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PREFACE

APPROACH

This book provides a nonmathematical introduction to statistics for medical students,
physicians, graduate students, and researchers in the health sciences. So do plenty of
other books, but this one has a unique approach.

. Explanations rather than mathematical proofs. To those with appropriate training
and inclination, mathematical notation is a wonderful way to say things clearly
and concisely. Why read a page of explanation when you can read two equations?
But for many (perhaps most) students and scientists, mathematical notation is con-
fusing and threatening. This book explains concepts in words, with few mathematical
proofs or equations (except for those provided in reference sections marked with a
# symbol).

. Emphasis on interpreting results rather than analyzing data. Statistical methods will
only be used by those who collect data. Statistical results will be interpreted by
everyone who reads published papers. This book emphasizes the interpretation of
published results, although it also explains how to analyze data. For example, I
explain how to interpret P values long before I present any tests that compute P
values. In some cases, I discuss statistical methods without showing the equations
needed to analyze data with those methods.

. Emphasis on confidence intervals. Statistical calculations generate both P values and
confidence intervals. While most books emphasize the calculation of P values, I
emphasize confidence intervals. Although P values and confidence intervals are
related and are calculated together, I present confidence intervals first, and delay
presenting P values until Chapter 10.

. Examples from the clinical literature. In a few places, I've included simple examples
with fake data. But most of the examples are from recent medical literature.* To
focus the discussion on basic statistical understanding, I have sometimes simplified
the findings a bit, without (I hope) obscuring the essence of the results.

*These papers were not selected because they are particularly good or particularly bad. They are just a
sampling of papers from good journals that I happened to stumble across when searching for examples (so
the authors don't need to be particularly proud or embarrassed to see their work included).



Vi PRTFACE

' Explanation of Bayesian thinking. Bayesian thinking helps one interpret p values,
lab results, genetic counseling, and linkage analysis. Whereas most introductory
books ignore Bayesian analysis, I discuss it in reasonable detail in Part IV.

TOPICS COVERED

In choosing topics to include in this book I've chosen breadth over depth. This is be-
cause so many statistical methods are commonly used in the biomedical literature. Flip
through any medical or scientific journal and you'll soon find use of a statistical
technique not mentioned in most introductory books. To guide those who read those
papers, I included many topics omitted from other books: relative risk and odds ratios.
prediction intervals, nonparametric tests, survival curves, multiple comparisons, the
design of clinical trials, computing the power of a test, nonlinear regression, interpreta-
tion of lab tests (sensitivity, specificity, etc.). I also briefly introduce multiple regression,
logistic regression, proportional hazards regression, randomization tests, and lod scores.
Analysis of variance is given less emphasis than usual.

CHAPTERS TO SKIP

As statistics books go, this one is pretty short. But I realize that it still is more than
most people want to read about statistics. If you just want to learn the main ideas of
statistics, with no detail, read Chapters I through 5, l0 through 13, and 19.

This book is for anyone who reads papers in the biomedical literature, not just
for people who read clinical studies. Basic scientists may want to skip Chapters 6, 9,
20,2I,32, and 33 which deal with topics uncommonly encountered in basic research.
The other chapters are applicable to both clinicians and basic scientists.

ANALYZING DATA WITH COMPUTER PROGRAMS

We are lucky to live in an era where personal computers are readily available. Although
this book gives the equations for many statistical tests, most people will rely on a
computer program instead. Unfortunately, most statistics programs are designed for
statisticians and are too complicated and too expensive for the average student or
scientist. That's why my company, GraphPad Software, created GraphPad InStat, an
inexpensive and extremely easy statistical program available for Windows and Mac-
intosh computers. (See Appendix 2 for details about this program.) Although this
book shows sample output from InStat, you do not need InStat to follow the examples
in this book or to work the problems.

Although spreadsheet programs were originally developed to perform financial
calculations, current versions are very versatile and adept at statistical computation.
See Appendix 3 to learn how to use Microsoft Excel to perform statistical calculations.
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1

lntroduction to Statistics

There is something fascinating about science. One gets such a
w h o re s ar e return " t ffil ;'iT:':"I ;i"'# Ttr,il;:ilffi:, T Jl';

This is a book for "consumers" of statistics. The goals are to teach you enough
statistics to

l. Understand the statistical portions of most articles in medical journals.
2. Avoid being bamboozled by statistical nonsense.
3. Do simple statistical calculations yourself, especially those that help you interpret

published literature.
4. Use a simple statistics computer program to analyze data.
5. Be able to refer to a more advanced statistics text or communicate with a statistical

consultant (without an interpreter).

Many statistical books read like cookbooks; they contain the recipes for many
statistical tests, and their goal (often unstated) is to train "statistical chefs" able to
whip up a P value on moment's notice. This book is based on the assumption that
statistical tests are best calculated by computer programs or by experts. This book,
therefore, will not teach you to be a chef, but rather to become an educated connoisseur
or critic who can appreciate and criticize what the chef has created. But just as you
must learn a bit about the differences between broiling, boiling, baking, and basting
to become a connoisseur of fine food, you must learn a bit about probability distributions
and null hypotheses to become an educated consumer of the biomedical literature.
Hopefully this book will make it relatively painless.

WHY DO WE NEED STATISTICAT CATCUTATIONS?

When analyzing data, your goal is simple: You wish to make the strongest possible
conclusions from limited amounts of data. To do this, you need to overcome two
problems:

' Important differences are often obscured by biological variability and/or experimental
imprecision, making it difficult to distinguish real differences from random variation.

' The human brain excels at finding patterns and relationships, but tends to overgener-
alize. For example, a 3-year-old girl recently told her buddy, "You can't become a
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doctor; only girls can become doctors." To her this made sense, as the only three
doctors she knew were women. This inclination to overgeneraLize does not seem to
go away as you get older, and scientists have the same urge. Statistical rigor prevents
you from making this kind of error.

MANY KINDS OF DATA CAN BE ANATYZED WITHOUT
STATISTICAL ANATYSIS

Statistical calculations are most helpful when you are looking for fairly small differences
in the face of considerable biological variability and imprecise measurements. Basic
scientists asking fundamental questions can often reduce biological variability by using
inbred animals or cloned cells in controlled environments. Even so, there will still be
scatter among replicate data points. If you only care about differences that are large
compared with the scatter, the conclusions from such studies can be obvious without
statistical analysis. In such experimental systems, effects small enough to require
statistical analysis are often not interesting enough to pursue.

If you are lucky enough to be studying such a system, you may heed the follow-
ing aphorisms:

If you need statistics to analyze your experiment, then you've done the wrong experiment.

If your data speak for themselves, don't intemrpt!

Most scientists are not so lucky. In many areas of biology, and especially in
clinical research, the investigator is faced with enormous biological variability, is not
able to control all relevant variables, and is interested in small effects (say 207o change).
With such data, it is difficult to distinguish the signal you are looking for from the noise

createdby biological variability and imprecise measurements. Statistical calculations are

necessary to make sense out of such data.

STATISTICAL CALCUTATIONS EXTRAPOLATE FROM SAMPTE

TO POPUTATION

Statistical calculations allow you to make general conclusions from limited amounts

of data. You can extrapolate from your data to a more general case. Statisticians say

that you extrapolate from a sample to a population. The distinction between sample

and population is key to understanding much of statistics. Here are four different

contexts where the terms are used.

. Quatity control. The terms sample and population make the most sense in the context

of quality control where the sample is randomly selected from the overall population.

For example, a factory makes lots of items (the population), but randomly selects a

few items to test (the sample). These results obtained from the sample are used to

make inferences about the entire population.
. Politicat polts. A random sample of voters (the sample) is polled, and the results

are used to make conclusions about the entire population of voters.
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. Clinical studies. The sample of patients studied is rarely a random sample of the
larger population. However, the patients included in the study are representative of
other similar patients, and the extrapolation from sample to population is still useful.
There is often room for disagreement about the precise definition of the population.
Is the populatio,n all such patients that come to that particular medical center, or all
that come to a big city teaching hospital, or all such patients in the country, or all
such patients in the world? While the population may be defined rather vaguely, it
still is clear we wish to use the sample data to make conclusions about a larger group.

. Laboratory experiments. Extending the terms sample and population to laboratory
experiments is a bit awkward. The data from the experiment(s) you actually performed
is the sample. If you were to repeat the experiment, you'd have a different sample.
The data from all the experiments you could have performed is the population. From
the sample data you want to make inferences about the ideal situation.

In biomedical research, we usually assume that the population is infinite, or at
least very large compared with our sample. All the methods in this book are based on
that assumption. If the population has a defined size, and you have sampled a substantial
fraction of the population (>lOVo or so), then you need to use special methods that are
not presented in this book.

WHAT STATISTICAT CATCULATIONS CAN DO

Statistical reasoning uses three general approaches:

Statistical Estimation

The simplest example is calculating the mean of a sample. Although the calculation
is exact, the mean you calculate from a sample is only an estimate of the population
mean. This is called a point estimate. How good is the estimate? As we will see in
Chapter 5, it depends on the sample size and scatter. Statistical calculations combine
these to generate an interval estimate (a range of values), known as a confidence
interval for the population mean. If you assume that your sample is randomly selected
from (or at least representative of) the entire population, then you can be 95Vo sure
that the mean of the population lies somewhere within the 95Vo confidence interval,
and you can be 997o sure that the mean lies within the 99Vo confidence interval.
Similarly, it is possible to calculate confidence intervals for proportions, for the differ-
ence or ratio of two proportions or two means, and for many other values.

Statistical Hypothesis Testing

Statistical hypothesis testing helps you decide whether an observed difference is likely
to be caused by chance. Various techniques can be used to answer this question: If
there is no difference between two (or more) populations, what is the probability of
randomly selecting samples with a difference as large or larger than actually observed?
The answer is a probability termed the P value.If the P value is small, you conclude
that the difference is statistically signfficant and, unlikely to be due to chance.
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Statistical Modeling

Statistical modeling tests how well experimental data fit a mathematical model con-
structed from physical, chemical, genetic, or physiological principles. The most common
form of statistical modeling is linear regression. These calculations determine "the
best" straight line through a particular set of data points. More sophisticated modeling
methods can fit curves through data points.

WHAT STATISTICAT CATCULATIONS CANNOT DO

In theory, here is how you should apply statistical analysis to a simple experiment:

l .
2 .
3 .

4.
5 .

Define a population you are interested in.
Randomly select a sample of subjects to study.
Randomly select half the subjects to receive one treatment, and give the other half
another treatment.
Measure a single variable in each subject.
From the data you have measured in the samples, use statistical techniques to make
inferences about the distribution of the variable in the population and about the
effect of the treatment.

When applying statistical analysis to real data, scientists confront several problems
that limit the validity of statistical reasoning. For example, consider how you would
design a study to test whether a new drug is effective in treating patients infected with
the human immunodeficiency virus (HIV).

. The population you really care about is all patients in the world, now and in the
future, who are infected with HIV. Because you can't access that population, you
choose to study a more limited population: HIV patients aged 2O to 40 living in San
Francisco who come to a university clinic. You may also exclude from the population
patients who are too sick, who are taking other experimental drugs, who have taken
experimental vaccines, or who are unable to cooperate with the experimental protocol.
Even though the population you are working with is defined narrowly, you hope to
extrapolate your findings to the wider population of HlV-infected patients.

. Randomly sampling patients from the defined population is not practical, so instead
you simply attempt to enroll all patients who come to morning clinic during two
particular months. This is termed a convenience sample. The validity of statistical

calculations depends on the assumption that the results obtained from this convenience

sample are similar to those you would have obtained had you randomly sampled

subjects from the population.
. The variable you really want to measure is survival time, so you can ask whether

the drug increases life span. But HIV kills slowly, so it wiil take a long time to

accumulate enough data. As an alternative (or first step), you choose to measure the

number of helper (CD4) lymphocytes. Patients infected with the HIV have low

numbers of CD4 lymphocytes, so you can ask whether the drug increases CD4

cell number (or delays the reduction in CD4 cell count). To save time and expense,

you have switched from an important variable (survival) to a proxy variable (CD4

cell count).
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. Statistical calculations are based on the assumption that the measurements are made
correctly. In our HIV example, statistical calculations would not be helpful if the
antibody used to identify CD4 cells was not really selective for those cells.

. Statistical calculations are most often used to analyze one variable measured in a
single experiment, or a series of similar experiments. But scientists usually draw
general conclusions by combining evidence generated by different kinds of experi-
ments. To assess the effectiveness of a drug to combat HIV, you might want to look
at several measures of effectiveness: reduction in CD4 cell count, prolongation of
life, increased quality of life, and reduction in medical costs. In addition to measuring
how well the drug works, you also want to quantify the number and severity of side
effects. Although your conclusion must be based on all these data, statistical methods
are not very helpful in blending different kinds of data. You must use clinical or
scientific judgment, as well as common sense.

In summary, statistical reasoning can not help you overcome these common
problems:

' The population you really care about is more diverse than the population from which
your data were sampled.

, ' You collect data from a "convenience sample" rather than a random sample.
' The measured variable is a proxy for another variable you really care about.
' Your measurements may be made or recorded incorrectly, and assays may not always

measure exactly the right thing.
' You need to combine different kinds of measurements to reach an overall conclusion.

You must use scientific and clinical judgment, common sense, and sometimes a
leap of faith to overcome these problems. Statistical calculations are an important part
of data analysis, but interpreting data also requires a great deal of judgment. That's
what makes research challenging. This is a book about statistics, so we will focus on
the statistical analysis of data. Understanding the statistical calculations is only a small
part of evaluating clinical and biological research.

WHY IS IT HARD TO TEARN STATTSTICS?

Five factors make it difficult for many students to learn statistics:

' The terminology is deceptive. Statistics gives special meaning to many ordinary
words. To understand statistics, you have to understand that the statistical meaning
of terms such as signfficant, error, and hypothesis are distinct from the ordinary uses
of these words. As you read this book, pay special attention to the statistical terms
that sound like words you already know.

' Many people seem to believe that statistical calculations are magical and can reach
conclusions that are much strongerthan is actually possible. The phrase statistically
significanr is seductive and is often misinterpreted.

' Statistics requires mastering abstract concepts. It is not easy to think about theoretical
concepts such as populations, probability distributions, and null hypotheses.

' Statistics is at the interface of mathematics and science. To really grasp the concepts
of statistics, you need to be able to think about it from both angles. This book
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emphasizes the scientific angle and avoids math. If you think like a mathematician,
you may prefer a text that uses a mathematical approach.

' The derivation of many statistical tests involves difficult math. Unless you study
more advanced books, you must take much of statistics on faith. However, you can
learn to use statistical tests and interpret the results even if you don't fully understand
how they work. This situation is common in science, as few scientists really understand
all the tools they use. You can interpret results from a pH meter (measures acidity)
or a scintillation counter (measures radioactivity), even if you don't understand
exactly how they work. You only need to know enough about how the instruments
work so that you can avoid using them in inappropriate situations. Similarly, you
can calculate statistical tests and interpret the results even if you don't understand
how the equations were derived, as long as you know enough to use the statistical
tests appropriately.

ARRANCEMENT OF THIS BOOK

Parts I through V present the basic principles of statistics. To make it easier to learn,
I have separated the chapters that explain confidence intervals from those that explain
P values. In practice, the two approaches are used in parallel. Basic scientists who
don't care to learn about clinical studies may skip Chapters 6 (survival curves) and 9
(case-control studies) without loss of continuity.

Part VI describes the design of clinical studies and discusses how to determine
sample size. Basic scientists who don't care to learn about clinical studies can skip
this entire part. However, Chapter 22 (sample size) is of interest to all. Part VII ex-
plains the most common statistical tests. Even if you use a computer program to
calculate the tests, reading these chapters will help you understand how the tests work.
The tests mentioned in this section are described in detail.

Part VIII gives an overview of more advanced statistical tests. These tests are not

described in detail, but the chapters provide enough information so that you can be an

intelligent consumer of papers that use these tests. The chapters in this section do not

follow a logical sequence, so you can pick and choose the topics that interest you. The

only exception is that you should read Chapter 31 (multiple regression) before Chapters

32 (logistic regression) or the parts of Chapter 33 (comparing survival curves) dealing

with proportional hazards regression.
The statistical principles and tests discussed in this book are widely used, and I

do not give detailed references. For more information, refer to the general textbook

references listed in Appendix l.
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Statistical analysis of data leads to two kinds of results: confidence intervals
and P values. The two give complementary information and are often calculated
in tandem. For the purposes of clarity and simplicity, this book presents confi-
dence intervals first and then presents P values. Confidence intervals let you
state a result with margin of eruor. This section explains what this means and
how to calculate confidence intervals.
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Confidence lnterval of a Proportion

PROPORTIONS VERSUS MEASUREMENTS

The results of experiments can be expressed in different ways. In this chapter we will
consider only results expressed as a proportion or fraction. Here are some examples:
the proportion of patients who become infected after a procedure, the proportion of
patients with myocardial infarction who develop heart failure, the proportion of students
who pass a course, the proportion of voters who vote for a particular candidate. Later
we will discuss other kinds of variables, including measurements and survival times.

THE BINOMIAL DISTRIBUTION: FROM POpUtATtON
TO SAMPLE

If you flip a coin fairly, there is a SOVo probability (or chance) that it will land on
heads and a 5OVo probability that it will land on tails. This means that, in the long run,
a coin will land on heads about as often as it lands on tails. But in any particular series
of tosses, you may not see the coin land on heads exactly half the time. You may even
see all heads or all tails.

Mathematicians have developed equations, known as the binomial distribution.
to calculate the likelihood of observing any particular outcome when you know the
proportion in the overall population. Using the binomial distribution, you can answer
questions such as these:

' If you flip a coin 10 times, what is the probability of getting exactly 7 heads?
' If you flip a coin l0 times, what is the probability of getting 7 or more heads?
' If 5Vo of patients undergoing an operation get infected, what is the chance that 10

or more of the next 30 patients will be infected?
' If a couple's chance of passing a genetic disease to each child is25Vo, what is the

chance that their first three children will all be unaffected?
' lf 40Vo of voters are Democrats, what is the chance that a random sample of 500

voters will include more than 45Vo Democrats?

Perhaps you've seen the equations that help you answer these kinds of questions, and
recall that there are lots of factorials. If you're interested, the equation is presented at
the end of this chapter.

t 1
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The binomial distribution is not immediately useful when analyzing data because
it works in the wrong direction. The theory starts with a known probability (i.e.,50Vo
of coin flips are heads) and calculates the likelihood of any particular result in a sample.
When analyzing data, we need to work in the opposite direction. We don't know the
overall probability. That's what we are trying to find out. We do know the proportion
observed in a single sample and wish to make inferences about the overall probability.

The binomial distribution can still be useful. but it must be turned backwards to
generate confidence intervals. I show you how to do this at the end of the chapter. For
now, accept the fact that it can be done and concentrate on interpreting the results.

THE CONFIDENCE INTERVAT OF A PROPORTION:
FROM SAMPLE TO POPULATION

Let's start with an example. Out of 14 patients you have treated with a particular d*9,
three suffered from a particular side effect. The proportion is 3114, which equals 0.2143.
What can you say about the probability of complications in the entire population of
patients who will be treated with this drug?

There are two issues to think about. First, you must think about whether the 14
patients are representative of the entire population of patients who will receive the
drug. Perhaps these patients were selected in such a way as to make them more (or

less) likely than other patients to develop the side effect. Statistical calculations can't
help you answer that question, and we'll assume that the sample adequately represents
the population. The second issue is random sampling, sometimes referred to as margin
of error. Just by chance, your sample of 14 patients may have had an especially high

or an especially low rate of side effects. The overall proportion of side effects in the
population is unlikely to equal exactly 0.2143.

Here is a second example. You polled 100 randomly selected voters just before

an election, and only 33 said they would vote for your candidate. What can you say

about the proportion of all voters who will vote for your candidate? Again, there are

two issues to deal with. First, you need to think about whether your sample is really

representative of the population of voters, and whether people tell the pollsters the

truth about how they will vote. Statistical calculations cannot help you grapple with

those issues. We'lI assume that the sample is perfectly representative of the population

of voters and that every person will vote as they said they would on the poll. Second,

you need to think about sampling error. Just by chance, your sample may contain a

smaller or larger fraction of people voting for your candidate than does the overall

population.
Since we only know the proportion in one sample, there is no way to be sure

about the proportion in the population. The best we can do is calculate a range of

values that bracket the true population proportion. How wide does this range of values

have to be? In the overall population, the fraction of patients with side effects could

be as low as 0.0000017o (or lower) or as high as 99.999997o (or higher). Those values

are exceedingly unlikely but not absolutely impossible. If you want to be 1007o sure

that your range includes the true population value, the range has to include these

possibilities. Such a wide range is not helpful. To create a narrower and more useful

range, you must accept the possibility that the interval will not include the true popula-

tion value.
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Scientists usually accept a 57o chance that the range will not include the true

population value. The range or interval is called the 95Vo confidence interval, abbrevi-

ated 957o C/. You can be 95%o swe that the 957o CI includes the true population value.

It makes sense that the margin of error depends on the sample size, so that the confidence

interval is wider in the first example (14 subjects) than in the second (100 subjects).

Before continuing, you should think about these two examples and write down your

intuitive estimate of the 95Vo CIs. Do it now, before reading the answer in the next

paragraph.
Later in this chapter you'll learn how to calculate the confidence interval. But it

is easier to use an appropriate computer program to calculate the 957o CIs instantly.

All examples in this book were calculated with the simple program GraphPad InStat

(see Appendix 2), but many other programs can perform these calculations. Here are

the results. For the first example, the 95Vo CI extends from 0.05 to 0.51. For the second

example, the 95Vo CI extends from 0.24 to 0.42. How good were your guesses? Many

people tend to imagine that the interval is narrower than it actually is.

What does this mean? Assuming that our samples were randomly chosen from

the entire populations, we can be 95Vo sure that the range of values includes the true

population proportion. Note that there is no uncertainty about what we observed in

the sample. We are absolutely sure that 2l.4%o of our subjects suffered from the side

effect and that 33.07o of the people polled said they would vote for our candidate.

Calculation of a confidence interval cannot overcome any mistakes that were made in

tabulating those numbers. What we don't know is the proportion in the entire population.

However, we can be 95Vo sure that it lies within the calculated interval.
The term confidence interval, abbreviated CI, refers to the range of values. The

correct syntax is to express the CI as 5Vo to 5l%o, as 0.05 to 0.51, or as [0.05,0.51].
It is considered to be bad form to express the CI as 57o-5l%o or as 28Vo + 23Vo. The
two ends of the CI are called the confidence limits.

WHAT EXACTTY DOES IT MEAN TO SAY THAT YOU ARE

"95o/o SURE"?

When you only have measured one sample, you don't know the value of the population

proportion. It either lies within the 95Vo CI you calculated or it doesn't. There is no

way for you to know. If you were to calculate a 95Vo CI from many samples, the
population proportion will be included in the CI in 95Vo of the samples, but will
be outside of the CI the other 5Vo of the time. More precisely, you can be 95Vo cer-
tain that the 957o CI calculated from your sample includes the population propor-

tion.
Figure 2.1 illustrates the meaning of CIs. Here we assume that the proportion of

voters in the overall population who will vote for your candidate equals 0.28 (shown

as the horizontal dotted line). We created 50 samples, each with 100 subjects and
calculated the 95Vo CI for each. Each 95Vo CI is shown as a vertical line extending
from the lower confidence limit to the upper confidence limit. The value of the observed
proportion in each sample is shown as a small hatch mark in the middle of each CI.
The first line (on the left) corresponds to our example. The other 49 lines represent
results that could have been obtained by random sampling from the same population.

1 3
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- <-Population Value

Each line shows the 95% conftdence interval
from a difrerent experiment

Figure 2.1. The meaning of a confidence interval. In this example, we know that the true
proportion of "success" in the population equals 0.28. This is shown as a horizontal dotted
line. Using a computer program that can generate random numbers, we randomly selected 50
samples from this population. Each vertical line shows the 95Vo CI for the proportion "success"
calculated from that one sample. With most of the samples, the observed proportion is close to
the true proportion, but in some samples there is a big discrepancy. In four of the samples (for
example, the fifth from the right), the 95Vo CI does not include the true value. If you were to
collect data from many samples, you'd expect to see this 5Vo of the time.

In most of the samples, the population value is near the middle of the 95Vo CI. ln
some of the samples, the population value is near one of the ends of the 95Vo CI. And
in four of the samples, the population value lies outside the 957o Cl.In the long run,
1 out of 20 957o CIs will not include the population value.

Figure 2.1 is useful for understanding CIs, but you cannot create such a figure
when you analyze data. When you analyze data, you don't know the actual population
value, as you only have results from a single sample. There is no way you can know
whether the 95Vo CI you calculate includes the population value. All you know is that,
in the long run, 95Vo of such intervals will contain the population value and 5Va will
not. Of course, every CI you calculate will contain the sample proportion you obtained.
What you can't know for sure is whether the interval also contains the population
proportion.

Note that the CI is not always symmetrical around the sample proportion. In the
first example, it extends further to the right than the left. With larger sample sizes, the
95Vo Cl becomes naffower and more svmmetrical.

ASSUMPTIONS

The interpretation of the CI depends on the following assumptions:

. Random (or representative) sample

. Independent observations

. Accurate assessment

. Assessing an event you really care about

lilllrlllrl|ll]1'lrl/;fu1ltr
o

E 0.3
CLg
o' 0.2
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Random (or Representative) Sample

The 957o CI is based on the assumption that your sample was randomly selected from

the population. In many cases, this assumption is not true. You can still interpret the

CI as long as you assume that your sample is representative of the population.

This assumption would be violated if the 14 patients included in the sample were

the first 14 patients to be given the drug. If so, they are likely to be sicker than future

patients and perhaps more likely to get a side effect. The assumption would be violated

in the election example if the sample was not randomly selected from the population

of voters. In fact, this mistake was made in the Roosevelt-Landon U.S. Presidential

Election. To find subjects, the pollsters relied heavily on phone books and automobile

registration lists. In 1936, Republicans were far more likely than Democrats to own a

phone or a car, and therefore the poll selected too many Republicans. The poll predicted

that Landon would win by a large margin, but that didn't happen.
The reputable polling organizations no longer make this type of mistake and go

to a lot of trouble to ensure that their samples are representative of the entire population.

However, many so-called polls are performed in which television viewers are invited

to call in their opinion. In the United States, this usually is a 900 phone number for
which the caller pays for the privilege of being polled! Clearly, the self-selected
"sample" tabulated by such "polls" is not representative of any population, so the
data mean nothing. For example, in June 1994 the football star O.J. Simpson was
arrested for allegedly murdering his ex-wife, and the events surrounding the arrest
were given a tremendous amount of television coverage. One news show performed
a telephone "poll" of its viewers asking whether the press was giving too much
coverage. Clearly the results are meaningless, as people who really thought that there
was too much coverage probably weren't watching the show.

lndependent Observations

The 95Vo CI is only valid when all subjects are sampled from the same population and
each has been selected independently of the others. Selecting one member of the
population should not change the chance of selecting anyone else. This assumption
would be violated if some patients were given the drug twice and included in the
sample more than once (maybe we only had 12 patients but two were double counted).
The assumption would also be violated if several of the patients came from one family.
The propensity for some drug reactions is familial, so observations from two patients
from one family are not independent observations. In the election sample, the assump-
tion would be violated if the pollsters polled both husband and wife in each family,
or if some voters were polled more than once or if half the subjects were sampled
from one city and half from another.

Accurate Assessment

The 95Vo CI is only valid when the number of subjects in each category is tabulated
correctly. This assumption would be violated in our first example if one of the patients
actually had taken a different drug, or if one of the "drug side effects" was actually
caused by something else. The assumption would be violated in the election example
if the pollster recorded some of the opinions incorrectly.

1 5
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Assessing an Event You Really Care About

The 957o CI allows you to extrapolate from the sample to the population for the event
that you tabulated. But sometimes you really care about a different event. In our drug
reaction example, our interpretation of the results must depend on the severity of the
drug reactions. If we included all possible reactions, no matter how mild, the results
won't tell us what we really care about: the proportion of patients who develop severe
(life-threatening) drug reactions.

In the voting example, we assessed our sample's response on a poll on a particular
date, so the 95Vo CI gives us the margin of error for how the population would respond
on that poll on that date. We wish to extrapolate to election results in the future but
can do so only by making an additional assumption-that people will vote as they
said they would. This assumption was violated in a classic mistake in the polling prior
to the Dewey versus Truman Presidential Election in the United States in 1948. Polls
of many thousand voters showed that Dewey would win by a large margin. Because
the CI was so natrow, the pollsters were very confident. Newspapers were so sure of the
results that they prematurely printed the erroneous headline "Dewey Beats Truman." In
fact, Truman won. Why was the poll wrong? The potls were performed in September
and early October, and the election was held in November. Many voters changed their
mind in the interim period. The 95Vo CI correctly presented the margin of error in
September but was inappropriately used to predict voting results 2 months later.

OBTAINING THE CONFIDENCE INTERVAT OF A PROPORTION
FROM A TABLE

The width of the CI depends on both the value of the proportion and the size of the
sample. If you make the sample larger, the CI becomes narrower. If the sample
proportion is close to 507o, the CI is wider than if the proportion is far from 50Vo.

The CI is determined from the binomial distribution using calculations described
later in the chapter. The answers have been tabulated in Table 2.1 shown here, which
is abridged from Table A5.l in the Appendix. Find the column coresponding to the
numerator and the row corresponding to the denominator, and read the 957o CI.

Consider another example. You have performed a procedure 15 times with a
single adverse incident. Without any other knowledge of the procedure, what is the

Table 2.1,. Confidence Interval of a Proportion

Numerator

Denominator

t 0
n
t 2
l 3
t4
l 5

0.00 to 0.31
0.00 to 0.28
0.00 to 0.26
0.00 to 0.25
0.00 to 0.23
0.00 to 0.22

<0.01 to 0.45
<0.01 to 0.41
<0.01 to 0.38
<0.01 to 0.36
<0.01 to 0.34
<0.01 to 0.32

0.03 to 0.56
0.02 to 0.52
0.02 to 0.48
0.02 to 0.45
0.02 to 0.43
0.02 to 0.40

0.07 to 0.65
0.06 to 0.61
0.05 to 0.57
0.05 to 0.54
0.05 to 0.51
0.M to 0.48

O.l2 to 0.74
0.l l  to 0.69
0.10 to 0.65
0.09 to 0.61
0.08 to 0.58
0.08 to 0.55
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95Vo CI for the average rate of adverse incidents? The answer is the 95Vo Cl of the

observed proportion 1/15, which extends from <0.01 to 0.32. With 95Vo confidence,

the true proportion of complications may be less than IVo or as high as 327o. Most

people are surprised by how wide the CIs are.

THE SPECIAL CASES OF O AND 1OO PERCENT*

The 95Vo CI allows for a 2.5Vo chance that the population proportion is higher than

the upper confidence limit and a 2.5Vo chance that the population proportion is lower

than the lower confidence limit. If you observed 0 successes out of N trials, then you

know that there is no possibility that the population proportion is less than the observed

proportion. You only need an upper confidence limit, as the lower limit must be exactly

0. A similar problem occurs when you observed N successes out of N trials. You only

need a lower confidence limit, as the upper limit must be I007o. Because the uncertainty

only goes in one direction, the "957o" confidence interval really gives you 97.5Vo

confidence.

EXAMPLE

In order to better counsel the parents of premature babies, M.C. Allen et al. investigated

the survival of premature infants.t They retrospectively studied all premature babies

born at 22 to 25 weeks gestation at the Johns Hopkins Hospital during a 3-year period.

The investigators separately tabulated deaths for infants by their gestational age. Of

29 infants born at 22 weeks gestation, none survived 6 months. Of 39 infants born at
25 weeks gestation, 31 survived for at least 6 months.

The investigators presented these data without CI, but you can calculate them. It

only makes sense to calculate a CI when the sample is representative of a larger
population about which you wish to make inferences. It is reasonable to think that
these data from several years at one hospital are representative of data from other years
at other hospitals, at least at big-city university hospitals in the United States. If you

aren't willing to make that assumption, you shouldn't calculate a CI. But the data
wouldn't be worth collecting if the investigators didn't think that the results would be
similar in other hospitals in later years.

For the infants born at 25 weeks gestation, we want to determine the 957o CI of
31139. These values are not on Table A5.1, so you'll need to calculate the CI by
computer or by hand. If you use the InStat program, you'll find that the 95Vo Cl
ranges from 63Vo to 9l%o. (If you use Equation 2.1, which follows, you'll calculate an
approximate interval: 67Vo to 92Vo). This means that if the true proportion of surviving
infants was any less than 63Vo, there is less than a 2.5Vo chance of observing such a
large proportion just by chance. It also means that if the true proportion were any
greater than 9IVo, the chance observing such a small proportion just by chance is less

*This section is more advanced than the rest. You may skip it without loss of continuity.

fMC Allen, PK Donohue, AE Dusman. The limit of viability-Neonatal outcome of infants born at 22 to
25 weeks gestation. N Engl J Med 329:1597-1601, 1993.
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than 2.5Vo. That leaves us with a 95Vo chance Q0A7o - 2.5Va - 2.57o) that the true
proportion is between 637o and 9lvo.

For the infants born at 22 weeks gestation, we want to determine the CI of 0129.
You shouldn't use Equation 2.2, because the numerator is too small. Instead use a
computer program, or Table A5.1 in the Appendix. The 95Vo Cl extends from OVo to
ll .9Vo . We can be 95Vo sure that the overall proportion of surviving infants is somewhere
in this range. (Since we observed}Vo, the CI really only goes in one direction, so we
really can be 97.5Vo sure rather than 957o sure.) Even though no babies born at 22
weeks gestational age survived in our sample, our CI includes the possibility that the
overall survival rate is as high as 11 .9Vo. This means that if the overall survival rate
in the population was any value greater than 1l.9%o, there would be less than a 2.5Vo
chance of observing 0 survivors in a sample of 29.

These CIs only account for sampling variability. When you try to extrapolate
these results to results you expect to see in your hospital, you also need to account
for the different populations served by different hospitals and the different methods
used to care for premature infants. The true CIs, which are impossible to calculate,
are almost certainly wider than the ones you calculate.

CATCUTATING THE CONFIDENCE INTERVAT OF
A PROPORTION*

The calculations used to determine the exact CIs shown in the table are quite complex
and should be left to computer programs. But it is easy to calculate an approximate
CI as long as the numbers are not too small.

Equation 2.1 is a reasonable approximation for calculating the 95Vo CI of a
proportion p assessed in a sample with N subjects. The confidence limits this equation

calculates are not completely accurate, but it is a reasonable approximation if at least

five subjects had each outcome (in other words, the numerator of the proportion is 5

or greater and the denominator is at least 5 greater than the numerator).

Approximate95Vo CI of proportion:

(r-,e6.F) *(r+rs6.'Fl (2.r)

Beware of the variable p. The p used here is not the same as a P value (which

we will discuss extensively in later chapters). The use of the letter p for both purposes

is potentially confusing. This book uses an upper case P for P values and a lower case

p for proportions, but not all books follow this convention.
The approximation can be used with the election example given at the beginning

of the chapter. The sample proportion is 33/100 or 33.OVo. The number of subjects

xThis section contains the equations you need to calculate statistics yourself. You may skip it without loss

of continuity.
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with each outcome is greater than 5 (33 said they would vote for one candidate, and

67 said they would vote for the other), so the approximation can be used. The 95Vo

CI ranges from 0.24 to 0.42. Because the sample is large, these values match the values

determined by the exact methods to two decimal places. With smaller samples, this

approximate method is less accurate.
You may calculate CIs for any degree of confidence. By convention, 957o CIs

are presented most commonly. If you want to be more confident that your interval

contains the population value, you must make the interval wider. If you are willing to

be less confident, then the interval can be nalrower. To generate a 90Vo CI, substitute

the number 1.65 for 1.96 in Equation}.l. To generate a997o CI, substitute 2.58. You'll

learn where these numbers come from in Chapter 4.

THE BtNOMIAI EQUATION*

Assume that in the overall population, the proportion of "successes" is p. In a sample

of N subjects, what is the chance that observing exactly R successes? The answer is

calculated by Equation 2.2:

/ x r \probabitity of R successes in N trials : (R(fu/ o- ,l - p;N-n. Q.2)

The exclamation point denotes factorial. For example, 3! : 3 X 2 X I : 6. The

term on the right [p*(l - p)*-*] is the probability of obtaining a particular sequence

of "successes" and "failures." That term is very small. The term on the left takes

into account that there are many different sequences of successes and failures that lead

to the same proportion success.
Equation 2.2 calculates the probability of observing exactly R successes in N

trials. Most likely, you really want to know the chance of observing at least S successes

in N trials. To do this, reevaluate Equation 2.ZforR : S, R : S + 1, R : S * 2. . .

up to R : N and sum all the resulting probabilities.
The word success is used quite generally to denote one of the possible outcomes.

You could just as well use the word failure or outcome A. Equation 2.2 uses p and
(1 - p) symmetrically, so it doesn't matter which outcome you label success and

which outcome you label failure.

HOW THE CONFIDENCE INTERVALS ARE DERIVED

You can calculate and interpret CIs without knowing how they are derived. But it is
nice to have a feel for what's really going on. I'll try to give the flavor of the logic
using our second example. Recall that we observed that 33 out of 100 subjects polled
said they would vote a certain way. The 957o CI is 0.24 to 0.42.

xThis section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuity.

1 9
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The binomial equation works from population to sample. It lets us answer this
kind of question. Given a hypothetical proportion in the population, what is the chance
of observing some particular proportion (or higher) in a sample of defined size? The
equations are a bit messy, but it is not surprising that probability theory can answer
those kinds of questions.

To find the upper 95Vo confidence limit (U). we need to pose this question: If the
population proportion equals U, what is the probability that a sample proportion (N
: 100) will equal 0.33 or less? We set the answer to 2.5Vo and then solve for U. To
find the lower 95Vo confidence limit (L), we pose the opposite question. If the population
proportion equals L, what is the probability that a sample proportion (N : 100) will
equal 0.33 or more? We set the answer to 2.5Vo and then solve for L. Solving those
equations for U and L is not easy. Fortunately, the answers have been tabulated: L :

0.24 andU :0.42. We've set up the problem to allow for a 2.5Vo chance of being
wrong in each direction. Subtracting these from IOOVo leaves you with 957o confidence
that the population proportion is between L and U, between 0.24 and 4.42.

So the trick is to use mathematical theory that makes predictions about the samples
from hypothetical populations, and twist it around so that it can make inferences about
the population from the sample. It's tricky to understand and it's amazing that it works.
Fortunately you can calculate statistical analyses and interpret statistical results without

having a solid understanding of the mathematical theory.

SUMMARY

Many types of data can be reduced to either/or categories and can be expressed as a

proportion of events or subjects that fall into each category. The distribution of such

events is described by the binomial distribution.
The challenge of statistics is to start with an observation in one sample and make

generalizations about the overall population. One way to do this is to express the results

as a confidence interval. Having observed a proportion in your sample, you can calculate

a range of values that you can be 95Vo stJre contains the true population proportion.

This is the 95%o confidence interval. You can calculate the interval for any degree of

confidence you want, butg5%o is standard. If you want to be more confident, you must

make the interval wider.

oBf EcTlvEs

1. You must be familiar with the following terms:

. Binomial distribution

. Cumulative binomal distribution

. Confidence interval

. Confidence limit

. Sample

. Population

. Random sample

. Independence



CONFIDENCE INTERVAL OF A PROPORTION

2. When you see a proportion reported in a scientific paper (or elsewhere), you should

be able to
. Define the population.
. Calculate (or determine from a table) the 957o CI of the proportion.
. Interpret the 957o CI in the context of the study.
. State the assumptions that must be true for the interpretation to be valid.

PROBLEMS

1. Of the first 100 patients to undergo a new operation, 6 die. Can you calculate the
957o CI for the probability of dying with this procedure? If so, calculate the interval.
If not, what information do you need? What assumptions must you make?

2. A new drug is tested in 100 patients and lowers blood pressure by an average of
67o. Can you calculate the 957o Cl for the fractional lowering of blood pressure by
this drug? If so, calculate the interval. If not, what information do you need? What
is the CI for the fractional lowering of blood pressure? What assumptions must
you make?

3. You use a hemocytometer to determine the viability of cells stained with Trypan
Blue. You count 94 unstained cells (viable) and 6 stained cells (indicating that they
are not viable). Can you calculate the 95Vo CI for the fraction of stained (dead)
cells? If so, calculate the interval. If not, what information do you need? What
assumptions must you make?

4. In 1989, 20 out of I25 second-year medical students in San Diego failed to pass
the biostatistics course (until they came back for an oral exam). Can you calculate
the 95Vo CI for the probability of passing the course? If so, calculate the interval.
If not, what information do you need? What assumptions must you make?

5. Ross Perot won l9%o of the vote in the 1992 Presidential Election in the United
States. Can you calculate the 95Vo CI for the fraction of voters who voted for him?
If so, calculate the interval. If not, what information do you need? What assumptions
must you make?

6. In your city (population : 1 million) last year a rare disease had an incidence of
25110,000 population. Can you calculate the 95Vo Cl for the incidence rate? If so,
calculate the interval. If not, what information do you need? What assumptions
must you make?

7. Is it possible for the lower end of a CI for a proportion to be negative? To be zero?
8. Is it possible to calculate a l0o7o Cl?
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The Standard Deviation

The previous chapter dealt with data that can be expressed as a fraction or proportion.
However, the results of many experiments are expressed as measurements, for example,
blood pressure, enzyme activity, IQ score, blood hemoglobin, or oxygen saturation.
Working with these kinds of variables is more difficult than proportions, because you
must deal with variability within samples as well as differences between groups.

SOURCE OF VARIABILITY

When you measure a variable in a number of subjects, the results will rarely be the

same in all subjects. Scatter comes from three sources:

. Imprecision or experimental error. Many statistics books (especially those designed

for engineers) implicitly assume that most variability is due to imprecision. In medical

studies, imprecision is often a small source of variability.
. Biological variabili4,. People (and animals, even cells) are different from one another,

and these differences are important! Moreover, people (and animals) vary over time

due to circadian variations, aging, and alterations in activity, mood, and diet. In

biological and clinical studies, much or most of the scatter is often due to biologi-

cal variation.
. Blunders. Mistakes and glitches (lousy pipetting, mislabeled tubes, transposed digits,

voltage spikes, etc.) also contribute to variability.

Many statisticians use the word error when referring to all of these sources of

variability. Note that this use of the word error is quite different from the everyday

use of the word to mean mistake. I prefer the term scatter to error.

Another term you should know rs bias. Biased measurements are systematically

wrong. Bias can be caused by any factor that consistently alters the results: the proverbial

thumb on the scale, miscalibrated pipettes, bugs in computer programs, the placebo

effect, and so on. As used in statistics, the word bias refers to anything that leads to

systematic etrors, not only the preconceived notions of the experimenter. Bias will not

usually contribute to scatter, as it will increase (or decrease) all values. Statistical

calculations cannot detect or correct bias (unless you do additional experiments), and

statistical analysis of biased data will rarely be helpful. As computer programmers say:

Garbage in, garbage out.
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DISPI.AYING VARIABIIITY WITH HISTOGRAMS

To discuss the distribution of data, we will work with an artificial example. One hundred

medical students worked as pairs, and each student measured the systolic blood pressure

of his or her partner. It is difficult to make much sense from a list of 100 numbers,

so instead we display the results on a histogram as in Figure 3.1. A histogram is a bar
graph. Systolic blood pressure is shown on the horizontal axis, measured in mmHg
(same as torr). The base of each bar spans a range of blood pressure values, and the
height of each bar is the number of individuals who have blood pressures that fall
within that range.

To create a histogram you must decide how wide to make each bar. To make
Figure 3.1, we set the width of each bar to 5 mmHg. The tallest bar in the graph shows
that 15 subjects had blood pressure values between 117.5 and 122.5 mmHg. If the
bars are too wide, the histogram will show too little detail, as shown in the left panel
of Figure 3.2.It the bars are too narrow, the histogram will show too much detail and
it is hard to interpret (right half of Figure 3 .2). Some histograms plot relative frequencies
(proportions or pgcentages) on the Y axis rather than the actual number of observations.

Before continuing with our analysis of the numbers, we should think a bit about
what the numbers really tell us (or what they would tell us if they weren't made up).
Blood pressure is affected by many variables. In serious studies of blood pressure,
investigators go to a great deal of trouble to make sure that the measurements are as
consistent and unbiased as possible.

This study of students has a number of flaws. Most important,

. The recorded values may differ substantially from arterial pressure. Every measure-
ment was made by a different inexperienced person. Measuring blood pressure with

Systolic BP (mmHg)

Figure 3.1. Histogram of blood pressures of 100 students. Each bar spans a width of 5 mmHg
on the horizontal axis. The height of each bar represents the number of students whose blood
pressure lies within that range.
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Figure 3.2. More histograms of blood pressure of 100 students. In the left panel, each bar spans
a width of 20 mmHg. Because there are so few bars, the graph is not very informative. In the
right panel, each bar has a width of I mmHg. Because there are so many bars, the graph contains
too much detail, and it is hard to see the distribution of values. Histograms are generally most
useful when they contain approximately l0 to 20 bars.

a cuff is somewhat subjective, as it requires noting the position of a bouncing column
of mercury at the instant that a faint sound appears (systolic) or disappears (diastolic).
It is also important to place the cuff correctly (at the level of the heart). Experience
is required.

. The values cannot be compared to values for resting supine blood pressure measured
in other studies. Having a pressure measured by a friend for the first time is stressful
and may elevate the pressure.

I won't belabor the flaws of this example, except to repeat: Garbage in, garbage out!
Statistical analysis of flawed data is unlikely to be useful. Designing good studies is
difficult-much harder than statistical analvsis.

THE MEAN AND MEDIAN

One way to describe the distribution of the data is to calculate the mean or average.
You probably already know how to do that: Add up all the numbers and divide by the
number of observations. For these 100 blood pressures, the mean is 123.4 mmHg. If
you think visually, you should think of the mean as the "center of gravity" of the
histogram. If you printed the bars of the histogram of Figure 3.1 on a sheet of wood
or plastic, it would balance on a fulcrum placed at X : 123.4, the mean.

Another way to describe the central tendency of the data is to calculate the median.
To do this you must rank the values in order and find the middle one. Since there are
an even number of data points in this sample, the median lies between the 50th and
5lst ranked value. The 50th ranked value is I22 and the 5lst ranked value is 124. We
take the average of those two values to obtain the median, which is 123 mmHg. You

are probably already familiar with the term percentile. The median is the value at the

50th percentile because 507o of the values fall below the median.
In this example, the mean and median are almost the same. This is not always

true. What would happen if the largest value (160 mmHg) were mistakenly entered
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into the computer as 16,000 mmHg? The median would be unchanged at 123 mmHG.

Changing that one value does not change the value of the 50th and 5lst ranked values,

so does not change the median. The mean, however, increases to 281 mmHg. In this

case, there would be one value greater than the mean and 99 values below the mean.

There are always just as many values below the median as above it. The number of data

points above and below the mean will not be equal if the histogram is not symmetrical.

QUANTTFYTNG VARIABIHTY WITH PERCENTILES

In addition to quantifying the middle of the distribution with the mean or median, you

also want to quantify the scatter of the distribution. One approach is to report the

lowest and highest values. For this example the data range from 92 to 160 mmHg.
Another approach is to report the 25th and 75th percentiles. For this example, the 25th
percentile is 115 mmHg. This means that 257o of the data points fall below 115. The
75th percentile is 133 mmHg. This means thatT1Vo of the values lie below 133 mmHg.
The difference between the 75th and 25th percentiles is called the interquartile range,
which equals 18 mmHg.

The interquartile range can be depicted graphically as a box and whisker plot, as
shown in Figure 3.3. The box extends from the 25th to 75th percentiles with a horizontal
line at the median (50th percentile). The whiskers indicate the smallest and largest
values. (Whiskers can be defined in other ways as well.)

25

125
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E 100
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.9 75
o
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Figure 3.3. A box-and-whiskers plot. The horizontal line in the middle shows the median (50th
percentile) of the sample. The top and bottom of the box show the 75th and 25th percentiles,
respectively. In this graph, the top and bottom of the whiskers show the maximum and minimum
values (other box-and-whiskers graphs define the whiskers in different ways). From this graph
you can instantly see that the median is about 125 mmHg, and half the sample have systolic
blood pressures between about 115 and 135 mmHg.
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QUANTTFYTNG VARIABTUTy W|TH THE VARTANCE
AND STANDARD DEVIATION

One problem with the interquartile range is that it tells you nothing about the values
that lie below the 25th percentile or above the 75th percentile. We'd like a measure
of scatter that somehow includes all the values. One way to quantify the scatter of all
the values is to calculate the average of the deviations of the values from the mean.
But it turns out that this is not helpful-the positive deviations balance out the negative
deviations so the average deviation is always 0. Another thought would be to take the

average of the absolute values of the deviations. This seems reasonable, but it turns
out to be pretty much a statistical dead end that does not facilitate other inferences.
Instead statisticians quantify scatter as the average of the square of the deviations of
each value from the mean. This value is termed the variance. The variance of a
population (abbreviated o2) is defined by Equation 3.1, where p is the population

mean, N is the number of data points, and Y1 is an individual value.

Population variance -- 02 :

i = N

)(Y' 
- p)2

: - t

N
(3 .1 )

(3.2)

You may wonder why the deviations are squared. Why not just sum the absolute values

of the deviations? This is difficult to explain intuitively. It just falls out of the math

and makes statistical equations work. Basically, the idea is that one large deviation

contributes more scatter to the data than do two deviations half that size. More practi-

cally, defining the variance in this way facilitates calculations of confidence intervals

(CIs) and P values, as you will see in later chapters.

The variance is expressed in the units of the data squared. Thinking about the

square of units is difficult, and so the variance is not an intuitive way to quantify

scatter. The square root of the variance is called the standard deviation, abbreviated

SD or o (Equation 3.2):

P o p u l a t i o n S D : o :

Caution! Don't use this equation until you read the next section.

The SD is expressed in the same units as the data. This makes it much easier to

think about than the variance. Even so, you may not find it easy to think about the

square root of the average of the squares of the deviations! You'll find it easier to

think about SDs after you read the next chapter. We will discuss the interpretation of

the SD later in this chapter and in the next chapter.

Returning to our blood pressure example, we encounter a problem when we try

to use Equations 3.1 and 3.2to flgure out the variance and SD. The problem is that

those equations apply only to the entire population, but we know only about a sample

of l(D subjects. To use Equations 3.1 or 3.2,you need to know the value of p, the

population mean, but you don't know it. Read on to see how the equations need to be

adjusted to deal with samples.
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N OR N -  1? THE SAMPLE SD VERSUS THE POPUTATION SD

Equations 3.1 and 3.2 assume that you have made measurements on the entire popula-

tion. As we have already discussed, this is rarely the case. The whole point of statistical
calculations is to make inferences about the entire population from measurements of
a sample. This introduces an additional complexity to the calculation of the variance

and SD. To calculate the SD using Equation 3.2, you need to calculate the deviation
of each value from the population mean. But you don't know the population mean.
All you know is the sample mean. Except for the rare cases where the sample mean
happens to equal the population mean, values are always closer (on average) to their
sample mean than to the overall population mean. The sum of the squares of the
deviations from the sample mean is therefore smaller than the sum of squares of the
deviations from the population mean, and Equation3.2 gives too small a value for the
SD. This problem is eliminated by reducing the denominator to N-1, rather than N.
Calculate the variance and SD from a sample of data using Equation 3.3:

Sample variance : s2 :

S a m P l e S D : s :

N

)(Y' 
- m)2

i = l

Note that we switched from Greek (p,o) to Roman (m, s) letters when switching
from discussions of population mean and SD to discussions of sample mean and SD.
This book hides a lot of the mathematical detail and sometimes glosses over the
distinction. If you refer to more mathematical books, pay attention to the difference
between Greek and Roman letters.

If the difference between N and N- I ever matters to you, then you are probably up to
no good anyway---€.g. trying to substantiate a questionable hypothesis with marginal data.

W.H. Press et al., Numerical Recipes

Here is another way to understand why the denominator is N- I rather than N.
When we calculate the sample mean m, we take the sum of all Y values and divide
by the number of values N. Why divide by N? You learned to calculate a mean so
long ago that you probably never thought about it. The mean is technically defined as
the sum divided by degrees of freedom. The sample mean has N degrees of freedom
because each of the N observations is free to assume any value. Knowing some of the
values does not tell you anything about the remaining values. The sample variance is
the mean of the square of the deviations of the values from the sample mean. This
mean has only N- 1 degrees of freedom. Why? It is because you must calculate the
sample mean m before you can calculate the sample variance and SD. Once you know
the sample mean and N- I values, you can calculate the value of the remaining (Nth)
value with certainty. The Nth value is absolutely determined from the sample mean
and the other N-l values. Only N-l of the values are free to assume any value.
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Therefore, we calculate the average of the squared deviations by dividing by N-1,
and say that the sample variance has N- | degrees of freedom, abbreviated df.

We'll discuss degrees of freedom again in later chapters. Many people find the
concept of degrees of freedom to be quite confusing. Fortunately, being confused about
degrees of freedom is not a big handicap! You can calculate statistical tests and interpret
the results with only a vague understanding of degrees of freedom.

Returning to the blood pressure example, the sample SD is 14.0 mmHg. We'll
discuss how to interpret this value soon. The sample variance is 196.8 mmHg2. It is
rare to see variances reported in the biomedical literature* but common to see SDs.

The term sample SD is a bit misleading. The sample SD is the best possible
estimate of the SD of the entire population, as determined from one particular sample.
In clinical and experimental science, one should routinely calculate the sample SD.

CATCUTATING THE SAMPTE STANDARD DEVIATION
WITH A CATCUTATOR

Many calculators can calculate the SD. You have to first press a button to place the
calculator into statistics or SD mode. Then enter each value and press the button labeled
"enter" or "M+." After you have entered all values, press the appropriate button to
calculate the SD. As we have seen, there are two ways to calculate the SD. Some
calculators can compute either the sample or the population SD, depending on which
button you press. The button for a sample SD is often labeled op-1. Other calculators
(especially those designed for use in business rather than science), compute only the
population SD (denominator - N) rather than the sample SD (denominator : N-1).

To test your calculator, here is a simple example. Calculate the sample SD of
these values: 120, 80, 90, I10, and 95. The mean is 99.0, and the sample SD is 16.0.
If your calculator reports that the SD equals 14.3, then it is attempting to calculate the
population SD. If you haven't collected data for the entire population, this is an invalid
calculation that underestimates the SD. If your calculator computes the SD incorrectly,
you may correct it with Equation 3.4:

Sample SD : Invalid "population" SD ' (3.4)

INTERPRETINC THE STANDARD DEVIATION

We will discuss the interpretation of the SD in the next chapter. For now, you can use
the following rule of thumb: Somewhat more than half of the observations in a popula-

tion usually lie within 1 SD on either side of the mean. With our blood pressure

example, we can say that most likely somewhat more than half of the observations

will be within 14 mmHg of the mean of 123 mmHg. In other words, most of the

*However, it is common to see results analyzed with a method known as analysis of variance (ANOVA),

which is explained in Chapter 30.

N

N - l
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observations probably lie between
because the words somewhat and
rigorously in the next chapter.
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109 and 137 mmHg. This definition is unsatisfying
usually are so vague. We'll interpret the SD more

coEFFrcrENT OF VARTATION (CV)*

The SD can be normalized to the coefficient of variation (CV) using Equation 3.5:

SD
CYVo:  100

mean
(3.s)

Because the SD and mean are expressed in the same units, the CV is a unitless fraction.
Often the CV is expressed as a percentage. If you change the units in which you
express the data, you do not change the CV. In our example of 100 blood pressure
measurements, the mean blood pressure is 123.4 mmHg and the SD is 14.0 mmHg.
The CV is ll.47o. The CV is useful for comparing scatter of variables measured in
different units.

SUMMARY

Many kinds of data are expressed as measurements. You can display the scatter of
measurements in a sample on a histogram. The center of the distribution can be
described by the mean or median. The spread or scatter of the data can be described
by the range, the interquartile range, the variance, the SD, or the coefficient of variation.

oBlEcTrvEs

1. You must be familiar with the followins terms:
. Error
. Bias
. Histogram
. Mean
. Median
. Standard deviation
. Variance
. Coefficient of variation

2 Given a list of measurements, you should be able to
. Define the population the values came from.
' Determine whether it is reasonable to think that the data are representative of

that population.
' Draw a histogram of the distribution of values, and a box-and-whiskers plot.
' Calculate the mean, median, standard deviation, and coefficient of variation.

*This section is more advanced than the rest. You may skip it without loss of continuity.
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PROBLEMS

1. Estimate the SD of the age of the students in a typical medical school class fiust
a rough estimate will suffice).

2. Estimate the SD of the number of hours slept each night by adults.
3. The following cholesterol levels were measured in 10 people (mg/dl):

260, 150, 160, 200, 2lA, 240, 220, 225, 210, 240
Calculate the mean, median, variance, standard deviation, and coefficient of varia-
tion. Make sure you include units.

4. Add an llth value (931) to the numbers in Question 3 and recalculate all values.
5. Can a SD be 0? Can it be nesative?
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The Gaussian Distribution

PROBABI LITY DISTRI BUTIONS

As you saw in the last chapter, a histogram plots the distribution of values in a sample.
In many situations, the histogram is bell shaped. The first two panels in Figure 4.1
show bell-shaped distributions of two samples. The second sample is larger, and the
histogram was created with niurower bins. This makes it appear more smooth.

The third panel in the figure plots the distribution of values in the entire population.
This is not a histogram because the population is infinitely large. What you see instead
is a probability distribution. Although probability distributions are similar to histograms,
the Y txes are different. In a histogram, the Y axis shows the number of observations
in each bin. In a probability distribution, the Y axis can't show the number of observa-
tions in each bin because the population is infinitely large and there aren't any bins.
Instead we represent probability as the area under the curve. The area under the entire
curve represents the entire population, and the proportion of area that falls between
two X values is the probability of observing a value in that interval. The Y axis is termed
the probability density, a term that is difficult term to define precisely. Fortunately, you
can understand probability distributions without rigorously defining the scale of the
Y axis.

THE GAUSSIAN DISTRIBUTION

The symmetrical bell-shaped distribution is called a Gaussian distribution. You expect
variables to approximate a Gaussian distribution when the variation is caused by many
independent factors. For example, in a laboratory experiment with membrane fragments,
variation between experiments might be caused by imprecise weighing of reagents,
imprecise pipetting, the variable presence of chunks in the membrane suspension, and
other factors. When you combine all these sources of variation, you are likely to see
measurements that distribute with an approximately Gaussian distribution. In a clinical
study, you expect to see an approximately Gaussian distribution when the variation is
due to many independent genetic and environmental factors. When the variation is
largely due to one factor (such as variation in a single gene), you expect to see bimodal
or skewed distributions rather than Gaussian distributions.

