lead to an increase in bradykinin, the interaction between the drugs and AN69 dialyzers may lead to the life-threatening reactions. Greater numbers of hemodialysis patients are being treated with high-flux dialyzers, so an alternative antihypertensive agent, such as the Ang II receptor antagonist, would be useful. Indeed, this patient was placed on an AN69 dialyzer after the captopril was discontinued because of cough. In our local experience, we have noted no adverse reactions with the combination of AN69 dialyzers and losartan. However careful observation is still warranted given two recent reports of anaphylactoid reactions with losartan [27], though they did not occur in dialysis patients. One other aspect to consider in this case is whether or not the patient may have benefited from Ang II receptor blockade at the time of diagnosis of her renal disease in 1979. Further clinical studies are pending. #### REFERENCES - 1. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 2. Lacourciere Y, Lefebre J. 1995. Modulation of the renin-angiotensin-aldosterone system and cough. Can J Cardiol 11(Suppl F):33F-39F. - 3. Varonier HS, Panzani R. 1968. The effect of inhalations of bradykinin on healthy and atopic (asthmatic) children. Int Arch Allergy Immunol 34:293-296. - 4. Brenner BM, Meyer TW, Hostetter TH. 1982. Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation and intrinsic renal disease. N Engl J Med 307:652-659. - 5. Yoshida Y, Fogo A, Ichikawa I. 1989. Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int 35:654-660. - 6. Riser B, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. 1992. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 90:1932–1943. - 7. Arai M, Wada A, Isaka Y, Agaki Y, Sugiura T, Miyazaki M, Moriyama T, Yasufumi K, Naruse K, Naruse M, Yoshimasa O, Ando A, Kamada T, Ueda N, Imai E. 1995. In vivo transfection of genes for renin and angiotensinogen into the glomerular cells induced phenotypic change of the mesangial cells and glomerular sclerosis. Biochem Biophys Res Comm 206:525-532. - 8. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. 1993. The effect of angiotensin converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456-1462. - 9. Apperloo AJ, de Zeeuw D, de Jong PE. 1994. Short-term antiproteinuric response to antihypertensive treatment predicts long-term GFR decline in patients with non-diabetic renal disease. Kidney Int 45:S174-S178. - 10. Remuzzi C, Bertani T. 1990. Is glomerulosclerosis a consequence of altered glomerular permeability to macromolecules? Kidney Int 38:384-394. - 11. Gansevoort RT, de Zeeuw D, de Jong PE. 1993. Long-term benefits of the antiproteinuric effect of angiotensin converting enzyme inhibition in non-diabetic renal disease. Am I Kidney Dis 22:202- - 12. Kasiske BL, Kalil RSN, MA JZ, Liao M, Keane WF. 1993. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 118:129-138. - 13. Maschio G, Alberti D, Janin G, Locatelli F, Mann JFE, Maschio G, Alberti D, Janin G, Locatelli F, Mann JFE, Motolese M, Ponticelli C, Ritz E, Zucchelli P. 1996. Effect of the angiotensinconverting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl I Med 334:939-945. - 14. Kon V, Fogo A, Ichikawa I. 1993. Bradykinin causes selective efferent arteriolar dilation during angiotensin II converting enzyme inhibition. Kidney Int 44:545-550. - 15. Gansevoort RT, de Zeeuw D, de Jong PE. 1994. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system? Kidney Int 5:861-867. - 16. Ichikawa I. 1996. Will angiotensin II receptor antagonists be renoprotective in humans? Kidney Int 50:684-692. - 17. Lafayette RA, Mayer G, Park SK, Meyer TW. 1992. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest 90:766-771. - 18. Ziai F, Ots M, Provoost AP, Troy JL, Rennke HG, Brenner BM, Mackenzie HS. 1996. The angiotensin receptor antagonist, irbesartan, reduces renal injury in experimental chronic renal failure. Kidney Int 50(Suppl 57):S132-S136. - 19. Heller J, Kramer HJ, Cervenka L, Hellerova S. 1996. Losartan protects the rat kidney from ischemic injury. Kidney Int 49(Suppl 55):S113-S114. - 20. Goldberg AI, Dunlay MC, Sweet SC. 1995. Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydrochlorothiazide, atenolol, felodipine ER, and angiotensin converting enzyme inhibitors for the treatment of systemic hypertension. Am J Cardiol - 21. Shaw W, Keane W, Sica D, Halstenson C, Gehr T, Marshall C, Lipschutz K, Shahinfar S. 1993. Safety and antihypertensive effects of losartan (MK-954; DUP 753), a new angiotensin II receptor antagonist, in patients with hypertension and renal disease (abstract). Clin Pharmacol Ther 53:140. - 22. Shaw W, Snavely D. 1994. Safety and efficacy of losartan (DuP 753, MK 954) in hypertensive patients with renal impairment (abstract) J. Am Soc Nephrol 5:567. - 23. Lo MW, Shahinfar S, Furtek CL, Ritter M, Shaw WC, Gehr T, Sica D, Halstenson C, Keane W. 1993. Pharmacokinetics of losartan (MK 954 and DuP 753) in patients with renal insufficiency. Clin Pharmacol Ther 53:160. - 24. Johnston CI. 1995. Angiotensin receptor antagonists: focus on losartan. Lancet 346:1403-1407. - 25. Telemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL. 1990. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38:982-984. - 26. Verresen L, Fink E, Lemke H-D, Vanrenterghem Y. 1994. Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69
membranes. Kidney Int 45:1497-1503. - 27. Acker CG, Greenberg A 1995. Angioedema induced by the angiotensin II blocker losartan. N Engl J Med 333:1572. ## THE PLACE OF ANGIOTENSIN II ANTAGONISTS IN RELATION TO THE CANADIAN HYPERTENSION SOCIETY GUIDELINES ## S. GEORGE CARRUTHERS London Health Sciences Centre, St. Joseph's Health Centre, The University of Western Ontario, London, Ontario, Canada **Summary.** Angiotensin (Ang) II antagonists are a novel class of drugs developed to block Ang II receptors. This approach is deemed more direct and more likely to be effective than the earlier pharmacological approach of inhibiting the enzyme (ACE inhibitor) responsible for converting Ang I to Ang II. Furthermore, it is expected that the approach will avoid problems associated with pathways that bypass ACE, e.g., tissue chymase. Two major subtypes of receptor have been identified, AT_1 and AT_2 . Blockade of the AT_1 receptor by a new class of agents typified by losartan lowers blood pressure in hypertensive subjects and has a theoretical role in blocking the action of Ang II in the pathophysiology of other disease states such as congestive heart failure (CHF) and left ventricular hypertrophy (LVH). The Canadian Hypertension Society Consensus Reports on the drug treatment of hypertension were last updated in a series of publications in the Canadian Medical Association Journal in 1993. Specific reviews dealt with the pharmacotherapy of hypertension, the treatment of hypertension in the elderly, and the treatment of the diabetic hypertensive. The choice of antihypertensive therapy is driven by factors that include concurrent cardiovascular risk factors and the presence or absence of other disease states. The physician is challenged to find an appropriate medication for the individual patient that is not contraindicated, that is effective and affordable for the patient, and that does not cause adverse effects in managing this largely asymptomatic disorder. Although no long-term studies of AT₁ blockers have been done in sufficiently large populations to determine the changes in clinical outcomes that are desirable in treating hypertension (e.g., reduction of myocardial infarction, stroke, and end-stage renal disease), the surrogate endpoint of blood pressure lowering indicates that AT₁ blockers will have an important place in the management of hypertension that is akin to that presently held by ACE inhibitors, alpha-1 blockers, and calcium channel blockers. Recent evaluation of losartan in the elderly (ELITE) indicates a potentially valuable role for losartan in the treatment of elderly hypertensive patients with impaired left ventricular function. #### INTRODUCTION The angiotensin (Ang) II type 1 (AT₁) receptor blockers are a novel class of drugs with a relatively selective competitive antagonism at the AT₁ receptor subclass of Ang II receptors [1-4]. The index drug is losartan, but several analogs are under evaluation and some, e.g., valsartan, have been released in other countries. Because of its pharmacological action as an AT₁ receptor blocker, losartan appears to offer advantages over the angiotensin-converting enzyme (ACE) inhibitors. The latter class of drugs is incapable of entirely preventing the production of Ang II from Ang I because of alternative synthetic pathways that include cardiac and vascular chymase. ACE inhibitors also lead to the accumulation of bradykinin and other kinins thought to be responsible in part for the troublesome cough that may affect as many as 5 to 10% of all ACE inhibitor recipients. However, potential benefits associated with the accumulation of bradykinin, such as a contribution to vasodilation, may be lost through the action of AT₁ blockade. These known differences between the pharmacological actions of ACE inhibitors and AT₁ antagonists have led to considerable speculation on their potential advantages and disadvantages in the treatment of hypertension, congestive heart failure, and left ventricular hypertrophy. Hypertension is a common problem, affecting approximately 10% of the North American population. The problem increases with aging, affecting 20 to 25% of seniors. Usual therapeutic interventions include nonpharmacological therapy of weight loss by dietary and regular aerobic exercise, moderation of salt intake, and moderation of alcohol intake, together with the management of other known cardiovascular risk factors such as smoking, diabetes, and dyslipidemia [5,6]. Two aspects of pharmacotherapy of hypertension have advanced substantially during the past two to three decades. First, there is now a substantial body of evidence that demonstrates the benefit of treating systolic hypertension above 160 mm Hg and diastolic hypertension above 100 mm Hg [7]. Second, there has been enormous growth in the availability of medications to treat hypertension, including novel classes, modified delivery forms, and drug combinations [8]. In the drug therapy of hypertension, there has been an increased emphasis on the importance of evidence rather than opinion in making recommendations on the simplification of treatment to once-or twice-daily monotherapy when possible, the avoidance of aggravation of other risk factors or concurrent disease states, and the rational management of comorbidity [9]. Given the high prevalence of hypertension, the usual lifelong duration of treatment, and the potential financial burden on the individual, the private third-party payor, or the provincial Pharmacare plan, the issue of cost deserves some consideration. There has been a tendency to emphasize the acquisition cost of medications and ignore the direct and indirect costs associated with inadequate compliance leading to poor BP control, costs of additional visits to the primary care physician or the Emergency Room, laboratory tests used to monitor potential biochemical abnormalities, and the costs of investigation for secondary hypertension when BP control is inadequate. Newer medications with fewer adverse effects, better tolerance with improved compliance, little or no need for additional laboratory investigations, and potentially greater benefits over lifetime management if compliance is enhanced may actually be more cost-effective and offer better value than less expensive medications. However, these are matters that require definitive health economic analyses and will not be discussed further. The main emphasis of this review will be the potential place of AT₁ receptor antagonists in the context of the most recent Canadian Hypertension Society Consensus Conference reports [9-12]. There will be extensive cross-references to specific reports. The reader is advised to consult the original reports and their supporting references for a comprehensive understanding of background and evidence leading to specific recommendations. In addition, review of the fifth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (INC V) [6], also published in 1993, is recommended. The 1993 CHS reports introduced explicit evidence for recommendations that were based on a hierarchy of levels of evidence for rating studies of treatment, prevention, and quality assurance [9,11]. The highest level of evidence (Level I) is a randomized controlled trial (RCT) that demonstrates a statistically significant difference in at least one important outcome, e.g., survival or major illness. An RCT of adequate sample size to exclude a 25% difference in relative risk with 80% power is also acceptable as Level I evidence. Level II is defined as an RCT that does not meet the Level I criteria. Level III evidence is defined as a nonrandomized trial with contemporaneous controls selected by some systematic method (i.e., not selected by perceived suitability for one of the treatment options for individual patients) or appropriate subgroup analysis of a randomized trial. Lower levels of evidence describe before-after studies, case series, or case reports. Grade A recommendations are based on one or more studies at Level I, Grade B recommendations are based on Level II evidence, Grade C recommendations on Level III evidence, and Grade D recommendations on evidence lower than Level III, including expert opinion. This approach has been well accepted by most clinician-scientists but is not without dispute. Major counter-arguments include concerns about the lack of weight given to theoretical advantages of a drug and the denial of surrogate endpoints in Grade A evidence. While there is widespread sympathy for this concern because of the general belief that BP control is an adequate surrogate for long-term benefits of antihypertensive therapy, potential long-term effects of differing pharmacological classes may create as yet unknown long term advantages or disadvantages. There are troubling historical precedents in pharmacological treatments that provide the desired surrogate endpoints without benefits of "hard" clinical outcomes (e.g., clofibrate reduced cardiac death, but overall mortality increased; several antiarrhythmics reduced the frequency of ventricular ectopy, but cardiac mortality increased; alpha-blockers improved hemodynamics in patients with heart failure, but did not improve cardiac mortality). #### **METHODOLOGY** Relevant recommendations from the reports on pharmacological treatment of essential hypertension [10], hypertension in the elderly [11], and hypertension and diabetes [12] will be listed, and the potential value of AT₁ receptor blockers will be indicated ## PHARMACOLOGICAL TREATMENT OF ESSENTIAL HYPERTENSION Key decision making points in the management of essential hypertension are the level of blood pressure, the presence or absence of other risk factors such as abnormal lipid profile, raised blood glucose or insulin levels, or left ventricular hypertrophy and the presence or absence of other medical conditions such as ischemic heart disease, congestive heart failure,
peripheral vascular disease, chronic obstructive pulmonary disease, and asthma. The presence of other risk factors or evidence of atherosclerosis should expedite therapy. One must recognize the presence of other disease states in the individual patient and avoid drugs that may aggravate any of these conditions when choosing a medication. Physicians are encouraged to select drugs that may benefit two or more coexistent disorders. ## The uncomplicated hypertensive Recommendations 1 through 8 deal with the initial choice of monotherapy, alternatives in the face of a contraindication, an adverse response, or the lack of adequate response. #### Recommendation 1 Initial therapy should be monotherapy with either a low-dose thiazide diuretic (e.g., hydrochlorothiazide, 25 mg daily) or a beta-blocker (grade A). ### Recommendation 2 If the response is inadequate or if there are adverse effects, substitute the alternative drug (grade A). ### Recommendation 3 If there is a partial response, consider a combination of a diuretic and a beta-blocker (grade A) or monotherapy with an alpha-blocker, ACE inhibitor, calcium entry blocker, or centrally acting drug (grade B). On the basis of available evidence, it would seem entirely appropriate to include within Recommendation 3 monotherapy with an angiotensin II antagonist (AT₁ blocker) at the same level of evidence as alpha-blockers, ACE inhibitors, calcium entry blockers, and centrally acting drugs (i.e., grade B). #### Recommendation 4 If there is an adverse effect or a contraindication to diuretic and betablocker therapy, consider monotherapy with one of the other groups of drugs (grade B). Likewise, it seems entirely reasonable to include an AT₁ receptor blocker as alternative monotherapy (grade B). #### Recommendation 5 If the blood pressure is still not controlled, try combinations such as a low-dose diuretic with an ACE inhibitor, a calcium entry blocker, a centrally acting drug or an alpha-blocker (grade B). AT₁ antagonists have been studied in combination with other classes of drugs, mainly diurectics [13-16], and offer advantages over monotherapy when monotherapy is not sufficiently effective (grade B). #### Recommendation 6 Alternatively, a beta-blocker could be given with a vasodilator (such as a dihydropyridine calcium entry blocker), hydralazine, or an alpha-blocker (grade B). Beta-blockers can be used in combination with AT, receptor antagonists (grade B). #### Recommendation 7 Other combinations may be indicated (grade B/C). It is entirely reasonable that such combinations may include AT₁ antagonists (grade B/C). #### Recommendation 8 Resistant hypertension may require combinations of three or more drug groups (grade C). Consider possible reasons for the poor response to therapy, such as noncompliance or secondary causes of hypertension, including consumption of other drugs. AT₁ antagonists can be used in combinations of three or more drugs (grade C). ## Congestive heart failure In the setting of congestive heart failure, several therapeutic regimens have been tested. Some are effective in lowering blood pressure but do not influence long term outcomes in congestive heart failure. Others have been shown to improve prognosis in congestive heart failure. #### Recommendation 14 Diuretics and ACE inhibitors are first-line therapy (grade A). An important new study on losartan has been published recently. The Evaluation of Losartan in the Elderly (ELITE) set out to compare the deterioration in renal function in elderly patients with congestive heart failure receiving either captopril 50 mg qid or losartan 100 mg daily [17]. There were no differences between treatments in renal function, but the losartan treatment reduced overall mortality and hospitalization. In particular, cardiac mortality resulting from sudden cardiac death was reduced by over 40%. On the basis of this evidence of reduced clinical events, it is reasonable to include losartan as an alternative to ACE inhibitors as first line therapy in patients with hypertension and congestive heart failure (grade B). ## Dyslipidemia ## Recommendation 20 In the setting of dyslipidemia alpha-blockers, ACE inhibitors, beta-blockers, calcium entry blockers, centrally acting agents, and low-dose thiazide diuretics may all be considered for monotherapy (grade D). In the management of patients with dyslipidemia, AT₁ blockers offer an increased choice of lipid-neutral antihypertensive treatments (grade D). ## Left ventricular hypertrophy #### Recommendation 26 In the management of patients with hypertension and left ventricular hypertrophy, direct arteriolar vasodilators such as hydralazine or minoxidil should be avoided (grade B/C). ## Recommendation 25 Left ventricular hypertrophy is a significant risk factor for cardiovascular complications (grade C). Its reversal has not been proven to reduce rates of cardiovascular events. There is insufficient evidence to base initial therapy on the reported effects of drugs on left ventricular hypertrophy. Since angiotensin II is a powerful stimulus for myocardiocyte hypertrophy, there are theoretical reasons why AT, receptor blockers should be effective in this setting (grade D). However, definitive evidence is lacking. ## Chronic obstructive airways disease ## Recommendation 29 Patients with chronic obstructive pulmonary disease should avoid beta-blockers (grade C). ACE inhibitors can cause a chronic dry cough, which can be confused with chronic respiratory disorders. Discontinuation of therapy is usually required to eliminate the cough. For those patients with diseases of the airways, AT₁ receptor antagonists offer a further choice of treatment. In particular, the chronic dry cough associated with ACE inhibitors is reduced substantially during antihypertensive therapy with AT₁ receptor blockers, with coughing frequency and severity similar to a placebo-treated group [18,19]. ## Asthma Recommendation 30 For patients with reversible airway disease, all beta-blockers are contraindicated (grade C). AT₁ receptor antagonists offer an alternative choice in the asthmatic patient (grade D). #### Gout Recommendation 32 In general, thiazide diuretics should be avoided (grade C). AT₁ receptor antagonists offer an alternative in the management of the patient with a history of gout (grade D). ## Pregnancy Recommendation 34 Methyldopa, clonidine, hydralazine, and beta-blockers (e.g., atenolol, metoprolol, oxprenolol and labetalol) may be used alone or in combination (grade B/C). Neither ACE inhibitors (grade C), calcium entry blockers (grade C) or AT₁ receptor blockers (grade C) antagonists should be prescribed for a woman capable of childbearing because of potential teratogenicity. #### Race In the management of black (African American) patients, there were two specific recommendations. Recommendation 37 Thiazides in low doses are recommended over beta-blockers (grade B). Recommendation 38 Calcium entry blockers are as effective as diuretics (grade B) and may be more effective than beta-blockers or ACE inhibitors (grade B). AT₁ receptor antagonists provide another option for the management of hypertension in the black patient (grade D). #### HYPERTENSION IN THE ELDERLY The drug of choice in the treatment of hypertension in the elderly is a low dose of a thiazide diuretic (grade A). Adequate control of hypertension in the elderly patient sometimes requires other medications. ## The elderly #### Recommendation 15 In general, the initial drug dose in elderly patients should be half of the usual recommended dose and should be increased gradually. Patients should be observed for changes in blood pressure and the development of side effects. (This recommendation is based on Level II evidence on diuretics and kinetic differences for calcium entry blockers.) #### Recommendation 16 The number of tablets and different drugs should be kept to a minimum. During long-term treatment in the elderly, once-daily preparations are preferred for optimum compliance (grade B). The usual starting dose of losartan in the elderly is 50 mg once daily. The oncedaily treatment of losartan or losartan/hydrochlorothiazide combination offers another treatment choice for the elderly (grade D). Elderly patients with heart failure have improved outcomes during treatment with the AT, blocker losartan (grade B) [17]. When patients have a contraindication, demonstrated adverse effect, or lack of responsiveness to a thiazide diuretic, an alternative treatment is desirable. ### Recommendation 25 Consideration should be given to agents other than thiazide diuretics in patients with clinically important pre-existing hyperlipidemia, hyponatremia, hypokalemia, or hypercalcemia (grade D). Mild hyperlipidemia or hyperuricemia is not a contraindication to low-dose diuretic therapy in elderly patients. An AT, receptor blocker provides an alternative to other antihypertensive drugs in patients with these problems (grade D). #### Recommendation 33 Caution because of the risk of acute renal failure or hyperkalemia, in elderly patients with severe hypertension or congestive heart failure, especially those with abdominal bruits, diabetic nephropathy, or decreased creatinine clearance, the serum creatinine and potassium levels should be measured before and after institution of therapy with ACE inhibitors (grade D). Acute mild increases in creatinine levels should not be considered a reason to discontinue ACE inhibitor treatment. The pharmacological action of an AT, receptor blocker on the kidney is similar to that of an ACE inhibitor. Consequently, this recommendation to monitor serum creatinine and potassium should be observed after the introduction of AT₁ receptorblocking therapy (grade D). #### Recommendation 34 Centrally acting agents and peripheral alpha-blockers are effective for decreasing blood pressure (grade B). However, cognitive impairment resulting from therapy with methyldopa, postural hypotension from peripheral alpha-blockers
(e.g., prazosin, doxazosin and terazosin), drowsiness and rebound hypertension from clonidine, and depression from reserpine may limit the use of these otherwise effective antihypertensive drugs in older people. AT₁ receptor antagonists appear well tolerated in the elderly and they offer advantages over other drugs in those with impaired left ventricular function. They offer a practical alternative to other drugs that influence cognitive function or produce postural hypotension (grade D). #### HYPERTENSION AND DIABETES Stringent goals are set for the management of blood pressure in the setting of diabetes mellitus. #### Diabetes mellitus #### Recommendation 9 The goal of treatment is a diastolic blood pressure of, at most, 90 mm Hg (grade B). In patients with microalbuminuria, it may be worth attempting to achieve approximately 80 mm Hg (grade D). ## Recommendation 10 ACE inhibitors, calcium entry blockers (grade B), or alpha-blockers (grade C) should be the first-line antihypertensive agents. ## Recommendation 11 Thiazides or beta-blockers should be second-line antihypertensive agents (grade C). ## Recommendation 12 Centrally acting agents or vasodilators may be used if other agents are contraindicated or if there is difficulty in controlling the hypertension (grade C). #### Recommendation 13 If first-line treatment is ineffective, contraindicated, or associated with side effects, the following should be tried: (1) change to or add another first-line agent (grade C), (2) add a cardioselective beta-blocker to a dihydropyridine calcium entry blocker (grade B), or (3) add a thiazide to an ACE inhibitor (grade B). Because of their pharmacological actions and known beneficial effects on renal function and proteinuria, AT₁ receptor blockers provide an alternative to ACE inhibitors, calcium entry blockers, or alpha-blockers as first-line antihypertensive agents (grade D). AT₁ receptor antagonists offer an alternative to ACE inhibitors when the latter provoke cough in the diabetic hypertensive patient (grade C). This is an area that merits specific research studies that compare AT₁ receptor blockers with ACE inhibitors. Diabetic patients commonly have associated morbidity such as autonomic dysfunction, impotence, peripheral vascular disease, and heart failure secondary to myocardial ischemia. #### Recommendation 17 In the presence of autonomic neuropathy, alpha-blockers and centrally acting agents should be used with caution (grade C). ## Recommendation 18 Beta-blockers should be used with caution in patients with heart failure and peripheral vascular disease (grade C). Beta-blockers, especially noncardioselective ones, may worsen hyperglycemia and in insulin-dependent diabetes, may prevent recognition of and delay recovery from hypoglycemia (grade B). ## Recommendation 19 In the presence of impotence, centrally acting agents, thiazides, and beta blockers should be used with caution (grade C). AT₁ receptor antagonists provide a reasonable alternative to alpha-blockers, ACE inhibitors, and calcium channel blockers in the setting of hypertension and diabetes complicated by these problems. In summary, it must be considered entirely reasonable to include selective AT₁ receptor blockers such as losartan in the long list of alternative medications that are suitable for the treatment of the uncomplicated or complicated hypertensive patient when recommended first-line treatments are contraindicated, ineffective, or associated with intolerable adverse effects. It is predictable that this class of medication will be a suitable replacement in the majority of patients receiving an ACE inhibitor in whom a troublesome cough forces discontinuation of the ACE inhibitor. The results of ELITE [17] are particularly encouraging in those older hypertensives with impaired left ventricular function. It remains to be seen whether there will be any advantage of combining an ACE inhibitor with an AT, receptor blocker in the treatment of heart failure. The ELITE trial [17] may have also helped with another conundrum of the AT₁ receptor blockers. Frequently questioned is the role of the AT₂ receptor and the possible implications of chronic stimulation of the AT2 receptor by high levels of circulating and local angiontensin II that occur in left ventricular dysfunction and clinical congestive heart failure. The beneficial results of ELITE suggest that angiotensin II stimulation of unblocked AT2 receptors is not hazardous and may even offer advantages. Further research is required to investigate the phenomenon further. ## REFERENCES - 1. Timmermans PB, Duncia JV, Carini DJ et al. 1995. Discovery of losartan, the first Angiotensin II receptor antagonist. J Hum Hypertension 9(Suppl 5):S3-S18. - 2. Johnston CI. 1995. Angiotensin receptor antagonists: Focus on losartan. Lancet 346:1403-1407. - 3. Gavras HP, Salerno CM. 1996. The Angiotensin II type 1 receptor blocker losartan in clinical practice: A review. Clin Ther 18:1058-1067. - 4. Carr AA, Prisant LM, 1996, Losartan: First of a new class of angiotensin antagonists for the management of hypertension. J Clin Pharmacol 36(1):3-12. - 5. Chockalingram A, Abbott D, Bass M et al. 1990. Recommendations from the Canadian Consensus Conference on Non-pharmacological Approaches to the Management of High Blood Pressure, Mar 21-23, 1989, Halifax, Nova Scotia. Can Med Assoc J 142:1397-1409. - 6. 1993. The Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (INC V). Arch Intern Med 153:154-183. - 7. Houston MC. 1989. New insights and new approaches for the treatment of essential hypertension: Selection of therapy based on coronary heart disease risk factor analysis, hemodynamic profiles, quality of life, and subsets of hypertension. Am Heart J 117;911-949. - 8. Carruthers SG. 1993. A decade of advances in hypertension. Can J Diagnosis 10:37-51. - 9. Carruthers SG, Larochelle P, Haynes RB et al. 1993. Report of the Canadian Hypertension Society Consensus Conference on the Pharmacologic Treatment of Hypertension: 1. Introduction. Can Med Assoc J 149:289-293. - 10. Ogilvie RI, Burgess ED, Cusson JR et al. 1993. Report of the Canadian Hypertension Society Consensus Conference: 3. Pharmacologic Treatment of Essential Hypertension. Can Med Assoc J 149:575-584. - 11. Dawson KG, McKenzie JK, Ross SA et al. 1993. Report of the Canadian Hypertension Society Consensus Conference: 5. Hypertension and Diabetes. Can Med Assoc J 149:821-826. - 12. Reeves RA, Fodor JG, Gryfe CI et al. 1993. Report of the Canadian Hypertension Society Consensus Conference: 4. Hypertension in the Elderly. Can Med Assoc J 149:815-820. - 13. Weir MR, Elkins M, Liss C et al. 1996. Efficacy, tolerability, and quality of life of losartan, alone or with hydrochlorothiazide, versus nifedipine GITS in patients with essential hypertension. Clin Ther 18:411-428. - 14. Ruilope LM, Simpson RL, Toh J et al. 1996. Controlled trial of losartan given concomitantly with different doses of hydrochlorothiazide in hypertensive patients. Blood Press 5:32-40. - 15. Townsend R, Haggert B, Liss C et al. 1995. Efficacy and tolerability of losartan versus enalapril alone or in combination with hydrochlorothiazide in patients with essential hypertension. Clin Ther 17:911-923. - 16. Soffer BA, Wright JT Jr, Pratt JH et al. 1995. Effects of losartan on a background of hydrochlorothiazide in patients with hypertension. J Hypertension 26:112-117. - 17. Pitt B, Segal R, Martinez FA et al. 1997. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). The Lancet 349:747-752. - 18. Lacourciere Y, Brunner H, Irwin R et al. 1994. Effects of modulators of the renin-angiotensinaldosterone system on cough. Losartan Cough Study Group. J Hypertension 12:1387-1393. - 19. Ramsay LE, Yeo WW. 1995. ACE Inhibitors, Angiotensin II antagonists and cough. The Losartan Cough Study Group. J Hum Hypertension 9(Suppl 5):S51-S54. # TRANSLATING CLINICAL GUIDELINES FOR MANAGEMENT OF HEART FAILURE AND HYPERTENSION INTO CLINICAL PRACTICE ## SIMON W. RABKIN University of British Columbia, Vancouver, British Columbia, Canada **Summary.** Scientific data that are synthesized as practice guidelines appear to confront serious impediments in their translation and implementation into patient care. Considering the complexity of some guidelines, the time constraints of clinical practice, and the discrepancies between patients' characteristics and entry criteria for clinical trials, one can wonder whether practice guidelines and practicing medicine are compatible [1]. In the past, most of our efforts have gone into the creation of guidelines. It is time to turn our attention to their effective implementation. #### INTRODUCTION Chart audit assessment of the quality of clinical care of patients with cardiovascular disease has shown significant discrepancies between clinical guidelines and actual clinical practice [2,3]. In heart failure, due to impaired left ventricular systolic performance, a distinguished panel of clinicians from the American Heart Association and the American College of Cardiology have recommended that therapy must include "ACE inhibitors for all patients . . . unless contraindicated" [4]. Furthermore "ACE inhibitors should be continued indefinitely" [4]. In practice, only 50% of patients with heart failure in tertiary and community hospitals are receiving ACE inhibitors [3]. It is unlikely that 50% of patients hospitalized with heart failure could have contraindications to ACE inhibitor therapy. Thus it is a reasonable assumption that a considerable proportion of patients with heart failure, who are candidates for ACE inhibitor therapy are not receiving the recommended therapy. The discrepancy between clinical recommendations and clinical practice is not restricted to heart failure management. Kosecoff et al. [5] found that consensus recommendations for
the management of coronary artery disease from the US National Institutes of Health had no impact on case management in ten Washington State hospitals surveyed. The issue is also a serious concern for management of hypertension [5]. Indeed, only 17% of physicians surveyed in one US State used the US Joint National Committee's (JNC) report on detection, evaluation and treatment of high blood pressure in their practice [5]. These findings are also observed for acute illnesses such as myocardial infarction. Of patients eligible to receive thrombolytic therapy, only 73% received it while only 53% of eligible patients received beta blockers, and only 80% of eligible patients received aspirin [7]. This discrepancy between clinical recommendation and application in practice is not limited to cardiovascular disease. Lomas et al. [8] examined the effect of consensus guidelines for Cesarean section amongst obstetricians. Despite awareness of the guidelines and readiness of the hospital to change, there were no significant changes in the use of Cesarean section in sixteen community hospitals in the years after publication compared to before the publication of these recommendations [8]. The purpose of this chapter is to address why recommendations for practice guidelines by "expert groups" fail to be translated into clinical practice and to provide potential solutions to this ongoing problem. We can begin by examining the problem within the wider context of the determinants of the diffusion of new medical information and technology into practice [9]. A number of factors, each with their own intrinsic variability, are operative. These include variations in the performance characteristics of the physician who uses and interprets the new data; variations in the new technology (guidelines or drugs); biological characteristics of the patient with the disease; unpredictability of contentious responses to medical action (e.g., lawsuits); perplexity about ethical obligations of the clinician to the patient and society; and the clinician's view of the patient's own uncertainty (table 1) [9]. We can reframe these to the issue of clinical practice guidelines that can be considered within three areas specific to the physician, the technology, guidelines, or drugs and the patient (table 2). We begin by examining issues related to the physician. #### PHYSICIANS' AWARENESS OF PRACTICE GUIDELINES A potential explanation for poor translation of clinical guidelines into practice is the lack of awareness of their existence. One full year after the U.S. 1984 JNC III recommendations were published, only 62% of physicians in the state of Maryland were aware of the report's recommendations [6]. These findings were similar to the Canadian obstetricians' awareness of guidelines for Cesarean Section. Lomas et al. [8] found only 67% of answers correct in responses from a Survey of obstetricians in the Canadian province of Ontario. Considering that the questionaire was multiple in nature and chance alone would have produced a 50% correct response, only a 17% improvement over chance was found. Only 3% of obstetricians were able to correctly identify all four of the recommended actions as well as the four actions that were not recommended. Table 1. Determinants of the diffusion of new medical information and technology into practice - · variation in the performance characteristics of the experts who use and interpret the new technology - variation in the performance characteristics of technology - · variation of biological response of the patient to disease - · unpredictability of contentious responses to medical action e.g., lawsuits - perplexity about ethical obligations of clinician to patient and society - · clinician's view of patient's own uncertainty, needs and, expectations Adapted from Reiser, Int J of Tech Assessment Health Care 2:7-12, 1986 [9]. Table 2. Some reasons for the limited implementation of clinical guidelines into clinical practice #### physician - · lack of physician awareness of the guidelines - · time urgency in medical practice - · low prevalence of the clinical condition in a clinician's practice - · failure of learning new information. Problems of continuing medical education to communicate guidelines in a meaningful manner - · lack of ease of access to the proliferating number of guidelines - · perceptions of the new guidelines - · ambiguities of practice guidelines or perception of inconsistency with other 'experts' or the - · conflicting messages about drugs therapy in recommendations and pharmaceutical advertising - patient attitudes to (new) drugs There are a number of potential reasons for lack of awareness. - 1. Medical practice has a time urgency. There is often insufficient time to read the literature, synthesize it, reason alone, and interact with colleagues to discuss the merit of new approaches (table 3). - 2. There is no compensation for literature review or evaluation. Medical practitioners often have limited time to consider whether the entry criteria of the randomized clinical trials of the disease fit the specific patient that the physician is treating. - 3. Difficulty of ready access to clinical practice guidelines impedes their implementation. Guidelines for all the various patient problems that a physician may encounter daily may not be readily accessible to the physician. Each specialty group or association publishes their guidelines in specialized journals. Practice guidelines may be in several different sources, not all of which are conveniently available. Unfortunately, even the awareness of clinical guidelines is not necessarily a guarantee of their implementation. Awareness of JNC II report was not a significant determinant of practice behavior for management of hypertension [6]. ## Table 3. Time urgency and medical practice - · insufficient time to read the literature, synthesize the literature, interact with colleagues to reason together the new approaches - no compensation for literature review or evaluation - · lack of time to consider whether or not the entry criteria of the RCT's on the disease fit the specific patient - · lack of ease of access to the proliferating number of guidelines #### PERCEPTIONS OF NEW TECHNOLOGIES OR RECOMMENDATIONS Some clinicians believe that technologies (including medications) that are efficacious are often slow in achieving an impact while technologies of questionable value diffuse rapidly into practice [10]. Similarly, there is a perception that many patients receive less than state-of-the-art medical care while expensive and/or inappropriate care is more prevalent than desired [10]. There is little data to support the contention that effective therapy slowly diffuses into clinical practice while technologies of questionable value diffuse rapidly. However, it is reasonable to suggest that physicians, who tend to be a conservative group in their approach, would be cautious about introducing new drugs into practice. Similarly, once physicians have become familiar with the dose ranges and side effects of certain drugs, they are less likely to stop using them in their practice. The latter is substantiated by the continued use of lidocaine in acute myocardial infarction despite recommendations to the contrary [7]. #### PREVALENCE OF CONDITION IN THE CLINICIANS' PRACTICE Physicians' pattern of practice vary considerably. While one family physician may see only young families, another family physician may see mainly an elderly population. The first physician may rarely see heart failure or cardiovascular disease and may not recall current recommendations. The ease of diagnosis or degree of recognizability is another problem in prescribing. The diagnosis of heart failure requires a constellation of symptoms and findings on physical examination including elevated jugular venous pressure and an S3 gallop. The use of appropriate therapy is obviously conditional upon correct diagnosis. Another issue with infrequently seen conditions is that the impact of treatment may not be as apparent. Is the difference in the scientific literature large enough to be clinically convincing? [11]. ACE inhibitors clearly reduce cardiovascular mortality in heart failure. In some studies, the number of patients needed to be treated with an ACE inhibitor to save one life (NNT or number needed to treat) is about 100 per year [12]. Some family practitioners may not see one hundred patients with heart failure per year. Yet, they may make as many as 20% of their patients cough when they prescribe an ACE inhibitor [13]. One might anticipate that a cardiologist with a large number of patients with heart failure should prescribe ACE inhibitors in a high proportion of patients to keep them out of the hospital for recurrent heart failure and to decrease the mortality in his patients. #### Table 4. False assumptions and possible failure of traditional CME - · transmittal of rational information alone, independent of how it is presented, will consistently and predictably change (improve) clinical decisions - · once the message have been communicated (delivered), physicians will remember it forever - · once the message has been communicated (delivered), no one else will deliver a contradictory - the message will be remembered when the physician sees all patients with the condition - · based on assumption that transmittal of rational information alone, independent of how it is provided, will predictably improve clinical decisions #### FAILURE OF CONTINUING MEDICAL EDUCATION (CME) TO COMMUNICATE GUIDELINES A physician's time to keep abreast of ongoing new medical information may be reduced as he practices through the years because of the pressures of a clinical practice as well as the demands of sick patients. Learning occurs through a process of continuing medical education that may be provided by the medical association, hospital, or medical school. Continuing medical education (CME) as a mandated
function for continuing licensure is a "stick" rather than a "carrot" approach to medical education. Compulsory CME may not make the physician as receptive to change as CME born out of a physician's desire to improve the quality of his practice. Traditional CME does not always communicate new medical knowledge in a manner that will ensure change in clinical practice. The problems of traditional CME include the presentation of the material with the belief that transmittal of rational information alone, independent of how it is presented, will consistently and predictably change (improve) clinical decisions (table 4). Furthermore, it is believed that once the message has been communicated, physicians will remember it. It is also believed that once the message has been communicated, no one else will deliver a contradictory message. Another assumption of traditional CME is that the message will be subject to instant recall when the physician sees patients. #### THE NATURE OF THE TECHNOLOGY OR DRUG RECOMMENDED Some guidelines for management are unnecessarily complicated. The diagnosis, nonpharmacological management, and drug treatment of a condition may consist of 80 different recommendations that are phrased in paragraph form for scientific accuracy. Some guidelines may extrapolate too much from available data. For example, recommendations on management of lipid lowering drugs used goals for treatment that were not necessarily based on randomized trials. The intent was to compare different regimes with different LDL-C endpoints and compare clinical outcomes. They sought to test the hypothesis that lipid lowering drugs improved survival. Target or goal LDL cholesterol levels were extrapolated from the data. Physicians may have been reluctant to accept all the recommendations because a few have not been as rigorously tested. There is similar concern that recommendations on available evidence may not be optimal for all clinical decisions, especially when available evidence may not be of good quality [14]. Table 5. Potential reasons ACE inhibitors are not prescribed in heart failure - · concern about serious adverse effects e.g., renal failure, hyperkalemia, angioedema - patients dislike of side effects: cough taste alterations - need for monitoring e.g., renal function and potassium - · ACE inhibitors major benefit is prevention (death, recurrent hospitalization, etc.,) and there is always more reluctance to use preventive strategies for asymptomatic patients than treatment of symptoms ACE inhibitors despite their beneficial effect on morbidity and mortality may produce side effects that are distressing for some physicians. While cough is the most frequent side effect occurring in as many as 20% of patients, 1% of patients risk angioedema [13]. Furthermore, the physician must monitor renal function and serum potassium to ensure the drug does not produce renal failure. These and other side effects are an impediment to the use this drug despite its beneficial effects in clinical trials (table 5). #### CONFLICTING MESSAGES ABOUT RECOMMENDED DRUGS Conflicting messages and opinions can prevent action and clear decisions in the treatment of cardiovascular disease. A group of clinician experts could propose clinical practice guidelines that another specialist(s) might disagree with. If the disagreeing opinion is widely circulated, family physicians might not proceed quickly in implementing guidelines, which they conclude lack validity. New drugs tend to receive more publicity in medical journals and in pharmaceutical advertising. This publicity may conflict with recommendations for older and more established drugs. There are several conflicting messages that are specific to ACE inhibitors which have clear advantages in the management of heart failure but do not have any morbidity and mortality data in the treatment of hypertension. The conflicting messages are briefly as follows. "ACE inhibitors will help your patients with congestive heart failure (CHF) because of the wealth of data that shows that they reduce CHF morbidity and mortality. Ang II antagonists will help your patient with CHF. The fact that there are no data that they reduce CHF morbidity and mortality should not concern you." Another conflicting set of messages is the following: "ACE inhibitors should be used to treat CHF because there are data that they reduce CHF morbidity and mortality. ACE inhibitors should be used to treat hypertension. The fact that there are no data to indicate whether or not they alter morbidity and mortality should not concern you." #### PATIENT ATTITUDES TOWARD DRUG TREATMENT Patient concerns about drug therapy may limit the use of medically appropriate treatment of their condition (table 6). There are many patients that are fearful of Table 6. Patient attitudes that may prevent accepting scientifically recognized drug treatment - · preference for nondrug treatment - · preference for alternate therapy e.g., herbal - · fear of drug treatment - · fear of life-long therapy - · dislike of consuming any synthetic substance - · concerns about the cost of drugs - inability or limited ability to pay - · concerns about drug safety traditional pharmaceutical remedies and prefer herbal remedies. Other patients fear the concept of lifelong therapy or are concerned about adverse effects. The high cost of some drugs is yet another consideration or deterrent for patients. While physicians are skilled in discussing with their patients the best options and therapy, there are patients who simply refuse to follow those recommendations. #### POTENTIAL SOLUTIONS FOR IMPLEMENTING CLINICAL PRACTICE GUIDELINES There are various approaches to addressing each of the identified issues (table 7). - 1. The lack of awareness of clinical guidelines may be addressed by providing improved continuing medical education to physicians. - 2. Updated guidelines should be readily available either on computers or reference manuals so that physicians can use their time in the most effective manner. Computer programs specific for disease management can be developed and implemented. - 3. Improved approaches to continuing medical education may be necessary. Active physician participation in educational interactions helps learning. The use of concise graphical educational material and highlighting and repeating essential messages coupled with the positive reinforcement of improved practices may be considered [15] (table 8). - 4. The use of opinion leaders is another strategy. Changing physician prescribing patterns is a difficult undertaking. Schaffner et al. [16] studied the effect of several different strategies on the office practice of antibiotic prescribing and discovered that mailing brochures with recommended practice guidelines had no detectable effect. An office visit by a pharmacist/drug educator to discuss the guidelines had a modest effect. However, an office visit by another physician counsellor had a significant and indeed a marked impact on drug prescribing. Interestingly, physicians responded equally well to the recommendations of the physician counsellor to improve quality of care or to reduce drug cost [16]. Physicians respond to the influence of clinical leaders as well as concern for their patient's well being, patient's demands, perceived social good, and specific patient considerations [17]. Table 7. Potential solutions to problems of implementing clinical practice guidelines - · improved access to and availability of up to date clinical guidelines - development of computer programs that will track patients with certain conditions to ensure implementation of recommended clinical care - · development and implementation of specific strategies to changing physician prescribing patterns - · development of specialized centres for the management of diseases such as heart failure Table 8. Improving continuing medical education - · stimulate active physician participation in educational interactions - · use concise graphical educational material - · highlight and repeat essential messages - provide positive reinforcement of improved practices in follow-up visit Source: adapted from Soumerai and Avorn, JAMA 263:549-556, 1996 [15]. Table 9. Potential solutions: Academic detailing to improve clinical decision making - · conduct interviews to investigate baseline knowledge and motivation for current prescribing patterns - · focus programs on specific categories of physicians and their opinion leaders - · define clear educational and behavioural objectives - ensure interaction of practicing physicians with a clinical (opinion) leader - establish credibility through a respected organization, referencing authoritative and unbiased sources of information and present both sides of controversial issues Source: adapted from Lomas et al., JAMA 265:2202-2207, 1991 [18]. Opinion leaders can have a significant impact on clinical practice [18]. The use of opinion leaders or academic detailing is an expensive but potentially useful way to implement change (table 9). The inherent danger of this approach is that a single or small group of physicians with a particular view point may take over the process in a local community. Thus, national consensus guidelines with local representation is the best approach. 5. Establishment of specialized centers is necessary for management of selected cardiovascular disease. There may be a need for highly specialized expertise in complex disease. The approach for the care of diabetes mellitus has been to establish specialty centers. One diabetologist has concluded that "a detailed understanding of intensive treatment programs (for diabetes mellitus) may be beyond the skill of the average primary care physician. . . ." "An experienced health care team should be involved with the patient's case. . . ." [19]. Perhaps specialized centers for the management of patients with cardiovascular risk factors in the absence of cardiovascular disease and after
the diagnosis of myocardial infarction or heart failure might reduce morbidity and mortality from cardiovascular disease. As this is an expensive approach to medical care, its cost effectiveness would require careful scrutiny and justification. #### REFERENCES - 1. Brook RH. 1989. Practice guidelines and practicing medicine. Are they compatible? JAMA 262:3027-3030. - 2. Montague J, Teo K, Taylor L, Ackman M, Tsuyuki R for the Investigators and Staff of the Heart Function Clinic, University of Alberta Hospitals, and the Clinical Quality Improvement Network (CQIN). 1997. In pursuit of optimal care and outcomes for patients with congestive heart failure: Insights from the past decade. Chap. 17 in Angiotensin II Receptor Blockade Ed. NS Dhalla, P. Zahradka, IMC Dixon, RE Beamish. Boston: Kluwer Academic Publishers. - 3. Clinical Quality Improvement Network Investigators. 1996. Mortality risk and patterns of practice in 4606 acute care patients with congestive heart failure. The relative importance of age, sex and medical therapy. Arch Int Med 156:1669-1673. - 4. ACC/AHA Task Force. 1995. Guidelines for the evaluation and management of heart failure: Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on evaluation and management of heart failure). J Am College of Cardiol 26:1376-1398. - 5. Kosecoff J, Kanouse DE, Rogers WH, McCloskey L, Winslow CM, Brook RH. 1987. Effects of the National Institutes of Health Consensus Development Program on physician practice. JAMA 258:2709-2713. - 6. Hill MN, Levine DM, Whelton PK. 1988. Awareness, use, and impact of the 1984 Joint National Committee Consensus Report on High Blood Pressure. Am J Public Health 78:1191- - 7. McLaughlin TJ, Soumerai SB, Willison DJ, Gurwitz JH, Borbas C, Guadagnoli E, McLaughlin B, Morris N, Cheng SC, Hauptman PJ, Antman E, Casey L, Asinger R, Gobel F. 1996. Adherence to national guidelines for drug treatment of suspected acute myocardial infarction. Evidence for undertreatment in women and the elderly. Arch Int Med 156:799-805. - 8. Lomas J, Anderson GM, Domnick-Pierre K, Vayda E, Enkin MW, Hannah WJ. 1989. Do practice guidelines guide practice? The effect of a consensus statement on the practice of physicians. New Engl J Med 321:1306-1311. - 9. Reiser SJ. 1986. Assessment and the technologic present. Int J of Tech Assessment Health Care 2:7- - 10. Greer AL. 1988. The State of the Art versus the State of the Science. The diffusion of new medical technologies into practice. Int J of Technology Assessment in Health Care 4:5-26. - 11. Marshall KG. 1996. Prevention. How much harm? How much benefit? 1. Influence of reporting methods on perception of benefits. Can Med Assoc J 154:1493-1499. - 12. SOLVD Investigators. 1991. Effect of enalapril on survivial in patients with reduced left ventricular ejection fractions and congestive heart failure. New Engl J Med 325:293-302. - 13. Israili ZH, Hall WD. 1992. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Int Med 117:234- - 14. Laupacis A. 1996. Preventive therapies: Weighing the pros and cons. Can Med Assoc J 154:1510-1512. - 15. Soumerai SB, Avorn J. 1990. Principles of educational outreach ("Academic Detailing") to improve clinical decision making. JAMA 263:549-556. - 16. Schaffner W, Ray WA, Federspeil CF, Miller WO. 1983. Improving antibiotic prescribing in office practice. A controlled trial of three educational methods. JAMA 250:1728-1732. - 17. Harris JS. 1990. Physician decision making. Why do doctors do what they do: determinants of physician behavior. J of Occupational Medicine 32:1207-1217. - 18. Lomas J, Enkin M, Anderson GM, Hannah WJ, Vayda E, Singer J. 1991. Opinion leaders vs. audit and feedback to implement practice guidelines. Delivery after previous cesarean section. JAMA 265:2202-2207. - 19. Zimmerman BR. 1994. Glycaemia control in diabetes mellitus. Towards the normal profile? Drugs 47:611-621. COUGH INDUCED BY PHARMACOLOGICAL MODULATION OF THE RENIN-ANGIOTENSINALDOSTERONE SYSTEM. ANGIOTENSIN CONVERTING ENZYME INHIBITORS AND ANGIOTENSIN II RECEPTOR ANTAGONISTS ### YVES LACOURCIÈRE and JEAN LEFEBVRE Hypertension Research Unit, Le Centre Hospitalier Universitaire de Québec, Québec, Canada Summary. Dry cough is now recognized as a common side effect of ACE inhibitor therapy. When cough becomes bothersome, no alternative is better than substituting a different class of antihypertensive agents for the offending ACE inhibitors. Losartan potassium represents a new class of antihypertensive agents with a different mechanism of action: it directly blocks the effects of angiotensin (Ang) II at the receptor level, without affecting kininase II-related factors, such as the bradykinin system. As shown in the Losartan Cough Study, the incidence of cough related to a treatment with an AT₁ type Ang II receptor antagonist, such as losartan, is significantly lower than that observed with lisinopril and is similar to that of HCTZ in patients with a rechallenged ACE-inhibitor cough. Ang II receptor antagonists represent a potential new treatment for hypertensive patients, which may be especially useful in patients in whom a pharmacological inhibition of RAAS is indicated, but who develop cough with ACE inhibitors. It is well recognized that the renin-angiotensin aldosterone system (RAAS) plays a critical role in fluid/electrolyte homeostasis and blood pressure regulation. Pharmacological inhibition of the RAAS has been of particular interest in the management of pathophysiological states, such as congestive heart failure and hypertension, particularly since the introduction of angiotensin-converting enzyme (ACE) inhibitors in the early 1980s [1–4]. ACE inhibitors are generally well tolerated with a relatively low adverse-effect profile. However, their use can be limited by an annoying side effect, cough [5–29]. Recent research has focused on the development of new modulators of the RAAS: the angiotensin (Ang) II receptor antagonists. This lattest class of agents directly interfer with RAAS at the level of Ang II Table 1. Clinical characteristics of ACE inhibitors cough Symptomatology Dry (nonproductive), irritating, persistent Sensation of "tickling" in the throat May occur more frequently when reclining Intermittent or continuous May change the tone of voice May cause vomiting Generally within 2 months May be triggered by viral respiratory tract infection in 36% of patients Resolution Generally within 1 week after ACE inhibitor discontinuation Cross-reaction between ACE inhibitors Resistant to conventional antitussive agents Demographics Females > Males Source: Based on reference 29, with permision. receptors. They have been expected to be more specific and are less likely to induce cough as an adverse effect. This review summarizes the available information on ACE inhibitor-related cough with respect to its characterization, frequency, mechanism, and treatment. Special attention has been paid to properly designed clinical trials to document the true incidence of ACE inhibitor-induced cough. Results are also presented from a prospective, randomized, double-blind, parallel-group, controlled trial, designed to compare the incidence and severity of cough associated with an ACE inhibitor, lisinopril; a type 1 (AT₁) Ang II receptor antagonist, losartan; and a thiazide diuretic, hydrochlorotiazide, which all modulate the RAAS [28]. #### CLINICAL CHARACTERIZATION OF COUGH WITH ACE INHIBITORS The general characteristics of the ACE inhibitor-related cough are listed in table 1. Description of ACE inhibitor-related cough from published case reports, abstracts, postmarketing surveillance studies, hospital series, and randomized controlled trials are generally consistent [30-50]. The cough is typically characterized as being nonproductive (i.e., dry cough), persistent, and irritating. Its onset is described as a tickling sensation in the back of the throat, occurring in most of the cases within two months of ACE inhibitor therapy. Delayed onsets of up to 15 months have been reported. A viral respiratory infection often contributes to the triggering of symptoms [50]. As it progresses, cough may become intermittent or continuous and exacerbate at night or when patient is reclining. Symptoms can interfer with speech, change the tone of the voice, or even cause vomiting. Usually these symptoms do not resolve with time unless the ACE inhibitor is withdrawn. Figure 1. Incidence of dry cough with angiotensin-converting enzyme (ACE) inhibitors: ■, captopril; ♠, enalapril; ●, other ACE inhibitors. Based on reference 82, with permission. #### FREQUENCY OF COUGH Cough is such a common symptom that it is often overlooked as a side effect of medication. In the medical literature, estimates on occurrence of ACE inhibitorrelated cough vary extensively, reflecting different methodologies used to ascertain the presence of this side effect. Early postmarketing studies on captopril and enalapril have not been designed to measure the occurrence of cough. Estimates have mostly been based on spontaneous patient reports. Duration of treatment, complete followup, total population exposed, or interruption of ACE inhibitor for a reason other than cough have not always been taken into account. Consequently, this has led to an underestimation of the overall incidence of cough and probably better reflects severe cases of cough [51]. On the other hand, a considerably high incidence of cough has been reported in most studies with less than 50 patients [figure 1]. As a result the reported incidence of cough in the world literature ranges from 0% to over 30% [38,51-54]. Better documention regarding the overall occurrence comes from prospective trials specifically designed to assess the relationship between the development of cough and the use of ACE inhibitors (hospital clinic-based
series and randomly allocated controlled trials). These studies relied on a more appropriate method of assessing side effects related to medication (double-blind challenge period, control group, patient-assessed standard side-effects questionnaires, life-table analysis) and provided a more reliable evaluation of the overall incidence of ACE inhibitorrelated cough, i.e., between 6 and 16% [31,50-52,55]. #### PREDISPOSING FACTORS Typical characterizations of adverse drug reactions include the identification of predisposing factors such as sex, age, race, type of agent involved, or any pertinent clinical situation. Because of the nature of most reports on ACE inhibitior-related cough, many of these data are not available. It is thus difficult to identify patients treated with ACE inhibitors who are at a higher risk of developing a persistent cough. Some evidence suggested that the occurrence of ACE inhibitor-induced cough is related to gender. Indeed, the cough has been reported to occur more commonly in women than in men [31,35,50-57] with some studies reporting a threefold increase [58]. However, these data are difficult to interpret because of other contributing factors [55,59]. Moreover, females tend to spontaneously report cough more frequently than males regardless of the antihypertensive agent or placebo treatment [58]. Age, race and, smoking habit do not seem to be relevant prognostic factors. The cough is not likely to result from a pulmonary dysfunction; standard pulmonary tests are generally not affected, and asthmatic patients do not seem to be at increased risk of ACE inhibitor-related cough [31,32]. Cough is not likely to be dose-related. However, symptoms may improve with lowering the dose [35,60]. The cough appears to be nonspecific in terms of which ACE inhibitor is involved, the presence or absence of a sulfhydryl group in the molecule, or the duration of action [31,35,36]. The cross-reaction with any agent of the pharmacological class suggests that the cause of cough is related to the agent's mechanism of action [31,32,35,45,50,60,61]. Although recent reports suggest improvement in the severity and/or the frequency of dry cough after switching to a newer ACE inhibitor [62], no prospective studies are, at present, available to allow definite conclusions. #### MECHANISM OF COUGH The underlying mechanism(s) by which ACE inhibitors as a class cause cough has yet to be elucidated. Moreover, it is also unclear why only a certain percentage of patients taking ACE inhibitors develop this side effect. Figure 2 summarizes proposed mechanisms that may contribute to the phenomenon. ACE inhibitors produce their therapeutic effect by blockade of the RAAS, which prevents Ang II formation through a competitive inhibition of ACE. ACE is present in many tissues of the body, particularly in the vascular endothelium of the lungs. Since ACE (kininase II) is not specific to the RAAS, suspicion has fallen on substrates other than Ang I as the mediators of cough. It has been proposed that kinins (such as bradykinins), normally degraded in part by ACE, accumulate in the lung as a result of inhibition of ACE, thus promoting cough and bronchospasm [41]. Figure 2. Mechanisms that may contribute to cough with angiotensin-converting enzyme (ACE) inhibitors: PGF₂, prostaglandin F₂; CGRP, calcitonin gene-related peptide; 5HT, 5-hydroxytryptamine; H₁, histamine. Based on reference 82, with permission. This has been hypothesized from the following observations: the large amount of ACE in the lungs; the effects of bradykinin on C-fibers through type J receptors involved in the cough reflex; the bronchoconstrictive effect of bradykinin and the occurrence of cough after intradermal injection of bradykinin [49,63-67]. Accumulation of bradykinin could contribute to bronchial irritability and cough in susceptible persons by directly inducing smooth muscle contraction and local edema. Further, bradykinin could stimulate the formation of prostaglandins leukotrienes, two bronchial inflammatory agents derived from arachidonic acid. In this respect, concurrent inhibition of prostaglandin formation with nonsteroidal antiinflammatory drugs appears to attenuate the cough produced by ACE inhibitors [61,68]. It is difficult to accept that accumulation of kinins is the only mechanism of ACE inhibitor-induced cough, since the adverse affect appears to be variable in occurrence, unrelated to the dosage and with a female preponderance [34,35,37-41,69-71]. Several other mechanisms have been postulated as the explanation of ACE inhibitor-related cough [31,72-76]. These pertain to either bronchial hyperresponsiveness, irritative effect of various mediators, or enhanced pulmonary receptors. Many pulmonary tests (capsaisin, histamine, citric acid, methacholine) have been attempted in order to characterize one of the suggested mechanisms [31]. Substance P is another potent bronchoconstrictor which may be considered as a contributing factor to the phenomenon. Its biological effects are prolonged following inhibition of ACE. This could result in local accumulation in the upper respiratory tract, leading to cough through an interaction with type J receptors and C-fiber afferents in susceptible persons [72,73]. A genetic predisposition has been suggested by Yeo and colleagues [77], since the proportion of the population homozygous for ACE (16%) corresponds to the incidence of cough. However, reports on the potential relation between the polymorphism of the ACE gene and ACE inhibition-cough are conflicting [78,79]. Turgeon and colleagues have suggested that persistent cough is rather an adverse reaction related to a genetic polymorphism of drug metabolism, since coughing patients carry mutant alleles of CYP2D6, a specific cytochrome P450 isoenzyme which catalyzes the oxidation of several cardiovascular drugs [80]. #### MANAGEMENT OF ACE INHIBITOR-RELATED COUGH The cough from ACE inhibitors does not respond well to standard antitussive agents, such as dextromethorphan or codeine. As mentioned, reduction of the dose may reduce the symptoms in some cases but can be limited by therapeutical issues. Trying to inhibit the cough by using NSAIDs is not recommend, since it exposes the patient to additional untoward effects and may represent a drug interaction interfering with the efficacy of the therapy. Thus far, the best alternative is the withdrawal of the ACE inhibitor. Cough generally disappears within 1 to 4 days, although disappearance after as long as 4 weeks has also been reported. Before ordering extensive evaluation, diagnostic tests, or empiric treatments, clinicians should suspect ACE inhibitors as the cause of the cough although other conditions should be suspected including asthma, bronchitis, smoking, and heart failure. #### ANGIOTENSIN II RECEPTOR ANTAGONISTS AND COUGH Losartan potassium (MK 954; DuP 753) is the first oral, nonpeptidic Ang II receptor antagonist to be marketed worldwide for the treatment of essential hypertension. It represents a significant addition to the cardiovascular armamentarium, and several other agents of this class are actually undergoing clinical trials [table 2]. By selectively and competitively antagonizing Ang II at its receptor level (AT₁), losartan represents a more direct approach than ACE inhibitors in blocking the RAAS. Consequently, through its lack of effect on the bradykinin system [81], it is not expected to be associated with dry cough. To test the hypothesis that blockade of Ang II receptors does not cause cough to the same extent as cough seen during ACE inhibition, the Losartan Cough Study [28] was conducted in 135 patients with mild to moderate hypertension with a history of ACE inhibitor dry cough. This study was the first prospective, double-blind, controlled study specifically designed to evaluate as the primary endpoint the side effect of "dry cough" in patients treated with three different RAAS-modulating agents: losartan (50 mg once-daily), an AT₁ type Ang II receptor antagonist; lisinopril (20 mg once-daily), an ACE inhibitor; and hydrochlorothiazide (HCTZ) (25 mg once-daily), a diuretic. In lieu of placebo, HCTZ was used as a positive control for antihypertensive efficacy as well as a negative control for the develop- | Name | Pharmaceutical industries | |-------------|-----------------------------| | A-81988 | Abbott | | Candesartan | Takeda Industries | | D-8731 | Zeneca | | GR-138950-C | Glaxo Research | | Irbesartan | Sanofi/Bristol-Myers-Squibb | | L-158809 | Merck Frosst | | Losartan | Dupont-Merck Frosst | | SC-52458 | GD Searle | | SKF-108566 | SmithKline Beecham | | Tasosartan | Wyeth Ayerst Research | | Telmisartan | Boehringer Ingelheim | | UP-296-6 | Laboratories UPSA | | Valsartan | Ciba-Geigy | **Table 2.** Angiotensin II (AT, type) receptor antagonists ment of dry cough [82]. Assessment for the presence of cough was performed using a self-administered questionnaire throughout three consecutive study periods: a 6week, single-blind positive challenge period with lisinopril; a 6-week, single-blind dechallenge placebo washout period; and an 8-week, double-blind rechallenge period with either losartan, lisinopril, or HCTZ. The questionnaire was similar to one previously used that was able to discriminate an ACE inhibitor from another drug on the basis of cough [83]. To de-emphasize the importance of cough as the primary endpoint, dry cough was one of nine symptoms assessed. The questionnaire was completed at each visit before the patients saw the investigator. The results of the double-blind period showed that 72% of patients developed cough within 8 weeks when rechallenged for a third time with an ACE inhibitor compared to 29% and 34% with losartan and HCTZ, respectively [figure 3]. The percentage of patients who coughed on HCTZ were not different from those of patients on losartan. Both were similar to the percentage of "non-coughers" on lisinopril, about 30%. These incidences could
be interpreted to indicate the background incidence of cough (or noncough) in a study of this unique design and in highly selected, cough-sensitive population. Similar results were observed in a study of similar design in patients receiving an ACE inhibitor, a renin-inhibitor, or placebo [84]. It is therefore anticipated that the incidence of cough with patients on losartan, will be similar to that of placebo. A relevant observation in the present study is that about 30% of patients who had been challenged and dechallenged twice did not responded by coughing for a third time. Could this challenge dechallenge "in itself" modify the future response to ACE inhibitors and be a sort of challenge tachyphylaxis? Support for such a hypothesis comes from the findings of Reisin et al. [85] that cough attributed to ACE inhibitors disappeared after continued treatment in approximately half of the patients. Perhaps other explanations exist. For instance, ACE inhibitors may promote the continuance of a cough only after a cough stimulus has occurred. This would be consistent with a previous report that Figure 3. Proportions of patients with dry cough by treatment group in the Losartan Cough Study: \boxtimes "YES" for dry cough; \boxminus "NO" for dry cough. $\star p < 0.01$, versus other groups. 36% of patients who developed prolonged cough related to ACE inhibitors did so following a common cold [50]. The onset and time to resolution of ACE-inhibitor cough in the study population was approximately 3 and 4 weeks, respectively. However, the study design limited a complete evaluation of onset and resolution of cough; in the general population, some patients may take longer to develop cough and/or may take longer for cough to resolve. This study collected much information regarding "dry cough", including the identification of a plethora of ACE inhibitors that previously caused cough in these patients, which was reproduced with lisinopril treatment. This supports the theory that cough is a class effect of ACE inhibitors. Of the patients enrolled into the study, 65% were women. This gender distribution is not typical of hypertension studies where usually 30-40% of the study population are women. This observation is consistent with the theory that women develop and/or report cough more commonly than men [31,56,86], regardless of the antihypertensive agent, but to a greater extent with ACE inhibitors. The reason for the apparent higher reporting rate of cough by women has not been elucidated. Although the specific mechanism by which ACE inhibitors as a class cause cough is not firmly established, increased levels of mediators outside the RAAS cascade are likely to be the mechanism of cough [87]. These mediators include kinins such as bradykinin, substance P, and two bronchial inflammatory agents derived from arachidonic acid-prostaglandins and leukotrienes [72,88,89]. By showing that losartan-which reduces blood pressure through blockade of the AT₁ Ang II receptor—and HCTZ—which reduces blood pressure by altering blood volume are associated with significantly lower incidences of cough, the data from the Losartan Cough Study support the hypothesis that cough associated with ACE inhibition is not due to blockade of Ang II formation, but rather, is due to inhibition of kininase II related factors. Furthermore, the results of the current study are consistent with two other studies with losartan that suggest that Ang II receptor antagonists are more specific inhibitors of the RAAS and have no notable effects on systems influenced by kininase II, i.e., bradykinin accumulation [90] and alterations in prostaglandin synthesis [91]. #### REFERENCES - 1. Brunner HR, Nussberger J, Waeber B. 1985. Effects of angiotensin converting enzyme inhibitor: a clinical point of view. J Cardiovasc Pharmacol 7(Suppl 4):73-81. - 2. The SOLVD Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293-302. - 3. The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSEN-SUS). N Engl J Med 316:1429-35. - 4. Dzau VJ, Creager MA. 1987. Progress in angiotensin-converting enzyme inhibition in heart failure: rationale, mechanisms, and clinical responses. Cardiol Clin 7:119-30. - 5. Rush JE, Merrill DD. 1987. The safety and tolerability of lisinopril in clinical trials. J Cardiovasc Pharmacol 9(Suppl 3):S99-S107. - 6. Davies RO, Irvin JD, Kramsch DK, Walker JF, Moncio F. 1984. Enalapril worldwild experience. Am J Med 77(Suppl 2A):23-35. - 7. Frolich ED, Cooper RA, Lewis EJ. 1984. Review of the overall experience of captopril in hypertension. Arch Intern Med 144:1441-1444. - 8. McFate Smith W, Kulaga SF, Moncloa F, Pingeon R, Walker JF. 1984. Overall tolerance and safety of enalapril. J Hypertens 2(Suppl 5):S113-S117. - 9. Veterans Administration Cooperative Study group on Antihypertensive Agents. 1984. Low-dose captopril for the treatment of mild to moderate hypertension. I. Results of a 14-week trial. Arch Intern Med 144:1947-1953. - 10. Edwards CR, Padfield PL. 1985. Angiotensin-converting enzyme inhibitors: past, present, and bright future. Lancet 1:30-34. - 11. Jenkins AC, Drelinski GR, Tadros SS, Groel JT, Fand R, Herczog SA. 1985. Captopril in hypertension: seven years later. J Cardiovasc Pharmacol 7(Suppl 1):S96-S101. - 12. DiBianco R. Adverse reactions with angiotensin converting enzyme (ACE) inhibitors 1986. Med Toxicol 1:122-141. - 13. Irvin JD, Viau JM. 1986. Safety profiles of the angiotensin convering enzyme inhibitors captopril and enalapril. Am J Med 81(Suppl 4C):46-50. - 14. Todd PA, Heel RC. 1986. Enalapril. A review of its pharmacodynamic and pharmacokinetics properties, and therapeutic use in hypertension and congestive heart failure. Drugs 31:198- - 15. Weber MA, Zusman RM. 1986. Converting enzyme inhibitors in the treatment of essential hypertension. Drug Ther 16:43-54. - 16. Bolzano K, Arriaga J, Bernal R, Bernades H, Calderon JL, Debruyn J, Dienstl F, Drayer J, Goodfriend TL, Gross W. 1987. The antihypertensive effect of lisinopril compared to atenolol in patients with mild to moderate hypertension. J Cardiovasc Pharmacol 9(Suppl 3):S43-S47. - 17. Armayor GM, Lopez LM. 1988. Lisinopril: a new angiotensin-converting enzyme inhibitor. Drug Intell Clin Pharm 22:365-372. - 18. Brogden RN, Todd PA, Sorkin EM. 1988. Captopril. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs 36:54-60. - 19. Graves H. 1986. A multicenter trial of enalapril in the treatment of essential hypertension. Clin Ther 9:24-38. - 20. Inman WH, Rawson NS, Wilton LV, Pearce GL, Speirs CJ. 1988. Post-marketing surveillance of enalapril. I. Results of prescription-event monitoring. BMJ 297:826-829. - 21. Kostis IB. 1988. Angiotensin converting enzyme inhibitors. II. Clinical use. Am Heart J 116:1591- - 22. Rumboldt Z, Marinkovic M, Drinovec J. 1988. Enalapril versus captopril: a double-blind multicentre comparison in essential hypertension. Int J Clin Pharmacol Res 8:181-188. - 23. Warner NJ, Rush JE. 1988. Safety profiles of the angiotensin-converting enzyme inhibitors. Drugs 35(Suppl 5):89-97. - 24. Weber MA. 1988. Safety issues during antihypertensive treatment with converting enzyme inhibitors. Am I Med 84(Suppl 4A):16-23. - 25. Arr SM, Woollard ML, Fairhurst G, Pippen CA, Rao SK, Cooper WD. 1985. Safety and efficacy of enalapril in essential hypertension in the elderly. Br J Clin Pharmacol 20:279P-280P. - 26. Jenkins AC, Knill JR, Dreslinki GR. 1985. Captopril in the treatment of elderly hypertensive patient. Arch Intern Med 145:2029-2031. - 27. Creisson C, Baulac L, Lenfant B. 1986. Captopril/hydrochlorothiazide combination in elderly patients with mild-moderate hypertension. A double-blind, randomized, placebo-controlled study. Postgrad Med J 62(Suppl 1):139-141. - 28. Lacourcière Y, Brunner H, Irwin R, Karlberg BE, Ramsay LE, Snavely DB, Dobbins TW, Faison EP, Nelson EB and the Losartan Cough Study Group. 1994. Effects of modulators of the reninangiotensin-aldosterone system on cough. J Hypertens 12:1387-1393. - 29. Lacourcière Y, Lefebvre J. 1995. Modulation of the renin-angiotensin-aldosterone system and cough. Can J Cardiol 11(Suppl F):33F-39F. - 30. Sesoko S, Kaneko Y. 1985. Cough associated with the use of captopril (letter). Arch Intern Med 145:1524. - 31. Israili ZH, Hall WD. 1992. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and physiopathology. Ann Intern Med 117(3):234-242. - 32. Just PM. 1989. The positive association of cough with angiotensin-converting enzyme inhibitors. Ann Pharmacoth 9:82-87. - 33. Inman WH. 1986. Enalapril-induced cough (letter). Lancet 2:1218. - 34. Webb DJ, Benjamin N, Collier JG, Robinson BF. 1986. Enalapril-induced cough (letter). Lancet 2:1094. - 35. Coulter DM, Edwards IR. 1987. Cough associated with captopril and enalapril. Br Med J (Clin Res Ed) 294:1521-1523. - 36. Goldzer RC, Lilly LS, Solomon HS. 1988. Prevalence of cough during angiotensin-converting enzyme inhibitor therapy (letter). Am J Med 85:887. - 37. Gibson GR. 1989. Enalapril induced cough. Arch Intern Med 149:2701-2703. - 38. Strocchi E, Valtancoli G, Ambrosioni E. 1989. The incidence of cough during treatment with angiotensin converting enzyme inhibitors. J Hypertens 7(Suppl 6):S308-S309. - 39. Poole MD, Postma DS. 1991. Characterization of cough associated with angiotensin-converting enzyme inhibitors. Otolaryngol Head Neck Surg 105:714-716. - 40. Capella D, Torres F, Avila P, Moreno V, Laporte JR. 1991. Cough caused by angiotensinconverting enzyme inhibitors. A series of cases collected by spontaneous notification of adverse reactions. Med Clin (Barc) 96:126-128. - 41.
McNally EM. 1987. Cough due to captopril. West J Med 146:226-228. - 42. Faison EP, Nelson EB, Irvin ID. 1991. Profile of angiotensin converting enzyme inhibitor (ACE I) associated cough: Incidence and clinical characteristics. Amer J Hypertens 4(5;Pt2):28A. - 43. Witchitz S, Beaufils M, Liote H, Petroff C. 1989. Complications respiratoires des inhibiteurs de l'enzyme de conversion. (Respiratory complications of converting-enzyme inhibitors) (letter). Presse Med 18(17):896. - 44. Lernhardt EB, Ziegler MG. 1988. Cough caused by cilazapril. Am J Med Sci 296(2):119- - 45. Ollivier JP, Ducrocq MB, Droniou J. 1988. Un Effet secondaire des inhibiteurs de l'enzyme de - conversion: La Toux. (A side-effect of angiotensin-converting enzyme inhibitors: Cough). Presse Med 16:759-761. - 46. De Groote P, Millaire A, Aisenfarb JC, Marquand A, Ducloux G. 1988. Toux et inhibiteurs de l'enzyme de conversion de l'angiotensine. (Cough and angiotensin-converting enzyme inhibitors). Ann Cardiol Angeiol 37(5):251-253. - 47. Dreslinski GR. 1987. Incidence of cough associatd with captopril therapy (letter). West J Med 146:622. - 48. Strump KO, Lolloch R, Overlack A. 1984. Captopril and enalapril: Evaluation of therapeutic efficacy and safety. Pract Cardiol 10:111-124. - 49. Fuller RW, Choudry NB. 1987. Increased cough reflex associated with angiotensin-converting enzyme inhibitor cough. Br Med J 295:1025-1026. - 50. Lefebvre J, Poirier L, Lacourcière Y. 1992. Prospective trial on captopril-related cough. Ann Pharmacol 26:161-164. - 51. Yeo WW, Ramsay LE. 1990. Persistent dry cough with enalapril: incidence depends on method used. J Hum Hypertens 4:517-520. - 52. Faison EP, Nelson EB, Irvin ID. 1991. Profile of angiotensin converting enzyme inhibitor (ACE I) associated with cough: incidence and clinical characteristics (abstract 29). Am J Hypertens - 53. Chalmers D, Dombey SL, Lawson DH. 1987. Post-marketing surveillance of captopril (for hypertension): a preliminary report. Br J Clin Pharmacol 24(3):343-349. - 54. Town GI, Hallwright GP, Maling TJB, O'Donnell TV. 1987. Angiotensin-converting enzyme inhibitors and cough. N Z Med J 100:161-163. - 55. Fletcher AE, Palmer AJ, Bulpitt CJ. 1994. Cough with angiotensin converting enzyme inhibitors: How much a problem? J Hypertens 12(Suppl 2):S43-S47. - 56. Os I, Bratland B, Dahlöf B, Gisholt K, Syvertsen JO, Tretli S. 1992. Female sex as an important determination of lisinopril-induced cough (letter). Lancet 339:372. - 57. Moore N, Noblet C, Joannides R, Ollagnier M, Imbs JL, Lagier G. 1933. On behalf of the French Pharmacovigilance System: Cough and ACE inhibitors (letter). Lancet 341:61. - 58. Fletcher AE, Bulpitt CJ, Chase D, Collins W, Furberg CD, Goggin TK, Hewett AJ, Neiss AM. 1992. Quality of life on three antihypertensive treatments: cilazapril, atenolol, nifedipine. Hypertension 19:499-507. - 59. Simon SH, Black HR, Moser M, Berland WE. 1992. Cough and ACE inhibitors. Arch Intern Med 152:1698-1700. - 60. Hood S, Nicholls MG, Gilchrist NL. 1987. Cough with angiotensin-converting inhibitors. N Z Med I 100:6-7. - 61. Nicholls GN, Gilchrist NL. 1987. Sulindac and cough induced by converting enzyme inhibitors (letter). Lancet 1:872. - 62. David D and The Fosinopril Cough Study Group. 1994. Multicenter, doubleblind, randomized trial comparing fosinopril to enalapril in patients with previous angiotensin converting enzyme cough. (abstract 512). Presentd at the 24th Scientific Meeting of the International Society of Hypertension, Melbourne, Australia. - 63. Skidgel RA, Erdos EG. 1987. Cleavage of peptide bonds by angiotensin I converting enzyme. Agents Actions 22(Suppl):589-596. - 64. Kaufman MP, Coleridge HM, Coleridge JC, Baker DG. 1980. Bradykinin stimulate afferent vagal C-fibers in intrapulmonary airways of dogs. J Appl Physiol 48:511-517. - 65. Varonier HS, Panzani R. 1968. The effect of inhalations of bradykinin on healthy and atopic (asthmatic) children. Int Arch Allergy Immunol 34:293-296. - 66. Ferner RE, Simpson JM, Rawlins MD. 1987. Effects of intradermal bradykinin after inhibition of angiotensin converting enzyme. Br Med J (Clin Res Ed) 294:1119-1120. - 67. Greenberg R, Osman GH Jr, O'Keefe EH, Antonaccio MJ. 1979. The effects of captopril (SQ 14,225) on bradykinin-induced bronchoconstriction in the anaesthetised guinea pig. Eur J Pharmacol 57:287-294. - 68. Fogari R, Zoppi A, Tettamanti F, Malamani GD, Tinelli C, Salvetti A. 1992. Effects of nifedipine and indomethacin on cough induced by angiotensin converting enzyme inhibitors: A double-blind, randomized, cross-over study. J Cardiovasc Pharmacol 19:670-673. - 69. Regoli D, Barabe J. 1980. Pharmacology of bradykinin and related kinins. Pharmacol Rev 32: - 70. Goetzl EJ. 1984. Asthma: new mediators and old problems (editorial). N Eng J Med 311:252-253. - 71. Dixon CM, Fuller RW, Barnes PJ. 1987. The effects of the angiotensin converting enzyme inhibitor, ramipril, on bronchial response to inhaled histamine and bradykinin in asthamatic subjects. Br J Clin Pharmacol 23:91-93. - 72. Morice AH, Lowry R, Brown MJ, Higenbottam T. 1987. Angiotensin-converting enzyme and the cough reflex. Lancet 2(8568):1116-1118. - 73. Meeker DP, Wiedemann HP. 1990. Drug-induced bronchospasm. Clinics in Chest Medicine 11(1):163-175. - 74. Korpas J, Tomori Z. 1979. Physiology of the cough reflex. Cough and other respiratory reflexes. S. Karger Publisher 15-18. - 75. Kaufman J, Casanova JE, Riendl P, Schlueter DP. 1989. Bronchial hyperactivity and cough due to angiotensin-converting enzyme inhibitors. Chest 95(3):544-548. - 76. Boulet LP, Milot I, Lampron N, Lacourcière Y. 1989. Pulmonary function and airway responsiveness during long-term therapy with captopril. JAMA 261:413-416. - 77. Yeo WW, Ramsay LE, Morice AH. 1991. ACE inhibitor cough: A genetic link? (letter) Lancet 337:187. - 78. Kreft-Jais C, Laforest L, Bonnardeaux A, Jeunemaître X. 1994. No relation between the insertion/ deletion (I/D) polymorphism of the angiotensin I converting enzyme (ACE) gene and ACEinhibitor cough. (abstract 519). J Hypertens 12(Suppl 3):S93. - 79. O'Kane KPJ, Johnstone HA, Webb DJ. 1994. The risk of ACE inhibitor cough is not associated with ACE genotype. (abstract 524). J Hypertens 12(Suppl 3):S94. - 80. Turgeon J, Roy S, Belley D, Poirier L, Robitaille NM. 1994. Link between ACE inhibitor associated cough and XBA I DNA restriction fragments of mutant alleles of CYP2D6. (abstract 85). J Hypertens 12(Suppl 3):S154. - 81. Wong PC, Price WA, Chiu AT, Duncia JV, Carini DJ, Wexler RR, Johnson AL, Timmermans PB. 1990. Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Therap 252:719-725. - 82. Lacourcière Y, Lefebvre J, Nakhle G, Faison EP, Snavely DB, Nelson EB. 1994. Association between cough and angiotensin converting enzyme inhibitors versus angiotensin II antagonists: the design of a prospective, controlled study. J Hypertens 12 (Suppl 2):S49-S53. - 83. Fletcher AE, Bulpitt CJ, Hawkins CM, Havinga TK, Tenberge BS, May JF, Schuurman FH, van der Veur E, We sseling H. 1990. Quality of life on antihypertensive therapy; a randomized double-blind controlled trial of captopril and atenolol. J Hypertens 8:463-466. - 84. Nelson DE, Moyse DM, O'Neil JM, Boger RS, Glassman HN, Kleinert HD. 1993. Renin inhibitor, Abott-72517, does not induce characteristic angiotensin converting enzyme inhibitor cough (Abstract 1934). Circulation 1:36. - 85. Reisin L, Schneeweiss A. 1992. Complete spontaneous remission of cough induced by ACEinhibitors during chronic therapy in hypertensive patients. J Hum Hypertens 6:333-335. - Stroller JR, Elghazawi A, Metha AL, Vidt DG. 1988. Captopril-induced cough. Chest 93(3):659-661. - 87. Karlberg BE. 1993. Cough and inhibition of the renin-angiotensin system. J Hypertens 11(3):S49- - 88. Lindgren BR, Anderson RG. 1989. Angiotensin-converting enzyme inhibitors and their influence on inflammation, bronchial reactivity and cough. A research review. Med Toxicol Adverse Drug Exp 4:369-380. - 89. Thysell H, Anderson KE, Andersen SL, Ekman R. 1988. Angiotensin converting-enzyme inhibition, cough and the serum concentration of substance P. Eur J Clin Pharmacol 34:649-650. - 90. Cockcroft JR, Sciberras DG, Goldberg MR, Ritter JM. 1993. Comparison of angiotensinconverting enzyme inhibition with angiotensin ll receptor antagonism in the human forearm. J Cardiovasc Pharmacol 22:579-584. - 91. Smith MC, Barrows S, Shahinfar S, Simpson RL, Weigel K, Dunn MJ. 1993. The effect of the nonpeptide All antagonist losartan on systemic blood pressure and renal and extrarenal prostaglandin (PG) production in women with essential hypertension (abstract). J Amer Soc Nephrol 4(3):540. | В. | 1 | ANGI | ОТЕ | NSIN | I BL | ОСК | ADE | AND | CAI | RDIO | VASC | CULAR | DISI | EASE | |----|---|------|-----|------|------|-----|-----|-----|-----|------|------|-------|------|------| ## ANGIOTENSIN II RECEPTORS AT₁ AND AT₂: NEW MECHANISMS OF SIGNALING AND ANTAGONISTIC EFFECTS OF AT₁ AND AT₂ # TADASHI INAGAMI, SATORU EGUCHI, SATOSHI TSUZUKI, and TOSHIHIRO ICHIKI Vanderbilt University School of Medicine, Nashville, TN, USA Summary. A series of pharmaceutical successes in the treatment of not only essential hypertension but also vascular hypertrophic and hyperplastic diseases, congestive heart failure, and renal degenerative diseases, with angiotensin-converting enzyme inhibitors and angiotensin (Ang) II receptor antagonists indicates that angiotensin may play a pivotal role in the genesis and maintenance of high blood pressure and resultant stroke, atherosclerosis, and heart and kidney diseases. There is more
than one form of Ang II receptors. Using expression cloning, we isolated the AT₁ cDNA from bovine adrenocortical cells from the kidney of spontaneously hypertensive rats and AT2 cDNA from rat PC12W cells and we showed that it was not the mas oncogene product. Further, we showed that in rodents, AT₁ consists of two subtypes, AT_{1A} and AT_{1B}, which share a high degree of sequence homology in their coding regions, although mechanisms of their respective transcriptional control seemed to be different. By computer-assisted modeling and site-directed mutagenesis, we have delineated the docking site of Ang II. AT_{1a} (and AT_{1b}) serves most of the commonly recognized actions of Ang II. In addition, this G protein-coupled receptor (GPCR) also activates a tyrosine kinase mechanism that may be an underlying cause of Ang II-mediated hypertrophic and hyperplastic changes of cardiovascular tissues. In the vascular system, the phospholipase C (PLC) activated by Ang II seems to be PLC- β rather than PLC- $_{\gamma_1}$. Interestingly, we found that Gq-activated PLC- β activates p21 ras and mitogen-activated protein kinase (MAPK) in rat vascular smooth muscle cells. The mechanism of the cross-talk between AT₁ and the tyrosine kinase system is triggered by Ca²⁺, but does not involve protein kinase C. Studies using targeted gene deletion indicated that Ang II is intimately involved in nephrogenesis. Mice lacking angiotensinogen showed an abnormality in the formation of renal papilla, retardation in glomerular maturation, marked hypertrophy of small arteries of the kidney, and tubular dilatation, whereas targeted deletion of the AT₁ receptor resulted in small arterial wall hypertrophy. Blood pressure of AT_{1A}-deleted mice was markedly reduced (-45 mmHg). The role and mechanism of action of AT2 was not clear. We have recently produced AT2 gene null mice and AT₁, knockout mice by targeted gene deletion. AT₂-deleted mice had a higher blood pressure, whereas AT1-deleted mice showed lower blood pressure. Deletion of the AT2 gene also showed reduced exploratory activity. The most conspicuous action of the AT₂ receptor is seen in its salt-retaining action in the renal tubule. Under a constant renal blood flow condition an AT2 antagonist markedly increased the urine volume and concomitant natriuresis. These effects are completely abolished in AT₂ deleted mice. The molecular and cell biological studies of the angiotensin receptors are needed. Despite the complexity and often mutually antagonistic actions of AT₁ and AT₂, Ang II, working through AT1 and AT2 of the kidney work in the same direction to retain salt and water. These observations, as well as the effects of Ang II, indicate that the most fundamental role of Ang II is its role in the development of the salt-retaining organ, the kidney, and Ang II is uniquely related to the kidney in that both AT₁ and AT₂ receptors work for the retention of salt. The presence of two different angiotensin (Ang) II receptors had been suggested because of the differential stability to dithiothreitol; the isoform-specific nonpeptidic (losartan, PD123177, PD123319) and peptide (CGP42112) antagonists demonstrated two clearly different isoforms of Ang II receptors, which were termed Ang II type 1 (AT₁) and type 2 (AT₂) receptors (see reviews for [1,2], figure 1). AT₁ was further shown to consist of subtypes designated as AT_{1A} and AT_{1B} [3-6]. However, these AT₁ subtypes are limited to rodents (rat and mouse). Higher mammals have only one subtype, AT₁. Further studies showed practically all of the actions traditionally ascribed to Ang II can be explained by AT₁. These actions include contraction of the smooth muscle, inotropic effect on cardiac myocytes, stimulation of aldosterone release from the adrenal cortex, facilitation of catecholamine release from nerve endings, hypertensive action of centrally administered Ang II, hypertrophic actions on vascular smooth muscle cells (VSMC), mitogenic effects on some fibroblast cells, and activation of tyrosine-kinase pathway and mitogenactivated protein kinase (MAPK) and renal tubular effect in sodium reabsorption [1,2]. Thus, few physiological functions seemed to be left for the AT₂ receptor to perform. Its abundant expression in fetal mesenchymal renal, and brain tissues seemed to suggest its role in fetal development and organ morphogenesis, but AT₁ is equally abundant in various fetal tissues. AT2 expression declines rapidly after birth, and only limited types of adult tissues express AT2 mRNA at a level detectable by in situ hybridization, northern blot analysis, or RNase protection assay. These are rat adrenal medulla, cortex, kidney, heart, uterine myometrium and vasculature, ovarian granulosa cells, pancreas, and certain brain nuclei such as locus ceruleus, inferior olive, few thalamic nuclei and cerebellum [7,8]. There are cell lines expressing AT₂ exclusively like mouse R3T3 fibroblast cells [9], PC12W is a subline of pheochromocytoma cells [10], preadipocyte mouse 3T3-L 1 cells [11], mouse fetal fibroblast cells, and neuroblastoma-glioma hybrid cells, NG108-15 [12]. These | AT ₁ | | MALN | SSAEDGIKRI | QDDCPKAGRH | SYIFVMIPTE | 34 | |-----------------|-----------------------------|-----------------------------|-------------------|----------------|---|-----| | AT ₂ | MKDNFSFAAT | SRNITSSLPF | DNLNATGTNE | SAFNCSHKPA | DKHLE <u>ATPVL</u> | 50 | | | es week | | | ****** | 20000 000 | | | AT ₁ | Y SI TFY VÇIF | GNSLVVIVIY | FYMKLKTVAS | VFLLNLALAD | LCFLLTLPLW | 84 | | AT ₂ | <u> Yymifvigfa</u> | <u>VNIVVVSLF</u> C | COKGPKKVSS | IYIFNLAVAD | ELLLATEPEW | 100 | | | TM-1 | | | | TM-2 | | | AT, | ÄVŸTAMEŸRW | PEGNHLCE IA | SASVĪFNLYĀ | SVFLLTCLSI | DRYLAIVHPM | | | | 300 300 300 300 | 20000 | 39 38 38 | 35 36 38 38 37 | *************************************** | 134 | | AT ₂ | <u>aty</u> ysyrydw | L F GPVMCK <u>VF</u> | GSFLTLNMFA | SIFFITCMSV | DRYQSVIYPF | 150 | | | | | TM-3 | | | | | AT, | KSRLÄRTMLV | AKVTCIIIWL | MAGEASEPAV | IHRNVYFIEN | TNITVČAFHY | 184 | | AT ₂ | LSORRNP-WO | ASYVVPLVWC | MACLSSLPTF | YFRDVRTIEY | LGVNACIMAF | 199 | | - | *** | TM-4 | | | DOTTING | 177 | | | | | | | | | | AT_1 | ESRNSTLPIG | LGLT-KNILG | FLFFFLIILT | SYTLIWKALK | KAYEIQKNKP | 233 | | AT ₂ | PPEKYAQWSA | GIALMKNILG | FIIPLIFIAT | CYFGIRKHLL | KTNSYGKNRI | 249 | | | | TM- | -5 | | 000 00000 | | | | | 600 10000 00 VV | | | | | | AT_1 | RNDDIFRIIM | AIVLFFFFSW | VPHQIFTFLD | VLIQLGVIHD | CKISDIVDTA | 283 | | AT_2 | TRDQVLK <u>MAA</u> | AVVLAFIICW | LPFHVLTFLD | ALTWMGIINS | CEVIAVIDLA | 299 | | | | TM-6 | *** | | | | | AT, | MPITECIAYF | NNCLMPLFYG | FLGKKPKKYF | LOLLKYIPPK | AKSHSSLSTK | 222 | | AT, | LPFAILLGFT | NSCVNPFLYC | FVGNRFQQKL | RSVFRVPITW | | 333 | | | TM-7 | | EAGUICE TOUR | KSVFKVPIIW | LQGKRETMSC | 349 | | | _m_/ | , | | | | | | AT_1 | MSTLSYRPSD | NMSSSAKKPA | SCFEVE | | | 359 | | AT ₂ | RKSSSLREMD | TFVS | | | | 363 | | | 2005 V.S V.S | *** | | | | | Figure 1. Comparison of amino acid sequences of rat angiotensin II type 1 (AT₁) and type 2 (AT₂) receptors. They show a 32% amino acid sequence identity. (Compiled from data in Ref. 49 and 50, reproduced with permission). cells do not express the AT_1 receptor. However, other cell lines express both AT_1 and AT2, such as neuroblastoma cells, N1E 115 [13], and the transformed rat pancreatic acinar cell line, AR42J [14]. On the other hand, cultured vascular smooth muscle cells express AT₁, but not AT₂ [15]. For the action of AT₁, current studies that we are pursuing on the cross-talk between the AT₁ receptor and MAPK activation, which involves protein tyrosine kinase mechanisms, a pathway usually found in growth hormone-stimulated signaling pathway, will be discussed. For AT2, we obtained AT2 and AT1 gene null mice and will mainly discuss the roles of AT₂ that have remained elusive. The activation of the tyrosine kinase system by 7-transmembrane domain receptors (G protein-coupled receptors, GPCR) have been noted; its mechanisms have not been clear. Since the tyrosine kinase activation by Gi-coupled receptors seems to be different from that of Gq-coupled receptors [16], we have focused our studies on Gq-coupled angiotensin type 1 receptor AT₁ in vascular smooth muscle cells, which in the absence of growth factors such as serum, platelet-derived growth factors (PDGF-BB), or basic fibroblast growth factor (bFGF) do not undergo proliferation. However, Ang II induces hypertrophic changes, but not mitogenic changes (cell proliferation), even if it stimulates MAPK activation. The AT_1 is coupled to the heterotrimeric G protein, Gq, to activate phospholipase Cβ, which generates inositol trisphosphate (IP₃) in initiating a calcium- Figure 2. Activation of mitogen-activated protein kinase (MAPK) in quiescent rat vascular smooth muscle cells in culture as represented by the activation of p21rs. Note that Ca2+ alone can activate MAPK as shown by cytosolic Ca2+ chelator. TMB-8 blocks the activation completely, but the inhibition of protein kinase C by GFX or inhibition of Gi protein by pertussis toxin TPX had no effect. The calmodulin antagonist calmimidazolium and tyrosine kinase inhibitor genistein also inhibit the pathway of AT₁-ras-MAPK-kinase. mediated signaling pathway. On the other hand, growth factor receptors such as PDGF-R or epidermis growth factor (EGF)-R do not use the heterotrimeric G protein. Instead, they activate PLC₁1 directly by phosphorylation of a tyrosyl residue. Morrero et al. reported that in their rat aortic VSMC, Ang II via AT₁ activates PLCγ1 instead of a PLC-β [17]. Further, they reported results indicating that this cascade which leads to MAPK is initiated or needs to be mediated by a low molecular weight cytosolic tyrosine kinase, Src60 [18,19]. The mechanism involved in the activation of Src60 was not clear. The hypothesis that the activation involves direct association
of the protein tyrosine kinase Src60 with AT₁ did not prove correct [19]. By using rat VSMC with abundant PLC β_1 and β_3 , we showed that the increase in cytosolic Ca is sufficient for the activation of the RAS (figure 2), Raf-1, and MAPK system, as well as its upstream component Grb2 and Sos. Increase in cytosolic Ca2+ by a PLC-β or Ca2+ ionophore elicited MAPK activation [20]. Figure 3. Transient activation of phosphotyrosine phosphatase and suppression (A, B) and basic fibroblast growth-factor stimulated cell proliferation (C) at various bFGF concentration. (A) Time dependency of the stimulation of phosphotyrosine phosphatase by 10⁻⁷M Ang II; (B) concentration dependency; and (C) increase in cell number, stimulated by a ■, 0.25; ○, 02.5; ●, 25.0 ng/ml basic fibroblast growth factor, was inhibited by 10⁻⁷M Ang II. Interestingly, it did not involve protein kinase C (PKC). Activation of PLCy was not needed. Thus, the system became more amenable to explanation using the existing signaling system except for the link connecting elevated cytosolic Ca²⁺ to a tyrosine kinase system. Ang II-stimulated (via AT₁) recruitment of Grb2-Sos or Shc-Grb2-Sos suggests that the presence of some tyrosine kinase mediates a Cacalmodulin-dependent tyrosine kinase system. Thus, in addition to the well known Ca²⁺-mediated contractile response, the AT₁-induced cytosolic Ca²⁺ elevation seems to be intimately involved in the tyrosine kinase activation and MAP kinase activation, via cross-talk between GPCR and tyrosine kinase. How Ca2+ activates a tyrosine kinase cascade is the subject of intensive investigation. It seems to be distinct from the Gi-coupled GPCR, which seems to involve G β -G γ subunits of Gi proteins along with phosphatidyl inositol 3-kinase (PI3K) [21]. An important aspect of AT₂ function also seems to be involved in the signaling of the phosphotyrosine cascade or its turn off. Bottari and his associates showed that AT₂ in the pheochromocytoma cell line PC12W activates phosphotyrosine phosphatase (PTP) [22]. This cell line expresses only AT2, not AT1. We [23] and Mukoyama et al. [24] cloned AT₂ cDNA from rat cells and tissues and examined the PTP activity in PC12W cells and COS-7 cells expressing the cloned AT2. Cell membranes were rigorously freed from plasma component by ultracentrifugation at 100,000 × g. In this system, AT₂ inhibited a PTP, presumably bound tightly by a transmembrane domain [23]. On the other hand, when a membrane-associated fraction in the postnuclear fraction was rapidly isolated from mouse R3T3 cells (which express only AT2, not AT1), it showed an activation of PTP [24] (figure 3a & b). The PTP activity was detectable both by using nitrophenylphosphate (pNPP) or the peptide substrate Raytide containing a phosphotyrosine residue. Further, this activity was inhibited by the PTP specific inhibitors Na-orthovanadate [25]. These Figure 4. Illustration of AT₁-promoted mitogenesis and AT₂-promoted suppression of cell growth. results suggest that cytosolic PTP, which is not a part of a receptor, is activated by AT₂. Important to note is that the growth stimulation of the fibroblast cells R3T3 by bFGF was suppressed by Ang II in a dose-dependent manner (figure 3c). The dose dependence (IC₅₀ $\sim 0.3 \, \text{nM}$) coincided well with the dose dependence (0.5 nM) of PTP activation. These results indicate that AT2 mediates activation of PTP, which affects the growth of R3T3 cells [24,25]. In cells expressing AT₁, Ang II activates MAPK, which leads to mitogenic or hypertrophied response through the activation of a tyrosine kinase system [26-28]. On the other hand, AT2 activates PTP and inhibits cell growth, thus undoing the proliferative effect of AT₁, as shown in figure 4. Nakajima et al. showed a similar mechanism in vascular smooth muscles (VSMC) expressing the AT₂ receptor [29]. Since VSMC in serum or growth factor-containing medium do not express AT₂, cells were transfected with a chimeric AT2 gene fused to the 5'-flanking region of smooth muscle myosin. The rat carotid artery expressing transfected AT₂ showed a marked reduction in the neointima formation following balloon catheterization. Cultured VSMC transfected with the same AT₂ expression vector showed a marked reduction in MAPK activity. These results indicated that AT2 may reduce MAPK activity, which, in turn, will reduce the neointimal smooth muscle cell growth [29]. In these studies, AT₂ was stimulated only by endogenous Ang II. Janiak et al. reported the selective activation of AT₂ as an effective approach in the suppression of neointima formation following the balloon catheterization [30]. However, the expression of AT₂ in the neointimal tissues in rat carotid artery or aorta is minimal [31]. Thus, transfection of AT₂ may be required for a therapeutic use of AT₂. Prolonged serum depletion elicits programmed cell death of R3T3 as evidenced by internucleosomal DNA degradation. This process of apoptosis was enhanced by a 48hr treatment with Ang II [32]. PC12W cells also undergo apoptosis upon depletion of their specific growth factor, nerve growth factor (NGF). This process is also accelerated by Ang II. Both R3T3 and PC12W cells express AT2, but not AT₁. Thus, signals from AT₂ may enhance the apoptotic process initiated by the withdrawal of the growth factors [32]. The mechanism of the action of AT₂ that participates in this process seems to be due to the reduced activity of MAPK, which seems to be elicited by the activation of MAPKinase phosphatine 1 (MKP-1), which is a protein tyrosine phosphatase that inactivates MAPK by dephosphorylating the tyrosine phosphate group in MAPK. The inactivation of MAPK and accompanying enhancement of DNA fragmentation by Ang II in these AT2-bearing cells are reversed by pertussis toxin (PTX) and orthovanadate. Yamada et al. [32] provided strong evidence that AT, signaling involves Gi or Go and activation of PTP. Recently Hayashida et al. [33] showed that a synthetic peptide with the 22 residue sequence of the third cytosolic loop of rat AT₂ suppresses MAPK activity of the VSMC upon transfer into VSMC by lipofectamine-liposome and this inhibition are reversed by PTX or orthovanadate. These results indicate that the third cytosolic loop can play a part in the activation of a Gi-mediated PTP, which inhibits MAPK. Thus, these receptor studies show that the action of AT₂ is to inactivate MAPK, and MAPK activity can be used as a sensitive index of AT2 action, rather than directly determining PPT activity, which have to cope with a high background contributed by several PTPs. These approaches seem to provide a positive answer to the longstanding question as to whether a G protein is involved in the AT₂ action. The demonstration of the direct binding of AT₂ to immunoprecipitated Giα-2 and Giα-3, by Zhang and Pratt [34], provide a direct and general basis for answering this question. #### TARGETED GENE DELETION OF THE AT, GENE To determine the overall physiological role of AT₂, Ichiki et al. [35] and Hein et al. [36] eliminated the gene encoding AT, by targeted deletion in mice. The resultant AT₂-null mice showed elevated pressor sensitivity to an intravenous infusion of Ang II and elevated basal diastolic and systolic blood pressure by about 25 mmHg compared with the AT₂-intact F₂ hybrid mice (129 Ola X C57BL/6). The elevation in mean arterial basal blood pressure was not seen by Hein et al., possibly because of various technical problems, including heterogeneity in genetic background. (In the gene-deleted mice, the genome of embryonic stem cells from the 129 Ola strain is mixed with the genome of C57BL/6 mice.) It is interesting to note, however, the opposite effects of the action of AT_1 and AT_2 on blood pressure regulation. Targeted deletion of the gene encoding AT₁ resulted in blood pressure lowering of about 45 mmHg [37,38], whereas deletion of the gene encoding AT₂ led to an elevation of about 25 mmHg [35]. Angiotensinogen gene deletion resulted in a decrease in blood pressure of about 20-25 mmHg [39,40], which accounts for the balance of actions of AT₁ and AT₂ as the effect of Ang II is completely removed. ## Mean Arterial Pressure of Gene Deleted Mice Figure 5. Positive contribution of AT, and negative contribution of AT, on the blood pressure as examined with AT1, and AT2 gene knockout mice. The angiotensinogen gene knockout mice represent the overall effect of the total loss of Ang II. (Compiled from data in Refs. 35,37,38,39,40.) Given the general observation arising from many targeted gene deletion experiments that receptor subtypes seldom undergo compensatory changes, the simple arithmetics of figure 5 shows that AT₁ (AT_{1a}) is a dominant pressor receptor, whereas AT2 appears to be a depressor receptor that operates by an, as yet, unknown mechanism. AT₂ is expressed in the kidney, and earlier studies suggest that AT₂ antagonist have diuretic effects [41]. Lo et al. isolated tubular function from hemodynamic function by maintaining a constant renal blood flow using the method of Roman et al. [42] and observed that intravenous infusion of the AT₂ blocker PD123319 markedly and rapidly increased diuresis and natriuresis from the rat kidney [43]. Conversely, the AT₂ agonist CGP42112A suppressed diuresis and natriuresis, indicating the very interesting function of renal tubular AT₂ in sodium retention. We were able to confirm this observation in rats and mice by using AT₂ antagonists and, further, by using AT₂-gene deleted mice to ascertain that the site of antagonist binding is indeed the AT₂ receptor since the AT₂ knockout mice did not show a diuretic response to PD123319. In recent studies, Siragy and Carey [44], however, did not observe a similar natriuretic effect of PD123319 in conscious rats. Only the AT₁ blocker losartan showed natriuresis. Furthermore, they reported increased cGMP levels in the renal interstitial fluid as renal AT2 was stimulated, a result which is
opposite to that reported earlier when Ang II-stimulated AT₂ was shown to lower cGMP levels [22,45]. These results are intriguing because the existing observations suggest that AT2 attenuates the pressor and mitogenic response of AT1 to Ang II, whereas both AT₁ and AT₂ work in concert to retain salt, albeit via different mechanisms. These results may suggest a primary and intimate role of Ang II in the retention of salt. Another area where AT₂ expression is clearly seen is in the central nervous system, which includes brain stem (locus ceruleus, inferior olive), several thalamic nuclei, lateral septum, and amygdala (central amygdaloid nucleus and medial amygdaloid nucleus) [46,47]. AT₂-null mice generated by targeted gene deletion show markedly lowered exploratory ambulation in a new environment and markedly increased avoidance of light area, indicating emotional instability or fearfulness [35]. Such behavioral changes may reflect action of amygdala and locus ceruleus, which sends off long projections to the cerebral cortex. It does not seem to reflect counteraction to the well-known central action of AT₁ in the control of blood pressure, water drinking, and vasopressin release through AT, in circumventricular organs and hypothalamic nuclei. #### **OVERVIEW** It is clear that there are two main categories of the Ang II receptor, AT₁ and AT₂. In recent years, there has been increased attention focused on the AT2 receptor in order to determine its structure, signaling mechanism, and function. Whereas much remains to be determined, it appears that the actions of Ang II via the AT₂ receptor are generally suppressive in nature, whereas function via the AT₁ receptor are more commonly stimulatory. In so far as biological activity is concerned, there is now evidence that Ang II via the AT₂ receptor can suppress cellular proliferation. Gene deletion studies in animals suggest that the AT2 receptor may subserve a vasodepressor function, although its mechanism remains to be determined. AT, agonist and antagonist studies indicate that this receptor might subserve antidiuretic and antinatriuretic actions, at least in animals. Animals lacking AT2 receptors have impaired drinking responses and behavioral alterations [46,47]. Details of the biological importance of the AT₂ receptor remain unclear, and further information is awaited. This matter is clearly potentially relevant to the therapeutics of cardiovascular disorders, especially heart failure and hypertension but also coronary heart disease. For example, recent studies by Levy et al. [48] indicate that aortic fibrosis elicited by chronic infusion of Ang II is prevented by the AT₂ antagonist PD123319 rather than the AT₁ blocker losartan. This finding may imply another hitherto unknown role of AT2 in the cardiovascular tissue. #### REFERENCES - 1. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benefield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonist. Pharmacological Rev 45:205-251. - 2. Inagami T, Guo D-F, Kitami Y. 1994. Molecular biology of angiotensin II receptors: Overview. J Hypertens 12:(Suppl 10):S83-S94. - 3. Iwai N, Inagami T. 1992. Identification of two subtypes in the rat type 1 angiotensin II receptor. FEBS Lett 298:257-260. - 4. Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ. 1992. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 267:9455-9458. - 5. Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neil JD. 1992. Angiotensin II type-a receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183:1090-1096. - 6. Elton TS, Stephan CC, Taylor GR, Kimball MG, Martin MM, Durand JN, et al. 1992. Isolation of two distinct type 1 angiotensin II receptor genes. Biochem Biophys Res Commun 184:1067-1073. - 7. Saavedra JM. 1992. Brain and pituitary angiotensin. Endocrine Rev 13:324-380. - 8. Bottari SP, deGasparo M, Steckerings UM, Leven NR. 1993. Angiotensin II receptor subtypes: characterization, signaling mechanisms, and possible physiological implications. Frontiers in Neuroendocrinol 14:123-171. - 9. Dudley DT, Hubbell SE, Summerfelt RM. 1991. Characterization of angiotensin II (AT2) binding sites in R3T3 cells. Mol Pharmacol 40:360-367. - 10. Speth RC, Kim KH. 1990. Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II p-aminophenylalanine⁸ angiotensin II. Biochem Biophys Res Commun 169:997-1006. - 11. Darimont C, Vassaux G, Alhand G, Negrel R. 1994. Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin II. Endocrinology 135:2030- - 12. Buisson B, Bottari SP, de Gasparo M, Gallet-Payet N, Paget MD. 1992. The angiotensin AT₂ receptor modulates T-type calcium current in non-differentiated NG108 cells. FEBS Lett 309:161- - 13. Reagan LP, Ye XH, Mir R, DePalo LR, Fluherty SJ. 1990. Up-regulation of angiotensin II receptors by in vitro differentiation of murine N1E-115 neuroblastoma cells. Mol Pharmacol 38:878- - 14. Chappell MD, Jacobsen DW, Tallant EA. 1995. Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42J cells. Peptides 16:741-747. - 15. Kambayashi Y, Bardhan S, Inagami T. 1993. Peptide growth factors markedly decrease the ligand binding of angiotensin II type 2 receptor in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun 194:478-482. - 16. van Biesen T, Luttrell LM, Hawes BE, Lefkowitz RJ. 1996. Mitogen signaling via G proteincoupled receptors. Endocrine Rev 17:698-714. - 17. Morrero MB, Paxton WG, Duff JL, Berk BC, Bernstein KE. 1994. Angiotensin II stimulates tyrosine phosphorylation of phospholipase Cy1 in vascular smooth muscle cells. J Biol Chem 269:10935-10939. - 18. Morrero MB, Schieffer B, Paxton WG, Schieffer E, Bernstein KE. 1995. Electroporation of pp60^{C-src} antibodies inhibits the angiotensin II activation of phospholipase C-γ1 in rat aortic smooth muscle cells. J Biol Chem 270:15734-15738. - 19. Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. 1993. Angiotensin II activates pp60^{C-src} in vascular smooth muscle cells. Circ Res 77:1053–1059. - 20. Eguchi S, Matsumoto T, Motley E, Utsunomiya H, Inagami T. 1996. Identification of an essential signaling cascade for mitogen-activated kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. J Biol Chem 271:14169-14175. - 21. Lettrell LM, Hawes BE, van Biesen T, Lettrell DK, Lansing TJ, Lefkowitz RJ. 1996. Role of c-Src tyrosine kinase in G protein-coupled receptor-and βγ subunit-mediated activation of mitogenactivated protein kinase. J Biol Chem 271:19443-19450. - 22. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, deGasparo M. 1992. The angiotensin AT₂ receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206-211. - 23. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543-24546. - 24. Tsuzuki S, Eguchi S, Inagami T. 1996. Inhibition of cell proliferation and activation of protein tyrosine phosphatase mediated by angiotensin II type 2 (AT₂) receptor in R3T3 cells. Biochem Biophys Res Commun 228:825-830. - 25. Tsuzuki S, Matoba T, Eguchi S, Inagami T. 1996. Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916-918. - 26. Geisterifer AA, Peach MJ, Owens GK. 1988. Angiotensin II induces hypertrophy not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749-756. - 27. Gibbons GH, Pratt RE, Dzau VJ. 1992. Vascular smooth muscle cell hypertrophy vs hyperplasia. - Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456-461. - 28. Weber H, Taylor DS, Molloy CJ. 1994. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by surnamin. J Clin Invest 93:788-798. - 29. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt R, Dzau VJ. 1995. The angiotensin II (AT₂) receptor antagonizes the growth effects of the AT₁ receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 30. Janiak P, Pillan A, Prost J-T, Vilaine J-P. 1992. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension 20:737-745. - 31. Viswanathan M, Seltzer A, Saavedra JM. 1994. Heterogeneous expression of angiotensin II AT₂ receptor in neointima of rat carotid artery and aorta after balloon catheter injury. Peptides 15:1205- - 32. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Acad Sci USA 93:156-160. - 33. Hayashida W, Horiuchi M, Dzau VJ. 1996. Intracellular third loop domain of angiotensin II type-2 receptor: Role in mediating signal transduction and cellular function. J Biol Chem 271:21985- - 34. Zhang J, Pratt RE. 1996. The AT₂ receptor selectively associates with $Gi_{\alpha 2}$ and $Gi_{\alpha 3}$ in the rat fetus. J Biol Chem 271:15026-15033. - 35. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BLM, Inagami T. 1995. Effects on blood pressure and reduced exploratory behavior in mice lacking angiotensin II type 2 receptor. Nature 377:748-750. - 36. Hein L, Barsk GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioral and cardiovascular effects of disruption the angiotensin II type-2 receptor gene in mice. Nature 377:744-747. - 37. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. 1995. Regulation of blood pressure by
the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 92:3521- - 38. Sugaya T, Nishimatsu S-I, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Uchida H, Sugiura M, Fukuta K, Fukamizu A, Murakami K. 1995. Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem 2709:18719-18722. - 39. Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K-I, Fukamizu A, Murakami K. 1994. J Biol Chem 269:31334-31337. - 40. Kim H-S, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennett JC, Coffman TM, Maeda N, Smithies O. 1995. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 92:2735-2739. - 41. Keiser JA, Bjork FA, Hodges JC, Taylor DG Jr. 1992. Renal hemodynamic and excretory responses to PD123319 and losartan, nonpeptide AT1 and AT2 subtype-specific angiotensin II ligands. J Pharm Exptl Ther 263:1154-1160. - 42. Roman RJ, Cowley AW Jr. 1985. Characterization of a new model for the study of pressure natriuresis in the rat. Am J Physiol 248:F190-F198. - 43. Lo M, Liu KL, Lanteime P, Sassard J. 1995. Subtype 2 of angiotensin II receptors controls pressure natriuresis in rats. J Clin Invest 95:1394-1397. - 44. Siragy HM, Carey RM. 1996. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-mono-phosphate and AT₁ receptor mediated prostaglandin E₂ production in conscious rats. J Clin Invest 97:1978-1982. - 45. Sumners C, Myers LM. 1991. Angiotensin II decreases cGMP levels in neuronal cultures from rat brain. Am J Physiol 260:C79-C87. - 46. Tsutsumi K, Saavedra JM. 1991. Characterization and development of angiotensin II receptor subtypes (AT₁ and AT₂) in rat brain. Am J Physiol 261:R209-R216. - 47. Song K, Allen AM, Paxinos G, Mendelsohn FAA. 1992. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 316:467-484. - 48. Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Durier M, Poitevin P, Samuel JL. 1996. Chronic blockage of AT2-subtype receptors prevents the effect of angiotensin II on the rat ventricular structure. J Clin Invest 98:418-425. # ANGIOTENSIN RECEPTOR ANTAGONISTS AND CARDIOVASCULAR REMODELING # K. SABRI, C. CHASSAGNE, B.I.* LÉVY, J.L. SAMUEL and L. RAPPAPORT INSERM U 127, *INSERM U141, IFR Circulation, Université D. Diderot, Paris Cedex, France Summary. Angiotensin (Ang) II is one of the key hormones involved in cardiovascular homeostasis. It has potent vasoconstrictor effects and is directly involved in the vascular and cardiac remodeling observed in response to chronic or acute hypertension. Two major Ang II receptor subtypes, AT_1 and AT_2 , have been described, and their roles in vivo and in vitro have now been investigated using nonpeptidic antagonists, losartan and PD123319, which block AT_1 and AT_2 receptors respectively. The aim of this review is to focus on in vivo data to better define the respective functions of the AT_1 and AT_2 receptor subtypes. In adult rats, the AT_1 receptor subtype does not trigger trophic effects directly in cardiomyocytes, whereas the AT_2 receptor may have a major trophic role in smooth muscle cells. #### INTRODUCTION Angiotensin (Ang) II is one of the key hormones involved in the regulation of cardiovascular homeostasis. It has potent vasoconstrictor effects and is directly involved in the vascular [1] and cardiac [2] remodeling observed in response to chronic or acute hypertension. Two major Ang II receptor subtypes, AT₁ and AT₂, have been described [3–5]. AT₁ receptor appears primarily responsible for many of the physiological actions of Ang II, but the functional properties of the AT₂ subtype, only recently cloned, remain elusive and controversial [review in 3]. Both AT₁ and AT₂ receptors contain a seven-transmembrane domain but only the former is coupled to G protein. The properties of the two Ang II receptor subtypes have been characterized using two specific antagonists, the benzylimidazole derivative losartan (AT₁-specific) and PD123319 (AT₂-specific) [4,5]. The AT₁ receptor is predominent in adult mamma- lian tissue, including vessels [6–9]. However, the percentage of AT₁ and AT₂ receptors varies according to the cell type or tissues considered. For example, AT₁ receptors in the rat aorta are 60% of the receptors, whereas AT₁ receptors in the rat heart are 90% of the angiotensin receptors [10]. At the cellular level, adult cardiomyocytes express AT₁ subtype exclusively [11], whereas fibroblasts express both subtypes [12]. In pathophysiological situations, such as cardiac hypertrophy secondary to stenosis of the ascending rat aorta, AT₂ receptor expression increases to around 60%, whereas the AT₁ receptor is downregulated [7]. However, Wolf et al. [8] observed no alteration in left ventricular AT₁ and AT₂ receptor mRNA levels in response to aortic coarctation. Conversely, the development of cardiac hypertrophy after myocardial infarction was associated with upregulation of the AT1 receptor [11]. Haywood et al. have recently shown that human myocardial levels of AT₁ receptor mRNA decreased in heart failure whereas the level of AT2 mRNA remained unchanged [13]. In addition, the ratio of AT₁ to AT₂ receptors is reversed in experimentally induced vascular injury [14] or wound healing [15]. Based on in vivo and in vitro experiments, the AT₁ receptor is considered the major mediator of Ang II-induced cardiovascular effects [5], whereas AT₂ receptor activation is involved in the control of cell differentiation, proliferation, and apoptosis [14-18]. In vitro, AT₁ receptors mediate hypertrophy of both neonatal cardiomyocytes and smooth muscle cells [review in 3,19], whereas inhibition of endothelial cell replication seems to be AT₂ receptor-dependent [17]. However, the respective roles of each receptor in vivo remains uncertain. Therefore, the present review will focus on in vivo recent data concerning the cardiovascular effects of AT₁ and/or AT₂ receptor blockade with the aim of providing new insights into the function of each receptor. #### CARDIAC HYPERTROPHY Cardiac hypertrophy in response to hypertension reflects two main processes: the hyperplasia of nonmuscle cells, such as fibroblasts, and the hypertrophy of cardiomyocytes [20]. As cited above, nonmuscle cell hyperplasia correlates with the development of fibrosis during the myocardial hypertrophy process. The beneficial effects of ACE inhibitors on the prevention or regression of fibrosis has been clearly demonstrated [review in 21]. Nonmuscle cells express both AT₁ and AT₂ receptors. In vitro AT₁ receptors favor collagen synthesis, whereas AT2 receptor activation inhibits collagenase activity [12,22]. In R3T3 cells, Tsuzuki et al. have shown that activation of the AT2 receptor subtype inhibits cell proliferation and activates tyrosine phosphatase [23]. More recently, Chassagne et al. observed that AT₂ stimulation inhibits replication of rat fibroblast transfected with AT2 receptor human sequence. This process is associated with both inhibition of expression of the protooncogenes c-fos and c-jun and induced expression of mitogen-activated protein kinase (MAPK) phosphatase 1 [24]. Cardiomyocyte enlargement is a cardiac adaptative response to increased mechanical overload. The mechanisms triggering the development of hypertrophy are multifactorial and likely include mechanical, hormonal, and humoral factors [25]. Over the last decade, Ang II has been directly implicated in the development of cardiomyocyte hypertrophy based on (1) data obtained in cultured neonatal ventricular cardiomyocytes [19] and the isolated beating rat heart [26] and (2) the beneficial in vivo effects of ACE inhibitors [21,33]. The in vitro trophic effects of Ang II were blocked by losartan, indicating that these effects were mediated via the AT₁ receptor (review in 19). However, Booz and Baker, who found that AT₁ and AT₂ receptor subtypes were present in equal proportions in neonatal cultured cardiomyocytes, observed that AT₂ blockade (PD123177) or (CGP42112) enhanced Ang II stimulation of protein synthesis [27]. It should be noted that neonatal rat myocytes maintain some characteristics of an immature phenotype in culture [28], whereas adult rat cardiomyocytes in short-term culture (<4 days) maintain properties very close to those observed in adult rodents in vivo [29,30]. In order to determine whether Ang II has the same effect on adult cardiomyocytes as on neonatal cardiomyocytes, we investigated the direct effect of Ang II on the rate of protein synthesis in adult cardiomyocytes. We found that Ang II (concentrations up to 10-6M for 3 days) had no significant effect on the rate of total protein synthesis evaluated by 14C Phe incorporation [55]. This result contrasts with the effects of Ang II observed in neonatal cardiomyocytes and suggests that (1) Ang II has a very minor trophic effect per se on differenciated adult cardiomyocytes and (2) the in vivo effect of the peptide is triggered via more complex pathways, including cellular cross-talk and/or other paracrine systems. Recently, we and others have investigated the differential roles of angiotensin receptor subtypes in various in vivo rat models of cardiac hypertrophy and/or failure. We used a model of chronic Ang II infusion (120 ng/kg/min for 23 days) that induces arterial hypertension and left ventricular hypertrophy [31,32]. When angiotensin receptor antagonists were coadministered with Ang II, cardiac hypertrophy was prevented with losartan (10 mg/kg/day), a specific AT₁ antagonist of AT₁, but not PD 123319 (30 mg/kg/day), an AT2 antagonist. It should be noted that losartan normalized systolic pressure at the concentration used, whereas PD 123319 had no hemodynamic effect. In addition, normotensive rats chronically treated with PD123319 (30 mg/kg/day) developed mild but significant cardiac hypertrophy which was prevented by coadministration of losartan [31]. These
data suggest that (1) AT₂ receptor activation is not involved in the development of cardiac hypertrophy and (2) AT₁ receptor activation and/or other mechanically-induced pathways trigger the process of myocyte enlargement. Indeed, in this study we were unable to distinguish between effects mediated specifically via AT₁ receptor and those dependent on mechanical factors, since AT₁ blockade normalized systolic pressure. In another rat model of left ventricular hypertrophy induced by persistent systolic pressure overload secondary to ascending aortic stenosis, there is a clear upregulation of the cardiac renin-angiotensin system and a change in angiotensin receptor subtype expression [7]. Beneficial effects of long-term ACE inhibition on hypertrophic remodeling in this model has been attributed to inhibition of cardiac ACE activity [33]. Interestingly, Weinberg et al. [34] proposed that the AT₁ receptor is not the major transduction pathway for myocardial hypertrophy in response to the sudden pressure overload in this model since a long-term receptor AT, blockade was not associated with regression of left ventricular hypertrophy. In parallel, Liu et al. [35] analysed the respective roles of the kinin B2 receptor and angiotensin receptor subtypes in triggering the functional and tissular alterations during cardiac failure after myocardial infarction in the rat. They proposed that some of the beneficial effects of AT₁ blockade were triggered by AT₂ receptor activation and also mediated in part by kinins [35]. This later work illustrates that AT, blockade in vivo probably interferes with autocrine/paracrine regulation, involving the cardiac reninangiotensin and kallicrein-kinin systems. Therefore, several lines of evidence now suggest that the AT, receptor does not directly trigger the enlargement of adult mammalian myocytes during pathological conditions. #### ARTERIAL MEDIA THICKENING Arterial media thickening reflects the adaptation of arterial smooth muscle cells to increased systolic pressure [36]. This thickening depends mainly on the systolic pressure level [36,37], although humoral factors such as Ang II may also be involved [38]. In vitro, Ang II triggers vascular smooth muscle cell (VSMC) hypertrophy [39-41]. This effect is mediated via the AT₁ receptor, the only angiotensin receptor expressed in these cells in culture (review in 3). Furthermore, Bardy et al. demonstrated that mechanical factors stimulate local synthesis of Ang II in rabbit aorta, which in turn induces an increase in synthesis of proteins, such as fibronectin, via the AT1 receptor [42,43]. It should be noted that rabbit aorta expresses the AT₁ receptor only, whereas both receptor subtypes are expressed in rat arteries [5]. Therefore, we investigated the role of AT₁ and AT₂ receptors in the production of vascular wall hypertrophy in the rat. Vascular wall hypertrophy was characterized by morphometric analysis combined with either immunohistochemistry or conventional histological staining. Conventional morphometry [32] and image analysis after smooth muscle α-actin (SMα-actin) immunolabeling [31] allowed the evaluation of media thickness in the aorta and coronary arteries respectively. Prolonged Ang II infusion (23 days) induced significant thickening of the media in both aorta and coronary arteries, independent of luminal diameter (figure 1). Treatment of Ang II-induced hypertensive rats with either losartan or PD123319 induced a decrease in media thickness, although PD123319 treatment was more effective [31,32]. It is noteworthy that the effects of AT₂ blockade were independent of changes in systolic pressure, whereas those of AT₁ blockade were indistinguishable from pressor effects. On the other hand, increased medial thickness of aorta and coronary artery was observed in response to chronic AT1 blockade in normotensive rats. This process was inhibited by concomitant blockade of AT₂ receptors (figure 1). Figure 1. The hypertrophy of the media in the different experimental groups. Media thickness of aorta and coronary arteries is expressed as percent (%) of control values. In both type of vessels, Ang II induced a media thickening that was prevented by losartan and PD123319 treatment. Administration of losartan to normal rats also induced a medial hypertrophy, which is very important in the small coronary arteries, whereas combination of losartan and PD123319 treatment decreased the media thickness. The values are means \pm SEM. $\star=p<0.05; \star\star=p<0.01$ vs. control. †=p < 0.05 vs. Ang II group. (Bonferoni-test analysis). The finding that treatment of normotensive rats with losartan alone had no effect on blood pressure but induced medial hypertrophy that was prevented by additional treatment with PD123319 strongly suggests that an increase in systemic Ang II concentration, secondary to AT₁ receptor blockade (44, B. Levy unpublished data), activates the AT₂ receptor and unmasks its trophic effect. Taken together, the data show that AT₂ receptor activation triggers medial hypertrophy in rat arteries. The trophic effect of AT2 receptor stimulation appears specific to VSMC and independent of arterial type (i.e., conductive or resistive). Whether this is a direct effect or mediated via other cascade(s) has not been investigated. However, recent in vitro data indicate that the AT₂ receptor may be expressed in differentiated SMC, its activation triggering an increase in total RNA synthesis [45]. Therefore, results obtained in vivo and in vitro support the hypothesis that the AT₂ receptor activation plays a major role in the development of vascular hypertrophy in the rat, when VSMCs are not in an active proliferative stage. #### CHANGES IN SMOOTH MUSCLE CELL PHENOTYPE In hypertensive mammals, medial hypertrophy is associated with (1) an increase in collagen and elastin content [46,47] and (2) changes in smooth muscle cell (SMC) phenotype-characteristic of an immature or secretory type [48–50]. Changes in SMC phenotype include (1) a shift in myosin heavy-chain gene expression, characterized by the reexpression of nonmuscle myosin (NM myosin) [48,50], which is normally expressed during fetal life, and (2) an increased expression of the extracellular matrix protein, cellular fibronectin (cFN), which is normally expressed in the intima layer only. Fibronectin may be expressed within aortic and coronary arterial media in response to acute or chronic hypertension [51,52]. Although the expression of an immature phenotype is independent of the artery type and the hypertension etiology, some differences in the precise pattern of expression of the above proteins have been described [52]. In normal rat artery, the typical pattern of immunolabeling is as follows: SM α actin antibodies stain all medial smooth muscle cells, the labeling being homogeneously distributed, whereas cFN and NM myosin are restricted to the intimal layer of the aorta and completely absent from coronary arterial media. In Ang II-induced hypertension, the medial distribution of SM α-actin within VSMC is qualitatively similar to normotensive controls, and the most obvious changes observed are in the distribution of NM myosin and cFN (figure 2). In aorta, cFN immunolabeling extends to cells of the inner half of the media (corresponding to a threefold increase in surface area), whereas the number of NM myosin positive cells increases dramatically throughout this layer (figure 2). The codistribution of NM myosin and SM α -actin identified these cells as SMC. In arterial media of Ang II-treated animals, NM myosin immunolabeling is markedly induced and positive cells are randomly distributed throughout the media. Accumulation of cFN in the coronary arterial media is also observed. SMCs exhibiting this immature phenotype are found in more than 65% of the coronary arteries in Ang II treated animals and in less than 15% in controls. Losartan, but not PD123319, totally prevents the expression of cFN and NM myosin in Ang II-treated rat SMC. The pattern of immunolabeling is similar to that of the control group in all arteries, irrespective of type and size (table I). Administration of PD123319 alone induces a small but significant increase in cFN and/or NM myosin in both aorta and coronary arteries, which was prevented by combined administration of losartan. Finally, losartan alone does not affect the phenotype of VSMCs in normotensive rats. The finding that AT₂ receptor blockade in normotensive rats was associated with a shift of VSMC towards an immature phenotype suggests the unmasking of an AT₁ receptor transactive Figure 2. Distribution of c-FN, NM myosin, and SM α-actin in aorta and in coronary arteries of control, Ang II, treated rats. Note that cellular FN and NM myosin expression increased in Ang II treated rats when compared to controls. pathway that mediates phenotypic changes [31]. Such an AT₁/AT₂ receptor interaction has been recently suggested by Siragy and Carey who proposed a shift of Ang II action to the AT₁ receptor in the presence of AT₂ receptor blockade to enhanced PGE₂ production in the rat kidney [53]. In conclusion, the qualitative and quantitative changes in aortic and coronary | | control | Ang II | Ang II + LOS | Ang II + PD | LOS | PD | LOS + PD | |----------------------------------|---------|----------|--------------|-------------|-----|----|--------------| | systolic blood
pressure | = | ↑ | <u>=</u> | 1 | = | = | | | ventricular
hypertrophy | ~ | + | _ | + | - | + | | | media thickening | - | + | _ | _ | + | | _ | | immature
phenotype
of VSMC | _ | + | _ | + | - | + | - | | systolic blood
pressure | = | 1 | = | ↑ | = | = | \downarrow | Table 1. Cardiovascular changes secondary to Ang-induced hypertension and/or angiotensin II receptor antagonists Note: Summary of the qualitative and quantitative changes observed in the heart and vasculature of the different experimented groups. Ang II induced
hypertension, ventricular hypertrophy, a shift of the VSMC phenotype towards an immature type, and medial thickening. These processes were prevented by AT1 receptor antagonist. The AT2 antagonist specifically prevented medial thickening. Note that the treatment of control rats with the AT1 antagonist induced medial hypertrophy. -, absence; +, presence; control, untreated rats; Ang II, Ang II-treated rats; Ang II + LOS, rats treated with both Ang II and Losartan; Ang II + PD, rats treated with both Ang II and PD123319; LOS, Losartan rats treated with Losartan; LOS + PD, rats treated with both Losartan and PD123319. arterial phenotype secondary to Ang II-induced hypertension appear to be triggered by two independent pathways (figure 3): (1) Ang II induces medial hypertrophy of both aorta and coronary arteries, via the AT2 receptor, independent of changes in blood pressure and (2) phenotypic changes in VSMC are controlled through AT₁ receptor activation and/or blood pressure elevation. #### CONCLUSIONS AND PERSPECTIVES In this review we have analyzed the differential role of AT₁ and AT₂ receptors in the response of the myocardium and vessels to arterial hypertension. It emerges that Figure 3. Triggers of qualitative and quantitative changes of vascular smooth muscle cells during hypertension in the rat. the relative involvement of each receptor depends on cell type. Indeed, AT2 has no effect on cardiomyocyte hypertrophy but triggers arterial medial thickening. On the other hand, the data reported herein (table I) contrast with previous studies that demonstrated AT₁-triggered cell growth and/or hypertrophy, whereas AT₂ mediated inhibition of cell replication (review in 3). It is noteworthy that the antiproliferative function of the AT₂ receptor has been observed in nonmuscle cells [17,23] and in SMCs actively replicating after endothelial injury [54,14]. The main goals for the forthcoming years will be to determine (1) the precise role of angiotensin receptors in different cell types and different stages of differentiation, (2) the transduction pathway used by the AT₂ receptor, and (3) the possible interactions between the 2 receptor subtypes. #### ACKNOWLEDGMENT The authors thank Dr. B. Prendergast for providing help in the discussion and reading of the manuscript. The work was supported by INSERM and CNRS Fondation de France and European Union. #### REFERENCES - 1. Griendling KK, Alexander RW. 1995. Angiotensin, other pressors and the transduction of vascular smooth muscle contraction. In Hypertension, pathophysiology, diagnosis and management, Ed. Brenner Larragh, 524-541. New York: Raven Press. - 2. Crawford DC, Chobanian AV, Brecher P. 1994. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res 74:727-739. - 3. Chassagne C, Servant M, Meloche S. 1996. Rôles et voies de signalisation des récepteurs de l'angiotensine II dans la croissance cellulaire. Medecine et Sciences 12:1351-1360. - 4. de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PBMWM. 1995. Proposed update of angiotensin receptor nomenclature. Hypertension 25:924-927. - 5. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 6. Brink M, de Gasparo M, Rogg H, Whitebread S, Bullock G. 1995. Localization of angiotensin II receptor subtypes in the rabbit heart. J Mol Cell Cardiol 27:459-470. - 7. Lopez JJ, Lorell BH, Ingelfinger JR, Weinberg EO, Schunkert H, Diamant D, Tang SS. 1994. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol 36:H844-H852. - 8. Wolf K, Della Bruna R, Bruckschlegel G, Schunkert H, Riegger GA, Kurtz A. 1996. Angiotensin II receptor gene expression in hypertrophied left ventricles of rat hearts. J Hypertens 14(3):349-354. - 9. Zhuo J, Allen AM, Alcorn D, Aldred GP, MacGregor DP, Mendelsohn FAO. 1995. The distribution of angiotensin II receptors. In Hypertension: Pathophysiology, diagnosis and management. Ed. JH Laragh and BM Brenner, 1739-1762. New York: Raven Press. - 10. Lassègue B, Griendling KK, Alexandre W. 1994. Molecular biology of angiotensin II receptors. Ed. JM Saavedra and PBMWM Timmermans, 17-48. New York: Plenum Press. - 11. Meggs LG, Coupet J, Huang H, Cheng W, Li P, Capasso JM, Homcy CJ, Anversa P. 1993. Regulation of Angiotensin II Receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 72:1149-1162. - 12. Brilla CG, Zhou G, Matsubara L, Weber KT. 1994. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809-820. - 13. Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB. 1997. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95:1201-1206. - 14. Janiak P, Pillon A, Prost JF, Vilaine JP. 1992. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension 20:737-745. - 15. Viswanatan M, Saaverda JM. 1992. Expression of angiotensin II AT2 receptors in the rat skin during experimental wound healing. Peptides 13:783-786. - 16. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 17. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotensin AT2receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651- - 18. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 19. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551-571. - 20. Swynghedauw B, Coraboeuf E. 1994. Cardiac hypertrophy and failure. In Cardiovascular medicine. Basic aspects of myocardial function, growth, and development. Ed. JT Willerson and JN Cohn, 31-50. New York: Churchill Livingstone. - 21. Waeber B, Nussberger J, Brunner HR. 1995. Angiotensin-converting enzyme inhibitors in hypertension. In Hypertension: Pathophysiology, diagnosis and management. Ed. JH Laragh and BM Brenner, 2861-2891. New York: Raven Press. - 22. Guarda E, Myers PR, Brilla CG, Tyagi SC, Weber KT. 1993. Endothelial cell induced modulation of cardiac fibroblast collagen metabolism. Cardiovasc Res 27:1004-1008. - 23. Tsuzuki S, Matoba T, Egubhi S, Inagami T. 1996. Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916-918. - 24. Chassagne C, Samuel JL, Rappaport L, Meloche S. 1996. Angiotensin II AT2 Receptor activation induces expression of MKP1 and repression of mRNA encoding protooncogenes (abstract). Mol Biol Cell 7S:531 a. - 25. Samuel JL, Dubus I, Farhadian F, Marotte F, Oliviero P, Mercadier A, Contard F, Barrieux A, Rappaport L. 1995. Multifactorial regulation of cardiac gene expression: an in vivo and in vitro analysis. Annal NY Acad Sc 752:370-386. - 26. Schunkert H, Sadoshima J, Cornelius T, Kagaya Y, Weinberg EO, Izumo S, Riegger G, Lorell BH. 1995. Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for loadindependent induction of cardiac protein synthesis by angiotensin II. Circ Res 76:489-497. - 27. Booz GW, Baker KM. 1996. Role of type 1 and type 2 angiotensin receptors in angiotensin IIinduced cardiomyocyte hypertrophy. Hypertension 28(4):635-640. - Schwartz K, Rappaport L. 1987. Isomyosins, microtubules and intermediate filaments. In the heart cell in culture. Vol. 2. Ed. A Pinson, 13-35. Boca Raton: CRC Press. - 29. Dubus I, Samuel JL, Marotte F, Delcayre C, Rappaport L. 1990. β-adrenergic agonists stimulate the synthesis of non-contractile but not contractile proteins in cultured myocytes isolated from adult rat heart. Circ Res 66:867-874. - 30. Dubus I, Mercadier A, Lucas O, Contard F, Nallet O, Oliviero P, Rappaport L, Samuel JL. 1993. α-,β- MHC mRNA quantification in adult cardiomyocytes by in situ hybridization: effect of thyroid hormone. Am J Physiol 265:C62-C71. - 31. Sabri A, Levy B, Poitevin P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel JL. 1997. Differential roles of AT1 and AT2 receptor subtypes in vascular trophic and phenotypic changes in response to a stimulation with angiotensin II. Arterioscler Thromb 17:257-264. - 32. Levy B, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Samuel JL. 1996. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat cardiovascular structure. J Clin Invest 98:418-425. - 33. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH. 1994. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90:1410-1422. - 34. Weinberg EO, Lee MA, Weigner M, Lindpaintner K, Bishop SP, Benedict CR, Ho KK, Douglas PS, Chafizadeh E, Lorell BH. 1997. Angiotensin AT1 receptor inhibition. Effects on hypertrophic remodeling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 95(6):1592-1600. - 35. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997. Effects of - angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99(8):1926-1935. - 36. Mulvany MJ. 1987. The structure of the resistance vasculature in essential hypertension. J Hypertension
5:129-136. - 37. Owens GK. 1987. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension 9:178-187. - 38. Owens GK. 1995. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487-517. - 39. Griffin SA, Brown WCB, Macpherson F, McGrath JC, Wilson VG, Korsgaard N, Mulvany MJ, Lever AF. 1991. Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension 17:626-635. - 40. Geistefer AAT, Peach MJ, Owens GK. 1988. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749-756. - 41. Berk BC, Vekshtein V, Gordon HM, Tsuda T. 1989. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305-314. - 42. Bardy N, Karillon GJ, Merval R, Samuel JL, Tedgui A. 1995. Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ Res 77:684-694. - 43. Bardy N, Merval R, Benessiano J, Samuel JL, Tedgui A. 1996. Pressure and Angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res 79:70-78. - 44. Goldberg MR, Tanaka W, Barchowsky A, Bradstreet TE, McCrea J, Lo MW, McWilliams EJ, Bjornsson TD. 1993. Effects of Losartan on blood pressure, plasma renin activity and angiotensin II in volunteers. Hypertension 21:704-713. - 45. Saward L, Zarhadka P. 1996. The angiotensin type 2 receptor mediates RNA synthesis in A10 vascular smooth muscle cells. J Mol Cell Cardiol 28:499-506. - 46. Brecher P, Chan CT, Franzblau C, Faris B, Chobabian AV. 1978. Effects of hypertension and its reversal on aortic metabolism in the rat. Circ Res 43:561-569. - 47. Levy BI, Michel JB, Salzmann JL, Azizi M, Poitevin P, Safar M, Camilleri JP. 1988. Effects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res 63(1):227-239. - 48. Pauletto P, Sarzani R, Rappelli A, Pessina AC, Sartore S. 1995. Differentiation and growth of vascular smooth muscle cells in experimental hypertension. In Hypertension: pathophysiology, diagnosis and management. Ed. JH Laragh and BM Brenner, 697-709. New York: Raven Press. - 49. Sartore S, Scaneta M, Chiavegato A, Faggin E, Giuriato L, Pauletto P. 1994. Myosin isoform in smooth muscle cells during physiological and pathological vascular remodelling. J Vasc Res 31:661- - 50. Contard F, Sabri A, Glukhova M, Sartore S, Marotte F, Pomies JP, Schiavi P, Guez D, Samuel JL, Rappaport L. 1993. Arterial smooth muscle cell phenotype in stroke-prone spontaneously hypertensive rats. Hypertension 22:665-676. - 51. Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL. 1995. Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27:981-990. - 52. Samuel JL, Barrieux A, Dufour S, Dubus I, Contard F, Koteliansky V, Farhadian F, Marotte F, Thiéry JP, Rappaport L. 1996. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737-1746. - 53. Siragy HM, Carey RM. 1996. The subtype 2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3'-5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest 97:1978-1982. - 54. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 55. Corda S, Mebazaa A, Gandolfini MP, Fitting C, Marotte F, Peynet J, Charlemagne D, Cavaillon JM, Payen D, Rappaport L, Samuel JL. 1997. Trophic effect of human pericardial fluid on adult cardiac myocytes-Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy. Circ Res 81:679-687. ## INTERSUBJECT VARIABILITY IN THE PHARMACOKINETICS OF LOSARTAN #### JACQUES TURGEON Laval University and Ouébec Heart Institute, Laval Hospital, Ste-Foy, Ouébec, Canada **Summary.** The use of orally effective angiotensin II receptor type 1 (AT₁) antagonists represents a new strategy for the management of hypertension and congestive heart failure. The development of losartan, a biphenyltetrazole derivative, was based on a carefully managed, rational drug design aimed at improving the low-oral bioavailability normally observed with peptide antagonists. The drug was also designed to preserve selectivity at the AT_1 receptor site without introducing intrinsic agonist activity. Losartan itself is an active AT_1 antagonist, but clinically relevant angiotensin blockade is mediated mainly by EXP3174, an active metabolite formed by a specific cytochrome P450 isozyme, CYP2C9. Therefore, dosage adjustment is dictated by variability in plasma concentrations of the metabolite rather than by variability in plasma concentrations of losartan. The present review describes both the development and the major pharmacokinetic characteristics of losartan, the first orally effective, nonpeptide AT_1 antagonist administered to man. #### INTRODUCTION The search for specific antagonists of angiotensin (Ang) II receptors started more than twenty-five years ago. One of the first promising Ang II receptor antagonists to be discovered was the peptide saralasin [1]. However, the use of saralasin was limited by its poor absorption following oral administration, its short elimination half-life, and its substantial Ang II agonist properties [2,3]. The scientific community had to wait another ten years before Takeda Chemical Industries disclosed patents describing a series of nonpeptide 1-benzyl imidazole-5-acetic acid derivatives with Ang II antagonist properties [4,5]. Subsequently, four major states of development, Figure 1. Major states of structural substitutions culminating in the synthesis of losartan. involving important structural substitutions, were completed, culminating in the synthesis of losartan (figure 1) [6-8]. The decision to incorporate such structural substitutions resulted from: - 1. the recognition that only C-terminal fragments of Ang II display significant biological activities [9]. It was further hypothesized that a carboxylic acid would be required for binding to the receptor; - 2. the recognition that the substitution of a second acidic group in the para-position of the phenyl moiety of benzylimidazole acetic acid derivatives improved the potency tenfold without introducing intrinsic or nonspecific effects [10]; - 3. the recognition that enlargement of the molecule by replacement of the phenyl carboxylic acid group by a biphenyl carboxylic acid moiety produces orally effective agents with another tenfold increase in binding affinity [8]; - 4. the recognition that replacement of the biphenyl carboxylic acid moiety by biphenyltetrazole derivatives further improved bioavailability [11]. Thus, following all the structural substitutions described above, the compound obtained was the prototype biphenyltetrazole, losartan (DuP 753 or MK954), the first potent, nonpeptide, orally effective, competitive and selective antagonist of Ang II type I (AT₁) receptors to be made clinically available. #### PHARMACOKINETICS OF LOSARTAN Absorption of losartan is rapid following oral administration, and peak plasma concentrations are attained within 30 to 60 minutes [12]. Based on measured and Figure 2. Schematic disposition of losartan and its active metabolite, EXP3174, in man. predicted bioavailability from the hepatic extraction ratio, absorption of losartan from the gastrointestinal tract is considered to be complete [13]. Food slows the absorption of losartan and decreases its maximum plasma concentration, but it only has minor effects on the mean plasma concentrations of losartan [14]. Losartan undergoes extensive first-pass metabolism in the liver, and only about 33% of the dose reaches the systemic circulation unchanged (figure 2) [13]. Thus, upon its first exposure to liver enzymes, approximately 2/3 of the dose of losartan is transformed into several metabolites. In vitro drug metabolism studies performed with either liver slices or human liver microsomes are consistent with these observations [15-17]. In drug metabolism studies, at least 5 metabolites of losartan could be identified (figure 3). Sequential oxidation of the alcohol side-chain of losartan into an aldehyde and a carboxylic acid moiety results in a metabolite, EXP3174, that is 10-40 times more potent as an AT₁ receptor antagonist than the parent compound [18]. The structureactivity relationship described in the development of orally active AT₁ receptor antagonists predicted that a carboxylic acid moiety overlapping with the C-terminal region of Ang II would be associated with more potent binding to the receptor [19]. Nevertheless, losartan is not a pro-drug because it is itself a potent AT₁ receptor antagonist [6,7]. In the dog, where very little losartan is transformed into EXP3174, sustained blockade of the Ang II effects can still be achieved [20,21]. Furthermore, numerous in vitro and ex vivo studies have demonstrated the activity of losartan Figure 3. Scheme for oxidative biotransformation of losartan to its major metabolites. which clearly does not have to be converted to EXP3174 in order to block Ang receptors [8,22,23]. However, the clinical relevance of EXP3174 in humans during chronic oral treatment with losartan needs further discussions. The total clearance of losartan entering the systemic circulation is very high, approximately 610 ml/min [13]. Consequently, the drug is rapidly eliminated from the blood. Its terminal elimination half-life is approximately 2 hours
[13]. The kidneys contribute very little to the overall excretion of losartan (renal clearance is ≈70 ml/min). Less than 5% of an oral dose of losartan is excreted unchanged in urine [13]. In contrast, circulating losartan is extensively metabolized into several metabolites, and total metabolic clearance is ≈540 ml/min [13]. As already indicated, extensive metabolism of losartan (\$\infty\$66% of the dose) takes place upon its first exposure to the liver. During this first pass, approximately 8% of the dose is transformed into EXP3174 (figure 2) [13]. However, during subsequent passages through the liver, another 6% of the drug that is present in the blood stream is transformed into EXP3174 (figure 2) [13]. When the fraction of the dose of systemically available losartan metabolized into EXP3174 (6%) is added to the fraction formed by presystemic metabolism (8%), it can be estimated that 14% of an orally administered dose of losartan is transformed into EXP3174 [13]. The systemic clearance of EXP3174 is about 10 to 15 times slower (47 ml/min) than that of losartan [13]. The kidneys (renal clearance is 26 ml/min) and the liver (metabolic clearance is 21 ml/min) contribute equally to its elimination (figure 2). In fact, an amount of EXP3174 equivalent to 7% of the losartan dose is recovered in urine Figure 4. The profile of mean plasma concentrations of losartan (○) and EXP3174 (●) in man following administration of a single 50 mg oral dose of losartan (Adapted from Lo et al., 1995 [13]). while the remaining EXP3174 undergoes sequential metabolism into various other metabolites. The terminal elimination half-life of EXP3174, which is much longer than that of losartan, is 6-9 hours [13]. Similar peak plasma concentrations of losartan and its major active metabolite, EXP3174, are achieved following oral administration of losartan (figure 4) [13]. Maximal plasma concentration of EXP3174 is reached at about 3.5 hours, which is slightly later than that of losartan [13,24]. However, the area under the plasma concentration-time curve for EXP3174 is almost five times larger than that of losartan [13]. Pharmacodynamic studies have demonstrated that plasma levels of EXP3174 parallel the profile of Ang II receptor blockade more closely than do plasma levels of losartan [24]. Therefore, it is not surprising that effective Ang II receptor blockade by losartan in humans is largely determined by the more potent active metabolite of losartan, EXP3174 [18,24]. Two major isoforms of the cytochrome P450 enzyme, namely, CYP2C9 and CYP3A4, appear to be involved in the sequential oxidation of losartan to EXP3174 [15,16]. In vitro metabolic studies with human liver microsomes and microsomes containing various recombinant human liver cytochrome P450 isozymes have demonstrated that formation of EXP3174 is inhibited by characteristic inhibitors of CYP2C9 and CYP3A4 as well as by antibodies directed against these specific isoforms [15,16]. On the other hand, pharmacokinetic studies in healthy volunteers failed to demonstrate a significant interaction between losartan and ketoconazole, a well known inhibitor of CYP3A4 [25]. In contrast, subjects with genetically determined deficient CYP2C9 activity (1% of the Caucasian population) excrete minimal amounts (<1%) of a losartan dose as EXP3174 [26]. These recent clinical findings indicate that CYP2C9 is probably the major enzyme involved in the formation of EXP3174 in humans. The efficacy of losartan in subjects with deficient CYP2C9 activity was not reported [26]. Based on the pharmacological properties of losartan and EXP3174, decreased efficacy would be expected since very little of the active metabolite is formed. However, toxicity from losartan accumulation should not be expected since several other metabolic pathways, independent of CYP2C9 activity, are most likely active in these subjects. Therefore, modulation of CYP2C9 activity by specific inducers or inhibitors would expectedly result in intersubject variability in the pharmacokinetics, as well as the efficacy, of losartan. A fivefold increase in the plasma concentrations of losartan has been observed in patients with hepatic impairment because of alcohol cirrhosis [14]. This is due to a significant decrease in the metabolic clearance of losartan, which accounts for more than 85% of the total clearance of the drug [13]. Nevertheless, significant amounts of EXP3174 are still formed in these subjects, which suggests that CYP2C9 activity is partially preserved, even under these conditions of decreased liver function. On the other hand, the elimination of EXP3174 is significantly impaired, and mean plasma concentrations of the metabolite increase about twofold [14]. Consequently, a 50% dosage reduction is recommended in patients with alcohol-induced cirrhosis of the liver. Age is another factor known to affect the pharmacokinetics of several drugs. This is due to decreased liver and kidney functions as well as changes in muscle and fat distribution [27,28]. Although data are limited, no significant difference in the innocuity of losartan was observed between elderly and young patients in clinical trials. This suggests that plasma concentrations of the active metabolite EXP3174 in elderly patients are similar to those measured in younger individuals. Both losartan and EXP3174 are highly bound to plasma albumin (98.7% for losartan vs. 99.8% for EXP3174) [29]. However, neither losartan nor EXP3174 are significantly displaced in vitro by therapeutic concentrations of highly proteinbound drugs, such as naproxen, ibuprofen, diazepam, or warfarin [29]. This suggests that clinically significant drug interactions caused by displacement from binding sites are unlikely to occur. High protein binding to plasma albumin limits the diffusion of losartan and EXP3174 to peripheral organs. Consequently, the steady-state volumes of distribution of these compounds are quite small (341 for losartan and only 121 for EXP3174) [13]. The renal clearance of EXP3174 accounts for 50% of total EXP3174 clearance [13]. Therefore, one would expect metabolite accumulation in patients with renal insufficiency, which would necessitate a decrease in the dosage of losartan. In contrast, in patients with moderate to severe, end-stage kidney disease (creatinine clearance is 10-29 ml/min), a proportional decrease in creatinine and renal clearance of losartan or EXP3174 is observed [30]. Plasma concentrations of EXP3174 do not increase but remain stable, and no dosage adjustment is recommended [30]. However, plasma concentrations of losartan are almost doubled in these patients [31]. These observations indicate that alterations in the routes and/or mechanisms of elimination of EXP3174 and losartan and/or an alteration in the amount of EXP3174 formed occur in patients with renal insufficiency. Similarly, in patients undergoing dialysis, plasma concentrations of losartan are higher than those measured in patients with normal renal function, while EXP3174 concentrations are comparable to those measured in the same [14]. Overall, these observations suggest that there is no need to adjust losartan dosages in patients with compromised renal function. Nevertheless, extreme caution is recommended in patients with either renin-angiotensin-dependent renal impairment or fixed renal blood flow, such as unilateral or bilateral renal artery stenosis [32]. Finally, no major drug-drug pharmacokinetic interaction has been identified for losartan. Only minor changes in mean plasma concentrations of losartan and EXP3174 were noticed during the coadministration of cimetidine to healthy volunteers [33]. Pretreatment with the cytochrome P450 inducer phenobarbital caused only a modest decrease in mean plasma concentrations of both losartan and EXP3174 [34]. In healthy volunteers, losartan did not alter the pharmacokinetics of intravenous or oral digoxin, and hydrochlorothiazide did not affect losartan pharmacokinetics, and vice versa [35,36]. Finally, the anticoagulant activity of warfarin was not found to be significantly affected by losartan [37,38]. This observation is very interesting since warfarin is a well known substrate of CYP2C9, the major isoform involved into the formation of EXP3174. In summary, losartan is the first orally effective, nonpeptide, competitive antagonist of AT₁ to be marketed. Numerous in vitro and animal studies have demonstrated that losartan itself is a potent AT₁ antagonist. However, the profile of Ang II blockade observed in humans more closely parallels the plasma levels of one of its metabolites, EXP3174. Therefore, adjustments to the dosage of losartan are dictated by changes in the mean plasma concentrations of the metabolite observed under various clinical conditions. Clinical studies have demonstrated that dosage adjustments are required in patients with liver disease but are not necessary in elderly patients or in patients with renal insufficiency. To date, no major drug-drug interactions have been observed with losartan. #### **ACKNOWLEDGMENTS** The author acknowledges the secretarial assistance of Mr. Jimmy Rail and Mrs. Vicky Falardeau in the preparation of this manuscript. The author also thanks Dr. Jean Stewart-Phillips for the reading of the manuscript. Dr. Jacques Turgeon is the recipient of a scholarship from the Joseph C. Edwards Foundation. #### REFERENCES - 1. Pals DT, Masucci FD, Denning GSJ, Sipos F, Fessler DC. 1971. Role of the pressor action of angiotensin II in experimental hypertension. Circ Res 29:673-681. - 2. Anderson GHJ, Streeten DHP, Dalakas TG. 1977. Pressor responses to 1-Sar-8-Ala-angiotensin II (saralasin) in hypertensive subjects. Circ Res 40:243-250. - 3. Case D, Wallace J, Keirn H, Sealey J, Laragh J. 1976. Usefulness and limitations of saralasin, a partial competitive agonist of angiotensin II for evaluating the renin and sodium factors in hypertensive patients. Am J Med 60:825-836. - 4. Furakawa Y, Kishimoto S, Nishikawa K.