You learned how to calculate the mean and standard deviation (SD) of a sample
in the last chapter. Figure 4.2 shows the mean and SD of an ideal Gaussian distribution.
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Figure 4.1. Histograms and probability distributions. The left panel shows a histogram for a
medium-sized sample. The height of each bar denotes the number of subjects whose value lies
within the span of its base. The middle panel shows a histogram for a larger sample. Each bar
was made narrower. The right panel shows the distribution for the entire population. Since the
population is infinite and there are no bars, the Y axis cannot denote numbers of subjects. Instead,
it is called the probability density.

The mean. of course. is the center of the Gaussian distribution. The SD is a measure
of the spread of the distribution. The area under the curve within 1 SD of the mean
is shaded in Figure 4.3. The iuea under the entire curve represents the entire population.
The shaded portion is about two thirds of the entire area. This means that about two
thirds of a Gaussian population are within I SD of the mean.*

You can also see that the vast majority of the values lie within 2 SDs of the mean.
More precisely, 957o of the values in a Gaussian distribution lie within 1.96 SDs

of the mean. Areas under a portion of the Gaussian distribution are tabulated as

the "z' ' distribution, where z is the number of standard deviations away from the

mean.
For each value of z, the table shows four columns of probabilities. The first column

shows the fraction of a Gaussian population that lies within z SDs of the mean. The
last column shows the fraction that lies more than z SDs of the mean above the mean

or more than z SDs below the mean. Thus the sum of the first column and the last

column equals 1007o for all values of z. Because the value in the last column includes

components on both sides of the distribution, it is termed a tw,o-tailed probabiliry. This

two-tailed probability (column four) is the sum of each tail, the probability that a value

will be more than z SDs above the mean (the second column) and the probability that

a value will be more than z SDs below the mean (the third column). The Gaussian

distribution is symmetrical so the values in the second and third columns are identical

and sum to the values in the fourth column. A longer version of this table is included

in the Appendix as Table A5.2.
From Figure 4.3 we estimated that about two thirds of data in a Gaussian distribu-

tion lie within 1 SD of the mean. We can get a more exact value from this table. Look

in the first column of the row for z -- 1.0. The value is 68.27%o. Look in the row for

z: 2.0. Just over 957o of the population lies within 2 SDs of the mean. More precisely,

*I have deliberately avoided defining the scale of the Y axis or the units used to measure the area under

the curve. We never care about area per se, but only about the fraction of the total area that lies under a

defined portion of the curve. When you calculate this fraction the units cancel, so you can get by without

understanding them precisely.
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p-Zo |r-o p p+o !r+2o

Measured Value

Figure 4.2. An ideal Gaussian distribution. The distribution is centered on the mean p. The
width of the distribution is determined by the standard deviation o.

95Vo of the population lies within 1.96 SDs of the mean. You'll see that number 1.96
again, so you should remember what it means.

USING THE GAUSSIAN DISTRIBUTION TO MAKE INFERENCES
ABOUT THE POPULATION

In the example of the previous chapter, we analyzed the blood pressure of 100 subjects.
The sample mean was 123.4 mmHg and the sample SD was 14.0 mmHg. These values
are also our best guesses for the mean and SD of the population

Table 4.1. The Gaussian Distribution
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Fraction of the lation that is

Within z SDs of
the mean

More than z
SDs above
the mean

More than z
SDs below
the mean

More than z SDs
above or below

the mean

0.5
1 .0
1 .5
2.0
2.5
3.0
3.5

38.29Vo
68.27Vo
86.64Vo
95.45Vo
98.76Vo
99.73Vo
99.95%o

3O.85Vo
15.87Vo
6.68Vo
2.28Vo
0.62Vo
O.l3%o
0.02Vo

30.85Vo
15.87Vo
6.68Vo
2.28Vo
0.627o
O. l3Vo
0.02Vo

6l .7 l%o
3l.73Vo
13.36Vo
4.55Vo
l.24Vo
0.27Vo
0.057o
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lUleasured Value

Figure 4.3. Interpreting probability distributions. The area under the entire curve represents the
entire population. All values within 1 SD from the mean are shaded. The ratio of the shaded
area to the total area is the fraction of the population whose value lies within I SD of the mean.
You can see that the shaded area is about two thirds of the total area. If you measured it more
exactly, you'd find that the shaded area equals 68.21%o of the total area.

If you are willing to assume that the distribution of values in the population
follows a Gaussian distribution, then you can plot your best guess for that distribution
(Figure 4.4) and can make quantitative predictions about the population.

When reading research articles, you'll often see means and SDs without seeing
the distribution of the values. When you read "mean : 123, SD : 14," you should
have an intuitive sense of what that means if the population is Gaussian. If you have
a talented right brain, you might be able to visualize Figure 4.4 in your head. If your

left brain dominates, you should perform some very rough calculations in your head
(two thirds of the values lie between 109 and 137). Either way, you should be able to
interpret SDs in terms of the probable distribution of the data.

You can use the z table to answer questions such as this one: What fraction of

the population has a systolic blood pressure greater than 140? Since the mean ts 123.4

andthe SD : 14.0, we are asking about deviations more than (140.0 - 123.4)ll4:
1.2 SDs from the mean. Setting z: 1.2, you can consult Table A5.2 in the Appendix

and predict that ll.Slvo of the population has a blood pressure greater than 140.
More generally, you can calculate z for any value Y using Equation 4.1:
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lY - meanl, : - sD (4 .1 )

There are two problems with these calculations. One problem is that you don't

know the mean and SD of the entire population. If your sample is small, this may

introduce substantial error. The sample in this example had 100 subjects, so this is not

a big problem. The second problem is that the population may not really be Gaussian.
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Gaussian Distribution
Mean=123.4 mm Hg
SD=14.0 mm Hg
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Figure 4.4. Estimating the distribution of values. If you knew only that the mean : 123.4 and
the SD : 14 mmHg, what can you say about the distribution of values in the overall population?
Before you can make any inferences, you need to make additional assumptions. If you assume
that the population follows a Gaussian distribution (at least approximately), then this figure is
your best guess.

This is a big problem. Even if the distribution only deviates a bit from a Gaussian
distribution, the deviation will be most apparent in the tails of the distribution. But
this example asks about the fraction of values in the tail. If the population is not really
Gaussian, the calculation will give the wrong result.

THE PREDICTION INTERVAL*

You know that 957o of the values in a Gaussian population lie within 1.96 SDs of the
population mean. What can you say about the distribution of values when you only
know the mean and SD of one sample?

If your sample is large, then the mean and SD calculated from a sample are likely
to be very close to the true population values and you expect 95Vo of the population
to lie within 1.96 SDs of the sample mean. If your sample is small, you'll need to go
more than 1.96 SDs in each direction to account for the likely discrepancies between
the mean and SD you calculated from the sample and the true mean and SD in the
overall population. To include 95Vo of the population, we need to create a range of
values that goes more than 1.96 SDs in each direction of the sample mean. This range
is called the prediction interval.

To calculate a prediction interval, you need to go K SDs from the mean, where
K is obtained from Table 4.2 (the derivation of this table is beyond the scope of this
book). For example, if your sample has five subjects (N : 5), then the prediction
*This section is more advanced than the rest. You may skip it without loss of continuity.
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Table 4.2. 95Vo Prediction Interval

CONFIDENCE INTERVALS

2 . 1 7
2 . 1 6
2 . 1 4
2 . r0
2.08
z.06
2.0s
2.03
2.02
2.01
2.00
2.00
1.99
1 .98
1.96

2
J

4
5
6
I

8
9
l 0
l l
t 2
1 3
t4
l 5
l 6
t 7

15.56
4.97
3.56
3.M
2.78
2.62
2 .5 r
2.43
2.37
2.33
2.29
2.26
2.24
2.22
2.20
2 . 1 8

l 8
l 9
20
25
30
35
40
50
60
70
80
90

100
200

m

These values were calculated according to page 62 of

G. J. Hahn and W. Q. Meeker, Statistical Intervals, John

Wilev & Sons. 1991.

interval extends 3.04 SDs in each direction. With N : 10, the prediction interval

extends 2.37 SDs in each direction.
Here is the precise definition of the 95Vo predrction interval: Each new observation

has a 957o chance of being within the interval. On average, you expect that 957o of

the entire population lies within the prediction interval, but there is a 5AVo chance that

fewer than 95Vo of the values lie within the interval and a 5OVo chance that more than

95Vo of the values lie within the interval. The prediction interval is only valid when

the population is distributed according to a Gaussian distribution.

NORMAL LIMITS AND THE "NORMA[" DISTRIBUTION

From our blood pressure data, what can we say about the "normal range" of blood

pressures? Here is a simple, but flawed, approach that is often used:

I am willing to assume that blood pressure in the population follows a Gaussian distribution.

We know that 957o of the population lies within 1.96 SDs of the mean. We'll define the

other 5Vo as abnormal. Using the sample mean and SD from our study, we can define

the "normal range" as 123.4 -r 11.96 x 14.0) or 96 to 151 mm Hg'

There are a number of problems with this simple approach:

. It really doesn't make sense to define normal and abnormal just in terms of the

distribution of values in the general population. What you really care about is conse-

quences. We know that high blood pressure can cause atherosclerosis, heart disease,

and strokes. So the questions we really want to answer are these: In which subjects

is the blood pressure high enough to be dangerous? More precisely, we want to know

which subjects have blood pressure high enough that the increased risk of heart
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disease and stroke is high enough to justify the hassle, expense, and risk of treatment.

Answering these questions is difficult. You need to follow large groups of people

for many years. There is no way to even begin to approach these questions by

analyzing only the distribution of blood pressure values collected at one time. You

also need to assess blood pressure in a standard manner so that the results are

comparable. In this "study" inexperienced students measured each other's pressures.

The measurements are likely to be far from the true arterial pressure (it takes experi-

ence to measure blood pressure), and the arterial pressure is likely to be far from its

resting value (some will find it stressful to have a friend take their blood pressure

in public).
. Our definition of normal and abnormal really should depend on other factors such

as age and sex. What is abnormal for a25 year old may be normal for an 80 year old.
. In many cases, we don't really want a crisp boundary between "normal" and

"abnormal." It often makes sense to label some values as "borderline."
. You don't need to decide based on one measurement. Before labeling someone as

having abnormally high blood pressure, you should accurately measure the pressure
several times in a controlled environment.

, Even if the population is approximately Gaussian, it is unlikely to follow a Gaussian
distribution exactly. The deviations from Gaussian are likely to be most apparent in
the tails of the distribution. There is also no reason to think that the population
distribution is symmetrical around the mean.

, Why do you want to define 2.57o of the population to be abnormally high and 2.5Vo
of the population to be abnormally low? What's so special about 2.5Vo? Why should
there be just as many abnormally high values as abnormally low?

The problem is that the word normal has at least three meanings:

. Mathematical statisticians use the term as a synonym for a Gaussian distribution.
However, there is nothing unusual about variables distributed in some other way.

. Scientists usually use the term to denote values that are commonly observed.

. Clinicians sometimes use normal to mean usual, and sometimes use normal to mean
values that are not associated with the presence of disease.

You should be a bit confused at this point. Determining a "normal range" is a
complicated issue. The important point is to rcalize that it is usually far too simple to
define the "normal range" as the mean plus or minus two SDs.

Everybody believes in the normal approximation, the experimenters because they think it
is a mathematical theorem, the mathemeticians because they think it is an experimental fact.

G. Lippman (1845-1921)

SUMMARY

Many variables distribute in a Gaussian distribution. This is expected when many
independent facctors account for the variability, with no one factor being most im-
portant. Areas under portions of a Gaussian distribution are tabulated as the "2"
distribution. The range of values that are 95Vo ceftain to contain the next value sampled
from the population is known as the prediction interval. The term normal limits can
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be defined in many ways. Using the Gaussian distribution to make rules about "normal"
values is not alwavs useful.

oBf ECTMS

1 . You should be familiar with the following terms:
. Gaussian distribution
. Probability distribution
. Normal
. Prediction interval

Using tables, you should be able to determine the fraction of a Gaussian population

that lies more (or less) than z SDs from the mean.
You should understand the complexities of "normal limits" and the problem of

defining normal limits as being the mean plus or minus 2 SDs.

PROBTEMS

1. The level of an enzyme in blood was measured in 20 patients, and the results were

reported as 79.6 + 7.3 units/ml (mean -r SD). No other information is given about

the distribution of the results. Estimate what the probability of distribution might

have looked like.
2. The level of an enzyme in blood was measured in 20 patients and the results were

reported as 9.6 + 7.3 units/ml (mean -r SD). No other information is given about

the distribution of the results. Estimate what the probability of distribution might

have looked like.
3. The values of serum sodium in healthy adults approximates a Gaussian distribution

with a mean of 141 mM and a SD of 3 mM. Assuming this distribution, what

fraction of adults has sodium levels less than 137 mM? What fraction has sodium

levels between 137 and 145 mM?
4. You measure plasma glaucoma levels in five patients and the values ate 146, 157,

165, 13I, 157 mg/dl. Calculate the mean and SD. What is the 957o prediction

interval? What does it mean?

5. The Weschler IQ scale was created so that the mean is 100 and the standard deviation

is 15. What fraction of the population has an IQ greater than 135?



The Confidence Interval of a Mean

INTERPRETING A CONFIDENCE INTERVAL OT A MEAN

You already learned how to interpret the CI of a proportion in Chapter 2. So interpreting

the CI of a mean is easy. The 957o CI is a range of values, and you can be 95Vo sure

that the CI includes the true population mean.

Example 5.1

This example is the same as the example followed in the last two chapters. You've
measured the systolic blood pressure (BP) of all 100 students in the class. The sample
mean is 123.4 mmHg, and the sample SD is 14.0 mmHg. You consider this class to
be representative of other classes (different locations, different years), so you know
that the sample mean may not equal the population mean exactly. But with such a
large sample size, you expect the sample mean to be close to the population mean.
The 957o CI for the population mean quantifies this. You'll learn how to calculate the
CI later in the chapter. For now, accept that a computer does the calculations correctly
and focus on the interpretation. For this example, the 95Vo Cl ranges from 120.6
mmHg to 126.2 mmHg. You can be 95Vo sure that this range includes the overall
population mean.

Example 5.2

This example continues the study of BPs. But now you randomly select a sample of
five students, whose systolic BPs (rounded off to the nearest 5) are 120, 80, 90, 110,
and 95 mmHg. The mean of this sample is 99.0 mmHg and the sample SD is 15.97
mmHg. But the sample mean is unlikely to be identical to the population mean. With
such a large SD and such a small sample, it seems likely that the sample mean may
be quite far from the population mean. The 95Vo CI of the population mean quantifies
the uncertainty. In this example, the95Vo CI ranges from 79.2to 118.8 mmHg. You
can be 95Vo sure that this wide range of values includes the true population mean.

What Does it Mean to be 95"/o Sure?

Note that there is no uncertainty about the sample mean. We are IOOVo sure that we
have calculated the sample mean correctly. By definition, the CI is always centered
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on the sample mean. We are not sure about the value of the population mean. However,
we can be 95Vo sure that the calculated interval contains it.

What exactly does it mean to be "95Vo sure"? If you calculate a 95Vo CI from
many independent samples, the population mean will be included in the CI in 95Vo of
the samples, but will be outside of the CI in the other 5Vo of the samples. When you
only have measured one sample, you don't know the value of the population mean.
The population mean either lies within the 95Vo CI or it doesn't. You don't know, and
there is no way to find out. But you can be 95Vo ceftain that the 957o CI includes the
population mean.

The correct syntax is to express the CI as 79.2 to I 18.8 mmHg, or as [79.2. I 18.8].
It is considered bad form to express the CI as 99.0 -f 19.8 or 79.2 - 118.8 (the latter
form would be confusing with negative numbers).

ASSUMPTIONS THAT MUST BE TRUE TO INTERPRET THE 95%
CI OF A MEAN

The CI depends on these assumptions:

. Your sample is randomly selected from the population.
In Example 5.1, we measured the BP of every student in the class. If we are

only interested in that class, there would be no need to calculate a CI. We know the
class mean exactly. It only makes sense to calculate a CI to make inferences about
the mean of a larger population. For this example, the population might include
students in future years and in other cities.

In ExampLe 5.2, we randomly sampled five students from the class, so the
assumption is valid. If we let students volunteer for the study, we'd be measuring
BP in students who are especially interested in their BP (perhaps they've been told
it was high in the past). Such a sample is not representative of the entire population,

and any statistical inferences are likely to be misleading.
In clinical studies, it is not feasible to randomly select patients from the entire

population of similar patients. Instead, patients are selected for the study because

they happened to be at the right clinic at the right time. This is called a convenience
sample rather than a random sample. For statistical calculations to be meaningful,

we must assume that the convenience sample adequately represents the population,

and the results are similar to what would have been observed had we used a true

random sample.
. The population is distributed in a Gaussian manner, at least approximately. This

assumption is not too important if your sample is large. Since Example 5.1 has 100

subjects, the Gaussian assumption matters very little (unless the population distribu-

tion is very bizane). Example 5.2 has only five students. For such a small sample,

the CI can only be interpreted if you assume that the overall population is approxi-

mately Gaussian.
. All subjects come from the same population, and each has been selected independently

of the others. In other words, selecting one subject should not alter the chances of

selecting any other. Our BP example would be invalid if there were really less than

100 students. but some were measured twice. It would also be invalid if some of the



THE CONFIDENCE INTERVAL OF A MEAN

students were siblings or twins (because BP is partly controlled by genetic factors,
so two siblings are likely to have pressures more similar than two randomly se-
lected subjects).

In many situations, these assumptions are not strictly true: The patients in your study
may be more homogeneous than the entire population of patients. Measurements made
in one lab will have a smaller SD than measurements made in other labs at other times.
More generally, the population you really care about may be more diverse than the
population that the data were sampled from. Furthermore, the population may not be
Gaussian. If any assumption is violated, the CI will probably be too optimistic (too
narrow). The true CI (taking into account any violation of the assumptions) is likely
to be wider than the CI vou calculate.

CATCUTATING THE CONFIDENCE INTERVAT OF A MEAN

To calculate the CI, you need to combine the answers to four questions:

l. what is the sample mean? It is our best guess of the population mean.
2. How much variability? If the data are widely scattered (large SD), then rhe sample

mean is likely to be further from the population mean than if the data are tight
(small SD).

3. How many subjects? If the sample is large, you expect the sample mean to be close
to the population mean and the CI will be very narrow. With tiny samples, the
sample mean may be far from the population mean so the confidence interval will
be wide.

4. How much confidence? Although CIs are typically calculated for 95Vo confidence,
any value can be used. If you wish to have more confidence (i.e. 99Vo confidence)
you must generate a wider interval. If you are willing to accept less confidence (i.e.
90Vo confidence), you can generate a narrower interval.

Equation 5.1 calculates the 95Vo Cl of a mean from the sample mean (m), the sample
standard deviation (s) and the sample size (N):

41

e5voCr:(*  - , -  
*) .  

( -  + t*  .  
*)

(5 .1 )

The CI is centered on the sample mean m. The width of the interval is proportional
to the SD of the sample, s. If the sample is more scattered, the SD is higher and the
CI will be wider. The width of the interval is inversely proportional to the square root
of sample size, N. Everything else being equal, the CIs from larger samples will be
narrower than CIs from small samples.

The width of the CI also depends on the value of a new variable, t*. As you
expect, its value depends on how confident you want to be. If you wantggvo confidence
instead of 95Vo confidence, t* will have a larger value. If you only want 90Vo confidence,
t* will have a smaller value. Additionally, the value of t* depends on the sample size.
The value comes from the t distribution, which you'll learn more about later in the
chapter. The value of t* is tabulated in Table 5.1, and more fulty in Table A5.3 in the
Appendix. Since this table has several uses, the rows do not directly show sample size,
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Table 5.1. Critical Value of t for
95Vo Confidence

12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201

r2 2.179
13 2.160
14 2.145
15 2.131
20 2.086
25 2.060
30 2.042
40 2.021
60 2.000
r20 r.980
oo 1.960

but rather show degrees of freedom (d0. When calculating the confidence interval of

a mean, df : N- I as explained previously on pages 27-28.

In Example 5.1, the sample mean is 123.4 mmHg and the SD is 14.0 mmHg.

Because the sample has 100 subjects, there are 99 df. The table does not show t* for

99 df. Interpolating between the values shown for 60 df and l2O df, t* is about L99.

The CI ranges from 120.6 to 126.2 mmHg.

Note that as the sample size increases, the value of t* approaches 1.96 (for 957o

confidence). It is enough to remember that the value is approximately 2, so long as

the sample has at least 20 or so subjects.
For Example 5.2, the mean of this sample is 99.0 mmHg with a SD of 15.97

mmHg. With only five subjects, there are only 4 df, and t* equals 2.776. The 95Vo Cl

of the population mean ranges from79.2 to 118.8 mmHg. With a small sample, the

confidence interval is wide.
To understand why Equation 5.1 works, you need to understand two things. First,

you need to understand where the ratio s//N comes from. Next you need to understand

where the value of t* comes from. Both of these topics are complicated, but I'11 try

to explain them briefly in the next two sections.

THE CENTRAT I . IMIT THEOREM

Where does the ratio s/.f, in Equation 5.1 come from? To understand the answer'

we first need to digress a bit.
If you collect many samples from one population, they will not all have the same

mean. What will the distribution of means look like? Mathematicians approach this

kind of question by manipulating equations and proving theorems. We'll answer the

question by simulating data, an approach that is far more intuitive to many.

Figure 5.1 shows simulated data from throwing dice 2000 times. The X axis

shows the average of the numbers that appear on top of the dice, and the Y axis shows

the number of times each average appears. We are sampling from a "population" of

numbers with a flat distribution--each die is equally likely to land with 1, 2,3, 4, 5,

or 6 on top. The left panel shows a histogram of 2000 throws of one die. The distribution

tirdfdf
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Figure 5.1. An illustration of the central limit theorem. Each panel shows the simulated results
of throwing dice 2000 times. The X axis shows the mean of the values on top of the dice, and
the Y axis shows how frequently each value appeared. If you only throw one die at a time (left
panel) the distribution of values is flat. Each number is equally likely to appear. If you throw
two dice at a time (middle panel), the distribution is not flat. You are more likely to get a mean
of 3.5 (a sum of 7) than a mean of I or 6. The right panel shows the results with five dice. The
histogram starts to look like a Gaussian distribution. The central limit theorem states this: No
matter how the original population is distributed, the distribution of sample means will approxi-
mate a Gaussian distribution if the samples are large enough.

of this sample of 2000 observations closely resembles the overall "population," with
some random variability. In the middle panel, two dice were thrown 2000 times, and
we plot the distribution of the sample of 2000 mean values. This distribution differs
substantially from the original population. If you've every played with dice, this comes
as no surprise. There are six ways for a pair of dice to sum to seven (l&6,2&5,3&
4, 4&3, 5&2, or 6&1), but there is only one way for the sum to equal 12 (6&6) or 2
(1&1). The figure shows average values, and shows that the average of 3.5 (two dice
totaling seven) occurred about six times more often than did the average I or 6. The
right panel shows the results when we threw five dice in each of 2000 trials. The
distribution is approximately bell-shaped.

This example illustrates an important statistical theorem, known as the central
limit theorem. The proof of this theorem is not accessible to nonmathematicians. But
the theorem itself can be understood: No matter how the values in the population
are distributed, the distribution of means from independently chosen samples will
approximate a Gaussian distribution, so long as your samples are large enough.

The central limit theorem explains the computer generated data of Figure 5.1.
Even though the "population" has a flat and chunky (only integers) distribution, the
distribution of means approximates a bell-shaped distribution. As you increase the
sample size, the distribution of sample means comes closer and closer to the ideal
Gaussian distribution.

No matter how the population is distributed, the distribution of sample means
will approximate a Gaussian distribution if the sample size is large enough. How
large is that? Naturally, the answer is "it depends" ! It depends on your definition of
"approximately" and on the distribution of the population. Even if the population
distribution is really weird, a sample of 100 values is large enough to invoke the central
limit theorem. If the population distribution is approximately symmetrical and unimodal
(it looks like a mountain and not like a mountain range), then you may invoke the
central limit theorem even if you have only sampled a dozen or so values.
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What is the standard deviation (SD) of the distribution of sample means? It is
not the same as the SD of the population. Since sample means are distributed more

compactly than the population, you expect the SD of the distribution of sample means
to be smaller than the SD of the population. You also expect it to depend on the SD
of the population and the sample size. If the population is very diverse (large SD),
then the sample means will be spread out more than if the population is very compact
(small SD). If you collect bigger samples, the sample means will be closer together
so the SD of sample means will be smaller.

'l'he central limit theorem proves that the SD of sample means equals the SD of
the populatlion divided by the square root of the sample size. This is the origin of the
ratio s/./N in Equation 5.1.

THE STANDARD ERROR OF THE MEAN

Because the phrase standard deviation of sample means is awkward, this value is given

a shorter name, the standard error of the mean, abbreviated SEM. Often the SEM is

refened to as the standard error, with the word mean missing but implied. The term

is a bit misleading, as the standard error of the mean usually has nothing to do with

standards or etrors.
The central limit theorem calculates the SEM from the SD of the population and

the sample size with Equation 5.2.

S E M : * (s.2)

The SEM quantifies the precision of the sample mean. A small SEM indicates that the

sample mean is likely to be quite close to the true population mean. A large SEM

indicates that the sample mean is likely to be far from the true population mean.

Note that the SEM does not directly quantify scatter or variability in the population.

Many people misunderstand this point. A small SEM can be due to a large sample

size rather than due to tight data. With large sample sizes, the SEM is always tiny.

We can substitute Equation 5.2 into Equation 5.1 to calculate the 95Vo CI of a

mean more simply.

95Vo CI: (m - t* ' SEM) to (m + t* ' SEM)

Since the value of t* is close to 2 for large sample sizes, you can remember that the

95Vo confidence interval of a mean extends approximately two standard effors on either

side of the sample mean.

THE t  DISTRIBUTION

Equations 5.1 and 5.3 include the variable t*. To understand those equations, therefore,

you need to understand the t distribution.
Imagine this experiment. Start with a Gaussian population of known mean and

SD. From the population, collect many samples of size N. For each sample, calculate

the sample mean and SD and then calculate the ratio defined by Equation 5.4.

(5.3)
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- Sample mean - Population mean _ m - Ftt -  : -
Sample SD/.^ SEM

Since the sample mean is equally likely to be larger or smaller than the population

mean, the value of t is equally likely to be positive or negative. So the t distribution
is symmetrical around t : 0. With small samples, you are more likely to observe a
large difference between the sample mean and the population mean, so the numerator

of the t ratio is likely to be larger with small samples. But the denominator of the t
ratio will also be larger with small samples, because the SEM is larger. So it seems
reasonable that the distribution of the t ratio would be independent of sample size. But
it turns out that that isn't true-including N in the equation does not entirely correct
for differences in sample size, and the expected distribution of t varies depending on
the size of the sample. Therefore, there is a family of t distributions for different
sample sizes.

Figure 5.2 shows the distribution of t for samples of five subjects (df : 4). You'll
see t distributions for other numbers of df in Chapter 23. The t distribution looks
similar to the Gaussian distribution, but the t distribution is wider. As the sample size
increases, the t distribution becomes more and more similar to the Gaussian distribution
in accordance with the central limit theorem.

Since Figure 5.2 plots probability density, the area under the entire curve represents
all values in the distribution. The tails of the distribution are shaded for all values of
t greater than 2.776 or less than -2.776. Calculations prove that each of these tails
represents 2.5Vo of the distribution. This means that the t ratio will be between -2.176

and 2.776 in 95Vo of samples (N : 5) randomly chosen from a Gaussian population.
If the samples were of a different size, the cutoff would not be 2.776 but rather some
other number as shown in Table 5.1.

df=4

2.5o/o / \ 2.5Yo

\ /  \ /

Figure 5.2. The t distribution for four degrees of freedom. Here are the steps you'd need to do
to create this graph experimentally. Start with a population whose mean you know. Collected
many samples of five subjects (df : 4) from this population. Calculate the t ratio for each using
Equation 5.4. Of course, mathematicians can derive the distribution from first principles without
the need for endless sampling. The largest and smallest 2.5Vo of the distribution are shaded. In
95Vo of the samples, t will be between -2.776 and,2.776.
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So far, the logic has been in the wrong direction-we've started with a known
population and are looking at the variability between samples. Data analysis goes the
other way. When calculating CI, you don't know the population mean. All you know
is the mean and SD of one particular sample. But we can use the known distribution
of t to make inferences about the population mean. Let's compute the CI for example
5.2. The sample has five subjects, so you can be 95Vo sure that the t ratio will be
between -2.176 and 2.776. Rearrange Equation 5.4 to solve for the population mean
as a function of the sample mean (m), the sample standard deviation (s), the sample
size (N), and t.

(s.5)

You know the sample mean (m : 99.0 mmHg), the sample SD (s : 15.97 mmHg),
and the sample size (N : 5). You also know that you can be 95Vo sure that t will be
between -2.776 and 2.776. To calculate the confidence limits, first set t : 2.776 and
calculate that p :79.2 mmHg. Then set t : -2.78 and calculate that lr : 118.8
mmHg. You've calculated the lower and upper limits of the 957o confidence interval.
The 95Vo CI ranges from 79.2 to 118.8 mmHg.

In deriving the t distribution, statisticians started with a hypothetical population
with known population mean and SD, and calculated the distribution of t in many
samples. We then use the distribution backwards. Instead of making inferences about
the distribution of samples from a population, you can make inferences about the
population from a single sample. The ability to use probability distributions backwards
is mathematically simple but logically profound, and of immense practical importance
as it makes statistics useful to experimenters.

THE GAUSSIAN ASSUMPTION AND STATISTICAT INFERENCE

As noted earlier, the interpretation of the 95Vo CI depends on the assumption that the
data were sampled from a Gaussian distribution. And, as you'll see in future chapters,

this assumption is common to many statistical tests. Is this assumption reasonable for

the blood pressure example? A few notes:

. The Gaussian distribution, by definition, extends infinitely in each direction. It allows

for a very small proportion of BPs less than 0 (physically impossible) and a very

small proportion of BPs greater than 300 (biologically impossible). Therefore, BPs

cannot follow a Gaussian distribution exactly.
. The assumption doesn't need to be completely true to be useful. Just like the mathemat-

ics of geometry is based on mathematical abstractions such as a perfect rectangle,

the mathematics of statistics is based upon the abstract Gaussian distribution. Geome-

try tells us that the area of a perfect rectangle equals its length times its width. No

room is a perfect rectangle, but you can use that rule to figure out how much wallpaper

you need. The calculation, based on an ideal model, is useful even if the walls are

a bit warped. Similarly, statistical theory has devised methods for analyzing data

obtained from Gaussian populations. Those methods are useful even when the distribu-

tions are not exactly Gaussian.
. You can look beyond our one sample. BP has been measured in lots of studies, and

we can use information from these studies. While the distribution of BPs is often a

S
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bit skewed (more high values than low) they tend to distribute according to a roughly

Gaussian distribution. Since this has been observed in many studies with tens of

thousands of subjects, it seems reasonable to assume that BP in our population is

approximately Gaussian.
. You can think about the sources of scatter. The variability in BP is due to numerous

genetic and environmental variables, as well as imprecise measurements. When scatter
is due to the sum of numerous factors, you expect to observe a Gaussian distribution,
at least approximately.*

. You can perform formal calculations to test whether a distribution of data is consistent
with the Gaussian distribution. For more information, read about the Kolmogorov-
Smirnov test in a more advanced book.

What should you do if the distribution of your data deviate substantially from a Gaussian
distribution? There are three answers.

. You can mathematically transform the values to convert a nongaussian population
into a Gaussian one. This is done by converting each value into its logarithm,
reciprocal, or square root (or some other function). While this sounds a bit dubious,
it can be a good thing to do. Often, there is a good biological or chemical justification

for making the transformation. For example, it often makes sense both biologically
and statistically to express acidity as pH rather than concentration of hydrogen ions,
to express potency of a drug as log(EC5s) rather than EC5st, and to express kidney
function as the reciprocal of plasma creatinine concentration rather than the plasma
creatinine concentration itself.

. You can rely on the central limit theorem and analyze large samples using statistical
methods based on the Gaussian distribution, even if the populations are not Gaussian.
You can rely on the central limit theorem when both of the following are true: (1)
You are making inferences about the population means, and not about the details of
the distribution itself. (2) Either the samples are very large or the population is
approximately Gaussian.

. You can use statistical methods that are not based on the Gaussian distribution. For
exampie, it is possible to calculate the 95Vo CI of a median without making any
assumption about the distribution of the population. We'lI discuss some of these
methods, termed nonparameteric methods, later in the book.

CONFIDENCE INTERVAL OF A PROPORTION REVISITED*

You previously saw the CI of the proportion defined in Equation 2.1. This can be
rewritten as shown in Equation 5.6.

Approximate 95Vo CI of proportion:

/ t -

( r  - , * .  
t /P(r :  

Pr)  .  ( r  *  z* .

*You also need to assume that the various factors all have nearly equal weight.

trhe EC:o is the concentration of drug required to get half the maximal effect.

p( l  -  p) \
N /

(s.6)
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The value of z* comes from the Gaussian distribution. It equals 1.96 for 95Vo Cl,
because 957o of observations in a Gaussian population lie within 1.96 SD of the mean.
You may substitute other numbers from the Gaussian distribution if you want to change
the degree of confidence. For example, set z* : 2.58 to generate a 99Vo CI. This is
the correct value, because 99Vo of a Gaussian distribution lie within 2.58 SD of the
mean. The value of z* does not depend on the size of your sample.

This approximation works because the binomial distribution approximates the
Gaussian distribution with large samples. It is a reasonable approximation when the
numerator of the proportion is at least five, and the denominator is at least five larger
than the numerator. If you have small samples or want to calculate the CI of a
proportion more exactly, you must use tables or programs that are based on the binomial
distribution. You should not replace z* in Equation 5.6 with t*.

ERROR BARS

Graphs of data often include error bars, and the text of articles often gives values plus
or minus an error, i.e. 10.34 -r 2.3. The error bar or the plus/minus value usually
denotes the SD or the SEM. Occasionally the error bars denote the range of the data,
or the 95Vo CI of the mean. You must look at the methods section or figure legend to
figure out what the authors are trying to say. If there is no explanation as to how the
effor bars were calculated, the error bar is nearly meaningless.

Figure 5.3 shows the appearance of several error bars. Note that some are capped
while others are not. The difference is a matter of aesthetics, not statistics. Also note
that some error bars extend above and below the data point, while others extend only
above or only below. Usually this is done to prevent enor bars from different data
sets from overlapping. This is an artistic decision by the investigator. The true uncer-
tainty always extends in both directions, even if the author only shows the error bar
in one direction.

In theory, the choice of showing the SD or SEM should be based on statistical
principles. Show the SD when you are interested in showing the scatter of the data.
Show the SEM when you want to show how well you know the population mean.
Sometimes people display the SEM for another reason: The SEM is the smallest
measure of "error" and thus looks nicest.

Because the SD and SEM are used so frequently, anyone reading the biomedical
literature must be able to convert back and forth without looking up the equations in
a book. There are only a few equations in statistics that must be committed to memory,
and these are two of them:

S E M : S D / J N

SD: SEM .tA

(s.7)

The only role of the standard error . . . is to distort and conceal the data. The reader wants

to know the actual span of the data; but the investigator displays an estimated zone for

the mean.
Feinstein, Clinical Biostatistics

*This section is more advanced than the rest. You may skip it without loss of continuity.
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Figure 5.3. Error bars. Graphs show error bars in various ways. Note that the first bar is
uncapped, and the others are capped. This is merely an artistic distinction that tells you nothing
about the distribution of data. The first two error bars extend above and below the point, while
the next two go only above or only below. This too is an artistic distinction that tells you nothing
about the data. Note the legend telling us that these error bars represent the standard deviation.
You can't interpret these error bars unless you know whether the size of the error bar shows
you the standard deviation, the standard error of the mean, the extent of the 95%o CI. or some-
thing else.

Remember that the scatter (however expressed) means different things in different
contexts. Is the author showing the variability among replicates in a single experiment?
Variability among experiments performed with genetically identical animals? Variabil-
ity among cloned cells? Variability between patients? Your interpretation of error bars
should depend heavily on such considerations.

SUMMARY

The sample mean you calculate from a list of values is unlikely to be exactly equal
to the overall population mean (that you don't know). The likely discrepancy depends
on the size of your sample and the
deviation). You can combine the

variability of the values (expressed as the standard
sample mean, SD and sample size to calculate a

Mean t SD
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957o confidence interval of the mean.If your sample is representative of the population,
you can be 95Vo sure that the true population mean lies somewhere within the 95Vo Cl.

The central limit theorem states that the distribution of sample means will approxi-
mate a Gaussian distribution even if the population is not Gaussian. It explains why
you can interpret a confidence interval from large samples even if the population is
not Gaussian.

The standard error of the mean (SEM) is a measure of how close a sample mean
is to the population mean. Although it is often presented in papers, it is easier to
interpret confidence intervals, which are calculated from the SEM.

Papers often present the data as mean + error, or show a graph with an ercor
bar. These effor values or error bars may reprsent the SD, the SEM or something else.
You can not interpret them unless you know how they were defined.

oBf EcilvEs

1. You must be familiar with the following terms:

. Gaussian distribution

. Central limit theorem

. Standard error of the mean

. Confidence interval of a mean

. Confidence interval

. Error bar

. t distribution

2. Given a list of numbers, you should be able to calculate the 957o CI of the mean.

3. Given the mean, sample size, and SD or SEM, you should be able to calculate the

95Vo CI of the mean.
4. You should know the assumptions that must be true to interpret the CI.

5. You must be able to convert between SD and SEM without referring to a book.

6. You should be able to interpret error bars shown in graphs or tables of publications.

PROBLEMS

Figure 5.4 shows the probability distribution for the time that an ion channel stays

open. Most channels stay open for a very short time, and some stay open longer.

Imagine that you measure the open time of 10 channels in each experiment, and

calculate the average time. You then repeat the experiment many times. What is

the expected shape of the distribution of the mean open times?

An enzyme level was measured in cultured cells. The experiment was repeated on

3 days; on each day the nneasurement was made in triplicate. The experimental

conditions were identical on each day; the only purpose of the repeated experiments

was to determine the value more precisely. The results are shown as enzyme activity

in units per minute per milligram of membrane protein.

l .

2.
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Figure 5.4.

Replicate I Replicate 2 Replicate 3

Monday
Tuesday
Wednesday

234
269
254

220
967
249

229
275
246

Summarize these data as you would for publication. The readers have no interest
in the individual results for each day; just one overall mean with an indication of
the scatter. Give the results as mean, error value, and N. Justify your decisions.

3. Is the width of a 99Vo CI wider or naffower than the width of a gOVo CI?
4. The serum levels of a hormone (the "Y factor") was measured to be 93 -F 1.5

(mean r- SEM) in 100 nonpregnant women and I l0 -r 2.3 (mean t SEM) in 100
women in the first trimester of pregnancy.

A. Calculate the 95Vo Cl for the mean value in each group.
B. Assuming that the measurement of Y is easy, cheap, and accurate, is it a useful

assay to diagnose pregnancy?

5. A paper reports that cell membranes have rz03 x. 64 (mean -f sEM) fmol of
receptor per milligram of membrane protein. These data come from nine experiments.
A. calculate the 95va cr. Explain what it means in prain language.
B. Calculate the 95Vo prediction interval. Explain what it means in plain language.
C. Is it possible to sketch the distribution of the original data? If so, do it.
D. Calculate the 9OVo Cl.
E. Calculate the coefficient of variation.

6. You measure BP in 10 randomly selected subjects and calculate that the mean is
I25 and the SD is 7.5 mmHg. Calculate the SEM andg5%o CI. Now you measure
BP in 100 subjects randomly selected from the same population. What values do
you expect to find for the SD and SEM?
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Why doesn't it ever make sense to calculate a CI from a population SD (as opposed
to a sample SD)?
Data were measured in 16 subjects, and the 95Vo CI was 97 to 132.

A. Predict the distribution of the raw data.
B. Calculate the 99Vo CI.

9. Which is larger, the SD or the SEM? Are there any exceptions?

7.

8.
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Survival Curves

In the long run, we are all dead.

fohn Keynes

Note to basic scientists.
research but rarelv used
loss in conttnuitv.

This chapter describes a method commonly used in clinical
in basic research. You may skip the entire chapter without

We have discussed how to quantify uncertainty for outcomes expressed as proportions
(Chapter 2) or as measurements (Chapters 3 to 5). However, in many clinical studies,
the outcome is survival time. Analysis of survival data is trickier than you might
first imagine.

What's wrong with calculating the mean survival time and its confidence interval
(CI)? This approach is rarely useful. One problem is that you can't calculate the mean
survival time until you know the survival time for each patient, which means you can't
analyze the data until the last patient has died. Another problem is that survival times
are unlikely to follow a Gaussian distribution. For these and other reasons, special
methods must be used for analysis of survival data.

A SIMPLE SURVIVAL CURVE

Survival curves plot percent survival as a function of time. Figure 6.1 shows a simple
survival curve. Fifteen patients were followed for 36 months. Nine patients died at
known times, and six were still alive at the end of the study.

Time zero is not some specified calendar date; rather, it is the time that each
patient entered the study. In many clinical studies, "time zero' ' spans several calendar
years as patients are enrolled. At time zero, by definition, all patients are alive, so Y :
lOOVo. Whenever a patient dies, the percent surviving decreases. If the study (and thus
the X axis) were extended far enough, Y would eventually reach 0. This study ended
at 36 months with 40Vo (6/15) of the patients srill alive.

Each patient's death is clearly visible as a downward jump in the curve. When
the first patient died, the percent survival dropped from l00.0%o to 93.3Vo (14/15).
When the next patient died, the percent survival dropped again to 86.7Vo. At l9 months,
two patients died, so the downward step is larger.

5 3
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Figure 6.1. A simple survival curve. Fifteen subjects were followed for 36 months. Nine of
the subjects died. You can see each death as a downward step in the curve. Two subjects died
at 19 months, so the drop is twice as large. Note that time 0 does not have to be any particular
day or year. Time 0 is the time that each subject was enrolled in the trial.

The term survival curve is a bit misleading, as "suryival" curves can plot time
to any well-defined end point, such as occlusion of a vascular graft, date of first
metastasis, or rejection of a transplanted kidney. The event does not have to be dire.
The event could be restoration of renal function, discharge from a hospital, or graduation.
The event must be a one-time event. Recurrins events should not be analvzed with
survival curves.

CENSORED SURVIVAT DATA

In the previous example, we knew that all subjects either died before 36 months or
survived longer than 36 months (the right end of our curve). Real data are rarely so
simple. In most survival studies, some surviving subjects are not followed for the entire
span of the curve. This can happen in two ways:

. Some subjects are still alive at the end of the study but were not followed for the
entire span of the curve. Many studies enroll patients over a period of several years.
The patients who enroll later are not followed for as many years as patients who
enroll early. Imagine a study that enrolls patients between 1985 and 1989, and that
ends in 1991. Patient A enrolled in 1989 and is still alive at the end of the study.
Even though the study lasted 6 years, we only know that patient A survived at least
3 years.

. Some drop out of the study early. Perhaps they moved to a different city or got fed

up with university hospitals. Patient B enrolled in 1986 but moved to another city
(and stopped following the protocol) in 1988. We know that this subject survived at
least 2 years on the protocol but can't evaluate survival after that.

In either case, you know that the subject survived up to a certain time but have no

useful information about what happened after that. Information about these patients is

said to be censored. Before the censored time, you know they were alive and following
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the experimental protocol, so these subjects contribute useful information. After they
are censored, you can't use any information on the subjects. Either we don't have
information beyond the censoring day (because the data weren't or can't be collected)
or we have information but can't use it (because the patient no longer was follow-
ing the experimental protocol). The word censor has a negative ring to it. It sounds
like the subject has done something bad. Not so. It's the data that have been censored,
not the subject!

CREATING A SURVIVAT CURVE

There are two slightly different methods to create a survival curve. With the actuarial
method, the X axis is divided up into regular intervals, perhaps months or years, and
survival is calculated for each interval. With the Kaplan-Meier method, survival is
recalculated every time a patient dies. This method is preferred, unless the number of
patients is huge. The term life-table analysis is used inconsistently, but usually includes
both methods. You should recognize all three names.

The Kaplan-Meier method is logically simple but tedious. Since computer pro-
grams can do the calculations for you, the details will not be presented here. The idea
is pretty simple. To calculate the fraction of patients who survived on a particular day,
simply divide the number alive at the end of the day by the number alive at the
beginning of the day (excluding any who were censored on that day from both the
numerator and denominator).* This gives you the fraction of patients who were alive
at the beginning of a particular day who were still alive at the beginning of the next
day. To calculate the fraction of patients who survive from day 0 until a particular
day, multiply the fraction of patients who survive day l, times the fraction of those
patients who survive day 2, times the fraction of those patients who survive day 3 . . .
times the fraction who survive day k. This method automatically accounts for censored
patients, as both the numerator and denominator are reduced on the day a patient is
censored. Because we calculate the product of many survival fractions, this method is
also called the product-limit method.

Figure 6.2 shows a survival curve with censored data. The study started with 15
patients. Nine died during the study (same as the previous example) and six were
censored at various times during the study. On the left panel, each censored patient is
denoted by upward blips in the survival curve. On the right panel, each censored patient
is denoted by a symbol in the middle of a horizontal part of the survival curve. At the
time a patient is censored, the survival curve does not dip down as no one has died.
When the next patient dies, the step downward is larger because the denominator (the
number of patients still being followed) has shrunk.

CONFIDENCE INTERVAT OF A SURVIVAT CURVE

In order to extrapolate from our knowledge of a sample to the overall population, a
survival curve is far more informative when it includes a 95Vo CI. Catculating CIs is

*Note that day rcfers to day of the study, not a particular day on the calendar. Day I is the first day of the
study for each subject.



56 CONFIDENCE INTERVATS

Figure 6,2. A survival curve with censored subjects. A subject is censored at a certain time for
one of two reasons. (1) He stopped following the study protocol at that time. (2) The trial ended
with the subject still alive. In the left panel, censored subjects are shown as upward blips. In

the right panel, censored subjects are shown as solid circles in a horizontal portion of the curve.
You'll see both kinds of graphs frequently.

not straightforward and is best left to computer programs. The interpretation of the

957o C|for a survival curve should be clear to you by now. We have measured survival

exactly in a sample but don't know what the survival curve for the entire population

looks like. We can be 957o sure that the true population survival curye lies within the

957o Cl shown on our graph at all times.

Unfortunately, many published survival curves do not include CIs. Assuming that

you can figure out how many patients are still alive at any given time, you can use

Equation 6.1 to calculate an approximate 95Vo Cl for the fraction surviving up to at

any time t (p is fraction surviving up to time t, and N is the number of patients still

alive and following the protocol at time t):*

(6.1)
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957o CI of fractional survival (p) at time t : p t 1.96 ' p

Let's use this equation to figure out approximate CIs for the example at24 months.

We started with 15 patients. Between 0 and 24 months, eight patients have died fiust

count the downward steps, remembering that the big step at 19 months represents two

patients). Four patients have been censored before 24 months (count the ticks on the

ieft panel of Figure 6.1 between 0 and 24 months). Thus three patients (15 - 8 - 4)

are still alive and being followed at 24 months, so N : 3. Reading off the curve,

p 0.35. Plugging p and N into the equation, the 95Vo CIis approximately 0.03 to 0.67.

Equation 6.1 is only an approximation and sometimes calculates values that are

nonsense. It can calculate a lower confidence limit less than 0. In this case, set the

lower limit to 0. It can also calculate an upper confidence limit greater than 1007o. In

this case set the limit to l\OVo. Figure 6.3 shows more exact CIs calculated by computer.

If there are censored patients, the right side of a survival curve represents fewer patients

than the left side, and the CIs become wider as time progresses (until survival converges

on 0).

*Equation 6.1 is not well known. I got it from page 378 of D. G. Altman, Practical statistics for Medical

Research, Chapman & Hall, London, 1991.
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Time in Months

Figure 6.3. A survival curve with 957o CIs. The solid line shows the survival curve for the
sample of 15 subjects. You can be 957a sure that the overall survival curve for the entire
population lies within the dotted lines. The CIs are wide because the sample is so small.

MEDIAN SURVIVAT

It is easy to derive the median survival time from the survival curve. Simply draw a
horizontal line at 507o survival and see where it crosses the curve. Then look down
at the X axis to read off the median survival time. Figure 6.4 shows that the median
survival in the example is about 22 months. Sometimes the survival curve is horizontal
at 5o7o survival. In this case, the median encompasses a range of survival times. Most
people define the median survival in this case as the average of the first and last time
point at which the survival curve equals 50Vo.
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Figure 6'4' Median survival. The median is the 50th percentile. The median survival time is
the time at which half the subjects have died and half are still alive. Read across at 50 percent
to determine median survival. If fewer than half the subjects have died by the end of the study,you cannot determine median survival.
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If the survival curve includes 95Vo Cls, you can determine the 957o CI of the

median by seeing where the upper and lower CI crosses the horizontal line where

survival equals 50Vo. From Figure 6.3 you can estimate that the 957o CI of median

survival ,ung6 from about 19 to 33 months. Obviously, you can't determine median

survival if more than half the subjects are still alive when the study ends'

ASSUMPTIONS

The interpretation of survival curves (and their CIs) depends on these assumptions:

. Random sample.If your sample is not randomly selected from a population, then

you must assume that your sample is representative of that population.

. 
-Independent 

observations. Choosing any one subject in the population should not

affect the chance of choosing any other particular subject.

. consistent entry criteria. Patients are enrolled into studies over a period of months

or years. In these studies it is important that the starting criteria don't change during

the enrollment period. Imagine a cancer survival curve starting from the date that the

first metastasis was detected. What would happen if improved diagnostic technology

detected metastases earlier? Even with no change in therapy or in the natural history

of the disease, survival time will apparently increase (patients die at the same age

they otherwise would but are diagnosed at an earlier age and so live longer with

the diagnosis).
. Consistent criteria for defining "survival." If the curve is plotting time to death,

then the ending criierion is pretty clear. If the curve is plotting time to some other

event, it is crucial that the event be assessed consistently throughout the study.

. Time of censoring is unrelated to survival. The survival of the censored patients

must be identical (on average) to the survival of the remainder. If there are many

censored subjects, this assumption is critical to the validity of the results. There is

no reason to doubt that assumption for patients still alive at the end of the study'

Patients who dropped out of the study are a different matter' You must ask why the

patients left the iiudy. If the reason is related to survival, then the survival curve

would be misleading. A survival curve would be misleading, for example, if many

patients quit the study because they were too sick to come to the clinic or because

they felt too well to iake medication. In well-run studies, a very small fraction of

patients leave the study. When looking at papers reporting survival curves' check

what fraction of the patients dropped out of the study and why.

. Aversge suwivsl dies not thoiie during the course of the study' If patients are

enrolled over a period of years, you must assume that overall survival is not changing

over time. you can't interpret a survival curve if the patients enrolled in the study

early are more (or less) likely to die than those who enroll in the study later'

PROBTEMS WITH SURVIVAL STUDIES

since the survival curve plots time until death, you have to decide when to "start the

clock." The starting poirrt should be an objective date-perhaps the date of first

diagnosis or first trospitat admission. You may be tempted to use instead an earlier
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starting criteria, such as the time that a patient remembers first observing symptoms.
Don't do it. Such data are invalid because a patient's recollection of early symptoms
may be altered by later events.

If the curve is plotting deaths due to a particular form of cancer, you need to
decide what to do with patients who die of another cause, say, an automobile accident.
Some investigators count these as deaths, and others count them as censored subjects.
Both approaches are sensible, but the approach should be decided before the studv
is started.

SUMMARY

You will frequently encounter survival curves in the medical literature. Survival curves
can be used to plot time to any nonrecuffent event. The event does not have to be
death, so the term survival can be misleading.

Creating a survival curves is a bit fficky, because you need to account for censored
subjects' Subjects can be censored because they stop following the experimental proto-
col' or because they are still alive when the protocol ends. These subjects contribute
data up until the time of censoring but contribute no data after that.

It is easiest to interpret a survival curve when you plot 95Vo confrdence limits for
survival at various times. You can be 957o sure that the survival curve for the overall
population lies somewhere within those limits.

oBf EcTtvEs

1. You should be familiar with the following terms:
. Survival curve
. Censored subject
. Kaplan-Meier curye
. Product-limit method
. Actuarial method

2. You should be able to recognize data that can appropriately be plotted on a sur-
vival curye.

3. You should be able to interpret a survival curve.
4' You should understand why it is difficult to construct a survival curve.
5. You should be able to read median survival from a survival curye.
6' You should know all assumptions that must be true for survival studies to be

interpretable.
7' Referring to the book, you should be able to calculate an estimated 95Vo Clfor a

survival curve.

PROBLEMS

1. Why are the CIs in Figure 6.3 asymmetrical?
2' Why is it possible to calculate the median survival time when some of the subjects

are still alive?

59
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3. Why are survival curves drawn as staircase curves?

4. A survival curve includes many subjects who were censored because they dropped

out of the study because they felt too ill to come to the clinic appointments. Is the

survival curve likely to overestimate or underestimate survival of the population?

5. A study began on January 1, 1991 and ended on December 3l , 1994. How wili

each of these subjects appear on the graph?

A. Entered March I, lggl Died March 31, 1992.

B. Entered April l, 1991. Left study March l, 1992.

C. Entered January l, lggL Still alive when study ended.

D. Entered January l, 1992. Still alive when study ended.

E. Entered January I, 1993. Still alive when study ended.

F. Entered January I, 1994. Died December 30, 1994.

G. Entered July l,1992. Died of car crash March l, 1993.

6. A survival study started with 100 subjects. Before the end of the fifth year, no

patients had been censored and 25 had died. Five patients were censored in the

sixth year, and five died in the seventh year. What is the percent survival at the

end of the seventh year? What is the 95Vo Cl for that fraction?
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COMPARING GROUPS
WITH CONFIDENCE

INTERVALS

Thus far we have only analyzed, data from one group. When you analy ze data,
you usually want to compare two (or more) groups. This section shows you
how to do so by calculating confidence intervals. Later you'll learn how to
compare groups by calculating P values and determining statistical significance.





Confidence lnterval of a Difference
Between Means

INTERPRETING THE 95% CI FOR THE DIFFERENCE BETWEEN
TWO MEANS

Example 7.1

Diarrhea is a major health problem for babies, especially in underdeveloped countries.
Oral rehydration with a mixture of salt and sugar effectively replaces lost fluids and
probably saves I million lives a year. But this treatment does not reduce the amount
of diarrhea. Bismuth salicylate (sold as Pepto Bismol) reduces dianhea in adults. and
Figueroa-Quintanilla et al. wanted to know whether it would be beneficial to babies
with dianhea.* They studied several hundred infant boys with diarrhea in a clinic in
Peru' All were given standard oral rehydration. One third were given a low dose of
bismuth salicylate, one third were given a higher dose, and one third were given
placebo. They analyzed the data in many ways and recorded the clinical outcome of
the infants in several ways. We will look at only one end point, the total output of
stool, and only compare control subjects with those given low dose bismuth salicylate.
To adjust for body size, the authors divided stool output in milliliters by body weight
in kilograms and compared stool output per kilogram between the two groups.

The authors report that the mean stool output was 260 mlkg for the 84 placebo-
treated babies with a standard deviation (SD) of 254 mlkg. The mean stool output for
the 85 treated babies was lB2 mwg with a sD of r97 mlkg.

The authors do not show us individual values or even the range of the data. Is it
reasonable to assume that stool output follows a Gaussian distribution? From the data
we do have (mean and SD), the answer is clearly NO. If stool output was distributed
according to a Gaussian distribution, we'd expect that 95Vo of the values would be
within about 2 SDs of the mean, or -248 to 768 mllkg. If the data followed a Gaussian
distribution' a reasonable fraction of the values would be negative. Since a negative
stool output is impossible, the data cannot be sampled from a Gaussian distribution.

*D' Figueroa-Quintanilla et al. A controlled trial of bismuth subsalicylate in infants with acute waterydiarrheal disease. N Engl J Med 32g:1653_165g. 1993.
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Because the data must be non-Gaussian, we cannol use the SD to calculate a

prediction interval or "normal range." Since the samples are so large, we cbn invoke

ih, ..ntrul limit theorem and make inferences about the average stool output in the

population. You already know how to calculate the standard error of the mean (SEM)

una tn" 957o confidence interval (CI) for each group. For the control infants, the SEM

is 25N,M : 27.7 ml/kg. The 957o CI for the mean is 260 + 2.00 x 27 .7, which

equals 205 to 315 mUkg. Assuming that the infants studied are representative of a

larger population of infants with dianhea, we can be 957o sure that the mean stool

output lies within that range. For the treated infants, the SEM is lgTl .-B : 2l'4 mll

kg and the 95Vo CI is 139 to 225 mlkg. The two CIs barely overlap.

On average the stool production of treated infants was 260 - 182 or 78 mykg

less than the sample control infants. We'd like to calculate a 95Vo CI for the mean

decrease in the population. The next section will explain the calculations. The answer

is that the 95Vo CI for the difference between the two means is 19 to 137 mVkg.

We defined the difference to be the mean value in control minus the mean value

in the treated infants. A positive value indicates that the treatment worked to reduce

stool ouput. A negative value would indicate that the treatment increased stool output.

The interpretation of the 957o Cl should be familiar to you. You can be 95Vo sute

that the true difference between population means lies somewhere within the CI. If

you were to perform this kind of experiment many times, each one would calculate a

different CI for the difference between means. In 95Vo of the experiments, the true

difference between population means would lie within the CI. In the other 57o of the

samples, the true difference between means would lie outside the CI. When analyzing

data you have only one pair of samples, and you can be 95Vo sure that the CI of the

difference contains the true difference between population means'

The interpretation of the CI of the difference between population means rests on

the same assumptions as the CI of the mean:

. your samples are randomly selected from the populations, or at least are representative

of the populations. In our example, the infants are not randomly selected from the

poputaiion of infants with dianhea, but there is no reason to think that they are not

i"ir"r.ntutive. The authors selected subjects from one population----children with

diilrrhea. They then randomly assigned two different treatments. In interpreting the

results, you should think of two different populations-the population of children

with dianhea given oral rehydration only and another population of children with

dianhea givenloth oral rehydration and low-dose bismuth salicylate.

. The populations are distributed in a Gaussian manner. The larger the samples, the

less this assumption matters. In our example, we know that the distribution cannot

be Gaussian because the SD is so large compared with the mean' But with such

large samples, we can ignore that assumption as long as the distribution was not

really bizarre.
. The two populations have identical SDs'
. All subjects in each group come from the same population, and each has been selected

independently of the others. There are many causes of dianhea, and you want to get

a random sampling of the various causes in both groups' You wouldn't want to

include siblings or a group of children from only one orphanage'
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Later in this chapter we will discuss the common situation when subjects in the
two groups are not independent, but rather are paired or matched.

Since these assumptions seem reasonable, we can interpret the CL We are 95Vo
sure the true difference between means lies within the interval. The interval does not
span 0 (does not include both negative and positive numbers) so we can be at least
95Vo sure that on average the drug reduces mean stool output in the population.

In assessing the clinical significance of this study, we (like the authors) need to
look at more than just that one variable. The authors showed the effectiveness of the
drug in several ways. Not only did the drug reduce stool volume, it also reduced the
average duration of diarrhea and the average length of hospitalization. Moreover, there
were no adverse effects of the drug. You can conclude that the drug worked.

CATCUTATING THE 95% CI FOR THE DIFFERENCE BETWEEN
MEANS OF UNPAIRED GROUPS*

To calculate the 95Vo CI of the difference between means, you need to first calculate
the SE of the difference, calculated from the standard errors (SEs) of the two groups,
SEM. and SEM6. If the two groups have equal numbers of data points, Equation 7.1
calculates the SEM of the difference between the means of the two groups:

SE of the difference : JSEMtrTEM3. (7.1)

If the two groups have unequal numbers of data points, a more complicated
equation is needed (7.2), as the SEM of the larger group has to be weighted more
heavily than the SEM of the smaller group. The equation is expressed in terms of the
two sample SDs (sD" and sD6) and the two sample sizes (nu and no):

l ( n ^ -  t ) . S D l  *  ( n u  -  l ) . S D aP o o l e d S D :  / '
V  n u * n 6 - 2 (7.2)

SE of difference : Pooled SD

The 957o CI of the difference between means (A) is calculated using Equation 7.3:

957oClof  meandif ference: (A -  t* 'SEof di f ference)to(A + tx.SEof di f ference).
d f : n u * n 6 - 2 . (7.3)

Applying the first equation to the sample data, the SE of the difference between the
two means is 30.0 mllkg. This is a bit higher than the SEM of either group. This makes
sense, as the uncertainty with which we know the difference between the two means
is greater than the uncertainty with which we know each individual mean. In other
words, the errors propagate so that the difference has a larger SE than its components.

*This section contains the equations you need to calculate statistics yourself. you may skip it without loss
of continuity.

tr=/ - + -
V n u  n 6
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The total number of degrees of freedom (d0 is 84 + 85 - 2, which equals 167.
The critical value of t* for so many df is 1.96. The 95Vo CIof the difference is 78 +

30.0 * 1.96, or 19 to 137 ml/kg. We can be 957o certain that the mean reduction in
stool output in the population of treated infants (compared with the mean of control
infants) lies within this range.

wHY ARE PAIRED SUBf ECTS ANATYZED D|FFERENTIY?

Often experiments are designed so that the same measurement is made in each subject
before and after an intervention. In such studies, it would be a mistake to calculate
the 957o CI of the difference between two means using the equations presented in the
previous section. Those equations lump together systematic variability between groups
with variability between subjects. With unpaired data, there is no choice but to combine
these two sources of variability. With paired data, however, you can (and should)
separate the two sources of variability.

Paired analyses are appropriate in several kinds of experiments:

. When measuring a variable in each subject before and after an intervention.

. When recruiting subjects as pairs, matched for variables such as age, neighborhood,
or diagnosis. One of the pair receives an intervention; the other receives an alternative
treatment (or placebo).

. When measuring a variable in sibling or child/parent pairs.

. When running a laboratory experiment several times, each time with a control and

treated preparation handled in parallel.

More generally, you should use methods for paired data whenever the value of one

subject in the first group is expected to be closer to a particular subject in the second
group than with a random subject in the second group. Ideally, you should decide

whether to treat the data as pairs when you design the experiment, before collecting

any data. Certainly, you must define the pairs using only information you knew before

the experiment was performed. Generally, if the pairing was effective the CIs will be

naffowef if the correct methods are used (taking into account pairing).

Example 7.2

Ye and Grantham* were interested in the mechanism by which renal cysts accumulate

fluid. They investigated fluid absorption of cysts surgically excised from patients

with polycystic kidney disease. Before experimenting with various drugs, they simply

incubated the cysts in cell culture medium and measured weight change (as an indirect

measure of volume change). Before incubating, the average weight of nine cysts was

6.51 grams with a SEM of 2.26 grams. After incubating for 24 hours, the average

weight was 7.02 grams with a SEM of 2.40 grams. Using Equation 7.3, the 957o Cl

*M Ye, JJ Grantham. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic

kidney disease. N Engl J Med 329:310-313, 1993.
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of the difference between means is -6.48 to 7.50. The lower limit is negative, indicating
a loss in weight. The upper limit is positive, indicating a gain in weight. Looked at
this way, the data appear to provide no evidence that renal cysts can take up fluid in
culture. But this method is not appropriate for these data. You are not comparing nine
cysts in one group with nine in another. Each cyst was weighed before and after the
incubation. The data are paired.

It is easy to take into account the pairing. Calculate the weight gain (or loss) of
each of the nine cysts. Then calculate the mean and the SEM of the mean change.
You need the raw data to do this. The authors tell us that the mean change was 0.50
grams with a SE of .23 grams. Now you can use Equation 5.3 (repeated as Equation
7.4)to calculate that the 95Vo CI for the mean change. It is between -0.03 to 1.04
grams. You can see that accounting for the pairing narrowed the CI.

The interpretation of the CI of the mean difference of paired measurements depends
on these assumptions:

' Your pairs of subjects are randomly selected from the population of pairs, or at least
are representative of the populations. In the example the cysts . ere not randomly
chosen from a large population of renal cysts, but it is reasonable to think that they
are representative.

' In the overall population of pairs, the differences are distributed in r Gaussian manner.
The larger the samples, the less this assumption matters. This assumption seems
reasonable, although we don't have enough data to be very sure.

' The two measurements are beforelafter measurements on one subject or are measure-
ments on two subjects matched before the data were collected. The example data
are before/after measurements.

' All subjects come from the same population, and each subject (if before/after) or
each pair of matched subjects has been selected independently of the others. This
assumption was violated in the example. The nine cysts were excised from only
three patients. Our data are not a sample of nine independent cysts from a larger
population. It is quite likely that cysts removed from a particular patient will vary
less than cysts removed from different patients.

HOW TO CAICUIATE THE 95% CI OF THE MEAN DIFFERENCE
oF PATRED SUBfECTS*

Equation 7.4 calculates the 95Vo CI of the mean difference of paired measurements.
First calculate the difference for each pair, keeping track of the sign. For before and
after studies, subtract the before measurement from the after measurement for each
subject. An increase is positive; a decrease is negative. For matched studies, calculate
the difference for each matched pair, keeping track of the sign. Calculate the mean
and SEM of that single list of differences. Define A as the mean of the paired differences.

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuity.
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95Vo Cl of mean difference :

(A - t* . SE of paired differences) to (A + t* . SE of paired differences).

df : Npui,, - 1 (7.4)

With some experimental measurements, it may make more biological sense to calculate
the ratio, rather than the difference, of the paired measurements. Chapter 25 explains
how to analyze these kind of data.

SUMMARY

When comparing a measured variable in two groups, you can calculate the 95Vo CI of
the difference between the population means. You can be 957o certain that the true
mean difference lies somewhere within the 95Vo Cl. The best way to perform such a
study is to pair subjects or to measure the same subject before and after an intervention.

The 95Vo CI of the mean difference is calculated differently in a paired study. In most

cases, such pairing reduces the influence of intrasubject variability and makes the 957o

CI narrower.

oBf EcTrvEs

l . Using a text and a calculator, you should be able to calculate the 95Vo Cl for the

difference between two means for either paired or unpaired data.

You should be able to interpret the 95Vo CI of a difference and be able to state

all assumptions.
3. You should be able to identify experimental protocols that should be analyzed using

paired differences.

PROBTEMS

1. (Same data as in Problem 4 in Chapter 5). The serum levels of a hormone (the Y

factor) was measured to be 93 -'- 1.5 (mean -f SEM) in 100 nonpregnant women

and 110 + 2.3 (mean t SEM) in 100 women in the first trimester of pregnancy.

What is the 957o CI for the difference between mean levels of the Y factor?

What assumptions do you have to make to answer that question?

2. Pullan et al. investigated the use of transdermal nicotine for treating ulcerative

colitis.* The plasma nicotine level at baseline was 0.5 -r- 1.1 nglml (mean t SD;

N : 35). After 6 weeks of treatment, the plasma level was 8.2 -r 7.I nglml (N : 30).

Calculate a 95Vo CI for the increase in plasma nicotine level.

*RD Pullan, J Rhodes, S Ganesh, et al. Transdermal nicotine for active ulcerative colitis. N Engl J Med

330 :8 l l -815 ,  1994 .

2.
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What assumptions are you making? Are these valid?

If you had access to all the data, how might you analyze the data?

3. You measure receptor number in cultured cells in the presence and absence of a
hormone. Each experiment has its own control. Experiments were performed several
months apart, so that the cells were of different passage numbers and were grown
in different lots of serum. The results are given in the following table.

Control Hormone

69

Experiment I
Experiment 2
Experiment 3
Experiment 4

123
g

189
265

209
103
343
485

How would you summarize and graph these results? What CI would you calculate?
4. Why is the SE of a difference between two means larger than the SE of either mean?



Confidence lnterval of the Difference
or Ratio of Two Proportions:

Prospective Studies

cRoss-sEcTtoNAL, PRosPEcTtvE, AND
RETROSPECTIVE STUDIES

In the last chapter, you learned how to compare two groups when the outcome variable
was a measurement by calculating the 95Vo CI for the difference between the two
means. In many studies that compare two groups, however, the outcome variable is a
proportion. In this chapter and the next, you'll learn how to interpret and calculate
95Vo Cl for the difference or ratio of two proportions.

The methods used to analyze the data depend on how the study was conducted.
There are four kinds of studies whose results are expressed as two proportions:

. In a retrospective study (also called a case-control study), the investigators start with
the outcome and look back to see the cause. They select two groups of subjects. One
group has the disease or condition being studied. These are the cases. The other
group is selected to be similar in many ways, but not to have the condition. These
are the controls. The investigators then look back in time to compare the exposure
of the two groups to a possible risk factor. The next chapter (Chapter 9) explains
how to interpret data from case-control studies.

. In a prospective study, the investigators start with the exposure and look to see if it
causes disease. They select two groups of subjects. One group has been exposed to
a possible risk factor. The other group hasn't. The investigator then waits while the
natural history of the disease progresses and compares the incidence rates in the
two groups.

. In a cross-sectional study, the investigator selects a single sample of subjects, without
regard to either the disease or the risk factor. The subjects are then divided into two
groups based on previous exposure to the risk factor. The investigators then compare
the prevalence* of the disease in the two groups.

*Prevalence is the proportion of the group that now has the disease. Incidence is the proportion of the
group that develops the disease within a defined period of time.
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. In an experimental study, the investigator selects a sample of subjects, which are
randomly divided into two groups. Each of the groups gets a different treatment (or
no treatment) and the investigators compare the incidence of the disease.

The data from prospective, cross-sectional, and experimental studies are analyzed
similarly, as discussed in the rest of this chapter. The next chapter explains how to
interpret and analyze data from retrospective studies.

AN EXAMPLE OF A CTINICAT TRIAL

Example 8.1

Cooper et al. studied the effectiveness of zidovudine (also known as AZT) in treating
asymptomatic people infected with the human immunodeficiency virus (HIV)*. It is well
established that AZT benefits patients with the acquired immunodeficiency syndrome
(AIDS) or asymptomatic patients infected with the HIV who have low numbers of T-
helper (CD4+) cells. Patients can be infected with the HIV for many years before
they develop any symptoms of AIDS and before their CD4* cells counts drop. Does
AZT help these patients? The investigators selected adults who were infected with the
HIV but had no symptoms and randomly assigned them to receive AZT or placebo.
The subjects were followed for 3 years. The authors analyzed the data in several ways
and looked at several outcomes. We'll just look at one outcome-whether the disease
progressed in 3 years. The authors defined disease progression to be when a patient
developed symptoms of AIDS or when the number of CD4* cells dropped substantially.
They asked whether treatment with AZT reduces progression of the disease.

This study is called a randomized, double-blind prospective study. Let's look at
all these terms one by one. See Chapter 2O for more information on clinical trials.

' It is a randomized study because the assignment of subjects to receive AZT or placebo
was determined randomly. Patients or physicians could not request one treatment or
the other.

' It is double blind because neither patient nor investigator knew who was getting
AZT and who was getting placebo. Until the study was complete, the information
about which patient got which drug was coded, and the code was not available to
any of the participating subjects or investigators (except in a medical emergency).

' It is prospective because the subjects were followed forward over time. In the next
chapter you'll lean about retrospective case-control studies where this is not true.

The results are shown in Table 8.1.

The treatment seemed to work. The disease progressed in 28Vo of the patients receiving
placebo (129/461) and in only 16vo of the patients receiving AZT (761475).

*DA Cooper et al. Zidovudine in persons with asymptomatic HIV infection and CD4* cell counts sreater
than 400 per cubic millimeter. N Engl J Med 329:297-303, 1993.
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Table 8.1. Results of Example 8.1

Treatment
Disease

Progressed No Progression

AZT
Placebo
Total

76
t29
205

399
332
73r

475
461
936

As always, we want to use data from this sample to make generalizations about
the general population of patients infected with HIV. You already know one way to
make inferences from the data by calculating the 957o confidence interval (CI) for each
of the two proportions using the methods of Chapter 2. Disease progressed in167o of the
patients receiving AZ:1, and the 957o Clranges from l3%o to2\Vo. Disease progressed in
287o of the subjects receiving placebo, and we can be 95Vo sure that the true value in
the population lies between 24Vo and 32Vo. However, rather than analyze each group
separately, it is better to analyze the difference or ratio of the proportions.

DIFFERENCE BETWEEN TWO PROPORTIONS

One way to summarizethe data from Example 8.1 is to calculate the difference between
the two proportions. Disease progressed in 28Vo of placebo-treated subjects and in 16%o
of AZT-treated subjects. In our sample, the difference is 287o - 167o or 127o.

More generally, the difference between two proportions can be calculated with
Equation 8.1 using the variables A to D defined in Table 8.2. This kind of table is
called a contingency table.

Difference between proportions : A : Pr - Pz :
CA

( 8 . 1 )
A+B C + D

The equation to calculate the 957o CI for the difference is given at the end of the
chapter. For this example, the 95Vo CI of the difference is 6.7Vo to I7 .3Vo.If we assume
our subjects are representative of the larger population of adults infected with the HIV
but not yet symptomatic, we are 95Vo swe that treatment with AZT will reduce the
incidence of disease progression by somewhere between 6.7Vo and 17.37o. Note that
these calculations deal with the actual difference in incidence rates, not the relative

Table 8.2. Sample Contingency Table

Disease No Disease Total

Exposed or treated

Not exposed or placebo

Total

A
C
A + C

B
D
B + D

A + B
C + D
A + B + C + D
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change. When investigating a risk factor that might increase the risk of disease, the

difference between two incidence rates is called attributable risk*.

RETATIVE RISK

It is often more intuitive to think of the ratio of two proportions rather than the
difference. This ratio is termed the relative risk. The relative risk is the ratio of incidence

rates (Equation 8.2).

A

R e l a t i v e r i s k : P ' : A 1 8 .
P z C

C + D

(8.2)

Disease progressed in28Vo of placebo-treated subjects and in l6Vo of AZi[-treated

subjects. The ratio is l6%ol28vo or 0.57. In other words, subjects treated with AZT

were 577o as likely as placebo-treated subjects to have disease progression. A relative

risk between 0.0 and 1.0 means that the risk decreases with treatment (or exposure

to risk factor). A relative risk greater than 1.0 means that the risk increases. A relative

risk : 1.0 means that the risk is identical whether or not the subject was given the

treatment (or was exposed to the risk factor).
We could also have calculated the ratio the other way, as 287o/l6Vo, which is

1.75. This means that subjects receiving the placebo were 1.75 times more likely to

have disease progression than subjects receiving AZT. When interpreting relative risks,

make sure you know which group has the higher risk.
In this example, it is pretty clear that the risk refers to disease progression (rather

than lack of disease progression). In other contexts, one alternative outcome may not

be worse than the other, and the relative risft is more appropriately termed the relative

probability or relative rate. Because of this potential ambiguity, it is important to state

clearly what the relative risk refers to. Don't just blindly plug numbers into Equation

8.2. First make sure that the table is arranged in such away that the equation makes sense.

As always, a CI helps you interpret the data. The equation needed to calculate

the CI of relative risk is given later in the chapter, but the calculations are usually

done by computer. In the AZT example, the 95Vo CI of the relative risk is 0.44 to

O.74. Assuming that our sample is representative of the entire population, we can be

95Vo sure that the population relative risk lies within this range.

ASSUMPTIONS

To interpret the results of a prospective or experimental study you need to make the
following assumptions:

*The term attributable risft has been defined in four different ways. When you see the term in publications,

make sure you know what the authors are refening to. For more information on attributable risk, see Chapter

4 of HA Kahn, CT Sempos. Statistical Methods in Epidemiology. New York, Oxford University Press, 1989.
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' The subjects are randomly selected from a population, or at least are representative
of that population. The patients in the example were certainly not randomly selected,
but it is reasonable to think that they are representative of adult asymptomatic people
infected with the human immunodeficiency virus (HIV).*

' Each subject was selected independently of the rest. Picking one subject should not
influence the chance of picking anyone else. You want to pick each subject individu-
ally. You don't want to include several people from one family or clusters of individu-
als who are likely to have the same strain of HIV.

' The only difference between the two groups is exposure to the risk factor (prospective
study) or exposure to the treatment (experimental study). In this study subjects were
randomly assigned to receive drug or placebo, so there is no reason to think that the
two groups differ. But it is possible that, just by chance, the two groups differ
in important ways. In the paper the authors presented data showing that the two
groups were indistinguishable in terms of age, T-cell counts, sex, and HIV risk fac-
tors.

Of course, you also have to assume that the data were collected accurately and
that the outcome was defined reasonably. You also need to be aware of extrapolating
the conclusions too far. This study can tell you about disease progression as defined
by symptoms and CD4+ cell counts. It can not tell you about the variable you really
care about-survival. It's easy to forget this point and to generalize results too far. In
fact, some longer studies have shown that AZT therapy of asymptomatic patients may
not increase life span.

Statistical calculations usually analyze one outcome at a time. In this example,
the outcome was disease progression defined in a particular way. The investigators
measured other outcomes and analyzed these results too. They also looked at drug-
induced side effects. Before you reach an overall conclusion from this study, you need
to look at all the data. Even though statistical tests focus on one result at a time, you
need to integrate various results before reaching an overall conclusion.

HOW THE RELATIVE RISK CAN BE MISTEADING

The relative risk is useful because it summarizes results in one number. But this
simplification can also be misleading. One number is not really sufficient to summarize
the data.

Here is an example in which the relative risk is insufficient. What is the public
health importance of a vaccine that halves the risk of a particular infection? In other
words, the vaccinated subjects have a relative risk of 0.5 of getting that infection
compared with unvaccinated subjects. The answer depends on the prevalence of the
disease that the vaccine prevents. If the risk in unexposed people is 2 in l0 mil-
lion, then halving the risk to 1 in 10 million isn't so important. If the risk in unex-
posed people is 20Vo, then halving the risk to l07o would have immense public

xDon't confuse the two uses of the term random. Each subject was randomly assigned to receive drug or
placebo. They were not randomly selected from the population of all people with asymptomatic HIV infection.
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health consequences. The relative risk alone does not differentiate between the two
cases.

Expressing the data as the difference in risks (rather than the ratio) is more helpful
in this example. In the first example, the difference is 0.0000001; in the second case
it is 0.1. Since many people have trouble thinking intuitively about small fractions,
Laupacis and colleagues* have suggested taking the reciprocal of the difference and
term the reciprocal the number needed to treat or NNT. In our example, NNT :

10,000,000 for the first example and l0 in the second. In other words, to prevent one
case of disease you have to vaccinate 10 million people in the first case, and only 10
people in the second.

PROBABITITIES VERSUS ODDS

So far we have summarized the data in two ways (difference in risks and relative risk).
There is still another way to summarize the data, the odds ratio. Before you can learn
about odds ratios, you first need to learn about odds.

Likelihood can be expressed either as a probability or as odds.

' The probability that an event will occur is the fraction of times you expect to see
that event in many trials.

' The odds are defined as the probability that the event will occur divided by the
probability that the event will not occur.

Probabilities always range between 0 and 1. Odds may be any positive number
(or zero). A probability of 0 is the same as odds of 0. A probability of 0.5 is the same
as odds of 1.0. The probability of flipping a coin to heads is 5O7o. The odds are
"fifty:fifty," which equals 1.0. As the probability goes from 0.5 to 1.0, the odds
increase from 1.0 to approach infinity. For example, if the probability is 0.75, then the
odds are 75:25, three to one, or 3.0.

Probabilities and odds are two ways of expressing the same concept. Probabilities
can be converted to odds, and odds can be converted to probabilities. Convert between
probability and odds using Equations 8.3:

75

Odds _ probability

I - probability

Probability : 
odds

' | * odds'

(8.3)

In most contexts, there is no particular advantage to thinking about odds rather
than probabilities. Most people are more comfortable thinking about probabilities. But,
as you will see, there are a few situations where there is an advantage to using odds.

xA Laupacis, DL Saenett, RS Roberts. An assessment of clinically useful measures of the consequences of
treatment. N Engl J Med 318:1728-33, 1988.
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THE ODDS RATIO

For the AZT example, the odds of disease progression in the AZT-treated subjects is
0.19, and the odds of disease progression in the control patients is 0.39. The data can
be summarized by taking the ratio of these values, called the odds ratio. Compared
to control patients, the odds of disease progression in AZT-treated subjects is 0.19/
0.39, which equals 0.49. In other words, the odds of disease progression in AZT-
treated subjects is about half that of control patients.

More generally, the odds of the exposed (or treated) patients having the disease
is (Equation 8.4)

Odds of disease in exposed :ffi{: A/8.
(s.4)

Odds of disease in unexposed : 
ffi$: 

C/D.

odds ratio : 
odds in exposed : AlB

Odds in unexposed ClD.

If any of the values A through D are 0, Equation 8.5 cannot be calculated.
cases some investigators add 0.5 to each of the four values A through D

(8.s)

In such
before

calculating the odds ratio and its CI.
The equation needed to calculate the CI of the odds ratio is given later in this

chapter, but the calculations are usually performed by computer. The CI of the odds
ratio of our example is approximately 0.36 to 0.67. The interpretation should be familiar
to you. If our sample is representative of the entire population, we can be 95Vo sure
that the population odds ratio lies within that interval.

While most people find the idea of a relative risk pretty easy to grasp, they find
odds ratios to be a bit strange. When analyzing prospective studies, cross-sectional
studies, or experimental studies, there is no particular advantage to calculating an
odds ratio. As you'll see in the next chapter, odds ratios are essential when analyzing
retrospective case-control studies.

RELATIVE RISKS FROM SURVIVAT STUDIES

In Chapter 6, you learned how to plot survival curves for one group. How can you
compare survival in two groups? One way is to calculate the overall relative risk. If
the relative risk is 2.1, this means that subjects in one group died (on average) at a
rate 2.1 times that the other group.

Calculating a relative risk from survival curves is difficult. You can't use the
equations presented in this chapter because the subjects were not all followed for the
same length of time. Special methods are used, and the details are not presented in
this book. Even though the calculations are tricky, it is easy to interpret the relative
risk (and its 95Vo CI).

When calculated from survival data, the relative risk is often referred to as the
hazard ratio. See Chapter 33 for a more formal definition of hazard andhazard ratios.
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By summanzing two entire survival curyes with a single number, you are losing a lot

of information. The relative risk only gives the overall difference between the groups.

Look at the survival curves to see how the curves differ over time.

Rather than do complicated survival curve calculations, some investigators calcu-

late risk per person-year rather than per person. For example, if 5 people are followed

for 1 year, and 3 people are followed for 2 yearc, together you have 11 person-years

(5 X 1) + (3 X z).ltis only fair to calculate data this way when the risk is consistent

over time, so a subject followed for 2 years has twice the risk of a subject followed

for I year. See an epidemiology text for more details.

WHAT IS A CONTINGENCY TABTE?

The data from several kinds of studies can be presented on a contingency table. The

tables shown earlier in this chapter (Tables 8.1 and 8.2) are contingency tables. The

next chapter continues with analyses of contingency tables.
The rows and columns of contingency tables can have many different meanings,

depending on the experimental design. The rows usually represent exposure (or lack
of exposure) to treatments or putative risk factors. Columns usually denote alternative
outcomes. No matter what experimental design was used, the two rows must reprseent
mutually exclusive categories and the two columns must also be mutually exclusive.
Each "cell" in the table contains the number of subjects that are classified as part of
one particular column and row.

Not all tables with two rows and two columns are contingency tables. Contingency
tables show the number of subjects in various categories. Thus each number must be
an integer. Tables of fractions, proportions, percentages, averages, changes, or durations
are not contingency tables, and it would not make sense to calculate the relative risk
or odds ratio. This is an important point. Applying methods appropriate for contingency
tables to other kinds of data will generate meaningless results.

CATCULATING CONFIDENCE INTERVALS*

The equations for calculating CIs are a bit tedious and are best left to a computer. It
is very difficult to calculate the exact CI, even with a computer, so it is common to
approximate the intervals. If you want to calculate the approximate CI yourself, here
are the equations.

Ct of the Difference of Two Proportions

The equation for calculating the 95Vo CI for a difference between two proportions is
a straightforward extension of the one used for calculating the 95Vo Clof one proportion.

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuitv.
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To calculate the difference in incidence rates from a prospective or cross-sectional
study, use Equation 8.6:

A
P  P -'  

A + B  
- z

D : P r - P z

C + D

SE of difference :

95Vo Cl of difference :
(D - 1.96 x SE of difference) to (D + 1.96 x SE of difference). (8.6)

The equation is not valid when any of the values A through D is less than 5.

Cl of Relative Risk

Calculating the CI of a relative risk is not straightforward, and several methods have
been developed to calculate an approximate CI. The CI is not symmetrical around the
relative risk. This makes sense, as the relative risk can never be less than 0 but can
get very high. However, the CI of the logarithm of the relative risk is approximately
symmetrical. Katz's method takes advantage of this symmetry (Equation 8.7):

95VoClof  ln(RR):  ln(RR) 1- 1.96
B / A  D I C- + _

A + B  C + D .
(8.7)

This equation calculates the two 95Vo confidence limits of the natural logarithm of the
RR. Take the antilogarithm (e-) of each limit to determine the 95Va CI of the RR.

Odds Ratio

Like the relative risk, the CI of the odds ratio is not symmetrical. This makes sense,
as the odds ratio cannot be negative but can be any positive number. The asymmetry
is especially noticeable when the odds ratio is low.

Several methods can be used to calculate an approximate the CI of the odds ratio.
Woolf s method is shown in Equation 8.8:

95Vo CI of ln(OR) : ln(OR) -f 1.96
l l l l- + - + - + -
A B C D

(8.8)

This method calculates the symmetrical 957o CI of the natural logarithm of the OR.
Take the antilogarithm of both values to obtain the 95Vo CI of the OR.

SUMMARY

The results of cross-sectional, prospective, and some experimental studies can
displayed on contingency tables with two rows and two columns. The data can

be
be

Pr( l  -  Pr )  _r  P2(1 -  P2)
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summarized as the difference of two incidence rates (prevalence rates for cross-sectional

studies), or as the ratio of the incidence (or prevalence) rates. This ratio is called the

relative risk. you can calculate 957o confidence intervals for either the difference or

the ratio. The results can also be expressed as the odds ratio. However, there is little

advantage to presenting odds ratios from prospective, cross-sectional, or experimen-

tal studies.

oBf EcTlvEs

1. You should be familiar with the following terms:

. Prospective study

. Randomized double-blind studY

. Contingency table

. Relative risk

. Odds ratio

. Cross-sectional study

. Odds

2. You should be able to create a 2 X 2 contingency table from clinical data.

3. You should be able to recognize when a 2 X 2 table is a contingency table and

when it is not.
4. Without using a book, you should be able to calculate the relative risk.

5. You must be able to recognize data for which the relative risk cannot be meaning-

fully calculated.
6. Using a book and calculator, you should be able to calculate 95Vo CI for the relative

risk or the difference between two proportions.

PROBLEMS

1. The relative risk of death from lung cancers in smokers (compared with nonsmokers)

is about 10. The relative risk of death from coronary artery disease in smokers is

about 1.7. Does smoking cause more deaths from lung cancer or from coronary

artery disease in a population where the mortality rate in nonsmokers is 5/100,000

for lung cancer and 170/100,000 for coronary aftery disease?

2. Goran-Larsson et al. wondered whether hypermobile joints caused symptoms in

musicians.* They sent questionnaires to many musicians and asked about hypermo-

bility of the joints and about symptoms of pain and stiffness. They asked about all

joints, but this problem concerns only the data they collected about the wrists. Of

96 musicians with hypermobile wrists, 5Vo had pain and stiffness of the wrists. In

contrast, ISVo of 564 musicians without hypermobility had such symptoms.

A. Is this a prospective, retrospective, or cross-sectional study?

B. Analyze these data as fully as possible.

*L Goran-Larsson, J Baum, GS Mudholkar, GD Lokkia. Benefits and disadvantages gf joint hypermobility

among musicians. N Engl J Med 329:1079-1082,1993.
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The same number of cells (100,000 per ml) were placed into four flasks. Two cell
lines were used. Some flasks were treated with d*g, while the others were treated
only with vehicle (control). The data in the following table are mean cell counts
(thousands per milliliter) after 24 hours. Analyze these data as fully as possible. If
you had access to all the original data, how else might you wish to summarize
the findings?

No drug Drug

Cell line I
Cell line 2

145
2s6

198
356

4. Cohen et al. investigated the use of active cardiopulmonary resuscitation (CpR).*
In standard CPR the resuscitator compresses the victim's chest to force the heart
to pump blood to the brain (and elsewhere) and then lets go to let the chest expand.
Active CPR is done with a suction device. This enables the resuscitator to pull up
on the chest to expand it as well as pressing down to compress it. These investigators
randomly assigned cardiac arrest patients to receive either standard or active CpR.
Eighteen of 29 patients treated with active CPR were resuscitated. In contrast, l0
of 33 patients treated with standard cpR were resuscitated.
A. Is this a cross-sectional, prospective, retrospective, or experimental study?
B. Analyze these data as you see fit.

In a letter in Nature (356:992, 1992) it was suggested that artists had more sons
than daughters. Searching Who's Who in Art, the author found that arists had lB34
sons and 1640 daughters, a ratio of 1.1 18. As a comparison group, the investigator
looked at the first4002 children of nonartists listed inWho's Who and found that
the ratio of sons/daughters was 1.0460. Do you think the excess of sons among the
offspring of artists is a coincidence?

*TJ Cohen, BG Goldner, PC Maccaro, AP Ardito, S Trazzera, MB Cohen, SR Dibs. A comparison of active
compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for
cardiac :urests occurring in the hospital. N Engl J Med 329:l9l}-l9zl, lgg3.

5 .
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Confidence Interval of the Ratio
of Two Proportions:

Case-Control Studles

WHAT IS A CASE-CONTROI STUDY?

Example 9.1

Cat scratch disease causes swollen lymph nodes. As the name suggests, it usually

follows a scratch from a cat. Although it is usually a mild condition, thousands of

people are hospitalized for it each year. Zangwill et al. studied risk factors for the

disease.* One of their goals was to find out whether cat scratch disease is more likely

in owners of cats with fleas. If so, it would make sense to do further studies to find

out if the organism causing the disease is spread by fleas rather than cats. To perform

a prospective study, they would need to follow a large group of cat owners and see

who gets cat scratch disease. Since only a small proportion of cat owners get the

disease, they would need to follow a large group of people for a long time. Rather

than do that, the authors used an alternative approach. They performed a case-control

study. They sent a letter to all primary care physicians in the state asking them to

report all cases of cat scratch disease they had seen in the last year. They then called

random phone numbers to find cat owners who did not have cat scratch disease. They

asked both groups whether their cats had fleas.
This kind of study is called a case-control study, because the investigators pick

cases and controls to study. It is also called a retrospective study, because the investiga-

tors start with the disease and look back in time to try to learn about the cause.

The results are summarized in Table 9.1.
This looks very similar to the contingency table from the previous example (AZT).

But there is a big difference. In the AZT example, the investigators set the row totals

by choosing how many subjects got each treatment. In this example, the investigators

set the column totals by choosing how many cases and controls to study.

*KM Zangwill, DH Hamilton, BA Perkins, et al. Cat scratch disease in Connecticut. N Engl J Med

329:8-13,1993.



82 COMPARING CROUPS WITH CONFIDENCE INTERVALS

Table 9.1. Results of Example 9.1

Cases Controls
(Cat Scratch Disease) (Healthy)

Cat with fleas?
Yes
No

Total

32
24
56

4
52
56

WHY CAN'T YOU CATCUI.ATE THE REIATIVE RISK FROM
CASE-CONTROI DATA?

You shouldn't try to calculate the relative risk from a case-control study. Here's why.
In a case-control study, the investigator selects subjects known to have the disease or
known to be disease free. Therefore the study gives no information at all about the
risk or incidence of getting the disease. If you want to know about risk, you have to
select subjects based on exposure to a treatment or toxin, and then find out whether
they get the disease. In a case-control study, you select patients because you know
they have the disease, so you can't use the data to determine the risk or relative risk.

If you were to try to plug these numbers into Equation 8.2 to calculate a relative
risk, your first step would be to calculate the risk that someone whose cat had fleas
would get the disease as 32/(32 + 4). But this is not a helpful calculation. The authors
happened to choose to study an equal number of cases and controls. They could just
as easily have chosen to study twice as many controls. If they had done so, they would
probably have found that about 8 of the 1 12 subjects recalled fleas. Now the risk would
be calculated as 32(32 + 8), and the relative risk would have been different. Calculating
the relative risk from case-control studies does not lead to a meaningful result.

HOW TO INTERPRET THE ODDS RATIO

How then can you summarize data from a case-control study? The answer is surprising.
Although the relative risk equation does not work with case-control data, you can
meaningfully calculate the odds ratio from retrospective studies. Moreover, if the
disease is fairly rare (affects less than a few percent of the population studied), then
the odds ratio calculated from a case-control study will be approximately equal to the
true relative risk. This is a surprising conclusion, and I'll prove it in the next section
with algebra. It's such an important idea that it is worth repeating and emphasizing:
If the disease is fairly rare, then the odds ratio calculated from a case-control study
will approximately equal the true relative risk.

For this example, the odds ratio is 17.3.It we assume that cat scratch disease is
rare among cat owners,* we can conclude that owners of cats with fleas are approxi-

*Other data tells us that this is a reasonable assumption. The case-control study tells us nothing about
whether cat scratch disease is common or rare among cat owners. Since we are only studying the population
of cat owners, the incidence of the disease in other populations (or the general population) is inelevant.
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mately 17.3 times more likely to get cat scratch disease than owners of cats without

fleas. An equation for calculating the 95Vo confidence interval (CI) is shown at the end

of the chapter. For this example, the 95Vo CI of the odds ratio ranges from 5.5 to 54.6.

In the overall population, we can be957o sure the true odds ratio is somewhere between

5.5 and 54.6. Because this range is so wide, some might say that the study is quite

inconclusive. Others would point out that even if the true odds ratio is near the lower

end of the CI, it is still substantial (fivefold increase in risk). Even though the study

is too small to determine the true odds ratio very exactly, it shows clearly that the true

odds ratio is almost certainly far from 1.0.

WHY THE ODDS RATIO FROM A CASE.CONTROT STUDY

APPROXIMATES THE REAL RELATIVE RISK*

In the last section, I stated (but did not prove) an important point: If the disease is

fairly rare, then the odds ratio calculated from a case-control study will approximately

equal the true relative risk. Here I'11 prove the point. Imagine what would happen if

we collected data from all cat owners in the state to find out whether they get cat

scratch disease. The data would look like Table 9.2.

This is called a cross-sectional study. We don't pick subjects based on either row

variable (fleas vs. no fleas) or column variable (disease or not). We just pick subjects

from the population of interest (cat owners) and determine all the numbers.

If we had all this data, we could easily calculate the relative risk of cat scratch

disease in the kitten owners aS compared to the cat owners as follows:

A + B (e . l )Relative risk :

C + D

If we assume that cat scratch disease is rare among the population of cat owners,

then A must be much smaller than B, and C must be much smaller than D. In this

case, Equation 9.1 can be simplified as shown in Equation9.2. This equation shows

that the relative risk and the odds ratio are approximately equal when calculated from

cross-sectional studies of rare diseases:

A

C

AA
^  + B - B : o d d s r a t i o .

Relative risk : aa 
C

C+D D

(e.2)

When performing the case-control study, the investigators choose the relative

number of cases and controls. In other words, the investigators choose the column

totals. Of all the cases, they chose some fraction (we'11 call it M) of them to study. In

this study, M is probably a pretty big fraction because the investigators attempted to

study all cases in the state. Of all the healthy cat owners in the state, the investigators

*This section is more advanced than the rest. You may skip it without loss of continuity.
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Table 9.2. Hypothetical Cross-Sectional Data

Cross-sectional
Cat Scratch

Disease Healthy

Fleas
No fleas
Total

A
C
A + C

B
D
B + D

A + B
C + D
N : A + B + C + D

studied some fraction (we'll call it K) of them. For this studv. K
The data are given in Table 9.3.

a tiny fraction.

This table has six variables (A, B, C, D, M, K) but we don't know any of them.
The only way we could know A through D would be to a full cross-sectional study.
We know the total number of cases and controls we studied (the column totals), but
we don't know what fraction of all cases and controls in the state these represent. So
w e d o n ' t k n o w K a n d M .  w e d o k n o w t h a t A  *  M :  3 z , t h a t B  *  K : 4 . t h a t c  *
M - 24, and that D * K : 52.

Equation 9.3 calculates the odds ratio from our cross-sectional data:

2." '  l4
Odds ratio : JL ' -

2 4 t 5 2
17.3.

-  A / B

(e.3)

Odds ratio :
A M / B K
C M / D K  C / D '

The values of K and M (which you don't know but were set by your experimental
design) drop out of the calculations. The odds ratio calculated from the case-control
study is identical to the odds ratio you would have calculated from a cross-sectional
study. We have already seen that the odds ratio from a cross-sectional study has a
value very close to the relative risk when the disease is rare. So now we have shown
that the odds ratio calculated from a case-control study has a value very close to the
relative risk you would have calculated from a cross-sectional study.*

Using the same nomenclature, let's review why direct calculations of relative risk
are not useful with data from a case-control study. Equation 9.4 shows that the values
of K and M do not drop out of the relative risk calculations. Therefore the value you
come up with depends in part on the ratio of cases to controls you chose to use. The
relative risk value is not meaningful:

AM
A M + B K  - A + B

K e t a n v e f l s K :  + - (e.4)
CM

C M + D K  C + D

*This analysis neglects the contribution of sampling variation. Any particular odds ratio from a case-control
study may be higher or lower than the true relative risk. On average, the odds ratio from a case-control
study will equal the relative risk.

A

C
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Table 9.3. Hypothetical Retrospective Data

Retrospective Controls

Exposed
Not exposed
Total

A * M
C X M

( A + g ; x 1 4

B * K
D X K
( B + D ) * K

ADVANTAGES AND DISADVANTAGES OF
CASE.CONTROT STUDIES

The advantages of case-control studies are clear:

' They require fewer subjects than prospective studies. To perform a prospective study
of the cat scratch example, you'd need to start with many more subjects because
only a small fraction of cat owners get cat scratch disease.

' They can be performed more quickly. You don't have to wait for the natural history
of the disease to unfold. You start with the disease and look back at risk factors.
The time required to complete the study depends on the number of subjects and on
the energy and resources of the investigators.

' You can perform some case-control studies by examining existing records. You can
identify appropriate cases and controls through hospital records and often find the
information about exposure or risk by reading their medical charts.

The problem with case-control studies is that it is hard to pick the right controls. You
want to control for extraneous factors that might confuse the results but not control
away the effects you are looking for.

In the cat scratch example, the authors picked controls by dialing random phone
numbers. If the person answering owned a cat (and was of the correct age), he or she
was invited to become part of the study by answering some questions. There are some
problems with this approach:

' The controls were picked because they owned a cat or kitten. Therefore, the study
could not determine anything about the association of cats with the disease.

' The controls were picked to have the same age as the subjects. Therefore, the study
could not determine anything about whether age is a risk factor.

' The subjects obviously know whether or not they had suffered from cat scratch
disease. The cases (those who had the disease) may recall their cats more vividlv
than do the controls.

' The interviewers knew whether they were talking to a control subject or to a case
(someone who had cat scratch disease). Although they tried to ask the questions
consistently, they may have inadvertently used different emphasis with the cases.

' The subjects had suffered from cat scratch disease and may be motivated to help the
researchers learn more about the disease. The controls just happened to answer the
phone at the wrong time. They probably never heard of cat scratch disease, and their
main motive may be to end the interview as quickly as possible. Thus cases and
controls may not give equally detailed or accurate information.



86 COMPARING CROUPS WITH CONFIDENCE INTERVALS

. The only way patients became part of the study was through physician referral. The
study did not include people who had mild cases of the disease and did not seek
medical attention. Not everyone who is sick seeks medical attention, and this study
selects for people who go to doctors when mildly ill. This selection criteria was not
applied to the controls.

. The only way that controls became part of the study was to be home when the
investigators randomly dialed their phone number. This method selects for people
who stay home a lot and for people who have more than one phone line. It selects
against people who don't have phones, who travel a lot, or who screen their calls
with answering machines. None of these selection criteria were applied to the cases.

It would be easy to design a study to circumvent some of the problems listed

above, but you'd probably introduce new problems in the process. And you don't want

to match cases and controls too carefully, or you may match away the variable you

care about (if they had matched for whether cats had fleas, they couldn't have asked

about the association of fleas and the disease). As a result, it is usually possible to find

an alternative explanation for case-control data, and often these alternative explanations

are plausible. Here are five alternative explanations for the data in the cat scratch study:

. Cat scratch disease is caused by an organism spread by fleas. This is the hypothesis

the investigators believe.
. The patients knew that they had gotten sick from their cat and thus have more vivid

memories of their cats. Because they have a personal interest in cat scratch disease,

they are likely to think more carefully about their answers to the investigators'
questions. The two groups of cats may have had equal numbers of fleas, but the

patients may be more likely to remember them than the controls.
. Fleas are more common in rural areas of the state, and cats in rural areas ate mote

apt to be bitten by ticks. Perhaps ticks are the real vector of the disease.
. The controls are more apt to stay home (and to have been home when the investigators

called, see above) and thus interact with their cats more. The patients travel more

and were more apt to get scratched when they came home.
. The patients are more apt to go to doctors for mild illnesses. Perhaps they are also

more likely to take medications when they have a cold or flu. Perhaps their cats hate

the smell of one of these medications and thus are apt to scratch their owner.

The first two explanations seem plausible. The next three are a bit far fetched, but not

impossible. The point is that case-control data are rarely definitive. Case-control studies

are a terrific way to test new hypotheses, but prospective studies are usually needed

for definitive results.

ASSUMPTIONS IN CASE.CONTROL STUDIES

To interpret the results of a case-control study you need to make the following

assumptions:

. The cases and controls are randomly selected from the populations, or at least are

representative of those populations. In our example, the controls were picked by

dialing random phone numbers and so are a fairly random sample. The cases were
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not randomly selected. But it is reasonable to think that cat owners in Connecticut
are representative of cat owners elsewhere.
Each subject was selected independently of the rest. Picking one subject should not
influence the chance of picking anyone else. You wouldn't want to include several
subjects from one family, because they are all exposed to the same cat.
When selecting controls, you have not selected subjects that differ systematically
from the cases in any way except for the absence of disease. As we have discussed,
it is very difficult to be sure a case-control study has complied with this assumption.

MATCHED PAIRS

In a standard case-control study, the investigator compares a group of controls with a
group of cases. As a group, the controls are supposed to be similar to the cases (except
for the absence of disease). Another way to perform a case-control study is to match
individual cases with individual controls based on age, gender, occupation, location,
and other relevant variables.

Displaying and analyzing data from matched case-control studies obscures the
fact that the cases and controls were matched. Matching makes the experiment stronger,
so the analysis ought to take it into account.

An alternative way of tabulating the data to emphasize the matching is shown in
Table 9.4.

In this graphic example, the investigators studied 134 cases and 134 matched
controls. Each entry in the table represents one pair (a case and a control). This is not
a contingency table, so the usual equations are not valid. It turns out that the odds
ratio can be calculated very simply. The 13 pairs in which both cases and controls
were exposed to the risk factor provide no information about the association between
risk factor and disease. Similarly, the 92 pairs in which both cases and controls were
not exposed to the risk factor provide no information. The odds ratio is calculated as
the ratio of only the other two values: pairs in which the control has the risk factor
but the case doesn't and pairs in which the case has the risk factor but the control
doesn't. In this example the odds ratio for the risk factor being associated with disease
is 25/4 : 6.25. The 957o CI of the odds ratio is 2.18 to 17.81 (rhe equations are
given below).

You can interpret the odds ratio from a matched case-control study just as you
would interpret the odds ratio from an ordinary case-control study. If we assume that
the disease is fairly rare, then we can conclude that exposure to the risk factor increases

Table 9.4. A Matched Pairs Case-Control Studv

Cases

Risk Factor * Risk Factor -

Controls
Risk factor *
Risk factor -

1 3 4
25 92



COMPARING CROUPS WITH CONFIDENCE INTERVALS

one's risk 6.25-fold. We can be 95Vo sure that the true odds ratio lies between 2.18
and 17.81.

CATCULATING THE 95% CI OF AN ODDS RATIO

Unpaired Studies

Several methods can be used to calculate an approximate CI interval of the odds ratio.
Woolf s method is shown in Equation 9.5:

95Vo CI of ln(OR):

1  1  I  1 \
n*s*c*o / 'o

I  I  I  l \. r _ - r _ | .
A B C D /

.A+l 'o('nro*'/
95vo CI of ln(oR): (ln(OR) 

-

(*,o*, - 1 e6

(t"to*l + r.e6

(e.5)

This method calculates the symmetrical95Vo CI of the natural logarithm of the OR.
Take the antilogarithm of both values to obtain the asymmetrical 95Vo Cl of the OR.
Asymmetrical means that the interval is not centered on the OR.

Paired Studies

The odds ratio is calculated from the number of discordant pairs (one subject exposed
to the risk factor, the other not). Call these two numbers R and S. The odds ratio is
R/S. To calculate the 95Vo CI, calculate the symmetrical approximate CI of the log
odds ratio using Equation 9.6 and then convert back:

r.96 + 1.96

(e.6)

SUMMARY

In a case-control study (also called retrospeclive studies) the investigators work back-

wards and start with the outcome. They compare two groups of subjects. One group

has the disease or condition being studied. These are the cases. The other group is

selected to be similar in many ways, but not to have the condition. These are the

controls. The investigators then look back in time to compare the exposure of the

two groups to a possible risk factor. The results are best summarized as an odds ratio,

with its CI. While it is meaningless to calculate a relative risk from a case-control

study, the odds ratio can be interpreted just like a relative risk so long as the in-

cidence of the disease is low. In some studies, individual cases and controls are

matched. When this is done, special equations should be used to compute the odds

ratio.

i. *)



CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROPORTIONS

oBlEcTrvEs

1. You should be familiar with the following terms:
. Contingency table
. Odds ratio
. Prospective
. Retrospective

2. Without using a book, you should be able to convert between odds and probability.
3. You should be able to create 2 X 2 tables from clinical data.
4. You should be able to recognize when a 2 X 2 table is a contingency table and

when it is not.
5. Without using a book, you should be able to calculate the odds ratio.
6. You must be able to recognize data for which the relative risk cannot be meaning-

fully calculated.
7. Using a book and calculator, you should be able to calculateg\Vo CI for the odds ratio.
8. You should be able to recognize data for which a paired analysis is appropriate.

PROBTEMS

l. Can an odds ratio be greater than one? Negative? Zero?
2. Can the logarithm of the odds ratio be greater than one? Negative? Zero?
3. Gessner and colleagues investigated an outbreak of illness in an Alaskan commu-

nity.* They suspected that one of the town's two water supplies delivered too much
fluoride, leading to fluoride poisoning. They compared 38 cases with 50 controls.
Thirty-three of the cases recalled drinking water from water system l, while only
four of the controls had drunk water from that system.

Analyze these data as you think is appropriate. State your assumptions.

How could these investigators have conducted a prospective study to test their
hypothesis?

*BD Gessner, M Beller, JP Middaugh, GM Whitford. Acute fluoride poisoning from a public water system.
N Engl J Med 33O:95-99, 1994.
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INTRODUCTION
TO P VALUES

I've put it off for nine chapters, but I can't delay any longer. It's time to
confront P values. If you've had any exposure to statistics before, you've
probably already heard about P values and statistical significance. It's time to
learn what these phrases really mean. These chapters explain P values generally,
without explaining any particular statistical tests in any detail. You'll learn
more about specific tests in Part VII.
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WhatlsaPValue?

INTRODUCTION TO P VALUES

When using statistics to compare two groups, there are two approaches you can use:

. You've already learned about one approach-calculating the confidence interval (CI)
for the difference between means or the difference (or ratio) of two proportions.
With this approach, you are focusing on the question: "How large is the difference
in the overall population?" You start with the difference (or ratio) you know in the
sample, and calculate a zone of uncertainty (the 95Vo CI) for the overall population.

. This chapter introduces you to the second approach, calculating P values. This
approach focuses on a different question: "How sure are we that there is, in fact, a
difference between the populations?" You observed a difference in your samples,
but it may be that the difference is due to a coincidence of random sampling rather
than due to a real difference between the populations. Statistical calculations cannot
tell you whether that kind of coincidence has occurred but can tell you how rare
such a coincidence would be.

Calculations of P values and CIs are based on the same statistical principles and
the same assumptions. The two approaches are complementary. In this book, I separated
the two approaches to aid learning. When analyzing data, the two approaches should
be used together. The easiest way to understand P values is to follow an example.

A SIMPIE EXAMPTE: BLOOD PRESSURE lN MEDICAI STUDENTS*

You want to test whether systolic blood pressure differs between first- and second-
year medical students (MSl and MS2, respectively). Perhaps the stress of medical
school increases blood pressure. Measuring the blood pressure in the entire class seems
like a lot of work for a preliminary study, so instead you randomly selected five students
from each class and measured his or her systolic blood pressure rounded to the nearest
5 mmHg:

MSl :  120,  80 ,  90 ,  110,95

MS2: 105, l30, 145, 125, lI5

*You've already encountered these fake data in Example 5.2,and you'll see them again late in the book.
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First you should look at the data. It helps to see a graph. Figure 10.1 shows blood
pressures for each individual. Clearly the blood pressure tends to be lower in the first-
year students than in the second-year students, although the two overlap. The mean
values are 99 for MSI and I24 for MS2. The difference between the mean values is
25 mmHg.

Figure 10.2 shows only the mean and standard error of the mean (SEM). Note
how easy it is to be misled by the SEM error bars. It is easy to forget that the SEM
error bars do not directly show you the scatter of the data. Biomedical research papers
often show data in the format of Figure 10.2, even though the format of 10.1 is more
informative. To make any sense at all of Figure 10.2, you would need to read the
figure legend or the methods section to find out the sample size and whether the error
bars represented standard deviation (SD) or SEM (or something else). The right half

of Figure 10.2 also shows mean and SEM, but the Y axis doesn't begin at 0. This

appears to magnify the difference between the two classes. If you don't notice the

scale of the axis, you could be deceived by the right half of Figure 10.2.
Next, you should think about the biological or clinical implications of the data.

A change of 25 mmHg in blood pressure is substantial and would have important
clinical ramifications if the difference were consistent. This interpretation does not

come from any statistical calculation; it comes from knowing about blood pressure.

In contrast, a change of 25 units in some other variable might be trivial. Statistical
calculations can't determine whether differences are clinically or scientifically
important.

Before continuing with data analysis, you need to think about the design of the
study. Were the data collected in a way that any further analysis is useful? In this

Figure 10.1. Sample data shown on a column scatter graph. Each square shows the systolic

blood pressure of one first-year student (MSl). Each triangle shows the systolic blood pressure

of one second-year student (MS2).
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Figure 10.2. Sample data shown on a bar graph. This graph shows the mean and standard error
of the blood pressures for the two samples. In the left panel, the Y axis begins at 0. In the right
panel, the difference between the two means appears to be amplified because the axis doesn't
begin at 0' You can be misled by this kind of graph unless you notice where the axis begins.
You can't interpret these graphs unless you know that the error bar represents the standard error.

study, you would need to know how the students were selected and how their blood
pressure was measured. We've already discussed this problem in Chapter 3. Let's
assume that the experimental design was impeccable.

Two possible explanations remain for the difference between the two samples.
The first possibility is that the overall populations of MSls and MS2s have identical
distributions of blood pressures, and that the difference observed in this experiment
was just a coincidence-we just happened to select MS2s with higher blood pressure.
The second possibility is that the mean systolic blood pressure of MS2s is realiy higher
than that of MSls. Before believing that these data represent a real differrnr., *,
would like to ask "what is the probability that the difference is due to chance?,'
Unfortunately, statistical calculations cannot answer that question.

Instead, statistical calculations can answer a related question: If one assumes that
the distribution of blood pressure is identical in the two populations, what is the
probability that the difference between the means of randomly selected subjects will
be as large or larger than actually observed? The answer to this question is a probability,
the P value.

There are several methods to calculate the P value, and these will be discussed
later in the book. The general approach can be summarized as follows:

1. Assume that the individuals measured (the samples) are randomly selected from a
larger group (the populations). If the subjects weren't randomly selected, at least
assume that the subjects are representative of a larger population. Furthennore,
assume that the experimental design is without biases or flaws.
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INTRODUCTION TO P VALUES

Tentatively hypothesize that the distribution of values in the two populations are
the same. This hypothesis is called the null hypothesis, sometimes abbreviated H".
Most likely, the investigator did not believe (or did not want to believe) the null
hypothesis. Rather, the investigator's experimental hypothesis (the whole reason
for doing the experiment) was that the populations are different. This is sometimes
called the experimental or alternative hypothesis.
Assuming the null hypothesis is true, calculate the likelihood of observing various
possible results. You can use several methods (discussed laterin this book) depending
on the nature of the data and on which additional assumptions you are willing
to make.
Determine the fraction of those possible results in which the difference between
means is as large or larger than you observed. The answer is given in the form of
a probability, called the P value.

Thinking about P values seems quite counterintuitive at first, as you must use
backwards, awkward logic. Unless you are a lawyer or a Talmudic scholar used to
this sort of argument by contradiction, you will probably find this sort of reasoning a
bit uncomfortable. Four aspects are awkward:

. The hypothesis you are testing (the null hypothesis) is opposite to the hypothesis the
experimenter expects or hopes to be true.

. Although mathematicians are comfortable with the idea of probability distributions,
clinicians and scientists find it strange to calculate the theoretical probability distribu-

tion of the results of experiments that will never be performed.
. The derivation of the theoretical probability distributions depends on mathematics

beyond the ready reach of most scientists.
. The logic goes in a direction that seems intuitively backwards. You observed a

sample and want to make inferences about the population. Calculations of the P value

start with an assumption about the population (the null hypothesis) and determine

the probability of randomly selecting samples with as large a difference as you ob-

served.

This book will present three methods for calculating a P value to compare a

measured variable in two groups (t test, randomization test, and Mann-Whitney test).

The t test is used most commonly. By plugging the data from our example into a

computer program, we would learn that the P value is 0.034 (two tailed, see below).

Interpreting the P value is straightforward. If this null hypothesis were true, then

3.4Vo of all possible experiments of this size would result in a difference between mean

blood pressures as large as (or larger) than we observed. In other words, if the null

hypothesis were true, there is only a3.4%o chance of randomly selecting samples whose

means are as far apart (or further) than we observed.
What conclusion should you reach? That's up to you. Statistical calculations

provides the P value. You have to interpret it. Assuming that the study design was

perfect, there are two possibilities: One possibility is that the two populations have

different mean blood pressures. The other possibility is that the two populations are

identical, and the observed difference is a coincidence of sampling. Statistical calcula-

tions determine how rare that coincidence would be. In this example we can say
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that such a coincidence will occur 3.4Vo of the time if there really is no difference

between populations.
Often, the P value is used to make a statement about statistical significance. This

is explained in the next chapter.

OTHER NUIL HYPOTHESES

When we compare the means of two groups, the null hypothesis is that the two
populations have identical means. When you make other kinds of comparisons, the
null hypotheses are logical:

. When you compare two proportions, the null hypothesis is that the two proportions

are identical in the population.
. When you compare two survival curves, the null hypothesis is that the two survival

curves are identical in the population.

COMMON MISINTERPRETATIONS OF P VATUES

P values are easy to misinterpret. The best way to avoid misinterpreting the P value
is to keep firmly in mind what it does tell you: The P value is the probability of getting
a difference as big (or bigger) than you got if the null hypothesis is really correct.
Thus, a P value of 0.03 means that even if the two populations have identical means,
3Vo of experiments like the one you conducted would yield a difference at least as
large as you found.

It is very tempting to jump from this and say, "Oh, well, if there is only a 3Vo
probability that my difference would have been caused by random chance, then there
must be a97Vo probability that it was caused by a real difference." Wrong! What you
can say is that if the null hypothesis were true, then 977o of experiments would lead
to a difference smaller than the one you observed, and 3Vo of experiments would lead
to a difference as large or larger than the one you observed.

Calculation of a P value is predicated on the assumption that the null hypothesis
is correct. P values cannot tell you whether this assumption is correct. P value tells
you how rarely you would observe a difference as larger or larger than the one you
observed if the null hypothesis were true. The question that the scientist must answer
is whether the result is so unlikely that the null hypothesis should be discarded.

ONE.TAITED VERSUS TWO-TAIIED P VATUES

A two-tailed P value is the probability (assuming the null hypothesis) that random
sampling would lead to a difference as large as or larger than the observed difference
with either group having the larger mean. A one-tailed P value, in contrast, is the
probability (assuming the null hypothesis) that random sampling would lead to a
difference as large as or larger than the observed difference, and that the group specified
in advance by the experimental hypothesis has the larger mean.



98 INTRODUCTION TO P VALUES

If the observed difference went in the direction predicted by the experimental
hypothesis, the one-tailed P value is half the two-tailed P value.* The terms one-sided
and two-sided P values are equivalent to one and two tails.

In the blood pressure example, I chose to use a two-tailed P value. Thus the P
value answers this question: If the null hypothesis is true, what is the chance that the
difference between two randomly selected samples of five subjects would have been
25 mmHg or greater with either group having the higher mean BP. A one-tailed P
value is the probability (under the null hypothesis) of observing a difference of 25
mmHg or greater, with the second-year class having the larger mean value.

A one-tailed test is appropriate when previous data, physical limitations, or com-
mon sense tells you that the difference, if any, can only go in one direction. Here is

an example in which you might appropriately choose a one-tailed P value: You are
testing whether a new antibiotic impairs renal function, as measured by serum creatinine.
Many antibiotics poison kidney cells, resulting in reduced glomerular filtration and
increased serum creatinine. As far as I know, no antibiotic is known to decrease serum

creatinine, and it is hard to imagine a mechanism by which an antibiotic would increase

the glomerular filtration rate. Before collecting any data, you can state that there are

two possibilities: Either the drug will not change the mean serum creatinine of the
population, or it will increase the mean serum creatinine in the population. You consider

it impossible that the drug will truly decrease mean serum creatinine of the population

and plan to attribute any observed decrease to random sampling. Accordingly, it makes

sense to calculate a one-tailed P value. In this example, a two-tailed P value tests the

null hypothesis that the drug does not alter the creatinine level; a one-tailed P value

tests the null hypothesis that the drug does not increase the creatinine level.