1982. Takeda Chemical Industries, Japan. Hypotensive imidazole derivatives and hypotensive imidazole-5-acetic acid derivatives. US patent 4340598. - 5. Furakawa Y, Kishimoto S, Nishikawa K. 1982. Takeda Chemical Industries, Japan. Hypotensive imidazole derivatives and hypotensive imidazole-5-acetic acid derivatives. US patent 4355040. - 6. Carini DJ, Duncia JV. 1993. The discovery and development of the nonpeptide angiotensin II receptor antagonists. Adv Med Chem 2:153-195. - 7. Duncia JV, Carini DJ, Chiu AT, Johnson AL, Price WA, Wong PC, Wexler RR, Timmermans PBMWM. 1992. The discovery of Dup 753, a potent, orally active nonpeptide angiotensin II receptor antagonist. Med Res Rev 12:149-191. - 8. Timmermans PBMWM, Duncia JV, Carini DJ, Chiu AT, Wexler RR, Smith RD. 1995. Discovery of losartan, the first angiotensin II receptor antagonist. J Hum Hypertens 9:S3-S18. - 9. Lane EA, Levy RH. 1980. Prediction of steady-state behavior of metabolite from dosing of parent drug. J Pharm Sci 69:610-612. - 10. Wong PC, Price WA Jr, Chiu AT, Thoolen MJ, Duncia JV, Johnson AL, Timmermans PB. 1989. Nonpeptide angiotensin II receptor antagonists. IV. EXP6155 and EXP6803. Hypertension 13:489- - 11. Wong PC, Price WAJ, Chiu AT, Carini DJ, Duncia JV, Johnson AL, Wexler RR, Timmermans PBMWM. 1990. Bobpeptide angiotensin II receptor antagonist: studies with EXP9270 and DuP 753. Hypertension 15:823-834. - 12. Ohtawa M, Takayama F, Saitoh K, Yoshinaga T, Nakashima M. 1993. Pharmacokinetics and biochemical efficacy after single and multiple oral administration of losartan, an orally active nonpeptide angiotensin II receptor antagonist, in humans. Br J Clin Pharmacol 35:290-297. - 13. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. 1995. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther 58:641-649. - 14. Losartan potassium prescribing information. 1995. Merck & Co., Inc. West Point, Pennsylvania, USA. - 15. Yun CH, Lee HS, Lee H, Rho JK, Jeong HG, Guengerich FP. 1995. Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver microsomes. Role of cytochrome P4503A(4) in formation of the active metabolite EXP3174. Drug Metab Disp 23:285-289. - 16. Stearns RA, Chakravarty PK, Chen R, Chiu SHL. 1995. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Disp 23:207-215. - 17. Stearns RA, Miller RR, Doss GA, Chakravarty A, Rosegay A, Gatto GJ, Chiu SHL. 1992. The metabolism of DuP 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey, and liver slices. Drug Metab Disp 20:281-287. - 18. Wong PC, Price WA Jr, Chiu AT, Duncia JV, Carini DJ, Wexler RR, Johnson AL, Timmermans PB. 1990. Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: An active metabolite of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 255:211-217. - 19. Bumpus FM, Khosla MC. 1977. Angiotensin analogs as determinants of the physiologic role of angiotensin and its metabolites. In Hypertension. Ed. J Genest, E Koiw, O Kuchel, 183-201. New York: McGraw-Hill. - 20. Christ DD, Wong PC, Wong YN, Hart SD, Quon CY, Lam GN. 1994. The pharmacokinetics and pharmacodynamics of the angiotensin II receptor antagonist losartan potassium (DuP 753/MK 954) in the dog. J Pharmacol Exp Ther 268:1199-1205. - 21. Chan DP, Sandok EK, Aarhus LL, Heublein DM, Burnett JCJ. 1992. Renal specific actions of angiotensin II receptor antagonism in the anesthetized dog. Am J Hypertens 5:354-360. - 22. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, - Wexler RR, Saye IAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 23. Smith RD, Sweet CS, Goldberg A, Timmermans PBMWM. 1995. Losartan potassium (COZAARTM): A nonpeptide antagonist of angiotensin II. Drugs of Today 31:463-498. - 24. Munafo A, Christen Y, Nussberger J, Shum LY, Borland RM, Lee RJ, Waeber B, Biollaz J, Brunner HR. 1992. Drug concentration response relationships in normal volunteers after oral administration of losartan, an angiotensin II receptor antagonist. Clin Pharmacol Ther 51:513-521. - 25. Goa KL, Wagstaff AJ. 1996. Losartan potassium. A review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs 51:820-845. - 26. Spielberg S, McCrea J, Cribb A, Rushmore T, Waldman S, Bjornsson T, Lo MW, Goldberg M. 1996. A mutation of CYP2C9 is responsible for decreased metabolism of losartan. Clin Pharmacol Ther 59:215. - 27. Cohen JL. 1986. Pharmacokinetic changes in aging. Am J Med 80(Suppl 5A):31-38. - 28. Crooks J, O'Malley K, Stevenson IH. 1976. Pharmacokinetics in the elderly. Clin Pharmacokinet - 29. Christ DD. 1995. Human plasma protein binding of the angiotensin II receptor antagonist losartan potassium (DuP 753/MK 954) and its pharmacologically active metabolite EXP3174. J Clin Pharmacol 35:515-520. - 30. Sica DA, Lo MW, Shaw WC, Kean WF, Gehr TWB, Halstenson CE, Lipschutz K, Furtek CI, Ritter MA, Shahinfar S. 1995. The pharmacokinetics of losartan in renal insufficiency. J Hypertens 13:S49-S52. - 31. Tsutsumi K, Stromberg C, Viswanathan M, Saavedra JM. 1991. Angiotensin-II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129:1075-1082. - 32. Johnston CI. 1995. Angiotensin receptor antagonists: Focus on losartan. Lancet 346:1403-1407. - 33. Goldberg MR, Lo MW, Bradstreet TE, Ritter MA, Hoglund P. 1995. Effects of cimetidine on pharmacokinetics and pharmacodynamics of losartan, an AT1-selective nonpeptide angiotensin II receptor antagonist. European Journal of Clinical Pharmacology 49:115-119. - 34. Goldberg MR, Lo MW, Deutsch PJ, Wilson SE, McWilliams EJ, McCrea JB. 1996. Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 59:268-274. - 35. De Smet M, Schoors DF, De Meyer G, Verbesselt R, Goldberg MR, Fitzpatrick V, Somers G. 1995. Effect of multiple doses of losartan on the pharmacokinetics of single doses of digoxin in healthy volunteers. Br J Clin Pharmacol 40:571-575. - 36. McCrea JB, Lo MW, Tomasko L, Lin CC, Hsieh JY, Capra NL, Goldberg MR. 1995. Absence of a pharmacokinetic interaction between losartan and hydrochlorothiazide. J Clin Pharmacol 35:1200-1206. - 37. Kaminsky LS, De Morais SMF, Faletto MB, Dunbar DA, Goldstein JA. 1993. Correlation of human cytochrome P4502C substrate specificities with primary structure: Warfarin as a probe. Mol Pharmacol 43:234-239. - 38. Kong ANT, Tomasko L, Waldman SA, Osborne B, Deutsch PJ, Goldberg MR, Bjornsson TD. 1995. Losartan does not affect the pharmacokinetics and pharmacodynamics of warfarin. J Clin Pharmacol 35:1008-1015. ### FUNCTIONAL ANALYSIS OF TISSUE RENIN-ANGIOTENSIN SYSTEM USING "GAIN AND LOSS OF FUNCTION" APPROACHES: IN VIVO TEST OF IN VITRO HYPOTHESIS RYUICHI MORISHITA, MOTOKUNI AOKI, HIDETSUGU MATSUSHITA, SHIN-ICHIRO HAYASHI, SHIGEFUMI NAKAMURA, NOBUAKI NAKANO, TADAHIKO NISHII, KEI YAMAMOTO, NARUYA TOMITA, ATSUSHI MORIGUCHI, JITSUO HIGAKI, and TOSHIO OGIHARA Department of Geriatric Medicine, Osaka University Medical School, Osaka, Japan **Summary.** The study of the effect of autocrine-paracrine vasoactive modulators (e.g., reninangiotensin) on VSMC biology is very difficult in vivo because in vivo studies are limited. Recent progress in in vivo gene transfer technologies have provided us with the opportunity to study cellular responses to the manipulation of the individual components (i.e., by overexpression or inhibition). Currently, many researchers have developed many in vivo gene transfer techniques for cardiovascular application, including viral gene transfer and liposomal gene transfer. By using in vivo gene transfer approaches, the roles of the tissue reninangiotensin system have been identified. Such an approach may increase our understanding of the biology and pathobiology of autocrine-paracrine system. This review has discussed the potential utility of in vivo gene transfer methods. The study of the effect of autocrine-paracrine modulators (e.g., renin-angiotensin) is very difficult in vivo because in vivo studies are limited by (1) the multiplicity of coexisting variables, (2) the difficulties in manipulating individual components, and (3) the methodological limitations in studying the function of locally produced modulators in the absence of any contribution by the circulatory system. Gene transfer technology has provided us with the opportunity to study the cellular responses to the manipulation of the individual components (i.e., by overexpression or inhibition). For example, transfection of angiotensin-converting enzyme (ACE) vector into cardiovascular organs resulted in hypertrophy independent of hemodynamics and the circulating renin-angiotensin system (RAS) [1]. Alternatively, administration of antisense oligodeoxynucleotides (ODN) and angiotensinogen-gene activating element (AGE) 2 as "decoy" into the liver resulted in a significant transient decrease in blood pressure [2,3]. Such an approach may increase our understanding of the biology and pathobiology of autocrine-paracrine system, especially the RAS. #### IN VIVO GENE TRANSFER TECHNIQUES Although it is important to develop in vivo gene transfer into the cardiovascular organs, few in vivo gene transfer methods are suitable for such purposes. Many in vitro gene transfer methods such as calcium phosphate precipitation and electroporation can not be applied to in vivo gene transfer because of significant cell injury and because they pose significant problems to the investigation of the role of potential autocrine mediators (e.g., angiotensin). Currently, in vivo gene transfer techniques for cardiovascular
applications include viral gene transfer such as retrovirus, adenovirus, and HVJ (Hemagglutinating Virus of Japan: Sendai virus) and liposomal gene transfer such as cationic liposome (Lipofectin) [4,5]. Overall, the current in vivo methods for cardiovascular gene transfer are limited by the low efficiency and by the potential toxicity. #### Retroviral method The retroviral method is well described. It has generally a high-transfer efficiency and can integrate transferred genes into the genome [6]. This method has been used for in vivo gene transfer into blood vessels (see below). However, the efficiency for vessel wall transfer is very low because retroviruses do not work in nonreplicating cells. This characteristic should be considered when selecting retrovirus as the vector for specific organs. #### HVI-mediated method The HVJ method appears to possess many ideal properties for in vivo gene transfer such as (1) efficiency, (2) safety, (3) easy handling, (4) brevity of incubation time (5) no limitation of inserted DNA size. In this method, foreign DNA is complexed with liposomes, a nuclear protein, and the viral protein coat of HVJ (figure 1). The HVJ method has been successfully employed for gene transfer in vivo to many tissues including liver, kidney, and vascular wall [1-3,7-10]. This method is also suitable for transfer of antisense oligonucleotides. HVJ method can result in a significant increased stability and effectiveness of antisense and cis-element decoy ODN [11,12]. #### Adenoviral method Adenoviruses do not require cell replication for transfer. The adenoviral method is a highly efficient transfection method, but it has the potential disadvantages of viral infection and viral antigen-induced immunity, and it has limitations in the inserted DNA size (but capacity is probably up to 7kb pairs). Unlike retroviral transfer, this system may not integrate the inserted DNA. Further studies are needed to prove the Figure 1. Schematic summary of HVJ-liposome transfer method. safety, e.g., antigenicity, in human gene therapy, but in vascular biology research, this method seems to be one of most useful tools by high efficiency. #### Lipid-mediated gene transfer The liposomal method is safe and easy to handle. The cationic lipid-mediated method seems to be efficient of in vitro, but not in vivo, transfer of DNA. Although Lim et al. reported the successful transfection of DNA into intact coronary and peripheral arteries in vivo [13], the transfection efficiency was low and the incubation time needed was long. #### IN VIVO ANALYSIS OF RENIN-ANGIOTNESIN SYSTEM USING GENE TRANSFER TECHNIQUES #### Role of angiotensin in the cardiovascular remodeling Initial most important findings on the role of tissue RAS has been analyzed using transgenic technology. Transgenic rats harboring murine renin gene showed continuous hypertension and higher expression levels of tissue renin and angiotensin (Ang) II [14]. Transgenic/gene targeting technology provide us with many advantages such as (1) to study the specific gene function as systemic and developmental effects and (2) to test the specific gene function chronically, etc. [15]. Nevertheless, several disadvantages of this technology are that (1) it is time consuming and costly, (2) the effect of the overexpressed transgene is exerted throughout development, (3) it is difficult to target the transgenic expression to only local tissues, and (4) it is | Transgenic/gene targeting | In vivo gene transfer Local delivery autocrine/paracrine effects | | | | |-----------------------------------|---|--|--|--| | 1. Systemic delivery | | | | | | Hemodynamic effects | | | | | | Developmental effects | | | | | | 2. Chronic effects | Acute effects | | | | | 3. Limitation in animal species | No limitation rat, mouse, rabbit, porcine, human? | | | | | mainly mice, probably rat, rabbit | | | | | | (gene targeting—only mouse) | | | | | | 4. Low copy number of transgene | High copy number of transgene | | | | | 5. Time consuming | No time consuming | | | | | 6. Expensive | Cheap | | | | | 7. Permanent expression | Transient expression | | | | Table 1. Comparison of transgenic/gene targeting technology and in vivo gene transfer technology difficult to exclude the potential contribution of the systemic effect of transgene expression. If the targeted gene can cause lethal effects, it is impossible to test the specific functions by transgenic or gene targeting techniques (table 1). In those cases, gene transfer approach may be ideal. Thus, local gene transfer approach may be more effective for studying the role of autocrine/paracrine mediators. Receng data suggest that Ang II may be generated locally in many tissues. Components of the RAS have been shown to be present in the heart, blood vessel, adrenal, kidney, brain, and elsewhere [16-19]. Using the HVJ-liposome method, we initially analyzed the role of renin that was locally synthesized in liver. Direct transfection of human renin gene into hepatocytes in vivo resulted in transient hypertension associated with an increased plasma Ang II level [20]. Elevated blood pressure was reduced by specific human renin inhibitor and Ang II receptor antagonist. This study demonstrated that (1) transfected renin can be processed in local tissues and (2) local renin production is a rate-limiting step in the pathogenesis of hypertension. Given the importance of tissue RAS, we have focused upon the role of vascular RAS, especially ACE. Vascular renin-angiotensin is of particular interest to cardiovascular investigators since its existence may have important implications in the pathophysiology and pharmacology of diseases such as hypertension, atherosclerosis, restenosis after angioplasty, and congestive heart failure. Although renin enzymatic activity [21], angiotensin peptides [22], ACE activity [23] and angiotensin receptors [24] have been detected in blood vessels, debate still remains on the origin and the relative importance of the various components. Discrepancies between reports exist on renin mRNA expression in the vessel wall, the regional localization of angiotensinogen, and the presence of ACE in medial smooth muscle cells. Such discrepancies may reflect differences in animal strains, experimental design, and pathophysiological states. It has been also observed that after vascular injury, the neointimal smooth muscle cells express abundant angiotensinogen [25] and ACE [26]. These data suggest that: (1) the expression of vascular reninangiotensin is dependent on the pathophysiological milieu, (2) the smooth muscle cell has the capability of expressing the components of the RAS, given the appro- Figure 2. In vivo transfer of human ACE gene resulted in vascular hypertrophy independent of hypertension and circulating renin-angiotensin system. (Reprinted with permission of [1].) priate conditions, and (3) the expression of the RAS in smooth muscle cells may have functional significance. However, characterization of the role of vascular angiotensin in vivo is limited by the difficulty in manipulating individual components of the RAS as well as by the methodological limitations in studying the function of a local RAS in the absence of any contribution by the circulating RAS. In vivo gene transfer technology provides us with the opportunity to study the physiological responses to the in vivo manipulation of the individual components of the vascular RAS (i.e., by overexpression or inhibition) without changes in the circulating system. We tested our hypothesis by (1) transfecting ACE vector locally into intact rat carotid arteries in vivo and (2) studying the biochemical and physiological consequences of overexpression of ACE within vessel wall using in vivo gene transfer technique. Our data demonstrate that increased local expression of ACE within the vessel wall promotes autocrine/paracrine Ang II-mediated vascular hypertrophy in vivo (figure 2). Moreover, in vivo gene transfer technique is a very powerful tool to elucidate unknown function of angiotensin receptors. As functions of the Ang II type 2 AT₂ receptor were unclear, it was apparently increasingly important to dissect the novel functions of the AT₂ receptor. In vivo transfection of the AT₂ receptor gene into the balloon-injured carotid arteries resulted in a significant inhibition of neointimal formation after angioplasty [27]. These data demonstrated that the AT₂ receptor works antiproliferative actions on vascular smooth muscle cell (VSMC) growth. More recently, Yamada et al. reported that AT₂ receptor anticipates in the regula- Figure 3. Staining for β-galactosidase after in vivo transfection of HVJ-liposome complex containing β-galactosidase (10 μg/ml) by direct injection into rat heart (A, × 400; B, × 100). tion of VSMC growth through apoptosis using gene transfer approach [28]. Overall, in vivo gene transfer technology has the following advantages: (1) the target gene can be transfected into a local segment of a blood vessel, thereby avoiding a systemic effect, (2) this transfected vascular segment can be compared to adjacent untransfected segments or to the contralateral control blood vessel, which are subject to the same hemodynamics and circulating humoral factors, and (3) the consequences of local overexpression within the physiological/pathophysiological range of the target gene may be studied. More importantly, tissue ACE also plays an important role in the cardiac remodeling, as in vivo transfection of human ACE vector into the rat heart results in a significant increase in the size of cardiac myocytes, which results in cardiac hypertrophy. As shown in figure 3, HVI-liposome method is also useful for in vivo transfection into the heart [29-32]. There are few reports of successful gene transfer in the heart in vivo because it is very difficult to transfect efficiently into cardiac Figure 4. Luciferase activity in hearts
transfected with luciferase vector or control vector with HVJ-liposome method or injection of "naked" plasmid by direct injection. HVJ-liposome = hearts transfected with luciferase vector with HVJ-liposome method (10 ug/ml): Direct = hearts transfected with injection of "naked" luciferase vector (100 ug/ml); Control = hearts transfected with control vector with HVJ-liposome method (10 ug/ml); PBS = hearts transfected with vehicle (PBS). N.D. = not detected. $\star\star P < 0.01$ vs. other groups. myocytes in vivo as well as in vitro. Many researchers demonstrated in vivo gene transfer into the heart using direct injection of "naked" DNA [33-37]. However, this approach is relatively inefficient, resulting in gene transduction in less than 1% of the cells in the area of DNA injection [33-37]. Therefore, the application of this method is apparently far. To overcome these problems, some investigators have recently focused on the adenoviral gene transfer method [38-42]. The adenoviral vector seems to be very efficient when applied via direct injection or coronary infusion [38-40], but there are some theoretical disadvantages [1,2]. With all these concerns taken into consideration, the current methods have several theoretical disadvantages. In contrast, luciferase activity in hearts transfected by HVJ-liposome method was significantly higher than that in hearts transfected by direct "naked" plasmid transfection (figure 4) [32]. Moreover, incubation of HVJ-liposome complex containing β-galactosidase vector within the pericardium resulted in widespread staining of cardiac myocytes and fibroblasts, mainly located in several surface layers beneath the pericardium and in the middle of the myocardium around the vasa vasorum. Alternatively, direct infusion of HVJ complex containing β-galactosidase vector into coronary artery also resulted in widespread staining of β -galactosidase in cardiac myocytes around the microvasculature. The widespread transgene expression using the HVJ-liposome method suggests that this method may be useful in introducing plasmids into cardiac myocytes to study cardiac function as well as to treat cardiac diseases by gene therapy. #### Role of angiotensin in blood pressure regulation Angiotensinogen, which is mainly produced in the liver, is a unique component of the RAS because angiotensinogen is the only known substrate for Ang I generation. Recent findings of genetic studies suggest that the angiotensinogen gene is a possible determinant of hypertension [43,44]. To clarify the role of angiotensinogen in blood pressure regulation, we employed antisense strategy to block circulating angiotensinogen selectively. Antisense ODN are widely used as inhibitors of specific gene expression because they offer the exciting possibility of blocking the expression of a particular gene without changing functions of other genes [45]. Therefore, antisense ODN are useful tools in the study of gene function and may be potential therapeutic agents. However, antisense ODN have many unsolved problems such as their short half-life, low efficiency of uptake, and degradation by endocytosis and nucleases [45]. Recently we have developed an efficient gene transfer method mediated by viral liposome complex (HVI-liposome method) [8]. This delivery system also enhances the efficiency and prologns the half-life of antisense ODN in vitro and in vivo [11,12]. In this study, we reasoned that circulating angiotensinogen is a rate-limiting step in systemic blood pressure regulation. Indeed, in vivo transfection of antisense ODN against rat angiotensinogen into the portal vein resulted in a transient decrease in plasma angiotensinogen level and high blood pressure in spotraneously hypertensive rats (SHR). These data suggest that angiotensinogen is an important determinant in the regulation of blood pressure. Importance of circulating angiotensinogen in blood pressure regulation is also true in the normotensive rats, since administration of antisense angiotensinogen ODN into the normotensive Wistar rats also resulted in a significant transient decrease in blood pressure [46]. Given the importance of angiotensinogen regulation in the pathogenesis of hypertension, it is of importance how the aniotensinogen gene is regulated. The angiotensinogen gene has been suggested to be regulated by novel transcriptional factors such as angiotensinogen gene-activating factor (AGF) 1-3 in cultured human hepatocytes (HepG2 cells) in vitro [47]. However, the molecular mechanism(s) of angiotensinogen regulation in vivo has not yet been clarified. In this study, we examined how hepatic angiotensinogen gene expression is regulated in vivo. To determine the critical transcriptional regulator of hepatic angiotensinogen production in vivo, we utilized synthetic double-stranded ODN as "decoy" cis-elements to block the binding of nuclear factors to promoter regions of the targeted gene, resulting in the inhibition of gene transactivation [48-51]. Using this strategy, we examined whether the angiotensinogen-gene-activating elements (AGE) 2 and 3 in the promoter region of the angiotensinogen gene have a pivotal role in the regulation of circulating angiotensinogen production in vivo. A classical approach to define the role of transcriptional factors in the regulation of genes is to use promoter-reporter gene transfection experiments such as chloramacetyltransferase (CAT) and luciferase constructs. This approach is very useful to identify cis- and trans- acting element interactions, but it has some disadvantages as follows: (1) it is costly and time consuming to make a series of constructs, (2) it cannot analyze endogenous gene regulation, and (3) it is hard to determine the specific elements. Figure 5. Systolic blood pressure of SHR (20 weeks old) injected with either AGE 2 decoy or mismatched decoy ODN by HVJ-liposome method. *p < 0.01 versus SHR treated with mismatched ODN. AGE 2 = SHR transfected with AGE 2 decoy ODN; MIS-AGE 2 = SHR transfected with mismatched AGE 2 decoy ODN. (Reprinted with permission from [3].) In contrast, the decoy approach has many advantages: (1) decoys are easily synthesized, (2) endogenous gene regulation and pathophysiological roles can be studied, and (3) the specific cis-elements can be determined, even if the specific regulatory cis-elements have not yet been clarified. Our previous results demonstrated that AGE 2, but not AGE 3, plays an important role in the regulation of hepatic angiotensinogen gene expression in the liver because transfection of AGE 2, but not AGE 3, decoy ODN decreased high blood pressure of SHR (figure 5) [3]. More importantly, AGE 2, rather than AGE 3, also plays a pivotal role in the regulation of angiotensinogen, thereby regulating blood pressure even in the central nervous system, as intracerebral administration of AGE 2 decoy ODN also resulted in a significant decrease in blood pressure in SHR [52]. Overall, we revealed the utility of gene transfer and decoy technology for hypertension research, especially to evaluate the specific functions of transcriptional factors of target gene regulation. #### FUTURE DIRECTION OF HYPERTENSION RESEARCH As discussed above, in vivo gene transfer and transgenic/gene targeting techniques provide us the opportunity to test the in vitro hypothesis related to hypertension. Interestingly, recent progress in genetics have focused on the RAS in the pathogenesis of hypertension. Now ACE and/or angiotensinogen are candidates for hypertension because their genotypes are closely correlated with phenotypes. However, it is very difficult to prove the hypothesis in genetics. Probably in vivo gene transfer may address the questions in genetics. #### REFERENCES - 1. Morishita R, Gibbons GH, Ellison KE, Lee W, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1994. Evidence for direct local effect of angiotensin in vascular hypertrophy: in vivo gene transfer of angiotensin converting enzyme. J Clin Invest 94:978-984. - 2. Tomita N, Morishita R, Higaki J, Aoki M, Nakamura Y, Mikami H, Fukamizu A, Murakami K, Kaneda Y, Ogihara T. 1995. Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 26:131-136. - 3. Morishita R, Higaki J, Tomita N, Aoki M, Moriguchi A, Tamura K, Murakami K, Kaneda Y, Ogihara T. 1996. Role of transcriptional cis-elements, angiotensinogen gene-activating element, of angiotensinogen gene in blood pressure regulation. Hypertension 27:502-507. - 4. Morishita R, Higaki J, Aoki M, Hayashi S, Kida I, Kaneda Y, Ogihara T. 1996. Novel strategy of gene therapy in cardiovascular disease with HVJ-liposome method. In Progression of chronic renal diseases, Ed. H Koide Contrib Nephrol 118:254-264. - 5. Morishita R, Gibbons GH, Dzau VJ. 1993. Gene therapy as potential treatment for cardiovascular diseases. In Cardiovascular pharmacology And therapeutics. Ed. Singh BN, 51-61. New York: Libingstone Publisher. - 6. Cepko CL, Roberts BE, Mulligan RC. 1994. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37:1053. - 7. Kaneda Y, Morishita R, Tomita N. 1995. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. J Mol Med 73:289-297. - 8. Yonemitsu Y, Kaneda Y, Morishita R, Nakagawa K, Nakashima Y, Sueishi K. 1996. Characterization of in vivo gene transfer into the arterial wall mediated by the Sendai virus (Hemagglutinating Virus of Japan) liposomes: An effective tool for the in vivo study of arterial diseases. Lab Invest 75:313-323. - 9. Dzau VI, Mann MI, Morishita R, Kaneda Y. 1996. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci USA 93:11421-11425. - 10. Kaneda Y, Iwai K, Uchida T. 1989. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243:375-378. - 11. Morishita R, Gibbons GH, Ellison KE, Nakajima M, Leyen HVL, Zhang L, Kaneda Y, Ogihara T, Dzau
VJ. 1994. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. Journal of Clinical Investigation 93:1458-1464. - 12. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. 1994. Pharmacokinetics of antisense oligonucleotides (cyclin B1 and cdc 2 kinase) in the vessel wall: Enhanced therapeutic utility for restenosis by HVJ-liposome method. Gene 149:13-19. - 13. Lim CS, Chapman GD, Gammon RS, Muhlestein JB, Bauman RP, Stack RS, Swain JL. 1991. Direct in vivo gene transfer into the coronary and peripheral vascultures of the intact dog. Circulation 83:2007-2011. - 14. Mullins II, Peters I, Ganten D. 1990. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature 344:541-544. - 15. Dzau VJ, Gibbons GH, Morishita R, Pratt E. 1994. New perspectives in hypertension research: potentials of vascular biology. Hypertension 23:1132-1140. - 16. Dzau VJ, Brody T, Ellison KE, Pratt RE, Ingelfinger JR. 1987. Tissue-specific regulation of renin expression in the mouse. Hypertension 9:36-41. - 17. Field LJ, McGowan RA, Dickinson DP, Gross KW. 1984. Tissue and gene specificity of mouse renin expression. Hypertension 6:597-603. - 18. Dzau VJ, Burt DW, Pratt RE. 1988. Molecular biology of the renin angiotensin system. Am J Physiol 255:F563-F573. - 19. Samani NJ, Swales JD, Brammar WJ. 1989. A widespread abnormality of renin gene expression in the spontaneously hypertensive rat: Modulation in some tissues with the development of hypertension. Clin Sci 77:629-636. - 20. Tomita N, Higaki J, Kaneda Y, Yu H, Morishita R, Mikami H, Ogihara T. 1993. Hypertensive rats produced by in vivo introduction of the human renin gene. Circulation Research 73:898–905. - 21. Re RN, Fallon JT, Dzau VJ, Quay S, Haber E. 1982. Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30:99-106. - 22. Morishita R, Higaki J, Miyazaki M, Ogihara T. 1992. Possible role of the vascular renin angiotensin system in hypertension and vascular hypertrophy. Hypertension 19:II-62-II-67. - 23. Okamura T, Miyazaki M, Inagami T, Toda N. 1986. Vascular renin angiotensin system in twokidney, one clip hypertensive rats. Hypertension 8:560-565. - 24. Mendelsohn FAO. 1985. Localization and properties of angiotensin receptors. J Hypertens 3:307-316. - 25. Rakugi H, Jacob HJ, Krieger JE, Ingelfinger JR, Pratt RE. 1993. Vascular injury induces angiotensinogen gene expression in the media and neointima. Circulation 87:283-290. - 26. Rakugi H, Kim DK, Krieger JE, Wang DS, Dzau VI, Pratt RE. 1994. Induction of angiotensin converting enzyme in the neointima after vascular injury: possible role in restenosis. J Clin Invest 93:339-346. - 27. Nakajima M, Hutchinson H, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The AT2 receptor antagonizes the growth effects of the AT1 receptor: Gain of function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 28. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 29. Sawa Y, Suzuki K, Bai HZ, Shirakura R, Morishita R, Kaneda Y, Matsuda H. 1995. Efficiency of in vivo gene transfection into transplanted rat heart by coronary infusion of HVJ-liposome. Circulation 92:II-479-II-482. - 30. Aoki M, Morishita R, Higaki J, Moriguchi A, Hayashi S, Matsushita H, Kida I, Tomita N, Sawa Y, Kaneda Y, Ogihara T. 1997. Survival of grafts of genetically modified cardiac myocytes transfected with FITC-labeled oligodeoxynucleotides and β-galactosidase gene in non-infarcted area, but not myocardial infarcted area. Gene Therapy 4:120-127. - 31. Aoki M, Morishita R, Higaki I, Moriguchi A, Kida I, Hayashi S, Matsushita H, Kaneda Y, Ogihara T. 1997. In vivo transfer efficiency of antisense oligonucleotides into the myocardium using HVJliposome method. Biochemical Biophysics Research Communication 231:540-545. - 32. Aoki M, Morishita R, Muraishi A, Moriguchi A, Sugimoto T, Maeda K, Dzau VJ, Kaneda Y, Higaki J, Ogihara T. 1997. Efficient in vivo gene transfer into heart in rat myocardial infarction model using HVJ (Hemagglutinating Virus of Japan)-liposome method. J Mol Cell Cardiol 29:949- - 33. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. 1990. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 82:2217-2221. - 34. Buttric PM, Kass A, Kitsis RN, Kaplan MR, Lainwand LA. 1992. Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193-198. - 35. Harsdorf RV, Schott RJ, Shen Y-T, Vatner SF, Mahdavi V, Ginard BN. 1993. Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 72:688-695. - 36. Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM. 1993. Direct myocardial transfection in two animal models evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 68:18-25. - 37. Schneider MD, French BA. 1993. The advent of adenovirus gene therapy for cardiovascular disease. Circulation 88:1937-1942. - 38. Kirshenbaum LA, MacLellan WR, Mazur W, French BA, Schneider MD. 1993. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest 92:381- - 39. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finke T. 1993. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73:1202-1207. - French BA, Mazur W, Geske RS, Bolli R. 1994. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414-2424. - 41. Barr E, Carroll JC, Kalynych AM, Tripathy SK, Kozarski K, Wilson JM, Leiden JM. 1994. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy - 42. Xu H, Miller J, Liang BT. 1992. High-efficiency gene transfer into cardiac myocytes. Nucleic Acids Res 20:6425-6426. - 43. Jeunematire X, Soubrier F, Kotelevetsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P. 1992. Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169-180. - 44. Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark A. 1994. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 330:1629-1633. - 45. Akhtar S, Juliano RL. 1992. Cellular uptake and intracellular fate of antisense oligonucleotides. - Trends in Cell Biol 2:139–144. 46. Tomita N, Morishita R, Higaki J, Tomita S, Aoki M, Kaneda Y, Ogihara T. 1995. Role of angiotensinogen in blood pressure regulation in normotensive rats: Application of a "loss of function" approach. J Hypertens 13:1767–1774. - Tamura K, Umehara S, Ishii M, Tanimoto K, Murakami K, Fukamizu A. 1994. Molecular mechanism of transcriptional activation of angiotensinogen gene by proximal promoter. J Clin Invest 93:1370-1379. - 48. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1995. A novel molecular strategy using cis element "decoy" of E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci 92:5855–5859. - 49. Yamada T, Horiuchi M, Morishita R, Zhang L, Pratt RE, Dzau VJ. 1995. In vivo identification of a negative regulatory element in the mouse renin gene using direct gene transfer. J Clin Invest 96:1230–1237. - Bielinska A, Shivdasani RA, Zhang L, Nabel GJ. 1990. Regulation of gene expression with doublestranded phosphorothioate oligonucleotides. Science 250:997–1000. - 51. Sullenger BA, Gallardo HF, Ungers GE, Giboa E. 1990. Overexpression of TAR sequence renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608. - Yamada K, Moriguchi A, Morishita R, Kaneda Y, Mikami H, Higaki J, Ogihara T. 1996. Importance of transcriptional cis-element of angiotensinogen in the central regulation of blood pressure (abstract). Hypertension 28:521. # EXPLORING THE DIFFERENCE BETWEEN ANGIOTENSIN CONVERTING ENZYME INHIBITORS AND ANGIOTENSIN II-RECEPTOR ANTAGONISTS. A FOCUS ON BRADYKININ COLIN C. BARNES Department of Medicine, McMaster University, Hamilton, Ontario, Canada **Summary.** Nineteen ninety-six certainly was the year of bradykinin regarding its assault on the minds of clinicians interested in cardiovascular disease. This assault was further amplified by the introduction, in Canada, of the first angiotensin receptor antagonist, an agent that appeared to be devoid of activities involving bradykinin. Intriguingly, this assault was also fueled by some pharmaceutical companies who had ACE inhibitors, but no angiotensin receptor antagonists. The suggestion was that bradykinin was good, not bad. The closer one gets to the field of vascular regulation, the more complicated the situation becomes. There are now many defined vasoactive substances, but even with the use of the probes and scientific methods of today, a comprehensive understanding will not likely emerge. The bottom line will quite likely depend upon well-conducted, randomized clinically controlled studies that would compare agents with a bradykinin effect, namely, ACE inhibitors, with those without a bradykinin effect. Thus far, the trials have shown great similarity between the agents in the field of hypertension and those of cardiac failure. In late 1995, the first angiotensin (Ang) II receptor antagonist, losartan potassium, was released for clinical use in Canada. Angiotensin-converting enzyme (ACE) inhibitors, on the other hand, have been widely used for about 15 years. They have been used extensively in hypertension because they are generally effective and well tolerated. In addition, they have been the subject of much interest because of several large randomized control trials that have shown enormous clinical benefit in a variety of conditions. The various conditions treated with ACE inhibitors in the following trials include congestive
cardiac failure studied in the CONSENSUS [1] and SOLVD trials [2], myocardial infarction investigated in the SAVE study [3] and the AIRE study [4], and mediators of renal protection investigated in the Captopril Type I Diabetic nephropathy study [5]. To clinicians, the burning question was, Would angiotensin receptor antagonists be the same as, better than, or worse than, ACE inhibitors, and in what circumstances? At its release, losartan potassium was labelled as an agent for the treatment of hypertension only, and it still is. In prerelease clinical studies that included some 3000 patients, determinations of efficacy and safety in blood pressure reduction were undertaken. There were no studies of long-term cardiovascular benefit. Notwithstanding this, one study suggested that losartan reduced blood pressure and worked as well as the ACE inhibitor enalapril [6], the Beta blocker atenolol [7], and the dihydropyridine calcium channel blocker felodipine ER [8]. It is usually taken once daily with acceptable trough to peak characteristics. Studies had shown it to be remarkably well tolerated with only dizziness having an incidence greater than that of placebo in the aforementioned comparative studies. In addition, it seemed devoid of the problematic cough. Losartan had an incidence of cough comparable to placebo in comparative studies and similar to hydrochlorothiazide in the losartan versus lisinopril cough study [9]. Preliminary studies done in congestive cardiac failure looked promising with effects of losartan again similar to ACE inhibitors [10,11]. Long-term rat experiments showed good long-term renal protection when looking at the end point of glomerular sclerosis [12]. Adding to the interest of exploring the differential properties of ACE inhibitors and Ang II receptor antagonists, alternate mechanisms of Ang II production were observed, particularly in the heart. The enzyme chymase of the human heart was reported to catalyze the conversion of Ang I to Ang II bypassing ACE [13,14]. In humans and dogs, substantial amounts of Ang II are generated in the myocardium by non-ACE enzymes, namely, human heart chymase. However, all of its production in the rat seemed to depend upon the ACE system. Another role of ACE, in which it was called kininase II, is its degradation of bradykinin and des-Arg⁹ bradykinin into inactive fragments. Blocking this enzyme with an ACE inhibitor may well increase the systemic or local concentrations of bradykinin, a substance which is a vasodilator, and may therefore augment some of the cardiovascular properties of the ACE inhibitor. The pivotal question then became, Might ACE inhibitors have additional cardiovascular effects apart from their effect on Ang II, which stem from increased concentrations of bradykinin and other vasodilators. Alternatively, does blockade of the AT₁ receptor by substances like losartan provide more complete protection from Ang II, a substance which many claim to be a cardiovascular villain? Clearly as clinicians attempt to answer this question, the considerable literature now available in the bradykinin field will be reviewed in greater detail. Nineteen ninety-six saw an increase in the interest in bradykinin. The increased interest was fuelled by both a better scientific understanding of the substance and the availability of stable blockers of bradykinin receptors. Also some major pharmaceu- tical companies that did not have Ang II receptor antagonists, but did have ACE inhibitors, were attempting to expose the potentially beneficial properties of bradykinin as an extension of their marketing philosophy. Simply, bradykinin is a very potent nona-peptide, present in the blood in subnanomolar concentrations. It has a very short half-life of approximately 30 seconds. It is produced locally, and perhaps only local production has any physiological relevance. It has been extremely difficult to measure until recently. The blood levels accepted today are a hundredfold lower than those that were thought to be relevant just a few years ago. Its injection into the skin causes the classic features of inflammation, namely, redness, pain, swelling, and warmth. Its action is to produce an endothelium-dependent vasodilatation and small vessel leakage. Additionally, it releases nitric oxide and PGI₂ [15], both vasoactive substances. Figure 1 illustrates that bradykinin is produced by the cleavage of kininogen by kallikreins. It also shows the two receptors that have been characterized, as well as degradation pathways. The B2 receptor is probably the receptor of the cardiovascular system, is probably preformed in many tissues, and is responsible for vasodilation. A specific stable peptide antagonist Hoe 140 (icatibant) has been available for a number of years [16]. Hoe 140 has been used quite widely in cardiovascular experiments in animals and in some human studies. The B1 receptor is probably the receptor of inflammation. It is probably not preformed, but is rapidly expressed following injury. The B1 receptor can be demonstrated in the cardiovascular system, but only in heavily instrumented animals; therefore, its physiological significance must remain unclear for the present time. Both of these receptors are G proteincoupled surface receptors, with a variety of agonists and antagonists available for both types of receptors. A logical question would be, Is there a role for bradykinin in cardiovascular regulation? Normal human volunteers given Hoe 140 had only a trivial rise of systemic blood pressure [17]. However, when Hoe 140 was infused into the coronary circulation of 15 subjects without significant stenosis, a significant reduction of coronary flow resulted [18]. These individuals were heavily instrumented upstream in the circulation; therefore, one cannot necessarily deduce that bradykinin is being continuously produced. Further, since this effect is dependent upon an intact endothelium, it may well be limited by the presence of atherosclerosis [19]. This type of dependance has been described in other coronary artery studies, such as the TREND study [20]. Clearly bradykinin is a vasodilator, but is this property of therapeutic importance involved in hypertension? Ferner et al. demonstrated that when enalapril was given orally, the intensity of the skin reaction that occurs following the skin injection of bradykinin is augmented [21]. This interestingly did not occur with captopril or with placebo. Further, captopril potentiated the hypotensive effect of intravenous bradykinin [22]. However, in most studies, there is no change of venous bradykinin or des-Arg9 bradykinin following the oral administration of ACE inhibitors. We have previously said that probably only local production of bradykinin and its local action are important. Since tissue bradykinin is impossible to measure, many important questions in this area are far from being answered. If an important change of the bradykinin environment following ACE inhibition is hypothesized, one might expect to see a differential effect between ACE inhibitors and Ang II receptor antagonists. In most clinical situations, this is not the case, where there appears to be equivalence of effect [6-8,11]. The addition of an ACE inhibitor to an Ang II receptor antagonist only has additive hypotensive effect when the volume status of the subject is manipulated with a potent diuretic. However, in the salt depleted dog, the fall of blood pressure in response to enalaprilat was not modified by the intravenous injection of the B2 receptor antagonist B5630 [23]. The rat experiments in this area are also confusing. Studies in a wistar rat model of renal artery stenosis, with two kidneys and one clip, reveal about a 30% blunting of the hypotensive effect of the ACE inhibitor by the B2 receptor antagonist Hoe 140 [24]. However, Hoe 140 had no effect upon the hypotensive effect of an ACE inhibitor in the spontaneously hypertensive Brown Norway rat [25,26]. If the evidence does not strongly support that bradykinin is important in human hypertension and that its manipulation likely offers no clinical advantage, is there any suggestion that it may have important therapeutic effects in other vascular conditions, such as heart failure, post MI, reversing or preventing left ventricular hypertrophy, the neointimal hyperplastic response to injury, as well as in states of progressive renal disease, such as diabetic nephropathy? In congestive cardiac failure, the long-term effects of losartan and similar agents are unknown. Crozier and colleagues saw hemodynamic and symptomatic improvement in a placebo-controlled, multidose double-blind study over 12 weeks [10]. Dickstein and coworkers, in a 8-week study, randomly assigned patients to losartan or enalapril and concluded that they were of comparable efficacy [11]. The hemodynamic and antiproteinuric effects of losartan were compared to those of enalapril in 11 nondiabetic, proteinuric patients [27]. Two-dose levels of each agents were used, each level for 4 weeks. The agents were found to be of comparable efficacy. Proteinuria, however, is a surrogate endpoint of a process which often ends in glomerular obsolescence. While the long-term human studies with losartan are not available, long-term rat studies have suggested efficacy in retarding the development of glomerular sclerosis [12]. The need to demonstrate equivalence or the lack thereof in a number of these pathological states has been driven by scientific curiosity. It has proceeded because of a better understanding of bradykinin and its receptors and the availability of specific blockers. There have been extensive animal studies using a variety of agonists and antagonists in a number of fields. Three areas will be discussed: (1) studies in the prevention of myocardial hypertrophy in response to a coarctation model of hypertension, (2) studies in limiting infarct size following the interruption of coronary blood flow and subsequent
reperfusion, and (3) studies in the neointimal hyperplastic response to balloon-induced endothelial injury. Linz et al. [28] studied the progression of left ventricular hypertrophy induced by aortic banding in the Sprague-Dawley rat. Control animals were compared to animals treated with ramipril or losartan. In this study, ramipril at low doses prevented the development of cardiac hypertrophy, whereas losartan did not. In addition, ramipril at an antihypertensive dose and losartan at an antihypertensive dose produced significant regression of the cardiac hypertrophy induced in this experiment. Linz et al. used this same model to study the effects of nonantihypertensive and antihypertensive doses of ramipril, alone and with a specific B2 receptor antagonist, Hoe 140 [29]. They suggested that ramipril at both dosage levels prevented the development of left ventricular hypertrophy and that Hoe 140 abolished this effect. Rhaleb et al., using the same animal model with both antihypertensive and nonantihypertensive doses of ramipril, showed that there was a modest but statistically insignificant antihypertrophic effect by ramipril at a low dose [30]. This became significant at the antihypertensive dose, but Hoe 140 did not block this phenomenon. Different groups, therefore, produced diametrically opposed results. In fact, Rhaleb et al. concluded that a decrease of Ang II and a fall of blood pressure might well explain the results that they had seen. Several studies have looked at the areas of intimal lesions and the vessel wall response to injury induced by balloon catheterization of the carotid artery of the rat. deBlois et al. [31] looked at the effect of ramipril, both with and without Hoe 140, in Sprague-Dawley rats. In this study, ramipril significantly inhibited the intimal lesion formation, and Hoe 140 completely prevented the inhibitory effect of ramipril. Hoe 140, when given alone, caused a modest though insignificant increase in the size of the lesions. Kauffman et al. [32] looked at the effect of high- and lowdose losartan on intimal lesions. Both dosing levels of losartan produced a significant (50%) reduction of blood pressure. The low dose produced an insignificant (23%) reduction in cross-sectional area, and the higher dose produced a significant (48%) reduction of the intimal lesions. There was, however, no relationship between the effect on intimal lesions and the amount of blood pressure lowering. Prescott et al. [33] compared benazeprilat with losartan. They looked at both the areas of intimal response and smooth muscle cell migration. An intermediate dose of losartan (10 mg/kg/day) reduced both smooth muscle cell proliferation and migration in response to balloon injury, whereas the ACE inhibitor only inhibited smooth muscle cell migration. Using the same model, Farhy et al. [34] looked at (1) two ACE inhibitors, namely, ramipril and enalapril, (2) these ACE inhibitors combined with Hoe 140, and (3) losartan. These studies also included the nitric oxide synthase inhibitor L-NAME. They concluded that both ramipril and losartan significantly reduced neo-intimal formation, but the ramipril had a more marked effect than losartan. Hoe 140 reduced this effect by 75% in the case of ramipril and by 62% in the case of enalapril. The residual effect was similar to that of losartan. Further, L-NAME also blocked the inhibitory effect of ramipril, which suggests not only a contribution from ACE inhibitors due to Ang II production and kinin degradation, but also a role for nitric oxide. In this series of studies, when using antihypertensive doses, ACE inhibitors inhibit the intimal thickening following balloon-induced injury. A similar effect is seen with losartan, but at higher dosages. The effect of losartan is dose-dependent, and higher doses are required to cause an effect comparable to those of ACE inhibitors. In addition, the inhibitory effect of Hoe 140 is also dose dependent, and there is a small and insignificant growth promoting effect of Hoe 140 when used alone. This phenomenon has quite marked clinical relevance in the field of post-angioplasty endothelial injury and restenosis. A recent study, the MERCATOR study [35], showed that the ACE inhibitor cilazapril could not prevent restenosis and had no impact upon the clinical outcome. These studies have had a narrow focus, and none have been able to probe the possible contribution of changes in the tissue concentrations of Ang II or any possibly inhibitory and growth-modulating effect that the AT2 receptor might have on this important area. There has been interesting work regarding the role of AT2 in growth modulation and in the response to injury [36]. The AT₂ receptor is very floridly expressed during fetal life and is rapidly downregulated after birth. It is, however, up regulated following vascular and other injuries. In studies of vascular endothelial receptor expression, both AT₁ and AT₂ receptors are more avidly expressed following injury, and losartan often reduces the growth response, whereas the specific AT₂ receptor blocker PD 123319 promotes it. Turning to the question, Do ACE inhibitors limit myocardial infarct size? reveals that there have been a number of studies, but unfortunately the experimental technique has varied from study to study. Miki et al. [37] looked at infarct size following 30 minutes of occlusion and 72 hours of reperfusion in rabbits. They compared captopril, ramiprilat, and Hoe 140 and found that neither ACE inhibitors nor the B2 receptor antagonist had any major effect in this area. Using both rabbits and a 30 minute occlusion again, but 120 hours of reperfusion, Hartman et al. [38] looked at ramipril, ramipril with Ang II, Ang II alone, and losartan. In this model, neither Ang II stimulation or receptor antagonism altered the degree of myocardial necrosis, whereas ramiprilat protected against ischemia and reperfusion-related myocardial damage. Looking at the effect of intra coronary injections of bradykinin, ramipril, and Hoe 140 in mongrel dogs, Martorana et al. [39] showed that bradykinin had a cardioprotective effect similar to ramiprilat, but ramiprilat, when given with Hoe 140, had no effect. Richard et al. [40], using dogs with 90 minutes of occlusion and 4 hours of reperfusion, compared enalaprilat with EXP 3174. Both were administered intravenously. Neither the active metabolite of enalapril (enalaprilat) nor that of losartan (EXP 3174) were shown to have any effect upon infarct size. The rabbit studies are contradictory, where Miki et al. and Hartmann et al. reached dissimilar conclusions. Similarly, the dog experiments are contradictory, whereby Martorana et al. observed a significant effect of the ACE inhibitor and exogenous bradykinin, whereas Richard et al. failed to demonstrate any effect of the ACE inhibitor on infarct size. Clearly this is a very confusing field and currently provides no clinically applicable wisdom. Most clinicians first became interested in bradykinin because of the "captopril cough". Approximately 10% of all patients exposed to an ACE inhibitor experience a dry and irritating cough. Similarly, bradykinin has been cited as the cause of the angioedema, observed much less commonly than the cough, but potentially lifethreatening. In this sense, the role of bradykinin seems to make sense and be somewhat intuitive since bradykinin causes a profound vasodilatation and blood vessel leakage but, of course, there is no direct evidence that this is the case. In the area of the cough, there is some more powerful evidence. Bradykinin is known to be a powerful irritant of the airways. NPC 567, a BK receptor antagonist, has been effective in protecting against the bronchospasm induced in sheep with allergic asthma [41]. Three hundred patients with moderately severe asthma were studied in a multicenter, double-blind, randomized, placebo-controlled trial which showed that after four weeks, nebulized Hoe 140 led to a dose-dependant improvement of the pulmonary function test [42]. However, patients given 10 mg of ramipril did not have an exaggerated response to aerosolized bradykinin or histamine [43]. Both inhaled citric acid and capsaicin are standard tussigenic stimuli. Male guinea pigs were placed in a plexiglass box and exposed to aerosols before and after two weeks of captopril in the drinking water [44]. Coughs were counted by trained observers. Captopril increased this response, and it was blocked by Hoe 140. Clearly there is a huge amount of work to be done further in this area. There is a need to dissect the roles of Ang II as it relates to both the AT₁ and AT₂ receptors. We must further define the roles of the bradykinin B2 and B1 receptor using currently available and future receptor blockers, as well as be able to ascribe vascular responses to prostanoids and nitric oxide separately from those resulting from Ang II and bradykinin. Clearly bradykinin is capable of changing vascular tone, but its role in regulation is unknown. It appears that ACE inhibitors effect the degradation of bradykinin and might possibly augment its vasodilatory effect. Further, bradykinin might be responsible for some of the adverse effects of ACE inhibitors. In the major clinical areas of hypertension, there appears to be no difference between the available angiotensin receptor antagonist and ACE inhibitors at the present time. Similarly, in the initial heart failure and renal protective endeavours, equivalence of effect is nearly always found. The animal work looking at left ventricular hypertrophy and endothelial responses to injury, as well as infarct size, however, reveals a possible contribution of bradykinin towards the salutary responses of these agents to ACE inhibitors, but this is often quite confusing. The enormous amount of interest in this field is exciting, and potentially a lot rides on it as far as patient care and the pharmaceutical industry are concerned. #### REFERENCES - 1. The CONSENSUS
Trial Study Group. 1987. Effect of enalapril on mortality and severe congestive heart failure: Results of the Cooperative North Scandadavian Enalapril Survival Study. N Engl J Med 316:1429-1435. - 2. The SOLVD Investigators. 1992. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685-691. - 3. Pfeffer MA, Braunwald E, Moye LA, Basty L, Brown EJ Jr., Cuddy TE, Davis BR, Geltman EM, Edward M, Goldman S, Flaker GC, Klein M, Lamas GA, Packerd M, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE investigators. 1992. The effect of Captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669-677. - 4. The acute infarct Ramapril efficacy (AIRE) study investigators. 1993. Effect of Ramapril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 342:281-288. - 5. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. 1993. The effect of angiotensin converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456-1462. - 6. Nelson E, Arcuri K, Ikeda L, Snavely D, Sweet C. 1992. Merck Sharp and Dohme Laboratories (MSDRL) for the MSDRL and DuPont Merck Investigators. Efficacy and safety of losartan in patients with essential hypertension (abstract). Am J Hypertens 5:19A. - 7. Dahlöf B and Nelson E for the Losartan-Atenolol Study Group. 1994. Losartan potassium versus atenolol: A comparison of efficacy, tolerability and effect on left ventricular morphology (abstract). J Hyperten 12(Suppl 3):1963. - 8. Chan JC, Critchley JA, Lappe JT, Raskin SJ, Snavely D, Goldberg AI, Sweet CS. 1995. Randomized double blind parallel study of the antihypertensive efficacy and safety of losartan potassium compared with felodipine ER in elderly patients with mild to moderate hypertension. J Human Hypertens 9:765-771. - 9. Lacourciére Y, Brunner H, Irwin R, Karlberg BE, Ramsay LE, Snavely DB, Dobbins TW, Faison EP, Nelson EB. 1994. Effects of modulators of renin-angiotensin-aldosterone system on cough— Losartan cough study group. J Hypertens 12:1387-1393. - 10. Crozier I, Ikram H, Awan N, Cleland J, Stephen N, Dickstein K, Frey M, Young J, Klinger G, Makris L, Rucinska E, for the Losartan Hemodynamic Study Group. 1996. Losartan in heart failure. Hemodynamic effects and tolerability. Losartan Hemodynamic Study Group. Circulation 91(III):691-697. - 11. Dickstein K, Chang P, Willenheimer R, Haunsø S, Remes J, Hall C, Kjekshus J. 1995. Comparison of the effects of losartan and enalapril on clinical status and exercise performance in patients with moderate or severe chronic heart failure. J Am Coll Cardiol 26:438-445. - 12. Remuzzi A, Perico N, Amuchastegui C, Malanchini B, Mazerska M, Battaglia C, Bertani T, Remuzzi G. 1993. Short and long term effects of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol 4:40-49. - 13. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. 1990. Angiotensin II forming pathways in normal and failing human hearts. Circ Res 66:883-890. - 14. Bumpus FM. 1991. Angiotensin I and angiotensin II—Some observations made at the Cleveland Clinic Foundation and recent discoveries relative to angiotensin II in human heart. Hypertension 18(Suppl III):121-122. - 15. Ignarro LJ, Byrns RE, Buga GM, Wood KS. 1987. Mechanisms of endothelium-dependent vascular smooth muscle relaxation elicited by bradykinin and VIP. Am J Physiol 253:H1074-H1082. - 16. Hock FJ, Wirth W, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, Konig W, Knolle J, Scholkens, BA. 1991. HOE-140 a new potent and long acting bradykinin-antagonist: in vitro studies. Br J Pharmacol 102:769-773. - 17. Scholkens BA. 1996. Kinins in the cardiovascular system. Immunopharmacology 33:209-216. - 18. Groves P, Kurz H, Just H, Drexler H. 1995. Role of endogenous bradykinin in human coronary vasomotor control. Circulation 92:3424-3430. - 19. Kuga T, Egashira K, Mohri M, Tsutsui H, Harasawa Y, Urabe Y, Ando S, Shimokawa H, Takeshita A. 1995. Bradykinin induced vasodilation is impaired at the atherosclerotic site, but is preserved at the spastic site of coronary arteries in vivo. Circulation 92:138-189. - 20. Mancini GB, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B. 1996. Angioteninconverting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversting Endothelial Dysfunction) study. Circulation 94:258-265. - 21. Ferner RE, Simpson JM, Rawlins MD. 1987. Effects of intradermal bradykinin after inhibition of angiotensin converting enzyme. Br Med J 294:1119-1120. - 22. Kiowski W, van Brummelen P, Hulthen L, Amann FW, Buhler FR. 1982. Antihypertensive and renal effects of captopril in relation to renin activity and bradykinin-induced vasodilatation. Clin Pharmacol Ther 31:677-684. - 23. Zimmerman BG, Raich PC, Vavrek RJ, Stewart JM. 1990. Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in conscious sodium-restricted dog. Circ Res 66:234-240. - 24. Bao G, Gohlke P, Quadri F, Unger T. 1992. Chronic kinin receptor blockade attenuates the antihypertensive effects of Ramapril. Hypertension 20:74-79. - 25. Boa G, Gohlke P, Unger T. 1992. Kinin contribution to chronic antihypertensive actions of ACE inhibitors in hypertensive rats. Agents Actions 38(Suppl II):423-430. - 26. Cachofeiro V, Maeso R, Rodrigo E, Navarro J, Ruilope LM, Lahera V. 1995. Nitric oxide and prostaglandins in the prolonged effects of losartan and ramapril in hypertension. Hypertension 26:236-243. - 27. Gansevoort RT, DeZeeuw D, de Jong PE. 1994. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin angiotensin system? Kidney Int 45:861-867. - 28. Linz W, Henning R, Schölkens BA. 1991. Role of angiotensin II receptor antagnism and converting enzyme inhibition in the progression and regression of cardiac hypertrophy in rats. J Hypertens 9(Suppl 6):S400-S401. - 29. Linz W, Scholkens BA. 1992. A specific B2 bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of Ramapril. Br J Pharm 105:771-772. - 30. Rhalib NE, Yang XP, Scicli AJ, Carretero OA. 1994. Role of kinins and nitric oxide in the antihypertrophic effect of Ramapril. Part II. Hypertension 23:865-867. - 31. deBlois D, Lombardi DM, Garvin MA, Schwartz SM. 1992. Inhibition by Ramapril of intimal hyperplasia in the denuded rat carotid is reversed by HOE 140, a kinin B2 receptor antagonist. Circulation 86(Suppl I):I-226. - 32. Kaufman RF, Bean JS, Zimmermann KM, Brown RF, Steinberg MI. 1991. Losartan, a non-peptide angiotensin II (ANG II) receptor antagonist, inhibits neointimal formation following balloon injury to rat carotid arteries. Life Sciences 49:PL223-PL228. - 33. Prescott MF, Webb RL, Reidy MA. 1991. Angiotensin converting enzyme inhibitor versus angiotensin II (AT₁) receptor antagonist. Am J Pathol 139:1291-1296. - 34. Farhy RD, Carretero OA, Ho KL, Scicli AG. 1993. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on intimal formation. Circ Res 72:1202-1210. - 35. Multicenter European Research trial with Cilazapril after Angioplasty to prevent Transluminal coronary Obstruction and Restenosis (MERCATOR) Study Group. 1992. Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR Study: A multicenter randomised, double blind placebo controlled trial. Circulation 86:100-110. - 36. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 37. Miki T, Miura T, Shimamoto K, Urabe K, Sakamoto J, Iimura O. 1993. Do angiotensin converting enzyme inhibitors limit myocardial infarct size? Clin Exp Pharmacol Physiol 20:429-434. - 38. Hartman JC, Hullinger TG, Wall TM, Shebuski RJ. 1993. Reduction of myocardial infarct size by ramaprilat is independent angiotensin II synthesis inhibition. Eur J Pharmacol 234:229-236. - 39. Martorana PA, Kettenbach B, Breipohl G, Linz W, Scholkens BA. 1990. Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 182:395-396. - 40. Richard V, Ghaleh B, Berdeaux A, Giudicelli JF. 1993. Comparison of effects of EXP 3174, an angiotensin II antagonist and enalaprilat on myocardial infarct size in anesthetized dogs. Br J Pharmacol 110:969-974. - 41. Abraham WM, Burch RM, Farmer SG. 1991. A Bradykinin Antagonist modifies allergen-induced mediator release and late bronchial response in sheep. Am Rev Respir Dis 143:787-796. - 42. Akbary AM, Wirth KJ, Scholken BA. 1996. Efficacy and tolerability of Icatibant (HOE 140) in patients with moderately severe chronic bronchial asthma. Immunopharmacology 33:238-242. - 43. Dixon DNS, Fuller RW, Barnes PJ. 1987. The effect of an angiotensin converting enzyme inhibitor, Ramapril, on bronchial responses to inhaled histamine and bradykinin in asthmatic subjects. Br J Clin Pharmac 23:91-93. - 44. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Fan Chung K, Barnes PJ. 1996. Bradykinin-evoked sensitizatin of airway sensory nerves: A mechanism for ACE-inhibitor cough. Nature Medicine 2:814-817. ## ROLE OF CYTOKINES IN SEPTIC CARDIOMYOPATHY URSULA MÜLLER-WERDAN¹, HEIKE SCHUMANN², RALPH FUCHS³, HARALD LOPPNOW¹, CHRISTOPHER REITHMANN³, SUSANNE KOCH¹, URSULA ZIMNY-ARNDT⁴, FRITJOF SCHLEGEL¹, CHANG HE⁵, DOROTHEA DARMER², PETER JUNGBLUT⁴, JOSEF STADLER⁶, JÜRGEN HOLTZ² and KARL WERDAN¹
¹ Chair of Cardiac Intensive Care at the Department of Medicine III, Klinikum Kröllwitz, University of Halle-Wittenberg, Halle, Germany ² Institute of Pathophysiology, University of Halle-Wittenberg, Halle, Germany ³ Department of Medicine I and ⁵ Department of Medicine II, Klinikum Großhadem, University of Munich, München, Germany ⁴ Max-Planck-Institute of Infection Biology, Berlin, Germany ⁶ Department of Surgery, Technical University of Munich, München, Germany Summary. The interrelations of cytokine and nitric oxide (NO) metabolism with heart function have been best documented for the heart in sepsis. The existence of human septic myocardial depression in intensive care patients was only unequivocally proved in the 1980s by the group of Parrillo, utilizing a nuclear imaging technique. Septic cardiomyopathy is frequently masked by a seemingly normal cardiac output. However, relative to the lowered systemic vascular resistance in sepsis, resulting in a reduced afterload, cardiac outputs and ventricular ejection fractions of septic patients are often not adequately enhanced. Septic cardiomyopathy involves both the right and the left ventricle; global as well as regional contractile disturbances occur and systolic pump as well as diastolic relaxation failure. Septic cardiomyopathy is potentially reversible. In response to volume substitution, the hearts can be considerably enlarged. The disease is not primarily hypoxic in nature, as coronary sinus blood flow is high and as coronary vessels are dilated. Difficult situations may arise, when septic cardiomyopathy develops in patients with pre-existing coronary heart disease. The severity of myocardial depression correlates with a poor prognosis, heart failure accounting for about 10% of fatalities from sepsis and septic shock. Septic cardiomyopathy is prevalent in Grampositive, Gram-negative, fungal and viral sepsis, and left ventricular stroke work indices are compromised to a similar degree independent of the causative germ, pointing at the relevance of the final mediator pathways as opposed to the specific virulence factors. The etiology of the disease is multifactorial. Several candidates with potential pathogenetic impact can be addressed: bacterial toxins, cytokines and mediators including nitric oxide, cardiodepressant factors, oxygen reactive species, catecholamines. Using cultures of neonatal rat cardiomyocytes, several "negative inotropic cascades" were identified. Experimentally supported concepts include the endotoxin-induced release of cytokines with cardiodepressant action, primarily tumor necrosis factor α (TNFα) and interleukin-1; induction of inducible nitric oxide synthase (iNOS) in cardiomyocytes was shown for endotoxin and interleukin-1; TNFα has pleiotropic effects including a concentration-dependent iNOS-induction, a decreased synthesis of precursors of the phosphoinositide pathway, interference with the βadrenoceptor/G-protein/adenylyl cyclase-pathway and a decrease in calcium transient; a cardiodepressant factor (CDF) isolated from blood of patients in septic/cardiogenic shock blocks calcium current into cardiomyocytes. #### INTRODUCTION #### Link of the renin-angiotensin system to cytokine biology Apart from its pharmacological activities, angiotensin II also has cytokine-like activities. It acts as a growth factor in the cardiovascular system and has been implicated in angiogenesis [1]. Blocking angiotensin-converting enzyme (ACE) can be beneficial in the treatment of patients with chronic heart failure [2], post myocardial infarction [3,4], and may also improve endothelial vasomotor dysfunction in normotensive patients with coronary artery disease [5]. Part of these effects is linked to vasodilatation secondary to a diminished breakdown of bradykinin, which is known to enhance endothelial NO release [6]. Although the NO releasing potential of ACE inhibitors is very well documented in the vasculature, little is known about the possible interaction of cardiac angiotensin, bradykinin, and NO metabolism and whether there is a pharmacological impact of ACE inhibition on NO in the heart. In neonatal rat cardiomyocytes, the bradykinin receptor subtype 2 was detected and characterized by radioligand studies and found to mediate a negative inotropic effect [7]. Experimental data indicate that the local tissue activity of ACE regulates the expression of endothelial nitric oxide synthase (ecNOS), which thus contributes to chronic modulation of endothelial function [8]. Recent studies provided evidence that ecNOS is also expressed in cardiomyocytes of human atrial myocardium [9] and that ACE inhibitor treatment of patients upregulates the expression of ecNOS in the human atrial myocardium [10]: The Holtz group studied myocardial specimens of patients undergoing cardiac surgery and demonstrated that patients who had been under pretreatment by ACE inhibitors had an elevated expression of ecNOS at the level of mRNA, protein, and enzyme activity. This ACE inhibitor-induced upregulation of ecNOS expression did not appear because of treatment-induced shifts in NYHA classification of heart failure. The functional consequences of this increase in ecNOS activity are to be elucidated, and it remains to be established whether cardiac NOS could be a target of pharmacotherapy in heart disease. #### NO in the heart—physiology and pathophysiology A physiological and pathophysiological role of NO in the regulation of cardiac contractility has by now been elaborated (reviewed in [11-13]). Apart from the constitutive, calcium/calmodulin-dependent ecNOS (NOS3), which produces picomolar quantities of NO and L-citrulline from L-arginine, the expression of an inducible form, (iNOS) (NOS2), within cardiac myocytes is evidenced under various pathological conditions. Neuronal, calcium-dependent NOS (NOS1) is found in intracardiac sympathetic neurons and specialized cardiac conduction tissue, but not in cardiac myocytes. By its iron-chelating properties, NO was shown to increase the activity of a soluble form of the guanylyl cyclase of the cardiomyocytes and probably also increases the activity of a particulate form of the guanylyl cyclase of the cardiomyocytes, with a consecutive rise in cyclic guanosine monophosphate (cGMP). cGMP compromises systolic and diastolic heart function. An inhibition of calcium handling probably is involved via activation of a cGMP-dependent cAMP phosphodiesterase, a cGMP-dependent protein kinase regulating L-type calcium channels, and a cGMP-dependent protein kinase altering calcium sensitivity of myofilaments. The role of ecNOS in the cardiomyocyte is emerging: The endogenous constitutive NO pathway was shown to be involved in muscarinergic cholinergic signal transduction via enhancement of cGMP; An increase in cGMP by ecNOS or iNOS can antagonize the inotropic properties of the β-adrenoceptor-G protein-adenylyl cyclase system, which thus interferes with β-adrenergic signaling; Cardiac myocyte ecNOS can be activated by increases in time-averaged [Ca²⁺], provoked by higher beating frequencies; Preceding the expression of iNOS, high concentrations of cytokines may lead to a rapid NO-dependent negative inotropy, presumably via ecNOS activation. iNOS is an enzyme of the bactericidal arsenal of the mammalian organism and has a capacity to synthesize NO in nanomolar quantities, which thus promotes not only bacterial killing, but also detrimental cytotoxity of mammalian cells which eventually leads to apoptosis. iNOS is not subject to regulation by calcium/calmodulin, but rather the amount of NO produced depends on the number of enzyme molecules. In numerous experimental models, iNOS induction by cytokines and endotoxin was verified. Data from several groups are now available concerning the induction of iNOS in heart disease, however, the number of patients studied still is limited: The group of de Belder and Moncada [14,15] found, studying human myocardium, that iNOS was expressed in dilative cardiomyopathy, myocarditis, and postpartum cardiomyopathy, but found that, in seven patients with ischemic heart disease, a clear predominance of cNOS activity was measurable; Haywood et al. [16] found iNOS expression in specimens of failing myocardium in 67% of patients with dilative cardiomyopathy (16/24), 59% of patients with ischemic heart disease (10/17), and 100% of patients with valvular heart disease (10/10); - Habib et al. [17] showed strong histochemical immunoreactivity for iNOS in myocytes in human dilative cardiomyopathy and less in ischemic heart disease; - Thoenes et al. [18] reported iNOS expression in four out of six hearts of septic patients only, but not in hearts failing from dilative (n = 9) or ischemic cardiomyopathy (n = 7), Becker muscular dystrophy (n = 2), or mitoxantroneinduced toxic cardiomyopathy (n = 1); - Wildhirt et al. [19] studied hearts of patients with lethal myocardial infarction and found iNOS expression in nonnecrotic cardiomyocytes within or close to the infarcted region; - Lewis et al. [20] found that iNOS induction in human cardiac allografts is associated with contractile dysfunction. Currently, the pathophysiological impact of NO in heart disease is a matter of intensive research. The role of NO in pathogenesis has so far best been studied in #### Table 1. Terminology Infection: A microbial phenomenon characterized by an inflammatory response to the presence of microorganisms or the invasion of normally sterile host tissue by those organisms. Bacteriaemia: The presence of viable bacteria in the blood. - SIRS (systemic inflammatory response syndrome): The systemic inflammatory response to a variety of severe clinical insults, including infection, pancreatitis, ischemia, multiple trauma and tissue injury, hemorrhagic shock, immune-mediated organ injury, and exogenous administration of inflammatory mediators such as tumor necrosis factor or other cytokines. SIRS is manifested by (but not limited to) 2 or more of the
following conditions: - 1. temperature: >38.0°C or <36.0°C; - 2. heart rate: >90 beats/min; - 3. respiratory rate: >20 breaths/min or $P_4CO_2 < 32$ mm Hg; - 4. white blood count: >12,000 cells/mm³, <4000 cells/mm³, or >10% immature (band) forms. - CARS (compensatory anti-inflammatory response syndrome): Anti-inflammatory reaction, manifesting clinically—following a pro-inflammatory phase—as anergy, an increased susceptibility to infection, or both. - MARS (mixed antagonistic response syndrome): Antagonistic reaction syndrome with multiple surges of SIRS and CARS. - Sepsis: The systemic response to infection. This response is identical to SIRS except that it must result from infection. - Severe sepsis: Sepsis associated with organ dysfunction, perfusion abnormalities, or hypotension. Perfusion abnormalities may include (but are not limited to) lactic acidosis, oliguria, and an acute alteration in mental status. - MODS (multiple organ dysfunction syndrome): Presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention. - Sepis-induced hypotension: Systolic blood pressure <90 mmHg or reduction of >40 mmHg from baseline, in the absence of another known cause for hypotension. - Septic shock: Sepsis-induced shock with hypotension (as defined above) despite adequate fluid resuscitation, in conjunction with perfusion abnormalities (as defined above). Patients who are on inotropic or vasopressor agents may not be hypotensive at the time that perfusion abnormalities are measured, yet may still be considered to have septic shock. - Refractory septic shock: Septic shock without rapid response to volume resuscitation and vasopressors. - Acute septic cardiomyopathy: Cardiac impairment in the scope of sepsis, resulting in a decreased pump function of the heart relative to systemic vascular resistance. Figure 1. Myocardial depression in sepsis. To compensate for a progressive vasodilatation (decrease in systemic vascular resistance), the calculated rise in cardiac output (----) should be necessary to maintain a mean arterial pressure of 90 mm Hg, according to the following equation: [mean arterial pressure—mean right atrial pressure (10 mm Hg)] = systemic vascular resistance (dynes × s × cm⁻⁵; normal value 1100 ± 200) × cardiac output (2/min) [80]. The cardiac output measured in sepsis and septic shock (----), however, is usually lower than the calculated values, probabaly due to the cardiodepressant effects of catecholamines, bacterial toxins, sepsis mediators and cardiodepressant factor CDF. CO, cardiac output; C, catecholamines necessary to stabilize blood pressure. Adapted from [11]. the heart in sepsis (definitions see table 1), which may serve as a model for inflammatory disease of the heart and a model for investigating the consequences of an altered NO generation in the heart. ### SEPTIC CARDIOMYOPATHY: CLINICAL CHARACTERISTICS OF THE DISEASE Diagnosis in the clinical setting Only in the early 1980s were Parker and Parrillo able to first unequivocally demonstrate the existence of human septic myocardial depression utilizing nuclear imaging technology [21]. Even now, the impairment of the heart within the scope of sepsis or multiple organ dysfunction syndrome is frequently underscored, since cardiac outputs of septic patients are seemingly normal or may even be enhanced. However, heart failure becomes best evident when cardiac output is considered in relation to the systemic vascular resistance, which is severely lowered due to sepsisinduced vessel damage and consecutive vasodilatation (figure 1). A healthy heart could compensate for the pathological fall in afterload by an increase in cardiac output up to 201/min, while the values observed in septic patients are considerably lower. Some evidence has accumulated in recent years about the etiology of myocardial depression in sepsis. The etiology of the disease is multifactorial. Several candidates with potential pathogenetic impact can be addressed: bacterial toxins, cytokines, and mediators, including nitric oxide, cardiodepressant factors, oxygen reactive species, and catecholamines (for review see [11]). Using cultures of neonatal rat cardiomyocytes, several "negative inotropic cascades" were identified [22]. Some experimentally supported concepts will be presented in this paper. The impressive impact of the pathologically reduced afterload in sepsis on heart function is conspicuous in figure 2, which gives several measurements of cardiac index of two patients recovering from septic shock, in whom heart function was at best slightly depressed. Cardiac index reached values of 91/min/m² BSA at low systemic vascular resistances, but declined in response to an increase in afterload. When judging heart function in critically ill patients, two things must be considered: (1) all parameters describing heart function are normalized to a systemic vascular resistance of $1100 \,\mathrm{dyn} \times \mathrm{cm}^{-5} \times \mathrm{sec}$, and (2) reference values for hemodynamics or echocardiography have not been defined in patients, whose systemic vascular resistance is decreased. Thus, in the clinical setting, diagnosis is best confirmed by hemodynamic measurements in combination with radionuclid ventriculography. However the latter is only available in few intensive care units. The clinical picture of septic cardiomyopathy (table 2) is best evident when left and right ventricular stroke work indices are calculated. Cardiac impairment is frequently masked by a seemingly normal cardiac output. However, relative to the lowered systemic vascular resistance in sepsis, which results in a reduced afterload, cardiac outputs and ventricular ejection fractions of septic patients are often not adequately enhanced. In septic cardiomyopathy, both right and left ventricle involvement, global and regional contractile disturbances, and systolic pump and diastolic relaxation failure occur. Septic cardiomyopathy is potentially reversible. Due to the increased ventricular compliance, the heart can be considerably enlarged, particularly in response to volume substitution. The disease is not primarily hypoxic in nature since coronary sinus blood flow is high and coronary vessels are dilated. Difficulties may arise when septic cardiomyopathy develops in patients with pre-existing coronary heart disease [23], where septic myocardial depression may overlap with myocardial ischemia. The increase in heart index in sepsis causes an increased myocardial oxygen demand, which, in the presence of coronary stenoses, can aggravate regional ischemia. On the other hand, an ongoing therapy with betablockers, nitrates, and calcium antagonists for coronary artery disease may deteriorate the labile cardiovascular situation of the septic patient. The "stiff" ventricle in coronary artery disease implies an increased sensitivity towards volume substitution, which yields a more rapid increase in left ventricular end-diastolic pressure. When septic and cardiogenic shock coincide, hemodynamic parameters (cardiac index, systemic vascular resistance) are helpful in determining the dominant shock event. #### Prognosis and therapy of septic cardiomyopathy Septic cardiomyopathy may be completely reversible. A high left ventricular enddiastolic volume index and coherently low ventricular ejection fraction in the acute Figure 2. Cardiac function of two patients with septic shock: Influence of pathological afferload reduction. In both patients, parameters of neart function have been monitored over a period of 20 days (patient no. 1, O) and 8 days (patient no. 2,), respectively, during the recovery phase from septic shock. Data are given in relation to the systemic vascular resistance. For comparison, values of healthy individuals with a normal vascular resistance of 1100 dynes X s X cm⁻⁵ are given (\$\infty\$). Adapted from [11]. #### Table 2. Clinical features of septic cardiomyopathy - · Inadequate rise in cardiac index, taking the lowered systemic vascular resistance into account - No increase in stroke volume (LV, RV) - · Ejection fraction (LV, RV) decreased - · Regional and global cardiac dysfunction - Considerable dilatation of the heart - Increase in ventricular compliance - Contraction and relaxation abnormalities - · Coronary arteries dilated, high coronary sinus blood flow - · Right ventricular failure due to ARDS-induced pulmonary hypertension phase are considered to be favorable signs [24]. Nevertheless, septic cardiomyopathy accounts for about 10% of the fatalities in sepsis and septic shock [25], which constitutes a major cause of death. The severity of myocardial depression is associated with a poor prognosis [26]. Forty percent of fatalities from sepsis and septic shock result from intractable vasodilatation, and 50% result from irreversible multiorgan failure [25]. It is alarming to note that despite all of the new generations of antibiotics and the progress in critical care medicine, mortality of sepsis and septic shock is still as high today as mortality in the beginning of this century (figure 3) [11,27]. It can be inferred that fighting the causative microorganisms is not enough in this clinical situation. At present, therapy of septic cardiomyopathy is merely symptomatic. No causal treatment regimen has been established for clinical routine, although some regimens are under investigation (reviewed in [11,27]). When considering treatment of myocardial depression, it must not be regarded as a condition isolated from the systemic disease, but rather should be considered in the context of the treatment of sepsis, septic shock, and MODS (for definitions see table 1, [28,29]). Therapy is based on several columns: #### management of shock, elimination of the infectious focus, antibiotics, and antiinfectious measures, supportive treatment of multiorgan dysfunction syndrome, additive therapy of systemic inflammatory response (interruption of the
toxinmediator network by neutralization, antagonization, and elimination), treatment of the underlying disorder. Detailed guidelines for sepsis therapy were published by the European Society of Intensive Care Medicine, Society of Critical Care Medicine, and the American College of Chest Physicians [28,30]. #### Pathogenesis of septic cardiomyopathy: heart disease in the scope of systemic inflammatory response It seems that the septic malfunctioning of organs, including the heart, that occurs in sepsis is not simply determined by the invading germs, but rather by the over- Figure 3. Mortality of sepsis and septic shock. Data of more than 3000 patients are collected from the literature, with every point () representing information from a large sepsis trial of the according year. In case of double-points (\(\bullet-\(\O\)), the results of placebo-controlled sepsis treatment trials (O verum group; ● placebo group) are given. Adapted from [11]. whelming activation of endogenous cytokine and mediator cascades in response to the bacterial/viral/fungal invasion; septic cardiomyopathy is prevalent in Grampositive, Gram-negative, fungal, and viral sepsis, and left ventricular stroke work indices are compromised to a similar degree independent of the causative germ, which points to the relevance of the final mediator pathways as opposed to the specific virulence factors (figure 4) [31]. This concept of a cardiomyopathy in the scope of a systemic inflammatory response (SIRS) implies that noninfectious stimuli also may trigger mediator cells to release primary and secondary mediators that are interrelated in a mediator network (figure 5) [11]. SIRS cardiomyopathy may be encountered in patients after severe trauma, heart surgery with the use of the cardiopulmonary bypass [32], pancreatitis, burns, ischemia-reperfusion, and other severe disorders. Thus, there is a pattern of cardiac impairment common to all inflammatory stimuli, which may be modified by germ- and trauma-specific compounds. However, SIRS evokes an anti-inflammatory counter-reaction, which is referred to as compensatory anti-inflammatory response syndrome (CARS). In the disease course, episodes of SIRS and CARS may alternate. This state of alternating episodes is known as mixed antagonistic response syndrome (MARS) (definitions and terminology see Table 1 [28,29]). Presently, research to elucidate these complex regulatory processes and the mechanisms of organ failure in this setting is limited to describing proinflammatory components. #### Pathogenesis of septic cardiomyopathy: the most attractive hypothesis Current concepts concerning the pathogenesis of septic cardiomyopathy concentrate on the cardiodepressant effects of NO, which is thought to be generated in the Figure 4. Decreased left ventricular stroke work indices in various forms of Gram-negative, Gram-positive, and fungal sepsis. Adapted from [23]. Figure 5. Development of multiple organ dysfunction syndrome. Adapted from [11]. ## Cardio - depressant factors in sepsis "The most attractive negative inotropic cascade" #### The Whole Story?? Figure 6. Plasma cardiotoxic factors in sepsis: the most attractive hypothesis. Adapted from [11]. septic heart at an accelerated pace and in large amounts [11-13]. The most attractive hypothesis postulates a cascade of reactions in response to circulating endotoxin (figure 6), which triggers mediator cells to release proinflammatory cytokines, like tumor necrosis factor α (TNF α) and interleukin-1 (IL-1). The latter is described as important [33] or less relevant [34]. These cytokines are thought to induce iNOS in the heart. The consequence is an accelerated release of NO from L-arginine, which results in enhanced cGMP-production, which then results in cardiodepression. Numerous arguments favor this hypothesis, but data also infers that this may not be the whole story. In the following text, relevant clinical findings in humans will be presented and discussed. Endotoxin: a cardiodepressant substance in vivo Endotoxin consists of bacterial lipopolysaccharides (LPS) in the outer membrane of Gram-negative bacteria. The molecules' active moiety is the conserved part, named lipid A, which carries the biological activity of endotoxin [35]. Endotoxin was administered to healthy volunteers and produced a temporary cardiovascular impairment in these individuals, which mimicked acute septic cardiomyopathy, with a decrease in left ventricular stroke work index and an increase in heart size [36]. However, currently no endotoxin receptor mechanism has been identified in the heart. In contrast, it is well established that LPS activates macrophages and monocytes by binding to the membrane-bound CD14 molecule present on mononuclear cells (figure 7) [37,38]. The binding of LPS to CD14 is Figure 7. Endotoxin receptor mechanism in monocytes/macrophages carrying CD 14 and endothelial/smooth muscle cells devoid of CD14. Adapted from [40]. enhanced if LPS forms a complex with lipopolysaccharide binding protein (LBP), which is synthesized by the liver and present in the blood [39]. Endothelial cells [40] and vascular smooth muscle cells [41] devoid of membrane-bound CD14 are activated by endotoxin via a soluble CD14 molecule associating with LPS (figure 7). In response to the binding of endotoxin, both macrophage and endothelial cells produce large amounts of TNFα. Consistently, individuals having received endotoxin exhibit high TNFa plasma levels [42]. It was tempting to speculate, therefore, that the rise in serum TNF levels might provoke the myocardial depression that is witnessed in sepsis. #### $TNF\alpha$: a cardiodepressant substance in vivo Plasma and serum levels of TNFa were found to be elevated not only in sepsis and septic shock, but also in various forms of nonseptic heart disease, such as cardiac hypertrophy, severe heart failure, acute myocardial infarction, angina pectoris, ischemia-reperfusion injury, acute viral myocarditis, and heart allograft rejection (for review see [43]). Although cardiodepression by TNFα application, which mimicks the clinical and hemodynamic features of acute septic cardiomyopathy—like in the case of endotoxin administration [48-50]—has been evidenced in mammalian organisms, including humans [44-47], it is unclear whether enhanced TNFa levels in nonseptic pathological heart conditions are an epiphenomenon or whether they indicate a causal role of the cytokine [51]. Yet clinical septic cardiodepression was shown to improve after administration of TNF α antibodies [52,53]. Intricate knowledge is now at hand about the receptors mediating these TNFa effects [54]. They are present on nearly all cell types of the mammalian organism and are subject to regulation. There are two receptor subtypes, referred to as p55 and p75. After ligand coupling in trimeric formation, both mediate an activation of the Figure 8. TNF receptor subtypes p55 and p75. NF-KB, nuclear factor-kappa B. transcription factor nuclear factor kappa B. In consequence, a pleiotropic array of effects has been observed in target cells, including cardiodepression (figure 8). In 1995, Torre-Amione et al. first reported the existence of both TNF receptor subtypes in the human myocardium on the human cardiomyocyte [55]. From experiments with feline cardiac myocytes, the authors inferred that the negative inotropic TNF effect is mediated by the p55 receptor, whereas the role of the p75 receptor in the human heart is unknown. Efforts are being, and have been, taken by many groups to identify which signal eventually might intracellularly mediate negative inotropy by TNFa. The major candidate in focus is an induction of iNOS with a consecutive rise of NO: by applying very high TNFa concentrations in diverse experimental settings, several groups were able to induce a rapid, NO-dependent cardiodepressant effect [56-60]. Other groups, however, reported NO-independent cardiodepression by TNFa [60-63]. Thus, the negative inotropy by TNF α , as described in numerous experimental settings, varies considerably with respect to the TNFa concentrations applied, the kinetics of the process, the documented impairment of the contractile state in detail, and the NO dependency [61]. #### NO: a cardiodepressant substance in vivo Cardiac effects of NO in physiological doses were studied by Paulus et al. [64]. They applied the NO donor sodium nitroprusside in patients undergoing cardiac catheterization for atypical chest pain without evidence of heart disease. A low-dose bicoronary infusion of sodium nitroprusside (≤4µg/min) did not significantly reduce ejection fraction or stroke volume but exerted potentially beneficial effects on left ventricular relaxation (earlier onset) and diastolic distensibility (increased); peak left ventricular systolic pressure was reduced, but there was no change in left ventricular dP/dt_{max}. Infusion of an identical dose of sodium nitroprusside into the right atrium failed to reproduce these effects, which indicates that they could not be attributed to systemic vasodilatation. These findings point to a modulation of left ventricular performance by paracrine NO. Strongly increased production of NO in human sepsis and septic shock was demonstrated by enhancement of the stable end products nitrite and nitrate [65]. Furthermore, nitrite/nitrate levels of septic patients correlate with systemic vascular resistance and disease severity [66]. The impact of NO on heart function can be studied by use of antagonistic drugs in septic patients. Competitive, nonselective blockade of NOS in human septic shock was achieved in several noncontrolled studies, which uniformally led to an increase in systemic vascular resistance [13]. However, contractile performance of the left ventricle was reported to be either unaltered, increased, or impaired in these studies (for review see [67]). Methylene blue, an inhibitor of guanylyl cyclase and a probable inhibitor of other
enzymes, was administered to septic patients. Mean arterial pressure increased; pulmonary artery pressure and cardiac filling pressures and output were not significantly affected; but left ventricular stroke work index after 60 min was enhanced [68]. However, methylene blue was not beneficial to the survival of these patients. In fact, nonselective blockade of NOS may potentially be harmful, e.g., by increasing preload of the left ventricle, by raising pulmonary artery blood pressure, or by decreasing coronary artery blood flow [67]. The combination of inhaled NO with systemic NOS blockade has been studied in an animal model [69]. Further efforts using selective inhibitors of iNOS may prove to be more helpful, although iNOS is not induced in all septic hearts [18]. #### SEPTIC CARDIOMYOPATHY: INVESTIGATIONS ON CELLULAR MECHANISMS IN ISOLATED CARDIOMYOCYTES The cardiodepressant profiles of endotoxin, TNF α , interleukin-1, and NO were investigated in neonatal rat cardiomyocytes, which allowed for a correlation of contractile performance on a single cell level with biochemical measurements [11,22,99,100]. #### The place of isolated cardiomyocytes in researching mechanisms of septic cardiomyopathy In clinical studies, animal experiments, and work with isolated heart preparations, direct effects of bacterial toxins or mediators involved in sepsis often interfere with indirect effects and are difficult to discern. Primary effects on the coronary circulation and stimulation of local mediator cells or nerval effects superimpose direct negative inotropic and cytotoxic mediator actions. Although the methodological limitations are conspicuous, experiments with isolated heart muscle cells may help to pin down the various processes attacking the cardiomyocyte in systemic inflammatory response. Several negative inotropic cascades were thus identified. #### Materials and methods [99,100] Fetal calf serum, CMRL-1415-ATM medium, DMEM, horse serum, and collagenase (Worthington, CLS II): Biochrom (Berlin, F.R.G.); recombinant human tumor necrosis factor α, bovine insulin (24-25 I.U./mg), bovine serum albumin, dexamethasone, (-)-noradrenaline, timolol, (-)-isoproterenol, lipopolysaccharide diethyl (Escherichia coli). sodium nitroprusside, pyrocarbonate phenylmethylsufonyl fluoride (PMSF): Sigma (Deisenhofen, Germany); murine tumor necrosis factor α; Knoll AG (Ludwigshafen, Germany); interleukin-1β: Promocell (Heidelberg, Germany); HEPES, ampholytes (Servalyte, pH 2-4), sodium dodecyl sulfate, glycine, β-mercaptoethanol, and trypsin (1:250): Boehringer Ingelheim (Heidelberg, Germany); tobramycin: Lilly (Bad Homburg, Germany); urea, piperazine diacrylamide: Biorad (Munich, Germany); dithiothreitol: Biomol (Hamburg, Germany); WITAlytes: WITA (Teltow, Germany); guanidiniumisothiocyanate, caesium chloride, random primers, specific primers, Superscript 100 bp-DNA-ladder. (Eggenstein, agarose: Gibco/BRL RNase-inhibitor, Taq-DNA-polymerase: AGS (Heidelberg, Germany); dNTPs set, IPG dry strips (pH 4-7, $110 \times 3.3 \,\mathrm{mm}^2$), pharmalytes, acrylamide, N,N'-methylenebisacrylamide, N.N.N'.N'ammonium persulfate, tetramethylethylenediamine, bromophenol blue: Pharmacia (Freiburg, Germany); DNA Sequencing Kit: Perkin Elmer (Berlin, Germany). All other chemicals were of analytical grade and were purchased from Merck (Darmstadt, F.R.G.) or Boehringer (Mannheim, F.R.G.) or Sigma (Deisenhofen, F.R.G.). Culture flasks (25 cm²) and multidish-6-well plates: Becton Dickinson Europe (Meylan, France). #### Monolayer cultures: preparation and cultivation Preparation and cultivation of monolayer cultures of spontaneously contracting neonatal rat heart myocytes from the hearts of one- to three-day-old Wistar rats were carried out essentially as described [70] by repeated tissue incubations in 0.12% trypsin-0.03% collagenase-salt solution (Ca²⁺ - and Mg²⁺-free) at 37°C. Muscle cells were separated from nonmuscle cells by the differential attachment technique. The suspension of muscle cells in CMRL-1415-ATM medium (adjusted to pH 7.4 at room temperature) containing 10% fetal calf serum, 10% horse serum, 10 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid), and 0.02 mg/ml tobramycin was distributed into 25 cm² plastic culture flasks or multidish 6-well plates (1.0 to 1.5 \times 10⁵ cells/cm²). After 24 hours, when the cells formed a monolayer and contracted spontaneously, the serum-supplemented medium was replaced by serum-free CMRL-1415-ATM medium containing 10 mmol/l HEPES, 0.1 \mumol/1 dexamethasone, 5 \mumol/1 insulin, 0.4 \mumol/1 iron-saturated transferrin, 0.4 µmol/l bovine serum albumin, and 0.02 mg/ml tobramycin, pH 7.4 (serum-free CMRL medium). When indicated, dexamethasone was omitted from the medium. The cells were cultured for up to 3 days. TNFα culture periods of 3 days were applied to achieve a maximum effect whenever \alpha-adrenoceptor-mediated reactions dependent on the phosphoinositide pathway were studied [71]. The medium was replaced every 24 hours. #### Cardiac nonmuscle cells: preparation Cultures of cardiac nonmuscle cells were prepared as described [70]. Nonmuscle cells were cultured in CMRL-medium in the presence of 10% FCS. Medium was changed daily. #### Spontaneously or electrically driven contractions Spontaneous or electrically driven contractions of single cultured neonatal rat heart muscle cells within the monolayers were monitored using an electro-optical system as described previously [63,70]. When electrically-driven (60-120 beats/min) cells were studied, the myocytes seeded in 25 cm² culture plastic flasks were superfused (4ml/min) with various solutions. The fluid in the culture flask could be exchanged within 2 to 3 min through syringe needles in the flask. Electrical stimulation was accomplished by two steel electrodes for external pacing connected to a Grass SD9 stimulator (Grass Instruments, Quincy, MA). For analysis of the α - and β adrenergic-stimulated increase in pulsation amplitude and pulsation velocity of the cardiomyocytes, a standard protocol was employed, which consisted of superfusion with a standard serum-free, low-calcium (0.3-0.6 mM) superfusion CMRL-medium without additives, followed by superfusion with medium containing 100 µM noradrenaline and 10 μM timolol (α-adrenergic stimulation) or with 10 μM isoproterenol (β-adrenergic stimulation). For eliciting maximum contractile response, a medium containing a high calcium concentration of 2.4 mM was employed. As parameters of contractile performance, pulsation frequency and baseline pulsation amplitude were registered in spontaneously beating cells [72,73]. Pulsation frequency, pulsation amplitude and velocity, and beating regularity were monitored in electrically triggered cells [74]. #### Nitrite and protein content determination Nitrite concentration of cell culture supernatants was determined by means of the Grieß reaction as described previously [11,61]. Protein content of the cell monolayers was determined according to Lowry. #### Total RNA preparation Total RNA was prepared from cardiomyocytes after a defined culture period in the presence, or absence, of TNFa by lysing the cells in guanidinium-isothiocyanate solution and centrifugation through a caesium chloride cushion as described by Sambrook et al. [75]. Integrity of the RNA was confirmed by agarose gel electrophoresis, and the concentration was determined by measuring the UV absorption at 260 nm. #### Reverse transcription of RNA samples Reverse transcription (RT) of RNA samples was accomplished using a standard protocol of SuperScript Plus RNase H Reverse Transcriptase for 1 h at 42°C. The reaction mixture contained the following components: $1 \mu g RNA$; $1 \times RT$ -buffer; 0.5 mM each dNTP; 12 ng/µl random primer; 1 mM dithiothreitol; 0.54 U/µl RNase-inhibitor; 4U/ul reverse transcriptase. #### Polymerase chain reaction For RT-polymerase chain reaction (PCR) primers for rat inducible nitric oxide synthase (iNOS) were used: TAC ATG GGC ACC GAG ATT GG (sense) and TGA AGG CGT AGC TGA ACA AGG (antisense). For detecting the cDNA of rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as internal standard the following primers were used: CAT CAC CAT CTT CCA GGA GCG (sense) TGA CCT TGC CCA CAG CCT TG (antisense). The PCR was performed in a reaction containing the following components: 5-10 μl RT-reaction; 1 × PCR-buffer (complete); 12 μM each dNTP; 5 pmol of each primer; 2U Taq-DNA-polymerase. Using a thermo-cycler (Trioblock, Biometra, Göttingen, Germany) after 2min of denaturation at 95°C, the PCR amplification was performed: 30 sec denaturation at 94°C, 30 sec primer annealing at 60°C, 30 sec extension at 72°C (35 cycles for iNOS, and 30 cycles for GAPDH). The PCR products were separated by agarose gel electrophoresis (expected lengths of the amplification products: 580 bp for iNOS and 443 bp for GAPDH) and isolated from the gel by electroelution. Nucleotide sequences of the PCR fragments were determined by automated sequencing with PCR primers and the DNA Sequencing Kit containing dye terminator cycle sequencing ready reactions. The sequencer was from Applied Biosystems (München, F.R.G.). #### Interleukin-6 activity Interleukin-6 (IL-6) activity in the cell culture supernatants was determined by the 7TD1-bioassay [76]: briefly, serial fourfold dilutions of samples or standards (10 ng recombinant IL6/ml) were prepared in flat bottom 96-well plates in 50 µl DMEM containing 10% fetal calf serum, 5 × 10⁻⁵M 2-mercaptoethanol, L-glutamine, and antibiotics. The same volume (50 µl) of medium containing IL-6-dependent target cells (2,000/well) was added. The cultures were then incubated for three days. To these cultures, MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; 0.5 mg/ml in phosphate buffered saline) was added for 4 hours. The cultures were incubated with dimethylformamide-solution (5% SDS in 50% dimethylformamide) for at
least 2 hours, and absorption of the diazolium salt was measured at 550 nm in an ELISA reader. The IL-6 activity in the tested samples was calculated by probit analysis [77] in reference to the recombinant IL-6 standard tested in parallel cultures. Each sample was measured three times. #### High-resolution, two-dimensional gel electrophoresis For high-resolution two-dimensional gel electrophoresis (2D-PAGE), protein sample preparations of rat heart muscle cells cultured in the absence or presence of $TNF\alpha$ (10 or $100\,U/ml;~3$ flasks per group) was performed as follows: after determination of the wet weights, the cell pellets (about 6×10^6 cells per sample) were suspended in buffer containing 50 mM Tris/HCL, pH 7.5, and 1 mM PMSF to obtain a final volume of 150 ul cell suspension per sample. Urea, dithiothreitol, and ampholytes were added to obtain a final concentration of 9M urea, 70mM dithiothreitol, and 2% ampholytes. Proteins were solved by carefully stirring for 30 minutes at room temperature. 2D-PAGE combining isoelectric focusing (IEF; first dimension) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; second dimension), as developed by Klose [78], was performed as described [79]. A middle-size gel technique was used. Proteins were focused in vertical tube gels with a diameter of 0.9mm within an IEF gel chamber (WITA, Teltow, Germany) and separated in the second dimension in vertical slab gels (168 \times 160 \times 1 mm) within the DALT chamber (Serva, Heidelberg, Germany). 20 µl of the protein sample were applied to the anodic side of the IEF gel containing 4% acrylamide (w/v), 0.3% piperazine diacrylamide, and a total of 2% (w/v) carrier ampholytes WITAlytes, pH 2-11. The proteins were focused for 6800 Vh without cooling. After isoelectric focusing, the gels were equilibrated for 2 minutes in a buffer containing 125 mM Tris/phosphate, pH 6.8, 40% glycerol, 65 mM dithiothreitol, and 3% SDS. The IEF gels were applied onto the SDS-PAGE gels, containing 15% acrylamide (w/v) and 0.2% bisacrylamide. The SDS-PAGE system of Laemmli [80] was used, omitting the stacking gel. Proteins were detected by silver staining as described by Jungblut and Seifert [79]. At least three 2D-PAGE gels per sample were run, and the whole experiment was reproduced for three independent cardiomyocyte preparations. Visual comparisons between the protein pattern of controls and TNFa-treated samples were performed as described by Jungblut and Klose [81]. With three additional independent cardiomyocyte preparations and identical culture conditions, samples were prepared, and IEF was performed using an immobilized gradient of pH 4-7 in the Multiphore II (Pharmacia-LKB, Freiburg, Germany), followed by SDS-PAGE, as described in detail previously [11,82,83]. #### Statistical analyses Values are given as mean ± SD. All experiments were performed with at least three independent cardiomyocyte preparations. The normality of distributions was analyzed with David's test. The unpaired two-tailed Student's t-test was used for groups with equal variances. In case of unequal variances based on Bartlett's test, the Welch's approximate t-test was used. For determination of the regularity of beating, the variation coefficient was additionally calculated (V = $\sigma: \mu \times 100$). For multiple comparisons ANOVA was used. " \star " indicates p < 0.05. #### Cardiodepressant profile of chronic endotoxin-exposure in cardiomyocytes Cardiomyocytes pretreated for 1-3 days in the presence of endotoxin (1-10 µg/ml) were compared with untreated control cells in the absence or presence of dexamethasone. The morphological appearance of the cells by phase contrast microscopy and spontaneous beating were unaltered. By the end of the culture period, cardiomyocytes were challenged with β- or αadrenoceptor agonists: The increase in pulsation amplitude conspicuous upon administration of the β -adrenoceptor agonist isoproterenol in control cells was absent in cardiomyocytes treated with endotoxin (10 µg/ml) (figure 9, upper graph), but the increase was regularly elicited when the medium had been supplemented with dexamethasone (0.1 µM) (figure 9, lower graph). In contrast, α-adrenoceptor-induced arrhythmias and increased pulsation amplitude were not suppressed by pretreatment with endotoxin (10 µg/ml) (figures 10 and 11). #### Cardiodepressant profile of chronic TNFa-exposure in cardiomyocytes Cardiomyocytes were pretreated for 1-3 days in the presence of TNFa (10 U/ml) and challenged with inotropic stimuli (table 3). Basal pulsation amplitudes of spontaneously beating rat cardiomyocytes after 3 days of culture were not significantly different from control cells, neither in the presence nor in the absence of dexamethasone. In contrast, after a 3 day exposure with TNFα, α-adrenoceptorinduced increase in pulsation velocity, as well as Ca²⁺-induced increase in pulsation velocity, was suppressed. β-adrenergic-stimulated increase in pulsation amplitude was blocked by TNFα (10U/ml, 24 hours), both in the presence (table 3) and absence of dexamethasone (0.1μM) (figure 12). After 3 days of culture (TNFα, 10 U/ml), a suppression of α-adrenoceptor-induced arrhythmias was detectable, which is regularly observed in control medium from the strong proarrhythmogenic effect of a high degree of α-adrenoceptor occupation in these cells [83] (table 4). Ca2+-induced and isoproterenol-induced irregularity of beating was determined by beat-to-beat-analysis of the intervals between pulsations and comparison of the variances and variance coefficients of beating intervals in the presence of TNFα (10 U/ml, 24 hours), the variances and variance coefficients of beat-to-beat-intervals were considerably smaller than in nontreated controls, which thus indicates a more regular beating (table 4). #### Cardiodepressant effects of NO in cardiomyocytes Sodium nitroprusside is known to release the radical nitric oxide in aqueous solutions. Dissolved in synthetic culture medium, sodium nitroprusside (1 mM, 10 mM) leads to a linear, concentration-dependent increase in the nitrite concentration, as stable end product of nitric oxide, for at least 6 hours. Figure 9. Endotoxin-induced depression of the stimulatory effect of isoproterenol on pulsation amplitude in neonatal rat cardiomyocytes: effect of dexamethasone. Neonatal rat cardiomyocytes were cultured for 24 hours in serum-free medium, in the presence or absence of endotoxin (10 µg/ml) and dexamethasone (0.1 µM). After the incubation period, cells were challenged with isoproterenol (1 µM). Cells were kept at a constant beating rate by extracellular electrical stimulation under continuous superfusion with a medium containing 0.3 mM Calcium (Ca²⁺) and were challenged with a superfusion medium supplemented with 1 µM isoproterenol (Iso), followed by a washout phase. In untreated control cells, a significant increase in pulsation amplitude was reproducibly seen, reversible upon washout, whereas 24-hour pretreatment with endotoxin blocked the response to isoproterenol. As previously reported by other groups, exogenous administration of nitric oxide to cultured cardiomyocytes is contractile-depressant [84]. When applying medium containing freshly dissolved sodium nitroprusside (10 mM) to both spontaneously beating and electrically triggered, superfused neonatal rat cardiomyocytes after 24 hours of culture in synthetic medium, a depressive effect on contractility is witnessed. Both the negative chronotropic effect documented in spontaneously beating cardiomyocytes and the decrease in contraction velocity shown in electrically stimulated cells were reversible upon washout of the substance after 15 to 20 minutes (figure 13). The fall in beating frequency and contraction velocity could be pre- Figure 10. Endotoxin does not depress α-adrenoceptor-stimulated increase in pulsation amplitude in neonatal rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured for 24 hours in serum-free and dexamethasone-free medium, in the presence or absence of endotoxin $(10\,\mu\text{g/ml})$. After the incubation period, cells were challenged with a combination of noradrenaline (NA; $100\,\mu\text{M}$) and timolol (Tim; $10\,\mu\text{M}$). Cells were kept at a constant beating rate by extracellular electrical stimulation under continuous superfusion with a medium containing $0.3\,\text{mM}$ calcium (Ca²⁺). Figure 11. Endotoxin does not suppress α -adrenoceptor-provoked arrhythmias in neonatal rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured for 24 hours in serum-free and dexamethasone-free medium, in the presence or absence of endotoxin (10 µg/ml). After the incubation period, cells were challenged with norepinephrine (100 µM) and timolol (10 µM). vented by applying sodium nitroprusside in the presence of hemoglobin (10 mg/ml), which is known to bind NO extracellularly with high affinity. Contractility of cardiomyocytes was impaired when using concentrations of sodium nitroprusside from 1 mM. #### WITHOUT DEXAMETHASONE Figure 12. Effect of TNFα on β -adrenoceptor agonist induced increase in pulsation amplitude in neonatal rat cardiomyocytes. After culturing cardiomyocytes for 24 hours in the presence of TNFα, without dexamethasone, cells were challenged with 1μM isoproterenol (Iso), followed by a washout phase. Cells were kept at a constant beating rate by extracellular electrical stimulation under continuous superfusion with a medium containing 0.3 mM calcium (Ca²+) and were challenged with a superfusion medium supplemented with 1μM isoproterenol (Iso), followed by a washout phase. In untreated control cells, a significant increase in pulsation amplitude was reproducibly seen, reversible upon washout, whereas 24-hour pretreatment with low-dose TNFα blocked the response to isoproterenol. Qualitatively the same effect was observed in the presence of dexamethasone (table 3). **Table 3.** TNF
α blocks the stimulatory effect of catecholamines and high calcium on contractility in neonatal rat cardiomyocytes | | Control | TNFα (10 U/ml) | |---|--------------------------|-----------------------------| | Baseline pulsation amplitude [µm],
3-day incubation period | 3.27 ± 1.54 (n = 29) | 3.73 ± 2.10
(n = 34) | | α_1 -adrenoceptor-induced increase in pulsation velocity [% of control], 3-day incubation period | 142 ± 27 (n = 19) | 101 ± 7*
(n = 10) | | β-adrenoceptor-induced increase in pulsation amplitude [% of control], 1-day incubation period | 151 ± 14 $(n = 11)$ | 89 ± 22*
(n = 11) | | Ca ²⁺ -induced increase in pulsation velocity [% of contro], 3-day incubation period | 137 ± 24 $(n = 12)$ | $119 \pm 12*$ $(n = 8)$ | Note: Cardiomyocytes were cultured for 1 to 3 days in the absence or presence of TNF α . After the culture period, cellular contractile performance was measured in spontaneously beating cells (pulsation amplitude) or was electrically triggered challenged with α - or β -adrenoceptor agonists. $\star p < 0.05$ in comparison to control. Figure 13. Effect of 10 mM sodium nitroprusside on contraction velocity of an electrically triggered neonatal rat cardiomyocyte. NNP, Sodium nitroprusside; WA, Washout. **Table 4.** Impairment of the proarrhythmogenic action of catecholamines and high calcium by $TNF\alpha$ in neonatal rat cardiomyocytes | | Control | INFα (10U/ml) | |---|----------------------------------|------------------------------| | α_1 -adrenoceptor-mediated induction of arrhythmias | 23/28
(82%) | 0/13
(0%) | | β-adrenoceptor stimulation
mean beat-to-beat interval
(% of mean prestimulation value)
variation coefficient | 103 ± 25
(n = 99)
24.3 | 98 ± 8
(n = 39)
8.2 | | Ca ²⁺ -induced beating irregularity
mean beat-to-beat interval
(% of mean prestimulation value)
variation coefficient | 119 ± 57
(n = 99)
47.9 | 91 ± 21*
(n = 45)
22.0 | Note: Cardiomyocytes were cultured for 1 to 3 days in the absence or presence of TNF α . After the culture period, regularity of beating was evaluated in electrically triggered challenged with α - or β -adrenoceptor agonists. *p < 0.05 in comparison to control. # Nitric oxide production of neonatal rat cardiomyocytes and nonmuscle cells in the presence of endotoxin and TNFα Neither recombinant human nor murine TNF α (10, 100 U/ml) led to an increase in the nitrite content of cardiomyocyte (table 5a) and nonmuscle cell (table 5b) culture supernatants after 24 hours incubation, even when dexamethasone was omitted from the culture medium. TNF α (1000 U/ml) significantly increased the nitrite content only in the absence of dexamethasone. In contrast, lipopolysaccharide (endotoxin) (10 µg/ml) as a positive control potently stimulated nitrite release of both cardiomyocytes and cardiac nonmuscle cells (table 5a,b). Also interleukin-1 β | | Control | rhTNFa
10U/ml | murine
TNFα
10U/ml | rhTNFα
100 U/ml | murine
TNFα
100 U/ml | rhTNFα
1000 U/ml | LPS
10 µg/ml | |--------|---------------------------|---------------------------|--------------------------|---------------------------|----------------------------|-------------------------|-----------------------| | NO DEX | 5.97 ± 1.21 $n = 35$ | 6.17 ± 1.48
n = 29 | 6.44 ± 1.18 $n = 9$ | 6.13 ± 1.03
n = 27 | 6.78 ± 0.63
n = 9 | 9.44 ± 1.61*
n = 5 | 15.4 ± 5.8*
n = 36 | | + DEX | 5.19 ± 1.09
n = 27 | 4.91 ± 1.22
n = 13 | | 5.07 ± 0.12 $n = 3$ | | 5.01 ± 1.64 $n = 7$ | 7.7 ± 4.0 $n = 6$ | Table 5a. Nitrite content [µM] of cardiomyocyte culture supernatants after a 24-hour incubation period Note: Cardiomyocytes were cultured for 24 hours in synthetic medium without (NO DEX) or with dexamethasone (+DEX, 0.1 μM). Statistical comparisons were made between control and TNFα- or LPS-treated cells within the groups cultured in the absence or presence of dexamethasone, *p < 0.05. DEX, dexamethasone; LPS, lipopolysaccharide. Table 5b. Nitrite content [µM] of cardiac nonmuscle cell culture supernatants after a 24-hour incubation period | | Control | rhTNFα 10U/ml | rhTNFα 100 U/ml | LPS 10µg/ml | |--------|-----------------|-----------------|-----------------|--------------| | | | | | | | NO DEX | 5.75 ± 1.47 | 5.45 ± 0.78 | 5.39 ± 0.81 | 19.6 ± 12.0* | | | n = 17 | n = 14 | n = 15 | n = 18 | | +DEX | 4.39 ± 0.66 | | | 5.9 ± 0.45* | | | n = 9 | | | n = 6 | Cardiac nonmuscle cells were cultured for 24 hours in synthetic medium without or with dexamethasone (0.1 µM). Statistical comparisons were made between control and TNFa- or LPS-treated cells within the groups cultured in the absence or presence of dexamethasone, *p < 0.05. DEX, dexamethasone; LPS, lipopolysaccharide. (IL-1β) (100 U/ml, 24-hour culture) was a strong stimulus for nitrite production (data not shown). #### Induction of iNOS in neonatal rat cardiomyocytes by endotoxin and interleukin-1β In comparison to control, TNFα (1000 U/ml) in the absence of dexamethasone weakly induced the mRNA for iNOS after 24 hours incubation (figure 14). In the presence of 10U/ml TNFa, iNOS-mRNA was not different from control after 24 hours. In contrast, IL-1β and endotoxin strongly induced iNOS in these cells. #### Proinflammatory effects of TNFα, endotoxin, and IL-1β TNF α in the absence of dexamethasone elicited a specific proinflammatory response in the cardiomyocytes, documented by an increased release of IL-6 from the cardiomyocyte cultures, which was determined as IL-6 content in the culture supernatant. No morphological alterations were observed by phase contrast microscopy in TNFα (10-1000 U/ml)-treated cardiomyocytes in comparison to nontreated controls. Table 6 gives the values for low-dose TNFα (10 U/ml), compared to values for endotoxin and interleukin-1\beta. Interleukin-1\beta is the most potent stimulus for interleukin-6 release. Figure 14. Analysis of expression of iNOS mRNA in neonatal rat cardiomyocytes by RT-PCR. After a 24-hour culture period with TNFα (10 or 1000 U/ml) (A), interleukin-1β (100 U/ml), or endotoxin (1 µg/ml) (B), with or without dexamethasone (0.1 µM), total RNA was isolated from cardiomyocytes and RT-PCR was performed for GAPDH and iNOS, and the products were resolved in an ethidium-bromide stained agarose gel. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; iNOS, inducible nitric oxide synthase. A: Lane 1, 100 base pair-DNA ladder; Lane 2, Control medium without dexamethasone; Lane 3, Control medium with dexamethasone; Lane 4, 10 U/ml TNFα without dexamethasone; Lane 5, 10 U/ml TNFα with dexamethasone; Lane 6, 1000 U/ml TNFα without dexamethasone; Lane 7, 1000 U/ml TNFα with dexamethasone. B: Lane 1, 100 base-pair-DNA-ladder; Lane 2, Control medium without dexamethasone; Lane 3, Control medium with dexamethasone; Lane 4, IL-1β without dexamethasone; Lane 5, IL-1β with dexamethasone; Lane 6, Endotoxin without dexamethasone; Lane 7, Endotoxin with dexamethasone. Table 6. Proinflammatory effects of endotoxin, TNFα, and interleukin-1β in neonatal rat cardiomyocytes: increase in cell-associated interleukin-1 activity and released interleukin-6 activity | Stimulus
(24-hour period, serum-free) | DEX | Interleukin-6 (released)
[pg/ml] | Interleukin-1 (released)
[pg/ml] | |--|-----|-------------------------------------|-------------------------------------| | Control | _ | 7,016 ± 1525 | 0 | | Control | + | $2,516 \pm 348$ | 0 | | Endotoxin | _ | $15,548 \pm 4270$ | 95 ± 14 | | Endotoxin | + | $3,133 \pm 1111$ | 0 | | TNFα | _ | $15,254 \pm 2110$ | 0 | | TNFα | + | $3,299 \pm 0$ | 0 | | IL-1β | _ | $69,163 \pm 22,977$ | 289 ± 63 | | IL-1β | + | $10,634 \pm 2311$ | 219 ± 48 | Note: Dexamethasone (DEX), 0.1 μM; Endotoxin, 1 μg/ml; TNFα, 10 U/ml; Interleukin-1β, 100 U/ml. #### Looking for NO-independent mechanisms of TNFa In agreement with previous studies utilizing cultured cardiomyocytes in diverse experimental settings [22,56,59-63,83,85-87], the present study documents that TNF α blocks the inotropic response to catecholamines (α - and β -adrenoceptor stimulation) and high extracellular calcium and attenuates α-adrenoceptor-induced arrhythmias. In the experiments reported here, the cardiodepressant profile of TNF α was characterized in detail by using chronic exposure (6–72 hours) at low, pathogenetically relevant concentrations, which allowed for possible alterations of gene expression to occur. The data show that basal pulsation amplitude is unaltered by TNFα pretreatment. Yet profound impairment of contractile response is evident upon stimulation of α - and β -adrenoceptors by either catecholamines or high calcium, both with regard to the increase in contractility and to the proarrhythmogenic activity. The experiments provide evidence that not only αadrenoceptor-mediated arrhythmias are suppressed by TNFα but also that beating irregularities provoked by β-adrenoceptor stimulation and high extracellular calcium are mitigated in the presence of TNFα. On the other hand, Weisensee et al. [88] had reported the induction of arrhythmias in cardiomyocytes several minutes after treatment with a 1000-fold higher concentration of TNFa, so that response to an acute challenge with very high concentrations of TNFα has to be differentiated from chronic stimulation. Although the negative inotropic action of TNFα has been well documented in vivo, data concerning a possible effect on beating regularity are lacking. However, Song et al. [89] had found in rats that endotoxin
applied in vivo, being a strong inductor of TNFa, protects against ischemia-induced ventricular arrhythmias. Although TNFa profoundly depressed contractile performance of cardiomyocytes at low, clinically relevant concentrations (10 U/ml = 0.033 ng/ml, confer to the reported TNFa plasma levels [43]), this effect did not go along with an enhanced NO production of cardiac muscle and nonmuscle cells from using human or murine TNFα. Furthermore, no enhancement of iNOS transcription in cardiomyocytes could be measured under these conditions. Other groups had reported NOdependent experimental cardiodepression by using TNFa at concentrations of 1000 U/ml [57] and 20 ng/ml [56], administering activated macrophage-conditioned medium to cardiomyocytes [59], or studying myocytes from endotoxemic animals [58]. Shindo et al. [90] reported no induction of iNOS or NO release in neonatal rat cardiomyocytes at a TNFα concentration of 10 ng/ml in serum-containing medium; the contractile performance was not documented. Weak induction of iNOS and slightly enhanced NO release was documented in our experiments under serum-free conditions when a TNFα concentration of 1000 U/ml (=3.3 ng/ml) was used. Thus, in the experimental setting used in this study, a NO-independent mechanism of cardiodepression has to be postulated for low TNF α concentrations. #### Protein pattern of neonatal rat cardiomyocytes under the influence of TNFa About 800 protein spots were counted on the 2D maps, and high reproducibility of position and intensity of the spots could be achieved. By visual comparison of the protein patterns of controls (figure 15A) and TNFα-treated cardiomyocytes (figure 15B,C), no reproducible differences in position and intensity of the protein spots could be detected. No induction of protein variants could be identified in the 2D protein maps of cells incubated with both 10U/ml (figure 15B) and 100U/ml Figure 15. Effect of TNF α on protein pattern of neonatal rat cardiomyocytes. Cardiomyocytes were cultured for 48 hours in the absence (a) or presence of $10\,\mathrm{U/ml}$ TNF α (b) or $100\,\mathrm{U/ml}$ TNF α (c). After the culture period, the cells were harvested and lysed and the proteins were separated according to the isoelectric point (horizontally in the figure) and according to molecular weight (vertically in the figure). No gross alterations in cardiomyocyte protein patterns were observed. Figure 15 (continued) TNFα (figure 15c). Qualitatively the same results were obtained when performing ²D-PAGE with immobilized pH-gradients. Thus, mere cytotoxicity does not seem to be the underlying reason, since cells remain morphologically intact and protein patterns do not give proof of toxicity. Rather a specific cardiodepressive action of TNFa seems likely. #### Influence of TNFa on signal transduction An impairment of the β -adrenoceptor-adenylyl cylase system by TNF α can be excluded, since no inhibition of the adenylyl cyclase activity was observed [85] and a stimulation of adenylyl cylase was evidenced under experimental conditions identical to those chosen for this study [91]. Possible clues to NO-independent contractile disturbance come from (1) a study of Yokoyama et al. [60], who found a reduction of calcium transient in $TNF\alpha$ -treated myocytes that was not mediated by NO, and (2) findings that TNFα diminishes the phosphatidylinositolbisphosphate (PIP₂) synthesis in cardiomyocytes because of diminished production of precursors, which is a consequence of the reduced activity of glycerol-3phosphate dehydrogenase, a key enzyme of lipogenesis (figure 16). In view of the pleiotropic effects of TNFa (for review see [11]), it seems likely that impaired cellular calcium metabolism by TNFa because of interference with several signal transduction pathways (for review see [91,92]) apart from the iNOS-dependent cardiodepression at high concentrations could contribute to impairment of cardiac performance. Figure 16. Effect of TNFα on phosphoinositide metabolism in neonatal rat cardiomyocytes. The positive inotropic and also the toxic, arrhythmogenic effects of \alpha1-adrenoceptor stimulation in the heart are mediated at least in part by the phosphoinositide pathway. α1-adrenoceptor occupation activates the phosphoinositol (PI)-specific phospholipase C. The substrate of the enzyme is phosphoinositol bisphosphate (PIP2). It is cleaved to diacylglycerol and the calcium mobilizing inositol triphosphate (IP3), which leads to a release of calcium from the sarcoplasmic reticulum into the cytosol. This signal transduction is one of the targets of TNFa action in cardiomyocytes: both basal-and α_1 -adrenoceptor-mediated formation of IP₃ is reduced by chronic exposure (3 days) of cardiomyocytes to low TNFa concentrations. This reduction is due to a diminished synthesis of PIP2. As a likely mechanism of TNF α -induced lowering of PIP, formation, inhibition of the activity of a key enzyme of lipogenesis, glycerol-3-phosphate dehydrogenase (GDH) was identified. Adapted from [83]. #### Link to apoptosis? Both TNF receptor subtypes may induce apoptosis, but the p55 receptor seems to be mainly involved [54,93]. The APOl/Fas receptor inducing apoptotic cell death has high sequence similarities with p55-TNF receptor [93]. Both proteins carry a death-domain intracellularly. However, it is entirely unclear whether induction of apoptosis by cytokines may play a role in septic cardiomyopathy. #### SEPTIC CARDIOMYOPATHY: EXPERIMENTALLY SUPPORTED CONCEPTS Presently, a uniform concept of the mechanism of septic myocardial depression is out of reach. However, some picture in diversity emerges. Though endotoxin is thought to represent the main trigger toxin of cardiodepression in Gram-negative sepsis, the situation is much less clear in Grampositive sepsis, where endotoxin is not required for the onset of the disease [94] and toxins acting as superantigens may play a dominant role. It is well-documented that the degree of myocardial depression in Gram-positive sepsis is similar to that in Gram-negative sepsis (figure 4). This is likely to be due to cytokine release, which is common to Gram-positive and Gram-negative infection. However, bacterial toxins, like toxic shock syndrome toxin-1 [95] and the alpha toxin of Clostridium perfringers [96], may contribute to pump failure by distinct mechanisms and may Figure 17. Cardiodepressant factors in sepsis: experimentally supported concepts. NO, nitric oxide; cGMP, cyclic guanosine monophosphate; G prot, guanine nucleotide binding protein; AC, adenylyl cyclase; AR-AG, adrenoceptor agonist; IP,, inositol triphosphate; CDF, cardiodepressant factor; BAS CONTR, basal contractility. Adapted from [11]. directly inhibit myocardial function. In the cardiomyocyte model, Pseudomonas exotoxin A-an inhibitor of protein biosynthesis via ADP ribosylation of elongation factor 2 [97]—was shown to narrow the regulatory range of contractile performance [73]. In the clinical setting, the relevance of bacterial toxins for septic cardiomyopathy has not been sorted out. How cytokines and endogenous mediators eventually exert their cardiodepressant action is the focus of research. It was found that several pathways, not a single cascade of events, mediated cardiodepression in various experimental settings [92], including the NO/cGMP pathway, the phosphoinositide pathway, the βadrenoceptor/G protein/adenylyl cyclase axis, the calcium transient [60], and the calcium inward current [98] (figure 17). Consequently, the inotropic effects of numerous agents including α - and β -adrenergic stimuli are weakened. The importance of cytokines in nonseptic heart disease remains to be established and may open new therapeutic horizons, which are desperately sought in view of the still very high mortality of sepsis and septic shock. #### **ACKNOWLEDGMENTS** This study was supported by the Deutsche Forschungsgemeinschaft (Mu 1010/1-4, -5, Sta 311/2-1) and by Bundesministerium für Bildung und Forschung (BMBF, grant no. 01ZZ9512). #### REFERENCES - 1. Ibelgaufts H. 1995. Dictionary of cytokines. Weinheim, Germany: VCH Verlagsgesellschaft. - 2. The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429-1435. - 3. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Routcau JL, Rutherford J, Wertheimer IH, Hawkins CM, on behalf of the SAVE Investigators, 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl I Med 327:669-677. - 4. The Acute Ramipril Efficacy Study Investigators. 1993. Effects of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 342:821-828. - 5. Mancini GBJ, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard ACG, Pepine CJ, Pitt B. 1996. Angiotensin converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease: the TREND (trial on reversing endothelial dysfunction) study. Circulation 94:258-265. - 6. Mombouli J-V, Vanhoutte PM. 1995. Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 35:679-705. - 7. Kasel M, Faußner A, Pfeifer A, Müller U, Werdan K, Roscher AA. 1996. B2 bradykinin receptors in neonatal rat cardiomyocytes mediating a negative chronotropic and negative inotropic response. Diabetes 45(Suppl 1):S44-S50. - 8. Shah AM. 1996. Paracrine modulation of heart cell function by endothelial cells. Cardiovascular Research 31:847-867. - 9. Wei C-M, Jiang S-W, Lust JA, Daly RC, McGregor CGA. 1996. Genetic expression of endothelial nitric oxide synthase in human atrial myocardium.
Mayo Clin Proc 71:346-350. - 10. Morawietz H, Rohrbach S, Darmer D, Hakim K, Zerkowski HR, Holtz J. 1996. Angiotensin converting enzyme inhibitor treatment upregulates the expression of endothelial nitric oxide synthase in human atrial myocardium. Circulation 94(Suppl I)I-521. - 11. Müller-Werdan U, Reithmann C, Werdan K. 1996. Cytokines and the Heart-Molecular mechanisms of Septic Cardiomyopathy. Heidelberg: Springer-Verlag. - 12. Kelly RA, Balligand J-L, Smith TW. 1996. Nitric oxide and cardiac function. Circ Res 79:363- - 13. Fink MP, Payen D, eds. 1995. Role of nitric oxide in sepsis and ARDS. Heidelberg: Springer Verlag. - 14. de Belder AJ, Radomski MW, Why HJF, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moncada S. 1993. Nitric oxide synthase activities in human myocardium. Lancet 341:84-85. - 15. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF. 1995. Myocardial calciumindependent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not ischemic or valvular heart disease. Br Heart J 74:426- - 16. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. 1996. Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087-1094. - 17. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. 1996. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 347:1151-1155. - 18. Thoenes M, Förstermann U, Tracey WR, Bleese NM, Nüssler AK, Scholz H, Stein B. 1996. Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 28:165-169. - 19. Wildhirt SM, Dudek RR, Suzuki H, Narayan KS, Winder S, Choe J, Bing RJ. 1995. Expression of nitric oxide synthase isoforms after myocardial infarction in humans. Endothelium 3:209-224. - 20. Lewis NP, Tsao PS, Rickenbacher PR, Xue C, Johns RA, Haywood GA, van der Leyen H, Trindade PT, Cooke JP, Hunt SA, Billingham ME, Valantine HA, Fowler MB. 1996. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation 93:720-729. - 21. Parker MM, Shelhamer JH, Bacharach SL, Green MW, Natanson C, Frederick TM, Damske BA, Parrillo JE. 1984. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483-490. - 22. Werdan K, Müller U, Reithmann C. 1993. "Negative inotropic cascades" in cardiomyocytes - triggered by substances relevant to sepsis. In Pathophysiology of shock, sepsis, and organ failure. Ed. G Schlag and H Redl, 787-833. Heidelberg: Springer Verlag. - 23. Pilz G, McGinn P, Boekstegers P, Kääb S, Weidenhöfer S, Werdan K. 1994. Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than non-Pseudomonas sepsis. Circ Shock 42:174-182. - 24. Parrillo JE. 1989. Septic shock in humans: clinical evaluation, pathogenesis, and therapeutic approach. In Textbook of Critical Care, 2d ed. Ed. WC Shoemaker, S Ayres, A Grenvik, PR Holbrook, WL Thompson, 1006-1024. Philadelphia: Saunders. - 25. Vincent J-L, Gris P, Coffernils M, Leon M, Pinsky M, Reuse C, Kahn RJ. 1992. Myocardial depression characterizes the fatal course of septic shock. Surgery 111:660-667. - 26. Parrillo JE. 1989. The cardiovascular pathophysiology of sepsis. Ann Rev Med 40:469-485. - 27. Werdan K, Pilz P. 1996. Supplemental immune globulins in sepsis: a critical appraisal. Clin Exp Immunol 104(Suppl 1):83-90. - 28. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. 1992. Definitions for sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864-874. - 29. Bone RC. 1996. Sir Isaak Newton, sepsis, SIRS, and CARS. Crit Care Med 24:1125-1128. - 30. Sibbald WJ, Vincent J-L. 1995. Roundtable conference on clinical trials for the treatment of sepsis. Chest 107:522-527. - 31. Werdan K. 1995. Towards a more causal treatment of septic cardiomyopathy. In Yearbook on intensive care and emergency medicine. Ed. J-L Vincent, 518-538. Heidelberg: Springer Verlag. - 32. Menasché P. 1995. The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function. Current Opinion in Cardiology 10:597-604. - 33. Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. 1995. The role of nitric oxide in cardiac depression induced by interleukin-1β and tumor necrosis factor-α. Br J Pharmacol - 34. Natanson C, Eichacker PQ, Hoffman WD, Banks SM, MacVittie TJ, Parrilo JE. 1989. Human recombinant interleukin-1 (IL-1) produced minimal effects on canine cardiovascular (CV) function. Clin Res 37:346A. - 35. Rietschel ET, Brade H. 1992. Bacterial endotoxins. Sci Am August 26-33. - 36. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE. 1989. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280-287. - 37. Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, LeBeau MM. 1988. The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239:497-500. - 38. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. J Immunol 144:2566-2571. - 39. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. 1990. Structure and function of lipopolysaccharide-binding protein. Science 249:1429-1431. - 40. Schumann RR, Rietschel ET, Loppnow H. 1994. The role of CD14 and lipopolysaccharidebinding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol 183:279-297. - 41. Loppnow H, Stelter F, Schönbeck U, Schlüter C, Ernst M, Schütt C, Flad H-D. 1995. Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infect Immun 63:1020-1026. - 42. Michie HR, Manogue KR, Spriggs DR, Revhaug A, Dwyer SI, Dinarello CA, Cerami A, Wolff SM, Wilmore DW. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481-1486. - 43. Matsumori A. 1996. Cytokines in myocarditis and cardiomyopathies. Current Opinion in Cardiology 11:302-309. - 44. Blick M, Sherwin SA, Rosenblum M, Gutterman J. 1987. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47:2986-2989. - 45. Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D, Calvert AH, McElwain T, Fearon K, Humphreys J. Shiga T. 1987. Tumor necrosis factor in man: Clinical and biological observations. Br J Cancer 56:803-808. - 46. Spriggs DR, Sherman ML, Michi H, Arthur KA, Imamura K, Wilmore D, Frei III E, Kufe DW. 1988. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion; a phase I and pharmacologic study. J Natl Cancer Inst 80:1039-1044. - 47. Hegewisch S, Weh H-J, Hossfeld DK. 1990. TNF-induced cardiomyopathy. Lancet 335:294-295. - 48. Natanson C, Eichenholz PW, Danner RL, Eichacker PO, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE. 1989. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823-832. - 49. Eichenholz PW, Eichacker PQ, Hoffman WD, Banks SM, Parrillo JE, Danner RL, Natanson C. 1992. Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263:H668-HH675. - 50. Odeh M. 1994. Tumor necrosis factor-α as a myocardial depressant substance. Int J Cardiol 42: 231 - 238. - 51. Packer M. 1995. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 92:1379-1382. - 52. Vincent J-L, Bakker J, Marecaux G, Schandene J, Kahn RJ, Dupont E. 1992. Administration of anti-TNF antibody improves left ventricular function in septic shock patients-results from a pilot study. Chest 101:810-815. - 53. Boekstegers P, Weidenhöfer S, Zell R, Pilz G, Holler E, Ertel W, Kapsner T, Redl H, Schlag G, Kaul M, Kempeni J, Stenzel R, Werdan K. 1994. Repeated administration of a F(ab'), fragment of an anti-tumor necrosis factor a monoclonal antibody in patients with severe sepsis: effects on the cardiovascular system and cytokine levels. Shock 1:237-245. - 54. Bazzoni F, Beutler B. 1995. How do tumor necrosis factor receptors work? Journal of Inflammation - 55. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. 1995. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487-1493. - 56. Schulz R, Nava E, Moncada S. 1992. Induction and potential biological relevance of a Ca²⁺independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575-580. - 57. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. 1992. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387-389. - 58. Brady AJ, Poole-Wilson PA, Harding SE, Warren JB. 1992. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263:H1963-H1966. - 59. Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW. 1993. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314-2319. - 60. Yokoyama T, Vaca L, Rosen RD, Durante W, Hazarika P, Mann DL. 1993. Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian heart. I Clin Invest 92:2303-2312. - 61. Werdan K, Müller-Werdan U, Reithmann C, Boekstegers P, Fuchs R, Kainz I, Stadler J. 1995. Nitric oxide dependent and independent effects of tumor necrosis factor-a on cardiomyocyte beating activity
and signal transduction pathways. In Shock, sepsis and organ failure—nitric oxide. Ed. G Schlag and H Redl. Heidelberg: Springer Verlag. - 62. Werdan K, Müller-Werdan U. 1996. Elucidating molecular mechanisms of septic cardiomyopathy—the cardiomyocyte model. J Mol Cell Biochem 163/164:291-303. - 63. Müller-Werdan U, Fuchs R, Zimny-Arndt U, Chang He, Jungblut P, Stadler J, Werdan K. 1996. TNFa profoundly depresses contractility of cardiomyocytes, without grossly modifying protein pattern. J Mol Cell Cardiol 28:P-9. - 64. Paulus WJ, Vantrimpont PJ, Shah AM. 1994. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89:2070-2078. - 65. Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB. 1991. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621-626. - 66. Evans T, Carpenter A, Kinderman H, Cohen J. 1993. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41:77-81. - 67. Müller-Werdan U, Prondzinsky R, Witthaut R, Stache N, Heinroth K, Kuhn C, Schmidt H, Busch I, Werdan K. 1997. Das Herz Bei Sepsis und MODS. Wiener Klinische Wochenschrift 109/ - 68. Preiser J-C, Lejeune P, Roman A, Carlier E, De Backer D, Leeman M, Kahn RJ, Vincent J-L. 1995. Methylene blue administration in septic shock: A clinical trial. Crit Care Med 23:259- - 69. Weitzberg E, Rudehill A, Modin A, Lundberg JM. 1995. Effect of combined nitric oxide inhalation and N^G-nitro-L-arginine infusion in porcine endotoxin shock. Crit Care Med 23:909-918. - 70. Werdan K, Erdmann E. 1989. Preparation and culture of embryonic and neonatal heart muscle cells: modification of transport activity. Methods in Enzymology 173:634-662. - 71. Reithmann C, Werdan K. 1994. Tumor necrosis factor a decreases inositol phosphate formation and phosphatidylinositol-bisphosphate (PIP2) synthesis in rat cardiomyocytes. Naunyn-Schmiedeberg's Arch Pharmacol 349:175-182. - 72. Müller-Werdan U, Klein D, Zander M, Werdan K, Hammer C. 1994. Beating neonatal rat cardiomyocytes as a model to study the role of xenoreactive natural antibodies in xenotransplantation. Transplantation 58:1403-1409. - 73. Reithmann C, Scheininger C, Bulgan T, Werdan K. 1996. Exposure to the n-3 polyunsaturated fatty acid docosahexaenoic acid impairs α_1 -adrenoceptor-mediated contractile responses and inositol phosphate formation in rat cardiomyocytes. Naunyn-Schmiedeberg's Arch Pharmacol 254:109-119. - 74. Müller-Werdan U, Pfeifer A, Hübner G, Seliger C, Reithmann C, Rupp H, Werdan K. 1997. Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799-811. - 75. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press. - 76. Loppnow H, Brade H, Rietschel ET, Flad HD. 1994. Induction of cytokines in mononuclear and vascular cells by endotoxin and other bacterial products. Methods in Enzymology 236:3-10. - 77. Gillis S, Ferm MM, Ou W, Smith KA. 1978. T-cell growth factor: Parameters for production and a quantitative microassay for activity. J Immunol 120:2027-2032. - 78. Klose J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis in mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231-243. - 79. Jungblut P, Seifert R. 1990. Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J Biochem Biophys Meth 21:47-58. - 80. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. - 81. Jungblut P, Klose J. 1986. Composition and genetic variability of Heparin-Sepharose CL-6B protein fractions obtained from the solubilized proteins of mouse organs. Biochem Genet 24:925-939. - 82. Chang He, Müller U, Oberthür W, Werdan K. 1992. Application of high-resolution twodimensional polyacrylamide gel electrophoresis of polypeptides from cultured neonatal rat cardiomyocytes: Regulation of protein synthesis by catecholamines. Electrophoresis 13:748-754. - 83. Chang He, Müller U, Werdan K. 1992. Regulation of protein biosynthesis in neonatal rat cardiomyocytes by adrenoceptor-stimulation: Investigations with high-resolution two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 13:755-756. - 84. Brady AJB, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. 1993. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265:H176-H182. - 85. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. 1989. Interleukin-l and tumor necrosis factor inhibit cardiac myocyte adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753-6757. - 86. Boekstegers P, Kainz I, Giehrl W, Peter W, Werdan K. 1996. Subchronic exposure of cardiomyocytes to low concentrations of tumor necrosis factor α attenuates the positive inotropic response not only to catecholamines but also to cardiac glycosides and high calcium concentrations. Mol Cell Biochem 156:135-143. - 87. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. 1996. Tumor necrosis factor α and interleukin-1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949-958. - 88. Weisensee D, Bereiter-Hahn J, Schoeppe W, Low-Friedrich I. 1993. Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15:581-587. - 89. Song W, Furman BL, Parratt JR. 1994. Attenuation by dexamethasone of endotoxin protection against ischemia-induced ventricular arrhythmias. Br J Pharmacol 113:1083-1084. - 90. Shindo T, Ikeda U, Ohkawa F, Kawahara Y, Yokoyama M, Shimada K. 1995. Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovascular Research - 91. Reithmann C, Gierschik P, Werdan K, Jakobs KH. 1991. Tumor necrosis factor α up-regulates G_{iα} and G_8 proteins and adenylyl cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol—Mol Pharmacol 206:53-60. - 92. Werdan K, Reithmann C, Müller-Werdan U, Pilz G, Boekstegers P, Fuchs R, Kainz I, - Fraunberger P, Walli AK, Stadler J. 1996. Impaired cellular signaling of the adenylyl cyclase and the phosphoinositide pathway in septic cardiomyopathy. In Pathophysiology of Heart Failure, Ed. NS Dahlla, PK Singal, N Takeda, RE Beamish, 277-310. Boston: Kluwer Academic Publishers. - 93. Brömme HJ, Holtz J. 1996. Apoptosis in the heart: Why and when? J Mol Cell Biochem 163/164:261-275. - 94. Bone R. 1993. How Gram-positive organisms cause sepsis. J Crit Care 8:51-59. - 95. Olson RD, Stevens DL, Melish ME. 1989. Direct effects of purified staphylococcal toxic shock syndrome toxin 1 on myocardial function of isolated rabbit atria. Rev Infect Dis 11(Suppl 1): S313-S315. - 96. Stevens DL, Troyer BE, Merrick DT, Mitten JE, Olsen RD. 1988. Lethal effects and cardiovascular effects of purified alpha- and theta-toxins from Clostridium perfringens. J Infect Dis 157:272-279. - 97. Iglewski BH, Liu PV, Kabat D. 1977. Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 15:138-144. - 98. Hallström S, Koidl B, Müller U, Werdan K, Schlag G. 1991. A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Am J Physiol 261:H869-H876. - 99. Müller-Werdan U, Schumann H, Fuchs R, Reithmann C, Loppnow H, Koch S, Zimny-Arndt U, Chang H, Darmer D, Jungblut P, Stadler J, Holtz J, Werdan K. 1997. Tumor necrosis factor a (TNFa) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol 29:2915-2923. - 100. Müller-Werdan U, Schumann H, Loppnow H, Fuchs R, Darmer D, Stadler J, Holtz J, Werdan K. 1998. Endotoxin and tumor necrosis factor α extert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J Mol Cell Cardiol 30:1027-1036. # IN PURSUIT OF OPTIMAL CARE AND OUTCOMES FOR PATIENTS WITH CONGESTIVE HEART FAILURE: INSIGHTS FROM THE PAST DECADE *TERRENCE MONTAGUE, KOON TEO, LAUREL TAYLOR, FINLAY MCALISTER, MARGARET ACKMAN, and ROSS TSUYUKI, FOR THE INVESTIGATORS AND STAFF OF THE HEART FUNCTION CLINIC, UNIVERSITY OF ALBERTA HOSPITALS, and THE CLINICAL QUALITY IMPROVEMENT NETWORK (CQIN) Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada and *Department of Patient Health, Human Health Division, Merck Frosst Canada Inc, Kirkland, Québec, Canada **Summary.** This chapter provides an integrated summary of current insights on the epidemiology and optimal management of patients with congestive heart failure (CHF) and reviews the authors' experience of CHF management in the last decade, including results from large clinical trials, demographic and practice pattern analyses, and related health outcomes studies. CHF is a major public health burden, affecting one percent of the entire Canadian population. Moreover, its incidence and prevalence are increasing, and the mortality risk remains high. In the acute care setting, about one in five patients die during admission. Chronically, the one-year mortality risk for patients with systolic left ventricular dysfunction, who comprise more than three-quarters of all CHF patients, is 25 percent versus 16 percent for patients with predominantly diastolic dysfunction. The principal cause of death in CHF is progression of heart failure, although noncardiac causes, particularly cancer and pulmonary diseases, account for about 30 percent of all deaths. Therapy proven to reduce overall mortality in CHF is presently limited to angiotensin-converting enzyme inhibitors (ACEI), although angiotensin receptor
antagonists, beta blockers, and cardiac allografts appear efficacious in small trials and/or major subsets of CHF patients. Diuretics and digoxin can decrease patient symptomatology and hospitalizations in some patients, but ACEI remain the only medication proven to decrease total hospitalizations. Medications, of themselves, do not improve quality of life in CHF, but medications, in combination with a global and seamless approach to care that includes an accent on patient education, are associated with increased patient satisfaction and improved life quality. Optimal care programs are also associated with favorable survival outcomes for CHF patients, which are in the range of that reported from recent CHF clinical trials and contemporary transplant data. However, the optimal effectiveness of therapy for the whole Canadian CHF population at risk is being limited by less than optimal prescription of, and suboptimal compliance with, proven therapy. As well, restrictive reimbursement policies, which limit patient access to physician-prescribed drugs, threaten to add another impediment to population effectiveness of proven CHF therapy. As many as 50 to 75 percent of eligible CHF patients, particularly older patients and women, may not presently be receiving persistent beneficial therapy, which results in unnecessary adverse clinical and fiscal outcomes for themselves and for the nation. Moreover, in contrast to improvements in the acute cardiac diseases, the CHF practice patterns and outcomes appear more difficult to modify. In summary, CHF is an increasingly important and treatable disease in Canada, but its management and outcomes remain less than optimal. As the population ages, CHF will assume even greater relative importance as a chronic and terminal illness. More efficacious medications are needed for this future. In the interim, more effective application of proven therapies, particularly comprehensive and integrated disease management programs, would substantially improve duration and quality of life for patients with CHF. In 1989, the Division of Cardiology at the University of Alberta Hospitals launched an initiative dedicated to the investigation and treatment of patients with congestive heart failure (CHF). The model, called the Heart Function Clinic, was stimulated because of a perception that an innovative outpatient-focused management plan was desirable, even necessary, to optimize care for the increasing numbers of patients with left ventricular dysfunction and CHF [1]. The primary goal of the Heart Function Clinic was, and is, the provision of appropriate CHF therapy [2]. This is defined as efficacious CHF therapy integrated with the management all of the patients' diseases, their functional and social status, and their inpatient care—that is, evidence-based, comprehensive and seamless care that can be effective in the whole CHF population at risk [2]. A major subsidiary goal of the Heart Function Clinic was both to investigate, alone and in partnership, the trials' efficacy and population effectiveness of CHF treatments and to propagate the findings through presentations, publications, and other continuing education programs [3-16]. One development of the latter activities was the formation of the Clinical Quality Improvement Network (CQIN), a group of like-minded Canadian stakeholders whose principal goal was to further define and improve treatment strategies and outcomes for important cardiac diseases, including CHF [17-23]. This review summarizes the principal insights gained from the investigation and management of CHF in the Heart Function Clinic and CQIN over the last decade. #### EFFICACY OF CHF THERAPY In 1992, when we first reviewed the strategy and practices of the Heart Function Clinic, angiotensin-converting enzyme inhibitors (ACEI) drugs were identified as the only proven efficacious medical therapy for reduction of mortality and hospitalization among CHF patients [1,3,4]. By extrapolation, since coronary atherosclerosis was, and is, the preeminent etiology of left ventricular dysfunction and CHF, we postulated that beta-blockers, acetylsalicylic acid, other antiplatelet medications, and atherosclerosis prevention or reversal might also be efficacious therapy for the Figure 1. Critical path algorithm outlining the evidence-based consensus management of patients with congestive heart failure, as proposed by the Canadian Cardiovascular Society [5] and modified for hospital and community use in the Edmonton health region [23]. primary and secondary prevention of CHF [1]. Diuretics and digitalis therapy were recognized as frequently utilized, often symptomatically beneficial, and, on average, safe CHF therapies; although both remained untested, and hence unproven, in reducing death and hospitalization in randomized clinical trials [1]. Other, sometimes-used CHF therapies, including non-ACEI vasodilators and nondigitalis, positive inotropic agents, were judged as nonbeneficial or detrimental based on the available weight of trials' evidence [1]. In a subsequent analysis, cardiac transplantation was evaluated as being similar to diuretic therapy, which is almost certainly efficacious, but not trials proven and not likely to be the subject of a large randomized, controlled trial at any time in the near future [2]. Since 1992, the epidemiological burden of illness of CHF has remained high in Canada, presently affecting an estimated 300,000 citizens with the incidence and prevalence increasing [2,5,9]. Unfortunately, the number of available efficacious therapies has not greatly increased. A recent national consensus report of CHF therapeutic efficacy produced conclusions very similar to those of our 1992 analysis, summarized above [5]. Specifically, among all the recommended CHF management strategies of the Canadian Cardiovascular Society (figure 1), ACEI therapy remains the only intervention conclusively proven to reduce overall CHF mortality and hospitalization rates [3-5,9], although beta blockers and angiotensin receptor antagonists are promising. An important ancillary insight has, however, emerged from the sequential trials of ACEI therapy for left ventricular dysfunction and CHF [6-8]. In repeated subgroup analyses, ACEI therapy has been associated, not only with reductions in overall cardiovascular mortality and retardation of progression of heart failure, but also with a consistent decrease in acute ischemic events [6-8]. This apparent anti-ischemic effect has a different time course, and presumably different pathophysiological pathway, from the antifailure effect of ACEI [6-8]. In comparison to the antifailure effect of ACEI in CHF patients, the anti-ischemic impact does not become significant until several months to years after initiation of therapy [6-8]. In this regard, it is similar to the anti-ischemic impact of lipid lowering therapy in coronary heart disease and may, in fact, represent an antiatherosclerotic effect that is timedependent at onset [6-8]. Proposed explanations for the possible antiatherosclerotic or cardioprotective effects of ACEI drugs include: enhanced coronary endothelial cell function; retarded smooth muscle cell infiltration and migration in arterial intima; and stabilization of the atherosclerotic plaque [6-8,19]. The anti-ischemic and antiatherosclerotic hypotheses are now being tested in at least two large, randomized clinical trials, with both clinical and coronary angiographic endpoints [24,25]. New data has come from the completion of the Digitalis Investigation Group (DIG) Trial, a large, simple, long-term, randomized trial of digoxin efficacy upon mortality in CHF [11-13]. Digoxin did not reduce overall mortality [12,13]. It did reduce, however, overall hospitalization rates and was also associated with prevention of heart failure events among sicker patient subgroups [12,13]. Overall, the routine clinical use of [1], and the consensus guideline recomendations (figure 1) [5] for, digitalis therapy in CHF are likely to remain unchanged by the DIG trial results. #### INSIGHTS FROM CHF EFFECTIVENESS STUDIES #### Utilization of proven and promising therapies In a recent analysis of prescription medication use among 4606 CHF patients admitted to eight large Canadian acute care hospitals, the CQIN investigators found diuretics to be used in more than 80 percent of patients [21]. ACEI drugs were used in only about 55 percent of all patients, and digoxin use averaged 45 percent [21]. Beta blocker medication was used in 16 percent of patients [21]. In contrast, chronic utilization rates of the same medications in the Heart Function Clinic over its first three years of operation were as follows: diuretics, 66 percent; ACEI, 87 percent; digoxin, 61 percent; and beta blockers, 23 percent [1]. In a recent update of medication utilization patterns in the Heart Function Clinic, the respective rates were as follows: diuretics, 80 percent; ACEI, 80 percent; digoxin, 60 percent; and beta blockers, 28 percent [14]. These data reveal the chronic utilization patterns of CHF drugs in the Heart Function Clinic have remained qualitatively stable from 1989 to the present, with only small quanitative increases in the use of diuretics and beta blockers and small decreases in digoxin and ACEI [1,14]. However, the differences in CHF medication use between the unmanaged acute care setting and the managed care setting of the Heart Function Clinic illustrate a care gap between what may be usual care and what could be viewed as optimal care. This care gap may manifest as a large cost gap as well. For example, if 40 percent of all CHF patients that could be receiving ACEI are not receiving this efficacious medication, then they cannot hope to gain the clinical benefit of reduced hospitalizations, the single largest positive impact of the medication in the SOLVD trials [3,4]. Moreover, whoever is paying for these avoidable hospitalizations is paying unnecessarily. For the nation
as a whole, with 40 percent of 300,000 CHF patients possibly not receiving ACEI, a feasible estimate of the total net costs of the avoidable hospitalizations, based on the SOLVD effect size differences and present costs of enalapril [3,4], is approximately 25 million dollars/year. Thus, at least for the management of CHF, there is a large fiscal stimulus to make best care, usual care! ## Nonprescription medications The use of nonprescription drugs among CHF patients was recently defined because of concern for possibly detrimental drug-drug interactions in this largely elderly, multiple comorbidity population. In a comparison analysis of a representative sample of 167 patients from the Heart Function Clinic and an age, sex, and socioeconomically matched control group without heart disease, it was found that both groups of older subjects (average age of CHF patients, 69 years) had very similar use patterns for nonprescription drugs [16]. The most commonly used drugs were vitamins, pain relievers, herbal products, and antacids; all were taken on a regular basis by 25 to 60 percent of both CHF patients and controls [16]. However, significantly fewer patients than controls used decongestants (one percent versus five percent), and more patients than controls used stool softeners (eleven percent versus two percent) [16]. These latter intergroup differences may be a reflection of the strong accent on direct patient education in the Heart Function Clinic [1,2]. #### Survival When dealing with heart disease, perhaps the most important outcome variable is survival, or its converse, death. In the CQIN analysis of CHF in the acute care setting, the in-hospital mortality rate averaged 19 percent, with a range of 13 to 26 percent [21]. Mortality risk for CHF patients who were 70 years of age and older (21 percent) was significantly higher than that of patients who were less than 70 years old (13 percent), and logistic regression analyses confirmed older age to be associated with the greatest relative risk of death for both males and females [21]. ACEI use was associated with the least relative risk of dying in hospital, overall and in all patient subgroups, including males, females, older and, younger patients [21]. Chronic survival in the Heart Function Clinic has been assessed twice, with similar findings both times [2,14]. Long-term survival is strongly related to symptomatic status [2,14], averaging about 80 percent at two years for patients with no or mild limitation of physical ability, but falling to about 35 percent survival at two years for patients with severe functional limitation [2,14]. Logistic regression analyses confirmed functional status as an important independent risk predictor, similar to the acute care setting, and also revealed older age to be associated with increased relative risk of dying with CHF. One perspective that can be drawn from these chronic survival data of the Heart Function Clinic is that they compare favorably with the survival data in recent CHF clinic trials and with survival in the posttransplant setting [2-4,14]. Moreover, these outcomes were achieved with an average daily dose of the principal ACEI enalapril (11 mg) that was less than the average daily dose of the same medication used in the SOLVD trials (17 mg) [3,4]. This finding suggests that qualitative use of ACEI may be relatively more important than quantitative dose of ACEI to obtain desirable outcomes in CHF. Overall, these insights support the hypothesis that comprehensive, integrated and, evidence-based medical management of CHF patients is associated with beneficial clinical and fiscal outcomes [1,2,14]. ## Cause specific mortality Another clinical perspective was derived from a CQIN analysis of cause-specific mortality in CHF [22]. This study was done in three acute care hospitals and assessed the causal attribution of death among 2216 CHF patients admitted in 1992 and 1993 [22]. The overall mortality rate was 18 percent at an average of 76 years [22]. Cause of death was judged as cardiac in 72 percent of all deaths [22]. Among the nearly 30 percent of noncardiac deaths, cancer was the dominant cause, followed by pulmonary disease and cerebrovascular disease [22]. Overall, the noncardiac causes of death among CHF patients very much resembled the major causes of noncardiac death in the age-matched general population [22]. Relative to cardiac causes, the contribution of noncardiac causes of death in CHF patients may well be expected to increase in the future, if further success is gained in finding efficacious therapies for cardiac disease [22]. ## Quality of life Although the SOLVD studies were truly landmark achievements in the search for the most efficacious management of CHF, they were disappointing in terms of medication impact upon health-related quality of life [3,4]. The study drug, enalapril, was not associated with any consistent improvement in patients' perception of life quality, despite the marked improvements in survival and hospitalization rates [3,4]. Quality of life measures were, however, found to reflect a generally poor life quality and to be very significant predictors of mortality risk in CHF patients, independent of other traditional risk factors such as age [3,4]. Thus, the hypothesis remained, following the SOLVD studies, that if quality of life could be improved for CHF patients, their duration of life might also be improved. We have evaluated CHF patients' perception of general quality of life on two occasions and got the same answer both times [2]. Briefly, CHF patients in the Heart Function Clinic and the Heart Transplant Clinic were asked to evaluate their present all-inclusive life quality on a scale of one to ten, with ten representing the best possible life and one, the worst possible existence [2]. Moreover, they were also asked, using the same scale, to rate their quality of life prior to attendance at the clinics and to forecast it two years into the future [2]. In both settings there were perceptions of significant improvements in general quality of life associated with clinic attendance, and this improvement in quality of life status appeared to have a carry over effect manifest as hope for the future [2]. Repeated structural equation modeling analyses of what processes in the clinics drove the patients' improvement in quality of life suggested the drivers were complex, but the single most important factor identified was the transfer of knowledge regarding the CHF disease syndrome from the clinics' staff to the patients and their families (unpublished data). After determination of this finding, direct education to the patient became a very important facet of the integrated approach to CHF patient care in the Heart Function Clinic [2]. This approach remains, to our knowledge, the most promising process to produce enhanced duration and quality of life for CHF patients [2,14]. Obviously other promising therapies to improve life quality in CHF patients need to be tested, including the potentially beneficial effects of regular exercise [10]. ## Systolic versus diastolic ventricular dysfunction Increasingly CHF patients are clinically classified as to whether they have predominantly systolic or diastolic left ventricular dysfunction (figure 1) [5,11-15]. Predominantly systolic dysfunction, defined as left ventricular ejection fraction equal to, or less than, 45 percent, is, by far, the more common of the two presentations. For example, in the DIG study population, CHF patients with left ventricular ejection fractions greater than 45 percent, which is predominantly diastolic dysfunction, accounted for only 13 percent of all patients [11]. In the Heart Function Clinic population, when using the same ejection fraction criterion, CHF patients with predominantly diastolic function accounted for 22 percent of all patients [14,15]. Moreover, there are important demographic and etiological differences between these two pathophysiological groups of CHF patients. Diastolic dysfunction patients are older (mean, 69 years) than CHF patients with systolic fault (mean, 65 years) [15]. Fifty percent of patients with predominantly diastolic dysfunction are females, whereas 28 percent of CHF patients with systolic dysfunction are female. Hypertension is a contributing etiology in 40 percent of diastolic patients versus only 28 percent prevalence among systolic dysfunction patients [15]. In contrast, ischemic heart disease etiology was present in 74 percent of patients with systolic dysfunction versus 43 percent prevalence among CHF patients with dominantly diastolic left ventricular dysfunction [15]. Perhaps the most important distinction between the diastolic and systolic dysfunction patient groups is found in the patterns of medical treatment and clinical outcomes in each of the groups [15]. Although there were no differences in Figure 2. Logistic regression analysis of demographic and clinical variables relative to long-term mortality risk in 554 CHF patients managed in the Heart Function Clinic at the University of Alberta Hospitals, 1989 to 1996. ACEI, angiotensin-converting enzyme inhibitor therapy; AAryth, Atrial fibrillation and other atrial arrythmias; BB, beta blocker drugs; CHD, coronary heart disease; ≥70, 70 years of age and older; LVH, left ventricular hypertrophy; Loop, loop diuretic; TZ, thiazide diuretics; MZ, metalozone diuretic; NYHA, New York Heart Association functional classification of IV: SYS, systolic left ventricular dysfunction. functional classification between the two groups at the time of entry into the Heart Function Clinic, the number of CHF patients with diastolic dysfunction who received ACEI (69 percent) and diuretics (72 percent) is less than the number of those with systolic dysfunction who received ACEI (86 percent) and diuretics (80 percent) [15]. Digoxin use was the same in both groups, and patients with diastolic dysfunction received more beta blockers (31 percent
versus 22 percent) and calcium channel blockers (22 percent versus 13 percent) [15]. One-year mortality averaged 16 percent for Heart Function Clinic patients with diastolic dysfunction versus 24 percent for patients with systolic dysfunction [14,15]. Similarly, in the DIG trial, the overall mortality risk in patients with ejection fractions greater than 45 percent was lower, averaging 23 percent, than that of CHF patients with predominantly systolic dysfunction, who had an average mortality of 35 percent over the 37-month course of the study [12]. In the Heart Function Clinic population, logistic regression analysis of long-term mortality versus demographic and clinical variables revealed older age, CHD etiology, and systolic left ventricular dysfunction pathophysiology, as well as severity of clinical status, were the principal associations with excess risk of death (figure 2). Use of ACEI and beta blockers and presence of left ventricular hypertrophy and atrial arrythmias were associated with decreased relative risk (figure 2). There were similar associations with increased and decreased mortality risk in the CHF patient groups with systolic and diastolic left ventricular dysfunction (figure 2) [15]. #### Age and sex biases A consistent finding of medication utilization and mortality risk patterns in repeated analyses of cardiac patient groups in the CQIN studies has been the relatively lower use of proven medications and higher risk among females and patients 70 years of age and older [17,19-21]. This homogeneity of dichotomous treatment patterns and outcomes was true, as well, in CHF [21]. For example, in the recent CQIN analysis of 8 community and university tertiary care centers, in-hospital mortality for patients 70 years and older averaged 21 percent versus 13 percent for younger CHF patients [21]. Moreover, it is significant that ACEI and beta blockers were used in the older CHF patients less frequently than in their younger counterparts [21]. Logistic regression confirmed that (1) the independent nature of age is a factor conveying increased relative mortality risk, overall, and in both males and females, and (2) ACEI is associated with the least relative risk of in-hospital death in all age and sex strata of patients [21]. These latter findings underline the potential importance of optimally prescribing proven agents to all recognizable patient groups, particularly those at higher risk, like the elderly and women [21]. The age and sex differences remain, however, unexplained and unsolved at this time. ## Processes for outcomes improvement An increasingly obvious reality arising from repeated practice pattern and outcomes analyses in several important cardiac diseases is the presence of a care gap, the difference between usual care and best care [2,14,17-21]. While Canada does not have a health care crisis, it seems evident that patient outcomes could be significantly improved if efficacious therapies for serious and widely prevalent diseases were made available to, and were persistently used by, the whole population at risk [2,14,17]. Closing the care gap is not easily accomplished [17,23]. It can, however, be done, and it should be remembered that closing the care gap in the management of important diseases produces an accompanying improvement in duration and quality of life [2,14,17]. In the cumulative CQIN experience, improved in-hospital care and outcomes have been more easily realized in the management of acute myocardial infarction [17] than in the management of CHF [23]. The reasons for the essentially unchanged utilization rates of ACEI among 2171 hospitalized CHF patients in Edmonton, in which 1040 patients were managed prior to the introduction of implicit management guidelines and 1131 patients were managed after introduction of the guidelines (figure 1), remains incompletely defined [23]. One obvious process difference and potential explanation for the differences in resulting practice changes between the disease management guidelines used for infarction therapy versus CHF was the very explicit nature of the infarction guidelines [17]. The use of comprehensive, specific, preprinted physicians' order sheets as the principal implementation tool for infarction management greatly focused the provided therapeutic guidance and it also minimized the chances of either a lack of timely knowledge or a failed memory as being causes of poor prescription of proven medications [17]. The factors of ubiquity and specificity of # Impact Of Regional Guidelines In CHF: Medication Use In The Community Figure 3. Comparative distribution of prehospital medication use among 2171 CHF patients, 1040 patients before the community introduction of implicit CHF management guidelines, outlined in figure 1, and 1131 patients postintroduction of the guidelines [23]. ACEI use in CHF outpatient community care increased significantly with introduction of the guidelines [23]. Abbreviations are the same as figure 2; Dig, digoxin. guidelines were missing from the CHF management program [23]. As well, there was greater heterogeneity and, therefore, perhaps less intellectual and committed "buy-in" of the physician audience for the CHF program [23]. Interestingly, prehospital use of ACEI did significantly increase in the Edmonton region during the term of the CHF project, suggesting that the propagation of implicit guidelines was an effective intervention among communitybased physicians (figure 3) [23]. Nonetheless, at this time, it seems the more explicit the guidelines and the more they are accepted on a local physician basis, the greater the chances they will achieve the desired outcomes. It is equally obvious that better processes are required to manage the closure of the care gap. Hopefully, these processes will be forthcoming. #### **CONCLUSIONS** The experiences and observations of the Heart Function Clinic and the CQIN investigators have produced many valuable insights into the epidemiology and management of CHF. CHF is an increasingly important and treatable disease in Canada, but its management and outcomes remain less than optimal. As the population ages, CHF will assume even greater relative importance as a chronic and terminal illness. More efficacious medications are needed for this future. In the interim, more effective application of proven therapies, particularly as comprehensive and integrated disease management programs, would substantially improve duration and quality of life for patients with CHF. A particular challenge for the immediate future is the development of disease management or behavioral modification processes that will allow the accelerated closure of the gaps between the usual care and outcomes, and what they could optimally be. #### REFERENCES - 1. Teo KK, Ignaszewski AP, Gutierrez R, Hill KL, Martin SL, Calhoun HP, Humen DP, Montague TJ. 1992. Contemporary medical management of left ventricular dysfunction and congestive heart failure. Can J Cardiol 8:611-619. - 2. Montague T, Barnes M, Taylor L, Ignaszewski A, Modry D, Wensel R, Humen D, Teo K. 1996. Assessing appropriateness of treatment: A case study of transplantation in congestive heart failure. Can J Cardiol 12:47-52. - 3. The SOLVD Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293-302. - 4. The SOLVD Investigators. 1992. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685-691. - 5. Johnstone DE, Abdulla A, Arnold JM, Bernstein V, Bourassa M, Brophy J, Davies R, Gardner M, Hoeschen R, Mickleborough L, Moe G, Montague T, Paquet M, Rouleau JL, Yusuf S. 1994. Report of the Canadian Cardiovascular Society's Consensus Conference on the diagnosis and management of heart failure. Can J Cardiol 10:613-631. - 6. Montague TJ, Yusuf S, Tsuyuki RT, Teo KK. 1993. The importance of preventing ischemia in patients with congestive heart failure. Can J Cardiol 9:39F-43F. - 7. Lonn EM, Yusuf S, Jha P, Montague TJ, Teo KK, Benedict CR, Pitt B. 1994. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 90:2056-2069. - 8. Montague TJ, Barnes ME, Ackman ML, Williams RG, Teo KK. 1995. Coronary heart disease, heart failure and ACE inhibitors: Insights for primary prevention. In The failing heart. Ed. NS Dhalla, RE Beamish, N Takeda, 43-48 Philadelphia: Lippincott-Raven. - 9. Ackman M, Teo K, Montague T. 1995. The clinical and epidemiologic challenges of congestive heart failure. Prairie Medical Journal 65:109-112. - 10. McKelvie RS, Teo KK, McCartney N, Humen D, Montague T, Yusuf S. 1995. Effects of exercise training in patients with congestive heart failure: a critical review. JACC 25:789-796. - 11. The Digitalis Investigation Group. 1996. Rationale, design, implementation and baseline characteristics of patients in the DIG trial: A large, simple trial to evaluate the effect of digitalis on mortality in heart failure. Controlled Clinical Trials 17:77-97. - 12. The Digitalis Investigation Group. 1997. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525-533. - 13. Yusuf S, Garg R, Smith T, Dagenais G, Montague T, Arnold M, Davies R, Teo K, Bourassa M, Collins J, Williford W, Gorlin R, on behalf of the Digitalis Investigator Group. 1996. Which heart failure patients benefit the most from long term digoxin therapy? Can J Cardiol 12:102E. - 14. Teo K, McAlister F, Taher M, Humen DP, Yim L, Cheung M, Klail M, Montague T, Armstrong P. 1997. Contemporary patterns of practice and outcomes in congestive heart failure patients treated in a specialized clinic. JACC 29:246A. - 15. McAlister F, Teo K, Taher M, Cheung L, Klail M, Yim R, Armstrong P, Montague T, Humen DP. 1997. Comparison of treatment patterns and outcomes in heart failure
patients with systolic versus diastolic left ventricular dysfunction. JACC 29:64A. - 16. Ackman M, Campbell J, Buzak K, Montague T, Teo K. 1996. Nonprescription drug use among patients with congestive heart failure. Can J Hosp Pharm 49:273. - 17. Montague T, Taylor L, Barnes M, Ackman M, Tsuyuki R, Wensel R, Williams R, Catellier D, Teo K, for the Clinical Quality Improvement Network (CQIN) Investigators. 1995. Can practice patterns be successfully altered? Examples from cardiovascular medicine. Can J Cardiol 1123:487-492. - 18. The Clinical Quality Improvement Network (CQIN) Investigators. 1995. Low incidence of assess- - ment and modification of risk factors in acute care patients at high risk for cardiovascular events, particularly among females and the elderly. Am J Cardiol 76:570-573. - 19. Montague T, Montague P, Dzavik V, Teo K for the Clinical Quality Improvement Network (CQIN) Investigators. 1996. The promise and practice of cardiovascular risk reduction: A disease management perspective. Can J Cardiol 12:995-999. - 20. Montague T, Montague P, Barnes M, Taylor L, Wowk L, Fassbender K, Ackman M, Martin S, Teo K for the Clinical Quality Improvement Network (CQIN) Investigators. 1996. Acute myocardial infarction in Canada: New epidemiologic insights on incidence, therapy and risk. J Thrombosis and Trombolysis 3:101-105. - 21. The Clinical Quality Improvement Network (CQIN) Investigators. 1996. Mortality risk and patterns of practice in 4606 acute care patients with congestive heart failure. The relative importance of age, sex and medical therapy. Arch Int Med 156:1669-1673. - 22. Ackman ML, Harjee KS, Mansell G, Campbell JB, Teo KK, Montague TJ for the Clinical Quality Improvement Network (CQIN) Investigators. 1996. Cause-specific noncardiac mortality in patients with congestive heart failure—a contemporary Canadian audit. Can J Cardiol 12:809-816. - 23. Ackman M, Teo K, Montague T, for the Clinical Quality Improvement Network (CQIN) Investigators. 1996. Impact of regionally developed practice guidelines on management of congestive heart failure. Can J Cardiol 12:97E. - 24. The Simvastatin/Enalapril Coronary Atherosclerosis Trial Group. Protocol of a trial to evaluate simvastatin and enalapril on atherosclerosis plaque progression/regression in CHD patients with normal or slightly elevated serum cholesterol levels. University of Alberta, Medical Research Council and Merck Frosst Ltd., Canada, 1992. - 25. The HOPE Study Investigators. 1996. The HOPE (Heart Outcomes Prevention Evaluation) Study: The design of a large simple randomized trial of an angiontesin-converting enzyme inhibitor (ramipril) and vitamin E in patients at high risk of cardiovascular events. Can J Cardiol 12:127-137. ## ATHEROSCLEROSIS: IMPLICATIONS OF ANGIOTENSIN II AND THE AT-1 RECEPTOR M.R. (PETE) HAYDEN and SURESH C. TYAGI Department of Cardiovascular Sciences, Camdenton Medical Center, Camdenton, MO, USA **Summary.** Atherosclerosis is a chronic inflammatory disease of the arterial intima. It is associated with the accumulation of monocytes, monocyte-derived macrophages, macrophage-derived foam cells, T-lymphocytes, and a sparse number of mast cells. Inflammation is the body's natural, protective response to injury. Paradoxically, this complex process of repair and healing can become destructive. This leads to fibrosis and scarring, with the eventual loss of the vital functions of the organs or tissues involved. In the atherosclerotic process, we see an extensive inflammatory infiltrate, which leads to plaque instability and its vulnerability to rupture. Atherosclerosis is a fibroproliferative disease associated with the accumulation of collagen and extracellular matrix synthesized by the smooth muscle cell. The smooth muscle cell, so important and damaging in the early phase of atherosclerosis, paradoxically becomes the cell type so protective in stabilizing the vulnerable plaque in the later stages of this disease process. It may be referred to as the "sentinel" of the fibrous cap. The driving force behind the atherosclerotic process is the retention of modified low-density lipoproteins. As this inflammatory-fribroproliferative disease progresses, a custom delivery system of microvessels develops within the arterial wall, which supplies the necessary substrates to fuel this inflammatory, destructive process, called the "vasa vasorum". In this chapter, the role of angiotensin (Ang) II and its receptor AT_1 is discussed. Their relation to the development, progression, and final fate of the atherosclerotic plaque and how they relate to cardiovascular disease cannot be overemphasized. #### INTRODUCTION Atherosclerosis is the number one cause of death and disability in the United States. The cost to the nation's economy in 1990 was 144 billion dollars [1]. Coronary heart disease is the leading cause of premature permanent disability in the U.S. labor force [2] and causes 800,000 new myocardial infarctions and 450,000 recurrent myocardial infarctions each year. To put this in perspective, one person dies each minute from coronary atherosclerosis. These figures mentioned above look just at coronary disease. One can only imagine how the statistics would mount if stroke, peripheral vascular disease, and aneurysm were added. With this disease, there are a number of associated diseases that cause an acceleration of the atherosclerotic process including hypertension, diabetes, dyslipidemias, age, male sex, postmenopausal females, smoking, obesity, sedentary life style, homocysteine, insulin resistance, and Lp(a). Characteristically, there is a long asymptomatic phase lasting four to six decades while atherosclerotic plaques are developing within the arterial wall. When atherosclerosis becomes symptomatic, it may be gradual or acute depending on the changes of the atherosclerotic plaque including its growth and its vulnerability to rupture. Lipid lowering therapy has been shown to have a statistically significant decrease in the number of cardiac events as well as all cause mortality in primary and secondary interventions studies [3-5]. The results of the 4S, Care, and WOS trials have been very encouraging to clinicians and researchers. The study of Angiotensin (Ang) II inhibition by angiotensin-converting enzyme inhibitors (ACEIs) and Ang II receptor type 1 (AT1) antagonists in coronary artery disease (CAD) is a promising area of basic science and clinical research. Completed trials in patients with left ventricular (LV) dysfunction such as the Studies of Left Ventricular Dysfunction (SOLVD) and the Survival and Ventricular Enlargement (SAVE) studies [6-11] demonstrated a 23%-24% reduction in risk of recurrent myocardial infarction regardless of ejection fraction, blood pressure response, or concomitant cardiac medication. Clinical trials of ACEIs in patients with known CAD and preserved LV function are in progress, and results should be available in the near future. There is exciting news available for all to review regarding endothelial cell dysfunction. The Trial on Reversing ENdothelial Dysfunction (TREND) was published this past year [12]. This trial demonstrated a significant reduction in vasoconstriction caused by acetylcholine, from 14.3% at baseline to 2.3% following 6 months of treatment with the ACEI Quinipril. About twice as many patients in the Quinipril group as in the placebo group exhibited dilation to acetylcholine at the time of follow up. The effect on endothelial cell dysfunction by Quinipril was substantial, as great as has been reported for lipid lowering [13]. The dose of Quinipril had no effect on blood pressures in these patients, and, therefore, it is unlikely that these results were due to any antihypertensive effect. This is why there is ever growing interest in this topic. ## BACKGROUND AND AUTHOR'S DEFINITION Atherosclerosis is a complex multifactorial disease process of the arterial wall. The meaning is derived from the Greek words athero (gruel) and sclero (hardening). #### DEFINITION Atherosclerosis is a focal, chronic inflammatory- fibroproliferative disease of the arterial intima caused by the retention of modified low-density lipoproteins. It is focal in that the disease occurs at predictable anatomic sites of the arterial tree. It occurs at bifurcations, flow dividers, and side branches. It occurs predictably opposite the flow dividers, where there is low endothelial shear stress and turbulent blood flow. These predictable areas are where adaptive intimal thickening is seen in children before the atherosclerotic process has started. There is an orderly cephalad progression starting in the iliacs and progressing to the aorta, coronaries, carotids, and the cerebral vessels. Because of this orderly cephalad progression, when patients have evidence of carotid atherosclerotic disease on ultrasound, there must be, by definition, coronary atherosclerotic disease, even if it is not symptomatic. Atherosclerosis is a chronic inflammatory disease in that the monocyte, the macrophage, and the T-lymphocyte are the cell types involved throughout the disease process. It is interesting to note that as early as 1815, London surgeon Joseph Hodgson [14] published an important monograph on vascular disease, claiming that inflammation was the underlying cause of atherosclerosis and not a natural degenerative occurrence of the aging process. He also identified that this disease process occurred in the intima, between the lumen and the media of the diseased vessels. It is a fibroproliferative disease in that there is a tremendous amount of collagen synthesized by the smooth muscle cells of the arterial media in the response-toinjury mechanism described by Ross et al. [15]. Tabas et al. [16] shared with the community of atherosclerosis that the retention of modified low-density lipoproteins was an absolute requirement for lesion development and progression. He and others feel that lipoprotein retention is the key pathogenic
event. ## IMPLICATIONS OF ANGIOTENSIN II (ANG II) AND THE ANGIOTENSIN TYPE I (AT,) RECEPTOR The renin-angiotensin system (RAS) is an enzymatic cascade [figure 1], resulting in the production of Ang-II. It begins in the liver with the synthesis of angiotensinogen, an alpha globulin, which is then cleaved by the aspartyl protease renin synthesized in the juxta-glomerular cells of the kidney to produce angiotensin I, a physiologically inactive decapeptide. Angiotensin I is then cleaved by the carboxypeptidase angiotensin-converting enzyme (ACE) that produces the physiologically active, omnipotent Ang II-an octapeptide. The positive bradykinin effect is as follows: The kallikrein-kinin system results in the generation of bradykinin. ACE is also the same as kinase II, which breaks down bradykinin to inactive fragments. Bradykinin affects the endothelial cell by two separate mechanisms. The first activates the L-arginine nitric oxide synthase (NOS) pathway, and the second activates the arachidonic acid pathway, resulting in the Figure 1. The RAS and kallikrein-kinin flow sheet. production of nitric oxide (NO), cyclic guanosine monophosphate (cGMP), the prostaglandins PGI-2(Prostacyclin)/PGE2, and cyclic adenosine monophosphate (cAMP). Furthermore, bradykinin increases the endothelial-derived hyperpolarizing factor (EDHF), serves as an inhibitory-antiproliferative factor, suppresses platelet aggregation, is a potent stimulator of tissue plasminogen activator (t-PA), and increases the activity of the fibrinolytic system, providing an antithrombotic effect. In summary, the antiatherosclerotic positive bardykinin effect causes: - 1. Increased NO (L-arginine, NOS pathway) - 2. Increased NO, prostacyclin (A.A. pathway) in the kallikrein-kinin system - 3. Increased EDHF - 4. Decreased platelet aggregation - 5. Increased inhibitory-antiproliferative factors - 6. Stimulation of t-PA production - 7. Increased fibrinolysis Ang II is a potent vasoconstrictor. When Ang II binds to its AT₁ receptor, there is an activation of a number of second messengers. It activates phospholipase C, which in turn forms metabolites that affect intracellular calcium and the calciumsensitive protein kinase C. It opens calcium channels, which result in smooth muscle cell (SMC) contraction and increased vascular tone. These second messengers also activate nuclear elements that have effects on gene expression, transcription, protein synthesis, cellular hypertrophy, and mitogenesis, resulting in cell growth, proliferation, and migration. Thus, there seems to be two effects of Ang II in the atherosclerotic process: a direct hypertensive effect of Ang II and a direct vascular cellular effect of Ang II. Hypertension affects the structure and function of the arterial vessel wall and its contents. It modifies the endothelial cell by increasing permeability, impairing endothelial-dependent relaxation, and increasing the adherence of monocytes and their absorption. Hypertension increases SMCs and macrophages within the intima and causes an increase of extracellular matrix (ECM) including collagen, elastin, fibronectin, and glycosaminoglycans. Hypertension changes the phenotypic expression of SMCs from a resting state to a proliferative state. Elevation of blood pressure also affects plaque stability because of flow and shear stress. Ang II increases the ECM directly, independent of any hypertensive affect. Ang II directly affects SMC growth and proliferation through its effect on fibroblast growth factor (FGF), transforming growth factor beta (TGFB-1), and, most importantly, platelet-derived growth factor (PDGF), as in Ross's article [15]. Dzau and Gibbons' data [17,18] show that TGF\beta-1 seems to be the key determinant in the regulation of Ang II-induced hypertrophy. In the absence or inhibition of TGFβ-1, the principal effect of Ang II is mitogenesis or hyperplasia resulting from the activation of FGF and PDGF. The simultaneous activation of TGFβ-1 appears to override the proliferative activity of other growth factors and results in hypertrophy. Dzau and Gibbons have shown convincingly the importance of tissue ACE with their study on in vivo gene transfer [19]. They transfected ACE cDNA into injured intact rat common corotid arteries in vivo and found a threefold increase in vascular ACE as well as local angiotensin-mediated hypertrophy in the transfected segments of the common carotid. Since the transfected segment is exposed to the same blood pressure and neurohormones as the control segment, these results are strong evidence for a local ACE effect in Ang II production and ultimately in function. In summary, the direct cellular actions of Ang II on atherogenesis are activation of growth factors and cytokines, increased vascular SMC migration and hypertrophy, increased oxidative stress and oxidation of low-density lipoproteins, upregulation of cellular adhesion molecules, monocyte macrophage activation, and augmented ECM production. #### PLAQUE RUPTURE In the past decade, there have been important advances in understanding the vascular biology of atherogenesis and the development of the atherosclerotic plaque. At the 69th Scientific Session of the American Heart Association in November 1996 in New Orleans, Louisiana Drs. Erling Falk, Peter Libby, James Muller, Frans Van de Werf, and Valentin Fuster spent the afternoon discussing plaque rupture and triggering of cardiovascular disease. Plaque rupture has been implicated as the central feature of clinical events [20-27]. Clinical events are defined as cardiac death, myocardial infarction, and unstable or preinfarctional angina. Plaques that are unstable, vulnerable, or prone to rupture share four common features (figure 2): Figure 2. A representative cross-section of a vulnerable plaque demonstrating the (1) large lipid core; (2) thin fibrous cap; (3) decreased SMCs of the thin fibrous cap; and (4) inflammatory changes at the shoulders of the atherosclerotic plaque. - 1. Large lipid core - 2. Thin fibrous cap - 3. Decrease in SMC's in the fibrous cap - 4. Inflammatory changes at the vulnerable shoulders of the plaque Lipid lowering trials have demonstrated a significant reduction in cardiac events [3-5]. The reduction in clinical events, while statistically significant, were not associated with regression of plaque size. It is currently felt that this reduction is due to plaque stabilization. It is the authors opinion that the reduction of recurrent events in the SAVE and SOLVD trials are also due to plaque stabilization as a result of inhibition of local tissue ACE and circulatory ACE, decreasing vascular tone and vasospasm, and the (7 point) positive bradykinin effect on the plaque, referred to earlier in this chapter. #### INFLAMMATORY CHANGES AT THE VULNERABLE SHOULDER REGION OF THE ATHEROSCLEROTIC PLAQUE The periphery of atherosclerotic plaques is commonly referred to as the vulnerable shoulder region. This region is occupied by a heavy infiltration of monocytederived macrophages, macrophage-derived foam cells, T-lymphocytes, and a sparse number of mast cells. The primary cell type is the macrophage (figure 2). These macrophages are unique in that they produce the four following sub- stances: tissue factor (TF), matrix metalloproteinases (MMPs), cytokines -interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-a), and tissue ACE. TF is a potent thrombotic element of the extrinsic pathway of the coagulation system. MMPs are potent proteinases that break down collagen within the fibrous cap. IL-1 and TNF-a contribute synergistically to the thinning of the fibrous cap with interferon gamma (IFNg). Tissue ACE is found in large quantities in this shoulder location. In normal coronary arteries, local ACE expression is confined only to the endothelial cell. The T-lymphocyte in the shoulder region produces the cytokine IFNg. IFNg causes the SMCs to decrease their production of collagen in the protective fibrous cap, causing the fibrous cap to thin. IFNg also promotes the breakdown of collagen by activating the macrophages and their MMPs. IFNg causes SMC apoptosis, thus causing fibrous cap thinning and decreased SMC content. It is interesting to note that the only thing that stands between a patient and an acute cardiac event is the integrity of the fibrous cap. The SMC is the sentinel of the plaque's fibrous cap. The T-lymphocyte has a heavy infiltration in the region of the adventita in advanced plaques. The sparse mast cell contributes MMPs, which cause further breakdown of the collagen in the fibrous cap, resulting in continued thinning of the cap. To summarize, there are four important elements in this vulnerable shoulder region of the atherosclerotic plaque: - 1. Tissue factor - 2. MMPs - 3. Cytokines IFNg, IL-1, and TNF-a - 4. Tissue ACE All of the above four elements are a product of the inflammatory infiltrate of the vulnerable shoulder region of the atherosclerotic plaque that is prone to rupture. This is why the author placed in the definition; atherosclerosis is a chronic inflammatory disease. #### VASA VASORUM The vulnerable shoulder region of these plaques are unique in that they are supplied with their individual microcirculation, the vasa vasorum (figure 3). The vasa vasorum (v.v.) are the microvessels that supply the larger musculo-elastic arteries, which include the epicardial vessels of the heart. Barger's classic work [28] confirmed the presence of the v.v., supplying the coronaries, and that the origin of these vessels were from the adventitial layer of the vessel wall. Zhang's data [29] revealed that these vessels delivered albumin, fibrinogen, and immunoglobulins to the vessel wall. He also found that these microvessels were leaky, as in the diabetic microvessels. As the intimal layer becomes more and more diseased by the atherosclerotic process, there is a relative ischemia of the vessel wall and it is felt (by Figure 3. A longitudinal section of an atherosclerotic plaque. This
figure demonstrates the malignant-like invasion by the vasa vasorum (v.v.) and inflammatory changes at the shoulders of the plaque (X). The plaque to the left demonstrates a vulnerable plaque while the plaque on the right demonstrates a stable plaque less prone to rupture. author) that it is this vessel wall ischemia that induces the angiogenesis of the v.v. We know from Tyagi's work in this publication (See Chapter 40) that Ang II induces this angiogenesis in the heart. In this vulnerable shoulder region of the atherosclerotic plaque, we have this marked inflammatory infiltrate loaded with tissue ACE and supplied with its own source of substrates for the local production of Ang II by the v.v. In addition, these microvessels are able to deliver the native LDL cholesterol, which serves as a substrate for the future oxidation and modification, which contributes to continued plaque growth. The v.v. also assumes the role of delivering the second wave of inflammatory cells to the atherosclerotic plaque. The adventitial T-lymphocytes may be delivered to the shoulders of the vunerable lesion by the v.v. The first wave is believed to arise from the endothelial luminal surface of the vessel, utilizing selectins and cellular adhesion molecules. The author feels that the v.v. is responsible for the autoamplification of the chronic inflammatory infiltrate within this vulnerable shoulder region. In summary, the v.v. is a custom delivery system for the vessel walls' vulnerable shoulder region supplying: - 1. Substrates of the RAS - 2. Substrates of native LDL cholesterol - 3. The second wave of inflammatory cells The speakers at the 69th meeting of the American Heart Association frequently referred to these vulnerable shoulder regions as being hot and said that the future therapy of atherosclerosis would be to identify and cool off these hot chronically inflamed vulnerable regions. These areas of chronic inflammation are stabilized by lipid lowering drugs and ACEIs. The lipid lowering drugs (-statins) do this by decreasing the substrate of native LDL cholesterol, preventing the continued production of modified LDL cholesterol, which drives the inflammatory process. The ACEI (-prils) do this by inhibiting the circulatory ACE and tissue ACE of the macrophage and by providing the (7 point) positive bradykinin effect discussed earlier in this chapter. When the AT₁ receptor antagonists (-sartans, losartan, valsartan irbesartan, and candesartan) block the AT₁ receptor, they effectively block the effects of Ang II on the atherosclerotic process, both the hypertensive effect and the nuclear elements explained earlier in this chapter. However, the -sartans would not have the positive bradykinin effect, which may be shown to be equally important in the atherosclerotic process. It will be a number of years before this question is answered. We can assume that the pharmaceutical industry and private investigators have only recently begun the appropriate studies to answer this question. The-sartans have certainly been helpful to clinicians, who now have an alternate way to inhibit Ang II when patients develop the irritating cough and angioedema associated with the bradykinin effect of the ACEIs. These two side effects of ACEIs do not happen often (less than 3% in my experience), but when they do, it allows the clinician to have an alternate way to block the deleterious effects of Ang II. This is why molecular biology and laboratory research are so important. At the conclusion of reviewing the literature and consulting colleagues, it is felt strongly by the author that most (if not all) patients with left ventricular dysfunction should be treated with ACEI or AT₁ receptor antagonists because of their inhibitory effect on myocardial remodeling, vessel wall remodeling, and the equal, if not greater, antiatherogenic, antithrombotic effects on the cardiac vessels and the vessel wall. #### **ACKNOWLEDGMENTS** The author wishes to acknowledge Drs. James O. Davis and the late A. Cliff Barger for their knowledge and inspiration in preparing this chapter. This work was supported in part by a Grant-in-Aid from Bristol-Myers Squibb Co. #### REFERENCES - 1. National Heart, Lung and Blood Institute. NHLBI Fact Book, Fiscal Year 1990. Washington: USDHHS, NIH, 1991. - 2. Teerlink JR, Goldhaber SZ, Pfeffer MA. 1991. An overview of contemporary etiologies of congestive heart failure. Am Heart J 121:1852-1853. - 3. Scandinavian Simvastatin Survival Study Group. 1994. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383-1389. - 4. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. 1996. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial Investigators. N Engl J Med 335:1001-1009. - 5. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ. 1995. Prevention of coronary heart disease with pravastatin in men with hypercholesteremia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333:1301-1307. - 6. The SOLVD Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325:293-302. - 7. The SOLVD Investigators. 1992. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med - 8. Yusuf S, Pepine CJ, Garces C, Pouleur H, Salem D, Kostis J, Benedict C, Rousseau M, Bourassa M, Pitt B. 1992. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 340:1173-1178. - 9. Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, Shelton B. 1995. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation 91:2573-2581. - 10. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, et al. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327:669-677. - 11. Rutherford JD, Pfeffer MA, Moye LA, Davis BR, Flaker GC, Kowey PR, Lamas GA, Miller HS, Packer M, Rouleau JL, et al. 1994. Effects of captopril on ischemic events after myocardial infarction. Results of the Survival and Ventricular Enlargement trial. SAVE Investigators. Circulation 90:1731-1738. - 12. Mancini GB, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B. 1996. Angiotensinconverting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation 94:258-265. - 13. Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, Zhang J, Boccuzzi SJ, Cedarholm JC, Alexander RW. 1995. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 332:481-487. - 14. Hodgson J. A Treatise on the Diseases of Arteries and Veins. London: T. Underwood, 1815, pp. 58, 59, 89. - 15. Ross R. 1993. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362:801- - 16. Williams KJ, Tabas I. 1995. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551-561. - 17. Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ. 1993. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest 91:2268-2274. - 18. Gibbons GH, Pratt RE, Dzau VJ. 1992. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456-461. - 19. Morishita R, Gibbons GH, Pratt RE, Tomita N, Kaneda Y, Ogihara T, Dzau VJ. 1994. Autocrine - and paracrine effects of atrial natriuretic peptide gene transfer on vascular smooth muscle and endothelial cellular growth. J Clin Invest 94:842-829. - 20. Fuster V, Badimon L, Badimon JJ, Chesebro JH. 1992. The pathogenesis of coronary artery disease and the acute coronary syndromes. Part 1. N Engl J Med 326:242-250. - 21. Fuster V, Badimon L, Badimon JJ, Chesebro JH. 1992. The pathogenesis of coronary artery disease and the acute coronary syndromes. Part 2. N Engl J Med 326:310-318. - 22. Fuster V, Lewis A. 1994. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90:2126-2146. - 23. Shah PK, Forrester JS. 1991. Pathophysiology of acute coronary syndromes. Am J Cardiol 68:16C- - 24. Falk E. 1989. Morphologic features of unstable atherothrombotic plaques underlying actue coronary syndromes. Am J Cardiol 63:114E-120E. - 25. Falk E. 1983. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fata occlusive thrombi. Br Heart J - 26. Davies MJ, Thomas AC. 1985. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363-373. - 27. Falk E. 1992. Why do plaques rupture? Circulation 86(Suppl 6):III30-III42. - 28. Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ. 1984. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med
310:175-177. - 29. Zhang Y, Cliff WI, Schoefl GI, Higgins G. 1993. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 143:164-172. ## INFLUENCE OF AT₁ RECEPTOR INHIBITION ON CARDIAC FUNCTION AND STRUCTURE OF DIABETIC RATS PETER RÖSEN, CARSTEN HÖNACK, KARSTEN MÜSSIG, WILHELM BLOCH*, and KLAUS ADDICKS* Department of Clinical Biochemistry, Diabetes Research Center, Düsseldorf, Germany and *Anatomical Institute of the University of Cologne, Köln, Germany **Summary.** It has been recently shown that inhibition of angiotensin-converting enzyme (ACE) is cardioprotective in diabetes [1,2]. This cardioprotection might be the consequence of reduced activation of the angiotensin receptor subtype AT_1 , enhanced formation of bradykinin, or a combination of both. To specifically study the contribution of angiotensin (Ang) II in the development of cardiac dysfunction in diabetes, we treated streptozotocin diabetic rats with the specific AT_1 receptor antagonist ICI D8731 and determined the influence of the AT_1 blockade on myocardial structure and function. Treatment with the AT_1 antagonist was cardioprotective in experimental diabetes. The impairment of contractility, as well as the development of interstitial and perivascular fibrosis, and cardiac hypertrophy typically seen after a diabetes duration of 6 months were prevented. In contrast to the functional and morphological data, AT_1 inhibition did not prevent changes in the expression of collagen I, α - and β -MHC, or Glut4 induced by diabetes. Additionally, the expression of the AT_1 receptor was not enhanced after a diabetes duration of six months. These observations suggest that the protection of the heart in diabetes by AT_1 inhibition is preferentially achieved by changes in the translational or posttranslational signal pathways. On the other hand, we did not observe a reduction in the diameter of myocardial capillaries enlarged or an increase in the reduced density of capillaries by AT₁ inhibition, as found in studies using the ACE inhibitors captopril and fosinopril [1,2]. These observations are consistent with the hypothesis that an enhanced formation of bradykinin represents an additional important factor for the therapeutical effects of ACE inhibitors. We assume that the cross-talk between nitric oxide (NO) and the angiotensin (AT₁)-mediated signaling pathways is altered in diabetes and the impairment in the NO pathway reinforces the angiotensin actions without changes in the actual generation of Ang II or in the receptor expression. The vasculature in diabetes would be become more susceptible to the deleterious effects of Ang II. Thus, it is intriguing to suggest that the enhanced generation of reactive oxygen species and the impairment of the NO-mediated effects on the vasculature are the primary causes for the reinforced action of Ang II on the diabetic heart. Treatment with ACE inhibitors or the AT, antagonist would not prevent the primary defect in myocardium in diabetes, but would inhibit some important consequences in the reaction cascade initiated by reactive oxygen species. #### INTRODUCTION Recently we presented evidence that inhibition of the angiotensin-converting enzyme (ACE, Dipeptidyl carbocypeptidase EC 3.4.15.1) is cardioprotective in experimental diabetes. In insulin-dependent spontaneously diabetic, as well as in streptozotocin-diabetic rats, inhibition of ACE activity has been shown to increase the number of perfused capillaries and improve myocardial perfusion. Interstitial and perivascular fibrosis were partly prevented and the structure of myocardium was less damaged than in hearts of untreated diabetic rats [1,2]. These studies suggest that activation of the renin-angiotensin system plays an important role for the increased cardiac risk in diabetes. Angiotensin (Ang) II has been described to activate the sympathetic nerve system and to promote cardiac and vascular fibrosis [3-5]. Additionally, coronary vasoconstriction and myocardial necrosis have been reported to be caused by an enhanced generation by Ang II in various forms of heart failure [3-5]. Thus, a reduced generation of Ang II might explain the cardioprotection observed by ACE inhibition in diabetes. However, the data regarding the activity of ACE in diabetes vary greatly, and we have no convincing evidence that the formation of Ang II is enhanced in diabetes. On the other site, ACE inhibition might also stimulate the formation of kinins. These compounds are potent stimulators of nitric oxide (NO), which has been shown to both play an important role in maintaining vascular tone and blood flow and act as an antiproliferative agent [6,7]. Recent data by Hou et al. [8] suggest a potentially important autocrine or paracrine role for NO in modulating the effects of Ang II. Thus, a diminished generation of NO, as observed in diabetes [9,10], would alter the fine tuning between NO and Ang II and make the diabetic heart more susceptible to the deleterious effects of Ang II without changing the absolute rate of Ang II formation. Stimulation of kinins by ACE inhibition could help balance this disturbed interrelationship and protect the heart in diabetes. A reduction of the sequelae of myocardial ischemia by kinins has been shown in various forms of heart failure [11]. Which effects and in which way the various actions of ACE inhibition contribute to cardioprotection in diabetes is not yet known. To specifically study the contribution of Ang II in the development of cardiac dysfunction in diabetes, we treated streptozotocin diabetic rats with the specific AT₁ receptor antagonist ICI D8731 and determined the influence of the AT₁ blockade on myocardial structure and function. By comparing these data with those obtained by ACE inhibition, it should be possible to distinguish whether and to which part the various mechanisms associated with ACE inhibition contribute to cardioprotection in experimental diabetes. ## MATERIALS AND METHODS The AT₁ antagonist ICI D8731 was a kind gift from ICI Pharmaceuticals (Macclesfield, England). Intensifying screens and Hyperfilm MP were purchased from Amersham-Buchler (Braunschweig, Germany). All other reagents were of analytical grade. #### Animals and induction of diabetes Diabetes was induced in male Wistar rats (250-300 g body weight) by an intraperitoneal injection of streptozotocin (60 mg/kg body weight) as previously described [1,9,12]. After verification of the diabetic state by determination of blood glucose (hexokinase method) and glucosuria, treatment of animals was started. The specific AT₁ receptor antagonist ICI D8731 was applied in the drinking water at a dose of 8 mg/kg body weight daily, respectively. The concentration in the drinking water was adjusted according to the daily consumption (12-15 ml/day for controls and 90-130 ml/day for diabetic rats). The blood pressure was only slightly reduced by AT₁ inhibition (data not shown). Untreated diabetic animals were used as controls. The diabetes duration was six months for the morphological studies and three months for the biochemical analysis. #### Preparation of the rat heart Rat hearts were retrogradely perfused according to the Langendorff technique and fixed, as already described [1,9]. In brief, hearts were perfused at a constant pressure of 60 cm H₂O with a modified Krebs Henseleit buffer (mmol/l: CaCl₂ 1.8, MgCl₂ 1.05, KCl 5.35, NaCl 136.9, NaH₂PO₄ 0.42, glucose 10.1, NaHCO₃ 23.8), prewarmed to 37°C, and equilibrated with 95% O₂/5% CO₂. Hearts were allowed to beat spontaneously. After an equilibration period of 25 min, coronary flow heart rate, maximal left ventricular systolic pressure (LVP), and maximal velocity of contraction (+dp/dt) were continuously measured over a period of 20 min as described previously. Following the pressure constant perfusion, the hearts were perfused with a 0.1 mol/l cacodylate buffered, 2% glutaraldehyde/2% paraformaldehyde fixative via the cannula located within the aorta near the coronary ostia. Left papillary muscles were replaced and further fixed in 0.1 mol/l cacodylate buffered, 2% glutaraldehyde/2% paraformaldehyde followed by postfixation in 2% osmium tetroxide buffered at pH 7.3 with 0.1 mol/l sodium cacodylate for 2 hours at 40°C. The specimens were rinsed three times in cacodylate buffer, block stained in 1% uranyl acetate in 70% ethanol for 8 hours, dehydrated in a series of graded ethanol, and embedded in araldite. Semithin sections of plastic embedded papillary muscles were stained with methylene blue and investigated by aid of a computerized morphometrical analysis unit (Leica CBA8000). Ultrathin sections (30-60 nm) were obtained with a diamond knife on a Reichert ultramicrotome, placed on copper crids, and examined with a Zeiss EM 902A electron microscope. For light microscopical observations, 10 semithin sections of the left papillary muscle were studied per heart. For electronmicroscopy, 5 thin sections of the left papillary muscle were studied per heart. #### Catecholamine fluorescence The right ventricles of isolated perfused hearts were rapidly cut off, freeze-clamped with a Wollenberger clamp cooled in liquid nitrogen, and stored at -80°C for histochemical examination of intraaxonal catecholamine stores. At a temperature of -30°C, the frozen myocardial tissue was 16.5 mm cryostats serial sections. Adrenergic nerve fibers of the right ventricle were made visible by means of glyoxylic acid-induced fluorescence of intraneuronal catecholamines using the method of De la Torre [13]. Quantitative assessment of individual tissue sections was performed by high resolution microfluorimetry. The system consisted of a Leitz orthoplan microscope equipped for fluorescence with epi-illumination and 3mm BG 12 and Leitz K 490 primary and secondary filters, respectively. Using a residual light amplifying caesicon camera, tissues under study were focused in such a way that within the
visible field of the individual preparation only sections with nerve fibers running in parallel were processed and sections containing sympathetic plexuses were excluded from measurement. After inversion of the primary image by means of a computerized image analyzing system (Artek 982, Fisher Sci.), fluorescing adrenergic nerves were easily detected as dark areas against a bright background. To eliminate background fluorescence, points below a given threshold intensity were filled up in brightness with the help of a specially designed measuring mask so that only fluorescing nerve fibers remained visible. For determination of the fluorescing area, one section per heart was taken from the right ventricle in a distance of 150 µm from the epicardial surface. The total observation area was 3 mm² per heart. The amount of the fluorescing area was estimated from 100 consecutive measurements per section and is given as percent of the total area. No correction for fading of the fluorescence image by photodecomposition was necessary as the whole processing was performed in 10s. By using this technique, not only were the length and thickness of the adrenergic nerve fibers recorded, but the dimensions of their axonal dilatation, the varicosities, were recorded as well. ## Morphometric analysis Morphometric data were collected on the basis of randomly chosen transverse sections that consisted exclusively of muscle fibers and terminal exchange vessels (diameter 1-26 µm) from the left papillary muscles. Capillary diameter and capillary cross-section area were measured on a Leitz Medilux microscope connected to a Leitz CBA8000 image analyzing system. The capillary diameter [µm] was measured by recording the smallest profile diameter as the closest approximation of the true diameter. For each animal, 400 profiles were examined. The number of capillaries per field was counted according to the method of Gunderson [14]. The volume density of capillaries (V_C) was obtained from the areal density of capillaries (A_C) and the area of the containing space (A_S): $V_C = A_C/A_S$. The areal density of capillaries (Ac) was calculated as the product of capillary density and capillary cross-sections area. The stereologic estimate of V_C is independent of the sectioning area for anisotropic structures [15]. Additionally, the papillary muscle cross-sections were used for studies of myocyte hypertrophy. Sixty myocyte profiles per animal were drawn at the level of the nucleus. Their minimal diameter was measured automatically with the image analysis system mentioned above. For trichrome staining, 1mm blocs of myocardium containing parts of the left coronary artery were embedded in paraffin, and 5 mm thick slices were sectioned transversally to the longitudinal axis of the arteries. The slices were stained using a standard method described by Goldener [16] to distinguish connective tissue from myocytes, smooth muscle, and endothelial cells. The areas of connective tissue and the perimeter of coronary vessels were automatically detected and measured on a Leitz Medilux microscope connected with a Leitz CBA8000 image analyzing system for detection of real color. The area of connective tissue is given by the trichrome stained area (© in µm²) related to the circumference of the vessel (v in µm) as c/v (\mum^2/\mum). For each heart, slices from five different parts of the left coronary artery were selected. The distance between the slices was set at more than 1 mm. #### Biochemical determinations For biochemical determinations, the hearts were washed in ice-cold phosphate buffer saline (PBS), frozen in liquid nitrogen, and stored at -70° C. Hydroxyprolin was determined by the method of Prockop and Udenfriend [17]. The ACE activity (dipeptidylcarboxypeptidase I, EC 3.3.15.1) in serum and hearts was determined using hippuryl-histidyl-leucine as substrate, as described [18,19]. ## Northern blot Total RNA was isolated from frozen hearts (-80°C) as described by Chomczynski and Sacchi [20]. 20 µg RNA of each sample were submitted to formamide-formaldehyde agarose gel electrophoresis (40 mM MOPS, 10 mM Na-acetate, 1 mM EDTA, pH 7.0, overnight) and transferred to Hybond N⁺ nylon membrane (Amersham, Braunschweig, Germany) by means of capillary blot (northern transfer). After UV fixation (5 min) and baking (2h, 80°C), the membranes were prehybridized in 5× SSPE, 5× Denhardt's solution, 0.5% SDS, 50% (w/v) formamide, as well as 50 µl freshly denatured sheared salmon sperm DNA, for at least 2h at 42°C [21]. Hybridization was carried out overnight at 42°C. Membranes were washed twice with 2 \times SSPE/0.1% (w/v) SDS at room temperature, twice with 1 \times SSPE/0.1% SDS at 50°C, air dried, and subjected to autoradiography. Quantification was done by use of the filmless radioactivity monitoring system FUJIX BAS 1000 (Raytest, Straubenhardt, Germany). Results are given as dpm per signal after having been compared with a known standard exposed simultaneously. About 50 ng of 1.5 kb fragment of a rat Glut-4 cDNA cloned in pBluescript and transfected in the E.coli strain IM 109 [22] were random primed labeled with (-32P)-dATP (3000 Ci/mmol, random primed labeling kit, Boehringer, Mannheim, Germany). The labeled fragment was separated from unincorporated nucleotides by gel filtration on a Biogel P30 column (Biorad, Munich, Germany). cDNA for collagen I (\alpha1) was a kind gift of D. Rowe, Australia [23], for GAPDH of J.M. Blanchard, France [24]. For hybridization of α- and β-MHC, synthetic oligomers were used, which were complemented to the nucleotides 5855-5596 and 5825-5866, respectively [25,26] (EMBL Accession Nrs X15938 and 15939). To determine the expression of the AT, receptor, 2µg of total RNA were transcribed into cDNA by using oligo-(dT) priming and 2U of reverse transcriptase (Life Technologies, Eggenstein, Germany) in a 10 µl reaction (1 h, 37°C) under the recommended conditions. To 5 µl of cDNA preparation, the following solutions were added: 16.5 \(\mu \) water, 5 \(\mu \) 10× PCR buffer (Life Technologies), 3 \(\mu \) MgCl2 (25 mM), 8µl dNTPs (1.25 mM each), and 2.5µl (4µM) of the sense and antisense primers for the angiotensin receptor (AT₁) and GAPDH (as an internal standard). The primers for the angiotensin receptor were chosen to amplify a sequence of 607 bp corresponding to the 5'-noncoding end which is identical in both the AT₁A and AT₁B receptor subtype sequences (sense 5'-GGAAACAGCTTGGTGGTG-3', antisense 5'-GCACAATCGCCATAATTATCC-3') [27]. After 3 min at 94°C and 10 min at 72°C, the reaction was started at 72°C by adding 2.5 µl Taq-DNApolymerase (1U/µl, USB). Thirty-five cycles were run: 30s at 92°C, 60s at 60°C, and 60s at 72°C). After completing the last polymerase step for 10min at 72°C, and aliquot of 10 µl was applied onto an agarose gel for separation of the products. Quantification was done by scanning densitometry. The intensity of the bands was measured; the value of the angiotensin receptor signal was standardized to the GAPDH signal of the same sample; and mean values were calculated for the different groups. ## Statistical analysis Results are presented as the means ± SEM of n individual experiments. Statistical analysis was performed using the BMDP-PC 90 statistical program. Differences between group means were determined by calculation of one-way analysis of variance (ANOVA). Multiple comparisons were performed using adjusted t tests with p values corrected by the Bonferroni method (*p < 0.05, **p < 0.01). #### RESULTS Injection of streptozotocin induced a severe hyperglycemic state. Only animals with a blood glucose concentration higher than 15 mM were taken as diabetic ones. The diabetic state was further characterized by glucosuria, loss of body weight, and polydipsia. The diabetic animals excreted ketone bodies but were not ketoacidotic. Thus, intraperitoneal injection of 60 mg/kg body weight streptozotocin caused a distinct hyperglycemia, but not an excessive catabolic state. A more extensive characterization of the diabetic state induced by streptozotocin is given by Rösen et al. [9,12]. After a diabetes duration of months, heart performance was changed in diabetic rats similar to changes described previously [12,28]. The maximal rates of contraction and relaxation were diminished and the maximal left ventricular systolic pressure (LVP) and heart rate were slightly reduced. The spontaneous coronary flow was not significantly different in hearts of control and diabetic rats. The relative heart weight was increased by diabetes from $3.0 \pm 0.1 \,\mathrm{g/kg}$ body weight to $3.6 \pm$ $0.2\,\mathrm{g/kg}$ body weight (p < 0.01). Treatment with the AT₁ antagonist did not influence heart performance of the controls. In diabetes, AT₁ inhibition did not alter the spontaneous coronary flow and had only a slight but insignificant effect on heart rate (228 ± 11 beats/min as compared to 202 ± 17 beats/min). The LVP was significantly reduced by treatment with the AT₁ antagonist. The reduction in the maximal rate of contraction (dp/dt), as well as the increase in the relative heart weight, was prevented (table 1). In semithin sections of papillary muscles of control hearts, the capillaries were uniformly distributed and had comparable diameters in the control group. Furthermore, no signs of myocytolysis or deposits of collagen plaques could be detected (figure 1,a). In hearts of streptozotocin diabetic rats, on the other hand, capillaries were irregularly distributed and perivascular plaques of collagen were frequent. Distinct areas of myocytolysis were often observed (figure 1,b). By ultrastructural techniques, further abnormalities had clearly been identified: myofilament bundles were deteriorated and partly fragmented. Areas of focal necrosis and contraction bands can be found regularly [1,9]. The number of perinuclear vacuoles is usually increased. Mitochondria are, in part, severely damaged and are increased in
diameter [9]. In hearts of diabetic rats treated with the AT₁ antagonist, structural abnormalities were not as obvious as in those of untreated diabetics. The diameters of capillaries were enlarged, and the distribution was not as uniform and regular as in the hearts of controls. However, areas of myocytolysis and deposits of collagen were rare (figure 1,c; table 1). The ultrastructure of papillary myocardium of control, diabetic, and diabetic rats treated with the AT₁ antagonist is shown in figure 2. In controls, myocytes and | | , , | | | | |--------------------------|----------------|----------------|---------------------------------------|--| | | Control | Diabetes | Diabetes treated with AT ₁ | | | Coronary Flow (ml/min) | 13.7 ± 0.7 | 15.0 ± 1.1 | 14.7 ± 0.5 | | | Heart Rate (beats/min) | 246 ± 11 | 202 ± 17* | 228 ± 11 | | | LVP (mmHg) | 51 ± 7 | 50 ± 5 | 35 ± 4** | | | dp/dt (mmHg/s) | 1880 ± 158 | 1180 ± 163* | 2000 ± 102** | | | Relative
Heart Weight | 3.0 ± 0.1 | $3.6 \pm 0.1*$ | $3.3 \pm 0.2 \star\star$ | | Table 1. Influence of treatment of diabetic rats with the AT, antagonist on myocardial function ^{*}p < 0.05 control vs diabetes, **p < 0.05 diabetes vs. treated diabetes. Figure 1. The AT₂ antagonist D8731 protects the invocardium in diabetes. The samples were processed as described in Methods. For light microscopy, 10 semithin sections of papillary muscles were taken from the left papillary muscle of controls in = 60, diabetic in = 8) and AT, antagonisttreated diabetic rats (n = 5) and cut transversally to the long axis of capillaries: a. Semithin sections of controls display an even distribution of capillaries (C) with comparable diameters in the control group. There are no signs of myocytolysis: b. The papillary muscle of untreated streptozotocin diabetic rats shows an irregular distribution and an increase in the diameter of capillaries. Perivascular collagen plaques (arrows) are frequent in the vicinity of capillaries (C). Distinct signs of myocytolysis (arrowheads) are regularly found in the myocardium (M) of diabetic rats: ε. The myocardium (M) of treated Streptozotocin diabetic rats shows an increase of the capillary diameters but no sign of myocytolysis can be found; and d, Selective detection of capillaries (C), myocardium (M), and interstitium (I): the detection is performed automatically and followed by measurement of capillary diameter. capillaries do not show any abnormalities. The capillary wall is formed by a single endothelial cell (figure 2A,a). There are no extracellular deposits, e.g., connective tissue, which restrict intercellular exchange or supply through the intercellular space. The basal lamina of the capillary endothelium can clearly be divided into the laminae densa and rara, which cover the outer surface of the vessel as a thin layer Figure 2. Ultrastructure of myocardial vessels in diabetic rats and the influence of AT₁ inhibition. The samples were processed as described in Methods. For electronmicroscopy 5 thin sections per heart were taken from the left papillary muscle of controls (n = 6), diabetic (n = 8), and AT_1 antagonist-treated, diabetic rats (n = 5). (A) Controls: a, Ultrastructure of cross-sectioned papillary muscle of control rats (12,000-fold): myocytes and capillaries are shown in good conditions. The capillary wall is formed by a single endothelial cell. There are no extracellular deposits, e.g., connective tissue, which restrict intercellular exchange or supply through the intercellular space; and b, Sector magnification (40,000-fold) of the basal lamina (arrowheads) of the capillary endothelium (E) can be divided into the laminae densa and rara, which cover the outer surface of the vessel as a thin layer, (B) Diabetes: a, There is distinct accumulation of extracellular deposits, sited between capillaries and myocytes, such as collagen fibrils (12,000-fold); b, Increase of thickness and concurrent loss of structure of basal lamina (arrowheads) is recognizable between capillary endothelium (E) and the surrounding collagen (C) (40,000-fold); and c, A section of a further capillary endothelium (E) shows a multilayered basal lamina (arrowheads) with a loss of structure (40,000-fold), (C) Diabetes treated with The AT₁ antagonist D8731: a, AT₁ inhibition leads to a diminished extracellular deposition of connective tissue (12,000-fold); and b, The basal lamina (arrowheads) shows a distinct increase of thickness in comparison to control and in several cases a twofold increase in the original thickness (40,000-fold). Figure 2 (continued) Table 2. Influence of diabetes and the AT₁ antagonist D8731 on the size of capillaries and myocytes | • | Control | Diabetes | Diabetes treated with AT ₁ | |---------------------------------------|------------------|-----------------|---------------------------------------| | Capillary Diameter (µm) | 4.46 ± 0.19 | 4.94 ± 0.12* | 5.09 ± 0.13* | | Capillary Density
(number per mm²) | 3201 ± 83 | 2807 ± 85* | 2601 ± 161* | | Capillary Volume(%) | 7.85 ± 0.72 | 8.07 ± 0.38 | 7.95 ± 0.34 | | Myocyte Diameter (μm) | 17.35 ± 0.28 | 19.27 ± 0.10* | 17.90 ± 0.51** | $[\]star p < 0.05$ control vs diabetes, $\star \star p < 0.05$ diabetes vs. treated diabetes. (figure 2A,b). In hearts of diabetic rats (figure 2B), distinct accumulation of extracellular deposits, sited between capillaries and myocytes-e.g., collagen fibrils-can be seen (figure 2B,a). The basal lamina is thickened (figure 2B,b). The typical structure of basal lamina between capillary endothelium and the surrounding collagen is lost. A section of a further capillary endothelium shows a multilayered basal lamina with a loss of structure (figure 2B,c). In hearts of diabetic rats treated with the AT₁ antagonist (figure 2C), the amount of extracellular deposits of connective tissue is diminished as compared to hearts of untreated diabetic rats (figure 2C,a). However, in comparison to controls, the basal lamina is thickened. In several cases a twofold increase is observed (figure 2C,c). Morphometric data of the capillaries and the myocytes are given in table 2. In diabetes, the capillary density was reduced to 87% of the control, but the diameters of the capillaries were enlarged. Both diabetes induced changes were not signifi- | | Control | Diabetes | Diabetes treated with AT ₁ | |-----------------------------------|-----------------|--------------|---------------------------------------| | Myocardium (µU/mg protein) | 87.9 ± 5.2 | 66.9 ± 6.3* | 75.2 ± 9.7 | | Serum (µU/l) | 46.2 ± 5.8 | 70.2 ± 8.9* | 60.1 ± 9.4 | | Specific Activity (µU/mg protein) | 0.70 ± 0.08 | 1.16 ± 0.14* | 1.01 ± 0.17 | **Table 3.** Influence of diabetes and the AT₁ antagonist D8731 on the activity of the angiotensin-converting enzyme in serum and myocardium * ·· cantly affected by treatment of the diabetic rats with the AT₁ antagonist. The diameter of myocytes and the relative heart weight were slightly, but significantly, increased in diabetes. Both parameters can be taken as indicators for the development of myocardial hypertrophy. Treatment with the AT₁ antagonist prevented the increase in relative heart weight and myocytes diameter. In diabetic hearts, histochemical visualization and quantification of intraneuronal catecholamines revealed a progredient loss of histofluorescent nerve fibers in the myocardium of streptozotocin-diabetic rats similar to those recently described for hearts of spontaneously diabetic (B/B) rats [4]. These data indicate a loss of sympathetic nerve fibers and severe structural abnormalities that are very similar to alterations observed in peripheral nerves [29] (figures 3 and 4). Treatment of the diabetic rats with the AT₁ antagonist prevented this diabetic-specific loss of sympathetic nerve fibers and intraneuronal catecholamines. As in healthy myocardium, the autonomic nerve fibers were running parallel, and the intraneuronal amount of catecholamines was not different from that of healthy control rats. ACE activity was increased in the serum of diabetic rats, but not in myocardium (table 3). Treatment with the AT₁ antagonist had no influence on ACE activity either in serum or in heart tissue. Diabetes reduced the mRNA encoding Glut4 to about 60% of controls [30] and diminished the mRNA encoding α-MHC (56.3 \pm 10.4% to 29.0 \pm 13.6%); however, it nearly doubled β -MHC mRNA $(70.1 \pm 13.6\% \text{ vs } 36.5 \pm 11.7\%)$. The mRNAs encoding GAPDH and collagen were not significantly affected by induction of diabetes. Treatment of the rats with the AT₁ antagonist had no significant effect on the expression of any of the studied proteins. To examine whether diabetes affects the expression of the AT₁ receptor, the mRNA encoding AT₁ receptor was analyzed by RT-PCR. We did not observe that diabetes or the treatment with the AT₁ antagonist affected expression of this receptor (data not shown). #### DISCUSSION The morphological and functional data reported in this study clearly show that treatment with the AT₁ antagonist protects the heart in experimental diabetes. The diminution of contractility typically observed in diabetic rats was completely prevented by treatment with the AT₁ antagonist. In addition, heart rate, which typically Figure 3. Autonomic neuropathy is prevented in the diabetic rat heart by AT. inhibition. As described in Methods and by De La Torre [27], the glyoxylic acid-induced fluorescence was determined in a section of the right ventricle taken in a distance of 150 um from the epicardial surface. Sections of controls (n = 6), diabetic (n = 8), and AT antagonist-treated, diabetic rats (n = 5) were studied: a. In healthy myocardium, fluorescing nerve fibers run parallel to the longitudinal axis of cardiomyocytes and form chain-like varicosities; b, Distinct reduction of fluorescing nerve fibers in untreated streptozotocin diabetic rats; ϵ . Treatment with The ${\rm
AT}_1$ antagonist D8731 halts the diminution of fluorescent nerve fibers; d, Appearance of the intraaxonal catecholamine content in cardiac adrenergic nerve fibers after acid-induced catecholamine histofluorescence. After inversion, nerve fibers are displayed as black areas; and ϵ , After subsequent elimination of points below a given threshold intensity (background fluorescence), the area of the remaining points can be determined with the aid of a specifically designed mask. Only fluorescent nerve fibers are visible as white areas. is severely reduced in the streptozotocin-diabetic rat, was slightly increased. Morphological determinations revealed that myocytes become enlarged in diabetes and the relative heart weight increases, which indicates the development of myocardial hypertrophy. In addition, thickening of the basement membrane and an increase in the number of extracellular deposits of matrix material were observed as expected in diabetes [1,31]. Both cardiac hypertrophy and deposition of matrix material in the extracellular space of the coronaries were prevented or largely reduced by treatment with the AT₁ antagonist. Lastly, we have shown previously that diabetes severely affects the cardiac sympathetic nerves [29], an alteration which was also largely ## Myocardial Catecholamine Fluorescence Figure 4. Changes in catecholamine-related fluorescence. As described in Methods and by De La Torre [13], the glyoxylic acid-induced fluorescence was determined by microfluorimetry. In a total area of 3 mm² per heart, the fluorescing area was measured by 100 consecutive measurements using a section of the right ventricle taken in a distance of 150 µm from the epicardial surface. The fluorescent area is given as percent of the total area: mean \pm SEM of control (n = 6), diabetic (DB, n = 8), AT₁ antagonist-treated, diabetic rats (DB + AT₁, n = 5). * p < 0.05 control as compared to diabetes. prevented by the AT₁ antagonist. Similar cardioprotective effects by inhibition of ACE by captopril and fosinopril in different types of diabetic rats have been previously observed [1,2]. Taken together, these findings suggest that the cardiac hypertrophy and the cardiac fibrosis that is very often found in the diabetic heart is mediated by Ang II and the activation of the AT₁ receptor. This receptor is dominant for the induction of hypertrophy and fibrosis [32] and is specifically inhibited in this study by the AT₁ receptor antagonist ICI D8731. This conclusion is largely compatible with the spectrum of actions expected by Ang II [3-5]. It has been shown previously that Ang II is one of the most powerful factors to induce cardiac fibrosis and myocardial hypertrophy [3-5] and to stimulate the release of catecholamines from the sympathetic nerve fibers of the heart, which may reinforce the action of Ang II [33,34]. Cardiac hypertrophy and fibrosis are slowly developing processes in diabetes when compared with other pathophysiological situations, such as heart failure [11]. Severe changes in the deposition of collagen have only been seen after a diabetes duration of six months. After three months, we observed only a tendency for hydroxyproline to increase as a biochemical marker of cardiac fibrosis. Additionally, we did not find significant changes in the expression of collagen I ($\alpha 1$). In agreement with already published data, the amounts of mRNA encoding for Glut4 and α -MHC were decreased, whereas that of β -MHC was nearly doubled [31,35]. We found no evidence that the expression of the various genes which have clearly been shown to be modulated in diabetes is affected by the AT₁ antagonist. Even in the case of Glut4, we could only demonstrate an increase in the Glut4 protein, not in the mRNA [30]. The influence of AT, receptor inhibition on the protein level and on the stability and the translation of mRNA seems to be of major importance for cardioprotection of the heart in diabetes. It is not yet clear why the action of Ang II is reinforced in diabetes. We observed only a small increase in the activity of ACE in serum, whereas the activity of ACE in myocardium was not altered at all. This is in contrast to various types of heart failure in which the activity of the ACE was strongly increased [36]. That all components of the Ang II generation are locally expressed in the rat heart has already been shown [37]. The expression of the AT, receptor is increased in rat heart several days after induction of diabetes [38], but not in the chronically diabetic state that has been used in this study. It might be speculated that AT₁ receptor expression is associated with the very early phase of the metabolic state after insulin deficiency, but is not typical for the metabolically more stable chronic state. Thus, there presently is no evidence that either an increased generation of Ang II or changes in the expression of the AT₁ receptor are involved or necessary for the impairment of cardiac function in experimental diabetes. On the other hand, Hou et al. [8] have recently documented that chronic NO blockade enhances the Ang II-dependent development of cardiac fibrosis and hypertrophy by altering the fine tuning between the opposing effects of NO and Ang II on vasomotion and on cellular proliferation and regulation of catecholamine release by the sympathetic cardiac nerve fibers. A similar mechanism might work in diabetes, too. We and others have recently shown that NO-mediated vasomotion is disturbed in the diabetic heart [9,10] because NO is quenched by superoxide anions permanently released by the diabetic heart [9]. If there is a cross-talk between the NO and the angiotensin (AT₁)-mediated signaling pathways, an impairment in the NO pathway would reinforce the angiotensin actions without changing the actual generation of Ang II or the receptor expression. The vasculature in diabetes would become more susceptible to the deleterious effects of Ang II. Thus, it is intriguing to suggest that the enhanced generation of reactive oxygen species and the impairment of the NO-mediated effects on the vasculature are the primary causes for the reinforced action of Ang II on the diabetic heart. Treatment with ACE inhibitors or the AT, antagonist would not prevent the primary defect in myocardium in diabetes but would inhibit some important consequences in the reaction cascade initiated by reactive oxygen species. On the other hand, we did not observe a reduction in the diameter of myocardial capillaries enlarged in diabetes or an increase in the reduced density of capillaries as found in studies using the ACE inhibitors captopril and fosinopril [1,2]. These observations are consistent with the hypothesis that an enhanced formation of bradykinin represents an additional important factor for the therapeutical effects of ACE inhibitors [11,39,40]. Thus, the stimulation of NO and prostacyclin by bradykinin seems to be of special importance for the protection of myocardial autoregulation and the functional state of coronary vessels. #### ACKNOWLEDGMENT This work was supported by the Ministerium für Frauen, Familie und Gesundheit der Bundesrepublik Deutschland and the Wissenschaftsministerium des Landes NRW, the Deutsche Forschungsgemeinschaft (SFB 351), Bonn, and the "Klinische Zellbiologie und Biophysik" e.V., Düsseldorf. #### REFERENCES - 1. Rösen R, Rump AFE, Rösen P. 1995. ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (B/B) rats. Diabetologia 38:509-517. - 2. Rösen P, Rump AFE, Rösen R. 1996. Influence of angiotensin-converting enzyme inhibition by fosinopril on myocardial perfusion in streptozotocin-diabetic rats. J Cardiovasc Pharmacol 27:64-70. - 3. Dostal DE, Baker KM. 1993. Evidence for a role of an intracardiac renin-angiotensin system in normal and failing heart. TCM 3:67-74. - 4. Lindpaitner K, Ganten D. 1991. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 5. Peach MJ. 1997. Renin-angiotensin systems: Biochemistry and mechanisms of action. Physiol Rev 57:313-370. - 6. Snyder SH, Bredt DS. 1990. Biological roles of nitric oxide. Sci Am 15:193-225, 1992. - 7. Ignarro L. Biosynthesis and metabolism of endothelium derived nitric oxide. Ann Rev Pharmacol Toxicol 30:535-560. - 8. Hou J, Kato H, Cohen RA, Chobanian AV, Brecher P. 1995. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. I Clin Invest 96:2469- - 9. Rösen P, Ballhausen T, Bloch W, Addicks K. 1995. Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: Influence of tocopherol as antioxidant. Diabetologia 38:1157-1168. - 10. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. 1993. Impairment of coronary vascular reserve and Ach-induced coronary vasodilatation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017-1025. - 11. Schoelkens BA, Linz W. 1992. Bradykinin-mediated metabolic effects in isolated perfused rat hearts. Agents & Actions 38(Suppl):36-42. - 12. Rösen P, Rösen R, Hohl C, Reinauer H, Klaus W. 1994. Reduced transcoronary exchange and prostaglandin synthesis in diabetes rat heart. Am J Physiol 247:H563-H569. - 13. De La Torre JC, Surgeon JW. 1976. A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique. The SPG-method. Histochemistry 49:81-93. - 14. Gunderson HJG. 1977. Notes on the estimation of the numerical density of arbitrary profiles. J Microsc 111:219-223. - 15. Weibel ER. 1979. Stereological methods. Vol. 1. chap. 6 in Practical methods for biological morphometry. London: Academic Press. - 16. Goldener J. 1938. A modification of the Mason triochrome technique for routine laboratory purpose. Am J Pathol 14:237-243. - 17. Prockop DJ, Udenfriend S. 1967. A specific method for the analysis
of hydroxyproline in tissues and urine. Anal Biochem 19:249-255. - 18. Cushman DW, Cheung HS. 1971. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta 250:261-265. - 19. Ryan JW. 1988. Angiotensin-converting enzyme, dipeptidyl-carboxypeptidase I and its inhibitors. Methods Enzymol 163:194-210. - 20. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-159. - Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual. 2^d ed. New York: Cold Spring Harbor Laboratory Press. - 22. Birnbaum MJ. 1989. Identification of a novel gene encoding an insulin responsive glucose transporter protein. Cell 57:303-315. - 23. Genovese C, Rowe D, Kream M. 1984. Construction of DNA sequence complementary to rat α1 and a collagen mRNA and their use in studying the regulation of type I collagen synthesis by 1.25 dihydroxyvitamin D. Biochemistry 23:6210-6216. - 24. Fort P, Marty L, Piechazcyk M, el Sabrouty S, Jeanteur P, Blanchard JM. 1985. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acid Res 13:1431-1442. - 25. McNally M, Gianola M, Leinwand A. 1989. Complete nucleotide sequence of full length cDNA for rat alpha cardiac myosin heavy chain. Nucleic Acid Res 17:7527-7528. - 26. Kraft R, Brava-Zehnder M, Taylor D, Leinwand A. 1989. Complete nucleotide sequence of full length rat beta cardiac myosin heavy chain. Nucleic Acid Res 17:7529-7530. - 27. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. 1994. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93:1592-1601. - 28. Rösen P, Windeck P, Zimmer HG, Frenzel H, Burrig KF, Reinauer H. 1986. Myocardial performance and metabolism in non-ketotic, diabetic rat hearts: Myocardial function and metabolism in vivo and in the isolated perfused heart under the influence of insulin and octanoate. Basic Res Cardiol 81:620-635. - 29. Addicks K, Boy C, Rösen P. 1993. Sympathetic autonomic neuropathy in the heart of the spontaneous diabetic BB rat. Annals of Anatomy—Anatomischer Anzeiger 175:253-257. - 30. Hoenack C, Rösen P. 1996. Inhibition of angiotensin Type 1 receptor prevents decline of glucose transporter (Glut4) in diabetic rat heart. Diabetes 45(Suppl 1):S82-S87. - 31. Rösen P, Kiesel U, Reinauer H, Boy C, Addicks K. 1991. Cardiopathy in the spontaneously diabetic (BB)rat: Evidence for microangiopathy and autonomic neuropathy in the diabetic heart. In The diabetic heart, ed. M Nagano and NS Dhalla, 145-157. New York: Raven Press. - 32. Jackson CV, McGrath GM, Tahilani AG, Vadlamudi RVSV, McNeill JH. 1975. A functional and ultrastructural analaysis of experimental rat myocardium. Manifestation of cardiomyopathy. Diabetes 34:876-883. - 33. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - Maisel AS, Philips C, Michel MC, Ziegler MG, Carter SM. 1989. Regulation of cardiac βadrenergic receptors by captopril. Circulation 80:669-675. - 35. Dillmann WH, Barrieux A. 1985. Trijodthyronine (T3) and insulin regulate myosin heavy chain (MHC) mRNA by different mechanisms. Clin Res 35:533a. - 36. Passier RCJJ, Smits JFM, Verluyten MJA, Studer R, Drexler H, Daemen MJAP. 1995. Activation of angiotensin-converting enzyme expression in infarct zone following myocardial infarction. Am J Physiol 269:H1268-1276. - 37. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Huang H, Sonnenblick EH, Meggs LG, Baker KM, Anversa P. 1995. Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. Am J Physiol 269:H1791-H1802. - 38. Sechi A, Griffin CA, Shambelan M. 1994. The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43:1180-1184. - 39. Rösen P, Eckel J, Reinauer H. 1983. Influence of bradykinin on glucose uptake and metabolism studied in isolated cardiac myocytes and isolated perfused rat hearts. J Biol Chem 364:1431-1438. - 40. Rett K, Jauch KW, Wicklmayr M, Dietze G, Fink E, Mehnert H. 1986. Angiotensin converting enzyme inhibitors in diabetes: Experimental and human experience. Postgrad Med J 62:59-64. # ROLE OF MYOCARDIAL TISSUE ANGIOTENSIN (ANG) II IN CARDIAC PATHOLOGY J.C. KHATTER, M. PASKVALIN, M. HA, S.D. SETH* and S.B. LAL* Section of Cardiology, Departments of Medicine and Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada *Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India Summary. During the past couple of decades, the understanding of the tissue reninangiotensin system (RAS) has increased especially in its role in compensatory hypertrophy and remodeling of the myocardium. Angiotensin (Ang) II-induced growth and proliferation of vascular smooth muscle cells are important elements in hypertension and atherosclerosis. Thus, treatment with angiotensin-converting enzyme (ACE) inhibitors has proved efficacious in preventing both atherosclerosis and hypertension. Left ventricular remodeling following myocardial injury is another area of interest, where recent research has been focused. Increased contractile recovery in low-flow ischemia in hearts treated with ACE inhibitors was demonstrated recently in our laboratory. The contribution of RAS in other pathological conditions such as diabetes-induced cardiomyopathy has also been studied recently. These studies only provide preliminary results, and further studies are needed to completely delineate the role of myocardial RAS in disease-related cardiomyopathy. The development of ACE inhibitors of higher specific binding and high-lipid solubility has recently been the goal of many pharmaceutical companies, and many new ACE inhibitors have emerged in the market. Ang II receptor subtypes, AT₁ and AT₂, have also been the focus of recent research conducted by selective modulation of these receptors rather than by using ACE inhibitors to reduce Ang II levels. Future research in this area will provide tools to benefit from increased Ang II, yet will prevent the maladaptive deleterious effects of Ang II by antagonizing the specific subtype of receptor. ## INTRODUCTION The role of plasma renin-angiotensin system (RAS) in cardiovascular disease has long been recognized. More recent evidence for the existence of tissue-based RAS [1] has established that the RAS can operate as both an endocrine (circulating) and an autocrine/paracrine (tissue) system. The active peptide angiotensin (Ang) II from the circulation may bind the target organ receptors. The tissue components of RAS may act locally or be released into the circulation to act at a distant target [2]. The circulating Ang II binds to receptors at multiple organ sites and plays only a shortterm role in cardiac homeostasis, which includes vasoconstriction, adrenal aldosterone release, renal sodium reabsorption and possibly act as cardiac positive inotrope. The tissue RAS, which has long-term regulation effect, may cause vascular and cardiac hypertrophy and remodeling. In addition, the cardiac RAS may act as a mediator of the inflammatory response through its effects on bradykinin concentrations. Thus, both the circulating and tissue RAS systems play a role in the pathophysiological cycle of maladaptive structural remodeling. Inhibition of the RAS and the tissue RAS are likely to mediate beneficial effects in cardiovascular disease. The purpose of the present treatise is to review the current evidence which supports this contention. #### EVIDENCE FOR THE EXISTENCE OF TISSUE RAS The evidence for the existence of a tissue (autocrine/paracrine) RAS has been obtained through the extraction of various components of RAS from the isolated tissue. These components include angiotensinogen, renin, and angiotensinconverting enzyme (ACE). In addition, local synthesis of angiotensin has been demonstrated in isolated perfused organ preparations [3]. Northern blot analysis demonstrated the expression of angiotensinogen in RNA in various rat and mouse tissues, such as kidney, adrenal gland, and heart [1]. ACE has also been identified in almost all parts of the heart tissue by using histological techniques. High density of ACE has been found in the right and the left atrium, the ascending and the descending aorta, and the valvular structures [4]. An autoradiographic study of radiolabeled ACE inhibitor binding showed a wide distribution of ACE in kidney, adrenal, aorta, and heart tissue. Oral administration of ACE inhibitors to rat before autoradiography substantially decreased the ACE radiolabel concentration binding in these tissues [5]. ### TISSUE RENIN-ANGIOTENSIN SYSTEM IN CARDIOVASCULAR FUNCTION Activation of tissue and circulating RAS during the course of congestive heart failure (CHF) demonstrated that the tissue RAS regulates long-term effect while the circulating RAS exerts short-term influences [6]. Hirsch et al. [6] found that the circulating RAS is activated during the acute phase of cardiac decompensation. In the compensated phase of heart failure, the tissue RAS is activated while the circulating RAS remains normal. In the end-stage of decompensation, both tissue and circulating RAS are activated. The circulating Ang II mediates systemic vasoconstriction, aldosterone release, and renal sodium reabsorption. These changes will affect both preload and afterload. In the heart, Ang II has a direct effect on contractility, as well as cardiac metabolism. Evidence also points to a role for Ang II in the modulation of vascular structure and left ventricular hypertrophy in hypertension. Cardiac RAS may also mediate inflammatory response through its effects on bradykinin concentration, as well as its interactions with
macrophages and fibroblasts [2]. # RENIN-ANGIOTENSIN SYSTEM IN CARDIOVASCULAR DISEASE Both the circulating and the tissue RAS play significant roles in the pathophysiological cycle of the remodeling and maladaptive structural changes. ## Contribution of cardiac tissue RAS to ventricular remodeling in myocardial ischemia After myocardial injury, the noninfarcted part of the heart tissue must compensate for the infarcted segments. This leads to cardiac hypertrophy in the normal segments and ventricular dilation in the infarcted segments. This cardiac remodeling will eventually become maladaptive and result in CHF and end-stage heart disease [7]. Ang II exerts direct cell growth and stimulates expression of photooncogene [8] and synthesis of platelet-derived growth factor (PDGF). Multiple lines of evidence indicate that ACE inhibitors and Ang II receptor antagonists reduce or prevent ventricular dilation and heart failure and increase survival rate after myocardial infarction [9-12]. In one study in rat, when the left ventricle was infarcted, a twofold rise in the right ventricular ACE activity was observed. A comparable increase in ACE activity was observed in the intraventricular septum of rat with experimental heart failure [13]. In studies on the growth of cell culture consisting of mouse fibroblasts [14,15], saralasin (as Ang II receptor antagonist) was found to have a stimulatory effect on intracellular renin concentration and an inhibitory effect on cell growth. Ang II had the opposite effect; it stimulated cell growth and inhibited intracellular concentration of renin. Angiotensinogen mRNA expression is increased in the atria and ventricles of rat in the early phase after experimental myocardial infarction [16]. Enhanced production of Ang II in the infarcted cardiac tissue has also been reported [17]. Marked increases in the ACE activity in the scar tissue have been shown recently [18]. Evidence also suggests that Ang II in rat causes fibroblast proliferation and scar formation in the heart [19-20]. Treatment with ACE inhibitors after the infarction was shown to inhibit the cardiac ACE, including the high level found in the scar tissue [18]. In a recent study in our laboratory, we investigated the cardioprotective effects of structurally different ACE inhibitors on low flow (25%) ischemia produced in isolated rat heart. A significant protection from the ischemic damage was observed when the ACE inhibitors were present in the perfusion medium (table 1). The hearts treated with analapril demonstrated the greatest protection and showed significant (35-40%) recovery of contractile function during low flow ischemic perfusion. The protection by analapril is higher than that by captopril and fosinopril. This higher protection by analapril may be due to its higher specific binding to the receptor sites and its high-lipid solubility. (8 ml/min for 30 min) | Heart Perfusion | % Contractile Function | | | | |--|------------------------|-------------------------|--------------|-------------| | | | ACE Inhibitors (400 uM) | | | | | Control | Analapril | Captopril | Fosinopril | | Normal (8 ml/min) | 100 | 100 | 100 | 100 | | Global Ischemia (5 min) | 3 ± 0.9 | 7 ± 2.0 | 5 ± 0.5 | 4 ± 0.5 | | Low Flow Ischemia
(2 ml/min for 15 min) | 19 ± 2 | 43 ± 3* | 32 ± 1.5 | 22 ± 1.0 | | Normal Reperfusion | 70 ± 8 | 85 ± 3* | 72 ± 5 | 75 ± 4 | Table 1. Effects of ACE inhibitors on LV function during ischemia and reperfusion in isolated perfused rat heart Note: The values represent mean ± S.E. of 5-6 experiments in each group. Table 2. Diabetes-induced alterations in myocardial ang II receptors | Treatment | % Change in Myocardial Ang II Receptors | | | |---|---|--|--| | Control (nondiabetic) | 00.00 | | | | Diabetic (6 weeks, no treatment) | 206.4 | | | | Diabetic (6 weeks, insulin treatment) | 78.1 | | | | Diabetic (6 weeks, captopril treatment) | 56.3 | | | Note: The values represent the average of 4 experiments in each group. #### Tissue RAS in diabetes-induced cardiomyopathy Diabetes-induced cardiomyopathy has been documented both in humans and in animal species [21,22]. In streptozotocin (STZ)-induced diabetic rat model, abnormalities in myocardial function are seen as early as twelve weeks after the induction of diabetes [23]. Both systolic and diastolic functions of the heart have been shown to be impaired in these animals [23]. The impairment of the left ventricular function in the diabetic rat has been attributed to the defects in Ca2+ transport at subcellular level [24-26]. Ang II has been implicated in the regulation of cellular growth and cardiocyte hypertrophy [15,27]. There is evidence suggesting downregulation of the plasma RAS in STZ and alloxan-induced diabetic rats [28,29]. Others have reported that plasma renin concentration does not change in STZ-induced diabetic rats [27]. On the other hand, an increased expression of AT₁, Ang II receptor subtype in cardiac tissue has recently been reported [30]. AT, receptor mRNA and increased receptor density has been reported in two-week-old diabetic rats [31]. Large increases in Ang II receptors were demonstrated recently in the hearts of rats with STZ-induced chronic diabetes [32]. Treatment with insulin (5-6 U/day) normalized plasma glucose levels but only partially prevented the increase in Ang II receptors (table 2). Treatment with the ACE inhibitor captopril also partially prevented the increase in Ang II receptors. Although we did not measure plasma angiotensin levels, others have reported [27] that plasma renin concentration does not change in STZ-induced diabetic rats. This would indicate that the substantial increases in Ang II receptor density in diabetic rat heart are due to local changes in the expression of these receptors and may be related to the alterations in cardiac function, a consequence of diabetes-induced cardiomyopathy. #### REFERENCES - 1. Dizau VI, Ellison KE, Brody T, Ingelfinger I, Pratt RE. 1987. A comparative study of the distribution of renin and angiotensinogen mRNA in rat and mouse tissue. Endocrinology 120:2334- - 2. Johnston CI. 1992. Renin angiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hypertension 10(Suppl 7):S13-S26. - 3. Hilgers KF, Peters J, Veelken R, Sommer M, Rupprecht G, Ganten D, Luft FC, Mann JFE. 1992. Increased vascular angiotensin formation in female rats harboring the mouse Ren-2 gene. Hypertension 19:687-691. - 4. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of converting enzyme in rat heart. Circ Res 68:141-149. - 5. Jackson B, Mendelson FAD, Johnston CI. 1991. Angiotensin-converting enzyme inhibition: prospects for the future. J Cardiovasc Pharmacol 18(Suppl 7):S4-S8. - 6. Hirsch AT, Pinto YM, Schunbert H, Dazau VJ. 1990. Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure. Am J Cardiol 66:22D-32D. - 7. Dizau VI, Braunwald E. 1991. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: A workshop consensus statement. Am Heart J 121:1244-1263. - 8. Hoh E, Komuro I, Kurabayashi M, Katoh Y, Shibazaki Y, Yazaki Y. 1990. The molecular mechanism of Ang II-induced C-fas gene expression in rat cardiomyocytes (abstract) circ 82(Suppl III):III-352. - 9. Gay RG. 1990. Early and late effects of captopril treatment after large myocardial infarction in rats. J Am Coll Cardiol 16:967-977. - 10. Lamas GA, Pfeffer MA. 1991. Left ventricular remodelling after acute myocardial infarction: clinical course and beneficial effects of ACE inhibition. Am Heart J 121:1194-1201. - 11. Raya TE, Fonken SJ, Lee RW, Daugherty S, Goldman S, Wong PC, Timmerman PB, Morkin E. 1991. Hemodynamic effects of direct Ang II blockade compared to ACE inhibition in rat model of heart failure Am J Hypertens 4:334H-340H. - 12. Sharpe N, Smith H, Murphy J, Greaves S, Hart H, Gamble G. 1991. Early prevention of left ventricular dysfunction after MI with ACE inhibition. Lancet 337:872-876. - 13. Hirsch AT, Talsness CE, Shunkert H, Paul M, Dzau VJ. 1991. Tissue specific activation of cardiac ACE in experimental heart failure. Circ Res 69:475-482. - 14. Ganten D, Hutchinson JS, Haebara, Shelling P, Fischer H, Granten U. 1976. Tissue iso-renins. Clin Sci Mol Med 51:1175-1205. - 15. Schelling P, Fischer H, Ganten D. 1991. Angiotensin and cell growth: a link to cardiovascular hypertrophy. J Hypertension 9:3-15. - 16. Drexler H, Lindpainter K, Lu W, Schieffer B, Ganten D. 1989. Transient increase in the expression of cardiac angiotensinogen in rat model of myocardial infarction and failure (abstract) circ 80(Suppl II):II-459. - 17. Yamagashi H, Kim S, Nishikimi T, Takenchi K, Takeda T. 1993. Contribution of cardiac RAS to ventricular remodelling in myocardial infarcted rat. J Mol Cell Cardiol 25:1369-1380. - 18. Johnston CI, Mooser V, Sun Y, Fafris B. 1991. Changes in cardiac ACE after myocardial infarction and hypertrophy in rats. Clin Super Pharmacol Physiol 18:107-110. - 19. Fishbein MC, Maclean D, Maroko PR. 1978. Experimental myocardial infarction in the rat. Am J Pathol 90:57-70. - 20. Tan L, Jalil JE, Pick R, Janiski JS, Waber KT. 1991. Cardiac myocyte necrosis induced by Ang II. Circ Res 69:1185-1195. - 21. Hamby RI, Samuel Z, Sherman LL. 1994. Diabetic cardiomyopathy. J Amer Med Ass 299:1749- - 22. Regan TJ, Lyon MM, Ahmed SS, Leninston GE, Oldewurtel HA, Ahmad MR, Haider B. 1977. Evidence of cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:885-899. - 23. Navaratnam S, Khatter JC. 1989. Influence of the diabetic state on digitalis-induced cardiac arrhythmias in rat. Arch Int Pharmacodyn 301:151-164. - 24. Khatter JC, Agbanyo M. 1990. Mechanism of increased digitalis tolerance in streptozotocin-induced diabetic rat myocardium. Biochem
Pharmacol 40(12):2707-2711. - 25. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. 1983. Defective sarcoplasmic reticular Ca²⁺ transport in diabetic cardiomyopathy. Amer J Physiol 244:E528-E535. - 26. Lopaschuk GD, Katz S, McNeill JH. 1983. The effects of alloxan and streptozotocin-induced diabetes on Ca²⁺ transport in rat cardiac sarcoplasmic reticulum: the possible involvement of long chain acylcarnitine. Card J Physiol Pharmacol 61:439-448. - 27. Aceto JF, Baker KM. 1990. Ang II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 28. Cassis LA. 1992. Down regulation of the renin-angiotensin system in STZ-diabetic rats. Amer J Physiol 262:E105-E109. - 29. Christlieb AR. 1974. Renin-angiotensin and NE in alloxan diabetes. Diabetes 23:962-970. - 30. Christlieb AR, Underwood L. 1979. Renin-angiotensin-aldosterone system, electrolyte homeostasis and blood pressure in alloxan diabetes. Am J Med Sci 277:295-303. - 31. Sechi LA, Chandi AG, Schamberlan M. 1994. The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43:1180-1184. - 32. Khatter JC, Sadri P, Zhang M, Hoeschen RJ. 1996. Myocardial Ang II receptors in diabetic rat. Ann NY Acad Sc 793:466-472. C. ANGIOTENSIN BLOCKADE AND CARDIAC HYPERTROPHY AND HEART FAILURE # MECHANICAL STRESS, LOCAL RENIN-ANGIOTENSIN SYSTEM AND CARDIAC HYPERTROPHY: AN OVERVIEW # RICKY MALHOTRA¹ and SEIGO IZUMO² ¹ Department of Internal Medicine, Division of Nephrology, University of Michigan Medical Center, Ann Arbor, MI, USA and Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Summary. Hypertrophy is a fundamental adaptive process employed by postmitotic cardiac and skeletal muscles in response to mechanical load. External load also plays a critical role in determining muscle mass and its phenotype in cardiac myocytes. Interestingly, cardiac myocytes have the intrinsic ability to sense mechanical stretch and convert it into intracellular growth signals, which finally culminate in hypertrophic growth. Mechanical stretch of cardiac myocytes in vitro causes activation of multiple messenger systems, upregulation of many immediate early genes (e.g., c-fos, c-myc, c-jun, etc.), and re-expression of fetal-type genes (e.g., atrial natriuretic factor, skeletal α -actin, β -myosin heavy chain), reminiscent of cardiac hypertrophy in vivo. Stretch of neonatal rat cardiac myocytes stimulates a rapid secretion of angiotensin (Ang) II and an upregulation of all major components of cardiac reninangiotensin system (RAS) genes. Ang II, along with other (secreted) growth factors, mediates many, if not all, stretch-induced hypertrophic responses. In this review, the relationship between mechanical loading, cardiac RAS, and cardiac hypertrophy is discussed. In addition, various cell signaling mechanisms initiated by mechanical stress on cardiac myocytes are briefly summarized. ## INTRODUCTION An increasing body of molecular biological, biochemical, and physiological evidence now suggests that RAS plays a predominant role in regulating cardiovascular homeostasis. As is well recognized, the principal mediator of RAS is the octapeptide Ang II produced from its precursor angiotensinogen by the successive action of two proteases, renin and angiotensin-converting enzyme (ACE). In the past 20 years or so, the contribution of RAS to human pathophysiology, its role in human cardio- vascular diseases, and its therapeutic modulation have been extensively investigated. The findings have provided a number of valuable insights into mechanisms of disease and have resulted in the development of the ACE inhibitors and the angiotensin receptor antagonists. Until recently, RAS, as far as its effect on the heart, has been considered to be a classical endocrine system, with the circulating Ang II solely mediating the biological actions of RAS on the cardiac tissue. However, in the past decade or so, several local RAS have been described in various tissues including adrenal, blood vessels, brain, kidney, and the heart [1-5]. These studies have defined a whole new scenario for cardiac (local) RAS and provide direct evidence for autocrine and paracrine pathways for the actions of Ang II. Of paramount importance has been the demonstration that mechanical stress on cardiac myocytes in vitro causes a concomitant secretion of Ang II, which then acts as a critical mediator of stretch-induced hypertrophic responses [6]. Numerous in vitro and in vivo studies have also shown that myocyte hypertrophy is accompanied by an upregulation of the local (cardiac) RAS and have shown the importance of the (secreted) Ang II in this response [7–9]. Mechanical stimuli also cause a rapid change in gene expression [10,11]. The phenotypic feature of stretched myocytes is very similar to that of pressure overloadinduced hypertrophy in vivo [12]. Myocardial stretch and RAS have been implicated in the development of cardiac hypertrophy through the activation of specific target genes. In this review, the role of the cardiac RAS in load-induced cardiac hypertrophy is discussed. In addition, various cell signaling mechanisms initiated by mechanical stress and Ang II on cardiac myocytes are also summarized. The role of the Ang II receptors (both AT₁ and AT₂), which play a crucial role in the pathophysiology of RAS, is also discussed, with special reference to the regulation of cardiac hypertrophy. ## CARDIAC RENIN, ANGIOTENSINOGEN, ACE, AND ANGIOTENSIN RECEPTORS The identification of an independent cardiac RAS requires the demonstration of tissue synthesis of the components necessary for the synthesis of Ang II. Renin and angiotensinogen mRNA have been detected in the rat and mouse heart by reverse transcription-polymerase chain reaction (RT-PCR), Northern hybridization analysis, S1 nuclease protection assay, and in situ hybridization analysis [13-16]. Renin activity has also been documented in isolated rat cardiomyocytes and is inhibitable by a renin-specific antibody [13]. Renin and angiotensinogen protein and mRNA have been localized to cultured cardiomyocytes and fibroblasts isolated from the ventricles of neonatal rats [5,17]. However, the significance of renin and angiotensinogen in nonmyocytes needs to be explored further. ACE has been shown to be associated with vascular smooth muscle [18], adult rat cardiomyocytes [19], and cultured ventricular myocytes and fibroblasts from neonatal rat hearts [20]. Thus, the complete RAS cascade has been reported in cultured neonatal rat ventricular myocytes and fibroblasts [5,20]. The presence of nanomolar concentrations of Ang I and Ang II in media from cultured cardiomyocytes and fibroblasts suggests that sufficient levels of peptide may be produced by these cells to be physiologically relevant [20]. Very recently, the concentrations of Ang I and Ang II in cardiac interstitial fluid, reaching a nanomolar range, were reported to be 100fold greater in magnitude than those of plasma level [21]. Thus, physiologically significant levels of Ang II seem to be present in the heart in vivo. Even though intracellular localization of renin, angiotensinogen, and ACE in cardiomyocytes and fibroblasts is documented, which may reflect synthesis and cellular processing of these components, it is concievable that, following processing in the Golgi apparatus, RAS components may be copackaged in intracellular vesicles where they could interact to form Ang II. The immunoreactive staining patterns of Ang I and Ang II are very similar to that of renin, angiotensinogen, and ACE, which supports this hypothesis [23]. Intracellularly generated Ang II may be exported and have paracrine or autocrine functions or may remain within the cell and exert intracellular effects. The latter possibility is supported by evidence that internalized Ang II localizes in mitochondria and nuclei [22]. The functioning of cardiac RAS requires the presence of appropriate angiotensin receptors coupled to signal transduction pathways. Cardiac angiotensin receptors have been demonstrated in sarcolemmal membrane preparations from avian [23], bovine [24], guinea pig [25], rat [7], and human myocardium [26]. The actions of Ang II, the main agonist of RAS, in the cardiovascular system are transmitted by two known (AT₁ and AT₂), and possibly some unknown, angiotensin receptor subtypes. AT₁ and AT₂ both correspond to G protein-coupled receptors with seven hydrophobic transmembrane domains, several N-glycosylation sites, and a potential G protein binding site [27]. The classification of Ang receptor subtypes is based on different binding affinities of AT₁ and AT₂ for the subtype-especific compounds losartan (AT₁ binding affinity) and CGP 421121A and PD 123177 (AT₂ binding affinity) [28]. In the rat, two isoforms of AT₁ exist, AT_{1A} and AT_{1B}, which exhibit 95% homology at the protein level [29,30]. ### MECHANICAL LOADING AND CARDIAC HYPERTROPHY Hypertrophy is a fundamental adaptive process employed by postmitotic cardiac and skeletal muscles in response to mechanical or hemodynamic overload. Since most cardiac myocytes, if not all, are terminally differentiated and lose their ability to replicate soon after birth, they respond to increased workload only by an increase in cell size (hypertrophy) and not by an increase in cell number (hyperplasia). An intriguing and unresolved aspect of this process has been the ability of muscle cells to sense the stimulus of mechanical stress (presumably on the membrane) and convert it into intracellular growth signals. Mechanical forces have been known to cause a variety of effects on the structure and function of cells, but how mechanical stimuli regulate cell function and gene expression is poorly understood [31,32]. For example, it has been demonstrated that cultured skeletal and cardiac myocytes, grown on an elastic substrate, undergo hypertrophy in response to static stretch of the substrate
[10,11,32,33]. Since this phenomenon of stretch-induced hypertrophy can be observed in a serum-free environment, muscle cells clearly have the inherent ability to sense external load even in the absence of neuronal and hormonal factors. One experimental model which has yielded tremendous knowledge of the underlying mechanisms and the intracellular signal transduction pathways associated with cardiac hypertrophy and its link with local RAS is the in vitro stretch model using cultured neonatal rat cardiac myocytes [11,34]. By using this model, Ang II has been demonstrated to act as a critical mediator of stretch-induced cardiac hypertrophy. Several investigators examined the intracellular signaling mechanisms of the stretch-induced hypertrophic response in cardiac myocytes using this in vitro stretch model [10,34,35]. Culture medium conditioned by stretched cardiac myocytes was demonstrated to contain a factor or factors that cause induction of immediate early genes and activation of second messenger systems, such as mitogen-activated protein kinases (MAPKs), in nonstretched myocytes [6]. This factor was later identified to be Ang II, and mechanical stretch of neonatal rat cardiac myocytes in serum-free culture caused a more than 100-fold increase in Ang II concentrations in culture media (≈500 pmol), peaking at 10 mins [6]. This acute release seems to be from intracellular stores rather than an increase in synthesis or production. The phenomena of stretch-induced secretion of Ang II from neonatal rat cardiac myocytes has been confirmed by three other independent groups [36–38], thereby establishing a link between mechanical stress, local (cardiac) RAS, and cardiac growth (discussed below). Nonetheless, the mechanism of Ang II release from cardiac myocytes in response to stress and the associated signal transduction pathways remains elusive. Mechanical stretch-induced growth factor secretion in other cell systems, e.g., endothelin-1 release from endothelial cells [39], shows a transient secretion peaking at about 10-120 minutes, indicating the presence of growth factor stores that can be released in response to acute mechanical stretch. In atrial myocytes, stretch causes secretion of ANF from stretch-sensitive, rapidly depletable pools that consist of newly synthesized ANF from its precursors [40]. Thus, there are several different possibilities of Ang II release, but a unifying hypothesis needs to be established. First, mechanical stress may transiently alter sarcolemmal membrane permeability, which may allow the release of cytosolic growth factors. Recently altered sarcolemmal permeability was shown to account for pacing-induced basic fibroblast growth factor (FGF) release from adult rat ventricular cardiac myocytes [41]. Secondly, membrane tension may directly regulate membrane traffic and stimulate exocytosis/ secretion [42]. Besides the release of Ang II, how the stretch message is communicated to hypertrophy-related genes remains elusive. A number of candidates have been hypothesized as couplers of physical stretch to growth initiation, including neural and hormonal factors, stretch-activated and stretch-inactivated ion channels, microtubules, microfilaments, and contractile activity. Recently a desmin-lamin intermediate-filament network and nuclear envelope-associated chromatin was shown to undergo spatial rearrangement in stretched cardiac myocytes, and this interaction was hypothesized to activate hypertrophy-related genes [43]. Mechanical forces have also been shown to have a stabilizing effect on the cellular levels of beta 1-integrin and vinculin, and thereby regulate their association with the formation of focal adhesions and costameres [44]. #### ANGIOTENSIN II There are several lines of evidence suggesting that local synthesis of angiotensins occurs within the myocardium. Angiotensins detected in tissue could conceivably result from local synthesis or from sequestration of peptide or percursors from the circulatory system. However, a variety of experimental evidence suggests that cardiac RAS may function separately from the circulatory system [45], and, as already discussed, this is supported by multiple findings from biochemical, immunohistochemical, and molecular biological demonstrations of all components of RAS in the heart [5,46,47]. Accumulating evidence suggests that Ang II (locally produced or circulating), among the various growth factors, may be the critical factor mediating load-induced hypertrophy in vivo. First, treatment of rats having aortic coarctation with an ACE inhibitor or Ang II type 1 receptor antagonist (losartan and TCV 116) prevented or caused regression of left ventricular hypertrophy by pressure overload [7,48,49]. An ACE inhibitor also prolonged survival of rats having pressure overload [50]. Similarly, cardiac hypertrophy that occurs in rats with aortocaval shunt and volume overload can be prevented with losartan or an ACE inhibitor (quinapril) with high affinity for cardiac ACE [51,52]. Treament of patients suffering from myocardial infarction with ACE inhibitors prevented cardiac dilatation and reduced mortality [53]. These results are consistent with the involvement of RAS and its activation by a variety of hemodynamic loading in vivo and subsequent pathogenesis of cardiac hypertrophy and failure. Further, evidence supporting the predominant role of Ang II as a growth and hypertrophic factor has come from studies using Ang II receptor antagonists, such as [Sar¹, IIe⁸] Ang II (antagonists for the Ang II type I and II receptors) and losartan and TCV 11974 (antagonist for the Ang II type I receptor). These Ang II receptor antagonists inhibit major markers of stretch-induced hypertrophy, such as c-fos gene expression, MAPK activation, an increase in the rate of protein synthesis, and induction of fetal type genes (e.g., atrial natriuretic factor and skeletal α -actin), which suggests that Ang II plays a critical role in stretch-induced hypertrophy in the neonatal rat myocyte culture system [6,38]. However, even in this model, studies show some components of the hypertrophic response, such as increased rate of protein synthesis [54] and MAPK activation [38], are Ang II antagonist uninhibitable, thereby suggesting that part of the hypertrophic response may be mediated by some other autocrine/paracrine growth factors. Recently it was reported that the vasoactive peptide endothelin-1 (produced by endothelial and epithelial cells, macrophages, fibroblasts, as well as cardiac myocytes) also plays an important role in mechanical stress-induced cardiac hypertrophy [55]. Tumor necrosis factor α (TNF α), a proinflammatory cytokine with a broad range of pleiotropic effects, is expressed de novo by cardiac myocytes after certain forms of stress [56]. Recently TNFa was shown to provoke a hypertrophic response (in cultured adult feline cardiac myocytes), suggesting that this cytokine may play an important role in myocardial homeostasis after environmental stresses [57]. In isolated adult rat ventricular myocytes, release of basic fibroblast growth factor (bFGF) has been shown to play a critical role in pacing-induced cardiac hypertrophy [41]. In a somewhat different scenario, adult cardiac myocytes have been shown to respond to elevation in wall and myocyte stress (induced by nonocclusive coronary artery narrowing) by activating an insulin-like growth factor-1 and insulin-like growth factor-1 receptors (IGF, IGF,-R) autocrine system, which may modulate the induction of late growth-related genes (proliferating cell nuclear antigen, PCNA, and histone H₃ genes), essential for DNA replication and myocyte cellular hyperplasia [58]. It is concievable, therefore, that mechanical stretch itself may activate certain other signalling mechanisms, and the resulting hypertrophic response (and in an exceptional situation, hyperplasia) may be variable, depending on the autocrine and paracrine factors secreted, the cell density, nature of the extracellular matrix (e.g., interactions between cell integrins and the extracellular matrix), type and degree of mechanical stress, and lastly the age and species of the experimental animals [6,38,54]. #### SIGNAL TRANSDUCTION PATHWAYS ACTIVATED BY MECHANICAL STRETCH Over the last several years, many genes that are responsive to increased workload have been identified in the heart. These genes can be divided into two classes. One class is called immediate early genes (IEG), a group of genes whose transcription is activated rapidly and transiently within minutes of extracellular stimulation [59]. The tightly controlled expression of IEG suggests a regulatory role in the cellular response to external stimuli. The IEG activated by mechanical stretch include c-fos, c-jun, Egr-1, and c-myc [10,11]. The second class of genes is called the late response genes or the so-called stable late markers of myocardial hypertrophy, whose expression is induced more slowly, over hours, and which also needs new protein synthesis. Cardiac hypertrophy is associated with upregulation of the fetal program; that is, this response is characterized by re-expression of protein isoforms that are ordinarily expressed in the embryonic heart, but not in the adult heart. These late response genes include skeletal α-actin, β-MHC, and ANF [12,60-62]. Mechanical stretch of cultured cardiac myocytes also induces the expression of skeletal \alpha-actin, β-MHC, and ANF [11]. Recently, stimulation of RAS (in response to abdoiminal aorta banding) was shown to be crucial for the activation of the β -MHC [63], thus defining an important interaction between phenotypic reprogramming, mechanical stress, and upregulation of RAS. In cultured neonatal cardiac myocytes, mechanical stretch causes activation of multiple messenger systems including phospholipases C, D, and A₂; tyrosine kinases; p21^{ras}; Raf-1; mitogen-activated protein kinases (MAPKs) such as ERKs (ERK1 and ERK2),
JNKs (c-Jun N-terminal kinases), and p38/RK, activators of MAPKs such as MEK1 (MAPK kinase) and MEKK1 (MEK kinase); 90-kDa S6 kinase (pp90^{RSK}); protein kinase C (PKC); and probably other molecules [32, 64-68]. A comprehensive description of the various intracellular signalling molecules activated by mechanical stretch and the possible mechanosensors involved in the process have been reviewed recently [69,70]. #### RENIN-ANGIOTENSIN SYSTEM AND CARDIAC HYPERTROPHY Several lines of in vivo evidence also suggest that the cardiac RAS is upregulated chronically in load-induced hypertrophy. These studies have demonstrated that mRNA expression of angiotensinogen, ACE, and Ang II type 1 (AT₁) and Ang II type 2 (AT₂) are all upregulated in response to pressure overload cardiac hypertrophy and myocardial infarction [7, 71-75]. At the protein level, upregulation of ACE activity and Ang II receptor binding was demonstrated [74,76], and the percent of myocytes containing renin, Ang I, and Ang II was significantly increased in hypertrophied hearts [77]. In a canine model of right ventricular hypertrophy and failure, upregulation of ACE and AT₂ receptor was demonstrated recently [78]. Similarly, cardiac renin activity, as well as renin mRNA, is increased in experimental animals with volume overload-induced cardiac hypertrophy [79,80]. The upregulation of cardiac RAS genes, including renin, angiotensinogen, ACE, and AT_{1A} receptor, has also been observed in mechanical stretch of neonatal rat cardiac myocytes in vitro [81-83]. Interestingly, treatment of cultured cardiac myocytes with exogenous Ang II also upregulates mRNA expression of angiotensinogen, renin, and ACE, but not Ang II receptor [35,81]. This suggests that mechanical stretch initially causes acute secretion of preformed Ang II and that secreted Ang II may initiate positive feedback mechanisms, thereby upregulating the local RAS over time. Upregulation of all components of RAS in cardiac hypertrophy has been also shown in adult rats with ischemic cardiomyopathy [77]. Ang II-induced hypertrophy of neonatal cardiac myocytes has a phenotype indistinguishable from stretch-induced hypertrophy. This phenotype includes an increase in the rate of protein synthesis with a modest increase in total protein content; expression of various immediate early genes; induction of fetal-type genes including ANF, skeletal α-actin, and β-myosin heavy chain; and reorganization of the actin cytoskeleton [11]. Ang II stimulates angiotensinogen gene expression and transforming growth factor \(\beta \) expression and release and thus may initiate a positive feedback mechanism in cardiac hypertrophy [35,84]. Ang II through AT₁ stimulates ANF release in isolated rabbit hearts independently of hemodynamics [85] and thus activates counter-regulatory processes in hypertension. Ang II acts as a mitogen on neonatal rat cardiac fibroblasts and stimulates cellular proliferation and collagen synthesis [86-88]. The AT₁ receptor modulates fibronectin expression and cardiac fibrosis. In isolated adult human cardiac fibroblasts, Ang II stimulates proliferation and collagen production [89,90]. Ang II activates multiple second messenger systems via the AT₁ receptordependent mechanism. These signaling events include the stimulation of phospholipase C, A2, D, and PKC; activation of the mitogen-activated protein kinases (MAPKs); the 90-kDa and 70-kDa S6 kinases; the proto-oncogenes ras and raf; and the activation of the immediate early genes c-fos, c-jun, c-myc, and egr-1 [91-94]. Recent findings also associate Ang II with the tyrosine phosphorylation of proteins, thus suggesting a similar signaling pathway as found in cytokine receptors, including the activation of Src family kinases, pp^{60c-src}, and janus kinases, JAK2 and TYK2. Ang II-mediated phosphorylation of JAK2 and TYK2 leads to tyrosine phosphorylation and nuclear translocation of the JAK substrates STAT1 and STAT2 (signal transducers and activators of transcription) proteins [95-97]. This indicates that the JAK-STAT pathway may also be involved in the mediation of the angiotensin-related trophic response. On the other hand, the signal transduction mechanisms associated with the AT₂ receptor remain elusive. So far no influence of the AT₂ receptor on the generation of phospholipid-derived second messengers, intracellular calcium release, or cAMP production has been demonstrated [98]. The role of AT₂ in the cardiovascular system is not as well established as that of AT₁. Based on interaction between AT₁ and AT2 signaling pathways, AT2 could potentially counteract the growthpromoting effects of Ang II that is mediated via the AT₁ receptor by dephosphorylation of proteins phosphorylated after AT₁ receptor stimulation [99]. An unopposed antigrowth effect of AT₂ receptor on Ang II-induced cardiomyocyte hypertrophy in culture has also been demonstrated recently [100]. This proposed antigrowth effect of AT₂ is supported by the observations that overexpression of AT₂ attenuates neointima formation in the rat carotid arteries [101] and that AT2 receptor inhibits proliferation of endothelial cells [102]. Further, the antigrowth effects of AT₂ are highlighted by its participation in the induction of apoptosis [103–105]. #### TRANSGENIC ANIMAL MODELS The function of the angiotensin receptors (AT₁ and AT₂) and other genes of the RAS has been investigated in several transgenic and knockout animal models. Targeted disruption of the AT_{1A} receptor gene in mice confirms its crucial role in the maintenance of blood pressure. Pressor responses to infused Ang II were virtually absent in homozygous animals [106]. Recently AT₂ receptor knockout mice have been created by two experimental groups. In both cases, these animals exhibit significant increase in blood pressure, increased sensitivity to the pressor action of Ang II, and altered exploratory behavior which suggests a role of AT₂ in brain function and blood pressure control [107,108]. Ang II receptor regulation has also been assessed in Tsukuba hypertensive mice which carry the human genes for renin and angiotensinogen [109]. In these mice, the plasma RAS is activated, and the mice develop cardiac hypertrophy. Ang II receptor is upregulated at the mRNA and protein level, suggesting that expression of the AT₁ gene increases in response to Ang II-induced cardiac hypertrophic changes. The primary function of RAS in maintaining blood pressure has also been confirmed by disruption of the angiotensinogen gene by homologous recombination in embryonic stem cells in mice [110]. Very recently, mechanical stretch-induced activation of MAPK (Erk kinase) was analysed in cardiomyocytes of angiotensinogen gene-deficient mice (Agt-/-). Mechanical stretch resulted in activation of MAPKs in Agt-/- cardiac myocytes that was significantly greater than that in wild type myocytes (Agt+/+), and CV-11974, the AT, receptor antagonist, suppressed stretch-induced activation of MAPKs in only wild-type cardiac myocytes, but not in Agt-/- cells, which suggests that Ang II is dispensable for mechanical stretchinduced activation of MAPKs in Agt-/-cardiac myocytes and that unknown compensatory mechanisms exist in the absence of Ang II. Endothelin receptor blocker BQ123 had no effect in stretch-induced MAPK activation in wild type and Agt-/- cells. [111]. In other transgenic models, for example, the transgenic rat TGR(mRen2) 27, which carries the mouse Ren-2 gene, experiments have shown that the cardiac RAS is responsible for cardiac hypertrophy, phenotypic modulation, and remodeling [112,113]. #### CONCLUSION RAS plays an important role in the hypertrophic responses in cardiac myocytes through the activation of signal transduction pathways and expression of protooncogenes. Numerous studies have also demonstrated that Ang II acts directly on cardiac myocytes as a growth-promoting factor and that ACE inhibitors and Ang II receptor blockers induce regression of hypertrophied hearts in experimental animals and humans. Although in vitro studies using mechanical stretch of neonatal rat cardiac myocytes have clearly shown that autocrine secretion of Ang II plays an essential role in stretch-induced cardiac hypertrophy in vitro, many questions remain unanswered. First, whether Ang II functions as a primary mediator of stretchinduced hypertrophic responses in the hearts of different ages and species, as well as those in vivo, needs further investigation. In addition to Ang II, many other growth factors (endothelin-1, bFGF, etc.) have been shown to cause cardiac hypertrophy when exogenously applied in vitro. At the present time, whether these factors are physiological mediators of load-induced cardiac hypertrophy in vivo is unclear. Second, the molecular identity of the initial "trigger" or "mechanosensor" of cardiac myocytes remains an enigma. Also, the signal transduction mechanisms initiated by stretch itself, besides Ang II, and their role in hypertrophic responses need to be defined. Finally, the mechanism of intracardiac generation and release of Ang II remains to be identified, despite the demonstration of angiotensinogen, renin, and ACE mRNAs in the heart. This would require further identification and localization, within the heart, of individual cell types that are responsible for producing components of the RAS; regulation of the synthesis, storage and secretory pathways for the individual components and integration of the cardiac RAS with other effector pathways in the heart. Thus, the relative role of the cardiac RAS compared with the systemic RAS needs to be determined. One can envisage that several new physiological and pathophysiological facets of the cardiac RAS will be discovered in the coming years and that they will finally lead to the development of therapeutical strategies for the treatment and prevention of cardiac hypertrophy, remodeling, and heart failure. #### REFERENCES - 1. Aguilera G, Schirar A, Baukal A, Catt KJ. 1981.