Statisticians disagree about when to use one- versus two-tailed P values. One ex-

treme position is that it is almost never acceptable to report a one-tailed P value-that

a one-tailed P value should be reported only when it is physically impossible for a

difference to go in a certain direction. Thus a two-tailed P value ought to be used in

the preceding example, because a drug-induced decrease in serum creatinine is not

impossible (although it is unprecedented and unexplainable).
The other extreme position is that one-tailed P values are almost always appro-

priate. The argument is that formal studies (requiring formal statistical analysis) should

only be performed after the investigator has proposed an experimental hypothesis based

on theory and previous data. Such a hypothesis should specify which group should

have the larger mean (or larger proportion, or longer survival, etc.). Indeed one could

question whether taxpayer's money should be spent on research so vaguely conceived

that the direction of the expected difference can't be specified in advance.

The issue here in deciding between one- and two-tailed tests is not whether or

not you expect a difference to exist. If you already knew whether or not there was a

difference, there is no reason to collect the data. Rather, the issue is whether the

direction of a difference (if there is one) can only go one way. You should only use

a one-tailed P value when you can state with certainty (and before collecting any data)

that in the overall populations there either is no difference or there is a difference in

a specified direction. If your data end up showing a difference in the "wrong" direction,

you should be willing to attribute that difference to random sampling without even

*There are exceptions, such as Fisher's exact test.
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considering the notion that the measured difference might reflect a true difference in
the overall populations. If a difference in the "wrong" direction would intrigue you
(even a little), you should calculate a two-tailed P value.

Two-tailed P values are used more frequently than one-tailed P values. I have
chosen to use only two-tailed P values for this book for the following reasons:

. The relationship between P values and confidence intervals is more clear with two-
tailed P values.

. Two-tailed P values are larger (more conservative). Since many experiments do not
completely comply with all the assumptions on which the statistical calculations are
based, many P values are smaller than they ought to be. Using the larger two-tailed
P value partially corrects for this.

. Some tests compare three or more groups, which makes the concept of tails inappropri-
ate (more precisely, the P value has more than two tails). A two-tailed P value is
more consistent with P values reported by these tests.

. Choosing one-tailed P values can put you in awkward situations. If you decided to
calculate a one-tailed P value, what would you do if you observed a large difference
in the opposite direction to the experimental hypothesis? To be honest, you should
state that the P value is large and you found "no significant difference." But most
people would find this hard. Instead, they'd be tempted to switch to a two-tailed P
value, or stick with a one-tailed P value, but change the direction of the hypothesis.
You avoid this temptation by choosing two-tailed P values in the first place.

When interpreting published P values, note whether they are calculated for one or two
tails. If the author didn't say, the result is somewhat ambiguous. The terms one-sided
and two-sided P values mean exactly the same thing as one-tailed and two-tailed
P values.

EXAMPTE 10.1.  COMPARINC TWO PROPORTIONS FROM AN
EXPERIMENTAT STUDY

Later in the book (Part VII), you'll learn how to calculate many common statistical
tests. But you can interpret P values without knowing too much about the individual
tests. This example and the next four show you real examples of P values and how to
interpret them.

This example uses the same data as example 8.1. This study compared disease
progression in asymptomatic people infected with HIV. The relative risk was 0.57.
This means that disease progressed in 57Vo as many treated patients as placebo-
treated patients.

The null hypothesis is that AZT does not alter the probability of disease progres-
sion. We want to calculate the P value that answers this question: If the null hypothesis
were true, what is the chance that random sampling of subjects would result in incidence
rates different (or more so) from what we observed? The P value depends on sample
size and on how far the relative risk is away from 1.0.

You can calculate the P value using two different tests: Fisher's exact test or the
chi-square test. Both tests will be described in Chapter 27,but you don't need to know
much about the tests to interpret the results. The chi-square test is used more often,
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but only because it is easier to calculate by hand. Fisher's test calculates a more accurate
P value and is preferred when computers do the calculating. The results from InStat
are given in Table 10.1.

The P value is tiny, less than 0.0001. If you had chosen the chi-square test rather
than Fisher's test, the P value would still have been less than 0.0001.

Interpreting the P value is straightforward: If the null hypothesis is true, there is
less than a O.OLVo chance of randomly picking subjects with such a large (or targer)
difference in incidence rates. Note that InStat (like most statistical programs) also
makes a statement about statistical significance. You'll learn what that means in the
next chapter.

To interpret the P value you need to make the following assumptions:

. The subjects represent the population of all people who are infected with the HIV
but have no symptoms who are or will be treated with AZT or placebo.

. Each subject was selected independently of the rest. Picking one subject should not
influence the chance of picking anyone else.

. The only difference between the two groups is the treatment.

Are you ready to recommend AZT to these patients? Before deciding, remember
that AZI is a toxic drug. You shouldn't base an overall conclusion from the study on
one P value. Rather you should look at the benefit (which may be measured in several
ways) and the risks or side effects of the treatment. You should also take into account
other things you know about the AZT treatment from other studies.

EXAMPTE 10.2. COMPARING TWO PROPORTIONS FROM A
CASE.CONTROT STUDY

This is a case-control study investigating the association between fleas and cat scratch
fever. The results were shown in Table 9.1.

The odds ratio is 17.3. We want to calculate a P value. The null hypothesis is
that there is no association between fleas and cat scratch disease, that the cats of cases
are just as likely to have fleas as the cats of controls. The two-sided P value answers
this question: If the null hypothesis were true, what is the chance of randomly picking

subjects such that the odds ratio is 17.3 or greater or 0.058 (the reciprocal of 17.3)

or lower?
To calculate a P value, you may use Fisher's exact test or the chi-square test. The

same methods are used to analyze prospective and case-control studies. If a computer

is doirrg the work, Fisher's test is your best choice. The results from InStat are shown

Table 10.1. Results from InStat Analysis of Example 10.1

Fisher's Exact Test

The two-sided P value is <0.0001, considered extremely significant.

There is a significant association between rows and columns.

Relative risk = 0.5718.
95Vo confrdence interval: O.444O to 0.7363 (using the approximation of Katz).
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Table 10.2. Results from InStat Analysis of Example 10.2

1 0 1

Fisher's Exact Test

The two-sided P value is <0.0001, considered extremely significant.

There is a significant association between rows and columns.

Odds ratio : 17.333

95Vo confidence interval: 5.506 to 54.563 (using the approximation of Woolf.)

in Table 10.2. Again the P value is less than 0.0001. If there were no association
between fleas and cat scratch fever in the overall population, there is less than a 0.Ol7o
chance of randomly picking subjects with so much association.

To interpret the P value from a case-control study, you must accept these as-
sumptions:

. The cases and controls are randomly selected from their respective populations, or
at least are representative of those populations.

. Each subject was selected independently of the rest. Picking one subject should not
influence the chance of picking anyone else.

. The controls do not differ systematically from the cases in any way, except for the
absence of disease. It is very difficult to be sure you have satisfied this assumption.

EXAMPTE 10.3.  COMPARING TWO MEANS WITH THE t  TEST

In this study (same data as Example 7.1), the investigators compared stool output in
babies treated conventionally with that in babies treated conventionally with the addition
of bismuth salicylate. Control babies produced 260 -F 254 mlkg of stool (N : 84,
mean t SD), while treated babies produced 182 t 197 mllkg of stool (N : 85). The
difference between means is 78 ml/kg.

The null hypothesis is that the mean stool output in the overall population of
babies with dianhea treated with bismuth salicylate is equal to the mean stool output
of babies treated conventionally. We need to calculate a P value that answers this
question: If the null hypothesis is true, what is the probability of randomly choosing
samples whose means are as different (or more different) as observed.

The unpaired t test calculates the P value. The test takes into account the size of
the difference, the size of the samples, and the SD of the samples. The results from
InStat are given in Table 10.3.

For this example, the two-tailed P value is 0.0269. If the drug is really ineffective,
there is a 2.697a chance that two randomly selected samples of N : 84 and N : 85
would have means that arc 78 mVkg or further apart. This is a two-tailed P value, so
it includes a 1.347o chance of randomly picking subjects such that the treatment reduces
stool output by 78 ml/kg or more and a 1.34%o of randomly picking subjects such that
the treatment increases stool output by 78 ml/kg or more.

The t test is based on these familiar assumptions:

' The subjects are representative of all babies with diarrhea who have been or will be
treated with oral rehydration or oral rehydration and bismuth salicylate.
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Table 10.3. Results from InStat Analysis of Example 10.3

Unpaired t Test
Are the means of control and treated equal?
Mean difference : -78.000 (mean of column B minus mean of column A)
The 95Vo confidence interval of the difference: - 146.99 to -9.013

t : 2.232 with 167 degrees of freedom.
The two-tailed P value is 0.0269, considered sisnificant.

' The two groups are not matched or paired. (You should try to pair data whenever
possible, but you need to use appropriate analyses. see chapter 25.)

' Each subject was selected independently of the rest. Choosing one subject from the
population should not influence the chance of choosing anyone else.

' The distribution of values in the overall population follows a roughly Gaussian
distribution, and the two populations have identical SDs.

The last assumption presents a problem with these data. As discussed in Chapter
7, the data are very unlikely to come from a Gaussian distribution. The SD is about
equal to the mean, yet stool output cannot be negative. There is no way this can happen
with a Gaussian distribution. Since the sample size is so large, we can rely on the
central limit theorem and ignore the assumption.

EXAMPTE 1O.4. COMPARINC MEANS OF PAIRED SAMPLES

This study (same as Example 7.2) measured the volume change of renal cysts when
incubated in culture medium. The investigators studied nine cysts and measured the
weight change (as a proxy for volume) of each. The average weight change was 0.50
grams with a standard effor of 0.23.

The null hypothesis is that renal cysts are as likely to shrink as to grow in culture.
More precisely, the null hypothesis is that the mean volume of renal cysts does not
change in culture. We want to calculate a P value that answers this question: If the
null hypothesis is true, what is the chance of randomly picking cysts with an average
weight change of 0.50 grams or more? Use the paired t test to calculate the answer.
The results from InStat are given in Table 10.4. The P value is 0.0614. If renal cysts
on average do not change weight in culture, there is a 6.l47o chance that nine randomly
selected cysts would change weight as much or more than these did.

Table 10.4. Results from InStat Analysis of Example 10.4

Paired t Test for Renal Cysts Example
Does the mean change from BEFORE to AFTER equal 0.000?
Mean difference : 0.5000 (mean of paired differences)
The 95Vo confidence interval of the difference: *0.03038 to 1.030
t : 2.174 with 8 degrees of freedom.
The two-tailed P value is 0.0614, considered not quite significant.
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EXAMPLE 10.5. COMPARTNC TWO SURVIVAL CURVES WITH

THE LOC.RANK TEST

1 0 3

After a bone marrow transplant, the white cells from the donor can mount an tmmune

response against the recipient. This condition, known as graft-versus-host disease

(GVHD) can be quite serious. Immunosuppressive drugs are given in an attempt to

prevent GVHD. Cyclosporine plus prednisone are commonly used. Chao et al.* com-

pared those two drugs alone (two drugs) with those two drugs plus methotrexate (three

drugs). Figure 10.3 shows their data.

They recorded time until GVHD and plotted the data as Kaplan-Meier survival

curves. Note that the term survival curye is a bit misleading as the end point is onset

of GVHD rather than death. The authors chose to plot the data going "uphill," showing

the percent of patients who had GVHD by a certain time. Most investigators would

have plotted these Kaplan-Meier curves going "downhill,'o showing the percentage

of paiients who had NOT had GVHD by a certain time. This is an artistic decision

that does not affect the analYses.
The authors compared the two groups with the log-rank test (other investigators

might use the Mantel-Haenszel test, which is nearly identical). You will learn a little

bit about these tests in Chapter 33. Even though you have not yet learned about the

test, you can understand the results.
As you would expect, the null hypothesis is that the two populations have identical

survival curves and that the observed difference in our samples is due to chance. In

other words, the null hypothesis is that treatment with three drugs is no better (and no

worse) than treatment with two drugs in preventing GVHD. The P value from the log-

rank test answers this question: If the null hypothesis is true, what is the probability

of obtaining such different survival curves with randomly selected subjects?

The calculations are quite involved and should be left to computer programs. The

authors report that the P value is 0.02. If addition of the third drug did not alter onset

of GVHD, you'd see such a large difference in survival curves in only 27o of experiments

of this size.
You've already learned about the assumptions that must be true to interpret a

survival curve in Chapter 6. The log-rank test depends on those same assumptions

(reviewed below):

. The subjects are representative of all bone-marrow transplant recipients.

. The subjects were chosen independently.

. Consistent criteria. The entry criteria and the definition of survival must be consistent

during the course of the study.
. The survival of the censored subjects would be the same, on average, as the survival

of the remaining subjects.

The data in Figure 10.3 show only one end point-the time to onset of GVHD.
The investigators also compared other variables, such as renal function, liver function,

*NJ Chao, GM Schmidt, JC Niland et al. Cyclosporine, methotrexate and prednisone compared with

cyclosporine and prednisone for prophylaxis of acute graft-versus-host disease. N Engl J Med 329:1225-

1230,1993.
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Days

Figure 10.3. Data for Example 10.5. The investigators compared treating bone marrow trans-
plants with two drugs or three drugs. The X axis shows time after the transplant, while the Y
axis shows the percent of patients who have graft-versus-host disease (GVHD).

survival time, and recurrence of leukemia. Analysis of all these data suggest that
addition of the third drug helps prevent GVHD without causing other problems. The
authors recommendation to treat with three-drug therapy is based on analysis of all
these variables, not just the survival curves.

SUMMARY

Most statistical tests calculate a P value. Even if you don't learn the details of all the
tests it is essential that anyone reading the biomedical literature understand what a P
value is (and what it isn't). A P value is simply a probability that answers the following
question: If the null hypothesis were true (i.e., there is no difference between popula-
tions), what is the probability that random sampling (given the sample size actually
used) would result in a difference as big or bigger than the one observed?
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l . You must be familiar
. P value
. Null hypothesis
. One tailed test
. Two tailed test

2. Whenever you see a P value reported in the biomedical literature, 1lou should be
able to identify the null hypothesis (even if you are not familiar with the statistical
test being used) and pose the question that the P value answers.

3. You should know the difference between one- and two-tailed P values and know
the arguments for and against using each.

4. Whenever you see a P value, you should be able to state the question it answers.

with the following terms:
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PROBTEMS

1. You wish to test the hypothesis that a coin toss is fair. You toss the coin six times

and it lands on heads each time. What is the null hypothesis? What is the P value?

Is a one- or two-tailed test more appropriate? What do you conclude?

2. you conduct an experiment and calculate that the two-tailed P value is 0.08. What

is the one-tailed P value? What assumptions are you making?

3. (Same data as Problem 4 in Chapter 5 and Problem 1 in Chapter 7 ') The serum

levels of a hormone (the Y factor) was measured to be 93 -f 1.5 (mean -r SEM)

in 100 nonpregnant women and 110 t 2.3 (mean t SEM) in 100 women in the

first trimester of pregnancy. When the two groups are compared with a t test, the

P value is less than 0.0001'

A. Explain what the P value means in plain language'

B. Review your answers to Problem 4 in Chapter 5 and Problem 1 in Chaptet 7.

Explain how the results complement one another'

4. (Same data as problem 4 in Chapter 8.) Cohen et al. investigated the use of active

cardiopulmonary resuscitation (CPR).* In standard CPR the resuscitator compresses

the victim's chest to force the heart to pump blood to the brain (and elsewhere)

and then lets go to let the chest expand. Active CPR is done with a suction device.

This enables the resuscitator to pull up on the chest to expand it as well as pressing

down to compress it. These investigators randomly assigned cardiac arrest patients

to receive either standard or active CPR. Eighteen of 29 patients treated with active

CpR were resuscitated. In contrast, 10 of 33 patients treated with standard CPR

were resuscitated. Using Fisher's test, the two-sided P value is 0.0207. Explain

what this means in Plain language.

xTJ Cohen. BG Goldner, PC Maccaro, AP Ardito , STrazzera, MB Cohen, SR Dibs' A comparison of active

compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for

cardiac arrests occurring in the hospital. N Engl J Med 3291918-1921, 1993.
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Statistical Sign ificance
and Hypothesis Testing

In the previous chapter we treated the P value as a number and left the interpretation
to the readers. Looked at this way, calculating a P value is analogous to calculating
an average, ratio, or percentage. It is a useful way to summarize data to aid understanding
and communication. This chapter shows how to make statements about statistical
significance.

STATISTICAT HYPOTHESIS TESTI NG

When interpreting many kinds of data, you need to reach a decision. In a pilot experiment
of a new drug, you need to decide whether the results are promising enough to merit
a second experiment. In a phase III drug study, you need to decide whether the drug
is effective and should be recommended for all patients. In a study comparing two
surgical procedures, you need to decide which procedure to recommend.

Hypothesis testing is an approach that helps you make decisions after analyzing
data. Follow these steps:

l. Assume that your samples are randomly selected from the population.
2. State the null hypothesis that the distribution of values in the two populations is

the same.
3. Define a threshold value for declaring a P value significant. This threshold called

the significance level of the test is denoted by cr and is commonly set to 0.05.
4.
5 .

Select an appropriate statistical test and calculate the P value.
If the P value is less than cr, then conclude that the difference is statistically
signfficant and decide to reject the null hypothesis. Otherwise conclude that the
difference is not statistically significant and decide to not reject the null hypoth-
esis.

Note that statisticians use the term hypothesis testing quite differently than scientists.
Testing scientific hypotheses requires hard work involving many kinds of experiments.
To test a new hypothesis, it is often necessary to design new experimental methodology
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and to design clever control experiments. Statistical hypothesis testing, in contrast, is

easy. Just check whether one P value is above or below a threshold.

Converting a P value to the conclusion "significant" or "not significant" reminds

me of the movie reviewers Siskel and Ebert. In their written reviews, they rate each

movie on a scale (i.e., three and a half stars or B-). This is analogous to a P value.

It is a concise way to summarize their opinions about the movie. When reviewing

movies on television, they make a decision for you: see it (thumbs up) or don't see it

(thumbs down).
The terminology of hypothesis testing is easiest to understand in the context of

quality control. For example, let's assume that you run a brewery and that you have

a warehouse full of the latest batch of beer. Before selling this batch, you need to test

whether the batch meets various quality standards. Rather than test the entire warehouse

full of beer (the population), you randomly choose some bottles (the sample) to compare

to a "gold standard." The results can be expressed as a P value that answers the
following question: If the new batch of beer is identical to the standard batch, what is

the probability that a randomly selected sample of bottles would be as different from

the standard as actually observed? If the P value is less than a (usually 0.05), then
you reject the null hypothesis and reject the batch of beer (or at least do further tests

to find out what is wrong). If the P value is greater than ct, you do not reject the null

hypothesis and do not reject the batch.

THE ADVANTAGES AND DISADVANTACES OF USING THE
PHRASE STATISTICALLY SIGNIFICANT

There are three advantages to using the phrase statistically significant:

. In some situations, it is necessary to reach a crisp decision from one experiment.
Make one decision if the results are significant and the other decision if the results
are not significant.

. With some statistical tests, it is difficult or impossible to obtain the exact P value,
but it is possible to determine whether or not the P value exceeds cr.

. People don't like ambiguity. The conclusion that "the results are statistically signifi-
cant" is much more satisfying than the conclusion that "random sampling would
create a difference this big or bigger in 3Vo of experiments if the null hypothesis
were true."

The disadvantage to using the phrase statistically signfficant is that many people
misinterpret it. Once some people have heard the word signfficanf, they stop thinking
about the data.

In biology and clinical medicine, it is not always necessary to reach a crisp decision
from each P value. Instead, you can often base important decisions on several kinds
of data, perhaps from several studies. Often, the best conclusion is wait and see. If it
is not necessary to make a crisp decision from one experiment, there is no need to
summarize the findings as being significant or not significant. Instead, just report the
P value.
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AN ANALOGY: INNOCENT UNTTL

Table I 1.1 shows the analogy between
guilt (at leasr in the United States) and
statistical signifi cance.

A jury reaches the verdict of guilty when the evidence is inconsistent with the
assumption of innocence. Otherwise the jury reaches a verdict of not guilty. Note that
a jury can never reach the verdict of innocent. The only choices are guilty or not guilty
("not proven" in Britain). A jury reaches a verdict of not guilty when the evidence
is not inconsistent with the presumption of innocence. A jury does not have to be
convinced that the defendant is innocent to reach a verdict of not guilty.

When performing a statistical test, you never conclude that you accept the null
hypothesis. You reach the conclusion not significant whenever it is plausible that the
data are consistent with the null hypothesis. A not significant result does not mean
that the null hypothesis is true.

Journalists also evaluate evidence at a trial, and have different goals than jurors.
As a journalist, you don't have to reach a verdict of guilty or not guilty. Instead your
job is to summarize the proceedings. You want to present enough evidence so the
readers can reach their own conclusions. You may include evidence unavailable to the
jurors (evidence that wasn't presented at trial, or evidence that was ruled inadmissible).
As a journalist, you don't have to reach any conclusion about the guilt of the defendant.
If you do reach a conclusion, it is appropriate for it to be somewhat hazy if you think
the evidence was inconclusive.

Table 11.1. Significant vs. Not Significant Decision Compared with Guilty vs.
Not Guilty Decisions

INTRODUCTION TO P VALUES

PROVEN GUITTY

the steps that a jury must follow to determine
the steps that a scientist follows to determine

Step Trial by Jury Statistical Sisni fi cance

l. Start with the presumption that the
defendant is innocent.

2. Listen to factual evidence presented
in the trial. Don't consider other
data, such as newspaper stories
you have read.

3. Evaluate whether you believe the
witnesses. Ignore testimony from
witnesses who you think have lied.

4. Think about whether the evidence is
consistent with the assumption of
innocence.

5. If the evidence is inconsistent with
the assumption, then reject the
assumption of innocence and
declare the defendant to be guilty.

Otherwise, reach a verdict of not
guilty. As a juror, you can't
conclude "maybe," can't ask for
additional evidence, and can't say
"wait and see."

Start with the presumption that the null
hypothesis is true.

Base your conclusion only on data from this
one experiment. Don't consider whether the
hypothesis makes scientific or clinical
sense. Don't consider any other data.

Evaluate whether the experiment was
performed correctly. Ignore flawed data.

Calculate a P value.

If the P value is less than a preset threshold
(typically 0.05), conclude that the data are
inconsistent with the null hypothesis. Reject

the null hypothesis, and declare the
difference to be statistically significant.
Otherwise, conclude that the difference is
not significant. You can't conclude
"maybe" or "wait and see."
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I think that many scientists find themselves in the role of a journalist more often

than they find themselves in the role of a juror. A scientist does not always need to

evaluate data using the approach of statistical hypothesis testing. When presenting data,

the most important thing is to present the methods and results clearly so the readers

can reach their own conclusions. In many scientific situations, it is not necessary to

reach a crisp conclusion of significant or not significant. Instead, it is sometimes

appropriate to reach a more general conclusion that might be somewhat uncertain.

And when reaching that conclusion, it is appropriate to consolidate data from several

experiments and to take into account whether the hypothesis being tested fits theory

and previous data.

TYPE I  AND TYPE I I  ERRORS

When you conclude that results are significant or not significant, there are two ways

you can be wrong:

. You can find that a result is statistically significant and reject the null hypothesis

when in fact the null hypothesis is true. This is a Type I error. Convicting an innocent

person is a Type I error. The probability of making a Type I error is ct.
. You find that a result is not statistically significant and fail to reject the null hypothesis

when the null hypothesis is in fact false. This is a Type II error. Failing to convict

a guilty person is a Type II error.

We'll return to Type I and Type II errors in the next chapter.

CHOOSINC AN APPROPRIATE VALUE FOR a

By tradition, cr is usually set to equal 0.05. This cutoff is purely arbitrary, but is

entrenched in the literature. It is amazing that scientists (who disagree about so much)
all agree on such an arbitrary value! Ideally, the value of cr' should not be set by
tradition but rather by the context of the experiment.

If you set ct to a very low value, you will make few Type I errors. That means
that if the null hypothesis is true, there is only a small chance that you will mistakenly
call a result significant. However, there is also a larger chance that you will not find
a significant difference even if the null hypothesis is false. In other words, reducing
the value of cr will decrease your chance of making a Type I error but increase the
chance of a Type II error.

If you set a to a very large value, you will make many Type I errors. If the null
hypothesis is true, there is a large chance that you will mistakenly find a significant
difference. But there is a small chance of missing a real difference. In other words,
increasing the value of ct will increase your chance of making a Type I error but
decrease the chance of a Type II error. The only way to reduce the chances of both a
Type I error and a Type II error is to collect bigger samples. See Chapter 22.

You must balance the costs or consequences of Type I and Type II errors, and
alter the value of ct accordingly. Let's look at three examples:
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' You are screening a new drug in an invitro assay. If the experiment yields significant
results, you will investigate the drug further. Otherwise you will stop investigating
the drug. In this circumstance, the cost of a Type I error is a few additional experiments,
and the cost of a Type II error is abandoning an effective drug. It makes sense to
set CI. high to minimize Type II errors, even at the expense of additional Type I
errors. I'd set a to 0.10 or 0.20 in this situation.

' You are conducting a phase III clinical trial of that drug to treat a disease (like
hypertension) for which there are good existing therapies. If the results are significant,
you will market the drug. If the results are not significant, work on the drug will
cease. In this case, a Type I error results in treating future patients with a useless
drug and depriving them of a good standard drug. A Type II error results in aborting
development of a good drug for a condition that can be treated adequately with
existing drugs. Thinking scientifically (not commercially), you want to set a low to
minimize the risk of a Type I error, even at the expense of a higher chance of a
Type II error. I'd set ct to 0.01 in this situation.

' You are conducting a phase III clinical trial of that drug to treat a disease for which
there is no good existing therapy. If the results are significant, you will market the
drug. If the results are not significant, work on the drug will cease. In this case, a
Type I error results in treating future patients with a useless drug instead of nothing.
A Type II error results in cancelling development of a good drug for a condition
that is currently not treatable. Here you want to set cr high value because a Type I
elror isn't so bad but a Type II error would be awful. I'd set a to 0.10.

In this chapter, I've been deliberately vague when talking about the chances of a Type
II error, and have not told you how to calculate that probability. You'Il learn how to
do that in Chapters 23 and 27.

Let's continue the analogy between statistical significance and the legal system.
The balance between Type I and Type II errors depends on the type of trial. In the
United States (and many other countries) a defendant in a criminal trial is considered
innocent until proven guilty "beyond a reasonable doubt." This system is based on
the belief that it is better to let many guilty people go free than to falsely convict one
innocent person. The system is designed to avoid Type I errors in criminal trials, even
at the expense of many Type II errors. You could say that a is set to a very low value.
In civil trials, the court or jury finds for the plaintiff if the evidence shows that the
plaintiff is "more likely than not" to be right. The thinking is that it is no worse to
falsely find for the plaintiff than to falsely find for the defendant. The system attempts
to equalize the chances of Type I and Type II errors in civil trials.

THE RELATIONSHIP BETWEEN c AND P VALUES

The P value and ct are closely related. You calculate a P value from particular data.
You set a in advance, based on the consequences of Type I and Type II errors. ct. is

the threshold P value below which a difference is termed statistically signfficant.
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THE RETATIONSHIP BETWEEN A AND CONFIDENCE INTERVALS
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Although I have presented confidence intervals (CIs) and P values in separate sections

of this book, the two are closely related. They both are based on the same assumptions

and the same statistical principles. Ask yourself whether the 957o CI includes the value

stated in the null hypothesis. If you are comparing two means, ask whether the 957o

CI for the difference between the means includes 0. If you are analyzing a prospective

study, ask whether the 957o Cl for the relative risk includes 1.0. If the 957o Cl includes

the value stated in the null hypothesis, then the P value must be greater than 0.05 and

the difference must be not significant. If the 95Va Cl does not include the null hypothesis,

then the P value must be less than 0.05 and the result must be significant.

The rule in the previous paragraph works because 95Vo (Cl) and 5Vo (threshold

P value) add to 1007o. Other pairs can be used as well. If the 997o Cl includes the

null hypothesis, then you can be sure that the P value must be greater than 0.01. If

the 907a CI includes the null hypothesis, then you can be sure that the P value must

be greater than 0.10.

STATISTICAT SIGNIFICANCE VERSUS SCIENTIFIC IMPORTANCE

A result is said to be statistically significant when the P value is less than a preset
value of ct. This means that the results are surprising and would not commonly occur
if the null hypothesis were true. There are three possibilities:

. The null hypothesis is really true, and you observed the difference by coincidence.
The P value tells you how rare the coincidence would be. If the null hypothesis
really is true, a is the probability that you will happen to pick samples that result
in a statistically significant result.
The null hypothesis is really false (the populations are really
difference is scientifically or clinically important.
The null hypothesis is really false (the populations are really
difference is so small as to be scientifically or clinically trivial.

The decision about scientific or clinical importance requires looking at the size
of the difference (or the size of the relative risk or odds ratio). With large samples,
even very small differences will be statistically significant. Even if these differences
reflect true differences between the populations, they may not be interesting. You must
interpret scientific or clinical importance by thinking about biology or medicine. For
example, few would find a mean difference of I mmHg in blood pressure to be clinically
interesting, no matter how low the P value. It is never enough to think about P values
and significance. You must also think scientifically about the size of the difference.

SUMMARY

After calculating a P value, you "test a hypothesis" by comparing the P value with
an arbitrary value a, usually set to 0.05. If the P value is less than ct, the result is said

different), and the

different), but the
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to be "statistically significant" and the null hypothesis is said to be "rejected." If the
P value is greater than cr, the result is said to be "not statistically significant" and
the null hypothesis is "not rejected." As used in the context of statistical hypothesis
testing, the word significanr has almost no relationship to the conventional meaning
of the word to denote importance. Statistically significant results can be trivial. Differ-
ences that might turn out to be enormously important may result in "nonsignificant"
P values. The scheme of hypothesis testing is useful in situations in which you must
make a crisp decision from one experiment. In many biological or clinical studies, it
is not always necessary to reach a crisp decision and it makes more sense to report
the exact P value and avoid the term significant.

oBf EcTrvEs

t . You must be familiar with the followins terms:
. Hypothesis testing
. Null hypothesis
. c [
. Statistically significant
. Type I error
. Type II error

You must know the distinction between the statistical meaning of the terms signifi-
cant and hypothesis testing, and the scientific meaning of the same terms.
You must know what not signfficant really means.

PROBLEMS

1 .For Problems 3 and 4 of the last chapter, explain what a Type I and Type II error
would mean.
Which of the following are inconsistent?

A. Mean difference : 10. The 957o CI: -20 to 40. P : 0.45
B. Mean difference : 10. The 95Vo CI: -5 to 15. P : 0.02
C. Relative risk : 1.56. The95Vo CI: 1.23 to 1.89. P : 0.013
D. Relative risk : 1.56. The 957o CI: 0.81 to 2.12. P : 4.04
E. Relat ive r isk :2.03.The957o CI:  1.01 to 3.13. P < 0.001.

2.

3 .

2.
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I nterpreting Significant
and Not Significant P Values

THE TERM SIGNIFICANT

You've already learned that the term statistically signfficanr has a simple meaning:

The P value is less than a preset threshold value, cr. That's it! In plain language, a

result is statistically "significant" when the result would be surprising if there really

were no differences between the overall populations.

It's easy to read far too much into the word significanl because the statistical use

of the word has a meaning entirely distinct from its usual meaning. Just because a

difference is statistically significant does not mean that it is important or interesting.

A statistically significant result may not be scientifically significant or clinically signifi-

cant. And a difference that is not significant (in the first experiment) may turn out to

be very important. This is important, so I'll repeat it: Statistically significant results

are not necessarily important or even interesting.

EXTREMELY SIG N I FICANT RESU tTS

Intuitively, you'd think that P : 0.004 is more significant than P : 0.04. Using the

strict definitions of the terms, this is not correct. Once you have set a value for cr., a

result is either significant or not significanr. It doesn't matter whether the P value is

very close to a or far away. Many statisticians feel strongly about this, and think that
the word signfficanr should never be prefaced by an adjective. Most scientists are less
rigid, and refer to very significant or extremely significant results when the P value
is tiny.

When showing P values on graphs, investigators commonly use a "Michelin

Guide" scale. *P < 0.05 (significant), **P < 0.01 (highly significant); xx'r'p < 0.001
(extremely significant). When you read this kind of graph, make sure that you look

at the key that defines the symbols, as different investigators use different threshold
values.

1 1 3
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BORDERIINE P VATUES

INTRODUCTION TO P VATUES

If you follow the strict paradigm of statistical hypothesis testing and set cr to its
conventional value of 0.05, then a P value of 0.049 denotes a significant difference
and a P value of 0.051 denotes a not significant difference. This arbitrary distinction
is unavoidable since the whole point of using the term statisticalty significant is to
reach a crisp conclusion from every experiment without exception.

Rather than just looking at whether the result is significant or not, it is better to
look at the actual P value. That way you'll know whether the P value is near a or far
from it. When a P value is just slightly greater than a, some scientists refer to the
result as marginally significant or almost signfficant.

When the two-tailed P value is between 0.05 and 0.10, it is tempting to switch
to a one-tailed P value. The one-tailed P value is half the two-tailed P value and is
less than 0.05, and the results become "significant" as if by magic. Obviously, this
is not an appropriate reason to choose a one-tailed P value! The choice should be made
before the data are collected.

One way to deal with borderline P values would be to choose between three
decisions rather than two. Rather than decide whether a difference is significant or not
significant, add a middle category of inconclusive. This approach is not commonly used.

THE TERM NOT SIGNIFICANT

If the P value is greater than a preset value of cr, the difference is said to be not
significant. This means that the data are not strong enough to persuade you to reject
the null hypothesis. People often mistakenly interpret a high P value as proof that
the null hypothesis is true. That is incorrect. A high P value does not prove the null
hypothesis. This is an important point worth repeating: A high P value does not
prove the null hypothesis. As you've already learned in Chapter 11, concluding that a
difference is not statistically significant when the null hypothesis is, in fact, false is
called a Type II error.

When you read that a result is not significant, don't stop thinking. There are two
approaches you can use to evaluate the study. First, look at the confidence interval
(CI). Second, ask about the power of the study to find a significant difference if it
were there.

INTERPRETING NOT SIGNIFICANT RESULTS WITH
CONFIDENCE INTERVATS

Example 12.1

Ewigman et al. investigated whether routine use of prenatal ultrasound would improve
perinatal outcome.* They randomly divided a large group of pregnant women into two

*BG Ewigman, JP Crane, FD Frigoletto et al. Effect of prenatal ultrasound screening on perinatal outcome.
N Engl J Med 329:821-827, 1993.
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groups. One group received routine ultrasound sonogram exams twice during the

pregnancy. The other group received sonograms only if there was a clinical reason to

do so. The physicians caring for the women knew the results of the sonograms and

cared for the patients accordingly. The investigators looked at several outcomes. Table

12.1 shows the total number of adverse events, defined as fetal or neonatal deaths of

moderate to severe morbidity.
The null hypothesis is that the rate of adverse outcomes is identical in the two

groups. In other words, the null hypothesis is that routine use of ultrasound neither

prevents nor causes perinatal mortality or morbidity. The two-tailed P value is 0.86.

The data provide no reason to reject the null hypothesis.
Before you can interpret the results, you need to know more. You need to know

the 95Vo CI for the relative risk. For this study, the relative risk is 1.02, with the 95Vo

CI ranging from 0.88 to 1.17. The null hypothesis can be restated as follows: In the entire

population, the relative risk is 1.00. The data are consistent with the null hypothesis. This

does not mean that the null hypothesis is true. Our CI tells us that the data are also

consistent (within 95Vo confidence) with relative risks ranging from 0.88 to 1.17.

Different people might interpret these data in two ways:

The confidence interval is very nurrrow, and is centered close to 1.0. These data convince
me that routine use of ultrasound is neither helpful nor harmful. To reduce costs, ['ll use
ultrasound only when there is an identified problem.

The confidence interval is narrow, but not all that narrow. There have been plenty of
studies showing that ultrasound doesn't hurt the fetus, so I'll ignore the part of the
confidence interval above 1.00. But ultrasound gives the obstetrician extra information
to manage the pregnancy, and it makes sense that using this extra information will decrease
the chance of a major problem. The confidence interval goes down to 0.88, a reduction
of risk of l27o.If I were pregnant, I'd certainly want to use a risk-free technique that
reduces the risk of a sick or dead baby by as much as lZ%ot The data certainly don't
prove that routine ultrasound is beneficial, but the study leaves open the possibility that
routine use of ultrasound might reduce the rate of truly awful events by as much as 12Vo.
I think the study is inconclusive. Since ultrasound is not prohibitively expensive and
appears to have no risk, I will keep using it routinely.

To interpret a not significant P value, you must look at the CI. If the entire span
of the CI contains differences (or relative risks) that you consider to be trivial, then
you can make a strong negative conclusion. If the CI is wide enough to include values
you consider to be clinically or scientifically important, then the study is inconclusive.
Different people will appropriately have different opinions about how large a difference

Table 12.1. Results of Example 12.1

Adverse Outcome Healthv Babv

1 1 5

Routine sonograms
Sonograms only when indicated
Total

383
373
756

7302
7  1 t ?

14,525

7,685
7,596

15,281
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(or relative risk) is scientifically or clinically important and may interpret the same
not significant study differently.

In interpreting the results of this example, you also need to think about benefits
and risks that don't show up as a reduction of adverse outcomes. The ultrasound picture
helps reassure parents that their baby is developing normally and gives them a picture
to bond with and to show relatives. This can be valuable regardless of whether it
reduces the chance of adverse outcomes. Although statistical analyses focus on one
outcome at a time, you must consider all the outcomes when evaluating the results.

INTERPRETING NOT SIGNIFICANT P VALUES USING
POWER ANAIYSES*

A not significant P value does not mean that the null hypothesis is true. It simply
means that your data are not strong enough to convince you that the null hypothesis
is not true. As you have already learned, obtaining a not significant result when the
null hypothesis is really false is called a Type II error. When you obtain (or read about)
a not significant P value, you should ask yourself this question: "What is the chance
that this is a Type II error?" That question can only be answered if you specify an
alternative hypothesis-a difference A (or relative risk R) that you hypothesize exists
in the overall population. Then you can ask, "If the true difference is A (or the true
relative risk is R), what is the chance of obtaining a significant result in an experiment
of this size? The answer is termed the power of the study.

Table 12.2 shows the power of example 12.1 for various hypothetical relative
risks. This table uses the sample size of the example and sets cr : 0.05 and the risk
in the control subjects to 5.07o. Calculating the power exactly is quite difficult, but
there are several ways to calculate power approximately. You'll learn about the approxi-
mation used to create this table in Chapter 2T.InChapter 23 you'll learn how to calculate
a similar table for studies that compare two means (rather than two proportions).

If the experimental treatment (routine ultrasound) reduced the risk by 25Vo (so
the relative risk : 0.75), the study had a 977o power to detect a significant difference.
If the treatment was really that good, then 97Va of studies this size would wind up
with a significant result, while 4Vo would come up with a not significant result. In
contrast, the power of this study to detect a risk reduction of 5Vo (relative risk : 0.95)
is only ll%o.If the treatment tryly reduced risk by 57o, only ll%o of studies this size
would come up with a significant result.

The numbers are particular to this study. The principle is universal. All studies
have very little power to detect tiny differences and enoffnous power to detect large
differences. If you increase the number of subjects, you will increase the power.

As you can see, calculations of power can aid interpretation of nonsignificant
results. When reading biomedical research, however, you'll rarely encounter power
calculations in papers that present not significant results. This is partly a matter of
tradition, and it is partly because it is difficult to define the smallest difference or
relative risk that you think it is important.

*This section is more advanced than the rest. You may skip it without loss of continuity.
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Table 12.2. A Power
Analysis of Example l2.l

Relative Risk Power
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0.95
0.90
0.85
0.80
0.75

l l % o
307o
607o
84Vo
977o

SUMMARY

A result is statistically significant when the P value is less than the preset value of cr.

This means that the results would be surprising if the null hypothesis were really true.
The statistical use of the term slgrzificant is quite different than the usual use of the

word. Statistically significant results may or may not be scientifically or clinically

interesting or important.
When results are statistically not significant it means that the results are not

inconsistent with the null hypothesis. This does not mean that the null hypothesis is

true. When interpreting results that are not significant, it helps to look at the extent of
the CI and to calculate the power that the study would have found a significant result
if the populations really were different (with a difference of a defined size).
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Multiple Comparisons

Each example you've encountered so far was designed to answer one question. If you
look through any medical journal, you'll discover that few papers present a single P
value. It is far more common to see papers that present several-or several dozen-P
values. It's not easy to interpret multiple P values.

COINCIDENCES

If your results are really due to a coincidence (the null hypothesis is true), the P value
tells you how rare that coincidence would be. Interpreting multiple P values, therefore,
is similar to interpreting multiple coincidences.

Example 13.1

In 1991, President Bush and his wife Barbara both developed hyperthyroidism due to
Graves' disease. Could it be a coincidence, or did something cause Graves' disease in
both? What is the chance that the president and his wife would both develop Graves'
disease just by chance? It's hard to calculate that probability exactly, but it is less than
1 in a million. Because this would have been such a rare coincidence, they looked
hard for a cause in the food, water, or air. No cause was ever found.

Was it really a one in a million coincidence? The problem with this "probability"
is that the event had already happened before anyone thought to calculate the probability.
To use a gambling analogy, the bets were placed after the ball stopped spinning.

A more appropriate question might be "what is the probability that a prominent
person and his or her spouse would both develop the same disease this year?" By
including all prominent people and all possible diseases, the probability is much higher.
The coincidence no longer seems so strange. You could expand the question to include
the next few years, and the answer would be higher still.

Example 13.2

Five children in a particular school got leukemia last year. Is that a coincidence?
Or does the clustering of cases suggest the presence of an environmental toxin that
caused the disease? That's a very difficult question to answer. It is tempting to esti-
mate the answer to the question "what is the probability that five children in this

1 1 8
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particular school would all get leukemia this particular year?" You could calculate

(or at least estimate) the answer to that question if you knew the overall incidence

rates of leukemia among children and the number of children enrolled in the school.

The answer will be tiny. Everyone intuitively knows that and so is alarmed by the

cluster of cases.
But you've asked the wrong question once you've already observed the cluster

of cases. The school only came to your attention because of the cluster of cases, so

you need to consider all the other schools and other diseases. The right question is

"what is the probability that five children in any school would develop the same severe

disease in the same year?" This is a harder question to answer, because you have to

define the population of schools (this city or this state?), the time span you care about
(one year or one decade?), and the severity of diseases to include (does asthma count?).

Clearly the answer to this question is much higher than the answer to the previous

one. When clusters occur, it is always worth investigating for known toxins and to be

alert to other findings that might suggest a real problem. But most disease clusters are

due to coincidence. It is surprising to flnd a cluster of one particular disease in one

particular place at any one particular time. But chance alone will cause many clusters

of various diseases in various places at various times.

Example 13.3

You go to a casino, and watch the roulette wheel. You notice that in the first 38 spins
of a roulette wheel, the ball landed on red 25 times. By chance you'd only expect the
ball to land on red 18 times (and 20 times on black, 0, or 00;.* Using the binomial
distribution, you can calculate that the chance of having the ball land on 25 or more
red slots in the first 38 spins is about 2Vo. Are you going to place your bets on red?

A rare coincidence? Not really. You would have been just as surprised if the ball
had landed 25 times on black, on an odd number, on a small number (1 to 18), on a
large number (19 to 36), etc. The chance of seeing any one (or more) of these "rare"
coincidences is far greater than2Vo.It is only fair to calculate the probability of a rare
coincidence if you define the coincidence before it happens. You have to place your
bets before you know the outcome.

MULTTPLE TNDEPENDENT QUESTTONS

Example 13.4

Hunter and colleagues investigated whether vitamin supplementation could reduce the
risk of breast cancer.t The investigators sent dietary questionnaires to over 100.000
nurses in 1980. From the questionnaires, they determined the intake of vitamins A, C,
and E and divided the women into quintiles for each vitamin (i.e., the first quintile

*An American roulette wheel has l8 red slots, l8 black slots, and 2 green slots labeled "0" and "00."

tDJ Hunter, JE Manson, GA Colditz, et al. A prospective study of the intake of vitamins C, E and A and
the risk of breast cancer. N Engl J Med 329:234-240, lgg3.
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contains 207o of the women who consumed the smallest amount). They then followed
these women for 8 years to determine the incidence rate of breast cancer. Using a test
called the chi-square test for trend (which will be briefly discussed in Chapter 29) the
investigators calculated a P value to test this null hypothesis: There is no linear trend
between vitamin intake quintile and the incidence of breast cancer. There would be a
linear trend if increasing vitamin intake was associated with increasing (or decreasing)
incidence of breast cancer. There would not be a linear trend if the lowest and highest
quintiles had a low incidence of breast cancer compared to the three middle quintiles.
The authors determined a different P value for each vitamin. For vitamin C, P : 0.60;
for vitamin E, P : 0.07; for vitamin A, P : 0.001.

Interpreting each P value is easy: If the null hypothesis is true, the P value is the
chance that random selection of subjects would result in as large (or larger) a linear
trend as was observed in this study. If the null hypothesis is true, there is a 57o chance
of randomly selecting subjects such that the trend is significant. Here we are testing
three independent null hypotheses (one for each vitamin tested). If all three null
hypotheses are true, the chance that one or more of the P values will be significant is
greater than 5Vo.

Table 13.1 shows what happens when you test several independent null hypotheses.
In this example, we are testing three null hypotheses. If we used the traditional cutoff
of ct : 0.05 for declaring each P value to be significant, the table shows that there
would be a l4%o chance of observing one or more significant P values, even if all three
null hypotheses were true. To keep the overall chance at 5Vo, we need to lower our
threshold for significance from 0.050 to 0.0170. With this criteria, the relationship
between vitamin A intake and the incidence of breast cancer is statistically significant.
The intakes of vitamins C and E are not significantly related to the incidence of
breast cancer.

If you don't have access to the table, here is a quick way to approximate the
value in the bottom row: Simply divide 0.05 by the number of comparisons. For this
example, the threshold is 0.05/3 or 0.017-the same as the value in the table to
three decimal points. If you tested seven hypotheses, the shortcut method calculates a
threshold of 0.05/7 or .0071 (which is close to the exact value of 0.0073 on the table).
If you make more than 10 comparisons, this shortcut method is not useful.

MUTTIPLE GROUPS

Example 13.5

Hetland and coworkers were interested in hormonal changes in women runners.*

Among their investigations, they measured the level of luteinizing hormone (LH) in

nonrunners, recreational runners, and elite runners. Because hormone levels were not

Gaussian, the investigators transformed their data to the logarithm of concentration

*ML Hetland, J Haarbo, C Christiansen, T Larsen. Running induces menstrual disturbances but bone mass

is unaffected, except in amenorrheic women. Am J Med 95:53-60, 1993.
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Table 13.2. LH Levels in Three Groups of
Women

Group log(LH) -'- SEM

Nonrunners
Recreational runners
Elite runners

0.52 ' r  0 .027
0.38 -f 0.034
0.40 -r 0.049

88
89
28

and performed all analyses on the transformed data. Although this sounds a bit dubious,
it is a good thing to do, as it makes the population closer to a Gaussian distribution.
The data are shown in Table 13.2.

The null hypothesis is that the mean concentration of LH is the same in all three
populations. How do you calculate a P value testing this null hypothesis? Your first
thought might be to calculate three t tests: one to compare nonrunners with recreational
runners, another to compare nonrunners with elite runners, and yet another to compare
recreational runners with elite runners. The problem with this approach is that it is
difficult to interpret the P values. As you include more groups in the study, you increase
the chance of observing one or more significant P values by chance. If the null hypothesis
were true (all three populations have the same mean), there is a 5Vo chance that each
particular t test would yield a significant P value. But with three comparisons, the
chance that any one (or more) of them will be significant is far higher than 5Vo.

The authors used a test called one-way analysis of variance (ANOVA) to calculate

a single P value answering this question: If the null hypothesis were true, what is the

chance of randomly selecting subjects with means as far apart, or further, than observed

in this study? The P value is determined from the scatter among means, the standard

deviation (SD) within each group, and the size of the samples.
The answer is P : 0.0039. If the null hypothesis were true, there is only a 0.39Vo

chance of randomly picking subjects and ending up with mean values so different.

The authors concluded that the null hypothesis was probably not true.

Analysis of variance makes exactly the same assumptions as the t test. The subjects

must be representative of a larger population. The data within each population must

be distributed according to a Gaussian distribution with equal SDs. Each subject must

be selected independently.
Next you want to know which group differs from which other group. But you

shouldn't perform three ordinary t tests to find out. Instead, analysis of variance is

followed by special tests designed for multiple comparisons. These tests are all named

after the statistician(s) who developed them (Tukey, Newman-Keuls, Dunnett, Dunn,

Duncan, and Bonfenoni). The idea of all the tests is that if the global null hypothesis

is true, there is only a 5Vo chance that any one or more of the comparisons will be

statistically significant. The differences between the methods relate to the assumptions

you are willing to make and to the number of comparisons you are interested in. You

will learn a little bit about the differences between these tests in Chapter 30.

Using Tukey's test to compare each group with each other group with an overall

cr : 0.05, we find that there is a statistically significant difference between the nonrun-

ners and the recreational runners, but not between the nonrunners and the elite runners

or between the recreational and elite runners.
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MULTTPLE MEASUREMENTS TO ANSWER ONE QUESTION
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Example 13.4 Continued

Recall that this study examined the possible relationship between vitamin intake and

the incidence of breast cancer. You've already seen that they found a significant

relationship between vitamin A intake and incidence of breast cancer. In addition to

the three main analyses already mentioned, the authors analyzed their data in many

other ways. If we focus only on vitamin A, the authors separately analyzedtotal vitamin

A intake and performed vitamin A. They separately analyzedtwo different time periods

(1980 to 1988 and 1984 to 1988). For each analysis, they analyzed the data using'a

simple test and again using a fancier test to adjust for known factors that influence the

incidence of breast cancer (for example, number of children, age at first birth, age at

menarche, family history of breast cancer). With two measures of vitamin A, two time

periods, and two analytical methods they generated eight P values.

These eight P values don't test eight independent null hypotheses, so you shouldn't

use the methods presented earlier in Table 13.1. The null hypotheses are interre-

lated-they are sort of measuring the same thing, but not quite. There are no good

methods for dealing with this situation. Basically you need to look at the collection

of P values and get an overall feel for what is going on. In this example, all four P
values from the 1980 to 1988 analyses were tiny. The association between vitamin A
intake and protection from breast cancer was substantial regardless of whether they
looked at total or preformed vitamin A and whether or not they adjusted for other risk
factors. In the 1984 to 1988 study, the associations all went in the same direction (more

vitamin A : less breast cancer) but the P values were a bit larger. Putting all this
together, the evidence is fairly persuasive.

A similar kind of problem comes up frequently in analyzing clinical trials. In
many clinical trials, investigators measure clinical outcome using a variety of criteria.
For example, in a study of a drug to treat sepsis, the main outcome is whether the
patient died. Additionally, investigators may collect additional information on the
patients who survived: how long they were in the intensive care unit, how long they
required mechanical ventilation, and how many days they required treatment with
vasopressors. All these outcomes are really measuring the same thing: how long the
patient was severely ill. These data can lead to multiple P values but should not be
corrected, as shown in previous sections, because the null hypotheses are not indepen-
dent. To a large degree the various outcomes measure the same thing.

Although clinical studies often measure several outcomes, statistical methods don't
deal with this situation very well. You should not make any formal corrections for
multiple comparisons. Instead, you should informally integrate all the data before
reaching any conclusions.

MULTIPLE SUBCROUPS

After analyzing the data in many studies, it is tempting to look at subgroups. Separately
analyze the subjects by age group. Separately analyze the patients with severe disease
and mild disease. The problem with doing separate analyses of subgroups is that the
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chance of making a Type I error (finding a statistically significant difference by chance)
goes up.

Example 13.6

This problem was illustrated in a simulated study by Lee and coworkers.* They
pretended to compare survival following two "treatments" for coronary artery disease.
They studied a group of patients with coronary artery disease who they randomly
divided into two groups. In a real study, they would give the two groups different
treatments, and compare survival. In this simulated study, they treated the subjects
identicallyf but analyzed the data as if the two random groups actually represented two
distinct treatments. As expected, the survival of the two groups was indistinguishable.

They then divided the patients into six groups depending on whether they had
disease in one, two, or three coronary arteries, and depending on whether the heart
ventricle contracted normally or not. Since these are variables that are expected to
affect survival of the patients, it made sense to evaluate the response to "treatment"
separately in each of the six subgroups. Whereas they found no substantial difference
in five of the subgroups, they found a striking result among the sickest patients. The
patients with three-vessel disease who also had impaired ventricular contraction had
much better survival under treatment B than treatment A. The difference between the
two survival curves were statistically significant with a P value less than 0.025.

If this were a real study, it would be tempting to conclude that treatment B is

superior for the sickest patients, and to recommend treatment B to those patients in
the future. But this was not a real study, and the two "treatments" reflected only
random assignment of patients. The two treatments were identical, so the observed

difference was definitely due to chance. It is not surprising that the authors found one
low P value out of six comparisons. Referring to Table 13.1, there is a26Vo chance

that one of six independent comparisons will have a P value less than 0.05, even if

all null hypotheses are true. To reduce the overall chance of a Type I error to 0.05,
you'd need to reduce cr to 0.0085 when comparing six groups.

This is a difficult problem that comes up frequently. Beware of analyses of multiple

subgroups as you are very likely to encounter small P values, even if all null hypotheses

are true.

MULTIPTE COMPARISONS AND DATA DREDCINC

In all the examples you've encountered in this chapter, you've been able to account

for multiple comparisons because you know about all the comparisons the investigators

made. You will be completely misled (and will reach the wrong conclusion) if the

*KL Lee, JF McNeer, CF Starmer, PJ Harris, RA Rosati. Clinical judgment and statistics. Lessons from a

simulated randomized trial in coronary artery disease. Circulation 6l:508-515, 1980.

tln fact, the study was done retrospectively. They looked back at hospital records to identify all patients

who presented with coronary artery disease during a certain period. They divided these patients into two

random groups, and then read the charts to see how long each patient lived.
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investigator made many comparisons but only published the few that were significant.

If the null hypothesis is true, a low P value means that a rare coincidence has occurred.
But you can't evaluate the rarity of a coincidence unless you know how many different

comparisons were made. As you've seen, if you test lots of null hypotheses the chance

of observing one or more "significant" P values is far higher than 57o.If you test 100

independent null hypotheses that are all true, for example, you have a 997o chance of

obtaining at least one significant P value. You will be completely misled if the investiga-
tors show you the significant P values but don't tell you about the others.

To avoid this situation, investigators should follow these rules:

. Analyses should be planned before the data are collected.

. All planned analyses should be completed and reported.

These rules are usually followed religiously for large formal clinical trials, especially
when the data will be reviewed by the Food and Drug Administration. However, those
rules are often ignored in more informal preliminary studies and in laboratory research.
In many cases, the investigator never thought about how to perform the analyses until
after perusing the data. Often looking at the data suggests new hypotheses to test.

It is difficult to know how to deal with analyses that don't follow those rules. If
the investigators didn't decide what hypotheses to test until after they looked at the
data, then they have implicitly performed many tests. When you read the paper, you
need to figure out how many hypotheses the investigators really tested. Look at the
number of variables, the number of groups, the number of time points, and the number
of adjustments. Big studies can easily generate dozens or hundreds of P values. If the
investigators implicitly tested many hypotheses, they are apt to find "significant"
differences fairly often. To make sense of this kind of study, you need to look at the
overall pattern of results and not interpret any individual P values too strongly.

You should always distinguish studies that test a hypothesis from studies that
generate a hypothesis. Exploratory analyses of large databases can generate hundreds
of P values, and scanning these can generate intriguing research hypotheses. After the
hypothesis is generated, however, it is then necessary to test the hypotheses on a
different set of data. Some investigators use half the data for exploration to define one
or more hypotheses, and then test the hypotheses with the other half of the data. This
is a terrific approach if plenty of data are available.

SUMMARY

Most scientific studies generate more than one P value. Some studies generate hundreds
of P values. Inte{preting multiple P values is difficult. If you make many comparisons,
you expect some to have small P values just by chance. Therefore your interpretation
<lf a small P value should be different when the P value is one of many. You'll encounter
multiple P values in several situations: asking many independent questions, comparing
multiple groups, rneasuring multiple end points, and reanalyzing data for multiple
subgroups. You need to take into account the number of P values generated when
interpreting the results. You'll be misled if the investigators calculated many P values,
but only showed vou the small ones.
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PROBLEM

INTRODUCTION TO P VALUES

1. Assume that you are reviewing a manuscript prior to publication. The authors have
tested many drugs to see if they increase enzyme activity. All P values were
calculated using a paired t test. Each day they also perforrn a negative control, using
just vehicle with no drug. After discussing significant changes caused by some
drugs, they state that "in contrast, the vehicle control has consistently given a
nonsignificant response (P > 0.05) in each of 250 experiments." Comment on these
negative results. Why are they surprising?



IV

BAYESIAN LOGIC

When you interpret the results of an experiment, you need to consider more
than just the P value. You also need to consider the experimental context,
previous data, and theory. Bayesian logic allows you to integrate the current
experimental data with what you knew before the experiment.

Since Bayesian logic can be difficult to understand in the context of
interpreting P values, I first present the use of Bayesian logic in interpreting
the results of clinical laboratory tests in Chapter 14. Then in Chapter 16 I
explain how Bayesian logic is used in interpreting genetic data.
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Interpreting Lab Tests:
lntroduction to Bayesian Thinking

Note to basic scientists: Don't skip this chapter because it appears to be too clinical.
This chapter sets the stage for the discussion in the next two chapters.

What do laboratory tests have to do with P values? Understanding how to interpret
"positive" and "negative" lab tests will help you understand how to interpret ,,signifi-
cant" and "not significant" statistical tests.

THE ACCURACY OF A QUAHTATTVE rAB TEST

We will consider first a test that yields a simple answer: positive or negative. Results
can be tabulated on a two by two contingency table (Table 14.1). The rows represenr
the outcome of the test (positive or negative), and the columns indicate whether the
disease is present or absent (based upon some other method that is completel y accurate,
perhaps the test of time). If the test is "positive," it may be true poiitiu. (Tp), or it
may be a false positive (FP) test in a person without the condition being tested for. If
the test is "negative," it may be a true negative (TN) or it may be a false negative
(FN) test in a person who does have the condition.

How accurate is the test? It is impossible to express the accuracy in one number.
It takes at least two: sensitivity and specificity. An ideal test has very high sensitivity
and very high specificity:

' The sensitivity is the fraction of all those with the disease who get a positive test result.' The specfficity is the fraction of those without the disease who get a negative testresult.