Circulating angiotensin II and adrenal receptors after nephrectomy. Nature (London) 289:507-509. - 2. Dzau VJ. 1988. Vascular renin-angiotensin system in hypertension. New insights into the mechanism of action of angiotensin-converting enzyme inhibitors. Am J Med 84(Suppl 4A):4-8. - 3. Rosenthal JH, Pfeifle B, Michailov ML, Pschorr J, Jacob ICM, Dahleim H. 1984. Investigations of components of the renin-angiotensin system in the rat vascular tissue. Hypertens 6:383-390. - 4. Unger T, Badoer E, Ganten D, Lang RE, Rettig R. 1988. Brain angiotensin: Pathways and pharmacology. Circulation 77(Suppl I):I140-I154. - 5. Dostal DE, Rothblum KN, Chernin MI, Cooper GR, Baker KM, 1992. Intracardiac detection of angiotensinogen and renin: A localized renin-angiotensin system in neonatal rat heart. Am J Physiol 263:C838-C850. - 6. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 7. Baker KM, Chemin MI, Wixson SK, Aceto JF. 1990. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:H324-H332. - 8. Thienelt CD, Weinberg EO, Bartunek J, Lorell BH. 1997. Load-induced growth responses in isolated adult rat hearts. Role of the AT1 receptor. Circulation 95:2677-2683. - 9. Miyata S, Haneda T, Osaki J, Kikuchi K. 1996. Renin-angiotensin system in stretch-induced hypertrophy of cultured neonatal rat heart cells. Eur J Pharmacol 307:81-88. - 10. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y. 1990. Stretching cardiac myocytes stimulates proto-oncogene expression. J Biol Chem 265:3595-3598. - 11. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. 1992. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertropy. J Biol Chem 267:10551-10560. - 12. Izumo S, Nadal-Ginard B, Mahadavi V. 1988. Protooncogene induction and re-programming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85:339-343. - 13. Dzau VJ, Re RN. 1987. Evidence for the existence of renin in the heart. Circulation 73(Suppl I):I134-I136. - 14. Dzau VJ, Ellison KE, Brody T, Ingelfinger JR, Pratt R. 1987. A comparative study of the distribution of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120:2334-2338. - 15. Campbell DJ, Habner JF. 1986. Angiotensinogen gene is expresed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31-39. - 16. Kunapuli SP, Kumar A. 1987. Molecular cloning of human angiotensinogen cDNA and evidence for the presence of its mRNA in rat heart. Circ Res 60:786-790. - 17. Dostal DE, Booz GW, Baker KM. The cardiac renin-angiotensin system: An overview. In the cardiac renin-angiotensin system. Ed. K Lindpaintner and D Ganten, 1-20. Armonk, New York: Futura Publishing. - 18. Hial V, Gimbrone MA, Peyton MP, Wilcox CM, Pisano JJ. 1979. Angiotensin metabolism by cultured human vascular endothelial and smooth muscle cells. Microvasc Res 17:314-329. - 19. Johnston CI, Mooser V, SUN Y, Fabris B. 1991. Changes in cardiac angiotensin converting enzyme after myocardial infarction and hypertrophy in rats. Clin Exper Pharamcol Physiol 18:107- - 20. Dostal DE, Rothblum KC, Conrad KM, Cooper GR, Baker KM. 1992. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts: Evidence for local production. Am J Physiol (Cell Physiol.) 263:C851-C863. - 21. Dell'Italia LJ, Meng QC, Balcells E, Wei CC, Palmer R, Hageman GR, Durand J, Hankes GH, Oparil S. 1997. Compartmentalization of Angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. J Clin Invest 100:253-258. - 22. Robertson AL, Khairallah PA. 1971. Angiotensin: Rapid localization in nuclei of smooth and cardiac muscle. Science 172:1138-1139. - 23. Aceto JF, Baker KM. 1990. [Sar¹] Angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 24. Rogers TB. 1984. High affinity angiotensin receptors in myocardial sarcolemmal membranes. J Biol Chem 259:8106-8114. - 25. Baker KM, Singer HA. 1988. Identification and characterization of the guinea pig angiotensin II ventricular and atrial receptors: Coupling to inositol phosphate production, Circ Res 62:896- - 26. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. 1989. Angiotensin receptors in normal and failing human hearts. J Clin Endocrinol Metab 69:54-66. - 27. Sasaki K, Yarmano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda T, Inagami T. 1991. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230-232. - 28. Timmermans PBWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotenisn II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 29. Sandberg K, Ji H, Clark AJ, Shapira H, Catt HJ. 1992. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 267:9455-9458. - 30. Iwai N, Inagami T. 1992. Identification of two subtypes in the rat type 1 angiotensin II receptor. FEBS Lett. 298:257-260. - 31. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, Mcnamee H, Mooney D, Plopper G, Sims J. 1994. Cellular tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenisis. Int Rev Cytol 150:173-224. - 32. Vandenburgh HH. 1992. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 262:R350-R355. - 33. Vandenburgh HH, Kaufman S. 1979. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265-268. - 34. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y. 1991. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C. J Biol Chem 266:1265-1268. - 35. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: A critical role of the AT1 receptor subtype. Cir Res 73:413-423. - 36. Lin C, Baker KM, Thekkumkara TJ, Dostal DE. 1995. Sensitive bioassay for the detection and quantification of angiotensin II in tissue culture medium. Biotechniques 18:1014-1020. - 37. Miyata S, Haneda T, Nakamura Y, Fukuzawa J, Okamoto K, Takeda J, Osaki S, Hirotsuka S, Kikuchi K. 1993. The role of the cardiac renin-angiotensin system in stretch-induced hypertrophy of cultured neonatal rat heart cells (abstract). Circulation 88:I-614. - 38. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Veki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1995. Angiotensin II partly mediates mechanical stressinduced cardiac hypertrophy. Cir Res 77:258-265. - 39. Mac Arthur H, Warner TD, Wood EG, Corder R, Vane JR. 1994. Endothelin-1 release from endothelial cells in culture is elevated both acutely and chronically by short periods of mechanical stretch. Biochem Biophy Res Commun 200:395-400. - 40. Mangat H, de Bold AJ. 1993. Stretch-induced atrial natriuretic factor release utilizes a rapidly depleting pool of newly synthesized hormone. Endocrinology 133:1398-1403. - 41. Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA. 1996. Role of altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281-291. - 42. Sheetz MP, Dai J. 1996. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85-89. - 43. Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L. 1997. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol 273:H546-H556. - 44. Bloom S, Lockard VJ, Bloom M. 1996. Intermediate filament-mediated stretch-induced changes in chromatin: A hypothesis for growth initiation in cardiac myocytes. J Mol Cell Cardiol 28:2123- - 45. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 46. Baker KM, Booz GW, Dostal DE. 1992. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54:227-241. - 47. Lindpaintner K, Ganten D. 1991. Tisuse renin-angiotensin systems and their modulation: The heart as a paradigm for new aspects of converting enzyme inhibition. Cardiology 1:32-44. - 48. Bruckschlegel G, Holmer SR, Jandeleit K, Grimm D, Muders F, Kromer EP, Riegger GAJ, Schunkert H. 1995. Blockade of the renin-angiotensin system in cardiac presure-overload hypertrophy in rats. Hypertension 25:250-259a. - 49. Kojima M, Shiojima I, Yamazaki T, Komuro I, Zou Z, Yunzeng Z, Ying W, Mizuno T, Veki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1994. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89:2204-2211. - 50. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, et al. 1994. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressureoverload hypertrophy due to ascending aortic stenosis. Circulation 90:1410-1422. - 51. Ruzicika M, Leenen FH. 1995. Relevance of blockade of cardiac and circulatory angiotensinconverting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91:16-19. - 52. Ruzicka M, Yuan B, Harmsen E, Leenen FH. 1993. The renin-angiotensin system and volume overload-induced cardiac
hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Circulation 87:921-930. - 53. Pfeffer JM, Fisher TA, Pfeffer MA. 1995. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu Rev Physiol 57:805-826. - 54. Kent RL, McDermott PJ. 1996. Passive load and angiotensin II evoke differential responses of gene expression and protein synthesis in cardiac myocytes. Circ Res 78:829-838. - 55. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y. 1996. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228. - 56. Giroir BP, Horton JW, White JD, McIntyre KL, Lin CQ. 1994. Inhibition of tumor necrosis factor prevents myocardial dysfunction during burn shock. Am J Physiol 267:H118-H124. - 57. Yokoyama T, Nakono M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. 1997. Tumor necrosis factor-α provokes a hypertrophic response in adult cardiac myocytes. Circulation 95:1247-1252. - 58. Reiss K, Kajstura J, Capasso JM, Marino TA, Anversa P. 1993. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF1 autocrine system, enhanced expression of late growth related genes, DNA synthesis, and myocyte nuclear mitotic division in rats. Exp Cell Res 207:348-360. - 59. Komuro I, Shibazaki Y, Kurabayashi M, Takaku F, Yazaki Y. 1990. Molecular cloning of gene sequences from rat heart rapidly responsive to pressure-overload. Circ Res 66:979-985. - 60. Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, et al. 1993. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77-95. - 61. Komuro I, Yazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55-75. - 62. Morgan HE, Baker KM. 1991. Cardiac hypertrophy. Circulation 83:13-25. - 63. Wiesner RJ, Ehmke H, Faulhaber J, Zak R, Ruegg C. 1997. Dissociation of left ventricular hypertropy, β-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Circulation 95:1253-1259. - 64. Sadoshima J, Izumo S. 1993. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of an autocrine/paracrine mechanism. Embo J 12:1681-1692. - 65. Komuro I, Kudo S, Yamazaki T, Shiojima I, Hiroi Y, Zou Y, Yazaki Y. 1995. Mechanical stretch activates JNK in cardiac myocytes (abstract). Circulation 92:I-239. - 66. Sadoshima J, Takahashi T, Jahn L, Izumo S. 1992. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 89:9905-9909. - 67. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizumo T, Takano H, Hiroi Y, Veki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1995. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96:438-446. - 68. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y. 1993. Mechanical loading activates mitogen-activated protein-kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268:12069-12076. - 69. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551-571. - 70. Komuro I, Yamazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55-75. - 71. Lindpaintner K, Wenyan L, Niedermajer N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133-143. - 72. Schunkert H, Dzau VJ, Tahn SS, Hirsch AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure-overload left ventricular hypertrophy. J Clin Invest 86:1913-1920. - 73. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Cir Res 69:475-482. - 74. Suzuki I, Matsubara H, Urakami M, Inada M. 1993. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439-447. - 75. Nio Y, Matsubara H, Murasawa H, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - 76. Schunkert H, Dzau VJ, Tang SS, Hirsh AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin-converting enzyme activity and mRNA expression in pressure overload left ventriculat hypertrophy. Effects on coronary resistance, contractility and relaxation. J Clin Invest 86:1913-1920. - 77. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs LG, Baker KM, Anversa P. 1995. Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. Am J Physiol 269:H1791-H1802. - 78. Lee YA, Liang CS, Lee MA, Linpaintner K. 1996. Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: A comprehensive study of all its components in the dog. Proc Natl Acad Sci USA 93:11035-11040. - 79. Lou Y-k, Robinson BG, Morris BJ. 1993. Renin messenger RNA, detected by polymerase chain reaction, can be switched on in rat atrium. J Hypertens 11:237-243. - 80. Boer PH, Ruzicka M, Lear W, Harmsen E, Rosenthal J, Leenen FHH. 1994. Stretch-mediated activation of cardiac renin gene. Am J Physiol H1630-H1636. - 81. Malhotra R, Sadoshima J, Izumo S. 1994. Mechanical stretch upregulates expression of the local renin-angiotensin system genes in cardiac myocytes in vitro (abstract). Circulation 90:I-195. - 82. Shyu KG, Chen JJ, Shih NL, Chang H, Wang DL, Lien WP, Liew CC. 1995. Angiotensinogen gene expression is induced by cyclical mechanical stretch in cultured rat cardiomyocytes. Biochem Biophy Res Commun 211:241-248. - 83. Sadoshima J, Malhotra R, Izumo S. 1996. The role of the cardiac renin-angiotensin sytem in loadinduced cardiac hypertrophy. J Cardiac Failure 2(4S):S1-S6. - 84. Everett AD, Tufro-McReddie A, Fisher A, Gomez A. 1994. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor- β_1 expression. Hypertens 23:587–592. - 85. Focaccio A, Volpe M, Ambrosio G, Lembo G, Pannain S, Rubattu S, Enea I, Pignalosa S, Chiariello M. 1993. Angiotensin II directly stimulates release of atrial natriuretic factor in isolated rabbit hearts. Circulation 87:192-198. - 86. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245-1254. - 87. Vilarreal FJ, Kim NN, Ungab GD, Printz MP, Dillman WH. 1993. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88:2849-2861. - 88. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-H618. - 89. Crawford DC, Chobonian AV, Brecher P. 1994. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res 74:727-739. - 90. Neuß M, Regitz-Zagrosek V, Fleck E. 1994. Human cardiac fibroblasts express an angiotensin receptor with unusual binding characteristics. Biochem Biophys Res Commun 204:1334-1339. - 91. Sadoshima J, Izumo S. 1993. Signal transduction pathways of angiotensin II induced c-fos gene expression in cardiac myocytes in vitro: Roles of phospholipid-derived second messengers. Cir Res 73:424-438. - 92. Sadoshima J. Qiu Z. Morgan J. Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, MAP kinase and 90kDa S6 kinase in cardiac myocytes: The critical role of Ca2+-dependent signaling. Cir Res 76:1-15. - 93. Sadoshima J, Izumo S. 1995. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro; a potetial role of 70kDa S6 kinase. Circ Res 77:1040-1052. - 94. Sadoshima J, Izumo S. 1996. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21^{rss} via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775-787. - 95. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. 1995. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375:247-250. - 96. Bhath GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM. 1994. Angiotensin II stimulates sis-inducing factor-like DNA binding activity. J Biol Chem 269:31443-31449. - 97. Darnell JE, Kerr IM, Stark GR. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signalling proteins. Science 264:1415-1421. - 98. Webb ML, Lieu ECK, Cohen RB. 1992. Molecular characterization of angiotensin II type II receptor in rat pheochromocytoma cells. Peptides 13:499-508. - 99. Zagrosek VR, Neuß M, Holzmeister J, Wamecke C, Fleck E. 1996. Molecular biology of angiotensin receptors and their role in human cardiovascular disease. J Mol Med 74:233-251. - 100. Booz GW, Baker KM. 1996. Role of type 1 and type 2 angiotensin receptors in angiotensin IIinduced cardiomyocyte hypertrophy. Cir Res 28:635-640. - 101. Nakajima M, Hutchinson HG, Fuginaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 82:10663-10667. - 102. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotensin II AT2-receptor mediates inhibition
of cell proliferation in coronary endothelial cells. J Clin Invest 95:651-657. - 103. Yamada T, Horiuchi M, Dzau VJ. 1995. Mitogen-activated protein (MAP) kinase dephosphorylation by angiotensin II type 2 receptor induces apoptosis (abstract). Circulation 92(Suppl I):499. - 104. Bennett MR, Evan GI, Schwartz SM. 1995. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266-2274. - 105. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 106. Ito M, Oliverio MI, Mannon PJ, Christopher FB, Maeda N, Smithies O, Coffman TM. 1995. Regulation of blood pressure by the type 1a angiotensin II receptor gene. Proc Natl Acad Sci USA 92:3521-3525. - 107. Ichiki T, Labolsky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BLM, Inagami T. 1995. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748-750. - 108. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type 2 receptor gene in mice. Nature 377:744-747. - 109. Fugi N, Tanaka M, Ohnishi J, et al. 1995. Alterations of angiotensin receptor content in hypertrophied hearts. Biochem Biophys Res Commun 212:326-333. - 110. Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A, Murakami K. 1994. Angiotensinogen-deficient mice with hypotension J Biol Chem 269:31334-31337. - 111. Nyui N, Tamura K, Ishigami T, Hibi K, Yabana M, Kihara M, Fukamizu A, Ochiai H, Umemura S, Murakami K, Ohno S, Ishii M. 1997. Stretch-induced MAP kinase activation in cardiomyocytes of angiotensinogen-deficient mice. Biochem Biophys Res Commun 235:36-41. - 112. Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao H. 1996. Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR (mRen2) 27 transgenic rats. Circulation 94:785-791. - 113. Bohm M, Lee M, Kreutz R, Kim S, Schinke M, Djavidani B, Wagner J, Kaling M, Wienen W, Bader M, et al. 1995. Angiotensin II receptor blockade in TGR (mREN)27: Effects of reninangiotensin system gene expression and cardiovascular functions. Hypertens 8:891-899. # ROLE OF RENIN-ANGIOTENSIN SYSTEM IN CARDIAC HYPERTROPHY AND FAILURE QIMING SHAO, VINCENZO PANAGIA, ROBERT E. BEAMISH and NARANJAN S. DHALLA Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada Summary. Although the circulatory renin-angiotensin system (RAS) was discovered a century ago, it is only recently that the presence of tissue RAS has become evident. Angiotensin (Ang) II has been demonstrated to influence heart function by effecting cardiac contraction, myocyte growth, cardiac matrix, and cardiac metabolism. These actions are initiated by the binding of Ang II to plasma membrane receptors, namely, AT, and possibly AT2, which stimulates phospholipase C (PLC) to produce phosphatidylinositol 4,5-bisphosphate, thus forming diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP₃). An increase in the intracellular Ca2+ appears to result from IP3-mediated release of Ca2+ from the intracellular stores, and this effect may be associated with an increase in cardiac force development. On the other hand, DAG activates protein kinase C (PKC) which stimulates cardiac growth and other actions of Ang II. Intracellular signaling of Ang II-stimulated cardiomyocyte growth may include the activation of tyrosine kinase and mitogen-activated protein kinase (MAPK) cascade. Alterations in different components of RAS, such as renin, angiotensinogen, and angiotensin-converting enzyme (ACE), as well as Ang II receptors (AT₁ and AT₂), have been shown to occur in different pathological conditions of cardiac hypertrophy and heart failure. On the other hand, ACE genotype has been shown to exhibit a close relationship with myocardial infarction. In this article, we have attempted to review the influence of ACE inhibitors on different types of cardiac hypertrophy and heart failure. Although existing results are controversial, ACE inhibitors, in general, have been shown to exert beneficial effects on cardiac function in myocardial infarction, cardiac hypertrophy from volume or pressure overload, as well as heart failure because of pacing and cardiomyopathy. The possible mechanisms of the effects of ACE inhibitors may include reduction in both circulating and local RAS, scavenging of free radicals, improvement of energy metabolism, modification of the autonomic nervous system, and increase of bradykinin concentration. More importantly, ACE inhibitors may improve cardiac function by remodeling the cell membranes, mobilizing Ca2+, and attenuating the shift in myosin isozymes. Although Ang II receptor antagonists have also been shown to have protective effects on contractile function in cardiac hypertrophy and heart failure, the mechanisms remain to be fully understood. #### RENIN-ANGIOTENSIN SYSTEM AND HEART FUNCTION Although RAS was discovered in 1898 by Tigerstedt and Bergman [1], attention was not given to this major cardiovascular control mechanism until 1934 when Goldblatt et al. [2] developed a reproducible model which showed that the renal pressor substance is an enzyme. The term "angiotensin" was coined in 1958 for the active end-product of RAS, whereas the importance of this vital neuroendocrine system was only recognized in hypertension and heart failure upon the availability of angiotensin-converting enzyme (ACE) inhibitors in the late 1970s [3,4]. The classic view of the RAS is based on the premise that various components are derived from different organs and are in turn delivered to their site of action via the circulatory system. The primary components are (1) angiotensinogen, a large globular protein that is secreted as the substrate for renin; (2) renin, an enzyme that catalyzes the proteolytic conversion of angiotensinogen to the decapeptide Ang I; (3) angiotensin-converting enzyme, a dipeptidyl carboxypeptidase that converts Ang I to Ang II by cleavage of the two carboxyterminal amino acids; (4) Ang II, a highly active octapeptide; and (5) Ang II receptors, specific receptors in the cell membrane upon which Ang II acts to produce physiological actions. Renin, the rate-limiting enzyme of the cascade that leads to Ang II formation, is an aspartyl protease with a molecular mass between 37,000 and 40,000. Its primary structure contains double domains; the amino- and carboxyl termini contain areas of similar sequence [5]. Renin is widely distributed and mRNA repression of renin can be found in kidney, adrenal, heart, ovary, testis, lung, and adipose tissue [6]; however, the main source of renin is the kidney [7]. Human renin gene is a 12.5 Kb DNA sequence. On the other hand, angiotensing is an α_2 globulin with a molecular weight of 54,000 to 60,000. It is the only known substrate for renin and is the only known precursor for angiotensin peptides in vivo. There is only a single gene of angiotensinogen with a 13Kb sequence [8], and the majority of the circulating angiotensinogen is from the liver. It is pointed out that ACE is a zinc metallopeptidase [9] that catalyzes the conversion of Ang I to Ang II and the breakdown of bradykinin to kinin, in addition to catalyzing a broad range of substrates [10]. This enzyme has two active catalytic sites that are encoded by two different mRNAs from a single gene, which exists in atria, ventricles, and conduction system. Two isoforms of ACE exist, namely, somatic ACE and germinal ACE. Both isoforms exhibit similar enzyme activities, but differ in molecular size and immunological properties [11]. The ACE gene has been cloned in animals and humans with a molecular weight ranging from 90 to 160 Kd in different tissues [12,13]. This gene has been shown as an insertion/deletion polymorphism based on the presence of insertion (I) or deletion (D) in intron 16 of the ACE gene. This structure results in three genotypes: DD homozygous, II homozygous, and ID heterozygous [14]. The DD allele is associated with higher levels of ACE in plasma [15] and is considered to increase the risk of cardiac disease [16-18]. Ang II is considered to be an important factor for the regulation of vascular tone, blood flow, and cardiac function. There is evidence that there are multiple biochemical pathways for the formation of Ang II [19,20]. These pathways may include the direct synthesis of Ang II from angiotensinogen [21] or another non-ACE enzyme such as chymase [22-24], which has been demonstrated to be present in the heart. The existence of non-ACE pathways can suggest that long-term therapy with ACE inhibitors may not lower the plasma and tissue Ang II levels appreciably [25] despite effective normalization of blood pressure and significantly suppressed ACE activity [26]. The distribution of ACE and chymase in the heart differs; ACE is in the cardiac luminal surface, whereas chymase is in endothelial cells and cardiac interstitium [27,28]. By using specific nonpeptide antagonists, two Ang II receptors have been identified as AT₁ and AT₂ [29,30], and cDNAs encoding each type of Ang II receptor have been identified [31]. The location of genes for AT₁ and AT₂ is different; the gene for AT₁ receptor is located on chromosome 3, whereas the AT₂ receptor gene is on the X chromosome [32]. The Ang II receptor gene structure, distribution, and regulation in different pathophysiological conditions has been fully reviewed [31,33]. Ang II receptors are up- and downregulated by some biophysical mechanisms, such as internalization and phosphorylation, as well as disease conditions [34-36]. The structure specificity of Ang II receptor is high; the affinity for binding to Ang II is similar to Ang II circulating
concentration (10^{-10} M). The AT₁ receptor is a seven-transmembrane receptor with two subtype receptors, AT₁₀ and AT₁₈; these subtypes have similar polypeptides, containing about 360 amino acids, but they have different tissue distribution [19,37]. This class of Ang II receptors is associated with G_q protein [38] and is responsible for almost all the physiological actions of Ang II and selective antagonists. The AT₁ receptor can initiate either a rapid or a slow signal transduction event. In the rapid signal transduction event, the phosphoinositide message system is involved [39]. Ang II through the type 1 receptors activates Ca2+ channels through Gq proteins to allow more Ca2+ into the cells. In turn, PLC is activated to generate inositol bisphosphate, which activates PKC, and finally regulates cell function [40]. The slow signal transduction event involves the phosphorylation of tyrosine and activation of MAPK, which stimulates cell growth and causes hypertrophy [41-43]. All the effects induced by Ang II can be blocked by losartan, indicating that functional activity is mediated mainly by the AT₁ receptor. On the other hand, the AT₂ receptor is quite different from the AT₁ receptor; the AT₂ receptor is blocked by the compound PD123319, a selective AT₂ receptor antagonist [33]. The function of the AT₂ receptor is not yet clear. Recently, growing evidence has shown that the AT2 receptor is also involved in functional activity. PD123177 has been shown to delay and attenuate the Ca2+ spike induced by Ang II in cultured bovine adrenal medullary cells. By using PC12w cells, which express high levels of AT₂, but not AT₁ receptor, Yamada et al. [44] recently reported that the AT₂ receptor involves dephosphorylation of MAP kinase and results in apoptosis. This AT₂-mediated MAPK dephosphorylation and apoptosis can be blocked by vanadate and antisense oligonucleotide to MAPK. Another study indicates that the AT, receptor is regulated by PKC-calcium pathway; the increase of Ang II receptor gene expression was inhibited with cycloheximide, a PKC inhibitor [45]. ### CARDIAC RENIN-ANGIOTENSIN SYSTEM Multiple lines of biochemical and molecular evidence support the existence of a local RAS [46-52]. The most convincing evidence for a cardiac RAS is the expression of renin, angiotensinogen, and ACE genes in cardiac tissues [53-56]. The renin and angiotensinogen mRNA have been shown to exist in all four chambers of the heart, with a different distribution depending on species and pathophysiological conditions [57]. In contrast, von Lutterotti et al. [58] indicated that renin is not synthesized by cardiac tissue and that the local RAS is accumulating the renin from the bloodstream. Ang I and Ang II can be measured in the isolated rat heart when renin is added to a perfusion buffer; this means that angiotensinogen and ACE, but not renin, exist in isolated heart tissues [59]. Experiments have indicated that ACE is not uniformly distributed in the heart. By using 125I-351A as a radioligand, Yamada et al. [60] demonstrated that in rat heart, the highest density of ACE is in valve leaflets and the lowest is in endocardium. Upon combining in vitro autoradiography with examination of tissue morphology, Sun et al. [61,62] showed that low density ACE was found throughout the ventricular myocardium, whereas high density of ACE exists at the site of high collagen turnover, including heart valve leaflets. The distribution of ACE in the heart indicates that some Ang II is possibly generated in the heart. In fact, cardiac Ang II production has been demonstrated [22,63]. Receptors that are related to the function of Ang II have been characterized in the cardiovascular system [34,64]. It is thus likely that local Ang II plays an important role in cardiovascular homeostasis in autocrine and paracrine fashions and may be involved in cardiac remodeling. #### EFFECT OF ANG II ON CARDIAC FUNCTION Ang II influences cardiac function by effecting cardiac contraction, myocytes, cardiac matrix growth, and cardiac metabolism. These actions are initiated by the binding of Ang II to a plasma membrane receptor that stimulates PLC to produce hydroxyl phosphatidylinositol 4,5-bisphosphate and thus forming diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP₃). The subsequent rise in intracellular Ca²⁺ that results from IP₃-mediated release of Ca²⁺ from intracellular stores, together with DAG, activate PKC. In cultured rat ventricular myocytes, Ang II not only activates the phosphoinositide pathway, but also activates the phospholipase D and A₂ pathways [41,65]. Ang II has long been recognized to influence cardiac contractility [66-68]. A positive inotropic effect of Ang II was reported on isolated neonatal rat cardiomyocytes [69,70], pithed rabbit preparations [71], as well as perfused rabbit and rat hearts [71,72]. Under in vivo conditions in rabbits, Zhang et al. [73] have shown that Ang II elicited a dose-dependent increase in blood pressure, left ventricular pressure, rate of contraction (+dP/dt), and rate of relaxation (-dP/dt), as well as heart rate. The increase in both +dP/dt and -dP/dt by Ang II was confirmed in isolated rabbit hearts [74] and rat myocytes [75]. It may be noted that Ang II was found to increase interleukin-1-induced nitric oxide synthesis; this effect was blocked by a PKC inhibitor, calphostin [76]. Unlike beta blocker or diuretics, the reduced levels of cholesterol and lipoprotein by an ACE inhibitor were increased by Ang II [77,78]. Ang II interacts with the sympathetic nervous system through presynaptic transmitter release and with an improvement of the baroreceptor reflex function [79,80]. Interactions between the RAS and parasympathetic nervous system in heart failure are also observed. Heart failure patients show a reduction in vagal tone [81], and baroreflex sensitivity, associated with an increased plasma renin activity [82,83]. Thus, it appears that the action of Ang II in cardiovascular system is both of direct and indirect nature. #### EFFECT OF ANG II ON Ca2+ MOBILIZATION Ang II has been reported to be involved in Ca2+ mobilization in ventricular myocytes through the activation of slow calcium channels in the sarcolemmal membrane [70]. Allen et al. [69] have observed that Ang II can stimulate contractile frequency and calcium sensitive calcium current. Arnaudeau et al. [84] indicated that angiotensin AT₁ receptor stimulates Ca²⁺ sparks through activation of L-type Ca²⁺ channels without involving IP₃-induced Ca²⁺ release; this stimulatory effect was blocked by PKC inhibitor but not by propranolol [85]. Ang II induced the cytosolic free calcium increase in chick myocytes in a dose-dependent manner [86]. Unpublished data from our laboratory have revealed that Ang II can increase intracellular Ca²⁺ in isolated adult rat myocytes in a dose-dependent manner; this effect was abolished by both Ang II receptor antagonist losartan and PD123319. Although Ang II can be seen to cause an increase in free Ca²⁺ in the myocytes, the results are controversial. Ang II (10⁻⁸ M) induced a significant increase of fractional shortening that was not associated with an increase of calcium transient or any effect on L-type calcium inward current [87]. In isolated rabbit myocytes, Ang II stimulated the rate of contraction (+dP/dt) and relaxation (-dP/dt) but failed to show any increase in intracellular Ca2+. On the other hand, in neonatal rat heart myocyte cultures, the frequency of contraction and Ca2+ current were increased when a PKC activator, phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), was added to the buffer containing Ang II; this effect was not seen with 4-α-phorbol-12,13-didecanoate (α-PDD), which does not activate PKC [88]. ## ANG II-INDUCED CARDIAC HYPERTROPHY AND HEART FAILURE Cardiac growth is affected by mechanical load and neurohumoral substances, such as Ang II, which acts as an endogenous growth factor. Ang II stimulates cardiac growth that is involved with myocyte hypertrophy, as well as growth of nonmyocytes, such as collagen and fibronectin. During hypertrophy, Ang II has been shown to stimulate synthesis of protein and DNA, secretion of growth factors, and formation of cardiac matrix [89-94]. Ang II, at 10 µM concentration, increased collagen and fibronectin synthesis and their mRNA expression in cultured rat vascular smooth muscle cells [94]. In neonatal rat cardiac fibroblasts, 24-hour exposure to 1 µM Ang II increased the rates of phenylalanine, thymidine, and uridine by 58%, 103% and 118%, respectively [95]. Intracellular signalling pathways of Ang II may include: (1) the phosphatidylinositol message pathway, (2) the tyrosine kinase pathway via the Ras/Raf pathway to activate the protein kinase, and (3) a cascade to activate MAP kinase. These events in sequence may cause protein transcription by stimulation of the growth factor-dependent c-fos, c-jun, and Egr-1. Although Ang II stimulates these intracellular mechanisms by its interaction with angiotensin receptors present in the cell membrane, the contribution of each receptor type (AT₁ and AT₂) is far from understood. It should be mentioned that cardiac hypertrophy is an adaptive response to an increased load on the myocytes. This response allows the heart to increase work in the presence of normal systolic fiber shortening [96]. On the other hand, heart failure is a complex syndrome in which a number of subcellular biochemical alterations have been identified [97,98]. However, understanding events that are associated during the transition of cardiac hypertrophy to heart failure is a real challenge. By using chick heart cells, Baker and Aceto [90] found that Ang II significantly stimulated protein synthesis through the participation of AT₁ receptors. Under the same experimental conditions, it was shown that Ang II-induced protein synthesis was time- and dose-dependent [90]. Likewise, Greenen et al. [91] demonstrated that Ang II increased cardiac
protein synthesis in adult rat heart. The work from Schunkert et al. [99] not only confirmed that Ang II stimulated protein synthesis in adult rat hearts directly but also explained that this stimulation was mediated through AT₁ receptors and PKC activation. The Ang II-induced ventricular hypertrophy was not a consequence of high blood pressure because lowering the blood pressure or vasodilator therapy did not regress the cardiac hypertrophy [100]. Conversion of intracardiac Ang I to Ang II was fourfold higher in hypertrophied rats because of an increase of the ACE activity; these changes were reversed by an ACE inhibitor, which suggests that ACE is a key enzyme involved in cardiac hypertrophy [99]. It should be pointed out that administration of an ACE inhibitor not only prevented cardiac hypertrophy but also caused a regression of the previously developed left ventricular hypertrophy. The recently established new transgenic (TGR9nRen2) rat was an ideal model to demonstrate the direct effect of RAS on cardiac hypertrophy [101]. This transgenic rat has been shown to develop hypertension, which can be normalized by an AT₁ receptor antagonist [102,103]. The formation of cardiac extracellular matrix has been demonstrated to be increased by the RAS [104,105] and appears to play an important role in the transition from hypertrophy to heart failure [106]. A marked ACE binding in rats after coronary ligation was associated with fibrillar collagen formation in the infarcted and remote areas [62]. In cultured cardiac fibroblasts, Ang II induced an early growth response (Egr-1) gene as well as increased mRNA levels for c-fos, fibronectin, and laminin, from two- to fourfold [107]. Not only is collagen a major component of the extracellular matrix but also the accumulation of fibrillar collagen in the cardiac interstitium is the major morphological feature of ventricular hypertrophy [108]. The increase in collagen I and III contents in the myocardium was attenuated in the presence of AT₁ and AT₂ receptor antagonist [109]. Infusion of Ang II was found to stimulate fibronectin gene expression accompanied with an increase in collagen I and IV gene expression in rat hearts [110,111]. Compared with other growth factors, Ang II showed a strong effect on early oncogene, Egr-1, and extracellular matrix gene, such as fibronectin and laminin [107]. On the other hand, some investigators did not observe any change in collagen gene expression by Ang II [107]. The pathway for Ang II-mediated nonmyocyte hypertrophy has been reviewed recently by Dostal et al. [112]. #### MECHANISMS OF CARDIAC REMODELING BY ANG II By stimulating the formation of extracellular matrix, Ang II is considered to alter the size and shape of cardiomyocytes and thus results in remodeling of the heart. In cultured rat cardiac cells, the c-fos mRNA expression was significantly induced by Ang II [112]. The pressure overload-induced c-fos expression was also found to be Ang II dependent. In stretched adult failing cardiomyocytes, c-fos mRNA was increased three- to fourfold after Ang II treatment. This increase and the early gene, c-fos expression were blocked by AT₁ receptor antagonist [41]. Late hypertrophy response, skeletal α-actin, atria natriuretic factor, and protein synthesis were suppressed by Ang II receptor antagonist [113]. In myocardial infarction-induced hypertrophy, c-myc, c-jun, and Ang II receptor mRNA were increased significantly [114]. In heart failure due to coronary occlusion, Ang II receptors, c-myc, and cjun were also increased in myocytes [115]. Ang II has been shown to stimulate growth factor in adult cardiac fibroblasts [116]. Ang II also caused a marked increase of insulin-like growth factor-1 receptor gene expression and gene transcription in rat aortic smooth muscle cells [117]. In rat cardiac hypertrophy induced by abdominal coarctation, an increase in AT₁ receptor mRNA was associated with a twofold increase of the transforming growth factor-β, mRNA. This increase can be blocked by an Ang II receptor antagonist, DuP 753 [118]. Ang II stimulated MAPK by PKC dependent [119] or independent [120] pathways with an increase of intracellular Ca²⁺ and thus stimulating myocyte growth [121]. An increase in the activity and expression of the local RAS gene was evident in cardiac hypertrophy and heart failure. This increase was associated with an increase in plasma renin activity by 45% and total RNA by 68% in rats with heart failure [122]. The increased ACE mRNA level was accompanied by a decrease of AT₁ receptor mRNA to 46% without any change in AT2 receptor mRNA in myocardium of decompensated rats [122]. The cardiac renin, angiotensinogen, ACE, and AT₁ and AT₂ receptors were expressed in volume-overloaded rat heart in which increases in renin, angiotensinogen, as well as ACE mRNA, unlike mRNA for Ang II receptors, were evident [123]. The level of ACE mRNA increased in the ventricles during cardiac hypertrophy by aortic banding and increased in the model of low-output cardiac failure by coronary ligation [124,125]. In the hypertrophied rat heart, ACE mRNA was twofold more than that in the normal ventricle. Infusion of Ang I into the hypertrophied heart for 15 min caused intracardiac conversion of Ang I to Ang II; this increase was fourfold compared to the sham control [99]. The increase of Ang II receptor was not only evident at the site of myocardial infarction, but also in fibrous tissues involved in myocardial infarction and pericardial fibrosis [126]. In hypertrophied heart from myocardial infarction, gene expression and protein content of renin, angiotensinogen, ACE, as well as the angiotensin receptors increased significantly [127]. On the other hand, a decrease in Ang II receptor mRNA was seen in patients with heart failure, and this reduction was attenuated by losartan and PD123319 [128]. Both AT, and AT, receptors were found to increase in injured and noninfected tissues, but only AT1 antagonist attenuated this receptor change in rat after coronary artery ligation [129]. Ang II receptors were downregulated in pressure overload myocardial hypertrophy and heart failure in rats but upregulated in postinfarcted cardiac hypertrophy and heart failure [130-133]. Reduction of both Ang II receptors, with loss of AT₁ receptor mRNA, is noticeable in patients with end stage heart failure [134]. In severe heart failure, plasma renin and plasma Ang II concentrations increased threefold. In parallel, renal renin and angiotensinogen mRNA expression also increased. These observations suggest that RAS is activated in heart failure, but the changes in its different components seem to depend on the type and stage of the disease [135]. From the foregoing discussion, it is clear that ACE genotype has a close relationship with cardiac hypertrophy and heart failure and has also been implicated in cardiac dilatation and myocardial infarction [18,136,137]. Since Cambine et al. [17] first reported a deletion polymorphism in the ACE gene (DD), which was associated with an increased risk of myocardial infarction, the relationship between ACE genotype and cardiac hypertrophy or heart failure has been studied more extensively [138-140]. This relationship is demonstrated by (1) a higher occurrence of cardiac hypertrophy and heart failure in patients with a DD genotype; (2) a greater amount of DD ACE genotype gene in hypertrophy or heart failure patients; (3) an influence of the DD genotype on survival following heart failure. Schunkert et al. [141] suggested that the DD genotype may act as a marker associated with an elevated risk of left ventricular hypertrophy in men, since men have a stronger association of the DD genotype than women. In contrast, no relationship of ACE genotype with cardiac hypertrophy was reported [142]. ## EFFECTS OF ACE INHIBITORS ON CARDIAC HYPERTROPHY AND HEART FAILURE Since the synthesis of the first oral ACE inhibitor, captopril, in 1977 [3,4,143], several other ACE inhibitors have been synthesized, and their effects on hypertension and heart failure have been fully investigated [144,145]. Although it is generally accepted that ACE inhibitors have a beneficial effect in heart failure, the mechanism of such a protective effect is still far from being fully understood [146,147]. The following discussion is devoted to analysis of the actions of some ACE inhibitors in different types of hypertrophied and failing hearts. ## Effect of ACE inhibitors on heart failure induced by myocardial infarction Left ventricular infarction in rat has been used as an ideal model of cardiac hypertrophy and heart failure. The RAS is known to be activated during postinfarction and is thought to play an important role during the remodeling period. Therefore, this model has also been used to demonstrate the benefits of ACE inhibitors. Myocardial infarction has been characterized as a combination of pressure and volume overload in which the myocardium faces an excessive workload [148]. Marked changes in ventricular hemodynamics, volume, and mass are related to infarct size. Cardiac function is lowered, which is characterized by lower output, reduced ejection fraction, elevated end-diastolic pressure, ventricular dilatation, and ventricular hypertrophy, which finally leads to heart failure. Because infarct size is an important factor that influences the postinfarction process and the heart failure occurrence, attention has been paid to the fact that ACE inhibitors may reduce infarct size. Although several studies have examined the effect of ACE inhibitors on infarct size, the results are controversial. Reduction of the infarct size by ACE inhibitors has been reported in dog [149-151], rat [152,153] and cat [154]. When the ACE inhibitor is administered from 15 min to 6 hours after the coronary occlusion, infarct size reduction was evident in dogs, and it was suggested that ACE inhibitors can reduce infarct size by increasing collateral flow to the areas of infarction as
well as areas at risk [155]. Treatment with captopril for 3 weeks starting 3 weeks after coronary artery occlusion reduced the infarct size only by 9% in rats [152]. On the other hand, various studies failed to observe any change in infarct size upon ACE inhibitor therapy. In a dog model of coronary artery occlusion, captopril improved cardiac output significantly but did not decrease the infarct size [156]. In addition, ACE inhibitors failed to reduce infarct size in conscious dogs [157,158]. Both reduction [159] and no change in the infarct size have been reported upon occluding coronary artery in rats [160]. Such a discrepancy in results seems to be due to the time of administration and dose of ACE inhibitor. Improved systolic and diastolic function in both experimental animals and patients with heart failure have been well documented by the use of various ACE inhibitors, such as captopril [153,161], enalapril [162], trandolapril [163], idrapril [160], and ramipril [164]. Pfeffer et al. [165] were first to report that captopril significantly prevented the ventricular dysfunction. Captopril, given to infarcted rats for 3 weeks, showed a shortening of peak time tension, an increase in ±dP/dt and developed tension, and a particular reduction of myocardial stiffness [152]. In general, ACE inhibitors improved ventricular hemodynamics, attenuated ventricular dilatation, and reduced wall stress and stiffness. ACE inhibitors also increased the baseline and maximum stroke volume index, cardiac output, and coronary circulation. Some investigators have failed to show the protective effect or even partial protective effects of ACE inhibitors. Although ACE inhibitors significantly improved cardiac function in heart failure, their effects on cardiac systolic and diastolic function are different. A recent study has demonstrated that long-term ACE inhibitor treatment improved diastolic function more than systolic function. These data indicate that the diastolic filling abnormalities are almost completely normalized but diastolic dimensions and posterior thickening are left unchanged after long term treatment with captopril [166]. Compared to other drugs such as vasodilators, \(\beta \)-adrenergic blockers, and Ca²⁺ antagonists, ACE inhibitors demonstrate the greatest advantage in delaying the development of heart failure and increasing the survival rate. The effect of chronic ACE inhibition on long-term survival after myocardial infarction was first demonstrated in rats with myocardial infarction [153]. Subsequently, ACE inhibitors were used in clinical trials and showed their beneficial effect on mortality and morbidity in heart failure [167-169]. Some of the studies, however, have shown a negative action of ACE inhibitors [170]. In a one-year survival study, an ACE inhibitor, trandolapril, showed improved survival rate in myocardial-infarcted rats only during the initial 6 month period [171]. Our experiments with a new, long-acting ACE inhibitor, imidapril, have shown that ACE inhibitors may produce beneficial effects irrespective of the time of treatment following coronary occlusion. Both early (1 hour after coronary artery occlusion) or late (3 weeks after coronary artery occlusion) treatments of rats reduced the mortality compared to that in the respective untreated infarcted group. The mechanism by which ACE inhibitors improve survival following early or late myocardial infarction may, however, be different (unpublished data). Remodeling of the heart subsequent to myocardial infarction is characterized by progressive left ventricular dilatation and enlargement of the chamber size. At the cellular level, remodeling of the heart may include changes in membranes, contractile proteins, and cardiac matrix. It is currently well reviewed that ACE inhibitors appear to prevent the occurrence of cardiac remodeling in heart failure [172-174]. Early treatment with ACE inhibitor was found to prevent the progression of left ventricular remodeling in dogs with left ventricular dysfunction caused by sequential intracoronary embolizations with polystyrene latex microspheres [175]. In addition, the beneficial effects of ACE inhibitors on cardiac remodeling were also seen in noninfarcted regions of the myocardium [176] and large arteries [177]. Ramipril, when given to sheep for eight weeks starting two days after coronary occlusion, limited the decline in function in noninfarcted regions and prevented the percent circumferential shortening in the subendocardium [176]. Captopril significantly reduced collagen levels and reduced the artery media thickness, which was accompanied by improved hemodynamic functions in the coronary occluded rats [178]. The multiple factors that may contribute to the action of ACE inhibitors caused by remodeling of the heart are as follows: a decrease of hemodynamic load, an increase in bradykinin levels, a regression of myocyte hypertrophy, and a decrease in collagen accumulation [174]. Although ACE inhibitors are considered to prevent cardiac remodeling by affecting the size and shape of hypertrophied myocytes by decreasing the formation of cardiac matrix, ramipril did not normalize the elevated collagen content in rats with myocardial infarction [178]. In spite of the evidence that ACE inhibitors improve cardiac function, delay the occurrence of heart failure, and prolong the survival, the time of administration and doses of these agents are still in discussion [179,180]. Treatment of rats with idrapril before coronary occlusion showed a marked improvement in left ventricular function and prevention of cardiac remodelling [160]. A recent report stressed the importance of early ACE inhibitor treatment [180]. Early administration of lisinopril to patients with acute myocardial infarction showed a long-term benefit of survival rate [171]. On the other hand, an earlier study demonstrated that late, but not immediate, treatment with captopril improved cardiac function following heart failure subsequent to coronary occlusion [181]. The doses used for treatment also affected the beneficial influence of ACE inhibitors [182]. In rats with heart failure after myocardial infarction, one-year survival rate improved with high doses, but not with low doses, of lisinopril [183]. In view of the differences in the molecular structure of the two binding sites of ACE [184], it is possible that different ACE inhibitors may interact with ACE at one or both sites. This may explain the differences in the time- and dose-dependent effects of these agents. ## Effects of ACE inhibitors on cardiac hypertrophy and heart failure from volume overload Heart failure from volume overload is different from other types of heart failure as it is characterized by an eccentric pattern of hypertrophy and dilation of the ventricular cavities. The effects of ACE inhibitors on heart failure from volume overload have not been studied extensively; however, a recent review has discussed the status of volume overload hypertrophy and heart failure [185]. There is a characteristic elevation of plasma atrial natriuretic factor (ANF) because of increased release and synthesis of ANF in volume-induced heart failure [186]. Winkins et al. [187] suggested that ANF could be used as a good indicator of cardiac volume overload in aortocaval fistula because the level of plasma ANF correlates with the degree of cardiac hypertrophy and urinary excretion of cGMP. Arnal et al. [188] observed that perindopril exerted a beneficial effect on cardiac hypertrophy and suggested that ACE inhibitors may regress cardiac hypertrophy mainly via their effect on the pressure load, rather than the volume load. By combining the pressure and volume overloads, Takeda et al. [189] showed that captopril significantly increased the tension (dT/dt_{max}) and attenuated the shifts of myosin isozyme. Furthermore, the fact that ACE inhibitors significantly attenuated the ventricular ACE mRNA expression, as well as the mRNA of $AT_{1\alpha}$ and $AT_{1\beta}$, supports the idea that RAS is involved in volume overload heart failure [125]. Treatment of rats with enalapril for 7 weeks significantly reduced the increased LVEDP from volume overload [190,191]. Similar results were also seen with captopril treatment for 3 weeks [192]. The improved hemodynamics associated with a regression of cardiac hypertrophy indicated that RAS may exert some direct effects on volume overload cardiac hypertrophy [193]. Since the changes in extracellular matrix are invariably observed in hypertrophied hearts, the effects of ACE inhibitors on collagen and elastin have been investigated in volume overload cardiac hypertrophy. In contrast to other forms of cardiac hypertrophy, collagen was reduced in volume-overloaded hypertrophied left ventricle, and this reduction was attenuated by enalapril treatment. Enalapril also blocked the initial increase of elastin in the same model [193]. Although ACE inhibitors reduced the increased level of ANF in heart failure from coronary occlusion, no such reduction was seen in the volume overload heart failure in spite of the beneficial effects on hemodynamics [192]. Differential effects of ACE inhibitors on circulating versus cardiac ANG II appear to explain the differences in the beneficial effects of various agents on cardiac hypertrophy and hemodynamic changes from volume overload [194,195]. ## Effect of ACE inhibitors on cardiac hypertrophy and heart failure from pressure overload Cardiac hypertrophy from pressure overload (a concentric hypertrophy) is characterized by a concentric increase in wall thickness without increase in chamber radius or volume. The left ventricle has been shown to increase by about 50% within 6 to 12 weeks of aortic banding in rats [196]. Significant prevention of cardiac hypertrophy by the use of different ACE inhibitors has been demonstrated in the rat aortic stenosis model [197-199]. ACE inhibitors not only produced a regression of cardiac
hypertrophy but also prolonged the survival of rats with aortic stenosis [200]. Hemodynamic measurements showed that although the left ventricular systolic pressure was still high after treatment of pressure-overloaded rats with fosinopril, the left ventricular diastolic pressure was markedly reduced [201]. Assessment of the left ventricular geometry and function in rats with aorta banding revealed that fosinopril prevented the increase in left ventricular cavity size, increased the left ventricular wall stress, and attenuated the systolic and diastolic functions from pressure overload [201]. Both ramipril and enalapril were beneficial in regressing cardiac hypertrophy from constriction of the abdominal aorta in rats regardless of whether the administration was immediate or 3 weeks after the operation. Ang II receptor antagonists also reduced cardiac hypertrophy but to a much lesser degree than the reduction following surgical removal of aorta banding [202]. ## ACE inhibitors on heart failure from pacing or dilated cardiomyopathy The direct benefit of ACE inhibitor on cardiac tissue was determined by using different models of cardiomyopathy. In pacing-induced cardiomyopathy, fosinopril not only improved cardiac function but also improved the myocytes velocity of shortening after β-adrenergic receptor stimulation resulting from increased βadrenergic receptor density [203]. Captopril treatment maintained normal cardiac output and pulmonary capillary wedge pressure following heart failure from rapid right ventricular pacing [204]. The beneficial effect of ACE inhibitors on cardiomyopathy may be through the elevation of circulating Ang I [205]. ACE inhibitors decreased cardiac collagen accumulation differently in various strains of cardiomyopathic hamsters. Masutomo et al. [206] demonstrated that enalapril significantly decreased collagen concentration, the ratio of collagen (1:3), as well as collagen 3 mRNA expression, in the BIO14.6 strain of cardiomyopathic Syrian hamsters, but not in the BIO53.58 strains. ## POSSIBLE MECHANISMS OF THE BENEFICIAL EFFECTS OF ACE INHIBITORS ## Free radical scavenging properties Some experiments have provided evidence regarding the radical scavenging properties of ACE inhibitors containing a sulfhydryl group. In an early study, Chopra et al. [207] suggested that captopril may act as a powerful free radical scavenger. In their study, free radicals were generated by photo-oxidation of dianisidine sensitized by riboflavin, and captopril was shown to possess a scavenging ability in a dosedependent manner. Captopril also demonstrated a powerful effect in scavenging superoxide anion radicals, hydroxyl radicals, and hypochloride radicals [208]. Labeling ACE inhibitors as free radical scavengers is limited because not all ACE inhibitors contain the sulfhydryl group, yet these agents have a similar protective effect on cardiac functions. #### Cellular mechanisms Change in intracellular calcium handling is shown to occur in heart failure, and the beneficial effect of ACE inhibitors in improving cardiac function is possibly associated with improvements of the sarcoplasmic reticulum Ca²⁺ ATPase gene expression in renal hypertensive rats [209]. Unpublished data from our laboratory have indicated that the ACE inhibitor, imidapril, not only prevents the remodeling of the sarcoplasmic reticulum membrane but also affects the remodeling of sarcolemmal membrane during the development of heart failure from myocardial infarction. We have demonstrated that imidapril benefited gene expression and protein content in both sarcoplasmic reticulum and sarcolemma in heart failure from coronary occlusion. ACE inhibitors have also been shown to improve the response to Ca2+ stimulation in hypertrophied myocytes which may be important for preventing the transition from compensated hypertrophy to heart failure [210]. In addition, we have shown that ACE inhibitors improved \(\beta\)-adrenergic receptor transduction by preventing the depression in β_1 -adrenergic receptor density and decreased adenylyl cyclase activity, and attenuating G protein changes in the failing hearts. Sanshi and Takeo [211] have also reported that long-term trandolapril treatment significantly attenuated the cardiac β-adrenoceptor response in rat with heart failure following coronary occlusion. ## Effect on bradykinin Besides the inhibition of RAS, the inactivation of bradykinin might be responsible for some beneficial effects of ACE inhibitors. This view is supported by the fact that the protective role of ACE inhibitors in ischemic heart [212] and the regression of cardiac hypertrophy by ramipril in hypertensive rats are abolished upon administrating a bradykinin antagonist [213]. The effect of ACE inhibitors involves bradykinin- mediated actions which include increasing the coronary blood flow, improving the left ventricular pressure, decreasing the arterial ventilation, and reducing the proliferating properties [214,215]. It should be noted that bradykinin is a vasodilator which acts by increasing the release of endothelium-derived factors, such as nitric oxide and prostacyclin. Bradykinin may also improve the status of high-energy phosphates in ischemic myocardium [215,216]. Although the protective effect on cardiac function and regression of cardiac hypertrophy by ACE inhibitors can be considered to be part of the function of bradykinin, it is not related to the equally effective Ang II antagonists. ## Effect on myosin heavy chain A positive relationship exists between myosin heavy chain and cardiac muscle contractility. Reduced myosin heavy chain content and the isoform shift in heart failure can be attenuated by ACE inhibitor treatment. In our laboratory, rats with heart failure induced by coronary occlusion showed lower myosin heavy chain content and shifted, altered myosin isoform gene expression. By using the ACE inhibitor imidapril for four weeks, a significant improvement of myosin heavy chain content and normalization of the myosin isoform shift were observed (unpublished data). Lambert et al. [217] also showed that perindopril significantly limited the shift of isomyosin in the cardiomyopathic Syrian hamster. Michel et al. [218] showed that the treatment of myocardial infarcted rats with an ACE inhibitor over a two month period significantly attenuated the isoform shift. ## Effect on neuroactivity Diminution of parasympathetic tone associated with enhanced arrhythmogenesis and sudden cardiac death is a feature of congestive heart failure [81]. ACE inhibitors have been shown to exert vagomimetic action in congestive heart failure [219]. ACE inhibitors significantly increased the baroreflex sensitivity in patients with idiopathic dilated cardiomyopathy and coronary artery disease [219]. Captopril significantly attenuated the depressed baroreflex sensitivity in patients with acute myocardial infarction [220]. Although ACE inhibitors were known to affect sympathetic activity, no action of ACE inhibitors on healthy subjects was observed [221]. ## Effect on energy metabolism Lactate dehydrogenase (LDH) and its isoenzymes are closely related to aerobic and anaerobic metabolism. Shifts of LDH isoenzymes are dependent on the state of the oxygen supply and may serve as a marker for the energy state of the myocyte; LDH1 acts as a marker for the aerobic state whereas LDH5 is a marker for the anaerobic state [77,222]. In cardiac hypertrophy and heart failure, reduction of available energy is evidenced by changing the isoforms of LDH, or decreasing the ADP/ATP ratio; this shift in the LDH isoenzyme and alteration of the ADP/ATP ratio can be interpreted to reflect the beneficial effects of the ACE inhibitor therapy. Treatment with enalapril for six months shifted LDH towards LDH1, and the ADP/ ATP carrier concentration increased to normal levels. A significant effect on the hemodynamic index was also observed. Although this study indicated the protective ACE inhibitor effect on metabolism, it is unclear whether the change in energy metabolism is a cause or a consequence of the hemodynamic alterations [219]. Enalapril significantly increased LDH1 concentration, preserved myocardial creatine kinase, and improved the survival of rats with heart failure [223]. The study from Zhu et al. [216] indicated that the possible mechanism by which ACE inhibitors improve metabolism is via bradykinin instead of Ang II inhibition. On the other hand, ACE inhibitors, such as captopril, enalapril, and ramipril, significantly improved the myocardial oxygen consumption in dogs by increasing the nitric oxide accumulation [224]. #### EFFECTS OF ANG II RECEPTOR ANTAGONIST ON CARDIAC HYPERTROPHY AND HEART FAILURE In view of the indirect evidence that the RAS is at least partially responsible for the progression of heart failure, this system is considered to influence the prognosis in heart failure. The discovery of the Ang II receptor antagonists has provided an adequate tool for studying the role of Ang II receptors and RAS in heart function. By using Ang II receptor antagonists, one can avoid, to some extent, the side effects caused by ACE inhibitors. Furthermore, by blocking Ang II with nonpeptides that lack agonist activity, it is now possible to confirm that the efficacy of ACE inhibitors is due to a decrease in the Ang II level instead of an increase in the bradykinin level. The earliest Ang II antagonist was reported to block Ang II receptors and reduce blood pressure but was found to exhibit some Ang II agonist activity [225]. The first nonpeptide AT, receptor antagonist, losartan, was discovered to possess agonist activity [226,227]. Losartan was found to affect the Ang II receptors by interacting with amino acid in the transmembrane domains of AT, receptors, occupying space among seven helixes, and thus preventing the binding of Ang II [228]. Losartan is a novel, orally active, nonpeptide Ang II receptor antagonist that blocks the Ang II AT,
receptor specifically. In an early study using rats with heart failure following coronary occlusion, Raya et al. [229] found the beneficial effects of both Ang II blocker and ACE inhibitor with respect to changes in LVEDP, left ventricular end-diastolic volume, and the venous compliance. Smits et al. [230] later showed that both early and late treatments with losartan following myocardial infarction were beneficial in modifying the changes in the central venous pressure as well as in inhibiting the collagen deposition and regressing the cardiac hypertrophy. However, losartan failed to show any beneficial effect with respect to changes in cardiac output and inhibition of the DNA synthesis in the failing ventricle. Nonetheless, losartan has been used in heart failure patients, and clinical data confirm the beneficial effect for lowering the systemic vascular resistance and increasing the cardiac output [231,232]. Furthermore, short-term administration of losartan has been shown to significantly improve impaired cardiac function, reduce systemic vascular resistance as well as pulmonary capillary wedge pressure, and increase cardiac index [233]. In addition to being beneficial in heart failure that is due to myocardial infarction, Ang II antagonist blockers have been shown to exert beneficial actions in volume overload-induced [190], pressure overload-induced [202], and pacing-induced heart failure [234]. The Ang II receptor antagonist TCV-116 at a dose of 10 mg/kg/day significantly reduced the increased left ventricular weight and left ventricular thickness caused by pacing of the heart [235]. As well, this treatment attenuated the shift of the beta myosin heavy-chain isoforms and inhibited cardiac hypertrophy by inhibiting the [3H]phenylalanine incorporation, MAPK activity, and the c-fos expression induced by stretch of cardiomyocytes. Losartan has also been shown to attenuate the altered response of myocytes to Ang II in heart failure caused by pacing [236]. Since cardiac remodeling after myocardial infarction has a close relationship with the expression of the phenotype genes, the modulation of cardiac phenotype gene expression by TCV-116 revealed beneficial effects on remodeling of cardiac tissue [236]. Attenuation of ventricular dilatation after myocardial infarction by TCV-116 [237] indicates that Ang II antagonists are capable of delaying the development of heart failure after myocardial infarction. Although there are many similar effects of ACE inhibitors and Ang II receptor blockers, some differences exist between the two classes of drugs. ACE inhibitors inactivate the metabolism of bradykinin. ACE inhibitors do not completely inhibit the production of Ang II pathways, whereas Ang II receptor antagonists directly block the action of Ang II by suppressing its receptors [238]. Losartan has tissue specific effects on endogenous levels of angiotensin and bradykinin, but the increase of bradykinin does not contribute to the action of losartan [239]. Losartan (10 mg/kg) was found to increase plasma renin and cardiac Ang II and decrease plasma angiotensinogen and increase plasma ACE, but it does not increase the tissue ACE levels [240]. It should be pointed out that some discrepancies exist concerning the effects of ACE inhibitors and Ang II antagonists. Losartan at a dose of 15 mg/ kg had no effect on cardiac hypertrophy induced by coronary artery ligation, whereas in the same model, captopril significantly regressed the hypertrophied heart [240]. On the other hand, the increased left and right ventricular weights were significantly depressed by losartan but only moderately attenuated by enalapril in the volume overload model [202]. A clinical study showed that losartan and enalapril were of comparable efficacy and tolerability in moderate or severe congestive heart failure [241]. Losartan had significant advantages, with respect to its long duration of action, oral absorption, and absence of Ang II agonist activity. The improved tolerability of losartan in heart failure is not seen with ACE inhibitors because of cough that develops from the effects of bradykinin and prostaglandin. Some reports have indicated that about 10 to 15% of patients on ACE therapy must have it discontinued because of bradykinin-related cough [242]. On the other hand, ACE inhibitors also show some advantage over the Ang II blockade. One of the advantages of therapy with ACE inhibitors compared to that with Ang II receptor blockers is the increased circulating Ang II level that is known to exert a positive inotropic effect on the myocardium [205]. The most important advantage is that ACE inhibitors significantly reduce mortality and delay the development of heart | Authors &
Reference# | Animal | ACE
Inhibitor | Start
Treatment | Duration of
Treatment | Changes of
Infarct Size | |----------------------------------|--------|------------------|------------------------------|-----------------------------------|----------------------------| | | | | | | | | van Wijingaarden
et al. [243] | rat | spirapril | immediately | 6 weeks | \leftrightarrow | | Fornes et al. [163] | rat | trandolapril | 7 days after
surgery | 1 year | \leftrightarrow | | Ertl et al. [155] | dog | SQ14225 | 30 min-6 hr
after surgery | 6 hr | 1 | | van Wijingaarden
et al. [244] | rat | captopril | before surgery | 8 weeks | \leftrightarrow | | Litwin et al. [152] | rat | captopril | immediately
after surgery | 21 days | \leftrightarrow | | van Krimpen
et al. [92] | rat | captopril | immediately | 7 days and
21 days | \leftrightarrow | | Wollert et al. [183] | rat | lisinopril | 6–8 days
after surgery | 7 days,
6 weeks,
and 1 year | \leftrightarrow | | Hock et al. [160] | rat | enalapril | 1 min after
surgery | 24 hr | \leftrightarrow | | Sweet et al. [245] | rat | enalapril | 7 days after
surgery | 1 year | \leftrightarrow | | Liang et al. [157] | dog | teprotide | 40 min after surgery | 10-40 min | \leftrightarrow | Table 1. Use of various ACE inhibitors for the treatment of experimentally-induced myocardial infarction failure; however, no such evidence for Ang II blockers is available yet in the literature. Likewise, in contrast of different types of ACE inhibitors (table I) [92,152,155,157,160,183,243-245], a great deal concerning the time and duration of treatment of myocardial infarction with Ang II antagonists needs to be discovered. #### **ACKNOWLEDGMENTS** The work reported in this article was supported by a grant from the Medical Research Council of Canada (MRC Group in Experimental Cardiology). Dr. V. Panagia was a Senior Scientist supported by the Medical Research Council of Canada. #### REFERENCES - 1. Tigerstedt R, Bergman PG. 1898. Niere and Kreislauf. Skand Arch Physiol 718:223-271. - 2. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. 1934. Studies on experimental hypertension. 1. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347-379. - 3. Ferguson RK, Brunner HR, Turini GA, Gavras H, McKinstry DN. 1977. A specific orally active inhibitor or angiotensin converting enzyme in man. Lancet 1:775-778. - 4. Gavras H, Brunner HR, Turini GA, Kershaw GR, Tifft GP, Cuttelod S, Gavras I, Vukovich RA, - McKinstry DN, 1978. Antihypertensive effect of the oral angiotensin-converting enzyme inhibitor SQ 14225 in man. N Engl J Med 298:991-995. - 5. Heinrikson RL, Poorman RA. 1990. The biochemistry and molecular biology of recombinant human renin and prorenin. In Hypertension: Pathophysiology, diagnosis and management. Ed. JH Laragh and BM Brenner, 1179-1196. New York: Raven Press. - 6. Sigmund CD, Jones CA, Kane CM, Wu C, Lang JA, Gross KW. 1992. Regulated tissue- and cellspecific expression of the human renin gene in transgenic mice. Circ Res 70:1070-1079. - 7. Gomez RA, Chevalier RL, Carey RM, Peach MJ. 1990. Molecular biology of the renal renin angiotensin system. Kidney International 38(Suppl 30):S18-S23. - 8. Clauer E, Gaillard I, Li W, Corvol P. 1989. Regulation of angiotensinogen gene. Am J Hypertens 2:403-410. - 9. Ehlers MRW, Riordan JF. 1990. Angiotensin-converting enzyme: Biochemistry and molecular biology. In: Hypertension: Pathophysiology, diagnosis and management. Ed. JH Laragh and BM Brenner, 1217-1231. New York: Raven Press. - 10. Skidgel RA, Erdos EG. 1987. The broad substrate specificity of human angiotensin I converting enzyme. Clin Exp Hypertens 9A:243-259. - 11. Corvol P, Michaud A, Soubrier F, Williams TA. 1995. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens 13(Suppl 3):S3-S10. - 12. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrine JM, Tregera G, Carvol P. 1988. Two putative active centres in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386-9390. - 13. Bernstein KE, Martin BM, Bernstein EA, Linton J, Striker L, Striker G. 1988. The isolation of angiotensin-converting enzyme cDNA. J Biol Chem 263:11021-11024. - 14. Rigat B, Hubert C, Corvol P, Soubrier F. 1992. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1 dipeptidyle carboxypeptidase 1). Nucleic Acid Res 20:1433. - 15. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. 1990. An insertion/ deletion polymorphism in the angiotensin I-converting gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343-1346. - 16. Triet L, Kee F, Poirier O, Nicaud V, Lecerf L, Evans A, Cambou J-P, Arveiler D, Luc G, Amouyel P. 1993. Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 341:991-993. - 17. Cambien F, Poirier O, Lecerf L, Evans A, Cambou J-P, Arveiler D, Luc G, Bard J-M, Bara L, Ricard S, Tiret L, Amouyel P, Alhenc-Gelas F, Soubrier F. 1992. Deletion polymorphism in the gene for
angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359:641-644. - 18. Samani NJ, Thompson JR, O'Toole L, Channer K, Woods KL. 1996. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 94:708-712. - 19. Dzau VJ, Sasamura H, Hein L. 1993. Heterogeneity of angiotensin synthetic pathways and receptor subtypes: Physiological and pharmacological implications. J Hypertens 11(Suppl 3):S13-S18. - 20. Dzau VJ. 1989. Multiple pathways of angiotensin production in the blood vessel wall: Evidence, possibilities and hypotheses. J Hypertens 7:933–936. - 21. Boucher R, Asselin JH, Genest J. 1974. A new enzyme leading to direct formation of Ang II. Circ Res 34(Suppl 1):1203-1209. - 22. Liao Y, Husain A. 1995. The chymase-angiotensin system in humans: Biochemistry, molecular biology and potential role in cardiovascular diseases. Can J Cardiol 11(Suppl F):13F-19F. - 23. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. 1990. Ang II-forming pathways in normal and failing human hearts. Circ Res 66:883-890. - 24. Urata H, Nishimura H, Ganten D. 1995. Mechanisms of Ang II formation in humans. Eur Heart J 16(Suppl N):79-85. - 25. Schunkert H, Ingelfinger JR, Hirsch AT, Pinto Y, Jacob H, Dzau VJ. 1993. Feedback regulation of angiotensin converting enzyme activity and mRNA levels by Ang II. Circ Res 72:312-318. - 26. Biollaz J, Brunner HR, Gavras I, Waeber B, Gavras H. 1982. Antihypertensive relationship to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 4:966-972. - 27. Danilov SM, Faerman AI, Printseva TO, Martynov AV, Sakharov IY, Trakht IN. 1987. Immunohistochemical study of angiotensin-converting enzyme in human tissues using monoclonal antibodies. Histochemistry 87:487-490. - 28. Urata H, Boehm KD, Phillip A, Kinoshita A, Gabrovsek J, Bumpus FM, Husain A. 1993. Cellular localization and regional distribution of a major Ang II forming chymase in the heart. J Clin Invest - 29. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL. 1989. Identification of Ang II receptor subtypes. Biochem Biophys Res Commun 165:196-203. - 30. Whitebread S, Mele M, Kamber B, de Gasparo M. 1989. Preliminary biochemical characterization of two Ang II receptor subtypes. Biochem Biophys Res Commun 163:284-291. - 31. Clauser E, Curnow KM, Davies E, Conchon S, Teutsch B, Vianello B, Monnot C, Corvol P. 1996. Ang II receptors: Protein and gene structures, expression and potential pathological involvement. Eur J Endocrinol 134:403-411. - 32. Szpirer C, Riviere M, Szpirer J, Levan G, Guo DF, Iwai N, Inagami T. 1993. Chromosomal assignment of human and rat hypertension candidate genes: Type 1 Ang II receptor genes and the SA gene. J Hypertens 11:919-925. - 33. Dzau VJ. 1995. Molecular biology of Ang II biosynthesis and receptors. Can J Cardiol 11(Suppl F):21F-26F. - 34. Lin SY, Goodfriend TL. 1970. Angiotensin receptors. Am J Physiol 218:1319-1328. - 35. Regitz-Zagrosek V, Auch-Schwelk W, Neuss M, Fleck E. 1994. Regulation of the angiotensin receptor subtypes in cell cultures, animal models and human diseases. Eur Heart J 15(Suppl D):92- - 36. Della-Bruna R, Ries S, Himmelstoss C, Kurtz A. 1995. Expression of cardiac Ang II AT1 receptor genes in rat hearts is regulated by steroids but not by Ang II. J Hypertens 13:763-769. - 37. Dzau VJ, Mukoyama M, Pratt RE. 1994. Molecular biology of angiotensin receptors: Target for drug research? J Hypertens 12(Suppl 2):S1-S5. - 38. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin receptor. Nature 351:233-236. - 39. van Heugten HAA, Eskildsen YEG, de Jonge HW, Bezstarosti K, Lamers JMJ. 1996. Phosphoinositide-generated messengers in cardiac signal transduction. Mol Cell Biochem 157:5-14. - 40. Duff JL, Marrero MB, Paxton WG, Schieffer B, Bernstein KE, Berk BC. 1995. Ang II signal transduction and the mitogen-activated protein kinase pathway. Cardiovasc Res 30:511-517. - 41. Inagami K, Yamano Y, Bardhan S, Chaki S, Guo DF, Ohyama K, Kambayashi Y. 1995. Cloning, expression and regulation of Ang II receptors. Adv Exp Med Biol 377:311-317. - 42. Sadoshima JI, Izumo S. 1993. Signal transduction pathways of angiotensin II induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipase-derived second messengers. Circ Res 73:424-438. - 43. Marrero MB, Schieffer B, Paxton WG, Duff JL, Berk BC, Bernstein KE. 1995. The role of tyrosine phosphorylation in Ang II-mediated intracellular signalling. Cardiovasc Res 30:530-536. - 44. Yamada T, Horiuchi M, Dzau VJ. 1996. Ang II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 45. Kijima K, Matsubara H, Murasawa S, Maruyama K, Ohkubo N, Mori Y, Inada M. 1995. Regulation of angiotensin type 2 receptor gene by the protein kinase C-calcium pathway. Hypertension 216:359-366. - 46. Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaintner K, Ganten D. 1988. Endogenous tissue renin-angiotensin system. Am J Med 84(Suppl 3A):28-36. - 47. Johnston CI. 1992. Renin-angiotensin system: A dual tissue and hormonal system for cardiovascular control. J Hypertens 10(Suppl 7):S13-S26. - 48. Danser AHJ. 1996. Local renin-angiotensin system. Mol Cell Biochem 157:211-216. - 49. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 50. Dzau VJ. 1988. Cardiac renin-angiotensin system: Molecular and functional aspects. Am J Med 84(Suppl 3A):22-27. - 51. Paul M, Bachmann J, Ganten D. 1992. The tissue renin-angiotensin system in cardiovascular disease. Trends Cardiovasc Med 2:94-99. - 52. Campbell DJ. 1987. Circulating and tissue renin-angiotensin systems. J Clin Invest 79:1-6. - 53. Dzau VJ, Re RN. 1987. Evidence for the renin in the heart. Circulation 73(Suppl 2):S33-S38. - 54. Nakayama K, Tanata T, Nakanishi S. 1986. Tissue distribution of rat angiotensinogen mRNA and structure analysis of its heterogeneity. J Biol Chem 261:319-323. - 55. Campbell DJ, Habener JF. 1986. The angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31-39. - 56. Kunapuli SP, Kumar A. 1987. Molecular cloning of human angiotensinogen cDNA and evidence for the presence of its mRNA in the rat heart. Circ Res 60:786-790. - 57. Sawa H, Tokuchi F, Mochizuki N, Mochizuki N, Endo Y, Furuta Y, Shinohara T, Takada A, Kawaguchi H, Yasuda H, Nagashima K. 1992. Expression of the angiotensinogen gene and localization of its protein in the human heart. Circulation 86:138-146. - 58. von Lutterotti N, Catanzaro DF, Sealeay JE, Laragh JH. 1994. Renin is not synthesized by cardiac and extrarenal vascular tissues. A review of experimental evidence. Circulation 89:458-470. - 59. Lindpaintner K, Jin M, Niedermajer N, Wilhelm MJ, Ganten D. 1990. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67:564-573. - 60. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141-149. - 61. Sun Y, Ratajska A, Zhou G, Weber KT. 1993. Angiotensin converting enzyme and myocardial fibrosis in the AT receiving Ang II or aldosterone. J Lab Clin Med 122:395-403. - 62. Sun Y, Cleutjens JPM, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423-1432. - 63. Hoit BD, Shao Y, Kinoshita A, Gabel M, Husain A, Walsh RA. 1995. Effects of Ang II generated by an angiotensin-converting enzyme independent pathway on left ventricular performance in the conscious baboon. J Clin Invest 95:1519-1527. - 64. Baker KM, Campanile CP, Trachte GJ, Peach MJ. 1984. Identification of the rabbit Ang II myocardial receptor. Circ Res 54:286-293. - 65. Lokuta AJ, Cooper C, Caa ST, Wang HE, Rogers TB. 1994. Ang II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem 269:4832-4838. - 66. Koch-Weser J. 1965. Nature of the inotropic action of angiotensin on the ventricular myocardium. Circ Res 16:239-237. - 67. Ishihata A, Endoh M. 1995. Species-related differences in inotropic effects of Ang II in mammalian ventricular muscle: Receptors, subtype and phosphoinositide hydrolysis. Br J Pharmacol 114:447- - 68. Yamazaki T, Komuro I, Shiojimo I, Yazaki Y. 1996. The renin-angiotensin system and cardiac hypertrophy. Heart 76(Suppl 3):33-35. - 69. Allen I, Cohen NM, Dhallan RS, Gaa ST, Lederer WJ, Rogers TB. 1988. Ang II increases spontaneous contractile frequency and stimulates calcium current in cultures neonatal rat heart myocytes: Insight into underlying biochemical mechanisms. Circ Res 62:524-534. - 70. Freer R, Pappano A, Peach M, Ning K, McLean M, Vogel S, Sperelakis N. 1976. Mechanism for the positive inotropic effect of Ang II on isolated cardiac muscle. Circ Res 39:178-183. - 71. Bonnardeaux JL, Regoli D. 1974. Action of angiotensin and analogues on the heart. Can J Physiol Pharmacol 52:50-60. - 72. Cross RB, Chalk J, South M, Liss B. 1981. The action of angiotensin on the isolated cat heart. Life Sci 29:903-908. - 73. Zhang J, Pfaffendorf M, van Zwieten PA. 1995. Hemodynamic effects of Ang II and the influence of angiotensin receptor antagonists in pithed rabbits. J Cardiovasc Pharmacol 25:724-731. - 74. Ikenouchi H, Barry WH, Bridge JHB, Weinberg EO, Apstein CS, Lorell BH. 1994. Effects of Ang II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1. J Physiol 48:203-215. - 75. Huang H, Li P, Hamby CV, Reiss K, Meggs LG, Anversa P. 1994. Alteration in Ang II receptor mediated signal transduction shortly after coronary artery constriction in the rat. Cardiovasc Res 28:1564-1573. - 76.
Lkeda U, Maeda Y, Kawahara Y, Yokoyama M, Shimada K. 1995. Ang II augments cytosinestimulated nitric oxide synthesis in rat cardiac myocytes. Circulation 92:2683-2689. - 77. Zhu YC, Zhu YZ, Spitznagel H, Gohlke P, Unger T. 1996. Substrate metabolism, hormone interaction, and angiotensin-converting enzyme inhibitors in left ventricular hypertrophy. Diabetes 45(Suppl 1):S59-S65. - 78. Schlueter W, Keilani T, Batlle DC. 1993. Metabolic effects of converting enzyme inhibitors: Focus on the reduction of cholesterol and lipoprotein (a) by fosinopril. Am J Cardiol 72:37H-44H. - 79. Zimmermann B. 1981. Adrenergic facilitation by angiotensin: Does it serve a physiologic function? Clin Sci 60:343-348. - 80. Xiang J, Linz W, Becker H, Ganten D, Lang RE, Scholkens B, Unger T. 1985. Effects of converting enzyme inhibitors ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113:215-223. - 81. Eckberg DL, Drabinsky M, Braunwald E. 1971. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285:877-883. - 82. Osterziel KJ, Hänlein D, Dietz R. 1994. Interactions between the renin-angiotensin system and the parasympathetic nervous system in heart failure. J Cardiovasc Pharmacol 24(Suppl 2):S70-S74. - 83. Guo GB, Abboud FM. 1984. Ang II attenuates baroreflex control of heart rate and sympathetic activity. Am J Physiol 264:H80-H89. - 84. Arnaudeau S, Macrez-Lepretre N, Mironneau J. 1996. Activation of calcium sparks by Ang II in vesicular myocytes. Biochem Biophys Res Commun 24:809-815. - 85. Macrez LN, Morel JL, Mironneau J. 1996. Ang II-mediated activation of L-type calcium channels involved phosphatidylinositol hydrolysis-independent activation of protein kinase C in rat portal vein myocytes. J Pharmacol Exp Ther 278:468-475. - 86. Baker KM, Singer HA, Aceto JF. 1989. Ang II receptor-mediated stimulation of cytosolic-free calcium and inositol phosphates in chick myocytes. J Pharmacol Exp Ther 251:578-585. - 87. Barry WH, Matsui H, Bridge JH, Spitzer KW. 1995. Excitation-contraction coupling in ventricular myocytes: Effects of Ang II. Adv Exp Med Biol 382:31-39. - 88. Dösemeci A, Dhallan RS, Cohen NM, Lederer WJ, Rogers TB. 1988. Phorbol ester increases calcium current and stimulates the effects of Ang II on cultures neonatal rat heart myocytes. Circ Res 62:347-357. - 89. Aceto JF, Baker KM. 1990. [Sar¹] Ang II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 90. Baker KM, Aceto JF. 1990. Ang II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-H618. - 91. Greenen DL, Malhotra A, Scheuer J. 1993. Ang II increases cardiac protein synthesis in adult rat heart. Am J Physiol 265:H238-H243. - 92. van Krimpen C, Smits JFM, Cleutjens JPM, Debets JJM, Schoemaker RG, Struyker Boudier HAJ, Bosman FT, Daemen MJAP. 1991. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: Effects of captopril. J Mol Cell Cardiol 23:1245-1253. - 93. Fisher SA, Absher M. 1995. Norepinephrine and ANG II stimulate secretion of TGF-β by neonatal rat cardiac fibroblasts in vitro. Am J Physiol 268:C910-C917. - 94. Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T. 1991. Ang II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens 9:17-22. - 95. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Ang II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245-1254. - 96. Morgan HE, Baker KM. 1991. Cardiac hypertrophy: Mechanical, neural and endocrine dependencies. Circulation 83:13-26. - 97. Dhalla NS, Das PK, Sharma GP. 1978. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 10:363-385. - 98. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117-139. - 99. Schunkert H, Jackson B, Tang SS, Schoen FJ, Smits JFM, Apstein CS, Lorell BH. 1993. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 87:1328-1339. - 100. Harrap SB, Dominiczak AF, Fraser R, Lever AF, Morton JJ, Foy CJ, Watt GCM. 1996. Plasma Ang II, predisposition to hypertension and left ventricular size in healthy young adults. Circulation 93:1148-1154. - 101. Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao H. 1996. Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR(mREN2)27 transgenic rats. Circulation 94:785-791. - 102. Bader M, Zhao Y, Sander M, Lee MA, Bachmann J, Böhm M, Djavidani B, Peters J, Mullins JJ, Ganten D. 1992. Role of tissue renin in the pathophysiology of hypertension in TGR (mREN2)27 rats. Hypertension 19:681-686. - 103. Böhm M, Lee MA, Krauts R, Kim S, Schinke M, Djavidani B, Wagner J, Kaling M, Wirnen W, Bader M, Ganten D. 1995. Ang II receptor blockade in TGR(mREN2)27: Effect of reninangiotensin-system gene expression and cardiovascular functions. J Hypertens 13:891-899. - 104. Kawaguchi H, Kitabatake A. 1995. Renin-angiotensin system in failing heart. J Mol Cell Cardiol 27:201-209. - 105. Weber KT, Sun Y, Tyagi SC, Cleutjens JPA. 1994. Collagen network of the myocardium: Function, structure remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279-292. - 106. Boluyt MO, O'Neill L, Meredith AL, Bing OHL, Brooks WW, Conrad CH, Crow MT, Lakatta EG. 1994. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure: Marked upregulation of gene encoding extracellular matrix components. Circ Res 75:23-32. - 107. Kim S, Ohta K, Hamaguchi A, Omura T, Yukimura T, Miura K, Inada Y, Ishimura Y, Chatani F, Iwao H. 1995. Ang II type 1 receptor antagonists inhibit the gene expression of transforming growth factor-\(\beta\)1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther 273:509-515. - 108. Iwani K, Ashizawa N, Do YS, Graf K, Hsueh W. 1996. Comparison of ANG II with other growth factors on EGR-I and matrix gene expression in cardiac fibroblast. Am J Physiol 270:H2100-H2107. - 109. Hsueh WA, Do YS, Anderson PW, Law RE. 1995. Ang II in cell growth and matrix production. Adv Exp Med Biol 377:217-223. - 110. Brilla CG, Zhou G, Rupp H, Maisch B, Weber KT. 1995. Role of Ang II and prostaglandin E2 in regulating cardiac fibroblast collagen turnover. Am J Cardiol 76:8D-13D. - 111. Crawford D, Chobanian AV, Brecher P. 1994. Ang II induced fibronectin expression associated with cardiac fibrosis in the rat. Circ Res 74:727-739. - 112. Dostal DE, Booz GW, Baker KM. 1996. Ang II signaling pathways in cardiac fibroblasts: Conventional versus novel mechanisms in mediating cardiac growth and function. Mol Cell Biochem - 113. Sadoshima JI, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of Ang II mediated stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 114. Kent RL, McDermott PJ. 1996. Passive load and Ang II evoke differential responses of gene expression and protein synthesis in cardiac myocytes. Circ Res 78:829-838. - 115. Reiss K, Capasso JM, Huang HE, Meggs LG, Li P, Anversa P. 1993. Ang II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol 264:H760-H769. - 116. Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ. 1995. Ang II stimulates the autocrine production of transforming growth factor-\$\beta\$1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347-2357. - 117. Du J, Meng XP, Delafontaine P. 1996. Transcriptional regulation of the insulin-like growth factor-I receptor gene: Evidence for protein kinase C-dependent and independent pathways. Endocrinology 137:1378-1384. - 118. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. 1994. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-β₁ expression. Hypertension 23:587–592. - 119. Booz GW, Taher MM, Baker KM, Singer HA. 1994. Ang II induces phosphatidic acid formation in neonatal rat fibroblasts: Evaluation of the roles of phospholipases C and D. Mol Cell Biochem 141:135-143. - 120. Booz GW, Dostal DE, Singer HA, Baker KM. 1994. Involvement of protein kinase C and Ca2+ in Ang II-induced mitogenesis of cardiac fibroblasts. Am J Physiol 267:C1308-C1318. - 121. Bogoyevitch MA, Glennon PE, Andersson MB, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH. 1994. Endothelin-I and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 269:1110-1119. - 122. Ishiye M, Umemura K, Uematsu T, Nakashima M. 1995. Effects of losartan, an Ang II antagonist, on the development of cardiac hypertrophy to volume overload. Biol Pharm Bull 18:700-704. - 123. Federico Pieruzzi F, Xaid A, Abassi ZA, Keiser HR. 1995. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation 92:3105-3112. - 124. Schunkert H, Dzau VJ, Tong SS, Hirsch AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA levels in pressure overload left ventricular hypertrophy: Effects on coronary resistance, contractility and relaxation. J Clin Invest 86:1913–1920. - 125. Iwai N, Shimoike H, Kinoshita M. 1995. Cardiac renin-angiotensin system in the hypertrophied heart. Circulation 92:2690-2696. - 126. Sun Y, Weber KT. 1996. Cells expressing Ang II receptors in fibrous tissues of rat heart. Cardiovasc Res 31:518-525. - 127. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs L, Baker KM, Anversa P. 1995. Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. Am J Physiol
269:H1791-H1802. - 128. Hirsh AT, Talsness CE, Schunlert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475-482. - 129. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of Ang II receptor subtypes in myocardial infarction. I Clin Invest 95:46-54. - 130. Tang SS, Diamant D, Rogg H, Schunkert H, Lorell BH, Ingelfinger JR. 1992. Rat hearts contain Ang II (ANGII) receptors that are downregulated and differentially expressed during hypertrophy (abstract). Hypertension 20:418. - 131. Nishimura J, Kobayashi S, Chen X, Shikasho T, Kanaide H. 1992. Ang II receptor mRNA is regulated by Ang II: Possible involvement of protein kinase C in receptor downregulation (abstract). Circulation 86(Suppl 1):I-289. - 132. Suzuki J, Matsubara H, Urakami M, Inada M. 1993. Rat Ang II (type 1) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439-447. - 133. Meggs LG, Coupet J, Huang H, Cheng W, Li P, Capes JM, Homcy CJ, Anversa P. 1993. Regulation of Ang II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 72:1149-1162. - 134. Zagrosek VR, Friedel N, Heymann A, Bauer P, Rolfs A, Steffen C, Hildebrandt A, Whether R, Fleck E. 1995. Regulation, chamber localization, and subtype distribution of Ang II receptors in human hearts. Circulation 91:1461-1471. - 135. Schunker H, Tang SS, Litwin SE, Diamant D, Riegger G, Dzau VJ, Ingelfinger JR. 1993. Regulation of intrarenal and circulating renin-angiotensin systems in severe heart failure in the rat. Cardiovasc Res 27:731-735. - 136. Raynolds MV, Bristow MR, Bush EW, Abraham WT, Lowes BD, Zisman LS, Taft CS, Perryman MB. 1993. Angiotensin-converting enzyme DD genotype in patients with ischemic or idiopathic dilated cardiomyopathy. Lancet 342:1073-1075. - 137. Pinto YM, van Gilst WH, Kingma JH, Schunkert H. 1995. Captopril and thrombolysis study investigators. Deletion type allele of the angiotensin-converting enzyme gene is associated with progressive ventricular dilation after anterior myocardial infarction. J Am Coll Cardiol 25:1622-1626. - 138. Arbustini E, Grasso M, Fasani R, Klersy C, Diegoli M, Porcu E, Banchieri N, Fortina P, Danesino C, Specchia G. 1995. Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br Heart J 74:584- - 139. Gharavi AG, Lipkowitz MS, Diamond JA, Jhang JS, Phillips RA. 1996. Deletion polymorphism of the angiotensin-converting enzyme gene is independently associated with left ventricular mass and geometric remodeling in systemic hypertension. Am J Cardiol 77:1315-1319. - 140. Andersson B, Sylvén C. 1996. The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure. J Am Coll Cardiol 28:162-167. - 141. Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Kell U, Lorell BH, Riegger GAJ. 1994. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 330:1634-1638. - 142. Lindpaintner K, Lee M, Larson MG, Rao VS, Pfeffer MA, Ordovas O, Schaefer EJ, Wilson AF, Wilson PWF, Vasan RS, Myers RH, Levy D. 1996. Absence of association or genetic between the angiotensin-converting-enzyme gene. N Engl J Med 334:1023-1028. - 143. Ondertti MA, Rubin B, Cushman DW. 1997. Design of specific inhibitors of angiotensin converting enzyme: New class of orally active antihypertensive agents. Science 196:441-443. - 144. Juggi JS, Berard GK, van Gilst WH. 1993. Cardioprotection by angiotensin-converting enzyme (ACE) inhibitors. Can J Cardiology 9:336-352. - 145. Cohen ML. 1985. Synthetic and fermentation-derived angiotensin-converting enzyme inhibitors. Ann Rev Pharmacol Toxicol 25:307-323. - 146. Braunwald E. 1991. ACE inhibitors—a cornerstone of the treatment of heart failure. N Engl J Med 325:351-353. - 147. Opie LH. 1995. Fundamental role of angiotensin-converting enzyme inhibitors in the management of congestive heart failure. Am J Cardiol 75:3F-6F. - 148. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Experimental observation and clinical implications. Circulation 81:1161-1172. - 149. Raya TE, Gay RG, Aguirre M, Goldman S, 1989. Importance of vasodilatation in prevention of left ventricular dilatation after chronic large myocardial infarction in rats: A comparison of captopril and hydrazine. Circ Res 64:330-337. - 150. Mehta PM, Alker KJ, Kloner RA. 1988. Functional infarct expansion, left ventricular dilatation, and isovolume in occlusion: A two dimensional echocardiographic study. J Am Coll Cardiol 11:630-636. - 151. Sweet CS. 1990. Issues surrounding a local cardiac renin system and the beneficial actions of angiotensin-converting enzyme inhibitors in ischemic myocardium. Am J Cardiol 65:111-113. - 152. Litwin SE, Litwin CM, Raya TE, Warner AL, Goldman S. 1991. Contractility and stiffness of noninfarcted myocardium after coronary ligation in rats. Effects of chronic angiotensin converting enzyme inhibition. Circulation 83:1028-1037. - 153. Pfeffer JM, Pfeffer MA, Braunwald E. 1985. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84-95. - 154. Lefer AM, Peck RC. 1984. Cardioprotective effects of enalapril in acute myocardial ischemia. Pharmacology 29:61-69. - 155. Ertl G, Kloner RA, Alexander W, Braunwald E. 1982. Limitation of experimental infarct size by an angiotensin-converting enzyme inhibitor. Circulation 65:40-48. - 156. Daniell HB, Carson RR, Ballard KD, Tomas GR, Privitera PJ. 1984. Effect of captopril on limiting infarct size in conscious dogs. J Cardiovasc Pharmacol 6:1043-1047. - 157. Liang CS, Gavras H, Black J, Sherman LG, Hood WB. 1982. Renin-angiotensin system in acute myocardial infarction in dogs. Effects on systemic hemodynamics, myocardial blood flow, segmental myocardial function and infarct size. Circulation 66:1249-1255. - 158. Leddy CL, Wilen M, Francious JA. 1983. Effects of a new angiotensin converting enzyme inhibitor, enalapril, in acute and chronic left ventricular failure. J Clin Pharmacol 23:189-198. - 159. Hock CE, Riberiro LGT, Lefer AM. 1985. Prevention of ischemic myocardium by a new converting enzyme inhibitor, enalapril acid. Am Heart J 109:222-228. - 160. Jeremic G, Masson S, Luvarà G, Porzio S, Lagrasta C, Riva E, Olivetti G, Latini R. 1996. Effects of new angiotensin-converting enzyme inhibitor (idrapril) in rats with left ventricular dysfunction after myocardial infarction. J Cardiovasc Pharmacol 27:347-354. - 161. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669-677. - 162. Emmert SE, Stabilito II, Sweet CS. 1987. Acute and subacute hemodynamic effects of enalaprilat, milrinone and combination therapy in rats with chronic left ventricular dysfunction. Clin Exp Ther Prac A9:297-306. - 163. Fornes P, Richer C, Pussard E, Heudes D, Domergue V, Giudicelli JF. 1992. Beneficial effects of trandolapril on experimental induced congestive heart failure in rats. Am J Cardiol 70:43D- - 164. Beermann A, Nyquist O, Höglund C, Jacobsson KA, Näslund U, Jensen-Urstad M. 1993. Acute haemodynamic effects and pharmacokinetics of ramipril in patients with heart failure. A placebo controlled three-dose study. Eur J Clin Pharmacol 45:241-246. - 165. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 319:80-86. - 166. Anning PB, Grocott RM, Lewis MJ, Shah AM. 1995. Enhancement of left ventricular relaxation in the isolated heart by an angiotensin converting enzyme inhibitor. Circulation 92:2660-2665. - 167. The SOLVD Investigators. 1992. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection. N Engl J Med 327:685-691. - 168. Ambrosio E, Borghi C, Magnani B. 1995. For the survival of myocardial infarction long-term evaluation (SMILE) study investigation. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 332:80- - 169. ISIS-4 (Fourth international study of infarct survival) collaborative group. 1995. ISIS-4: A randomized factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58050 patients with suspected acute myocardial infarction. Lancet 345:669-685. - 170. Swedberg K, Held P, Kjekshus J and CONSENSUS II Investigators. 1992. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the - Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS-II). N Engl J Med 327:678-684. - 171. Gruppo italiano per lo studio delia sopravvivenza nell'infarto miocardico. 1996. Six-month effects of early treatment with lisinopril and transdermal glyceryl trinitrate singly and together withdrawn six weeks after acute myocardial infarction: The GISSI-3 trial. J Am Coll Cardiol 27:337-344. - 172. Cleland JG, Puri S. 1994. How do ACE inhibitor reduce mortality in patients with left ventricular dysfunction with or without heart failure: Remodeling, resetting, or sudden death? Br Heart J 72(Suppl 3):S81-S86. - 173. Beckwith C, Munger MA. 1993. Effect of angiotensin-converting enzyme inhibitor on ventricular remodeling and survival following myocardial infarction. Ann Pharmacotherap 27:755-766. - 174. Pfeffer JM, Fischer TA, Pfeffer MA. 1995. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Ann Rev Physiol
57:805-826. - 175. Goldstein S, Sharov VG, Cook JM, Sabbah HN. 1995. Ventricular remodeling: Insights from pharmacologic interventions with angiotensin converting enzyme inhibitors. Mol Cell Biochem 147:51-55. - 176. Kramer CM, Ferrari VA, Rogers WJ, Theobald TM, Nance LM, Axel L, Reichek A. 1996. Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol 27:211-217. - 177. Dixon IMC, Ju H, Jassal DS, Peterson DJ. 1996. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem 165:31-45. - 178. Gaballa MA, Raya T, Goldman S. 1995. Large artery remodeling after myocardial infarction. Am J Physiol 268:H2092-H2103. - 179. Ball SG, Hall AS, Murray GD. 1995. Angiotensin-converting enzyme inhibitors after myocardial infarction: Indications and timing. J Am Coll Cardiol 25(Suppl 7):42S-46S. - 180. van Gilst WH, Kingma JH, Peels KH, Dambrink JHE, Sutton MSJ. 1996. Which patient benefits from early angiotensin-converting enzyme inhibition after myocardial infarction? Results of oneyear serial echocardiographic following from the captopril and thrombolysis study (CATS). J Am Coll Cardiol 28:114-121. - 181. Schoemaker RG, Debets JJM, Struyker-Boudier HAJ, Smits JFM. 1991. Delayed but not immediate captopril therapy improves cardiac function in conscious rats following myocardial infarction. I Mol Cell Cardiol 23:187-197. - 182. Cleland JGF, Poole-Wilson PA. 1994. ACE inhibitors for heart failure: A question of dose. Br Heart I 72(Suppl 3):106-110. - 183. Wollert KC, Studer R, von Bülow B, Drexler H. 1994. Survival after myocardial infarction in the rat. Role of tissue angiotensin-converting enzyme inhibition. Circulation 90:2457-2467. - 184. Perich RB, Jackson B, Rogerson F, Mendelsohn FAO, Paxton D, Johnston CL. 1992. Two binding sites on angiotensin I-converting enzyme: Evidence from radioligand binding studies. Mol Pharmacol 42:286-293. - 185. Dell'Italia LI, Oparil S. 1996. Cardiac renin angiotensin system in hypertrophy and the progression to heart failure. Heart Failure Reviews 1:63-72. - 186. Garcia R, Qing G. 1993. Characterization of plasma and tissue atrial natriuretic factor during development of moderate high output heart failure in the rat. Circ Res 27:464-470. - 187. Winkins MR, Settle SL, Stockmann PT, Needleman P. 1990. Maximizing the natriuretic effect of endogenous atriopeptin in a rat model of heart failure. Proc Natl Acad Sci USA 87:6465-6469. - 188. Arnal JF, Philippe M, Laboulandine I, Michel JB. 1993. Effect of perindopril in rat cardiac volume overload. Am Heart J 126:776-782. - 189. Takeda N, Tanamura A, Iwai T, Kato M, Noma K, Nagano M. 1993. Beneficial effect of ACE inhibitor in congestive heart failure. Mol Cell Biochem 129:139-143. - 190. Ruzicka M, Yuan B, Harmsen E, Leenen FHH. 1993. The renin-angiotensin system and volume overload-induced cardiac hypertrophy in rats: Effects of angiotensin converting enzyme inhibitor versus Ang II receptor blocker. Circulation 87:921-930. - 191. Ruzicka M, Yuan B, Leenen FHH. 1994. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation 90:484-491. - 192. Garcia R, Bonhomme MC, Diebold S. 1994. Captopril treatment does not restore either the renal or the ANF release response during volume expansion in moderate to severe high output heart failure. Cardiovasc Res 28:1533-1539. - 193. Ruzicka M, Keeley FW, Leenen FHH. 1994. The renin-angiotensin system and volume overloadinduced changes in cardiac collagen and elastin. Circulation 90:1989-1996. - 194. Ruzicka M, Leenen FHH. 1995. Relevance of blockade of cardiac and circulatory angiotensinconverting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91:16-19. - 195. Ruzicka M, Sharda V, Leenen FHH. 1995. Effects of ACE inhibitors on circulating versus cardiac angiotensin II in volume overload induced cardiac hypertrophy in rats. Circulation 92:3568-3573. - 196. Feldman AM, Weinberg EO, Ray PH, Lorell BH. 1993. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184-192. - 197. Baker KM, Chernin MI, Wixson SK, Aceto JF. 1990. Renin angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:H324-H332. - 198. Kromer EP, Riegger GAJ. 1988. Effects of long-term angiotensin converting enzyme inhibition on myocardial hypertrophy in experimental aortic stenosis in the rat. Am J Cardiol 62:161-163. - 199. Linz W, Scholkens BA, Ganten D. 1989. Converting enzyme inhibition specifically prevents the development and induced regression of cardiac hypertrophy in rats. Clin Exp Hypertens 11A:1325- - 200. Weinberg EO, Schoen FI, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH. 1994. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90:1410-1422. - 201. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemmma GP, Douglas PS. 1995. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy: Chronic angiotensin-converting enzyme inhibition attenuated the transition to heart failure. Circulation 91:2642-2654. - 202. Mohabir R, Young SD, Strosberg AM. 1994. Role of angiotensin in pressure overload-induced hypertrophy in rats: Effects of angiotensin-converting enzyme inhibitors, an AT1 receptor antagonist, and surgical reversal. J Cardiol Pharmacol 23:291-299. - 203. Spinale FG, Holzgrefe HH, Mukherjee R, Hird RB, Walker JD, Arnim-Barker A, Powell JR, Koster WH. 1995. Angiotensin-converting enzyme inhibition and the progression of congestive cardiomyopathy: Effects of left ventricular and myocyte structure and function. Circulation 92:562- - 204. Ogilvie RI, Zborowska-Sluis D. 1993. Captopril attenuates pacing-induced acute heart failure by increasing total vascular capacitance. J Cardiol Pharmacol 22:153-159. - 205. Hirakata H, Fouad-Trazi FM, Bumpus FM, Khosla M, Healy B, Husain A, Urata H, Kumagai H. 1990. Angiotensin and the failing heart: Enhanced positive inotropic response to angiotensin I in cardiomyopathic hamster heart in the presence of captopril. Circ Res 66:891-899. - 206. Masutomo K, Makino N, Matuyama T, Shimada T, Yanaga T. 1996. Effects of enalapril on the collagen matrix in cardiomyopathic Syrian hamsters (BIO 14.6 and 53.58). Jpn Circ J 60:50-61. - 207. Chopra M, Scott N, McMurray J, McLay J, Bridges A, Smith WE, Belch JJF. 1989. Captopril: A free radical scavenger. Br J Clin Pharmacol 27:396-399. - 208. Bagchi D, Prasad R, Das DK. 1989. Direct scavenging of free radical by captopril, an angiotensin converting enzyme inhibitor. Biochem Biophys Res Comm 158:52-57. - 209. Ziehut W, Studer R, Laurent D, Kästner S, Allegrini P, Whitebread S, Cumin F, Baum HP, de Gsparo M, Drexler H. 1996. Left ventricular wall stress and sarcoplasmic reticulum Ca²⁺-ATPase gene expression in renal hypertensive rats: Dose-dependent effects of ACE inhibition and AT1receptor blockade. Cardiovasc Res 31:758-768. - 210. Kagaya Y, Hajjar RJ, Gwathmey JK, Barry WH, Lorell BH. 1996. Long-term angiotensinconverting enzyme inhibition with fosinopril improves depressed responsiveness to Ca2+ in myocytes from aortic-banded rats. Circulation 94:2951-2922. - 211. Sanshi A, Takeo S. 1995. Long-term treatment with angiotensin I-converting enzyme inhibitors attenuates the loss of cardiac β -adrenoceptor responses in rats with chronic heart failure. Circulation - 212. Linz W, Schökens BA. 1992. Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 20(Suppl IX):S81-S90. - 213. Linz W, Wiemer G, Schaper J, Zimmermann R, Nagasawa K, Gohlke P, Unger T, Schölkens BA. 1995. Angiotensin converting enzyme inhibitors, left ventricular hypertrophy and fibrosis. Mol Cell Biochem 147:89-97. - 214. Waeber B, Brunner HR. 1996. Cardiovascular hypertrophy: Role of Ang II and bradykinin. J Cardiol Pharmacol 27(Suppl 2):S36-S40. - 215. Gohike P, Linz W, Schölkens BA, Kuwer I, Bartenbach S, Schnell A, Unger T. 1994. Angiotensinconverting enzyme inhibition improves cardiac function: Role of bradykinin. Hypertension 23:411-418. - 216. Zhu P, Zaugg CE, Simper D, Hornstein P, Allegrini PR, Buser PT. 1995. Bradykinin improves postischemic recovery in the rat heart: role of high energy phosphates, nitric oxide, and prostacyclin. Cardiovasc Res 29:658-663. - 217. Lambert F, Lecarpentier Y, Lompré AM, Scalbert E, Desché P, Chemla D. 1995. Relations between myocardial contractility, myosin phenotype, and plasma angiotensin-converting enzyme activity in the cardiomyopathic hamster. J Cardiovasc Pharmacol 25:410-415. - 218. Michel JB, Lattion AL, Salzmann JL, Cerol M de L, Philippe M, Camilleri JP, Corvol P. 1988. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62:641-650. - 219. Osterziel KJ, Dietz R. 1996. Improvement of vagal tone by ACE inhibition: A mechanism of cardioprotection in patients with mild to moderate heart failure. J Cardiovasc Pharmacol 27(Suppl 2):S25-S30. - 220. Marakas SA, Kyriakidis K, Vourlioti N, Petropoulakis PN, Toutoizas PK. 1995. Acute effect of captopril administration on baroreflex sensitivity in patients with acute myocardial infarction. Eur Heart J 16:914-921. - 221. Lang CC, Stein CM, He HB, Wood AJJ. 1996. Angiotensin converting enzyme inhibition and sympathetic activity in healthy subjects. Clin Pharmacol Ther 59:668-674. - 222. Schultheiss HP, Ullrich G, Schindler M, Schulze K, Strauer BE. 1990. The effect of ACE inhibition on myocardial energy metabolism. Eur Heart J 11(Suppl B):116-122. -
223. Ishikawa K, Hashimoto H, Mitani S, Toki Y, Okumura K, Ito T. 1995. Enalapril improves heart failure by monocrotaline without reducing pulmonary hypertension in rats: Role of preserved myocardial creatine kinase and lactate dehydrogenase isoenzymes. Int J Cardiol 47:225-233. - 224. Zhang X, Xie YW, Nasjletti A, Xu X, Wolin MS, Hintze TH. 1997. ACE inhibitor promotes nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 95:176-182. - 225. Pals DT, Mosucci FD, Sipos F, Denning GSJR. 1970. A specific competitive inhibitor of Ang II. Proc Natl Acad Sci USA 67:1624-1630. - 226. Chiu AT, McCall DE, Price WA, Wong PC, Carini DJ, Duncia JV. 1990. Non peptide Ang II receptor antagonists: VII. Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 252:711-718. - 227. Wong PC, Price WA, Chiu AT, Duncia JV, Chrini DJ, Wexler RR. 1990. Nonpeptide Ang II receptor antagonists: VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 252:719-725. - 228. Duncia JV, Carini DJ, Chiu AT, Johnson AL, Price WA, Wong PC, Wexler RR, Timmermans PBMWM. 1992. The discovery of DuP 753, a potent, orally active nonpeptide Ang II receptor antagonist. Med Res Rev 12:149-191. - 229. Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K. 1994. Differential structure requirements for specific binding of nonpeptide and peptide antagonists to the AT1 angiotensin receptor: Identification of amino acid residues that determine binding of the antihypertensive drug losartan. J Biol Chem 269:16533-16536. - 230. Raya TE, Fonken SJ, Lee RW, Daugherty S, Goldman S, Wong PC, Timmermans PBMWM, Morkin E. 1991. Hemodynamic effects of direct Ang II blockade compared to converting enzyme inhibition in rat model of heart failure. Am J Hypertens 4:334S-340S. - 231. Smits JFM, van Krimpen C, Schoemaker R.G, Cleutjens JPM, Daemen MJAP. 1992. Ang II receptor blockade after myocardial infarction in rats: Effects of hemodynamics, myocardial DNA synthesis, and interstitial collagen content. I Cardiovasc Pharmacol 20:772-778. - 232. Gottlieb SS, Dickstein KD, Fleck E, Kostis J, Levine TB, LeJemtel T, DeKock M. 1993. Hemodynamic and neurohormonal effects of the Ang II antagonist losartan in patients with congestive heart failure. Circulation 88:1602-1609. - 233. Regitz-Zagrosek V, Neuss M, Holzmeister J, Fleck E. 1995. Use of Ang II antagonists in human heart failure: Function of the subtype 1 receptor. J Hypertens 13(Suppl 1):S63-S71. - 234. Crozier I, Ikram H, Awan N, Cleland J, Stephen N, Dickstein K, Frey M, Young J, Klinger G, Makris L, Rucinska E. For the losartan hemodynamic study group. 1995. Losartan in heart failure: Hemodynamic effects and tolerability. Circulation 91:691-697. - 235. Cheng CP, Suzuki M, Ohte N, Ohno M, Wang ZM, Little WC. 1996. Altered ventricular and myocyte response to Ang II in pacing-induced heart failure. Circ Res 78:880-892. - 236. Kojima M, Shiojima I, Yamazaki T, Komuro I, Zou Y, Wang Y, Mizuno T, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1994. Ang II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89:2204-2211. - 237. Hantani A, Yoshiyama M, Kim S, Omura T, Toda I, Akioka K, Teragaki M, Takeuchi K, Iwao H, Takeda T. 1995. Inhibition by Ang II type 1 receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol 27:1905-1914. - 238. Nishikimi T, Yamagishi H, Takeuchi K, Takeda T. 1995. An Ang II receptor antagonist attenuates left ventricular dilatation after myocardial infarction in the hypertensive rat. Cardiovasc Res 29:856- - 239. Rush JE, Rajfer SI. 1993. Theoretical basis for the use of Ang II antagonists in the treatment of heart failure. J Hypertens 11(Suppl 3):S69-S71. - 240. Campbell DJ, Kladis A, Valentijn AJ. 1995. Effects of losartan on angiotensin and bradykinin peptides and angiotensin converting enzyme. J Cardiol Pharmacol 26:233-240. - 241. Dickstein K, Chang P, Willenheimer R, Haunsø S, Remes J, Hall C, Kjekshus J. 1995. Comparison of the effects of losartan and enalapril on clinical status and exercise performance in patients with moderate or severe chronic heart failure. J Am Coll Cardiol 26:438-445. - 242. Eberhardt RT, Kevak RM, Kang PM, Frishman WH. 1993. Ang II receptor blockade: An innovative approach to cardiovascular pharmacotherapy. J Clin Pharmacol 33:1023-1038. - 243. van Wijngaarden J, Pinto YM, van Gilst WH, de Graeff PA, de Langen CDJ, Wessling H. 1991. Concerting enzyme inhibition after experimental myocardial infarction in rats: Comparative study between spirapril and zofenopril. Cardiovasc Res 25:936-942. - 244. van Wijngaarden J, Monninlk SHJ, Bartels H, van Gilst WH, de Langen CDJ, Wessling H. 1992. Captopril modifies the response of infarcted rat hearts to isoprenaline stimulation. J Cardiovasc Pharmacol 19:741-747. - 245. Sweet CS, Emmert SE, Stabilito II, Ribeiro LGT. 1987. Increased survival in rats with congestive heart failure treated with enalapril. J Cardiovasc Pharmacol 10:636-642. ## EFFECT OF ANGIOTENSIN-CONVERTING ENZYME INHIBITION AND OF ANGIOTENSION II RECEPTOR BLOCKADE ON THE DEVELOPMENT OF CARDIAC HYPERTROPHY IN RATS # HEINZ-GERD ZIMMER, WOLFGANG ZIERHUT* and MICHAEL IRLBECK* Carl-Ludwig-Institute of Physiology, University of Leipzig, and *Department of Physiology, University of Munich, Germany Summary. Comparison of the results of three experimental models of cardiac hypertrophy in rats reveals that angiotensin-converting enzyme (ACE) inhibition and angiotensin (Ang) II receptor blockade have different effects. In the model of pressure-induced left ventricular (LV) overload induced by constriction of the aortic arch, ACE inhibition with ramipril had no effect whatsoever on the development of cardiac hypertrophy both at the gross and the cellular morphological level. This may be because in this particular model, ACE inhibition was prevented from having an effect on blood pressure since the site of aortic constriction was quite near to the left ventricle. It may therefore be hypothezised that the clinical effects of this treatment may be related to the blood pressure-lowering effect. The local renin-angiotensin system (RAS) seems not to play a major role in this experimental model for the hypertrophy process. This is somewhat different in the model of right ventricular (RV) pressure overload induced by pulmonary artery stenosis. The development of RV hypertrophy was not influenced by treatment with ramipril; however, the cell morphology revealed a reduction in cell volume and cross-sectional area. Thus, the typical morphological feature of concentric hypertrophy was attenuated. While the effects of ACE inhibition are somewhat variable in different experimental models, the effects of Ang II receptor blockade appear to be more consistent and promising, as judged from our own experimental results obtained so far. In the model of long-term noradrenaline administration, the development of LV hypertrophy was attenuated by losartan. Very recent studies on hypoxia-induced RV hypertrophy have also shown that losartan had an effect [1]. It seems therefore appropriate to continue along this line and include more refined parameters, in particular those related to molecular biology, in further studies. #### INTRODUCTION Cardiac hypertrophy is an independent risk factor for a number of severe dysfunctions of the heart [2,3]. The identification and description of factors that interfere with the initiation and development of cardiac hypertrophy is therefore of utmost clinical significance. The mechanical load imposed on the heart is one important determinant of myocardial structure and function. This has been shown in several experimental in vivo and in vitro studies [4-6]. However, experimental and clinical observations indicate that cardiac hypertrophy is not only load-dependent but also may be related to several hormonal, humoral, paracrine, or autocrine mechanisms. Among these, catecholamines have been demonstrated to be particularly involved [7-11]. In this respect, the renin-angiotensin system (RAS) has also been considered as a relevant humoral hormone system that has been shown to play a role in several organ systems, including the heart [12]. Locally generated angiotensin (Ang) II appears to be involved in the regulation of cell growth and protein synthesis in rat aortic smooth muscle cells [13-16]. In the heart, functional Ang II receptors have been shown to exist on bovine ventricular sarcolemma and on cultured cardiac myocytes [17,18]. Moreover, clinical and experimental studies have shown regression of left ventricular (LV) hypertrophy after angiotensin-converting enzyme (ACE) inhibition [19,20]. Finally, Ang II stimulates protein synthesis cell growth in cultured cardiac myocytes [21]. Data will be presented to show how ACE inhibition by ramipril affects the development of pressure-induced left and right ventricular (RV) hypertrophy in rats. RV hypertrophy has been included since it has become possible to measure RV function in small laboratory animals with special ultraminiature catheter pressure transducers and thus to characterize the effects of pressure overload [22]. In these two experimental models, cardiac myocytes were isolated to characterize cardiac hypertrophy at the cellular level also. On the other hand, Ang II receptor blockade by losartan was performed in rats with continuous noradrenaline infusion, which has likewise been shown to induce LV hypertrophy [10] without affecting the right heart [23]. To make these experimental approaches comparable in different model systems, the study period throughout all protocols was 2 weeks. ## CONVERTING ENZYME INHIBITION IN PRESSURE-INDUCED LEFT VENTRICULAR HYPERTROPHY In
this part of the study, the experiments were done on female Sprague-Dawley rats of about 200-240 g body weight. The rats were divided into four groups: sham operation without and with ramipril treatment and aortic stenosis without and with ACE inhibition with ramipril. Ramipril was dissolved in distilled water and administered orally in a single daily dose of 1 mg/kg body weight over 14 days. The treatment was started 1 hour before the surgical procedure. The rats were anesthetized with 100 mg/kg thiopental sodium intraperitoneally, 24 hours after the last ramipril administration. The hemodynamic parameters were measured by catheterization of the left ventricle [24] with the ultraminiature catheter pressure transducer, model PR 249 (Millar Instruments, Houston, Texas). Cardiac output was determined using the thermodilution method. After the functional assessment [25], the hearts were quickly excised, the aorta was cannulated, and the hearts were perfused with collagenase to isolate cardiac myocytes for the measurement of cell parameters. To induce pressure-induced cardiac hypertrophy, the chest of the etheranesthetized and artifically ventilated rats was opened by midsternal incision, and the aortic arch was exposed. Stenosis was produced by placing a wire of 1.0 mm diameter alongside the aortic arch with a thread around it. This was tightly fixed with a knot; the wire was removed leaving the aortic arch constricted to an outer diameter corresponding to the diameter of the wire. This experimental stenosis of the aortic arch was placed between the branching points of the common carotid arteries so that LV function and pressure in the ascending aorta could be measured with an ultraminiature catheter pressure transducer introduced into the right carotid artery, and poststenotic aortic pressure could be measured by placing the catheter in the left carotid artery. The transstenotic pressure gradient was 80mmHg in all experiments [25]. Sham-operated animals were treated in the same manner except that aortic constriction was not performed. The morphological parameters of isolated cardiac myocytes were measured after perfusion of the Langendorff hearts with Joklik media containing collagenase. The tissue was minced in calcium-free media, and isolated cells were poured through a nylon mesh into a fixation solution containing 1.5% glutaraldehyde in 0.08M phosphate buffer. Isolated myocytes were centrifuged through 4% Ficoll in 0.15M phosphate buffer. A channelyzer (model 256, Coulter Corp., Hialeah, Florida) was used to determine the volume of fixed, isolated myocytes. The length of the cells was measured by using a microscope (Axioskop, Zeiss, Oberkochem, Germany) equipped with phase optics. Mean cross-sectional area was obtained by dividing cell volume by cell length [25]. None of the experimental animals with aortic arch stenosis, whether treated with ramipril or not, showed signs of heart failure. All animals did gain weight during the 14 days after surgery. The main results of this study are summarized in figures 1 and 2. LV systolic pressure and mean arterial pressure were elevated after aortic arch constriction in all animals, independent of whether they had received ACE inhibition. Cardiac output was not changed markedly. The transstenotic pressure gradient was also similar in all rats with constriction of the aortic arch (figure 1). The LV weight/body weight ratio was increased 14 days after aortic constriction to about the same extent (between 30 and 35% compared with the sham-operated controls) in both the untreated and treated group. Likewise, cell volume was higher by about 20% during pressure overload. ACE inhibition with ramipril had no effect (figure 2). Since the cells were elongated slightly, but to a similar extent in both experimental groups, the increase in cross-sectional area indicating concentric pressure-induced hypertrophy was modest and again similar in untreated and treated experimental animals. Figure 1. Effects of the aortic arch stenosis in rats without (open bars) and with (crossed bars) ramipril treatment for 14 days on left ventricular systolic pressure (LVSP), mean prestenotic aortic pressure (MAP), cardiac output (CO), and transstenotic pressure gradient (TPG) in rats. The data are expressed as percent changes and are compared to sham-operated controls. The number of experiments ranged from 10 to 18. The results of this portion of the study are not in agreement with the conclusions obtained in earlier investigations. In the study of Linz et al. [20] the abdominal aorta was constricted above the left renal artery. This may have resulted in a different activation of the systemic or local RAS. The increase in blood pressure was relatively small in this study, and the time course was different. In another study [26] in which the abdominal aorta of rats was constricted, the increase in cardiac load was mild as indicated by the mean carotid artery pressure of around 140mmHg. However, this was measured only in a portion of experimental animals and not in sham-operated controls. An experimental model that was similar to our preparation consisted of constriction of the ascending aorta in rats [27]. In accordance with our results, ACE inhibition applied immediately at the onset of pressure overload was not effective in preventing cardiac hypertrophy. However, delayed onset of ACE inhibition reduced cardiac hypertrophy. Unfortunately, there are not data presented in this study as to the hemodynamic effects of drug treatment in animals with aortic constriction. Our results on the effect of ACE inhibition in LV pressure overload are similar to those of the study of Clozel et al. [28] in which ACE inhibition with cilazapril was applied in the model of hypoxia-induced pulmonary hypertension. Cilazapril completely prevented the remodeling of the pulmonary arteries, while the hypoxiainduced elevation of pulmonary artery pressure and the development of RV hypertrophy were not significantly affected. Based on and encouraged by these findings, Figure 2. Effects of the aortic arch stenosis in rats without (open bars) and with (crossed bars) ramipril treatment for 14 days on the left ventricular weight/body weight ratio, and on cell length (CL), cross-sectional area (CSA), and cell volume (CV) of cardiac myocytes isolated from the left ventricle. The values are expressed as percent changes and are compared to sham-operated controls. The number of experiments ranged from 4 to 8. it was of interest to us to investigate converting enzyme inhibition in a model of RV pressure overload. ## CONVERTING ENZYME INHIBITION IN PRESSURE-INDUCED RIGHT VENTRICULAR HYPERTROPHY These experiments were also performed on female Sprague Dawley rats with a body weight similar to that in the previous study. The animals were divided into four main groups: sham operation without and with ramipril treatment and pulmonary artery stenosis without and with ramipril treatment. Ramipril was dissolved in distilled water and administered orally in a single daily dose of 1 mg/kg body weight for the entire study period (14 days). This dose has been shown to cause sufficient inhibition of ACE [29]. Twenty-four hours after the last treatment, the animals were anesthetized intraperitoneally (thiopental sodium 100 mg/kg i.p.), and the hemodynamic parameters were obtained using Millar ultraminiature catheter tipmanometers (model PR 249 and SPR 392 for left and right heart catheterization, respectively; Millar Instruments, Houston, TX, U.S.A.). After the hemodynamic measurements had been completed, the hearts were rapidly excised. In one series of experiments, the hearts were removed, the aorta was cannulated, and the hearts were perfused with collagenase in a modified Langendorff apparatus for isolation of cardiac myocytes. To produce RV afterload elevation, the thorax was opened in ether-anesthetized, ventilated animals by a midsternal incision, and the pulmonary artery was exposed. Stenosis of the pulmonary artery was induced with a wire of 1.7 mm diameter placed alongside the pulmonary artery, tightly fixed with a thread and then removed, leaving the pulmonary artery constricted to an outer diameter equivalent to the diameter of the wire. In sham-operated animals, the procedure was the same except that the thread was fixed. The chest was closed, and the animals recovered rapidly [30]. The average weight gain of the four groups during the subsequent 2 weeks was similar (between 16 and 24g). Fourteen days after surgery, LV functional parameters as well as cardiac output were essentially the same in sham-operated animals and animals with pulmonary stenosis. Treatment with ramipril resulted in a reduction of left ventricular systolic pressure (LVSP) and LVdP/dt_{max}; however, the differences were significant only in the operated groups without and with ramipril treatment. Constriction of the pulmonary artery elicited a considerable increase in all RV functional parameters (figure 3). Concomitant ramipril treatment did not influence these changes. There were no significant differences in LV weight among the four groups. The marked elevation of right ventricular systolic pressure (RVSP) (+74%) in the animals with pulmonary artery constriction was reflected in a highly significant increase in the RV weight/body weight ratio. Ramipril did not affect the RV weight/body weight ratio in sham-operated animals (figure 4). The isolated hypertrophy of the RV was demonstrated by the increase in the RV weight/LV weight ratio. The change of this parameter induced by pulmonary artery constriction was not affected by ramipril (figure 4). As to the morphological parameters, the length of cardiac myocytes isolated from the RV was similar in all groups (figure 5). Constriction of the pulmonary artery without treatment was associated with a marked increase in cell volume (+58%) and cross-sectional area. These results are typical for concentric hypertrophy that
has developed as a result of pressure overload. The cell morphological data also correlate very well with the increase in RV weight/body weight ratio in this group (+57%). Administration of ramipril to animals with pulmonary artery constriction attenuated the increase in cell volume (+27%) and cross-sectional area significantly, although the hemodynamic load imposed on the RV was similar in both groups. Thus, there was a discrepancy between the gross morphological and cellular parameters under the influence of ACE treatment in that the increase in pressure-induced RV weight was not affected, but the increase in cell volume and cross-sectional area was attenuated. One is therefore inclined to suggest that ramipril treatment in this particular experimental model affects the cardiac myocyte compartment. Why the same ramipril treatment for the same period of time in an equivalent pressure overload model of the LV has no effect remains unclear. One may speculate or anticipate that the RV free wall, which is much thinner than the LV free wall, may developed failure earlier because of the decrease in cellular morphology. Figure 3. Right ventricular systolic pressure (RVSP) and maximal rate of rise in RV pressure (RV dp/dt_{max}) in rats 14 days after sham operation (S) and pulmonary artery stenosis (PS) without and with ramipril treatment (R). The data are mean values \pm SEM; n = number of experiments. $\star p < 0.05$ vs. controls. #### ANGIOTENSIN II RECEPTOR BLOCKADE IN NORADRENALINE-INDUCED CARDIAC HYPERTROPHY In this experimental series, female Sprague-Dawley rats (253 ± 6g), obtained from Charles River (Sulzfeld, Germany), were again used. All drugs were administered intravenously and continuously for 14 days with Alzet osmotic pumps (model 2ML2, Alza, California, USA). The pumps were implanted subcutaneously and connected to catheters (Cardioflex 0.6 × 1.0 mm, Vygon, Aachen, Germany) inserted into the left jugular or left femoral vein. A piece of silicone tubing the size of the osmotic pumps was implanted subcutaneously in the control animals, and the left jugular vein was ligated instead of the catheter implantation. Figure 4. Right ventricular weight (RWV) related to body weight (BW) and to left ventricular weight (LVW) in rats 14 days after sham operation (S) and pulmonary artery stenosis (PS) without and with ramipril treatment (R). The data are mean values ± SEM; n = number of experiments. $\star p < 0.05$ vs. controls. The animals were anesthetized with ether for insertion of the infusion catheters and the infusion pumps at the beginning of every experimental series. After the surgical procedure and for the 14 days of the infusion, the animals were able to move around freely in their cages with access to tap water and control rat chow diet (Altromin C 100, Altromin GmbH, Lage, Germany). All substances were dissolved in 0.9% sodium chloride, except where otherwise noted. To prevent oxidation of the catecholamines, 200 mg/L L-(+)-ascorbic acid (Merck, Darmstadt, Germany) was added to the solutions. The infusion rate of the osmotic pumps was $5 \mu l/h$. (-)-Noradrenaline-HCLr (NA) was purchased from Sigma Chemical (Deisenhofen, Germany) and administered at a dosage of 100 µg/kg/h. Metoprolol-tartrate was obtained from Ciba-Geigy (Wehr, Germany) and administered at a rate of 1 mg/kg/h in combination with NA. The angiotensin II receptor antagonist losartan was Figure 5. Cell size data obtained in myocytes isolated from the right ventricle of rats 14 days after sham operation (S) and pulmonary artery stenosis (PS) without and with ramipril treatment (R): CL, cell length; CV, cell volume; CSA, cross-sectional area. The data are mean values ± SEM; n = number of experiments. $\star p < 0.05$ vs. S, $^{\dagger}p < 0.05$ vs. PS. donated by MSD Sharp & Dohme (München, Germany) and infused alone and in combination with NA at a dosage of 12 mg/kg/day. Losartan was dissolved in water. After 14 days of continuous NA infusion, heart rate was increased significantly. The parallel administration of metoprolol and NA resulted in a heart rate that was below the control values. Losartan alone had no effect on heart rate but prevented the NA-induced increase. NA induced an elevation of LVSP compared to the control values after 14 days of infusion (figure 6). This NA-induced increase in pressure was not influenced by the additional administration of metoprolol. When losartan alone was given for two weeks, LVSP was not changed from the baseline condition. As opposed to metoprolol, losartan did prevent the NA-induced rise in **Figure 6.** Effect of noradrenaline (NA) at $100 \, \mu g/kg/h$ for 14 days on left ventricular systolic pressure (LVSP) in rats. Metoprolol (M) was administered in a dose of $1 \, mg/kg/h$, and the angiotensin II receptor blocker losartan (LOS) was applied in a dose of $12 \, mg/kg/day$. *p < 0.05 vs. time-corresponding control. [†]p < 0.05 vs. time-corresponding NA infusion, [‡]p < 0.05 vs. NA + M, [§]p < 0.05 vs. LOS. Figure 7. Effect of noradrenaline (NA) at $100\mu g/kg/h$ for 14 days on the left ventricular weight/body weight ratio (LVW/BW) in rats. Metoprolol (M) was administered in a dose of 1 mg/kg/h and the angiotensin II receptor blocker losartan (LOS) was applied in a dose of 12 mg/kg/day. *p < 0.05 vs. time-corresponding control, †p < 0.05 vs. time-corresponding NA infusion. LVSP. NA caused an increased in the left ventricular weight/body weight ratio (LVW/BW) of about 30% after two weeks. As illustrated in figure 7, the gain in LVW/BW was prevented by metoprolol and attenuated by losartan [31]. Thus, Ang II receptor blockade in this experimental model of continuous NA application attenuated LV hypertrophy. What is surprising is that metoprolol did not affect LVSP but did prevent cardiac hypertrophy. This is another example which demonstrates that pressure increase or elevation of total peripheral resistance does not necessarily induce cardiac hypertrophy [10]. When the increase in total peripheral resistance that was induced by NA was prevented by the calcium antagonist verapamil, the development of cardiac hypertrophy did still occur. On the other hand, although losartan did entirely prevent the NA pressure increase, it did only attenuate and not prevent cardiac hypertrophy. #### REFERENCES - 1. Irlbeck M, Iwai T, Lerner T, Zimmer H-G. 1997. Effects of angiotensin II receptor blockade on hypaxia-induced right ventricular hypertrophy in rats, I Mol Cell Cardiol 29:2931-2939. - 2. Massie BM, Tubau JF, Szlachcic J, O'Kelly BF. 1989. Hypertensive heart disease: The critical role of left ventricular hypertrophy. J Cardiovasc Pharmacol 13(Suppl):S18-S24. - 3. Messerli FH. 1990. Antihypertensive therapy: Going to the heart of the matter. Circulation 81:1128- - 4. Cooper G, Kent RL, Uboh CE, Thompson EW, Marino TA. 1985. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest 75:1403-1414. - 5. Mann DL, Kent RL, Cooper GIV. 1989. Load regulation of the properties of adult feline cardiocytes: Growth induction by cellular defromation. Circ Res 64:1079-1090. - 6. Cooper G, Kent RL, Mann DL. 1989. Load induction of cardiac hypertrophy. J Mol Cell Cardiol - 7. Motz W, Klepzig M, Strauer BE. 1987. Regression of cardiac hypertrophy: Experimental and clinical results. J Cardiovasc Pharmacol 10(Suppl 6):S148-S152. - 8. Simpson P. 1985. Norepinephrine-stimulated hypertrophy of cultured neonatal rat heart cells through an α₁-adrenergic receptor and induction of beating through an α₁- and β₁-adrenergic receptor interaction. Circ Res 56:884-894. - 9. King BD, Sack D, Kichuk MR, Hintze TH. 1987. Absence of hypertension despite chronic marked elevations of plasma norepinephrine in conscious dogs. Hypertension 9:582-590. - 10. Zierhut W, Zimmer H-G. 1989. Significance of myocardial α- and β-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65:1417-1425. - 11. Zimmer H-G, Irlbeck M, Kolbeck-Rühmkorff C. 1995. Response of the rat heart to catecholamines and thyroid hormones. J Mol Cell Biochem 147:105-114. - 12. Dzau VJ, Ingelfinger JR, Pratt RE. 1986. Regulation of tissue renin and angiotension gene expressions. J Cardiovasc Pharmacol 8(Suppl 10):S11-S16. - 13. Geisterfer AAT, Peach MJ, Owens GK. 1988. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749-756. - 14. Berk BC, Vekshtein V, Gordon HM, Tsuda T. 1989. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305-314. - 15. Naftilan AJ, Pratt RE, Eldriges CS, Lin HL, Dzau VJ. 1989. Angiotensin II induces c-fos expression in smooth muscle via transcriptional control. Hypertension 13:706-711. - 16. Naftilan AJ, Pratt RE, Dzau VJ. 1989. Induction of platelet-derived growth factor A-chain and cmyc gene expression by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 3:1419-1429. - 17. Rogers TB. 1984. High affinity angiotensin II receptors in myocardial sarcolemmal membranes: characterization of receptors and covalent linkage of ¹²⁵J-angiotensin II to a membrane component of 116,000 daltons. J Biol Chem 259:8106-8114. - 18. Rogers TB, Gaa ST, Allen IS. 1986. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J Pharmacol Exp Therap 236:438-444. - 19. Eichstaedt H, Danne O, Langer M, Cordes M, Schubert C, Felix R, Schmutzler H. 1989. Regression of left ventricular hypertrophy under ramipril treatment investigated by nuclear magnetic resonance imaging. J Cardiovasc Pharmacol 13(Suppl 3):S75-S80. - 20. Linz W, Schölkens BA, Ganten D. 1989. Converting enzyme inhibition prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A11:1325-1350. - Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-H618. - Zimmer
H-G, Zierhut W, Seesko RC, Varekamo AE. 1988. Right heart catheterization in rats with pulmonary hypertension and right ventricular hypertrophy. Basic Res Cardiol 83:48-57. - 23. Irlbeck M, Mühling O, Iwai T, Zimmer H-G. 1996. Different response of the rat left and right heart to norepinephrine. Cardiovasc Res 31:157-162. - 24. Zimmer H-G. 1983. Measurement of left ventricular hemodynamic parameters in closed-chest rats under control and various pathophysiologic conditions. Basic Res Cardiol 78:77-84. - 25. Zierhut W, Zimmer H-G, Gerdes AM. 1991. Effect of angiotensin converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ Res 69:609-617. - 26. Baker KM, Chernin MI, Wixson SK, Aceto JF. 1990. Renin-angiotensin system involvement in pressure-overloaded cardiac hypertrophy in rats. Am J Physiol 259:H324-H332. - 27. Kromer EP, Riegger AJ. 1988. Effects of long-term angiotensin converting enzyme inhibition on mycardial hypertrophy in experimental aortic stenosis in the rat. Am J Cardiol 62:161-163. - 28. Clozel J-P, Saunier C, Hartemann D, Fischli W. 1991. Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure of pulmonary arteries of rats exposed to chronic hypoxia, J Cardiovasc Pharmacol 17:36-40. - 29. Unger T, Ganten D, Lang RE, Schölkens BA. 1985. Persistent tissue converting enzyme inhibition following chronic treatment of Hoe498 and MK421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol 7:36-41. - 30. Zierhut W, Zimmer H-G, Gerdes AM. 1990. Influence of ramipril on right ventricular hypertrophy induced by pulmonary artery stenosis in rats. J Cardiovasc Pharmacol 16:480-486. - 31. Irlbeck M, Mühling O, Iwai T, Zimmer H-G. 1996. Influence of angiotensin II receptor blockade on chronic norepinephrine stimulation of the rat left and right heart. Exp Clin Cardiol 1:49-55. ## EFFECTS OF INHIBITION OF ANGIOTENSIN-CONVERTING ENZYME ON MYOCARDIAL AND MYOCYTE REMODELING IN CHRONIC VOLUME OVERLOAD-INDUCED CARDIAC HYPERTROPHY IN THE DOG ## SANFORD P. BISHOP and LOUIS J. DELL'ITALIA Departments of Pathology and Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA Summary. The data from our studies with chronic mitral regurgitation (MR) in the dog demonstrate that the ventricular and myocyte remodeling in this model, characterized by ventricular dilation and myocyte elongation, are not returned toward normal by treatment with the converting enzyme inhibitor, ramipril. However, in spite of this failure to reduce cardiac hypertrophy or to prevent the remodeling associated with this model of chronic volume overload, there was functional improvement in the animals, as determined by the lower left ventricular filling pressures and pulmonary artery pressures in the treated animals compared with the controls. Ramipril also returned myocardial Ang II levels to control level. This suggests that there may have been a regulatory mechanism on contractile function acting through this chemical mediator. Our results suggest that diastolic wall stress activates the cardiac renin-angiotensin system (RAS) and that angiotensin (Ang) II and angiotensin-converting enzyme (ACE) may play a functional role in the eccentric pattern of hypertrophy observed in the volume overload model of MR in the dog heart. Additional future studies are needed to further characterize the relative roles of ACE and chymase in Ang II formation in this model that is relevantly important to the human heart. MR produces an increase in intracardiac Ang II without the interstitial fibrosis that has been found in pressure overload. This finding is of particular interest because the heart is a target organ for Ang II, a growth factor for myocytes and fibroblasts [1–5], which has also been associated with myocyte necrosis [6]. Thus, the mechanisms by which the RAS may mediate eccentric hypertrophy in the low pressure volume overload of MR is open to question. The beneficial effect of converting enzyme inhibitor on myocardial function in this model of volume overload, but in the absence of morphological improvement, remains speculative but may be related to alterations in the RAS in the cardiac muscle produced by the treatment. #### INTRODUCTION The process of cardiac hypertrophy results in a variety of morphological and functional alterations of the myocardium, which depend on the type of overload. In pressure overload, a number of studies have demonstrated that chamber diameter tends to remain small, while there is marked thickening of the ventricular wall. On the other hand, volume overload tends to result in more marked chamber dilation with less pronounced wall thickening, in spite of increase in total ventricular mass. The hemodynamic consequences of these separate models with different ventricular remodeling result in different rates of development of congestive heart failure, different amounts of change in interstitial connective tissue, and different effects on myocyte remodeling. There have been several clinical studies that have demonstrated a beneficial role for converting enzyme inhibitors in patients with developing congestive heart failure [7-9], but the mechanism for this clinical benefit remains unclear. The beneficial effects of converting enzyme inhibitors in asymptomatic patients could not be explained by the extent of blood pressure reduction [10]. Animal studies have clearly shown that in addition to the systemic renin angiotensin system (RAS), there are locally produced elements of the RAS in several organs, including the heart [11–16]. The role played by either the systemic or intracardiac RAS in remodeling of both the myocardium and the ventricular myocytes has received very little study and may also be different in these diverse models of cardiac hypertrophy. Most of the animal studies that investigated the role of the cardiac RAS in the pathogenesis of myocardial hypertrophy and heart failure and its sensitivity to ACE inhibition has been performed in pressure overload models in the rat. Recent work in the rat heart has demonstrated that the increase in cardiac RAS gene expression seen in concentric left ventricular (LV) hypertrophy associated with pressure overload also occurs in eccentric hypertrophy related to the volume overload of aortocaval fistula [17]. In spite of the different effects on remodeling of the left ventricle (LV) and cardiac myocytes in pressure and volume overload, the cardiac RAS is upregulated in both processes. Further, the presumption that the beneficial effects of ACE inhibitors are mediated solely by decreasing intracardiac angiotensin (Ang) II generation has now been challenged by the identification of alternative Ang II-forming mechanisms that may vary across species, in particular heart chymase [18,19]. #### LEFT VENTRICULAR HYPERTROPHY FROM PRESSURE VERSUS VOLUME OVERLOAD Pressure overload results in the development of concentric LV hypertrophy, characterized by a marked increase in wall thickness, often with relative reduction in the ventricular lumen volume. It is hypothesized that increased systolic wall stress (stress = pressure × radius/2 thickness) causes this pattern of myocyte and chamber hypertrophy whereby increased wall thickness offsets increased pressure and normalizes stress [20,21]. Microscopic evaluation of cardiac tissue or measurements in isolated myocytes has shown that sarcomeres are added in parallel, resulting in an increase in myocyte cross-sectional area, with little or no increase in cell length, depending on the model [22-26]. In contrast, volume overload with relatively less thickening of the ventricular wall because of dilation of the ventricular chamber increases diastolic wall stress and triggers an in series replication of sarcomeres. Studies of isolated cardiac myocytes from volume-overloaded and dilated models of cardiac hypertrophy have shown that the cell size predominantly increases in length, rather than width [27-33]. In compensated states of cardiac function, wall thickness (LV mass) increases in proportion to the volume overload so that adequate mass is present to pump the extra volume while wall stress remains normal. There is a distinction, however, between the low pressure volume overload of mitral regurgitation (MR) and the high pressure volume overload of aortic regurgitation and aortocaval fistula. MR presents a unique hemodynamic stress to the LV in that a large part of the excess volume is ejected into the low pressure left atrium. This form of chronic hemodynamic stress is very different from pressure overload, in which shortening load is increased throughout systole, and differs from the high pressure volume overload of aortocaval fistula and aortic regurgitation, in which the excess volume is ejected into the high pressure aorta. Consequently, MR places a much smaller systolic load on the LV and results in far less hypertrophy than pressure overload and high pressure volume overload [34]. Cardiac myocyte growth is the common denominator in myocardial hypertrophy. The pattern of myocyte remodeling and cardiac chamber geometry that develops in LV hypertrophy is determined by the hypertrophic stimulus. Furthermore, the hypertrophic remodeling of the myocardium may or may not include the growth of nonmyocyte cells (endothelial cells, macrophages, fibroblasts, smooth muscle cells), which include two-thirds of the cell population of the heart. Myocardial remodeling is mediated by locally and systemically generated trophic factors that are produced in response to hemodynamic stress. These trophic factors and the model-specific hemodynamic parameters combine to cause specific alterations in myocyte geometry and in the extent or lack of production of interstitial and perivascular fibrillar collagen in the different forms of cardiac hypertrophy. In models of pressure overload cardiac hypertrophy with sudden onset, such as aortic banding in adult animals and in those which have
developed congestive heart failure, there is an increase in the amount of interstitial and replacement-type myocardial fibrosis [35-39]. In animal models with a gradual onset of pressure overload, prior to the onset of congestive heart failure, there is much less accumulation of collagen [36,40]. In long standing or severe pressure overload, collagen accumulates in perivascular areas surrounding intramyocardial arteries and arterioles and extends from this perivascular location into the interstitial space. In addition, interstitial fibrosis develops unrelated to blood vessels, and microscopic foci of replacement-type fibrosis are found, especially in subendocardial locations [26,39,41-44]. Volume overload, on the other hand, while often accompanied by similar degrees of cardiac hypertrophy as in pressure overload, has most often been characterized by little or no increase in myocardial fibrosis. In dogs with aortocaval fistula, total increases in LV mass ranged between 43 and 100%, depending on both shunt size and duration of the volume overload [45]. Weber and coworkers reported no increase in myocardial interstitial collagen content by the picrosirius polarization technique at 10 weeks following placement of aortocaval fistulae in the dog [46]. Volume overload induced by production of atrial septal defects in the cat also failed to result in an increase in myocardial collagen, in spite of an approximate 50% increase in right ventricular (RV) free wall weight [47]. However, in spite of the lack of increase in collagen, Covell and coworkers demonstrated a qualitative change in collagen content manifested by a greater degree of cross-linking between Types I and III collagen in dogs with aortocaval fistula, who had increased LV enddiastolic pressure and chamber stiffness at the time of sacrifice [48]. Thus, it appears that qualitative as well as quantitative examinations of structural collagen in the heart may be necessary to define changes in this extracellular supporting latticework that may affect chamber distensibility and stiffness. Whether the increase in collagen production progresses over the time course of a particular hemodynamic stress and whether it is a cause or a consequence of heart failure is unresolved. The canine model of MR presents a lesser systolic stress to the LV than either high pressure volume overload or pressure overload because a large part of the excess volume is ejected into the low pressure left atrium. We and Carabello and coworkers have found that percutaneous rupture of the mitral valve in the dog produces a 20-30% increase in LV mass with an increase in LV chamber dimensions [34,49,50]. There is a significant decrease in the LV mass/volume ratio resulting from a 50-100% increase in LV end-diastolic volume (EDV) and a maximum 30% increase in LV mass at three to five months after chordal rupture. ## PRODUCTION OF CHRONIC MITRAL REGURGITATION IN THE DOG In spite of the beneficial effects of converting enzyme inhibitors on myocardial function, little is known of the mechanisms involved or the effect on myocardial or myocyte remodeling. In order to study the effect of converting enzyme inhibitor therapy on myocardial chamber size, ventricular function, and myocyte remodeling in a volume overload model, we produced MR in the dog and treated animals with the converting enzyme inhibitor, ramipril. All dogs used in this study had in vivo functional evaluation with magnetic resonance imaging (MRI) prior to creation of MR and again 5 months after creation of MR at the time of final study to compare functional performance and chamber morphology with changes in myocyte morphometry. Mitral regurgitation was induced by severing the chordae tendineae of the mitral valve with a catheter technique as previously described [49]. Briefly, each dog (18-25 kg) was anesthetized with intravenous Innovar-vet (droperidol and fentanyl 1-1.5 ml), intubated, and maintained on a surgical plane of anesthesia with isoflurane (0.75-1.5%) and oxygen (21/min) for the MRI studies and for percutaneous creation of MR. A flexible, rattooth grasping forceps (7 Fr.) (Cook Urological, Spencer, Indiana) was used to cut the chordae, and MR was judged to be sufficient when there was an increase in the pulmonary arterial wedge pressure that was greater than 20 mmHg with V wave dominance, a decrease in arterial pressure, and a decrease in cardiac output of 50%. Dogs were auscultated daily, and serial chest X-rays were performed to identify the onset of pulmonary venous congestion; furosemide was given at 2.2 mg/kg PO bid if needed. Seven MR dogs were treated with ramipril starting at 2.5 mg q day and increasing to 10 mg bid at one week (R-MR). Three dogs started ramipril therapy at 24 hours, and 4 dogs started ramipril therapy at three weeks after induction of MR. An additional 8 dogs with MR were not treated with the converting enzyme inhibitor (N-MR). Control dogs had a sham operation without cutting any chordae tendineae and were not given any drug treatment (CON). #### CINE-MAGNETIC RESONANCE IMAGING MRI was recorded at baseline and 4-5 months after induction of MR with a 1.5 Tesla whole-body imaging system (Philips Gyroscan) utilizing a gradient echo pulse sequence, as previously described in our laboratory [49,51]. LV volumes and mass were calculated from summated serial short axis slices using a Simpson's rule algorithm, as previously described and validated in our laboratory [49,51]. #### TISSUE PREPARATION FOR BIOCHEMICAL ASSAYS AND MOLECULAR BIOLOGY At the time of sacrifice, a deep surgical plane of anesthesia was induced with isoflurane inhalation, and a thoracotomy was performed. The heart was arrested with a lethal dose of KCl, was removed from the chest, and rapidly cooled in ice cold Krebs-Henseleit buffer. The coronary arteries were retrogradely perfused from the aorta with cold Krebs-Henseleit solution, the atria and right ventricular free wall were dissected from the interventricular septum and LV, and the portions were weighed. Left and right ventricular tissue samples were immediately frozen in liquid nitrogen and subsequently analyzed for Ang II content, ACE and chymase-like activity, and AT₁ receptor mRNA levels. ### CARDIAC ANG II CONCENTRATIONS Cardiac Ang II concentrations were determined by a method from our laboratory that was previously described which combines solid-phase extraction (SPE), highperformance liquid chromatography (HPLC), and radioimmunoassay (RIA) [49,52]. ## HEART CHYMASE-LIKE ACTIVITY USING ANG I AS SUBSTRATE Five hundred mg samples of LV midwall were assayed for chymase-like activity, as previously described in our laboratory [49,53]. Generated Ang II was quantitated using a reverse phase Alltima 5 micron phenyl-HPLC column. The peak area corresponding to a synthetic Ang II standard was integrated to calculate absolute Ang II formation. Chymase-like activity was defined as chymostatin inhibitable Ang II formation, expressed as nmoles of Ang II formed/gm/min of tissue (wet weight). #### CARDIAC ACE ACTIVITY USING HIPPURYL HISTIDYL LEUCINE AS SUBSTRATE Cardiace ACE activity was measured using an assay developed in our laboratory. According to this method, ACE is extracted from homogenized cardiac tissue with detergent, and the reaction product, hippuric acid (HA), is isolated from the reaction mixture by reverse-phase HPLC, thus eliminating interference from the detergent, the substrate hippuryl histidyl leucine (HHL), and unreacted reaction byproducts [49,54]. #### TISSUE FIXATION FOR MYOCARDIAL STRUCTURAL EVALUATION After the heart was dissected and weighed, a polyethylene catheter was tied into a branch of the circumflex coronary artery, and this LV segment was perfused with saline followed by 3% phosphate buffered paraformaldehyde under gravity flow at 90 mmHg pressure. The right coronary artery was similarly prepared, and a portion of the RV free wall was also perfusion-fixed. Transmural sections of left and right ventricles were embedded in paraffin, and 5 µm sections were stained with hematoxylin and eosin, Gomori's aldehyde fuchsin trichrome, and picric acid sirius red. Additional perfusion fixed samples from the inner, mid, and outer thirds of the posterior wall of the LV and a sample of RV free wall were embedded in glycol methacrylate, sectioned at 1 µm thickness, and stained with methylene blue and with a silver methenamine-gold microwave technique for basement membranes (Accustain silver stain, Sigma diagnostics, St. Louis, MO). For transmission electron microscopy, paraformaldehyde perfusion fixed tissues were dehydrated through alcohols, embedded in Spurr epoxy resin, thick sectioned at 1 µm thickness, and stained with toluidine blue for light microscopic examination. Suitable sections were thin sectioned at silver-gray interference color, stained with lead citrate and uranium oxide, and examined in a Philips 400 electron microscope. ## MYOCARDIAL CONNECTIVE TISSUE EVALUATION Images of tissues stained with picric acid sirius red were obtained from a video monitor and CCD72 video camera attached to an Olympus AHT microscope and analyzed using Image-1 image analysis software (Universal Imaging Corporation, West Chester, PA). This system uses an 8-bit, 256 grey level discrimination with a CCD72 camera attached to an Olympus AT3 research microscope and interfaced to a 486DX computer with software supplied by the company, which is programmed to calculate the percentage of pixels exceeding a selected density in each field. A 540 nm (green) filter was used to provide contrast of the red-stained collagen with the background. Two or more transmural sections of LV and RV were first examined at low power (2× objective; $60\times$ on the video screen; $3000\times3000\,\mu m$ tissue area) to measure replacement type fibrosis and perivascular collagen. The tissue was then examined at higher power (600× on the video screen; 300 × 300 µm tissue area) to measure interstitial
connective tissue. Slides were marked with a felt tip pen to demarcate endo, mid, and epicardial thirds of the LV, and 30-50 fields were measured from each tissue region. Mean volume percent connective tissue for each region of each animal was calculated from the total area measured, and these values were combined for determination of group means. #### MYOCYTE CROSS-SECTIONAL AREA Myocyte cross-sectional area (CSA) was measured from video prints of silver-stained methacrylate sections of subendomyocardial, midmyocardial and, subepimyocardial of the LV and of RV myocardium. Suitable cross-sections were defined as having nearly circular capillary profiles and circular to oval myocyte cross-sections. Only myocytes with nuclei were measured. No correction of oblique sectioning was made. Video prints (1100 × final magnification) were used to trace the outline of at least 100 myocytes in each region, including all suitably sectioned myocytes in the print, using a sonic digitizer (Graf/Bar, Science Accessories, Southport, CT). Myocyte cross-sectional area was determined by using computer programs developed in our laboratory. The mean area was calculated for each region in each animal, and the group mean was calculated for each region and group. ## QUANTITATIVE EVALUATION OF MYOCARDIAL MAST CELLS The density of mast cells was quantitatively determined for LV transmural thirds and for the RV using the methylene blue stained methacrylate sections. For each region, 30 fields, each 137,600 µm², were examined using the 10× objective of the microscope, and the number of mast cells per field were tabulated. ## SCANNING ELECTRON MICROSCOPIC EVALUATION OF COLLAGEN Perfusion fixed tissue from the inner and outer thirds of the LV wall and from the RV were processed for scanning electron microscopy. Tissues were dehydrated with alcohols and acetone and critical point dried. Tissues were mounted on aluminum stubs with longitudinal-cut surfaces exposed, sputter-coated with gold, and examined in a Philips 515 scanning electron microscope. Semiquantitative evaluation of each specimen was performed by assigning a grade from 1 to 5 for each of 40 consecutive adjacent areas, at both 1000× and 4000× magnification. Each field was graded at each magnification as follows: 1 = absent or very little collagen weave; 2 = moderately reduced collagen weave; 3 = normal collagen weave; 4 = moderately increased collagen weave; 5 = large increase in amount of collagen. Grades were determined from evaluation of normal and abnormal tissues, and the range for each grade was arbitrarily determined. Data were presented as a mean grade for each tissue and as a histogram of the percent of the total field examined for each subjective grade. #### MYOCYTE ISOLATION Isolated myocytes were prepared by collagenase perfusion of a segment of the LV myocardium with collagenase media on a nonrecirculating Langendorff system from Figure 1. Long axis and short axis end-diastolic and end-systolic magnetic resonance images of the heart at baseline and 5 months after induction of mitral regurgitation, demonstrating the increase in end-diastolic volume and the decrease in wall thickness that occurs as a result of a decrease in the LV mass volume ratio. (Reproduced with permission from Le Jacq Communications, Inc.). all MR dogs and 10 nonoperated normal dogs. A marginal branch of the left circumflex coronary artery in the KCl-arrested excised heart was cannulated with PE tubing and flushed with ice-cold tissue culture media. The heart tissue was mounted on a Langendorff perfusion apparatus, and the tissues were first perfused with a nominally Ca⁻⁻-free Joklik minimum essential medium containing EGTA, Figure 1 (continued) followed by 25 minutes perfusion with the Joklik medium with 0.1% collagenase. The tissue was subdivided into inner and outer halves. Tissues were thoroughly minced with seissors, filtered through 250 µm nylon mesh, and the myocytes fixed in a 1% final concentration phosphate buffered glutaraldehyde. Cell length was measured by light microscopy of fixed cells settled on a glass slide and examined with the video image system. Length of 100 cells was measured. Mean cell volume was determined for each region by using a Coulter Counter system as previously described [55,56], and mean myocyte cross-sectional area was calculated as mean myocyte volume/mean myocyte length. ### EFFECT OF RAMIPRIL TREATMENT ON MYOCARDIAL FUNCTION AND VENTRICULAR SHAPE IN DOGS WITH CHRONIC MITRAL REGURGITATION In the dogs with chronic MR, there was ventricular dilation and moderate increase in left ventricular mass (figure 1), which were not significantly attenuated by treatment with ramipirl. As shown in table 1, calculated values for LV end-diastolic volume, end-systolic volume, and stroke volume were increased to a similar extent in both treated and untreated MR dogs, and the increase in LV mass was not different between groups. The increase in LV mass to body weight measured at necropsy in the N-MR dogs was 38% and for the R-MR dogs, 27%, when compared to a group of 27 normal dogs from our laboratory with similar body weight (4.54g/kg). LV mass by cine-MR correlated with the LV mass determined by heart weight at the time of sacrifice (r = 0.92, p < 0.01). The LV mass/EDV ratio decreased significantly in both N-MR (1.60 ± 0.07 to 1.13 ± 0.08 gm/ml, p < 0.001) and R-MR dogs (1.44 ± 0.06 to 1.20 ± 0.08 gm/ml, p < 0.01). These results demonstrated similar increases in LV volume and mass and a similar decrease in LV mass/EDV ratio in the R-MR and N-MR dogs. In spite of the failure of ramipril to prevent cardiac hypertrophy or to significantly decrease LV chamber size, the hemodynamic status of the treated dogs was improved compared to the untreated group. Mean pulmonary artery pressure (13 \pm 1 vs. 21 \pm 3 mmHg, p < 0.05) and pulmonary arterial wedge pressure (9 \pm 1 vs. 16 | Table 1. | MRI and pos | tmortem cardi: | ac measureme | ents in | |-----------|---------------|-----------------|--------------|----------| | dogs with | chronic mitra | l regurgitation | treated with | Ramipril | | | | | N-MR | | | | N-MR | | R-MR | | |----------------------|-----------------|------------------|-----------------|------------------| | | Baseline | MR | Baseline | MR | | LVEDV | 58 ± 4 | 104 ± 10* | 55 ± 3 | 91 ± 6* | | LVESV | 30 ± 3 | 46 ± 5* | 28 ± 3 | 46 ± 5* | | LVSV | 28 ± 3 | 57 ± 5* | 27 ± 1 | 46 ± 5* | | LVEF | 48 ± 3 | 56 ± 2* | 50 ± 4 | 50 ± 4 | | LV Mass | 92 ± 7 | 112 ± 8* | 80 ± 4 | 108 ± 7★ | | LV Mass/EDV | 1.60 ± 0.07 | $1.13 \pm 0.08*$ | 1.44 ± 0.06 | $1.20 \pm 0.08*$ | | Body weight (Kg) | | 20.7 ± 1.8 | | 20.1 ± 2.2 | | LV + S/BW (necropsy) | | 6.29 ± 0.51 | | 5.80 ± 0.53 | | RV/BW (necropsy) | | 2.01 ± 0.15 | | 1.85 ± 0.15 | Note: Data are presented as mean ± SE. N-MR = mitral regurgitation untreated, R-MR = MR ramipril treated, LVEDV = left ventricular end-diastolic volume, ESV = end-systolic volume, SV = stroke volume, EF = ejection fraction, LV + S/BW = left ventricular septum weight (g)/body weight (Kg), RV/BW = right ventricular free wall weight (g)/body weight (Kg). $\star = p < 0.01$, baseline vs. MR. Figure 2. (A) illustrates left ventricular angiotensin-converting enzyme (ACE) activity, and (B) illustrates angiotensin (Ang) II levels in the Normal, nontreated mitral regurgitation (N-MR) and Ramipril-treated mitral regurgitation (R-MR) dogs. For ACE activity, ** = p < 0.01 compared to Normal. For Ang II levels, $\star = p < 0.05$ compared to Normal. (Reproduced from [33] with permission). \pm 2mmHg, p < 0.05) were lower in the R-MR compared to N-MR dogs at the time of sacrifice. As further subjective evidence of functional improvement of the dogs treated with ramipril, none of the treated dogs required furosamide treatment to control pulmonary congestion, while such treatment was often required in the nontreated MR dogs. Figure 3. Graph demonstrating number of mast cells/field from LV subendocardial myocardium (right axis) and chymase activity (left axis) in normal, non-treated MR (N-MR) and Rampipril treated MR (R-MR) dogs. * = N-MR > Normal, P < 0.05 and # = Normal < R-MR < N-Mr, p < 0.05. (Reproduced from [33] with permission). #### CARDIAC ACE AND CHYMASE-LIKE ACTIVITY AND ANG II LEVELS Ang II levels were significantly elevated in the LV of N-MR dogs compared to CON (72 \pm 11 vs. 28 \pm 4pg/gm, p < 0.05), but LV Ang II levels in the R-MR were not different from CON (28 ± 12 pg/gm) (figure 2). LV membrane-bound ACE activity (figure 2) and chymase-like activity (figure 3) were elevated in both R-MR and N-MR compared to CON dogs. Mast cells are known to be a source of cardiac chymase. Myocardial mast cell density was significantly increased in all regions of both ventricles in both MR groups compared to CON (figure 4). Mast cell density was moderately reduced in the R-MR dogs compared to N-MR dogs, but was still significantly greater than in CON. The increased mast cell number paralleled very closely the respective increases of chymase-like activity in R-MR and N-MR (figure 3). #### AT, RECEPTOR MRNA LEVELS IN THE LV AT₁ mRNA content in LV was determined by Northern blot analysis using methods previously described [33]. Total RNA was isolated from each heart sample and analyzed separately. Blots for CON, N-MR, R-MR were simultaneously hybridized with the AT₁ receptor cDNA probe that was kindly supplied to us by Burns and coworkers [57]. Densitometric analysis demonstrated that the ratios of Figure 4. Number of mast cells per microscopic field (137,000 µm²) for endomyocardial (ENDO), midmyocardial (MID), epimyocardial (EPI), and right ventricular (RV) myocardium for Control, non-treated mitral regurgitation (MR) and Rampiril treated MR dogs. * = p < 0.01 vs. normal; † = p < 0.05 compared to MR non-treated. Table 2. Effect of ramipril treatment on myocyte dimensions | | Cell
Length
(isolated myocytes)
(µ) | | Cross sectional area (CC volume/cell length) (μ^2) | | Cross sectional area (digitizer) (μ^2) | | |---|---|-----------|--|----------|--|----------| | | endo | epi | endo | epi | endo | epi | | $ \begin{array}{l} N-MR \\ (n = 11) \end{array} $ | 177 ± 10* | 180 ± 11* | 302 ± 11 | 283 ± 13 | 295 ± 19 | 244 ± 10 | | R-MR $(n = 7)$ | 203 ± 6* | 198 ± 4* | 318 ± 17 | 273 ± 11 | 306 ± 11 | 272 ± 13 | | Normals $(n = 7)$ | 144 ± 4 | 145 ± 4 | 344 ± 23 | 308 ± 22 | 271 ± 16 | 252 ± 15 | Note: Data are presented as mean ± SE. N-MR = mitral regurgitation untreated, R-MR = MR ramipril treated, CC = Coulter Counter. * = p < 0.05 vs. Normals. AT₁ receptor mRNA to GAPDH mRNA were significantly decreased in MR dogs compared to CON (0.28 \pm 0.05 vs. 0.97 \pm 0.09, p < 0.001). After treatment with ramipril, AT₁ receptor gene expression increased significantly in R-MR compared to CON (1.66 \pm 0.07 vs. 0.97 \pm 0.09, p < 0.01). **Figure 5.** Isolated myocytes from a Normal dog (A), a nontreated dog with MR (B), and a Ramipril treated dog with MR (C). There is increased cell length in both groups of MR dogs compared to control. Bar in $A=50\,\mu m$. Magnification is the same in A, B, and C. (Reproduced from [33] with permission). Figure 6. Quantitative evaluation of myocardial interstitial collagen measured by image analysis microscopy at high power using pricrosirius red-stained tissue sections for endomyocardial (ENDO), midmyocardial (MID), epimyocardial (EPI), and right ventricular (RV) myocardium for Control, non-treated mitral regurgitation, (MR) and Ramipril treated MR dogs. * = p < 0.05 compared to Normal. #### ISOLATED MYOCYTE MORPHOLOGY The length of isolated myocytes was significantly greater in MR dogs than in CON and tended to be further increased in length in the R-MR dogs compared to N-MR dogs, although the difference was not statistically significant (table 2, figure 5). Myocyte cross-sectional area was similar, whether calculated from the Coulter Counter cell volume and mean cell length measured by microscopy or by planimetry by direct digitizer measurement of myocyte cross-sectional area in silverstained methacrylate sections (table 2). Cross-sectional area in the endocardial and epicardial portions of the LV did not differ among the three groups. #### MYOCARDIAL COLLAGEN Qualitative light microscopic examination of the myocardium revealed no discernible differences in the extent of fibrosis among the three groups. Low power quantitative evaluation of the LV and RV myocardium also revealed no differences in focal fibrosis or perivascular collagen among the three groups (CON LV = 1.51 \pm 0.07 vol %, N-MR LV = 1.48 \pm 0.06, R-MR LV = 1.40 \pm 0.07; CON RV = 1.87 ± 0.09 , N-MR RV = 1.71 ± 0.03 , R-MR RV = 1.68 ± 0.07). However, interstitial connective tissue, measured at high magnification, was significantly reduced in both the R-MR and N-MR groups in all LV regions compared Figure 7. Scanning electron micrographs of a normal dog (A) and a dog with chronic mitral regurgitation (B). The normal collagen weave present in the normal dog is focally absent in both nontreated and treated dogs with MR. Bar in $A = 5 \mu m$; magnification is the same in A and B. to CON dog hearts (figure 6). In the RV, interstitial collagen also was mildly reduced in both MR groups compared to CON. Scanning electron microscopy demonstrated a significant loss of the endomysial collagen weave in both the endocardial and epicardial regions of the LV of both R-MR and N-MR dogs compared to CON (figure 7). As analyzed by the semiquantitative grading system, the collagen weave was reduced or absent (grades 2 or 1) in many regions of the N-MR dogs, as demonstrated by the shift to the left of the peak values in the histogram (figure 8). LV subepicardial tissue had a similar shift to the left as in the subendocardium, but there was no significant difference among groups in the RV. Compared to CON, mean collagen grade was signifi- Figure 8. Histograms of percent of total fields examined having subjectively graded amounts of collagen as described in the text. Grade 3 = normal amount of collagen. In the left ventricular subendocardium (LV ENDO) or subepicardium (LV EPI), there is a shift to the left of grades, due to a higher percentage of fields with little or no collagen, while in the right ventricle, (RV) there is no shift in distribution of collagen weave grades. The mean grade for LV regions is reduced in both groups of MR dogs, but is not changed in the RV. cantly reduced in LV subendocardium and subepicardium in both MR groups, but not different in the RV (figure 8). #### TRANSMISSION ELECTRON MICROSCOPY OF CARDIAC MYOCYTES Compared to control myocardium, the myocytes of MR dogs were characterized by frequent disruption of the myofibrillar band pattern with distorted and thickened Zbands, resulting in misalignment of sarcomeres (figure 9). This malalignment of sarcomeres was most prominent in those animals with the most severe signs of congestive heart failure and was much less common in the R-MR group of dogs, though not completely absent. The Z-band abnormalities and sarcomere loss of alignment illustrated in figure 9 were not found in the control animals. #### ACKNOWLEDGMENT The authors acknowledge the technical support of Nancy Brissie, Pam Powell, and Joan Durand. This study was supported, in part, by the Office of Research and Development, Medical Service, Department of Veteran Affairs (to L.J. Dell'Italia), National Heart, Figure 9. Transmission electron micrographs of Normal dog myocardium (A) and myocardium of a dog 5 months after surgical production of MR (B). In the MR dog, there is loss of sarcomere alignment and distortion of the Z-bands (arrowheads) compared to control. Bar in $A=2\mu m$; magnification the same in A and B. Lung, and Blood Institute Grants HL-07457, HL-37722, HL-47081, HL-54618, and an American Heart Association Grant Alabama Affiliate. #### REFERENCES - 1. Schelling P, Fischer H, Ganten D. 1991. Angiotensin and cell growth: A link to cardiovascular hypertrophy? (editorial). J Hypertens 9:3-15. - 2. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dilmann WH. 1993. Identification of functionl angiotensin II receptors in rat cardiac fibroblasts. Circulation 88:2849-2861. - 3. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413-423. - 4. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circulation Research 72:1245-1254. - 5. Aceto JF, Baker KM. 1990. [Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 6. Tan L, Jalil JE, Pick R, Janicki JS, Weber KT. 1991. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185-1195. - 7. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. New Engl J Med 327:669-677. - 8. SOLVD Investigators 1991. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. New Engl J Med 327:685- - 9. Balcells E, Meng QC, Hageman GR, Palmer RW, Durand JN, Dell'Italia LJ. 1996. Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol 271 (Heart Circ Physiol 40):H417-H421. - 10. Yusuf S, Pepine DJ, Garces C, Pouleur H, Salem D, Kostis J, Benedict C, Rousseau M, Bourassa M, Pitt B. 1992. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 340:1173-1178. - 11. Baker KM, Chernin MI, Wixson SK, Aceto JF. 1990. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259 (Heart Circ Physiol):H324- - 12. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913- - 13. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. 1994. Angiotensin receptor regulates cardiac hypertrophy and transfroming growth factor β_1 expression. Hypertension 23:587–592. - 14. Lindpaintner K, Lu W, Niedermajer N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 24(2):133-143. - 15. Schunkert H, Jackson B, Tang SS, Schoen FJ, Smits JF, Apstein CS, Lorell BH. 1993. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 87:1328-1339. - 16. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475-482. - 17. Boer PH, Ruzicka M, Lear W, Harmsen E, Rosenthal J, Leenen FH. 1994. Stretch-mediated activation of cardiac renin gene. Am J Physiol 267 (Heart Circ Physiol 36):H1630-H1636. - 18. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. 1990. Angiotensin II forming pathways in normal and failing human hearts. Circ Res 66:883-890. - 19. Husain A. 1993. The chymase-angiotensin system in humans. Hypertension
11:1155-1159. - 20. Grossman W. 1980. Cardiac hypertrophy: Useful adaptation or pathologic process. Am J Med 69:576-584. - 21. Grossman W, Jones D, McLaurin LP. 1975. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 58:56-64. - 22. Anversa P, Ricci R, Olivetti G. 1986. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol 7:1140-1149. - 23. Smith SH, Bishop SP. 1985. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol 17:1005-1012. - 24. Smith SH, McCaslin MD, Sreenan C, Bishop SP. 1988. Regional myocyte size in two-kidney, one clip renal hypertension. J Mol Cell Cardiol 20:1035-1042. - 25. Hamrell BB, Roberts ET, Carkin JL, Delaney CL. 1986. Myocyte morphology of free wall trabeculae in right ventricular pressure overload hypertrophy in rabbits. J Mol Cell Cardiol 18:127- - 26. Weinberg EO, Lee MA, Weigner M, Lindpaintner K, Bishop SP, Benedict CR, Ho KKL, Douglas PS, Chafizadeh E, Lorell BH. 1997. Antiotensin AT, receptor inhibition. Effects on hypertrophic remodeling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 95:1592-1600. - 27. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. 1991. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas: 1. Developing and established hypertrophy. Circ Res 69:52-58. - 28. Liu Z, Hilberlink DR, Gerdes AM. 1991. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas: 2. Long-term effects. Circ Res 69:59-65. - 29. Gerdes AM, Campbell SE, Hilbelink DR. 1988. Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab Invest 59(6):857-861. - 30. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD. 1992. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86:426-430. - 31. Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA, Jr. 1991. Alterations in myocyte shape and basement membrane attachment with tachycardium-induced heart failure. Circ Res 69:590- - 32. Spinale FG, Zellner JL, Tomita M, Crawford FA, Zile MR. 1991. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ Res 69:1058-1067. - 33. Bhat GJ, Abraham ST, Baker KM. 1996. Angiotensin II interferes with interleukin 6-induced Stat3 signaling by a pathway involving mitogen-activated protein kinase kinase 1. Journal of Biological Chemistry 271:22447-22452. - 34. Carabello BA, Zile MR, Tanaka R, Cooper GI. 1992. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol (Heart Circ Physiol 32):H1137-H1144. - 35. Bishop SP, Melsen LR. 1976. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ Res 39:238-245. - 36. Hittinger L, Shannon RP, Bishop SP, Gelpi RJ, Vatner SF. 1989. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ Res 65(4):971- - 37. Pick R, Janicki JS, Weber KT. 1989. Myocardial fibrosis in nonhuman primate with pressure overload hypertrophy. Am J Pathol 135(5):771-782. - 38. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. 1989. Patterns of myocardial fibrosis. J Mol Cell Cardiol 21(Suppl V):121-131. - 39. Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium: Fibrosis and the renin-angiotensin-aldosterone system. Circulation 83:1849-1865. - 40. Cooper G, IV, Tomanek RJ, Ehardt JC, Marcus ML. 1981. Chronic progressive pressure overload of the cat right ventricle. Circ Res 48:488-497. - 41. Komamura K, Shannon RP, Ihara T, Shen Y, Mirsky I, Bishop SP, Vatner SF. 1993. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol 265 (Heart Circ Physiol 34):H1119-H1131. - 42. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. 1990. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67(6):1355-1364. - 43. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. 1989. The fibrillar collagen network and myocardial stiffness in the hypertrophied intact rat left ventricle. Circ Res 64:1041- - 44. Regan CP, Anderson PG, Bishop SP, Berecek KH. 1996. Captopril prevents vascular and fibrotic changes but not cardiac hypertrophy in aortic-banded rats. Am J Physiol (Heart Circ Physiol 271):H906-H913. - 45. Legault F, Rouleau JL, Juneau C, Rose C, Rakusan K. 1990. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 66:846-859. - 46. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. 1990. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82:1387-1401. - 47. Marino TA, Kent RL, Uboh CE, Fernandez E, Thompson EW, Cooper G, IV. 1985. Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am J Physiol 249:H371-H379. - 48. Iimoto DS, Covell JW, Harper E. 1988. Increase in cross-linking of Type I and Type III collagens associated with volume-overload hypertrophy. Circ Res 63(2):399-408. - 49. Dell'Italia LJ, Meng QC, Balcells E, Straeter-Knowlen IM, Hankes GH, Dillon R, Cartee ER, Orr R, Bishop SP, Oparil S, Elton TS. 1995. Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol 269:H2065-H2073. - 50. Carabello BA, Nakano K, Corin W, Biederman R, Spann JF. 1989. Left ventricular function in experimental volume overload hypertrophy. Am J Physiol 256 (Heart Circ Physiol 25):H974-H981. - 51. Dell'Italia LJ, Blackwell GG, Thorn BT, Pearce DJ, Bishop SP, Pohost GM. 1992. Time-varying wall stress: An index of ventricular vascular coupling. Am J Physiol 262:H597-H605. - 52. Sadoshima J, Izumo S. 1993. Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. Journal of Receptor Research 13:777-794. - 53. Booz GW, Baker KW. 1996. Role of type 1 and type 2 angiotensin receptors in angiotensin IIinduced cardiomyocyte hypertrophy. Hypertension 28:635-640. - 54. Younes A, Boluyt MO, O'Neill L, Meredith AL, Crow MT, Lakatta EG. 1995. Age-associated increase in rat ventricular ANP gene expression correlates with cardiac hypertrophy. Am J Physiol 269:H1003-1008. - 55. Bishop SP, Drummond JL. 1979. Surface morphology and cell size measurement of isolated rat cardiac myocytes. J Mol Cell Cardiol 11:423-433. - 56. Clubb FJ, Jr, Bell PD, Kriseman JD, Bishop SP. 1987. Myocardial cell growth and blood pressure development in neonatal spontaneously hypertensive rats. Lab Invest 56:189-197. - 57. Burns L, Clark KL, Bradley J, Robertson MJ, Clark AJ. 1994. Molecular cloning of the canine angiotensin II receptor. An AT1-like receptor with reduced affinity for DuP753. FEB Letters 343:146-150. # THE SITE OF ANGIOTENSIN GENERATION: FOCUS ON THE HEART ### LARISSA M. DE LANNOY and A.H. JAN DANSER Cardiovascular Research Institute COEUR, Department of Pharmacology, Erasmus University, Rotterdam, The Netherlands. Summary. All renin-angiotensin system (RAS) components are present in cardiac tissue, and both angiotensin (Ang) I and II appear to be produced in the heart, either in cardiac interstitial fluid, on the surface of cardiac cells, or within cardiac cells. The renin responsible for this local angiotensin production, at least under normal circumstances, originates from the circulation and is therefore kidney-derived. Thus, a local RAS in the sense that the RAS components necessary for Ang II production are synthesized in situ, does not exist in the normal heart. Although cardiac angiotensin production depends on renin from the kidney, there are still many ways by which the heart may regulate its own Ang II production. Membrane binding could be a mechanism by which kidney-derived renin is sequestered in the heart. A renin receptor might be involved in this process. The density of such receptors may vary, and this could modify the tissue production of Ang I and II. Local concentrations of angiotensin-converting enzyme (ACE) may also vary. The ACE levels in human heart are, in part, determined by the insertion/deletion ACE gene polymorphism. Also, enzymatic degradation of Ang II and AT₁ receptor-mediated endocytosis could influence the Ang II concentrations at the cellular and subcellular level. Finally, under pathological conditions, renin may be produced in the heart itself, and this would create the possibility to synthesize Ang II at cardiac tissue sites independent of the kidney. The RAS has traditionally been viewed as a circulating system. Kidney-derived renin cleaves liver-derived angiotensinogen in the circulation to form Ang I. Subsequently, Ang II is generated from Ang I by angiotensin-converting enzyme (ACE) located at the luminal side of the endothelium or by ACE in blood plasma. According to this classical concept, the RAS is a hormonal system, designed to deliver the effector peptide Ang II to different tissue sites, where it exerts its effects via stimulation of Ang II receptors. Two types of Ang II receptors have been described so far, AT₁ and AT₂ [1]. Ang II plays an important role in the cardiovascular homeostasis. Not only is it a potent vasoconstrictor, it also stimulates renal sodium reabsorption and adrenal aldosterone production and release. Furthermore, it is believed to act as a growth factor [2]. All these effects are mediated via the AT₁ receptor. The role of the AT₂ receptor is less clear; it may oppose some of the AT, receptor-mediated effects [3-5]. The proportion of AT₁ and AT₂ receptors changes during development. In fetal tissues, AT2 receptor expression is dominant, but this abundance is
followed by a rapid decline immediately after birth [6]. In light of the vasoconstrictor and growth-stimulating effects of Ang II, it is not surprising that RAS blockade is beneficial in cardiovascular diseases. Renin inhibitors, although at present not further developed because of their poor oral bioavailability, reduce blood pressure effectively [7-9]. ACE inhibitors, the class of RAS inhibitors that was developed first, are effective blood pressure lowering agents and cause regression of cardiac hypertrophy and postinfarction remodeling in subjects with heart failure [10,11]. This also appears to apply to AT₁ receptor antagonists, the most recently developed class of RAS inhibitors [12-16]. The effects of ACE inhibitors on cardiac hypertrophy were shown to be independent, at least partly, from the blood pressure lowering effect of these drugs [10,17]. This may indicate that ACE inhibitors have local effects in the heart, in addition to their blood pressure lowering effects. Indeed, the existence of a so-called local RAS, as opposed to the circulating RAS, has been proposed in the heart [18]. In fact, such local renin-angiotensin systems may exist in many organs. RAS components and their messenger RNAs have now been identified in kidney, adrenal, brain, ovary, testis, eye, and heart [18-26]. Many investigators have speculated on the role and regulation of these local renin-angiotensin systems. So far it has been difficult to clearly separate the circulating and the local RAS. It is even possible that the circulating RAS serves to deliver renin and angiotensinogen to tissue sites, where local angiotensin production may then occur. The cardiac RAS is believed to play an important role in cardiac growth and remodeling [18]. A better understanding of how and where angiotensins are produced in the heart may shed further light on the mechanism by which RAS inhibitors exert their effects in the heart. This review addresses angiotensin generation in the circulation and at cardiac tissue sites. #### CIRCULATING RENIN-ANGIOTENSIN SYSTEM #### Renin The kidney releases both renin and its inactive precursor, prorenin, into the circulation. Renal renin release is influenced by blood pressure, the sodium load of the organism, the activity of the sympathetic nervous system, and a number of humoral or locally generated factors. Ang II inhibits renin release directly via AT₁ Figure 1. Prorenin binding to (pro)renin binding receptors may lead to prorenin activation (A), either extra- or intracellularly, thereby stimulating local angiotensin generation, or, when activation does not occur (B), it may competitively prevent renin from binding, thereby inhibiting local angiotensin generation. receptors and indirectly via a rise in blood pressure and an increase of the sodium chloride load. At present, the kidney is the only organ that is known to convert prorenin into renin. Normally, approximately 90% of plasma total renin (renin + prorenin) is present as prorenin. Following a bilateral nephrectomy, plasma renin, but not plasma prorenin, decreases to very low levels [27,28]. This suggests that the kidney is the main or only source of plasma renin, whereas prorenin may be synthesized extrarenally as well. Indeed, prorenin release into the circulation has been demonstrated for several extrarenal organs, e.g., the ovary, testis, and adrenal [29,30]. The function of prorenin remains unclear. Renin receptors, which have been recently described [31,32], bind renin and prorenin equally well [31]. Renin binding at tissue sites may be involved in the cascade leading to local angiotensin generation. Possibly prorenin competitively prevents renin from binding to these receptors, thereby blocking the local formation of Ang II [31] (figure 1). Alternatively, prorenin might be converted to renin at tissue sites following receptor binding. This activation may occur either on the cell surface or intracellularly (figure 1). Renin appears to be metabolized mainly by the liver [33]. The half-life of circulating renin is approximately 30 min [28]. Renal clearance of renin is very low [34]. Renin has been detected immunohistochemically in the proximal tubule, and low levels can be measured in urine. #### Angiotensinogen The liver is the main source of circulating angiotensinogen. Although angiotensinogen mRNA has been demonstrated in other organs (e.g., kidney, brain, and heart), [35] it remains uncertain whether extrahepatically angiotensinogen contributes to the plasma levels of angiotensinogen. Angiotensinogen production in the liver is stimulated by estrogens, glucocorticoids, and Ang II [36,37]. Plasma angiotensinogen is cleared mainly by the kidneys via receptor-mediated endocytosis, its elimination half-life being approximately 10 hours [38]. #### ACE ACE has been detected on many cell types, but the conversion of circulating Ang I is probably mainly mediated by endothelial ACE. Plasma ACE appears to be of minor importance [39]. Its levels are partly determined by the so-called insertion/ deletion ACE gene polymorphism [40]. This may also apply to tissue (i.e., endothelial) ACE [41]. ACE expression is subject to negative feedback by Ang II [42]. #### Angiotensin I and II Both Ang I and II are rapidly degraded by angiotensinases located in the vessel wall, their half-lives in the circulation being less than one minute. In early studies in sheep [43], Ang I and II clearance across the pulmonary and combined systemic vascular beds was calculated from the arteriovenous differences measured across these beds during infusion of high doses of Ang I or II into the pulmonary artery. These studies already indicated that the reaction of circulating renin with circulating angiotensinogen ("plasma renin activity", PRA) was insufficient to make up for the rapid degradation of both angiotensins. More recently, the regional clearance and metabolism of Ang I and Ang II have been quantified, both in humans [44,45] and in pigs [39,46], by giving constant infusions of 125 I-Ang I or 125 I-Ang II. In humans, the infusions were given through an antecubital vein, and in pigs, into the left cardiac ventricle. Blood was obtained from various arterial and venous sampling sites for measurements of radiolabeled Ang I and II. Additional measurements of the levels of endogenous Ang I and II and measurements of PRA at physiological pH made it possible to estimate how much of the venous Ang I could be attributed to arterial delivery, how much could be attributed to de novo synthesis, and what proportion of de novosynthesized Ang I depends on the action of circulating renin on circulating angiotensinogen. It was also possible to calculate how much of the venous Ang II originated from arterial delivery and how much originated from conversion of arterially delivered Ang I. It was found that, in all vascular beds studied [44,46] (heart, kidney, limbs, liver, head, skin), a major proportion of venous Ang I originated from de novo production and that PRA contributed little to this production. One can therefore conclude that Ang I is produced at tissue sites and that part of it is released into the circulation. While most of venous Ang I appears not to be generated by the action of circulating renin on circulating angiotensinogen, the level of venous Ang I produced at tissue sites correlated strongly with the level of PRA [46]. This suggests that kidney-derived renin is responsible for the production of Ang I at tissue sites. For Ang II, the situation is different. Most, if not all, venous Ang II appears to originate from Ang II delivered by the artery and from Ang II generated by conversion of arterially delivered Ang I [45]. Thus, Ang I produced at tissue sites and released into the circulation may have escaped conversion to Ang II. It is possible that Ang I produced in the tissue enters the blood at a level distal to the site where arterially delivered Ang I is converted to Ang II by the vascular endothelium, so that this conversion site is bypassed. Ang I formed at tissue sites may enter the circulation at the level of the capillaries or venules, whereas conversion of Ang I to Ang II occurs at the level of the arterioles. Alternatively, Ang II is produced in the tissue from locally generated Ang I without subsequent release into the circulation. #### Effect of RAS inhibitors on circulating RAS components Inhibition of the RAS always results in the onset of feedback processes (table 1). Remikiren inhibits plasma renin activity, thereby leading to reduced plasma Ang I and Ang II concentrations [7]. Consequently, renin release from the kidney will increase, resulting in elevated immunoreactive renin levels [7,9]. However, because of the presence of the renin inhibitor, this renin is enzymatically inactive. ACE inhibitors also cause a rise in plasma renin and, as a result, a rise in plasma Ang I. Plasma Ang II is reduced initially, but it may rise to levels above normal during chronic treatment as a result of the increased renin and Ang I concentrations [47]. AT₁ receptor antagonists will not only increase plasma renin and Ang I but plasma Ang II as well [13,14]. #### CARDIAC RENIN-ANGIOTENSIN SYSTEM #### Renin Renin mRNA concentrations in normal hearts are very low or undetectable [48,49], which suggests that under normal conditions cardiac renin synthesis is unlikely to occur. It is possible, however, that during foetal development [50] or under pathological conditions [51], the renin gene is expressed in the heart. Cultured cardiac cells (cardiomyocytes, fibroblasts, vascular smooth muscle cells, and endothelial cells) have all been reported to synthesize renin [50,52,53]. However, the relevance of such findings for the in vivo situation may be questioned. Moreover, since appropriate control measurements with specific renin inhibitors were usually not performed, it is possible that renin-like enzymes such as cathepsin D [54], and not renin itself, were detected. Renin has been
measured in the heart of normal and nephrectomized pigs [55]. Ang I-generating activity of cardiac tissue was identified as renin by its inhibition by a specific active site-directed renin inhibitor. The levels of renin in cardiac tissue (expressed per g wet weight) were found to be similar to those in plasma. The tissue levels of renin, therefore, could not be accounted for by trapped plasma, which suggests that renin may have been sequestered actively by the heart. Both in cardiac tissue and in plasma, renin fell to undetectable levels after nephrectomy, which suggests that under normal circumstances, most, if not all, renin present in the heart originates from the kidney. Not much is known about cardiac renin sequestration. Renin, like ACE, was found to be enriched in a purified cardiac membrane fraction prepared from left ventricular tissue, which suggests that uptake of kidney-derived renin in the heart may occur through binding to cell membranes [55]. This would fit with the recently described renin receptors [31,32]. Binding to cell membranes is also suggested by chemical cross-linking studies using membrane fractions prepared from various tissues, including heart and blood vessels [56]. The possibility that prorenin, following its binding to these receptors, is locally activated cannot be excluded. However, such local activation has never been demonstrated. #### Angiotensinogen Angiotensinogen mRNA can be detected in the heart [22,57]. Its levels are approximately 1% of the angiotensinogen mRNA levels in the liver [22]. An increase in cardiac angiotensinogen mRNA has been reported following myocardial infarction [57], but this could not be confirmed by others [51]. Cultured neonatal rat cardiomyocytes and fibroblasts appeared to release angiotensinogen into the medium under serum-free conditions [50]. Other cells in the heart that have been reported to synthesize angiotensinogen are vascular smooth muscle cells [58] and endothelial cells [59]. The angiotensinogen concentrations in porcine cardiac tissue are 10-25% of the levels in plasma, which is compatible with its diffusion from plasma into the interstitium [55]. Angiotensinogen is generally believed to be distributed equally across the extracellular fluid [60]. It appears, therefore, that cardiac angiotensinogen is largely derived from the circulation. The contribution of locally synthesized angiotensinogen, if present at all, is probably small. In support of this assumption, the angiotensinogen concentrations in the coronary effluent of the isolated perfused rat Langendorff heart are <0.1% of the levels normally found in rat blood plasma [61]. #### ACE ACE has been demonstrated in the rat heart by autoradiography, using a radiolabeled ACE inhibitor [62], as well as by measurements of its activity in cardiac homogenates [63]. ACE mRNA is readily detectable in cardiac tissue [63]. According to some investigators, cardiac ACE is normally limited to the coronary vascular endothelial cells and the endocardium [64]. Cardiac ACE protein and mRNA are increased following myocardial infarction [64-66] as well as during pressure overload induced left ventricular hypertrophy [63]. Under these conditions the localization of ACE may no longer be limited to the endothelium. In humans, following myocardial infarction, ACE can be detected in the remaining viable cardiomyocytes near the infarct scar of the aneurysmal left ventricle, as well as in fibroblasts, vascular smooth muscle cells, and macrophages in the scar area itself [65]. In rats, following coronary occlusion, ACE was demonstrated in fibroblasts in the healthy hypertrophying part of the heart [66]. Figure 2. Origin of cardiac angiotensin I and II. See text (under Cardiac renin-angiotensin system, Angiotensin I and II) for a detailed description. Not addressed in the figure are (1) intracellular angiotensin generation by locally synthesized renin or renin taken up from the circulation (depicted by a question mark) and (2) how AT receptor-mediated endocytosis (also depicted by a question mark) might affect the intracellular Ang II levels. #### Angiotensin I and II The concentration of Ang I in cardiac tissue (expressed per g wet weight) is similar to the level in plasma, whereas the cardiac tissue concentration of Ang II is two to three times the level in plasma [55,67]. The cardiac angiotensin levels, therefore, are far too high to be explained by trapped blood or by simple diffusion of angiotensins from plasma into the interstitial fluid. However, such relatively high concentrations cannot be taken as unequivocal evidence that Ang I and II are generated in cardiac tissue independently of the circulating RAS. For example, Ang II may have been sequestered from the circulation by a receptor-dependent process. As mentioned above, measurements of circulating angiotensins during ¹²⁵I-AngI infusion into the left cardiac ventricle provided evidence for the release of Ang I from cardiac tissue sites. These measurements of circulating angiotensins provided no evidence for the release of tissue Ang II into the circulation. Thus, taken together, the evidence available so far suggests that Ang I and possibly Ang II are generated in cardiac tissue, and that of these locally generated angiotensins, only Ang I is released into the circulation, Ang I and II may be formed in different tissue compartments that are not all capable of exchanging freely with the circulation. Levels of Ang I and II were undetectably low in both plasma and cardiac tissue following a bilateral nephrectomy [55]. This is a strong indication that cardiac angiotensin generation in vivo depends on renin from the kidney. A scheme depicting the possible angiotensin production sites is shown in figure 2. Angiotensin production may either occur in extracellular fluid (blood plasma and/ or interstitial fluid) or at the tissue-fluid interphase (i.e., on the cell membrane). A third possibility, not shown in figure 2, is intracellular production of angiotensin by renin that is locally synthesized or taken up from the circulation. Future investigation will have to address (1) what proportion of angiotensinogen cleavage occurs by intracellular renin, membrane-associated renin, or renin in the fluid phase and (2) the exact localization of Ang I and II in cardiac tissue (intracellular, extracellular, or | | Immunoreactive renin | Enzymatically active renin | Ang I | Ang II | Ang II/I
ratio | |--|----------------------|----------------------------|------------|-----------------|-------------------| | Plasma Renin inhibition ACE inhibition AT ₁ receptor blockade | ↑
↑ | ↓
↑ | ↓ ↑ | ↓ | N.D.
↓
= | | Heart Renin inhibition ACE inhibition AT ₁ receptor blockade | N.D.
↑
N.D. | N.D.
↑
N.D. | N.D.
↑ | N.D.
=↓
↑ | N.D.
↓
↓ | Table 1. Effect of renin inhibition, ACE inhibition, and AT, receptor blockade on renin-angiotensin system component levels in blood plasma and heart Source: Data are taken from references 7, 9, 13, 14, 68, 69, 70 and 71. Note: N.D., not done. via membrane-bound). Extracellularly formed Ang II may, receptormediated endocytosis, reach the intracellular compartment. #### Effect of RAS inhibitors on cardiac RAS levels At present, not much is known about changes in cardiac RAS component levels during treatment with RAS inhibitors (table 1). Renin is elevated in cardiac tissue of both humans [68] and pigs [69] treated with ACE inhibitors, whereas cardiac angiotensinogen is decreased under these conditions [68,69]. ACE inhibition with perindopril led to a two- to fourfold increase in cardiac Ang I [70]. Cardiac Ang II did not change unless very high doses of quinalapril were applied. The AT₁ receptor antagonist losartan increased cardiac Ang I and II approximately sevenfold and twofold, respectively [71]. As a consequence of these nonparallel changes in cardiac Ang I and II, the cardiac AngII/I ratio decreased both with quinalapril and losartan. The decrease in cardiac AngII/I ratio during quinalapril treatment most likely illustrates the degree of ACE inhibition obtained in cardiac tissue. The decrease in cardiac AngII/I ratio during losartan treatment is more difficult to explain, especially since cardiac ACE activity was unchanged following losartan treatment [71]. The authors speculated that a proportion of the measured tissue level of Ang II may have been receptor-bound and protected from metabolism and that the displacement of receptor-bound Ang II by losartan may have accelerated local tissue metabolism of Ang II, with a consequent decrease in the AngII/I ratio. #### REFERENCES - 1. de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend Th, Harding JW, Inagami T, Timmermans PBMWM. 1995. Proposed update of angiotensin receptor nomenclature. Hypertension 25:924-927. - 2. Schelling P, Fischer H, Ganten D. 1991. Angiotensin and cell growth: A link to cardiovascular hypertrophy? J Hypertens 9:3-15. - 3. Stoll M, Steckelings M, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotensin AT₂- - receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651-657. - 4. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. 1995. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748-750. - 5. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744-747. - 6. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. 1991. Expression of AT2-receptors in the developing rat fetus. J Clin Invest 88:921-933. - 7. Camenzind E, Nussberger J, Juillerat L, Munafo A, Fischli W, Coassolo P, van Brummelen P, Kleinbloesem CH, Waeber B, Brunner HR. 1991.
Effect of the renin response during renin inhibition: oral Ro 42-5892 in normal humans. J Cardiovasc Pharmacol 18:299-307. - 8. Ryan MJ, Hicks GW, Batley BL, Rapundalo ST, Patt WC, Taylor DG, Keiser JA. 1994. Effect of an orally active renin inhibitor CI-992 on blood pressure in normotensive and hypertensive monkeys. J Pharmacol Exp Ther 268:372-379. - 9. van den Meiracker AH, Admiraal PJJ, Man in 't Veld AJ, Derkx FHM, Ritsema van Eck HJ, Mulder P, van Brummelen P, Schalekamp MADH. 1990. Prolonged blood pressure reduction by orally active renin inhibitor RO 42-5892 in essential hypertension. Br Med J 301:205-210. - 10. Dahlöf B. 1992. Regression of left ventricular hypertrophy—Are there differences between antihypertensive agents? Cardiology 81:307-315. - 11. Latini R, Maggioni AP, Flather M, Sleight P, Tognoni G. 1995. ACE inhibitor use in patients with myocardial infarction. Summary of evidence from clinical trials. Circulation 92:3132-3137. - 12. Goa KL, Wagstaff AJ. 1996. Losartan potassium: A review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs 51:820-845. - 13. Azizi M, Chatellier G, Guyene TT, Murieta-Goeffroy D, Menard J. 1995. Additive effects of combined angiotensin-converting enzyme inhibition and angiotension II antagonism on blood pressure and renin release in sodium-depleted normotensives. Circulation 92:825-834. - 14. van den Meiracker AH, Admiraal PJJ, Janssen JA, Kroodsma JM, de Ronde WAM, Boomsma F, Sissmann J, Blankestijn PJ, Mulder PGM, Man in 't Veld AJ, Schalekamp MADH. 1995. Hemodynamic and biochemical effects of the AT1 receptor antagonist irbesartan in hypertension. Hypertension 25:22-29. - 15. Ruzicka M, Yuan B, Leenen FHM. 1994. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation 90:484-491. - 16. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273-2282. - 17. Linz W, Schaper J, Wiemer G, Albus U, Schölkens BA. 1992. Ramipril prevents left ventricular hypertrophy with myocardial fibrosis without blood pressure reduction: A one year study in rats. Br J Pharmacol 107:970-975. - 18. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 19. Campbell DJ, Lawrence AC, Towrie A, Kladis A, Valentijn AJ. 1991. Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension 18:763-773. - 20. Kim S, Tokuyama M, Hosoi M, Yamamoto K. 1992. Adrenal and circulating renin-angiotensin system in stroke-prone hypertensive rats. Hypertension 20:280-291. - 21. Lightman A, Tarlatzis BC, Rzasa PJ, Culler MD, Caride VJ. 1987. The overain renin-angiotensin system: Renin-like activity and angiotensin II/III immunoreactivity in gonadotropin-stimulated and unstimulated human follicular fluid. Am J Obstet Gynecol 156:808-816. - 22. Dzau VJ, Ellison KE, Brody T, Ingelfinger J, Pratt RE. 1987. A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120:2334-2338. - 23. Inagami T. 1982. Renin in the brain and neuroblastoma cells: An endogenous and intracellular system. Neuroendocrinology 34:475-483. - 24. Phillips MI, Stenstrom B. 1985. Angiotensin II in the brain comigrates with authentic angiotensin II in high pressure liquid chromatography. Circ Res 72:406-412. - 25. Deinum J, Derkx FHM, Danser AHJ, Schalekamp MADH. 1990. Identification and quantification of renin and prorenin in the bovine eye. Endocrinology 126:1673-1682. - 26. Danser AHJ, Derkx FHM, Admiraal PJJ, Deinum J, de Jong PTVM, Schalekamp MADH. 1994. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci 35:1008-1018. - 27. Sealey JE, White RP, Laragh JH, Rubin AL. 1977. Plasma prorenin and renin in anephric patients. Circ Res 41(Suppl II):17-21. - 28. Derkx FHM, Wenting GJ, Man in 't Veld AJ, Verhoeven RP, Schalekamp MADH. 1978. Control of enzymatically inactive renin in man under various pathological conditions: implications for the interpretation of renin measurements in peripheral and renal venous plasma. Clin Sci Mol Med 54:529-538. - 29. Lenz T, Sealey JE. 1990. Tissue renin systems as a possible factor in hypertension. In Hypertension: Pathophysiology, diagnosis, and management. Ed. JH Laragh and BM Brenner, 1319-1328. New York: Raven Press. - 30. Sealey JE, Goldstein M, Pitarresi T, Kudlak TT, Glorioso N, Fiamengo SA, Laragh JH. 1988. Prorenin secretion from human testis: No evidence for secretion of active renin or angiotensinogen. J Clin Endocrinol Metab 66:974-978. - 31. Sealey JE, Catanzaro DF, Lavin TN, Gahnem F, Pitarresi T, Hu L-F, Laragh JH. 1996. Specific prorenin/renin binding (ProBP). Identification and characterization of a novel membrane site. Am J Hypertens 9:491-502. - 32. Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer J-D. 1996. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int 50:1897-1903. - 33. Marks DL, Kost LJ, Kuntz SM, Romero JC, Larusso NF. 1991. Hepatic processing of recombinant human renin: mechanisms of uptake and degradation. Am J Physiol 261:G349-G358. - 34. Sealey JE, Laragh JH. 1990. The renin-angiotensin-aldosterone system for normal regulation of blood pressure and sodium and potassium homeostasis. In Hypertension: Pathophysiology, diagnosis, and management. Ed. JH Laragh and BM Brenner, 1287-1317. New York: Raven Press. - 35. Campbell DJ, Habener JF. 1986. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31-39. - 36. Klett C, Hellmann W, Hackenthal E, Ganten D. 1993. Modulation of tissue angiotensinogen gene expression by glucocorticoids, estrogens, and androgens in SHR and WKY rats. Clin Exp Hypertens 45:683-708. - 37. Herrmann HC, Morris BJ, Reid IA. 1980. Effect of angiotensin II and sodium depletion on angiotensinogen production. Am J Physiol 238:E145-E149. - 38. Yayama K, Yoshiya M, Takahashi K, Matsui T, Takano M, Okamoto H. 1995. Role of the kidney in the plasma clearance of angiotensinogen in the rat: Plasma clearance and tissue distribution of 125 Iangiotensinogen. Life Sci 57:1791-1801. - 39. Danser AHJ, Koning MMG, Admiraal PJJ, Derkx FHM, Verdouw PD, Schalekamp MADH. 1992. Metabolism of angiotensin I by different tissues in the intact animal. Am J Physiol 263:H418-H428. - 40. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. 1990. An insertion/deletion polymorphism in the angiotensin I converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343-1346. - 41. Danser AHJ, Schalekamp MADH, Bax WA, Maassen van den Brink A, Saxena PR, Riegger GAJ, Schunkert H. 1995. Angiotensin-converting enzyme in the human heart. Effect of the deletion/ insertion polymophism. Circulation 92:1387-1388. - 42. Schunkert H, Ingelfinger JR, Hirsch AT, Pinto Y, Remme WJ, Jacob H, Dzau VJ. 1993. Feedback regulation of angiotensin converting enzyme activity and mRNA levels by angiotensin II. Circ Res 72:312-318. - 43. Fei DT, Scoggins BA, Tregear GW, Coghlan JP. 1981. Angiotensin I, II and III in sheep. A model of angiotensin production and metabolism. Hypertension 3:730-737. - 44. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH. 1990. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension - 45. Admiraal PJJ, Danser AHJ, Jong MS, Pieterman H, Derkx FHM, Schalekamp MADH. 1993. Regional angiotensin II production in essential hypertension and renal artery stenosis. Hypertension 21:173-184. - 46. Danser AHJ, Koning MMG, Admiraal PJJ, Sassen LMA, Derkx FHM, Verdouw PD, Schalekamp MADH. 1992. Production of angiotensins I and II at tissue sites in the intact pig. Am J Physiol 263:H429-H437. - 47. Mooser V, Nussberger J, Juillerat L, Burnier M, Waeber B, Bidiville J, Pauly N, Brunner HR. 1990. - Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J Cardiovasc Pharmacol 15:276-282. - 48. Ekker M, Tronik D, Rougeon F. 1989. Extra-renal transcription of the renin genes in multiple tissues of mice and rats. Proc Natl Acad Sci USA 86:5155-5158. - 49. Iwai N, Inagami T. 1992. Quantitative analysis of renin gene expression in extrarenal tissues by polymerase chain reaction method. J Hypertens 10:717-724. - 50. Dostal DE, Rothblum KN, Chernin MI, Cooper GR, Baker KM. 1992. Intracardiac detection of angiotensinogen and renin: A localized renin-angiotensin system in neonatal rat heart. Am J Physiol 263:C838-C850. - 51. Passier RCJI, Smits JFM, Verluyten MJA, Daemen MJAP. 1996. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am J Physiol 271:H1040-H1048. - 52. Re R, Fallon JT, Dzau VJ, Quay SC, Haber E. 1982. Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30:99-106. - 53. Lilly LS, Pratt RE, Alexander RW, Larson DM, Ellison KE, Gimbrone MA, Dzau VJ. 1985. Renin expression by vascular endothelial cells in culture. Circ Res 57:312-318. - 54. Hackenthal E, Hackenthal R, Hilgenfeldt U. 1978. Isorenin, pseudorenin, cathepsin D and renin. A comparative enzymatic study of angiotensin-forming enzymes. Biochim Biophys Acta 522:574-588. - 55. Danser AHJ, van Kats JP, Admiraal PJJ, Derkx FHM, Lamers JMJ, Verdouw PD, Saxena PR, Schalekamp MADH. 1994. Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 24:37-48. - 56. Campbell DJ, Valentijn AJ. 1994. Identification of vascular renin-binding proteins by chemical crosslinking: Inhibition of binding of renin by renin
inhibitors. J Hypertens 12:879–890. - 57. Lindpaintner K, Lu W, Niedermaier N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 23:133-143. - 58. Naftilan AJ, Zuo WM, Ingelfinger J, Ryan TJ, Pratt RE, Dzau VJ. 1991. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest 87:1300-1311. - 59. Kifor I, Dzau VJ. 1987. Endothelial renin-angiotensin pathway: Evidence for intracellular synthesis and secretion of angiotensins. Circ Res 60:422-428. - 60. Lynch KR, Peach MJ. 1991. Molecular biology of angiotensinogen. Hypertension 17:263-269. - 61. Lindpaintner K, Jin M, Niedermaier N, Wilhelm MJ, Ganten D. 1990. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67:564-573. - 62. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141-149. - 63. Schunkert H, Dzau VJ, Tang SS, Hirsch At, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913-1920. - 64. Falkenhahn M, Franke F, Bohle RM, Zhu YC, Stauss HM, Bachmann S, Danilov S, Unger T. 1995. Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 25:219-226. - 65. Hokimoto S, Yasue H, Fujimoto K, Yamamoto H, Nakao K, Kaikita K, Sakata R, Miyamoto E. 1996. Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infaction. Circulation 94:1513-1518. - 66. Sun Y, Cleutjens JPM, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423-1432. - 67. Campbell DJ, Kladis A, Duncan AM. 1993. Nephrectomy, converting enzyme inhibition and angiotensin peptides. Hypertension 22:513-522. - 68. Danser AHJ, van Kesteren CAM, Bax WA, Tavenier M, Derkx FHM, Saxena PR, Schalekamp MADH. 1997. Prorenin, renin, angiotensinogen and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin-binding. Circulation 96:220-226. - 69. van Kats JP, Sassen LMA, Danser AHJ, Admiraal PJJ, Verdouw PD, Schalekamp MADH. 1994. ACE-inhibition in the heart is overcome by increased cardiac renin uptake. J Hypertens 12(Suppl - 70. Campbell DJ, Kladis A, Duncan AM. 1994. Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension 23:439-449. - 71. Campbell DJ, Kladis A, Valentijn AJ. 1995. Effects of losartan on angiotensin and bradykinin peptides and angiotensin-converting enzyme. J Cardiovasc Pharmacol 26:233-240. # ANGIOTENSIN II-MEDIATED STAT SIGNAL TRANSDUCTION: STUDIES IN NEONATAL RAT CARDIAC FIBROBLASTS AND CHO-K1 CELLS EXPRESSING AT_{1A} RECEPTORS ## G. JAYARAMA BHAT¹ and KENNETH M. BAKER² ¹University of Texas Health Center, Tyler, TX, USA ²Weis Center for Research, Geisinger Clinic, Danville, PA, USA Summary. The Signal Transducers and Activators of Transcription (STAT) proteins are a novel class of transcription factors activated by cytokines (Interleukin-6, IL-6) and growth factors (platelet-derived growth factor, PDGF). In cultured neonatal rat cardiac fibroblasts and in CHO-K1 cells expressing angiotensin (Ang) II type 1 receptors (AT_{1A}), called T3CHO/ AT_{1A} calls, Ang II stimulated predominantly the tyrosine phosphorylation of STAT3. In these cells, Ang II also tyrosine-phosphorylated STAT1, but tyrosine phosphorylation of STAT1 was significantly lower compared with that of STAT3. Angiotensin II-mediated activation of STAT3 compared with the rapid activation by the cytokine IL-6 was delayed (maximal 2h). However, like cytokines, Ang II rapidly induced serine phosphorylation of STAT3. Using T3CHO/AT_{1A} cells, we examined the potential reasons for the delayed tyrosine phosphorylation of STAT3 by Ang II. We tested the possibility that the delayed tyrosine phosphorylation of STAT3 was due to the induction of an inhibitory pathway, prior to stimulation. A short pretreatment of cells with Ang II transiently inhibited the rapid STAT3 tyrosine phosphorylation by IL-6, and this inhibition could be blocked by pre-exposing the cells with the AT₁ antagonist EXP3174. PD98059, a specific inhibitor of MAPK kinase 1, attenuated the inhibitory effects of Ang II. These results suggest that the inhibition by Ang II is a MAPK kinase 1-dependent process. The ability of Ang II to cross-talk with IL-6 signaling suggests a modulatory role for Ang II in cytokine-induced cellular responses. #### INTRODUCTION Angiotensin (Ang) II is the biologically active component of the renin-angiotensin system. It mediates a variety of physiological responses including volume and fluid homeostasis, aldosterone production, and vascular smooth muscle contraction [1,2]. Studies from our laboratory and others have shown that Ang II also acts as a growthpromoting factor in cardiac fibroblasts, cardiac myocytes, and vascular smooth muscle cells [3-7]. These effects of Ang II are mediated by specific receptors on the surface of its target cells. Two pharmacologically distinct subtypes of Ang II receptors have been defined by radiolabeled receptor binding studies using the nonpeptide antagonists Dup753 and PD123177 [8]. Dup753 has a greater affinity for type 1 receptor (AT₁), whereas PD123177 has a greater affinity for the type 2 receptor (AT₂). Additional subtypes exist in the AT₁ family; cDNA, representing AT₁ and its subtypes, and AT₂ have been cloned [9-12]. The AT₁, through which Ang II mediates most of its biological actions, is a G protein-coupled, seven transmembrane receptor [9,10]. Binding of Ang II to AT, stimulates several signal transduction pathways. These include stimulated increases in intracellular Ca2+ and stimulation of phospholipase C, phospholipase A2, phospholipase D, Raf-1 kinase, protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs) [13-18]. Angiotensin II was also shown to activate the Janus family of tyrosine kinases (JAK kinases) and the Signal Transducers and Activators of transcription (STAT) family of transcription factors [19-22]. The STAT pathway is initiated by the binding of growth factors and cytokines to their cognate cell surface receptors [23]. This event results in the activation of cytoplasmic JAK kinases, which then tyrosine-phosphorylate STAT transcription factors in the cytoplasm. Upon tyrosine phosphorylation, STATs are activated and dimerize and translocate to the nucleus to induce gene transcription. Six STAT family transcription factors have been cloned and are designated STAT1 to STAT6, in the order of their discovery. Four JAK kinases have been identified, and they are as follows: JAK1, JAK2, TYK2, and JAK3 [24]. Recent evidence suggests that growth factors such as epidermal growth factor (EGF) can tyrosine-phosphorylate STAT proteins through a JAK kinase independent route [25,26]. STAT proteins regulate the expression of many genes, one of which is the proto-oncogene c-fos. The promoter of c-fos contains the regulatory element SIE, which is responsive to activated STAT proteins. The binding of STAT1 and STAT3 to the SIE results in the formation of DNA protein complexes, referred to as SIF. SIF appears in three different forms, namely, SIF-A, SIF-B, and SIF-C [23], and induction occurs in a ligand specific fashion. PDGF induces all three forms, IL-6-induces mainly SIF-A, and interferon γ (IFNγ) induces mainly SIF-C [27]. SIF-A contains homo-dimerized STAT3, SIF-B contains hetero-dimerized STAT1 and STAT3, and SIF-C contains homo-dimerized STAT1 [23]. Thus, by measuring the SIF complex formation, it is possible to determine whether a given ligand activates the STAT signal transduction pathway. This chapter discusses Ang II-induced activation of STAT signal transduction in neonatal rat cardiac fibroblasts and CHO-K1 cells expressing AT₁ receptors. #### RESULTS #### SIF induction by Ang II Incubation of nuclear extracts from neonatal rat cardiac fibroblasts and T3CHO/ AT_{1A} cells resulted in the formation of SIF complexes (A, B, and C) [19]. Among these, SIF-A was the predominant type in response to Ang II. Interestingly, the induction of SIF-A by Ang II was delayed, with initial stimulation occurring at 30 min and maximal stimulation occurring at two to three hours. The delayed SIF induction by Ang II was in contrast to the published reports of rapid induction by cytokines and growth factors [23,27]. We considered the possibility that Ang II stimulation caused the release of SIF-inducing growth factors/cytokines, which in turn was responsible for the delayed SIF-A induction by Ang II. To determine this, the conditioned medium from T3CHO/AT_{1A} cells (treated with Ang II for 2h) was tested for its ability to induce SIF activity at early (30 min) and delayed time points (2h). We observed that conditioned media induced significant levels of SIF-A activity only at 2h, but not at 30 min. This induction was completely blocked by pre-exposing the cells to the AT₁ receptor antagonist EXP 3174, which suggests that Ang II acts directly through the AT, receptor to induce SIF activity. These data demonstrate that the delayed induction is not due to a requirement for the release of other SIF-inducing factors. #### Detection of STAT3 in Ang II and IL-6-induced SIF-A To determine if T3CHO/AT_{1A} cells respond normally to IL-6, we treated the cells with IL-6 for zero to two hours; nuclear extracts were prepared and tested for their ability to form SIF complexes. We observed that IL-6 predominantly induced SIF-A, consistent with previously published reports [28]. More importantly, unlike the delayed activation of SIF-A by Ang II, induction by IL-6 was
rapid with maximal stimulation detected as early as 10 min [20]. In supershift assays, anti-Stat3 antibodies recognized both Ang II and IL-6-induced SIF-A complexes, which suggests that Stat3 was a common component [20]. Thus, although Ang II and IL-6 induced distinct kinetics of induction of SIF-A, both contained Stat3 as a constituent protein. #### Mechanism of delayed SIF-A/STAT3 induction by Ang II We hypothesized that the delayed stimulation of SIF-A by Ang II was due to the induction of an inhibitory pathway (0-30 min) prior to stimulation (1-2h). To test this possibility, we determined whether a short pretreatment of the cells with Ang II would inhibit the rapid activation of SIF-A by IL-6. We observed that a 15 min pretreatment of cells with Ang II inhibited the rapid induction of SIF-A and Stat3 tyrosine phosphorylation by IL-6 [20]. The inhibition by Ang II was dosedependent, and did not involve the degradation of Stat3 protein [21]. The inhibitory effect was completely blocked by pre-exposing the cells with EXP3174. Importantly, the inhibition was transient since at latter time points (2h), the IL-6-induced SIF-A response reappeared [20]. These results raise the possibility that the delayed induction of STAT3 tyrosine phosphorylation/SIF-A response by Ang II may involve an inhibitory phase, prior to stimulation. To determine if Ang II interfered with IL-6-induced Stat3 (92kDa) tyrosine phosphorylation, we made nuclear extracts from untreated T3CHO/AT_{1A} cells, T3CHO/AT_{1A} cells treated with Ang II (25 min and 2h) or IL-6 (10 min), or T3CHO/AT_{1A} cells treated first with Ang II for 15 min and then with IL-6 for Figure 1. Effect of Ang II pretreatment on IL-6-induced nuclear protein tyrosine phosphorylation: T3CHO/AT_{1A} cells were treated with Ang II alone (100 nM) for 25 min (lane 2) and 2 h (lane 3) and with IL-6 alone (10 ng/ml) for 10 min (lane 4). Alternatively, cells were treated with Ang II (100 nM) for 15 min followed by IL-6 (10 ng/ml) for 10 min (lane 5) or pretreated with EXP3174 (1 \times 10 M) for 30 min and then sequentially with Ang II (100 nM) for 10 min and IL-6 (10 ng/ml) for 10 min (lane 6). Nuclear extracts were prepared as previously described [20]; 10 µg of the extract was loaded onto a 8% SDS-polyacrylamide gel, transferred to nitrocellulose, and hybridized with antiphosphotyrosine antibodies. Tyrosine-phosphorylated bands were detected as previously described [20] using enhanced chemiluminescence (ECL, Amersham). The position of the 92kDa protein is indicated by an arrow. 10min. Nuclear extracts from these cells were analyzed in a Western blot by probing with antiphosphotyrosine antibodies. Figure 1 demonstrates that Ang II induces the tyrosine phosphorylation of a 92kDa protein at two hours (lane 3), but not a 25 min (lane 2). IL-6 rapidly induced the tyrosine phosphorylation of this 92kDa protein at 10min (lane 4). In nuclear extracts from Ang II +IL-6 treated cells, there was a marked decrease in the tyrosine phosphorylation of this protein (lane 5). If the cells were exposed to AT₁ receptor antagonist EXP3174, treatment with Ang II did not effect the IL-6-induced tyrosine phosphorylation (lane 6). Immunoprecipitation of these samples with anti-STAT3 antibody and subsequent phosphotyrosine blots indicated that this 92kDa protein was STAT3 [20]. Thus, figure 1 demonstrates that Ang II specifically affects the tyrosine phosphorylation status of a 92kDa protein, without significantly affecting others. Since Ang II rapidly activates PKC [16,29], we determined whether this protein kinase was involved in Ang II-mediated inhibition of IL-6-induced responses. If this hypothesis was correct, pretreatment with the phorbol ester PMA (phorbol 12myristate, 13-acetate) should inhibit IL-6-induced responses. We observed that pretreatment of cells with PMA for 15-25 min, inhibited the IL-6-induced SIF-A response and Stat3 tyrosine phosphorylation [20,21]. To establish a role for PKC, we treated the cells with PMA to downregulate PKC activity and then tested the ability of PMA and Ang II to inhibit IL-6-induced SIF-A/ Stat3 responses. We observed that in PKC downregulated cells, Ang II inhibited, but PMA failed to inhibit, IL-6-induced STAT3 tyrosine phosphorylation and SIF-A responses [20,21]. These data indicated that Ang II-mediated inhibition occurred independently of PMA-sensitive isoforms of PKC. #### Role of MAPK kinase 1 Since PMA mimicked the actions of Ang II, we hypothesized that a protein kinase was involved in the Ang II-mediated inhibition of the IL-6-induced STAT3/SIF-A response. We hypothesized that signals elicited by Ang II and PMA converged at the level of MAPK kinase (see figure 2); therefore, inhibiting this step would prevent/attenuate the Ang II-mediated inhibition. To test this hypothesis, we used PD98059, a specific inhibitor of MAPK kinase 1. The use of PD98059 to block MAPK kinase 1 and, therefore, the MAPK pathway activated by various agents (PMA, PDGF, etc.,) has been previously described [30,31]. In T3CHO/AT_{1A} cells, $20\,\mu\text{M}$ PD98059 completely inhibited Ang II (1 nM)-mediated activation of MAPK. In cells pre-exposed to 20 µM PD98059, there was a significant attenuation of Ang II (1 nM)-mediated interference of IL-6-induced STAT3 tyrosine phosphorylation and SIF-A responses [21]. PD98059 also attenuated the PMA-mediated inhibition of the IL-6-induced STAT3/SIF-A response [21]. These results suggested that MAPK kinase 1 or downstream effector was involved in the inhibitory actions of Ang II and PMA. #### Serine phosphorylation of STAT3 by Ang II In addition to tyrosine phosphorylation, some STAT proteins also undergo serine phosphorylation. For example, STAT3 undergoes serine phosphorylation in response to cytokines and growth factors [32,33]. Although not proven, MAPKs have been implicated in this process [32,33]. It should be noted that mouse STAT3 contains a MAPK consensus site (PMSP, amino acid 725-728) [32]. Since Ang II is Figure 2. Convergence of Ang II- and PMA-induced signaling at the level of MAP kinase kinase: Angiotensin II activates MAPK kinase through both protein kinase C (PKC)-dependent and independent routes, whereas the phorbol ester PMA activates MAPK kinase exclusively through a PKC-dependent route. a potent activator of the MAPK pathway, we determined whether stimulation of T3CHO/AT, cells would cause STAT3 serine phosphorylation. Immunoprecipitation of ³²P-labeled STAT3 and subsequent phosphoamino acid analysis indicated that Ang II rapidly caused serine phosphorylation of STAT3 [34]. This was detected as early as 2min following exposure to Ang II and was sensitive to treatment with PD98059 [34]. These data suggest that the MAPK pathway is involved in Ang IImediated serine phosphorylation of Stat3. #### DISCUSSION Using neonatal rat cardiac fibroblasts and T3CHO/AT_{1A} cells, we demonstrated that Ang II induced a delayed (1-2h) tyrosine phosphorylation of STAT3 and SIF-A formation. Since Ang II also transiently inhibited IL-6-induced STAT3 tyrosine phosphorylation and SIF-A formation, it is likely that the delayed tyrosine phosphorylation of STAT3 by Ang II results from the induction of an inhibitory pathway prior to stimulation. Despite the delayed tyrosine phosphorylation, Ang II rapidly (2min) induced serine phosphorylation of STAT3. These distinct time phases of phosphorylation by Ang II are notably different from cytokine (IL-6, IFNγ)induced tyrosine and serine phosphorylation, both of which occur within 10-15 min following agonist exposure. Such differential protein modification by Ang II may modulate the activity of STAT3 to regulate gene expression. The ability of the MAPK kinase 1 inhibitor, PD98059, to attenuate the Ang IImediated interference suggests a role for the Ang II-induced MAPK pathway in the negative regulation of STAT3 tyrosine phosphorylation by IL-6. The signaling intermediate responsible for this inhibitory action could be MAPK kinase 1, MAPK, or a downstream effector. This intermediate, in turn, may activate a kinase or Figure 3. Effect of Ang II on the IL-6-induced SIF-A response: T3CHO/AT_{1A} cells were left untreated (lane 1) or were treated with IL-6 (10 ng/ml) for 25 min (lane 2) or Ang II (100 nM) for 15 min (lane 3) or first with IL-6 (10 ng/ml) for 10 min and then with Ang II (100 nM) for 15 min (lane 4). Cells representing lane 4 were exposed to IL-6 for a total of 25 min and Ang II for 15 min. Nuclear extracts were prepared and analyzed by electrophoretic mobility shift assay using ³²P-labeled SIE, as previously described [19, 20]. phosphatase to bring about the inhibitory effects of Ang II. If a kinase is involved, upon its activation by Ang II, it may directly alter the signal-transducing components of IL-6 (e.g., IL-6 receptor, signal transducing protein gp130, STAT3 etc.,) by protein modification. If a phosphatase is involved, it may dephosphorylate tyrosinephosphorylated STAT3. In support of the role for a tyrosine phosphatase, we observed that the inhibition of SIF-A occurs even if Ang II is added 25 min after stimulation with IL-6 for 10min (figure 3). We are currently investigating the role of a tyrosine phosphatase in this process. How Ang II, through the activation of the MAPK pathway, can inhibit the IL-6-induced STAT3/SIF-A response is unclear. Interestingly, MAPK activation by IL-6 is not associated with the inhibition of STAT3 tyrosine phosphorylation. Examination of the MAPK activation profile in gel kinase assays indicated that the profiles are significantly different between Ang II and IL-6. For Ang II, it was rapid, maximal being 2min (eightfold), and sustained [21]. For IL-6, it was slower, maximal being 10 min (1.7-fold), and transient. Several reports indicate that differences in the magnitude and duration of MAPK activation cause differential compartmentalization of MAPK activity, and this brings about distinct end responses [35]. For example, it was shown
that in PC 12 cells, sustained activation (1h) of MAPK by nerve growth factor caused the cells to undergo differentiation and transient activation (less than 20 min) by EGF stimulated proliferation [36]. Whether the rapid activation, higher magnitude, and sustained duration of MAPK activation by Ang II resulted in the compartmentalization of its kinase activity and whether this is responsible for the inhibition of IL-6-induced STAT3 tyrosine phosphorylation, requires further investigation. The significance of the delayed STAT3 tyrosine phosphorylation by Ang II, the ability of Ang II to cross-talk with IL-6, and precisely what genes are controlled by the Ang II-induced STAT pathway requires further study. Some of the STATregulated genes include the proto-oncogene c-fos, those for acute phase response proteins such as α -2 macroglobulin, the tissue inhibitor of metallo proteinases-1 (TIMP-1), the serine protease inhibitor 3 (SP-3), and the gene for cell adhesion, intercellular adhesion molecule-1 (ICAM-1). All of these genes contain the promoter element to which STAT proteins bind [23,37-40]. Angiotensin II is known to induce c-fos mRNA in cardiovascular cells [14,41]. However, the timing of Ang II-mediated maximal c-fos induction (30 min) [41] is different from the ability of Ang II to induce maximal nuclear STAT3/SIF-A activity (2-3h) [19]. These data suggest that c-fos-induction by Ang II is probably regulated to a large extent by other pathways, such as Ca2+ and MAPK. A recent report on the ability of Ang II to induce TIMP-1 mRNA (maximal at 2h) in rat aortic endothelial cells [42] suggests that STAT3 protein may be involved in regulation of the expression of this gene. Expression of TIMP-1 has been linked to pathological conditions such as the acute phase response, tissue remodeling, wound repair, and inflammation [38,43]. Studies are underway to identify the role of Ang II-induced STAT protein activation and the ability of Ang II to cross-talk with IL-6 and to investigate the regulation of gene expression. #### ACKNOWLEDGMENT This work was supported by grants from the American Heart Association (PA Affiliate and National) to G.J.B., the Geisinger Clinic Foundation, and a Losartan Medical School Grant from Merck and Co. (K.M.B). #### REFERENCES 1. Raizada MK, Phillips MI, Summers C, eds. 1993. Cellular and molecular biology of reninangiotensin system. Boca Raton: CRC Press. - 2. Lindpaintner K, Ganten D, eds. 1994. The cardiac renin angiotensin system. Armonk, New York: Fatura Publishing Co. - 3. Booz GW, Baker KM. 1996. The role of renin-angiotensin system in the pathophysiology of cardiac remodeling. Blood Pressure 5(Suppl 2):10-18. - 4. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245-1254. - 5. Aceto JF, Baker KM. 1990. [Sar¹]angiotensin II receptor mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 6. Berk BC, Vekshtein V, Gordon HM, Tsuda T. 1989. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305-314. - 7. Weber H, Taylor DS, Molloy CJ. 1994. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. J Clin Invest 93:788-798. - 8. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor anatagonists. Pharm Rev 45:205-251. - 9. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type 1 angiotensin II receptor. Nature 351:233-236. - 10. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. 1991. Nature 351:230-232. - 11. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543-24546. - 12. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. 1993. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven transmembrane receptors. J Biol Chem 268:24539-24542. - 13. Molloy CJ, Taylor DS, Weber H. 1993. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268:7338-7345. - 14. Sadoshima J, Izumo S. 1993. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ Res 73:424-438. - 15. Marrero MB, Paxton WG, Duff JL, Berk BC, Bernstein KE. 1994. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma 1 in vascular smooth muscle cells. J Biol Chem 269:10935-10939. - 16. Booz GW, Dostal DE, Singer HA, Baker KM. 1994. Involvement of protein kinase C and Ca²⁺ in angiotensin II-induced mitogenisis of cardiac fibroblasts. Am J Physiol 267:C1308-C1318. - 17. Schorb W, Conrad KM, Singer HA, Dostal DE, Baker KM. 1995. Angiotensin II is a potent stimulator of MAP-kinase activity in neonatal rat cardiac fibroblasts. J Mol Cell Cardiol 27:1151-1160. - 18. Zohn IE, Yu H, Li X, Cox AD, Earp HS. 1995. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol 15:6160-6168. - 19. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM. 1994. Angiotensin II stimulates sis-inducing factor like DNA binding activity: Evidence that the AT_{1A} receptor activates transcription factor Stat91 and/or a related protein. J Biol Chem 269:31443-31449. - 20. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM. 1995. Activation of STAT pathway by angiotensin II in T3CHO/AT_{1A} cells: Cross-talk between angiotensin II and interleukin-6 nuclear signaling. J Biol Chem 270:31443-31449. - 21. Bhat GJ, Abraham ST, Baker KM. 1996. Angiotensin II interferes with interleukin-6-induced Stat3 signaling by a pathway involving mitogen-activated protein kinase kinase 1. J Biol Chem 271:22447- - 22. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. 1995. Direct stimulation of JAK-STAT pathway by angiotensin II AT1 receptor. Nature 375:247- - 23. Schindler C, Darnell JE Jr. 1995. Transcriptional responses to polypeptide ligands: The JAK-STAT pathway. Annu Rev Biochem 64:621-651. - 24. Ilhe JN. 1995. Cytokine receptor signaling. Nature 377:591-594. - 25. Lehman DW, Pisharody S, Flickinger TW, Commane MA, Sclessinger J, Kerr IM, Levy DE, Stark GR. 1996. Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol Cell Biol. 16:369-375. - 26. Quelle FW, Thierfelder W, Witthuhn BA, Tang BO, Cohen S, Ihle JN. 1995. Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein tyrosine kinases and the epidermal growth factor receptor. J Biol Chem 270:20775-20780. - 27. Raz R, Durbin JE, Levy DE. 1994. Acute phase response factor and additional members of the interferon regulated gene factor 3 family integrate diverse signals from cytokines, interferons, and growth factors. J Biol Chem 269:24391-24395. - 28. Akira S, Nishio Y, Inoue M, Wang X-J, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T. 1994. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130 mediated signaling pathway. Cell 77:63-71. - 29. Booz GW, Baker KM. 1995. Molecular signaling mechanisms controlling the growth and function of cardiac fibroblasts. Cardiovasc Res 30:537-543. - 30. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. 1995. PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489- - 31. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. 1995. A synthetic inhibitor of the mitogenactivated protein kinase cascade. Proc Natl Acad Sci 92:7686-7689. - 32. Wen Z, Zhong Z, Darnell JE, Jr. 1995. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241-250. - 33. David M, Petricon E, III, Benjamin C, Pine R, Weber MJ, Larner AC. 1995. Requirement for MAP kinase (ERK2) activity in interferon-α and interferon-β-stimulated gene expression through STAT proteins. Science 269:1721-1723. - 34. Bhat GJ, Baker KM. 1997. Angiotensin II stimulates rapid serine phosphorylation of transcription factor Stat3. Mol Cell Biochem 170:171-176. - 35. Marshall CJ. 1995. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185. - 36. Traverse S, Gomez N, Paterson H, Marshall C, Cohen P. 1992. Sustained activation of the mitogenactivated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Biochem I 288:351-355. - 37. Wegenka UM, Bushmann J, Luttican C, Heinrich PC, Horn F. 1993. Acute phase response factor, a nuclear factor binding to acute phase response elements, is rapidly activated by interleukin-6 at the post-translational level. Mol Cell Biol 13:276-288. - 38. Bugno M, Graeve L, Gatsios P, Koj A, Heinrich PC, Travis J, Kordula T. 1995. Identification of the interleukin-6/oncostatin M response element in the rat tissue inhibitor of metalloproteinases-1 (TIMP-1) promoter. Nucl Acids Res 23:5041-5047. - 39. Kordula T, Ripperger J, Morella KK, Travis J, Baumann H. 1996. Two separate signal transducers and activators of transcription proteins regulate transcription of the serine proteinase inhibitor-3 gene in hepatic cells. J Biol Chem 271:6752-6757. - 40. Hou J, Baichwal V, Cao Z. 1994. Regulatory elements and transcription factors controlling basal and
cytokine induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci USA 91:11641-11645. - 41. Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard M. 1989. Angiotensin II induces c-fos mRNA in rat aortic smooth muscle cells. J Biol Chem 264:526-530. - 42. Chua CC, Hamdy RC, Chua BH. 1996. Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochem Biophys Acta 1311:175-180. - 43. Kordula T, Guttgemann I, Rose-John S, Roeb E, Osthues A, Tschesche H, Koj A, Heinrich PC, Graeve L. 1992. Synthesis of tissue inhibitor of metalloproteinase-1 (TIMP-1) in human hepatoma cells (HepG2). FEBS Lett 313:143-147. # CARDIAC ANGIOTENSIN II SUBTYPE 2 RECEPTOR SIGNAL TRANSDUCTION PATHWAYS:EMBRYONIC CARDIOMYOCYTES AND HUMAN HEART #### SIMON W. RABKIN Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada Summary. The distribution of the Ang II-receptor subtype 2 (AT₂-R) in the heart of various species from chick embryo to neonatal rat, adult rat, rabbit and man is reviewed. Human heart has a predominance of AT₂-R while rat and rabbit have considerably less receptors suggesting caution in the extrapolation of data from species with few AT₂-R to human. AT₂-R signaling mechanisms in the heart utilize phosphoinositol hydrolysis, PKC activation, tyrosine kinase activation and likely PI 3 kinase activation as well. In contrast to AT₁-R, the AT₂-R is not linked with cAMP signaling. The development of cardiac hypertrophy and subsequent heart failure is associated with alterations of AT₂-R density and undoubtedly a disturbance of the usual mechanisms whereby the effect of angiotensin on the heart is manifested. "It has been concluded that most of the well-known actions of Ang II are mediated by the AT₁-receptor subtype" Timmermans et al. [1]. Preliminary conclusions from scientific data may accelerate or retard the exploration of alternate explanations for biological phenomenon. Acceptance of the overwhelming importance of angiotensin (Ang) II subtype 1 receptor (AT₁-R) caused investigators to wonder whether there was any value in exploring the Ang II subtype 2 receptor (AT₂-R). However, the AT₂-R has recently been receiving increased attention. The role of the AT₂-R in the heart remains unclear, in part, because it has not been extensively studied. When it has been investigated, models with lower abundance of AT₂-R have been chosen. This chapter will highlight cardiomyocyte Ang II signal transduction pathways that are likely mediated through AT₂-R. The existance of multiple types of Ang II receptors has long been considered because of the highly diverse cellular actions of Ang II. Pharmacological studies with relatively selective antagonists uncovered the presence of the two major Ang II receptor subtypes, called AT₁-R and AT₂-R [2-5]. cDNA for the rat, mouse, and human AT₁-R and AT₂-R have been cloned [6-9]. The biochemical characterization of the AT₂-R was followed by in-depth examinations to determine its role(s). A considerable number of functions have been attributed to the AT2-R. These include decreases in cyclic GMP and increases of K+ currents in neuronal cells from neonatal rat brain [10], inhibition of basal and stimulated cGMP in rat adrenal glomerulosa cells and PC12W cells [11], reduction in polyinositol hydrolysis in the skin [12], release of PGI₂ in astrocytes [13], inhibition of proximal tubule sodium reabsorption in rat kidney [14], and other effects such as modulation of calcium transients in bovine medullary cells and secretion of luteinizing hormone and prolactin [1]. Despite the potential importance of the AT₂-R, the identification of its physiological and pathophysiological roles in the heart remain incompletely understood. This may be due to the difficulty in elucidating the role of the AT₂-R in the heart as a result of the model systems used in routine experimentation. The objective of this chapter is to bring together data on the AT₂-R in the heart, focusing on the cardiomyocyte element of the heart with the following specific objectives: (1) to discuss the distribution of AT₂-R receptors in the heart (2) to compare the differences in the distribution of AT₂-R in the heart in various species (3) to examine potential signal transduction pathways linked to the AT₂-R in the heart (4) to discuss potential role(s) of AT2-R in cardiac disease. #### DISTRIBUTION OF AT,-R IN THE HEART That the relative amounts of the AT₂-R and AT₁-R in the heart vary markedly between species cannot be over emphasised. The ratio of AT₂-R to AT₁-R in the myocardium varies from 2:1 in human heart [15,16] to less than 1:1 in rat myocardium [17,18] and about 1:2 ratio in rabbit myocardium [19,20]. Let us specifically examine this issue, reviewing some of the studies that examine Ang II receptor subtypes in the heart. In the rabbit ventricle, the proportion of AT₂-R has been reported to vary from 20% [21] to 50% [22]. AT₂-R were evenly spread over the myocardium with a low number present per cell [21]. Interestingly, total Ang II receptor density in the atria and cardiac nervous tissue were respectively 4 and 9 times greater than in the ventricle [21]. In rat myocardium, the ratio of AT₂-R to AT₁-R is no greater than 1:1 [17,18], with some investigators reporting that the ratio is definitely less than 1:1 [17,18] and as low as 1:4 [23]. Hunt et al. [24] found that in the rat, Ang II-R were first detected in the myocardium on embryonic day 14 and reached a maximum density within the first postnatal week and declined thereafter. During the perinatal period, the density of Ang II-R was twofold higher in the atria than in the ventricle, but by adulthood the ratios were similar in the atrium and ventricle. In neonatal rat heart, Ang II binding sites were concentrated in the vasculature and conduction system and were mainly AT2-R, while Ang II-R were barely detectable in the | Tissue | Source | AT_2 - R/AT_1 - R | Comments | Reference | |-----------|---------------------------------------|--|--|-----------------------------| | RA
RA | 35 pt heart surgery
5 pt AC bypass | $2/1(67 \pm 10/33 \pm 10\%)$
$82/18(84 \pm 2/21 \pm 1\%)$ | correlated Lapres related fibrosis | Rogg (1996)
Brink (1996) | | RV AND LV | Autopsy | AT ₂ -R predominates | decreased AT ₂ -R
in LVH | Nozawa (1996) | Table 1. Angiotensin II receptor subtype distribution in human heart Notes: RA = right atrium, RV = right ventricle, LV = left ventricle. myocardium [24]. Everett et al. [25] found in the Sprague-Dawley that after the neonatal period, there was no AT2-R mRNA in the heart. In dog and ferret ventricle, the AT₁-R subtype is also the predominant Ang II-R [22]. The distribution of Ang II-R subtypes is completely different in the adult human heart compared to the adult heart of other species. In human atria, AT2-R are at least twice as common as AT₁-R, with the ratio reported as being 67%/33% [16] or 82%/18% [26] or about 2:1 [15] (table 1). About 70 percent of Ang II receptors in the human heart are AT₂-R. One may question whether experiments studying Ang II receptor signal transduction pathways from animal species with low prevalence of AT₂-R are relevant to man. #### ANG II SIGNAL TRANSDUCTION PATHWAYS IN THE HEART The intracellular signal transduction mechanisms whereby Ang II produces its cellular effects are an area of intense interest. Ang II stimulates multiple distinct signaling pathways. These include - hydrolysis of phosphotidylinositol 4,5-bisphosphate, yielding the two second messengers, inositol 1,4,5-triphosphate (1,4,5-IP₃) and diacylglycerol (DAG) [22,27-30] - mobilization of sequestered intracellular calcium likely from 1,4,5-IP, and activation of protein kinase C (PKC) likely from DAG [31-34] - modulation of cAMP and adenylate cyclase pathway in the heart [35-37] - stimulation of platelet-derived growth factor (PDGF) A-chain expression and induction of proto-oncogenes such as c-fos and c-jun [38,39] - stimulation of various protein kinases such as MAP kinases, JAK, and PKC [40- - stimulation of tyrosine kinases to produce tyrosine phosphorylation [43-46] - stimulation of various phospholipases such as PLA2, PLD, and arachidonic acid metabolism [31-34] - phosphorylation of Raf-1 likely through PKC [45] Several of the above outlined signaling pathways will be examined from the perspective of those potentially linked to AT₂-R. #### AT2-R SIGNAL TRANSDUCTION PATHWAYS The AT₂-R is similar to only a few other seven membrane-spanning domain receptors that are not coupled to G proteins [7,8]. A similar receptor in Drosophila acts as a ligand for sevenless tyrosine kinase receptor during eye development [46]. #### IP, signaling Ang II produces phosphoinositide hydrolysis in the ventricle of a number of different species, in which AT₁-R is the predominant Ang II-R subtype. In neonatal rat cardiomyocytes, the results are somewhat controversial. Some evidence suggest that Ang II does not produce inositol 1,4,5-triphosphate (IP₃) but rather produces IP₁ and IP₂ [30], while other studies suggest that Ang II may induce formation of IP₃ [36,47]. As one might have anticipated, AT₂-R blockade did not have a major impact on blocking the action of Ang II on phosphoinositide hydrolysis in neonatal rat myocardium [32,48], a cell type in which the effects of Ang II on inositol pathway have not been consistent [28,34,47] and in which there are fewer AT₂-R than AT₁-R. Sadoshima and Izumo [39] reported that in neonatal rat ventricle, AT₁-R antagonism with losartan, but not AT₂-R antagonism, blocked Ang IIinduced activation of IP₃. Lokuta et al. [40] reported that Ang II-induced IP₂ formation was blocked by AT₁-R, but not AT₂-R antagonists, in neonatal rat ventricular cells, but they did not study IP3 formation. For comparison, in neonatal rat fibroblasts, Ang II
increased total inositol production, which was blocked by losartan, but not by an AT2-R antagonist [49]. Ang II-induced increases in intracellular calcium, which are mediated in part through calcium release from sarcoplasmic reticulum calcium stores that are modulated by IP₃, are blocked by AT₁-R but not AT₂-R antagonism, in neonatal rat myocytes in culture [50]. Neonatal cardiomyocytes, however, not only have lower concentrations of AT₂-R but also show considerable loss of AT2-R binding in culture perhaps because of internalization of AT_2 -R [51]. In the rabbit myocardium, Ishihata and Endoh [30] did not show a link between AT₂-R; however, they examined inositol monophosphate. The density of AT₂-R is very low in rabbit myocardium [19,20]. Embryonic chick ventricular myocytes have well-defined and abundant Ang II-R [52,53]. In addition, chick cardiomyocytes have well-defined G proteins [54], linked to Ang II receptors [55]. In chick embryonic cardiomyocytes, Ang II significantly increased intracellular levels of IP₁, IP₂, and IP₃ [38,56,57]. The effects were evident within 1 minute, supporting a role for this pathway in the signal transduction mechanisms whereby Ang II induces its cellular effects. AT₁-R and AT2-R blockers produced dose-dependent anatgonism of Ang II-induced IP₃ production (figure 1). The AT₁-R may be more closely linked to IP₃ production than the AT2-R, based on the greater effect of losartan at equimolar concentrations. Ang II-induced IP3 formation was not inhibited completely by AT₁-R blockade with losartan [56]. Ang II-induced IP₃ formation was reduced by AT₂-R antagonism. Since a combination of losartan and AT₂-R blockade was Figure 1. Effect of AT₁ and AT₂ receptor blockers on Ang II-induced IP₃ accumulation: [3H] inositol-prelabeled myocytes were stimulated with Ang II (1000 nM, 1 min), and the accumulation of IP₃ was quantitated. A 30-min preincubation with increasing concentrations of antagonist (10⁻⁹, 10⁻¹) 10⁻⁵mM) in medium prior to the 1 min 1000 nM Ang II stimulation is shown. Stimulation values were compared directly to parallel experiments in which antagonist was not added. Shown are the dose-response curves for losartan and the AT₂-R antagonist PD123319. Results represent mean ± SEM of five experiments done in triplicate (from Gen Pharm, 1998). necessary to almost completely blocked IP, formation, it can be suggested that phosphotidylinositol hydrolysis in these cardiomyocytes is mediated through both AT₁-R and AT₂-R (figure 2). While this cell model has the problems of its avian origin and the precise characterization of its Ang II receptors, its embryonic origin ensures a higher prevalence of AT₂-R, so that it may be closer to the prevalence of AT2-R in human heart compared to rabbit or neonatal rat cardiomyocytes in culture. #### cAMP signaling Ang II inhibits \(\beta\)-adrenergic-R-mediated stimulation of cyclic adenosine monophosphate (cAMP) production in the heart. Ang II inhibits isoproterenol and glucagon-induced increases in cAMP in isloated cardiomyocytes and cardiac sarcolemmal membrane from adult rat and rabbit heart [28,35,37]. This effect of Ang II is part of a generalized response, as it has been found in various other tissues [59,60], and is operative through G inhibitory protein [35]. This action of Ang II on cAMP in cardiomyocytes was not mediated through the AT₂-R, but rather the AT₁-R (figure 3) [61]. This is consistent with the findings in renal artery smooth muscle [10], human myometrium [10], rat glomeruli [60], and rat adrenal glomerulosa [3]. In contrast, AT₁-R blockade completely prevented the effects of Figure 2. Effect of AT₁ and AT₂ receptor blockade on Ang II-induced formation of IP₃ Cardiac myocytes were prelabeled with [3H] inositolwere stimulated with Ang II (1000 nM) for 1 min in the presence of LiCl (10 mM). The accumulation of IP₃ was determined by Dowex column chromatography. For antagonist experiments, cells were pretreated with losartan (10⁻⁵M) or PD123319 (10⁻⁵, M) or both (10⁻⁵M) prior to stimulation with Ang II. Some cells were incubated with blockers and harvested without being stimulated by Ang II. The amount of IP3 in the control was defined as a 100% value. All values represent the mean ± SEM of 3-5 experiments performed in tripicate (*p < 0.05; **p < 0.01). (from Gen Pharm, 1998). Ang II to inhibit isoproterenol-mediated increase in cAMP production in the heart [61]. The lack of coupling between the AT2-R and adenylyl cyclase to generate cAMP remains somewhat perplexing as the Ang II-R has a seven-transmembrane domain topology, the type which is generally linked to G proteins. The AT2-R appears to belong to a unique class of seven-transmembrane receptors, which include the somatostatin, SSTR1, and dopamine D3, for which G protein coupling has not been demonstrated [7,8]. ## PKC signaling Ang II activation of PKC occurs over a 30min time frame in embryonic chick hearts [61] and in neonatal rat heart [34]. The magnitude of Ang II-induced translocation of PKC from cytosol to membrane in cardiomyocytes is consistent with that reported in other tissues [62]. Ang II-induced increases in membrane PKC activity and translocation of PKC from cytosol to membrane were antagonized by competitive blockade of the AT₂-R [61] (figure 4). Blockade of Ang II-induced PKC activation was evident at a low concentration of an AT2-R antagonist, supporting the contention that it is due to an effect on AT2-R and not through an Figure 3. Effect of Ang II-R antagonists on isopreterenol-induced increases in cAMP: (A) Intracellular cAMP in ventricular cardiomyocytes that were stimulated with isoproterenol (I) in the presence of angiotensin (Ang) II for 5 min and different concentrations of PD 123319 (PD) at 10⁻⁹M, 10⁻⁶M, and 10⁻⁵M. Myocytes were pretreated with PD123319 for 30 min as well as the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine prior to exposure to isoproterenol. Myocytes were treated with isoproterenol, 1 mM, for 1 min and Ang II for 5 min. (B) Intracellular cAMP in ventricular cardiomyocytes that were stimulated with isoproterenol in the presence of Ang for 5 min and different concentrations of losartan. Myocytes were pretreated with losartan for 30 min as well as the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine, 1 mM, prior to exposure to isoproterenol. Myocytes were treated with isoproterenol, 1 mM, for 1 for 5 min. The data, in panels A and B, are the mean ±1 SEM. (From Canadian Journal of Physiology and Pharmacology 1996.) Figure 4. The effect of AT₂ receptor antagonism on Ang II-induced translocation of PKC from cytosol to membrane. PKC activity in cytosolic and membrane fractions of ventricular cardiomyocytes that were treated with different concentrations of the AT₂ receptor antagonist PD 123319, 10⁻⁹M to 10⁻⁵M, (panel A) beginning 30 min prior to measurement of PKC. The bars represent control, no angiotensin or PD123319 (open bar), and angiotensin II (Ang II), 1μM without PD123319 (solid bar). The data are presented as mean ± 1 SEM for each concentration. Control represents no Ang II or antagonist, and Ang II represents Ang II in the absencee of the antagonist. (From Canadian J Physiol and Pharm 1996.) effect on another Ang II-R that might possibly occur at high concentrations of the AT2-R antagonist. AT2-R antagonism did not affect PKC activity in the basal state. #### Tyrosine kinase signaling pathways There have been few studies of Ang II-induced tyrosine phosphorylation in the heart. Sadoshima et al. [63] reported that Ang II-induced tyr phos of cellular Figure 5. Effects of AT₁ and AT₂ receptor blockers on Ang II-stimulated protein tyrosine phosphorylation. Embryonic chick cardiomyocytes, incubated in 818A medium containing 2% FBS, were treated with 1000 nM Ang II for 1 minute. For inhibition experiments, the cells were preincubated for 1 hour in the presence of losartan or PD123319 (both 10⁻⁵M). Proteins were immunoprecipitated with anti-P-Tyr antibody, separated by SDS-PAGE. The results of tyrosine phosphorylation of 195 and 70 kDa proteins are shown. They were compared with control (untreated cells) which was defined as 100%. Data are representative of independent experiments that were performed at least three times. The insert shows the data from the autoradiogram. (From Cellular Signalling, 1997.) proteins with molecular weights of 42,44,75-80, and 120-130 in cultured neonatal rat cardiomyocytes and fibroblasts. The 42 and 44kDa proteins were mitogenactivated protein kinases (MAPKs), and the 90kDa was S6 kinase (RSK), but they were not able to identify the other proteins. They subsequently described Ang II activation of p21^{ras} via the tyrosine kinase-Shc-Grb2-Sos pathway in these cardiomyocytes. Schorb et al. [64] found tyrosine phosphorylation of 44, 46-60, 95, and 125 kDa proteins in response to Ang II in neonatal rat fibroblasts and demonstrated that these were MAPKs, p56^{SHC}, p46^{SHC} and p125^{FAK}. They did not examine cardiomyocytes. We have shown tyr phosphorylation of various proteins in cytosolic extracts of Dahl salt-sensitive rat [65]. Saad et al. [66] reported increased tyrosine phosphorylation of a 85 kDa protein in rat heart extracts. Ang II-induced tyrosine phosphorylation of cardiac proteins, at least in embryonic cardiomyocytes, is mediated through both AT₁-R and AT₂-R [56] (figure 5). We have recently shown that in embryonic chick cadiomyocytes, Ang II-induced phosphoinositol generation is mediated, at least in part, through a pathway involving tyrosine phosphorylation [57]. This was based on several lines of evidence. First, the time course of Ang II-stimulated protein tyrosine phosphorylation was within the time course of Ang II-induced inositol phosphate formation in cardiomyocytes, supporting the contention of a linkage of the two pathways. A causal link between tyrosine phosphorylation pathway and Ang II-induced inositol phosphate generation was most conclusively
demonstrated by the ability of the tyrosine kinase inhibitor genistein to markedly and significantly reduce Ang IIinduced inositol phosphate formation. In contrast, its structural analog, daidzein, which has limited tyrosine kinase inhibitory ability, did not block Ang II-induced phosphoinositol formation. Furthermore, genistein reduced Ang II-induced tyrosine phosphorylation of cardiomyocyte proteins. In vascular smooth muscle cells, genistein has been reported to either reduce [67] or have no effect [68] on Ang IIinduced IP₃ production. The rapid time course of Ang II induced-tyr phos suggests either a linkage between the Ang II-R and a tyrosine kinase receptor [69] or a tyrosine phosphoprotein activation linked to AT2-R signaling. Demonstration of Ang II tyrosine phosphorylation pathways in the heart is difficult because the heart contains comparatively small amounts of tyrosine kinases compared to other tissues. Tremblay and Beliveau [70] found that the heart has the least amount of tyrosine kinase activity, in both soluble and particulate fractions, compared to the brain, thymus, liver, spleen, kidney, pancreas, or testes [70]. Elberg et al. [71] also found that the heart had lowest cytosolic tyrosine kinases compared to other tissues. This may be due to the especially low levels of tyrosine kinase substrate in the heart. Ang II-induced protein tyrosine phosphorylation was inhibited by both AT₁ and AT₂ receptor blockade. The AT₁-R lacks intrinsic tyrosine kinase activity [72], and only a small amount of tyrosine phosphorylation of this receptor occurs, with a relatively long time frame (20 min) after Ang II stimulation [73]. # Other signal transduction pathways Phosphatidylinositol 3-kinase (PI3K) activation A potentially important pathway that may be linked to AT2-R signaling is PI3K. PI3K refers to a family of enzymes that phosphorylate the membrane lipids PtdIns, PtdIns 4-P, and PtdIns 4,5-P, on the third position of the inositol ring, yielding PtdIns 3-P, PtdIns 3,4-P, and PtdIns 3,4,5-P [74,75]. By phosphorylating the 3 position rather than the 4 position, this kinase generates new phosphoinositides that are not on the pathway for production of IP, and DAG, through the action of phospholipase C (PLC). PI3K acts as a biochemical link between a novel phosphatidylinositol pathway and a number of proteins containing intrinsic or associated tyrosine kinase activities, such as the PDGF receptor [76,77], insulin [78], colony-stimulating factor-1 [79], and the products of oncogenes v-src [80] and v-abl [79]. The ability of Ang II to induce tyrosine phosphorylation in cardiac and noncardiac tissues [56,66] and the involvement of tyrosine phosphorylation with PI3K led us to hypothesize that Ang II would activate PI3K in the heart [80]. We have recently found that Ang II activated PI3K in embryonic chick cardiomyocytes [81]. Furthermore, the link between Ang II and protein synthesis was related to Ang II-induced activation of PI3K as the inhibitor of this enzyme significantly decreased the action of Ang II to increase protein synthesis, as demonstrated by [35S] methionine incorporation into cardiomyocytes [81]. # Tyrosine phosphatase The AT₂-R was initially found to induce a phosphotyrosine phosphatase based on the ability of orthovanadate to protein block tyr phos in PC12W cells [82]. This has also been demonstrated in N1E-115 neuroblastoma cells [83]. Subsequently, the cloning of the AT2-R demonstrated that the receptor was linked to phosphotyrosine phosphatase inhibition [7]. #### Arachadonic acid release Ang II increases the production of arachadonic acid in the heart, utilizing pathways discrete from IP₃ formation [48]. In neonatal rat heart, AT₂-R antagonism influenced the expression of the AT₂-R, but not AT₁-R-mediated Ang II-induced arachadonic acid release [48]. # Na+/HCO3- symport Ang II produces alkalinization of neonatal cardiomyocytes through a Na/HCO3 symport and not through the Na+/H+ exchanger [84]. This action of Ang II was mediated through the AT₂-R and appeared to involve arachadonic acid [84]. #### AT2-R AND CARDIAC DISEASE # AT2-R and myocardial infarction In the rat, Nio et al. [85] found that there was a 3.1-fold increase in AT₂-R mRNA in infarcted myocardium and a 1.9-fold increase in noninfarcted myocardium after coronary artery ligation compared to the myocardium from control animals. The transcriptional rates for AT2-R and AT1-R were increased significantly in the infarcted heart. The AT2-R number was increased 2.3-fold, only slightly less that the increase in the AT₁-R, while the receptor affinity was unchanged. AT₂-R antagonism did not affect AT₁-R mRNA, blood pressure, or infarct size. Interestingly AT₁-R antagonism also did not affect infarct size. However AT₁-R antagonism influenced the expression of the AT₂-R in the infarcted myocardium [85]. The AT₂-R may mediate the adverse effect of Ang II on the recovery of left ventricular function after ischemia and during reperfusion, as AT2-R antagonism improves left ventricular recovery in this circumstance [85]. The potential role of Ang II on apoptotic cell death is controversial with studies supporting and refuting this possibility [86-88]. Furthermore, whether this possible action of Ang II is mediated by AT₁-R or AT₂-R is unresolved as there is opposite data from different investigators [86,87]. # AT2-R in cardiac hypertrophy The potential role of the AT₂-R in cardiac hypertrophy is controversial. There is limited data available in humans; however, Nozawa et al. [89] examined Ang II-R in hearts that were examined at autopsy within 3h of death. There was a marked reduction in AT₂-R in cardiac hypertrophy. Whether this represents downregulation of Ang II-R to prevent Ang II-R-mediated cardiac hypertrophy or whether this is unrelated to the pathophysiology of cardiac hypertrophy remains to be determined. The proposal for a causal role of AT₂-R in cardiac hypertrophy is supported by several lines of evidence. First, AT2-R is the most abundant Ang II-R in embryo, which is a state of rapid growth. Second, AT2-R is linked to several growthpromoting pathways, namely, PKC and tyrosine kinase pathways. The PKC pathway may be involved in mediating the effects of Ang II on cardiac hypertrophy, as PKC can mediate cell growth [90], and PKC participates in the induction of myocardial β-myosin heavy-chain and myosin light-chain [91,92]. AT₂-R does not mediate the effects of Ang II to increase cardiac contractility [20,30] as one would anticipate, given that PKC activation in the heart, by phorbol esters, can produce a transient negative inotropic response [93,94]. Interestingly, cardiac hypertrophy in response to hypertension, in the spontaneously hypertensive rat or in the two kidney one clip model of renovascular hypertension, is associated with an approximately twofold increase in both AT2-R in the heart [18]. Experimental data that does not support a causal role for AT2-R in cardiac hypertrophy originates from animals with a much lower density of the AT₂-R in the heart compared to man. Ang II receptor gene expression was not altered by the development of cardiac hypertrophy. The abundance of AT2-R, as well as AT1a and AT1b mRNA levels, was not changed with the development of cardiac hypertrophy after aortic banding in the rat [95]. In the Tsukuba hypertensive mice that carry the human gene for renin and angiotensinogen, no changes in AT2-R were found while there were definite upregulation of AT₁-R in the heart [96]. The development of cardiac hypertrophy produced by coarctation of the abdominal aorta in Sprague-Dawley rat was not affected by treatment with an AT₂-R antagonist [97]. #### AT2-R in cardiac failure The number of Ang II binding sites in sarcolemmal fractions was significantly reduced in explanted end-stage failing human hearts [15] compared to mild heart failure or normal controls. The degree of heart failure influences the Ang II receptors, as cardiac Ang II receptor density is reduced in some patients with heart failure [98,99]. Indeed the reduction in Ang II-R binding was directly related to the degree of reduction in left ventricular function, as reflected by ejection fraction [98]. This was not due to internalization of receptors, as a similar change was found in vesicle fractions. Rather the reduction in Ang II receptors can be ascribed to a decrease in steady-state mRNA abundance [15]. In heart failure, the proportion of AT₂-R in human heart may increase. Rogg et al. [16] reported that in human right atrium, the proportion of AT2-R was higher in patients with elevated right atrial pressure. Indeed, there was a significant linear correlation between the AT2-R density and left ventricular ejection fraction [16]. #### CONCLUSION The data present in this chapter has attempted to draw attention to the importance of the AT₂-R in the heart. Previous studies that dismissed or minimized the role of AT₂-R in the heart were done mainly in species that had a low density of AT₂-R in the heart. This problem is further compounded by the rapid downregulation or internalization of AT2-R when cardiomyocytes are maintained in culture. In the embryonic heart, AT2-R is more closely linked to PKC activation than the AT1-R [61]. In these cardiomyocytes, the AT2-R is not linked to cAMP dependent pathways [61]. AT2-R are functionally coupled to protein tyrosine dephosphorylation [7,83]. Thus, AT2-R is linked more closely to pathways similar to growth hormone receptor pathways that utilize PKC and tyrosine kinases. Inferences drawn about the role of the AT2-R in Ang II single transduction in the heart of some species may not be relevant to human heart. In human atria and ventricle, the AT2-R is the predominant Ang II receptor [15,16,21,99]. In human heart, heart failure and cardiac hypertrophy are associated with a decrease in Ang II-R binding. Furthermore, in cardiac hypertrophy, a major predictor of cardiovascular morbidity and mortality in
hypertension, AT2-R density may increase proportionately more than the AT₁-R [18]. In myocardial infarction, there is a two- to threefold increase in AT2-R mRNA and receptor number in the infarcted myocardium. Given the role of Ang II in cardiac hypertrophy [100,101] and myocardial infarction, the data reviewed here suggest that AT2-R merits considerable further investigation in cardiac disease in man. #### ACKNOWLEDGMENT The research was supported in part by a grant from the Heart and Stroke Foundation of British Columbia and the Yukon #### REFERENCES - 1. Timmermans BMWM, Benfield P, Chiu A, Herblin W, Wong P, Smith RD. 1992. Angiotensin II receptors and functional correlates. Am J Hypertension 5:221S-235S. - 2. Chiu AT, Herblin WF, Ardecky RJ, Himmelsbach RJ, Achucholowsky A, Connoly CJ, Neergaard SJH, Van-Nieuwenhze MS, Sebastian A, Quin J, et al. 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196-203. - 3. Dudley DT, Panek RL, Major TC, Lui GH, Bruns RF, Klinkefus BA, Weishaar RE. 1990. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38:370- - 4. Whitebread S, Mele M, Kamber B, de Gasparo M. 1969. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284-291. - 5. Bumpus FM, Catt KJ, Chiu AT, de Gasparo M, Goodfriend T, Husain A, Peach MU, Taylor DG, Timmermans PBMWM. 1991. Nomenclature for angiotensin receptors: A report of the nomenclature committee of the Council for High Blood Pressure Research. Hypertension 17:720-721. - 6. Ichiki T, Herold CL, Kambayashi Y, Bardhan S, Inagami T. 1994. Cloning of the cDNA and the genomic DNA of the mouse angiotensin II type 2 receptor. Biochim Biophys Acta 1189:247-250. - 7. Kambayashi Y, Bardhan S, et al. 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543-24546. - 8. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. 1993. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. I Biol Chem 268:24539-24542. - 9. Tsuzuki S, Ichiki T, Nakakubo H, Kitami Y, Guo D, Shiari H, Inagami T. 1994. Molecular cloning and expression or the gene encoding human angiotensin II type 2 receptor. Biochem Biophys Res Com 200:1449–1454. - 10. Summers C, Tang W, Zelezna B, Raizada MK. 1991. Angiotensin II receptor subly per one coupled with disctinct signal transduction mechanisms in cultured neurons and astrocyteglia from rat brain. Proc Natl Acad Sci 88:7567-7571. - 11. Bottari SP, Taylor V, King IN, Bogdal Y, Whitebread S, de Gasparo M. 1991. Angiotensin AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207:157-163. - 12. Gyurko R, Kimura B, Kurian P, Crews FT, Phillips MI. 1992. Angiotensin II receptor subtypes play opposite roles in regulating phosphatidylinositol hydrolysis in rat skin slick. Biochem Biophys Res Commun 186:285-292. - 13. Jaiswal N, Tallant EA, Diz DI, Mahesh CK, Ferrario CM. 1991. Subtype 2 angiotensin receptors mediate prostaglandin synthesis in human astrocytes. Hypertension 17:1115-1120. - 14. Cogan MG, Liu FY, Wong PC, Timmermans PBMWM. 1991. Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonists PD123177 and DuP753 on proximal nephron and renal transport. J Pharm Exp Therap 259:687-691. - 15. Regitz-Zagrosek V, Friedel N, Heyman A, Bauer P, Neuß M, Rolfs A, Steffan C, Hildebrand A, Hetzer R, Fleck E. 1995. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 91:1461-1471. - 16. Rogg H de Gasparo M, Graedel E, Stulz P, Burkart F, Eberhardt M, Erne P. 1996. Angiotensin lireceptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction. European Heart J 17:1112-1120. - 17. Sechi LA, Griffin C, Grady EF, Kalinyak JE, Schambelan M. 1992. Characterization of angiotensin receptor subtypes in rat heart. Circ Res 71:1482-1489. - 18. Suzuki J, Matsubarara H, Urakami M, Inada M. 1993. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439-447. - 19. Rogg H, Schmid A, de Gasparo M. 1990. Identification and characterization of angiotensin II receptor subtypes in rabbit ventricular myocardium. Biochem Biophys Res Commun 173:416-422. - 20. Scott A, Chang R, Lotti V, Siegl P. 1992. Cardiac angiotensin receptors: Effects of selective angiotensin II receptor antagonists, DUP 753 and PD121981, in rabbit heart J Pharmacol Exp Ther 261:931-935. - 21. Brink M de Gasparo M, Rogg H, Whitebread S, Bullock G. 1995. Localization of angiotensin II receptor subtypes in the rabbit heart. J Mol Cell Cardiol 27:459-470. - 22. Ishihata A, Endoh M. 1995. Species-related differences in inotropic effects of angiotensin II in mammalian ventricular muscle: Receptors, subtypes and phosphoinositide hydrolysis. Br J Pharm 114:447-453. - 23. Bastein NR, Ciuffo GM, Saavedra JM, Lambert C. 1996. Angiotensin II receptor expression in the conduction system and arterial duct of neonatal and adult rat hearts. Reg Peptides 63:9-16. - 24. Hunt RA, Ciuffo GM, Saavedra JM, Tucker DC. 1995. Quantification and localization of angiotensin II receptors and angiotensin converting enzyme in the developing rat heart. Cardiovasc Res 29:834-840. - 25. Everett AD, Heller F, Fisher A. 1996. AT1 receptor gene regulation in cardiac myocytes and fibroblasts. J Mol Cell Cardiol 28:1727-1736. - 26. Brink M, Erne P, de Gasparo M, Rogg H, Schmid A, Stulz P, Bullock G. 1996. Localization of angiotensin II receptor subtypes in the human atrium. J Molec Cell Cardiol 28:1789-1799. - 27. Alexander RW, Brock TA, Gimbrone MA, Rittenhouse SE. 1985. Angiotensin increases inositol triphosphate and calcium in vascular smooth muscle. Hypertension 7:447-451. - 28. Allen IS, Cohen NM, Dhallan RS, Gas ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increaes spontaneous contractile frequency aand stimulated calcium current in cultured neonatal rat heart myocytes: Insights into the underlying biochemical mechanisms. Circ Res 62:524-534. - 29. Rhee SG, Choi KD. 1992. Regulation of inositolphospholipid-specific PLC isozymes (Review). J Biol Chem 267:12393-12396. - 30. Ishihata A, Endoh M. 1993. Pharmacological characteristics of the positive inotropic effect of angiotensin II in the rabbit ventricular myocardium. Br I Pharm 108:999-1005. - 31. Kojima I, Kauamura N, Shibata H. 1994. Rate of calcium entry attenuates the rapid changes in protein kinase C activity in ang II stimulated adrenal glomerulosa cells. Biochem J 297:523-528. - 32. Lasseque B, Alexander RW, Clark M, Griendling KK. 1991. Angiotensin II-induced phosphatidylcholine hydrolysis in cultured vascular smooth muscle cells, regulation and localization Biochem J 276:19-25. - 33. Griendling K, Tsuda T, Berk BC, Alexander RW. 1989. Angiotensin II stimulates vascular smooth muscle J Cardiovasc Pharm 14(Suppl 6):S27-S33. - 34. Sadoshima J, Izumo S. 1993. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Circ Res 73:424-438. - 35. Anad-Srivastava MD. 1989. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma: Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 38:489-496. - 36. Sunga P, Rabkin SW. 1994. Angiotensin II-induced alteration of cyclic adenosine 3',5' monophosphate generation in the hypertrophic myocardium of the Dahl salt-sensitive rat on a high salt diet. Can J Physiol & Pharm 72:602-612. - 37. Sunga P, Rabkin SW. 1991. Reversal of angiotensin II effects on the cyclic adenosine 3',5' monophosphate response to isoprenaline in cardiac hypertrophy. Cardiovascular Research 25:965- - 38. Baker KM, Aceto JA. 1989. Colocalization of avian angiotensin II cardiac receptors: Coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 21:375-382. - 39. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ Res 73:413-423. - 40. Duff JL, Berk BC, Corson MA. 1992. Angiotensin II stimulates the pp44 and pp42 mitogen activated kinase in cultured rat aortic smooth muscle cells. Biochen Bipophys Res Commun 188:257-264. - 41. Tsuda T, Kawahara Y, Ishide Y, Koide M, Shiu YR, Yohoyaru M. 1992. Angiotensin II stimulates two myelin basic protein microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71:620-630. - 42. Pan J, Fukuda K, Kodoma H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S. 1997. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81:611-617. - 43. Huckle WR, Procop CA, Herman B, Earp S. 1990. Angiotensin II stimulates protein tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 10:6290-6298. - 44. Force T, Kyriakis JM, Avruch J, Bonventre JV. 1991. Endothelin, vasopressin and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J Biol Chem 266:6650-6656. - 45. Molloy C, Taylor DS, Weber H. 1993. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268:7338-7345. - 46. Kramer H, Cagan RL, Zipursky SL. 1991. Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature 352:207-211. - 47. Abdellatif MM, Neubauer CD, Lederer WJ, Rogers TB. 1991. Angiotensin-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circ Res 69:800-809. - 48. Lokuta A, Cooper C, Gaa S,
Wang H, Rogers T. 1994. Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart. J Biol Chem 269:4832-4838. - 49. Crabos M, Roth M, Hahn AW, Erne P. 1994. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts:coupling to signalling systems and gene expression. J Clin Invest - 50. Kem DC, Johnson EIM, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB. 1991. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261 (Cell Physiol 30):C77-C85. - 51. Feolde E, Vigne P, Frelin C. 1993. Angiotensin II receptor subtypes and biological responses in the rat heart. J Mol Cell Cardiol 25:1359-1367. - 52. Moore A. 1980. Development of angiotensin II receptors. Advances in Experimental Medicine & Biology 130:195-198. - 53. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-H618. - 54. Liang BT, Galper JB. 1988. Differential sensitivity of a and a to ADP-ribosylation by pertussis toxin in the intact cultured embryonic chick ventricular myocyte. Relationship of the role of G proteins in the coupling of muscarinic cholinergic receptors to inhibition of adenylate cyclase activity. Biochem Pharm 37:4549-4555. - 55. Baker KM, Singer HA, Aceto JF. 1989. Angiotensin II receptor-mediated stimulation of cytosolic free calcium and inositol phosphates in chick myocytes. J Pharmacol Exp Ther 251:578-585. - 56. Goutsouliak V, Rabkin SW. 1997. Angiotensin II-induced inositol phosphate generation is mediated through tyrosine kinase pathways in cardiomyocytes. Cellular Signalling 9:505-512. - 57. Goutsouliak V, Rabkin SW. 1998. Comparison of angiotensin II type 1 and type 2 receptor antagonists on angiotensin II-induced IP3 generation in cardiomyocytes. General Pharm 30:367-372. - 58. Allen IS, Goa ST, Rogers TB. 1988. Changes in expression of a functional Gi protein in cultured rat heart cells. Am J Physiol 255:C51-C59. - 59. Jard S, Cantan B, Jakob KH. 1981. Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem 256:2603-2606. - 60. Edwards RM, Stack EJ. 1993. Angiotensin II inhibits glomerular adenylate cyclase via the angiotensin II receptor subtype (AT₁). J Pharm Exp Therap 266:506-510. - 61. Rabkin SW. 1996. The angiotensin II subtype 2 (AT2) receptor is linked to protein kinase C but not cAMP dependent pathways in the cardiomyocyte. Can J Physiol Pharm 74:125-131. - 62. Tamm C, Lang U, Vallotton NB. 1990. Effects of ANF on angiotensin II and phorbol ester stimulated protein kinase C and prostaglandin production in cultured aortic smooth muscle cells. Endocrinology 126:658-665. - 63. Sadoshima J-I, Izumo S. 1996. The heterotrimeric G_q protein-coupled angiotensin II receptor activates p21^{rs} via tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775-787. - 64. Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM. 1994. Angiotensin II-induced protein tyrosine phosphorylation in neonatal cardiac fibroblasts. J Biol Chem 269:19626-19632. - 65. Rabkin SW, Goutsouliak V, Damne J, Krystal J. 1996. Ang II produces tyrosine phosphorylation of a 120 kDa protein in Dahl S salt rat myocardium. Am J Hyper 9:230-236. - 66. Saad MJA, Velloso LA, Carvalho CRO. 1995. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J 310:741-744. - 67. Marrero MB, Paxton WG, Schieffer B, Ling BN, Bernstein KE. 1996. Angiotensin II signalling events mediated by tyrosine phosphoryaltion. Cell Signal 8:21-26. - 68. Leduc I, Haddad P, Giasson E, Meloche S. 1995. Involvement of a tryosine pathway in the growthpromoting effects of angiotensin II on aortic smooth muscle cells. J Pharm Exp therap 48:582-592. - 69. Du J, Sperling LS, Marrero MB, Phillips L, Delafontaine P. 1996. G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells:Thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. BBRC 218:934-939. - 70. Tremblay L, Beliveau R. 1994. Protein tyrosine phosphorylation in normal rat tissue. Int J Biochem 26:29-34. - 71. Elberg G, Li J, Leibovitch A, Shechter Y. 1995. Nonreceptor cytosolic protein tyrosine kinases from various rat tissues. BBA 1269:2999-3306. - 72. Murphy TJ, Alexander RW, Friendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233-236. - 73. Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander W. 1994. Angiotensin II agonist-induced phosphroylation of vascular type 1 angiotensin II receptors. Hypertension 24:523-527. - 74. Kapeller R, Cantley LC. 1994. Phosphatidylinositol 3-kinase. Bioessays 16:565-576. - 75. Zvelebil MJ, MacDougall L, Leevers S, Volinia S, Vanhaesbroeck B, Gout I, Panayotou G, Domini J, Stein R, Pages F, Koga H, Salim K, Linacre J, Das P, Panaretou C, Wetzker R, Waterfield M. 1996. Structural and functional diversity of phosphoinositide 3-kinases. Phil Trans Royal Soc London (Biological Sciences) 351:217:223. - 76. Kazlauskas A, Cooper JA. 1990. Phosphorylation of the PDGF receptor β-subunit creates a tight binding site for phosphatidylinositol 3-kinase. EMBO I 9:3279-3286. - 77. Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT. 1991. A phosphatylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol 11:1125-1132. - 78. Sanchez-Margalet V, Goldfine LD, Vlahos CJ, Sung CK. 1994. Role of phosphatidylinositol 3-kinase in insulin receptor signaling studies with the inhibitor LY294002. BBRC 204:446-452. - 79. Varticovski L, Harrison-Findik D, Keeler ML, Susa M. 1994. Role of PI 3-kinase in mitogenesis. Biochim et Biophys Acta 4:1-11. - 80. Liu X, Marengene LE, Koch CA, Pawson T. 1993. The v-src SH3 domain binds PI 3 kinase. Mol Cell Biology 13:225-232. - 81. Rabkin SW, Goutsouliak V, Kong J. 1997. Ang II activates PI 3 kinase in cardiomyocytes J Hyper 15:891-899. - 82. Bottari SP, King IN, Rechlin S, Dahlstroem I, Lydon N, de Gasparo M. 1992. The angiotensin AT₂ receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate quanylate cyclase. Biochem Biophys Res Commun 183:206-211. - 83. Nahmias C, Cazaubon SM, Briend-Sutien MM, Lazard D, Villageoise P, Stromberg AP. 1995. Angiotensin AT₂ receptors are functionally coupled to protein tyrosine dephospphorylatase in N1E-115 neuroblastoma cells. Biochem J 306:87-92. - 84. Kohout TA, Rogers TB. 1995. Angiotensin II activates the Na+/HCO3- symport through a phosphoinositide-independent mechanism in cardiac cells J Biol Chem 270:20432-20438. - 85. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor sunbtypes in myocardial infarction. J Clin Invest 95:46-54. - 86. Ford WR, Clanachan AS, Jugdutt BI. 1996. Opposite effects of angiotensin and receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94:3087-3089. - 87. Yamada T, Horricki M, Dzau VJ. 1996. Angiotensin II type 2 receptors mediate programmed cell death. Proc Natl Acad Sci 93:156-160. - 88. Kajstrura J, Cigola E, Mahotra A, Li P, Cheng W, Meggi LG, Anversa P. 1997. Angiotensin II induces apotosis in adult ventricular myocytes in vitro. J Molec Cell Cardiol 29:859-870. - 89. Kong JY, Rabkin SW. 1997. Angiotensin II does not induce apoptosis in cardiomyocytes even in the presence of AT1 receptor blockade Clin Invest Med 20:S37. - 90. Nishizuka Y. 1986. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Science 233:305-312. - 91. Chien KR, Knowlton KU, Zhu H, Chien S. 1991. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037-3046. - 92. Miura M, Iwanaga T, Ito KM, Seto M, Sasaki Y, Ito K. 1997. The role of myosin light chain kinase-dependent phosphorylation of light chain in phorbol ester-induced contraction of rabbit aorta. Pflugers Archiv-Eur J Physiol 434:685-693. - 93. Yuan S, Sunahara FA, Sen AK. 1987. Tumor-promoting phorphol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61:372- - 94. Gwathmey JK, Hajjar RJ. 1990. Effect of protein kinase activation on sarcoplamic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res 67:744-752. - 95. Wolf K, Della Bruna R, Gunther B, Bruckschlegel G, Schunkert H, Riegger GAJ, Kurtz A. 1996. Angiotensin II receptor gene expression in hypertrophied left ventricles of rat hearts. J of Hypertension 14:349-354. - 96. Fujii N, Tanaka M, Ohnishi J, Yukawa K, Takimoto E, Shimada S, Naruse M, Sugiyama F, Yagami K, Murakami K, Miyazaki H. 1995. Alterations of angiotensin II receptor contents in hypertrophied hearts. Biochem & Biophys Res Commun 212:326-333. - 97. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. 1994. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-b1 expression. Hypertension 23:587- - 98. Urata H, Healy B, Stewart RA, Bunpus FM, Husain A. 1989. Angiotensin II receptors in normal and failing human hearts. J of Clin Endo and Metabolism 69:54-66. - 99. Nozawa Y, Miyake H, Haruno A, Yamada S, Uchida S, Ohkura T, Kimura R, Suzuki H, Hoshino T. 1996. Down-regulation of angiotensin II receptors in hypertrophied human myocardium. Clin & Exp Pharm and Physiol 23:514-518. - 100. Schneider MD, Parker TG. 1991. Cardiac growth factors (Review). Progress in Growth Factor Res 3:1-26. - 101. Lindpainter K,
Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. # ANGIOTENSIN II STIMULATES CONTRACTILITY AND C-FOS GENE EXPRESSION IN ISOLATED ATRIAL HUMAN MYOCARDIUM STEPHAN WIESE, STEPHAN SCHMIDT-SCHWEDA, ERNST-MARTIN FÜCHTBAUER*, FRIEDHELM BEYERSDORF and CHRISTIAN HOLUBARSCH Department of Cardiology and Angiology and the Department of Cardiovascular Surgery, University of Freiburg, Freiburg, Germany and *Max-Planck-Institute of Immunobiology, Freiburg, Germany **Summary.** The renin-angiotensin system plays an important role in the pathogenesis of many cardiovascular disorders. Although the acute effect of angiotensin II on myocardial contractility, as well as the chronic effect of angiotensin II on cardiac growth, has been studied in several species, little is known about these effects in human myocardium. We therefore studied (1) the acute effects of angiotensin II on myocardial contractility in different types of human tissues: Angiotensin II had a positive inotropic effect only in atrial human myocardium but not in right or left ventricular myocardium of human hearts with different diseases. (2) In atrial myocardium, angiotensin II increases mRNA expression of c-fos which can be blocked by losartan, an AT₁-receptor antagonist. In human hearts, Ang II exerts positive inotropic effects only in atrial but not in ventricular myocardium. The trophic effect of Ang II can be demonstrated in atrial human myocardium. Studies are necessary to clearly demonstrate trophic effects of Ang II in isolated human left ventricular myocardium in the absence of positive inotropic effects. #### INTRODUCTION The renin-angiotensin system (RAS) is important in the pathogenesis of many cardiovascular disorders [1,2]. There is now clear evidence that angiotensin receptors exist in mammalian cardiac tissue [3,4], including that of humans [5–7], and that there is a localized cardiac RAS [8]. Stimulation of angiotensin receptors from increased levels of angiotensin (Ang) II may result in an acute inotropic effect and may exert the induction of cardiac hypertrophy. In some species, Ang II has been shown to exert a positive inotropic effect [9–12], which could not be found in others [4,13,14]. Even negative inotropic effects were observed in cultured neonatal rat myocytes [15], and different results were obtained in dog myocardium [16]. Because the inotropic effect of Ang II may also depend on the experimental conditions, we studied the influence of Ang II on right atrial human myocardium at physiological conditions, i.e., at an experimental temperature of 37°C and a stimulation rate of 60 beats per min [17]. Ang II has been shown to stimulate the expression of proto-oncogenes in neonatal rat cardiomyocytes [18-21] but not in isolated adult rat heart [22]. Because c-fos was the most sensitive proto-oncogene for Ang II stimulation in these studies, we analyzed mRNA of c-fos in right atrial human myocardium, which was exposed to Ang II for 45 min, in addition to conducting the contractility studies. The present study provides support that Ang II increases contractility and stimulates expression of the proto-oncogene c-fos in human atrial myocardium. #### **METHODS** #### **Patients** Myocardial tissues used in the present study for contractility measurements and northern blot analysis of c-fos mRNA were obtained from patients undergoing routine aortocoronary bypass surgery because of two- or three-vessel disease. These patients had sinus rhythm and normal ejection fraction and did not show any symptomes of congestive heart failure. Most of the patients were treated with β blockers (metroprolol, atenolol, bisoprolol), aspirin (100 mg per day), nitrates, and calcium antagonists (nifedipine, nisoldipine, diltiazem). One third of the patients received an angiotensin-converting enzyme (ACE) inhibitor (captopril, enalapril, lisinopril), but no patients were on diuretic medication. All patients had given written informed consent. # Mechanical experiments Immediately after excision of a small piece of the right atrium, the tissue was submerged into KREBS-RINGER solution containing 30 mM BDM. Transportation plus preparation time prior to the start of the experiment was about 30 minutes. The solution had the following composition: Na⁺ 152 mmol/l, K⁺ 3.6 mmol/l, Cl⁻ 135 mmol/l, HCO_3^- 25 mmol/l, Mg^{2+} 0.6 mmol/l, $H_2PO_4^-$ 1.3 mmol/l, SO_4^{2-} 0.6 mmol/l, Ca²⁺ 2.5 mmol/l, Glucose 11.2 mmol/l, and Insulin 10 IU/l. This solution was constantly bubbled with a gas mixture of 5% CO₂ and 95% O₂. Solutions that were used for transportation and dissection purposes additionally contained 30 mmol/l BDM to protect the myocardium against ischemic and cutting injury [23,24]. Preparations were performed in a special dissection chamber and with the help of a stereo microscope (VMT Olympus). Both ends of atrial trabeculae were attached to fine steel hooks. Mean muscle length was 3.4 ± 0.2 mm, and mean crosssectional area was measured to be $0.48 \pm 0.05 \,\mathrm{mm}^2$. The muscle preparations were placed in a muscle bath and prestetched by a passive load of maximally 2.5 mN. Stimulation was started at 60 beats per minute via two parallel platinum electrodes that were located on both sides of the muscle and connected to a stimulation unit (Hugo Sachs Elektronik Type 215/1). Stimulation duration was 5 milliseconds, and voltage was set to 25% above therehold. Passive and active force were measured by a force transducer, F 30 type 372 (Hugo Sachs Elektronik), and recorded on a linearcorder, Mark VII Graphotec. After developed force had reached a steady state, the preparations were carefully stretched to l_{mx}, the optimum length at which developed force is maximum, by 0.10 and 0.05 mm stretches. By using a special electronic feedback system, bath temperature was controlled and regulated to be 37°C. BDM and Ang I and II were obtained from Sigma Chemical Co., whereas losartan was kindly provided by Merck Sharp & Dohme Research Laboratories. All values are given as mean ±SEM in text and figures. ### RNA preparation and analysis Total RNA was isolated from right atrial myocardium by the method of Chomczynski and Sacchi [25]. Aliquots of twenty micrograms of total RNA were size-fractionated by electrophoresis on 1.2% agarose/3% formaldehyde gels and transferred to nitrocellulose filters using a Posi Blot pressure blotter (Stratagene). After UV-crosslinking, the filters were prehybridized in a solution containing 25 mM KPO₄, pH 7.4; 5× SSC; 5X Denhardt's solution (1% Ficoll 400, 1% polyvinylpyrrolidon, 1% BSA); and 50% formamide at 42°C for at least 2 hours. The filters were then hybridized with p32-labeled DNA probes in the same solution at 42°C for at least 12 hours. The blots were washed at a final stringency of 0.2X standard saline citrate (SSC), 0.1% sodium dodecyl sulfate (SDS) at 65°C. The level of c-fos expression was quantified on a Phospho Imager, referring to the GAPDH hybridization signal as a loading control. In addition, filters were exposed to Kodak X-Omat-XAR-5 films for 2 hours to 1 week at -80°C. DNA probes used in this study were as follows: - 1. As a probe for c-fos, we used Hind II/Kpn I fragment of pBFH 480 [26]. - 2. Gyceraldehyde-3-phosphate dehydrogenase (GAPDH), derived as a BamH I/ EcoR I fragment from pTRI-GAPDH (Ambion), was included as a control for RNA quantity and integrity. # RESULTS #### Mechanical experiments As shown in figure 1A, both Ang I and II exert positive inotropic effects in preparations of human right atrial tissues. This effect is concentration-dependent and is maximum at 10^{-7} M Ang II and 10^{-6} M Ang I. The effect can be blocked by saralasin, but not by a combination of propranolol (10⁻⁶ M) and prazosin (10⁻⁵ M) (see figure 1B). These data indicate that (1) the positive inotropic effect of Ang I and II is Figure 1. A, Dose-response curves for angiotensin I and II in nonfailing human right atrial myocardium (n = 8 experiments for each curve). There is a clear concentration-dependent effect on contractile force, which is maximum at 10⁻⁷M angiotensin II and at 10⁻⁶M angiotensin I. mediated by specific angiotensin receptor and (2) this effect is independent of noradrenaline release. Furthermore, we were able to show that the positive inotropic effect of Ang I can be blocked by the ACE inhibitor enalaprilate (no figure) [17,27]. #### C-fos gene expression A typical example of a northern blot analysis of c-fos and GAPDH, as a control, is shown in figure 2. In this example, the incubation with angiotensin obviously increases c-fos mRNA. Figure 3 shows a similar experiment: in addition to Ang II, however, experiments were carried out after preincubation with 10⁻⁶M losartan, a specific subtype 1 angiotensin receptor blocker. From these experiments in figure 3, it is evident that the c-fos mRNA values are lowest after preincubation with losartan (with or without later Ang II application), are highest after Ang II incubation alone, Figure 1. B, Dose-response curves for angiotensin II in nonfailing human right atrial myocardium after treatment with saralasin (10⁻⁵M) and a combination of propranolol (10⁻⁶M) and prazosin (10⁻⁵M) (n = 8 experiments for each curve). Saralasin blocks the positive inotropic effect of angiotensin II, but prazosin and propranolol do not. and may vary in the control situation (angiotensin-independent c-fos expression). Losartan pretreatment shows the lowest c-fos mRNA values, whereas Ang II treatment shows the highest (figure 4). #### DISCUSSION #### Contractility The effect of Ang II on the contractile force of myocardium has been demonstrated to vary greatly between species and to depend critically on experimental temperature and stimulation rate. For example, positive inotropic effects of Ang II have been described for the myocardium of cat [9,10], rabbit [3], chicken [28] and especially hamster [12,17],
while noninotropic effects were observed in myocardium of guinea pig [4] and dog [16], and even negative inotropic effects could be detected in isolated rat myocytes [15]. Therefore, we studied the influence of Ang II in Figure 2. A typical example of a northern blot analysis of c-fos and GAPDH. Muscle strips were either incubated in BDM solution as a control (left) or in angiotensin II-containing solution (right). human atrial myocardium by simulating physiological experimental conditions (37°C, 60 beats per min) [21–23]. Two important observations were made: 1 atrial human myocardium responds to Ang I and II by an increase in peak systolic force development; 2 this effect has been shown to be angiotensin receptor-mediated and independent of endogenous catecholamines. Furthermore, we have shown previously that the positive inotropic effect of Ang I can be completely blocked by preincubation with enalaprilate, an ACE inhibitor [17,27]. This indicates the presence of the converting enzyme within the human myocardium. #### C-fos gene expression We have demonstrated that Ang II-induced increase in c-fos mRNA can be inhibited by losartan. The problem in these types of experiments is the observation that c-fos may be expressed, to different degrees, without stimulation by exogenous Ang II. This nonangiotensin related effect may be explained by several mechanisms: 1. It is unlikely that it is stimulated already in vivo by Ang II because none of the patients were in heart failure. Figure 3. A typical experiment: from the right atrial appendix of one patient, specimens were prepared and subjected to four different conditions. Two specimens were incubated in BDM solution as a control (left), two specimens were incubated in angiotensin II (middle left), two specimens were incubated in angiotensin II after pretreatment with losartan (middle right), and one specimen was incubated in losartan alone (right). Northern blots of c-fos and GAPDH (as a control) are shown. - 2. It might be possible that the preoperative application of diuretics might have stimulated the RAS, which might have induced the expression of c-fos. However, none of the patients from which the tissues were obtained had received a diuretic compound. - 3. C-fos expression may be induced unspecifically to different degrees by anesthesia or cardioplegia [29]. - 4. The likely explanation is that parts of the atrial tissue were stretched during surgical and excision procedure. Whether or not such a stretch-induced c-fos expression may be Ang II-mediated is speculative but is supported by our data (figure 4) and the literature [21,30]. - 5. Protooncogene expression during ischemic conditions has clearly been described [31,32]. Ischemia may have occured during the operation procedure as well as during transportation. Therefore, the variation in c-fos expression under control conditions may also be attributed to ischemic conditions. However, this variation in the control experiments does not invalidate the data on angiotensin-induced expression of c-fos and its competetive inhibition by losartan. #### Signal transduction pathways In atrial human myocardium, Ang II stimulates both myocardial contractile force and c-fos expression. The most likely explanation for both observations is an # ANGIOTENSINII and LOSARTAN C-fos Expression Figure 4. Statistical summary of the experiments of figure 3. N = 10 specimen for each condition from n = 5 atrial appendices. Differences between control (BDM solution) and angiotensin II incubation were not significant; however, preincubation in losartan significantly (p < 0.01) reduced c-fos expression. activation of the PLC by angiotensin receptor-coupled G protein which results in increased levels of IP3 and PKC (see figure 5). # Ventricular human myocardium Regarding myocardial contractility measurements, studies have also been performed in human ventricular myocardium. But no data are presently available regarding c-fos expression in human ventricular myocardium. Despite the presence of angiotensin receptors in human myocardium [5-7], we could not find any positive inotropic effect of Ang II in human ventricular myocardium [17,27]. The number of receptors in failing left ventricular myocardium has been shown to be about one-fifth of that in right atrial human myocardium [5,6]. If these receptors would be active regarding contractility, our force measurements would be sensitive enough to detect an increase in force development induced by this small number of receptors. However, it may well be that the angiotensin receptors are exclusively localized on fibrocytes in the left ventricle. In this case, neither force development nor growth may be directly influenced by Ang II (Hypothesis 1). However, another hypothesis is possible: Provided the reduced number of angiotensin receptors is localized on myocytes, the signal transduction cascade for c-fos expression and induction of cardiac hypertrophy via IP₃ and PKC may be present. Such a signaling pathway may not be coupled to contractility in left ventricular human myocardium, for example, by the absence of IP3 receptors in the sarcoplas- Figure 5. These receptor agonists bind to 7-membrane-spanning receptors, which are coupled to GTP-binding proteins (G) to activate PLC, phospholipase C. An alternative pathway may be activated via thyrosine kinase-linked receptors by growth factors. PLC generates IP₃ inositol (1,4,5)triphosphate, and DAG, and diacylglycerol. Whereas IP3 may release calcium via IP3-receptors, DAG activates PKC, and protein kinase C, which may have direct effects on the nucleus: Ang II = angiotensin II; ET = endothelin; NA = noradrenalin (according to Ref. 32). matic reticulum (Hypothesis 2). Further studies are necessary to find out how angiotensin receptors of human left ventricular myocardium are coupled to contractility and cell growth. # REFERENCES - 1. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 2. Peach MJ. 1977. Renin-angiotensin system: Biochemistry and mechanism of action. Physiol Rev 57:313-370. - 3. Baker KM, Campanile CP, Trachte GJ, Peach MJ. 1984. Identification and characterization of the rabbit angiotensin II myocardial receptor. Circ Res 54:286-293. - 4. Baker KM, Singer HA. 1988. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: Coupling to inositol phosphate production. Circ Res 62:896-904. - 5. Urata H, Healy B, Steward RW, Bumpus FM, Hussain A. 1989. Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol 69:54-66. - 6. Regitz-Zagrosek V, Neuß M, Warnecke C, Holzmeister J, Hildebrand AG, Fleck E. 1994. Angiotensin receptors-organ- and subtype-specific regulation in cardiovascular disease and with modulation of the renin-angiotensin system. German J of Cardiology 84(Suppl 4):61-69. - 7. Regitz-Zagrosek V, Friedel N, Heymann A, et al. 1995. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 91:1461-1471. - 8. Dzau V. 1988. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77(Suppl I):I4-I17. - 9. Koch-Weser J. 1964. Myocardial action of angiotensin. Circ Res 14:337-343. - 10. Koch-Weser J. 1965. Nature of the inotropic action of angiotensin on ventricular myocardium Circ Res 16:230-237. - 11. Dempsey PJ, McCallum ZT, Kent KM, Cooper T. 1971. Direct myocardial effects of angiotensin II. Am J Physiol 220:477-481. - 12. Moravec CS, Schluchter MD, Paranaudi L, Czerska B, Steward RW, Rosenkranz E, Bond M. 1990. Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation 82:1973-1984. - 13. Peach MJ. 1981. Molecular actions of angiotensin. Biochem Pharmacol 30:2745-2751. - 14. Kass RS, Blair ML. 1981. Effects of angiotensin II on membrane current in cardiac Purkinje fibers. J Mol Cell Cardiol 13:797-809. - 15. Allen IS, Cohen NM, Dhallan RS, Gaa ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myoytes: Insight into the underlying biochemical mechanisms. Circ Res 62:524-534. - 16. Kobaiashi M, Furukawa Y, Chiba S. 1978. Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol 501:17-25. - 17. Holubarsch Ch, Hasenfuss G, Schmidt-Schweda S, Knorr A, Pieske B, Ruf Th, Fasol R, Just H. 1993. Angiotensin I and II exert inotropic effects in atrial but not in ventricular myocardium. Circulation 88:1228-1237. - 18. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT-1-receptor subtype. Circ Res 73:413-423. - 19. Sadoshima J, Izumo S. 1993. Signal transduction pathways of angiotensin II-induced C-fos gene expression in cardiac myocytes in vitro. Circ Res 73:424-438. - 20. Sadoshima S, Qiu Z, Morgan JP, Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G-protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes; the critical role of Ca²⁺-dependent signaling. Circ Res 76.1-15 - 21. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y. 1995. Angiotensin II partly mediates mechanical stressinduced cardiac hypertrophy. Circ Res 77:258-265. - 22. Schunkert H, Sadoshima J, Cornelius T, Kagaya Y, Weinberg EO, Izumo S, Riegger G, Lorell BH. 1995. Angiotensin II-induced growth responses in isolated adult rat hearts. Circ Res 76:489-497. - 23. Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR. 1989. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 65:1441- - 24. Holubarsch Ch, Ruf
Th, Goldstein DJ, Ashton RC, Nickl W, Pieske B, Pioch K, Lüdemann J, Wiesner S, Hasenfuss G, Posival H, Just H, Burkhoff D. 1996. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels Circulation 94:683-689. - 25. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162:157-159. - 26. Herrera R, Agarwel S, Walton S, Satterberg B, Distel RJ, Goodman R, Spiegelman BM, Roberts TM. 1990. A direct role for c-fos in AP-1-dependent gene transcription. Cell Growth Differ 1:483- - 27. Holubarsch C, Schmidt-Schweda S, Knorr A, Duis J, Pieske B, Ruf T, Fasol R, Hasenfuss G, Just H. 1994. Functional significance of angiotensin receptors in human myocardium. Significant differences between atrial and ventricular myocardium. Europ Heart J 15(Suppl D):88-91. - 28. Baker KM, Aceto JA. 1989, Characterization of avian angiotensin II cardiac receptors: Coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 21:375-382. - 29. Snoeckx LHEH, Contard F, Samuel JL, Marotte F, Rappaport L. 1991. Expression and cellular distribution of heat-shock and nuclear oncogene proteins in rat hearts Am J Physiol 26:1443-1451. - 30. Sadoshima J, Jahn L, Takahashi T, Kulik T, Izumo S. 1992. Molecular characterization of the stretch-induced adaption of cultured cardiac cells. An in vitro model of stretch-induced cardiac hypertrophy. J Biol Chem 267:10531-10560. - 31. Brand T, Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdouw PD, Schaper W. 1992. Protooncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 71:1351-1360. - 32. Webster KA, Discher DJ, Bishoric NH. 1993. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. Biol Chem 268:16852-16858. - 33. Berridge MJ. 1993. Inositol triphosphate and calcium signalling. Nature 361:315-325. # STIMULATION OF THE NA⁺/CA²⁺ EXCHANGER BY ANGIOTENSIN II # CHERRY BALLARD-CROFT and STEPHEN SCHAFFER University of South Alabama, School of Medicine, Department of Pharmacology, Mobile, AL, USA Summary. Angiotensin (Ang) II exerts an inotropic, a lusiotropic, and a hypertrophic response in the heart. All of these actions have been attributed, in part, to Ang II-mediated changes in the calcium movement within the myocyte. While the effect of Ang II on some calcium transporters has been widely studied, information regarding the effect of Ang II on Na⁺/Ca²⁺ exchanger activity is lacking. Therefore, the aim of the present study was to examine the potential regulation of the Na⁺/Ca²⁺ exchanger by Ang II. Isolated sarcolemmal membranes were incubated with varying concentrations of Ang II at temperatures ranging from 10°C to 45°C and then assayed for Na⁺/Ca²⁺ exchanger activity. At 37°C, Ang II exhibited a dose-dependent stimulation of the Na⁺/Ca²⁺ exchanger, reaching a maximal activity of 4.51 ± 0.10 nmol Ca²⁺ mg/sec, which was 125% greater than activity in the unstimulated membranes. The underlying mechanism by which this stimulation occurred was through a decrease in the activation energy for the Na⁺/Ca²⁺ exchanger reaction. Interestingly, both losartan, an AT₁ receptor antagonist, and chelerythrine, a protein kinase C inhibitor, significantly inhibited stimulation of the exchanger by Ang II. The potential contribution of the Na⁺/Ca²⁺ exchanger stimulation to the actions of Ang II in the normal and failing heart are discussed. #### INTRODUCTION The hypertrophic, inotropic, and lusiotropic actions of Ang II in cardiac tissue are well recognized and are thought to occur via AT₁ receptors coupled to phosphoinositide hydrolysis. The mechanism by which phosphoinositide hydrolysis mediates this cardiac function, however, is unclear. Several investigators have proposed that alterations in calcium movement by the cardiomyocyte may play a role in Ang II action, an idea supported by the observation that disruption of calcium movement by use of intracellular and extracellular calcium chelators inhibits Ang IImediated mitogenesis [1-3]. Understandably, the contractile effects of Ang II have also been linked to calcium movement [4]. Yet, the effect of Ang II on [Ca²⁺]_i is complex and species-dependent. While Baker et al. [5] and Miyata and Haneda [6] have demonstrated an elevation in [Ca²⁺], upon Ang II application, Kinugawa et al. [2] and Kem et al. [7] have reported Ang II-mediated decreases in calcium transients. Still other groups have seen no effect of Ang II on intracellular calcium levels [8]. The confusion surrounding the effects of Ang II on calcium handling stem in part from the complexity of its signal transduction pathway. Most studies examining Ang II regulation of calcium transporters have focused on the L-type calcium channel. The earliest studies consistently reported an increase in the slow inward calcium current following exposure of either rat heart or chick heart myocytes to Ang II [9,10]. However, Ikenouchi et al. [8] recently found no effect of Ang II on inward calcium current of beating rabbit myocytes. Ang II has also been reported to promote calcium release from the sarcoplasmic reticulum [11], but this effect cannot account for many of the actions of Ang II. Another limitation in evaluating the calcium-modulating actions of Ang II is the paucity of information regarding potential regulation of individual calcium transporters by Ang II. Particularly noteworthy is the lack of information regarding the acute effects of Ang II on Na⁺/Ca²⁺ exchanger and sarcoplasmic reticular Ca²⁺ pump activity. Both transporters play intimate roles in cardiac function, which is significantly altered by Ang II [4]. Thus, the aim of this study has been to examine regulation of Na⁺/Ca²⁺ exchanger activity by Ang II. #### **METHODS** ### Sarcolemmal vesicle preparation Enriched sarcolemmal vesicles were prepared from Wistar rat hearts using the method of Pitts [12]. To verify the purity of each preparation, assays for standard marker enzymes were routinely performed. All preparations exhibited relatively high ouabain-sensitive Na⁺/K⁺ ATPase and adenylate cyclase activity but low levels of cytochrome c oxidase, oxalate-facilitated calcium transport, and pnitrophenylphosphatase activity. The purity factor relative to the homogenate for Na⁺/K⁺ ATPase and cytochrome c oxidase was 12.2 and 0.6, respectively. Thus, the amount of sarcoplasmic reticular and mitochondrial contamination in the sarcolemnal preparation was minimal. Protein concentration was determined by the Bradford method [13]. # Na⁺/Ca²⁺ exchanger assay The isolated sarcolemmal vesicles were assayed for Na⁺/Ca²⁺ exchanger activity using a modification of the method of Reeves and Sutko [14]. Briefly, the vesicles were loaded with a sodium buffer containing 160 mM NaCl, 20 mM MOPS, Figure 1. Dose-response relationship for stimulation of the Na⁺/Ca²⁺ exchanger by angiotensin II. Isolated rat heart sarcolemmal vesicles were loaded with a sodium buffer containing 100 µM Gpp(NH)p, and Na⁺/Ca²⁺ exchanger activity was assayed in the absence or presence of 0.5 to 5 nM angiotensin II. The values shown represent the means ± S.E.M of three to five preparations. All values were statistically significant relative to controls lacking angiotensin II (P < 0.05). 100 µM Gpp(NH)p, and 1 mM MgCl₂. The sarcolemmal vesicles were preincubated to reach the appropriate assay temperature (10-45°C) before Ang II (0.5 to 5 nM) or an equal volume of sodium buffer was added. After a 10 minute incubation, the Na⁺/Ca²⁺ exchanger reaction was initiated by the addition of the membrane (5-7 µg) to 500 µl of a potassium buffer containing 160 mM KCl, 20 mM MOPS, 40 μM ⁴⁵CaCl₂, and 5 μM valinomycin. After 2 seconds, the reaction was terminated by the addition of 3ml of ice-cold MOPS buffer containing 160mM KCl and 1mM LaCl₃ followed by rapid filtration. The filters were washed five times with the LaCl₃ containing buffer before the filters were dried and counted for radioactivity. All data were corrected for nonspecific binding, which is defined as 45Ca2+ associated with the membrane in the absence of a sodium gradient. For the Arrhenius plot, the data were replotted according to the Arrhenius equation, and the activation energy for each condition was determined from the slope of the line. #### RESULTS One of the first questions addressed in this study was the effect of Ang II on Na+/ Ca2+ exchanger activity. As shown in figure 1, Ang II dose-dependently stimulated Na⁺/Ca²⁺ exchange with maximal stimulation occurring at an Ang II concentration of 5 nM. This value is comparable to the concentration of Ang II utilized for maximal effect in most cardiac studies [2,8]. Using the method of Hill, the EC₅₀ for the Ang II effect was found to be 1.0 nM. Since the activity of the Na⁺/Ca²⁺ exchanger is quite sensitive to the phospholipid environment [15], we next examined whether Ang II could alter the transition temperature for Na⁺/Ca²⁺ exchange, which is indicative of a change in membrane Figure 2. Arrhenius plot of the Na⁺/Ca²⁺ exchange reaction. Na⁺/Ca²⁺ exchanger activity was assayed in rat heart sarcolemmal vesicles over a temperature range of 10°C to 45°C in the absence (O) or presence () of 2 nM angiotensin II. Na⁺/Ca²⁺ exchanger activity data was expressed as In of the initial velocity at the indicated inverse temperatures (°K⁻¹). Values shown represent the means ± S.E.M. of four preparations. environment. In order to obtain information on the transition temperature, Na⁺/ Ca²⁺ exchanger activity was evaluated from 10 to 45°C, and the data were plotted according to the Arrhenius equation. As expected from the temperature dependence of other membrane functions, a characteristic break occurred at 15°C, which is referred to as the transition temperature (figure 2). Interestingly, treatment of sarcolemmal vesicles with 2nM Ang II did not alter
the Na⁺/Ca²⁺ exchange transition temperature. Based on the Arrhenius plot, the activation energy of the Na⁺/Ca²⁺ exchange reaction in the absence and presence of 2nM Ang II was 9.09 kcal/mol and 5.18 kcal/mol, respectively. To further investigate the mechanism by which Ang II might enhance exchanger activity, the specific receptor subtype mediating the Ang II effect was determined using the AT, receptor antagonist losartan. Shown in figure 3, 10 µM losartan significantly attenuated the stimulation of Na⁺/Ca²⁺ exchange by 5nM Ang II, implicating the AT₁ receptor in Ang II action. Since the AT₁ receptor is coupled to phosphoinositide hydrolysis with the subsequent activation of protein kinase C [16], the involvement of protein kinase C in the stimulatory effect of Ang II on Na⁺/ Ca²⁺ exchange was determined. For this study, the protein kinase C inhibitor chelerythrine was used. Ang II-mediated stimulation of the Na⁺/Ca²⁺ exchanger was significantly depressed from 125% to only 15% by 25 µM chelerythrine. Since the concentration of chelerythrine utilized in this study is reported to selectively inhibit protein kinase C [17], this result suggests that Ang II may activate the exchanger through a protein kinase C-dependent mechanism. This finding is supported by Iwamoto et al. [18], who found that protein kinase C phosphorylation enhances Na⁺/Ca²⁺ exchanger activity. Figure 3. Effect of regulators of angiotensin II action on Na⁺/Ca²⁺ exchanger activity. Sarcolemmal vesicles were isolated from rat hearts and loaded with sodium buffer containing 100 µM Gpp(NH)p. Na⁺/Ca²⁺ exchange activity was assayed in the absence of angiotensin II (solid bar), in the presence of 5nM angiotensin II alone (striped bar), or in the presence of 5nM angiotensin II plus either 10μM losartan, an AT1 receptor antagonist (open bar), or 25μM chelerythrine, a protein kinase C antagonist (stippled bar). Values shown represent the means ± S.E.M. of four preparations. *significant difference from angiotensin II group. #### DISCUSSION The most significant finding of this study is the acute stimulation of Na⁺/Ca²⁺ exchanger activity by Ang II. Since the Na⁺/Ca²⁺ exchanger is intimately involved in the regulation of cardiac function, this finding has particular relevance to the cardiac effects of Ang II, which include inotropic, lusiotropic, and hypertropic effects. Although widely studied, the mechanism underlying the inotropic action of Ang II is still controversial, partly because of the complexity and species-dependent variations of Ang II action. Two hypotheses have been developed to explain the positive inotropic effect of Ang II. Baker et al. [5] proposed that elevations in intracellular calcium might mediate the positive inotropic action of Ang II. This hypothesis was initially based on the observation of several groups that Ang II augmented L-type calcium channel current [9,10]. However, in a more recent study, Ikenouchi et al. [8] reported no effect of Ang II on this channel. These conflicting data suggests that perhaps other calcium transporters may be involved in Ang II action. Since the results of the present study clearly demonstrate a stimulatory action of Ang II on Na⁺/Ca²⁺ exchange, it is possible that reverse mode Na⁺/Ca²⁺ exchange may contribute to the positive inotropic effect of Ang II by increasing calcium influx during the initial phase of the action potential. Although controversial, this idea is feasible because calcium entry via Na⁺/Ca²⁺ exchange is thermodynamically possible and has been shown by several groups to presumably trigger calcium release from the sarcoplasmic reticulum [19,20]. The second hypothesis is based on the observation of Ikenouchi et al. [8], who demonstrated that the positive inotropic effect of Ang II can occur in the absence of increased [Ca²⁺]_i. Thus, it has been proposed that Ang II may increase contractility by enhancing calcium sensitivity of the myofilaments through intracellular alkalinization [8,21]. In agreement with this hypothesis, Ang II-mediated stimulation of Na⁺/H⁺ exchange and cytosolic alkalinization has been shown to coincide with enhanced contractile function [8]. In addition, Matsui et al. [21] found that inhibition of Na⁺/H⁺ exchange by amiloride attenuated the positive inotropic effect of Ang II. An interesting caveat is that activation of the Na⁺/H⁺ exchanger should also cause a net increase in [Na⁺], thereby promoting calcium entry through reverse mode Na⁺/Ca²⁺ exchange. Thus, the positive inotropic action of Ang II may somehow involve reverse Na⁺/Ca²⁺ exchange. Unlike the inotropic effects of Ang II, the lusiotropic action of Ang II is not caused by Na⁺/Ca²⁺ exchange stimulation. Nonetheless, since the primary function of the exchanger is calcium efflux during relaxation, Na⁺/Ca²⁺ exchanger activation may limit the extent of the negative lusiotropic action of Ang II. The growth promoting action of Ang II is well recognized, although the particular biochemical process responsible for this action of Ang II is unclear. A few investigators have proposed that the hypertropic action of Ang II may involve a calcium-dependent MAPK phosphorylation cascade [3,22]. While the calcium requirement may conceivably be met by activation of the Na⁺/Ca²⁺ exchanger, this idea has not been investigated. Also, Allo et al. [23] have demonstrated that contraction is a potent mediator of cardiomyocyte cell growth, which provides a more direct link to the Na⁺/Ca²⁺ exchanger. Since hypertrophy is commonly observed in numerous pathological conditions of the heart, the widespread usage of ACE inhibitors in the treatment of myocardial disease states such as congestive heart failure is not surprising [24]. However, the link between Ang II action and congestive heart failure is unclear. Several investigators have proposed that altered calcium handling by the myocyte contributes to the etiology of this disease. Recently, it has been reported that a depression in sarcoplasmic reticular CaATPase mRNA levels and an elevation in Na⁺/Ca²⁺ exchanger mRNA levels are associated with the development of heart failure [25,26]. This compensatory increase in Na⁺/Ca²⁺ exchanger mRNA levels, coupled with Ang II-mediated activation of the exchanger (figure 1), has major implications for the failing heart. Normally, a competition develops between the Na⁺/Ca²⁺ exchanger and the sarcoplasmic reticular calcium pump for the removal of calcium from the cytoplasm during diastole. Since the Na⁺/Ca²⁺ exchanger is the major transporter extruding calcium from the cell, dominance of the exchanger relative to the sarcoplasmic reticular calcium pump can lead to a net removal of calcium from the myocyte. This depletion of the intracellular calcium pool would be expected to adversely affect the contractile function of the heart and to contribute to the development of heart failure. Ang II appears to play a major role in the development of the state of heart failure by enhancing the activity of the Na⁺/Ca²⁺ exchanger relative to the sarcoplasmic reticular calcium pump. Therefore, the most important consequence of the present finding is that Ang II-mediated stimulation of Na⁺/Ca²⁺ exchanger activity should exacerbate the congestive heart failure state. #### REFERENCES - 1. Booz GW, Dostal DE, Singer HA, Baker KM. 1994. Involvement of protein kinase C and Ca²⁺ in angiotensin II-induced mitogenesis of cardiac fibroblasts. Am J Physiol 267:C1308-C1318. - 2. Kinugawa K, Takahashi T, Kohmoto O, Yao A, Ikenouchi H, Serizawa T. 1995. Ca²⁺-growth coupling in angiotensin II-induced hypertrophy in cultured rat cardiac cells. Cardiovasc Res 30:419- - 3. Sadoshima J, Qiu Z, Morgan JP, Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. Circ Res 76:1-15. - 4. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 5. Baker KM, Singer HA, Aceto JF. 1989. Angiotensin II receptor-mediated stimulation of cystolic-free calcium and inositol phosphates is chick myocytes. J Pharmacol & Exper Therapeut 251:227-241. - 6. Miyata S, Haneda T. 1994. Hypertrophic growth of cultured neonatal rat heart cells mediated by type 1 angiotensin II receptor. Am J Physiol 266:H2443-H2451. - 7. Kem DC, Johnson EIM, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB. 1991. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261:C77-C85. - 8. Ikenouchi H, Barry WH, Bridge JHB, Weinberg EO, Apstein CS, Lorell BH. 1994. Effects of angiotensin II on intracellular Ca²⁺ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1. J Physiol 480:203-215. - 9. Allen IS, Cohen NM, Dhallan RS, Gaa ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increases spontaneous calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms. Circ Res 62:524-534. - 10. Freer RJ, Pappano AJ, Peach MJ, Bing KT, McLean MJ, Vogel S, Sperelakis N. 1976. Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39:178-183. - 11. Sempe S, Stuyvers B, Tariosse L, Gouverneur G, Besse P, Bonoron-Adele S. 1994. Effect of angiotensin II on calcium release phenomena in normal and hypertrophied single cardiac myocytes. J Mol Cell Cardiol 26:1649-1658. - 12. Pitts BJ. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254:6232-6235. - 13. Bradford MM. 1976. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. - 14. Reeves JP, Sutko JL. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci USA 76:590-594. - 15. Vemuri R, Philipson
KD. 1988. Phospholipid composition modulates the Na⁺-Ca²⁺ exchange activity of cardiac sarcolemma in reconstituted vesicles. Biochim Biophys Acta 937:258-268. - 16. Feolde E, Vigne P, Frelin C. 1993. Angiotensin II receptor subtypes and biological responses in rat heart. J Mol Cell Cardiol 25:1359-1367. - 17. Herbert SM, Augereau JM, Gleye J, Maffrand JP. 1990. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Comm 172:993–999. - 18. Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M. 1996. Phosphorylation-dependent regulation of cardiac Na⁺/Ca²⁺ exchanger via protein kinase C. J Biol Chem 271:13609-13615. - 19. Levesque PC, Leblanc N, Hume JR. 1994. Release of calcium from guinea pig cardiac sarcoplasmic reticulum induced by sodium-calcium exchange. Cardiovasc Res 23:370-378. - 20. Hancox JC, Levi AJ. 1995. Calcium transients which accompany the activation of sodium current in rat ventricular myocytes at 37°C: A trigger role for reverse Na-Ca exchange activated by membrane potential? Plugers Arch-Eur J Physiol 430:887-893. - 21. Matsui H, Barry WH, Livsey C, Spitzer KW. 1995. Angiotensin II stimulates sodium-hydrogen exchange in adult rabbit rentricular myocytes. Cardiovasc Res 29:215-221. - 22. Schorb W, Conrad KM, Singer HA, Dostal DE, Baker KM. 1995. Angiotensin II is a potent - stimulator of MAP-kinase activity in neonatal rat cardiac fibroblasts. J Mol Cell Cardiol 27:1151-1160. - 23. Allo SN, Carl LS, Morgan HE. 1992. Acceleration of growth of cultured cardiomyocytes and translocation of protein kinase C. Am J Physiol 263:C319-C325. - 24. CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure: Results of the cooperative north Scandinavian enalapril survival study (CONSENSUS). N Engl J Med 316:1429-1435. - 25. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555-564. - 26. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuß G, Just H, Holtz J, Drexler H. 1994. Gene expression of the cardiac Na⁺-Ca²⁺ exchanger in end-stage human heart failure. Circ Res 75:443-453. # DEVELOPMENTAL REGULATION OF THE CARDIAC RENIN-ANGIOTENSIN SYSTEM: EXPRESSION AND ASSOCIATION WITH GROWTH AND APOPTOSIS DAVID E. DOSTAL, RACHEL A. HUNT, CHRIS E. KULE, and KENNETH M. BAKER Weis Center for Research, Geisinger Clinic, Danville, PA, USA Summary. Identification and elucidation of the roles of humoral factors involved in cardiogenesis and other aspects of cardiac growth will be important for the overall understanding of how the heart develops and functions. Angiotensin (Ang) II has been demonstrated to have important in vivo and in vitro growth-related effects in the neonate and adult myocardium. However, very little is known regarding the regulation of the cardiac reninangiotensin system (RAS) and the role of Ang II receptors at any developmental stage. Enhanced expression of RAS during fetal and neonatal development suggests that locally produced Ang II exerts autocrine and paracrine influences on cardiogenesis and cardiac growth in these stages of development. Utilization of transgenic models and specific nonpeptide Ang II receptor antagonists will be useful in determining the roles of AT₁ and AT₂ receptors, respectively, in the regulation of the cardiac RAS, myocardial growth, and apoptosis in the developing rat heart. These studies may provide a better understanding of the effects of Ang II receptors on cellular and molecular aspects of cardiac development and thus lead to improved therapeutic interventions for cardiovascular disease. Although the physiological properties of the myocardium have been the focus of intense research during the past two decades, biochemical and molecular correlates underlying cardiac development and performance remain poorly understood. The recent development of cellular, molecular, and pharmacological tools has made it possible to study the mechanisms involved in cardiac development and to better understand the basis for important clinical and experimental problems in cardiovascular physiology. It has become apparent that cardiac growth is regulated/mediated in part through the actions of various paracrine, autocrine, and/or endocrine factors [1–3]. In the adult rat, Ang II is a direct and potent in vivo stimulus for the production of cardiac hypertrophy [4]. Regulation of the RAS and the specific roles of AT₁ and AT₂ receptors in mediating cardiac growth in the fetus and neonate remain to be more clearly defined. We and others have reported growth-related effects associated with AT₁ and/or AT₂ receptors utilizing cultures of neonatal cardiac cells [5,6]. In neonatal rat cardiac cells, the AT, receptor has been shown to couple to myocyte hypertrophy [6] and fibroblast proliferation [5], whereas the AT2 receptor inhibits myocyte hypertrophy [6]. Since a portion of the growth effects are likely to result from locally produced Ang II, the scope of this review will be to provide a discussion of the expression of the cardiac RAS and the potential roles of the local RAS with an emphasis on growth regulation in the developing heart. #### CARDIAC MORPHOGENESIS AND GROWTH Embryogenesis, fetal development, and growth are controlled by the coordinated actions of several humoral regulators. In the last decade, morphological, biochemical, and physiological studies have improved our understanding of how structure and function of the heart changes in sequential stages of cardiac growth and development [7-10]. The heart is the first organ to form in vertebrates and arises through a complex series of morphogenic interactions involving cells from several embryonic origins [11,12]. Soon after gastrulation (embryonic days 20 and 8 in human and rat, respectively), cardiac development is initiated by a commitment of mesodermallyderived progenitor cells to the cardiac muscle cell lineage and is followed by the formation of a primordial heart tube. Organogenesis proceeds through a series of involutions of the heart tube resulting in distinct cardiac chambers having regionalspecific atrial, ventricular, and conduction system cells. Shown in figure 1 are major developmental events in the fetal heart which include formation of the cardiogenic plate (8-9 days) and primitive cardiac tube (9-10 days), initiation of beating and regionalization of the tubular heart (10-11 days), cardiac septation (11-16 days), and subsequent cardiac enlargement as a result of hyperplasia and cellular hypertrophy (17-21 days) [11,12]. Neonatal growth of the rodent heart involves three phases [11,12]. During fetal and early neonatal periods (birth to four days postpartum), the heart enlarges as a result of cardiogenesis, hyperplasia, and hypertrophy. After five days postpartum, a transition from hyperplastic to hypertrophic growth occurs [13], which results from karyokinesis without cytokinesis. Thus, in early stages of development, enlargement of the embryonic heart occurs primarily by an increase in myocyte numbers, which continues until shortly after birth, after which cardiac myocytes lose their proliferative capacity and acquire the terminally differentiated phenotype of adult cardiac muscle cells [10]. Acquisition of the divergent morphological, biochemical, electrochemical, and contractile properties of these specialized cardiac cells is primarily due to the activation of specific programs of gene expression [14]. Humoral stimulation is the major regulatory determinant of cardiac growth in early stages of cardiac development, whereas in later stages of development, both humoral and mechanical stimulation serve to modulate growth [1-3,15]. Work performed by left and right Figure 1. Temporal Relationship of Cardiac Development and Expression of Angiotensin II Receptors in the Rat. Following gastrulation (day 8), mesodermally-derived progenitor cells form a cardiogenic plate that is followed by the formation of a primordial heart tube at 9-10 days. Beating and regionalization of the tubular heart occurs (10-11 days), followed by cardiac septation (11-16 days) and subsequent cardiac enlargement as a result of hyperplasia and cellular hypertrophy (17-21 days). In late fetal and early neonatal periods, the heart enlarges as a result of cardiogenesis, hyperplasia, and hypertrophy. After 4 days, the neonate heart enlarges primarily as a result of hypertrophic growth. Apoptosis of cardiac myocytes and fibroblasts in the right ventricle during late fetal and early neonatal development parallels the expression of AT1 and AT2 receptors. At birth, the level of AT2 receptor expression in cardiac tissue diminishes, whereas the level of AT1 receptor increases. At 5-10 days after birth, expression of the AT₁ receptor also begins to decrease in the myocardium. In the adult myocardium, AT, and AT, receptors each account for 50% of the specific binding. ventricles as they pump in parallel during fetal development is approximately equal [16] and is associated with comparable ventricular weights [17]. Following closure of the foramen ovale and ductus arteriosis after birth, blood flow is in series through the right and left ventricles, resulting in a greater volume workload on each ventricle. In the same period, pulmonary resistance is lowered by expansion of the collapsed lungs, peripheral resistance increases with loss of the placental circulation, and the pressure load on the left ventricle becomes significantly greater compared with that on the right ventricle [16,18]. Morphometric studies have documented that differences between left and right postnatal ventricular growth is primarily the result of a higher total number of myocytes in the left ventricle [19]. The number of myocytes in the left ventricular free-wall becomes greater principally one to five days after birth, and by eleven days, the left ventricle contains approximately twice the number of
myocytes as the right ventricle. This proportion between the number of myocytes in the two ventricles persists later in life, so that an approximate twofold difference is also found in the adult heart [20]. In contrast, the myocyte volume varies little in the left and right ventricles in early [17] and late postnatal maturation and in aged and senescent myocardium [20]. Similar observations have been made in humans [21]. These observations suggest that the magnitude and the distribution of programmed myocyte cell death are crucial factors in modulating the number of muscle cells in the left and the right ventricles and the interventricular septum of the myocardium. In vitro studies have demonstrated that cardiac workload affects the rate of gene transcription [14] and selectively regulates the expression of specific genes, including those of the RAS [22-24]. #### IN VITRO LOCALIZATION AND REGULATION OF RENIN-ANGIOTENSIN SYSTEM COMPONENTS IN CARDIAC CELLS Our laboratory and others have demonstrated the presence of Ang II receptors in cultured cardiac myocytes and fibroblasts [5,6,25-29]. Ang II receptor subtypes have been identified and characterized utilizing biochemical, molecular biological, pharmacological, functional, and radioligand binding studies [30]. Plasma membrane angiotensin receptors are characterized as AT₁ or AT₂, based on the binding affinity for nonpeptide antagonists, such as losartan and PD123177 (or PD123319), respectively [31-34]. Screening of the rat genomic library by utilizing molecular approaches has demonstrated that two subtypes of AT, receptor (A and B) exist [35– 37]. These two AT₁ receptor isoforms exhibit no difference in binding to Ang II analogs, have a high degree of nucleotide sequence homology (91%) within the coding region, and lower sequence homology within the 5'- and 3'-untranslated regions (58% and 62%, respectively). High affinity AT₁ binding sites have been demonstrated on cultured neonatal rat cardiac myocytes [38] and fibroblasts [39]. The AT₁ receptor has biological actions in cardiac tissue and couples to G proteins, intracellular Ca2+ mobilization, and activation of serine, threonine, and tyrosine kinase-mediated signaling pathways [40,41]. In contrast, less is known about the biological effects and coupling mechanisms associated with activation of the AT2 receptor in cardiac tissue. Inhibition of DNA synthesis and proliferation in vascular smooth muscle and coupling of the third intracellular loop of the AT₂ receptor to Gi and protein-tyrosine phosphatase suggest that this receptor is a negative regulator/modulator of DNA synthesis and cell proliferation [42-44]. During development, components of the cardiac RAS undergo significant changes in levels of expression. However, determinants responsible for the regulation of RAS components in fetal and neonatal hearts are unknown. In vitro studies [23,27,28] and unpublished data from our laboratory have shown that passive mechanical stretch (simulates increased afterload) upregulates several components (renin, angiotensinogen, AT1 and AT2 receptors) of the cardiac RAS. It is likely that residual stress (i.e., forces remaining when external load is removed), which increase ventricular wall stress because of differential growth of the myocardium during morphogenesis [45], serves to regulate regional expression of cardiac RAS components. Humoral stimuli, including α - and β -adrenergic, endothelin, glucocorticoids, and Ang II also appear to be important regulators of the cardiac RAS [46-48]. Expression of cardiac RAS precursors in neonatal or adult rat heart are much lower than other RAS-producing tissues, such kidney and liver [49]. This suggests that circulating or locally-produced Ang II may exert negative feedback effects on this humoral system. This postulate is supported by the observation that exogenous Ang II results in significant downregulation of both renin and Ao mRNA levels in cultured neonatal rat cardiac fibroblasts [48]. Ang II has also been reported to cause time- and dose-dependent decreases in AT, receptor mRNA levels in cultured neonatal rat cardiac myocytes and fibroblasts [50]. However, in vivo effects of Ang II on regulation of RAS precursor components and Ang II receptors remain to be determined in fetal and neonatal rat hearts. #### THE RENIN-ANGIOTENSIN SYSTEM IN FETAL HEART DEVELOPMENT The presence of Ang II receptors in fetal [34,49,51], neonatal [5,6], and adult heart [52] suggests that Ang II has a functional role in this organ, Support for a role of Ang II in fetal growth is given by clinical studies, in which administration of ACE inhibitors during pregnancy results in a high frequency of serious developmental problems, including cardiac defects [53]. However, these effects are difficult to interpret since ACE inhibitors not only block Ang II production but also affect metabolism of other humoral systems such as enkephalins, substance P, and the kinins [54]. During embryogenesis and immediate postnatal development, rat myocardium almost exclusively expresses AT2 receptors [51,55]. At birth, the level of AT₂ receptor in cardiac tissue greatly diminishes, whereas the level of AT₁ receptor increases [34,49,51,55]. This dramatic shift from AT₂ to AT₁ receptors suggests that the roles of Ang II are different in fetal heart than its roles in neonatal heart. Changes in receptor subtype expression are presumably due to changes in endocrine and mechanical environments that are present after birth. Although coupling mechanisms of the AT₂ receptor are still under investigation, increased abundance and transient expression of the AT2 receptor in the fetus suggest that these receptors have important regulator/modulatory roles in late fetal and early neonatal development [53]. Changes in the mechanism of cardiac growth (i.e., hyperplasia vs. hypertrophy) during the perinatal period [56] may reflect, and/or contribute to, changes in the relative expression of AT, and AT, receptors, similar to what has been reported in vascular smooth muscle cells during development [57]. Abundant AT₂ receptors on less differentiated mesenchymal cells of the rat fetus [53] suggest that Ang II may act through these receptors to regulate differentiation of cardiac cells. The induction of collagen synthesis in human cardiac fibroblasts [26] also suggests that the AT₂ receptor could have a role in matrix formation of the fetal heart. Because Ang II affects the mechanical activity of the heart, it is also possible that the peptide is an important regulator of the mechanical activity of the heart until the sympathetic nervous system develops and becomes functional. Sympathetic innervation of the rat heart becomes functionally mature during the early postnatal period [58,59]. Thus, changes in the density of Ang II receptors could reflect a transition in the balance between hormonal and neural control of cardiac function that takes place during ontogeny. #### THE RENIN-ANGIOTENSIN SYSTEM IN NEONATE DEVELOPMENT In the neonate rat heart (0-3 days), we have shown that the right ventricle contains the highest levels of renin and Ao mRNA, followed by the left ventricle and atria [60]. Convincing evidence that Ang II mediates hypertrophic growth in neonates has been obtained from studies in which enalapril and losartan were used to inhibit ACE and AT₁ receptors, respectively [61-63]. In vivo studies are supported by results from in vitro studies that demonstrate Ang II causes proliferation of neonatal rat cardiac fibroblasts and hypertrophy of chick cardiac myocytes [25,62-64]. In a recent study in which losartan was given to pregnant rats (in drinking water five days prior to parturition), left ventricular thickening of the neonate heart was prevented within the first 24 hours after birth [61]. Mechanisms by which the AT₁ receptor may mediate growth in the neonate heart are unknown. Both direct and indirect mechanisms probably contribute to this stage of cardiac growth since Ang II not only stimulates growth-related kinases, such as MAPK, and proto-oncogenes, such as c-myc, c-fos, and c-jun but also increases expression of platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-β) [41,65]. In cardiac fibroblasts [66] and myocytes [67,68], Ang II has been shown to activate the Signal Transducers and Activators of Transcription (STAT) signaling pathway, the stimulation of which has been primarily ascribed to cytokine receptors [69]. The STAT signaling pathway constitutes a direct link between the membrane receptor and gene transcription. The JAK-STAT pathway has been shown to regulate embryonic development in Drosophila [2,70,71], and constitutive phosphorylation of STAT3 has been associated with hypertrophic events in the myocardium [72]. Both AT₁ and AT₂ receptors appear to regulate growth of neonatal rat cardiac myocytes in that the AT₁ receptors stimulate growth and AT₂ receptors inhibit growth in these cells [6]. In vitro effects of AT2 receptors on cardiac fibroblast growth are unknown since these cells do not appear to express the AT2 receptor under culture conditions [5]. One of the mechanisms by which the antigrowth effects of AT2 receptor stimulation is exerted is by programmed cell death (i.e., apoptosis) [73]. The transient expression of AT₂ receptors during the perinatal period (see figure 1) is consistent with a hypothesized role of this receptor in apoptosis [73] and coincides with programmed cell death that occurs in the heart during normal development [74]. Neonatal cardiac myocytes possess components of the RAS and are capable of releasing Ang II [13,75]. Stretching of neonatal myocytes in vitro, which mimics an elevation in diastolic stress in vivo, leads to upregulation of the AT₁ and AT₂ receptors [28], renin (D.E. Dostal, unpublished), and Ao [27] mRNA expression and autocrine formation of Ang II [27,76]. Myocardial stretching is associated with activation of apoptosis of