Sensitivity :
TP TN

T P + F N Specificity :
T N + F P ( 1 4 . 1 )

It is easy to mix up sensitivity and specificity. Sensitivity measures how well the
test identifies those with the disease, that is, how sensitive it is. If a test has a high
sensitivity, it will pick up nearly everyone with the disease. specificity measures how
well the test excludes those who don't have the disease, that is, how specific it is. If
a test has a very high specificity, it won't mistakenly give a positive result to many
people without the disease.

129
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Table 14.1. Accuracy of a Qualitative Lab Test

Disease Present

Disease

Absent

Test positive
Test negative

Sackett and colleagues have published a clever way to remember the difference
between sensitivity and specificity.* Remember the meaning of sensitivity with this
acronym SnNOut: If a test has high sensitivity, a negative test ruIes out the disorder
(relatively few negative tests are false negative). Remember the meaning of specificity
with this acronym: SpPln. If a test has high q,pecificity, a positive test rules in the
disorder (relatively few positive tests are false positive).

THE ACCURACY OF A QUANTTTATTVE tAB TEST

Many lab tests report results on a continuous scale. For the purposes of this chapter,
we will simplify things so that it reports either o'normal" or "abnormal." Figures
14.1 and 14.2 show the distribution of test results in patients with the condition being
tested (dashed curve) and in those without the condition (solid curve). In Figure 14.1,
the two distributions don't overlap, and it is easy to pick the cutoff value shown by
the vertical dotted line. Every individual whose value is below that value (the left of
the dotted line) does not have the condition, and every individual whose test value is
above that threshold has it.

Figure 14.2 shows a more complicated situation where the two distributions
overlap. Again, the solid curve represents patients without the condition and the dashed
curve represents patients with the condition. Wherever you set the cutoff, some patients
will be misclassified. The dark shaded area shows false positives, those patients classi-
fied as positive even though they don't have the disease. The lighter shaded area shows
false negatives, those patients classified as negatives even though they really do have
the disease.

Choosing a threshold requires you to make a tradeoff between sensitivity and

specificity. If you increase the threshold (move the dotted line to the right), you will

increase the specificity but decrease the sensitivity. You have fewer false positives but

more false negatives. If you decrease the threshold (move the dotted line to the left),

you will increase the sensitivity but decrease the specificity. You will have more false

positives but fewer false negatives.
Choosing an appropriate threshold requires knowing the consequences (harm,

cost) of false-positive and false-negative test results. Consider a screening test for a

disease that is fatal if untreated but completely treatable. If the screening test is positive,

it is followed by a more expensive test that is completely accurate and without risk.

*DL Sackett, RB Haynes, GH Guyatt, P Tugwell. Clinical Epidemiology. A Basic Science for Clinical

Medicine,2nd ed. Boston, Litt le Brown, 1991.

FP
TN

TP
FN
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Negative Positive
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Test Result

Figure 14.1. A perfect test. The solid line shows the distribution of values in people without
the disease being tested for. The dashed curve shorvs the distribution of values in people with
the disease. The vertical line shows the demarcation between normal and abnormal results. The
two distributions do not overlap.

For this screening test you want to set the sensistivity very high, even at the expense
of a low specificity. This ensures that you will have few false negatives but many false
positives. That's OK. False positives aren't so bad, they just result in a need for a
more expensive and more accurate (but safe) test. False-negative tests would be awful,
as it means missing a case of a treatable fatal disease. Now let's consider another
example, a screening test for an incurable noncommunicable disease. Here you want
to avoid false positives (falsely telling a healthy person that she will die soon), while

Negative i Positive

i ,r\
i !  \
i !  \
i! \

\
\
\
\
\

Test Result

Figure 14.2. A typical test. As in Figure 14.1, the solid line shows the distribution of values
in people without the disease, and the dashed curve shows the distribution of values in people
with the disease. The two distributions overlap, so it is not obvious where to draw the line
between negative and positive results. Our decision is shown as the dotted line. False-positive
results are shown in the solid region: These are individuals without the disease who have a
positive test result. False negatives are shown as the shaded area: These are individuals with
the disease who have a negative test result.
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false negatives aren't so bad (since you can't treat the disease anyway). In such a case,

you would want the specificity to be high, even at the expense of a low sensitivity. It

is impossible to make generalrzations about the relative consequences of false-positive

and false-negative tests, and so it is impossible to make generalizations about where

to set the trade-off between sensitivity and specificity. Since the consequences of false-

positive and false-negative tests are usually not directly comparable, value judgments

are needed and different people will appropriately reach different conclusions regarding

the best threshold value.

THE PREDICTIVE VATUE OF A TEST RESUTT

Neither the specificity nor sensitivity answer the most important questions: If the test

is positive, what is the chance that the patient really has the disease? If the test is

negative, what is the chance that the patient really doesn't have the disease? The

answers to those questions are quantified by the positive predictive value and negative

predictive value:

Positive predictive value : 
,r+F

Negative predictive value : 
#^

The sensitivity and specificity are properties of the test. In contrast, the positive

predictive value and negative predictive value are determined by the characteristics of

lhe test and the prevalence of the disease in the population being studied' The lower

the prevalence of the disease, the lower the ratio of true positives to false positives.

Look back at Figure l4.2.The two curves have equal areas, implying that there

are equal numbers of tested patients with the condition and without the condition. In

other words, Figure 14.2 assumes that the prevalence is 50Va. In Figure 14.3, the

Prevalence=20%

Test Result

(14.2)

Prevalence=807o

Test Result
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Figure 14.3. The effect of prevalence on the predictive value of the test. In Figures 14'l and

14.2 the two curves had equal area, implying that half the tested population had the disease'

The left half of this figure ,ho*, the results if the prevalence is 2OVo, whlle the right half shows

the results if the prevalence is 807o. The fraction of all positive tests that are false positives is

higher in the left panel. The fraction of all negative tests that are false negatives is higher in

the right panel.
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prevalence is changed to 20Vo (left panel) or 807o (right panel). As before, the solid

curve represents people without the condition, and the dashed curve represents people

with the condition. Any test result to the right of the dotted line is considered to be

positive. This includes a portion of the area under the dashed curve (true positives)

and a portion of the area under the solid curve (false positives).

The predictive values depend on the prevalence of the condition. A much larger

fraction of positive tests are false positives in the left panel than in the right panel, so

the predictive value of a positive test is lower in the left panel. Conversely, a much

lower fraction of negative tests are false negative, so the predictive value of a negative

test is much higher in the left panel.

CATCULATING THE PREDICTIVE VATUE OF A POSITIVE
OR NECATIVE TEST

Acute intermittent porphyria is an autosomal dominant disease that is difficult to
diagnose clinically. It can be diagnosed by reduced levels of porphobilinogen deaminase.
But the levels of the enzyme vary in both the normal population and in patients with
porphyria, so the test does not lead to an exact diagnosis.

The sensitivity and specificity have been tabulated for various enzyme activities.
Published data show that 82Vo of patients with porphyria have levels < 99 units
(sensitivity = 827o) and that 3.7Vo of normal people have levels < 99 units (specificity
= 10O - 3.7Vo - 96.3Vo). What is the likelihood that a patient with 98 units of enzyme
activity has porphyia? The answer depends on who the patient is. We'll work through
three examples.

Patient A

In this example, the test was done as a population screening test. Patient A has no
particular risk for the disease. Porphyria is a rare disease with a prevalence of about
I in 10,000. Since patient A does not have a family history of the disease, his risk of
porphyria is0.Ul%o. Equivalently, we can say that the prior probability (prior to knowing
the test result) is 0.01Vo. After knowing the test result, what is the probability that
patient A has the disease? To calculate this probability, we need to fill in the blanks
(A through I) in Table I4.2 for a large population similar ro patienr A.

Follow these steps to fill in the table. (Don't skip these steps. I show similar tables
many times in this book, and you need to understand them.)

Table 14.2. Results of a Lab Test: Definitions of A through I

Disease Present Disease Absent

Test positive
Test negative
Total

G
H
I

D
E
F

A
B
C



1 .

2.

3 .
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Assume a population of 1,000,000 (arbitrary). Enter the number 1,000,000 in position
I. All we care about is ratios of values, so the total population size is arbitrary.
I : 1,000,000.
Since the prevalence of the disease is 1/10,000, the total number in the disease
present column is 0.0001 X 1,000,000 or 100. C : 100.
Subtract the 100 diseased people from the total of 1,000,000, leaving 999,900 disease
absent people. F : 999,900.
Next calculate the number of people with disease present who also test positive.
This equals the total number of people with the disease times the sensitivity. Recall
that sensitivity is defined as the fraction of those with the disease whose test result
is positive. So the number of people with disease and a positive test is 0.82 *

1 0 0 : 8 2 . A : 8 2 .
Next calculate the number of people without disease who test negative. This equals
the total number of people without the disease (999,900) times the specificity (.963).
Recall that the specificity is the fraction of those without the disease whose test
result is negative. E : 962,904.
Calculate the number of people with the disease who test negative by subtraction:
B : 1 0 0 - 8 2 : 1 8 . S o B : 1 9 .
Calculate the number of people without the disease who test positive by subtraction:
D : F - E - 3 6 , 9 9 6 .

8. Calculate the two row totals. G : A * D : 37078. H : B * E : 962,922.

Table 14.3 is the completed table.
If you screen I million people, you expect to find a test result less than 99 units

in 37,078 people. Only 82 of these cases will have the disease. The predictive value
of a positive test is only 82/37,078, which equals 0.227o. Only about I in about 500
of the positive tests indicate disease! The other 499 out of 500 positive tests are false
positives. The test is not very helpful.

Patient B

This patient's brother has the disease. The disease is autosomal dominant, so there is

a SOVo chance that each sibling has the gene. The prior probability is 5OVo. Table 14.4
gives results you expect to see when you screen 1000 siblings of patients.

You expect to find 429 positive tests. Of these individuals, 410 will actually have

the disease and 19 will be false positives. The predictive value of a positive test is

4101429, which is about 96Vo. Only about 5Vo of the positive test are false posi-

tives.

Table 14.3. Porphyria Example A: Screening Test

Patient A Disease Present Disease Absent Total

5 .

6.

7.

(99 units 82
>99 units l8
Total l0O

36,996 37,018
962,904 962,922
999.900 I,000,000
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Table 14.4. Porphyria Example B: Siblings of People with the

Disease

Disease Present Disease Absent Total

(99 units
>99 units
Total

410
90

500

l 9
481
500

429
571

1000

Patient C

This patient does not have a family history of porphyria, but he has all the right

symptoms. You suspect that he has it. What pretest probability should you use? Base

it on (informed) clinical judgment. In this case, you feel30Vo sure that the patient has

the disease. So the prior probability is307o. Filling in the table is easy, as illustrated

in Table 14.5.
If the test is positive, you can conclude that there is about a 246/212 : 907o

chance that the patient has porphyria. Unlike the other examples, the "prior probability"

in this example is a fairly fuzzy number. In the other two examples, the prior probability

came from epidemiological data (prevalence) or from genetic theory. Here it just comes

from clinical judgment. Since the prior probability is not an exact probability, the

answer (90Vo) is also not exact. It is an estimate, but you can be fairly certain that
patient C has porphyria. If the prior probability was really 20Vo or 407o (instead of

30Vo), you can calculate that the predictive value would be 85Vo or 94Vo.
The three patients had exactly the same test result, but the interpretation varies

widely. To interpret the test result, it is not enough to know the sensitivity and specificity.
You also need to know the prior probability (prior to seeing the test result) that the
patient had the disease. For patient A, you obtained the prior probability from population
prevalence. In patient B, you obtained the prior probability from genetic theory. In
patient C, you estimated the prior probability using clinical intuition.

The predictive value of a positive test depends on who you are testing. Your
interpretation of a positive test should depend partly on the characteristics of the test
(as measured by sensitivity and specificity) but also on the prevalence of the disease
in the group being tested. A test that is very useful for testing patients strongly suspected
of having the disease (high prevalence) may turn out to be useless as a screening test
in a more general population (low prevalence). Screening tests for rare diseases in the
general population are only useful when both sensitivity and specificity are ex-
tremely high.

Table 14.5. Porphyria Example C: Clinical Suspicion

Patient C Disease Present Disease Absent Total

(99 units
)99 units
Total

246
54

300

26
674
700

272
728

1000
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Table 14.6. Porphyria Example D

Disease Present Disease Absent Total

(79 units
)79 units
Total

2r9
28r
500

2
498
500

?2r
779

1000

Patient D

Like patient B, this patient is the brother of an affected patient. But patient D's enzyme
level is lower, 79 units. Since a low level is abnormal, the lower activity is associated
with lower sensitivity and higher specificity. Fewer patients and many fewer normals
have such a low enzyme level. For this level, the sensitivity is 43.8Vo and the specificity
is 99.5Vo.If you test 1000 siblings of porphyria patients, the results you expect to find
are given in Table 14.6.

You'd only expect to find 221 people whose enzyme level is so low, and,219 of
those have the disease. The predictive value of a positive test is 2191222 or 98.6Vo.
As you'd expect, a lower (more abnormal) test result has a higher predictive value.

BAYES'THEOREM

In these examples, calculating the predictive values using the tables took several steps.
These can be combined into a single equation named for Thomas Bayes, an English
clergyman who worked out the mathematics of conditional probability in the late 1700s.
The equation can be written in terms of either probabilities or odds, but the equation
is much simpler when expressed in terms of odds. Therefore, you need to review the
difference between probability and odds before reading about Bayes theorem.

A REVIEW OF PROBABITITY AND ODDS

Likelihood can be expressed either as a probability or as odds,

. The probability that an event will occur is the fraction of times you expect to see
that event in many trials.

. The odds are defined as the probability that the event will occur divided by the
probability that the event will not occur.

A probability is a fraction and always ranges from 0 to l. Odds range from 0 to
infinity. Any probability can be expressed as odds. Any odds can be expressed as a
probability. Convert between odds and probability with Equations 14.3 and 14.4:

odds : - ProbaPility
I - probability'

probability : - iggl-.
' | * odds'

(r4.3)

(r4.4)
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If the probability is 0.50 or SOVo, then the odds are 50:50 or 1. If you repeat the

experiment often, you expect to observe the event (on average) in one out of two trials

(piobability : ll2). That means you'll observe the event once for every time it fails

to happen (odds : 1:1).
If the probability is 1/3, the odds equal ll3l(l - Il3) : I:2 : 0.5. On average,

you'll observe the event once in every three trials (probability : l/3). That means

you'll observe the event once for every two times it fails to happen (odds : l:2).

BAYES',EQUATION

The Bayes' equation for clinical diagnosis is Equation 14.5:

(14.5)

The post-test odds are the odds that a patient has the disease, taking into account both

the test results and your prior knowledge about the patient. The pretest odds are the

odds that the patient has the disease determined from information you know before

running the test. The ratio sensitivity l(l - specifity) is called the likelihood ratio. It

is the probability of obtaining the positive test result in a patient with the disease

(sensitivity) divided by the probability of obtaining a positive test result in a patient

without the disease (1 - specificity). So Bayes' equation can be written in a simpler

(and more general) form:

Post-test odds : pretest odds ' likelihood ratio. (14.6)

Using this equation we can rework the examples with intermittent porphyria. The test

used in the example has a sensitivity of 82Vo and a specificity of 96.37o. Thus the

likelihood ratio (sensitivity/l - specificity) is .82/(1.0 - .963) : 22.2.* Analysis of
patients A through C is shown in Table 14.7.

The first column shows the pretest probability, which came from epidemiological

data (A), genetic theory (B), or clinical experience (C). The second column expresses

the pretest probability as odds, calculated from the pretest probability using Equation

14.3. The third column was calculated from Equation 14.6. This is the odds that the
patient has the disease, considering both the results of the test and the pretest odds.
The last column converts this result back to a probability using Equation I4.4. The

Table 14.7. Intermittent Porphyria Examples Using Bayes' Equation

Patient Pretest Probability Pretest Odds Post-Test Odds Post-Test Probability

post-test odds : pretest odds . - 
sensitivity

I - specificity

A 0.000r
B 0.50
c 0.30

0.0001
1.0000
0.4286

o.oo22
22.2
9.5r4

o.oo22
0.957
0.905

*If you express sensitivity and specificity as percents, rather than fractions, the likelihood ratio is defined
as (sensitivity/100 - specificity).
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results, of course, match those calculated earlier from the individual tables. Usins
Bayes' equation is more efficient.

SOME ADDITIONAL COMPLEXITIES

Bayesian logic integrates the result of one lab test into the entire clinical picture.
Many clinicians do a pretty good job of combining probabilities intuitively without
performing any calculations and without knowing anything about Bayesian thinking.
The formal Bayesian approach is more explicit and exact. Moreover, it clearly shows
the necessity of knowing the prevalence of diseases and the sensitivity and specificity
of tests.
When thinking about the predictive value of tests, distinguish screening tests from
confirmatory tests. It is OK if the quick and cheap screening tests turns up a lot of
false positives, as long as the confirmatory test (often slower and more expensive)
gives the correct result. When a positive screening test is followed by a confirmatory
test, you really only care about the predictive value of the pair of tests.
For some genetic diseases you need to distinguish the sensitivity to detect the genetic
defect from the sensitivity to detect clinical disease. Some genetic diseases have poor
penetrance, meaning that some people with the abnormal gene do not get the disease.
A test that detects the gene with few false positives would produce a lot of false
positives when assessed for its ability to detect the clinical disease.
For many tests, sensitivity and specificity are tabulated for various values of the test.
It is not necessary to pick a single threshold between positive and negative. Patient
D described earlier demonstrates this point.
The closer you can test for the real cause of the disease, the higher the sensitivity
and specificity. If you tested for the abnormal gene sequence (rather than enzyme
activity), the sensitivity and specificity would be extremely high (unless the penetrance
is low). In this case, the test would probably be definitive, and there would be little
need for Bayesian analyses.

SUMMARY

There are many ways of summarizing the accuracy of a diagnostic test. Sensitivity
quantifies how well the test correctly detects the presence of the conditron; specificity
quantifies how well it correctly detects the absence of the condition.

The rates of false-negative and false-positive test results depend not only on the
sensitivity and specificity of the test, but also on the prior probability that the subject
has the disease. In some situations, you know the prior probability from population
epidemiology. The prior probability is the prevalence of the disease. In other cases,
you know the prior probability from genetic theory. In still other situations, you can
estimate the prior probability from clinical experience.

Bayesian logic can be used to combine the result of the test with the prior

probability to determine the probability that the patient has the condition. The Bayesian

approach lets you combine the objective results of a test with your prior clinical
suspicion to calculate the probability that a patient has a disease. Although formal
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Bayesian analysis is seldom used in clinical settings, good clinicians intuitively combine

these probabilities routinelY.

oBf EcTlvEs

1. You must be familiar with the following terms:

. Sensitivity

. Specificity

. False positives

. False negatives

. Predictive value
' Bayes' equation
. Bayesian logic
. Likelihood ratio

2. You must understand why the rates of false positives and negatives depends on

the prevalence of the condition being tested for.

3. Given the speciflcity, sensitivity, and prevalence, you should be able to calculate

the rate of false positives and false negatives.

4. Using a book for reference, you should be able to calculate the probability that

a patient has a disease if you are given the specificity and sensitivity of a test and

the prior odds (or prior probability).

PROBTEMS

l . A test has a specificity of 92Vo and a sensitivity of 907o. Calculate the predictive

values of positive and negative tests in a population in which 57o of the individuals

have the disease.
A test has a specificity of 927o and a sensitivity of 99Vo. Calculate the predictive

values of positive and negative tests in a population in which 0.l%o of the individuals

have the disease.
A woman wants to know if her only son is color blind. Her father is color blind,

so she must be a carrier (because color blindness is a sex-linked trait). This means

that, on average, half her sons will be color blind (she has no other sons). Her son

is a smart toddler. But if you ask him the color of an object, his response seems

random. He simply does not grasp the concept of color. Is he color blind? Or has

he not yet figured out what people mean when they ask him about color? From

your experience with other kids that age, you estimate that 757o of kids that age

can answer correctly when asked about colors. Combine the genetic history and

your estimate to determine the chance that this kid is color blind.
For patient C in the porphyria example, calculate the predictive value of the test if
your clinical intuition told you that the prior probability was 75Vo.

2.

3 .

4.
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Bayes and Statistical Significance

Setting the value of cr, the threshold P value for determining significance, is similar
to selecting the threshold value for a lab test that distinguishes "normal" from "abnor-
mal." Recall from the previous chapter that selecting a threshold value for a lab test
involves a trade-off between false positives and false negatives. Similarly, you learned
in the previous chapter that selecting a value for a involves a tradeoff between Type
I errors and Type II errors. The analogy is shown in Tables 15.1 and 15.2. You should
memorize the differences between Type I and Type II errors. Those terms are sometimes
mentioned in papers without being defined, and the distinction is not always clear from
the context.

If a lab test measures the concentration of a chemical in the blood, you don't
have to worry about false-positive and false-negative lab tests if you think about the
actual concentration, rather than the conclusion positive or negative. Similarly, you
don't have to worry about Type I and II errors if you think about the actual value of
P (as a way to describe or summafize data) rather than the conclusion significant or
not significant.

TYPE I ERRORS AND FALSE POSITIVES

You have made a Type I error when you reject the null hypothesis (P < cr) when the
null hypothesis is really true. Note the subtle distinction between P values and a.
Before collecting data, you choose the value of ct, the threshold value below which
you will deem a P value significant. Then you calculate the P value from your data.

The following statements summanzethe analogy between specificity and P values:

lnb. If the patient really does not have the disease, what is the chance that the test
will yield a positive result? The answer is 1 minus the specificity.

Statistics.If we assume that the two populations have identical means (or proportions),
what is the chance that your study will find a statistically significant difference?
The answer is cr.

TYPE II ERRORS AND FALSE NECATIVES

To define a Type II error, you must define your experimental hypothesis. To distinguish
it from the null hypothesis, the experimental hypothesis is sometimes called the

1 4 0
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Table 15.1. False Negatives and Positives in Diagnostic Tests

141

Diagnostic Test Disease Is Really Present Disease Is Reallv Absent

Test positive

Test negative

No error (true positive)

False negative

alternative hypothesis. It is not enough to say that the experimental hypothesis is that
you expect to find a difference; you must define how large you expect the difference
to be.

You have made a Type II error when you conclude that there is no significant
difference between two means, when in fact the alternative hypothesis is true. The
probability of making a Type II error is denoted by B and is sometimes called a beta
enor. The value of B depends on how large a difference you specify in the alternative
hypothesis. If you are looking for a huge difference, the probability of making a Type
II error is low. If you are looking for a tiny difference, then the probability of making
a Type II error is high. Thus, one cannot think about B without defining the alternative
hypothesis. This is done by deciding on a value for the minimum difference (or relative
risk) that you think is clinically or scientifically important and worth detecting. This
minimum difference is termed A (delta). Your choice of A depends on the scientific
or clinical context. Statisticians or mathematicians can't help, the alternative hypothesis
must be based on your scientific or clinical understanding. B is the probability of
randomly selecting samples that result in a nonsignificant P value when the difference
between population means equals A.

The power of a test is defined as I - B. The power is the probability of obtaining
a significant difference when the difference between population means equals A. Like

B, the power can only be defined once you have chosen a value for A. The larger the
sample size, the greater the power. The lower you set a, the lower the power. Increasing
A will increase the power, as it is easier to find a big difference than a small difference.

The following statements summarize the analogy between sensitivity and power:

Lab. If the patient really has a certain disease, what is the chance that the test will
correctly give a positive result? The answer is the sensitivity. If the test can detect
several diseases, the sensitivity of the test depends on which disease you are
looking for.

Statistics.If there really is a difference (A) between population means (or proportions),
what is the chance that analysis of randomly select subjects will result in a
significant difference? The answer is the power, equal to one minus B. The answer
depends on the size of the hypothesized difference, A.

Table 15.2. Type I and Type II Errors in Statistical Tests

Populations Have Different
Means (or Proportions)

False positive

No error (true negative)

Statistical Test
Populations Have Identical

Means (or Proportions)

Significant difference
No significant difference

No error
Type II error

Type I enor
No error
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PROBABITITY OF OBTAINING A FATSE-POSITIVE I.AB RESULT:
PROBABITITY THAT A SIGNIFICANT RESUTT WII-I
OCCUR BY CHANCE

What is the probability of obtaining a false-positive lab result? This question is a bit
ambiguous. It can be interpreted as two different questions:

What fraction of all disease free individuals will have a positive test? This answer
equals FP/(FP + TN), which is the same as one minus the specificity.
What fraction of all positive test results are false positives? The answer is Fp(Fp *
TP). This is the conventional definition of the rate of false positives. As you learned
in the previous chapter, this question can be answered only if you know the prevalence
of the disease (or prior probability) in the population you are studying.

What is the probability of obtaining a statistically significant P value by chance?
this question is ambiguous. It can be interpreted as two different questions:

If the null hypothesis is true, what fraction of experiments will yield a significant p
value? Equivalently, if the null hypothesis is true, what is the probability of obtaining
a statistically significant result (P < cr)? The answer is cr, conventionally set to 57o.
In what fraction of all experiments that result in significant P values is the null
hypothesis true? Equivalently, if a result is statistically significant, what is the proba-
bility that the null hypothesis is true? The answer is not necessarily 5Vo. Conventional
statistics cannot answer this question at all. Bayesian logic can answer the question,
but only if you can define the prior probability that the null hypothesis is true. The
next section discusses how to apply Bayesian logic to P values.

In each case (lab tests and statistical tests) the logic of the first question goes from
population to sample, and the logic of the second goes from sample to population.
When analyzing data, we are more interested in the second question.

THE PREDICTIVE VAIUE OF SIGNIFICANT RESULTS:
BAYES AND P VAI.UES

You perfonn a statistical test and obtain a significant result. Repeated from the last
section, here is the question you wish to answer:

In what fraction of all experiments that result in significant P values is the null hypothesis
true? Equivalently, if the result is statistically significant, what is the probability that the
null hypothesis is really true?

Here is an imaginary example. You are working at a drug company and are
screening drugs as possible treatments for hypertension. You test the drugs in a group
of animals. You have decided that you are interested in a mean decrease of blood
pressure of l0 mmHg and are using large enough samples so that you have 807o power
to find a significant difference (cr. : 0.05) if the true difference between population
means is 10 mmHg. (You will learn how to calculate the sample size in Chapter 22.)
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you test a new drug and find a significant drop in mean blood pressure. You

know that there are two possibilities. Either the drug really works to lower blood

pressure, or the drug doesn't alter blood pressure at all and you just happened to get

lower pressure readings on the treated animals. How likely are the two possibilities?

Since you set cr to 0.05, you know that 57o of studies done with inactive drugs

will demonstrate a significant drop in blood pressure. But that isn't the question you

are asking. You want to know the answer to a different question: In what fraction of

experiments in which you observe a significant drop in pressure is the drug really

effective? The answer is not necessarily 57o. To calculate the answer you need to use

Bayesian logic and need to think about the prior probability. The answer depends on

what you knew about the drug before you started the experiment, expressed as the prior

probability that the drug works. This point is illustrated in the following three examples.

Drug A

This drug is known to weakly block angiotensin receptors, but the affinity is low and

the drug is unstable. From your experience with such drugs, you estimate that there

is about a lOVo chance that it will depress blood pressure. In other words, the prior

probability that the drug works is 107o. What will happen if you test 1000 such drugs?

The answer is shown in Table 15.3.
These are the steps you need to follow to create the table:

1. We are predicting the results of 1000 experiments with 1000 different drugs, so the
grand total is 1000. This number is arbitrary, since all we care about are ratios.

2. Of those 1000 drugs we screen, we expect that ll%o wrll really work. In other
words, the prior probability equals 107o. So we place lU%o of 1000 or 100 as the
total of the first column, leaving 900 for the sum of the second column.

3. Of the 100 drugs that really work, we will obtain a significant result rn807o (because

our experimental design has 807o power). So we place 80Vo of 100, or 80, into the
top left cell of the table. This leaves 20 experiments with a drug that really works,
but P > 0.05 so we conclude that the drug is not effective.

4. Of the 900 drugs that are really ineffective, we will by chance obtain a significant
reduction in blood pressure in 57o (because we set ct equal to 0.05). Thus the top
cell in the second column is 57o x 900 or 45. That leaves 855 experiments in
which the drug is ineffective, and we coffectly observe no significant difference.

5. Determine the row totals by addition.

Out of 1000 tests of different drugs, we expect to obtain a significant difference
(P < 0.05) in 125 of them. Of those, 80 drugs are really effective and 45 are not. When

Table 15.3. Statistical Significance When Testing Drug A

Drug A
Prior Probability : lgEo Drug Really Works

Drug Is Really
Ineffective Total

Significant difference
No significant difference
Total

80
20

r00

45
855
900

r25
875

1000
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you see a significant result for any particular drug, you can conclude that there is a
647o chance (80/125) that the drug is really effective and a 36Vo chance (45/lZ5) that
it is really ineffective.

Drug B

Here the pharmacology is much better characterized. Drug B blocks the right kinds of
receptors with reasonable affinity and the drug is chemically stable. From your experi-
ence with such drugs, you estimate that the prior probability that the drug is effective
equals 8OVo. What would happen if you tested 1000 such drugs? The answer is shown
in Table 15.4.

If you test 1000 drugs like this one, you expect to see 650 significant results. Of
those, 98.5Vo (640/650) will be truly effective. When you see a significant result for
any particular drug, you can conclude that there is a 98.5Vo chance that it will reallv
lower blood pressure and a 1.5vo chance that it is really ineffective.

Drug C

This drug was randomly selected from the drug company's inventory of compounds.
Nothing you know about this drug suggests that it affects blood pressure. Your best
guess is that about lVo of such drugs will lower blood pressure. What would happen
if you screen 1000 such drugs? The answer is shown in Table 15.5.

If you test 1000 drugs like this one, you expect to see 58 significant results. Of
those, you expect that t4%o (8/58) will be truly effective and that 86Vo (50/58) will be
ineffective. When you see a significant result for any particular drug, you can conclude
that there rs a I4Vo chance that it will really lower blood pressure and an 857o chance
that it is really ineffective.

These examples demonstrate that your interpretation of a significant result appro-
priately depends on what you knew about the drug before you started. You need to
integrate the P value obtained from the experiment with the prior probability.

When you try to do the calculations with real data, you immediately encounter
two problems:

You don't know the prior probability. The best you can do is convert a subjective
feeling of certainty into a "probability." If you are quite certain the experimental
hypothesis is true, you might say that the prior probability is 0.99. If you are quite
certain the experimental hypothesis is false, you might say that the prior probability
is 0.01. If you think it could go either way, you can set the prior probability to 0.5.

Table 15.4. Statistical Significance When Testing Drug B

Drug B
Prior Probability : ggEo Drug Really Works

Drug Is Really
Ineffective Total

Significant difference
No significant difference
Total

&o
160
800

l 0
190
200

650
350

1000
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Table 15.5. Statistical Significance When Testing Drug C

145

Drug C
Prior Probability : l%o Drug Really Works

Drug Is Really

Ineffective Total

Significant difference
No significant difference

Total

. You don't know what value to give A, the smallest difference that you think is

scientifically or clinicalty worth detecting. White it is usually difficult to choose an

exact value, it is usually not too hard to estimate the value.

Despite these problems, it is often possible to make reasonable estimates for both the

prior probability and A. It's OK that these values are estimated, so long as you treat

the calculated probability as an estimate as well.

THE CONTROVERSY REGARDING BAYESIAN STATISTICS

It is possible to combine all the steps we took to create the tables into one simple

equation called the Bayes' equation, as you saw in the last chapter. The entire approach

discussed in the previous section is called Bayesian thinking. The Bayesian approach

to interpreting P values is rarely used. If you knew the prior probability, applying

Bayesian logic would be straightforward and not controversial. However, usually the
prior probability is not a real probability but is rather just a subjective feeling. Some

statisticians (Bayesians) think it is OK to convert these feelings to numbers ("99Vo

sure" or "'707a sure"), which they define as the prior probability. Other statisticians
(frequentists) think that you should never equate subjective feelings with probabilities.

There are some situations where the prior probabilities are well defined. For

example, see the discussion of genetic linkage in the next chapter. The prior probability

that two genetic loci are linked is known, so Bayesian statistics are routinely used in
analysis of genetic linkage. There is nothing controversial about using Bayesian logic
when the prior probabilities are known precisely.

The Bayesian approach explains why you must interpret P values in the context
of what you already know or believe, why you must think about biological plausibility
when interpreting data. When theory changes, it is appropriate to change your perception
of the prior probability and to change your interpretation of data. Accordingly, different
people can appropriately and honestly reach different conclusions from the same data.
All significant P values are not created equal.

APPTYINC BAYESIAN THINKING INFORMALIY

When reading biomedical research, you'll rarely (if ever) see Bayesian calculations
used to interpret P values. And few scientists use Bayesian calculations to help interpret
P values. However, many scientists use Bayesian thinking in a more informal way
without stating the prior probability explicitly and without performing any additional
calculations. When reviewing three different studies, the thinking might go like this:

8
2

1 0

50
940
990

58
942

1000
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This study tested a hypothesis that is biologically sound and that is supported by previous
data. The P value is 0.04, which is marginal. I have a choice of believing that the results
are due to a coincidence that will happen I time in 25 under the null hypothesis, or of
believing that the experimental hypothesis is true. Since the hypothesis makes so much
sense, I'll believe it. The null hypothesis is probably false.

This study tested a hypothesis that makes no biological sense and has not been supported
by any previous data. The P value is 0.04, which is lower than the usual threshold of
0.05, but not by very much. I have a choice of believing that the results are due to a
coincidence that will happen I time in 25 under the null hypothesis, or of believing that
the experimental hypothesis is true. Since the experimental hypothesis is so crazy, I
find it easier to believe that the results are due to coincidence. The null hypothesis is
probably true.

This study tested a hypothesis that makes no biological sense and has not been supported
by any previous data. I'd be amazed if it turned out to be true. The P value is incredibly
low (0.000001). I've looked through the details of the study and cannot identify any biases
or flaws. These are reputable scientists, and I believe that they've reported their data
honestly. I have a choice of believing that the results are due to a coincidence that will
happen one time in a million under the null hypothesis or of believing that the experimental
hypothesis is true. Even though the hypothesis seems crvy to me, the data force me to
believe it. The null hypothesis is probably false.

You should interpret experimental data in the context of theory and previous data.
That's why different people can legitimately reach different conclusions from the same
data.

MULTIPTE COMPARISONS

Experienced clinicians do not get excited by occasional lab values that are marginally
abnormal. If you perform many tests on a patient, it is not surprising that some are
labeled "abnormal," and these may tell you little about the health of the patient. You
need to consider the pattern of all the tests and not focus too much on any one particular
test. If the test is quantitative, you also need to consider whether the test is just barely
over the arbitrary line that divides normal from abnormal, or whether the result is
really abnormal and far from the dividing line.

Similarly, experienced scientists do not get excited by occasional "significant"
P values. If you calculate many P values, you expect some to be small and significant
just by chance. When you interpret significant P values, you must take into account
the total number of P values that were calculated. If you make multiple comparisons
and calculate many P values, you expect to encounter some small P values just by
chance. Chapter 13 discussed this problem in great detail.

SUMMARY

The analogy between diagnostic tests and statistical hypothesis tests is summarized in
Table 15.6.
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Table 15.6. Comparison Between Diagnostic Tests and Statistical Hypothesis Tests

Lab Test Statistical Hypothesis Test

Result

Scope

Errors

Threshold

Accuracy

Interpretation

Multiple
comparisons

The result is a measurement, but it can

be compared to a threshold and

reported as "normal" or
"abnormal."

A lab test is performed for one

individual and yields the diagnosis of
positive or negative.

A lab test can result in two kinds of

erors: false positives and false

negatives.

You should choose the threshold
between "normal" and "abnormal"

based on the relative consequences

of false-positive and false-neg iive
diagnoses.

The accuracy ofthe lab test is expressed
as two numbers: sensitivitv and
specificity.

When interpreting the result of a lab

test for a particular patient, you must
integrate what is known about the
accuracy of the laboratory test
(sensitivity and specificity) with what
is known about the patient
(prevalence, or prior probability that
the patient has disease). Bayesian
logic combines these values
precisely.

If you perform many tests on one
patient, you shouldn't be surprised to
see occasional "abnormal" results.
If you perform many tests, you need
to look at overall patterns and not
just individual results.

The result is a P value, but it can be compared

to a threshold and reported as "statistically

significant" or "not statistically

significant."

A P value is calculated from one experiment

and yields the conclusion of significant or

not significant.

A statistical hypothesis test can result in two

kinds of errors: Type I and Type IL

You should choose a value for cr (the

threshold between "not significant" and
"significant" P values) based on the
relative consequences of making a Type
I or Type II error.

The accuracy of the statistical test is
expressed as two numbers: ct and B (or

power).

When interpreting the result of a statistical
test of a particular hypothesis, you must
integrate what is known about the
accuracy of the statistical test (ct and F)
with what is known about the hypothesis
(prior probability that the hypothesis is
true). Bayesian logic combines these
values precisely.

If you perform many statistical tests, you
shouldn't be surprised to see occasional
"significant" results. If you perform
many tests, you need to look at overall
patterns and notjust at individual P values.

oBf EcTtvEs

1. You must be familiar with the followins terms:
. Type I error
. Type II error
. c[ etTof
. B error
. Power
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You should be able to explain the analogy between false-positive and false-negative
lab tests and Type II and Type I statistical errors.
You should understand why it is hard to answer this question: In what fraction of
all experiments that result in a significant P value is the null hypothesis really true?
You should be able to explain why the answer to that question depends on the
nature of the hypothesis being tested.
Given a prior probability and power, you should be able to calculate the predictive
value of a statistically significant P value.

PROBLEMS

1 . A student wants to determine whether treatment of cells with a particular hormone
increases the number of a particular kind of receptors. She and her advisor agree
that an increase of less than 100 receptors per cell is too small to care about. Based
on the standard deviation of results you have observed in similar studies, she
calculates the necessary sample size to have 9OVo power to detect an increase of
100 receptors per cell. She performs the experiment that number of times, pools
the data, and obtains a P value of 0.04.

The student thinks that the experiment makes a lot of sense and thought that
the prior probability that her hypothesis was true was 60Vo. Her advisor is more
skeptical and thought that the prior probability was only 5Vo.

A. Combining the prior probability and the P value, what is the chance that these
results are due to chance? Answer from both the student's perspective and that
of the advisor.

B. Explain why two people can interpret the same data differently.
C. How would the advisor's perspective be different if the P value were 0.001 (and

the power were still 90Vo)?

You go to Las Vegas on your 25th birthday, so bet on the number 25 in roulette.

You win. You bet a second time, again on25, and win again! A roulette wheel has
38 slots (1 to 36, 0, and 00), so there is a 1 in 38 chance that a particular spin will
land on 25.

2.

3 .

4.

5 .

2.

A. Assuming that the roulette wheel is not
consecutive spins will land on 25?

B. If you were to spend a great deal of time watching roulette wheels, you would

note two consecutive spins landing on 25 many times. What fraction of those

times would be caused by chance? What fraction would be caused by an unfair

roulette wheel?

what that chance that two
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Bayes' Theorem in Genetics

BAYES' THEOREM IN GENETIC COUNSETING

In genetic counseling you want to determine the probability that someone has a particular
genetic trait.

Example 16.1

A woman wants to know her chances of being a carrier for Duchenne's muscular
dystrophy, an X-linked recessive trait. Since her brother and maternal uncle both have
the disease, it is clear that the gene runs in her family and is not a new mutation. From
her family history, her mother must be a carrier and the woman had a 507o chance of
inheriting the gene at birth.

Knowing that the woman has two sons without the disease decreases the chance
that the woman is a carrier. Bayesian logic allows you to combine this evidence (two
healthy sons) with the family history $OVo chance of being a carrier). We'll first
perform the calculations step by step with a table and then use Bayes' equation. Table
16.1 shows what you would expect to see if you were to examine many women with
the same family history and two sons. The calculations are explained later.

To generate the table, follow these steps:

1. Set the grand total to 1000. This is arbitrary as we only care about ratios.
2. We know that half the women are carriers, so place l/2 x 1000 or 500 into each

column total.
3. If a woman is a carrier, there is a l/4 chance (l/2 x l/2) that both her sons would

not have the disease. So place I/4 x 500 : 125 in box A. That leaves 375 cases
in box C.

4. lf a woman is not a carrier, then none of her sons will have this disease (baning
new mutations, which are very rare). So D : 0 and B : 500.

5. Compute the row totals.

Of the 1000 hypothetical women with two sons and this family history, 375 would
have at least one son with the disease. We know that the woman in our example is
not in this category. She is in the group of 625 women who have two sons without
the disease. Of these 125 are carriers. So 125/625 : 20Vo of the women with two
healthy sons are carriers. Thus we can say that the woman in our example has a 2OVo
chance, or I in 5, of being a carrier.

149
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Table 16.1. Calculations of Chance of Being a Carrier of Duchenne's Muscular Dystrophy in
the Example

Woman Is a
Carrier

Woman Is Not a
Carrier Total

Both sons without disease
At least one son has the disease
Total

A :  1 2 5
C : 3 7 5
500

B  : 5 0 0

D : O
s00

625
375

1000

From the laws of Mendelian genetics, we knew that her risk of being a carrier at
birth was 1/2. Taking into account her two unaffected sons, using Bayesian
logic lowers the risk to 1/5. Now let's use the Bayes' equation to streamline the cal-
culations. Bayes' equation is as follows:

Post-test odds : pretest odds ' likelihood ratio. ( 1 6 . 1 )

The likelihood ratio is the probability a carrier will have two unaffected sons divided
by the probability that a noncatrier will have two unaffected sons. The probability that

a carrier will have an unaffected son is ll2. Therefore, the probability that both sons

will be unaffected is 112 x ll2: ll4 or257o. The probability that a noncalrier will

have two sons without this disease is lo07o (baning new mutations, which are extremely

rare). So the likelihood ratio is 257o/l00%o or 0.25.
From her family history, we know that this woman had a 5OVo chance of being

a carrier at birth. This is the pretest probability. Therefore the pretest odds are 50:50

or 1.0. Multiply the pretest odds by the likelihood ratio to calculate the post-test odds,

which equal 0.25 or 1:4. If you saw many people with the same family history as this

woman, you'd see one carrier for every four noncarriers. Converting from odds to

probability, the post-test probability is 207o. She has a 20Vo chance of being a carrier.

BAYES AND GENETIC TINKAGE

When two loci (genes or DNA sequences) are located near each other on the same

chromosome, they are said to be linked. If the two loci are very close, crossing over

or recombination between the two loci occurs rarely. Thus, alleles of linked loci tend

to be inherited together. If the loci are further apart, recombination (a normal process)

occurs more frequently. If the loci are very far apart, the two loci segregate indepen-

dently just as if they were Qn different chromosomes.
Linkage is useful in genetic diagnosis and mapping. Since it is not possible to

detect all abnormal genes directly, geneticists try to identify a marker gene (such

as those for variable antigens or isozymes) or a variable DNA sequence that is linked

to the disease gene. Once you know that the disease gene is linked to a marker,

the presence of the marker (which you can identify) can then be used to predict the

presence of the disease gene (which you cannot identify directly). This allows detection

bf genetic diseases prenatally or before they cause clinical problems. It also allows

diagnosis of unaffected heterozygotes (carriers) who can pass the abnormal gene on
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to their children. This method works best for diseases caused by an abnormality of a

single gene.
Before linkage can be useful in diagnosis, you need to identify a marker linked

to the gene. This is usually done by screening lots of potential markers. How can
you tell if a marker is linked to a disease gene? Geneticists study large families and
observe how often the disease and marker are inherited together and how often there
is recombination. If there are few recombination events between the marker and the
disease, there are two possible explanations. One possibility is that the two are linked.
The other possibility is that the two are not linked, but-just by coincidence-there
were few recombination events.

Bayesian logic combines the experimental data with the priorprobability of linkage
to determine the probability that the gene is truly linked to the disease. To calculate
Bayes' equation, we need to define the likelihood ratio in the context of linkage. When
calculating the predictive values of lab tests in Chapter 14, we defined the likelihood
ratio as sensitivity divided by one minus specificity-the probability that someone with
the disease will have an abnormal test result divided by the probability that someone
without the disease will have an abnormal test result. For studies of linkage, therefore,
the likelihood ratio is the probability of obtaining the data if the genes really are linked*
divided by the probability of observing those data if the genes are really not linked.
The details of the calculations are beyond the scope of this book. When you read
papers with linkage studies, you'll rarely see reference to the likelihood ratio. Instead
you'll see the lod score (/og of odds), which is simply the logarithm (base l0) of the
likelihood ratio.

The higher the lod score, the stronger the evidence for linkage. A lod score of 3
means that the likelihood ratio equals 1000 (antilog of 3). This means that the data
are 1000 times more likely to be observed if the marker is linked to the disease than
if the marker is not linked.

To calculate the probability that the marker is linked to the gene requires accounting
for the prior probability of linkage using Bayesian logic. Bayes' equation for linkage
can be written as follows:

Post-test odds of linkage : pretest odds of linkage . likelihood ratio.
(16.2)

1 5 1

Post-test odds of linkage : pretest odds of linkage . 1gtod.

To calculate Bayes' equation, you must know the prior (or pretest) odds of linkage.
Since there are 23 pairs of chromosomes, the chance that any particular randomly
selected marker will be located on the same chromosome as the disease gene is I/23
or 4.3Vo. But it is not enough to be on the same chromosome. To be linked to a disease.
the marker must be close to the disease gene. So the prior probability that a random
marker is linked to a particular gene must be less than 4.3Vo. In fact, genetic data tell
us that ZVo of randomly selected markers are linked to any particular disease gene.f
Converting to odds, the pretest odds of linkage are about O.02. The values presented
here assume that the marker was randomly selected, as is often the case. If you pick
a marker known to be on the same chromosome as the disease, then the pretest odds
of linkage are higher

*This can only be calculated once you specify a hypothetical genetic distance 0.

tFor these calculations, we define linkage to mean that the probability of recombination is 30Zo or less.
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Let's assume that a lod score equals 3. What is the probability that the marker
and disease are truly linked? The post-test odds equal the pretest odds (0.02) times the
likelihood ratio (103 : 1000), which is 20. Converting to a probability, the post-tesr
probability equals 20121 (Equation I4.4), which is about 95Vo.If you observe a lod
score of 3.0, you will conclude that the marker and gene are linked. When you make
that conclusion, there is a 95Vo chance that you will be correct, leaving a SVo chance
that you will be wrong.

If a lod score equals or exceeds -2, geneticists usually conclude that the marker
and disease are linked. If a lod score is less than or equal to -2, geneticists conclude
that the marker and disease are not linked. See Problem 2 to calculate the probability
that this conclusion is wrong. If the lod score is between -2 and 3, geneticists conclude
that the evidence is not conclusive.

PROBLEMS

l. In Example 16.1, assume that the woman had three unaffected sons. What is the
probability that she is a carrier?
If the lod score is -3, what is the probability that the marker is linked to the disease?
It would be possible to calculate a P value from linkage data. Explain in plain lan-
guage what it would mean.
You perforrn a t test and obtain a P value of 0.032. You used enough subjects to
ensure that the experiment had a80%o power to detect a specified difference between
population means with P < 0.05. Does it make sense to calculate a likelihood ratio?
If so, calculate the ratio and explain what it means.

4.
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Correlation

INTRODUCINC THE CORRETATION COEFFICIENT

Example 17.1

Borkman et al-* wanted to understand why insulin sensitivity varies so much among
individuals. They hypothesized that the lipid composition of the cell membranes
of skeletal muscle affected the sensitivity of the muscle for insulin. They tested the
hypothesis in two studies. We'll look only at the second study of 13 healthy young
men. They determined insulin sensitivity in each with a glucose clamp study. To do
this they infused insulin at a standard rate (adjusting for size differences) and determined
how much glucose they needed to infuse to keep the blood glucose level constant.
Insulin causes the muscles to take up glucose and thus causes the level of glucose in
the blood to fall. The amount of glucose infused to keep a constant blood level is thus
a measure of insulin sensitivity. They only needed to infuse a lot of glucose when the
muscle was very sensitive to insulin. They also took a small muscle biopsy from
each subject and measured its fatty acid composition. We'll focus on the fraction of
polyunsaturated fatty acids that have between 20 and 22 carbon atoms (VoC20-22).
The authors show the data as a graph, from which I read off the approximate values
in Table 17.1. Table 17.l is sorted in order of VoC2O-22, not in the order the subjects
were studied. These data are graphed in Figure 17.1.

Note that both variables are scattered. The mean of the insulin-sensitivity index
is 284 and the standard deviation (SD) is lI4 mg/mz/min. The coefficient of variation
is 114/284' which equals 4o-lVo. This is quite high. The authors knew that there would
be a great deal of variability, and that is why they explored the causes of the variability.
There is also reasonable variability in the conteni of fatty acids. The voC20-22 is
2oJvo and the SD is 2-47o. So the coefficient of variation is ll.6vo.If you don,t look
at the graph carefully, you could be misled. The X axis does not start at 0, so you get
the impression that the variability is greater than it actually is.

Looking at the graph, there is an obvious relationship between the two variables.
In general, individuals whose muscles have more C20-22 polyunsaturated fatty acids

*M Borkman' LH sorlien, DA Pan' AB Jenkins, DJ chisholm, LV Campbell. The relation berween insulin
sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med 32g:23g-244. lgg3.

1 5 5
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Table 17.1. Conelation Between 7oC20-22 and
lnsulin Sensitivity

7a C2V22
Polyunsaturated

Fatty Acids
Insulin Sensitivity

(mg/m2lmin)

r 7 .9
18.3
18 .3
18.4
18 .4
20.2
20.3
2 l  . 8
21.9
22 .1
23 . r
24.2
24.4

250
220
145
l  1 5
230
200
330
400
370
260
210
530
375

also have greater sensitivity to insulin. The two variables vary together-statisticians

say that there is a lot of covariation or a lot of correlation.
The direction and magnitude of the linear correlation can be quantified with a

correlation coefficient, abbreviated r. Its value can range from - I to 1. If the correla-

tion coefficient is 0, then the two variables do not vary together at all. If the corre-

lation coefficient is positive, the two variables tend to increase or decrease together.

If the correlation coefficient is negative, the two variables are inversely related, that

is, as one variable tends to decrease, the other one tends to increase. If the correlation

"/oC20-22 Fatty Acids

Figure 17.1. Data for Exampl e I7 .L Each circle shows the results for one subject. The subjects

whose muscles have a higher percentage of C2V22 fatty acids tend to have a higher sensitivity

to insulin.
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coefficient is I or -1, the two variables vary together completely, that is, a graph of

the data points forms a straight line.
In the example the two variables increase together, so the correlation coefficient

must be positive. But there is some scatter, so the correlation coefficient must be less
than 1.0. In fact, the correlation coefficient equals 0.77 .* As always, we'd like to make
inferences about the correlation coefficient for the entire population. We know the
correlation coefficient for this particular sample of 13 men. Using an equation given
at the end of the chapter, we can calculate that the 95Va confidence interval (CI) for
the correlation coefficient ranges from 0.38 to 0.93. We can be 95%o sure that the
overall correlation coefficient lies within this range. Even the low end of the CI has a
strong positive correlation. So we can be quite confident that there is a strong correlation
in the entire population.

You can calculate a P value from these data. The null hypothesis is that there is
no correlation in the overall population. The two-tailed P value answers this question:
If the null hypothesis were true, what is the chance that 13 randomly picked subjects
would have a r greater than 037 or less than -0.77?

For this example the P value is 0.0021 . If there really were no relationship between
insulin sensitivity and the VoC20-22 fatty acids, there is only a 0.2I7a chance of
randomly observing such a strong conelation in an experiment of this size.

INTERPRETING r

Why do the two variables correlate so well? There are four possible explanations:

. The lipid content of the membranes determines insulin sensitivity.
' The insulin sensitivity of the membranes somehow affects lipid content.
' Both insulin sensitivity and lipid content are under the control of some other factor

(perhaps a hormone).
' The two variables don't correlate in the population at all, and the observed correlation

in our sample was a coincidence.

You can never rule out the last possibility, but the P value tells you how rare the
coincidence would be. In this example, you would observe a correlation that strong
(or stronger) in 0.2l%o of experiments if there is no correlation in the overall population.

You cannot decide between the first three possibilities by analyzing only these
data, you need to perform additional experiments where you manipulate one of
the variables. The authors, of course, want to believe the flrst possibility. While most
people immediately think of the first two possibilities, the third possibility is often
ignored. But correlation does not necessarily imply causality. Two variables can be
correlated because both are influenced by the same third variable. Height and weight
are correlated quite well, but height does not cause weight or vice versa. Infant mortality
in various countries is negatively correlated with the number of telephones per capita,
but buying telephones will not make kids live longer. Instead increased wealth (and

*I calculated all values from the data read off the graph in the paper. Since this is not completely accurate,
the calculations shown in the paper are slightly different.
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thus increased purchases of telephones) relates to better plumbing, better nutrition, less
crowded living conditions, more vaccinations, etc.

INTERPRETING r2

The square the correlation coefficient is an easier value to interpret than r. For the
example, f :0.59. While 12 is sometimes called the cofficient of determination, most
scientists simply refer to it as "r squared." Because r is always between - 1 and 1,
I is always between 0 and 1 and is smaller than r. More precisely, I = lrl.

If you can accept the assumptions listed in the next section, you can interpret 12
as the fraction of the variance that is shared between the two variables. In the example,
597o of the variability in insulin tolerance is associated with variability in lipid content.
Knowing the lipid content of the membranes lets you explain 59Vo of the variance in
the insulin sensitivity. That leaves 4l%o of the variance that is explained by other
factors or by measurement error. X and Y are symmetrical in correlation analysis, so
you can also say that 59Vo of the variability in lipid content is associated with variability
in insulin tolerance. By squaring both ends of the 95Vo CI for r, we find that the 95Vo
CI for 12 is 0.14 to 0.86. We can be 957o sure that in the overall population somewhere
between l47o and 867o of the variance in insulin sensitivity is associated with variance
in membrane lipid content.

ASSUMPTIONS

You can calculate the correlation coefficient from any set of data, and it is a useful

descriptor of the data. However, you cannot make inferences from the correlation

coefficient (and P value) unless the following assumptions are true:

. Subjects are randomly selectedfrom, or at least representative of, a larger population.

. Paired samples. Each subject (or each experimental unit) must have both X and

Y values.
. Independent observations. Sampling one member of the population should not influ-

ence your chances of sampling anyone else. The relationship between all the subjects

should be the same. In this example, the assumption of independence would be

violated is some of the subjects are related (i.e., siblings). It would also be violated

if the investigator purposely chose some people with diabetes and some without, or

if the investigator measured each subject on two occasions and treated the values as

two separate data points.
. X and Y values must be measured independently. The correlation calculations are

not meaningful if the values of X and Y are somehow intertwined. For example, it

would not be meaningful to calculate the correlation between a midterm exam score

and the overall course score, as the midterm exam is one of the components of the

course score.
. X values were measured and not controlled.If you systematically controlled the X

variable (i.e., concentration, dose, or time), you should calculate linear regression
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Figure 17.2. Effects of an outlier. In conelation, a single point far from the rest (an outlier)

can have an enorrnous impact. If you analyze all I I points (including the triangle), you'll find
that r : 0.020 and P : 0.38. This analysis suggests that there is no correlation between X and
Y. If you only analyze the l0 squares, r : 0.82 and P : 0.0046. This analysis provides strong
evidence that X and Y are correlated. The presence or absence of a single point (the triangle)
completely changes the conclusion.

rather than correlation (see Chapter 19). You will get the same value for 12 and the
P value. The confidence interval of r cannot be interpreted if the experimenter controls
the value of X.

' Gaussian distribution. The X and Y values must each be sampled from populations
that follow a Gaussian distribution, at least approximately.

' All covariation must be linear. The correlation coefficient would not be meaningful,
for example, if Y increases as X increases up to a certain point but the Y decreases
as X increases further.

OUTTIERS

Calculation of the correlation coefficient can depend heavily on one outlying point;
change or delete that point and the analysis may be quite different. An example showing
the influence of a single outlying point is shown in Figure 17 .2. If you analyze the l0
squaresonly,r :0.81 andP:0.005. I f  you analyze al l  l l  datapoints( includingthe
triangle), r : 0.29 and P : 0.382.Including or excluding just one point completely
changes the results.

Outliers can influence all statistical calculations, but especially in correlation. You
should look at graphs of the data before reaching any conclusion from correlation
coefficients. Don't dismiss outliers as "bad" points that mess up the analysis. It is
possible that the outliers are the most interesting observations in the study!

I
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SPEARMAN RANK CORRETATION

CORRELATION AND REGRESSION

You can't interpret the correlation coefficient unless you are willing to assume that

the distribution of both X and Y in the overall population is Gaussian. What if you

can't support that assumPtion?
As we'll see in later chapters, this problem comes up often in many contexts.

Many statistical tests are based on the assumption that the data are sampled from

Gaussian populations. Alternative tests are needed when that assumption cannot be

supported. One alternative approach would be to make some other assumption about

the distribution of values in the population, but this approach is not used often. If you

are not willing to assume a Gaussian distribution, you're rarely willing to assume other

distributions. And even if you were, statistical tests are not commonly available to

deal with other distributions. A better approach is to use a method that does not make

any assumption about how values in the population are distributed. Statistical methods

that do not make assumptions about the distribution of the population (or at least not

restrictive assumptions) are called nonparametric tests.

Most nonparametric ideas are based on a simple idea. List the values in order

from low to high, and assign each value a rank. Base all further analyses on the ranks.

By analyzing ranks rather than values, you don't need to care about the distribution

oi trre plpulation. One nonparametric method for quantifying correlation is called the

Spearmoi rank correlation. Spearman rank correlation is based on the same assumptions

as ordinary (pearson) correlations listed earlier, with the exception that rank correlation

does not assume Gaussian distributions. For the insulin sensitivity example, rs : 0.74

with a 95Vo Cl ranging from 0.31 to 0.92.

Figure 17.3. Don't combine two populations in correlation. If you analyze all the data' you'll

find that r : 0.72and P : 0.0009. This appears to be strong evidence that X and Y are correlated'

But you've really sampled from two aiiferent populations, shown as circles and triangles' If

you analyzed each sample separately, you'd find very low correlation coefficients and P values

greater than 0.50. There is no evidence that X and Y are correlated' Combining two populations

created the illusion of correlation'
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To interpret the results of linear correlation or regression, you must assume that all
data points are sampled from one population. If they combine two populations, you
can easily be misled. Figure 17.3 shows an example. When all the data are examined,
the correlation coefficient is 0.72. The X and Y variables appear to show an extremely
strong correlation and the P value is 0.0009. However, the data are really composed
of two different populations, shown as circles and triangles. In each population, the X
and Y variables correlate very poorly, with r : -0.16 and r : 0.05, respectively.
Each P value is greater than 0.50. The correct conclusion from these data is that the
two populations (circles and triangles) differ substantially in both variables (denoted
by X and Y axes). However, the data do not show any correlation between X and Y
among individuals. If you didn't know that the study combined two populations, you
would reach a very misleading conclusion.