myocytes in vitro [77]. The role of Ang II under these conditions remains to be determined. The increases in preload that occur shortly after birth in the mammalian heart are characterized by a significant increase of apoptotic myocyte death in the ventricular myocardium [74]. Similarly, diastolic overloading of the heart, following coronary artery constriction, is characterized by an upregulation of the myocyte RAS in vivo [78] and diffuse myocyte cell death [79]. These observations suggest that a link exists between stretching of sarcomeres, synthesis and release of Ang II, and activation of apoptosis of cardiac myocytes. In the adult rat, downregulation of bcl-2 and upregulation of bax in myocytes is associated with apoptotic cell death in myocardium surviving an acute infarct [80]. In the neonate rat, expression of bcl-2 in myocytes is inversely related to the extent of apoptosis [74]. Thus, lower levels of bcl-2 mRNA correspond to a higher incidence of programmed cell death and, therefore, appear to be a key factor in regulating the number of myocytes in the ventricular wall of the neonate, The bcl-2 proto-oncogene forms heterodimers with other members of the bcl-2 family, including bax, which promotes apoptosis [81]. The lack of heterodimerization of bcl-2 with bax eliminates its protective effect against apoptosis [81]. Thus, if bax homodimers predominate, cell death occurs, whereas if bcl-2 protein in the cell exceeds the amount of bax protein, apoptosis is prevented. However, an excess of bax with respect to bcl-2 triggers the suicide program of cells. The AT₂ receptor has been demonstrated to stimulate apoptosis and increase in vitro expression of the bax gene [82]. Although Ang II appears to stimulate apoptosis in vitro, further studies are needed to assess direct and indirect roles of the cardiac RAS in producing apoptosis in vivo. Since Ang II is an initial mediator following cardiac myocyte stretch, it could trigger autocrine and/or paracrine production of secondary factors which may act in concert to enhance or produce apoptosis. ### EXPRESSION AND EFFECTS OF THE CARDIAC RENIN-ANGIOTENSIN SYSTEM IN ADULT HEART Both AT₁ and AT₂ receptor subtypes are present in adult ventricular myocardium [52,83], albeit at much lower numbers than late fetal and early neonatal stages. In adult rat myocardium, AT₁ and AT₂ receptors each account for 50% of the specific binding [37,52]. In adult heart, the spatial distribution of Ang II receptors has been well characterized. A high density of Ang II receptors is present in the atrioventricular node, cells of the intracardiac ganglia, and on parasympathetic nerve bundles in rat heart [84]. Fewer receptors have been found associated with atrioventricular bundles, and fewer have been found in the atria, ventricles, and media of the aorta, pulmonary arteries, and superior vena cava [84]. These locations of receptors are consistent with the local actions of the peptide which include inotropic and chronotropic effects. The peptide potentiates sympathetic function and inhibits vagal efferent nerve activity [85,86]. In blood vessels, Ang II is a potent vasoconstrictor, the actions of which are mediated by direct effects on vascular smooth muscle and indirectly by facilitating release and inhibition of norepinephrine at sympathetic nerve terminals [85,86]. We have previously demonstrated, using subpressor doses, that Ang II, via the AT₁ receptor, is a potent stimulus for inducing cardiac hypertrophy in the rat [4]. This hypertrophic effect of Ang II is separate from increases in vascular resistance (increased afterload) caused by the peptide. Little is known regarding the functional role of the AT2 receptor in adult heart. Although expression of the AT, receptor in adult rat heart is very low, it is upregulated in spontaneously hypertensive rats with the development of cardiac hypertrophy [87]. There is also a several-fold increase in angiotensinogen and ACE mRNA levels in left ventricular myocardium of the senescent rat heart [88], suggesting that expression of these genes may be altered by changes in arterial compliance that occur normally during aging. Upregulation of components of the cardiac RAS could also have a functional role by increasing local Ang II production that may compensate, at least in part, for decreased circulating levels of Ang II observed during senescence [88]. #### TRANSGENIC STUDIES Several transgenic animal models have been developed to determine the role of RAS components on biological function in the mouse and rat. The transgenic approach has distinct advantages over analysis of gene regulation using in vitro cardiac cell culture systems, since it incorporates complex cell-specific regulatory factor-DNA interactions with overall physiological conditions that affect the animal. Recently, the murine Ao gene has been deleted by homologous recombination [89]. The Ao null mice experienced high mortality by the time of weaning. Survivors were hypotensive and had evidence of vascular proliferative lesions in the kidney and cortical atrophy, possibly as a consequence of vascular insufficiency. In contrast, AT_{1A} and AT_2 receptor null mice had no obvious morphological changes in heart and several other tissues related to abnormal development [90-93]. The large disparity between the overall developmental effects observed in Ao null mice compared with that in AT_{1A} or AT₂ null mice suggests that Ang II is important for normal development and that development can be mediated/modulated by Ang II receptors other than AT_{1A} and AT_{2} . #### **FUTURE DIRECTIONS** Much remains to be determined regarding regulation of developmental growth processes of embryonic cardiac cells and hypertrophic growth of the neonatal heart. Malformation of the heart and blood vessels account for the largest number of human birth defects, with an incidence of approximately 1% of live births and 10% among stillbirths [94,95]. # REFERENCES - 1. Antin PB, Yatskievych T, Dominguez JL, Chieffi P. 1969. Regulation of avian precardiac mesoderm development by insulin and insulin-like growth factors, J Cellular Physiol 168:42-50. - 2. Sheng Z, Pennica D, Wood WI, Chien KR. 1996. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122:419-428. - 3. Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. 1995. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA 92:467-471. - 4. Dostal DE, Baker KM. 1992. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart: mediation by the AT₁ receptor. Am J Hypertens 5:276-280. - 5. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts, Circ Res 72:1245-1254. - 6. Booz GW, Baker KM. 1996. Role of type 1 and type 2 angiotensin receptors in angiotensin IIinduced cardiomyocyte hypertrophy. Hypertension 28:635-640. - 7. Xavier-Vidal R, Mandarim-de-Lacerda CA. 1995. Cardiomyocyte proliferation and hypertrophy in the human fetus: Quantitative study of the myocyte nuclei. Bull Assoc Anat 79:27-31. - 8. Sugi Y, Lough J. 1995. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Development Biol 168:567-574. - 9. Lyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M. 1990. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111:2427-2436. - 10. Ferrans VJ, Rodriguez ER. 1987. Evidence of myocyte hyperplasia in hypertrophic cardiomyopathy and other disorders with myocardial hypertrophy. Zeitschrift für Kardiologie 76(Suppl 3):20-25. - 11. Kaufman MH. 1992. The atlas of mouse development. New York: Academic Press. - 12. Beaudoin AR. 1980. Embryology and teratology. In The laboratory rat. Vol. II. Ed. HJ Baker, JR. Lindsey, and SH Weisbroth, 75-101. New York: Academic Press. - 13. LiF, Wang X, Capasso JM, Gerdes AM. 1996. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737-1746. - 14. Nadal-Ginard B, Mahdavi V. 1993. Molecular mechanisms of cardiac gene expression. Basic Res Cardiol 88:65-79. - 15. Hudlicka O, Brown MD. 1996. Postnatal growth of the heart and its blood vessels. J Vasc Res 33:266-287. - 16. Rudolph AM. 1979. Fetal and neonatal pulmonary circulation. Ann Review Physiol 41:383-395. - 17. Anversa P, Ricci R, Olivetti G. 1986. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J Amer Coll Cardiol 7:1140-1149. - 18. Dowell RT, McManus RE. 1978. Pressure-induced cardiac enlargement in neonatal and adult rats: Left ventricular functional characteristics and evidence of cardiac muscle cell proliferation in the neonate. Circ Res 42:303-310. - 19. Anversa P, Olivetti G, Loud AV. 1980. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia, and binucleation of myocytes. Circ Res 46:495-502. - 20. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. 1990. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67:871-885. - 21. Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P. 1991. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68:856-869. - 22. Komuro I, Kurabayshi M, Takaku F, Yazaki Y. 1988. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overload hypertrophy of the rat. Circ Res 62:1075-1079. - 23. Lee YA, Liang CS, Lee MA, Lindpaintner K. 1996. Local stress, not systemic factors, regulates gene expression of the cardiac renin-angiotensin system in vivo: A comprehensive study of all its components in
the dog. Proc Natl Acad Sci USA 93:I1035-I1040. - 24. Shunkert H, Dzau VJ, Tang SS, Hirsh AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy; Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913-1920. - 25. Aceto JF, Baker KM. 1990. [Sar¹] angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806-H813. - 26. Brilla CG. 1992. Angiotensin II type 2 receptor mediated stimulation of collagen synthesis in human cardiac fibroblasts. Circulation 86:189. - 27. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 28. Kijima K, Matsubara H, Murasawa S, Maruyama K, Mori Y, Ohkubo N, Komuro I, Yazaki Y, Iwasaka T, Inada M. 1996. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res 79:887-897. - 29. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. 1994. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93:1592-1601. - 30. Wong PC, Hart SD, Zasbel AM, Chiu AT, Ardeky RJ, Smith RD, Timmermans PBMWM. 1990. - Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands; DuP 753 (All-l) and PD123177 (All-2). J Pharmcol Exp Ther 255:584-592. - 31. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF. 1991. Nonpeptide angiotensin II receptor antagonists. TIPS 12:55-62. - 32. Bumpus FM, Catt KJ, Chiu AT, de Gasparo M, Goodfriend T, Husain A, Peach MJ, Taylor DJ Jr, Timmermans PBMWM. 1991. Nomenclature of angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 17:720-721. - 33. Catt K, Abbott A. 1991. Molecular cloning of angiotensin II receptors may presage further receptor subtypes. TIPS 12:279-281. - 34. Millan M, Carvallo P, Izumi SI, Zemel S, Catt KJ, Aguilera G. 1989. Novel sites of functional angiotensin II receptors in the late gestational fetus. Science 244:1340-1342. - 35. Murphy TJ, Takeuchi K, Alexander RW. 1992. Molecular cloning of AT, angiotensin receptors. Am J Hypertension 5:236S-242S. - 36. Iwai N, Inagami T. 1992. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Letters 298:257-260. - 37. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M. 1992. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 71:1482-1489. - 38. Rogers TB, Gaa ST, Allen IS. 1986. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J Pharmacol Exp Therap 236:438-444. - 39. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245-1254. - 40. Peach MJ, Dostal DE. 1990. The angiotensin II receptor and the actions of angiotensin II. J Cardiovasc Pharmacol 16:S25-S30. - 41. Dostal DE, Baker KM. 1993. Evidence for a role of an intracardiac renin-angiotensin system in normal and failing hearts. Trends Cardiovas Med 3:67-74. - 42. Hayashida W, Horiuchi M, Dzau VJ. 1996. Intracellular third loop domain of angiotensin II type-2 receptor. J Biol Chem 271:21985-21992. - 43. Nahmia C, Cazaubon SM, Briend-Sutren MM, Larard D, Billageois P, Strosberg AD. 1995. Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-115 neuroblastoma cells. Biochem J 306:87-92. - 44. Takashi K, Bardhan S, Kambayashi Y, Shirai H, Inagami T. 1993. Protein tyrosine phosphatase inhibition by angiotensin II in rat pheochromocytoma cells through type 2 receptor, AT2. Biochem Biophys Res Commun 198:60-66. - 45. Taber LA, Pexieder HN, Clark EB, Keller BB. 1993. Residual strain in the ventricle of the stage 16-24 chick embryo, Circ Res 72:455-462. - 46. Lin CC, Baker KM, Rothblum KN, Booz GW, Dostal DE. 1995. Atrial natriuretic peptide regulation of renin and angiotensinogen mRNA in cultured neonatal rat ventricular cardiac fibroblasts. Hypertension 26:562. - 47. Dostal DE, Rothblum KN, Lin CC, Baker KM. 1995. Regulation of renin and angiotensinogen in cultured neonatal rat cardiac fibroblasts by adrenergic, glucocorticoid, and angiotensin II stimulation. Hypertension 26:562. - 48. Dostal DE, Kempinski AM, Hunt RA, Baker KM. 1996. Regulation of renin and angiotensinogen mRNA expression by atrial natriuretic peptide and angiotensin II in cultured neonatal rat cardiac fibroblasts. Hypertension 28:533. - 49. Dostal DE, Rothblum TR, Baker KM. 1994. An improved multiplex quantitative polymerase chain reaction: Detection of renin and angiotensinogen mRNA levels in neonate and adult tissue. Anal Biochem 223:239-250. - 50. Everett AD, Heller F, Fisher A. 1996. AT, receptor gene regulation in cardiac myocytes and fibroblasts. J Mol Cell Cardiol 28:1727-1736. - 51. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. 1991. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921-933. - 52. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M. 1992. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 71:1482-1489. - 53. Hanssens M, Keirse MJNC, Vankelecom F, van Assche FA. 1991. Fetal and neonatal effects of treatment with angiotensin converting enzyme inhibitors in pregnancy. Obstetrics and Gynecol 78:128-135. - 54. Erdos EG, Skidgel RA. 1986. The unusual substrate and the distribution of human angiotensin I converting enzyme. Hypertension 8:134-137. - 55. Shanmugan S, Corvol P, Gasc JM. 1996. Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28:91-97. - 56. Clubb FJ, Bishop SP. 1984. Formation of binucleated myocardial cells in the neonatal rat; An index for growth hypertrophy. Lab Invest 50:571-577. - 57. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT₂) receptor antagonizes the growth effects of the AT₁ receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 58. Kirby RF, McCarty R. 1987 Ontogeny of functional sympathetic innervation to the heart and adrenal medulla in the preweanling rat. J Autonom Nerv Sys 19:67-75. - 59. Tucker DC. 1985. Components of functional sympathetic control of heart rate in neonatal rats. Am J Physiol 248:R601-R610. - 60. Dostal DE, Rothblum KC, Chernin MI, Cooper GR, Baker KM. 1992. Intracardiac detection of angiotensinogen and renin: Evidence for a localized renin-angiotensin system in neonatal rat heart. Am J Physiol 263:C838-C850. - 61. Javadi F, Koke J. 1993. The angiotensin receptor (AT1) inhibitor, losartan, slows postnatal thickening of the left ventricle. Mol Biol Cell (Suppl)4:444a. - 62. Beinlich CJ, Baker KM, White GJ, Morgan HE. 1991. Control of growth in the neonatal pig heart. Am J Physiol 261:3-7. - 63. Beinlich CJ, White CJ, Baker KM, Morgan HE. 1991. Angiotensin II and left ventricular growth in newborn pig heart. J Mol Cell Cardiol 23:1031-1038. - 64. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-H618. - 65. Potts JD, Runyan RB. 1989. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor β. Dev Biol 134:392-401. - 66. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM. 1994. Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J Biol Chem 269:31443-31449. - 67. Hunt RA, McWhinney CD, Dostal DE, Baker KM. 1996. Stretch of cardiac myocytes induces sisinducing factor (SIF)-like DNA binding activity: Evidence for mediation by angiotensin II, Hypertension 28:533. - 68. McWhinney CD, Hunt RA, Dostal DE, Baker KM. 1996. Angiotensin II stimulates the STAT signaling pathway in neonatal rat cardiomyocytes. Hypertension 28:511. - 69. Ihle JN. 1995. Cytokine receptor signaling. Nature 377:591-594. - 70. Yan R, Small S, Desplan C, Dearolf C, Darnell JE Jr. 1996. Identification of a Stat gene that functions in Drosophila development. Cell 84:421-430. - 71. Hou X, Melnick MB, Perrimon N. 1996. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to mammalian STATS. Cell 84:411-419. - 72. Hirota H, Yoshida K, Kishimoto T, Taga T. 1995. Continuous activation of gp130, a signaltransducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 9295:4862-4866. - 73. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 74. Kajstura J, Mansukhani W, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P. 1995. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 219:110-121. - 75. Sadoshima JI, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ Res 93:413-423. - 76. Lin CL, Baker KM, Thekumkarra TJ, Dostal DE. 1995. A novel biological assay for the rapid detection and quantification of angiotensin II in tissue culture medium. Biotechniques 18:1014- - 77. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze The, Olivetti G, Anversa P. 1995. Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247-2259. - 78. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs LG,
Baker KM, Anversa P. 1995. Identification and activation of the autocrine renin-angiotensin system in adult ventricular myocytes in vivo. Am J Physiol 269:H1791-H1802. - 79. Anversa P, Zhang X, Li P, Capasso JM. 1992. Chronic coronary artery constriction leads to moderate myocyte loss and left ventricular dysfunction and failure in rats. J Clin Invest 89:618-629. - 80. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. 1996. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316-327. - 81. Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homologue, Bax, that accelerates programmed cell death. Cell 74:609-619. - 82. Horiuchi M, Hayashida W, Yamada T, Dzau VJ. 1996. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. Hypertension 28:531. - 83. Rogg H, Schmid A, de Gasparo M. 1990. Identification and characterization of angiotensin II receptor subtypes in rabbit ventricular myocardium. Biochem Biophys Res Commun 173:416-422. - 84. Allen AM, Yamada H, Mendelsohn FAO. 1990. Iv vitro autoradiographic localization of binding to angiotensin receptors in the rat heart. Int J Cardiol 28:25-33. - 85. Lindner KH, Pregnel AW, Pfenninger EG, Lindner IM. 1995. Angiotensin II augments reflex activity of the sympathetic nervous system during cardiopulmonary resuscitation in pigs. Circulation 92:1020-1025. - 86. Osterziel KJ, Hanlein D, Dietz R. 1994. Interactions between the renin-angiotensin system and the parasympathetic nervous system in heart failure. J Cardiovasc Pharm 24:S70-S74. - 87. Suzuki J, Matsubara H, Urakami M, Inada M. 1993. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439-447. - 88. Heymes C, Swynghedauw B, Chevailer B. Activation of angiotensinogen and angiotensinconverting enzyme gene expression in the left ventricle of senescent rats. Circulation 90:1328–1333. - 89. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennette JC, Coffman TM, Maeda N, Smithies O. 1995. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 92:2735-2739. - 90. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. 1995. Regulation of blood pressure by the type 1A angiotensin II receptor gene, Proc Natl Acad Sci USA 92:3521-3535. - 91. Nimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T. 1995. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947-2954. - 92. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. 1995. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptors. Nature 377:748-750. - 93. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744-747. - 94. Hoffman JI. 1995. Incidence of congenital heart disease: I. Postnatal incidence. Ped Cardiol 16:103- - 95. Hoffman II. 1995. Incidence of congenital heart disease: II. Prenatal incidence. Ped Cardiol 16:155- # ANGIOTENSIN II REGULATED APOPTOSIS IN CARDIOVASCULAR REMODELING # MASATSUGU HORIUCHI, HIROYUKI YAMADA, MASAHIRO AKISHITA, and VICTOR J DZAU Cardiovascular Research, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston MA, USA Summary. Angiotensin (Ang) II exerts major influences on the heart and blood vessels via its effects on systemic hemodynamics and blood volume as well as structural effects. The major cardiovascular actions of Ang II have been reported to be mediated by the type 1 Ang II receptor or AT₁ receptor. Recently, we have cloned a second receptor subtype known as AT₂ receptor. The existence and differential expression of two different subtypes of Ang II receptors in the human myocardium and the reciprocal expression of AT₁ and AT₂ receptor in myocardial infarction and cardiac failure suggest pathophysiological importance of these receptors in cardiovascular disease and remodeling. Moreover, documented evidences suggest that the cellular composition of the heart and blood vessels is determined by the balance between apoptotic cell death (programmed cell death) and cell survival, and the unbalanced cell death plays a critical role in the pathogenesis of cardiovascular diseases and remodeling. Our successful clonings of AT, receptor cDNAs have provided a unique opportunity to study the biology and function of this receptor. Indeed, in our previous experiments, we have demonstrated that AT2 receptor activates tyrosine phosphatase(s) and inhibits mitogenactivated protein kinase (MAPK) activation, thereby exerting the proapoptotic and antigrowth effects in several cells including cardiomyocytes and vascular smooth muscle cells. These antagonistic actions may contribute to the pathogenesis of cardiovascular diseases and remodeling. Angiotensin (Ang) II, a key regulator of cardiovascular homeostasis, exerts various actions in its diverse target tissues that control vascular tone, hormone secretion, tissue growth, and neuronal activity [1]. Multiple lines of evidence have suggested the existence of Ang II receptor subtypes. At least two distinct receptor subtypes were defined, based on their differential pharmacological and biochemical properties, and designated as type 1 (AT₁) and type 2 (AT₂) [2,3], To date, extensive pharmacological evidence indicates that most of the known effects of Ang II in adult tissues are attributable to the AT₁ receptor [4-7]. In contrast, less is known about the AT2 receptor. AT2 receptor is abundantly and widely expressed in fetal tissues, but present only in scant levels in adult tissues including adrenal gland, brain, uterine myometrium, and atretic ovarian follicles [2,3,8-12]. We and Inagami's group recently reported the successful cloning of the AT2 receptor [13,14]. Interestingly, both receptors belong to the seven-transmembrane, G protein-coupled receptor family. However, recent evidences revealed that the function and signaling mechanism of these receptor subtypes are quite different, and these receptors exert opposite effects in terms of cell growth and blood pressure regulation [15-21]. # ANTIGROWTH EFFECT OF AT, RECEPTOR We examined the effects of expression of the AT₂ receptor in cultured vascular smooth muscle cells (VSMC) [15]. Rat aortic VSMC, isolated from 3-month-old rats, were transfected with the AT₂ receptor expression vector (fused with β -actin promoter and cytomegalovirus enhancer)-hemaggulutinating virus of Japan (HVJ)liposome complex, since the density of endogenous AT₂ receptor is very low in the cultured adult VSMC. We examined the effects of this AT2 receptor transgene expression on cell growth. Subconfluent AT2 receptor-transfected and control vector-transfected VSMC were grown in 5% fetal calf serum. Cell number was determined daily. The AT2 receptor-transfected VSMC accumulated at a significantly slower rate than the control vector transfected VSMC. We next studied the effect of the AT₂ expression on the growth of confluent, quiescent VSMC. VSMC were plated, grown to confluence, and transfected with the control vector or the AT₂ receptor expression vector. The cells were then switched to a defined serumfree condition for 3 days to induce quiescence. The cells were then treated with Ang II (10⁻⁷M) or vehicle. Consistent with our previous results with this cell line [22], Ang II significantly increased the cell number in the control vector-transfected VSMC. This increase was abolished with the AT₁ receptor antagonist, DuP753, demonstrating that AT₁ receptor activation enhances VSMC growth in this culture. On the other hand, in the cells expressing the AT2 receptor, Ang II treatment had little or no effect on cell number. However, in AT2 receptor-expressing cells treated with the AT₂ receptor antagonist, PD123319, Ang II increased the cell number to that observed in the control vector-transfected cells. DuP 753 did not affect the "antigrowth" effect of the AT₂ receptor. We next examined the effects of the expression of the transfected AT₂ receptor expression vector on adult VSMC in vivo using the rat carotid injury model [15]. The AT₂ receptor vector-HVJ-liposome complex or control vector-HVJ liposome complex was transfected into the balloon-injured rat carotid artery at the time of surgery. In some animals, we implanted PD123319 (20 mg/kg/day) in osmotic minipumps intraperitoneally at the time of injury and transfection. Animals were killed 14 days later, and the vessels were examined. AT, receptor mRNA was clearly observed in the AT₂ receptor-transfected vessel but only slightly in the control vector-transfected and uninjured vessels. The level of expression was comparable to that observed in whole rat fetus. The neointimal area (expressed as a ratio of medial area) in the injured vessels transfected with the control vector was not significantly different from those in the nontransfected injured vessel. Interestingly, the neointimal area of the vessels transfected with the expressing the AT₂ receptor transgene was significantly smaller (70% decrease) than that of the untransfected or the control vector-transfected vessels. This inhibitory effect on the development of the neointimal lesion could be blocked with the AT₂ receptor antagonist PD123319. Consistent with our results, Stoll et al. [20] demonstrated that the AT₂ receptor exerts an antigrowth effect on coronary endothelial cells. Moreover, Booz and Berk [21] recently demonstrated that the AT₂ receptor in cultured cardiomyocytes shows antagonistic effect against
the AT₁ receptor, resulting in the antigrowth effect. Taken together, these results provided us the new idea that Ang II exerts the opposite effects on cell growth in cardiovascular system via two different subtypes of the receptors. # ROLE OF AT, RECEPTOR IN VASCULAR DEVELOPMENT We have shown that rat vascular AT2 receptor mRNA is expressed at very low levels in the rat aorta during early rat embryonic development (up to embryonic day 15, E15) but at high levels during the latter stages of development (E16-21) and in the neonatal rat [21]. Recently, Shanmugaun et al. [23] confirmed this using in situ. During this time, the rates of DNA synthesis are undergoing dramatic reductions, decreasing from 75-80% labeling rate on E14 to <5% on postnatal day 7 [15]. To examine the role of AT₂ receptor, we studied the effect of AT₂ receptor blockade on the rate of DNA synthesis in the developing rat aorta during this time window of AT₂ receptor expression [15]. The AT₂ receptor antagonist PD123319 was administered in utero 3 days prior to tissue harvest, and BrdU incorporation was measured during a 24-hour period prior to tissue harvest. At early times, when the AT₂ receptor is not or is minimally expressed and aortic DNA synthesis rate is at near maximum (E 15), PD123319 has no effect on DNA synthesis. However, between E16 to E21, as DNA synthesis rate falls and AT2 receptor expression increases, PD123319 treatment significantly attenuates the reduction in aortic DNA synthesis. Based on these data, one would conclude that the AT₂ receptor modulates the growth of the developing blood vessel and thus contributes to vascular remodeling in late gestation [15]. The structural consequences of vascular AT2 receptor expression in vascular remodeling await detailed analysis. An examination of the mice harboring disruptions in the gene encoding the AT₂ receptor offers a unique opportunity to study the embryonic actions of the AT₂ receptor. We and Inagami's group have reported that the AT₂ knockout mouse exhibits an enhanced acute blood pressure response to low-dose Ang II infusion [18,19]. Inagami's group also reported that the knock- out mouse was hypertensive compared to the wild type animal. These data suggest that the transient and developmentally regulated AT2 receptor expression in the fetus exerts a long-term effect on blood pressure, possibly via its influence on vascular structure. #### ANGIOTENSIN II-REGULATED APOPTOSIS Interestingly, greater than 99.9% of the ovarian follicles present at birth undergo atresia, an event dependent on apoptosis or "programmed cell death", and the AT2 receptor expression is tightly associated with atresia [10,24]. AT₂ receptor is also abundantly expressed in immature brain and some specific regions of the adult brain [11,12]. Approximately half of the neurons produced during embryogenesis normally die by apoptosis before adulthood. Moreover, Langille and colleagues [25] demonstrated that postpartum remodeling of the aorta and umbilical artery were due, in part, to apoptosis. Interestingly, this apoptosis also occurs at a time when the AT2 receptor in abundantly expressed. These results lead us to examine the effect of AT₂ receptor on the induction of the apoptosis. We have examined the effect of Ang II on the apoptosis in cultured VSMC. After serum growth factor depletion, VSMC showed typical morphological changes of apoptosis and internucleosomal DNA fragmentation, and Ang II inhibited the apoptosis via AT₁ receptor [26]. We also observed that nitric oxide (NO)-donor molecules, S-nitroso-N-acetylpenicillamine or sodium nitroprusside, induced apoptosis in cultured rabbit VSMC, and AT₁ receptor stimulation blocked apoptosis, suggesting that countervailing balance between NO and Ang II may determine the overall cell population within the vessel wall by regulating genetic programs that determine cell death as well as cell growth [26]. In contrast to the effect of the AT₁ receptor, we demonstrated by using the AT₂ receptor transfected VSMC that selective AT₂ receptor stimulation enhanced apoptosis [16]. The function of the AT₂ receptor in the myocardium has not been well defined. A preliminary study has confirmed an antigrowth action for this receptor on the cardiac myocyte [21]. Consistent with this observation, our preliminary experiments demonstrated that AT₁ receptor blocked apoptosis and AT₂ receptor enhanced apoptosis in cultured neonatal cardiomyocytes [27]. In order to examine the molecular and cellular mechanism of AT₂ receptorinduced apoptosis, we applied PC12W cells, which express abundant AT₂ receptor but not AT, receptor. Ang II counteracted survival effect of nerve growth factor (NGF) and induced apoptosis in a time- and dose-dependent manner [17]. This Ang II-induced apoptosis was blocked by a selective AT₂ receptor antagonist, PD123319. We studied the effect of AT2 receptor on mitogen-activated protein kinase (MAPK), which is a key regulator in several kinase cascades and a cell survival signal for cell growth and apoptosis [28], and observed that Ang II-inactivated MAPK (p42^{MAPK} and p44^{MAPK}). Next we examined the effects of vanadate and PTX on the AT₂ receptor-mediated apoptosis. The addition of vanadate or PTX, in fact, attenuated the AT₂ receptor-mediated apoptotic changes. However, okadaic acid did not show any effect on the AT₂ receptor-mediated apoptosis. These results demonstrate that the G protein-coupling mechanism and resultant PTPase activation participate in the induction of AT2 receptor-mediated apoptosis in PC12W cells. We next examined the effects of AT2 receptor on Bcl-2 activation by prelabeling the cells with ³²P-Pi followed by immunoprecipitation with Bcl-2 antibody and observed that NGF activated Bcl-2 by phosphorylation, whereas AT2 receptor stimulation blocked this NGF effect [29]. Pretreatment with antisense oligonucleotide of MKP-1 inhibited the effect of AT₂ receptor on the inactivation of MAPK as well as Bcl-2 dephosphorylation. MKP-1 antisense treatment also attenuated the AT₂ receptor-induced apoptosis. Taken together, these results suggest that AT2 receptor activates MKP-1 via G protein coupling, resulting in the inactivation of Bcl-2 and the induction of apoptosis. In addition, we also observed that AT2 receptor upregulates Bax expression. #### THE POSSIBLE ROLE OF ANGIOTENSIN II-REGULATED APOPTOSIS IN CARDIOVASCULAR DISEASES Aoptosis plays an important role during development of many structures. This process occurs in the adult as well as during development. Apoptosis has been extensively studied for its involvement in the immune response, tumor cell growth and regulation, and many other physiological processes. Documented evidence of apoptosis in cardiovascular tissues has been limited until quite recently. Accumulating evidences suggest that the cellular composition of the heart and blood vessels are determined by the balance between apoptotic cell death and cell survival. Moreover, the contribution of unbalanced cell death to some diseased states in human and animal models have been demonstrated [30-34]. We have shown [16,17,27] that the AT₂ receptor modulates apoptosis in several different cell lines such as PC12W cells, VSMC, cardiomyocytes and ovarian follicular granulosa cells, and R3T3 cells (mouse fibroblast cell line). The involvement of the AT₂ receptor in cardiac pathophysiology remains ill defined. Increasing evidences suggest the involvement of AT2 receptor in cardiovascular disease. Recently, the density of the myocardial AT2 receptor has been shown to be increased in experimental myocardial infarction [35] in the hypertrophied heart [36]. AT₂ receptor has been showed to be increased in cardiac fibroblasts as well as in cardiomyocytes in the failing heart [37]. We postulate that the AT₂ receptor may contribute to this phenomenon. The existence and differential expression of two different subtypes of Ang II receptors in the human myocardium may have pharmacological implications, and the reciprocal relationship between AT₁ and AT₂ receptor densities (i.e., increased AT₂ and reduced AT₁ receptor levels) in conditions of impaired ventricular function as reported [38] would suggest pathophysiological importance of these receptors in cardiac remodeling. If apoptosis is indeed an important action of the myocardial AT2 receptor, then treatment with selective AT₁ receptor antagonist may have interesting cardiac remodeling effects that have not heretofore been appreciated. Thus, it is intriguing to question if the regression of cardiac hypertrophy in response to AT₁ receptor antagonist therapy is in part due to the apoptotic action of AT₂ receptor activation. Furthermore, our observation of a functional antagonism between AT₁ and AT₂ receptors in vascular smooth muscle cells may have significant pathophysiological and pharmacological implications in the myocardium as well. #### ACKNOWLEDGMENT This work was supported by NIH grants HL46631, HL35252, HL35610, HL48638, HL07708, and by a grant from Ciba-Geigy and SmithKline Beecham Research Foundation. Victor J. Dzau is the recipient of an NIH MERIT Award, HL35610. #### REFERENCES - 1. Dzau VI, Gibbons GH, Pratt RE. 1991. Molecular mechanism of vascular reninangiotensin system in mypintimal hyperplasia. Hypertension 18(Suppl II):100-105. - 2. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Timmermans P. 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196-203. - 3. Whitebread S, Mele M, Kamber B, de Gasparo M. 1989. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284-291. - 4. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T. 1991. Cloning and expression of a complementary DNA encodoing a bovine adrenal angiotensin II type-1 receptor. Nature 351:230-233. - 5. Murphy TJ, Alexander RW, Griendling
KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233-236. - 6. Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ. 1992. Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun 185:253-259. - 7. Inagami T, Guo DF, Kitami Y. 1994. Molecular biology of angiotensin II receptors: An overview. J Hypertens 12:S83-S94. - 8. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. 1991. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921-933. - 9. Millan MA, Jacobowitz DM, Aguilera G, Catt KJ. 1991. Differential distribution of AT1 and AT2 angiotensin II receptor subtypes in the rat brain during development. Proc Natl Acad Sci USA 88:11440-11444. - 10. Pucell AG, Hodges JC, Sen I, Bumpus FM, Husain A. 1991. Biochemical properties of the ovarian granulosa cell type 2-angiotensin II receptor. Endocrinology 128:1947-1959. - 11. Tsutsumi K, Saavedra JM. 1991. Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am J Physiol 261:H667-H670. - 12. Tsutsumi K, Stromberg C, Viswanathan M, Saavedra JM. 1991. Angiotensin-II receptor subtypes in fetal tissues of the rat: Autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129:1075-1082. - 13. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. 1993. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539-24542. - 14. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543-24546. - 15. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT₂) receptor antagonizes the growth effects of the AT₁ receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663- - 16. Yamada T, Horiuchi M, Dzau VJ. 1995. Mitogen-activated protein (MAP) kinase dephosphorylation by angiotensin II type 2 receptor induces apoptosis. Circulation 92:I-499. - 17. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 18. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 377:744-747. - 19. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fugo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. 1995. Effects on blood pressure and exploratory behavior of mice lavking angiotensin II type-2 receptor. Nature 377:748-750. - 20. Stoll M, Steckelings M, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotnsin AT2receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651- - 21. Booz GW, Baker KM. 1996. Role of typel and type2 angiotensin receptors in angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension 28:635-640. - 22. Koibuchi Y, Lee WS, Gibbons GH, Pratt RE. 1993. Role of transforming growth factor-beta 1 in the cellular growth response to angiotensin II. Hypertension 21:1046-1050. - Shanmugam S, Corvol P, Gasc J-M. 1996. Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28:91-97. - 24. Daud AI, Bumpus FM, Husain A. 1988. Evidence for selective expression of angiotensin II receptors on atretic follicles in the rat ovary: An autoradiographic study. Endocrinology 122:2727-2734. - 25. Cho A, Courtman DW, Langille BL. 1995. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res 76:168-175. - 26. Pollman M, Yamada M, Horiuchi M, Gibbons GH. 1996. Vasoactive substances rgulate smooth muscle cell apoptosis: Countervailing influences of nitric oxide and angiotensin II. Circ Res 79:748- - 27. Hayashida W, Horiuchi M, Grandchamp J, Dzau VJ. 1996. Antagonistic action of angiotensin II type-1 and type-2 receptors on apoptosis in cultured neonatal rat ventricular myocytes. Hypertension - 28. Xia Z, Dickens M, Raingeard J, Davis RJ, Greenberg ME. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326-1331. - 29. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ. 1996. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J Biol Chem 272:19022-19026. - 30. Bennett MR, Evan GI, Newby AC. 1994. Deregulated expression of c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-y heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res 74:525-536. - 31. Bennett MR, Evan GI, Schwartz SM. 1995. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266-2274. - 32. Isner JM, Kearney M, Bortman S, Passeri J. 1995. Apoptosis in human atherosclerosis and restenosis. Circulation 91:2703-2711. - 33. Han DK, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. 1995. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 147:267-277. - 34. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Lrajewski S, Reed JC, Olivetti G, Anversa P. 1996. Apoptotic and necrotic myocyte cell deaths are independent variables of infarct size in rats. Lab Invest 74:86-107. - 35. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - 36. Lopez JJ, Lorell BH, Ingelfinger JR, Weinberg EO, Schunkert H, Diamant D, Tang SS. 1994. Distribution and function of cardiac angiotensin AT₁- and AT₂-receptor subtypes in hypertrophied rat hearts. Am J Physiol 267:H844-H852. - 37. Brink M, de Gasparo M, Rogg H, Schmid A, Bullock G. 1995. Localization of the angiotensin II AT₂ receptor subtype in the human heart. Circulation 92:I-63. - 38. Rogg H, de Gasparo M, Graedel E, Stulz P, Burkart F, Eberhard M, Erne P. 1996. Angiotensin-II receptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction. Eur Heart J 17:1112-1120. # THE ROLE OF ANGIOTENSIN II IN STRETCH-ACTIVATED SIGNAL TRANSDUCTION OF THE NORMAL, HYPERTROPHIED, AND FAILING ADULT HEART # RICHARD A. WALSH University of Cincinnati College of Medicine, Cincinnati, OH, USA Summary. Pathological cardiac hypertrophy is in a critical initial adaptive response that is common to human heart failure syndromes of diverse etiologies. It is clear from work using neonatal myocytes that static stretch can produce an increase in protein synthesis and recapitulate the fetal gene program characteristic of rodent cardiac hypertrophy. Some data suggest that this may be entirely a consequence of an autocrine action of angiotensin II. In order to address this issue in the adult whole heart, we produced pathophysiological levels of stretch and isolated buffer-perfused isovolumically contracting guinea pig left ventricles. Our results demonstrate that stretch can activate the phospholipase C signaling pathway in the adult heart. Inositol phosphate accumulation, but not protein Kinase C (PKC) translocation, is abolished by angiotensin II receptor blockade. Based upon these results, we studied transgenic mice that overexpress $G\alpha q$ and PKC- β_2 in a cardiac-specific postnatal manner. The results demonstrate a dose-dependent induction of cardiac hypertrophy and heart failure in genetically engineered mice. This suggests that phospholipase C activation plays a critical role in hypertrophy and failure. Treatment of the PKC-β₂ transgenic mouse with a highly specific inhibitor largely reverses the phenotype. Taken together, these results demonstrate that angiotensin II-independent mechanisms may play a crucial role in the activation of the hypertrophy program and suggest new directions for pharmacotherapy of congestive heart failure. ### PHYSIOLOGICAL AND PATHOLOGICAL HYPERTROPHY Pathological cardiac hypertrophy is a critical initial adoptive response to abnormal global or regional increases in cardiac work. Initially, the increase in cardiac chamber mass serves to normalize wall stress and to permit normal cardiovascular function at rest and during exercise in compensated hypertrophy. Clinicians have long understood that if the stimulus for pathological hypertrophy is sufficiently intense or prolonged, decompensated hypertrophy and heart failure may ensue. Decompensated pathological hypertrophy is characterized by an increase in chamber wall stress despite an increase in cardiac mass and is associated with symptoms and signs of pulmonary and circulatory congestion (figure 1). The molecular events that are unique to compensated and decompensated hypertrophy are being elucidated by studies that employ genetically engineered mice, conventional experimental animal models, and clinical investigation [1]. The increase in cardiac mass in pathological hypertrophy is largely a consequence of an increase in the size of terminally differentiated cardiomyocytes, which comprise only one-third of the total cell number in the heart but are responsible for over 70% of cardiac volume. Vascular smooth muscle cells, endothelial cells, and fibroblasts can undergo hyperplasia, but there is little data to suggest that cardiomyocytes are capable of reentering the cell cycle. There is, however, some evidence to suggest that human end-stage cardiac hypertrophy is associated with some degree of apoptosis (figure 2). The precise mechanism(s) wherein the physical stimulus of increased external work is converted to
the subcellular biochemical processes that are responsible for change in the cardiac phenotype are poorly understood. # MECHANOTRANSDUCTION IN NEONATAL CARDIOMYOCYTES Dynamic or static stretch of the neonatal or adult cardiomyocyte, papillary muscle, isolated or intact heart appears to be necessary and sufficient to produce an increase in protein synthesis and resultant cardiac hypertrophy. This process whereby stimuli in the physical domain activate intracellular growth-signaling pathways is known as mechanotransduction [2]. Data from a number of laboratories have indicated that this process may be mediated in part in the cardiomyocyte by stretch-activated sarcolemmal ion channels, Na⁺/H⁺ antiporters, tyrosine kinase containing receptors, an extracellular matrix integrin linked pathway, or G protein-coupled receptors. These mechanotransducers can then activate cytosolic signaling pathways that initiate gene transcription and translation of increased quantities of proteins. In particular, it has been demonstrated that in neonatal cardiomyocytes, mechanical deformation can activate the phospholipase C signaling pathway. Cardiomyocytes and fibroblasts possess G protein-coupled AT, receptors for angiotensin (Ang) II that activate this pathway. Binding of Ang II to its cognate receptor produces dissociation of a specific heterotrimeric G protein, Gq, which dissociates to a GTP-bound Gaq subunit and a $\beta\gamma$ subunit. Gaq subsequently activates its effector enzyme, phosphoinositide-specific phospholipase C₆, which is intimately associated with the cytoplasmic face of the plasma membrane and hydrolyzes the membrane lipid phosphatidyl inositol-4-5 bisphosphate. Two biologically active intracellular second messengers diacylglycerol (DAG) and inositol triphosphate (IP₃), are generated by this catalytic process. DAG activates the serine threonine kinase PKC, while IP₃ binds to its receptor on the endoplasmic reticulum (figure 3). Protein kinase C Figure 1. Schematic diagram of the continuum between compensated and decompensated cardiac hypertrophy in response to augmented external cardiac work from pressure or volume overload. S = wall stress, r = radius of the left ventricle, wt = wall thickness Figure 2. Schematic diagram which depicts the relationship among organ level physiological hypertrophy, pathologic compensated and decompensated hypertrophy and cellular hyperplasia, hypertrophy and apoptosis. (Reproduced with permission of author and publisher, from Walsh and Dorn, Hurst's the Heart, 9th Ed, chapter 6. (PKC) is known to be a potent mediator of transcriptional regulation and hypertrophy in multiple cell types, and inositol trisphosphate has been demonstrated to contribute to cellular calcium homeostasis by the release of calcium from the endoplasmic reticulum after binding to its specific receptor. The cardiomyocyte sarcoplasmic reticulum contains IP, receptors, but the role of this polyphosphate in cardiac excitation-contraction coupling is unclear. It does appear than the ryanodine receptor is the principal intracellular calcium receptor responsible for binding of calcium, with resultant calcium-induced calcium release since it is over twentyfold more abundant than the IP3 receptor. Interestingly, however, the IP3 receptor appears to be upregulated in human cardiomyopathic congestive heart failure. Although valuable information regarding mechanotransduction and hypertrophy has been learned from the study of neonatal myocytes, there is little information regarding the mechanisms wherein this process occurs in the adult left ventricle (LV). Specifically, we have been interested in whether and to what extent pathophysiological levels of mechanical stretch can activate the phospholipase C cellsignaling pathway in the adult heart by an Ang II-dependent mechanism. #### MECHANOTRANSDUCTION IN THE ADULT LEFT VENTRICLE In order to examine this issue, we studied isolated buffer-perfused isovolumically contracting adult guinea pig hearts at physiological and pathophysiological levels of minimum left ventricular (LV) diastolic pressures [3]. Specifically, LV diastolic pressure was manipulated between 5 mmHg and 25 mmHg by augmenting the left ventricular balloon volume. The elevated level of minimum diastolic pressure that Angiotensin II, endothelin, norepinephrine, and prostaglandin F1 are known to be elevated in plasma of heart failure patients. Each of these peptides Figure 3. Extracellular and intracellular pathways common to phospholipase C and tyrosine kinase-mediated signal transduction in the cardiomyocyte. binds to its cognate G protein-coupled receptor (GPCR) and activates phospholipase C via the action of Gαq. Growth factors (GF) bind to tyrosine kinase receptors (TKR) and have been shown to produce hypertrophy in neonatal cardiomyocytes via mitogen-activated protein kinase (MAPK) activation. There is less evidence that this pathway is activated in the adult heart. Figure 4. Quantitative inositol phosphate accumulation in control hearts (n = 10), hearts in which the LV was stretched for 30 minutes (n = 7), and hearts stretched for 30 minutes in the presence of 1 Mmol/l losartan (n = 3) or 1 Mmol/l enalapril at (n = 3). (Reproduced with permission of author and publisher from Paul et al., Circ Res 81:643-650, 1997.) we chose is commonly present in human heart failure. Using this approach, we examined the effects of mechanical deformation of the LV on the phospholipase Csignaling pathway by quantitative immunoblotting of PKC isoforms and HPLC analysis of inositol phosphate production in the presence and absence of AT₁ receptor blockade and angiotensin-converting enzyme (ACE) inhibition using losartin and enalapril, respectively. The results indicated that Ang II, phorbol ester stimulation, and pathophysiological mechanical deformation each stimulate phosphatidylinositol hydrolysis (figure 4) and translocate PKC (figure 5) in LV myocardium. Both angiotensin receptor inhibition with losartin and ACE inhibition with enalaprilat completely abolished inositol phosphate accumulation but attenuated PKC translocation. To our knowledge, these were the first data in the adult heart that demonstrated an ex vivo localized production of Ang II and resultant coupling to downstream signal transduction. Finally, we observed that PKC activation by phorbol ester stimulation produced a negative inotropic effect in the isovolumically contracting bufferperfused guinea pig LV. These results in the isolated adult heart differed in some respects to prior studies in neonatal cardiomyocytes. Sadoshima and colleagues [4] demonstrated the imporPKC_E Translocation Figure 5. Immunoblots of PKC translocation from the cytosol (C) to the particulate fraction (M) in buffer-perfused isovolumically contracting guinea pig hearts. Blots are as follows from top to bottom: absence of stretch (no stretch); 25 mmHg minimum diastolic pressure (stretch); 10 Mmol Ang II; phorbol ester (PMA); inactive congener of phorbol ester (PDD); and Ang II plus losartan. (Reproduced with permission from author and publisher from Paul et al., Circ Res 81:643-650, 1997.) tance of Ang II in stretch-induced production of the hypertrophy phenotype in cultured neonatal cardiomyocytes. The addition of Ang II under these conditions augmented protein synthesis and induced immediate early genes and growth factors. AT₁, but not AT₂, receptor blockade prevented these actions. Static stretch of these neonatal cells reproduced these events, whereas stretch-induced hypertrophy was prevented by AT₁ receptor blockade. Additional studies that employed immunoelectron microscopy suggested that this effect was mediated by an autocrine action of Ang II. In the adult heart, it also appears that pathophysiological distension of the LV activates phospholipase C-mediated signal transduction. However, AT₁ receptor blockade completely inhibits IP, accumulation, but not activation of PKC. Our results in the adult LV more closely mirror the observations found by Komuro and colleagues [5], who also employed static stretch of cultured neonatal cardiomyocytes to examine the role of stretch-induced Ang II-mediated activation of phospholipase C. They found that static stretch increased inositol phosphate levels and that translocation of PKC was attenuated but not blocked by AT₁ inhibition. Our studies in the adult guinea pig heart demonstrated stretch-induced PKC translocation. However, the incomplete inhibition of PKC activation by AT₁ receptor blockade suggests the presence of Ang II-independent processes for stretchmediated signal transduction in mature myocardium. It is possible that other Gqcoupled receptors such as the endothelin or α,-adrenergic receptor are activated by stretch in the adult heart. Alternatively, it is conceivable that stretch may stimulate phospholipase D-mediated hydrolysis of phosphatidylcholine. The resultant formation of phosphatidic acid and its metabolism to DAG may activate PKC. Stretch-induced isoform translocation was PKC isoform-specific in the adult normal guinea pig whole heart homogenate. We immunologically identified PKC α , ϵ , and ζ isoforms under these conditions. The PKC α and ζ isoforms that we detected in total protein extracts most likely originated from nonmuscle cells in the heart or from the atria. We found that stretch-mediated phospholipase C hydrolysis selectively induced translocation of PKC ε , but not α or ζ , from the cytosol to the particulate fraction. The ability of phorbol esters to translocate PKC from the cytosolic to the membrane fraction of various homogenates has been used as an indicator of PKC activation. A number of laboratories have demonstrated that phorbol esters may modulate contractile function of neonatal and adult rat cardiomyocytes and perfused hearts. We demonstrated that phorbol ester produced significant negative inotropy in the adult isovolumically
contracting guinea pig LV (figure 6). The mechanisms by which phorbol ester-induced PKC activation may contribute to contractile depression of the heart include decreases in myofilament calcium sensitivity, alterations in the L-type calcium current, or altered cardiomyocyte calcium cycling. In particular, there is evidence that the PKC-dependent phosphorylation of troponin I and C may lead to a decrease in myofilament sensitivity to calcium and to reduction of myofibrillar actin-myosin ATPase activity and could contribute to a negative inotropic response [6,7]. Given these findings, it is conceivable that enhanced constitutive and/or stretch-activated phospholipas C hydrolysis could contribute to altered function of the hypertrophied and failing heart. In order to examine the effects of in vivo activation of phospholipase C devoid of the complex combinatorial alterations that occur in conventional animal models, a transgenic analysis of the role of cardiac-specific Gαq and PKC-β overexpression was performed. #### TRANSGENIC ANALYSIS OF CARDIAC GaQ OVEREXPRESSION The potential deleterious effects of activation of phospholipase C signal transduction was suggested by a variety of studies which employed cultured neonatal rat cardiomyocytes and which demonstrated that α -adrenergic receptor stimulation, Figure 6. Group data for isolated heart mechanics of hearts at baseline and after stimulation for 30 minutes with phorbol ester (PMA, 100 mmol), showing a decrease in developed pressure (Dev. Press.) (A), maximum dP/dt (rate of contraction); and (B, C) minimum dP/dt (rate of relaxation). (Reproduced with permission of author and publisher from Paul et al., Circ Res 81:643-650, 1997.) endothelin, or PGF_α stimulate hypertrophy in vitro [8–11]. In addition, transgenic overexpression of a constitutively activated mutant α_1 -adrenergic receptor produced mild cardiac hypertrophy [12]. D'Angelo and colleagues, therefore, transgenically overexpressed the wild type mouse Gaq protein in a postnatal cardiac-specific manner using the α-myosin heavy-chain promoter [13]. Generation of three different mouse lines with variable copy numbers of the transgene demonstrated a dose-dependent effect on production of cardiac hypertrophy, recapitulation of the fetal gene program, and mortality. Interestingly, cardiac overexpression of Gaq in vivo failed to increase MAPK phosphorylation in contrast to in vitro studies in neonatal cardiomyocytes (figure 3). The ε isoform of PKC was, however, activated with translocation to the particulate fraction of cardiac homogenates. Importantly, echocardiographic and invasive high-fidelity micromanometer hemodynamic studies demonstrated contractile depression associated with the cardiac hypertrophy. Higher level expression of Gaq resulted in frank congestive heart failure and increased mortality. # TRANSGENIC ANALYSIS OF CARDIAC PKC-B OVEREXPRESSION The induction of cardiac hypertrophy and failure by cardiac-specific overexpression of Gaq and resultant activation of phospholipase C_{B1} may occur as a consequence of PKC activation, IP₃-mediated modulation of calcium homeostasis, or both arms of this bifurcated cell signaling pathway. Therefore, Wakasaki and colleagues produced postnatal cardiac-specific overexpression of PKC-β₂ to directly test the hypothesis that sustained activation of PKC can cause cardiomyopathic disease [14]. The rationale for the selection of PKC- β_2 was that this isoform is preferentially activated in aorta, retina, renal glomeruli, and hearts of diabetic animals. Furthermore, oral administration of a PKC-β-specific inhibitor ameliorated some of the early eye and kidney dysfunction in diabetic rats. Transgenic mouse lines that overexpressed PKC- β_2 again demonstrated dose-dependent cardiomyopathic changes at the gross morphological, ultrastructural, and functional levels. Specifically, transthoracic echocardiography demonstrated substantial increases in LV mass and decreases in fractional shortening, but no difference in systemic arterial pressure by tail cuff determination. Oral administration of the selective PKC-B isoform inhibitor beginning at age three weeks for a two-month period largely reversed the changes in cardiac mass geometry, function, and histology compared to nontransgenic litter mates. This study represented the first successful overexpression of a PKC isoform in the cardiovascular system and unambiguously demonstrates that activation of protein kinase can produce cardiac hypertrophy, contractile depression, and heart failure in vivo. #### THERAPEUTIC IMPLICATIONS ACE inhibitors have been widely utilized in early and late human congestive heart failure of diverse etiologies. These agents have been shown to improve subjective and objective functional capacity and to modestly improve survival relative to diuretic and digoxin treatment in patients who are in NYHA functional class 4. Importantly, however, the mortality of patients who have advanced heart failure and are treated with ACE inhibitors remains at approximately 40% at four years. More recently highly specific AT₁ receptor blockers have been introduced or are under development for the treatment of hypertension and heart failure. Blockade of the angiotensin receptor itself avoids the side effects associated with concomitant elevation of bradykinin levels that occur as a consequence of ACE inhibition. In addition, in contrast to rodents, nonhuman primates and man generate angiotensin by a predominant ACE-independent pathway involving a highly specific chymase [15]. Whether and to what extent AT, receptor blockade is clinically superior to ACE inhibition for the management of hypertension and heart failure because of more complete Ang II inhibition is currently under investigation. Neurohormonal activation in early and late heart failure involves elevated plasma levels of endothelin, norepinephrine, angiotensin, and PGF-1α. Activation of the phospholipase C signal transduction pathway is the common mechanism whereby these peptides produce their biochemical effects. Pharmacological antagonism of each of these molecules has been accomplished, and such agents are individually utilized in patients with heart failure. Our transgenic analyses of the in vivo effects of overexpression of Gaq and isoform-selective PKC accumulation suggest the possibility of novel therapeutic strategies for congestive heart failure. Specifically, it may be possible to pharmacologically inhibit Gaq or to maintain it in its heterotrimeric form or to produce isoform-specific PKC inhibitors that produce salutory effects in human congestive heart failure syndromes. Preliminary data from our laboratory suggests that transcriptionally mediated isoform-specific elevation of PKC occurs in human congestive heart failure. Furthermore, ongoing studies suggest that isoform-specific PKC inhibition can improve cardiomyocyte function in experimental heart failure in part by increasing calcium sensitivity of myofilament regulatory and contractile proteins. #### ACKNOWLEDGMENT The author is grateful for the expert secretarial assistance of Mabel Meeks in the preparation of the manuscript. These studies were supported in part by National Institutes of Health grant: SCOR in Heart Failure (P50 HL-52318) and HL-33579. #### REFERENCES - 1. Wagoner LE, Walsh RA. 1996. The cellular pathophysiology of progression to heart failure. Curr Opin Cardiol 11:237-244. - 2. Ingber DE. 1997. Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575-599. - 3. Paul K, Ball NA, Dorn II GW, Walsh RA. 1997. Left ventricular stretch stimulates angiotensin IImediated phosphatidylinositol hydrolysis and protein kinase C ε isoform translocation in adult guinea pig hearts. Circ Res 81:643-650. - 4. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 5. Takaku F, Yazaki Y. 1991. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes: Possible role of protein kinase C activation. J Biol Chem 266:1265-1268. - 6. Venema RC, Kuo JF. 1993. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem 268:2705-2711. - 7. Venema RC, Raynor RL, Noland TA, Kuo JF. 1993. Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2. Biochem J 294:401-406. - 8. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. 1990. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. J Biol Chem 265:20555-20562. - 9. Sadoshima J, Qui Z, Morgan JP, Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes: The critical role of Ca²⁺-dependent signaling. Circ Res 76:1-15. - 10. Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishihara K, Brown JH, Chien KR. 1993. The α_{1A}-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy, J Biol Chem 268:15374-15380. - 11. Adams JW, Migita DS, Yu MK, Young R, Hellickson MS, Castro-Vargas FE, Domingo JD, Lee PH, Bui JS, Henderson SA. 1996. Prostaglandin F_{2a} stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J Biol Chem 271:1179-1186. - 12. Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, Lefkowitz RJ. 1994. Myocardial expression of a constitutively active α_{1R} -adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA. 91:10109-10113. - 13. D'Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett
SB, Dorn GW II. 1997. Transgenic Gaq overexpression induces cardiac contractile failure in mice. 94:8121-8126. - 14. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. 1997. Targeted overexpression of protein kinase C \(\beta 2 \) isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA. 94:9320-9325. - 15. Hoit BD, Shao Y, Kinoshita A, Gabel M, Husain A, Walsh RA. 1995. Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon. J Clin Invest 95:1519-1527. D. ANGIOTENSIN BLOCKADE AND REMODELING OF HEART IN MYOCARDIAL INFARCTION # ROLE OF ANGIOTENSIN II RECEPTOR BLOCKADE DURING REMODELING AFTER MYOCARDIAL INFARCTION # **BODH I. JUGDUTT** Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada Summary. Increased levels of angiotensin (Ang) II in myocardial infarction (MI), left ventricular (LV) volume overload, and heart failure promote vasoconstriction, increased LV impedance, ischemic injury, ischemia-reperfusion (IR) injury, and LV remodeling with hypertrophy and fibrosis. One strategy for achieving cardioprotection is to decrease Ang II receptor stimulation using angiotensin-converting enzyme (ACE) inhibitors. Another strategy for achieving cardioprotection is by selective blockade of Ang II type 1 (AT₁) receptors or type 2 (AT₂) receptors using selective antagonists. Functionality has been associated mainly with AT₁ receptors, and AT₁ receptor blockade is emerging as a new class of agents for therapy of hypertension, LV hypertrophy, and congestive heart failure. The role of AT₁ blockade in limiting remodeling after MI has been controversial. Our recent results using the isolated rat working heart model suggest functional roles for both AT₁ and AT₂ receptor blockade in recovery from IR injury. Furthermore, chronic treatment with AT₁ blockade in dogs limited early LV remodeling. Thus, Ang II receptor antagonists are emerging as new cardioprotective agents, alone or in combination with ACE inhibitors. ### INTRODUCTION Left ventricular (LV) remodeling after myocardial infarction (MI) is now becoming recognized as the principal mechanism for cardiac enlargement and heart failure, two leading causes of death and disability worldwide [1,2]. It is associated with progressive structural changes that include disruption of the supporting collagen matrix, regional dilation of the infarct zone (IZ) followed by global LV dilation, left ventricular hypertrophy (LVH) of the noninfarct zone (NIZ), and further global LV dysfunction [3]. In parallel, it is associated with healing, which involves growth of the NIZ and repair of the IZ with collagenous scar. Remodeling and healing are both time-dependent processes. While most infarct healing is completed over 3 weeks in rats, 6 weeks in dogs, and 3-6 months in humans [3-5], remodeling can continue for years depending on the substrate [6]. The magnitude of the problem is increasing because as post-MI survivors increase with improved therapies, the number at risk of remodeling and its consequences also increase. Over the last decade, the role of angiotensin (Ang) II in myocardial injury, growth, healing, remodeling, and dysfunction after MI has also been recognized. Neurohumoral activation and LV volume overload after MI lead to overexpression of the renin-angiotensin system (RAS) and increased circulating and local Ang II [7]. This increase in Ang II promotes LV remodeling, LVH, fibrosis, and collagen deposition [8]. Increased Ang II also increases ischemia-reperfusion (IR) injury [9,10]. Cardioprotection against injurious effects of Ang II has therefore become an important therapeutic goal. One approach has been to decrease Ang II receptor stimulation by using angiotensin-converting enzyme (ACE) inhibitors. A new strategy is to use a new class of agents, the Ang II antagonists [8]. Selective blockade of the Ang II type 1 (AT₁) receptors offers the potential to block the vasoconstrictor and growth-promoting effects of Ang II in essential hypertension, LVH, and congestive heart failure. This paper focuses on the potential role of Ang II receptor blockade in limiting LV remodeling after MI, with or without reperfusion. #### REPERFUSION AND REMODELING Over the last decade, widespread use of thrombolytic agents, angioplasty, or bypass surgery has increased the number of survivors, with flow restored to ischemic myocardium. The algorithm "salvage of ischemic myocardium → preserve structure and shape \rightarrow improve systolic squeeze \rightarrow improve outcome and survival" has been tested in many studies. However, "mismatch" occurs between restoration of flow and recovery of mechanical dysfunction, despite the absence of irreversible damage [11]. This mismatch has become a major clinical problem after successful reperfusion. Thus, reperfusion after 2 hours of occlusion limits early remodeling, without reducing MI size [12]. It results in persistent postischemic LV dysfunction, or "stunning" [13], and does not guarantee that function will subsequently improve [14-17]. Reperfusion within 2 hours of the onset of acute MI is ideal [14] but is frequently not feasible [18]. Consequences of IR injury include lethal arrhythmias, lethal cell injury, and sublethal stunning [9]. The algorithm "reperfusion \rightarrow decrease infarct size → limit remodeling → improve function" often fails. The survivors with persistent postischemic LV dysfunction remain at risk for progressive LV remodeling and its consequences [1,2,14]. These include infarct expansion and thinning, LV aneurysm, dilation, rupture, failure, LVH, volume overload, arrhythmias, and death. Reperfusion also damages the extracellular collagen matrix [19,20]. Adjunctive therapies that limit or prevent ischemia-reperfusion (IR) injury, speed functional recovery, protect collagen matrix, and limit further remodeling are therefore needed [3]. Main mechanisms proposed for stunning (table 1) include oxygen-derived free radical generation, oxidative stress, uncoupling of excitation-contraction (due to sarcoplasmic reticulum dysfunction), calcium overload, impaired metabolism (decreased mitochondrial energy production versus impaired energy utilization by myofibrils), impaired sympathetic neural responsiveness, decreased sensitivity of myofibrils to calcium, impaired perfusion and damage to the extracellular collagen matrix, and possibly myocardial hibernation. #### ACE INHIBITION VERSUS ANGIOTENSIN II ANTAGONISTS Decrease in Ang II receptor stimulation by ACE inhibitors has been shown to effectively limit LV dilation, LVH, and heart failure after MI [21-29]. Despite overall benefits on the balance [30-32], ACE inhibitors also inhibit fibroblast proliferation and collagen deposition [33-39], which tend to promote IZ remodeling [3,37]. Their use during IR is also controversial [9,10]. In addition, ACE inhibitors inhibit bradykininase, thereby increasing bradykinin (BK) [40], which acts via mediators, such as prostacyclin (PGI₂) and nitric oxide (NO), to amplify antitrophic effects [41,42], limit LVH, and lower IZ collagen. Selective antagonists of Ang II type 1 (AT₁) and type 2 (AT₂) receptors are now available [8,43,44]. We have postulated that AT, blockade, which lacks the BK contribution, should result in less decrease in IZ collagen than ACE inhibition. Although AT₁ and AT₂ receptors are expressed in human and rat hearts [45], clear demonstration of AT2 functionality in myocardium has been scarce [8] until very recently [46,47]. Recent evidence suggests that signal transduction pathways for AT₁ and AT₂ receptors (on fibroblasts) via Ang II coupling to protein kinase C (PKC) might be a key step in protection against IR injury [46,48,49], but their role in IR has not been studied. Although early studies favor ACE inhibitors for limiting remodeling [21–24], and subsequent trials after MI have shown a further small decrease in mortality below 7% in selected patients [25-28], negative results of the CONSENSUS II trial [29], the Table 1. Mechanisms for myocardial stunning #### Mechanisms - Generation of oxygen-derived free radicals - Reduction in antioxidant reserve - · Uncoupling of excitation-contraction - · Calcium overload - · Impaired metabolism - · Decreased mitochondrial energy production - · Impaired energy utilization by myofibrils - · Impaired sympathetic neural responsiveness - · Decreased sensitivity of myofibrils to calcium - Impaired perfusion - · Damage to extracellular collagen matrix - · Myocardial hibernation lack of early separation of survival curves in other studies with ACE inhibitors [25-28], and the persistent LV dysfunction after early captopril in rats [34] could be explained by negative effects on IZ collagen, collagen matrix, and IZ remodeling [30-32]. It is possible that results might be better if these undesirable effects could be avoided. In addition, ACE inhibitors do not entirely block actions of Ang II on the receptors and vary in their ability to block tissue ACE. Selective Ang II blockade is therefore promising. We recently made four pertinent observations: (1) chronic ACE inhibitors decrease IZ collagen, which can increase IZ remodeling post-MI [37,38]; (2) NO donors accelerate functional recovery and limit remodeling after IR [15]; (3) acute AT₂ blockade (PD123,319) during acute IR in rats enhances recovery of LV function, whereas AT₁ blockade (losartan) prevents recovery of function [47,50,51]; and (4) chronic treatment with AT, blockade (L-158,809) in dogs [52] limits IZ expansion. ## ANGIOTENSIN II BLOCKADE IN IR INJURY Ang II elicits several physiological effects which increase IR injury [9]. Mechanisms include vasoconstriction [53], ventricular fibrillation [54], facilitation of norepinephrine release [55], and stimulation of phospholipase C and/or A₂ [56]. Increased Ang II after MI promotes myocyte hypertrophy and fibrosis [8]. We postulated
that cardioprotection can be achieved by decreasing Ang II receptor stimulation by selectively blocking Ang II receptors with AT₁ and AT₂ antagonists. It is well established that Ang II mediates its effects via these receptor subtypes [7], albeit mainly AT₁ [8]. Although chronic administration of an AT₁ antagonist reduces LVH [57] and ischemic injury [58], effects of AT, or AT, blockade during acute IR had not been reported. Since both AT1 and AT2 receptors are expressed in human and rat hearts [45], with few interspecies differences in drug affinity [59], the isolated rat heart is a suitable model. We have therefore used the isolated working rat heart model in our studies of recovery after IR injury. # CARDIOPROTECTIVE POTENTIAL OF ACUTE AT, AND AT, ANTAGONISTS DURING IR Whether early cardioprotection involves Ang II (decrease in circulating and/or cardiac Ang II) or non-Ang II mechanisms is an unresolved issue. Although AT₁ antagonists, when given chronically, reduced the deleterious consequences of IR injury [58], the cardioprotective efficacy of acutely administered AT₁ or AT₂ antagonists had not been investigated. One belief has been that all known effects of Ang II are mediated via the AT₁ receptor [8], so that specific AT₁ receptor blockade would completely block vasoconstrictor and growth promoting effects of Ang II. The fact that Ang II levels rise significantly after AT₁ blockade [8,43,44] suggested that the free Ang II might preferentially bind to AT2 receptors and mediate beneficial effects. Since AT2 receptors are cell proliferation regulators, free Ang II in the presence of AT₁ blockade would potentiate its therapeutic effects. Figure 1. Effect of AT₁ antagonism on recovery of left ventricular (LV) work after ischemiareperfusion: \bullet = Control; \blacksquare = CHA, N⁶-Cylohexyladenosine (0.5 μ mol/l); \triangle = Losartan (1 μ mol/l); O = Ang II (1 nmol/l); and $\Delta = Losartan + Ang II. *P < 0.05 vs controls.$ We first assessed the contribution of endogenous cardiac Ang II to the postischemic recovery of myocardial function with the AT₁ antagonist losartan (DuP 753) using the isolated rat working heart. Rat hearts, paced at 300 bpm, were perfused with Kreb's buffer at 37°C containing 1.2 mmol/l palmitate prebound to 3% BSA, 11 mmol/l [³H/¹⁴C] glucose, and 100 μU/ml insulin. Proton (H⁺) production from glucose metabolism was calculated from the rates of glycolysis and glucose oxidation. The hearts underwent an aerobic perfusion period (50 min), followed by 30 min of global no-flow ischemia in the presence or absence of losartan (1 µmol/l) or N⁶cyclohexyladenosine (CHA, 0.5 µmol/l), a selective adenosine A₁ receptor agonist shown to be cardioprotective. During reperfusion, the recoveries of LV work and cardiac efficiency relative to controls were enhanced (P < 0.05) by CHA, but were depressed (P > 0.05) by losartan. Postischemic proton production from glucose metabolism was reduced (P < 0.05) by CHA but remained unaltered by losartan (figure 1). The lack of cardioprotective efficacy of losartan, under these conditions, suggested that myocardial recovery from ischemia might be dependent, at least in part, on endogenous cardiac Ang II production. In addition, the fact that acute AT₁ blockade with losartan (DuP753) was deleterious in IR [50] suggests that AT₁ agonism may also offer a novel approach to therapy. Second, we evaluated the effects of acute AT₁ and AT₂ antagonists on recovery of mechanical function following 30 minutes of global, no-flow ischemia in the same model [47]. In control hearts, there was incomplete recovery of LV minute work and cardiac efficiency during reperfusion, the values being 51% and 61% of preischemic levels, respectively. The AT₂ antagonist PD123,319 (0.3 µmol/l), administered prior to ischemia, improved recovery of LV work and efficiency compared to control hearts, the values being 82% and 98% of preischemic levels, respectively. In contrast, the AT₁ antagonist losartan (1 µmol/l) prevented recovery Figure 2. Effect of AT₂ antagonism on recovery of left ventricular (LV) work after ischemiareperfusion. Time courses of recovery of LV work from 30min of global, no-flow ischemia are shown for control hearts (n = 8) and hearts treated 5 min before the onset of ischemia with either PD-123,319 (0.3 \(\mu\text{mol/l};\) n = 7) or losartan (1 \(\mu\text{mol/l};\) n = 7). \(\blacktriangle = Control; \(\Lambda\) = PD-123,319; \blacksquare = Losartan. *P < 0.01 compared to controls. of LV work and depressed efficiency, the values being 0% and 1% of preischemic levels, respectively. Neither antagonist affected coronary vascular conductance. In summary, we showed that acute treatment with the AT₂ antagonist PD123,319 during IR, in the isolated working rat heart, was cardioprotective (figure 2), while the AT₁ antagonist losartan was not protective under the conditions and in the window used [47]. The overall results suggested that adjunctive AT₂ antagonists and AT₁ agonists may offer novel approaches for the treatment of mechanical dysfunction after ischemia-reperfusion. # AT, RECEPTOR FUNCTIONALITY The importance of AT₂ receptors and their functionality in the cardiovascular system was questioned [43] before the results of certain studies [47,50,51]. Increasing evidence suggests that AT, receptors mediate responses to Ang II in adult tissues besides those related to development [60-63]. We demonstrated that, compared to controls, short-term treatment with the selective AT₂ antagonist PD123,319, unlike treatment with the selective AT₁ receptor antagonist losartan, was cardioprotective and enhanced postischemic recovery of mechanical function. This represented the first demonstration of AT₂ receptor involvement in the pathogenesis of IR injury [47]. We believe that the effects of AT, receptor antagonists can differ in different models. There is increasing evidence indicating that effects of AT₁ antagonists depend on the experimental situation and the specific window in which they are tested. For example, with in vivo dog models of infarction, cardioprotection was found with the selective AT₁ antagonist (L-158,809) applied one hour after infarction [52] but not when AT₁ antagonism (DuP 532) was applied 24 hours after Figure 3. Schematic of AT₁ and AT₂ receptor interaction. PKC = protein kinase C; PLA_2 = phospholipase A_2 ; PLC = phospholipase C; $TGF\beta$ = transforming growth factor β . infarction [64]. In rats, AT₁ antagonism with TCV 116 applied over 4 weeks prior to in vitro assessment of IR injury (Langendorff) was cardioprotective [58], whereas losartan treatment immediately prior to IR (working heart), to our surprise, was not [47]. It is possible that chronic pretreatment with Ang II receptor antagonists, as reported with TCV116 [58], is associated with an upregulation of receptor populations, thereby influencing functional recovery after IR. Receptor studies have recently shown that the ratio of AT₂ to AT₁ was 1:3 in purified adult rat cardiomyocytes [65]. Although measurement of receptor number and type alone does not tell us about receptor functionality, the presence of AT2 receptors on myocytes suggests that AT2 antagonism could have functional consequences. It is also highly likely that receptors interact. Thus, AT₁ and AT₂ receptor interaction, cross-talk, or negative cooperativity (figure 3) is a distinct possibility. This could explain different acute and chronic effects of IR injury. There is evidence for AT₁ downregulation in heart failure and during ACE inhibition [45]. It is important to note that in our study [47] using the isolated working rat heart, the perfusate contained free fatty acids prebound to bovine serum albumin (BSA). In studies using high free concentrations of losartan without BSA, AT2 receptor antagonism might offset AT₁-mediated deleterious effects of losartan and result in protection. # LIMITATION OF EARLY LV REMODELING WITH THE POTENT NOVEL ANG II AT, RECEPTOR ANTAGONIST L-158.809 AFTER ACUTE MI IN THE DOG Whether Ang II receptor blockers can limit post-MI remodeling as seen with ACE inhibitors in the dog was controversial. Because sustained AT, receptor blockade with chronically administered losartan is thought to be less effective in the dog than rat models of heart failure, we had to verify whether the more potent novel AT₁ blocker (L-158,809: Merck) produces significant blockade of the Ang II pressor response in our dog model [52]. Dogs with anterior MI were given intravenous infusions of L-158,809 (0.1 mg/kg bolus followed by $0.6 \mu g/kg/min$, n = 6) or saline or vehicle (n = 5) between 1 hour and 48 hours after left anterior descending coronary ligation. Continuous infusion of the AT₁ antagonist produced near 100% blockade of the Ang II pressure response. It also produced sustained LV unloading and limited early LV remodeling (or infarct expansion) with less percent increase in LV volume (2% versus 35%, p < 0.001) and infarct expansion index (4% versus 18%, p < 0.001) and better global ejection fraction (51% versus 38%, p < 0.05). The global LV shape index (short-axis/long-axis length) increased in controls but remained unchanged with AT₁ blockade. In vivo LV mass did not change in either group over the 48 hours. These results indicated that the novel Ang II type 1 receptor antagonist L-158,809 produces significant AT, receptor blockade after canine MI and effectively reduces LV loading and limits early remodeling. #### ACE INHIBITION AND INFARCT COLLAGEN DURING POST-MI REMODELING The roles of the supporting collagen matrix in the NIZ [66-68] and extracellular collagen in the IZ [3,5] in protection against LV remodeling are now recognized. Conversion of fibroblasts to myofibroblasts may also have a protective role. Therapies that disrupt the collagen matrix, decrease IZ collagen, or interfere with myofibroblast formation can be expected to promote remodeling [2,3]. Interestingly, AT₁ and AT₂ receptors
are found mainly on fibroblasts [7]. Inhibition of fibroblast proliferation, collagen deposition, and fibrosis with ACE inhibitors might promote IZ remodeling and act as a "double-edged sword". We showed that ACE inhibitors decrease IZ collagen in dogs [37-39], and even low dose (2.5 mg BID) enalapril decreased IZ collagen and made the scars flatter [37]. Many others documented decreases in NIZ collagen with ACE inhibitors in the rat but did not measure IZ collagen [33-36,57]. Early ACE inhibition can promote IZ expansion by inhibiting collagen formation and reducing tensile strength and myocyte tethering [69]. Since reperfusion can damage collagen matrix during MI [70], the potential for harm might be even more when reperfusion is combined with early ACE inhibition. Reperfusion also accelerates healing in rats [71] and injures collagen matrix in dogs [20]. Collagen matrix disruption plus inhibition of IZ collagen with the combination could promote more regional and global LV dilation. Clinically, ACE inhibitors (e.g., captopril) given early after reperfusion produced certain benefits [2,72], suggesting that, on the balance, there is more good than harm. Since ACE inhibitors also inhibit bradykininase [43,44], they increase BK, which induces NO and PGI₂ release, thereby contributing to vasodilator and antitrophic effects of ACE inhibition via BK. If all effects of Ang II are mediated via AT1 receptors [43,44], collagen deposition would be mainly AT₁-mediated and AT₁ blockade would be expected to inhibit its deposition. However, high Ang II levels during AT, blockade could mediate fibrosis and other side effects by increased signal transduction via the normally nonfunctional AT₂ receptors [43,44]. Since evidence for AT₂ functionality is now appearing [45,47,51], classical receptor theory suggests that high Ang II levels during AT, blockade would downregulate AT2 receptors. Because of the additional BK contribution to hemodynamic and antitrophic effects of ACE inhibitors, one conclusion is that the ACE inhibitors should have greater antimyocyte hypertrophy and antifibroblast effects than selective AT₁ receptor blockade. Recent evidence emphasizes cellular mechanisms in remodeling and Ang II antagonist effects. Increased tissue ACE after rat MI [73] is inhibited by enalapril and the AT₁ antagonist losartan [57]. The antitrophic effect of ACE inhibition is explained by inhibition of Ang II acting via AT, (and possibly AT2) receptors and growth promoting factors [74-76]. Blockade of the antitrophic effect of the ACE inhibitor ramipril by the BK antagonist HOE-140 in hypertensive rats [77] supports the view that the antitrophic effect of ACE inhibition is related to local increase in BK. This effect might be mediated via BK-induced release of NO [40,42] and prostacyclin (PGI2) [40]. Recently, HOE-140 blocked the decrease in LV mass produced by ramipril after DC shock necrosis in dogs [78], supporting the ACE/BK mechanism. It is not clear why AT₁ blockade and ACE inhibition produce similar inhibition of LV mass in rat MI [56], but not in the dog [77]. Species differences are probably involved [5]. One should bear in mind this factor when extrapolating findings in rats or dogs to humans. #### CONCLUSION Selective Ang II receptor antagonists are powerful tools for probing the mechanisms by which Ang II promotes vasoconstriction, increased impedance, ischemic injury, myocyte growth, fibrosis, and LV remodeling. In addition, use of AT₁ and AT₂ antagonists allowed us to detect functional role(s) for AT₁ and AT₂ receptor blockade in cardioprotection against IR injury and for AT₁ blockade in early remodeling after MI. Whether long-term AT₁ blockade after MI, alone or in combination with ACE inhibition, produces more effective limitation of LV remodeling and preservation of function after MI remains to be determined. #### **ACKNOWLEDGMENTS** Supported in part by a grant from the Medical Research Council of Canada, Ottawa, Canada. #### REFERENCES 1. Pfeffer MA, Braunwald E. 1990. Ventricular remodelling after myocardial infarction. Circulation 81:1161-1172. - 2. Jugdutt BI, 1993. Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103-114. - 3. Jugdutt BI. 1995. Modification of left ventricular remodelling after myocardial infarction. In The failing heart. Ed. NS Dhalla, RE Beamish, and M Nagano, 231-245. New York: Raven Press. - 4. Jugdutt BI, Amy RW. 1986. Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91-102. - 5. Jugdutt BI, Joljart MJ, Khan MI. 1996. Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: Mechanistic insights into ventricular remodeling. Circulation 94:94-101. - 6. Gaudron P, Eilles C, Kugler I, Ertl G. 1993. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755-763. - 7. Dzau VJ. 1988. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77:I4-I13. - 8. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205-251. - 9. Zughaib ME, Sun JZ, Bolli R. 1993. Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: An overview. Basic Res Cardiol 88:155-167. - 10. Przyklenk K, Kloner RA. 1993. "Cardioprotection" by ACE-inhibitors in acute myocardial ischemia and infarction? Basic Res Cardiol 88:139-154. - 11. Braunwald E, Kloner RA. 1982. The stunned myocardium: Prolonged, post-inchemic ventricular dysfunction, Circulation 66:1146-1149. - 12. Hochman JS, Choo H. 1987. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75:299-306. - 13. Bolli R. 1990. Mechanism of myocardial stunning. Circulation 82:723-738. - 14. Kim CB, Braunwald E. 1993. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Circulation 88:2426-2436. - 15. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Impact of left ventricular unloading after late reperfusion of canine anterior myocardial infarction on remodeling and function using isosorbide-5mononitrate. Circulation 92:926-934. - 16. Ellis SG, Henschke CL, Sandor T, Wynne J, Braunwald E, Kloner RA. 1988. Predictors of success for coronary angioplasty performed for AMI. J Am Coll Cardiol 12:1407-1055. - 17. Ambrosio G, Becker LC, Hutchins GM, Weisman HR, Weisfeldt ML. 1986. Reduction of experimental infarct size by recombinant human superoxide dismutase. Circulation 74:1424-1433. - 18. Rogers WJ, Bowlby LJ, Chandra NC, French WJ, Gore JM, Lambrew CT, Rubison, Tiefenbrun AJ, Weaver WDX, for the Participants. 1994. Treatment of myocardial infarction in the United States (1990 to 1993). Observations from the national registry of myocardial infarction. Circulation 90:2103-2114. - 19. Fujiwara H, Ashraf M, Sato S, Millard R. 1982. Transmural cellular damage and blood flow distribution in early ischemia in pig heart. Circ Res 51:683-693. - 20. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C. 1987. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional ("stunned") but viable myocardium. J Am Coll Cardiol 10:1322-1334. - 21. Pfeffer JM, Pfeffer MA, Braunwald E. 1985. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84-95. - 22. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406-412. - 23. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior MI. N Engl J Med 319:80-86. - 24. Sharpe N, Murphy J, Smith H, Hannan S. 1988. Treatment of patients with symptomless LV dysfunction after MI. Lancet 1:255-259. - 25. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown JR EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE Investigators. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669-677. - 26. Sutton M St.I, Pfeffer MA, Plappert T, Rouleau J-L, Moye LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S, Menapace FJ, Parker JO, Lewis S, Sestier F, Gordon DF, McEwan P, - Bernstein V, Braunwald E, for the SAVE Investigators. 1994. Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89:68-75. - 27. Gruppo Italiano per lo Studio della Sopravvivenza nell' Infarcto Miocardico. 1994. GISSI-3: Effects of lisinopril and transdermal trinitrate singlely and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 343:1115-1122. - 28. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. 1995. ISIS-4: A randomized factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected myocardial infarction. Lancet 345:669-685. - 29. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H, for the CONSENSUS II Study Group. 1992. Effects of early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the co-operative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 327:678-684. - 30. Ertl G, Jugdutt BI. 1994. ACE inhibition after myocardial infarction: Can megatrials provide
answers? Lancet 344:1068-1069. - 31. Hall AS, Tan L-B, Ball SG. 1994. Inhibition of ACE/kininase-II, acute myocardial infarction, and survival. Cardiovasc Res 28:190-198. - 32. Furberg CD, Campbell RWF, Pitt B. 1993. ACE inhibitors after myocardial infarction. N Engl J Med 328:967-969. - 33. van Krimpen C, Schoemaker RG, Cleutjens JPM, Smits JFM, Struyker-Boudier HAJ, Bosman FT, Daemen MJAP. 1991. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 86:149-155. - 34. Schoemaker RG, Debets JJM, Struyker-Boudier HAJ, Smits JFM. 1991. Delayed but not immediate captopril therapy improves cardiac function in conscious rats, following myocardial infarction. J Mol Cell Cardiol 23:187-197. - 35. Michel JB, Lattion AL, Salzmann JL, Cerol ML, Philippe M, Camilleri JP, Corvol P. 1988. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62:641-650. - 36. Smits JFM, van Krimpen C, Schoemaker RG, Cleutiens JPM, Daemen MJAP. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:722-778. - 37. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91:802- - 38. Jugdutt BI. 1995. Effect of captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in the dog. J Am Coll Cardiol 25:1718-1725. - 39. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. 1995. Combined captopril and isosorbide dinitrate during healing after myocardial infarction. Effect on remodeling, function, mass and collagen. J Am Coll Cardiol 25:1089-1096. - 40. Wiemer G, Schölkens BA, Becker RHA, Busse R. 1992. Ramprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558-563. - 41. Dzau VJ. 1993. The role of mechanical and humoral factors in growth regulation of vascular smooth muscle and cardiac myocytes. Curr Opin Nephrol Hypertens 2:27-32. - 42. Garg UC, Hassid A. 1989. Nitric-oxide vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774-1777. - 43. Timmermans PBMWM, Smith RD. 1994. Angiotensin II receptor subtypes: Selective antagonists and functional correlates. Eur Heart J 15(Suppl D):79-87. - 44. Smith RD, Timmermans PBMWM. 1994. Human angiotensin receptor subtypes. Current Opinion in Nephrology and Hypertension 3:112-122. - 45. Regitz-Zagrosek V, Auch-Shwelk W, Neuss M, Fleck E. 1994. Regulation of angiotensin receptor subtypes in cell cultures, animal models and human diseases. Eur Heart J 15:92-97. - 46. Rabkin SW. 1996. The angiotensin II subtype 2 (AT₂) receptor is linked to protein kinase C but not to cAMP-dependent pathways in the cardiomyocyte. Can J Physiol Pharmacol 74:125-131. - 47. Ford WR, Clanachan AS, Jugdutt BI. 1996. Opposite effects of angiotensin receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94:3087-3089. - 48. Tsuchida A, Liu Y, Cohen M, Downey J. 1994. α₁-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576- - 49. Henry P, Demolombe S, Puceat M, Escande D. 1996. Adenosine A, stimulation activates s-protein kinase C in rat ventricular myocytes. Circ Res 78:161-165. - 50. Ford WR, Clanachan AS, Lopaschuk G, Schulz R, Jugdutt BI. 1996. Effect of losartan (DuP 753) on mechanical function during reperfusion of ischemic rat working hearts (Abstract). Can J Cardiol 12:160E. - 51. Ford WR, Clanachan AS, Lopaschuk G, Schulz R, Jugdutt BI. 1997. Role of endogenous angiotensin II in the postischemic recovery of mechanical function and glucose metabolism in isolated rat hearts (Abstract). J Am Coll Cardiol 29:150A. - 52. Jugdutt BI, Khan MI. 1996. Effect of a novel angiotensin II type 1 (AT₁) receptor antagonist (L-158,809) on hemodynamics and early LV remodeling after canine myocardial infarction (Abstract). Can J Cardiol 94:I-623. - 53. Fowler NO, Holmes JC. 1964. Coronary and myocardial actions of angiotensin. Circ Res 14:191- - 54. Lindpainter K, Jun M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA. 1988. Intracardiac generation of angiotensin and its physiologic role. Circulation 77:118-123. - 55. Brasch H, Sieroslawski L, Dominiak P. 1993. Angiotensin II increases norepinephrine release from atria by acting on angiotensin subtype 1 receptors. Hypertension 22:699-704. - 56. Peach MJ. 1981. Molecular actions of angiotensin. Biochem Pharmacol 30:2745-2751. - 57. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273-2282. - 58. Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T. 1994. Cardioprotective effect of the angiotensin II type 1 receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128:1-6. - 59. Hunyady L, Balla T, Catt K. 1996. The ligand binding site of the angiotensin AT₁ receptor. TiPs 17:135-140. - 60. Weimer G, Schölkens BA, Wagner A, Heitsch H, Linz W. 1993. The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens 11(Suppl 5):S234-S235. - 61. Kohout TA, Rogers TB. 1995. Angiotensin activates the Na+/HCO3 symport through a phosphoinositide-independent mechanism in cardiac cells. J Biol Chem 270:20432-20438. - 62. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 63. Leung BI, Benessiamo J, Henrion D, Caputo L, Heymes C, Duriez M, Poiterin P, Samuel JL. 1996. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418-425. - 64. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parish T, Stillman A, Cohn JN. 1994. Relative effects of α₁-adrenergic blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 90:3034-3046. - 65. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. 1994. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93:1592-1601. - 66. Jugdutt BI, Tang SB, Khan MI, Basualdo CA. 1992. Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722-731. - 67. Jugdutt BI, Khan MI. 1992. Impact of infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949-958. - 68. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker LH, Armstrong PW. 1990. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82:1387-1401. - 69. Whittaker P, Boughner DR, Kloner RA. 1991. Role of collagen in acute myocardial infarct expansion. Circulation 84:2123-2124. - 70. Przyklenk K, Kloner RA. 1986. Superoxide dismutase plus catalase improve contractile function in the canine model of the stunned myocardium. Circ Res 58:148-156. - 71. Boyle MP, Weisman HF. 1993. Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation 88:2872-2883. - 72. Nabel EG, Topol EJ, Galeana A, Ellis G, Bates ER, Werns SW, Walton JA, Muller DW, Schwaiger M, Pitt B. 1991. A randomized placebo-controlled trial of combined early intravenous captopril and recombinant tissue-type plasminogen activator therapy in acute myocardial infarction. J Am Coll Cardiol 17:467-473. - 73. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin-converting enzyme in experimental heart failure. Circ Res 69:475-482. - 74. Lindpaintner K, Niedermaier N, Drexler H, Ganten D. 1992. Left ventricular remodeling after myocardial infarction: Does the cardiac renin-angiotensin system play a role? I Cardiovasc Pharmacol 20(Suppl 1):S41-S47. - 75. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 258:H610-H618. - 76. Weber KT, Brilla CG. 1991. Pathologic hypertrophy and cardiac interstitium: Fibrosis and reninaldosterone system. Circulation 83:1849-1856. - 77. Linz W, Schölkens BA. 1992. A specific β₂-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105:771-772. - 78. McDonald KM, Mock J, D'Aloia A, Parrish T, Hauer K, Francis G, Stillman A, Cohn JN. 1995. Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 91:2043-2048. # LOCAL ANGIOTENSIN II AND TISSUE REPAIR POST-MYOCARDIAL INFARCTION #### YAO SUN D. Angiotensin Blockade and Remodeling of Heart in Myocardial Infarction Summary. At sites of tissue repair, phenotypically transformed fibroblast-like cells, myofibroblasts, are responsible for fibrous tissue formation. In vivo studies of injured rat cardiac tissues have shown that myofibroblasts (myoFb) express membrane-bound angiotensin-converting enzyme (ACE) and angiotensin (Ang) II receptors. In vitro, these cells have been shown to generate Ang I and II peptides. Locally generated Ang II acts in an autocrine/paracrine manner to regulate
myofibroblast collagen turnover in injured tissue. #### INTRODUCTION Tissue repair involves the appearance of granulation tissue that subsequently is replaced by fibrous tissue that primarily consists of type I and III fibrillar collagens. In the presence of parenchymal cell loss, a *replacement fibrosis* (or scarring) preserves tissue structural integrity. Fibrosis leads to as an abnormal increase in tissue collagen concentration that can adversely affect organ function. The principal cells responsible for fibrous tissue formation at the sites of repair are phenotypically transformed fibroblast-like cells having distinctive morphological features and phenotypical characteristics. These cells are termed myoFb because they express α-smooth muscle actin microfilaments and are contractile [1]. They are abundant at sites of tissue repair [1,2]. Interstitial fibroblasts are responsible for normal collagen turnover and are considered a source of myoFb. Signals responsible for this transformation in cell phenotype are under investigation. MyoFb have cell-cell and cell-matrix connections that provide for a contractile assembly [1]. This contractile assembly contributes to scar tissue remodeling during later stages of repair (e.g., infarct scar thinning). Fibrous tissue contraction is induced by various sub- stances, including angiotensin (Ang) II and endothelin-1 (ET₁) [1,3]. The source of these peptides has been uncertain. Could they arise from cells within granulation tissue, or are they derived from the circulation? Recent in vivo and in vitro studies indicate that fibroblast-like cells are metabolically active—activity that extends beyond their synthesis and degradation of collagen. This includes their ability to generate substances such as Ang II, which in an autocrine/paracrine manner, influences collagen turnover and scar tissue contraction. It therefore is no longer tenable to consider metabolic activity of fibroblast-like cells as confined solely to the secretion of matrix components. The purpose of this manuscript will be to address the elaboration of Ang II by myoFb at sites of repair in the infarcted heart and the contribution of Ang II to fibrous tissue formation at these sites. #### MYOCARDIAL REPAIR POSTINFARCTION Myocardial infarction in rats was created by left coronary artery ligation. Repair of infarcted rat heart included (1) extensive myocardial infarction (MI) of the left ventricular free wall; (2) noninfarcted sites remote to MI; (3) opening of the perietal pericardium and manual handling of the heart; and (4) placement of a foreign body (silk suture) in the myocardium. Type I collagen gene expression was determined by in situ hybridization; its fibrillar collagen composition by the collagen-specific stain picrosirius red; and its cellular elements using hematoxylin and eosin and/or specific immunohistochemistry for detection of cell phenotype (vide infra). #### Infarct site Type I makes up about 80% of total collagen and is, therefore, the most important collagen in the repairing tissue. Type I collagen gene expression is normally low in the myocardium of both ventricles. It is increased (tenfold) at the site of infarction on day 7 (figure 1, panel A) and is gradually reduced, therefore, but is still much higher (fivefold) at day 28 than normal myocardium. Microscopic evidence of early fibrillar collagen formation is seen at the site of MI on day 7 (figure 1, panel B). A fibrillar assembly of collagen that borders on necrotic tissue representing early scar formation is seen on day 14. Continued collagen accumulation is evident at days 28 and 56 [4]. Necrotic cells have been completely replaced by fibrous tissue on day 28, and it is at this time that thinning of the infarct scar begins to become more advanced at week 8. Detailed aspects of scar remodeling has been reported by others [5]. #### Remote sites Increased fibrous tissue, evidenced by hydroxyproline assay and histochemistry, is observed by day 14 at remote sites in hearts with extensive MI. This, likewise, has been observed in the human myocardium [6]. At these remote sites, microscopic scars follow myocyte necrosis and appear in the right ventricular free wall and septum. Interstitial collagen formation is observed at these sites in the absence of myocyte necrosis. A perivascular fibrosis of intramyocardial coronary arteries is also Figure 1. In the infarcted rat heart, type I collagen mRNA expression is markedly increased at the site of MI and pericardial fibrosis (PF) (panel A). Collagen (Co) starts to accumulate surrounding necrotic myocytes (Nec) (panel B) and gradually replace necrotic tissue. ACE binding density is markedly increased at the site of MI and pericardial fibrosis (panel C). Cells expressing ACE at the site of MI are fibroblast-like cells surrounding necrotic tissue, endothelial cells of blood vessels (arrowhead), macrophages, and fibroblast-like cells in adventitia (Ad) (panel D). These ACE containing fibroblast-like cells also express α-smooth muscle actin and, therefore, myoFb (MF) (panel F, brown). Marked increase in Ang II receptor-binding density is colocalized with high ACE and fibrosis (panel E). Panel G is a overlapped picture of immunohistochemical α-smooth muscle actin labeling (brown) and autoradiographic Ang II receptor binding (silver grains) at the site of MI. MF express high Ang II receptors, while blood vessels (V) contain a low amount of Ang II receptors. seen at these sites. Finally, an endocardial fibrosis of the left ventricular aspect of the interventricular septum represents a structural remodeling of the heart by fibrous tissue at a site remote to MI [4]. In rats with or without MI, fibrosis of the visceral pericardium and myocardium surrounding the silk ligature is evident at postoperative week 2. Markedly increased type I collagen mRNA is seen at sites of endocardial fibrosis, pericardial fibrosis (figure 1, panel A), and microscopic scars in the right ventricle and septum. #### CELLS EXPRESSING COLLAGEN AT SITES OF INJURY #### Infarct site Cells responsible for collagen gene expression at the site of MI were identified by in situ hybridization [7] and found to be fibroblast-like cells, not cardiac myocytes, endothelial cells, or vascular smooth muscle cells. These fibroblast-like cells, together with macrophages, surround necrotic myocytes. These cells were identified as myoFb by immunohistochemistry [8]. At the site of MI, myoFb started to appear at day 3 post-MI and became abundant and extensive thereafter (figure 1, panel F). Unlike skin, where myoFb appear and then disappear by day 28 following injury [9], myoFb remain at the site of infarction for years [10]. MyoFb impart fibrous tissue with contractile activity. Substances that promote contraction include Ang II and ET₁. These findings suggest diastolic dysfunction, often seen in the infarcted ventricle, could be a fibrocontractive disorder. #### Remote sites In situ hybridization localized fibroblast-like cells as expressing type I and III collagen mRNA at these sites [7]. MyoFb were identified by α -smooth muscle labeling in the fibrosed visceral pericardium, endocardium, and the site of foreign-body fibrosis surrounding silk suture. In the study of Sun et al. [8], where microscopic scars replaced lost myocytes in the noninfarcted right ventricle, myoFb were also observed. Cleutjens et al. [7] did not find such scars remote to the MI, and in this case, interstitial fibroblasts (α -smooth muscle actin-negative) were involved with interstitial fibrosis. Differences in experimental preparation of the infarct model may explain these disparate findings. Factors responsible for the appearance of myoFb at or remote to MI remain uncertain. TGF- β_1 , perhaps released by necrotic myocytes or macrophages involved in repair, could be implicated. Added to a wound healing chamber implanted subcutaneously, TGF- β_1 leads to the appearance of myoFb in subsequent granulation tissue that surrounds the chamber; exogenous administration of TGF- β_1 to cultured, serum-deprived skin fibroblasts is associated with their transformation to myoFb. # ACE AND ANG II RECEPTORS IN REPAIRING CARDIAC TISSUE POSTINFARCTION #### Normal heart In vitro quantitative autoradiography demonstrates the presence of ACE binding (125I-351A) throughout the myocardium of each ventricle and atria in the normal rat heart. Binding density, however, is low at these sites. High-density ACE binding, on the other hand, is present in heart valve leaflets and adventitia of intramural coronary arteries [11]. In the normal rat heart, Ang II receptors are present in low amounts. High-density binding is found in normal valve leaflets, where they are predominantly of the AT₁ subtype [12]. An AT₁ but not an AT₂ receptor antagonist abrogated these responses [13]. The presence of high-density ACE and Ang II receptor binding at sites where collagen turnover is expected to be high suggests Ang II, generated within connective tissue, is normally involved in fibrogenesis via Ang II receptor-ligand binding. Keeley et al. [14] found that 5 weeks of enalapril administration (nonpressor dose) in four-week-old rats retarded collagen formation in the right and left ventricles, aorta and, superior mesenteric artery. Heart valves were not examined. #### Infarct site Three days after MI, ACE and Ang II receptor-binding density in the infarcted left ventricle were unchanged compared to normal myocardium. One week post-MI, both ACE and Ang II receptor-binding density was markedly increased at the site of MI (figure 1, panels C and E) [4,15]. Such high ACE and Ang II receptor binding in the infarcted ventricle was also seen on week 2, 4, and 8. #### Noninfarct site One week post-MI, marked increase in ACE and Ang II receptor binding was seen at sites of fibrosis remote to infarction, including pericardial fibrosis (figure 1, panels C and E), endocardial fibrosis, myocardial
foreign body fibrosis, perivascular fibrosis, and microscopic scars [4,15]. ACE and Ang II receptor binding remained high at these sites of repair for at least 8 weeks. Each fibrous tissue site was, therefore, coincident with high-density ACE and Ang II receptor binding. Displacement studies using either at AT₁ receptor antagonist (losartan) or an AT₂ receptor antagonist (PD123177) demonstrated dominant AT, receptor binding at these sites [15]. Furthermore, ACE expression at sites of repair was shown to not be regulated by circulating Ang II or ALDO [16]. #### CELLS EXPRESSING ACE AND ANGII RECEPTORS IN VIVO Monoclonal antibody to ACE has been used to identify cells expressing this ectoenzyme at the site of MI. Positively-labeled cells include endothelial cells, found in blood vessels (figure 1, panel D) that appear in granulation tissue as part of neovascularization; macrophages; and myoFb (figure 1, panel D) [4,8]. At remote sites, myoFb alone express ACE [8]. Each site was likewise coincident with highdensity autoradiographic Ang II receptor binding, predominantly of the AT₁ subtype. Predominant cells expressing AT₁ receptors at these sites were subsequently identified, by emulsion autoradiography and immunolabeling, as myoFb (figure 1, panel G) [17]. Smooth muscle cells of blood vessels express low AT₁ receptors (figure 1, panel G) [17]. #### PHARMACOLOGICAL INTERVENTIONS AND CONNECTIVE TISSUE FORMATION In vivo studies, using pharmacological agents that interfere with Ang II generation (i.e., ACE inhibitors) or which bind to AT, receptors, support a role for locally generated Ang II in regulating collagen turnover at sites of tissue repair in the heart and related structures. #### Infarct site. Following experimental MI, elevations in circulating Ang II and ALDO are not observed [16]. Administration of an ACE inhibitor, either captopril or enalapril, for 6 weeks reduced infarct size (percent of epicardial circumference of the left ventricle occupied by scar) and infarct area (planimetered scar area) [18]. Similar findings have recently been reported for an AT₁ receptor antagonist (losartan), suggesting locally produced Ang II contributes to fibrogenesis [19]. #### Remote sites The ACE inhibitor captopril or perindopril, initiated at the time of MI, prevents fibrosis at remote sites [20]. A similar response was observed for losartan [19], implicating locally produced Ang II in fibrogenesis at these sites. Autoradiographic ACE binding density at remote sites was attenuated by losartan, suggesting either the number of myoFb or their metabolic activity/cell was reduced [20]. #### **CONCLUSIONS** Experimental evidence gathered to date indicates that myoFb are the predominant cell responsible for collagen formation at sites of repair in the rat heart and related structures. These phenotypically transformed fibroblast-like cells are not normal residents of ventricular tissue. They appear on day 4 at sites of injury following an inflammatory cell response that consists primarily of macrophages. MyoFb express high density of ACE and AT₁ receptors, suggesting locally generated Ang II may have an autocrine function in regulating myoFb function. Macrophages also express ACE, and their generation of Ang II induces macrophages to express TGF- β_1 , which in turn is responsible for subsequent fibroblast switch to myoFb. Ang II generated by myoFb likewise promotes TGF-β gene expression. Together, Ang II and TGF-β₁ promote myoFb transcription of type I and III collagens and tissue inhibitor to matrix metalloproteinase. Collectively these latter responses beget fibrosis. #### REFERENCES - 1. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. 1972. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135:719-734. - 2. Sun Y, Weber KT. 1996. Angiotensin-converting enzyme and wound healing in diverse tissues of the rat. J Lab Clin Med 127:94-101. - 3. Appleton I, Tomlinson A, Chander CL, Willoughby DA. 1992. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. A pharmacologic and immunohistochemical study. Lab Invest 67:703-710. - 4. Sun Y, Cleutjens JPM, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423-143. - 5. Jugdutt BI, Amy RWM. 1986. Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91-102. - 6. Volders PGA, Willems IEMG, Cleutjens JPM, Arends J-W, Havenith MG, Daemen MJAP. 1993. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25:1317-1323. - 7. Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. 1995. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325-338. - 8. Sun Y, Weber KT. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851-858. - 9. Darby I, Skalli O, Gabbiani G. 1994. α-Smooth muscle actin is transiently expressed by a-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868-875. - 10. Willems IEMG, Havenith MG, De Mey JGR, Daemen MJAP. 1990. The myofibroblasts during experimental wound healing. Lab Invest 63:21-29. - 11. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141-149. - 12. Sun Y, Weber KT, 1993. Angiotensin II and aldostrone receptor binding in rat heart and kidney: Response to chronic angiotensin II or aldosterone administration. J Lab Clin Med 122:404-411. - 13. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - 14. Keeley FW, Elmoselhi A, Leenen FHH. 1992. Enalapril suppresses normal accumulation of elastin and collagen in cardiovascular tissues of growing rats. Am J Physiol 262:H1013-H1021. - 15. Sun Y, Weber KT. 1994. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 28:1623-1628. - 16. Hodsman GP, Kohzuki M, Howes LG, Sumithran F, Tsunoda K, Johnston CI. 1988. Neurohumoral responses to chronic myocardial infarction in rats. Circulation 78:376-381. - 17. Sun Y, Weber KT. 1996. Cells expressing angiotensin II receptors in fibrous tissue of rat heart. Cardiovasc Res 31:518-525. - 18. Jugdutt BI, Humen DP, Khan MI, Schwarz-Michorowski BL. 1992. Effect of left ventricular unloading with captopril on remodeling and function during healing of anterior transmural myocardial infarction in the dog. Can J Cardiol 8:151-163. - 19. de Carvalho Frimm C, Sun Y, Weber KT. 1997. Angiotensin II receptor blockade and myocardial fibrosis following infarction in the rat heart. J Lab Clin Med 129:439-446. - 20. Michel JB, Lattion AL, Salzmann JL, Cerol MD, Philippe M, Camilleri JP, Corvol P. 1988. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62:641-650. # LOSARTAN PRETREATMENT INHIBITS AN EARLY ACTIVATION OF MATRIX METALLOPROTEINASES IN ACUTE MYOCARDIAL INFARCTION NAOKI MAKINO, KAZUHIRO MASUTOMO, SHOJI OHTSUKA, MASAHIRO SUGANO, MASAHIKO NOZAKI, HIROSUKE MATSUI, and TOMOJI HATA Department of Bioclimatology and Medicine, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan Summary. To elucidate the role of matrix metalloproteinase in acute myocardial infarction (MI), we examined collagen degradation by zymography (collagenolytic and gelatinolytic activities). MI was found to be induced by a surgical occlusion of the left coronary artery in the rat, and then the findings were compared with those in sham-operated rats, as a control specimens. Experimental samples were taken from infarcted tissue specimens of the left ventricle (LV) after occlusion. The collagenolytic activities were assessed by zymography and denatured ³H-collagen type I. Zymography showed a significant amount of MMP-1 (interstitial collagenase), MMP-2 (gelatinase) and MMP-9 (neutrophil gelatinase) in the infarcted lesion from 6 to 48 hours after a coronary artery ligation. Myeloperoxidase activity significantly increased in infarcted lesions at 24 hours after the induction of MI. The collagenolytic activity determined by denatured ³H-collagen type I also increased in the infarcted lesion 24 hours after MI. The pretreatment with losartan (20 mg/kg) significantly decreased the collagen concentration and inhibited both the MMP-2 and MMP-9 activities. Losartan thus appears to have a beneficial effect on the infarcted myocardium in the early remodeling process after MI by preventing the formation of angiotensin II. #### INTRODUCTION Left ventricular myocardial infarction (MI) induces morphological and molecular alterations in both the infarcted tissue and in regions of the heart remote to the infarction, and these changes are collectively referred to as ventricular remodeling [1]. The remodeling process of infarcted cardiac muscle includes a disruption of fibrillar collagen, which can occur with increased collagenolytic activity in infarcted cardiac muscle [2] and can therefore have multiadverse consequences on the archi- tecture and function of the myocardium [3]. The role of structural stromal proteins, i.e., the collagens and glycoproteins, in the remodeling of both scar tissue and viable cardiac tissue has gained renewed recognition during recent years [4,5]. The total tissue collagen content after infarction was assessed using the model of MI [6], and at 1, 2, and 3 hours from the time of induced infarction, the cardiac infarct zones were found to contain 75%, 65%, and 50% of the total collagen in the noninfarcted left ventricle, respectively [6]. The cardiac interstitial collagenase, elastase, and cathepsin G activity significantly increased in this tissue compared with that of the noninfarcted
control values, and these findings thus suggest that the increased activities of both collagenase and other types of neutralproteinase may be responsible for the rapid degradation of collagen in heart tissue after MI [6]. Similarly, it has also been reported that there is a 73% increase in collagenase activity in the crude tissue homogenates of a stunned myocardium [7]. Matrix metalloproteinases (MMPs) are a group of zinc enzymes that are responsible for the degradation of extracellular matrix components including fibronectin, collagen, elastin, proteoglycans, and laminin in normal embryogenesis, inflammation, wound healing, and tumor invasion [8,9]. The extracellular pathways of interstitial collagen degradation are initially mediated by either interstitial collagenase (MMP-1) or gelatinase (MMP-2), with cleavage at a specific site in the collagen molecule, which thus renders it susceptible to other neutral proteinase (e.g., gelatinase) in the extracellular space. However, little has so far been reported on either degradation or MMP activation in vivo. The cardiac remodeling process can be reduced by the prolonged administration of an effective angiotensin-converting enzyme (ACE) inhibitor [10,11]. Angiotensin type 1 receptor (AT₁) blockade attenuates the degree of viable ventricular fibrosis after MI [12,13]. Although the increased deposition of extracellular matrix components (fibrosis) has been documented in the viable myocardium after MI, the pathological significance of matrix remodeling still remains to be elucidated. The present study was therefore undertaken to determine whether or not AT₁ blockade is effective in degradating extracellular matrix (ECM) in acute MI as well as whether or not AT₁ blockade can modify ECM remodeling in the chronic phase of MI. #### MATERIALS AND METHODS #### **Experimental infarction** Male Wistar rats weighing 250 to 300g were obtained from Charles River Inc. (Atsugi, Kanagawa, Japan) and housed in our animal facility for at least 3 days before operation. A coronary artery ligation was performed as previously described by us [12]. Briefly, the rats were anesthetized with 50 mg/kg of pentobarbital i.p. and intubated for mechanical respiratory control. The left coronary artery was then ligated 2-3 mm distal to its aortic origin with a 4-0 silk suture, and the heart was repositioned within the chest. The mortality rate within the first 48 hours was about 30%. In the sham-operated animals, the suture was tied loosely so as not to obstruct the coronary flow. All animals were allowed free access to standard rat chow. Drinking water was provided ad libitum. To study the early remodeling of the collagen matrix after MI, fourteen rats were treated with the AT₁ receptor antagonist losartan (Banyu Pharmaceutical Co., Ltd., Japan) dissolved in drinking water at a dose of 20 mg/kg, 30 minutes before performing the coronary artery ligation. To study the chronic phase of MI, the AT₁ receptor antagonist E-4177, 3-[(2'carboxybiphenyl-4-yl) methyl]-2cyclopropyl-7-methyl 3H-imidazol[4,5-b] pyridine (Eisai Co., Ltd., Japan), was introduced in rats. Twenty-two rats were treated with E-4177 dissolved in drinking water at a dose of 10 mg/kg per day from the second day after ligation of the coronary artery. At a predetermined time after the left coronary artery ligation, the hearts were quickly removed, rinsed, and perfused with Evan's blue dye to distinguish between the infarcted lesions and the noninfarcted lesions of the left ventricle (LV). The infarcted lesion was dissected from the noninfarcted lesion, which was located in the interventricular septum (IVS). Both the infarcted and noninfarcted LV lesions were then used for biochemical and morphological studies. ## Collagen concentration of the myocardium The myocardial collagen concentration was measured by determining the hydroxyproline concentration [14] of the LV partially modified by us [15]. After drying the heart for 24 hours, the specimens were then hydrolyzed in a 6N hydrogen chloride solution at 100°C. After resolution in a buffer at pH 7.0, pdimethylamino-benzaldehyde (Ehrlich's reagent) was added to form a complex with hydroxyproline. The concentration of hydroxyproline was then measured by a spectrophotometric analysis at a wavelength of 558 nm. The collagen concentration was estimated by multiplying the hydroxyproline content by a factor of 8.2. The concentration of collagen was expressed as milligrams of collagen per gram dry weight. #### Gelatin-Zymography Frozen tissue was washed three to four times with cold saline and then was incubated in 2ml of extraction buffer [0.05M Tris-Cl, pH 7.5, 0.01M CaCl2, 0.02% NaN3, 0.01% Triton X-100, pH 5.0] per 25 mg wet weight at 4°C, with continuous agitation for 24h. This step was repeated with fresh buffer. The extraction buffer was collected and the pH raised to 7.5 by the addition of 1 mol/l Tris (pH8.0). MMP were activated with trypsin, plasmin, and serine protease at 37°C. Trypsin was inhibited with a tenfold excess PMSF prior to being loaded into the gel. The MMP activity in the gel was measured using the procedure of Tyagi et al. [16]. Type I gelatin was added to the standardize Laemmli acrylamide polymerizetion mixture at a final concentration of 1 mg/ml, under nonreducing conditions. The tissue extract was mixed and loaded immediately into wells of a 4% acrylamide Laemmli stacking gel on a cast vertical gel. The gels were rinsed and incubated overnight at 37°C in a substrate buffer. After incubation, the gels were stained in 0.05% coomassie blue R-250 in acetic acid: methanol: water (1:4:5), destained in the same solvent, scanned for lytic activity, and photographed. In each gel, a reference sample was used to normalize the scanned lytic activities. # Collagenolytic activity To remove the plasma protease inhibitors from the myocardial samples, the heart was perfused with 500 ml of chilled potassium phosphate buffer (pH 7.3-7.4). Tissue samples were separated into either infarcted or noninfacted portions and then frozen on dry ice and stored at -70°C. The preparation of the samples and protease assays was performed as previously described with some modifications [17]. The tissue gelatinolytic activity was determined, and then collagenolytic activity was determined by the method of Hibbs et al. [18]. The proteolytic activity of the extract was examined using either serine protease trypsin (7 µg/ml) or plasmin (15 µg/ml). One hundred mg of denatured ³H-labeled type I collagen was incubated in a reaction mixture containing 0.02 M Tris-Cl, pH 7.6, 0.005 M CaCl₂, and 0.02% NaN₃ in a final volume of 150 ml at 37°C. Type I collagen was a heat-denatured mixture. At the termination of the assay, the samples were cooled to 4°C, and then the unchanged and large molecular weight fragments were precipitated by the addition of trichloroacetic acid to a final concentration of 15% (w/v). After centrifugation at 10,000 × g for 5 min, an aliquot of the supernatant was counted using a liquid scintillation counter. #### Myeloperoxidase assay The myeloperoxidase (MPO) activity in the myocardium was assayed to quantitatively determine the neutrophil uptake. The MPO was extracted from the LV tissue, and the content was measured according to the method of Goldblum et al. [19], with some modifications. The LV tissue was suspended in hexadecyltrimethylammonium bromide (HTAB, Sigma) at 5 ml/g tissue in 50 mM phosphate buffer, adjusted to pH 6.0 and homogenized on ice for 30 seconds with a Polytron. The homogenate was centrifuged at 40,000 g for 10 minutes. The initial supernatant was then discarded. The pellet was resuspended in HTAB. The sample was freeze-thawed, followed by homogenization and centrifugation. The supernatant MPO activity was assayed by mixing a 0.1 ml aliquot of the sample with 2.9 ml of 50 mM PBS containing 0.0005% hydrogen peroxide and 0.167 mg/mL sdianisidine hydrochloride (Sigma). The change in absorbance was measured at 460 nm for 3 minutes using a spectrophotometer. The MPO activity was thereafter expressed as the change in absorbance per minute per gram of tissue. #### Statistical analysis The grouped results are expressed as the mean ± SEM. A one-way analysis of variance (ANOVA) showed significant differences among the groups. The groups were then compared using the unpaired t test with the Bonferroni correction for multiple comparisons. Statistical significance was set at p < 0.05. Figure 1. The collagen concentrations at an early phase (A) and the chronic phase (B) of myocardial infarction (MI) in rats. At the early phase of MI, tissue samples were taken from infacted areas of the left ventricle. The open, dashed, and solid columns represent the values from the sham-operated, untreated infact, and losartan-treated myocardium, respectively. At the chronic phase of MI, samples were taken from either the scar or viable myocardium. $\star p < 0.05$ compared with the sham-operated rats, †p < 0.05 compared with the untreated respective myocardium. #### RESULTS AND DISCUSSION ### Collagen degradation after MI The collagen concentration in the myocardium significantly decreased in the infarcted tissue at 24 hours after coronary artery ligation compared with that at 0, 3, and 6 hours (figure 1A). However, at 48 hours after coronary ligation, this concentration was higher than the previously reported values. When losartan was administered to rats 30 minutes before occlusion, the collagen loss in infarcted lesions was inhibited only at 24 hours after coronary artery occlusion, and not at any other times. Thus, the pretreatment with losartan has a beneficial effect for collagen loss in acute MI. Within 24 hours of experimental MI, the rapid collagen breakdown has been already noted. Takahashi S et al. [17] reported decreases as high as 50% in the collagen content of the infarcted area 3 hours postinfarction. These findings suggest that the increased activities of collagenase and other
neutral proteinases may thus be responsible for the rapid degradation of collagen in the heart tissue after MI. Similarly, it has also been reported that there is a 73% increase in the collagenase activity in the crude tissue homogenates from the stunned myocardium [7]. Thus, the loss of collagen in the early phase after infarction is probably mediated by an increased degradation of structural proteins. It has previously been postulated that the acute loss of cardiac matrix may lead to myocytes slippage, chamber dilation, wall thinning, and might thus even rupture the myocardium [20]. The present study suggests losartan to be effective in the partial attenuation of collagen protein deposition in infarcted hearts. The treatment of experimental animals with losartan was associated with a partial regression of both cardiac hypertrophy and interstitial fibrosis, which thus indicates the effective delivery of losartan. The collagen concentration was examined in the chronic phase of MI. Figure 1B shows the collagen concentration in the heart tissue from the sham-operated rats, and rats either untreated or treated with E-4177. This concentration in the untreated MI group significantly increased in both the viable and scar tissue specimens at 4, 8, and 12 weeks postoperatively compared with the concentrations in the sham-operated group. The administration of E-4177 significantly decreased the collagen concentration in the viable LV at all three stages of healing compared with the concentration in the untreated MI group. This agent also decreased the collagen concentration in scar tissue at 8 and 12 weeks after MI. Similar observations have also been reported by other investigators, who described that the myocardial collagen content significantly increased in the viable tissue at 7, 14, 21, and 35 days after induction of MI [21]. These effects are usually ascribed to the prevention of angiotensin (Ang) II formation because the renin-Ang II system is activated after acute MI. In experimental and clinical studies of congestive heart failure, the administration of low doses of AT₁ receptor antagonist, losartan, produced vasodilatation [22] and improved the cardiac pump performance [23]. The cardiac fibrosis of the cardiac interstitum, thus, constitutes a series of events occurring in the chronic phase of MI, and this collective fibrosis is now becoming recognized as a hallmark of this disease. # Collagenase activity in MI The cardiac MMP activity was detected by the appearance of a lytic band in the gelatin-containing SDS-PAGE (figure 2A). We thus included serine proteinase inhibitors, PMSF, and leupeptin to show that the lytic bands are not caused by serine proteinase. Using zymography, a major lytic band was observed to correspond to MMP-1 (54kDa), MMP-2 (Gelatinase A; 72kDa), and MMP-9 (Gelatinase B; 92kDa) in infarcted tissue. The MMP-1 cleave native fibrillar collagen helices [24] at unique sites in the native triple helix at 3/4 from the N-terminal end, generating 3/4 and 1/4 collagen fragments, also called gelatins [25]. These gelatins quickly Figure 2. The detection of gelatin-zymography in the infarcted lesion isolated from either the untreated (A) or losartan treated (B) rat hearts from 0 to 48 hours after coronary artery ligation. Each lytic-band is detected with interstitial collagenase (MMP-1, 54kDa) and gelatinase (MMP-2, 72kDa and MMP-9, 92kDa). unfold their triple helix conformation because of thermal degradation, and then further degradate into amino acid oligopeptides by MMP-2 and MMP-9 [25]. There is a modest but significant increase in the MMP-2 activity at 6 hours and in the MMP-9 activity at 12 hours in infarcted tissue after the induction of MI. These findings can thus account for the concomitant increase and contribution to collagenlytic activity of gelatinase. No MMP-9 activity (neutrophil collagenase; 65 KDa) was observed. In pretreatment with losartan, zymographies showed that the activities of MMP-2 and MMP-9 both decreased in infarcted lesions at 6 and 24 hours, respectively, after the induction of MI (figure 2A). Other investigators [17] observed morphological evidence of fibrillar collagen degradation between cardiac myocytes soon after the induction of myocardial ischemia (one hour to one day). This was accompanied by a decrease in the hydroxyproline content from one to three hours later. One day after infarction, the hydroxyproline content in involved tissue was reduced in the present study. However, since the degradated collagen was not removed from the heart, this assay could not discriminate between the intact and cleaved collagen fragments. Our findings seem to suggest that the MMP-1 activity rises from 6 hours after infarction, and, therefore, these enzymes are not likely to be involved in the early degradation of fibrillar collagen. MMP-1 alone is not able to completely degradate insoluble collagen, and, thus, a multienzyme system must be active to fully degradate collagen. In the present study, MMP-2 and MMP-9 were activated in infarcted tissues at 6 and 12 hours, respectively. This may contribute to the degradation process, where inflammatory cells, including macrophages and PMN leukocytes, invade infarcted tissue soon after myocyte necrosis. Cannon et al. [26] have demonstrated that the collagen content could be preserved within 24 hour of infarction by making rats leukopenic by irradiation. These findings suggest that protease was thus produced by inflammatory cells, including PMN leukocytes and macrophages [27]. The collagenase and the MPO activities were also determined in the infarced lesions at 24 hours after a coronary ligation. Both activities significantly increased in infarcted lesions compared with the nonoperated controls, sham-operated and interventricular septum (figure 3A). The collagenase increased at 24 hours to the maximum level in the infarct myocardium. Similarly, we also assessed the MPO activity in the infarct lesions after coronary ligation (figure 3B). The MPO activity, as well as the collagenase activity, decreased in the infarcted lesions when treated with losartan at 24 hours after the induction of MI. Thus, the loss of cardiac collagen in the early phase after infarction is probably mediated by the increased degradation of structural proteins. The acute loss of cardiac matrix may thus lead to myocyte slippage, chamber dilation, wall thinning, and even a rupture of the myocardium. After rats were treated with 20 mg of losartan, both of the MMP-2 and MMP-9 activities significantly decreased (figure 2B). The precise mechanism for the decreased MMP activities by losartan after the induction of MI is unclear. A number of cytokines and growth factors have also been shown to induce or stimulate the synthesis of MMPs, including IL-1, PDGF, and TNF- α , whereas TGF- β , heparin and corticosteroids all have an inhibitory effect [28]. Several reports have revealed that both ACE inhibition and cardiac angiotensin receptor blockade treatment are effective in the partial attenuation of collagen protein deposition in infarcted heart [10,21,29]. It is still not clear as to whether or not the stimulation of collagen synthesis by Ang II is due to either an increase in the transcription of the collagen gene or a decrease in the degradation of newly synthesized collagen [30]. However, Ang II can directly stimulate the proliferative growth of neonatal rat cardiac fibroblasts in culture [31,32]. Our results in the present study may thus account for the fact that losartan reduces the Ang II levels through Ang II generated locally or produced in the peripheral circulation. Therefore, both the MMP-2 and the MMP-9 activities may be directly or indirectly inhibited through such cytokines as TGF-β. In conclusion, the early activation of collagenase and gelatinase activities may be Figure 3. The myeloperoxidase (A) and the collagenolytic (B) activities in heart tissue specimens from the LV in sham-operated rats, the interventricular septum of MI rats, untreated infarcted lesions, and infarcted lesions treated with losartan. The myeloperoxidase activity represents the % activity per 100 mg protein. The collagenolytic activity represents the % lysis for the amount of ³H-labeled in the incubation medium. *p < 0.05 compared with the data from the sham-operated rats or the interventricular septum of the MI rats. responsible for a disruption of the intercellular struts during LV remodeling postMI. An AT₁ receptor antagonist, losartan, is thus considered to have a beneficial effect on the infarcted myocardium in the remodeling process by preventing the formation of Ang II. #### ACKNOWLEDGMENT The authors thank Ms. S. Taguchi and Ms. M. Watanabe for their valuable technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture of Japan. #### REFERENCES - 1. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Circulation 1990;81:1161-1172. - 2. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT. 1995. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281-1292. - 3. Weber KT. 1991. Cardiac interstitum: Extracellular space of the myocarium. In The heart and cardiovascular system, 2d ed. Ed. HA Fozzard, E Haber, RB Jennings, AM Katz, HE Morgan, 1465-1480. New York: Raven Press. - 4. Swan HJC. 1994. Left ventricular dysfunction in ischemic heart disease; fundamental importance of the fibrous matrix. Cardiovasc Drug Ther 8:305-312. - 5. Bishop JE, Laurent GJ. 1995. Collagen turnover and its regulation in the normal and hypertrophing heart. Eur Heart J 16(Suppl C):38-44. - 6. Takahashi S, Barry AC, Factor SM. 1990. Collagen degradation in ischemic rat heart. Biochem J 265:233-241. - 7. Charney RH, Takahashi S, ZhAo M, Sonnenblick EH, Eng C. 1991. Collagen loss in the stunned myocardium. Circulation 85:1483-1490. - 8. Woessner JF Jr. 1991.