CATCUTATING THE CORRETATION COEFFICIENT*

The equation for calculating r is programmed into many 20 dollar calculators, so you'll
rarely need to calculate it yourself. The equation can be expressed in several ways.
Equation 17.1 is fairly intuitive:

$ [tx, 
- xt. ff, - Y)l

7--, I S* Sy Ir - (17 .  l )
( N - 1 )

Here X is the mean X value, s* is the standard deviation of all X values, and N is the
number of data points. The mean X and mean Y values define a point at "the center
of gravity" of the data. The position of each point is compared to that center. The
horizontal distance (X' - X) is positive for pbints to the right of the center and negative
for points to the left. The vertical distance (Y, - Y; is positive for points above the
center and negative for points below.

The distances are standardized by dividing by the SD of X or Y. The quotient is
the number of SDs that each point is away from the mean. Dividing a distance by the
SD cancels out the units so it doesn't matter what units X and Y are expressed in. The
two standardized distances are multiplied in the numerator of the equation. The product
is positive for points that are northeast (product of two positive numbers) or southwest
(product of two negative numbers) of the center, and negative for points that are to
the northwest or southeast (product of a negative and a positive number). If X and y
are not correlated, then the positive products will approximately balance the negative
ones, and the correlation coefficient will be close to 0. If X and Y are correlated, the
positive and negative products won't balance, and the correlation coefficient will be
far from 0. The magnitude of the numerator depends on the number of data points.
Finally, account for sample size by dividing by N - 1. N is the number of Xy pairs.

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuitv.
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Note that X and Y are totally symmetrical in the definition of the correlation coefficient.
It doesn't matter which variable you label X and which you label y.

THE 95% CI OF A CORRETATION COEFFICIENT*

Correlation coefficients (like most summary statistics) are more informative when
expressed as a CI. You have calculated r from data in one sample and can be 957o
sure that the population value of the correlation coefficient lies within the 95Vo CI.

As r can never be larger than 1.0 or smaller than - 1.0, the CI is usually asymmetri-
cal and thus a bit tricky to calculate. If this is not done by your computer program,
use Equation 17 .2. This equation gives an accurate confidence interval only if N > 10.

Def i ne :  z : 0 .5 * t " ( f r )  zL : z -+  zv : z+  
l ' 96" ' \ r  - r l  "  

J t r=  /N-3
(r7.2)

confidence interval or r, {a to"1^" 
- | .

e t z t * l  e , z u l l

CALCUTATING THE SPEARMAN CORRELATION COEFFICIENT*

First, separately rank the X and Y values. The smallest value gets a rank of 1. Then
calculate the correlation coefficient between the X ranks and the Y ranks using Equation
17.1. The resulting coefficient is called r5. You must use a special method to determine
the 957o CI of r5. Equation 17.2 is a reasonable approximation if you have more than
10 subjects.

CALCULATING A P VALUE FROM
CORRELATION COEFFICI ENTS*

The relationship between r and the P value depends on N, the number of XY pairs.

For example to reach significance (P < 0.05) r must be larger than 0.88 with 5 data

points, greater than 0.63 with 10 data points, greater than 0.44 with 20 data points,

but only greater than 0.20 with 100 data points.
If you have l0 or more XY data pairs (N = 10), you can use Equation 17.3,

which calculates z from r.

os r"(ii)
(r7.3)

f iw-3)

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss

of continuity.
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The value z is from a standard Gaussian distribution. The P value is determined by

answering this question: In a Gaussian distribution with mean : 0 and SD : 1, what

fraction of the population has a value greater than z or less than -z? You can then

find the answer (the two-tailed P value) from the last column of Table A5.2 in the

Appendix. (Note that ln is the abbreviation for natural logarithm.)
You can determine the P value more accurately (even when N < 10) using

Equation I7.4, which converts r into t. Although you haven't learned about the t

distribution yet, you can use Table A5.4 in the Appendix to find the P value. The

number of degrees of freedom equals N - 2, and this determines which column in

the table to use. Find the row corresponding to the closest value of t and read the P value.

d f : N - 2 . (r7.4)

SUMMARY

The correlation between two variables can be quantified by the correlation coefficient,
r. It is easier to interpret the square of the correlation coefficient, 12. It is the proportion
of the variance in one variable that is "explained" by variance in the other.

You can calculate a P value to test the significance of a correlation. The P value
answers this question: If there is no correlation overall, what is the chance that randomly
chosen subjects will correlate as well (or better) than observed?

If you are not willing to assume that both variables distribute according to a
Gaussian distribution (at least approximately), then you can use a nonparametric form
of correlation. The most commonly used method of nonparametric correlation is called
Spearman correlation.

oBf EcTrvEs

You should be familiar with the followine terms:
. Correlation coefficient
. Coefficient of determination
. Spearman rank correlation
. Nonparametric
. Pearson correlation
. Outliers

Without looking at a book you must know the meaning of correlation coefficient,
r, and r2.
Using books, calculators, and computers, you should be able to calculate the correla-
tion coefficient between two variables. You should also be able to obtain the
appropriate P value.

4. You should be able to recognize data for which the Spearman rank correlation
is appropriate.

5. You should be able to estimate the correlation coefficient from an XY graph.

1 .

2.

3 .

N - 2
L t z
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PROBLEMS

l .

CORRETATION AND REGRESSION

In Example I7.1, how should the investigators have analyzed the data if they had
measured the insulin sensitivity and 7oC20-22 twice in each subject?
The P value in Example 17.1 was two tailed. What is the one-tailed P value? What
does it mean?
Do X and Y have to be measured in the same units to calculate a correlation coef-
ficient? Can they be measured in the same units?
W h a t i s t h e  P v a l u e  i f  r : 0 . 5  w i t h N :  1 0 ? W h a t i s  t h e P v a l u e i f  r : 0 . 5  w i t h
N : 100?
Can you calculate the correlation coefficient if all X values are the same? If all Y
values are the same?
Golino et al. investigated the effects of serotonin released during coronary angi-
oplasty.* After angioplasty (inflating a balloon positioned inside to coronary artery
to force open a blocked artery) they measured the degree of vasoconstriction in
the next few minutes as the percent change in cross-sectional area (monitored by
angiograms). They also measured the amount of serotonin in blood sampled from
the coronary sinus. The data for eight patients are shown (I read these values off
the graph in the publication, so they may not be exactly correct). To make the
serotonin levels follow a distribution closer to a Gaussian distribution. the authors
calculated the logarithm of serotonin. Calculate the correlation between the logarithm
of serotonin levels and the percent change in cross-sectional area. Interpret what
it means.

2.

3 .

4.

5 .

6.

Serotonin
(ng/ml)

7a Change in

Cross-Sectional
Area

2.0
5.0
6.0

10.0
15.0
60.0
65.0

165.0

4.0
'7.0

28.0
26.0
30.0
34.0
35.0
42.0

*P Golino, F Piscione, CR Benedict, et al. Local effect of serotonin released during coronary angioplasty.

N Engl J Med 330:523-528, 1994.
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An Introduction to Regression

All the statistical tests you have encountered so far are designed to compare two or
more groups with each other. Are the means the same? Are the proportions the same?
Are the survival curves the same? Are two variables correiated? A whole other class
of statistical tests have been developed to answer a different question: How well do
the data fit a theoretical model?

WHAT IS A MODEL?

A model is a mathematical abstraction that is an analogy of events in the real world.
Many models are written as an equation that defines a value you want to predict (Y)
from one or more variables (X) that you know.

Figure 18.1 shows three theoretical models. The first model is that insulin levels
increase linearly with body weight. The second is that pulse rate increases sigmoidally
with increasing concentrations of norepinephrine. The third is that the number of open
ion channels decreases exponentially with time. As you'll see, you can also write
models that predict the odds ratio or relative risk from one or more variables.

WHY BOTHER WITH MODELS?

Regression techniques can be used for several purposes:

' Looking for a trend. This is the simplest form of regression. It is used to ask questions
such as these: Do fasting insulin levels tend to increase with age? Has the incidence
of breast cancer tended to increase over the last 20 years?

' Adjusting for a confounding variable. Regression techniques can answer questions
such as this: Did the new treatment alter the incidence of ulcers after adjusting for
age and aspirin consumption?

' Curve fitting. Regression techniques can answer questions such as these? What is
the EC56 of a new drug?* What is the rate constant for closing of an ion channel?

' Prediction. Regression techniques can answer questions such as these: How can you
predict the risk of a myocardial infarction from knowing someone's age, blood
pressure, and cholesterol level? How can you predict success in medical school from
college grades, exam scores, and interview scores?

' Standard cltrve. Regression is used to analyze many assays. The assay is run with
known concentrations of the substance being measured. Regression is used to fit a
line or curve to the graph of concentration versus assay response (which might be
optical density, radioactivity, fluorescence, etc.). That line or curve can then be used
to determine the concentration from the response obtained with unknown samples.

*The EC5e is the concentration needed to achieve a half-maximal effect.

1 6 5
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Figure 18.1. Three regression models. The left graph shows a model that blood insulin increases
linearly with body weight. The middle graph shows a model that pulse rate varies sigmoidally
with norepinephrine concentration. The right graph shows a model that the number of open
channels decreases exponentially with time.

DIFFERENT KINDS OF RECRESSION

Regression includes a large family of techniques.

Simple Linear Regression

This is the most common form of regression. The outcome variable is a measurement.
There is a single X variable. A graph of X versus Y is a straight line. The next chapter
discusses linear regression.

Multiple Linear Regression

Here Y is still a measured variable (not a proportion and not a survival time), but there
are two or more X variables. Multiple regression is used to determine the influence of
one X variable while adjusting for the eff'ects of the other. Multiple regression (discussed
in Chapter 3l) is also used to find an equation to predict future outcomes.

Logistic Regression

Here Y is a binary variable (or proportion) such as infect,rdlnot infected, or cancer/no
cancer. There may be only one X variable, but logistir regression is more commonly
used with several X values. Logistic regression is discussed in Chapter 32.

Proportional Hazards Regression

Here the outcome is survival time. There may be only one X variable, but proportional
hazards regression (discussed in Chapter 33) is more commonly used with several.

Nonlinear Regression

Again Y is a measured variable, and there is a single X variable. But a graph of X
versus Y is curved. Nonlinear regression is discussed in Chapter 34.

Time
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Simple Linear Regression

The most commonly used regression method is simple linear regression. You've proba-

bly already seen this method used to find the "best line" through a graph of data
points. In this chapter, we'll first work through an example and then go back and ex-
plore the principles and assumptions in more detail.

AN EXAMPTE OF LINEAR REGRESSION

We'll continue Example 17.1. Recall that the investigators were curious to understand
why insulin sensitivity varies so much between individuals. They measured insulin
sensitivity in 13 men, and also measured the lipid content of muscle obtained at biopsy.
You've already seen that the two variables (insulin sensitivity, and the fraction of the
fatty acids thatunsaturated with2}-22carbonatoms, VoC2O-22) correlate substantially.
The correlation coefficient r is 0.77. It is easier to interpret I which equals 0.59. This
means that 59Vo of the variance in insulin sensitivity can be accounted for by the linear
relationship between insulin sensitivity and 7oC20-22.

The investigators used linear regression to fit a line through the graph so they
could find out how much the insulin sensitivity increases for every percentage point
increase in VoC20-22.The program InStat produced Figure 19.1 and Table 19.1.

Figure 19.1 shows the best-fit regression line. Best-fit means any other line would
be further away from the data points. More precisely, with any other line the sum of
the squares of the vertical distances of the points from the regression line would have
been larger. Later in the chapter you'll learn why the method minimizes the square
of the distances.

Figure 19.1 also shows the 95Vo confidence interval for the regression line as two
dotted curves. The interpretation is familiar to you. The best-fit line determined from
this particular sample of subjects is unlikely to really be the best-fit line for the entire
population. If the assumptions of linear regression are true (we'll discuss these later),
you can be 95Vo sure that the overall best-fit regression line lies somewhere within the
space enclosed by the two dotted curves. Figure 19.2 shows five possible regression
lines (solid) that lie within the 95Vo confidence interval (dotted). Even though the
borders of the 957o confidence region are curved, we are not allowing for the possibitity
of a curved (nonlinear) relationship between X and Y.

167
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%C20-22 Fatty Acids

Figure 19.1. The results of linear regression. The best-fit line is shown as a solid line. The 95%
CIs for that line are shown as dotted curves.

Now let's turn to Table 19.1 which shows the numerical output of InStat.

. The slope is 37.2. This means that when VoC20-22 increases by 1.0, the average
insulin sensitivity increases by 37.2 mg/mz/min. The program also reports the 95Vo
CI for the slope, and its interpretation is familiar. The slope calculated from this
particular sample is unlikely to equal the true slope in the overall population. But
we can be 95Vo sure that the true slope is within the range of the 95Vo Cl, between
16.7 and 57.7 mglmz/min.

. The Y-intercept is -486.5. This is the value of Y when X is zero. Taking this number
at face value, this says that when the membranes have no C2O-22 fatty acids, the
insulin sensitivity would be -486.5. This is not biologically possible, as the sensitivity
is the amount of glucose needed to maintain a constant blood level and so cannot
be negative. We'll discuss this problem later in the chapter.

Table 19.1. Output for InStat for Example 17.l
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Parameter

Expected
Value

Lower
95Vo Cl

Upper
95Vo CI

Linear Regression

Number of points : 13

Standard
Error

Slope
Y intercept
X intercept

r squared : 0.5929

Standard devaition of residuals from line (Sy.x) : 75.895

Test: Is the slope significantly different from zero?

F :  16.021
The P value is 0.0021, considered very significant.

37.208 9.296
-486.54 193.72

13.076

16.74',7
-912 .9 r

57.668
-60.r73
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o/oc20-22 Fatty Acids

Figure 19.2. Meaning of the confidence intervals of a regression line. The 957a Cls for the
regression line from our example are shown as dotted curves. If we can accept the assumptions
of linear regression, we can be 95Vo sure that the true best-fit line lies within these confidence
limits. For example, five potential best-fit lines are shown (solid lines). All are within the CI.

. The X-intercept is the value of X when Y equals zero. Taken at face value it says

that when the 7oC20-22 equals 13.076, the muscles will have no sensitivity to insulin.

Since we have no data points where %oC20-22 is near 13, there is no way to know

whether this is really true.
. Next, the output shows that r2 equals 0.5929. This is the same value determined by

linear correlation in Chapter 17. It means that 59Vo of all the variance in insulin
sensitivity can be accounted for by the linear regression model-that 597o of the
variance in insulin sensitivity can be explained by variance in VoC20-22. The re-

maining 4IVo of the variance may be due to other factors, to measurement etrors,
or to a nonlinear relationship between insulin sensitivity and 7oC20-22.

. The standard deviation of the residuals equals 75.9 mg/m2lmin. This is the standard
deviation of the vertical distances of the data points from the regression line.

. Finally, the program reports the P value testing the null hypothesis that there really
is no linear relationship between insulin sensitivity and7oC20-22.1f the null hypothe-
sis were true, the best-fit line in the overall population would be horizontal with a
slope of zero. The P value answers this question: If that null hypothesis were true,
what is the chance that linear regression of data from a random sample of subjects
would have a slope as far from zero (or further) than we actually observed? In this
example, the P value is tiny, so we conclude that the null hypothesis is very unlikely
to be true and that the observed relationship is unlikely to be due to a coincidence
of sampling.

COMPARISON OF TINEAR RECRESSION AND CORRETATION

We have now analyzed the data of Example 17.1 both as an example of correlation
and of regression. The values of r2 and the P value were the same with both analyses.
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It made sense to interpret the CI of the correlation coefficient (Chapter 17) only
because the experimenters measured X, and because we rue willing to assume that
both insulin sensitivity and VoC20-22 approximate Gaussian distributions. you cannot
interpret (and shouldn't calculate) the CI of the correlation coefficient if the experiment-
ers manipulated X.

It made sense to interpret the linear regression line only because we were able
to decide which variable was X and which was Y. The investigators hypothesized
that the lipid content of the membranes influenced insulin sensitivity, and so
defined VoC20-22 to be X and insulin sensitivity to be Y. The results of linear regres-
sion (but not correlation) would be different if the definitions of X and y were
swapped.

In many cases, it makes sense to calculate only linear regression or only correlation
but not both. In Example 17.l it made sense to perform both sets of calculations.

THE LINEAR RECRESSION MODET

The whole point of linear regression is to fit an ideal mathematical model to your data.
To understand linear regression, therefore, you must understand the model. Don't be
scared by the word model.It's not that complicated.

Recall that a line is defined by Equation 19.1:

Y :  i n t e r c e p t +  s l o p e . X  -  a  +  B . X .  ( 1 9 . 1 )

The Y-intercept, c, is the place where the line crosses the Y axis. To see this, note
that when X equals 0 the equation calculates that Y equals a. The slope, B, is the
change in Y for every unit change in X.*

Equation 19.1 is not quite sufficient to model linear regression. The problem is
that it places every data point exactly on the line. We need to add a random component
to the linear regression model to account for variability (Equation 19.2):

Y : intercept + slope' X + scatter : ct * B' X + e. (19.2)

Epsilon (e) represents random variability. The only way to make this model useful
is to make some assumptions about the random variable. We'll assume that the random
factor follows a Gaussian distribution with a mean of 0. This means any particular
value is just as likely to be above the line as below it, but is more likely to be close
to the line than far from it. The random variable is often referred to as error. As used
in this statistical context, the term error refers to any random variability, whether
caused by experimental imprecision or biological variation.

cr and B represent single values, whereas e has a different value for each subject.
Figure 19.3 shows simulated data that follow Equations l9.l and 19.2.

*You've already seen that the Greek letters a and B are also used to represent the probabilities of Type I
and Type II errors. There is no relationship between the intercept and slope of a line, and the probabilities

of Type I and Type II errors. Don't confuse the two uses of the variables cr and B.
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Figure 19.3. The linear regression model. The left graph shows the equation for a straight line.

The right graph adds random error. The error follows a Gaussian distribution. Its standard

deviation is the same for all parts of the line (it does not vary with X)'

THE ASSUMPTIONS OF TINEAR REGRESSION

The linear regression model is built around these assumptions:

. X and Y are asymmetrical. The model predicts Y values from X. X is often a variable

you control, such as time or concentration. Or X can be a variable that logically or

chronologically precedes Y.
. The relationship between X and Y can be graphed as a straight line. In many

experiments, the relationship between X and Y is curved, but linear regression only

deals with linear relationships. You can calculate linear regression even when the

relationship is curved, but the results afe unlikely to be helpful.
. The equation defines a line that extends infinitely in both directions. No matter how

high or how low a value of X you propose, the equation can predict a Y value. This

assumption is rarely reasonable with biological data. But we can salvage the model

by restricting ourselves to using the predictions of the model only within a defined

range of X values. Thus we only need to assume that the relationship between X

and Y is linear within that range. In the example, we know that the model can-

not be accurate over a broad range of X values. At some values of X, the model

predicts that Y would be negative, a biological impossibility. In fact, the Y-intercept

is negative. But the linear regression model is useful within the range of X values

actually observed in the experiment.
. The variability of values around the line follows a Gaussian distribution. Even though

no biological variable follows a Gaussian distribution exactly, it is sufficient that the

variation be approximately Gaussian.
. The standard deviation (SD) of the variability is the same everywhere. In other words,

e has the same SD everywhere, regardless of the value of X. The assumption that

the SD is the same everywhere is termed homoscedasticity.
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' The model only provides for variability in the Y variable. The model assumes that
you know X exactly. This is rarely the case, but it is sufficient to assume that any
imprecision in measuring X is very small compared to the variability in Y. Certainly,
uncertainty in measuring Y should not alter your assessment of X.

' Each subject (or each XY data pair) was randomly sampled from the population. At
a minimum, we assume that our subjects are representative of the entire population.

' Each subject (or each XY data pair) was selected independently. Picking one subject
from the population should not influence the chance of picking anyone else.

UNEAR REGRESSTON AS A LEAST SQUARES METHOD*

How does the linear regression procedure find the "best" values of a and B to make
the regression model (Equation 19.2) fit the data? Linear regression defines the "best
line" as the line that minimizes the sum of the squares of the vertical distances of the
points from the line. This means that the sum would be higher for any other line.

Why minimize the square of the distances? The simplest answer is that this avoids
the problem of negative distances. But why not minimize the absolute value of the
distances? A simple answer is that distances are squared because it is better to have
two points sort of close to the line (say five units each) than to have one very close
(one unit) and one further (nine units). Another answer is that the criteria of minimizing

the square of the distances assures that a unique line is defined from any set of data
points. A method that minimized the absolute value of the distances would not always
generate a unique answer.

Here is another way to understand why linear regression minimizes the square of

the distances. The vertical distance of each point from the regression line is called the

residual. Linear regression finds the line that minimizes the SD of the residuals. When

calculating the SD, you sum the squared deviations. So to minimize the SD, you

minimize the sum of the squared deviations.
Note that linear regression does not really find the line that "comes closest" to

the points, since it looks only at vertical distances (parallel to the Y axis). This also

means that linear regression calculations are not symmetrical with respect to X and

Y. Switching the labels "X" and "Y" will produce a different regression line (unless

the data are perfect, with all points lying directly on the line). This makes sense, as

the whole point is to find the line that best predicts Y from X. The line that best

predicts X from Y is usually different.
An extreme example makes this more clear. Consider data for which X and Y

are not correlated at all. You know X and have to predict Y. Your best bet is to predict

that Y equals the mean of all Y values for all values of X. The linear regression line

for predicting Y from X, therefore, is a horizontal line through the mean Y value. In

contrast, the best line to predict X from Y would be a vertical line through the mean

of all X values, 90' different.

xThis section is more advanced than the rest. You may skip it without loss of continuity.
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THE MEANING OF 12

173

You've already learned about 12 in the context of linear correlation. It is a fraction
between 0 and 1, and has no units. When r2 equals 0, there is no linear relationship
between X and Y. In this case, the best-fit line is horizontal (slope : 0), so knowing
X does not help you predict Y. When f : l, all points lie exactly on a straight line
with no scatter.

You can think of r2 as the fraction of the total variance in Y that can be ''explained"

by the linear regression model. It is the fraction of the total variance in Y that is
accounted for by linear regression with X. The value of 12 (unlike the regression line
itself would be the same if X and Y were swapped. So 12 is also the fraction of the
variance in X that is explained by variation in Y. AlternativeLy, f is the fraction of
the variation that is shared between X and Y.

Statisticians sometimes call r2 the cofficient of determination, but scientists call
it r squared.

You may find it easier to interpret 12 after you understand how it is calculated. It
is calculated from two values, s, and s*. The first, s' is the SD of all Y values without
regard to X. The second, S., is the SD of the residuals. It is the SD of the vertical
distances of the points from the regression line. If the data are not correlated at all,
the best-fit line is horizontal and s. equals sr. In all other cases s. is smaller than sr.
Since the variance is the square of the SD, s| is the total variance of Y and s3 is the
variance unexplained by the regression model. Equation 19.3 defines 12.

,, : $l - total variance - unexplained variance _ explained variance
sf total variance total variance

(1e.3)

Let's look at the two extreme cases. With completely random data, the SD of the
data points around the regression line is the same as the SD of the Y values, so s"
equals s' and 12 : 0. With perfectly linear data, the SD of the points around the
regression line is 0. In this case, s. equals 0 and 12 equals 1.0.

MAXIMUM TIKELIHOOD

A puzzling aspect of linear regression is that we minimize the sum of the squares of
the distances of the points from the line, rather than minimize the sum of the absolute
distances. Why minimize the square of the differences? A rigorous answer is that the
regression line determined by the least-squares method is identical to the line determined
by maximum likelihood calculations. The next paragraph gives you a feel for how
maximum likelihood calculations work.

For any particular model, it is possible to calculate the probability (likelihood) of
obtaining any particular set of data. The regression model must specify particular values
for the slope and intercept of a hypothetical line, as well as for the scatter of the data
around that line. The model defines the entire population. For any particular model,
many different samples of data could be obtained, but some data sets are more likelv
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than others. Thus it is possible to calculate the conditional probability (likelihood) that
answers this question: If the model were true, what is the chance of obtaining the
particular set of data that we collected? Different models will give different answers.
If you try models with all possible combinations of slope and intercept, it is possible
to find the regression line that has the maximum likelihood of producing the observed
set of data. In other words, this method finds the values for the variables that are most
likely to be true.

Restricting ourselves to models in which the scatter of data around the line is
Gaussian, the maximum-likelihood method yields identical values for slope and inter-
cept as does the least-squares method. Least-square calculations are easier and thus
have become standard. Least-square calculations are inappropriate for logistic and
proportional-hazard regression, and maximum-likelihood calculations are necessary.

GRAPHING RESIDUATS

Linear regression assumes that the scatter of Y values around the regression line follow
a Gaussian distribution with a SD that is the same for all values of X. The best way
to informally test these assumptions is to inspect a residual plot. Figure 19.4 shows a
residual plot from the example. In such a plot the X values are unchanged, but the Y
values are replaced by the distance between the points and the line (keeping track of
sign). A residual is positive when the point lies above the line, and is negative when

the point lies below the regression line. Residuals equal the actual Y value minus the
predicted Y value.

When inspecting a graph of residuals, ask yourself these questions:

. Does the scatter appear to be Gaussian, with many points close to the horizontal line

at Y : 0, fewer points far away, and no outliers much further away? If your answer

is No, linear regression may not be appropriate.
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Figure 19.4. A residual plot. The X axis is the same as it is in Figure l9.ZThe Y axis shows

the distance of each point from the best-fit line. If the line went directly through a point, that

point would have Y : 0 on the residual plot. Positive residuals show that the point is above

the line; negative residuals show that the point is below the line.
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Does the average distance of the points from the Y : 0 tend to increase (or decrease)
as you move along the graph? If you see such a trend, linear regression may not
be appropriate.
Are there large clusters of adjacent points all above the line or all below the line?
Again, if you see such clusters, linear regression would not be appropriate.

USING THE REGRESSION I INE AS A STANDARD CURVE TO
FIND NEW VATUES OF Y FROM X

Knowing the best-fit regression line, it is easy to calculate Y from X. Just plug X into
the regression equation and calculate Y. The regression line extends infinitely in both
directions, and nothing but common sense stops you from attempting to make predic-
tions beyond the range of X values that encompass the original data points. But the
relationship between X and Y may change beyond this range. Mark Twain pointed
out the absurdity of extrapolation:

In the space of one hundred and seventy-six years, the lttwer Mississippi has shortened
itself two hundred and forty-two miles. This is an average of a trifle over one mile and
a third per year. Therefore, any calm person, who is not blind or idiotic, can see that in
the Old Odlitic Silurian Period, just a million years ago next November, the l-ower
Mississippi was upward of one million three hundred thousand miles long, and stuck out
over the Gulf of Mexico like a fishing rod. And by the same token, any person can see
that seven hundred and forty-two years from now, the lower Mississippi wilt be only a
mile and three-quarter long. . .

Lifu on the Mississippi

Quantifying the accuracy of the predicted Y value is harder. We want to calculate
the 95Vo prediction interval, that is, the range of values that contains 95Vo of new
points. This is different from the CI shown earlier. The prediction interval must include
uncertainty in the position of the regression line (quantified by the 95Vo CI of the
regression line) and the scatter of points around the line. Thus the prediction interval
is much wider than the CI.

The distinction between CI and the prediction interval is analogous to the difference
between standard error and SD, and has already been discussed in Chapter 5. The
prediction intervals are always wider than the CIs. As the number of data points
increases, the CIs grow nalrower, while the prediction intervals stay about the same.
Like the CI, the prediction intervals are curved.

THE RECRESSION FALTACY

When interpreting the results of linear regression, make sure that the X and y axes
represent separate measurements. Otherwise, you can be mislead by a problem called
the regression fallacy. Here is an example.

Figure 19.5 shows computer generated data simulating an experiment where blood
pressure was measured before and after an experimental intervention. The left panel
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Systolic BP (before)

Figure 19.5. The Jffi"t;"Jrhe left panel shows simulated dara showing blood pressure
before and after an intervention. All values were sampled from a Gaussian distribution with a
mean of 120 and a SD of 10. There is no correlation between the two sets of values. The right
panel shows the same data after some calculations. The Y axis now shows the change in blood
pressure (after - before). There appears to be a strong correlation and the best-fit line (shown)
has a slope far from horizontal. Subjects whose pressure was low originally tended to increase
their pressure (left side of the graph). Subjects whose pressure was high originally tended to
decrease their pressure (right side of graph). If these were real data, you might be intrigued by
this finding. But there is no finding, and these are random data. Because the values plotted on
the Y axis include the values shown on the X axis, linear regression is not appropriate for
these data.

shows a graph of the data. Each point represents an individual whose blood pressure
was measured before (X axis) and after (Y axis) an intervention. The data are entirely
random, and there is no trend whatsoever. Each value was sampled from a Gaussian
distribution with mean : 120 and SD : 10. As expected, the best-fit regression line
is horizontal. While blood pressure levels varied between measurements, there was no
systematic effect of the treatment. The right panel shows the same data. But now the
Y axis shows the change in blood pressure (after - before). Notice the striking linear
relationship. Individuals who initially had low pressures tended to increase; individuals
with high pressures tended to decrease. This is entirely an artifact of data analysis and
tells you nothing about the effect of the treatment, only about the stability of the blood
pressure levels between treatments.

These are not real data. But the figures clearly make the point that it is very
misleading to plot a change in a variable versus the initial value of the variable.
Attributing a significant corelation on such a graph to an experimental intervention
is termed the regressionfallacy. Such a plot should not be analyzed by linear regression
because these data (so presented) violate one of the assumptions of linear regression,
that the X and Y values were determined independently. Here, instead, the X value is
used in the calculation of the Y value.

CAICULATINC TINEAR REGRESSION*

Linear regression calculations are best left to computer programs and calculators. The

equations defining the slope and intercept can be expressed in many forms. The

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss

of continuity.
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equations shown here were chosen for clarity. Other equations are more efficient for
hand calculations.

Slope and lntercept

Equation 19.5 calculates the slope. Note that the equation is not symmetrical with
respect to X and Y. We call the best fit slope b, to distinguish it from B, the ideal
slope in the population.

Slope : b :
) (x ,  -XXy,  -Yl

(1e.5)
Xx, - X)'

The standard error (SE) of the slope is defined by Equation 19.6:

SE of slope : Sb : 
se

s x ' ( N  -  1 ) '
(1e.6)

(1e.8)

This equation makes sense. If the scatter of the points around the line (s.) gets
larger, the uncertainty in the exact value of the slope also gets larger. If you have
collected data over a larger range of X values, the SD of X (s^) will increase, resulting
in a more precise slope. Finally, if you collect more data (increase N) you will know
the slope more exactly. The units of the SE of the slope are the same as the units of
the slope: the Y units divided by the X units.

The best-fit line always goes through the point defined by the average of all X
values and the average of all Y values. Thus the Y intercept can be calculated from
Equation 19.7:

Y i n t e r c e p t :  a :  ( m e a n Y )  -  s l o p e ( m e a n X ) :  Y  -  U . X .  ( 1 g . 7 )

Goodness of Fit

One way to quantify goodness of fit is to calculate the SD of the residuals (or "errors"),
as shown in Equation 19.8.

The numerator of the fraction sums the square of the vertical distances of the points
from the line. In other words, it sums the square of the vertical distance of the actual
value of Y from the value predicted from the regression line. That is the quantity that
linear regression minimizes. The denominator is N - 2. This makes sense because
you had to calculate the slope and intercept of the regression line before you could
calculate the predicted Y values. If you knew the slope and intercept and N - 2 of
the XY pairs, you could calculate what the other two XY pairs must be. Therefore
there are N - 2 degrees of freedom, and the average of the squared deviations is
determined by dividing by N - 2. You already learned how to calculate r2 from s,
and s" (Equation 19.3).

- predicted Y)t
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Confidence Intervals and Predictions lntervals of the line

The 95Vo CI of the slope is calculated from Equation 19.9.

95Vo CI of slope : slope - 1* . s6 to slope * t* . s6.

To find the critical value of t*, use Table A5.3 in the Appendix. The number of
degrees of freedom equals the number of XY pairs minus two. To determine the CI
of the Y position of the linear regression line at any position X, use Equation 19.10.
You can be 95Vo certain that the true population regression line will lie within these
limits for all values of X. In this equation (and the next) Y,., is the Y value of the
regression line at the particular value of X you have chosen:

Y,.s : X' slope * Y intercept.

95Vo CI of regression line

:  
[ " " '  

-  s e ' t *

To determine the prediction interval at any position X, use Equation

9 5 7o prediction interval

:  
[ t - '  

-  S ' ' t *

You can be957o certain that all new data points you collect will lie within this prediction
interval. The prediction intervals are much wider than the CIs. This is because
the prediction interval must include uncertainty in the position of the best-fit
line (as calculated by the CI) as well as the scatter of data around the regression
line.

P Value

It is possible to calculate a P value answering this question: If the slope of the best fit
line in the overall population equals 0, what is the chance of picking subjects in which
the slope is as far or further from 0 than we actually observed? To calculate the P
value, first determine the slope and the SE of the slope. Then calculate t using Equation
19.12 and find the P value using Table A5.4 in the Appendix.

d f : N - 2 .

(re.e)

(1e.10)

19.11 .

( 1 e . 1 1 )

(re.r2)slope b
- 

SE of slope 56

The SE of the slope takes into account the scatter of the data around the line
and the number of data points. If you have many data points, the SE of the slope
will be small. Therefore, the value of t (and thus the P value) depends on how steep

the slope is (the value of b), the amount of data scatter, and the number of data
points.

The P value can be interpreted in terms of r2 rather than slope. The P value also

answers this question. If the best-fit regression line in the overall population is hori-
zontal, what is the chance that we would randomly select subjects and end up with a

value of f as large or larger than we actually observed?

,  r  (x-x) ' l*N-  
*  I
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Linear regression finds the "best" straight line that goes near the data points. More

precisely, linear regression finds the line that minimizes the sum of the square of the

vertical distances of the points from the line.

oBf EcTlvEs

l. You should be familiar with the following terms:

' Regression ' t2
. Model . Least squares
. Intercept . Residual
. Slope

2. You should know the assumptions of linear regression and know that linear regres-

sion calculations will be misleading with nonlinear data. You should know that

regression calculations are not symmetrical with respect to X and Y.

3. Using book, calculator, and computer, you should be able to perform linear regres-

sion calculations.
4. You should be able to interpret the output of linear regression programs.

5. You should understand why CIs of regression lines are depicted by curves and why

prediction bands are wider than confidence intervals.

PROBLEMS

1. Will the regression line be the same if you exchange X and Y? How about the

correlation coeffi cient?
2. Why are the 95Vo Cls of a regression line curved?
3. Do the X and Y axes have to have the same units to perform linear regression?

4. How many P values can be generated from a simple linear regression?

5. The results of a protein assay are presented in the following table. Chemicals are

added to tubes that contain various amounts of protein. The reaction forms a blue

color. Tubes with higher concentrations of protein become a darker blue. The

darkness of the blue color is measured as optical density.

Concentration
(micrograms)

Optical
Density

0
4
8

l2
16

Unknown I
Unknown 2

0
0.017
0.087
0 . r  l 6
o.172
0.097
0.123



1 8 0

A. Calculate the best-fit linear regression line
known concentrations).

CORRELATION AND REGRESSION

6.

7.

through the standard curve (five

B. Read the unknown concentrations from the standard curve.
What is 12 if all points have the same X value? What about if all points have the
same Y value?
Sketch some examples of residual plots for data that do not meet the assumptions
of linear regression.

A. Scatter increases as X increases.
B. Data form a curve, not a straight line.

Can r2 ever be 0? Negative?
Do you need more than one Y value for each X value to calculate linear regression?
Does it help?

8 .
9.



VI

DESIGNING CLINICAL
STUDIES

Note to basic scientists: You may skip Chapters 20 and 21 without loss in
continuity. Don't skip Chapter 22 about calculating sample size-it applies to
basic as well as clinical research.
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The Design of Clinical Trials

Note to basic scientists: You may skip this chapter without loss of continuity-

There are lots of ways to do medical research. Some research can be done by examining

existing records such as death certificates or medical charts. Other kinds of research

are done with animals. Many clinical studies are done as case-control studies (as

discussed in Chapter 9). This chapter focuses on clinical trials. These are medical

experiments where some patients are given one treatment, other patients are given

another treatment, and the results are compared.
While medicine as a healing profession has existed for millennia, the idea that

medical treatments should be tested experimentally is fairly new. There were a handful

of medical experiments published in the lgth and early 20th century, but it is really

only since 1940 that clinical research became well established. Now it is commonly

accepted that new treatments must be tested before they are widely used, and that the

test must be carefully conffolled to avoid biases. While anecdotal or observational

evidence can be used to generate a hypothesis, we do experiments to test the hypothesis.

This is a very straightforward idea but one that is historically new to medicine. The

idea has yet to penetrate very far in other fields (such as education).

Before a new drug treatment can be used clinically, it must be tested in a defined

series of steps. The initial work, of course, is preclinical. Many properties of the drug

can be defined using animals and cell cultures. After that, clinical research on new

drugs is defined by four phases:

. Phase I is the initial testing of a drug on humans. The drug is given to a few dozen
people to learn enough about its actions, metabolism, and side effects to design a
valid phase 2 study.

. Phase 2 studies are controlled experiments to determine if the drug is effective for
a specific purpose and to determine the common side effects. Phase 2 studies typically
enroll no more than several hundred patients.

. Phase 3 studies are larger studies involving hundreds to thousands of patients. The
goal is to learn more about the effectiveness and safety of the drug and to com-
pare it to other treatments. If the phase 3 studies are successful, the drug will
be approved for general use. Information gathered in the phase 3 studies are included
in the package insert so physicians will know how to prescribe the drug appropri-
atelv.

1 8 3
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' Phase 4 studies monitor the effectiveness and safety of a drug after it has been
released for general use. Phase 4 studies also are designed to learn about new uses
of the d-g.

The same steps ought to be taken to test new therapy, whether a drug, diet,
exercise, or procedure. Because medical or surgical procedures are not subject to
government regulations like drugs, however, new procedures are rarely tested so rigor-
ously. The rest of this chapter deals mostly with phase 3 trials.

DESICNING THE STUDY

Who Are the Subjects?

Before starting a study, the investigators need to decide which patients they will study.
If you use rigid enough entry criteria, you can be quite sure that an identified extraneous
variable cannot influence your results. For example, if you only accept patients between
50 and 55 years old into the study, you can be quite sure that age difference cannot
confound the results. But you don't want to be too rigid, or you'll never be able to
recruit enough subjects. And even if you could get enough subjects, the results of
the study would apply only to that narrowly defined population and may not be of
general interest.

The Need for a Comparison Group

The initial uses of a new drug or therapy are uncontrolled. An investigator tries it and
observes what happens. Uncontrolled trials are useful in the early stages of a new
therapy. The history of medical research has demonstrated over and over the need for
side-by-side comparisons of the new drug with existing drug or placebo. People tend
to be enthusiastic about new therapies, and uncontrolled trials often reach optimistic
conclusions that are not supported by later research. It is too easy to be misled when
therapies are evaluated without a comparison group. To properly test a new therapy, you

need to compare it with an existing standard therapy or with placebo (no active therapy).
It is tempting to want to compare the outcome of patients taking the new drug

with results previously recorded for patients taking another drug. The advantage of
this approach is obvious: All the new patients get the new drug. The problem with

historical comparison groups, however, is that you can never be sure that the two
groups of patients didn't differ in some other way. Interpreting the results of such a

comparison is difficult.
Instead of comparing two large groups of subjects, you can select matched pairs

of subjects. The pair should be of similar age and also be matched for other variables

that might confound the results, such as disease severity, location, ethnic group, or
weight. These data should be analyzed using special methods for matched data.

Random Assignment of Treatment

The decision as to which patient gets which treatment should be made randomly. This

simple idea is in part responsible for the incredible achievements of clinical research
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in the last few decades. If you decide in any other way, the two groups may differ in

important ways.
For example, one alternative to randomization would be to give patients whose

last name begins with A to M one treatment and patients whose name begins with N

to Z the other treatment. Another alternative might be to give patients in the morning

clinic one treatment and patients in the afternoon clinic the other treatment. These are

not good alternatives to randomization, as the two groups might differ in an important

way. Since the last name is determined in part by one's ethnic origin, the first example

might end up with more people of Italian ancestry in the first group and more of

Oriental ancestry in the other. In the second example, patients who choose morning

or afternoon appointments may differ in important ways. Or perhaps physicians will

instruct patients to make an appointment for either morning or afternoon to get a
particular treatment. To avoid these kind of problems, treatments should be assigned
randomly.

Don't confuse the two very different uses of the concept of randomization rn
statistics. (l) Statistical analysis is based on the assumption that the data were collected
from a sample that is randomly selected from (or at least representative of a larger
population. (2) Good experimental design randomly assigns a treatment to each subject.
The phrase randomized clinical trials refers to the latter definition.

Sometimes investigators first divide the subjects into subgroups and then random-
ize within each subgroup. This is called stratified randomization. For example, you
might divide the subjects into four age groups. Within each age group, you use a
randomization scheme that ensures an equal number of subjects are allocated to each
treatment. This technique ensures differences in age cannot affect the results. While
stratification is very useful, it is impractical to stratify patients for every conceivable
variable that might affect the result.

Rather than conduct a randomized experiment to compare two treatments, it is
much easier to just observe the outcome in patients who happened to receive one
treatment versus the other. But the results of this kind of comparison can never be
definitive. Without knowing that the two groups of patients were similar before the
treatment, you can never be sure that differences in outcome are due to differences
in treatment.

The Blind Treating the Blind

When possible, clinical studies should be double blind. The first blind is that the
physicians treating the patients should not know which patient gets which treatment.
This avoids the possibility that they will treat the two groups of patients differently,
or that they will interpret clinical data in a biased manner depending on which treatment
the patient received. In some protocols (surgery vs. drug) it is impossible for the treating
physicians to be blind as to treatment. Instead, it is possible to blind the people who
collect or interpret data, for example, radiologists or pathologists.

The second blind is that the patients should not know which treatment they receive.
Response to a treatment depends, in part, on psychological factors, and blinding the
patient prevents psychological factors from confounding the results.

In some cases, studies arc triple blind, which means that the people doing the
data analysis don't know which treatment group is which until the very end of the
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analysis. This prevents the statisticians from introducing their biases when deciding
exactly how to do the analysis.

Compulsive Controls

The two treatment groups must be treated identically, except for the treatment being
compared. In clinical studies this is taken care of by randomly allocating treatment
and performing the study double blind. Sometimes, special care must be taken to treat
the two groups similarly. If laboratory tests must be done to monitor therapy in one
group, then the same tests (or at least the same blood drawing) should be done in the
other. If the results of the test frequently require an adjustment of the dose in one
group, then the "dose" of the other group (often placebo) should be altered as well.

Crossover Design

In crossover experiments, each subject serves as his or her own control. This study
design is useful for drug therapy that can be evaluated fairly quickly and for conditions
that don't progress rapidly. Crossover designs cannot usually be used to study surgical
procedures (you can't take away the operation) or for cancer chemotherapy (the disease
progresses too rapidly) but are very useful for treatment of chronic conditions such as
arthritis or asthma. So as not to introduce a new confounding variable (time or treatment
order), the order of the two treatments should be determined randomly for each patient.
Some patients get treatment A first; others get treatment B first.

There are two problems with crossover designs. One problem is that the effect
of the first treatment may persist into the time period of the second treatment. Studies
usually include a washout period between the two treatments to prevent carryover.
Another problem is that subjects may drop out of the study before the second treatment.

Intention to Treat

After a subject has been randomly assigned to receive a particular treatment, he or she
may not get it. How do you analyze data from these subjects? The obvious answer is

to consider the treatment the patient actually got rather than the treatment he or she
was supposed to get, but this leads to problems.

For example, assume that we are comparing medical (drugs) with surgical (coro-

nary bypass) treatment of patients with heart disease. One of the patients assigned to

surgery gets pneumonia, and so the operation is cancelled. The patient did not get the

treatment (surgery) he was assigned to get, but rather got the other treatment. Now

say he dies of pneumonia. How do you analyze that death? The obvious answer is that

the patient received medical treatment (drugs) not surgery, so the death should be

counted as a death among the medically treated patients. But that would bias the results.

The reason the operation was cancelled is that the patient was sick. If you take those
patients out of the surgery group, then you are removing the sickest patients from one
group and adding them to the other. The two groups are no longer comparable.

Another patient agreed to join the study, knowing that she may get surgery and

may get drugs. She is assigned to receive drugs. After thinking it over, the pa.tient

decides she wants surgery after all. How do you analyzethe outcome from this patient?
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She didn't get the treatment she was assigned to get. Ethically, you have to allow the

patient to get the treatment she wants. Scientifically, you don't want to consider this

patient's outcome as part of the surgery group. If every subject chooses his or her own

treatment, then the two groups will differ in many ways, and the comparison of the

outcomes will be meaningless.
Dealing with data from these patients is difficult. There is no perfect way to deal

with the problems. Most investigators adopt the conservative policy named intention

to treat. This means that data are analyzed assuming that every patient received the

assigned treatment. Even if the patient never received the treatment, the data from that

patient are pooled with the patients who actually got the treatment. This is termed a

conservative policy, because it makes it harder to find significant effects.

Another approach would be to simply not analyze data from any patient who

didn't actually get the assigned treatment. This can also introduce biases. In the first

example above, it would take the sickest patients out of the surgery group but leave

similar patients in the medical group. Now if the surgery group does better overall,

you won't know whether that was because the surgical treatment was superior or

whether it was because the surgical patients were healthier to start with.
In many papers, investigators report the analyses calculated two ways: First, they

use the intention-to-treat policy. Then they reanalyze their data again after eliminating

all those patients from the analysis. If the two methods yield different conclusions,
you should be suspicious of either conclusion. If the two analyses reach the same

conclusion, you can be confident that the data from patients who didn't actually receive

the assigned treatment did not affect the results much. In many studies, only a small
fraction of patients fail to get the assigned treatment, so it doesn't matter too much

how those patients are handled.

THE NEED FOR A STUDY PROTOCOT

Before a clinical study can begin, all aspects of the study are written down in a
document that can be anywhere from several dozen to several hundred pages. This
document is called the study protocol. There are several reasons to be so formal:

. Before the study can begin, it must be approved by one or more committees, as
discussed later. The committees need to see a complete protocol in order to decide
whether to approve.

. Many studies are performed in several medical centers at one time. This allows the
study to include many patients in a relatively short period of time. A detailed study
protocol is needed to ensure that the study is run the same way at all medical centers.

' Most clinical studies collect reams of data. Most studies measure the patient's response
to treatment by monitoring several variables (end points). Most studies collect enough
information to subdivide the subjects in many different ways. Most studies last long
enough to allow you to analyze the data for several time intervals. Armed with a
powerful computer program, several end points, several subgroups, several time
intervals, and several confounding variables to adjust for, you can churn out hundreds
of P values. Just by chance, you are quite likely to find that some of these are
"significant." These mean nothing, as you expect I in 20 P values to be significant
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just by chance. In order to interpret a P value properly, you need to decide in advance
how many you will calculate and how you will adjust for the many comparisons.
Good experimental protocols, therefore, specify how the data will be analyzed, what
specific end points will be examined, and what P value will be considered significant.
see chapter 13 to learn more about interpreting multiple p values.

' It is not always obvious how you should analyze all the data in a study. What do
you do when a patient gets killed in a car crash halfway through? Does that count
as a death or as a withdrawal? What do you do when some of the tests are done
several weeks late-include the data even though it is late, or exclude that patient's
data from the analysis? What do you do when a lab result is too high to be believa-
ble+xclude it or include it? Study protocols specify the answers to these ques-
tions in advance. Otherwise, the people analyzing the data can introduce their own
biases.

WHAT IS IN THE STUDY PROTOCOL

The study protocol spells out every detail of the study. Some points that are covered
follow:

What is the rationale of the study?
Who will be studied? How will the patients be selected? What patients will be
rejected? Typically study protocols define a naffow group of patients and exclude
patients with other simultaneous illnesses. By restricting the study in this way,
variability is reduced and the power of the study to detect differences is increased.
But if the patient group is too narrow, it can be hard to know how to apply the
results of the study to other patients. It is important to decide in advance who will
be included and who won't. Otherwise it is too tempting afterwards to selectively
exclude certain kinds of patients in order to make the results come out as desired.
How will treatments be assigned? When possible, the assignment of the patient to
a treatment should be random.
What is the comparison group? If there is no established treatment, then the experimen-
tal treatment is compared to placebo. If there is a good established treatment, then
the experimental treatment ought to be compared to the standard therapy.
Is the study blind? Double blind?
How many subjects? Justify. Chapter 22 discusses how you can determine the appro-
priate number of subjects.
Exactly what treatment will the various groups get? What dose? When will dosages
be adjusted? When will drugs be stopped? How are drugs stored?
What variables will be monitored? What data will be collected and when?
How will side effects be managed? What side effects have been observed before?
Under what circumstances will subjects be dropped from the trial? How will those
data be analyzed?
Will there be interim analyses? If the one treatment is clearly superior or clearly
harmful, when will the trial be terminated?
How is the consent form worded?
What data will be collected and how will the data be analvzed?

a

a

a
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HUMAN SUB|ECT COMMITTEES AND INFORMED CONSENT

1 8 9

Clinical investigators in all countries agree that research on humans must be based on

these simple principles:

. The care of individual patients takes precedence over the clinical trial. Each subject

must be treated appropriately. You cannot deprive a patient of a treatment known

to work for the sake of a trial, unless you have strong reason to believe that the

experimental treatment might be better. It is only ethical to choose a treatment ran-

domly when the people planning the study and administering the drug can honestly

say that they are not sure which of the treatments (or placebo) is best.
. The anticipated benefits of the trial must balance the anticipated risks. The principle

is clear, but it is sometimes hard to apply. One problem is that many benefits and

risks are unknown. Another problem is that future patients stand to gain most of the

benefits, while current patients must take all the risk.
. Each patient in the trial must voluntarily decide to take part. Before asking the subject

to participate, the investigator should explain the study, answer questions, and describe
the alternative treatments. The subject's decision to participate should be an informed
decision. Patients should not be coerced into participating, but defining coercion is
difficult. Studies are no longer conducted on prisoners because prisoners may feel
subtly coerced into participating. Some might argue that studies should not be con-
ducted on medical students for the same reason.

. No subject is enrolled in the experiment until she or he formally agrees by signing
a consent document. This document explains the purpose of the trial (including an
explanation of randomization and placebo when appropriate) and lists anticipated
(or potential) benefits and risks to the patient. Finally, the consent document must
note that participation is voluntary and that patient may withdraw at any time without
denying care to which they would otherwise be entitled. Consent documents should
be written in plain language, without medical jargon. Typically consent forms are
two or three pages long. Human subject committees allow investigators to bypass
informed consent in unusual circumstances (infants, comatose patients, emergency
treatments) or to obtain consent from guardians or family members.

. The subject must be informed if additional information becomes available during
the course of the trial that might influence the decision to remain in the trial.

. Research protocols must be approved by a committee of clinicians, scientists, and
others not involved in the research. This review process guards against overenthusias-
tic researchers performing unsafe studies. In most countries, this review process is
mandated by law. The review committee is often called the Human Subjects Commit-
tee or Institutional Review Board. If the research involves a new drug, it must first
be approved (in the United States) by the Food and Drug Administration. If it
involves radioactive isotopes or recombinant DNA, it must also be approved by
specialized committees.

ETHICS OF PTACEBOS

Sometimes it seems like the patients who are randomized to receive placebo are getting
a bad deal. They are sick, and instead of getting an experimental treatment they get
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an inactive drug. It is only ethical for investigators to include a placebo in a trial, when
there is doubt whether any standard therapy would substantially benefit the patient.
When standard therapies are available and clearly effective, the control patients should
get the standard therapy rather than placebo.

Just because a treatment is standard, logical, and accepted doesn't mean that it
helps patients. There are plenty of examples in medical history of therapies that were
once considered to be conventional that we now know harm patients. George Wash-
ington was probabily killed by blood letting, a standard therapy of his day. Another
example is oxygen for premature babies. Some thought oxygen might be toxic and
cause a form of blindness (retrolental fibroplasia). To test this idea, they performed

several controlled experiments. At the time, some thought it unethical to reduce the
oxygen (the established therapy) delivered to premature babies with lung disease. It
turns out that the overuse of oxygen was causing blindness. The conventional therapy
was harming the patient.

HOW IS THE POPUTATION DEFINED?

When reading the results of a clinical study, you first need to think about samples and
populations. Ideally, the subjects in the study were randomly selected from a defined
population of patients. This almost never is the case. Instead, the sample of patients

in the study is supposed to be representative of a larger population. What population?

The answer, unfortunately, is often poorly defined.
Papers often give detailed descriptions of the studies inclusion and exclusion

criteria. For example, the study might include only patients whose white cell count is

below a certain threshold but exclude those who also have liver disease. Usually the

list of inclusion and exclusion criteria fills a long paragraph. But despite the apparent

detail, these criteria only tell part of the story. They are used to decide whether a

particular patient can be included in the trial. They often don't tell you which group

of patients could possibly have been considered for the study in the first place. If the

study was done in an inner-city hospital, the results are likely to be different than if

the study was done in a suburban hospital. If the study was done in Sweden, the results

may not be helpful to a doctor practicing in Mexico. If the study was performed in a

tertiary referral hospital, the patients (by definition) are likely to be unusual (or they

wouldn't have been referred), and the results may be quite different than they would

be in a community hospital.
The whole point of statistical analysis is to extrapolate results from a sample to

a larger population. If you can't define the population, you can't interpret the statistics.

REVIEWING DATA FROM CLINICAT TRIATS

When reviewing the statistical analyses, you need to distinguish between several kinds

of analyses:

. Data checking analysis. Before doing any real analyses, investigators should first

check that the data are reasonable and try to check for errors in data entry. Here are
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some questions that investigators should ask: Are there any impossible values (nega-

tive blood pressures)? Does the number of subjects in the computer database match

the number of patients actually studied? Are lab values in the expected range? Are
dates consistent (discharge dates should follow admission dates, etc.)? These sorts
of analyses are rarely shown in scientific papers.

. Demographic analysis. Most clinical studies show tables comparing baseline charac-
teristics of the treatment groups. For example, these tables will show the average
age, the fraction of women, the average blood pressure. When patients are randomly
divided into two groups, it is possible that the two groups differ substantially from
each other. The point of the demographic analyses is to convince you that this
didn't happen. Additionally, these analyses show you the composition of the different
"strata" in the trial (perhaps age groups).

. Main analysis. Good studies are clearly designed to ask one main question and to
specify in advance how the data will be analyzed to answer that question. It is
important to define the main analysis when the study is designed and not to alter
the main analysis after looking at the data. If you look at the data enough ways, you
are likely to stumble on some "significant" findings just by chance. If the investigators
changed their main question after looking at the data, you can't know how to interpret
the P value.

. Interim analyses. In many studies, the data are analyzed during the course of the
study. This is done to protect the safety of patients. If one treatment is clearly much
better than the other, it is not ethical to continue the trial. The problem is multiple
comparisons. If you reanalyze the data too often, you are too likely to find a "signifi-
cant" difference just be chance. The probability of a Type I error exceeds the value
of c (usually 5Vo).In most trials, the threshold o for significance in interim analyses
is much lower (often IVa) than it is for the main analysis.

' Secondary analyses. In addition to the main analysis, most clinical studies contain
many secondary analyses, either to look at additional outcome variables or to look
at subsets of patients. You need to be a bit skeptical when looking at secondary
analyses. The problem, again, is multiple comparisons. If you divide the data enough
ways and look at enough end points, some "significant" differences are sure to
emerge by chance. After all, you expect one in twenty P values to be less than 0.05
even if all null hypotheses are true. See Chapter 13 for further discussion.

The statistical issue is pretty clear: The more comparisons you do, the more apt
you are to find spurious findings. But one also must use clinical and scientific
judgment. Multiple secondary analyses can often paint a clearer clinical picture than
just one main analysis. The point is to look at all the secondary analyses as a group
and not to focus on a particular analysis that seems intriguing without placing it in
the context of the others.

' Meta-analyses. Investigators sometimes pool together results from several differ-
ent studies.

1 9 1



Clinical Trials where N - 1

Most clinical trials involve many patients, and the number of patients is abbreviated
N. A study with N : 4O enrolled 40 patients. Some clinical questions can be answered
by doing a formal study using only a single patient, N : 1.

The goal of an N : I trial is modest. You are not trying to learn the secrets of
nature and are not trying to gather data that will help future patients. You just want
to know which of several alternatives is best for this patient. Is the current medication
any better than placebo? Is dose A better than dose B? Does a generic pill work as
well as a brand name pill?

It only makes sense to conduct an N : 1 trial when there is considerable doubt
as to which therapy is best. Perhaps neither patient nor clinician thinks that the current
therapy is working. Do a N : 1 trial comparing drug and placebo to find out. Perhaps
the patient insists on taking a treatment that the physician thinks is worthless. Do a
N : I trial to find out if the treatment is better than the alternative.

A N : I trial is only feasible in the following circumstances:

. The disease is chronic, so the treatment will be continued for a long time.

. The patient's course is fairly stable, so the severity of the disease won't change
during the study.

. The treatments work quickly, and the effects are rapidly reversible.

. The patient understands the nature of the experiment and wants to participate.

. The effectiveness of the therapy can be quantified either by a laboratory measurement
or by a clinical scale (i.e., quality of life). Ideally, you will record several variables
that measure the effectiveness of the treatment and also record any side effects.

. A pharmacist is available to prepare the unlabelled medications and keep track of
which is which.

Drugs should be administered in a double-blind manner according to a random schedule.
Analyze the data with any appropriate method; there is nothing special about the

analysis of a one-patient trial. When analyzing the data, N refers to the number of

measurements, not the number of subjects (which is 1). The study will be more powerful

if the outcome is a measurement rather than a binary variable.
When interpreting the results, remember that the "population" in this study is

all possible responses in this particular patient. You are generalizing from the responses
observed in the sample of data you collected to the responses you would expect to see
over the next few years in this particular patient. Until you repeat the N : I trial on

several patients, you should not generalize the findings to other patients.

192
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It is difficult to get enough data to have much power of achieving significance
with the traditional cutoff of 0.05. Since the consequences of a Type I error are usually
not severe with an N : I trial. a is sometimes raised to 0.10.

EXAMPTE

You think that taking vitamins makes you feel more alert. But you aren't sure whether
it is a placebo effect or a real effect of the vitamins. You arrange with a pharmacist
to prepare 10 vials with a week's supply of a multivitamin pill and 10 vials with a
week's supply of placebo. The pharmacist randomly scrambles the vials and tells you
which vial to use which week. Each week you rate your "alertness" on a scale of 0
(tired and distracted) to 10 (wide awake and alert).

Before you collect the data, you decide how you want to analyze the data and
how you will interpret the results. Since the data are expressed as a rating scale, rather
than a true measurement, it does not make sense to think of the data as being sampled
from a Gaussian population. So you decide to use a test that does not make that
assumption. There is no pairing between placebo weeks and vitamin weeks, so you
can't use a test that assumes pairing or matching. So you decide to analyze the data
with the Mann-Whitney test, a nonparametric test that compares two groups. See
Chapter 24 for details.