Matrix metalloproteinases and their inhibitors in conective tissue remodeling. FASEB J 5:2145-2154. - 9. Matrisian LM. 1992. The matrix-degradation metalloproteinases. Bioassays 14:455-463. - 10. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406-412. - 11. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VI. 1991. Tissue specific activation of cardiac angiotensin of angiotensin converting enzyme in experimental heart failure. Circ Res 69:475-482. - 12. Makino N, Hata T, Sugano M, Dixon IMC, Yanaga T. 1996. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type 1 receptor in rats. J Mol Cell Cardiol 28:507-517. - 13. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282. - 14. Bergman I, Loxley R. 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Annal Chem 35:1961-1965. - 15. Masutomo K, Makino N, Maruyama T, Shimada T, Yanaga T. 1996. Effects of enalapril on the collagen Matrix in Cardiomyopathic Syrian Hamsters (BIO 14.6 and 53.58). Jap Circ J 60:50-61. - 16. Tyagi SC, Matsubara L, Weber KT. 1993. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191-198. - 17. Takahashi S, Barry AC, Factor SM. 1990. Collagen degradation in ischemic rat hearts. Biochem J 265:233-241. - 18. Hibbs MS, Hasty KA, Seyer JM, Kang AH, Mainardi CL. 1985. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem 260:2493-2500. - 19. Goldblum SE, Wu KM, Jay M. 1985. Lung myeloperoxidase as a measure of pulmpnary leukostasis in rabbits. J App Physiol 59:1978-1985. - 20. Przyklenk K, Connelly CM, McLaughlin RJ, Kloner RA, Apstein CS. 1987. Effect of myocytes necrosis on strength, strain, and stiffness of isolated myocardial strips. Am Heart J 114:1349-1359. - 21. van Krimpen C, Smits JFM, Cleutjens JPM, Debets JJM, Schoemaker RG, Boudier HAJS, Bosman FT, Daemen MJAP. 1991. DNA synthesis in the non-infarcted cardiac interstitum after left coronary artery ligation in rat: Effects of captopril. J Mol Cell Cardiol 23:1245-1253. - 22. Gottlieb SS, Dickstein K, Fleck E, Kostis J, Levine TB, LeJemtel T, Dekock M. 1993. Hemodynamic and neurohormonal effects of angiotensin II antagonist losartan in patients with congestive heart failure. Circulation 88:1602-1609. - 23. Capasso JM, Li P, Meggs L, Herman MV, Anversa P. 1994. Efficacy of angiotensin-converting enzyme inhibition and AT1 receptor blockade on cardiac pump performance after myocardial infarction in rats. J Cardiovasc Pharmacol 23:584-593. - 24. Docherty AJ, Murphy G. 1990. The tissue metalloproteinase family and recombinant proteins. Ann Rheum Dis 49:469-479. - 25. Woessner JF. 1991. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145-2154. - 26. Cannon RO, Butany JW, McManus BM, Speeir E, Kravitz AB, Bolli R, Ferrans VJ. 1983. Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol 52:390-395. - 27. Pyke C, Ralfkiaer E, Tryggvason K, Dano K. 1993. Messenger RNA for type IV collagennase is located in stromal cells in human colon cancer. Am J Pathol 142:359-365. - 28. Dollery CM, McEwan JR, Henney AM. 1995. Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863-868. - 29. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue specific activation of cardiac angiotensin of angiotensin converting enzme in experimental heart failure. Circ Res 69:475-482. - 30. Kawaguchi H, Kitabatake A. 1995. Renin-angiotensin system in failing heart. J Mol Cell Cardiol 27:201-209. - 31. Baker KM, Booz GW, Dostal DE. 1992. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Ann Rev Physiol 54:227-241. - 32. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblast: Critical role of the AT1 receptor subtype. Circ Res 73:413-423. # THE ROLE OF ANGIOTENSIN II IN POST-TRANSLATIONAL REGULATION OF FIBRILLAR COLLAGENS IN FIBROSED AND FAILING RAT HEART IAN M.C. DIXON, HAISONG JU, and NICOLE L. REID Molecular Cardiology Laboratory, Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada Summary. An explanation of the molecular mechanisms that trigger the development of pathological cardiac fibrosis, myocyte hypertrophy, and heart failure associated with common ailments such as chronic postinfarction has been sought at the benchtop and clinic for the past forty years and is a current topic of intensive investigative activity. Among the information garnered from these studies is that (1) growth factors including angiotensin (Ang) II are involved in modulation of gene products specifically expressed by cardiac fibroblasts in vitro and (2) their enhanced presence has been associated with myocardial stress, inappropriate cardiac growth, and fibrosis in vivo. Although increased deposition of collagen proteins has been described after myocardial infarction (MI), little is known of (1) time-dependent transcriptional alteration of specific cardiac collagen subtypes or (2) the degradative mechanisms for cardiac collagens in right and left ventricular myocardium remote to large left ventricular infarction. We have investigated collagen mRNA abundance and the deposition of specific collagen subtypes in noninfarcted left and right rat heart muscle at different times after MI. We have also assessed the activity of different myocardial matrix metalloproteinases (MMPs) using zymography to gain some information about degradative pathways for collagen. Furthermore, we assessed passive compliance properties of the right ventricle in experimental hearts. Finally, the efficacy of an angiotensin-converting enzyme (ACE) inhibitor (ramipril) and that of an Ang II receptor type I antagonist (losartan) was compared in experimental animals. We observed that the mRNA abundance of types I and III collagen were increased 3 days after myocardial infarction in both viable left and uninfarcted right ventricular tissues and were maintained at relatively high levels throughout the duration of our studies. Stiffness of the right ventricular myocardium was significantly increased in the 56 days experimental group when compared with that of control values; this was positively correlated with increased immunoreactive collagens in surviving right (and left) cardiac tissue of 14, 28, and 56 day experimental groups. The elevation of fibrillar collagen mRNA abundance in noninfarcted muscle from ventricular chambers was not normalized by treatments with either ramipril or losartan. MMP activity was increased in viable left ventricle at 14, 28, and 56 days and at 14 days in the right ventricle in experimental animals when compared with controls. Finally, we observed that AT, receptor blockade in infarcted hearts was associated with normalization of elevated cardiac 4-prolyl hydroxylase protein expression compared with nontreated post-MI rats. Thus, increased expression of collagen types I and III occurs in noninfarcted heart after MI, followed thereafter by deposition of collagen proteins. Increased MMP activity is present in chronic experimental hearts; MMP activation may be important in remodeling of the noninfarcted cardiac stroma. Because losartan treatment was not associated with any normalization of elevated collagen mRNA abundance, a clear causal relationship between the upregulation of fibrillar collagen mRNA abundance and the AT₁ receptor was not apparent. On the other hand, the reduction of cardiac fibrosis mediated by ACE inhibition and losartan treatment may reside at the posttranslational level in cardiac collagen metabolism. #### INTRODUCTION Myocardial stress is characterized by the specific response of, and maladaptive cardiac growth is regulated by a number of hormones including angiotensin (Ang) II. These ligands initiate various intracellular signaling pathways via specific membrane-bound receptors. Over the past few years, a number of studies support the hypothesis that the renin-angiotensin system (RAS) is important in the onset of pathological myocyte hypertrophy, cardiac fibrosis, and subsequent development of congestive heart failure (CHF) [1]. A complete catalogue of the activated proteins and factors associated with binding of Ang II to their receptors remains incomplete. Abnormal signaling by Ang II may stimulate cardiac fibroblasts to participate in excessive deposition of extracellular matrix components associated with the hypertrophy of cardiac myocytes, resulting in the development of CHF. The purpose of the present paper is to provide a review of the effects of Ang II on the myocardial intersitium by (1) describing postreceptor events after the initiation of Ang II signaling, (2) summarizing the role of Ang II in the development of cardiac fibrosis and heart failure and (3) presenting recent data from our laboratory to address the nature of Ang II-mediated regulation of fibrillar collagen expression in post-myocardial infarction (MI) rat heart. #### ANGIOTENSIN II: GENERATION OF PEPTIDE AND RECEPTOR ACTIVATION IN HEART Classically, RAS components include renin, angiotensinogen, angiotensinconverting enzyme (ACE), as well as Ang I and II. The liver is a major source of angiotensinogen, which is a relatively large plasma protein and is the only known natural substrate of renin which is produced by the juxtaglomerular apparatus of
the kidney [2]. Renin cleavage of angiotensinogen releases the Ang I decapeptide, and this inactive precursor is immediately converted to active Ang II (an octapeptide) by ACE. ACE is well characterized as the synthetic product of endothelial cells lining the vessels of the arterial and venous trees of the cardiovascular system. During the past several years, the existence of a local or tissue RAS system in the heart has gained considerable attention [3]. It has since been demonstrated that Ang II is generated and released by cardiac myocytes [4] and cardiac fibroblasts [5]. For the purpose of this discussion, local cardiac RAS may be defined as the ability of the heart to express most of the RAS components to generate Ang II [3]. Although the heart may use circulating renin for in situ synthesis of Ang II, the importance of cardiac synthesis of this component may not be crucial for local generation of Ang II. Whether generated locally or not, Ang II influences the myocardium in both a direct and indirect manner. The direct actions of Ang II on the cardiovascular system comprise potent vasoconstriction, positive cardiac inotropism, and positive cardiac chronotropism [6]. Indirect actions of Ang II on the heart include increased cardiac loading from activation of the sympathetic system and stimulation of aldosterone synthesis [6]. Cellular responses induced by Ang II in cardiac (and other) tissues are dependent on the balanced activation of different Ang II receptors. Biochemical, molecular, pharmacological, and functional studies have revealed the presence of two main subgroups, which are further divided into multiple receptor subtypes [7]. Studies on binding affinities for plasma membrane receptors to nonpeptide antagonists such as losartan and PD 123177 have defined the existence of AT₁ and AT₂ receptors, respectively [8]. To date, the vast majority of known physiological functions mediated by Ang II within the cardiovascular system are carried out by Ang II binding to the AT₁ receptor [9]. A corollary of this finding is that an overwhelming expression of this receptor subtype (vs. AT₂ receptor) is present in adult cardiovascular tissue. The tertiary structure of the AT₁ receptor is that of a "typical" seventransmembrane domain membrane receptor protein. The AT1 group of Ang II receptors is further subdivided into AT_{1A} and AT_{1B} classes [7]. Among them, the AT_{1A} and AT_{1B} isoforms contain 22 different amino acids, yet maintain similar binding profiles for Ang II and nonpeptide, as well as peptide AT, receptor antagonist(s), including losartan [7]. AT_{1A} subtype is localized mainly in vascular smooth muscle cells, hypothalamic tissue, lung, kidney, adrenal, fetal pituitary, and liver tissues [7,10]. The AT_{1A} receptor subtype is known to be transcriptionally inducible and may be influenced by diverse stimuli, including tissue culture conditions; receptor numbers are also known to be variable with the stage of cardiac development as well as in the face of various pathological stimuli [11]. In the cardiovascular system, the AT_{1A} receptor is constitutively expressed in all developmental stages [12]. The AT_{1B} receptor has been described in the zona glomerulosa of the adrenal medulla, uterine, anterior pituitary, and renal tissues [7,10]. The AT₂ receptor shares the seven transmembrane domain receptor protein configuration and only 32% homology with the AT₁ receptor [13]. Early studies have provided evidence that, unlike the AT₁ receptor, AT₂ receptors lack functional coupling to any trimeric G proteins [14]. Recently this evidence has been met with the results of Zhang et al. which indicate that AT₂ receptors may bind several G_a subunits in whole fetal tissue [15]. Furthermore, AT2 receptors have been further subdivided into classes AT_{2A} and AT_{2B} based on distinct pharmacological characteristics which include differential binding of trimeric G protein [7]. Steinberg found that while the AT_{2B} receptor protein did not couple to G proteins, the AT_{2A} receptor subtype was observed to complex with them [7]. The work of Zhang et al. supports the suggestion that the selective interaction, or lack thereof, between the G protein subunits and AT₂ receptor subtypes may confer specificity in the cellular response that is dependent on the prevailing receptor expression patterns [15]. In general, neonatal and adult cardiac cells seem to express relatively low levels of AT₂ receptors. For example, both neonatal and adult cardiac fibroblasts are characterized by the presence of very low levels of the AT₂ receptor [16–17]. Expression of AT_{2A} receptor is widespread in the brain, whereas the AT_{2B} receptors appear in abundance in adrenal medullary and uterine tissues [7]. An important difference between AT1 and AT₂ receptor classes is the ease in design and utilization of specific nonpeptide antagonist agents for use in their characterization [7]. Furthermore, unlike AT₁ receptors, AT₂ receptors do not undergo ligand-mediated endocytosis upon complexing with Ang II [2]. In spite of the intense scrutiny paid to the investigation of the function of the AT₂ receptor, our understanding of the precise role of this receptor in the cardiovascular system is far from clear. Nonetheless, some lines of evidence point to multiple putative functions in various tissues. Activation of AT₂ receptors has been shown to induce G protein-dependent apoptotic remodeling via the dephosphorylation of mitogen-activated protein kinase (MAPK) [18]. Attenuation of MAPK protein tyrosine phosphatase 1 by vanadate or by antisense oligonucleotides will inhibit MAPK dephosphorylation; their application has been shown in PC12W and R3T3 cells to block AT₂ receptor-mediated apoptosis [18]. These results suggest that MAPK phosphatase 1 is involved in AT₂-mediated apoptosis [18]. Stoll et al. have shown that the AT₂ receptor mediates the inhibition of cellular proliferation in coronary endothelial cells [19]. This novel finding is supported by a study using gene transfer methods that demonstrate that the AT2 receptor also has an antiproliferative effect on the neointima after vascular injury; that is, the overexpression of AT₂ receptor in carotid artery attenuates neointimal formation [20]. Mouse AT2 receptor knock-out studies conducted by Ichiki et al. raise the possibility that AT₂ receptor function is important in maintenance of normal cardiovascular and central nervous system function, but that this receptor subtype is not required for embryonic development [21,22]. Loss of AT₂ receptor function is associated with increased systolic blood pressure, depressed body temperature, impaired dypsogenic response to water deprivation, and a reduction in spontaneous movements [22]. The expression of AT₂ receptor is known to be elevated in tissue undergoing wound repair, as well as in vascular injury and cardiac hypertrophy associated with myocardial infarction [20,23]. In view of some of these findings, it has been suggested that AT2 receptor actions may oppose some of the functions mediated by the AT₁ subtype receptor i.e., in blood pressure regulation, so that in homeostasis, the overall response to Ang II is a balanced activation of downstream effector pathways. A caveat of this hypothesis stipulates that AT2 receptor expression in the cardiovascular system is usually less than that of AT, receptor. #### CARDIAC ANGIOTENSIN II—MEDIATED SIGNALING Ang II activation of the AT₁ receptor is characterized by the activation of a heterotrimer of G proteins and this ligand-receptor complex is known to undergo immediate endocytosis [9]. Experiments utilizing both adult and neonatal cardiac fibroblasts have demonstrated that AT₁ receptor activation is associated with stimulation of phospholipase C β (PLC β) [24]. It is suggested that the $G_{\alpha/11\alpha}$ is associated with the activation of PLC [25]. Activation of $G_{q/11\alpha}$ (via the AT_1 receptor) facilitates PLCβ-mediated cleavage of phosphoinositol 4,5-bisphosphate (PIP-2) to inositol 1,4,5-triphosphate (IP₃) and 1,2 diacylglycerol (DAG). IP₃ and DAG are well-known intracellular mediators of a unique series of signaling pathways that may function in parallel. The release of IP₃ leads to a rapid rise in intracellular Ca²⁺ in the cytosol of myocytes; this phenomenon is independent of the external Ca2+ concentration and culminates in an acute positive inotropic effect in heart [26,27]. On the other hand, DAG binding is known to activate a membrane-associated protein kinase C (PKC)-dependent pathway [28], which has been postulated to follow one of several downstream sequences [24]. MAPK is thought to play a pivotal role in coordinating external stimuli with nuclear events, and this cascade is implicated in the induction of myocardial protein synthesis and is associated with the development of cardiac hypertrophy [29]. Characterized as cytosolic serine/threonine kinases, MAPKs are triggered by a number of growth stimuli in addition to Ang II, including endothelin-1 [30]. Ang II rapidly induces tyrosine kinase proteins, which are immunologically related to MAPK 42- and 44-kD, as well as increases the activity in the downstream kinase, PSK, in both cardiac myocytes and fibroblasts [29]. Maximal stimulation of cardiac fibroblasts is associated with an initial peak of elevated MAPK activity (2-5 minutes), followed by a smaller sustained plateau of activity (up to 3 hours), and both phases of MAPK activation require AT, receptor binding [31]. In adult cardiac fibroblasts, sustained elevation of MAPK activity is necessary for Ang II induction of increased DNA synthesis and cell proliferation [31]. While it is suggested that activation of MAPK is a critical component for mitogenic events in cardiac fibroblast cells, the relatively small increase in DNA synthesis suggests that MAPK may work jointly with other factors for the occurrence of optimal Ang II-mediated cardiac tissue
remodeling. In this respect, concerted chelation of Ca2+ and downregulation of PKC have been found to interfere with Ang II induction of MAPK [24,32]. Ang II-mediated activation of MAPK both in cardiac myocytes and fibroblasts is known to induce expression of early response genes such as Egr-1, c-fos, c-jun or c-myc [24,26]. Since the c-fos gene promoter contains a nucleotide sequence designated the serum response element (SRE), it may bind factors such as p62^{TCF}, which is the substrate for MAPK phosphorylation [24]. Furthermore, in neonatal cardiac myocytes and fibroblasts, AT₁ activation has been also associated with stimulation of tyrosine kinase and ribosomal S6 protein kinase (RSK) [33,34]. Finally, Ang II has been shown to activate soluble tyrosine kinases belonging to the Janus kinase (JAK) family in vascular smooth muscle cells [35]. Activated JAK proteins will specifically phosphorylate a family of proteins known as "signal transducers and activators of transcription" (STAT). Hence, Ang II leads to the translocation of STAT protein into the nucleus [36]. In cultured neonatal cardiac fibroblasts, Ang II induces STAT protein phosphorylation, translocation of STAT into the nucleus, and initiation of gene transcription [37]. Therefore, it is apparent that Ang II may rapidly stimulate the growth of myocardial cells involved in cardiac remodeling by the activation of several systems. Desensitization of the AT₁ receptor has been suggested to function as an autoregulatory mechanism to modulate the potent effects of Ang II in the heart. This may occur via covalent modification of the AT, receptor protein, as well as by internalization and recycling of this protein [2]. The hypothesis that desensitization is initiated by the phosphorylation of the AT, receptor by specific kinases requires further investigation. On the other hand, internalization of the AT₁ receptor has been suggested to be critical for long-term regulation of the AT₁ receptor density [9]. Using vascular smooth muscle cells, studies have shown that Ang II-induced internalization of the AT₁ receptor may autoregulate the transcription of the AT₁ receptor gene [38]. #### CARDIAC FIBROSIS AND HEART FAILURE In cardiac fibroblasts, the AT₁ receptor participates in the induction of extracellular matrix (ECM) protein component synthesis and gene expression-mediating mitogenic responses [39,40]. We and others have shown that in vivo administration of Ang II to experimental animals is associated with increased steady-state cardiac collagen and fibronectin [41,42]. Experimental studies and clinical trials undertaking the investigation of ACE inhibition and AT₁ blockade provide evidence that their use is associated with normalization of cardiac fibroblast growth and deposition of myocardial ECM mediated by fibroblasts [43-46]. In this respect, chronic treatment of infarcted heart with either ACE inhibitors or AT₁ receptor antagonists is effective in partial attenuation of collagen protein deposition, which is characteristic of these hearts [44]. The factor(s) responsible for persisting interstitial fibrosis remain obscure. It may be argued that ACE inhibitor treatment may potentiate bradykinin in the heart by inhibition of the kininase II enzyme (i.e., ACE); however, the relevance of bradykinin in this role is brought into question by results of a comparative study whereby enalapril (an ACE inhibitor) and losartan treatment were associated with equal attenuation of myocardial fibrosis in the noninfarcted left ventricle of experimental rats [44]. Thus, it seems that the efficacy of ACE inhibition lies in the ability of these agents to suppress Ang II in the stimulation of cardiac fibroblasts in post-MI heart. The critical role of the cardiac AT₁ receptor in the stimulation of cardiac fibrosis is underscored by results of different studies. A study of infarcted tissue in post-MI rats demonstrated that fibrosis is marked by an increase in locally produced Ang II via increased ACE activity and AT₁ receptor density [47]. These investigators also reported that these changes were localized to fibroblasts and myofibroblasts, which appeared at the site of infarction 1 week from induction of damage [48]. Furthermore, a 4.2-fold and 3.2-fold increase in AT_{1A} and AT₂ mRNA levels, respectively, were found in infarcted regions, while a ~ twofold increase in these mRNAs for both AT12 and AT2 receptors were observed in noninfarcted regions of the myocardium in the 7-day post-MI group [23]. Although small increases in interstitial fibrillar collagens may be beneficial for optimization of active relengthening of myocytes and function of the heart as a suction pump, excessive collagen accumulation contributes to increased myocardial stiffness resulting in a degeneration of cardiac function that is consistent with the development of congestive heart failure [49,50]. Hence, altered synthesis of the ECM may play a major role in the development of heart failure. #### CARDIAC COLLAGEN METABOLISM AFTER MYOCARDIAL INFRACTION Chronic myocardial infarction induces morphological and molecular alterations in the infarcted and noninfarcted regions of the heart and these changes are collectively referred to as ventricular remodeling [51]. These alteration are accompanied by the occurrence of significant left and right heart growth with attendant pulmonary and liver congestion [52]. Relatively little information is available with regard to the role of nonmyocytes in the process of remodeling of viable cardiac tissue after myocardial infarction [52-54]. Fibrillar collagen types I and III are widely expressed in many organs, including the heart. These molecules aggregate to form myocyte-myocyte and myocyte-vessel struts which impart tensile strength to the myocardium and thereby mediate passive stiffness of both left and right ventricular chambers. Cardiac fibroblasts account for the synthesis of fibrillar collagen types I and III in the heart, and unlike terminally differentiated cardiac myocytes, may proliferate under certain pathological conditions [55]. It appears that phenotypically transformed fibroblastlike cells, i.e., myofibroblasts, which express fibrillar collagens, AT, receptors, ACE, and α-smooth muscle actin are the primary contributors in mediating wound healing in the heart [48,56]. It is known that altered synthesis of this matrix may play a major role in the development of heart failure [57,58]. Furthermore, fibroblasts and/or myofibroblasts are mitotically active in heart failure, and the active DNA-synthesizing cells in the surviving myocardium of infarcted rat heart have been identified as nonmyocytes [46]. Results of either clinical or experimental studies from this lab [59] and others [46,60-62] provide evidence for the appearance of total collagen protein in the left ventricle remote to the infarct site. Nevertheless, Sirius red dye staining or 4-hydroxyproline measurement provides little information on the relative contribution of specific collagen subtypes in cardiac fibrosis. Furthermore, very little is known about the passive compliance properties of right ventricular muscle in this experimental model, although these changes may herald the loss of normal diastolic function. There is limited information about the alteration of cardiac collagen mRNA abundance and characterization of the collagen subtypes in the hypertrophied noninfarcted tissues in this model of heart failure. Knowlton et al. (1992) studied acute changes (1-7 days) in fibronectin isoform and fibrillar collagen expression specifically within the infarcted regions in rabbit heart (reparative fibrosis) and noted a rapid increase in total fibronectin and collagen steady-state mRNA abundance after 1 and 2 days, respectively [63]. We have undertaken studies to resolve the expression of collagen mRNA in both ventricles remote to the infarct. Immunohistochemical studies were carried out to determine the pattern of deposition for specific collagen types I and III after myocardial infarction, and a comparison of mRNA and protein expression of specific fibrillar collagens in noninfarcted left and right heart is offered. To study the role of AT, receptor activation in the expression and deposition of different collagens, we investigated the effects of losartan on steady-state collagen mRNA abundance. Myocardial metalloproteinase (MMP) activities in sham control and experimental hearts were also investigated to assess the status of matrix removal in noninfarcted cardiac tissue. #### MATERIALS AND METHODS #### Experimental model All experimental protocols for animal studies were approved by an appointed Animal Care Committee located at the University of Manitoba, Canada, following guidelines established by the Medical Research Council of Canada. Myocardial infarction was produced in male Sprague-Dawley rats (weighing 200-250g) by surgical occlusion of the left coronary artery as described previously, with minor modifications [52]. In short, after isofluorane anesthesia, the thorax was opened by cutting the third and fourth ribs, and the heart was extruded through the intercostal space. The left coronary artery was ligated about 2-3 mm from the origin with a suture of 6-0 silk, and the heart was repositioned in the chest. Closure of the wound was accomplished by the use of a purse-string suture. Throughout the operation, ventilation of the lungs was maintained by positive-pressure inhalation of 95% O₂ and 5% CO2 mixed with isofluorane. The advantage of isofluorane over other aromatic anesthetics is that no excessive fluid secretion in the respiratory tract occurs with its use, and therefore the animals did not suffer from respiratory distress during the operation. Sham-operated animals were treated similarly, except that the coronary suture was not tied. The mortality of all animals operated upon in this fashion was about 45% within 48 hr. Only animals with large infarcts (≥40% of the left ventricular free
wall) were used in this study. Because we were concerned with alterations in myocardium remote to the infarct site, including the right ventricle, and since this chamber only becomes hypertrophied after relatively large infarction in this model [52,64], determination of the average infarct size under our conditions was necessary. Briefly, a group of n = 7 animals were subjected to coronary ligation surgery as described above, and the percentage of infarcted left ventricle was estimated 4 weeks after coronary ligation by planimetric techniques, as previously described [46]. #### RNA extraction Myocardial total RNA was isolated from viable left and right ventricle by the method of Chomczynski and Sacchi [65] at 3, 7, 14, 28, and 56 days after coronary occlusion. Briefly, animals were sacrificed and the heart was rapidly excised. The atria were removed and the viable left ventricle and right ventricle were washed twice with a solution containing 10 mM 3-[N-morpholino] propanesulfonic acid (MOPS) and 10 mM sodium ethylenediaminetetraacetate (EDTA). Left and right ventricular tissue were immediately frozen and maintained at -196°C in liquid nitrogen until use. The frozen samples were then ground with mortar and pestle while immersed in liquid nitrogen. Powdered samples were suspended in solution D (4M guanidine isothiocyanate, 25mM sodium citrate, pH 7.0, 0.5% Nlaurylsarcosine, 0.1 M 2-mercaptoethanol) and subjected to polytron homogenization. Tissue homogenates were subjected to phenol and chloroform extraction. RNA pellets were dissolved in diethyl pyrocarbonate (DEPC) treated water, and the concentration of nucleonic acid was calculated from the absorbance at 260 nm prior to size fractionation #### Northern blot analysis Twenty µg of total RNA was electrophoresed in a 1.2% agarose/formaldehyde gel, and the fractionated RNA was transferred to a 0.45 mm positive charge-modified nylon membrane (Zeta-Probe membrane, Bio-Rad). The RNA were covalently cross-linked to the matrix using UV radiation (UV Stratalinker 2400, Stratagene). Using an INNOVA 4000 incubator (New Brunswick Scientific) oscillating at a rate of 60 rotations per minute, blots were prehybridized at 43°C for 6-16 hours. Each membrane was hybridized with ³²P-labeled cDNA probes (specific activity >10° cpm per µg DNA) at 43°C for 16–20 hr. cDNA probes were labeled by a random primer DNA labeling system using Klenow fragment. Filters were exposed to x-ray film (Kodak X-OMAT) at -80°C with intensifying screens. cDNA fragment for human procollagen type $\alpha 1(I)$ (Hf 677) [66], human type $\alpha 1(III)$ (Hf 934) [67], and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [68] were obtained from the American Type Culture Collection. Rat 18S rRNA (5'-ACGGTATCAGATCGTCTTCGAACC-3') [69] was synthesized using the Beckman Oligo 1000 DNA synthesizer, with amidites and solutions supplied by Glen Research (Sterling, VA, USA). Results of autoradiographs from Northern blot analysis were quantified by densitometry (Bio-Rad imaging densitometer GS 670). The signals of specific mRNAs were normalized to those of GAPDH mRNA and 18S ribosomal RNA to normalize for differences in loading and/or transfer of mRNA. #### **Immunohistochemistry** A total of 36 rats were used in this assay; 4 sham and 5 post-MI rats were included in groups timed at 7, 14, 28, and 56 days after surgery. After anesthetic administration with a ketamine: xylazine mixture, the animal was sacrificed by decapitation. Hearts were rapidly excised from the thoracic cavity and immediately immersed in a 1M phosphate buffered saline (PBS) solution. The atria were removed and the viable left ventricle remote to infarction zone and right ventricle were washed twice, immersed in OCT compound (Miles Inc.), and stored frozen at -80°C. Serial cryostat sections (7 µm thick) of the left and right ventricles were mounted on gelatin coated slides, prefixed in 1% paraformaldehyde, and allowed to air-dry. At least 6 sections from each ventricle of each group (sham and experimental) were processed, and representative sections were chosen. Immunohistochemical staining was performed by the indirect immunofluorescence technique [70]. In brief, after rinsing in PBS, the tissue section was incubated with the primary antibody, against either collagen I or collagen III. Goat polyclonal anti-types I and III collagen (Southern Biotechnology Associates Inc, Alabama, Ga., USA) at a 0.4 mg/mL concentration were diluted 1:100 with 1% BSA in PBS and applied as the primary antibodies. The cross-reactions of the antibody for collagen type I (or III) with collagen type III (or I) is less than 10%, as indicated by the manufacturer. After incubation overnight at 4°C, the sections were subsequently washed three times (5 minutes each) in PBS and incubated with biotinylated anti-goat IgG secondary antibody (Amersham, Canada) for 90 minutes. The tissues were rinsed again three times in PBS and treated for 90 minutes with Texas Red-labeled streptavidin and FITC-labeled streptavidin (Amersham, Canada) for collagens I and III, respectively. Finally, the slides were mounted with Vectashield (Vector Laboratories, California) and coverslipped. The tissue sections were examined under a Nikon Labophot microscope equipped with epifluorescence optics and appropriate filters, and the results were recorded by photography on Kodak TMAX 400 black and white film. # Determination of cardiac total collagen Viable left and right ventricles from sham-operated and MI groups were separated, cut into small pieces, dried, and weighed. Tissue samples were digested in 6M HCl for 16hr at 105°C. Cardiac hydroxyproline was measured according to the method of Chiariello et al., [71] and modified by Pelouch et al., [59]. A stock solution containing 40 mM of 4-hydroxyproline in 1 mM HCl was used as standard. Collagen concentration was calculated multiplying hydroxyproline levels by the factor 7.46, assuming that interstitial collagen contains an average of 13.4% hydroxyproline. The data are expressed as µg collagen per mg dry tissue [71]. #### Zymography: detection of cardiac matrix metalloproteinase activity Viable left and right ventricular muscle were ground with mortar and pestle, while immersed in liquid nitrogen. Powdered tissue (50 mg) was suspended in 1 mL in phosphate-buffered saline (pH 7.4) containing 100 µg/ml phenylmethylsulfonyl fluoride (PMSF) and 2µg/ml leupeptin and incubated at 4°C with continuous agitation for 20 hr to extract metalloproteinases. The sample was then centrifuged at 10,000 rpm at 4°C for 10 min. The resulting supernatant was used for total protein assay and zymographic analysis. Total protein was determined by using the bicinchoninic acid protein assay kit (Sigma) [72]. Myocardial matrix metalloproteinase (MMP) activity was detected by zymography [73]. Gelatin (final concentration 1 mg/mL) was added to a 7.5% standard sodium dodecyl sulfatepolyacrylamide gel eletrophoresis (SDS-PAGE). Gelatin was used as a substrate because it is readily cleaved by connective tissue-degrading enzymes and is easily incorporated into polyacrylamide gels. Thirty µg of protein was loaded per lane without reduction and boiling to maintain the activity of MMP, and samples were run at 15 mA/gel. After electrophoresis, gels were washed two times (15 min/wash) in 25 mM glycine (pH 8.3) containing 2.5% Triton X-100 with gentle shaking at room temperature to eliminate SDS. Gels were rinsed and incubated at 37°C for 18 hr in substrate buffer (50 mM Tris-HCl, pH 8.0, 5 mM Ca₂Cl). After incubation, gels were stained in 0.05% coomassie blue R-250 for 30 min and then destained in acetic acid and methanol. Gels were then dried and scanned using a CCD camera densitometer (Bio-Rad imaging densitometer GS 670) for relative lytic activity. ## Passive pressure-volume relationship in right ventricle Myocardial stiffness was determined according to the methods described by Raya et al., [74]. Briefly, rat hearts from both sham-operated and infarcted groups were subjected to Langendorff perfusion with Krebs-Henseleit solution. A latex balloon, attached to a stiff plastic tube, was inserted into the right ventricle via the tricuspid valve. The other end of the tube was connected to a pressure transducer and a 1 mL syringe via a three-way stopcock. After 15 min equilibration, the heart was arrested by perfusion with a 15 mM potassium Krebs-Henseleit solution. The volume of the balloon was adjusted to reduce the pressure to -5 mmHg. Steady-state right ventricular pressure was recorded during increments in balloon volume (10 µl) until the pressure increased to 50 mmHg. The data was computed in real time and analyzed using a dedicated IBM PC with AcqKnowledge (version 3.0) software (Biopac, Harvard Apparatus Canada). # Administration of losartan and ACE inhibitor to experimental animals In some experiments, losartan (AT₁ receptor antagonist) or ramipril (ACE inhibitor) were administered to experimental animals with large MI. All treatments were initiated one day following coronary occlusion and were continued for 7-28 days post-MI. Ramipril was dissolved into saline at a concentration of 1 mg/ml. It was administered to animals at a dosage of 1 mg/kg/day in conscious animals and was given by gavage once a day for 7 days [75,76]. For comparative purposes, agematched animals with large MI and sham-operated controls were administered vehicle by daily gavage (0.9% saline). Losartan (15 mg/kg/day) was administered by implanting osmotic minipump to experimental animals for 7, 14, and 28 days [60]. To achieve 28 days treatment, two 14-day osmotic minipumps (model 2002) were implanted consecutively. As above, age-matched animals with large MI, as well as sham-operated control animals, were administered vehicle. The animals were decapitated after treatment with either losartan or ramipril, and left and right ventricular tissues were subsequently used to assess fibrillar collagen gene expression.
ELISA for cardiac 4-prolyl hydroxylase Viable left ventricular tissues (n = 36) were frozen in liquid nitrogen and ground to powder, followed by homogenization in 10 mM Tris-HCl buffer, pH 7.8, with 0.1 M NaCl, 0.1 M Glycine, 0.1% Triton X-100, 20 mM EDTA, 10 mM Nethylmaleimide, 1 mM PMSF, 1 mM P-hydroxymercuribenzoic acid, and 1 mM dithiothreitol (DTT). The homogenized samples were centrifuged at 20,000 × g at 4°C for 30 min, and the supernatants were transferred to fresh tubes for ELISA, using the kit supplied by Fuji Chemical Industries, Ltd. (Toyama, Japan) [77]. Two monoclonal antibodies were employed; the first was a capture antibody in solid phase while the secondary antibody was linked to horseradish peroxidase. Samples were diluted 1:20 in distilled water prior to quantification of proteins by the BCA method (Sigma, St. Louis, Mo., USA) [72]. #### Statistical analysis All values are expressed as mean ± S.E.M. The differences between control and experimental sample at each time point were calculated using the student's t-test. The Northern blot data in each figure was expressed as percentage of control according to the method of Fisher and Periasamy [78]. One-way analysis of variance was used for multigroup comparisons (SigmaStat, version 1.0). Significant differences among groups were defined by a probability of less than 0.05. #### RESULTS #### Infarction size and cardiac hypertrophy Transmural infarct size in the five surviving animals used for this aspect of the study was 42% ± 3% of the total left ventricular circumference. Experimental animals were characterized by the presence of large MI which was comparable to values reported earlier which was associated with development of time-dependent right and left ventricular hypertrophy (table 1) [52,79,80]. Early (3 days) after induction of MI, neither right ventricle wet weight (RVW) nor left ventricle wet weight (LVW) was significantly different from control ventricles. It is pointed out that at these relatively early time points, scar formation in the infarcted left chamber is known to be incomplete, and thus the process of thinning of the necrotic free wall had not yet completely evolved. In the 7, 14, 28, and 56 day experimental groups, a significant increase in the mass of right and viable left ventricular tissue was noted by all indices (RVW, LVW, RV/BW, LV/BW) when compared to values from sham-operated control hearts. Thus the incidence of hypertrophy for right and left ventricular chambers noted in this study were comparable to our previous findings [52]. ACE inhibitor therapy (7 days) was associated with a significant reduction of LVW $(0.50 \pm 0.02 \,\mathrm{g})$ in ramipril-treated animals vs. $0.64 \pm 0.02 \,\mathrm{g}$ in nontreated MI Table 1. Cardiac hypertrophy and transmural scar weight in experimental rats at 3, 7, 14, 28, and 56 days after induction of myocardial infarction | | 3.6 | 3-day | 7-4 | 7-day | 14 | 14-day | 28-day | day | 99 | 56-day | |-----------------------------|-----------------|-----------------|-----------------|------------------|-----------------|----------------------------------|-----------------|-----------------------|-----------------|-----------------------| | Parameters | Sham | MI | | BW, g | 246 ± 8.4 | 219 ± 11* | 280 ± 7.0 | 269 ± 9.6 | 354 ± 5.7 | 340 ± 5.5 | 409 ± 13 | 415 ± 13 | 507 ± 9.4 | 509 ± 12 | | LVW, g | 0.57 ± 0.01 | 0.56 ± 0.03 | 0.64 ± 0.02 | 0.66 ± 0.03 | 0.79 ± 0.01 | $0.86 \pm 0.02*$ | 0.78 ± 0.02 | $0.87 \pm 0.02 \star$ | 0.89 ± 0.03 | $0.99 \pm 0.03*$ | | Scar, g | : | 0.21 ± 0.03 | : | 0.21 ± 0.01 | : | 0.25 ± 0.03 | : | 0.28 ± 0.03 | : | 0.29 ± 0.03 | | RVW, g | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.01 | $0.22 \pm 0.02*$ | 0.25 ± 0.01 | $0.30 \pm 0.02 \star$ | 0.23 ± 0.01 | $0.31 \pm 0.03*$ | 0.23 ± 0.01 | $0.48 \pm 0.05 \star$ | | LV/BW, mg/g | 2.02 ± 0.30 | 2.57 ± 0.09 | 2.27 ± 0.04 | $2.45 \pm 0.04*$ | 2.22 ± 0.06 | $2.53 \pm 0.05 \star$ | 1.92 ± 0.04 | $2.09 \pm 0.04*$ | 1.75 ± 0.06 | $1.95 \pm 0.04*$ | | RV/BW, mg/g 0.74 ± 0.04 | 0.74 ± 0.04 | 0.89 ± 0.08 | 0.68 ± 0.04 | $0.82 \pm 0.03*$ | 0.71 ± 0.04 | 0.71 ± 0.04 $0.88 \pm 0.03*$ | 0.57 ± 0.02 | 0.76 ± 0.08 | 0.45 ± 0.03 | $0.94 \pm 0.11*$ | Note: MI indicates experimental animals with large left ventricular myocardial infarction; sham, noninfarcted age-matched control animals; BW, body weight; LVW, left ventricle wet weight. Results are mean ± SEM of 8-10 experiments. *P < 0.05 vs, sham-operated control at each time point. Figure 1. A, representative agarose gel stained with ethidium bromide to visualize the 28S and 18S rRNA bands in total RNA samples extracted from cardiac ventricular tissues. B, Autoradiograph from Northern blot analysis wherein each lane was loaded with 20 µg left ventricular total RNA extracted from noninfarcted control animals (sham, lanes 1-5) and animals 14 days after myocardial infarction (MI, lanes 6-11). The control group was age-matched. Hybridization of fractionated total RNA with cDNA probes for procollagen \(\alpha I(I), \) procollagen \(\alpha I(III) \) (i.e., collagen types I and III, respectively), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 18S rRNA indicate relative steady-state mRNA levels for each gene tested. rats) and RVW (0.16 \pm 0.01g in ramipril-treated animals vs. 0.19 \pm 0.02g nontreated MI rats) in experimental animals. Regression of left and right ventricular hypertrophy was also found in experimental animals treated with losartan for 28 days when compared with nontreated MI groups. #### Cardiac collagen mRNA abundance We addressed mRNA abundance changes in the myocardium at several points very early after the induction of infarction (3, 7, and 14 days), prior to the development of overt heart failure. For comparative purposes, we also assayed collagen mRNA expression at later stages of heart failure (28 and 56 days). Verification of the integrity of total fractionated RNA samples are provided by visualization of the 28S and 18S rRNA bands in a representative photograph of an agarose gel stained with ethidium bromide (figure 1, upper panel). Specific hybridization of cDNA probes Figure 2. Estimation of the relative steady-state abundance of viable left (LV) and right ventricular (RV) collagen types I and III mRNAs at different times after myocardial infarction (MI = experimental animals) or in noninfarcted controls (sham). A, Collagen type I/GAPDH signal ratio in LV; B, Collagen type III/GAPDH signal ratio in LV; C, Collagen type I/GAPDH signal ratio in RV; and D, Collagen type III/GAPDH signal ratio in RV. The data were expressed in arbitrary densitometric units, normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) autoradiographic band intensity, and noted as a percent value of control expression levels (%). The data depicted is the mean \pm SEM. of 4-8 experiments. *P < 0.05 for each experimental group value vs. age-matched sham operated values. revealed characteristic mRNA bands, and these are shown in autoradiographs of representative blots probed with cDNAs of collagen types I and III, GAPDH, and an oligonucleotide specific for 18S rRNA (figure 1, bottom panel). In the viable left ventricle, collagen type I mRNA abundance was increased significantly when compared with sham-operated animal at 3 days after MI. Furthermore, collagen type I mRNA expression was increased ~9-fold in the experimental samples 7 days after induction of MI. The mRNA abundance for this collagen sub-type remained significantly elevated over control levels at all time periods within the current experimental design (14, 28, and 56 days) (figure 2A). Similarly, in the right ventricle, collagen type I gene mRNA abundance was found to be significantly elevated when compared with samples of sham-operated right ventricular total Figure 3. A, A representative agarose gel stained with ethidium bromide to visualize the 28S and 18S rRNA bands in total RNA samples extracted from viable left ventricular tissues at 4 weeks after MI. B, Autoradiograph from Northern blot analysis wherein each lane was loaded with 20 µg total RNA extracted from sham animals (lanes 1-5), myocardial infarction (MI, lanes 6-10), and MI treated with losartan (lanes 11-15) for 4 weeks after MI. All losartan treatment regimens were initiated one day following coronary occlusion. Hybridization of fractionated total RNA with cDNA probes for collagen types I and III and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) indicate relative steady-state mRNA levels for each gene tested. RNA at 3 days. Right ventricular collagen type I mRNA expression peaked in the experimental animals (~2.3-fold vs. control level) at 14 days after MI. The right ventricular collagen type I/GAPDH ratio remained elevated in the 28 and 56 day experimental groups, and this was comparable to the pattern of collagen type I expression in the left ventricle after coronary ligation (figure 2C). Ventricular collagen type III expression was elevated in both left and right ventricles at all times after the induction of infarction; however, the relative increases in expression of collagen type III mRNA were less dramatic when compared to the increases in collagen type I mRNA abundance (figure 2B and D). #### Effect of losartan on collagen mRNA abundance As described above, fibrillar collagen mRNA expression was significantly increased in right and left ventricular myocardium at four weeks after induction of MI. For this reason, and because we wished to investigate the effect of chronic AT, blockade on mRNA expression, we chose to treat experimental animals with losartan for 4 weeks immediately after infarction. Northern blot analysis (figure 3) revealed that left ventricular fibrillar collagen (types I and III) mRNA expression in treated experimental animals was not different from that observed in the
untreated post-MI Figure 4. Effect of losartan (15 mg/kg/day) on total collagen concentration in viable left (LV) and right ventricular tissues (RV) at different times after myocardial infarction (MI). All losartan treatment (2 and 4 weeks) regimens were initiated one day following surgical coronary occlusion. Data shown is the mean \pm SEM of 8-10 experiments and were expressed as $\mu g/mg$ dry weight. $\star P < 0.05$ and #P < 0.05 vs. sham-operated control and nontreated post-MI heart samples, respectively. group. In other words, both treated and untreated experimental groups were found to have significantly elevated left ventricular fibrillar collagen mRNA expression in comparison to control values. #### Total collagen protein (4-hydroxyproline) in post-MI hearts and the effect of losartan Total cardiac collagen concentration (determined by biochemical analysis of cardiac 4-hydroxyproline concentration) was significantly increased in viable left and right ventricles at 14 and 28 days post-MI (figure 4). We previously have observed that viable left and right ventricles remote to infarction are marked by progressive accumulation of immunoreactive fibrillar collagens at days 14, 28, and 56 after MI (data not shown). Two-week losartan treatment had no effect on cardiac collagen protein concentration in the left ventricle; a significant decrease was seen in treated right ventricular tissue when compared with values from nontreated experimental animals (figure 4). On the other hand, 4-week losartan treatment was associated with a significant decrease in collagen protein deposition in both the left and right ventricles when compared with nontreated post-MI rat hearts. Figure 5. Representative zymography showing matrix metalloproteinase (MMP) activity in viable left ventricle (7-days post-MI) and scar tissues (7- and 14-days post-MI). Lane 1 is a low molecular weight marker, lanes 2-3 represent samples from sham-operated animals, lanes 4-5 are from viable left ventricular tissue, lanes 6-7 are 7-day scar samples, and lanes 8-9 represent 14-day scar. MMP-1 (54kDa), MMP-2 (72kDa), and MMP-9 (92kDa) are indicated by differences in motility through the gel. #### Cardiac matrix metalloproteinase activity in surviving post-MI heart and scar Cardiac MMP activity was detected by the appearance of a lytic band in gelatincontaining SDS-PAGE gels (representative zymogram, figure 5). All assays were conducted in the presence of serine proteinase inhibitors, PMSF, and leupeptin to rule out the possible nonspecific lysis of gelatin proteins bands by serine proteinases. The specificity of this method was verified by use of 1, 10 phenanthroline, which abolished all specific gelatinolytic activity. A major lytic band from viable tissue corresponded to MMP-2 (gelatinase A, 72kDa), and two lytic bands MMP-1 (54kDa) and MMP-9 (92kDa) were observed in the scar tissues (figure 5) [81] A significant increase in MMP-2 activity in viable (noninfarcted) left ventricle was observed at days 7, 14, 28, and 56 after MI. On the other hand, MMP-1 activity was not significantly altered in viable post-MI tissue, but was markedly increased in the scars of experimental animals. #### Right ventricular passive pressure-volume relation To test whether the presence of increased collagen concentration in the interstitium of the right ventricle after left ventricular infarction is indeed accompanied by decreased right ventricular tissue compliance, we obtained data to construct passive pressure-volume curves obtained from right ventricles of 56-day sham-operated and age-matched experimental animals (figure 6). The right ventricular pressure-volume curve from 56-day experimental animals was characterized by a significant leftward shift. This increment of right ventricular chamber stiffness corresponds well with significantly increased myocardial 4-hydroxyproline concentration levels in animals with moderate heart failure [59]. Figure 6. Right ventricular pressure-volume relation in control (• = sham) rats and in 56-day experimental (o = post-MI) animals. The data depicted is the mean ± SEM of 5 experiments wherein *P < 0.05 at each time point, compared to control values. #### Effect of AT₁ receptor blockade on cardiac prolyl 4-hydroxylase concentration A 68.4% and a 68.1% increase in immunoreactive cardiac prolyl 4-hydroxylase concentration was observed in viable left ventricular tissue at 2 and 4 weeks after induction of MI when compared to control values. Treatment of experimental animals with losartan for 2 weeks had no effect on prolyl 4-hydroxylase concentration when compared to values derived from untreated post-MI animals. Treatment of infarcted animals with losartan for 4 weeks was associated with a significant decrease in the immunoreactive 4-hydroxylase concentration in viable tissues (figure 7). #### DISCUSSION Necrosed tissue in infarcted myocardium undergoes gradual resorption and becomes replaced by scar tissue (reparative fibrosis), and continued cardiac function depends on remodeling of the surviving myocardial tissue [82,83]. However, the process and clinical consequences of the wound healing response in regions of the heart remote to the site of infarction (reactive fibrosis) are unclear [39]. Cardiac remodeling in these hearts is characterized by hypertrophy of cardiac myocytes and hyperplasia of nonmyocytes (cardiac myofibroblasts). In the present study, we examined both synthetic and degradative aspects of collagen metabolism in hypertrophied and Figure 7. Effect of losartan (15 mg/kg/day) on prolyl 4-hydroxylase (PH) concentration in viable left ventricles in (1) sham-operated animals, (2) post-myocardial infarction (post-MI) animals, and (3) post-MI animals treated with losartan for either 2 or 4 weeks. All losartan treatment regimens were initiated one day following coronary occlusion. The data depicted is the mean ± SEM of 6 experiments and were expressed as $\mu g/mg$ protein. *P < 0.05 and #P < 0.05 vs. sham-operated control and nontreated post-MI heart samples, respectively. failing myocardium remote to the site of MI. Right ventricular fibrosis was noted in experimental animals and was associated with significantly increased chamber stiffness in the 56-day experimental group. The time-dependent increment of collagen expression in the right ventricle was similar to that of noninfarcted left ventricular tissue. Furthermore, acutely elevated mRNA expression of cardiac fibrillar collagen species in the prefailure experimental animals is uncoupled from concomitant collagen protein deposition. As collagen mRNA levels remain significantly increased into the chronic postinfarct phase, they are, at that time, associated with cardiac fibrosis. An increase in MMP activity was observed in areas remote to the site of infarction in chronically infarcted animals. As losartan treatment of experimental animals was not associated with normalization of collagen mRNA levels, we suggest that its antifibrotic properties may be effected at the posttranscriptional level. Our previous immunohistochemical study of post-MI heart demonstrated that both collagen types I and III progressively accumulate in the interstium of experimental viable left and most notably in right ventricles (data not shown). Our determination of 4-hydroxyproline concentration allowed for the quantification of "absolute" cardiac collagen concentration and highlighted the temporal differences between the onset of increased collagen mRNA abundance and collagen types I and III protein deposition in the noninfarcted heart. The current results also extend a recent report which focused on immunoreactive collagen types I and III in the infarcted zone in rats as well as another that described changes in extracellular matrix in failing human heart [84,85]. Our data support the hypothesis that the entire heart is involved in the wound healing response following MI. Furthermore, a distinct lag period among gene and protein activation was observed in noninfarcted tissues taken from the 3 and 7 day (acute study) experimental animals. The sustained elevation of mRNA abundance of type I and type III collagen seen in the present study suggests that biventricular reactive fibrosis continues into chronic heart failure (8 weeks) and that a progressive rise in collagen concentration occurs. Nonlinearity among collagen gene activation and collagen protein deposition has been reported in aging rats [86], and it is suggested that this may be due to the involvement of complex posttranslation modification processes, i.e., hydroxylation, cleavage and secretion steps in collagen metabolism. We have previously characterized the development of congestive heart failure in experimental animals with large infarction (≥ 40% of the left ventricular free wall) by noting the progression of cardiac dysfunction and the presence of clinical signs of failure, including the occurrence of cardiac hypertrophy at points up to and including 16 weeks after infarction [52,64]. It is well known that increased interstitial collagen concentration (reactive cardiac fibrosis) results in decreased cardiac compliance [55]. Little information is available in the literature with respect to the appearance of collagen in the right ventricle; nevertheless, the clinical implications of right ventricular fibrosis are considerable in view of the eventual contractile failure of this chamber and subsequent development of systemic congestion in severe stages of heart failure [1]. We observed that total collagen concentration was found to be increased not only in viable left ventricle but also in the right ventricle in 2, 4, and 8 week experimental animals. It is known that excessive deposition of collagen proteins may impair heart function because of morphological and functional separation of myocytes, with subsequent inhibition of electrical coupling of these cells and decreased ventricular compliance [85,87]. Studies using the rat model
of chronic infarction have revealed that the apparent left ventricular stiffness exhibited a pattern of biphasic time-dependent changes, increasing up to one day and then progressively decreasing until 22 days [74]. Infarct expansion is associated with increased left ventricular volume, and thus the effects of volume predominate over changes in viable myocardial stiffness in the left ventricle. To avoid this problem, Litwin and coworkers used noninfarcted left ventricular papillary muscle to study compliance and found that stiffness was increased 42 days after MI [88]. In the present study, right ventricular stiffness was significantly increased in the 56-day experimental group. Thus, increased cardiac collagen concentration in the right ventricle was associated with altered passive compliance of this chamber in these animals. Recent studies have provided support for the hypothesis that marked myocardial fibrosis and increased passive stiffness are critical determinants for the transition from compensated hypertrophy to heart failure in spontaneously hypertensive rats [89]. Our results support the hypothesis that fibrosis is associated with the transition of infarcted heart from prefailure stage (28 days post-MI) to moderate and severe congestive heart failure (56 days post-MI) and that this change is associated with global changes in heart muscle stiffness. The precise mechanism(s) for increased collagen expression and for the development of right and left ventricular fibrosis after induction of MI is unclear. As we observed similar patterns of collagen mRNA alteration in both left and right ventricles in the early phase post-MI, our results support the hypothesis that diffusible hormones are factors for increased cardiac collagen deposition [39,90], although mechanical stretching of the myocardium has been suggested to play a stimulatory role [91]. Since both left and right ventricular chambers are subject to altered hemodynamic loading at 56 days after MI in this experimental model, we cannot rule out the possibility that hemodynamic loading was involved in the regulation of collagen mRNA and proteins. Several hormones, including Ang II and transforming growth factor-\beta1 (TGF-\beta1), may regulate collagen gene expression and, therefore, mediate collagen deposition in the interstitium of heart muscle [92,93]. It was well documented that the local cardiac RAS becomes activated after MI [56,94-98]. Several reports have revealed that both ACE inhibition and cardiac angiotensin receptor blockage (AT₁ subtype) treatment are effective in partial attenuation of collagen protein deposition in infarcted hearts [44,46,60]. However, it is not clear whether stimulation of collagen synthesis by angiotensin is due to either an increase in the transcription of collagen genes or a decrease in the degradation of newly synthesized collagen [99]. Our results of losartan (and ramipril) treatment of experimental animals are in agreement with two recent reports [100,101]. In these studies, treatment of rats with delapril or TCV-116 (Ang II type I receptor antagonist) was not associated with regression of increased collagen mRNA abundance associated with different pathological stimuli. Because treatment of experimental animals with losartan was associated with partial regression of both cardiac hypertrophy (data not shown) and interstitial fibrosis (with no deflection in mRNA abundance), it is likely that effective losartan delivery occurred. Similarly, ramipril-treated animals exhibited significantly diminished right and viable left ventricular heart mass vs. controls that had no change in elevated collagen mRNA abundance (see results section—the dose of ramipril used in these studies is in excess of the minimum dose for significant inhibition of cardiac ACE activity, as reported by others [75,76]). Our results with either losartan or ramipril are similar to those of a recent study by Brecher and coworkers who found that trandolapril (ACE inhibitor) treatment was not associated with a reversal of increased fibronectin mRNA levels in phenylephrine-induced cardiac fibrosis in rats [102]. It has been reported that one of a number of posttranslational mechanisms may play an important role in the regulation of collagen deposition in myocardial extracellular matrix [103]. Although the transcriptional control of cardiac fibrillar collagen genes does not appear to be attenuated by ramipril or losartan treatment in this experimental model, it must be stressed that our findings do not rule out angiotensin-mediated modulation of cardiac collagen synthesis at posttranscriptional levels and/or of degradation of newly synthesized collagens. Relative cardiac collagen concentration is the product of a dynamic balance between collagen synthetic and degradative pathways. Collagen types I and III can be cleaved by a 54kDa interstitial collagenase (MMP-1) and a 75kDa neutrophil collagenase (MMP-8) [81]. These enzymes cleave fibrillar collagen at a site 3/4 from the N-terminal end, resulting in 1/4 and 3/4 collagen fragments, called gelatins [104]. Our data is in agreement with others who have used the rat model of chronic infarction to address collagen degradation and have shown that MMP-1 activity was increased at day 2, peaked at day 7, and declined thereafter in the infarcted site in the left ventricle experimental animals [104]. As MMP-2 can degrade type IV collagen, increased MMP-2 activity may be responsible for degradation of collagen present in the basement membrane. Furthermore, MMP-2 may degrade gelatin (a breakdown product of fibrillar collagens) to constitutive amino acids. We believe that this process may facilitate remodeling of extracellular matrix in the viable ventricle after infarction, as cardiac myocytes rearrange their spatial orientation in three dimensions. Hydroxylation of collagen monomers is a crucial step in the biosynthesis and secretion of mature collagens from fibroblast endoplasmic reticulum by facilitation of the self-assembly of the α -chains to trimeric form. Thus, the increase in immunoreactive prolyl 4-hydroxylase in viable heart muscle may be a major mechanism for increased deposition of collagen in these experimental hearts. Our data demonstrated that losartan treatment was associated with attenuation of the increase of prolyl 4hydroxylase usually seen in these hearts and that this trend is positively correlated with the inhibition of total collagen protein in treated experimental hearts. The hypothesis that the antifibrotic effect of losartan is mediated via inhibition of the expression of prolyl 4-hydroxylase enzyme in surviving muscle from experimental heart is supported by these results. This study also provides an indication that angiotensin may modulate posttranslational regulation of cardiac collagen in mammalian hearts with chronic experimental MI. In summary, the results of this study indicate that prefailure and moderate congestive heart failure stages after induction of large left ventricular MI are associated with (1) an elevation of mRNA levels of cardiac fibrillar collagen species in right and left ventricular myocardium within 3 days of induction of left MI (a relatively early time point not associated with fibrosis of noninfarcted tissue per se; (2) marked right ventricular fibrosis in 56-day experimental animals with attendant increased chamber stiffness; (3) significantly increased fibrillar collagen mRNA abundance that is maintained in the left and right ventricular chambers throughout the course of the study, wherein the onset of fibrosis (increased deposition of collagen types I and III) occurs at two weeks; (4) an increase in MMP-2 activity in noninfarcted left and right ventricles in experimental animals. The latter finding suggests that net degradation of collagen may be increased in experimental hearts, and this finding supports the hypothesis that increased deposition of collagen protein is a result of elevated synthesis of collagen, rather than a decrease in collagen (and collagen fragment) removal. Furthermore, we found that as AT₁ receptor antagonism was not associated with regression of increased fibrillar collagen mRNA abundance in either right or left ventricular tissues in experimental animals, the upregulation of collagen mRNA transcripts may be not directly mediated by the AT, receptor; and finally we found that increased protein expression of 4-prolyl hydroxylase in experimental hearts is blocked with losartan treatment. Thus, the reduction of fibrosis by losartan may be effected at nontranscriptional sites in the synthetic pathway, and it is clear that the whole heart, i.e., both infarcted and noninfarcted tissue, becomes involved in wound healing. It is likely that this global cardiac wound healing response is not completed in conjunction with maturation of scar tissue, i.e., at 3-4 weeks, but is sustained in the chronic phase of MI. #### **ACKNOWLEDGMENTS** We would like to thank Dr. E. Kardami for her expert assistance in reading this manuscript and for access to equipment in her laboratory for determining cardiac stiffness. This study was supported by funding from the Medical Research Council of Canada. Dr. Ian Dixon is a scholar of the Medical Research Council of Canada/ PMAC health program with funding provided by Astra Pharma, Inc. Dr. H. Ju is a recipient of a Manitoba Health Research Council Studentship. We also wish to thank Ms. Tracy Scammell—LaFleur for her excellent technical assistance and for her preparation of the manuscript. Ramipril an losartan were a kind gift from Hoeschst-Roussel Canada Inc (Montreal, Canada) and Du Pont Merck, respectively. #### REFERENCES - 1. Pfeffer JM, Fisher TA, Pfeffer MA. 1995. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu Rev Physiol 57:805-826. - 2. Dostal DE, Baker KM. 1995. Biochemistry, molecular biology, and potential roles of the cardiac renin-angiotensin
system. In The failing heart. Ed. NS Dhalla, RE Beamish, N Takeda, M Nagano, 275-294. Philadelphia: Lippincott-Raven. - 3. Danser AHJ. 1996. Local renin-angiotensin systems. Mol Cell Biochem 157:211-216. - 4. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 5. Dostal DE, Rothblum KC, Conrad KM, Cooper GR, Baker KM. 1992. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts: Evidence for local production. Am J Physiol 263:C851-C863. - 6. Goodfriend TL, Elliott ME, Catt KJ. 1996. Angiotensin receptors and their antagonists. N Engl J Med 334:1649-1654. - 7. Steinberg MI, Wiest SA, Plakowitz AD. 1993. Nonpeptide angiotensin II receptor antagonists. Cardiovasc Drug Rev 11:312-358. - 8. Wong PC, Hart SD, Zaspel AM, et al. 1990. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: Dup 753 (AII-1) and PD123177 (AII-2). J Pharmocol Exp Ther 255:584-592. - 9. Griendling KK, Lassegue B, Alexander RW. 1996. Angiotensin Receptors and their therapeutic implications. Annu Rev Pharmacol 36:281-306. - 10. Clauser E, Curnow KM, Davies E, et al. 1996. Angiotensin II receptors: Protein and gene structures, expression and potential pathological involvements. Eur J Endocrinol 134:403-411. - 11. Matsubara H, Kanasaki M, Murasawa S, Tsukuguchi Y, Nio Y, Inada M. 1994. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 93:1592-1601. - 12. Shanmugam S, Corvol P, Gasc J-M. 1996. Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28:91-97. - 13. Inagami T. 1995. Recent progress in molecular and cell biological studies of angiotensin receptors. Curr Opin Nephrol Hypertens 4:47-54. - 14. Bottari SP, Taylor V, King IN, Bogdal Y, Whitebread S, de Gasparo M. 1991. Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207:157-163. - 15. Zhang J, Pratt RE. 1996. The AT2 receptor selectively associates with Giα₂ and Giα₃ in the rat fetus. J Biol Chem 271:15026-15033. - 16. Crabos M, Roth M, Hahn AWA, Erne P. 1994. Characterization of angiotensin II receptors in cultured rat cardiac fibroblasts. J Clin Invest 93:2372-2378. - 17. Kim NN, Villarreal FJ, Printz MP, Lee AA, Dillmann WH. 1995. Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. Am J Physiol 269:E426- - 18. Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156-160. - 19. Stoll M, Steckelings M, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotensin AT2receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651-657. - 20. Nakajima M, Hutchinson HG, Fujinaga M, et al. 1995. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663-10667. - 21. Ichiki T, Labosky PA, Shiota C, et al. 1995. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748-750. - 22. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 377:744-747. - 23. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - 24. Booz GW, Baker KM. 1995. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 30:537-543. - 25. Neer EJ. 1995. Heterotrimeric G proteins: Organizers of transmembrane signals. Cell 80:249-257. - 26. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413-423. - 27. Baker KM, Aceto JA. 1989. Characterization of avian angiotensin II cardiac receptors: Coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 21:375-382. - 28. Nishizuka Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 607-614. - 29. Sadoshima J, Qui Z, Morgan JP, Izumo S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activated tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. Circ Res 76:1-15. - 30. Bogoyevitch MA, Glennon PE, Andersson MB, et al. 1994. Endothelin-1 and fibroblast growth factor stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes: The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 269:1110-1119. - 31. Schorb W, Conrad Km, Singer HA, Dostal DE, Baker KM, 1995. Angiotensin II is a potent stimulator of MAP-Kinase activity in neonatal rat cardiac fibroblasts. J Mol Cell Cardiol 27:1151- - 32. Booz GW, Dostal DE, Singer HA, Baker KM. 1994. Involvement of protein kinase C and Ca²⁺ in angiotensin II-induced mitogenesis of cardiac fibroblasts. Am J Physiol 267:C1308–C1318. - 33. Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM. 1994. Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 269:19626- - 34. Schunkert H, Sadoshima J, Cornelius T, et al. 1995. Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac proteins synthesis by angiotensin II. Circ Res 76:489-497. - 35. Marrero MB, Schieffer B, Paxton WG, et al. 1995. Direct stimulation of Jak/STAT pathway by the angiotensin II AT₁ receptor. Nature 375:247-250. - 36. Schieffer B, Paxton WG, Marrero MB, Bernstein KE. 1996. Importance of tyrosine phosphorylation in angiotensin II type 1 receptor signaling. Hypertension 27:476-480. - 37. Bhat CJ, Thekkumara TJ, Thomas WG, Conrad Km, Baker KM. 1994. Angiotensin II stimulates sis-inducing factor-like DNA binding activity: Evidence that the AT_{1A} receptor activates transcription factor stat91 and/or a related protein. J Biol Chem 269:31443-31449. - 38. Griendling KK, Delafontaine P, Rittenhouse SE, Gimbrone MAJ, Alexander RW. 1987. Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin IIstimulated cultured vascular smooth muscle cells. J Biol Chem 262:14555-14562. - 39. Weber KT, Sun Y, Tyagi SC, Cleutjens JPM. 1994. Collagen network of the myocardium: Function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279-292. - 40. Brilla CG, Zhou G, Matsubara L, Weber KT. 1994. Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809-820. - 41. Ju H, Dixon IMC. 1996. Effect of angiotensin II on myocardial collagen gene expression. Mol Cell Biochem 163/164:231-237. - 42. Brecher P. 1996. Angiotensin II and cardiac fibrosis. Trends Cardiovasc Med 6:193-198. - 43. Makino N, Hata T, Sugano M, Dixon IMC, Yauaga T. 1996. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type 1 receptor in rats. J Mol Cell Cardiol 28:507-517. - 44. Schieffer B, Wirger A, Meybrunn M, et al. 1994. Comparative effects of chronic angiotensinconverting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273-2282. - 45. Smits JFM, vanKrimpen C, Shoemaker RG, Cleutjens JPM, Daemen MJAP. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772-778. - 46. van Krimpen C, Smits JFM, Cleutjens JPM, et al. 1991. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: Effects of captopril. J Mol Cell Cardiol 23:1245-1253. - 47. Sun Y, Weber KT. 1994. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 28:1623-1628. - 48. Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423-1432. - 49. Ju H, Dixon IMC. 1996. Extracellular matrix and cardiovascular diseases. Can J Cardiol 12:1259- - 50. Robinson TF, Factor SM, Sonnenblick EH. 1986. The heart as a suction pump. Sci Am 254:84- - 51. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Circulation 81:1161–1172. - 52. Dixon IMC, Lee SL, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782-788. - 53. Dhalla NS, Dixon IMC, Beamish RE. 1991. Biochemical basis of heart function and contractile failure. J Appl Cardiol 6:7-30. - 54. Meggs LG, Coupet J, Huang H, Cheng W, Li P, Capasso JM, Homcy CJ, Anversa P. 1993. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 72:1149-1652. - 55. Weber KT. 1989. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13:1637-1162. - 56. Sun Y and Weber KT. 1994. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 28:1623-1628. - 57. Pelouch V, Dixon IMC, Golfman L, Beamish RE, Dhalla NS. 1993. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129:101-102. - 58. Ju H, Dixon IMC. 1995. The cardiac extracellular matrix and its role in the development of heart failure. In Mechanisms of heart failure. Ed. PK Singal, IMC Dixon, RE
Beamish, NS Dhalla, 75-90. Boston: Kluwer Academic Publishers. - 59. Pelouch V, Dixon IMC, Sethi R, Dhalla NS. 1993. Alteration of protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem 129:121-131. - 60. Smits JFM, van Krimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP. 1992. Angiotensin - II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772-778. - 61. Volders PAG, Willems IEMG, Cleutjens JPM, Arends J-W, Havenith MG, Daemen MJAP. 1993. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25:1317-1323. - 62. McCormick RJ, Musch TI, Bergman BC, Thomas DP. 1994. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 266:H354-H359. - 63. Knowlton AA, Connelly CM, Romo GM, Mayama W, Apstein CS, Brecher P. 1992. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89:1060-1068. - 64. Dixon IMC, Hata T, Dhalla NS. 1992. Sarcolemmal Na+-K+ ATPase activity in congestive heart failure due to myocardial infarction. Am J Physiol 262:C664-C671. - 65. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocvanate-phenol-chloroform extraction. Anal Biochem 162:156-159. - 66. Chu ML, Myers JC, Bernard MP, Ding JF, Ramirez F. 1982. Cloning and characterization of five overlapping cDNA specific for the human pro-α1(I) collagen chain. Nucleic Acids Res 10:5925- - 67. Chu ML, Weil D, de Wet W, Bernard M, Sippola M, Ramirez F. 1985. Isolation of cDNA and genomic clones encoding human pro-α1(III) collagen. J Biol Chem 260:4357-4363. - 68. Tso JY, Sun XH, Kao T, Reece KS, Wu R. 1985. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: Genomic complexity and molecular evolution of the gene. Nuclei Acids Res 13:2485-2502. - 69. Chan YL, Gutell LR, Noller HF, Wool IG. 1984. The nucleotide sequence of a rat 18S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18S ribosomal ribonucleic acid. J Biol Chem 259:224-230. - 70. Polak JM, Noorden SV. 1984. An introduction to immunocytochemistry: Current techniques and problems. Microscopy Handbooks 11:1-49. - 71. Chiariello M, Ambrosio G, Cappelli-Bigazzi M, Perrone-Filardi P, Brigante F, Sifola C. 1986. A biochemical method for the quantitation of myocardial scarring after experimental coronary artery occlusion. J Mol Cell Cardiol 18:283-290. - 72. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem 150:76-85. - 73. Tyagi SC, Matsubara L, Weber KT. 1993. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191-198. - 74. Raya TE, Gay RG, Lancaster L, Aguirre M, Moffett C, Goldman S. 1988. Serial changes in left ventricular relaxation and chamber stiffness after large myocardial infarction. Circulation 77:1424-1431. - 75. Gohlke P, Linz W, Scholkens BA, Kuwer I, Bartenbach S, Schnell A, Unger T. 1994. Angiotensinconverting enzyme inhibition improves cardiac function: Role of bradykinin. Hypertension 23:411-418. - 76. Unger T, Mattfeldt T, Lamberty V, Bock P, Mall G, Linz W, Scholkens BA, Gohlke P. 1992. Effect of early onset ACE inhibition on myocardial capillaries in SHR. Hypertension 20:478- - 77. Bai Y, Muragaki Y, Obata KI, Ooshima A. 1986. Immunological properties of monoclonal antibodies to human and rat prolyl 4-hydroxylase. J Biochem 99:1563-1570. - 78. Fisher SA, Perisamy M. 1994. Collagen synthesis inhibitors disrupt embryonic cardiocyte myofibrillogenesis and alter the expression of cardiac specific genes in vitro. J Mol Cell Cardiol 26:721-731. - 79. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. 1984. Ventricular performance in rats with myocardial infarction and failure. Am J Med 76:99-103. - 80. Geenen DL, Malthotra A, Scheuer J. 1989. Regional variation in rat cardiac myosin isoenzymes and ATPase activity after infarction. Am J Physiol 256:H745-H750. - 81. Dollery CM, McEwan JR, Henney AM. 1995. Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863-868. - 82. Rubin SA, Fishbein MC, Swan HJ. 1983. Compensatory of hypertrophy in the heart after myocardial infarction in the rat. J AM Coll Cardiol 1:1435-1441. - 83. Fishbein MC, Maclean D, Maroko PR. 1978. Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathological evolution. Am J Pathol 90:57-70. - 84. Inoue K, Kusachi S, Niiya K, Kajikawa Y, Tsuji T. 1995. Sequential changes in the distribution of type I and III collagens in the infarct zone: Immunohistochemical study of experimental myocardial infarction in the rat. Coronary Artery Disease 6:153-158. - 85. Schaper J, Speiser B. 1992. The extracellular matrix in the failing human heart. Basic Res Cardiol 87(Suppl 1):303-309. - 86. Besse S, Robert V, Assayag P, Delcayre C, Swynghedauw B. 1994. Nonsynchronous changes in myocardial collagen mRNA and protein during aging: Effect of DOCA-salt hypertension. Am J Physiol 267:H2237-H2244. - 87. Sabbah HN, Sharov VG, Lesch M, Goldstein S. 1995. Progression of heart failure: A role for interstitial fibrosis. Mol Cell Biochem 147:29-34. - 88. Litwin SE, Litwin CM, Raya TE, Warner AL, Goldman S. 1991. Contractility and stiffness of noninfarcted myocardium after coronary ligation in rats. Circulation 83:1028-1037. - 89. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL. 1985. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161-170. - 90. Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. 1995. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325-338. - 91. Sun Y, Ratajska A, Zhou G, Weber KT. 1993. Angiotensin-converting enzyme and myocardial fibrosis in the receiving angiotensin II or aldosterone. J Lab Med 122:395-403. - 92. Crawford DC, Chobanian AV, Brecher P. 1994. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat heart. Circ Res 74:727-739. - 93. Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. 1991. Different effects of transforming growth factors and phorbol myristate acetate on cardiac fibroblasts, regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res 69:483-490. - 94. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475-482. - 95. Reiss K, Capasso JM, Huang HE, Meggs LG, Li P, Anversa P. 1993. ANG II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol 264:H760-H769. - 96. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46-54. - 97. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. 1993. Contribution of cardiac reninangiotensin system to ventricular remodeling in myocardial-infarcted rats. J Mol Cell Cardiol 25:1369-1380. - 98. Lindpaintner K, Lu W, Niedermajer N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133-143. - 99. Kawaguchi H, Kitabatake A. 1995. Renin-angiotensin system in failing heart. J Mol Cell Cardiol 27:201-209. - 100. Omura T, Kim S, Takeuchi K, Iwao H, Takeda T. 1994. Transforming growth factor β1 and extracellular matrix gene expression in isoprenaline induced cardiac hypertrophy: Effects of inhibition of the renin-angiotensin system. Cardiovasc Res 28:1835-1842. - 101. Hanatani A, Yoshiyama M, Kim S, Omura T, Toda I, Akioka K, Teragaki M, Takeuchi K, Iwao H, Tekeda T. 1995. Inhibition by angiotensin II type I receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol 27:1905-1914. - 102. Farivar RS, Crawford DC, Chobanian AV, Brecher P. 1995. Effect of angiotensin II blockade on the fibroproliferative response to phenylephrine in the rat heart. Hypertension. 25:809-813. - 103. Eleftheriades EG, Durand J-B, Ferguson AG, Engelman GL, Jones SB, Samare AM. 1993. Regulation of procollagen metabolism in the pressure-overloaded rat heart. J Clin Invest 91:1113- - 104. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT. 1995. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281-1292. ## CHARACTERISTICS AND MECHANISMS OF ANGIOTENSIN II-RELATED MYOCARDIAL DAMAGE # JEFFREY R. HENEGAR GREGORY L. BROWER and JOSEPH S. JANICKI Department of Physiology and Pharmacology, Auburn University, Auburn, Alabama, USA Summary. Chronic, pathophysiological elevations of angiotensin (Ang) II cause myocyte necrosis and coronary vascular damage. These adverse effects are mediated by the angiotensin II type 1 (AT₁) receptor and are, therefore, preventable with AT₁ receptor blockade. Additionally, the intracellular signaling cascade stimulated by elevations in Ang II results in an AT₁ receptor-mediated catecholamine release, and the myocardial damage can also be attenuated by β 1-adrenergic receptor blockade. The restriction of myocardial damage to the first 3 days of Ang II infusion is due to subsequent downregulation of the β 1-adrenergic receptor population. Discontinuation of the Ang II infusion results in a return to normal β 1-adrenergic receptor density, which makes the myocardium susceptible once again to subsequent elevations of Ang
II. This Ang II-related myocardial damage could play an important role in the pathogenesis of heart failure post-myocardial infarction or in other cardiac disease states. An elevation in plasma angiotensin (Ang) II levels induces many physiological actions including stimulation of arginine vasopressin release, constriction of peripheral arterioles, constriction of glomerular efferent arterioles, increased sodium reabsorption in the kidney, stimulation of aldosterone release, and increased release of norepinephrine from the adrenal medulla and sympathetic nerves. All of these physiological consequences are elicited via the Ang II type 1 (AT₁) receptor and result in a compensatory elevation in blood pressure. Accordingly, in heart failure, plasma Ang II is elevated in what is thought to be a compensatory response to maintain adequate organ and tissue perfusion. However, if the increase in Ang II is abnormal, myocyte necrosis and coronary vascular damage are known to occur. In fact, hearts from patients who died because of heart failure secondary to renovascular hypertension have been found to have extensive myocardial damage similar to that observed following an experimental elevation in Ang II [1]. Thus, it is conceivable that pathophysiological levels of Ang II may contribute to the pathogenesis of heart failure. The adverse effects that Ang II exerts on the myocardium are also mediated via the AT, receptor in that the accompanying myocardial damage can be prevented with an AT₁ receptor antagonist. In this report, the characteristics and mechanisms of Ang II-induced myocardial damage and the role of the AT₁ receptor in causing this damage will be reviewed. #### HISTOLOGICAL CHARACTERISTICS OF ANGIOTENSIN II-MEDIATED MYOCARDIAL DAMAGE Pathophysiological Ang II levels cause myocyte necrosis and damage to the coronary arterioles. The first report of Ang II causing myocardial damage was published in 1971 by Gavras and colleagues [2]. They infused rabbits with 0.9-1.8 µg/kg/min of Ang II intravenously for 72 hours to determine whether it caused renal tubular necrosis. In addition to renal damage, they found widespread, focal "myocardial infarction". In a follow-up paper in 1975, these "myocardial lesions", as they are now termed, were described as extensive, frequently confluent, multifocal myocardial necrosis [1]. This article is also noteworthy for its description of similar myocardial lesions at death in five patients who had elevated Ang II levels. In experimental rat models of renovascular hypertension or chronic Ang II infusion (150 to 200 ng/min), the plasma levels of Ang II increase to 57 \pm 22 and 71 \pm 6 pg/ml, respectively [3]. These values are consistent with the range of 28-155 pg/ml reported for humans with heart failure [4,5] and can therefore be considered to be pathophysiological. In these models, the focal areas of Ang IIinduced myocardial damage are found in both the right and left ventricles, with the number of sites per ventricle ranging from 4 to 23 [6]. However, because of its smaller size, the right ventricle generally exhibits a greater percent of damage (0.8 to 15.4%) than the left ventricle (0.4 to 4.9%). The necrotic sites are randomly distributed in the epi-, mid-, and endomyocardial regions, with a tendency for many to be concentrically oriented around arterioles [7]. Ang II-related myocyte damage typically presents as multifocal myocyte necrosis involving small groups of myocytes (figure 1). These necrotic foci are characterized by (1) the loss of definition of the linear arrangement of myofibrils and cross striations; (2) the appearance of dense, eosinophilic, transverse bands in the sarcoplasm with translocating mitochondria between them; (3) subsequent shrinkage and pyknosis of the myocyte nucleus; and (4) a progressive loss of nuclear basophilia with the eventual disappearance of the nucleus [8]. The necrosis is followed by a granulomatous inflammatory infiltrate consisting of neutrophils, lymphocytes, and macrophages, which are responsible for the removal of the damaged myocytes from the area. Concurrent with the inflammatory response and phagocytosis, fibroblasts migrate into the damaged area to begin the wound healing or reparative Figure 1. Representative photomicrograph of an area of angiotensin II-induced myocyte necrosis with granulomatous infiltrate. This heart was exposed to chronic angiotensin II infusion for 2 days and represents the acute phase of angiotensin II-induced myocyte necrosis with active phagocytosis of the necrotic myocardium. (Scale bar = 20 µm). (Reproduced with permission from Kabour et al. [6]). process. After a replacement fibronectin/collagen network has been established, myofibroblast transformation occurs to promote collagen fiber cross-linking and contraction of the scar. The period from onset of myocyte necrosis to the final stages of wound healing takes about 14 days. The other facet of the myocardial damage observed with elevated Ang II is damage to the coronary arterioles in both ventricles (figure 2). In 1976, Giacomelli et al. [9] found that an acute, intravenous infusion of a pharmacological dose of Ang II in rats damaged the coronary arterioles. This damage was analyzed using transmission electron microscopy and was characterized as swollen endothelial cells, vacuolization in the vascular smooth muscle cells, and a perivascular inflammatory infiltrate. Two years later, Bhan et al. [10] reported that renovascular hypertension, created by unilateral renal artery constriction, caused similar damage to the intramyocardial coronary arterioles. In a subsequent study, Bhan and his co-workers [11] found that 92% of the intramural arterioles which were examined contained ultrastructural lesions following an acute, intravenous infusion of a very high dose (1.7 µg/kg/min) of Ang II. In animal models with experimentally elevated plasma Ang II levels similar to those seen in human heart failure, 20 to 50% of the intramural arterioles were found to be abnormal as assessed by light microscopy. The criteria for assessing vascular damage were abnormally shaped, swollen, or rarefied endothelial cells; vacuolated vascular smooth muscle cells; and/or a perivascular inflammatory infiltrate [12]. This degree of vascular damage may be responsible for the altered coronary vascular permeability [13,14], perivascular fibrosis [15], and decreased coronary reserve [16] that have been reported to occur secondary to elevations in Ang II. Figure 2. Example of normal (panel A) and damaged (panel B) coronary arteriole. The abnormal endothelial cells and adventitia in panel B are characterized by swollen endothelial cells bulging into the lumen of the vessel and the marked thickening of the vascular smooth muscle cell layer. (Scale bars = $20 \,\mu m$). (Reproduced with permission from Kabour et al. [12]). ### MECHANISMS OF ANGIOTENSIN II-INDUCED MYOCARDIAL DAMAGE Involvement of the AT, receptor In rats with experimental renovascular hypertension or a chronic infusion of Ang II at a rate of 200 ng/min, myocyte necrosis was found to occur only in the first 2 to 3 days of infusion despite a continued elevation in plasma Ang II [4]. As further confirmation of the acute nature of this response, these rats were injected with [3]Hthymidine in order to assess cellular proliferation. The cellular thymidine incorporation was transient, reaching a maximum on day 2 of the Ang II infusion and returning to baseline thereafter, with the dividing cells consisting primarily of fibroblasts. The fact that Ang II-induced myocardial damage is an acute process suggests that it is receptor-mediated and that the subsequent cardioprotection is the result of receptor downregulation. Subsequent studies in our laboratory have addressed this issue [7,12]. In one study, Ang II levels that were chronically elevated for either 2 days or 9 days were found to cause multifocal myocyte necrosis and coronary vascular damage in both ventricles. The myocardial lesions after 2 days of Ang II infusion were characterized by a granulomatous inflammatory infiltrate and ongoing myocyte necrosis, and were therefore considered to be recent necrosis. However, the myocardial lesions after 9 days of Ang II infusion consisted of multifocal areas of fibrosis containing primarily fibroblasts and a marked increase in the amount of collagen. These lesions were considered to be chronic areas of myocyte necrosis because of the advanced stage of wound healing and absence of inflammatory infiltrate. Other evidence that a receptor regulatory event protects the heart from damage after the first few days of Ang II infusion was provided when Ang II was infused for 2 days, the osmotic pump was removed for 5 days, and the pump was reinserted for 2 more days. In this case, areas of de novo myocyte necrosis resulting from the second infusion of Ang II were observed in addition to the areas of chronic fibrosis. The de novo myocyte necrosis was presumably due to receptor upregulation which rendered the myocytes vulnerable to the second elevation in Ang II (figure 3). Finally, the fact that the necrosis and coronary vascular damage were completely prevented by AT₁ receptor blockade suggests that they are AT₁ receptor-mediated events [7]. Cardiac AT₁ receptors are found in low concentration on myocytes and vascular smooth muscle cells [17]. AT, receptor function has been well-characterized in many tissues and, as stated above, is responsible for mediating all the known physiological actions of Ang II in adults. Briefly, Ang II binds to the G proteincoupled AT₁ receptor and activates tyrosine kinase, which phosphorylates and stimulates phospholipase C-γ1 activity. Phopholipase C-γ1 then hydrolyzes phosphatidylinositol 4,5-bisphosphate to form inositol 1,4,5-trisphosphate and diacylglycerol. Inositol 1,4,5-trisphosphate stimulates the release of calcium from intracellular stores. In cultured rat cardiomyocytes, cytosolic calcium
concentration has been shown to increase significantly after addition of Ang II to the culture medium [18]. Thus, this increase in intracellular calcium may ultimately be responsible for the Ang II-induced myocyte necrosis and coronary vascular damage. As mentioned earlier, elevations in Ang II result in the release of aldosterone and catecholamines and an increase in blood pressure via the AT₁ receptor. Accordingly, the ability of the AT₁ receptor antagonist to protect the myocardium from pathophysiological levels of Ang II may be the result of the antagonist preventing these hormonal and blood pressure increases. Each of these possibilities will now be considered. #### Elevation in blood pressure Ang II-mediated myocardial damage could somehow be the result of the accompanying elevation in blood pressure. Bishop et al. [19] concluded that the sudden Figure 3. The number of necrotic sites per combined LV and RV histological section after angiotensin II infusion (150 ng/min) via a subcutaneous osmotic minipump for 2 to 9 days. Solid bars represent the number of necrotic sites consistent with recent or acute necrosis (occurring within the prior 3 days), whereas the hatched bars represent the number of sites of chronic myocyte necrosis or reparative fibrosis. Ang II 2 days = Angiotensin II infusion for 2 days, sacrificed on day 2; Ang II 9 days = Angiotensin II infusion for 9 days, sacrificed on day 9; Ang II 2 days on, 5 days off, 2 days on = Angiotensin II infusion for 2 days, after which the angiotensin II pump was removed for 5 days, followed by an additional 2 day angiotensin II infusion; sacrificed on day 9; Ang II 2 days, Sac 9 days = Angiotensin II infusion for 2 days, after which the angiotensin II pump was removed; sacrificed 7 days later on day 9. pressure overload induced by thoracic aortic constriction was responsible for the development of multifocal myocyte necrosis that was observed in this model of experimental cardiac hypertrophy. While the necrosis was similar to that seen with Ang II infusion, the state of the renin-angiotensin system was not evaluated, and, therefore, it is not known whether Ang II levels were normal or elevated. Similarly, Bhan et al. [11] demonstrated that the number of damaged small coronary arterioles was significantly reduced when blood pressure was pharmacologically prevented from increasing as Ang II was administered. However, following these two studies, there were several others which strongly suggested that elevated blood pressure was not responsible for Ang II-related myocardial damage. For example, when an angiotensin-converting enzyme (ACE) inhibitor was administered one day prior to the creation of the renovascular hypertension and was maintained throughout the Figure 4. The temporal systolic blood pressure response to chronic angiotensin II infusion (150 ng/ min) via a subcutaneous osmotic minipump. Systolic blood pressure was measured by the tail cuff method. Note that systolic blood pressure did not increase until after day 4, was not significantly elevated until day 6 of chronic angiotensin II infusion, and remained elevated for the remainder of the infusion period. *p < 0.05 vs. Day 0. (Modified with permission from Tan et al. [3]). study period in doses that did and did not prevent the increase in blood pressure, the myocardial damage was greatly attenuated in both groups [12]. Also, as can be seen in figure 4, systolic blood pressure measured in rats receiving a constant infusion of Ang II does not become significantly elevated until day 6 of the infusion, while most of the Ang II-induced myocardial damage occurs during the first 3 days of Ang II infusion [4]. Finally, hearts from rats subjected to chronic Ang II infusion and concurrently treated with an antihypertensive dose of (ACE) still exhibit significant myocardial damage (figure 5) [12]. #### Aldosterone Stimulation of aldosterone synthesis and secretion is another physiological response to elevated plasma Ang II levels. Shown in figure 6 are the serum aldosterone levels for rats chronically infused with Ang II for 15 days [20]. Serum aldosterone was significantly elevated 1 to 3 days after starting Ang II infusion and remained so throughout the infusion period. The mean aldosterone concentration for the Ang II-infused group over the 14 day period was 245 ± 60 ng/dl. Losartan was able to prevent the Ang II-induced increase in serum aldosterone. The average aldosterone Figure 5. The number of necrotic sites per combined LV and RV histological section and blood pressure after 14 days of angiotensin II infusion (150 ng/min) via a subcutaneous osmotic minipump with and without 20 mg/kg/day lisinopril treatment. Lisinopril was given 1 day prior to and throughout the 14 day angiotensin II infusion period. Lisinopril was unable to significantly decrease the number of necrotic sites even though it was able to significantly lower blood pressure. Ang II = angiotensin II infusion for 14 days; Ang II + lisinopril = angiotensin II infusion and lisinopril treatment for 14 days. *P < 0.05 vs. Ang II. value of 8 ± 3 ng/dl for the losartan group was similar to that of the control group $(7 \pm 4 \text{ ng/dl})$. The marked increase in circulating aldosterone on day 1 of chronic Ang II infusion suggests the possibility that Ang II-related myocardial damage may be the result of increased aldosterone. Moreover, it has been shown that rats undergoing chronic infusion of aldosterone, after the removal of one kidney and receiving 1% sodium chloride drinking water, exhibit myocardial damage similar to that seen with Ang II. However, recently published findings indicate that the myocardial damage resulting from a continuous aldosterone infusion does not occur until after weeks 3 to 4 [21], precluding its role in the Ang II-mediated damage seen within the first 3 to 4 days of elevated Ang II levels. #### Catecholamines Another possible mechanism for Ang II-related myocardial damage is catecholamine release from the sympathetic nerve terminals in the heart and/or the adrenal medulla. This mechanism is attractive since it has been shown that the patterns of damage which occur with elevated Ang II levels and with elevated norepinephrine levels are similar [1]. Figure 6. Temporal response of serum aldosterone levels to chronic angiotensin II infusion (150 ng/ min) via a subcutaneous osmotic minipump. Aldosterone was measured in serum samples taken from conscious, resting rats. Aldosterone was significantly elevated on day 1 of angiotensin II infusion, and levels remained elevated throughout the infusion period. Losartan was able to prevent the angiotensin II-induced aldosterone release. Control samples showed no variation over the angiotensin II infusion period. *P < 0.05 vs. Cont; +P < 0.05 vs. Losartan Cont = Untreated, noninfused control group; Ang II = Angiotensin II infused group, 150 ng/min, subcutaneously; Losartan = Angiotensin II infused group treated with losartan, 7.5 mg/day, intravenously. (Reproduced with permission from Henegar et al. [20]). The fact that catecholamines can induce myocyte necrosis has been known for some time. Many investigators studying this relation have used the nonspecific βadrenergic receptor agonist isoproterenol. Infusion of rats with isoproterenol caused myocyte necrosis which could be prevented by the β -adrenergic receptor antagonist propranolol [22]. The damage from isoproterenol was primarily localized to the endocardium and was thought to be due to subendocardial ischemia secondary to an isoproterenol-induced increase in heart rate and contractility (i.e., increased oxygen demand), with an accompanying decrease in blood pressure (i.e., decreased oxygen delivery or supply). In contrast, an endogenous increase in catecholamines is associated with an increase in blood pressure and results in myocardial damage similar to that seen with elevated Ang II [23]. Finally, the toxic effect of catecholamines on cardiac myocytes has been associated with increased intracellular calcium [24], not an ischemic event such as isoproterenol infusion. Figure 7. Temporal response of serum norepinephrine levels to chronic angiotensin II infusion (150 ng/min) via a subcutaneous osmotic minipump. Norepinephrine was measured in serum samples taken from conscious, resting rats. As can be seen, serum norepinephrine was elevated after 4-6 days of angiotensin II infusion. This angiotensin II-induced norepinephrine release was totally prevented by the AT₁ receptor blocker, losartan. Also of note is the lack of variation in the control serum samples over time indicating that the sampling technique was not stress provoking. $\star P < 0.05$ vs. Cont; +P < 0.05 vs. Losartan Cont = Untreated, noninfused control group; Ang II = Angiotensin II infused group; Losartan = Angiotensin II infusion and losartan (7.5 mg/day, intravenously). (Reproduced with permission from Henegar et al. [20]). Recently, it has been shown that pathophysiological levels of Ang II stimulate norepinephrine release immediately following acute, intravenous Ang II infusion [25-28]. However, these studies utilized extremely high doses of Ang II administered intravenously. Our laboratory has reported that the β-adrenergic receptor blocker, propranolol, markedly attenuated Ang II-related myocardial damage, suggesting that catecholamines are responsible. The temporal responses of serum norepinephrine concentration for conscious, Ang II-infused rats, with and without the AT₁ receptor blocker, losartan, are shown in figure 7 [20]. Noninfused, control rats had little change in their norepinephrine levels over the course of the study. In contrast, the Ang II-infused group had significant increases in serum norepinephrine levels starting on days 4-6 and thereafter through day 15 of the infusion period. Losartan completely prevented this Ang II-related increase in serum norepinephrine. The average norepinephrine value for the losartan group of 282 ±
30 pg/ml was not significantly different from that of the control group, $257 \pm 82 \,\mathrm{pg/ml}$ (p = 0.76). Serum epinephrine levels were variable with 90 of the 105 samples either lying within the normal range for rats (i.e., 111 to 267 pg/ml (20)) or having epinephrine levels below the detectable range of the assay (<10 pg/ml). The 15 remaining epinephrine values were greater than 267 pg/ml. They were randomly distributed with respect to infusion time, occurred in both the control and Ang II infused groups, and did not correlate with norepinephrine levels. Even though circulating norepinephrine levels were not elevated until day 4 of chronic Ang II infusion, our laboratory has shown that surgical cardiac sympathectomy was effective in preventing the myocardial damage seen in the first 3 days of Ang II infusion [29]. Therefore, the local release of catecholamines is responsible for the Ang II-related myocardial damage seen in this model, and the prevention of Ang II-related myocardial damage by AT₁ receptor blockade is the result of an inhibition of this local release of catecholamines. Recently, Ratajska and colleagues [30] also reported that catecholamines were important in the myocardial damage associated with Ang II infusion. However, they concluded that the source of catecholamines was the adrenal gland. That is, myocyte necrosis associated with a subcutaneous infusion of Ang II, at a rate of 150 ng/min, was markedly attenuated when the Ang II infusion was started 1 week after adrenal medullectomy, suggesting that catecholamines secreted from the adrenal gland were responsible for the damage. In their study, however, blood samples were acquired only at the time of sacrifice. As discussed above, plasma norepinephrine levels are not significantly elevated until day 4 of the Ang II infusion. Thus, without the temporal profile of serum norepinephrine, the conclusion of Ratajska et al. that circulating catecholamines are the direct cause of the acute episode of myocardial damage cannot be substantiated. A more likely explanation for their findings is that the sympathetic stores of norepinephrine were depleted and not replenished during the five-day period between medullectomy and the onset of the Ang II infusion. It is known that a major source of cardiac sympathetic norepinephrine is the adrenal gland [31]. #### THE CARDIOPROTECTIVE RESPONSE OF THE B-ADRENERGIC RECEPTOR TO ELEVATED LEVELS OF ANGIOTENSIN II From the aforementioned text, it is obvious that Ang II-mediated myocardial damage is the result of an Ang II-stimulated local release of catecholamines. Therefore, the fact that this damage is an acute process may be related to β-adrenergic receptor downregulation. β-adrenergic receptors are present throughout the myocardium and on smooth muscle cells in coronary arteries and arterioles [32]. The largest percentage of these receptors is found on the smooth muscle of small arterioles, with a smaller percentage on coronary arteries [33]. It has been suggested that β-adrenergic receptor desensitization may protect the myocardium from catecholamine-induced damage and thus explain the restriction of catecholamine-induced myocyte necrosis primarily to the first three days of infusion [34]. There is evidence that the β-adrenergic receptor agonist, isoproterenol, causes β-adrenergic receptor downregulation and that this downregulation occurs rapidly and is then maintained until the isoproterenol is cleared [34]. In order to determine whether β-adrenergic receptor downregulation could be cardioprotective after the first few days of chronic Ang II infusion, we [35] recently determined \(\beta \)-adrenergic receptor densities in crude membrane preparations of rat left ventricles from the following groups: (1) control, (2) Ang II infused for 3 days (AngII3day), (3) Ang II infused for 3 days, followed by removal of the Ang II for 5 days (AngII3on/5off), and (4) Ang II infused for 8 days (AngII8day). β-adrenergic receptor density after 3 days of Ang II infusion was significantly reduced by 38% from that in untreated controls (i.e., 112 ± 30 fmol/mg protein for control versus 70 ± 20 fmol/mg protein for AngII3day). When the osmotic minipump was removed after 3 days of Ang II infusion and the rats were sacrificed 5 days later, there was a significant increase in \(\beta \)-adrenergic receptor density when compared to Ang II-infused hearts for 3 days (70 \pm 20 fmol/mg protein for AngII3day versus 133 \pm 29 fmol/mg protein for AngII3on/5off). The density of β -adrenergic receptors in the AngII3on/5off group was not statistically different from that in the control group (112 ± 30 fmol/mg protein). This would explain the previously mentioned findings of Kabour et al. [7] where de novo necrosis occurred during a second, 2day Ang II infusion which was started 5 days after an initial 2-day Ang II infusion. Finally, when Ang II was infused for 8 consecutive days, \(\beta \)-adrenergic receptor density was significantly less than that in the control (55% decrease, p < 0.05) and AngII3day (29% decrease, p < 0.05) groups, indicating a progressive downregulation of the β-adrenergic receptors. #### CLINICAL SIGNIFICANCE OF ANGIOTENSIN II-INDUCED MYOCARDIAL DAMAGE Hearts from patients with heart failure secondary to renovascular hypertension have extensive myocardial damage [1] similar to that observed after experimental elevations in Ang II or catecholamines. It is unknown whether this damage is due to elevated plasma levels of Ang II, norepinephrine, epinephrine, or perhaps all three. Since these agents may cause myocardial damage in heart failure, the short-term compensatory benefits may be at the cost of damage to myocytes and coronary arteries. Patterns of myocyte necrosis similar to those elicited by elevated Ang II have been observed in the nonischemic myocardium from patients after myocardial infarction (MI). In 1971, Page et al. reported myocyte necrosis in the noninfarcted myocardium post-MI in autopsy samples from patients [36]. This remote myocyte necrosis (i.e., necrosis in the nonischemic myocardium) was described as foci of necrosis occurring in both the left and right ventricles. They remarked that the pattern of damage was similar to that seen after infusion of exogenous catecholamines, but did not investigate the status of endogenous catecholamine production in these hearts. Corday et al. [37] reported remote myocyte necrosis post-MI in an animal model and speculated that catecholamines could be responsible. More re- Figure 8. Flow chart summarizing how coronary and myocyte damage may occur due to chronic angiotensin II infusion. If angiotensin II levels are elevated but the AT, receptor is blocked, no myocardial damage is observed. If the AT₁ receptor is not blocked, angiotensin II induces a local release of norepinephrine. If the β -adrenergic receptors and, more specifically, the β 1-adrenergic receptors are blocked, no myocardial damage is observed. If the \$1-adrenergic receptors are not blocked but the receptors are downregulated, no myocardial damage is observed. If the \$1 receptors are not downregulated, then myocardial damage is observed. cently Beltrami et al. [38] found that, in patients with ischemic cardiomyopathy, cell loss from the MI together with the remote myocyte necrosis resulted in a 28% loss in the total number of myocyte nuclei in the left ventricle (LV). The average volume of the MI in these patients was 9%. Thus, the remote necrosis involved 19% of the total cell loss. The right ventricle (RV) had a 30% decrease in cell number which was attributed entirely to remote myocyte necrosis. Therefore, remote myocyte necrosis can involve a large percentage of the myocardium. Obviously, this magnitude of myocardial damage could significantly impair cardiac function and may play a key role in the transition from compensated to decompensated heart failure following MI. Our laboratory has also observed areas of remote necrosis following MI in rats [39]. The remote necrosis was found to be present in both the LV and the RV. In this study, remote myocyte necrosis could be prevented with the administration of an ACE inhibitor initiated one day prior to the creation of the MI. This finding implies that Ang II is responsible for this remote necrosis. ACE inhibition has been shown to significantly decrease mortality in rats [40] and in humans [41] post-MI. Accordingly, the ability of ACE inhibition to prevent remote necrosis may explain, at least in part, the decreased mortality associated with ACE inhibition post-MI. #### CONCLUSIONS In figure 8, a schematic representation of the mechanism of Ang II-mediated myocardial damage is presented. Chronic, pathophysiological elevations of Ang II cause myocyte necrosis and coronary vascular damage. These adverse effects are mediated by the Ang II type 1 (AT,) receptor and are therefore preventable with AT₁ receptor blockade. However, the intracellular signaling cascade stimulated by elevations in Ang II results in an AT₁ receptor-mediated catecholamine release, and the myocardial damage can also be attenuated by \$1-adrenergic receptor blockade. The restriction of myocardial damage to the first 3 days of Ang II infusion is due to subsequent downregulation of the \$1-adrenergic receptor population. Discontinuation of the Ang II infusion results in a return to normal \(\beta 1-\) adrenergic receptor density, which makes the myocardium susceptible once again to subsequent elevations of Ang II. This Ang II-related myocardial damage could play an important role in the pathogenesis of heart failure post-MI or in other cardiac disease states. #### REFERENCES - 1. Gavras H, Kremer D, Brown JJ, Gray B, Lever AF, MacAdam RF, Medina A, Morton JJ, Robertson JIS. 1975. Angiotensin- and norepinephrine-induced myocardial lesions: Experimental and clinical studies in rabbits and man. Am Heart J 89:321-332. - 2. Gavras H, Brown JJ, Lever AF,
MacAdam RF, Robertson JIS. 1971. Acute renal failure, tubular necrosis, and myocardial infarction induced in the rabbit by intravenous angiotensin II. Lancet 2:19- - 3. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. 1991. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185-1195. - 4. Staroukine M, Devriendt J, Decoodt P, Verniory A. 1984. Relationship between plasma epinephrine, norepinephrine, dopamine, and angiotensin II concentrations, renin activity, hemodynamic state and prognosis in acute heart failure. ACTA Cardiol 39:131-138. - 5. Kuroda T, Shida H. 1983. Angiotensin II induced myocardial damage with a special reference to low cardiac output syndrome. Jpn Heart J 24:235-243. - 6. Kabour A, Henegar JR, Janicki JS. 1994. Angiotensin II (AII)-induced myocyte necrosis: Role of the All receptor. J Cardiovasc Pharmacol 23:547-553. - 7. Rodrigues MAM, Bregagnollo EA, Montenegro MR, Tucci PJF. 1992. Coronary vascular and myocardial lesions due to experimental constriction of the abdominal aorta. International J Cardiol 35:253-257. - 8. Cowan MJ, Giddens WE, Reichenbach DD. 1983. Selective myocardial cell necrosis in non-human primates. Arch Pathol Lab Med 107:34-39. - 9. Giacomelli F, Anversa P, Wiener J. 1976. Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 84:111-138. - 10. Bhan RD, Giacomelli F, Wiener J. 1978. Ultrastructure of coronary arteries and myocardium in experimental hypertension. Exp Mol Pathol 29:66-81. - 11. Bhan RD, Giacomelli F, Wiener J. 1982. Adrenoreceptor blockade in angiotensin-induced hypertension. Am J Pathol 108:60-71. - 12. Kabour A, Henegar JR, Devineni VR, Janicki JS. 1995. Prevention of angiotensin II induced myocyte necrosis and coronary vascular damage by lisinopril and losartan in the rat. Cardiovasc Res - 13. Reddy HK, Campbell SE, Janicki JS, Zhou G, Weber KT. 1993. Coronary microvascular fluid flux and permeability: Influence of angiotensin II, aldosterone, and acute arterial hypertension. J Lab Clin Med 121:510-521. - 14. Laine GA, Allen SJ. 1996. Left ventricular myocardial edema: Lymph flow, interstitial fibrosis and cardiac function. Circ Res 68:1713-1721. - 15. Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT. 1989. Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ Res 65:258-264. - 16. Brilla CG, Janicki JS, Weber KT. 1991. Impaired diastolic function and coronary reserve in genetic hypertension. Circ Res 69:107-115. - 17. Lefroy DC, Wharton J, Crake T, Knock GA, Rutherford RAD, Suzuki T, Morgan K, Polak JM, Poole-Wilson PA. 1996. Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 28:429-440. - 18. Allen IS, Cohen NM, Gaa ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: Insights into the underlying biochemical mechanisms. Circ Res 62:524-534. - 19. Bishop SP, Melsen LR. 1976. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ Res 39:238-245. - 20. Henegar JR, Brower GL, Kabour A, Janicki JS. 1995. Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. Am J Physiol 269:H1564-H1569. - 21. Campbell SE, Brilla CG, Weber KT. 1994. Myocardial fibrosis: Structural basis for pathological remodeling and the role of the renin-angiotensin-aldosterone system. In The cardiac-reninangiotensin system. Ed. K Lindpainter and D Ganten, 153-165. Armonk, NY: Futura Publishing. - 22. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA. 1989. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65:657-670. - 23. Van Vliet PD, Burghell HB, Titus JL. 1966. Focal myocarditis associated with pheochromocytoma. New Eng J Med 274:1102-1108. - 24. Mann DL, Kent RL, Parsons B, Cooper G. 1992. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790-804. - 25. Speth RC, Khosla MC, Spech MM, Ferrario CM. 1981. Rat (Ile5) but not bovine (Val5) angiotensin raises plasma norepinephrine in rats. Hypertension 3:II-25-II-29. - Pilati CF, Bosso FJ, Maron MB. 1992. Factors involved in left ventricular dysfunction after massive sympathetic activation. Am J Physiol 263:H784-H791. - 27. Kawabata M. 1970. The actions of synthetic angiotensin II on adrenal and myocardial catecholamines. Jap Circ J 34:587-593. - Cline WH. 1971. Release of catecholamines during the induction of and recovery from tachyphylaxis to angiotensin II. J Pharmacol Exp Ther 179:532-542. - 29. Henegar JR, Janicki JS. 1996. Sympathetic neuron norepinephrine is responsible for angiotensin IIinduced myocardial damage. (abstract) Circulation 94:I659. - 30. Ratajska A, Campbell SE, Sun Y, Weber KT. 1994. Angiotensin II associated cardiac myocyte necrosis: Role of adrenal catecholamines. Cardiovasc Res 28:684-690. - 31. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD. 1996. Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667-1676. - 32. Jones CR, Molenar P, Summers RJ. 1989. New views of human cardiac β-adrenoceptors. J Mol Cell Cardiol 21:519-535. - 33. Murphree SS, Saffitz JE. 1987. Quantitative autoradiography delineation of the distribution of adrenergic receptors in canine and feline left ventricular myocardium. Circ Res 60:568-579. - 34. Tan LB, Benjamin IJ, Clark WA. 1992. B adrenergic receptor desensitisation may serve a cardioprotective role. Cardiovasc Res 26:608-614. - 35. Henegar IR, Janicki IS. 1996. Downregulation of the beta adrenergic receptors during chronic angiotensin II infusion. (abstract) Circulation 94:1672. - 36. Page DL, Caulfield JB, Kastor JA, DeSanctis RW, Sanders CA. 1971. Myocardial changes associated with cardiogenic shock. New Eng J Med 285:133-137. - 37. Corday E, Kaplan L, Meerbaum S, Brasch J, Constantini C, Lang TW, Gold H, Rubins S, Osher J. 1975. Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion. Am J Cardiol 36:385-394. - 38. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. 1994. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151-163. - 39. Kabour A, Henegar JR, Janicki JS. 1993. Angiotensin converting enzyme inhibition attenuates myocyte necrosis remote to myocardial infarction. (abstract) Clin Res 41:658A. - 40. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406-412. - 41. The CONCENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSEN-SUS). New Engl J Med 316:1429-1437. ## COMPARISON OF DIRECT ANGIOTENSIN II RECEPTOR BLOCKADE WITH CONVERTING ENZYME INHIBITION IN THE RAT MODEL OF HEART FAILURE EUGENE MORKIN, THOMAS E. RAYA, JAMES J. MILAVETZ, CYNTHIA S. JOHNSON, and STEVEN GOLDMAN Department of Medicine, Veterans Affairs Medical Center and University Heart Center, University of Arizona, Tucson, Arizona, USA Summary. The purpose of our investigations was to compare the effects of ACE inhibition with captopril to direct AT₁ receptor blockade with losartan in the rat postinfarction model of congestive heart failure. In the first group of studies, hemodynamic and neurohormonal effects of treatment for 2 weeks with captopril (2g/liter in drinking water) or losartan (40 mg/kg by gavage) were compared, starting 3 weeks after infarction. Losartan and captopril reduced LV end-diastolic pressure and LV end-diastolic volume index and increased venous compliance. In both treatment groups, these changes were significant compared to placebo treatment (p < 0.05). Serum angiotensin II and aldosterone levels were lower after treatment with captopril, whereas only aldosterone tended to be lower after treatment with losartan. A second study compared the survival of heart failure rats treated with captopril (2g/liter drinking water, n = 46) or losartan (2 g/liter drinking water, n = 51). Treatment was started immediately after coronary artery ligation and continued for 1 year. Uncensored median survival in captopril-treated rats that survived at least 48 h was 201.5 days versus 236.0 days for losartan-treated rats (p = 0.066). Median survival censored for rats with lung infections was 201.5 days in captopril-treated rats versus 243.0 days for losartan-treated rats (p = 0.028). Conscious hemodynamic measurements and remodeling data obtained at one year in the surviving rats (n = 5 for captopril, n = 9 for losartan) revealed no differences except for an increase in heart rate and a decrease in developed LV pressure in losartan-treated rats. We conclude that in this experimental model of heart failure, there was no difference between hemodynamic effects and survival after AT₁ receptor blockade with losartan and with ACE inhibition with captopril. Activation of the renin-angiotensin-aldosterone system in heart failure contributes very importantly to the pathophysiology of this symptom complex [1–3]. Inhibition of angiotensin (Ang) II formation with angiotensin-converting enzyme (ACE) inhibitors has been shown to improve hemodynamic performance, exercise tolerance, symptoms, and mortality in both animal models [4,5] and in patients with heart failure [6-12]. The use of ACE inhibitors is now generally accepted therapy for patients with chronic congestive heart failure and for those with systolic dysfunction after myocardial infarction [13,14]. ACE inhibitors also appear to decrease the incidence of recurrent myocardial infarction, unstable angina, and sudden death
among those with reduced left ventricular (LV) function after myocardial infarction [11-13]. Although these beneficial effects are well documented, the mechanism of action of these agents is not entirely clear. It is thought that ACE inhibitors exert their cardiac effects primarily by decreasing LV afterload through inhibition of the conversion of Ang I to Ang II [15]. The mechanism of action of ACE inhibitors may be more complex than simple afterload reduction, however, because experimental [16] and clinical studies [11,17] have shown that a relatively pure afterloadreducing agent, such as hydralazine, is less beneficial than ACE inhibitors. Furthermore, serum renin, and by inference Ang I and II, is not elevated during the chronic compensated phase of congestive heart failure [18], which makes it unlikely that blocking the activity of ACE can be entirely responsible for the hemodynamic benefits. Additional actions may include the effects of ACE inhibitors on the kinin and prostaglandin systems [15,19-21]. Losartan is an imidazole derivative that exerts its effects by competitive antagonism of Ang II for one class of its receptors, referred to as AT₁ receptors. These are GTP-coupled proteins with seven membrane spanning domains [22,23]. There is evidence that they may be coupled to all three major G protein coupled signaling pathways: (1) activation of phospholipase C, resulting in generation of 1,4,5-inositol triphosphate and diacylgylcerol and subsequent release of intracellular Ca2+; (2) activation of dihydropyridine-sensitive Ca2+ channels; and (3) inhibition of adenylate cyclase activity [24-26]. AT₁ receptor subtypes are found in various organs, including liver, brain, adrenal, heart, and vascular muscle, where they are thought to mediate, among other effects, the characteristic actions of Ang II on blood pressure regulation and aldosterone secretion. These observations suggest that direct AT, receptor blockade and ACE inhibition should share many cardiovascular actions, possibly including beneficial effects in congestive heart failure. When the hemodynamic effects of losartan and ACE inhibition with captopril were compared in an experimental heart failure model, both agents decreased LV end-diastolic pressure, LV end-diastolic volume, and increased venous compliance without changing heart rate [27]. In addition, enalapril, another ACE inhibitor, and losartan equally attenuated the development of myocardial fibrosis in the noninfarcted rat LV [28]. Because both ACE inhibitors and losartan improved hemodynamic parameters after infarction and because ACE inhibitors have been shown to improve survival, a study was designed to compare the effects of captopril and losartan in the rat postinfarction model of heart failure [29]. The purpose of this report is to summarize our studies comparing the effects on hemodynamic and the renin-angiotensin-aldosterone system of ACE inhibition | | Control | Captopril | Losartan | |--|-------------------|-------------------|-------------------| | Body Weight (kg) \times 10 ⁻¹ | 3.76 ± 0.07 | 3.54 ± 0.08 | 3.37 ± 0.06* | | LV Weight (g) \times 10 ⁻¹ | 6.798 ± 0.305 | 6.722 ± 0.305 | 6.632 ± 0.122 | | RV Weight (g) $\times 10^{-1}$ | 3.229 ± 0.267 | 2.621 ± 0.221 | 2.640 ± 0.152 | | LV Weight/Body Weight (g/kg) | 1.82 ± 0.07 | 1.90 ± 0.05 | 1.97 ± 0.05 | | Infarct Size (% LV) | 44.9 ± 2.7 | 48.6 ± 3.0 | 46.3 ± 2.4 | | N | 9 | 9 | 10 | Table 1. Ventricular weight, body weight, and myocardial infarction size in control postinfarction rats and postinfarction rats treated for 2 wks with either captopril or losartan Note: Values are means ± SEM. LV, left ventricular; N, sample size. *P < 0.05 by Dunnett's test for multiple comparisons against a single control. versus direct AT₁ receptor blockade and to review recent evidence that the effects of captopril and losartan on survival in the rat postinfarction model may be similar. #### HEMODYNAMIC OF LOSARTAN AND CAPTOPRIL In the initial hemodynamic studies, male Sprague-Dawley rats (175 to 225g) underwent coronary artery ligation using techniques similar to those described earlier [16,27]. After three weeks, rats were anesthetized and nine-lead electrocardiograms with six limb leads and three chest leads were performed. Using criteria described previously [5], rats with evidence of large myocardial infarctions were selected for study. Three groups of rats were used for the hemodynamic study protocol: one group was untreated, a second group was treated with captopril (2g/ l drinking water), and a third group was treated with losartan (40 mg/kg/day by gastric gavage). In both treatment groups, the drug was administered for two weeks. The dose of captopril chosen was the same as that used by Pfeiffer et al. [5] in their study on the effects of ACE inhibition in the rat postinfarction heart failure model. The dose of losartan selected for use was shown in preliminary studies to be sufficient to shift the log pressure-response curve to an infusion of Ang II rightward by approximately 10^2 [27]. Body weight, heart weight, and infarct size in the untreated, captopril-treated, and losartan-treated postinfarction rats are shown in table 1. In all three groups, the average infarct size was large, approximately 45% to 49%. Treatment with either captopril or losartan did not change any of these parameters, with the exception that losartan decreased body weights. The hemodynamic changes in the untreated heart failure animals and those treated with captopril and losartan are shown in table 2. There were no differences in heart rate among the untreated and treated heart failure rats. While there were lower average right atrial and mean aortic pressures in both treatment groups, these decreases were not statistically significant. LV enddiastolic pressure and LV end-diastolic volume index were decreased significantly (P ≤ 0.05 and P ≤ 0.01 for captopril and losartan, respectively) in both treatment groups as compared to untreated heart failure animals. Mean circulatory filling pressure, an important index of preload [28], was decreased with losartan, and Table 2. Heart rate, mean aortic pressure, right atrial pressure, LV end-diastolic pressure, mean circulatory filling pressure, venous compliance, total blood volume index, and LV end-diastolic volume index in control postinfarction rats and postinfarction rats treated for 2 wks with either captopril or losartan | | Control | Captopril | Losartan | |---|-----------------|-------------------------|------------------------| | Heart Rate (bpm) | 333 ± 9 | 341 ± 8 | 330 ± 9 | | Mean aortic pressure (mm Hg) | 107 ± 3 | 94 ± 5 | 97 ± 6 | | Right atrial pressure (mm Hg) | 2.3 ± 0.1 | $2.1 \pm 0.4*$ | 1.9 ± 0.2 | | LV end-diastolic pressure (mm Hg) | 26.7 ± 1.5 | $15.8 \pm 2.2*$ | $14.2 \pm 3.0 \dagger$ | | Mean circulatory filling pressure (mm Hg) | 9.6 ± 0.3 | 8.5 ± 0.4 | $7.0 \pm 0.3 \dagger$ | | Venous compliance (mL/mm Hg/kg) | 2.27 ± 0.06 | $3.02 \pm 0.21 \dagger$ | $2.80 \pm 0.18*$ | | Total blood volume index (mL/kg) | 65.8 ± 1.1 | 64.9 ± 3.9 | 59.4 ± 3.0 | | End-diastolic volume index (mL/kg) | 2.71 ± 0.10 | $2.18 \pm 0.15*$ | $2.03 \pm 0.17*$ | | N | 9 | 9 | 10 | Note: Values are means \pm SEM. N, sample size. $\star P < 0.05$; $\dagger P < 0.01$ by Dunnett's test for multiple comparisons against a single control. Table 3. Plasma renin activity, angiotensin II, and aldosterone concentrations in postinfarction control rats and postinfarction rats treated for 2 wks with either captopril or losartan | | Heart Failure | Captopril | Losartan | |---------------------------|---------------|-----------------------|-----------------| | Renin Activity (ng/ml/hr) | 17.9 ± 3.5 | 11.5 ± 1.6 | 12.9 ± 2.0 | | Angiotensin II (pg/ml) | 93 ± 43 | 18.7 ± 2.7* | 72.9 ± 15.8 | | Aldosterone (pg/ml) | 561 ± 65 | $298 \pm 2.7 \dagger$ | 345 ± 51 | | N | 7 | 6 | 9 | Note: Values are means ± SEM. N, sample size. *P = 0.006 vs. losartan-treated group, †P = 0.02 versus untreated heart failure group by one-way analysis of variance. venous compliance was increased with captopril (P < 0.05). While total blood volume index was decreased in both groups, this change was not significant (P > 0.05). #### EFFECTS ON RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM In the animals studied hemodynamically, measurements of circulating levels of renin, Ang II, and aldosterone also were made. Average plasma renin activity was decreased in both treatment groups (table 3), but the changes were not significant (P > 0.05). Angiotensin II levels in the group treated with losartan $(72.9 \pm 15.8 \,\mathrm{pg/ml})$ were nearly the same as in the control group $(92 \pm 43 \,\mathrm{pg/ml})$, whereas the values were lower, on average, after treatment with captopril (18.7 ± $2.7 \,\mathrm{pg/ml}$) (p < 0.006). Aldosterone levels in the group treated with captopril (298) \pm 2.7 pg/ml) were decreased significantly (p < 0.02) as compared to the untreated heart failure group (561 ± 65 pg/ml). The aldosterone levels were also lower in the group treated with losartan (345 ± 51 pg/ml), but in this case, the difference did not achieve statistical significance. Generally, the trends in this data are consistent with what might be anticipated from the pharmacological actions of these drugs, but it would be necessary to study larger numbers of animals before drawing any firm conclusions. The results of this initial study suggested that losartan is as effective in the treatment of heart failure as captopril. The beneficial hemodynamic effects of AT₁ receptor blockade were similar to those of converting enzyme inhibition: LV enddiastolic pressure and LV end-diastolic volume decreased, and venous compliance increased. Since captopril has been shown
to improve long-term survival in the rat model, a study was designed to directly compare the effects of captopril and losartan on survival. #### COMPARISON OF THE EFFECTS OF CAPTOPRIL AND LOSARTAN ON SURVIVAL A one-year treatment trial comparing the effects of captopril with those of losartan was designed with mortality as the primary end-point [29]. The study was planned with the intent to detect a 20% difference between treatments with a two-sided significance level of 0.05. A placebo arm was considered but would have required too large a sample size. Inclusive of operative mortality, about 35% of rats undergoing coronary ligation in our laboratory have moderate to large myocardial infarctions. Had we chosen to include a placebo arm, to achieve the desired level of significance and power would have required us to operate on 944 rats. Because the beneficial effects of ACE inhibition is already well-defined in the rat postinfarction model, we concluded that there was no compelling reason to warrant a placebo heart failure group. Male Sprague-Dawley rats (175 to 275g) underwent coronary artery ligation. Afterwards, animals were returned to their cages and randomly assigned to treatment with losartan (2g/liter drinking water) or captopril (2g/liter drinking water). Ten to 14 days after operation, rats were anesthetized with methoxyflurane, and a nine-lead electrocardiogram was recorded to estimate infarct size. Only rats with ECG evidence of moderate to large myocardial infarctions on the basis of standard criteria [5] were continued in the study. Cages were inspected for dead animals daily. A postmortem examination was performed, and the lungs were inspected for gross signs of consolidation. The lungs and heart were placed in formalin for subsequent necropsy studies. Group stratification was confirmed at postmortem examination by quantitative histopathological studies. As in the previous work, rats were considered to have a moderate to large infarction when ≥20% of the LV surface area was occupied by fibrous scar tissue. A total of 237 animals were entered into the study; 119 were randomized to captopril treatment and 118 to losartan treatment. In the captopril treatment group, 41 rats died before the ECG was recorded, 1 rat died during the ECG anesthetic period, and 31 rats had small infarctions (<10%) by ECG criteria. In the losartan treatment group, 45 rats died before the ECG was recorded, 1 died immediately after the ECG, and 21 had small infarctions. All rats that died before the ECG was recorded died within 48h after coronary ligation (36% initial mortality). Thus, 46 ### Figure 1. Kaplan-Meier survival curves in rats with moderate to large infarction treated with captopril or losartan (2g/liter drinking water for each). One-year median survival in captopril-treated rats was 201.5 days versus 236.0 days in losartan-treated rats (log rank p = 0.066). rats with moderate or large myocardial infarctions were treated with captopril, and 51 rats with moderate to large myocardial infarctions were treated with losartan. There were no significant differences in body weight or age at the time of myocardial infarction (P < 0.05). Infarct size in rats treated with captopril that died during the trial was $37 \pm 4\%$ (range 18 to 49%) versus $38 \pm 4\%$ (range 19 to 56%) in rats treated with losartan. In both treatment groups, there was one rat with an infarct size <20% and one rat with an infarct size >50%. ### SURVIVAL DATA After 97 animals had been randomized into the study, statistical analysis indicated that inclusion of a larger number would be unlikely to significantly change the outcome. Accordingly, no further rats were entered into the trial, and all surviving animals were followed for one year. The survival curves for rats with moderate to large infarctions that survived until the ECG are shown in fig. 1. The mean and median survival data is summarized in table 4. Although there is no statistically significant difference in median survival between the two treatment groups, 201.5 days for captopril versus 236.0 days for losartan (log rank p = 0.066), the survival curve for the losartan-treated rats is above that for the captopril treatment group starting within two weeks of coronary artery ligation. When the analysis included all rats that died within 48h of the infarction, median survival in the captopril-treated group was 34.0 days versus 54.0 days for losartan treatment (p = 0.132). Figure 2. Kaplan-Meier survival curves in rats with moderate to large infarction treated with captopril or lorsartan as described in figure 1. after the data were censored for rats dying with lung infections. One-year survival was significantly greater for the losartan-treated rats (243.0 days versus 201.5 days, p = 0.028). Table 4. Survival estimates for postinfarction rats treated with either captopril or losartan | | | Captopril | Losartan | |------------------------------|---------------------------------|----------------------------|--------------------------| | | TOTAL | 46 | 51 | | Median
Survival
(Days) | Censored (Lost
on Follow-up) | $191.4 \pm 14.1 \ (201.5)$ | $238.3 \pm 15.6 (236.0)$ | | | Censored
(All Causes) | 191.4 ± 14.1 (201.5) | 246.4 ± 15.8* (243.0) | Note: Values are means ± SEM. Median values are shown in parenthesis. *P < 0.03 by Log-Rank Test. Among the rats with moderate to large infarctions that survived until the ECG was recorded, three rats in the losartan group had class 3 lung consolidation consistent with pneumonia [see ref. 5 for definition of lung histopathological classes]. There were no cases of lung consolidation consistent with pneumonia in the captopril treated group. Because lung consolidation was not evenly distributed between the two groups, data from these three animals were not censored for the primary analysis. As shown in table 4, when these three animals were considered censored, the median survival for captopril-treated rats was significantly greater than survival for the losartan-treated rats (201.5 days versus 243.0 days, p = 0.028). A plot of the censored data (fig. 2) shows even more clearly that the survival curve for the losartan-treated group is above that for the captopril-treated group. | 1 1 | , | | | |------------------|-----------------|-----------------|--| | | Captopril | Losartan | | | Heart Rate (bpm) | 266 ± 15 | 293 ± 19* | | | LV EDP (mm Hg) | 14 ± 7 | 11 ± 9 | | | LVSP (mm Hg) | 109 ± 19 | 99 ± 26 | | | Body Weight (g) | 495 ± 17 | 519 ± 73 | | | LV Weight (mg) | 1073 ± 98 | 946 ± 213 | | | LV/Body Weight | 2.18 ± 0.26 | 1.84 ± 0.39 | | Table 5. Heart rate, LV pressures, body weight, heart weight, and heart weight/body weight ratio in infarcted rats treated with either captopril or losartan that survived to 1 year Note: Values are mean ± SD. LV EDP, LV end-diastolic pressure mm Hg; LV SP, LV systolic pressure mm Hg. N = 5 for rats treated with captopril and 9 for rats treated with losartan. $\star P = 0.018$ compared to captopril by Student's t test for unpaired values. Table 6. Indices of LV systolic and diastolic function in postinfarction rats treated with either captopril or losartan that survived to 1 year | | Captopril | Losartan | | |-----------------|-----------------|-----------------|--| | Tau (ms) | 20.2 ± 3.4 | 19.4 ± 4.1 | | | dP/dt (mm Hg/s) | 5271 ± 886 | 4836 ± 1276 | | | CII (ml/kg/min) | 315 ± 57 | 276 ± 58 | | | SVI (ml/kg/min) | 1.17 ± 0.20 | 0.97 ± 0.25 | | | PDP (mm Hg) | 180 ± 16 | 153 ± 21* | | | K, | 2.35 ± 0.71 | 2.20 ± 0.98 | | Note: Values are means ± SD. CI, cardiac index; K_c, chamber stiffness constant; PDP, peak developed pressure; SVI, stroke volume index; Tau, time constant of LV relaxation. N = 5 for rats treated with captopril and 9 for rats treated with losartan. $\star P = 0.024$ compared to captopril by Student's t test for unpaired ### HEART WEIGHT, BODY WEIGHT, HEMODYNAMICS, AND LV REMODELING PARAMETERS IN SURVIVING RATS Body weight, heart weight, and heart weight/body weight ratio, hemodynamic data, and LV remodeling parameters in the captopril- and losartan-treated groups obtained at one year in the surviving rats are shown in table 5. There were no significant differences in these parameters between the two treatment groups. When hemodynamic variables in captopril-treated and losartan-treated groups were compared (table 6), the only differences were an increase in heart rate (293 ± 19 vs. $266 \pm 15 \, \text{beats/min}$, p = 0.018) and a decrease in peak developed pressure (153 \pm 21 vs. $180 \pm 16 \,\mathrm{mm}\,\mathrm{Hg}$, p = 0.024) in the losartan-treated rats. None of the indices of LV remodeling in rats surviving one year were different in the two groups (table 7). This study confirmed that mortality is increased in rats with heart failure after moderate to large myocardial infarctions and showed that there is no major differ- | | Captopril | Losartan | |-----------------------|-----------------|------------------| | V/V,,, | 0.79 ± 0.21 | 1.09 ± 0.40 | | Length (mm) | 17.5 ± 0.9 | 18.7 ± 1.5 | | LV Diameter (mm) | 9.49 ± 0.78 | 10.01 ± 1.66 | | Thickness (mm) | 2.22 ± 0.24 | 2.03 ± 0.21 | | LV Thickness/Diameter | 0.23 ± 0.04 | 0.21 ± 0.04 | | % MI Infarct Size | 31 ± 4 | 38 ± 7 | Table 7. Indices of LV remodeling in postinfarction rats treated with either captopril or losartan that survived to 1 year Note: Values are means ± SD. LV, left ventricular; V/V_w, LV chamber volume/ LV wall volume. N = 5 for captopril and 9 for losartan. ence in survival with specific AT₁ receptor blockade with losartan versus ACE inhibition with captopril. Also, there were no differences in indices of myocardial function and left ventricular geometry obtained at one year in surviving rats. Although other studies have examined the hemodynamic differences between specific AT, receptor blockade
and ACE inhibition in heart failure, to our knowledge, this is the first study to examine survival. There are few published animal studies of survival after myocardial infarction. Our study was based on the original captopril survival study by Pfeffer et al. [5], with the major difference that treatment was initiated on the day of the infarction; in the earlier study, treatment was started on day 14. In that study, captopril improved survival in rats with large infarctions. The median survival in the moderate and large infarct groups treated with captopril was 329 and 181 days, respectively. If the 14 days before initiation of therapy is subtracted from the survival reported in our study, the median survival of 201.5 days for captopril-treated rats with moderate to large infarctions in our study is comparable. In our trial, after elimination of the rats that died before the ECG, 46 rats were treated with captopril and 51 with losartan compared with 35 rats with moderate infarction and 37 with a large infarction assigned to captopril in the earlier study. Thus, despite differences in study design and numbers, the survival data with captopril in both of these studies are similar. An interesting parallel can be drawn between the results of our studies and the recently completed ELITE trial [30]. The latter study evaluated the long-term safety of losartan treatment compared with captopril treatment in older patients (age >65 years) with heart failure. In total, 722 patients with symptomatic heart failure (NYHA Class II-IV), who had not received therapy with an ACE inhibitor previously, were randomized to treatment with captopril or losartan for 48 weeks. Preliminary results showed that there was no difference between losartan and captopril in the primary endpoint (persistent increase in serum creatinine) of the study. Interestingly, the incidence of death and/or hospitalization for heart failure, the secondary endpoint, was 9.4% in the losartan-treated patients compared to 13.2% in captopril-treated patients (p = 0.075); this difference was entirely due to a 46% decrease in total mortality in the losartan-treated patients (p < 0.05). These recent clinical results seem entirely consistent with the trend toward increased survival observed in postinfarction rats treated with losartan as compared to those receiving captopril. Moreover, the similarity in the overall results again confirms that the rat postinfarction model is useful for testing the efficacy of drugs designed for treatment of heart failure. ### **ACKNOWLEDGMENTS** Supported by grants from the Department of Veterans Affairs, Washington D.C., National Heart Lung, and Blood Institute (Program Project Grant HL-20984 and RO1 HL-48163), National Institutes of Health, Bethesda, Maryland, and Du Pont Merck Pharmaceutical Company. ### REFERENCES - 1. Curtiss C, Cohn JN, Vrobell T, Franciosa JA. 1978. The role of renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58:763-770. - 2. Cohn JN, Levine TB, Francis GS, Goldsmith S. 1981. Neurohormonal control mechanisms in congestive heart failure. Am Heart J 102:509-514. - 3. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN. 1982. Activity of the sympathetic nervous system and the renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49:1659-1666. - 4. Pfeffer J, Pfeffer M, Braunwald E. 1985. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84-95. - 5. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406-412. - 6. Gavras H, Faxon DP, Berkoben J, Brunner HR, Ryan TJ. 1978. Angiotensin converting enzyme inhibition in patients with congestive heart failure. Circulation 58:770-776. - 7. Captopril Multicenter Research Group. 1983. A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J Am Coll Cardiol 2:755-763. - 8. Massie BM, Kramer BL, Topic N. 1984. Long-term captopril therapy for chronic congestive heart failure. Am J Cardiol 53:1316-1320. - 9. Kramer BL, Massie BM, Topic N. 1983. Controlled trial of captopril in chronic heart failure: A rest and exercise hemodynamic study. Circulation 67:807-816. - 10. The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429-1435. - 11. Cohn JN, Johnson G, Ziesche S, et al. 1991. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 325:303-310. - 12. The SOLVD Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293-302. - 13. Pfeffer MA, Braunwald E, Moye E, et al. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med 327:669-677. - 14. The AIRE Investigators. 1993. The Acute Infarction Ramipril Efficacy (AIRE) Study. Lancet 52:821-828. - 15. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of experimental and clinical evidence. Circ Res 68:905-921. - 16. Raya TE, Gay RG, Aguirre M, Goldman S. 1989. Importance of venodilation in prevention of left ventricular dilation after chronic large myocardial infarction in rats: A comparison of captopril and hydralazine. Circ Res 64:330-337. - 17. Cohn JN, Archibald BG, Ziesche S, et al. 1986. Effect of vasodilator therapy on mortality in chronic congestive heart failure: Results of a Veterans Administration Cooperative Study. N Engl J Med 314:1547-1552. - 18. Watkins L Jr, Burton JA, Haber E, Cant JR, Smith FW, Barger AC. 1976. The renin-angiotensinaldosterone system in congestive heart failure in conscious dogs. J Clin Invest 57:1606-1617. - 19. Deck CC, Gaballa MA, Raya TE. 1996. Relative contribution of angiotensin II, bradykinin, and prostaglandins to the renal effects of converting enzyme inhibition in rats after chronic myocardial infarction. J Cardiovasc Pharmacol 28:167-174. - 20. Linz W, Scholkens BA. 1992. Role of bradykinin in the cardiac effects of angiotensin converting enzyme inhibitors in heart failure. J Cardiovasc Pharmacol 20(Suppl 9):S83-S90. - 21. Farhy RD, Ho KL, Carretero OA, Scicii AG. 1992. Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182:283-288. - 22. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray II, Hasegawa M, Matsuda Y, Inagami T. 1991. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type I receptor. Nature 351:230-233. - 23. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-I angiotensin II receptor. Nature 351:233-236. - 24. Peach MJ. 1990. The angiotensin II receptor and the actions of angiotensin II. J Cardiovasc Pharmacol 16(Suppl 4):S25-S30. - 25. Kojima I, Shibata H, Ogata E. 1986. Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol triphosphate production in adrenal glomerulosa cells. FEBS Lett 204:347-351. - 26. Douglas JG. 1987. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol 253:F1-F7. - 27. Raya TE, Fonken SJ, Lee RW, Daugherty S, Goldman S, Wong PC, Timmermans PBMWWM, Morkin E. 1991. Hemodynamic effects of direct angiotensin II blockade compared to converting enzyme inhibition in rat model of heart failure. Am J Hypertension 4:334S-340S. - 28. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273-2282. - 29. Milavetz JJ, Raya TE, Johnson CS, Morkin E, Goldman S. 1996. Survival after myocardial infarction in rats: Captopril versus losartan. J Am Coll Cardiol 27:714-719. - 30. Pitt B, Segal R, Martinez FA, Meurers G, Cowley A, Thomas I, Deedwania PC, Ney DE, Snavelz DB, Chang PI. 1997. Randomized trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan In The Elderly study, ELITE). Lancet 349:747-752. # EFFECTS OF CAPTOPRIL ON MYOCARDIAL OXIDATIVE STRESS CHANGES IN POST-MI RATS NEELAM KHAPER, MICHAEL F. HILL, JULIETA PICHARDO, and PAWAN K. SINGAL Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine University of Manitoba, Winnipeg, Canada Summary. Changes in oxidative stress as indicated by the redox ratio as well as lipid peroxidation were characterized in rat hearts at different time points, subsequent to myocardial infarction (MI). In the severe heart failure stage at 16 weeks of post-MI, oxidative stress was significantly increased. Treatment with afterload reducing drugs, captopril or prazosin, started at 4 weeks post-MI and continued up to 16 weeks, resulted in a significant modulation of the oxidative stress changes with an improved hemodynamic function. It is suggested that the improved prognosis in MI patients with afterload reduction reported earlier may involve an improvement of the antioxidant reserve coupled with a reduction in the oxidative stress in the infarcted heart. ### INTRODUCTION Oxygen free radicals have been suggested to play a role in the pathogenesis of cardiac dysfunction in different pathological conditions [1–5]. Under normal physiological conditions, there is a delicate balance between oxygen free radical production and antioxidants. However, during disease states or pathological conditions, the balance may shift in