In deciding how to set o, you need to consider the consequences of a Type I or
Type II enor. Making a Type I error (concluding that the vitamins are effective when
they really aren't) isn't so bad because there is really no risk, the expense is minimal,

Table 21.1. Results for Vitamins and Alertness
Example

Week Preparation Score

I
2
J

4
5
6

8
9

1 0
l l
t 2
l 3
t4
l 5
t 6
t 7
1 8
l 9
20

Placebo 4
Placebo 5
Vitamin 7
Placebo 8
Vitamin 9
Vitamin 7
Placebo 5
Vitamin 8
Placebo 9
Vitamin 8
Placebo 7
Placebo 5
Placebo 7
Placebo 6
Vitamin 7
Vitamin 6
Placebo 5
Vitamin 6
Vitamin 7
Vitamin 9
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and only one person (yourself) is affected. Making a Type II error is not all that bad,
but you are intrigued by the hypothesis and don't want to miss a real finding. You
decide to set a to 0.10 and to make your decision accordingly.

You take the pills every day for 20 weeks and tabulate the results in Table 2I.1.
You plug the numbers into a computer program that can perform the Mann-Whitney
test. The answer is that the two-tailed P value equals 0.063. If overall alertness is not
affected by taking vitamins versus placebo, there is a 6.3Vo chance of obtaining a
difference as large as you did in an experiment of this size.

Since you previously decided to set ct equal to 0.10, you conclude that the data
provide convincing evidence that taking vitamins increases your alertness. Since this
study only involved one subject (yourself), you should not generalize the findings.
And since the P value is fairly high (above the usual cutoff of 0.05) and is based on
a small sample size, you can't be too sure the conclusion is correct.
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Choosing an Appropriate Sample Size

Before starting a study, investigators must decide how many subjects to include. You
want enough subjects to get valid results but not so many as to make the study
unfeasible. Sample size can be determined by "gut feel," and that works fine so long
as you have an experienced gut. It is better to calculate size using statistical principles,
as explained in this chapter.

This book has repeatedly emphasized two different (but complementary) ap-
proaches to statistics: calculating confidence intervals and calculating P values. Each
of these approaches can be used to determine sample size.

CONFIDENCE INTERVALS

Previous chapters have shown you how to calculate confidence intervals (CIs) for many
kinds of data. In all cases, the width of the CI depends on sample size. Everything
else being equal, a larger sample size makes the CI narrower.

If you can state the desired width of the CI, you can calculate how many subjects
you need.

One Mean

Let's start with the simplest case. You plan to measure a variable in N subjects and
calculate the mean and 957o CI of the mean. The larger you set N, the narrower the
CI. How large must you make N to reduce the width of the 95Vo CI to a certain
precision? The answer is shown in Equations 22.1. Note that we define precision* to
equal half the width of the 95Vo CI.In other words, the precision is the distance the
CI extends on either side of the sample mean.

Prec is ion : , * . ! ! .
JN

t * - 2 .

N-4( t l ,  I
\preclslon/

*The word precision is sometimes defined in other ways.

1 9 5

(22.r)
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The only trick is that N depends upon the critical value of t (t*), which itself
depends on N. The way out of this loop is to realizethat t* (for 95Vo confidence) is
close to 2 unless the sample size is very small, so we set t* : 2. Some books present
fancier equations that attempt to correct for the fact that the true value of t* might be
higher. I don't think the discrepancy is worth worrying about, because the calculations
are based on an estimated value of standard deviation (SD) and are only supposed to
calculate an estimated sample size.

Example 22.1. We estimate that the SD of blood pressure is 10 mmHg. We wish
to measure the blood pressure of a large enough sample so that we can define the mean
value with a precision of 5 mmHg. How large must our sample be? The answer is 16.
If we collected many samples of 16, on average the precision would equal 5 mmHg
(assuming that the SD was estimated correctly). In any particular sample, the precision

is equally likely to be less than or greater than 5.
If you want to use the equation, you may have difficulty estimating the value of

the SD. Usually this can be done by inspecting previous data. Alternatively, you can
run a pilot experiment first. Because the actual SD may not equal the value you

estimated, the calculated sample size may not be exactly right. That's OK, as long

as you reahze that the equations are not precise b:ut estimate an approximate sample

size.

Difference Between Two Means

If you want to look at the difference between two means, you need more subjects as

uncertainty in each mean contributes toward uncertainty in their difference. Use Equa-

tion 22.2 to determine the necessary sample size for each group from the estimated

SD (assuming the two populations have equal SDs) and the desired precision (half-

width of the 95Vo Cl of the difference):

Continuing the example, now we want to measure blood pressure in samples of

two populations and select large enough samples so that the 957a CI for the difference

between the two means has a precision equal to 5 mmHg. Again we assume that the

SD of blood pressures is about l0 mmHg and further assume that the two populations

have equal SDs. Plugging the numbers into the equation, we need approximately 32

subjects in each group.

One Proportion

How many subjects are needed to determine a proportion with a specified precision?

Equation 22.3 is a simple reaffangement of Equation 2.1.

/  s D  
\ 2

N : E f  - ) .
\preclslon/

Precis ion :  1.96 .  /P(t- :  P)

vN

* : 4 ' p ( . 1 . - p )
preclslon'

(22.2)

(22.3)
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If you can estimate the proportion (p) and specify the desired precision, the sample

size is readily calculated. If you can't estimate the value of p, set it equal to 0.5. The

quantity p(l - p) is maximum when p : 0.5, and so setting p : 0.5 is a worst-case

assumption that may overestimate the needed sample size.

When reading or watching to news, you've undoubtedly heard the phrase "this

poll has a margin of error of 37o." How many subjects were used in such a poll?

Pollsters use the term margin of error the same way we use the word precision. Set

precision to .03 and p : 0.5, and N is 1111. Indeed, many polls use a sample size of

about that size. If p is set to any value other than 0.5, fewer subjects would be needed.

Two Proportions

The number of subjects needed in each group to determine the difference between two

proportions with a specified precision is as follows:

(22.4)

In Equation 22.4, the precision is the desired half-width of the 95Vo CI, pu" is the

anticipated average of the two propofiions, and N is the number of subjects needed

in each group.
Example 22.2. You know that the incidence of hypertension in one population is

about 0.10 and suspect that the incidence in a second population is 0.16. How large

a sample size do you need to use in order for the half-width of the 957o CI of the
difference between proportions to be 0.02? Set puu to the average of .10 and .16, or
0.13. Set precision to 0.02. You need 2262 subjects in each group.

If you have difficulty estimating pau, you can calculate a worst-case sample size
by setting puu equal to 0.5. Any other value would require a smaller sample size.

General Comments on Calculating Sample Size for Estimation

The preceding sections gave equations for estimating necessary sample size in several
situations. If your assumptions are correct, the calculated sample size is large enough
so that, on average, the half-width of the CI will equal the precision you specify. The
entire CI spans a distance equal to twice the precision. For any particular experiment,
you have a 507o chance that the CI will be wider and a 507o chance that it will be
naffower. You will need to double or triple that sample size in order to have a 95Vo
chance that the half-width of the CI will be narrower than the precision you specify.

The calculated sample sizes are the number of subjects you will need at the end
of the experiment. It is usually wise to start with a larger number to allow for subjects
who drop out and for experimental problems.

HYPOTHESIS TESTING

The previous sections showed you how to calculate the sample size needed to ensure
that a CI has a specified width. It is far more common to calculate the sample size
needed to achieve statistical significance, as explained now.

*: 
8 :  p'"( l  .-  pg')

(precrston)'
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As you might imagine, the required sample size depends on these variables:

ct, the threshold for significance. Typically a is set to 0.05. If you set a more rigid
criteria for significance by setting a to a smaller value (say 0.01), you will need a
larger sample size.

B, the probability of missing an important difference or making a Type II enor. If
you lower B to get more power, you will need more subjects. Sample size is often
calculated for 90Vo power or 80Vo power (equivalent to setting B to 0.10 or 0.20).
A, the minimum difference between population means that you wish to detect as
significant. It takes more subjects to find a small difference than a large one.
SD, the estimated standard deviation of each group (obviously not relevant when
you are comparing two proportions).

Comparing Two Means

The sample size needed to compare two means is calculated using Equation 22.5,
where N is the number of subjects in each group. As you'd expect, the necessary
sample size increases if the data are more scattered (larger SD), if you set harsher
criteria for a and B, or if you want to detect smaller differences (lower A).

^ , _ 2 . S D 2 . ( z " ] - z s ) )N :  
a 2

(22.s)

The calculations are based on the assumption that the two populations have equal
SDs. The estimated SD can come from previous data or from a pilot study. By the
time you are ready to organize a formal study, you ought to know enough about the
variable you are measuring to estimate its SD. Note that you don't have to separately
estimate SD and A, it is sufficient to estimate their ratio. In some contexts, you'll find
it easier to estimate the ratio than the individual values.

If you conduct a study using the calculated sample size, and the difference in
population means really does equal A, what will you find? If you were to perform
many such studies, you would detect a significant difference in some studies but not
in others. The proportion of studies in which you will find a difference that is statistically
significant with P < a equals 1 - P. In other words, there is a I - B chance of

obtaining a significant result if you use the calculated sample size and your assumptions

are correct.
The term (zo I zB)2 is sometimes referred to as the power index. Values of this

term are listed in Table 22.1. This table shows the square of the sum of the two z

values. As the value is already squared, don't make the mistake of squaring again.

z" is the critical value for the z distribution for the desired value of a. You may

choose either the one- or two-sided distribution depending on how you plan to report

the P values. If you can justify a one-sided P value, you will need fewer subjects. Zu

is the critical value of the z distribution for the desired value of 9.*

*A one-tailed distribution is always used for B, even if you plan to report a two-tailed P value. If there

really is a difference between populations, you make a Type II error when your samples means are so close

together that the result is not significant. The other tail is when your sample means are much further apart

than the population means. This tail is not important when calculating sample size.
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Table 22.1. Yalues of the Power Index

1 9 9

Power Index : (2, + zp)z

B : . 0 1
l-sided 2-sided Power : 99Va

F  :  0 . 1 0  F :  . 2 0
Power = 907o Power : 80Vo

I : 0.05
Power :95Vo

F : ' 5 0
Power :5O7o

0.05
0.025
0.005

0 .10
0.05
0.01

15 .8
18.3
23.9

10.9
13.0
17 .8

8.6
r0.5
14.9

6.7
7.9

tt.7

2.7
3.8
6.6

Before trying to calculate the power index for different values of zo or zB, first

try to reproduce Table 22.1. Depending on which table you use, you may need to look

UP Zt-p '  Z1-o Of Zt-o/2.

Example 22.3. We know that the SD of blood pressure in our population is about
10 mmHg. How many subjects do we need to have 80Vo power to detect a difference
between means of 5 mmHg with P < 0.05 (two-sided)? The answer is about 63 subjects
in each group.

Computer programs sometimes calculate sample size for several values of a and

B. Table 22.2 is the output of InStat for the previous example.

Comparing Two Proportions

Necessary sample size for comparing two proportions can be estimated from Equa-
tion 22.6:

*  -  2 'Pu " ( l  -  
Pu , )  ( 2 "  *  zB )2

a2
(22.6)

Here pu, is the anticipated average proportion, A is the difference between the two
proportions that you are looking for, and N is the number of subjects needed in each
group. You can use this equation both for cross-sectional, experimental prospective
and case-control studies. In cross-sectional studies, the proportions are the prevalences
in the two groups. In prospective and experimental studies, the proportions are the

Table 22.2. Calculation of Sample Size for Example 22.3

Input

Minimum difference you wish to detect as significant: 5
Estimated standard deviation of each population: l0

Results

Power 0 .10 0.05 0.02 0.01

The values are the number of subjects needed in each group.

ct (two-sided)

SOVo
90Vo
95Vo

0.20
0.10
0.05

50
69
87

63
85

105

8 l
105
t27

94
120
r43
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incidence rates in the two groups. In case-control studies, the proportions are the
fraction of cases and controls exposed to the risk factor.

Equation 22.6 is simple to calculate. Other books give more complicated equations
that attempt to calculate sample size more accurately. The difference between the
simpler and more complicated equations is usually not too important. No matter how
fancy the equation, the calculated sample size is no more than an estimate, since the
value of Puu is an estimate and the values of ct, B, and A are fairly arbitrary.

Example 22.4. You know that the incidence of hypertension in one population is
about 0.10 and suspect that the incidence in a second population is higher. How many
subjects do you need to have gOVo power to detect an increase of 0.06 (to an incidence
of 0.16) with P < 0.05? Set a : 0.05 (two-sided), F : .10, puu : .13, and A : 0.6,
and use the equation provided above. The answer is 660 in each group. The computer
program InStat uses a more sophisticated equation and reports that 692 subjects are
needed in each group (Table 22.3).

Comparing Two Survival Curves

Example 22.5. You know that 20Vo of patients treated for a certain kind of tumor
will die within 3 years. An alternative treatment may be better. How many subjects
do you need to have a 907o power of detecting an improvement to llVo with P < 0.05
(two sided)? Use the techniques of the previous section for comparing two proportions.
Set p1 : .10, pz: .2A, puu : 0.15, cr. : 0.05 (two sided), F : 0.90, and the equation
calculates a sample size of 268 in each group. The more accurate equation programmed
into InStat calculates a sample size of 286 per group.

The discussion in the previous paragraph assumed that the only outcome you care
about is whether each individual survived 3 years. Thus you can analyze the data by
comparing two proportions. There are two problems with this analysis. First, most
studies accrue patients over time, so you won't follow all patients for the same length
of time. This problem tends to increase the number of subjects you will need. Second,
you will know more than just whether or not each subject survived to 3 years, you
will know exactly how long each subject survived. If you display the data as full
survival curves and compare curves with an appropriate method (log-rank test), you

Table 22.3. Calculation of Sample Size for Example 22.4

Input
Minimum difference vou wish to detect as sienificant: 0.06
Estimated value of the smaller proportion:

Results

Power 0 .10 0.05 0.02 0.01

The values are the number of subjects needed in each group.

q (two-sided)

807o
907o
95Vo

0.20
0 .10
0.05

42r
5'70
7 1 1

525
692
847

663
8s0

to22

766
967
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can get by with fewer subjects. It is not easy to determine how many fewer subjects

are needed, as it depends on study design (how long are patients accrued?) and on

assumptions about their survival rates.

Unequal Sample Sizes

Equations 22.5 and22.6 assume that both groups will have the same number of subjects.

In some situations, it makes sense to have more subjects in one group than another.

It is possible to compensate for fewer subjects in one group by adding additional

subjects in the other group. But it is not an even trade-off, and the total number of

subjects must increase. For example, you may decrease the number of subjects in one

group by 25Vo if you double the number in the other group, and you may decrease the

number in one group by 4O%;o if you quadruple the number in the other group. There

is not much point in increasing the sample size in one group to more than about four

times the calculated value. No matter how many subjects you include in the larger

group, you can't reduce the number of subjects in the other group to less than half the

number that would be needed with equal size samples.

INTERPRETING A STATEMENT REGARDING SAMPLE SIZE

AND POWER

Papers often include a statement something like this one: "We chose to study 313

subjects in each group in order to have 807o power of detecting a 337o reduction in

the recurrence rate from a baseline rate of 3O7o with a significance level of 0.05 (two

tailed)." This sentence defines cr, B, and A. In this example a : 0.05 (the significance

level), 9 : 0.20 (IO07o minus the power),p, : .30, and A : 0.10 (337o of p').Let's

review again the meaning of cr and B.

. cr : 0.05. If the null hypothesis is true, there is a 57o chance of obtaining a significant

result and a 95Vo chance of obtaining a not significant result in a study of this size.
. 9 : 0.20. The investigators assume that the recurence rate is normally 30Vo and

hypothesizethat the new treatment reduces the recurrence rate by one third. If this

hypothesis is true, there is a 80Vo chance of obtaining a significant result and a 20Vo

chance of obtaining a not significant result in a study with 313 subjects in each group.

Don't be confused by the analogy between B errors and false-negative lab results.
The SOVo power does not refer to individual subjects. Some people misinterpret 8O7o
power to mean this: "8OVo of the subjects would be improved by the treatment and
20Vo would not be." This is incorrect. Power refers to the fraction of studies that would
report significant P values, not the fraction of patients who benefit from the treatment.

Although a statement regarding sample size calculations sounds very precise ("we

calculated that we need 3 13 subjects in each group' '), in fact they are just ' 'ballpark' '

estimates. Consider these problems:

. The equations are based on a few simplifying assumptions. Accordingly, the resulting
values of N should be considered to be an estimate. More sophisticated equations
usually calculate slightly larger sample sizes than the equations shown here.
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The calculations tell you how many
will usually need to begin the study
and experimental problems.
The values of q and B are arbitrary. Ideally the values should be based on the relative
consequences of Type I and Type II errors, but more often a and I are simply set
to conventional values.

' The value of A is arbitrary. Ideally, A is the smallest difference that would be
clinically (or scientifically) important. In practice, this value is hard to define.

' Sample size calculations assume that you will only measure and analyze one outcome.
Common sense tells you that you should appraise all relevant clinical variables, and
most clinical investigators do so. While it seems like this should increase the power
of a study, current statistical methods are not well designed to cope with multiple
outcome variables.

' Although it always sounds like the investigator calculated sample size from ct, B,
and A, often the process went the other way. The investigator chose the sample size
and then calculated values of cr, B, and A that would justify the sample size. Often
the process is iterative. The investigator specified ideal values for o., B, and A,
and was horrified at the enormous number of subjects required. The investigator
then altered those values and recalculated N. This process was repeated until N
sounded "reasonable."

SEQUENTTAI STUDTES

In all the examples presented in this chapter, we assume that you choose a sample size
before the study begins, study all the subjects, and then analyze the data. An alternate
approach seems far more appealing-add new patients to the study over time and
periodically reanalyze the data. If the result is significant, stop. Otherwise, recruit some
new subjects. This approach should not be used (unless special analyses are employed;
see the next paragraph). The problem is that the probability of a Type I error with
such a design is far greater than 57o. By stopping the study if the results happen to be
significant but continuing otherwise, you have biased the results towards significance.
The P value from such a study design cannot be interpreted. In fact, if you kept going
long enough, every experiment would eventually reach significance just by chance,
although some might take a very long time to do so.

Statisticians have devised special study designs that are designed to be reanalyzed
with every pair of patients. Such methods are only useful when the outcome for each
patient is determined in a short time. With a sequential analysis, the data are reanalyzed
(using special techniques) after each pair of patients (one patient gets treatment A, the
other treatment B). The study continues until the analysis reaches a conclusion that
the one treatment is significantly better than the other, or that the two are indistinguish-
able. The investigator needs to specify a and B before the study begins. Data can be
plotted on special graph paper that automates the analysis. Because the analysis is

repeated with each pair of subjects, you don't need to calculate sample size before
you begin.

Other special methods are designed to allow periodic reanalysis after every batch

of subjects. For example, you might test a new drug on 18 patients. If it works on

DESIGNING CTINICAL STUDIES

subjects you need at the end of the study. You
with additional subjects to allow for dropouts
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none, stop. If it works on any, then continue testing on more patients. These methods

take into account the multiple analyses.

SUMMARY

Before beginning a study, investigators need to know how many subjects to include.

You need enough subjects to get valid results, but want to avoid wasting time and

money by using too many subjects. There are two approaches you can use to calculate

the needed sample size. One approach asks how many subjects are needed so that the

confidence interval (or the confidence interval of a difference) has a desired width.

The other approach asks how many subjects are needed so that you have a specified

power to obtain a significant difference (with a specified value of cr) given a specified

experimental hypothesis. In order to use either of these methods, you need to estimate

the standard deviation of the values (if the outcome is a measurement) or the estimated

value of the proportion (if the outcome is binomial).

oBf EcTlvEs

. Without using books or computers, you should know what information is needed to
calculate sample size in various circumstances.

. Using books, calculator, or computer, you should be able to determine the sample
size needed to determine a mean or proportion to within a specified tolerance. You
should also be able to calculate the necessary sample size to find a specified difference
with specified power.

PROBTEMS

1. You are preparing a grant for a study that will test whether a new drug treatment
lowers blood pressure substantially. For previous experience, you know that 15
rats in each group is enough. Prepare a convincing power analysis to justify that
sample size.
The overall incidence of a disease is I in 10,000. You think that a risk factor
increases the risk. How many subjects do you need if you want to have 95Vo power
to detect a relative risk as small as 1.1 in a prospective study?
How large a sample would you need in an election poll to determine the percent
voting for each candidate to within IVo? What assumptions are you making?
Can a study ever have l00%o power?
About l}Va of patients die during a certain operation. A new technique may reduce
the death rate. You are planning a study to compare the two procedures. You will
randomly assign the new and standard technique, and compare the operative death
rate.

A. How many subjects do you need to have 957o power to detect a lOVo reduction
in death rate (ct : 0.05)?

2.

3 .

4.
5 .
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How many subjects do you need to have 60Vo power to detect a 50Vo reduction
in death rate (cr : 0.10)?
Is it ethical to compare a new technique (that you think is better) with a stan_
dard technique?

6. Lymphocytes contain beta-adrenergic receptors. Epinephrine binds to these receptors
and modulates immune responses. It is possible to count the average number of
receptors on human lymphocytes using a small blood sample. You wish to test the
hypothesis that people with asthma have fewer receptors. By reading various papers,
you learn that there are about 1000 receptors per cell and that the coefficient of
variation in a normal population is about 25Vo.

How many asthmatic subjects do you need to determine the receptor number to
plus or minus 100 receptors per cell with 90vo confidence?
You want to compare a group of normal subjects with a group of asthmatics.
How many subjects do you need in each group to have 8O7o power to detect a
mean decrease of l}Vo of the receptor using o : 0.05?

C. How many subjects do you need in each group to have 95Vo power to detect a
mean difference in receptor number of 5Vo with cr : 0.01?

7. You read the following in a journal:

Before starting the study, we calculated that with a power of 80Vo and a significance level
of 5Vo, 130 patients would be required in each group to demonstrate a l5-percentage-
point reduction in mortality (from the expected rate of 33 percent to l8 percent).*

A. Explain in plain language what this means.
B. Show the calculations, if possible.

*MA Hayes, AC Timmins, EHS Yau, M Palazzo, CJ Hinds, D Watson. Elevation of systemic oxygen
delivery in the treatment of critically ill patients. N Engl J Med 33:1717-1722, 1994.

B.

C.

A.

B .
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COMMON STATISTICAT
TESTS

Even if you use computer programs to calculate statistical tests, it is helpful
to know how the tests work. This part explains the most commonly used tests
in reasonable detail. The next part explains more advanced tests in less detail.
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Comparing Two Groups: Unpaired t Test

Example 23.1

To keep the calculations simple, we will use these fake data comparing blood pressures

in a sample of five medical students from the first- (MS1) and second- (MS2) year

class. You've already seen these data in Chapter l0 (Table 23.1).

MSI:  120, 80, 90, 110, 95

MS2: 105, 130, 145,I25, l l5

Now we want to calculate a P value that answers this question: If the two populations
have identical means, what is the probability that the difference between the means of
two random samples of five subjects will be as large (or larger) than the difference
actually observed?

There are several methods to calculate this P value, and this example is continued
in the next chapter. For this chapter, we'll make the assumption that the two populations
follow a Gaussian distribution and will calculate the P value with a t test.

The P value obviously depends on the size of the difference. If the difference is
large, the P value must be small. But large compared to what? The t test compares
the size of the difference between means with the standard effor (SE) of that difference,
which you have already learned to calculate in Chapter 7. The SE of the difference
combines the standard deviations (SDs) of the groups and the number of data points.

Equation 23.1 defines the t ratio, simply called:

difference between means
t :

Pooled SD :

SE of difference : pooled SD

For this example, t : 25/9.84 : 2.538.

d f : N , o , 4 - 2 . (23.r)

(23.2)

(23.3)

SE of difference

If the two groups are the same size, calculate the SE of the difference using Equation
23.2. Otherwise use Equation23.3. (You've already seen these equations in Chapter 7.)

SE of difference (equal N) : fBMtr SEIv(.

(N .  -  l )  . sD3  +  (Nr  -  1 )  .SD3

N " + N b - 2
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Table 23.1. Example 23.1 Blood Pressure Data

COMMON STATISTICAL TESTS

Mean SD 957o Confidence Interval

A: (MSl)
B: (MS2)
Difference (B-A)

99
r24
25

15.97
15.17

7.14
6.78
9.84

79.17 to  118.82
105.17 to 142.83

2.29 to 47 .7 |

SOME NOTES ON t

The sign of t only tells you which mean is larger. In this example, t is positive
because the difference was defined as the mean of group B minus the mean of group
A. It would have been negative had the difference been defined as the mean of group
A minus the mean of group B.
Because t is a ratio, it doesn't have any units.
You don't need raw data to calculate t. You can do all the calculations from the
mean, standard error of the mean (or SD), and sample size of each group.

OBTAINING THE P VALUE FROM t, USINC A TABLE

If you don't use a computer program that calculates an exact P value, you need to
determine the P value using a table.

To convert t to a P value, you have to know three things:

. What is the value of t? If it is negative, remove the minus sign
its absolute value). As t gets higher, P gets smaller.

. Do you want to calculate a one- or two-tailed P value? For reasons already mentioned,
this book always uses two-tailed P values.

. How many degrees of freedom (d0 are there? For a two-sample t test, df is two less
than the total number of subjects, in this case df : 8. If you haven't studied statistics
intensively, the rules for calculating df are not always intuitive, and you need to just
learn them or look them up. For any particular value of t, P gets smaller as df gets
bigger.

A portion of a t table is shown in Table 23.2. Look across the line for df : 8. Under
ct, : 0.05 is the value 2.306. Our t is higher than this, so our P value is less than 0.05.
Under a : 0.01 is the value 3.355. Since this is higher than our value of t, our P value
is not this low. Thus the P value for example23.l is less than 0.05 but greater than 0.01.

The table shown here, and the longer Table A5.5 in the Appendix are similar to
tables in many other books. Table A5.4 in the Appendix is less standard. In this table,
the columns represent df, the rows are various values of t, and you read the P value
directly. With this table, we can bracket the P value between 0.037 (t : 2.5) and 0.032
(t : 2.6). As we have already seen, a computer program can calculate the P value
with more precision; in this case the two-tailed P value is 0.035.

Although consulting statistical tables should be no more complicated than reading
an airline timetable or a newspaper's financial page, the inconsistent use of terminology
makes the use of statistical tables more challenging. You should find several statistics

convert
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Table 23.2. Determining the P Value from t

cr (two-tailed)

0.250 0.200 0.150 0.100 0.050 0.010 0.001

6
7
8
9

l0
t 5
20

r00

r.273
1.254
r.240
r.230
r.221
1.197
1 .185
1.157

t .440
t .4 t5
t.397
1.383
r .372
t.341
t.325
t.290

1.650
1.617
r.592
r.574
1.559
1.517
t.497
1.451

t.943
1.895
1.860
r .833
1 .812
| .753
r.725
r.660

2.447
2.365
2.306
2.262
2.228
2.13r
2.086
1.984

3.707
3.499
3.355
3.250
3.169
2.947
2.845
2.626

5.959
5.408
5.041
4.781
4.587
4.073
3.850
3.390

books and look up the P value for this example. Some potentially confusing points are
as follows: Some books label the columns as P values instead of cr values. In this
context, ct and P mean almost the same thing. The P value is calculated for particular
data; the a value is a threshold P value below which you term the difference significant.
Other books label the columns with one minus the P value. In this case you need to
look in the column labeled .95 to get the critical value for P : 0.05. In some books,
it is difficult to tell whether the P values are one or two tailed.

THE t  DISTRIBUTION AND THE MEANING OF THE P VAIUE*

If you repeated the experiment many times, you would get many different values for
t. Statisticians have figured out what this distribution looks like when the null hypothesis
is true. This probability distribution depends on the number of df.

Our example had five subjects in each group, and so had 8 df (5 + 5 - 2). Figure
23.1 shows the distribution of t with 8 df assuming that the null hypothesis is true.
This graph shows the probability distribution of all possible values of t that could be
obtained if the null hypothesis were true. The area under the curve represents the
results of all possible experiments. In our particular experiment, t : 2.54. All values
of t greater than 2.54 or less than -2.54 are shaded. The two-tailed P value is the
fraction of all possible experiments (under the null hypothesis) that would lead to t >
2.54 or t < -2.54. In other words, the P value is the fraction of the total area under
the curve that is shaded. By inspection you can see that each tail is a small fraction
of the total. Exact calculations reveal that each tail represents I .7Vo of all possible
experiments (again, assuming that the null hypothesis were true). The two-tailed P
value is therefore the sum of those two tails, which is 3.4vo or 0.034.

The probability distribution of t shown in Figure 23.1 is for 8 df. If you have
more data points, and thus more df, the probability distribution is more compact.
Figure 23.2 shows the probability distribution for t under the null hypothesis for 2,
6, and 1000 df. With many df, the distribution is almost identical to a Gaussian
distribution.

xThis section is more advanced than the rest. You may skip it without loss of continuity.
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DF=8

1.7Yo / \  1.7o/o

\ - /  \ /

Figure 23.1. The t distribution for eight degrees of freedom (DF). The figure shows the probabil-
ity distribution for t assuming 8 degrees of freedom (total of ten subjects in both groups) assuming
the null hypothesis is really true. In the example, t : 2.54. All values of t greater than 2.54 and
less than -2.54 are solid. The area of these solid areas as a fraction of the total area under the
curve rs 3.4Vo, which is the P value.

A S S U M P T I O N S O F A T T E S T

The t test is based on these assumptions:

' The samples are randomly selected fiom, or at least representative of, the larger
populations.
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Figure 23.2. The t distribution depends on the number of degrees of freedom. This figure shows
the distribution of t under the null hypothesis for df : 2, df : 6, and df : 1000. When there
are many degrees of freedom, the t distribution is virtually identical to the Gaussian (z) distribution.
With fewer degrees of freedom, the t distribution is wider.
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Difference Between Mians

Not significant

-50 -25 0 25 50

Difference Between Means

Figure 23.3. The relationship between CIs and statistical significance. The width of the 95Vo
CI equals the width of the range of differences that would be not significant (ct : 0.05). In this
example, the 957o CI does not include 0 and the range of not significant values does not include
the observed difference.

. The two samples were obtained independently. If the subjects were matched, or if

the two samples represent before and after measurements, then the paired t test should

be used instead.
. The observations within each sample were obtained independently. Choosing any

one member of the population does not alter the chance of sampling any one else.
. The data are sampled from populations that approximate a Gaussian distribution.

With large samples, this assumption is not too important.
. The SD of the two populations must be identical. If you are unwilling to assume

that the SDs are equal, look in a more advanced book for modifications of the t test
that do not require this assumption.

THE RELATIONSHIP BETWEEN CONFIDENCE INTERVATS AND
HYPOTHESIS TESTING*

Confidence intervals and hypothesis testing are closely related. Figure 23.3 shows the
relationship between the CI and hypothesis testing for the blood pressure example.
The top part of the figure shows the 95Vo CI for the difference between means. The
calculations were explained in Chapter 7. The CI is centered on the observed difference
between sample means and extends in each direction by a half-width defined by Equa-
tion 23.4:

Half-width : t* . SE of difference.

*This section is more advanced than the rest. You may skip it without loss of continuity.

t TEST

Observe{ Difference
I
I
I
I
I

(23.4)
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For this example, the critical value of t is 2.306 and the SE of the difference is
9.84. So the 95Vo Cl extends a distance of 22.69 on either side of the observed mean
difference of 25. Thus theg1vo CI box extends from 2.31 to 47.69. We can be95Vo
sure that the true difference between population means lies within this range, which
is shown as a box in the top part of the figure.

The bottom half of the figure shows the results of hypothesis testing. Given the
sample size and scatter, any difference between means inside the box would be not
significant, and any difference outside the box would be statistically significant. De-
termining where to draw the box is easy. We can rearrange Equation 23.1 to Equa-
tion 23.5:

Difference between means : t* SE of difference. (23.s)

From Table 23.2, we know that any value of t between -2.306 and 2.306 will
yield a P value (two-tailed) greater than 0.05 (assuming 8 d0. From our data we know
the SE of the difference is 9.84. So a difference between sample means of 2.306 x
9.84 : 22.69 (in either direction) would be right on the border of significance. The
not significant box extends from a mean difference of -22.69 to 22.69. Given the
sample size and scatter, any difference between means of less than -22.69 or greater
than 22.69 would be statistically significant.

As you can see graphically (Figure 23.3) and algebraically (Equations 23.3 and
23.4), the two boxes in Figure 23.3 are the same size. The width of the 95Vo CI equals
the range of differences that are not significant.

In this example, the 95Vo CI does not include 0, and the not significant zone does
not include the actual difference between means (25). This is a general rule. If the
95Vo Cl for the difference between means contains 0, then the P value (two-tailed) is
greater than 0.05. If the 95Vo CI does not contain 0, then the P value is less than 0.05.
If one end of the 95Vo CI is exactly 0, then the P value (two-tailed) is exactly 0.05.
Similarly, rf a99Vo CI contains 0, then the P value is greater than 0.01, and if one end
of a99Vo CI is exactly 0, then the two-tailed P value is exactly 0.01.

Figure 23.4 shows what would have happened had the difference between means
been equal to 20 (with the same sample size and SDs). The 957o CI has the same
width as before, but is now shifted to the left and includes 0. The not significant zone
hasn't changed but now includes the observed difference (20). For this altered example,
the P vplue would be greater than 0.05 and not significant. The 95Vo CI starts at a
negative number and goes to a positive number, crossing 0.

If you read a paper that reports a t test without a CI, it is usually easy to calculate
it yourself, even without access to the raw data. Recall that the equation for the CI of
a difference (Equation 7.3) requires you to know the difference between means, the
critical value of t, and the SE of the difference. The difference is usually presented in
the paper or tables, or it can be estimated from the graphs. The critical value of t
comes from a table: it is not the same as the t ratio calculated from the data. The SE
of the difference is rarely presented in published papers. However, the t ratio is usually
presented, and it equals the difference between means (which you know) divided by
the SE of the difference. Thus you can calculate the SE of the difference from the t
ratio and the difference.

As an example, let's assume that the data for our example were presented incom-
pletely as mean values (124 and 99), sample size (N : 5 in each group), t ratio (2.54),

and P value (P < 0.05). How can we calculate the 95Vo CI of the difference? The t
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Observed Difference
a
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-50 -25 0 25 50

Difference Between l\lleans

Figure 23.4. The relationship between CIs and statistical significance, continued. In this example,
the 95Vo CI includes 0 and the range of not significant values includes the observed difference.

ratio (2.54) is equal to the difference (25) divided by the SE of the difference. Thus
the SE of the difference must equal 25/2.54 or 9.84. The critical value of t for 8 df
for a 95Vo CI is 2.306 (from Table A5.3 in the Appendix). Thus the 95Vo CI for the
difference between the means is 25 -r 2.306 x 9.94, which equals 2.3 to 47.7.

Note the similarities and differences in calculating the P value and the CI. To
calculate the P value, you start with the difference between means, calculate the t ratio,
and end up with a probability. To calculate the 95Vo CI, you start with the probability
(95Vo), find the critical value of t that coffesponds to that probability, and end up with
a range of differences (the confidence interval). It is easy to get confused by the
different uses of t. When calculating a P value, you first calculate the t ratio for that
particular set of data and determine the probability (P). When calculating a CI, you
start with a probability (usually 95Vo confidence) and use a table to find the critical
value of t for the appropriate number of df. When calculating a CI, it is a mistake to
use the t ratio actually calculated for the data rather than the critical value of t needed
for 95Vo confidence. If you mistakenly do this, one end of the CI will equal exactly
0. In this book we use the variable t to refer to a calculated ratio and t* to refer to a
critical value you look up on a table. other books do it differentlv.

CATCUTATING THE POWER OF A t TEST*

You already know that statistical power is the answer to this question: If the difference
between the means of two populations equals a hypothetical value As, then what is

*This section contains the equations you need to calculate statistics yourself. you may skip it without loss
of continuitv.

-50 -25
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the probability that you will obtain a significant P value when comparing two random
samples of the size actually used?

When you attempt to calculate the power of a study, you encounter two problems:

. You need to know the standard deviation of the populations, but only know the
standard deviations of your samples.

. You need to know the distribution of t if the null hypothesis is not true. This is
difficult to calculate, and even difficult to look up since the tables are enormous.

These problems make it difficult to calculate the power exactly. However, it is
pretty easy to calculate the power approximately, and Equation 23.6 shows one way
to do it.* This equation should only be used when df > 10.

Z*** : (
AH

SE of difference
(23.6)

Let's look at the variables in the equation.

. t* is the critical value of the t distribution. When calculating a t test, if t : t* then

P : cr. Its value depends on the value you pick for a and on the number of df. Use

Table A5.3 in the Appendix. Use the column for 95Vo confidence if you set a (two-

tailed) equal to 0.05. Use the column for997o confidence if you set c : 0.01.
. As is the hypothetical difference between population means. Deciding on a value for

As is not always easy. It is a scientific decision, not a statistical one. As is a hypothetical

difference that you think would be worth detecting. Tiny differences are never worth

detecting; huge differences always are. Given the context of the experiment, you

need to decide on reasonable definitions for tiny and huge and to find a value in the

middle that you think would be definitely important enough to detect. You can then

calculate the power of the study to find a significant difference if the real difference

was that large. You don't have to choose a single value for An. Instead you can

calculate the power of a study for several values of As and make a graph or table

of power versus As.
. If you are calculating the power of a published study, then you know the SE of the

difference. or can calculate it from the SD (or SEM) and size of the samples using

Equation 23.2 or 23.3.If you are calculating the power of a study you plan to perform,

then you still use those equations, but estimate the value of the SDs from pilot studies

or published articles.

To convert Zpo*", to power, you need to find the probability that a random number

chosen from a standard normal distribution (mean : 0, SD : 1) has a value less than

zpower. The answers are tabulated in Table A5.6 in the Appendix. Half of the values in

the standard normal distribution are negative and half are positive. So the power is

50Vo when zpower :0, the power is greater than 50Vo when z**", is positive, and the

power is less than 5OVo when z**", is negative. In equation 23.6, the term in brackets

*This equation is not well known. I adapted it from W. L. Hays, Srarisfics, 4th ed., Harcourt Brace,

Orlando, 1988.

,.)lffi]
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on the right side is always close to 1.0 and so affects the calculation of power by at

most a few percentage points. Leaving out that term, an easier approximation is shown

in Equation 233.

Zpwer -

SE of difference
- 1i< (23.7)

To make sense of this equation, let's see how it is affected by the variables.

. If you increase As, lou will increase the value of zpo*.,, and increase the power. A

study has more power to detect a big difference than to detect a small one.
. If you lower ct, you will increase t*, which will decrease the value of z**.,, and

decrease the power. In other words, if you set a stricter threshold for statistical

significance, the power of the study will decrease. If you want fewer Type I errors,
you have to accept more Type II errors.

. If you increase the sample size, the SE of the difference will be smaller, So Zpower

will be larger and the power will be larger. Larger studies are more powerful than
small studies.

. If the data have less scatter, the SE of the difference will be smaller, so zoo*.,. will
be larger and the power will be higher. A study has more power to detect differences
when the data have little scatter.

EXAMPTE 23.2

Motulsky et al. asked whether people with hypertension (high blood pressure) have
altered numbers of cr2 adrenergic receptors on their platelets.* There has been a lot of
speculation about the role of the autonomic nervous system in hypertension, so these
investigators asked about possible changes in the number of receptors for epinephrine.
They studied platelets because they are accessible in a blood sample and are thought
to represent receptors in other organs. They studied 18 hypertensive men and 17 controls
of the same age range. The platelets of hypertensives had an average of 257 + 14
receptors per platelet (mean -r SEM) and the controls had an average of 263 +- 2l
receptors per platelet. The authors concluded that receptor number was not significantly
different. If the true difference between mean receptor number in controls and hyperten-
sives was 50 receptors/cell, what was the power of this study to find a significant
difference with P < 0.05 (two-tailed)?

First calculate the SE of the mean difference using equation 23.3 (after calculating
the SDs from the SEMs). The SE of the mean difference is 25.0 receptors/cell. From
Table A5.3, t* : 2.04 for 33 df. From the question, A" : 50. Using Equation 23.7,
zpwer: -0.04. From Table 45.6, the power is about 48Vo. Using the longer equation
23.6 would not change the answer much. If the difference in mean number of receptors
in the overall populations really was 50 sites/cell, there was only about a 487o chance
that a study of this size would have found a significant difference with P < 0.05.

*HJ Motulsky, DT O'Connor, PA Insel. Platelet a2 receptors in treated and untreated essential hypertension.
Clinical Science 64:265-272. I 983.

AH
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PROBTEMS

COMMON STATISTICAL TESTS

l. Calculate the t test for ExampleT.l. The authors compared stool output between
treated and untreated babies. The results were 260 -+- 254 (SD) for 84 control babies
and 182 +- 197 for 85 treated babies.
Calculate the t test for Problem 2 in Chapter 7 (transdermal nicotine example).
A. Explain why power goes up as A gets larger.
B. Explain why power goes down as SD gets larger.
C. Explain why power goes up as N gets larger.
D. Explain why power goes down as cr gets smaller.
For the study in example 23.2, calculate the following:
A. Calculate the t test and determine the t ratio and the P value.
B. What was the power of that study to detect a mean difference of 25 sites/cell?
C. What was the power of that study to detect a mean difference of 100 sites/cell?
D. If the study were repeated with 50 subjects in each group, what would the power

be to detect a difference of 50 sites/cell?

4.
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Comparing Two Means:
The Randomization and

Mann-Whitney Tests

INTRODUCTION TO NONPARAMETRIC TESTS

As you learned in the last chapter, the unpaired t test is based on the assumption that
the data are sampled from two populations that follow a Gaussian distribution. Because
the t test is based on an assumption about the distribution of values in the population,
it is termed a parametric test. Most parametric tests, like the t test, assume that the
populations are Gaussian.

Nonparametric tests make no rigid assumptions about the distribution of the
populations. This chapter presents two nonparametric tests that can be used to compare
two groups. The most commonly used nonparametric test is the Mann-Whitney rank
sum test. Like many nonparametric tests, this test works by performing all calculations
on the ranks of the values (rather than the actual data values). Because calculations
are based on rank rather than values, this test is barely influenced if a value is especially
high or low. These values are called outliers. Tests that are resilient to outliers are
called robust tests. The Mann-Whitney test is a robust nonparametric test.

Other nonparametric tests analyze the actual data values. Before presenting the
Mann-Whitney test, I present the exact randomization test, a nonparametric test that
uses the actual data rather than ranks.

WHAT IS THE EXACT RANDOMIZATION TEST?

The randomization test, also called the exact probability test or the permutation test,
is easier to understand than the t test. It is presented here as an aid to learning. If you
understand the randomization test, then you really understand p values.

You don't have to think about populations and samples. Instead, you only have
to think about the data you actually collected. If the null hypothesis is true, then each
particular value could just as easily have come from one group as from the other.
Thus, any shuffling of the values between the two groups (maintaining the sample size
of each) would be just as likely as any other arrangement. To calculate the P value,

2 1 7



218 COMMON STATISTICAL TESTS

find out what fraction of all these rearrangements would result in means that are as

far apart (or more so) than actually observed.

To perform the exact randomization test, do the following:

t. List all possible ways to shuffle the observed values between the two groups, without

changing the number of observations in each group.

2. Calculate the difference between means for each of these possible arrangements.

3. Compute the fraction of the arrangements that lead to a difference between means

that is as large or larger than the difference that was experimentally observed.

Conceptually this is quite easy. The hard part is keeping the details straight.

CATCULATING THE EXACT RANDOMIZATION TEST*

In the BP example, we have five measurements in each group. To calculate the exact

randomization test, the first step is to list all possible ways to shuffle the data. How

many ways can the 10 data points be divided up into two groups of five each? The

answer turns out to be 252. You can either trust me (and skip the next paragraph), list

all the possibilities yourself, or read the next paragraph.

We start with the 10 numbers, and want to select five for group A (MSl)' which

leaves the other five for group B (Ms2). There are 10 possible values that can be

selected to place in the first position of group A. Then there are nine remaining values

that can be selected for the second position of group A. Then there are eight remaining

values that can be selected as the third value of group A' . . . Finally there are six

possible values left to place in the fifth position group A. The remaining values become

group B, and no choices are left. Thus there are 10 X 9 X 8 X 7 X 6 permutations

of values that can be selected for group A. However, this calculation is sensitive to

the order in which the values *eti chosen for group A' Every set of five values is

counted many times. Because we don't care about order that calculation substantially

over counts the number of possibilities. To correct for this, we must divide by the

number of ways each group tr fiu. numbers can be arranged within group A, and this

i s 5 !  ( 5  x  4  X  z  X z  x  1 ) . S o t h e n u m b e r o f  w a y s r o d i v i d e t h e l 0 n u m b e r s i n t o

two grouPs is:

1 0 x 9 x 8 x 7 X 6 : 252 (24.r)
5 x 4 x 3 X 2 x l

If there were no difference in the distribution of BPs in the two populations, then each

of these 252 waysof shuffling the data should have been equally probable' How many

of these possibilities lead to group A having a mean value at least 25.0 units smaller

than the mean of group B? W; can list them, by putting the largest values in one group

and the smallest in the other (Table 24'l)'

of the 252 different ways the data points can be shuffled between groups A and

B (maintaining five values in each group), two arrangements (including the one actually

observeti) have a difference of 25,four arrangements have a larger difference' and the

*This section is more advanced than the rest. You may skip it without loss of continuity'
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Table 24.1. Reanangements Where the Mean Values of Group A
Are > 25 Units Smaller than Group B
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Group
Difference

Between MeansValues

80, 90, 95, 1 1 0. 1 20
105,  I  15,  125,  130,  145

25 (Actual data)

80 ,90 ,95 ,  105 ,  120
1 10, 1 15, 125, 130, 145

80, 90, 95, 105, 1 l0
115,120,125,130,  145

8 0 , 9 0 , 9 5 ,  l l 0 ,  l 1 5
105,  120,  125,130,145

80, 90, 95. 105. I 15
r 10, 120, 125, 130, 145

80 ,90 ,95 ,  105 ,  125
I 10, 1 15, 120, t30. 145

remaining 247 ways have smaller differences. So if we start with the null hypothesis
that BP is unrelated to medical school class, we can state there is only a 2.3BVo
(6/252) chance that the five individuals in group A would have a mean BP 25 or more
units smaller than that of the five individuals in group B. The one-tailed p value is
0.0238. By symmetry, there is an equal chance (under the null hypothesis) that group
A would have a mean BP 25 or more units higher than group B. The two-tailed p
value is twice the one-tailed P value, or 0.0476.

This analysis is shown in Figure 24.1. It shows all 252 ways the data can be
reaffanged. The X axis shows possible differences between the mean blood pressures.
The Y axis shows the number of rearrangements that give a particular difference
between means. The area under the curve represents all 252 ways to rearrange the
data. The shaded area on the right represent the six possibilities in which the mean
difference equals or exceeds the observed value. The one-tailed P value, therefore, is
that shaded area divided by the total area under the entire graph. The two-tailed p
value is that area plus the matching area on the other side (or tail) of the distribution.

Unlike the t distribution, which is smooth, this distribution is chunky. There are
a limited number of possible ways to rearrange the data and thus only a limited number
of possible differences.

tARcE SAMPLES: THE APPROX|MATE RANDoMtzATtoN TEsr

The exact randomization test requires the computer program to systematically examine
every possible rearrangement of the data. With large data sets, the number of possible
rearrangements becomes astronomical, and the exact randomization test is beyond the
capability of even the fastest computers. Instead of examining all reaffangements of
the data, you can just look at some rearangements using the approximate randomiza-
tion test:

A
B

27A
B

A
B

27A
B

29A
B

25A
B

31
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One-tail P value
equafs 61252 or
o.o24

Mean Difference in BP

Figure 24.1. Exact randomization test. The figure shows all252 ways that the ten data points

can be shuffled with five data points in each group. The X axis shows the difference between

means, and the Y axis shows the number of possible arrangements that would lead to that big

a difference between means. The dark area on the right shows the six atrangements that lead

to a difference between means as large or larger than observed in the example. The dark area

on the left shows the six arrangements that lead to a difference between means as large or larger

than observed in the example but in the other direction. The two-tailed P value is 121252 or 0.048.

1. Randomly shuffle the values between the two groups.

2. Tabulate the answer to this question: Is the difference between the means of the

two groups in the shuffled data larger or smaller than the difference between the

means of the actual samples?
3. Repeat steps 1 and 2 many (perhaps several thousand) times.*

4. The P value is the fraction of the rearrangements in which the difference between

means was greater than or equal to the difference you observed. This P value is an

estimate of the true P value. The accuracy of the estimate depends on how many

times steps 1 and 2 were repeated. Since the P value is a proportion, you may calcu-

late a confidence interval as explained in Chapter 2.

Whereas the exact randomization test systematically examines all possible rear-

rangements, the approximate randomization test examines a random selection of the

possibilities.

THE RELATIONSHIP BETWEEN THE RANDOMIZATION TEST

AND THE t  TEST

At first glance, the P value from the randomizationtest seems to answer a very different

question than the P value from the t test.

To interpret the P value from the t test, you must imagine a Gaussian population

from which you select many different samples. The P value is the fraction of those

*It is possible that you may randomly shuffle the values the same way on two different iterations. That's OK.
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samples in which the means are as far apart (or more so) than you observed with the

actual data. You don't actually have to generate all those samples, as it can all be done

by mathematical calculations.
To interpret the P value from the randomization test, you don't have to think

about sampling different data from the population. Instead, you only deal with the
actual values you obtained in the experiment. Rather than hypothesizing about other
data that might have been obtained from the theoretical population, you hypothesize

about how these particular values could have been shuffled between the two groups.

You (or your computer) actually have to shuffle the data; there is no mathematical
shortcut. The P value is the fraction of the rearrangements that have means as far apart
or more so than actually observed.

Even though it sounds like the P values from the two methods answer different
questions, the two are usually similar, especially with large samples.

The randomization test is rarely used, and you may never encounter a paper that
analyzes data using it. The randomization test (with more than a tiny sample) requires
a computer, and computers weren't cheap until recently. And even with a computer,
randomization tests can be slow. For these reasons, the t test is far more popular than
the randomization test. If you find the logic of a randomization test to be easier to
follow than the logic of the t test, you can consider the P value from a t test to be an
approximation for the P value from the randomization test.

MANN.WHITNEY TEST

The Mann-Whitney test is similar to the randomization tests, except that all calculations
are done on the ranks rather than the actual values. In calculating the Mann-Whitney
test, the first step is to rank the data points without paying attention to which are in
group A and which are in group B. In the example, all the blood pressure values are
different (there are no ties), so ranking is straightforward. If there were ties, each of
the tied values would receive the average of the two or more ranks for which they tie.
In the BP example, the ranks look like Table 24.2.

Next, add up the ranks of the values in each group. Because the values in group
B tend to be larger, these values have higher ranks, resulting in a larger sum of ranks.
The sum of the ranks in group A is 18; the sum of the ranks of group B is 37.

We need to calculate the answer to the following question: If the distribution of
ranks between groups A and B were distributed randomly, what is the probability that
the difference between the sum of ranks would be so large? This question can be
answered in a manner similar to the exact randomization test discussed in the previous
section. We know that there are 252 ways to arrange l0 ranks between 2 groups
(keeping 5 in each group). In how many of these arrangements is the sum of ranks in
group A 18 or smaller and the sum of ranks in group B 37 or larger? Keeping track

Table 24.2, Ranks in Blood Pressure Example
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Group A values
Group A ranks
Group B values
Group B ranks

t20

105
4

80
I
130
9

90
2
t45
l 0

1 1 0
5
125
8

95
a
J

l t 5
6
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Table 24.3. Anangements Where the Sum of
Ranks Are as Far Apart as Actually Observed

Group Ranks Sum of Ranks

l ,  2 ,  3 ,  5 , 7
4 , 6 ,  8 , 9 ,  l 0

r , 2 , 3 ,  5 ,  6
4 , 7 . 8 . 9 .  l 0
1 , 2 , 3 , 4 ,  5
6 , 7 ,  8 , 9 ,  l 0

1 , 2 , 3 ,  4 , 7
5 , 6 , 8 , 9 ,  l 0

1 , 2 , 4 ,  5 ,  6
3 ,  7 ,  8 , 9 ,  1 0

1 , 2 , 3 , 4 ,  6
5 , 7 , 8 , 9 ,  l 0

of the details is tedious, but it takes only a few minutes work to figure out that the
answer is seven. The possibilities are shown in Table 24.3. Since the order of the
values within each group is not important, we have arranged each group from low
rank to high rank (Table 24.3).

There are three ways to get ranks sums of 18 and 37 , and four ways to get the
difference of rank sums to be even more different (17 and 38, 16 and 39, 15 and 40).
There arc 245 other ways to arrange the values so that the difference in ranks is less
extreme or in the opposite direction. The one-tailed P value is, therefore, 7/252 :

0.028. The two-tailed P value, which includes the possibility that the rank difference
is equally large but with group A, is twice the one-tailed value or 0.056.

Because the t test uses additional information (or rather an additional assumption)
it is more powerful than the Mann-Whitney test when the assumptions of the t test are
true. With large samples, the difference in power is trivial. With smaller samples, the
difference is more pronounced. If you have seven or fewer data points (total in both
groups), the Mann-Whitney test can never report a two-tailed P value less than 0.05
no matter how different the groups are.

PERFORMING THE MANN.WHITNEY TEST*

Like most statistical tests, the calculations are best left to computers. If you wish to

calculate the test yourself, follow these steps. Although the logic is simple, there are
two different ways to calculate the test. The method actually described by Mann and
Whitney involves calculating a variable termed U. An alternative, but equivalent,

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss

of continuitv.

A

B
18 (actual)

J I

A
B

1 7
38

A
B

1 5
40

A

B
t 7
38

A

B
l 8
a -
J I

A
B

1 8
a -
J I

A
B

1 6
39
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method described by Wilcoxon involves calculating a variable termed 7. Each method

uses distinct set of tables. Both are presented here to accommodate whatever set of

tables you find. Because equivalent tests were developed by Wilcoxon and Mann and

Whitney, you will see this test referred to by either name. Wilcoxon also developed
a nonparametric test for paired data that we will discuss in the next section; the tables
needed for the two tests are quite different, and it is easy to mix them up.

l. Rank all values in both groups. When ranking, don't pay attention to which group

a value is in. Give the smallest value in either value a rank of one, and give the
largest value in either group a rank equal to the total number of data points in both
groups. If two or more values are identical, assign each the average of the ranks
for which they tie. Thus if two values tied for the fifth and sixth ranks, assign each
a rank of 5.5. If three values tied for ranks Il, 12, and 13, assign each a rank of
12. Rank according to the actual values, not the absolute values. Thus negative
numbers always have lower ranks than positive numbers.

2. Sum the ranks in each group. Call the sum of ranks Tu and T6. Look in an appropriate
table to find the P value. Although this table is usually labeled for the "Mann-
Whitney" or "rank sum" tests, it is sometimes labeled for the "Wilcoxon rank
sum test," which must be distinguished from the "Wilcoxon signed rank test"
(used for paired data and described in the next chapter). You will need to find the
appropriate spot in the table to account for the number of values in each group.
This book does not include tables for the Mann-Whitney test.

3. Some tables give the P value for U instead of T. U is calculated as the smaller of
these two terms (n" and o6 are the numbers of data points in the two groups).

(24.2)

Use an appropriate table to find the P value. You will need to find the appropriate
spot in the table to account for the number of values in each group.

4. Tables are available for small numbers of subjects only. If the number of data points
is large (more than about 10 per group), you may use the following method to
approximate a P value. After calculating U, use Equation 24.3 to calculate z:

z -
lU - n.n/21

(24.3)
ffi

Use Table A5.2 in the Appendix to determine a P value fromz, where z is from a
standard Gaussian distribution. This equation yields an approximate P value; the
larger the sample size, the better this approximation. If there were many ties in the
data, the denominator of this equation should be adjusted slightly. In this case, refer
to a more advanced book or use a computer program.

ASSUMPTIONS OF THE MANN.WHITNEY TEST

The Mann-Whitney test is based on these assumptions:

' The samples are randomly selected from, or at least representative of, the larger
populations.

r r  -  rF  nu (nu  * ! o rU :  
To  _  n r (nu  *  1 )

u  -  t ^ -  
Z  

u I  u  -  l s - -  
z
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The two samples were obtained independently. If the subjects were matched, or if
the two samples represent before and after measurements, then the Wilcoxon test
should be used instead (see next chapter).
The observations within each sample were obtained independently. Choosing any
one member of the population does not alter the chance of sampling any one else.
The two populations don't have to follow any particular distribution, but the two
distributions must have the same shape.

WHEN TO USE NONPARAMETRIC TESTS

It is not always easy to decide when it is appropriate to use a nonparametric test. This
topic is discussed at length in Chapter 37 (pages 297-300).

PROBTEMS

1. The data compare the number of beta-adrenergic receptors on lymphocytes of control
subjects and those taking a drug.

Control Drug

I 1 6 2
1095
r327
126l
I  103
r235

892
903

lt64
1002
961
875

A.
B .

Calculate the Mann-Whitney test.
Calculate the t test.
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Comparing Two Paired Groups:
Paired t and Wilcoxon Tests

WHEN TO USE SPECIAT TESTS FOR PAIRED DATA

Often experiments are designed so that the same patients or experimental preparations
are measured before and after an intervention. If you used the unpaired t test or the
Mann-Whitney test with such data, you would ignore part of the experimental design.
You would be throwing away information, which is never a good thing to do. The
problem is that the unpaired tests do not distinguish variation among subjects from
variation due to differences between groups. When subjects are matched or paired,
you should use a special paired test instead.

Paired analyses are appropriate in these types of protocols:

' You measure a variable in each subject before and after an intervention.
' You recruit subjects as pairs, matched for variables such as age, postal code, or

diagnosis. One of the pair receives an intervention; the other does not (or receives
an alternative treatment).

. You measure a variable in twins or child/parent pairs.
' You run a laboratory experiment several times, each time with a control and treated

preparation handled in parallel.

More generally, you should use a paired test whenever the value of one subject
in the first group is expected to be more similar to a particular subject in the second
group than to a random subject in the second group. When the experimental design
incorporates pairing, you should use a statistical test that takes pairing into account.
Of course the pairing has to be done as part of the protocol, before the results are
collected. The decision about pairing is a question of experimental design and should
be made long before the data are analyzed.

CALCUTATING THE PATRED t TEST

To calculate the paired t test, follow these steps:

1. For each subject, calculate the change in the variable (keeping track of sign). If
you have matched pairs, rather than before and after measurements, then calculate
the difference between the two.

225
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2. Calculate the mean and SE of these differences.
3. Calculate t

Mean differences (2s.r)t -
SE of differences'

Note that the denominator is the standard error (SE) of the differences. To calculate

this value, tist all the differences (calculated for each pair) and calculate the standard

effor of the mean (SEM). The SE of the difference for the paired t test is not the

same as the SE of the difference for the unpaired test. If the pairing is effective,

this SE of the difference will be smaller in the paired test.
4. Determine the P value. The degrees of freedom equal the number of pairs minus

one. A paired t test has half as many degrees of freedom as the corresponding

unpaired test.
5. Calculate a 957o confidence interval (CI) for the mean differences between pairs:

Mean difference -+- t* ' SE of differences. (2s.2)

When calculating the CI, remember to use the critical value of t* from a table.