favor of a relative increase in free radicals, resulting in an increased oxidative stress. Generally, the redox (oxidation-reduction) state, i.e., the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), is considered to be inversely proportional to the oxidative stress and is used as an index for the latter. Thus, an increase in the redox state indicates reduced oxidative stress, and a decrease in the redox state indicates increased oxidative stress [4]. Myocardial antioxidants have been reported to change under different physiological and pathophysiological conditions [5-7]. Hypertrophy of the heart, because of chronic pressure overload, has been shown to be associated with increased antioxidant activities in both rats [8] and guinea pigs [3], whereas heart failure has been reported to be associated with a depressed antioxidant reserve [3,7,9,10]. Recent studies from our laboratory, using the coronary artery ligation model of myocardial infarction (MI) and congestive heart failure (CHF) in rats, have shown that sustained cardiac function in nonfailing hearts is accompanied by the maintenance and/or a trend towards an increase in antioxidants and a decrease in oxidative stress, while the converse is true during severe heart failure [9,10]. In another study using this animal model, we examined the effects of afterload reduction on changes in antioxidant enzyme activities in relation to the hemodynamic function. It was reported that afterload reduction using captopril or prazosin resulted in improved hemodynamic function in post-MI rats [10]. This improved cardiac function was accompanied by an increase in different antioxidant enzyme activities. However, there have been no studies to date examining the effects of captopril (an ACE inhibitor) on oxidative stress changes, as measured by the redox ratio in CHF subsequent to (MI). The present study was designed to examine the effects of captopril on myocardial reduced glutathione (GSH) content, myocardial oxidized glutathione (GSSG) content, and GSH/GSSG ratio to assess the degree of oxidative stress at 16 weeks postsurgery duration. The changes in lipid peroxidation as measured by thiobarbituric acid-reactive substances (TBARS) were also examined. Prazosin, an α_1 -blocker and another afterload reducing drug, was used for comparison. ### MATERIALS AND METHODS ### Animal model and study groups Male Sprague-Dawley rats (150 ± 10 g) were maintained on standard rat chow and water ad libitum unless mentioned otherwise. Myocardial infarction was produced via occlusion of the left anterior descending coronary artery [11,12]. In this procedure, the animals were anesthetized with 2% isoflurane, and the skin was then incised along the left sternal border. The third and fourth ribs were cut proximal to the sternum with the subsequent insertion of retractors, and the heart was exteriorized through the intercostal space. The left coronary artery was ligated about 1-2 mm from its origin with a 6-0 silk thread. Following ligation, the heart was gently repositioned in the chest. Excess air was withdrawn into a syringe, and the chest was closed. The rats were maintained on a positive pressure ventilation, delivering 2% isoflurane mixed with oxygen, throughout the surgery. Control animals were treated in a similar fashion with the exception that the suture around the coronary artery was not tied, and the thread was only passed through the muscle. There were five experimental groups, and each group had its own age matched sham control as follows: (1) 1-week post-MI and 1-week control; (2) 4-week post-MI and 4-week control; (3) 16-week post-MI and 16-week control; (4) 16-week captopril-treated post-MI and 16-week control; and (5) 16-week prazosin-treated post-MI and 16-week control. In groups 4 and 5, captopril (2g/l in drinking water) and prazosin (0.2 mg/kg s.c. daily) treatments, respectively, were started 4 weeks after the surgery and were continued up to 16 weeks. Animals were monitored daily for their general behavior as well as their food and water intake. ### Glutathione assay Concentration of total glutathione (GSSG + GSH) was measured in the myocardium by the glutathione reductase/5, 5'-dithiobis-(2-nitrobenzoic acid) (DTNB) recycling assay [13]. The rate of DTNB formation is followed at 412nm and is proportional to the sum of GSH and GSSG present. Myocardial tissue was homogenized in 5% sulfosalicylic acid. The tissue homogenate was centrifuged for 10 min at 10,000 g. Supernatant was stored at 4°C until assayed. GSSG alone was measured by treating the sulfosalicylic acid supernatant with 2-vinylpyridine triethanolamine. The solution was vigorously mixed, and final pH of the solution was checked to be between 6 and 7. After 60 min, the derivatized samples were assayed as described above in the DTNB-GSSG reductase recycling assay. GSH values were calculated as the difference between total (GSSG + GSH) and GSSG concentrations. ### Thiobarbituric acid-reactive substances (TBARS) Lipid peroxide content in hearts was determined by measuring the TBARS by the method described previously [14]. Hearts were homogenized in (10% wt/vol) 0.2 Mol/1 Tris-0.16 Mol/1 KCl buffer, pH 7.4, and incubated at 37°C for 1 hour. After one hour, a 2ml aliquot was collected from the incubation mixture and poured into a Corning culture tube. This was followed by the addition of 2.0 ml of 40% trichloroacetic acid and 1.0 ml of 0.2% thiobarbituric acid (TBA). 100 µL of 2% butylated hydroxy-toluene was added to the TBA reagent mixture in order to minimize peroxidation during the assay procedure. The mixture was then boiled for 15 min and then allowed to cool on ice for 5 min. Next, 2 ml of 70% trichloroacetic acid was added, and tubes were allowed to stand for 20 min. After 20 min, the sample was centrifuged at 800 g for 20 min. The developed color was read at 532 nm on a spectrophotometer. Commercially available malondialdehyde was used as a standard. ### Statistical analysis Data are expressed as the mean ± SEM. For a statistical analysis of the data, group means were compared by one-way ANOVA followed by Bonferroni's test. Values of P < 0.05 were considered significant. ### RESULTS ### General characteristics, mortality, and body weight All sham-control and coronary-ligated animals were monitored daily for their general behavior and body weight. Nothing unusual was noted in any of the sham control, post-MI, or drug treated groups with respect to their general appearance Figure 1. Body weight of sham control and post-MI rats at different postsurgery durations with and without treatments with captopril and prazosin. Drug treatment was started at 4-weeks postsurgery duration as described in the Material and Methods section. Data are mean ± SE of 10-12 rats. C, Sham Control; MI, Infarcted Group; post-MI, post-myocardial infarction. Arrow indicates the time at which the drug treatment was started. *Significantly different (P < 0.05) from its sham control animals treated with captopril. and behavior. Mortality in the coronary-ligated animals during or immediately after the surgery was about 20%. Another 12% of the animals died within 24 hrs following the surgery. Body weight gain of animals in all post-MI groups was slightly lower than their respective sham control groups (figure 1). Body weight gain in the captopril-treated 16-week post-MI group was significantly less than the respective untreated post-MI group. Body weight gain in the prazosin-treated group was not different from the untreated post-MI groups. ### Redox state Myocardial GSH and GSSG contents as well as GSH/GSSG ratio were examined in 1-, 4-, and 16-week sham and post-MI groups without treatment and at 16 weeks in groups treated with captopril or prazosin. These data are shown in table 1 and figure 2, respectively. GSH content in experimental hearts showed no significant change at 1- and 4- weeks post-MI compared to respective sham control groups. GSH content was decreased by about 34% in the 16-week post-MI group relative Figure 2. GSH/GSSG ratio in sham and infarcted post-MI hearts at 1, 4, and 16 weeks of postsurgery duration without treatment and at 16 weeks postsurgery duration with captopril (Capt) or prazosin (Praz) treatment. Drug treatment was started at 4 weeks postsurgery duration as described in the Material and Methods section. Data are mean \pm SE of 6–7 experiments. *Significantly different (P < 0.05) from respective sham as well as 1- and 4-week experimental groups by ANOVA followed by Bonferroni test. **Table 1.** Myocardial reduced (GSH) and oxidized (GSSG) glutathione levels in sham control and post-MI rats at 1, 4, and 16 weeks without treatment and at 16 weeks with captopril or prazosin treatments | | GSH (μmol/L) | | GSSG ($\mu mol/L$) | | |--------------------------|----------------|------------------------|----------------------|-----------------------| | post-MI Duration (weeks) | Sham | post-MI | Sham | post-MI | | Without Treatment | | | | | | 1 | 63.8 ± 1.8 | 60.3 ± 1.8 | 8.5 ± 0.3 | 7.6 ± 0.5 | | 4 | 62.6 ± 1.3 | 59.8 ± 1.9 | 8.8 ± 1.7 | 8.1 ± 0.4 | | 16 | 66.8 ± 1.9 | 44.1 ± 1.4* | 9.2 ± 0.2 | $18.2 \pm 2.1*$ | | With Treatment | | | | | | Captopril | 73.2 ± 1.9 | $72.1 \pm 3.7 \dagger$ | 8.2 ± 0.3 | $8.8 \pm 0.4 \dagger$ | | Prazosin | 73.5 ± 2.9 | $71.3 \pm 1.4\dagger$ | 8.3 ± 0.2 | $8.7 \pm 0.2^{+}$ | Note: Values are mean \pm SE of 6–7 hearts. *) Significantly different (P < 0.05) from respective sham control as well as 1– and 4-weeks post-myocardial infarction (post-MI) groups. †) Significantly different from the 16-week untreated post-MI group. to respective sham control, and this decrease was statistically significant (P < 0.05). GSSG content remained unchanged at 1- and 4-weeks post-MI; however, it was significantly increased at 16-weeks post-MI compared to its respective sham control group (table 1). The redox ratio
(GSH/GSSG) was marginally higher in the 1- and 4-week post-MI groups compared to sham controls; however, the change was not statistically significant. This ratio in the 16-week post-MI group was significantly lower than its respective sham control group (figure 2). The GSH content in the 16-week post-MI group was significantly improved in both the captopril and prazosin-treated groups compared to the 16-week post-MI untreated group. The GSSG content was significantly decreased in both the captopril and prazosin treated-16-week post-MI groups compared to their respective untreated 16-week post-MI group (table 1). Captopril and prazosin treatments also significantly improved the redox ratio in the 16-week post-MI group compared to the untreated 16-week post-MI group (figure 2). ### Lipid peroxidation Lipid peroxidation, which is another indicator of oxidative stress as well as injury, was assessed in 1-, 4-, and 16-week sham and post-MI groups as well as in the 16-week group treated with captopril or prazosin by evaluating myocardial TBARS, and these data are shown in figure 3. TBARS in the 1-week post-MI group remained unchanged compared to its respective control. Although TBARS were increased in the 4- and 16-week post-MI groups as compared to their sham controls, the increase was statistically significant only in the 16-week post-MI group. Captopril or prazosin had no effect on the level of TBARS in sham controls. However, in the captopril-treated group, TBARS were significantly lower as compared to its respective untreated post-MI group. TBARS in the prazosin-treated post-MI group were also lower than the untreated post-MI group (figure 3). ### DISCUSSION Beneficial effects of vasodilators in the management of hypertension and congestive heart failure have been very well established. Many investigators have demonstrated that captopril improves hemodynamic function as well as influences ventricular remodeling in congestive heart failure subsequent to MI in rats [15] and dogs [16]. Captopril has also been reported to improve survival in the rat model [17]. The present study demonstrates for the first time that treatment with captopril results in a significant decrease in oxidative stress, as evidenced by an increase in the redox state ratio. In our previous study, using this animal model, we characterized changes in antioxidants in relation to the hemodynamic function at different stages of heart failure. Based on the hemodynamic function and other clinical data, the animals at 1, 4, and 16 weeks of MI duration were classified to be in nonfailure, mild failure, and severe failure stages, respectively. The maintenance of antioxidant enzyme Figure 3. Lipid peroxidation as indicated by thiobarbituric acid reacting substances (TBARS) in sham and infarcted post-MI hearts at 1-, 4-, and 16-weeks postsurgery durations without treatment and at 16-weeks with captopril (Capt) or prazosin (Praz) treatment. Drug treatment was started at 4 weeks postsurgery duration as described in the Material and Methods section. Data are mean ± SE of 6-8 experiments. †Significantly different (P < 0.05) from respective sham as well as 1- and 4-week experimental groups by ANOVA. *Significantly different from the 16-week untreated post-MI group (ANOVA). (Taken with permission from the Journal of the American College of Cardiology, 20 (4), March 15, 1997.) activity at 1 week and the decrease in activity at 4 and 16 weeks of MI duration suggested that an antioxidant deficit plays a role in the pathogenesis of heart failure subsequent to MI [9,10]. Afterload reduction by captopril or prazosin was accompanied by an improved hemodynamic function and better maintenance of myocardial endogenous antioxidant reserve at the severe failure stage [10]. In this study, improved redox ratio by these two drugs in the post-MI groups complements the previous findings of an improved antioxidant status in these hearts. An increase in lipid peroxidation at the severe failure stage in this study provides further evidence of free radical involvement in heart failure. Measurement of TBARS as an indicator of lipid peroxidation has been criticized because of its nonspecificity [18]. However, when used in conjunction with the study of redox state as well as the antioxidant enzymes, it provides meaningful information. Increase in lipid peroxidation has also been reported in heart failure conditions in humans [19-22]. A strong correlation between lipid peroxidation and depressed cardiac function has also been reported in other pathological conditions [2,23]. In the present study, we also report that treatment of animals with captopril results in decreased lipid peroxidation in the hearts at 16 weeks of MI duration. A decrease in breath pentane levels in CHF patients treated with captopril has also been reported [24]. Prazosin, another afterload reducing drug, also decreased lipid peroxidation at the severe failure stage. In addition to being a vasodilator, captopril also possesses antioxidant properties [25]. The exact mechanism by which captopril decreases oxidative stress is not known. In most mammalian cells, glutathione is present in high concentrations as GSH (millimolar range) with minor fractions as GSSG. This tripeptide plays a crucial role in modulating cell damage resulting from reactive oxygen species as well as hydrogen peroxide [26]. In the heart, glutathione exists predominantly in the form of GSH. It acts as a cosubstrate of glutathione peroxidase for the detoxification of H₂O₂ and other organic peroxides [26]. Since superoxide dismutase and catalase are present in relatively low concentrations in the heart, the antioxidant role of glutathione is even more important in protecting the heart against oxidative stress injury [26-29]. In the present study, myocardial GSH content was significantly depressed at the severe failure stage and was accompanied by a significant increase in the GSSG content. Changes in tissue concentration of GSH have been reported in a variety of experimental models. In a chronic pressure overload model of heart failure, myocardial GSH content was significantly increased at the hypertrophy stage and significantly reduced at the failure stage [30]. Increase in oxidative stress was also evidenced by a decrease in the redox ratio [30]. Decrease in GSH levels in the hearts of adriamycin-treated animals [31] and diabetic rats [32] have also been reported. In our study, the redox ratio was significantly decreased in the 16-week post-MI group compared to the 1- and 4-week post-MI groups as well as their respective controls. After captopril or prazosin treatment, both the myocardial GSH content and the redox ratio were improved. The role of increased oxidative stress in the pathogenesis of heart failure from a chronic pressure overload has been established by using antioxidant treatment [30]. Since vasodilation is a common effect of both captopril and prazosin, these beneficial effects on the oxidative stress changes may be secondary to the afterload reduction. In conclusion, there is an increase in lipid peroxidation and a decrease in the redox state during the severe failure stage. Modulation of these changes by captopril and prazosin treatments, as well as improved hemodynamic function, indicates that heart failure subsequent to MI is associated with an increase in oxidative stress. ### **ACKNOWLEDGMENTS** This work was supported by a group grant in Experimental Cardiology (PKS) from the Medical Research Council of Canada, Ottawa. NK was supported by a student fellowship from the Heart and Stroke Foundation of Canada. ### REFERENCES - 1. Bolli R. 1988. Oxygen-derived free radicals and postischemic myocardial dysfunction ("Stunned Myocardium"). I Am Coll Cardiol 12:239-249. - 2. Siveski-Iliskovic N, Kaul N, Singal PK. 1994. Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89:2829- - 3. Dhalla AK, Singal PK. 1994. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 266(Heart & Circ Physiol 36):H1280-H1285. - 4. Singh N, Dhalla AK, Seneviratne CK, Singal PK. 1995. Oxidative stress and heart failure. Mol Cell Biochem 147:77-81. - 5. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. 1993. Free radicals and the heart. J Pharmacol and Toxicol Meth 30:55-67. - 6. Kanter MM, Hamlin RL, Unverferth DV, Davis HW, Merola AJ. 1985. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol 59:1298-1303. - 7. Singal PK, Kirshenbaum LA. 1990. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol 6:47-49. - 8. Gupta M, Singal PK. 1989. Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res 64:398-406. - 9. Hill MF, Singal PK. 1996. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291-300. - 10. Khaper N, Singal PK. 1997. Effects of afterload reducing drugs on the pathogenesis of antioxidant changes and congestive heart failure in rats. J Am Coll Cardiol 219:856-861. - 11. Selye H, Bajusz E, Grasso S, Mendell P. 1960. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398-407. - 12. Dixon IMC, Hata T, Dhalla NS. 1992. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 262:H1387-H1394. - 13. Anderson ME. 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548-555. - 14. Singal PK, Pierce GN. 1986. Adriamycin stimulates low-affinity Ca²⁺-binding and lipid peroxidation but depresses myocardial function. Am J Physiol 250:H419-H425. - 15. Pfeffer JM, Pfeffer MA, Braunwald E. 1985. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84-95. - 16. Jugdutt BI, Schwarz-Michorowski BL,
Khan MI. 1992. Effects of long-term captopril therapy on left ventricular remodelling and function during healing in canine myocardial infarction. J Am Coll Cardiol 19:713-721. - 17. Pfeffer MA, Pfeffer JM, Steinberg C, Jinn P. 1985. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406-412. - 18. Fantini GA, Yoshioka T. 1992. Use and limitations of thiobarbituric acid reaction to detect lipid peroxidation. Am J Physiol 263:H981-H982. - 19. Weitz Z, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. 1991. Elevated pentane levels during acute myocardial infarction. Lancet 337:933-935. - 20. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ. 1993. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14:1493-1498. - 21. Diaz-Velez CR, Garcia-Castineiras S, Mendoza RE, Hernandez-Lopez E. 1996. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 131:146- - 22. Charney RH, Levy DK, Kalman J, Buchholz C, Ocampo ON, Eng C, Kukin ML. 1997. Free radical activity increases with NYHA class in congestive heart failure. J Am Coll Cardiol 102A, 930- - 23. Jain SK, Levine SN. 1995. Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Rad Biol Med 18:337-341. - 24. Sobotka PA, Brottman MD, Weitz Z, Birnbaum, AJ, Skosey JL, Zarling EJ. 1993. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Rad Biol Med 14:643-647. - Chopra M, Scott N, McMurray J, Mclay J, Bridges A, Smith WE, Belch JJF. 1989. Captopril: A free radical scavenger. Br J Clin Pharmac 27:396-399. - 26. Reed DJ. 1990. Glutathione: Toxicological implications. Ann Rev Pharmacol Toxicol 30:603-631. - 27. Verma A, Hill M, Bhayana S, Pichardo J, Singal PK. 1997. Role of glutathione in acute myocardial adaptation. In Adaptation biology and medicine. Ed. BK Sharma, N Takeda, NK Ganguly, PK Singal. New Dehli: Narosa Publishers 1:399-408. - 28. Bray TM, Taylor CG. 1993. Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Pharmacol 71:746-751. - 29. Shan X, Aw TY, Jones DP. 1990. Glutathione dependent protection against oxidative injury. Pharmacol Ther 47:61-71. - 30. Dhalla AK, Hill M, Singal PK. 1996. Role of oxidative stress in the transition of hypertrophy to heart failure. J Am Coll Cardiol 28:506-514. - 31. Olson RD, Boerth RC, Gerber JG, Nies AS. 1981. Mechanism of adriamycin cardiotoxicity: Evidence for oxidative stress. Life Sciences 29:1393-1401. - 32. Kumar JS, Menon VP. 1992. Changes in levels of lipid peroxides and activity of superoxide dismutase and catalase in diabetes associated with myocardial infarction. Indian J Exp Biol 30:122-127. ### ROLE OF ANGIOTENSIN IN ANGIOGENESIS AND CARDIAC FIBROSIS IN HEART FAILURE SURESH C. TYAGI, MELVIN R. HAYDEN, and JOHN E. HALL Department of Physiology and Biophysics, and Center of Excellence in Cardiovascular and Renal-Research University of Mississippi Medical Center, Jackson, MS, USA Summary. Cardiac hypertrophy is associated with the accumulation of extracellular matrix (ECM), cardiac fibrosis, and abnormal diastolic stiffness. Intra-coronary fibrosis in the hypertrophied myocardium can lead to occlusion of a major coronary artery with resulting ischemia. Angiotensin (Ang) II is associated with cardiac hypertrophy and fibrosis as well as angiogenesis, but the mechanisms are unknown. Tissue levels of angiotensin are elevated in the ischemic and nonischemic regions of the failing heart, and there is evidence that Ang II contributes to myocardial cellular hypertrophy and cardiac fibrosis. Also, Ang II may contribute to angiogenesis in the infarcted heart, thereby increasing collateral circulation. Angiotensin-converting enzyme inhibitor (ACEI) treatment opposes hypertrophy and ischemic heart failure. The mechanisms responsible for this cardioreparative effect of ACEI are largely unknown, but may due to inhibition of Ang II formation as well as other mechanisms. In the infarcted and noninfarcted ischemic heart, interstitial matrix metalloproteinases (MMPs) are activated. Recent experiments suggest that ACEI improves cardiac function and reduces myocardial ischemic damage, in part, by inhibiting MMP activity. ### ROLE OF ANGIOTENSIN II IN CARDIAC HYPERTROPHY Increased levels of the octapeptide angiotensin (Ang) II have been associated with the pathological states of the heart [1–3]. However, the role of Ang II in the pathophysiology of cardiomyopathy has not been fully elucidated. Several in vivo studies suggest that Ang II may be a critical factor in mediating cardiac hypertrophy [4]. In vitro studies have also shown that mechanical stretch releases Ang II from cardiac myocytes and that Ang II mediates, in part, the stretch-induced hypertrophic response [5]. Locally produced Ang II may therefore act as an endogenous growth factor for myocardial cells [6]. The mechanisms by which Ang II mediates cardiac hypertrophy are not fully understood. However, Ang II is believed to stimulate early genes in cardiac myocytes and nonmyocyte cells, leading to hypertrophy and mitogenesis [7]. The induction of immediate early genes alters posttranslational processing of the preexisting gene transcription factors through cellular second messenger systems; these systems then influence the expression of late genes, particularly those which regulate the extracellular matrix (ECM) components. The receptor systems involved in Ang II activity are AT₁ and AT₂ receptors. The AT₁ receptor is primarily involved in the regulation of structural ECM component genes [8]. The precise role of the AT2 receptor is still not well understood, but some studies suggest that the AT2 receptor may be involved in cellular proliferation and cell division [9]. Collectively, multiple studies have suggested a physiological role for Ang II in cardiovascular remodeling. To compensate for the myocardial damage after ischemic injury, the entire heart undergoes hypertrophy [10,11]. However, the cardiac hypertrophy also can lead to increased wall stress, interstitial fibrosis, diastolic dysfunction, and increased risk for myocardial infarction (MI). Coronary vessels may become stiffer because of perivascular fibrosis, and this may increase the risk for coronary occlusion [12-15], resulting in the development of transmural MI and heart failure [16]. During the compensatory hypertrophic response, the myocytes and fibroblasts function normally. As an adaptive response to normalize wall stress and compensate for an increased load, cardiac muscle cells proliferate and increase in size, and there are changes in extracellular matrix that result in a remodeling of the entire ventricular chamber [17]. Remodeling, by its very nature, implies synthesis and degradation of ECM including interstitial fibrillar collagen. Accumulation of collagen leads to fibrosis. An abnormal accumulation of collagen is present within the interstitium and adventitia of intramyocardial coronary arterioles under hypertrophic conditions [18]. This perivascular and interstitial fibrosis may be responsible for abnormal myocardial stiffness in hypertrophied hearts [19-24]. We have previously demonstrated that Ang II induced collagen formation and reduced MMP in cardiac fibroblasts [25]. We have also demonstrated that chronic infusion of Ang II increases vascular permeability and consequently increases interstitial volume and edema [26]. This may also cause accumulation of ECM and cardiac fibrosis. Experimentally induced renal artery stenosis (two-kidney, one clip [2K1C] Goldblatt hypertension) yields an increase in arterial pressure that is associated with an increase in Ang II, and these two changes may act synergistically to induce the cardiac and renal structural changes associated with renal stenosis [27-29]. # **Sprouting During Angiogenesis** Figure 1. Hypothetical role of matrical pathways in the sprouting of capillaries (C1, C2) of blood vessels. A, migratory endothelial cells at tips of adjacent sprouts create a connecting pathway of aligned ECM (matrical pathway) as a consequence of a traction-mediated two-center effect; B, migratory endothelial cells approach one another via the gradient-directed pathway (ECM chemosensory); and C, The vascular loop is completed as endothelial cells meet, adhere, and interact to form a patent lumen (L). ### ANGIOTENSIN II AND ANGIOGENESIS The vasculogenesis (formation of new vasculature or enlargement of the preexisting vessels) and angiogenesis (development of capillaries) are the structural processes by which new vessels are generated by sprouting from existing blood vessels (figure 1) [30,31]. Angiogenesis is not only necessary for normal embryonic development and postnatal growth but also occurs in adult life in a variety of physiological and pathological conditions. Transient, regulated growth of new capillaries occurs during formation of the corpus luteum, wound healing, bone fracture repair, and collateral development following myocardial ischemia [32,33]. In response to gradual occlusion of a major coronary artery, new collateral vessels develop to provide an alternate pathway for blood supply to the ischemic myocardium [34]. Figure 2. Representative experiment showing the level of angiotensin II in the coronary collateral vessels as compared to normal left anterior descending artery (LAD) [35]: Angiotensin was measured as described [6]. We evaluated specific mechanisms involved in vasculogensis and angiogenesis utilizing a canine model of coronary artery occlusion, which consisted of gradual closure of the left circumflex (LCx) artery by an ameroid constrictor [35]. The canine heart responds to chronic coronary occlusion by development of numerous collateral arteries easily identified on the epicardial surface as tortuous vessels extending from the unoccluded to the occluded (collateral-dependent
myocardial region) arteries [34,35]. Elevated levels of Ang II were observed in the coronary collateral vessels as compared to left anterior descending (LAD) artery (figure 2). Also, in the ischemic heart, Ang II levels are elevated [36]. Other investigators have also demonstrated that increased activity of the reninangiotensin system is correlated with the development of collateral formation after renal ischemia [37]. Furthermore, in a study of a chick embryo model of angiogenesis, infusion of Ang II for 14 days after gestation resulted in an increased number of new blood vessels in the chorioallantoic membrane as compared to the chorioallantoic membrane of control saline-infused chick embryos [38]. This study clearly demonstrated that Ang II plays a significant role in angiogenesis in this model. These authors also found that neither blockade of AT₁ nor the AT₂ receptors prevented this Ang II-induced angiogenesis. However, a prostaglandin synthesis inhibitor reduced Ang II-mediated angiogenesis [38]. Prostaglandin is synthesized by cycloxygenase-dependent pathway and oxidative cell-membrane metabolites. Collectively, these studies suggested that an antioxidant-sensitive pathway may be involved in the Ang II-induced angiogenesis [37,38], particularly at the site of ischemic injury, since reactive oxygen intermediates are involved in the intracellular signal transduction of Ang II-mediated cellular metabolic function [39]. Cellular proliferation and division are the prerequisite steps in Ang II-induced angiogenesis. Proliferative cells produce ECM when the tissue is restructured. ### **Molecular Saga of Angiogenesis** Ang II/FGF/VPF/VEGF Endothelial Cell TF Degradation Coagulation factors MMPs Plasmin Activation of extrinsic Thrombin coagulation pathway cleaved OPN Thrombin zymogens Fibrin a5v3 ligands I) Endothelial cell proteins II) Functionally related plasma proteins induced by VPF/VEGF which extravasate due to micro-vascular hyperpermeability Secreted Cell Surface Fg uРA Fn ### Figure 3. Functional relationship between the ECM proteins induced in endothelial cells by angiotensin or VEGF and proteins that extravasate from blood plasma as a consequence of microvascular hyperpermeability suggest the hypothesis that multiple and complex interactions between these two protein populations are fundamental to the mechanism by which angiotensin and other cytokines promotes angiogenesis. Ang II, angiotensin II; Fg, fibrinogen; Fn, fibronectin; MMP, matrix metalloproteinase; uPA, urokinase plasminogen activator; Vn, vitronectin; PAI, plasminogen activator inhibitor. ۷n Plasminogen Coagulation factors TF uPAR **ECM** tPA PAI-1 MMP Iruela-Arispe et al. [40] demonstrated that collagen, ECM, and growth factors are actively synthesized by endothelial cells undergoing angiogenesis in vitro. Also, factors that increase vascular hyperpermeability induce angiogenesis (figure 3). Ang II induces vascular hyperpermeability in vivo, and this effect may contribute to angiogenesis and ECM formation [26]. Increased ECM may also enhance the storage of angiogenic growth factors such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and vascular permeability factor (VPF) [81]. All these factors function in conjunction with ECM to enhance angiogenesis in the tissue [41-44]. A bolus injection of an angiogenic factor, VEGF, has been shown to improve collateral blood supply to the myocardium at ischemic risk [45]. This may be indirectly related to the production of Ang II by VEGF in cardiovascular cells. Potentially, altered ECM produced in the intima of collateral arteries is the result of a coordinated expression of the angiogenic factor(s) involved in development of these vessels and Ang II, which may promote production of growth factors [46]. It would be of great interest to evaluate the role of Ang II in vivo models of angiogenesis and vasculogenesis. ### ACTIVATION OF MATRIX METALLOPROTEINASES IN THE INFARCTED AND NONINFARCTED ENDOCARDIUM OF THE FAILING HEART Occlusion of a major coronary artery impairs nutrient supplies to a specific region of the heart and can result in cardiac myocyte death [47]. The anatomic impact of a large infarct is evident by myocardial wall thinning and ventricle dilatation [48]. Focal ischemia leads to inflammatory cell proteolytic and oxidative responses, endothelial damage, and myocyte necrosis and apoptosis [49-51]. Hemodynamic adaptations occur in an infarcted heart that increase left ventricular filling pressure [52]. Although chamber dilation may be compensatory for the maintenance of stroke volume [53], chronic elevation of diastolic pressure and increased wall stress may induce structural changes that are detrimental in the longterm and may further impair myocardial energetics and cardiac performance. Despite the structural and functional alterations, the ejection fraction often decreases in direct proportion to the amount of damaged myocardium [54], leading to speculation as to the adaptive nature of these physiological events [55]. During the compensatory response, the noninfarcted and infarcted portions of the ventricle undergo remodeling, and increased ventricular stress causes myocardial cell hypertrophy and proliferation. At the site of infarction, the connective tissue matrix continues to be disrupted, and the wall becomes thinned, whereas the noninfarcted area undergoes hypertrophy. The physiological mechanisms of this dual remodeling (i.e., hypertrophic remodeling response in the noninfarcted area and myocardial wall thinning and dilatation in the infarcted area) in the same ischemic heart are not known. Cardiac work requires energy [56] and the proper structural geometry of the heart muscle [57-60]. A great deal of information is available on the role of energetics in myocardial function [56,61,62]. However, the structural basis of cardiac function and dysfunction remains to be elucidated. Normally, cardiac myocytes are aligned in a proper three-dimensional arrangement by the ECM, in particular, the interstitial type I fibrillar collagen, connected with its receptor integrins and with its intracellular myofilamental cytoskeletal proteins [63]. Remodeling is associated with synthesis and disruption of ECM components [10]. Along with others [50], we [64] have demonstrated disruption of ECM, particularly interstitial collagen, at the site of infarction and at the site of the thin wall. This disruption in ECM components contributes to myocyte misalignment and heart failure. Extracellular MMPs are involved in the disruptive process of ECM components. We have demonstrated that in the normal heart, the majority of MMPs are present in the latent, inactive form [65]. However, in the infarcted and noninfarcted heart, MMPs are activated [66]. In the normal heart, we observed constitutive expression of a basal level of a 66kD MMP-2, gelatinase A. However, in the noninfarcted heart, the expression of gelatinase A was significantly increased [64,66]. At the site of infarction, gelatinase A and gelatinase B, MMP of 92kD, as well as interstitial collagenase, MMP-1, were induced [51,64,66]. We previously observed that in end-stage heart failure, the majority of MMPs originate from myo-fibroblast-like cells [51]. The mechanism of this differential expression of MMPs at the site of infarction and noninfarction in heart failure are not fully understood. In dilated failing human hearts, secondary to previous MI or dilated cardiomyopathy (DCM), MMP activity is increased [66], especially within the endocardium of the infarcted and noninfarcted portions of either ventricle with MI and in both ventricles in DCM. This suggests that an activation of collagenase throughout the myocardium may contribute to ECM remodeling and to heart failure To examine whether the MMP activation was due to gene and/or posttranslational modification, we analyzed tissue from 10 hearts explanted because of coronary heart disease (CHD) and normal left atrial tissue from 5 donor hearts [64]. Our data suggests that gelatinase B (92kDa) is induced in heart failure. Moreover, the results suggest that tissue plasminogen activator (tPA) converts plasminogen to plasmin which, in turn, activates MMPs and inactivates the tissue inhibitor of metalloproteinase (TIMP) post-translationally following ischemic cardiomyopathy and heart failure [64]. ### TREATMENT OF HEART FAILURE WITH ANGIOTENSIN-CONVERTING ENZYME INHIBITORS Every year approximately 400,000 new cases of heart failure occur, resulting in 900,000 hospitalizations. More than 2 million American are affected with heart failure. The five-year mortality of heart failure is still about 50% [67,68]. Treatment with ACEI has been shown to improve survival of patients affected with congestive heart failure [69-71]. When patients were treated with ACEI after an acute MI without symptoms of heart failure, left ventricular (LV) enlargement was delayed and a significant reduction in mortality resulted [72]. ACEI may protect against myocardial failure partly by lowering blood pressure [73,74]. Himeno et al. [75] demonstrated that quinapril lowered both blood pressure and fibronectin expression. Richer et al. [76] found that quinapril treatment reduced the heart weight to body weight ratio. These studies collectively suggested that ACEI may modulate myocardial remodeling and altered ECM expression [75-77]. The mechanisms by which ACEIs ameliorate deterioration of LV structure and function remain to be determined. One possible explanation is that ACEI blunts structural ventricular remodeling partly through hemodynamic improvement (reduction of afterload) as well as by blocking local Ang II formation and subsequent activation of other paracrine growth factor systems. Stimulation of the renin- Figure 4. Zymographic analysis of human myocardial infarcted (MI) heart extract: Fifty micrograms of MI extract was incubated with 1 mM of lisinopril and quinapril (A) and various
concentrations of captopril (B). The SDS-PAGE-zymography was performed as described [82]. A, lane 1, MI extracted, incubated with 1 mM lisinopril prior to loading on to the gel; lane 2, MI extracted, incubated with quinapril; lane 3, MI extract alone; lane 4, molecular weight standard; lanes 5-7 same as 1-3 except samples in lanes 5-7 were incubated with phenathroline. B, lane 1, MI extract; lanes 2-12, MI extract incubated with 1, 3, 4, 6, 8, 9, 10, 12mM concentration of captopril, respectively. Lane 10, molecular weight standard. angiotensin system following an initiating event (i.e., MI) may lead to structural remodeling of the heart with progressive LV enlargement and impairment of the contractile function [53,54]. A net balance between collagen synthesis and degradation is required for cardiac remodeling. MMPs may be responsible for collagen degradation and myocardial wall thinning [64]. In vitro MMPs are inhibited by converting enzyme inhibitors (figures 4 and 5). Gelatinase A is constitutively expressed during remodeling process [78]. However, MMP-1 and gelatinase B are inducible enzymes and are elevated following MI [64,66,79,80]. Figures 4 and 5 demonstrate that captopril, lisinopril, and quinapril at 30 mg/kg concentration (1 mM) significantly inhibited MMP-1 and gelatinase B. However, gelatinase A was partially inhibited. These results suggested that under pathological conditions, ACEI reduces MMP activity and, therefore, inhibits ECM disruption, which may be important in helping to restore cardiac structure and function and in preventing further progression of heart failure. ### CONCLUSION Final resolution of the mechanism by which ACE inhibitors ameliorate cardiac failure will require additional experimentation. In vivo comparative studies with other drugs that decrease afterload and mechanical stress on the heart and investigation of multiple doses of converting enzyme inhibitors that cause substantial MMP inhibition will be necessary to understand the mechanism by which ACE inhibition helps to prevent adverse ECM remodeling and heart failure. These studies are in progress. If we can understand the differences in the dual remodeling process that takes place in noninfarcted and infarcted region of the heart, it might then be Figure 5. Histographic presentation of the scanned data of zymographic analysis of MI extract incubated with 1 mM (30 mg/kg) of captopril, lisinopril, and quinapril, respectively. possible to develop therapeutic interventions to reverse or halt the process of cardiac wall thinning, dilatation, and, ultimately, heart failure. ### ACKNOWLEDGMENT This work was supported in part by NIH grant GM-46366, HL51971 and by a Grant-In-Aid from American Heart Association, Mississippi Affiliate. ### REFERENCES 1. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM. 1991. Angiotensin II induced smooth muscle proliferation in the normal and injured rat arterial wall. Circ Res 68:450-456. - 2. Paquet JI, Badouin-Legros M, Brunelle G, Meyer P. 1990. Angiotensin II induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 8:565-572. - 3. Stouffer GA, Owens GK. 1992. Angiotensin II induced mitogenesis of spontaneously hypertensive rats-derived smooth muscle cell is dependent on autocrine production of transforming growth factor β1. Circ Res 70:820-828. - 4. Lindpaintner K, Ganten D. 1991. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905-921. - 5. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediated stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977-984. - 6. Katwa LC, Tyagi SC, Campbell SE, Lee SI, Cicila GT, Weber KT. 1996. Valvular interstitial cells express angiotensinogen and cathespsin D, and generate angiotensin peptides. Intn J Biochem Cell Biol 28:807-821. - 7. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II induced hypertrophy of cardiac myocytes and pyperplasia of cardiac fibroblasts, critical role of the angiotensin II receptor subtype. Circ Res 73:413-423. - 8. Katwa LC, Ratajska A, Cleutjens JPM, Sun Y, Zhou G, Lee SJ, Weber KT. 1995. Angiotensin converting enzyme and kininase II-like activities in cultured valvular interstitial cells of the rat heart. Cardiovas Res 29:57-64. - 9. Rivera VM, Greenberg ME. 1990. Growth factor induced gene expression: The ups and downs of c-fos regulation. New Biol 2:751-758. - 10. Weber KT, Sun Y, Tyagi SC, Cleutiens J. 1994. Collagen network of the myocardium: Function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279-292. - 11. Weber KT, Sun Y, Guarda E, Zhou G, Ratajska A, Tyagi SC. 1994. Myocardial Fibrosis: Regulatory mechanisms and potential interventions. International Society of Hypertension, Hypertension Annual Reviews 128-137. - 12. McKee PA, Castelli WP, McNamara PM, Kannel WB. 1971. The natural history of congestive heart failure; the Framingham study. N Eng J Med 285:1441-1446. - 13. Caird FI, Kennedy RD. 1976. Epidemiology of heart disease in old age. In Cardiology in old age. Ed. FI Caird, JLC Dall, RD Kennedy, 1-10. New York: NY Plenum Publishing. - 14. Pfeffer JM, Pfeffer MA, Fishbein MC, Frohlich ED. 1979. Cardiac Function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol 237:H461-H468. - 15. Conrad CH, Brooks WW, Robinson KG, Bing OHL. 1991. Impaired myocardial function in spontaneously hypertensive rats with heart failure. Am J Physiol 260:H136-H145. - 16. Tyagi SC, Bheemanathini VS, Mandi S, Reddy HK, Voelker DJ. 1996. Role of extracellular matrix metalloproteinases in cardiac remodeling. Heart Failure Reviews 1:73-80. - 17. Grossman W. 1980. Cardiac hypertrophy: Useful adaptation or pathological process? Am J Med 69:576-584. - 18. Brilla CG, Janicki JS, Weber KT. 1991. Impaired diastolic function and coronary reserve in genetic hypertension: Role of interistitial fibrosis and medial thicking of intramyocardial coronary arteries. Circ Res 69:107-115. - 19. Thiedemann KU, Holubarsch C, Medugorac I, Jacob R. 1983. Connective tissue content and myocardial stiffness in pressure overload hypertrophy: A combined study of morphologic, morphometric, biochemical and mechanical parameters. Basic Res Cardiol 78:140-155. - 20. Narayan S, Janicki JS, Shroff SG, Pick R, Weber KT. 1989. Myocardial collagen and mechanics after preventing hypertrophy in hypertensive rats. Am J Hypertens 2:675-682. - 21. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT. 1988. Collagen network remodeling and diastolic stiffness of the rat LV with pressure overload hypettrophy. Cardiovasc Res 22:686-695. - 22. Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Weber KT. 1988. Structural vs contractile protein remodeling and myocardial stiffness in hypertrophied rat LV. J Mol Cell Cardiol 20:1179- - 23. Jalil JE, Janicki JS, Pick R, Weber KT. 1991. Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension: Response to captopril. Am J Hypertens 4:51-55. - 24. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. 1989. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat LV. Circ Res 64:1041-1050. - 25. Zhou G, Kandala JC, Tyagi SC, Katwa LC, Weber KT. 1996. Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol Cell Biochem 154:171-178. - 26. Reddy HK, Sigusch H, Zhou G, Tyagi SC, Janicki JS, Weber KT. 1995. Coronary Vascular Hyperpermeability and agiotensin II. J Lab Clin Med 126:307-315. - 27. Hall JE. 1991. Renal function in one kidney, one clip hypertension and low renin essential hypertension. Am J Hyper 4:523S-533S. - 28. Wahlander H, Isgaard J, Jennische E, Friberg P. 1992. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hyperten 19:25-32. - 29. Ghahary A, Shen YJ, Nedelec B, Scott PG, Tredget EE. 1995. Enhanced expression of mRNA for insulin-like growth factor-1 in post-burn hypettrophic scar tissue and its fibrogenic role by dermal fibroblasts. Mol Cell Biochem 148:25-32. - 30. Folkman J, Warson K, Inger D, Hanahan D. 1989. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58-61. - 31. Vernon R, Sage EH. 1995. Between molecules and morphology: extracellular matrix and creation of vascular form. Am J Pathol 147:873-883. - 32. Risau W, Ekblom P. 1986. Growth factors and the embryonic kidney. In Progress in clinical and biological research, hormonal control of embryonic and cellular differentation. Ed. D Serrero. New - 33. Schaper W. 1991. Angiogenesis in the adult heart Bas Res Cardiol 86:51-56. - 34. Pasyk S, Flameng W, Wusten B, Schaper W. 1976. Influence of tachycardia on regional myocardial flow in chronic experimental coronary occlusion. Bas Res Cardiol 71:243-251. - 35. Tyagi SC, Kumar SG, Cassatt S, Parker JL. 1996. Temporal expression of extracellular matrix metalloproteinase and tissue plasminogen activator in the development of collateral vessels in canine model of coronary occlusion. Canad J Physiol & Pharmacol 74:983-995. - 36. Gondo M, Maruta H, Arakawa K. 1989. Direct formation of agiotensin II without renin or converting enzyme in the ischemic dog heart. Jpn Heart J 30:219-229. - 37. Fernandez LA, Caride VJ, Twickler J, Galardy RE. 1982. Renin-angiotensin and development of collateral circulation after renal ischemia. Am J Physiol 243:H869-H875. - 38. Le Noble FAC, Schreurs JS, VanStraaten HWM, Slaaf DW, Smits JFM, Rogg H, Struijker-Boudier AJ. 1993. Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am J Physiol 264:R460-R465. - 39. Puri PL, Avantaggiati L, Burgio VL, Chirillo P, Collepardo D, Natoli G, Balsano C, Leverero M. 1995. Reactive oxygen intermediates are involved in the intracellular transduction of angiotenin II signal
in C2C12 cells. Ann N Y Acad Sci 752:395-405. - 40. Iruela-Arispe ML, Diglio CA, Sage EH. 1991. Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arterioscl Thromb 11:805-815. - 41. Montesano R, Vassalli JD, Baird A, Guillemin A, Orci L. 1986. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci (USA) 83:7297-7301. - 42. Plate KH, Breier G, Weich HA, Risau W. 1992. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vitro. Nature 359:845-848. - 43. Shweiki D, Itin A, Soffer D, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843-844. - 44. Ladoux A, Frelin C. 1993. Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem Biophys Res Commun 195:1005-1010. - 45. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. 1995. Synergistic effect of VEGF and bFGF on angiogenesis in vivo. Circulation 92:II365-II371. - 46. Huckle WR, Earp HS. 1994. Regulation of cell proliferation and growth by angiotensin II. Prog Growth Fact Res 5:177-194. - 47. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. 1979. Myocardial infarct size and ventricular function in rats. Cir Res 44:503-512. - 48. Pfeffer MA, Pfeffer JM, Fletcher PJ, Braunwald E. 1991. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260(Heart Circ Physiol 29):H1406-H1414. - 49. Springer TA. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301-314. - 50. Takahashi S, Barry AC, Factor SM. 1990. Collagen degradation in ischemic rat hearts. Biochem J 265:233-241. - 51. Tyagi SC, Kumar SG, Alla SR, Reddy HK, Voelker DJ, Janicki JS. 1996. Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J Cell Physiol - 52. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 81:1161-1172. - 53. Kolocassides KG, Galinanes M, Hearse DJ. 1996. Dichotomy of ischemic preconditioning. Circulation 93:1725-1733. - 54. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. 1990. Side-to side slippage of myocytes participates in ventricular wall remodeling acurely after myocardial infarction in rats. Cir Res 67:23- - 55. Capasso JM, Zhang PL, Meggs LG, Anversa P. 1993. Alterations in ANG II responsiveness in LV and RV after infarction-induced heart failure, Am J Physiol 264(Heart Cir Physiol 33):H2056-H2067. - 56. Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG. 1991. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol 261:30-38. - 57. Grossman W, Jones D, McLaurin LP. 1975. Wall stress and patterns of hypertropgy in the human left ventricle. J Clin Invest 56:56-64. - 58. Hosenpud JD. 1994. The cardiomyopathies. In Congestive heart failure, pathophysiology, diagnosis and comprehensive approach to management. Ed. ID Hosenpud and BH Greenberg, 196-222. New York: Springer-Verlag. - 59. Manolio TA, Baughman KL, Rodeheffer R, Pearson TA, Bristow JD, Michels W, Abelmann WH, Harlan WR. 1992. Prevalence and etiology of idiopathic dilated cardiomyopathy (Summary of a National Heart, Lung and Blood Institute Workshop). Am J Cardiol 69:1458-1466. - 60. WHO-ISFC. 1980. Task force Report on the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J 44:672-673. - 61. Morgan HE, Baker KM. 1991. Cardiac hypertrophy: Mechanical, neural and endocrine dependence. Circulation 83:13-25. - 62. Watson PA. 1991. Function follows form: Generation of intracellular signals by cell deformation. FASEB J 5:2013-2019. - 63. Borg TK, Burgess ML. 1993. Holding it all together: Organization and function(s) of the extracellular matrix of the heart. Heart Failure 8:230-238. - 64. Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, Demmy TL, Schmaltz RA, Curtis JJ. 1996. Post-transcriptional regulation of matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol 28:1415-1428. - 65. Tyagi SC, Ratajska A, Weber KT. 1993. Myocardial matrix metalloproteinases: Localization and activation. Mol Cell Biochem 126:49-59. - 66. Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ. 1996. Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13-21. - 67. Kannel WB, Belanger AJ. 1991. Epidemiology in heart failure. Am Heart J 121:951-957. - 68. Ho KKL, Anderson KM, Kannel WB, Grossmann W, Levy D. 1993. Survival after onset of congestive heart failure in Framingham Heart Study subjects. Circulation 88:107-115. - 69. The consensus trial study group. 1987. Effects of enalapril on mortality in severe congestive heart failure: Results of the cooperative north scandinavian enalapril study. N Eng J Med 316:1429- - 70. Cohn JN, Johnson G, Ziesche S, Cobb FR, Francis G, Tristani F, Smith R, Dunkman WB, Loeb H, Wong M, Bhat G, Goldman S, Fletcher RD, Doherty J, Hughes CV, Carson P, Cintron G, Shabetau R, Haakenson C. 1991. A comparsion of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Eng J Med 325:303-310. - 71. The SOLVE Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N Eng J Med 325:293-302. - 72. Pfeffer A, Braunwald E, Moyer LA. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Eng J Med 327:669-677. - 73. Freeman GL, Little WC, Haywood JR. 1987. Reduction of LV mass in normal rats by captopril. Cardiovasc Res 21:323-327. - 74. Laher MS, Natin D, Rao SK, Jones RW, Corr P. 1987. Lisinopril in elderly patients with hypertension. J Cardiovasc Pharmacol 9(Suppl 3):69-71. - 75. Himeno H, Crawford DC, Hosoi M, Chobanian AV, Brecher P. 1994. Angitensin II alters aortic fibronectin independently of hypertension. Hypertension 23:823–826. - 76. Richer C, Mulder P, Fornes P, Richard V, Camilleri JP, Giudicelli JF. 1991. Hemodynamic and morphological effects of quinapril during genetic hypertension development. J Cardiovasc Pharmacol 18:631-642. - 77. Diez J, Panizo A, Gil MJ, Monreal I, Hernandez M, Mindan JP. 1996. Serum markers of collagen I metabolism in spontaneously hypertensive rats. Circulation 93:1026-1032. - 78. Tyagi SC, Kumar SG, Banks J, Fortson W. 1995. Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol 27:2177-2189. - 79. Nikkari ST, O'Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW. 1995. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Cir Res 92:1393-1398. - 80. Armstrong PW, Moe GW, Howard RJ, Grima EA, Cruz TF. 1994. Structural remodeling in heart failure: Gelatinase induction. Canad J Cardiol 10:214-220. - 81. Senger DR. 1996. Molecular framework for angiogenesis: A complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am J Pathol 149:1-7. - 82. Tyagi SC, Matsubara L, Weber KT. 1993. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191-198. ## ROLE OF ANGIOTENSIN II IN MYOCARDIAL ISCHEMIA/ REPERFUSION INJURY ### GIUSEPPE AMBROSIO and ISABELLA TRITTO Division of Cardiology, Department of Medicine, University of Perugia School of Medicine, Perugia, Italy Summary. Treatment with angiotensin-converting enzyme inhibitors has now become frontline therapy in the chronic phase following myocardial infarction. In addition to its role in the long-term consequences of myocardial infarction, recent evidence suggests that the cardiac renin-angiotensin system is also activated during acute myocardial infarction. This phenomenon might contribute to tissue injury induced by ischemia-reperfusion. In fact, Ang II has been shown to exert several actions that could be detrimental in this setting. Ang II is a potent vasoconstrictor and might thus exacerbate ischemia. Activation of Ang II receptors is also coupled to stimulation of protein kinase C, which can induce tissue injury in cardiac myocytes by altering cytoplasmatic calcium levels and kinases activity. In addition, evidence has accumulated that Ang II might also promote neutrophil activation and adhesion, major mechanisms of tissue injury during postischemic reperfusion. Several studies have focused on the role of the renin-angiotensin system in different models of acute ischemia, such as myocardial stunning and prolonged ischemia, with or without reperfusion. Results obtained are conflicting, but taken together, the available evidence strongly suggests that activation of the renin-angiotensin system may contribute to the pathophysiological consequences of myocardial ischemia/reperfusion. This issue warrants further investigation, aimed at better understanding the mechanisms of this phenomenon and at identifying the most appropriate and clinically useful therapeutical approaches. It has long been appreciated that activation of the renin-angiotensin system plays an important role in hypertension and heart failure [1,2]. More recently it has been proposed that this system might also have important pathophysiological conse- quences in ischemic heart disease. Treatment with angiotensin-converting enzyme (ACE) inhibitors in the chronic phase following myocardial infarction has been shown to reduce left ventricular remodeling and infarct expansion and improve survival in experimental [3] and clinical studies [4-6]. In addition
to its role in the long-term consequences of myocardial infarction, evidence has accumulated indicating that the cardiac renin-angiotensin system may also become activated during acute myocardial ischemia [7,8]. It is now appreciated that the heart is capable of synthetizing angiotensinogen and transforming it into angiotensin (Ang) I and then into Ang II [9-11]. Renin and angiotensinogen mRNA are expressed in rat hearts [12], and myocardial Ang II production has been observed in nephrectomized rats, in which plasma Ang II is not detectable [13]. Direct demonstration of myocardial production of Ang II comes from the observation that when Ang I is infused in isolated rat hearts, Ang II is released in the coronary sinus [9,12]. The presence of ACE in the myocardium has been demonstrated by radioactive-binding of enalapril [14]; however, other pathways of Ang II production exist within the heart. One is represented by a chymotrypsin-like protease (chymase) contained in mastcells [15]; another source is cathepsin G present in neutrophils [16]. Importantly, the activity of these enzymes is not affected by ACE inhibitors [7,11,17]. Thus, ACE inhibitors might have little influence on local Ang II formation in the heart. Both experimental [7,8] and clinical [18] studies have shown that acute myocardial ischemia is accompanied by activation of the renin-angiotensin system, and formation of Ang II might have several deleterious consequences on ischemic tissue. Thus, it has been hypothesized that local formation of Ang II might contribute to tissue injury associated with acute myocardial infarction [19,20]. ### POTENTIAL MECHANISM OF ANGIOTENSIN II TOXICITY IN ISCHEMIC HEARTS Ang II may exert several actions that could be detrimental in the setting of acute myocardial ischemia (figure 1). It is a potent vasoconstricting agent [8,21]; therefore, it could conceivably exacerbate ischemia during coronary artery occlusion and increase myocardial oxygen demand because of the increase in afterload. Angiotensin II also facilitates the activity of the sympathetic nervous system [22]. The consequent increase in norepinephrine release may result in arrhythmias and increase oxygen demand [9,22]. In addition, activation of Ang II receptors of cardiac myocytes and other cell types is coupled to stimulation of phospholipase C [23-25], with resulting increased formation of diacylglycerol and inositol triphosphate. Stimulation of this pathway might lead both to toxic effects secondary to increased cytoplasmic calcium concentrations and to changes in the activity of protein kinases [26]. Finally, very recent studies suggest that Ang II, like other agents that stimulate protein kinase [27], might also promote neutrophil recruitment and activation, with consequent release of proinflammatory substances (e.g., PAF, oxygen radicals, lytic enzymes) in the ischemic territory. This hypothesis stems from the observation that Ang II and III stimulate chemotaxis of neutrophils [28,29] and that it can enhance Figure 1. Diagram of possible mechanisms by which increased Angiotensin II levels may potentiate tissue injury in the setting of acute myocardial ischemia. the expression on cardiac endothelial cells of E-selectin, a protein that promotes adhesion of neutrophils [30]. These various effects might have important consequences. On the one hand, neutrophil adhesion and activation is now recognized as a major mechanism of tissue injury during acute myocardial ischemia and reperfusion [31-36]. On the other hand, the effects of vascular plugging by adhering neutrophils combined with the effects of coronary vasoconstriction may also impair restoration of tissue perfusion upon recanalization [31,32,35,37], thus blunting the benefits of timely thrombolytic therapy in patients with acute myocardial infarction. ### EFFECTS OF ACE INHIBITION ON MYOCARDIAL ISCHEMIC INJURY These various observations strongly suggest that interventions aimed at reducing Ang II formation may exert a protective effect on acutely ischemic hearts, and several studies have addressed this issue. Earlier studies were conducted in the setting of permanent coronary artery occlusion (table 1). A protective effect of captopril treatment was first reported by Erl et al. [38], who administered captopril to openchest anestethized dogs with a fixed coronary artery occlusion and showed a reduction in infarct size after 6 hours. Other studies subsequently confirmed this finding in anestethized cats and rats, with the use of captopril or other ACE inhibitors, such as enalapril and ramiprilat (table 1). However, these beneficial effects could not be reproduced when experiments were performed under more physiological conditions, i.e., in conscious dogs subjected to 24 hours of coronary artery occlusion (table 1). One explanation for this discrepancy is that the use of anesthesia might have influenced treatment outcome, since barbiturate anesthesia per se stimulates renin release and potentiates the effects of ACE inhibitors [39,40]. Thus, while ACE inhibition might have been effective in preventing Ang II formation in | Author | Experimental model | Duration of CO | Drug | Protection | |------------------|--------------------|----------------|-----------|------------| | Ertl et al. | dog, anestethized | 6h | captopril | yes | | Liang et al. | dog, conscious | 24 h | captopril | no | | Lefer et al. | cat, anestethized | 5 h | enalapril | yes | | Daniell et al. | dog, conscious | 24 h | captopril | no | | Hock et al. | rat, anestethized | 48 h | enalapril | yes | | Martorana et al. | dog, anestethized | 6 h | ramipril | yes | Table 1. Effect of ACE inhibitors during permanent coronary occlusion Note: CO = coronary occlusion. Table 2. Effect of ACE inhibitors on myocardial stunning | Author | Drug | Protection | | |------------------|------------|------------|--| | Przyklenk et al. | enalapril | yes | | | Westlin et al. | captopril | yes | | | Westlin et al. | enalapril | no | | | Przyklenk et al. | zofenopril | yes | | | Przyklenk et al. | enalapril | yes | | | Bittar et al. | captopril | yes | | Note: All studies were conducted on dogs subjected to 15 minutes of coronary occlusion followed by 3 hours of reflow. anesthetized animals, most Ang II generation in conscious animals might have occurred via non-ACE mechanisms. Therefore, ACE inhibitors might have been unable to block Ang production, despite adequacy of dosage and of administration scheme. In addition, in positive studies, infarct size was typically measured after only 6 hours of ischemia. Therefore, it is possible that the drug could have simply delayed the onset of necrosis, without inducing permanent myocardial salvage, as it has previously been shown for other interventions aimed at reducing infarct size [41,42]. ### EFFECTS OF ACE INHIBITION ON MYOCARDIAL STUNNING Other studies have examined the effects of ACE inhibition in the setting of coronary artery occlusion followed by reperfusion. It is known that brief ischemic episodes, insufficient to induce myocardial necrosis, may nevertheless result in myocardial stunning [43]. Several studies have been conducted in the classical model of myocardial stunning, i.e., dogs with 15 min coronary occlusion, and almost all of them have shown a protective effect of various ACE inhibitors against contractile dysfunction (table 2). This effect has been attributed to alterations in systemic hemodynamic parameters and to increased myocardial blood flow. An additional beneficial role in this situation is probably played by the SH- group present in the molecule of many of these drugs. Presence of SH- groups confers antioxidant properties, and generation of oxygen radicals plays a major role in the pathogenesis of myocardial stunning, as shown by the fact that administration of antioxidants is | Author | Species | Exp. protocol | Drug | Protection | |--------------------|---------|--------------------------|-------------|------------| | Hock et al. | rat | 10m CO + 48h reflow | enalapril | yes | | de Graeff et al. | pig | 1h CO + 2h reflow | captopril | yes | | de Graeff et al. | pig | 1h CO + 14 days reflow | captopril | yes | | Brown et al. | dog | 3h CO + 3h reflow | enalapril | no | | Tio et al. | pig | 45 m CO + 14 days reflow | zofenopril | no | | Noda et al. | dog | 90m CO + 3h reflow | captopril | yes | | Tobe et al. | pig | 45 m CO + 14 days reflow | perindopril | no | | Hartman et al. | rabbit | 30m CO + 2h reflow | ramipril | yes | | de Lorgeril et al. | dog | 2h CO + 6h reflow | captopril | yes* | Table 3. Effect of ACE inhibitors on ischemia/reperfusion Note: CO = coronary artery occlusion. *only in a subgroup with high collateral flow. beneficial in preventing contractile dysfunction [44]. In accordance with this hypothesis, different investigators have consistently shown protection by captopril and zofenopril [45,46], whereas enalapril (which does not contain an SH- group) was either ineffective [46] or its protective effects were largely reversed by indomethacin, thus suggesting they were due to a prostaglandin-mediated mechanism, and not to antioxidant properties [45]. ### EFFECTS OF ACE INHIBITION ON MYOCARDIAL ISCHEMIA/REPERFUSION INJURY With the advent of thrombolytic drugs, emphasis on clinical management of patients with acute myocardial infarction has shifted to the condition of prolonged coronary artery occlusion followed by reperfusion. Thus, experimental studies have also focused on the use of ACE inhibitors in models of postischemic reperfusion after periods of coronary occlusion prolonged enough to induce myocyte necrosis (table 3). It has been shown that, irrespective of treatment, mortality is higher in animals with high baseline renin levels, thus confirming the important role of the reninangiotensin system in the deleterious events that accompany acute myocardial ischemia [47]. Several studies have shown that ACE inhibition may exert positive results in this setting.
These beneficial results have been attributed to various effects of these drugs, including increase in collateral blood flow to the ischemic region, blunting of sympathetic nervous system activation, inhibition of bradykinin breakdown and scavenging of oxygen radicals [20]. As already pointed out, inhibition of ACE activity can also reduce bradykinin breakdown, since the proteolytic activity of ACE extends to catabolize bradykinin. Increased bradykinin levels would result in increased myocardial glucose uptake and increased formation of nitric oxide and prostacyclin, which in turn would induce vasodilation and inhibition of platelet aggregation. These various effects might conceivably protect the heart during acute ischemia/reperfusion. Thus, administration of ACE inhibitors might be protective via a dual mechanism of reduced Ang II level and increased concentration of bradykinin. Interestingly, it has been reported that the reduction in experimental infarct size observed with ramiprilat was independent of ACE inhibition, and it was instead secondary to an increase in myocardial levels of bradykinin [48,49]. In spite of several positive studies, other investigators were not able to document reduction in infarct size in reperfused hearts through use of ACE inhibitors [3,50,51] (table 3). Several factors might have contributed to these discrepancies. As in the permanent occlusion studies, barbiturate anesthesia per se might have stimulated renin release and potentiated the effects of ACE inhibitors in some studies [39,40]. Anti-oxidant properties of certain ACE inhibitors containing SH- groups might also have contributed to the protective effects seen with some compounds (e.g., captopril), but not with other drugs, since it is known that postischemic reperfusion is accompanied by generation of a large amount of oxygen radicals that can induce tissue injury [52]. Another explanation for the apparent divergent results of various studies relates the benefit of ACE inhibitors to the degree of myocardial ischemia during the period of occlusion. In this respect, de Lorgeril and coworkers noted that captopril was protective in a subgroup of dogs with very low collateral flow during occlusion (i.e., when ischemia was severe), while it apparently worsened myocardial injury in animals with high collateral flow [50]. This finding raises the issue that enhanced bradykinin activity by ACE inhibition, with its attendant effect on vasodilation and on nitric oxide production, may not necessarily be regarded as beneficial under severe ischemia, because of either induction of "coronary steal" during ischemia [50] or toxic effect of increased nitric oxide production during reflow [53]. However, another, perhaps, more compelling argument to explain these controversial findings is that although elevated concentrations of Ang II may be detrimental, these increased levels are responding poorly to inhibition of ACE. ### RATIONALE FOR TESTING ANGIOTENSIN II RECEPTOR ANTAGONISTS ON ISCHEMIA/REPERFUSION INIURY As already mentioned, alternative enzymatic pathways of Ang II production within the heart may be represented by chymase and cathepsin G of mastcells and neutrophils [15,16], the activity of which is not affected by ACE inhibitors [7,11,17]. It should be pointed out that Ang II formation through alternate pathways might be particularly relevant in reperfused hearts, when activated neutrophils accumulate in large amounts within the previously ischemic tissue and release the content of their granules [54]. This might explain the often disappointing results obtained with ACE inhibitors in reperfused hearts, since these drugs might have little influence on cardiac Ang II formation in this setting. Recently, the availability of Ang II receptor antagonists has provided scientists with a powerful tool to directly investigate the role of the renin-angiotensin system in many pathophysiological conditions, independently of the route of formation. Since they act at the receptor level, these antagonists could also provide a more efficient tool to prevent Ang II effects. In addition, blocking the AT, receptor should also result in increased stimulation of the AT₂ subtype [55], which in turn may induce the synthesis and release of local kinin [55,56]. In reperfused tissues, neutrophils may be linked to Ang II in a more complex fashion, in addition to their being a potential source of Ang II. Neutrophil recruitment and activation in postischemic hearts are accompanied by release of several mediators, such as oxygen free radicals, platelet-activating factor, leukotrienes, and proteolytic enzymes, which can all contribute to tissue damage, either directly or secondary to "inflammatory" amplification of injury (figure 1) [54]. Since experimental observations suggest that Ang II can promote neutrophil chemotaxis and adhesion [28-30], it can be hypothesized that in reperfused hearts, neutrophils might contribute to local Ang II production, which in turn would induce further recruitment and activation of neutrophils. This would result in amplification of Ang II production and neutrophil-mediated injury. Administration of Ang II receptor antagonist, but not ACE inhibitors, might effectively hinder this mechanism. In this respect, recent studies have investigated the effects of losartan, an angiotensin II AT₁ receptor antagonist, on myocardial ischemic injury. In rats with permanent coronary artery occlusion, losartan administration did not influence infarct size, but it significantly improved cardiac function and angiogenesis and attenuated myocardial hypertrophy [57]. In isolated rat hearts, losartan treatment also improved functional recovery after ischemia and reperfusion [58]. In light of the observations linking Ang II and neutrophil activation [27-30], we have evaluated the effects of losartan in an experimental model aimed at investigating the role of neutrophils in myocardial ischemia/reperfusion injury. In this model, developed and validated in our laboratory [17,35], isolated rat hearts were subjected to 20 minutes of ischemia; at the onset of reflow, hearts were perfused for 5 min with neutrophils and plasma and then with standard perfusion buffer for an additional 40 min. Under these experimental conditions, losartan significantly improved recovery of contractile function and reduced myocardial neutrophil infiltration, at concentrations similar to those achieved clinically [59]. If confirmed in subsequent in vivo studies, these findings would indicate that effective inhibition of Ang II stimulation, through AT, receptor blockade, might reduce myocardial inflammatory injury by counteracting some deleterious effects resulting from neutrophil activation. ### CONCLUSION Taken together, the evidence available strongly suggests that activation of the reninangiotensin system may contribute to the pathophysiological consequences of myocardial ischemia/reperfusion. This issue warrants further investigation, aimed at better understanding the mechanisms of this phenomenon and at identifying the most appropriate and clinically useful therapeutical approach. ### REFERENCES 1. Admiraal PJJ, Derkx FHM, Jan Danser AH, Pieterman H, Schalenkamp MADH. 1990. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15:44-55. - 2. Dzau WJ, Colucci WS, Hollenberg NK, Williams GH. 1981. Relation of the renin-angiotensinaldosterone system to the clinical state in congestive heart failure. Circulation 63:645-651. - 3. Tobe TJM, de Langen CDJ, Weersink EGL, van Wijingaarden J, Bel KJ, de Graeff PA, van Gilst WH, Wesseling H. 1992. The angiotensin-converting enzyme inhibitor perindopril improves survival after experimental myocardial infarction in pigs. J Cardiovasc Pharmacol 19:732-740. - 4. Pfeffer JM, Pfeffer MA. 1988. Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 84:37-44. - 5. Pfeffer MA, Braunwald E, Moye' LA and the SAVE investigators. 1992. Effect of captopril on mortality and morbility in patients with left ventricular dysfunction after myocardial infarction: Results of the Survival and Ventricular Enlargement Trial. N Engl J Med 327:669-677. - 6. The SOLVD investigators. 1992. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N Engl J Med 327:685-691. - 7. Gondo M, Maruta H, Arakawa K. 1989. Direct formation of angiotensin II without renin or converting enzyme in the ischemic dog heart. Jap Heart J 30:219-224. - 8. Tian R, Neubauer S, Pulzer F, Haas U, Ertl G. 1991. Angiotensin I conversion and coronary constriction by angiotensin II in ischemic and hypoxic isolated rat hearts. Eur J Pharmacol 203:71- - 9. Lindpaintner K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D. 1988. Intracardiac generation of angiotensin and its physiologic role. Circulation 77:I18-I23. - 10. Lindpaintner K, Jin M, Niedermaier N, Wilhelm MJ, Ganten D. 1990. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67:564-573. - 11. Urata H, Healey B, Stewart RW, Bumpus FM, Husain A. 1990. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883-890. - 12. Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaiter K, Ganten D. 1988. Endogenous tissue reninangiotensin systems: From molecular biology to therapy. Am J Med 84(Suppl 3A):28-36. - 13. Zughaib ME, Sun J-Z, Bolli R. 1993. Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: An overview. Basic Res Cardiol 88(Suppl 1):155-167. - 14. Mebazza A, Chevalier B, Mercadier JJ, Echter E, Rappaport L, Swynghedauw B. 1989. A review of the renin-angiotensin system in the normal heart. J Cardiovasc Pharmacol 14(Suppl 4):S16- - 15. Kinoshita A, Urata H, Bumpus FM, Husain A. 1991. Multiple determinants for the high substrate
specificity of an Angiotensin II-forming chymase from the human heart. J Biol Chem 266:19192- - 16. Wintroub BU, Klickstein LB, Dzau VJ, Watt KWK. 1984. Granulocyte-Angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry 23:227-232. - 17. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. 1990. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348-22357. - 18. McAlpine HM, Cobbe SM. 1988. Neuroendocrine changes in acute myocardial infarction. Am J Med 84(Suppl 3A):61-74. - Sweet CS. 1990. Issues surrounding a local cardiac renin system and the beneficial actions of angiotensin-converting enzyme inhibitors in ischemic myocardium. Am J Cardiol 65:11I-13I. - 20. Przyklenk K, Kloner RA. 1993. "Cardioprotection" by ACE-inhibitors in acute myocardial ischemia and infarction. Basic Res Cardiol 88(Suppl 1):139-154. - 21. Focaccio A, Volpe M, Ambrosio G, Lembo G, Pannain S, Rubattu S, Enea I, Pignalosa S, Chiariello M. 1993. Angiotensin II directly stimulates release of atrial natriuretic factor in isolated rabbit hearts. Circulation 87:192-198. - 22. Fowler NO, Holmes JC. 1964. Coronary and myocardial actions of angiotensin. Circ Res 14:191- - 23. Moravec CS, Schluchter MD, Paranandi L, Czerka B, Stewart RW, Rosenkrantz E, Bond M. 1990. Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation 82:1973-1984. - 24. Baker KM, Singer HA. 1988. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: Coupling to inositol phosphate production. Circ Res 62:896-904. - 25. Peach MJ. 1981. Molecular actions of angiotensin. Biochem Pharmacol 30:2745–2751. - 26. Huckle WR, Dy RC, Earp HS. 1992. Calcium dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci USA 89:8837-8841. - 27. Cox JA, Jeng AJ, Sharkey NA, Blumberg JM, Tauber AI. 1986. Activation of human neutrophil NADPH oxidase by protein kinase C. J Clin Invest 76:1932-1940. - 28. Yamamoto Y, Yamaguchi T, Shimamura M, Hazato T. 1993. Angiotensin III is a new chemoactractant for polymorphonuclear leukocytes. Biochem Biophys Res Comm 193:1038- - 29. Farber HW, Center DM, Rounds S. 1985. Bovine and human endothelial cell production of neutrophil chemoattractant activity in response to components of the angiotensin system. Circ Res 57:898-902. - 30. Grafe M, Auch-Schwelk W, Graf K, Hertel H, Hoffmann R, Bartsch P, Regitz-Zagrosek V, Hildebrandt A, Fleck E. 1993. Induction of the adhesion molecule E-selectin in human cardiac endothelial cells by angiotensin II. Circulation 88:I-316. - 31. Engler RL, Dahlgren MD, Morris D, Peterson MA, Schmid-Schoenbein G. 1986. Role of leukocytes in the response to acute myocardial ischemia and reflow in dogs. Am J Physiol 251:H314-H323. - 32. Ambrosio G, Weisman HF, Mannisi JA, Becker LC. 1989. Progressive impairment of regional myocardial perfusion after inital restoration of postischemic blood flow. Circulation 80:1846-1861. - 33. Rossen RD, Swain JL, Michael LH, Weakley S, Giannini E, Entman ML. 1985. Selective accumulation of complement and leukocytes in ischemic canine heart muscle: A possible initiator of an extra-myocardial mechanism of ischemic injury. Circ Res 57:119-130. - 34. Simpson PJ, Todd RF III, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti Mo1, anti CD11b) that inhibits leukocyte adhesion. J Clin Invest 81:624-629. - 35. Ma X-L, Tsao PS, Lefer AM. 1988. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 88:1237-1243. - 36. Lefer DJ, Shandelya SML, Serrano CV, Becker LC, Kuppusamy P, Zweier JL. 1993. Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 88:1779-1787. - 37. Cimini CM, Weiss HR. 1993. Capillary perfusion in the occluded-reperfused canine myocardium: Evidence for slowed reflow. Microvasc Res 46:116-127. - 38. Ertl G, Kloner RA, Alexander RW, Braunwald E. 1982. Limitation of infarct size by an angiotensinconverting enzyme inhibitor. Circulation 81:381-388. - 39. Liang CS, Gavras H, Black J, Sherman LG, Hood WB. 1982. Renin-angiotensin system inhibition in acute myocardial infarction in dogs: Effects on systemic hemodynamics, myocardial blood flow, segmental myocardial function and infarct size. Circulation 66:1249-1255. - 40. Murphy VS, Waldron TL, Goldberg ME. 1978. Inhibition of angiotensin-converting enzyme by SQ 14,225 in anesthetized dogs: Hemodynamics and renal vascular effects. Proc Soc Exp Biol Med 157:121-129. - 41. Reddy BR, Wynne J, Kloner RA, Przyklenk K. 1991. Pretreatment with the iron chelator deferoxamine fails to provide sustained protection against myocardial ischemia-reperfusion injury. Cardiovasc Res 25:711-718. - 42. Tritto I, Ambrosio G, Cappelli Bigazzi M, Perrone Filardi P, Lepore S, Tufano R, Chiariello M. 1991. Effects of hyperbaric oxygen therapy on experimental infarct size: Salvage vs delay of myocardial necrosis. J Appl Cardiol 6:359-366. - Braunwald E, Kloner RA. 1982. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66:1146-1153. - 44. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. 1989. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial "stunning" is a manifestation of reperfusion injury. Circ Res 65:607-622. - 45. Przyklenk K, Kloner RA. 1991. Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action. Am Heart J 121:1319-1330. - 46. Westlin W, Mullane K. 1988. Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77(Suppl I):130–139. - 47. van Wijngaarden J, Tone TJM, Weersink EGL, Bel KJ, de Graeff PA, de Langen CDJ, van Gilst WH, Wesseling H. 1992. Effects of early angiotensin-converting enzyme inhibition in a pig model of myocardial ischemia and reperfusion. J Cardiovasc Pharmacol 19:408-416. - 48. Hartman JC, Hullinger TG, Wall TM, Shebushi RJ. 1993. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Eur J Pharmacol 234:229-236. - 49. Martorana PA, Kettenbach B, Breipol G, Linz W, Scholkens BA. 1990. Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 182:395-396. - 50. de Lorgeril M, Ovize M, Delaye J, Renaud S. 1992. Importance of the flow perfusion deficit in the response to captopril in experimental myocardial infarction. J Cardiovasc Pharmacol 19:324-329. - 51. Tio RA, de Langen CDJ, de Graeff PA, van Gilst WH, Bel KJ, Wolters GTP, Mook PH, van Wijngaarden J, Wesseling H. 1990. The effects of oral pretreatment with zofenopril, an angiotensinconverting enzyme inhibitor, on early reperfusion and subsequent electrophysiologic stability in the pig. Cardiovasc Drug Ther 4:695-704. - 52. Becker LC, Ambrosio G. 1987. Myocardial consequences of reperfusion. Prog Cardiovasc Dis 30:23-41. - 53. Zweier JL, Wang P, Samouilov A, Kuppusamy P. 1995. Enzyme-independent formation of nitric oxide in biological tissues. Nature Medicine 1:804-809. - 54. Hansen PR. 1995. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91:1872- - 55. Wiemer G, Scholkens BA, Busse R, Wagner A, Heitsch H, Linz W. 1993. The functional role of angiotensin II-subtype AT2-receptors in endothelial cells and isolated ischemic rat hearts. Pharm Pharmacol Lett 3:24-27. - 56. Seyedi N, Xu XB, Nasjletti A, Hintze TH. 1995. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164-170. - 57. Sladek T, Sladkova J, Kolar F, Papousek F, Cicutti N, Korecky B, Rakusan K. 1996. The effect of AT₁ receptor antagonist on chronic cardiac response to coronary artery ligation in rats. Cardiovasc Res 31:568-576. - 58. Werrmann JG, Cohen SM. 1996. Use of losartan to examine the role of the cardiac reninangiotensin system in myocardial dysfunction during ischemia and reperfusion. J Cardiovasc Pharmacol 27:177-182. - 59. Mikhail EA, Zweier JL, Ambrosio G. 1995. Evidence for a role of Angiotensin II on neutrophilmediated injury in postischemic hearts (abstract). J Am Coll Cardiol February Special Issue: 58A. # EFFECTS OF ANGIOTENSIN II RECEPTOR ANTAGONIST ON CARDIAC REMODELING IN CARDIOMYOPATHIC HAMSTER HEARTS # HIDEAKI KAWAGUCHI, MASASHI WATANABE and AKIRA KITABATAKE The Department of Laboratory Medicine and The Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo, Japan Summary. Recent reports have shown that angiotensin-converting enzyme inhibitors have a role in cardiac remodeling and have beneficial effects on congestive heart failure. Several studies have described alterations in sarcoplasmic reticulum gene expression in the failing heart. These results indicate that calcium homeostasis in myocytes may be disturbed in congestive heart failure. The present study examines the effects of long-term treatments with the angiotensin-converting enzyme inhibitor Enalapril and Ang II subtype1 receptor antagonist TCV-116 on the morphological changes in the extracellular matrix, progressive left ventricular dysfunction in cardiomyopathic hamsters. Between age 5-20 weeks, 24 BIO53.58 hamsters (model of dilated cardiomyopathy) received 10 mg/kg per day orally either of TCV-116 or no treatment. Between age 5-30 weeks, 24 BIO53.58 hamsters (model of dilated cardiomyopathy) received 20 mg/kg per day orally either of Enalapril or no treatment. During the study period, cardiac function was assessed by echocardiography in a noninvasive manner.
At 20 or 30 weeks of age, each heart was fixed with 10% formalin, embedded in paraffin, and serial sections were stained with Gomori's aldehyde fuchsin using the Masson-Goldner method. High framerate ultrasonoscopic echocardiograms revealed that the left ventricular percent fractional shortening (%FS) tended to improve in the Enalapril group (22 \pm 4% vs 20 \pm 3%) and TCV-116 group (24 \pm 4% vs 21 \pm 4%). The fibrous tissue volume significantly decreased in Enalapril group (25.2 \pm 0.5 mm³, P < 0.05) compared with the untreated group (27.6 ± 2.3 mm³). TCV-116 did not significantly decrease the fibrous tissue volume. Enalapril can prevent cardiac remodeling, but TCV-116 is not as effective as Enalapril. Enalapril may nevertheless, suppress fibrosis. #### INTRODUCTION The accumulation of fibrillar collagen in the cardiac interstitium is one of the major morphological features of left ventricular hypertrophy accompanied by genetic hypertension, acquired hypertension, and myocardial infarction. This morphological change is called structural remodeling, and may account for the abnormal ventricular function that eventually leads to congestive heart failure. Several lines of evidence suggest that both circulating and tissue renin-angiotensin systems may be involved in the remodeling of the myocardium. Receptors for Ang II, aldosterone, endothelins, and bradykinin have been identified in the heart. The heart also has the capacity to generate Ang II, bradykinin, and endothelin. Locally generated hormones therefore could alter tissue structure in an autocrine and/or paracrine manner. Hormones such as Ang II, endothelin, and aldosterone, serve as stimulators to enhance collagen formation and reduce collagenolytic activity. Hormones such as bradykinin, prostaglandins, and glucocorticoids, serve as inhibitors to counterbalance the influence of these stimulators. Treatment with only a low dose of angoiotensinconverting enzyme inhibitor (ACEI), without subsequent lowering of blood pressure, causes a decrease in left ventricular hypertrophy [1]. Treatment with the ACEI lisinopril, has been shown to reverse interstitial collagen accumulation in spontaneously hypertensive rats with established left ventricular hypertrophy [2]. These results suggest that Ang II acts as a growth factor for myocytes and other cells in the heart. Ang II may affect ventricular remodeling by acting as a growth factor, as previously suggested, thus promoting myocyte hypertrophy [3]. The increased DNA synthesis generally found in interstitial cells following myocardial infarction was found to be inhibited by an ACEI via a mechanism independent of its effect on afterload change [4]. Other research suggests that Ang II may directly affect the collagen and connective tissue architecture [5]. Cardiac fibroblasts are predominantly responsible for the synthesis of fibrillar type I and III collagen [6]. Excessive production of collagen fibers may impair systolic and diastolic function. Ang II is known to stimulate collagen synthesis and bradykinin inhibits its influence. Several clinical [7,8] and experimental [2,9] studies have demonstrated that ACEI suppresses cardiac fibrosis. The purpose of the present study is as follows: 1) to evaluate the effects of longterm treatments with the ACEI Enalapril, and Ang II receptor antagonist TCV-116 on the morphological changes in the extracellular matrix and progressive left ventricular dysfunction in an animal model of dilated cardiomyopathy, and 2) to investigate whether there is any difference between the effects of Enalapril and TCV-116. ## MATERIALS AND METHOD #### Experimental animals The BIO53.58 strain of cardiomyopathic golden Syrian hamsters develops abnormalities of the cardiac and skeletal muscles that are inherited as an autosomal recessive trait [10]. Between 4-20 weeks of age, BIO53.58 hamsters gradually develop cardiac dilation that is accompanied by diffuse cell death. This strain also has a significantly shorter life span, and demonstrates reduced cardiac function at an earlier age than the hypertrophic cardiomyopathic hamster (BIO14.6 hamster) [10,11]. In contrast to the BIO14.6 hamster, BIO53.58 hamsters do not develop myolysis or hypertrophy before dilation [12]. Therefore, the BIO53.58 hamster provides a good model of cardiac dilation and congestive heart failure. Experiments were carried out using 48 male, dilated cardiomyopathic hamsters (BIO53.58), aged 5 weeks (BIO Breeders, Fitchburg, MA, USA). Male F1b hamsters (n = 48), a noncardiomyopathic F1 hybrid of BIO1.5 and BIO87.2 hamsters, were used as controls. BIO53.58 hamsters were randomly assigned to one of three groups, receiving either Enalapril (20 mg/kg per day po, BANYU Pharmaceutical Co., Ltd.), TCV-116 (10 mg/kg per day po, TAKEDA Pharmaceutical Co., Ltd.), or no treatment. The study period was 15 weeks. ### **Echocardiography** During the study period, we performed transthoracic echocardiography on each hamster under uletan anesthesia (0.5 mg/g body mass intraperitoneal injection) with an ultrasound system (Hitachi EUB565A), using a 7.5 MHz sector scanner. We recorded M-Mode echocardiograms at chorda level, measured the left ventricular diastolic dimension and left ventricular systolic dimension using the conventional "leading edge" method [13], and calculated percent fractional shortening (%FS) as the percent differance between the left ventricular diastolic (LVDd) and systolic dimensions (LVDs); %FS = 100 × (LVDd-LVDs)/LVDd. #### Histological analysis #### Tissue preparations Hamsters from each group were also used for histological analysis. The ventricles and atria were excised from each heart and the blood was carefully washed out with saline. Hearts were fixed with 10% formaldehyde and embedded in paraffin after dehydration through a graded alcohol series, and were sectioned transversely using a microtome (Leitz Wetzlar: 33776) from the atria to the apex in 8 µm serial sections. The sections were stained with Gomori's aldehyde fuchsin using the Masson-Goldner method and periodic acid shiff (PAS)-hematoxylin for light microscopy. #### Volumetry Cardiac tissue volumes were determined by a point counting method [14,15]. The sections were picked up at 400 µm intervals from serial sections, and enlarged to 44× with a light microscope projector on a sheet of paper which had regular triangle lattice of points spaced 20 mm from the nearest neighbors. At such a magnification, each point is 0.45 mm apart in the sections and represents a hexagonal area of $0.45 \,\mathrm{mm} \times 0.45 \,\mathrm{mm} \times \sqrt{3/2 \,\mathrm{mm}^2}$. The numbers of points lying in the myocytes, nonmyocytes, calcified, or fibrotic area projected on the paper were counted. The volume (V) was obtained from the sum of the points, representative area (a) for one point and the sectional interval being: $$V(mm^3) = \Sigma(point \times a \times 0.4mm)$$ The volume of ventricles (VV) was largely divided into the volume of myocytes (MV) and the other space (NMV): $$VV(mm^3) = MV(mm^3) + NMV(mm^3)$$ In the present study, because the volume of nonmyocytes was negligibly small compared with the volume of fibrous tissue and calcified lesions, NMV was considered as the volume of fibrous tissue and calcified lesions. VV, MV, NMY, and NMV to VV ratio (= $NMV/VV \times 100$) were calculated. #### Histometry The section which had the largest diameter of the left ventricle was selected from the serial sections to measure myocyte breadth and to count nuclear density. #### Myocyte breadth Short diameters of myocytes were measured using an eyepiece micrometer with an 1 μm scale at a magnification of 1000×. Lines which ran transversely on the left ventricular wall were selected from the anterior, lateral, posterior, and septal wall. The myocyte diameters were measured along each line from epicardium to endocardium. The mean value was used as a representative for each specimen. #### Nuclear density Numbers of the myocyte nuclei were counted in 16 randomly selected fields from the left ventricular myocytes space through an eyepiece with a 250 µm square micrometer at a magnification of 400× under the light microscope. The nuclei which seemed to be degenerated were not counted. Numbers of nuclei calculated per square millimeters were used as density of viable myocytes. Hamsters from each group were also used for histological analysis. The ventricles and atria were excised from each heart and the blood was carefully washed out with saline. Hearts were fixed with 10% formaldehyde and embedded in paraffin after dehydration through a graded alcohol series, and were sectioned transversely using a microtome (Leitz Wetzlar: 33776) from the atria to the apex in 8 µm serial sections. The sections were stained with Gomori's aldehyde fuchsin using the Masson-Goldner method. At intervals of 200 µm, sections were observed using a projector (Neo Vision: 102S) with ×33.3 magnification. The area of myocyte, fibrous tissue and vessels were calculated by the point-counting method and the volume of myocyte occupying region, nonmyocyte region, and total myocardium (summation of myocyte occupying region and nonmyocyte region) of the ventricles were estimated. A В Figure 1. A) Changes in left ventricular diastolic dimension (LVDd). Left ventricular diastolic dimension in BIO53.58 (hatched bar) was measured by M-mode high frame rate ultrasonoscopic echocardiography. Values are expressed as mean, *P < 0.05 compared with age-matched F1b hamsters (open bar); B) Changes in percent fractional shortening (%FS). Percent fractional shortening was calculated by M-mode high frame rate ultrasonoscopic echocardiography. Values are expressed as mean *P < 0.05 compared with age-matched F1b hamsters. #### STATISTICAL ANALYSIS Values are given as mean ± SD. Comparisons between 2 groups were performed with unpaired Student's t-test or Mann-Whitney U-test when t-test is inappropriate. P < 0.05 was
considered the limit of significance [16]. # Effects of TCV-116 or Enalapril treatment on cardia function As shown in figure 1A, the left ventricular diastolic dimension was significantly (P < 0.05) enlarged in cardiomyopathic hamsters (6.8 \pm 0.4 mm) at 20 weeks of age as compared with age-matched F1b hamsters (4.9 \pm 0.4 mm). The percent fractional shortening of the left ventricles of BIO53.58 hamsters was significantly decreased at 5 weeks of age (57.3 \pm 7.9%vs. 66.5 \pm 5.9%; P < 0.05) and decreased further at 20 weeks of age (20.8 \pm 4.0%vs. 63.3 \pm 5.8%; P < 0.01) as compared with agematched F1b hamsters (figure 1B). The left ventricular diastolic dimension decreased significantly in the Enalapril group (6.1 \pm 0.4mm, P < 0.05) but not in TCV-116 compared with the no treatment group $(6.8 \pm 0.4 \text{ mm})$ (figure 2A). A В Figure 2. A) Changes in left ventricular diastolic dimension (LVDd) of the no treatment (CONT, open bar), Enalapril (ACEI, hatched bar), and TCV 116 (TCV, solid bar) treatment groups of cardiomyopathic hamsters BIO53.58. Values are expressed as mean, *P < 0.05 compared with the no treatment group; B) Changes in percent fractional shortening (%FS) of the no treatment (CONT, open bar), Enalapril (ACEI, hatched bar), and TCV 116 (TCV, solid bar) treatment groups of cardiomyopathic hamsters BIO53.58. Values are expressed as mean, *P < 0.05 compared with the no treatment group. Left ventricular percent fractional shortening increased in the Enalapril group $(26.7 \pm 4.6\%, P < 0.05)$ and tended to increase in TCV-116 compared with the no treatment group $(20.8 \pm 4.0\%)$ (figure 2B). #### Effects of TCV-116 or Enalapril treatment on cardiac structure The area of necrosis, fibrosis, and calcification were decreased in both the Enalapril and TCV-116 groups. The left ventricular wall remained thick in both the Enalapril and TCV-116 groups compared with the thinning ventricular wall of the no treatment group. Total ventricular volume tended to increase in the Enalapril group. Fibrous tissue volume tended to decrease in the Enalapril group, but not significantly. At 25 weeks of treatment, it decreased significantly in the Enalapril group (25.17 ± 0.48 mm³, P < 0.05) compared with the no treatment group (27.64 \pm 2.34 mm³) (figure 3). Histological findings indicated that the Enalapril group was improved compared with the no treatment group. The area of fibrosis was decreased. Total ventricle volumes were calculated by semi-serial section of right and left ventricles. As Figure 3. Fibrous tissue volume of cardiomyopathic hamsters (BIO53.58) of no treatment (CONT, pen bar), Enalapril (ACEI), and TCV 116 (VC, solid bar) group. Values are expressed as mean. *P < 0.05 compared with no treatment group. mentioned above, ventricular weight of the Enalapril group decreased. Figure 8 indicates the relative tissue volume normalized by the mean value of the untreated group. Total ventricle volume tended to decrease in the Enalapril group. Ventricular myocyte volume (total ventricle volume-nonmyocyte volume) also tended to decrease in the Enalapril group. Total ventricle and ventricular myocyte volume tended to increase in the TCV-116 group. Nonmyocyte volume significantly decreased in the Enalapril group (25.2 ± 0.5 mm³, P < 0.05) compared with the no treatment group (27.6 \pm 2.3 mm³). Nonmyocyte volume tended to decrease in the TCV-116 group, it was not significant. Myocyte size was smaller and myocytes were more concentrated in both of Enalapril and TCV-116 groups than in the no treatment group. #### DISCUSSION Both Enalapril and TCV-116 tended to improve cardiac function but did not prevent cardiac dilation. The total amount of collagen increase in BIO53.58 hamsters correlated with the pathological progression of fibrosis. The increase of collagen gives ventricles stiffness and impairs the cardiac diastolic function. Furthermore, it is known that Ang II stimulates collagen synthesis in cultured cardiac fibroblasts [17]. The 15-week treatment with ACEI may not have been enough time to change collagen metabolism, especially the degradation of collagen, even if Ang II-induced collagen synthesis was inhibited. In our preliminary experiments, Enalapril treatment for 25 weeks significantly suppressed the fibrosis of ventricles in cardiomyopathic hamsters compared with the no treatment group. A recent clinical study reported that ACEI caused regression of cardiac hypertrophy. In addition, the remarkable effectiveness of ACEI in preventing heart failure and mounting evidence for additional cardioprotective effects of drugs related to the renin-angiotensin system have promoted an intense interest in the cardiac tissue renin-angiotensin system and its role in both normal and diseased hearts. Therefore, the tissue renin-angiotensin system may be implicated in cardiac hypertrophy and other cardiac disorders in man. Fifteen week treatment with Enalapril improved cardiac function and prevented cardiac dilation, but prevention of fibrosis was not significant. The 15-week treatment with ACEI may not have been enough time to change collagen metabolism, especially the degradation of collagen, even if Ang II-induced collagen synthesis was inhibited. In our preliminary experiments, Enalapril treatment for 25 weeks significantly suppressed the fibrosis of ventricles in cardiomyopathic hamsters compared with the no treatment group. The total amount of collagen increase in BIO53.58 hamsters correlated with the pathological progression of fibrosis. The increase of collagen gives ventricles stiffness and impairs the cardiac diastolic function. Furthermore, it is known that Ang II stimulates collagen synthesis in cultured cardiac fibroblasts [17]. A recent clinical study reported that ACEI caused regression of cardiac hypertrophy. In addition, the remarkable effectiveness of ACEI in preventing heart failure and mounting evidence for additional cardioprotective effects of drugs related to the renin-angiotensin system have promoted an intense interest in the cardiac tissue renin-angiotensin system and its role in both normal and diseased hearts. Therefore, the tissue renin-angiotensin system may be implicated in cardiac hypertrophy and other cardiac disorders in man. In the present study, Enalapril tended to inhibit myocyte cell death and cell growth, and significantly improved cardiac fibrosis in cardiomyopathic hamsters. Our data demonstrated the mild increase in the volume of myocytes space and significant decrease in fibrosis in the Enalapril group. Enalapril significantly decreased ventricular weight compared with the no treatment group. It seems that the decrease in ventricular weight is largely due to the reduction of fibrosis. In our preliminal experiments, calcium antagonist such as manidipin-HCl and amlodipine significantly inhibited cell death by ameliorating calcium overload of myocytes. Major effects of Enalapril are thought to suppress the fibrosis by inhibiting the production of Ang II. A recent clinical study demonstrated that ACEI improve cardiac function and suppress cardiac dilation in chronic heart failure [18]. Even in acute myocardial infarction, early treatment with ACEIs improve cardiac remodeling. Our results support the clinical study, and have proved that ACEI suppresses the development of fibrosis in heart failure. #### CONCLUSIONS Enalapril significantly suppressed fibrosis and improved cardiac function in the cardiomyopathic hamster. TCV-116 was not so effective on prevention of fibrosis as Enalapril. It seemed that the longer period of treatment with Enalapril is the most effective on prevention of fibrosis and not only repression of Ang II but also potentiation of bradykinin is important for prevention of the cardiac remodeling. These data suggest that the major effect of Enalapril is the suppression of fibrosis. #### REFERENCES - 1. Sen S, Bumpus FM. 1979. Collagen synthesis in development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. Am J Cardiol 44:954-958. - 2. Brilla CG, Janicki IS, Weber KT. 1991. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83:1771-1779. - 3. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610-618. - 4. Krimpen CV, Smits JFM, Cleutjens JPM, Debets JJM, Shoemaker R.G, Struyker Boudier HAJ, Bosman FT, Daemen MJAP. 1991. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captoril. J Mol Cell Cardiol 23:1245-1253. - 5. Weber KT, Anversa P, Armstrong PW, Brilla CG, Burner JC Jr, Cruickshank JM, Devereux RB, Giles TD, Korsgaard N, Leier CV, Mendelsohn FAO, Motz WH, Mulvany MJ, Strauer BE. 1992. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20:3-16. - 6. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinward LA, Robinson TF, Zern MA, Giambrone MA. 1989. Localizatin of type I, III and IV collagen mRNA in rat heart cells by in situ hybridization. J Moll Cell Cardiol 21:103-113. - 7. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwawald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 319:80-86. - 8. Sharpe N, Murphy J, Smith H, Hannan S. 1988. Treatment of patients with symptomless left ventricular dysfunction after myocardial infarction. Lancet 1:255-264. - 9. Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium: Fibrosis and reninangiotensin-aldosterone system. Circulation 83:1849-1865. - 10. Homburger F, Baker JR, Nixon CW, Whitney R. 1962. Primary generalized polymyopathy and cardiac necrosis in an inbred line of Syrian hamsters. Med Exp 6:339-345. - 11. Bajusz E, Baker JR, Nixon CW, Homburger F. 1969. Spontaneous hereditary myocardial degeneration and congestive heart failure in a
strain of Syrian hamsters. Ann NY Acad Sci: 105-129. - 12. Strobeck JE, Factor SM, Bhan A, Sole M, Liew CC, Fein F, Sonnenblick EH. 1979. Hereditary and acquired cardiomyopathies in experimental animals: mechanical, biochemical, and structural features. Ann NY Acad Sci 317:59-88. - 13. Crawford M, Grant D, O'Rourke R, Starling M, Groves BM. 1980. Accuracy and reproducibility of new M-mode echocardiographic recommendation for measuring left ventricular dimensions. Circulation 61:137-143. - 14. Abe K, Ito T. 1972. A new stereological method for determination of the size of spherical objects in electron microscopy: Its application to small lymphocytes of the mouse thymus. Arch Histol Jap - 15. Watanabe S, Abe K, Anbo Y, Katoh H. 1995. Changes in the mouse exocrine pancreas after pancreatic duct ligation: A qualitative and quantitative histological study. Arch Histol Cytol:365-374. - 16. Wallenstein S, Zucker CL, Fleiss JL. 1980. Some statistical methods useful in circulation research. Circ Res 47:1-9. - 17. Sano H, Okada H, Kawaguchi H, Yasuda H. 1991. Increased angiotensin II stimulated collagen synthesis in cultured cardiac fibro-blasts from spontaneously hypertensive rats. Circulation 84:Suppl - 18. The SOLVED Investigators. 1992. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. Circulation 86:431-438. # **INDEX** | ACE, see Angiotensin-converting enzyme | |---| | Acetylcholine, 36, 106, 234 | | Acute septic cardiomyopathy, 188 | | Adenoviral gene transfer, 164-165, 169 | | Adenylate cyclase | | cardiac failure and, 516 | | Gi protein in VSMC and, 51, 52, 53, 58, 60-61 | | 00 01 | | signal transduction and, 369, 372 | | sodium/calcium exchanger and, 396 | | Adult heart, 409-410 | | AIRE, 176 | | Aldosterone, 562 | | cardiac failure and, 515 | | myocardial damage and, 505-506 | | Alpha-blockers, 96-97 | | diabetes and, 101, 102 | | elderly patients and, 100-101 | | Amlodipine, 89 | | Analapril, 263 | | ANF, see Atrial natriuretic factor | | Angioedema, 87, 110 | | Angiogenesis, 539–542 | | Angiotensin (Ang) I | | brain RAS and, 16–17 | | | | cardiac, 351–352 | ``` cardiac hypertrophy and, 275 circulating, 348 generation of, 345 mitral regurgitation and, 327 myocardial contractility and, 387-388, 390 in peripheral vascular bed, 65, 68-69, 71, 82-84 structure and functions of, 284 Angiotensin (Ang) II angiogenesis and, 539-542 apoptosis regulation in cardiovascular remodeling, 418-420 atherosclerosis and, 235-237, 240, 241 brain RAS and, 16, 19-21 calcium mobilization and, 287 cardiac, 351-352, 475-476 cardiac failure and, 287-289 cardiac function and, 286-287 cardiac hypertrophy and, 269-271, 272, 273-275, 287-289 circulating, 21, 348 delayed SIF-A/STAT3 induction by, 359-361 formation of, 284 generation of, 345-352 ``` and, 454-455 Angiotensin (Ang) III, 17, 66 generation of peptide and receptor activation by, 472-475 ischemia-reperfusion injury and, 552 Gi protein in VSMC and, 51-61 in peripheral vascular bed, 65, 68-69, ischemia-reperfusion injury and, 551-557 72-73, 81, 82-84 mechanisms of cardiovascular remodeling Angiotensin (Ang) IV, 16 and, 289-290 in peripheral vascular bed, 65, 68-69, 71, mechanotransduction and, 423-433 72-73, 82, 83-84 Angiotensin-converting enzyme (ACE), mitral regurgitation and, 327, 334 65-66, 472 myocardial damage related to, 499-512 atherosclerosis and, 237, 239, 240 myocardial tissue, 261-265 in peripheral vascular bed, 65-66, 68-70, brain RAS and, 16, 22 71, 72-73 cardiac, see Cardiac angiotensinpost-myocardial infarction tissue repair converting enzyme and, 451-456 cardiac failure and, 289-290, 477 post-translational regulation of collagen, cardiac hypertrophy and, 275, 288, 289-290, 323 471-494 serine phosphorylation of STAT3 by, circulating, 348 361-362 diabetes and, 245, 258 SIF induction by, 358-359 germinal, 284 signal transduction pathways in the heart, myocardial infarction and, 263 post-myocardial infarction tissue repair 369-377 sodium/calcium exchanger stimulation by, and, 454-455 395-401 salt-sensitive hypertension and, 22 STAT3 detection in, 359 somatic, 284 STAT mediation in fibroblasts and structure and functions of, 284-285 CHO-K1 cells, 357-364 tissue, 262 Angiotensin-converting enzyme (ACE) stimulation of contractility and c-fos in myocardium, 385-393 inhibitors, 66, 262, 284, see also specific structure and functions of, 285 types Ang II antagonists vs., 175-182, 439-440 in systemic vascular bed, 73-74 Angiotensin (Ang) II antagonists, see also AT, blockade vs. for cardiac failure, specific types 515-524 ACE inhibitors vs., 175-182, 439-440 atherosclerosis and, 234, 241 Canadian Hypertension Society brain RAS and, 20 guidelines on, 93-94, 96-97, 98-99, Canadian Hypertension Society guidelines on, 93-102 100, 101, 102 cardiac failure and, 98, 109, 110-111, 221, cardiac failure and, 297-299 222, 223-224, 225, 228, 229, 290-295, cardiac hypertrophy and, 297-299, 298-299, 515-524, 543-544 317-321 cardiovascular remodeling and, 141-149, cardiac fibrosis and, 476 cardiac hypertrophy and, 142, 143-144, 439-440, 561-569 cough and, 120-123 270, 288, 290-295, 346, 537 dilated cardiomyopathy and, 561-569 cardiovascular remodeling and, 437, 438, 439-440, 444-445, 561-569 ischemia-reperfusion injury and, 440, chronic obstructive airway disease and, 556-557 in renal failure and hemodialysis 98-99 patients, 87-90 circulating RAS and, 349 collagen regulation and, 481-482 renin system and, 4-5, 8-11 Angiotensin (Ang) II receptors, see also cough and, see Cough, ACE-related specific types diabetes and, 101, 102, 246, 258-259 dilated cardiomyopathy and, 294-295, cellular physiology in VSMC, 41-48 post-myocardial infarction tissue repair 561-569 dyslipidemia and, 98 | elderly patients and, 100
fetal cardiac development and, 407
gene transfer and, 163, 166–168
ischemia-reperfusion injury and, 181, 551,
552, 555–556 | Arachidonic acid, 235 ACE-related cough and, 123 signal transduction and, 369, 377 VSMC release of, 45 Arterial media thickening, 144-146 | |--|---| | mechanotransduction and, 432–433 | Arterial media thickening, 144–146
Asthma, 99, 181 | | myocardial contractility and, 386 | Attendol, 89, 99, 176, 386 | | myocardial damage and, 504-505, 512 | Atherosclerosis, 233–241 | | myocardial infarction and, 180-181, 263, | defined, 235 | | 291–293, 437, 438, 439–440, 444–445,
481–482 | plaque inflammatory changes and,
238–239 | | myocardial ischemia and, 263, 553-554 | plaque rupture and, 237-238 | | myocardial stunning and, 554-555 | AT ₁ receptor, 66, 367, 473, 474, 475–476, | | nitric oxide and, 186 | 538 | | pacing and, 294–295 | in adult heart, 409 | | in peripheral vascular bed, 82-84 | apoptosis and, 418, 419-420 | | possible mechanisms of beneficial effects, | atherosclerosis and, 235-237 | | 295–297 | in brain, 16 | | pressure-induced hypertrophy and, 294, | cardiac fibrosis and, 476-477 | | 312–316 | cardiac hypertrophy and, 270, 271, 275, | | renal failure and, 87–88, 90 | 289 | | renin system and, 3, 4–8, 10–11 | cardiac RAS localization and regulation | | restenosis and, 42 | and, 406, 407 | | vascular remodeling and endothelial | cardiovascular remodeling and, 141–149 | | dysfunction and, 33–38 | circulating renin and, 346–347 | | volume-induced hypertrophy and,
293–294 | distribution in the heart, 368 | | | in fetal heart, 407 | | Angiotensinergic pathways, 18–19
Angiotensinogen, 8 | functionality of, 442–443 | | blood pressure regulation and, 170 | mechanotransduction and, 429
mitral regurgitation and, 334–335 | | cardiac, 270–271, 286, 350, 352 | myocardial damage and, 502–503 | | cardiac failure and, 289, 290 | in neonatal heart, 408 | | cardiac hypertrophy and, 275, 289 | post-myocardial infarction tissue repair | | circulating, 347–348 | and, 455 | | ischemia-reperfusion injury and, 552 | signal transduction and antagonistic | | salt-sensitive hypertension and, 6-7 | effects of, 129–137 | | structure and functions of, 284 | sodium/calcium exchanger and, 398 | | Angiotensinogen gene-activating element | structure and functions of, 285 | | (AGE), 163, 171 | targeted deletion of gene, 135-137 | | Angiotensinogen gene-activating factor | in transgenic studies, 276 | | (AGF), 170 | in VSMC, 41, 43-45, 47-48 | | Antioxidants, 554-555 | AT _{1A} receptor, 129, 130, 473 | | Antisense oligodeoxynucleotides (ODN), | cardiac failure and, 293 | | 163, 164, 170–171, 474 | cardiac fibrosis and, 477 | | Ao gene, 410 | cardiac hypertrophy and, 271, 275 | | Aorta weight, 35–36 | STAT mediation in, 357–364 | | Aortic regurgitation, 325 | in transgenic studies, 276, 410 | | Apoptosis, 134–135, 474 | AT _{1B} receptor, 129, 130, 271, 293, 473 | | cardiac hypertrophy and, 419-420, 424 | AT ₁ receptor blockade, 9 | | cardiac RAS and, 408–409 | ACE inhibition vs. for cardiac failure, | | cardiovascular remodeling and, 418–420 | 515–524 | | in neonatal heart, 408–409 | apoptosis and, 419–420 | | TNF α and, 213 | atherosclerosis and, 234, 241 | | Canadian Hypertension Society | cardiovascular remodeling and, 437, 439 | |--|---| | guidelines on, 93–102 | cellular physiology in VSMC, 43, 45 | | cardiac fibrosis and, 476 | ischemia-reperfusion injury and, 440-442 | | cardiovascular remodeling and, 437, 438, | restenosis and, 42 | | 439 | AT ₄ receptor, 16 | | cellular physiology in VSMC, 43-45 | Atrial natriuretic factor (ANF), 273, 274, | | chronic obstructive airway disease and, 99 | 275, 289, 293, 294 | |
circulating RAS and, 349 | | | diabetes and, 101, 102, 245-259 | B5630, 178 | | dyslipidemia and, 98 | Bacteriaemia, 188 | | elderly patients and, 100 | Balloon angioplasty, 167, 179-180 | | Gi protein in VSMC and, 51-61 | Basic fibroblast growth factor (bFGF), 131, | | ischemia-reperfusion injury and, 440-442 | 134, 272, 274, 541 | | mechanotransduction and, 432-433 | Bax gene, 409, 419 | | myocardial damage and, 499-500 | BAY K8644, 68, 80 | | in peripheral vascular bed, 65-84 | bcl-2 gene, 409, 419 | | 4-prolyl hydroxylase and, 489 | Benazeprilat, 180 | | restenosis and, 42 | Beta-adrenergic receptors, 509-510 | | salt-sensitive hypertension and, 22 | Beta-blockers | | vascular remodeling and endothelial | asthma and, 99 | | dysfunction and, 33-38 | Canadian Hypertension Society | | AT ₂ receptor, 66, 346, 367–379, 473–475, 538 | guidelines on, 96, 97, 98, 99, 101, 102 | | in adult heart, 409, 410 | cardiac failure and, 222, 223, 224, 228, | | antigrowth effect in VSMC, 416-417 | 229 | | apoptosis and, 418, 419-420 | diabetes and, 101, 102 | | AT ₁ receptor blockade and, 9, 38 | myocardial contractility and, 386 | | in brain, 16 | myocardial damage and, 499, 512 | | cardiac disease and, 377-378 | pregnancy and, 99 | | cardiac fibrosis and, 477 | bFGF, see Basic fibroblast growth factor | | cardiac hypertrophy and, 270, 271, 275, | Bisoprolol, 386 | | 276, 289, 377–378, 379 | Blacks, 99 | | cardiac RAS and, 406 | Blood pressure regulation, 170–171, see | | cardiovascular remodeling and, 141–149, | also Hypertension | | 417–418 | Body weight, 522–524, 529–530 | | cellular physiology in VSMC, 41, 43–45, | BQ123, 277 | | 47–48 | Bradykinin, 8, 10, 22, 33, 284, 298, 562 | | distribution in the heart, 368–369 | ACE inhibitor effects on, 295–297 | | in fetal heart, 407 | ACE inhibitors vs. drugs with no effect | | gene transfer in, 167–168 | on, 175–182 | | mechanotransduction and, 429 | ACE-related cough and, 9, 87, 94, 119, | | in neonatal heart, 408, 409 | 120, 123 | | signal transduction and antagonistic | atherosclerosis and, 235–236, 238, 241 | | effects of, 129–137 | cardiac fibrosis and, 476 | | signal transduction pathways in the heart, | cardiovascular remodeling and, 439, | | 369–377 | 444–445 | | structure and functions of, 285–286 | diabetes and, 245, 259 | | in transgenic studies, 276, 410 | energy metabolism and, 297 | | AT _{2A} receptor, 474 | ischemia-reperfusion injury and, 555–556 | | AT _{2B} receptor, 474 | nitric oxide and, 186 | | AT ₂ receptor blockade | renal failure and, 90 | | £ | , | | vescular remodeling and andethelial | homeontonesian and 7 22 | |---|---| | vascular remodeling and endothelial dysfunction and, 38 | hypertension and, 7, 22 | | Bradykininase, 439, 444–445 | ischemia-reperfusion injury and, 556 | | Brain renin-angiotensin (RAS) system | losartan vs. in myocardial infarction | | localization of, 16–18 | survival, 519–521 | | | myocardial infraction and 181 | | salt-sensitive hypertension and, 21–27 | myocardial infarction and, 181 | | | myocardial stynning and 555 | | Calcium | myocardial stunning and, 555 | | Ang II effect on mobilization of, 287 | in peripheral vascular bed, 68, 71 | | intracellular, see Intracellular calcium | post-myocardial infarction cardiovascular | | Calcium channel blockers | remodeling and, 444 | | | post-myocardial infarction oxidative | | Canadian Hypertension Society | stress and, 527–534 | | guidelines on, 96–97, 98, 99, 100, 101,
102 | post-myocardial infarction tissue repair and, 456 | | cardiac failure and, 228 | renal failure and, 89 | | diabetes and, 101, 102 | restenosis and, 42 | | dihydropyridine, 97, 101 | Captopril Type I Diabetic Nephropathy | | dyslipidemia and, 98 | study, 176 | | elderly patients and, 100 | Cardiac, see also Heart entries | | hypertension and, 34-35 | Cardiac angiotensin (Ang) I, 351-352 | | myocardial contractility and, 386 | Cardiac angiotensin (Ang) II, 351–352, | | pregnancy and, 99 | 475–476 | | salt-sensitive hypertension and, 6 | Cardiac angiotensin-converting enzyme | | vascular remodeling and endothelial | (ACE), 270–271, 286, 350 | | dysfunction and, 34-35 | hippuryl histidyl leucine substrate for, | | Calcium channels, 396, 399, 430, 516 | 328 | | Calphostin, 287 | mitral regurgitation and, 328, 334 | | cAMP, see Cyclic adenosine | Cardiac angiotensinogen, 270-271, 286, 350 | | monophosphate | 352 | | Canadian Cardiovascular Society, 223 | Cardiac disease, 419-420 | | Canadian Hypertension Society (CHS), | AT ₂ receptor and, 377–378 | | 93–102 | myocardial tissue Ang II in, 261-265 | | Candesartan, 24, 277 | Cardiac failure, 221–231, 287–290, 499–500 | | atherosclerosis and, 241 | ACE inhibitors and, 98, 109, 110-111, | | in peripheral vascular bed, 65, 66, 70, 71, | 221, 222, 223–224, 225, 228, 229, | | 76, 79–82 | 290–295, 298–299, 515–524, 543–544 | | in systemic vascular bed, 73–76 | age and sex biases and, 229 | | C-ANP ₄₋₂₃ , 51, 58, 60–61 | Ang II antagonists and, 297–299 | | Captopril | Ang II-induced, 287–289 | | bradykinin and, 178 | AT ₁ blockade vs. ACE inhibitors for, | | Canadian Hypertension Society | 515–524 | | guidelines on, 98 | AT ₂ receptor and, 378, 379 | | cardiac failure and, 98, 290, 291, 292, | Canadian Hypertension Society | | 293, 294, 515–524, 544 | guidelines on treatment, 97–98 | | cardiac hypertrophy and, 293 | cause specific mortality in, 226 | | cough and, 181 | collagen and, 292, 295, 471-494, 568 | | diabetes and, 245, 257, 259, 264 | dilated cardiomyopathy and, 294–295 | | energy metabolism and, 297 | efficacy of therapy, 222–224 | | free radical scavenging and, 295 | management guidelines and clinical | | Gi protein in VSMC and, 55 | practice, 105–113 | | hemodynamics of, 517-518, 522-524 | mechanotransduction and, 428, 432-433 | | nonprescription medications and, 225 pacing and, 294–295, 298 | localization and regulation in cardiac cells, 406–407 | |--|---| | pressure-induced, 294 | in neonatal cardiac development, | | quality of life and, 226-227 | 404–406, 408–409 | | RAS and, 262, 283-284, 289, 297, 515, | volume-induced cardiac hypertrophy and, | | 518-519 | 323, 324 | | sodium/calcium exchanger and, 400-401 | Cardiac transplantation, 223 | | survival rates in, 225-226 | Cardiomyocyte remodeling, 323-340 | | volume-induced, 293-294 | Cardiomyocytes | | Cardiac fibrosis, 537 | AT ₂ receptor in, 367-379 | | diabetes and, 257 | cardiac RAS localization and regulation | | post-translational regulation of collagen | in, 406–407 | | in, 471–494 | cardiomyopathy and, 564 | | Cardiac function | endothelial nitric oxide synthase and, 187 | | Ang II effect on, 286-287 | mechanotransduction in neonatal, | | RAS and, 284–286 | 424–426, 428–430 | | Cardiac growth, 404-406 | septic cardiomyopathy in, 198-213 | | Cardiac hypertrophy, 142-144, 269-278, | Cardiomyopathy | | 287–290, 311–321, 537 | diabetes-induced, 261, 264-265 | | ACE inhibitors and, 142, 143-144, 270, | dilated, see Dilated cardiomyopathy | | 288, 290–295, 346, 537 | septic, see Septic cardiomyopathy | | Ang II and, 269–271, 272, 273–275, | Cardiovascular disease, see Cardiac disease | | 287–289 | Cardiovascular remodeling, 141–149, | | Ang II antagonists and, 297–299 | 292-293, 295, 298, 415-420, 538, see | | apoptosis and, 419-420, 424 | also Cardiomyocyte remodeling; | | AT ₂ receptor and, 270, 271, 275, 276, | Myocardial remodeling; Vascular | | 289, 377–378, 379 | remodeling; Ventricular remodeling | | collagen and, 275, 287, 288, 294, 475, | Ang II blockade post-myocardial | | 482–484, 489–490, 491–492 | infarction and, 437-445 | | diabetes and, 257 | Ang II regulated apoptosis in, 418-420 | | left ventricular, see Left ventricular | in dilated cardiomyopathy, 561-569 | | hypertrophy | gene transfer studies in, 165-169 | | mechanotransduction and, 271-273, | ischemia-reperfusion injury and, 438-439 | | 274–275, 424–426, 429, 432 | mechanisms of Ang II in, 289-290 | | myocardial infarction size and, 482-484 | Care trial, 234 | | norepinephrine-induced, 317–321 | CARS, see Compensatory anti- | | physiological and pathological, 423-424 | inflammatory response syndrome | | pressure-induced, see Pressure-induced | Catecholamine fluorescence, 248 | | cardiac hypertrophy | Catecholamines, 106 | | RAS and, 283–284 | diabetes and, 248, 257 | | volume-induced, see Volume-induced | myocardial damage and, 499, 506–509, | | cardiac hypertrophy | 510 | | Cardiac morphogenesis, 404–406 | septic cardiomyopathy and, 190 | | Cardiac remodeling, see Cardiovascular | Cathepsin D, 349 | | remodeling | Cathepsin G, 460, 552, 556 | | Cardiac renin, 270–271, 286, 349–350, 352 | Cesarean section, 106, 107 | | Cardiac renin-angiotensin system (RAS), | c-fos gene, 142, 358, 364, 475 | | 286 | Ang II stimulation of in myocardium, | | in adult heart, 409–410 | 385–393 | | components of, 349–352 | cardiac hypertrophy and, 269, 273, 274, | | developmental regulation of, 403–410 in fetal cardiac development, 407–408 | 276, 288 | | m retar cardiac development, 407-408 | neonatal cardiac development and, 408 | | signal transduction and, 369 | and, 452, 454, 455 | |--|---| | cGMP, see Cyclic guanosine | Collagenase | | monophosphate | interstitial, see Matrix metalloproteinase- | | CGP42112, 130, 136, 143, 271 | 1 | | Chelerythrine, 395, 398 | myocardial infarction and, 464-467 | | Chloramacetyltransferase (CAT) construct, | Collagen I, 542, 562 | | 170–171 | cardiac failure and, 472, 480, 485-487, | | CHO-K1 cells, 357–364 | 490–491, 493 | | Chronic obstructive airway disease, 98-99 | cardiac fibrosis and, 472, 480, 485-487, | | Chymase, 93, 285, 324, 327, 334, 433, 552, | 490–491, 493 | | 556 |
cardiac hypertrophy and, 289 | | Cilazapril, 180, 314 | diabetes and, 245, 250, 255, 258 | | Circulating angiotensin (Ang) I, 348 | left ventricular hypertrophy and, 326 | | Circulating angiotensin (Ang) II, 21, 348 | post-myocardial infarction inhibition by | | Circulating angiotensin-converting enzyme | losartan, 462 | | (ACE), 348 | post-myocardial infarction metabolism of, | | Circulating angiotensinogen, 347–348 | 477, 478 | | Circulating renin, 346-347, 348, 349 | post-myocardial infarction tissue repair | | Circulating renin-angiotensin system | and, 451, 452 | | (RAS), 346–349 | Collagen III, 562 | | c-jun gene, 142, 269, 274, 369 | cardiac failure and, 472, 480, 486-487, | | cardiac hypertrophy and, 276, 288, 289 | 490–491, 493 | | neonatal cardiac development and, 408 | cardiac fibrosis and, 472, 480, 486-487, | | Clinical Quality Improvement Network | 490–491, 493 | | (CQIN), 222, 224, 225, 226, 229, 230 | cardiac hypertrophy and, 289 | | Clofibrate, 96 | left ventricular hypertrophy and, 326 | | Clonidine, 89, 99, 101 | post-myocardial infarction metabolism of, | | c-myc gene, 269, 274, 276, 289, 408, 475 | 477, 478 | | Collagen, 146 | post-myocardial infarction tissue repair | | angiogenesis and, 540 | and, 451 | | atherosclerosis and, 239 | Collagen IV, 493 | | cardiac failure and, 292, 295, 471–494,
544 | Compensatory anti-inflammatory response syndrome (CARS), 188, 193 | | cardiac fibrosis and, 471-494 | Congestive heart failure, see Cardiac failure | | cardiac hypertrophy and, 275, 287, 288, | CONSENSUS, 175–176 | | 294, 475, 482–484, 489–490, 491–492 | CONSENSUS II, 439 | | cardiac RAS and, 286 | Continuing medical education (CME), 109 | | cardiovascular remodeling and, 439, 440, | Contractility, see Myocardial contractility | | 444–445, 562, 568 | Cough, ACE-related, 9, 87, 94, 98-99, 110, | | in fetal heart, 407 | 176, 181, 298 | | left ventricular hypertrophy and, 325, 326 | clinical characteristics of, 116 | | mitral regurgitation and, 329, 337-339 | diabetes treatment and, 101, 102 | | myocardial damage and, 501, 503 | frequency of, 117-118 | | post-myocardial infarction concentration | management of, 120 | | in myocardium, 461 | mechanisms of, 118-120 | | post-myocardial infarction degradation | predisposing factors for, 118 | | of, 463–464 | RAAS and, 115–123 | | post-myocardial infarction inhibition by | CQIN, see Clinical Quality Improvement | | losartan, 459, 460, 461, 463-464 | Network | | post-myocardial infarction metabolism of, | CV11974, see Candesartan | | 477–478 | Cyclic adenosine monophosphate (cAMP), | | post-myocardial infarction tissue repair | 46, 52, 236, 293 | | AT ₂ receptor and, 367–368 | E3174, 88 | |--|--| | signal transduction and, 369, 372 | E-4177, 461, 464 | | Cyclic guanosine monophosphate (cGMP), | Early response genes, 475 | | 136, 187, 195, 236 | Echocardiography, 563 | | Cycloheximide, 286 | Egr-1 gene, 274, 276, 288, 289, 475 | | N ⁶ -Cyclohexyladenosine (CHA), 441 | Elastase, 460 | | CYP3A4, 157–158 | Elastin, 146, 294 | | CYP2C9, 153, 157–158, 159 | Elderly patients | | CYP2D6, 120 Cytokings, 185, 214, and also Sontia | Canadian Hypertension Society | | Cytokines, 185–214, see also Septic | guidelines for treatment, 99–101 | | cardiomyopathy; specific types | ELITE and, 94, 98, 102, 523 | | | ELISA, 482 | | D9721 24 | ELITE, see Evaluation of Losartan in the | | D8731, 34
Daidzein, 375 | Elderly | | | Enalapril | | Delapril, 492 | balloon angioplasty injury and, 180 | | Diabetes insipidus, 19
Diabetes mellitus, 112–113 | bradykinin and, 176, 178, 179 | | | cardiac failure and, 225, 226, 291, | | AT_1 receptor blockade and, 101, 102, 245–259 | 294–295, 298, 516 | | Canadian Hypertension Society | cardiac hypertrophy and, 294 cardiovascular remodeling in | | guidelines on treatment, 101–102 | cardiowascular remodeling in cardiomyopathy and, 561–569 | | cardiomyopathy induced by, 261, | cardionyopathy and, 301–309
cardiovascular remodeling post- | | 264–265 | myocardial infarction, 445 | | hypertension and, 101–102 | energy metabolism and, 297 | | Diacylglycerol, 52, 286, 376, 475 | hypertension and, 33–38 | | cardiac failure and, 516 | ischemia-reperfusion injury and, 181, | | ischemia-reperfusion injury and, 552 | 552 | | mechanotransduction and, 424, 430 | mechanotransduction and, 428 | | myocardial damage and, 503 | myocardial contractility and, 386, 388, | | Dianisidine, 295 | 390 | | Diastolic ventricular function, 227–228 | myocardial ischemia and, 553 | | Diazepam, 158 | myocardial stunning and, 555 | | 4-α-12,13-Didecanoate (α-PDD), 287 | neonatal cardiac development and, 408 | | Digitalis, 223 | post-myocardial infarction tissue repair | | Digitalis Investigation Group (DIG) Trial, | and, 455, 456 | | 224 | vascular remodeling and endothelial | | Digoxin, 159, 224, 228 | dysfunction and, 33-38 | | Dihydropyridine calcium channel blockers, | Endocardial MMP activation, 542-543 | | 97, 101 | Endothelial-derived hyperpolarizing factor | | Dihydropyridine-sensitive calcium channels, | (EDHF), 236 | | 516 | Endothelial dysfunction, 33-38 | | Dilated cardiomyopathy | Endothelial nitric oxide synthase (ecNOS) | | cardiac failure and, 294-295 | 186, 187 | | cardiac remodeling in, 561-569 | Endothelin, 273, 475, 562 | | MMP and, 543 | cardiac failure and, 433 | | Diltiazem, 386 | cardiac hypertrophy and, 272 | | Diuretics, 97, 98, 223, 228, see also Thiazide | cardiac RAS and, 407 | | diuretics | Gαq and, 431 | | Doxazosin, 101 | in peripheral vascular bed, 68, 77, 78, 80 | | DuP 753, see Losartan | post-myocardial infarction tissue repair | | Dyslipidemia, 98 | and, 452 | Endothelium-derived contracting factor HVJ-mediated method, see HVJ-(EDCF), 34, 38, 106 mediated gene transfer Endotoxin, 195-196, 198, 203, 207-208 lipid-mediated, 165 Energy metabolism, 296-297 retroviral method, 164 Enkephalins, 407 Germinal angiotensin-converting enzyme Epidermal growth factor (EGF), 358, 364 (ACE), 284 Epidermal growth factor (EGF) receptors. Gi protein, 131, 135 Ang II enhancement in VSMC, 51-61 Epinephrine, 509, 510 Glut4, 245, 258 ERK1, 274 Glutathione, see Oxidized glutathione; ERK2, 275 Reduced glutathione E-selectin, 553 Glyceraldehyde-3-phosphate dehydrogenase Eutrophic remodeling, 105-106 (GAPDH), 479, 485-486 Evaluation of Losartan in the Elderly diabetes and, 255 (ELITE), 94, 98, 102, 523 mitral regurgitation and, 335 EXP 3174, 153, 155-159 myocardial contractility and, 387, 388 ischemia-reperfusion injury and, 181 septic cardiomyopathy and, 201 in peripheral vascular bed, 65, 68, 69-70, Gout, 99 71, 75-76, 78-79, 80 G protein-coupled receptors (GPCR), 46, STAT and, 357, 359, 361 47, 48, 129, 131, 133 Extracellular matrix (ECM), 146, 460, 537, Gaq, 423, 424, 430-432, 433 538 Gs protein, 52 angiogenesis and, 540-542 GTP, see Guanosine triphosphate cardiac failure and, 288-289, 476, 477, Guanabenz, 23, 24 Guanosine triphosphate (GTP), 46 cardiovascular remodeling and, 289, 440, Guanosine triphosphatey (GTPyS), 51, 58 ischemia-reperfusion injury and, 438, 439 MMP and, 542-543 Hageman factor, 90 HCTZ, see Hydrochlorothiazide Heart, see also Cardiac entries Fab fragments, 23-24, 26 adult, 409-410 Felodipine, 176 Ang II signal transduction pathways in, Fetal cardiac development, 407-408 369-377 Fibroblast growth factor (FGF), 237 AT₂ receptor distribution in, 368-369 **Fibroblasts** fetal, 407-408 cardiac RAS in, 406-407 neonatal, see Neonatal heart STAT in, 357-364 nitric oxide role in, 186-189 Fibronectin, 146, 275, 287, 289, 476, 478, weight of, 35-36, 522-524 501 Heart Function Clinic, 222, 224-228, 230 Forskolin, 51, 58 Hemagglutinating Virus of Japan, see HVJ Fosinopril, 245, 257, 259, 294 Hemodialysis, 87-90 4S trial, 234 Hemodynamics, of captopril and losartan, Free radical scavenging, 295 517-518, 522-524 Heparin, 466 High-resolution, two-dimensional gel GAPDH, see Glyceraldehyde-3-phosphate electrophoresis (2D-PAGE), 202 dehydrogenase Hindlimb vascular bed, 68-69 Gelatinase, see Matrix metalloproteinase-2 Histometry, 564 Gene deletion, AT₁ receptor, 135-137 Hoe-140, 177-178, 179, 180, 181, 445 Gene transfer, 163-172 HVJ-mediated gene transfer, 164, 166, adenoviral method, 164-165, 169 168-169, 170, 416 Hydralazine, 98 mechanotransduction and, 424, 426, cardiac failure and, 516 429-430, 432 hypertension and, 97 myocardial contractility and, 392-393 pregnancy and, 99 myocardial damage and, 503 Hydrochlorothiazide (HCTZ), 159 signal transduction and, 369-372, 375, Canadian Hypertension Society 376, 377 guidelines on, 96 Insulin, 264, 376 cough and, 115, 116, 120-123 Insulin-like growth factor-1, 274, 289 elderly patients and, 100 Interferon γ (IFNγ), 239, 358, 362 4-Hydroxyproline, 487, 488, 490-491 Interleukin-1 (IL-1), 287 Hypertension, 179 atherosclerosis and, 239 ACE inhibitors and, 7-8, 93-94, 96-97 MMP and, 466 AT₁ blockade and ACE inhibitors and, septic cardiomyopathy and, 186, 195, 198, 33-38 207-208 atherosclerosis and, 237 Interleukin-6 (IL-6), 357 bradykinin and, 178 septic cardiomyopathy and, 201-202, 208 Canadian Hypertension Society SIF-A induced by, 358, 359-361, 362-364 guidelines on treatment, 93-102 Interstitial collagenase, see Matrix changes in VSMC phenotype and, metalloproteinase-1 146-148 Intracellular adhesion molecule-1 (ICAMdiabetes and, 101-102 1), 364 gene transfer studies of, 170-172 Intracellular calcium, 286, 396 Gi protein and, 52-61 ACE inhibitors and, 295 management guidelines and clinical cardiac failure and, 516 practice, 105-113 myocardial damage and, 507 myocardial damage and, 503-505 signal transduction and, 369, 370 salt-sensitive, See Salt-sensitive STAT and, 358 hypertension IP₃, see Inositol 1,4,5-triphosphate uncomplicated, 96-97 IRS-1, 45, 48 vascular remodeling and endothelial Ischemia-reperfusion injury, 440-442, 443, dysfunction in, 33-38 551-557 ACE inhibitors and, 181, 551,
552, 555-556 Ibuprofen, 158 cardiovascular remodeling and, 438-439 Icatibant, see Hoe-140 Isoproterenol, 203, 372, 507, 510 ICI D8731, 245, 246, 247, 251–258 Idrapril, 291 Imidapril, 292, 295, 296 JAK, 276, 358, 369, 408, 476 Imidazole, 66 JAK1, 358 Immediate early genes, 269, 272, 274 JAK2, 276, 358 Immunoblotting, 54 JAK3, 358 Immunohistochemistry, 479-480 Janus family of tyrosine kinase, see JAK Indomethacin, 45, 555 Inducible nitric oxide synthase (iNOS), 186–188, 195, 197, 201, 208, 210, 212 Kallikrein, 90, 144, 177 Infection, defined, 188 Ketaconazole, 158 Inhibitory guanine nucleotide regulatory Kidneys, 472 protein, see Gi protein cardiac renin and, 349-350 Inositol 1,4,5-triphosphate (IP₃), 52, 131, circulating renin and, 346-347, 348 286, 287, 475 failure, 87-90, 159 cardiac failure and, 516 pharmacological interruption of renin ischemia-reperfusion injury and, 552 system and, 3-11 | Kininogen, 177 | survival, 519–521 | |--|--| | Kinins, 4, 144, 246, 284, 407, 556 | cardiac failure and, 98, 290, 297–298, 515–524 | | | cardiac fibrosis and, 476 | | L-158,809 | cardiac hypertrophy and, 143, 273 | | cardiovascular remodeling and, 442–443, | cardiac RAS and, 352, 406 | | 444 | cardiovascular remodeling and, 141, 289, | | restenosis and, 42 | 445 | | Labetalol, 99 | cellular physiology in VSMC, 41, 43, 44, | | Lactate dehydrogenase (LDH), 296-297 | 46 | | Laminin, 289 | c-fos and, 390 | | Late response genes, 274 | changes in VSMC phenotype and, 146 | | Left ventricular hypertrophy, 179 | cough and, 115, 116, 120-123, 176 | | Canadian Hypertension Society | diabetes and, 102 | | guidelines on treatment, 98 | elderly patients and, 94, 98, 100, 102, 523 | | pressure-induced, see Pressure-induced | Gi protein in VSMC and, 51, 52, 53, | | left ventricular hypertrophy | 57–58, 61 | | RAS and, 263 | in hemodialysis patients, 87-90 | | volume-induced, 324-326 | hemodynamics of, 517-518, 522-524 | | Left ventricular mechanotransduction, | hypertension and, 33-38 | | 426-430 | ischemia-reperfusion injury and, 441-442 | | Left ventricular remodeling, 522-524 | 443, 557 | | Ang II blockade in post-myocardial | left-ventricular hypertrophy and, 312 | | infarction, 437–445 | mechanotransduction and, 428 | | Leukotrienes, 123 | myocardial contractility and, 385, | | Leupeptin, 464 | 388-389 | | Lipid lowering therapy, 110, 234, 238, 241 | myocardial damage and, 505-506, 508 | | Lipid-mediated gene transfer, 165 | myocardial infarction and, 181 | | Lipid peroxidation, 528, 532, 533-534 | neonatal cardiac development and, 408 | | Lipofectamine, 135 | norepinephrine-induced cardiac | | Lipofectin, 163 | hypertrophy and, 318-321 | | Lipopolysaccharides (LPS), 195–196, 207
Lisinopril, 562 | in peripheral vascular bed, 65, 66, 68, 69-70, 71, 75-80 | | cardiac failure and, 293, 544 | pharmacokinetics of, 153–159 | | cough and, 116, 120–123, 176 | post-myocardial infarction collagen | | myocardial contractility and, 386 | regulation and, 471, 472, 473, 478, | | vascular remodeling and endothelial | 481–482, 486–487, 490, 492, 494 | | dysfunction and, 34 | post-myocardial infarction MMP | | Liver, 347-348, 472 | inhibition by, 459–467 | | L-NAME, 180 | post-myocardial infarction tissue repair | | Losartan, 93, 130, 136, 137, 271, 285, 371 | and, 456 | | antigrowth effects of AT ₂ receptor and, | restenosis and, 42 | | 416 | salt-sensitive hypertension and, 22, 24, 26 | | arterial media thickening and, 144-145 | sodium/calcium exchanger and, 395, 398 | | atherosclerosis and, 241 | STAT and, 358 | | balloon angioplasty injury and, 180 | vascular remodeling and endothelial | | bradykinin and, 175-176, 179 | dysfunction and, 33-38 | | brain RAS and, 21 | Losartan Cough Study, 115, 120-123 | | calcium mobilization and, 287 | Low density lipoprotein (LDL), 240, 241 | | Canadian Hypertension Society | L-type calcium channels, 396, 399, 430 | | guidelines on, 98, 100 | Luciferase construct, 170 | | captopril vs. in myocardial infarction | LY294002, 46, 47 | | α-2 Macroglobulin, 364 | neonatal cardiac development and, 408 | |--|--| | Magnetic resonance imaging (MRI), 326, | signal transduction and, 369, 372-374 | | 327 | sodium/calcium exchanger and, 400 | | MAPK, see Mitogen-activated protein | STAT and, 358, 361–362, 364 | | kinase | transgenic studies of, 277 | | MARCATOR, 42 | VSMC and, 45 | | Mast cells, 329 | Mitogen-activated protein kinase | | Matrix metalloproteinase-1 (MMP-1), 488, | phosphatine 1 (MKP-1), 135 | | 493 | Mitral regurgitation | | cardiac failure and, 544 | myocardial and myocyte remodeling in, | | inhibition by losartan, 459, 460, 464, 466 | 323–340 | | Matrix metalloproteinase-2 (MMP-2), 488, | production of, 326–327 | | 493 | Mixed antagonistic response syndrome | | inhibition by losartan, 459, 460, 464-465, | (MARS), 188, 193 | | 466 | MKP-1, 419 | | Matrix metalloproteinase-9 (MMP-9), 459, | MMP, see Matrix metalloproteinases | | 464–466, 488 | Morphometric analysis, 248-249 | | Matrix metalloproteinases (MMP), 471, | Multiple organ dysfunction syndrome | | 472, 478, 488, 490, 537 | (MODS), 188, 192 | | activation in endocardium, 542-543 | Myeloperoxidase assay (MPO), 462 | | atherosclerosis and, 239 | Myocardial contractility, 385-393 | | cardiac failure and, 544 | Myocardial infarction (MI), 290, 298, | | inhibition by losartan, 459-467 | 471–494, 500 | | Mechanotransduction, 423–433 | ACE inhibitors and, 180-181, 263, | | cardiac hypertrophy and, 271-273, | 291–293, 437, 438, 439–440, 444–445, | | 274–275, 424–426, 429, 432 | 481–482 | | defined, 424 | Ang II blockade in cardiovascular | | in left ventricle, 426-430 | remodeling after, 437-445 | | in neonatal cardiomyocytes, 424-426, | Ang II in tissue repair after, 451-456 | | 428-430 | AT ₂ receptor and, 377 | | therapeutic implications of, 432-433 | captopril effects on oxidative stress after, | | transgenic studies of, 277 | 527–534 | | MEKK1 (MEK kinase), 275 | captopril vs. losartan in survival, 519-521 | | MERCATOR, 180 | cardiac failure induced by, 291-293 | | Mesenteric vascular bed, 67 | collagen metabolism after, 477-478 | | Methyldopa, 99, 101 | losartan MMP inhibition after, 459-467 | | Metoprolol, 99 | MMP activation and, 542-543 | | cardiac hypertrophy and, 318-321 | post-translational regulation of collagen | | myocardial contractility and, 386 | after, 471–494 | | Minoxidil, 98 | tissue RAS and, 263 | | Mitogen-activated protein kinase kinase | Myocardial ischemia, see also Ischemia- | | (MEK1), 275, 357, 361 | reperfusion injury | | Mitogen-activated protein kinase (MAPK), | ACE inhibitors and, 263, 553-554 | | 52, 129, 130, 131, 132, 133, 134, 135, | tissue RAS and, 263 | | 474, 475 | Myocardial oxidative stress, 527–534 | | apoptosis and, 418, 419 | Myocardial remodeling, 323–340 | | cardiac function and, 285-286 | Myocardial stunning, 554-555 | | cardiac hypertrophy and, 142, 272, 273, | Myocardial tissue angiotensin (Ang) II, | | 276, 288, 298 | 261–265 | | cardiovascular remodeling and, 289, 415 | Myocardium | | Gαq and, 432 | Ang II-related damage and, 499-512 | | mechanotransduction and, 274, 275 | collagen concentration in post-myocardial | | infarction, 461 Myocytes, see Cardiomyocytes Myofibroblasts, 451–452, 454, 456 Myosin heavy-chain (MHC), 146, 296 α-Myosin heavy chain (MHC) diabetes and, 245, 250, 255, 258 Gαq and, 431 β-Myosin heavy chain (MHC) cardiac hypertrophy and, 274, 275, 298, 378 diabetes and, 245, 250, 255, 258 | myocardial damage and, 506, 508-509, 510 in peripheral vascular bed, 70, 71, 77, 78, 80, 81 salt-sensitive hypertension and, 26-27 Northern blot analysis in collagen regulation studies, 479 in diabetes studies, 249-250 in Gi protein studies, 54-55 Nuclear density, 564 | |--|--| | Na/Ca exchanger, see Sodium/calcium
exchanger
Naimark, Arnold, xxxv, xxxvii-xxxix
Naproxen, 158
Neonatal heart
cardiac RAS in development of, 404-406,
408-409 | Okadaic acid, 418–419 Orthovanadate, 134, 135 Ouabain, 15, 22–27, 396 Oxidative stress, 527–534 Oxidized glutathione (GSSG), 527, 528, 529, 530–532, 534 Oxotremorin, 60 | | mechanotransduction in cardiomyocytes,
424-426, 428-430
Nerve growth factor (NGF), 135, 364, 418,
419 | Oxprenolol, 99 Oxygen reactive species, 190 p21, 129, 274, 374 | | Neuroactivity, 296 Neuropeptide Y, 77 Neutrophil gelatinase, see Matrix metalloproteinase-9 | p46, 374
p55, 196–197
p56, 374
p62, 475 | | Nifedipine, 89, 386
Nisoldipine, 386
Nitric oxide (NO), 177, 180, 182, 287
atherosclerosis and, 236
cardiovascular remodeling and, 439, 445 | p75, 196–197
p85, 45–47
p110, 47
p125, 374
Pacing, cardiac failure from, 294–295, 298 | | diabetes and, 245, 246, 258, 259 ischemia-reperfusion injury and, 555, 556 role in the heart, 186–189 septic cardiomyopathy and, 185, 190, 193–195, 198, 203–205, 207–208, 209–213 | PD98059, 357, 361, 362
PD123177, 52, 130, 271, 285, 473
cardiac hypertrophy and, 143
cardiac RAS and, 406
post-myocardial infarction tissue repair
and, 455 | | vascular remodeling and endothelial dysfunction and, 34 Nitric oxide synthase (NOS) atherosclerosis and, 235, 236 endothelial, 186, 187 inducible, see Inducible nitric oxide synthase | STAT and, 358 PD123319, 130,
136, 137, 180, 285 antigrowth effects of AT ₂ receptor and, 416-417 apoptosis and, 418 arterial media thickening and, 144-145 brain RAS and, 21 | | septic cardiomyopathy and, 198 Noradrenaline, see Norepinephrine Norepinephrine cardiac failure and, 433 cardiac hypertrophy induced by, 317–321 ischemia-reperfusion injury and, 440, 552 | calcium mobilization and, 287 cardiac failure and, 290 cardiac hypertrophy and, 143 cardiac RAS and, 406 cardiovascular remodeling and, 141, 142, 417 | | cellular physiology in VSMC, 41, 43, 44 changes in VSMC phenotype and, 146 | Phospholipase C-β (PLC-β), 129, 131, 132, 475 | |---|---| | ischemia-reperfusion injury and, 441–442 in peripheral vascular bed, 65, 71–73, | Phospholipase C-γ (PLC-γ), 129, 132, 133, 503 | | 81–82, 84 | Phospholipase D (PLD), 52, 286 | | restenosis and, 42 | cardiac hypertrophy and, 276 | | in systemic vascular bed, 73-76 | mechanotransduction and, 274, 430 | | PDGF, see Platelet-derived growth factor | signal transduction and, 369 | | Perindopril, 352 | STAT and, 358 | | post-myocardial infarction tissue repair and, 456 | Phosphotyrosine phosphatase (PTP), 133–134, 135 | | vascular remodeling and, 37-38 | PIP ₂ , see Phosphoinositol 4,5-bisphosphate | | Peripheral vascular bed, 65-84 | PI-3P, see Phosphatidylinositol 3-phosphate | | candesartan in, 65, 66, 70, 71, 76, 79-82 | P13K, see Phosphatidylinositol 3-kinase | | captopril in, 68, 71 | Plaque | | EXP 3174 in, 65, 68, 69–70, 71, 75–76, 78–79, 80 | inflammatory changes at shoulder region, 238-239 | | losartan in, 65, 66, 68, 69-70, 71, 75-80 | rupture, 237–238 | | Pertussis toxin, 135, 418 | Platelet-derived growth factor (PDGF), | | Phenobarbital, 159 | 131, 263 | | Phorbol ester 12-0-tetradecanoylphorbol- | atherosclerosis and, 237 | | 13-acetate (TPA), 287 | MMP and, 466 | | Phorbol 12-myristate, 13-acetate (PMA), | neonatal cardiac development and, 408 | | 361 | signal transduction and, 369, 376 | | Phosphatidylcholine, 430 | STAT and, 357 | | Phosphatidylinositol, 288 | Platelet-derived growth factor (PDGF) | | Phosphatidylinositol 4,5-bisphosphate | receptors, 132 | | (PIP ₂), see Phosphoinositol 4,5- | PMSF, 464 | | bisphosphate | Polymerase chain reaction (PCR), 201 | | Phosphatidylinositol 3-kinase (P13K), 45- | Prazosin | | 47, 48, 133, 376 | elderly patients and, 101 | | Phosphatidylinositol 3-phosphate (PI-3P),
46-47 | post-myocardial infarction oxidative stress and, 528-529, 530-532, 533, 534 | | Phosphoinositol, 375 | Pregnancy, 99 | | Phosphoinositol 4,5-bisphosphate (PIP ₂), | ACE inhibitors and, 407 | | 212, 286, 369, 424, 475, 503 | losartan and, 408 | | Phospholipase A ₂ (PLA ₂), 52, 286 | Pressure-induced cardiac failure, 294 | | cardiac hypertrophy and, 276 | Pressure-induced cardiac hypertrophy, 294 | | ischemia-reperfusion injury and, 440 | Pressure-induced left ventricular | | signal transduction and, 369 | hypertrophy | | STAT and, 358 | ACE inhibitors and, 312–315 | | Phospholipase C (PLC), 52, 129, 236, 285, 286 | volume-induced hypertrophy vs., 324-326
Pressure-induced right ventricular | | cardiac failure and, 516 | hypertrophy, 315-316 | | cardiac hypertrophy and, 276 | 4-Prolyl hydroxylase, 472, 482, 489, 493, | | ischemia-reperfusion injury and, 440, 552 | 494 | | mechanotransduction and, 274, 423, 424, | Propranolol, 387, 507, 508 | | 426, 428, 430, 433 | Prorenin, 346–347 | | myocardial contractility and, 392 | Prostacyclin (PGI ₂), 177, 236 | | in peripheral vascular bed, 82 | cardiovascular remodeling and, 439, 445 | | signal transduction and, 376 | diabetes and, 259 | | STAT and, 358 | ischemia-reperfusion injury and, 555 | | VSMC and, 45 | RAS, see Renin-angiotensin system | |--|---| | Prostaglandin, 562 | Ras gene, 276, 288 | | ACE-related cough and, 123 | Reactive oxygen species, 258 | | angiogenesis and, 540 | Redox state, 530-532 | | VSMC and, 45, 48 | Reduced glutathione (GSH), 527, 528, 529, | | Prostaglandin E2 (PGE2), 38, 45, 147, 236 | 530-532 | | Protein kinase C (PKC), 52, 133, 236, 285, | Refractory septic shock, 188 | | 475 | Regional vascular bed, 66-67 | | cardiac hypertrophy and, 377–378 | Remikiren, 349 | | cardiovascular remodeling and, 289-290 | Renal failure, 87-90, 159 | | Gi protein in VSMC and, 59, 61 | Ren-2 gene, 277 | | ischemia-reperfusion injury and, 439, 551 | Renin, 472 | | mechanotransduction and, 275, 423, | cardiac, 270-271, 286, 349-350, 352 | | 424–426, 428, 429–430 | cardiac failure and, 289, 290 | | myocardial contractility and, 392 | cardiac hypertrophy and, 289 | | in peripheral vascular bed, 82 | circulating, 346-347, 348, 349 | | signal transduction and, 369, 372 | ischemia-reperfusion injury and, 552, 555 | | sodium/calcium exchanger and, 398 | pharmacological interruption of system, | | STAT and, 358, 361 | 3–11 | | Protein kinase $C\beta_2$ (PKC β_2), 423, 430, 432, | structure and functions of, 284 | | 433 | Renin-angiotensin-aldosterone system | | Proteinuria, 88, 179 | (RAAS), 115–123 | | Pseudomonas exotoxin A, 214 | Renin-angiotensin system (RAS), 106, 345–352, 472–473 | | | brain, see Brain renin-angiotensin system | | Quinapril | cardiac, see Cardiac renin-angiotensin | | atherosclerosis and, 234 | system | | cardiac failure and, 543, 544 | cardiac disease and, 261-265 | | cardiac hypertrophy and, 273 | cardiac failure and, 262, 283-284, 289, | | cardiac RAS and, 352 | 297, 515, 518–519 | | | cardiac function and, 284-286 | | | cardiac hypertrophy and, 269-271, 272, | | RAAS, see Renin-angiotensin-aldosterone | 273, 275–278, 283–284, 289, 297, 312 | | system | cardiovascular remodeling and, 438 | | Race, 99 | circulating, 346-349 | | Raf gene, 276, 288 | cytokine biology and, 186 | | Raf-1 gene, 274, 358, 369 | ischemia-reperfusion injury and, 551-552, | | Ramipril, 179, 180 | 555 | | cardiac failure and, 291, 292, 293 | pharmacological interruption of, 4 | | cardiac hypertrophy and, 294, 482-484 | in restenosis, 42–43 | | energy metabolism and, 297 | tissue, see Tissue renin-angiotensin | | mitral regurgitation and, 332-333 | system | | myocardial infarction and, 181 | transgenic study of, 276–277 | | myocardial ischemia and, 553 | Renin-angiotensin system (RAS) inhibitors, | | post-myocardial infarction collagen | 349, 352 | | regulation and, 471, 472, 482-484, 492 | Reserpine, 101 | | pressure-induced left ventricular | Restenosis, 42–43 | | hypertrophy and, 312-313 | Retroviral gene transfer, 164 | | pressure-induced right ventricular | Reverse transcription (RT) of RNA, 201 | | hypertrophy and, 315-316 | Ribosomal S6 protein kinase (RSK), 476 | | volume-induced cardiac hypertrophy and, | RNA extraction | | 323 | in collagen regulation studies, 479 | in Gi protein studies, 54 | in myocardial contractility studies, 387 | smooth muscle cells | |---|---| | in septic cardiomyopathy studies, | Sodium/calcium (Na/Ca) exchanger, | | 200–201 | 395–401 | | | Sodium/HCO3 symport, 377 | | | SOLVD, see Studies of Left Ventricular | | Salt-sensitive hypertension | Dysfunction | | ACE inhibitors and, 4–7 | Somatic angiotensin-converting enzyme | | brain RAS and, 21–27 | (ACE), 284 | | Gi protein and, 52-61 | STAT, 476 | | Saralasin, 153, 387 | in fibroblasts and CHO-K1 cells, 357–364 | | brain RAS and, 19, 21 | neonatal cardiac development and, 408 | | interruption of renin system and, 5 | STAT1, 276, 357, 358 | | salt-sensitive hypertension and, 22 | STAT2, 276 | | Sarcolemmal vesicles, 396, 398 | STAT3, 357, 358, 359–364 | | Sartans, 241 | | | | in Ang II and SIF-A, 359 | | SAVE, see Survival and Ventricular | delayed Ang II induction of, 359–361 | | Enlargement study | neonatal cardiac development and, 408 | | Scleroderma, 7–8 | serine phosphorylation by Ang II, | | Sepsis, 188, 192, 198 | 361–362 | | Sepsis-induced hypotension, 188 | Statistical analysis | | Septic cardiomyopathy, 185–214 | of captopril effect on oxidative stress, | | diagnosis in cliinical setting, 189–190 | 529 | | in isolated cardiomyocytes, 198–213 | of cardiac remodeling in cardiomyopathy, | | pathogenesis of, 192-198 | 565 | | prognosis and therapy of, 190-192 | of collagen regulation, 482 | | Septic shock, 188, 192, 198 | in diabetes studies, 250 | | Serine phosphorylation of STAT3, 361-362 | of MMP inhibition by losartan, 462 | | Serine protease inhibitor 3 (SP-3), 364 | in septic cardiomyopathy studies, | | Serum response element (SRE), 475 | 202–203 | | SIF, 358–359 | Staurosporin, 59 | | SIF-A, 358–359, 362–364 | Stimulatory guanine nucleotide protein, see | | delayed Ang II induction of, 359-361 | Gs protein | | SIF-B, 358 | Studies of Left Ventricular Dysfunction | | SIF-C, 358 | (SOLVD), 176, 225, 226, 234, 238 | | Signal Transducers and Activators of | Substance P, 9, 16, 87, 119-120, 123, 407 | | Transcription, see STAT | Survival and Ventricular Enlargement | | Signal transduction | (SAVE) study, 176, 234, 238 | | antagonistic effects of AT ₁ /AT ₂ and, | Systemic arterial pressure experiments, | | 129–137 | 67–68 | | AT ₂ receptor pathways in the heart, | Systemic inflammatory response syndrome | | 369–377 | (SIRS), 188, 192–193 | | cardiac Ang II-mediated, 475-476 | Systemic vascular bed, 73–76 | | mechanical stretch and, see | Systolic ventricular function, 227–228 | | Mechanotransduction | , | | myocardial contractility and, 391-392 | | | TNF α and, 212 | TBARS, see Thiobarbituric acid-reactive | | SIRS, see Systemic inflammatory response | substances | | syndrome | T3CHO/AT _{1A} cells, 357–364 | | Skeletal α-actin, 273, 274, 275, 289 | TCV-116 | | Small artery structure, 36 | cardiac failure and, 298 | | Smooth muscle α-actin. 144, 146 |
cardiac hypertrophy and, 273 | | | | Smooth muscle cells (SMC), see Vascular | cardiovascular remodeling in | MMP and, 466 | |---|---| | cardiomyopathy and, 561-569 | septic cardiomyopathy and, 186, 195, | | collagen regulation and, 492 | 196–197, 198, 200, 202, 203, 206, | | ischemia-reperfusion injury and, 443 | 207–208, 209–213 | | in peripheral vascular bed, 66 | TYK2, 276, 358 | | TCV-11974, 273 | Tyrosine kinase, 45–46, 129, 131, 132, 133, | | Teprotide, 5 | 134, 288, 475 | | Terazosin, 101 | cardiac hypertrophy and, 377 | | TGF, see Transforming growth factor | Janus family of, see JAK | | Thiazide diuretics, 96, 98 | signal transduction and, 274, 369, | | diabetes and, 101, 102 | 372–376 | | elderly patients and, 99, 100 | Tyrosine phosphatase, 142, 376, 415, 474 | | gout and, 99 | Tyrosine phosphorylation | | Thiobarbituric acid-reactive substances | of IRS-1, 45, 48 | | (TBARS), 528, 529, 532, 533 | of MAPK, 285 | | Tissue angiotensin-converting enzyme | signal transduction and, 369, 372-376 | | (ACE), 262 | of STAT, 276, 358, 362–364 | | Tissue factor (TF), 239 | | | Tissue inhibitor of metalloproteinase | | | (TIMP), 364, 543 | U46619, 77, 78, 80 | | Tissue plasminogen activator (t-PA), 236, | | | 543 | | | Tissue renin-angiotensin system (RAS) | v-abl gene, 376 | | cardiac disease and, 261-265 | Valsartan, 94 | | evidence for existence of, 262 | Vanadate, 418, 474 | | gene transfer and, 163-172 | Vasa vasorum, 239–241 | | TNF, see Tumor necrosis factor | Vascular endothelial growth factor | | TPA, see Phorbol ester 12-0- | (VEGF), 541–542 | | tetradecanoylphorbol-13-acetate | Vascular permeability factor (VPF), 541 | | Trandolapril, 291 | Vascular remodeling, 33–38, see also | | Transforming growth factor β (TGF β) | Cardiovascular remodeling | | atherosclerosis and, 237 | Vascular smooth muscle cells (VSMC), 130 | | cardiovascular remodeling and, 289 | 131, 132, 134, 135 | | collagen regulation and, 492 | antigrowth effect of AT ₂ receptor in, | | MMP and, 466 | 416–417 | | neonatal cardiac development and, 408 | apoptosis in, 418–419 | | post-myocardial infarction tissue repair | cellular physiology of Ang II receptors | | and, 454, 456 | in, 41–48 | | Transgenic studies | changes in phenotype, 146-148 | | of cardiac RAS, 410 | gene transfer and, 166-168 | | of Gaq overexpression, 423, 430-432, | Gi protein enhancement by Ang II in, | | 433 | 51–61 | | of PKC β_2 overexpression, 423, 430, 432, | hypertrophy in, 144–146 | | 433 | Vasopressin, 19, 77, 78 | | of RAS, 276–277 | Ventricular remodeling, 263, see also Left | | Transmission electron microscopy, 339 | ventricular remodeling | | Trial on Reversing ENdothelial | Verapamil, 89 | | Dysfunction (TREND), 178, 234 | Volsartan irbesartan, 241 | | Troponin, 430 | Volume-induced cardiac failure, | | Tumor necrosis factor α (TNF α) | 293–294 | | atherosclerosis and, 239 | Volume-induced cardiac hypertrophy, | | cardiac hypertrophy and, 274 | 293–294 | myocardial and myocyte remodeling in, 323-340 Volume-induced left ventricular hypertrophy, 324-326 Volumetry, 563-564 VSMC, see Vascular smooth muscle cells v-src gene, 376 Warfarin, 158, 159 Wortmannin, 46, 47 WOS trial, 234 Zofenopril, 555 Zymography, 461-462, 480-481