Don't use the value of t calculated for these data calculated in Step 3 above. The

number of degrees of freedom equals the number of subjects (or number of pairs)

minus 1.

To continue the blood pressure example, let's assume that we followed five students

and measured their blood pressure in both the first and second years and collected the

data shown in Table 25.1. The first column is the same as before; the second column

is different.
Each row represents a single student whose blood pressure was measured twice,

a year apart. The last column shows the increase in blood pressure for each student.

The mean increase is 8, and the SEM of the increase is 3.74. The t ratio, therefore,

equals 2.14. Because there are five subjects, the number of df is four. The two-tailed

P value is 0.0993; the 957o CI for the change in blood pressure ranges from -2.3 to

18.4. With so few subjects, the CI is quite wide.

If these data had been analyzed by an unpaired two-sample t test, the two-tailed

P value would have been 0.370. By making repeated measurements on the same subject

and using this information in the analysis, the experiment is more powerful and generates

a smaller P value and a narrower CI.

Table 25.1. Blood Pressure Data for Five

Students

MSI MS2 Change

Student A

Student B

Student C

Student D
Student E

120
80
90

l l 0
95

l l 5
95

105
r20
100

- 5

l 5
l 5
l 0
5
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ASSUMPTIONS OF PAIRED t TEST
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The pairs must be randomly selected from, or at least representative of, a larger
population.
The samples must be paired or matched. The matching between values in column
A and those in column B must be based on experimental design and decided before
the data are collected. It is not OK to "pair" datapoints after they have been collected.
Each pair must be selected independently of the others.
The distribution of differences in the population must approximate a Gaussian
distribution.

,,RATIO" t TESTS*

Paired t tests are usually calculated, as described above, by calculating the difference
between pairs (by subtraction). This method tests an alternative hypothesis that the
intervention always causes the same average absolute difference, regardless of the
starting value. With many experimental protocols, the intervention will cause the same
average relative difference. In these kinds of experiments, you would expect that the
size of the absolute difference would vary with the starting value, but the relative
change (as a ratio compared to the starting value) would be constant.

One thought would be to express all the data as a ratio, and then ask whether the
mean ratio differs significantly from 1.0 (using a one-sample t test, as described in the
next section). The problem with this method is that the ratio is intrinsically an asymmetri-
cal measure. All possibilities in which the variable decreases are expressed in ratios
between 0 and 1, and all possibilities where the variable increases are expressed in
ratios greater than 1. The logarithm of the ratio is a more symmetrical measure, and
the distribution of the logarithms is more likely to be Gaussian. The logarithm of the
ratio is equal to the difference of logarithms:

(2s.3)

Here is an easy way to analyze paired data in which you think that the relative
difference is a more consistent measure than the absolute difference. Don't calculate
a ratio. Simply convert all values (before values and after values) to logarithms (either
natural logarithms or logarithms base 10), and then perform a paired t test on the
logarithms. In addition to the P value, the paired test will also yield the 95Vo CI for
the difference between mean logarithms. Take the antilogarithm of both confidence
limits to express the CI in terms of ratios.

The decision as to whether to calculate the paired t test on actual values (test for
absolute differences) or on the logarithm of the values (test for relative differences) is
a scientific decision that should be based on the kinds of data you are analyzing. Ideally

*This section is more advanced than the rest. You may skip it without loss of continuity.

. / after \tog\U.for" 
/ 

: log(after) - log(before).
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Table 25.2. Enzyme
Activity in Control
Versus Treated Cells

Control

24
6

t6
5
2

52
l l
28
8
4

this decision should be made before the data are collected. The decision can have a
big impact, as shown in Table 25.2.

These data (which are not real) were collected to test whether treating cultured
cells with a drug increases the activity of an enzyme. Five different clones of the cell
were tested. With each clone, control and treated cells were tested side by side. In all
five clones, the treatment increased the activity of the enzyme. An unpaired t test would
be inappropriate, because the experiment was paired or matched. A paired t test yields
a t of 2.07 and a P value (two tailed) of .107. Why is there such a high P value with
such striking results? Recall that t is the ratio of the mean change divided by the SEM
of the differences. In this example the SE is large, as the differences range from 2 to
28. It makes scientific sense in this example to think that the treatment will increase

the enzyme activity by a certain percentage, rather than a certain amount. If the cells
happened to have a high control enzyme activity one day, you'd expect the drug to

have a bigger absolute effect but the same relative effect. Therefore, we take the

logarithm of all values and then perform the paired t test on the logarithms. The t ratio

is 11.81 and the P value is 0.0003. The 95Vo CI for the difference of logarithms (base

10) is 0.21 to 0.33. Expressed this way, the CI is hard to interpret. Convert both ends

of the CI to antilogarithms, and the 957o CI for the ratio (treated/control) is 1.62 to

2.I4. The doubling in activity with treatment is very unlikely to be a coincidence.

THE WILCOXON SIGNED RANK SUM TEST

The nonparametric method to compare two paired groups is termed the Wilcoxon

Signed Rank Sum test. It is used in exactly the same situation as the paired t test

discussed earlier.
As usual, the details are best left to a computer program but are presented here

for reference:

l. For each pair, calculate the difference. Keep track of the sign. A decrease is a

negative number, an increase is positive.
2. Temporarily ignoring the sign, rank the absolute value of the differences. If any

differences are equal to 0, ignore them entirely. Rank the remaining differences
(the smallest difference is number l).

3. Add up the ranks of all positive differences and of all negative differences. These

sums are labeled T.
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4. Using an appropriate table, find the P value corresponding to the values of T. Most

tables use the smaller value of T. When using the table you will need to use N, the

number of pairs (excluding pairs whose difference equals 0). If the two values of

T are far apart, the P value will be small.

For the blood pressure example, there are five data pairs, T : 1.5 and 13.5, and the

two-tailed P value is 0.1250. If you have five or fewer pairs of data points, the Wilcoxon

test can never report a two-tailed P value less than 0.05, no matter how different

the groups.
The Wilcoxon Signed Rank Sum test depends on these assumptions:

. The pairs must be randomly selected from, or at least representative of, a larger

population.
. The samples must be paired or matched. The matching between values in Column

A and those in Column B must be based on experimental design and decided before

the data are collected. It is not OK to "pair" data points after they have been collected.
. Each pair must be selected independently of the others.

PROBLEMS

1. These data are the same as those presented in Problem I from Chapter 24. The

experimenters compared the number of beta-adrenergic receptors on lymphocytes
of control subjects and those taking a drug. Assume that each subject was first

measured as a control and then while taking the drug.

Control Drug

1162
r095
r327
t261
I 103
r235

892
903

lt64
1002
961
875

A. Calculate the paired t test.

B. Calculate the Wilcoxon test.



Comparing Observed
and Expected Counts

ANATYZING COUNTED DATA

Assume that an average of ll%o of patients die during or immediately following a
certain risky operation. But last month 16 of 75 patients died. You want to know
whether the increase reflects a real change or whether it is just a coincidence. Statisti-
cal calculations cannot answer that question definitively, but they can answer a related
one: If the probability of dying has remainedatl}Vo, what is the probability of observing
16 or more deaths out of 75 patients? If the probability of dying remained at l}Vo, we
would expect lOVo X 75 : 7.5 deaths in an average sample of 15 patients. But in a
particular sample of 75 patients, we might see more or less than the expected numbers.
The data can be summarized as given in Table 26.1.

Note that this table is not a contingency table. In a contingency table, the columns
must be alternative categories (i.e., male/female or alive/dead). Here the table compares
observed and expected counts, which are not alternative outcomes.

The null hypothesis is that the observed data are sampled from populations with
the expected frequencies. We need to combine together the discrepancies between
observed and expected, and then calculate a P value answering this question: If the
null hypothesis were true, what is the chance of randomly selecting subjects with this
large a discrepancy between observed and expected counts?

We can combine the observed and expected counts into a variable 12 (pronounced
ki square). Chi-square is calulated as

_ r _ \ (observed - expected)r
t -

A exoected
(26.r)

In this example,

(26.2)

Statisticians have derived the distribution of chi-square when the null hypothesis
is true. As the discrepancies between observed and expected values increase, the value
of chi-square becomes larger, and the resulting P value becomes smaller. The value
of chi-square also tends to increase with the number of categories, so you must account
for the number of categories when obtaining a P value from chi-square. This is expressed

u r : W +  
( 1 6  -  7 ' 5 ) 2 :  

l o . 7 o ./\  67.5 7.5
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Table 26.1. Data for Counted Data

Example

# Observed # Expected

Alive
Dead
Total

59
l 6
75

67.5
7.5

75

as the number of degrees of freedom. In this example there is only one degree of

freedom. This makes sense. Once you know the total number of patients and the number

who died, you automatically know the number who lived. The general rule is that the

number of degrees of freedom equals the number of categories minus one.

Using a computer program or Table A5.7 we can determine that the P value is

0.001l. Since P is so low, we suspect that the null hypothesis is not true and that some

factor (beyond chance) is responsible for the increase in death rate. Chi-square is also

used to analyze contingency tables, as discussed in the next chapter.

THE YATES' CONTINUTTY CORRECTION

Although the observed counts, by definition, must be integers, the expected counts in

this case appropriately include a fractional component. Therefore, it is impossible for

chi-square to exactly equal 0, which makes it impossible for the P value to exactly

equal 1.0. In fact, the P value calculated from chi-square will always be a bit too small.

This is parr of a larger problem of trying to map the discrete probability distribution

of counts to the continuous chi-square distributions. One solution is to avoid the

continuous distributions and to calculate exact probabilities using more appropriate

(and somewhat more difficult) methods based on the binomial distribution. Another

solution is to try to correct the chi-square calculations to give a more appropriate P value.

The correction is termed the continuity or Yates' correctiorz. With the correction,

the formula becomes:

(26.3)

In this example, the resulting chi-squared value is 9.48, which leads to a P value

of 0.0021. Unfortunately, the revised equation overcoffects, so the value of chi-square
is too low and the P value is too high. Because it is usually safer to overestimate the
P value than to underestimate it, the correction is termed conservative, and many
statisticians advise using the correction routinely. Others advise never using it. The

continuity coffection is only used when there are one or two categories.
The correction makes little difference when the numbers are reasonably large. In

the example, there is little difference between P : 0.0011 and P : 0.0021. When the

numbers are smaller, the correction makes more difference. When the numbers are
very small (expected values less than five), the chi-square method does not work well

r  s( lobserved -expectedl  -  0.5):- - 
a^pa.r*
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at all, either with or without the correction, and you should use other methods (based
on the binomial distribution, not detailed in this book) to calculate the p value.

WHERE DOES THE EQUATTON COME FROM?*

To understand the basis of the chi-square equation, it helps to see it in this

(26.4)

The numerator is the discrepancy between the expected and observed counts. The
denominator is the standard error of the expected number. As you'll learn in Chapter
28, counted data distribute according to the Poisson distribution, and the standard
effor of the number of expected counts approximately equals the square root of the
expected number.

PROBTEMS

1. You hypothesize that a disease is inherited as an autosomal dominant trait. That
means that you expect that, on average, half of the children of people with the
disease will have the disease and half will not. As a preliminary test of this hypothesis,
we obtain data from 40 children of patients and find that only 14 have the disease.
Is this discrepancy enough to make us reject the hypothesis?

.,2 _ s/observed 
- expected\2

l - t
\ ./expected /

*This section is more advanced than the rest. You may skip it without loss of continuity.
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Comparing Two Proportions

At the beginning of Chapter 8 you learned about the four kinds of experimental designs

whose results can be expressed as two proportions. Chapters 8 and 9 showed you how

to calculate the 957o confidence interval for the difference or ratio of those proportions.

This chapter teaches you how to calculate a P value testing the null hypothesis that

the two proportions are equal in the overall population. There are two tests you can

use, Fisher's exact test or the Chi-square test.

FISHER'S EXACT TEST

Although the details are messy, the idea of Fisher's exact test is fairly simple and is

similar to the exact randomization test you learned about in Chapter 24. Without

changing the row or column totals in the contingency table, construct all possible

tables. Fisher's test calculates the probability that each of these tables would have been

obtained by chance. The two-sided P value is the sum of the probability of obtaining

the observed table plus the probabilities of obtaining all other hypothetical tables that

are even less likely.* The calculations are messy, and you shouldn't try to do them
yourself. Tables are available, but are fairly tricky to use. Calculate Fisher's test with

a computer program. You already learned how to interpret the P value in Chapter 10.

CHr-SQUARE TEST FOR 2 x 2 CONTINGENCY TABTES

Although the chi-square test is not as accurate as Fisher's test, it is far easier to calculate
by hand and is easier to understand. Recall Example 8.1, which examined disease
progression in subjects taking AZT or placebo. The results are shown again in Ta-
ble 27.1.

First we must predict the expected data had the null hypothesis been exactly true
(with no random variation). You can calculate these expected results solely from the
data in the contingency table. One's expectations from previous data, theory, or hunch
are not used when analyzing contingency tables.

*Because of the discrete and asymmetrical nature of the exact distribution, the one-sided P value calculated

by Fisher's test does not always equal exactly half the two-sided P value, but is usually is close. In rare

cases, the one- and two-sided P values can be identical.

233
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Table 27.1. Example 8.1 Observed Data

Disease Progressed No Progression Total

399
332
t 3 l

475
461
936

Calculating the expected values is quite easy. For example, how many of the AZT
treated subjects would you expect to have disease progression if the null hypothesis
were true? Combining both groups (looking at column totals), the disease progressed
in205/936 : 2l.9Vo of the subjects. If the null hypothesis were true, we'd also expect
to observe disease progression in 2l.9Vo of the AZT treated subjects. That means we
expect to see disease progression in 0.219 x 475 : 103.9 of the AZT treated subjects.

The rest of the table can be completed by similar logic or (easier) by subtraction
(since you know the row and column totals). The expected data are given in Table 27.2.

Of course we did not observe the expected values exactly. One reason is that the
expected values include fractions. That's OK, as these values are the average of what
you'd expect to see if you repeated the experiment many times. The other reason we
did not observe the expected values exactly is random sampling. You expect to see
different results in different experiments, even if the null hypothesis is true.

To quantify how far our results were from the expected results, we need to pool
together all the discrepancies between observed and expected values. As discussed in
the previous chapter, the discrepancies between observed and expected values are
pooled by calculating a single number, 12 chi-square. The larger the discrepancy
between observed and expected values, the larger the value of 12. The details of the
calculations are presented in the next section. For this example, xt : 18.9.

Statisticians have computed the probability distribution of chi-square under the
null hypothesis. This distribution has been programmed into computers and tabulated,
allowing you to figure out the P value. A large 12 value coffesponds to a small P value.
For this example, the P value is very low, less than 0.0001. If the null hypothesis were
true, there is less than a 0.0l%o chance of observing such a large discrepancy between
observed and expected counts.

HOW TO CAICUIATE THE CH|-SQUARE TEST FOR A 2 x 2
CONTINGENCY TABLE*

l. Create a table of expected values. The expected probability that an observation will
be in a certain cell is equal to the probability that an observation will be in the
correct row times the probability that it will be in the correct column. Multiply the
expected probability times the grand total to calculate the expected count. Turn
those sentences into equations and simplify to Equation 27.1:

xThis section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuity.

AZT
Placebo
Total

76
129
205
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Table 21.2. Example 8.1 Expected Data

Disease Progressed No Progression Total

AZI
Placebo

Total

103.9
l 0 l . l
205

3 ' l  | . l

3s9.9
731

475
461
936

Expected count : #@ 
' tt"',11?l?t ' srand total

grand total grand total

- row total ' column total

grand total

2. Calculate chi-square using Equation 27.2:

(27.r)

(lobserved - expectedl - [0.5])2
expected

(27.2)

Calculate the sum for all four cells in the contingency table.

The term in brackets t0.51 is the Yates' continuity correction, already discussed

in the last chapter. The result of Equation 27.2 does not follow the chi-square

distribution exactly, and the Yates' correction is an attempt to make it come closer.

Some statisticians recommend including this correction (fot 2 X 2 tables), but

others suggest leaving it out. Either way, this test only calculates an approximate

P value.
3. Look up the P value in Table A5.7 in the Appendix. The larger the value of chi-

square, the smaller the P value. There is one degree of freedom. The resulting P

value is two-sided. For a one-sided P value, halve the two-sided P value.

ASSUMPTIONS

Both chi-square and Fisher's test are based on these assumptions:

. Random sampling. The data must be randomly selected from, or at least representative

of, a larger population.
. The data must form a contingency table. The values must be the number of subjects

actually observed, not percentages or rates. The categories that define the rows must

be mutually exclusive. The categories that define the columns must also be mutually

exclusive. Many 2 X 2 tables are not contingency tables, and analyses of such data

by chi-square or Fisher's test would not be meaningful.
. For the chi-square test, the values must not be too small. Don't use the chi-square

test if the total number of subjects is less than 20 or any expected value is less than

5. Fisher's test can be used for any number of subjects, although most programs

won't calculate Fisher's test with huge numbers (thousands) of subjects.
. Independent observations. Each subject must be independently selected from the

population.
. Independent samples. No pairing or matching. If you have paired data, see the

discussion of McNemar's test in Chapter 29.
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CHOOSING BETWEEN CHI-SQUARE AND FISHER'S TEST

You may obtain a P value from a 2 x 2 contingency table using either the chi-square
test or Fisher's exact test. Which should you use? The answer Jepends on the size of
your sample.

Small samples- Use Fisher's test. How small is small? Any cutoff is arbitrary but a
reasonable rule is this: The sample size is too small for the chi-square test if the
total sample size is less than about20 to 40, or the expected number of subjects
in any cell is less than 5. Note that the criteria applies to the expected numbers,
not the observed numbers.

Moderate-sized samples. If you have fewer than several hundred subjects, then you
should select Fisher's test if you are using a computer program. If you don't have
access to a program that performs Fisher's test, you can get by using the chi-
square test instead. If you calculate the chi-square test, you must decide whether
to use Yates' correction. Different statisticians give different recommendations,
and there is no solid consensus. In either case (with or without the yates' correc-
tion), the chi-square test gives an approximate P value. Rather than deciding which
estimate is better for which purpose, you are better off using a program that
calculates the exact P value with Fisher's test.

lnrge samples. If your sample size is huge (thousands of subjects), you should use
the chi-square test. With such large samples, Fisher's test is slow to calculate,
may lead to calculation problems (computer overflow), and is no more accurate
than the chi-square test. With large samples, it doesn't matter whether or not you
use Yates' correction, as the values of chi-square and the P value will be almost
identical either way.

Chi-square and Fisher's test are alternative methods of calculation. The data going
into the two tests are exactly the same (a 2 x 2 contingency table), and the resulting
P value is intended to have the same meaning. Fisher's test always gives a theoretically
correct P value, but calculating a Fisher's test without a computer is tedious, even with
tables. In contrast, the chi-sauare test is easy to calculate, but the resulting p value is
only an approximation. When the number of subjects is sufficiently large, the approxima-
tion is useful. When the number of subjects is small, the approximation is invalid and
leads to misleading results.

When you read the literature, you may run across a third way to calculate a p
value, using the z resr. Although the z test looks quite different than the chi-square
test, the two tests are mathematically equivalent and calculate identical P values. Like
the chi-square test, you must decide whether or not you wish to include Yates' continuity
correction when calculating the z test.

CATCUTATINC POWER*

When interpreting the results of a study that reaches a conclusion of not significant,
it is useful to calculate the power of that study. Recall the definition of power. If you

*This section contains the equations you need to calculate statistics yourself. You may skip it without loss
of continuitv.
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hypothesize that the true proportions in the two populations *. pt and p2, power is

the chance that you will obtain a significant difference between the proportions when
you compare random samples of a certain size. In a prospective or experimental study
pr and pz 

"te 
the incidence rates in the two populations; in a retrospective study p1 and

p2 are the fraction of cases and controls exposed to the risk factor; in a cross-sectional
study p1 and pz are the prevalance rates in the two populations.

The power of a study depends on what proportions p1 and pz you hypothesize for
the populations. All studies have tiny power if p1 and p2are close together and enormous
power if p1 and p2 are far apart. You might imagine that power is a function of the
difference between the two hypothesized population proportions (pr - pz), or perhaps
their ratio (ptlpz). It turns out, however, that power depends not only on the difference
or ratio of p 1 and p2, but also on their particular values. The power to detect a difference
between pr : 0.10 and p2 : 0.20 is not the same as the power to detect a difference
between p1 : 0.20 and p2 : 0.30 (consistent difference), or p1 : 0.20 and p2 : 0.40
(consistent ratio).

There are several methods to calculate power. One method would be to reiurange
Equation 22.6 (used to calculate sample size) so that it calculates power. However,
this leads to some messy calculations. Instead, what follows is adapted from a book
by Cohen* that contains extensive tables for determining power in many situations.
To calculate power approximately, first calculate H using Equation 27.3:

H : 2' larcsine ..6 - arcsine Jprl (27.3)

It seems surprising to see arcsines show up in statistical equations, but it turns
out that power is a consistent function of the difference of the arcsines of the square
roots of the proportions.t The power of a study will be the same for any pair of values
for p1 and p2 that yields the same value of H.

To save you the trouble of calculating the arcsine of square roots, I've prepared
Tables 27.3 and 27.4. The tables are symmetrical, so it doesn't matter which of the
two proportions you label p1 and which you label p2 (you'll get the same answer if
you switch the two). The first table covers all values of p1 and p2, the second table
gives more detail for rare events (smaller values of p1 and p2).

Now that you've calculated H, you're ready to calculate power from Equation2T .4:

- z x (27.4)

Set z* to the critical value of z that coffesponds to the a you have chosen. If you
set o to its conventional value of 0.05, then z* : l.96.If you set a : 0.10, then z*
: 1.65. If you set a : 0.01, then z* :2.58. All three of these values assume that
you will be calculating two-tailed P values. N in the equation is the number of subjects
in each group, so the total number of subjects is 2 * N.

If the two groups have different number of subjects, then calculate N as the
harmonic mean of N1 and N2 (the numbers of subjects in each group). The harmonic

xJacob Cohen. Statistical Power Analysis for the Behavioral Sciences,2nd ed. Lawrence Erlbaum, Hillsdale.
New Jersey, 1988.

tThe arcsine is the inverse of the sin. Arcsin(x) is the angle (in radians) whose sine equals x.
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mean is the reciprocal of the mean of the reciprocals. Calculate N to use in Equation
27.4 by using Equation 27.5:

\ T _  I  _ 2 . N r  
. N l:

( t ) ( r* r )  N +N2
\2 /  \N ,  N, /

(27.s)

N=10

To convert Zpo*., to power, you need to find the probability that a random number
chosen from a standard normal distribution (mean : 0, SD : l) would have a value
less than zpo*",.If Zpower equals 0, the power is 50Vo,because half of the normal distribution
has negative values of z. Table ,{5.6 in the Appendix converts Zpo*", to power.

Rather than calculats Zpo*.,, you can estimate power directly from Figure 27.1.
Find H on the X axis. Read up until you intersect the line corresponding to N, the
number of subjects in each group. Then read over to the left to find the power. The
figure assumes that you are using the conventional value of c : 0.05.

Example 12.1 (Again)

This study investigated the usefulness of routine ultrasound to prevent neonatal deaths
and complications. The authors found that use of routine ultrasound did not significantly
reduce neonatal complications or deaths compared to the use of ultrasound only for
specific reasons. The rate of complications and deaths is about SVo. What would be

frl= 5ooo looo 5oo 200 100 355075
99%
98Yo

95%

90%

80o/o

6, 70%
} 600/0
f, ioo/o- 

fiol"
30o/o
20to

10lo

H

Figure 27.1. Determine the power of a study to detect differences between rwo propor-
tions. First determine H from Table 27.3 or use this equation: H:2 * larcsine(.6,) -

arcsine(.fi)1. fne variables p1 and pz arre the two proportions that you hypothesize exist in the
overall populations. Find the value H on the X axis. Now read up to see where it intersects a
line corresponding to the sample size. The variable N on this graph is the number of subjects
in each group, assuming that the sample sizes are equal (or nearly so). Then read to the left to
find the power. If the population proportions really are pr and p2, and you perform a study with
N subjects in each group, power is the probability that your study will find a statistically sig-
nificant difference with P < 0.05.



COMPARING TWO PROPORTIONS

the power of this study to detect a 20Vo reduction in the rate of complications and

deaths (down to 4vo)? set p, : 0.04 and p2 : 0.05. From the table, H : 0.048. Figure

27.1 is not useful with such a large sample size, so we'll use equation27.4. Set z* :

1.96, H : 0.048, and N : 7600. You can calculate th&t Zpo*., : I.02. From Table

A5.6 in the Appendix, you can read off that the power is about 84Vo.If your hypothesis

were true, there is an 847o chance that a study of this size will find a significant

difference with P < 0.05, and a l6Vo chance that it will find no significant difference.

Similarly, you can calculate the other values shown rnTable I2.2.

Example 27.1

Among patients taking certain drug, 407o develop a certain side effect. You want to

test a second drug that is supposed to prevent the side effects. If your experiment has

30 subjects in each group, what is its power to detect a relative reduction in the rate

of side effects of 50Va (down to 207o)? Your assumptions are that p1 : 0.40 and p2
: 0.20. From the table, H : 0.44. The graph does not have a line for N : 30 but

has a line for N : 25 and N : 35. Read up Figure 27.I atH: 0.44 and interpolate

between the lines for N : 25 and N : 35. Read over to the Y axis. The power is

about 407o.If your hypothesis is true, there is only about a 40Vo chance that your study

will end up with a significant result, leaving a 607o chance that your study will

incorrectly conclude that there is no significant difference.

Example 27.2

After a difficult operation, llvo of patients die. You rcad a paper that tested a new

procedure in a randomized trial. The investigators compared mortality rates in 50

subjects given the standard operation and 50 given the new operation. The difference

in mortality rates was not significant with P > 0.05. Before interpreting these negative

results, you need to know the power of the study to detect a significant difference if

the new procedure is really better. To calculate the power, you first need to decide

how large a difference is worth detecting. Let's start by asking what power the study

had to detect a reduction in mortality of 50Vo. Set p1 : 0.10 (the mortality rate with

the standard procedure) and p2 : 0.05 (half that rate). Look up H in the table: H :

0.192. From the graph, you can see that the power is only about 17Vo. Even if the new
procedure really does reduce mortality by 507o, a study with N : 50 only has only
about a lTVo chance of finding a statistically significant (a : 0.05) difference in
mortality rates. Since the study had poor power to detect an important reduction in
mortality, you really can't conclude anything from the negative study. To increase the
power will require more subjects.

PROBTEMS

1. Perform the chi-square test for the cat-scratch disease data for Example 9.1. State
the null hypothesis, show the calculations, and interpret the results.
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2. (Same as Problem 2 from Chapter 8.) Goran-Larsson et al. wondered whether
hypermobile joints caused symptoms in musicians.* They sent questionnaires to
many musicians and asked about hypermobility of the joints and about symptoms
of pain and stiffness. They asked about all joints, but this problem concerns only
the data they collected about the wrists. In contrast, 78Vo of musicians without
hypermobility had such symptoms. Analyze these data as fully as possible.

3. Will a study with N : 50 have greater power to detect a difference betweeo p, :
0.10 and pz: 0.20, or betweeo p, : 0.20 and p2 : 0.40?

4. Calculate aP value from the data in Problem 4 of Chapter 8. Interpret it.
5. In response to many case reports of connective tissue diseases after breast implants,

the FDA called for a moratorium on breast implants in 1992. Gabriel and investiga-
tors did a prospective study to determine if there really was an association between
breast implants and connective tissue (and other) diseases.t They studied 749 women
who had received a breast implant and twice that many control subjects. They
analyzed their data using survival analysis to account for different times between
implant and disease and to correct for differences in age. You can analyze the key
findings more simply. They found that 5 of the cases and 10 of the controls developed
connective tissue disease.

A. What is the relative risk and P value? What is the null hypothesis?
B. What is the 957o CI for the relative risk?
C. If breast implants really doubled the risk of connective tissue disease, what is

the power of a study this size to detect a statistically significant result with
P < 0.05?

*L. Goran-Larsson, J Baum, GS Mudholkar, GD Lokkia. Benefits and disadvantages of joint hypermobility
among musicians. N Engl J Med 329:1079-1082, 1993.

tSE Gabriel, WM O'Fallon, LT Kurland, CM Beard, JE Woods, LJ Melton. Risk of connective tissue
diseases and other disorders after breast implantation. N Engl J Med 330:1697-1702, 1994.
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With the information you've learned so far, you'll only be able to follow the

statistical portions of about half of the articles in the medical literature. The

rest of the articles use more advanced statistical tests. To learn these tests in

depth, you will need to take an advanced statistics course or study an advanced

text. The chapters in this section give you a general feel for how some of these

tests are used, and this should be sufficient to interpret the results. You may

read the chapters in any order without loss of continuity.
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The Confidence lnterval
of Counted Variables

So far we have discussed three kinds of variables: those expressed as measurements
on a continuous scale (such as blood pressure or weight), those expressed as proportions
(such as the proportion of patients that survive an operation or the proportion of children
who are male), and survival times. This chapter deals with a fourth kind of outcome
variable, those that are expressed as counts, such as the number of deliveries in an
obstetrics ward each day, the number of eosinophils seen in one microscope field,
or the number of radioactive disintegrations detected by a scintillation counter in a
minute.

THE POISSON DISTRIBUTION

Variables that denote the number of occuffences of an event or object in a certain unit
of time or space are distributed according to the Poisson distribution, named after a
French mathematician. This distribution is based on the assumptions that the events
occur randomly, independently of one another, and with an average rate that doesn't
change over time. As usual, this equation works in the wrong direction, from population
to sample. Given the average (population) number of occurrences in one unit of time
(or space), the Poisson distribution predicts the frequency distribution for the number
of events that will occur in each unit of time (or space).

Figure 28.1 shows an example. Assume that the time at which babies are born is
entirely random, with no effect of season, phase of the moon, or time of day. In a
certain very busy hospital an average of six babies are born per hour. That's our
population. The X axis of Figure 28.1 shows various numbers of babies born per hour
sampled, and the Y axis shows how often you would expect to see each possibility.
It is most common to observe six babies born each hour, but there is a small chance
that no babies will be born in a certain hour or that 15 babies will be born in that
hour. Consult more advanced statistical books for equations and tables of the Pois-
son distribution.
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Number of Babies Born

Figure 28.1. The Poisson distribution. If the average number of events in a time interval (for
this example babies born per hour) equals 6, this figure shows the distribution you expect to
see for number of events per time interval. From the first two bars, you can see that there is
less than lvo chance of observing 0 events in a particular time interval, and about a 2Vo chance
of observing a single event.

UNDERSTANDING THE CONFIDENCE INTERVAT OF A COUNT

When you analyze data, you have information about one sample, in this case the
number of events per time or the number of objects per volume. By chance the number
of events (or objects) that you counted may be higher or lower than the average number
that occur in that unit time (or volume). You want to make inferences about the overall
average number of events per time or the number of objects per volume.

Understanding the CI should be familiar to you by now. From the count in your
sample, C, it is possible to calculate (Table 28.1) the 957o confidence interval (CI) for
the average number of events per unit time (or objects per volume). You canbe 95Vo
sure that the overall average number of events per unit time (or objects per volume)
lies within this CI.

You can obtain the 95Vo CI of a count from Table A5.9 in the Appendix (abridged
in Table 28.1), or calculate an approximate CI as shown in the next section. For
example, assume that you carefully dissect a bagel and find 10 raisins. Assuming that
variability in raison count is entirely due to chance, you can be 957o sure that the
average number of raisins per bagel is between 4.8 and 18.4. You can also say that
you expect that about 95Vo of bagels will have between 5 and 18 raisins. Here is a
more realistic example. You have counted 120 radioactive counts in one minute. The
95Vo CI for the average number of counts per minute is 99.5 to 143.5.

Your interpretation of the CI depends on the following assumptions:

. Events occur randomly.

. Each event occurs independent of other events.

. The average rate doesn't change over time.

g'
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Table 28.1. The Confidence
Interval of a Count

C 95Vo Cl

0
I
2
3
4
5
6
7
8
9

10

0.00 to 3.69
0.03 to 5.57
0.24 to 7.22
O.62 to 8.77
1.09 to 10.24
1.62 to 11.67
2.20 to 13.O6
2.81 to 14.42
3.45 to 15.76
4.12 to 17.08
4.79 to 18.39

CATCUI.ATINC THE CONFIDENCE INTERVAT OF A COUNT*

Look up the CI of a count in Table 28.1 or Table A5.9 in the Appendix. If C is the
observed number of counts, then the table shows the 95Vo CI for the average number
of counts in the same unit of time or space. When C is large (greater than 25 or so),
you may calculate an approximate 95Vo Cl using Equation 28.1. Note that you do not
need to deal with the t distribution or the concept of degrees of freedom.

Approximateg1%o CI of C: (C - 1.96re) to (C + I.g6[q. (28.1)

If you count 120 radioactive counts, the approximate 957o CI is 98.5 to 141.5. The
exact CI tabulated in the Appendix was calculated from a more elaborate equation
derived from the Poisson distribution.

What if you have repeated the count several times? Assume that we have counted
radioactivity in triplicate tubes for I minute and observe 175, 162, and 193 counts.
How could you calculate the 95Vo CI for the average number of counts? You could
use two approaches. One approach would be to treat the counts as measurements, and
calculate the95Vo CI using Equation 5.1, resulting in a95Vo CI of 138.0 to 215.3. The
problem with this approach is that it assumes that the counts follow a Gaussian
distribution, which we know is not true. It is better to use an approach based on the
Poisson distribution. To do this, first calculate the sum of all counts (530 counts in 3
minutes) and calculate the 95Vo Cl of the sum from Equation 28. I . The result is a 957o
CI of 484.9 to 575.1. This is the CI for the average number of counts in 3 minutes.
Divide each confidence limit by 3 to obtain the 95Vo CI for the average number of
counts in 1 minute: 161.6 to 191.7.

CHANGING SCATES

When calculating the CI of a count, it is essential that you base the calculations on
the number of events (or objects) actually observed. Don't normalize to a more conve-

*This section is more advanced than the rest. You may skip it without loss of continuity.
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nient time scale or volume until after you have calculated the CI. If you attempt to
calculate a CI based on the normalized count, the results will be meaningless.

Example 28.1

You have placed a radioactive sample into a gamma counter and counted for l0
minutes. The counter tells you that there were 225 counts per minute. What is the
95Vo CI? Since you counted for 10 minutes, the instrument must have detected2250
radioactive disintegrations. Theg5Vo CI of this value extends from2l57 to 2343 counts
per l0 minutes, so the 95Vo CI for the average number of counts per minute extends
from 216 to 234.

Example 28.2

You read that exposure to an environmental toxin caused 1.6 deaths per 1000 person-
years exposure. What is the 95Vo CI? To calculate the CI, you must know the exact
number of deaths that were observed in the study. This study observed 16 deaths in
observations of 10,000 person years (they might have studied 10,000 people for I year,
or 500 people for 20 years). Using Table A5.9 in the Appendix to find that the 95Vo
CI for the number of deaths ranges from 9.15 to 25.98. Dividing by the denominator,
this means that the 957o CI for the death rate ranges from 0.92 to 2.6 deaths per 1000
person-years exposure.

oBf EcTrvEs

You should be able to identify variables that distribute according to the Poisson
distribution. Using calculator and book, you should be able to calculate the 95Vo CI
of the mean of a Poisson variable.

PROBTEMS

l. You use a hemocytometer to count white blood cells. When you look in the micro-
scope you see lots of squares, and 25 of these enclose 0.1 microliter. You count
the number of cells in nine squares and find 50 white blood cells. Can you calculate
the 957o CI for the number of cells per microliter? If so, calculate the interval. If
not, what information do you need? what assumptions must you make?

2. ln 1988 a paper in Nature (333:816, 1988) caused a major stir in the popular and
scientific press. The authors claimed that antibodies diluted with even 10-r20 of the
starting concentration stimulated basophils to degranulate. With so much dilution,
the probability that even a single molecule of antibody remains in the tube is almost
0. The investigators hypothesized that the water somehow "remembered" that it
had seen antibody. These results purported to give credence to homeopathy, the
theory that extremely low concentrations of drugs are therapeutic.

The assay is simple. Add a test solution to basophils and incubate. Then stain.
Count the number of stained cells in a certain volume. Compare the number of
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cells in control and treated tubes. A low number indicates that many cells had

degranulated, since cells that had degranulated won't take up the stain.

The authors present the "mean and standard error of basophil number actually

counted in triplicate." In the first experiment, the three control tubes were reported

as 81.3 + 1.2, 81.6 -f 1.4, and 80.0 -f 1.5. A second experiment on another day

gave very similar results. The tubes treated with the dilute antibody gave much

lower numbers of stained cells, indicating that the dilute antibody had caused

degranulation. For this problem, think only about the control tubes.

Why are these control values surprising?
How could these results have been obtained?

A.
B .
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Further Analyses of Contingency Tables

McNEMAR'S CHI-SQUARE TEST FOR PAIRED OBSERVATIONS

In Chapter 9, you learned how to calculate an odds ratio (with its 95Vo confidence

interval) from a matched case-control study. This section explains how to calculate a

P value. We'll use the same example used at the end of Chapter 9. These data are

shown in Table 29.1 as a contingency table. Analyzing this table with the chi-square

test yields a P value of 0.015. This is not exactly invalid, but it is not the best way to

analyze the data. Each control subject was matched to a particular case subject, but

this matching was not considered in the analysis. Table 29.2 displays the same data

in a way that emphasizes the matching.
Table 29.2is not a contingency table, so the usual chi-square and Fisher's tests

would be inappropriate. Each entry in the table represents a matched pair, which is

why the total number of entries in this table is half that of Table 29.1. While it is

possible to convert the paired table to the conventional table, it is not possible to

convert a conventional table into a paired table without access to the original data.
lJse McNemar's test to calculate a P value. This test uses only the numbers of

discordant pairs, that is, the number of pairs for which the control has the risk factor

but the case does not (in this case 4) and the number of pairs for which the case has

the risk factor but the control does not (in this case 25). Call these two numbers R

and S. The other pairs were either both exposed to the risk factor or both unexposed;

these pairs contribute no information about the association between risk factor and

disease.
To perform McNemar's test, calculate chi-square using Equation 29.1. (The -1

is the Yates' continuity correction, which may be omitted.)

,  ( l R * s l  - 1 ) 2
/ \  R+s

For our example, chi-square -- 13.19 which has one degree of freedom. The two-tailed

P value is 0.0002.
McNemar's test, like the chi-square test, is approximate and should not be used

for small samples. If the sum of R + S is less than 10, you should use an exact test

based on the binomial distribution (not discussed further in this book).

The results obtained with InStat are reported in Table 29.3. The program also

reports the odds ratio, and its 95Vo CI as calculated using the method at the end of

Chapter 9.

(2e.r)
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Table 29.1. Data for Paired Observations Expressed as a

Contingency Table

Risk Factor * Risk Factor -

251

Case
Control
Total

36
t 9
55

98
il5
2t3

134
r34
268

CH|-SQUARE TEST WITH LARGE TABTES (MORE THAN TWO
ROWS OR COTUMNS)

Calculating chi-square with more than two rows or columns uses the same steps as
used for a 2 x 2 table. Follow these steps:

l. Create a table of expected values. The expected probability that an observation will
be in a certain cell is equal to the probability that an observation will be in the
correct row times the probability that it will be in the correct column. Multiply the
expected probability times the grand total to calculate the expected count. Turn
those sentences into equations and simplify to Equation 29.2:

Expected count :
row total . column total _-^- ) r^t

grand total grunaffi 
' grand total

row total ' column total
grand total

(2e.2)

Note that the expected values are calculated from the data, you shouldn't calculate
the expected values from theory or hunch.

2. Calculate chi-square using Equation 29.3:

*':.,X*W' (zs'3)
Calculate the sum for all cells in the contingency table. For a table with four rows
and two columns, the sum will have eight components. Note that Yates' continuity
correction is only used for tables with two columns and two rows. You should not
apply Yates' correction to larger tables.

Table 29.2. Data for Matched-Pair Observations Displayed to
Emphasize the Matching

Risk Factor t Risk Factor - Total

Controls
Risk Factor*
Risk Factor-
Total

1 3
25
38

t 7
117
r34

4
92
96
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Table 29.3. InStat Output for McNemar's Test

INTRODUCTION TO ADVANCED STATISTICAL TESTS

McNemar's Paired Test
McNemar chi-square (with Yates correction) : 13.793.
The two-sided P value is 0.0002, considered extremely significant.
There is a significant association between rows and columns.
McNemar odds ratio : 0.1600.
95Vo confidence interval for the odds ratio : 0.04724 to 0.4832.

3. Look up the P value in Table A5.8 in the Appendix. The larger the value of chi-
square, the smaller the P value. The number of degrees of freedom equals (R - l)
X (K - 1), where R is the number of rows and K is the number of columns.

The chi-square test is based on these familiar assumptions:

. Random sampling. The data mustbe randomly selected from, or at least representative
of, a larger population.

. The data must for* a contingency table. The values must be the number of subjects.
The categories that define the rows must be mutually exclusive. The categories
that define the columns must also be mutually exclusive. Many data tables are not
contingency tables and should not be analyzed with the chi-square test.

. The chi-square test is based on several simplifying assumptions that are valid only
with large data sets. How large is large? Any rule is somewhat arbitrary, but here
is a commonly used rule for deciding when it is OK to use the chi-square test. More
than 807o of the expected values must be greater or equal to 5, and all the expected
values must be greater or equal to 2 (greater than or equal to 1 if the table is large
enough to have more than 30 df). Note that the rule involves expected values, not
observed values. If the rule is violated, you can usually combine two or more rows
or columns in a logical way. Otherwise you can use a program that calculates an
exact test (analogous to Fisher's exact test).

. Independent observations. Each subject must be independently selected from the
population.

For example, Table 29.4 is a contingency table for the blood pressure data for all
four classes.

The results from InStat are shown in Table 29.5. The P value is 0.0908. The null
hypothesis is that the prevalence of hypertension is identical in all four classes. If that

Table 29.4. Contingency Table for Blood
Pressure Data

Blood Pressure

High
Blood Pressure

Not High

I

II
III
IV

5
l 1
t 2
t4

25
1 9
1 9
l 6
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Table 29.5.

ANATYSES OF CONTINGENCY TABTES

InStat Output for Chi-Square Test

253

Chi-square: 6.472. Degrees of freedom: 3.
Table size: 4 rows, 2 columns.
The P value is 0.0908.
The row and column variables are not sisnificantlv associated.

null hypothesis were true, there is a 9.l%o chance of randomly selecting subjects with
as much variation as observed here (or more).

CHI-SQUARE TEST FOR TREND*

The standard calculations for chi-square do not take into account any order among the
rows or columns. If your experiment was designed so that the rows have a distinct
order (i.e., time points, ages, or doses), this information is not used in the standard
chi-square calculations.

In the blood pressure example, the rows are ordered, and you may wish to ask
whether there is a linear trend, that is, whether the prevalence of hypertension changes
linearly with class. The chi-square test for trend calculates a P value for the null
hypothesis that there is no correlation between row (class) number and the proportion
of subjects who are hypertensive (in left row). This test uses more information and tests
a nalrower set of alternative hypotheses than does the chi-square test for independence.
Accordingly the P value is lower. For this example, P : 0.0178. If the null hypothesis
were true, there is only a 1.87o chance that random sampling would lead to a linear
trend this strong or stronger.

The details of the chi-square test for trend are not presented here, but the results
of InStat are shown in Table 29.6.

MANTET-HAENSZEL CH |-SQUARE TEST

Chi-square (or Fisher's) is appropriate when subjects are classified by two criteria: one
for the columns and another for the rows. Sometimes subjects are classified by three
criteria (for example, by presence or absence of disease, by the presence or absence
of a possible risk factor, and by city). One is tempted to ignore the third criterion (city)
when forming a contingency table, but this approach can be misleading. Pooling data
into one contingency table violates one of the assumptions of chi-square (that the
subjects are selected independently). Such a violation can lead you to miss a real
association or to find an apparent association that doesn't really exist.

The proper analysis is the Mantel-Haenszel test, which essentially combines to-
gether a stack of contingency tables. It is used in two situations. One use is when you
wish to combine results from several groups in one study. Many large studies are
performed in several medical centers, and the results are pooled. The other situation

*This section is more advanced than the rest. You may skip it without loss of continuity.
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Table 29.6. Chi-Square Test for Trend

Note: This analysis is useful only if the categories defining the rows are arranged in a natural order (i.e.,
age groups, dose, or time), with equal spacing between rows.

Chi-square for trend : 5.614 (1 degree of freedom).
The P value is 0.0178.

There is a significant linear trend among the ordered categories defining the rows and the proportion of
subjects in the left column.

is when you want to combine several different studies. Combining several studies is
called meta-analysis.

Of course it only makes sense to combine several 2 x 2 tables when they are
similar. The Mantel-Haenszel method is based on the assumption that all tables show
data sampled from populations with the same odds ratio, even though the prevalence
or incidence rates may vary between populations. The Mantel-Haenszel calculations
generate the overall, or pooled, odds ratio and its CI. Additionally, it calculates a P
value testing the null hypothesis that the pooled odds ratio equals 1. In other words,
the null hypothesis is that there is no association between rows and columns, taking
into account the confounding effect of the various tables that are pooled together.

The details of the Mantel-Haenszel method are not presented here. The necessary
steps are not difficult, however, and can be performed by hand (if necessary) without
a lot of trouble. This test is a derivative of the chi-square test for 2 X 2 tables and
accordingly should not be used when the number of subjects is small.



30

Comparing Three or More Means:
Analysis of Variance

In Chapters 23 and 24you learned how to compare the mean of two groups. Comparing

three or more means is more difficult.

WHAT'S WRONG WITH MUTTIPTE t TESTS?

Your first thought might be to perform several tests. For example, to compare four

groups you might perform six t tests (l vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 4, 3 vs.

4). You've already learned about the problem of multiple comparisons (Chapter l3),

so you can see the problem with this approach. If all four populations have the same

mean, there is a 5Vo chance that each particular t test would yield a "significant" P

value. But you'd be making six comparisons. Even if all null hypotheses were true,

the chance that at least one of these P values would be less than 0.05 by coincidence

is far higher than 5Vo.
When you have collected data in more than two groups, you should not perform

a separate t test for each pair of groups. Instead you should compare all the groups at

once with a method termed one-way analysis of variance (ANOVA).

ONE.WAY ANOVA

One-way ANOVA tests the null hypothesis that all populations have identical means.
It generates a P value that answers this question: If the null hypothesis is true, what
is the probability that the means of randomly selected samples will vary as much (or

more) than actually occurred?
As the name implies, ANOVA analyzes the variance among values. Recall that

the first step in calculating the variance is to sum the squares of the differences between
each value and the mean. This is called the sum of squares. The variance is the mean
sum of squares, and the standard deviation (SD) is the square root of the variance.

When you combine data from several groups, the variance has two components.
If the groups have different means, some of the variation comes from differences
among the group means. The rest of the variation comes from differences among the
subjects within each group. The latter can be quantified by summing the squares of

255
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the differences of each value from its group mean. This is called the within-groups
sum of squares. The total variation can be quantified by summing the squares of the
difference of each value from the grand mean. This is the total sum of squares. If the
null hypothesis is true, the within-groups sum of squares will have a value close to
the total sum of squares because each value will be nearly as close to the grand mean
as to its group mean. If the null hypothesis is false, each value will tend to be closer
to its group mean than to the grand mean, and you expect the within-group sum of
squares to be quite a bit smaller than the total sum of squares. One-way ANOVA
computes a P value answering this question: If the null hypothesis were true, what is
the chance that an experiment of this size would have such a large a difference (or
larger) between the total sum of squares and the within-groups sum of squares?

Entire books have been written on ANOVA, and the description here only gives
you a glimpse of how the method works. The easiest way to understand the results of
ANOVA is to follow an example.

AN EXAMPTE

Continuing Example 13.5 from page 120, the results are in Table 30.1.
The calculations are best left to computer programs, and the equations are not

shown here. The output of InStat is shown in Table 30.2. Other programs would
produce similar output, except that some programs use the word model instead of
between columns, error instead of residuals, and one factor instead of one-way
ANOVA. The first column shows the degrees of freedom. The degrees of freedom for
treatments equals the number of groups minus 1. The degrees of freedom for the
residuals equals the total number of subjects minus the number of groups.

The second column (sum of squares) shows how the total variability is divided
into variation due to systematic differences between groups and residual variation
within the groups. The key to ANOVA is that the within-group sum of squares and
the treatment sum of squares sum to the total sum of squares. This is not an obvious
relationship, but it can be proven with simple algebra. In this example 0.93117.38 : 5.3Vo
of the variability is due to systematic differences between groups, and the remainder of
the variability is due to differences within the groups. The third column shows mean
squqres. For each row, the mean square equals the sum-of-squares value divided by
its degrees of freedom.

Table 30.1. LH Levels in Three Groups of
Women

Group log(LH)-f SEM

Nonrunners

Recreational runners
Elite runners

o52'r 0.027
0.38 + 0.034
0.40 -f 0.049

88
89
28
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Table 30.2. InStat Results for One-Wav ANOVA
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Source of Variation
Degrees of
Freedom

Sum of
Squares

Mean
Square

Treatments (between groups) 2
Residuals (within groups) 2Az
Total 2O4

F : 5.690

The P value is 0.0039, considered very significant.

0.9268
16.450
17.377

0.4634
0.0814

Variation among column means is significantly greater than expected by chance.

The ratio of the two mean squares is called F, after Fisher (who invented ANOVA).
In this exllmple, F : 5.690. If the null hypothesis is true, F is likely to have a value
close to 1. If the null hypothesis is not true, F is likely to have a value greater than
1. This is not obvious, but can be proven without too much trouble. Statisticians have
derived the probability distribution of F under the null hypothesis for various degrees
of freedom and can calculate a P value that corresponds to any value of F. In other
words, the P value also answers this question: If the null hypothesis is true, what is
the chance that the F ratio (with a certain numbers of df for the numerator and
denominator) would have a value as large or larger than calculated for this experiment?
The larger the value of F, the smaller the P value.

The program calculated the P value from F and both degrees of freedom. For
F : 5.690 with 2 and202 degrees of freedom, P : 0.0039.* Interpreting this P value
should be familiar to you by now. If the null hypothesis were ffue, there is a O.4Vo
chance that the means of three randomly selected samples (N : 5 each) would have
sample means that differ from one another as much or more than actually occurred in
this example. More simply, if the null hypothesis were true, there is only aO.4Vo chance
of obtaining a F ratio greater than 5.690 in an experiment of this size. Use Table 45.10
in the Appendix to determine P from F. Note the following:

' The alternative hypothesis is that one or more of the population means differs from
the rest. Rejecting the null hypothesis does not indicate that every population mean
differs from every other population mean.

' In our example, the three groups have a natural order. The ANOVA calculations do
not take into account this order. ANOVA treats the groups as categories, and the
calculations don't take into account how the groups are related to each other.

' Don't get misled by the term variance. The word variance refers to the statistical
method being used, not the hypothesis being tested. ANOVA tests whether group
means differ significantly from each other. ANOVA cloes not test whether the vari-
ances of the groups are different.

' With ANOVA, the concept of one- and two-tailed P values does not apply. The p
value has many tails.

*To determine a P value from F, you have to know two different df values, one for the numerator and one
for the denominator. Don't mix up the two df values, or you will get the wrong p value.
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ASSUMPTIONS OF ANOVA

One-way ANOVA is based on the same assumptions as the t test:

. The samples are randomly selected from, or at least representative of, the larger
populations.

. The samples were obtained independently. If the subjects were matched, or if the
samples represent before, during, and after measurements, then repeated measures
ANOVA should be used instead (see later in this chapter).

. The observations within each sample were obtained independently. The relationships
between all the observations in a group should be the same. You don't have four
independent measurements if you measure two animals twice, if the four animals
are from two litters, or if two animals were assessed in one experiment in January
and two others were assessed in an experiment in June.

. The data are sampled from populations that approximate a Gaussian distribution.
The SD of all populations must be identical. This assumption is less important with

large samples, and when the sample sizes are equal.

MATHEMATICAT MODET OF ONE.WAY ANOVA*

One-way ANOVA fits data to this model:

Yrj grand mean * group effectl + tij. (30.1)

Y1; is the value of the ith subject in the jth group. Each group effect is the difference
between the mean of population i and the grand mean. Each ei; is a random value from

a Gaussian population with a mean of 0. The null hypothesis is that all the group

effects equal 0. In the null hypothesis is true, all the difference among values can be

explained by Gaussian scatter around the grand mean, and none of the differences

among values are due to group effects.

MULTIPTE COMPARISON POST TESTS

The P value for the example was less than 0.05, so we conclude that there is a

statistically significant difference among the means of the three populations. Now you

want to calculate confidence intervals (CIs) for the difference between group means

and determine which groups are statistically significantly different from which other

groups. There are three problems:

. Multiple comparisons.lf the null hypothesis is true, then 5Vo of all comparisons will

result in a significant result (unless you make special corrections). If you make many

comparisons, the chance of making a Type I error is greater than 5Vo.
. Pooled standard deviation. When comparing two groups, you pool the SDs. With

multiple comparisons, you can pool the SDs of all the groups, not just the two you

*This section is more advanced than the rest. You may skip it without loss of continuity.
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are comparing. This gives you a more accurate measure of the population SD. Using
this extra information gives you more statistical power. Pooling the SDs is only
useful if you assume that the SD of all the populations is equal, and this is one of
the assumptions of ANOVA.

' There is also a third, more abstract, problem in that the comparisons are not entirely
independent. Once you have compared group I with group 2 and group 1 with group
3, you already know something about the comparison of group 2 with group 3.

Statisticians have developed numerous methods for calculating comparing pairs
of groups after ANOVA. These methods, each named after the person who derived it,
are called multiple comparison post /esls. Most computer programs offer several differ-
ent post tests and selecting one can be a bit confusing. My approach is to answer the
following questions:

' Are the columns alranged in a natural order, perhaps time points or doses? If so,
consider the post test for trend. Instead of testing pairs of means, the post test for
trend asks whether there is a significant linear trend between group order and group
mean. It is really a form of linear regression.

' Do you wish to make elaborate comparisons? For example, you might want to
compare the mean of all treated groups with the mean of a control group. Or you
might want to compare the mean of groups A and B with the mean of groups C, D,
and E. Statisticians call such comparisons contrasts. To calculate contrasts, use
Scheffe's method. To allow for the infinite variety of possible contrasts, Scheffe's
method generates CIs that are quite wide, and it has less statistical power to detect
differences than do the other post tests.

' Do you wish to compare one control group to all other groups (without comparing
the other groups among themselves)? If so, select Dunnett's test.

' Based on experimental design, does it make sense to only compare selected pairs of
means? If so, select the Bonferroni test for selected pairs of means, and select those
pairs based on experimental design. It is not fair to first look at the data and then
decide which pairs you want to compare. By looking at the data first, you have
implicitly compared all columns, and you should do this explicitly.

' Do you want to compare all pairs of means? Three methods are commonly used:
Bonferroni, Tukey, and Student-Newman-Keuls. The Bonferroni test is well known
and relatively easy to understand, but it generates CIs that are too wide and its power
is too low. With only three or four groups, the discrepancy is small. Don't use
Bonferroni's method with five or more groups. The Tukey and Student-Newman-
Keuls tests are related, and report identical results when comparing the largest mean
with the smallest. With other comparisons, Tukey's method is more conservative
but may miss real differences too often. The Student-Newman-Keuls method is more
powerful but may mistakenly find significant differences too often. Statisticians do
not agree about which one to use.

The results from the example were analyzed using the Tukey method, and the
results from InStat are shown in Table 30.3. Setting a to 0.05 for the entire family of
comparisons, nonrunners are statistically significantly different than recreational run-
ners. No other differences are statistically significant.
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Table 30.3, InStat Results for Tukey's Post Test

INTRODUCTION TO ADVANCED STATISTICAL TESTS

Comparison

Mean

Difference P Value

Nonrunners vs Recreational
Nonrunners vs Elite
Recreational vs Elite

0.1400
0.1200

-0.02000

2.741
2.741
0.4574

{<{< P < 0.01

ns P > 0.05
ns P > 0.05

Difference

Mean
Difference

Lower
95Vo CI

Upper 95Vo
CI

Nonrunners - Recreational

Nonrunners - Elite

Recreational - Elite

0.1400
0. I 200

-0.02000

0.03823
-0.02688
-0.1667

0.2418
0.2669
0.1267

REPEATED.MEASU RES ANOVA

The difference between ordinary and repeated-measures ANOVA is the same as the

difference between the unpaired and paired t tests. Use repeated-measures ANOVA to

analyze data collected in three kinds of experiments:

. Measurements are made repeatedly in each subject, perhaps before, during, and after

an intervention.
. Subjects are recruited as matched sets, matched for variables such as age, zip code,

or diagnosis. Each subject in the set receives a different intervention (or placebo).
. A laboratory experiment is run several times, each time with several treatments (or

a control and several treatments) handled in parallel. More generally, you should use
a repeated-measures test whenever the value of one subject in the first group is
expected to be closer to a particular value in the other group than to a random subject
in the other group.

When the experimental design incorporates matching, use the repeated-measures test,

as it is usually more powerful than ordinary ANOVA. Of course the matching has to

be done as part of the protocol, before the results are collected. The decision about

pairing is a question of experimental design and should be made long before the data

are analyzed.
While the calculations for the repeated-measures ANOVA are different from those

for ordinary ANOVA, the interpretation of the P value is the same. The same kind of
post tests can be performed.

NONPARAMETRIC ANOVA

If you are not able to assume that your data are sampled from Gaussian populations,

you can calculate the P value using a nonparametric test. The nonparametric test analo-
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gous to one-way ANOVA is called fhe Kruslal-Wallis test. The nonparameffic test
analogous to repeated-measures one-way ANOVA is called Friedman's test. Like the
Mann-Whitney test you learned about in Chapter 24, these tests first rank the data
from low to high and then analyze the distribution of the ranks among groups.

TWO-WAY ANOVA

The term one-way means that the subjects are categorized in one way. In the example,
they were categorized by amount of running. In two-way ANOVA the subjects are
simultaneously categorized in two ways. For example, you might study a response to
three different drugs in both men and women. Each subject is categorized in two ways:
by gender and by which drug he or she received.

Entire books have been written about ANOVA, and this section only touches the
surface. Two-way ANOVA is complicated to understand, because it simultaneously
asks three questions and computes three P values:

l. Interaction. The null hypothesis is that there is no interaction between the two
factors. In our example, the null hypothesis is that the difference in effect between
men and women is the same for all drugs. The P value answers this question: If
the null hypothesis is true, what is the chance that randomly sampled subjects would
show as much (or more) interaction than you have observed? If the interaction is
statistically significant, you will usually find it quite difficult to interpret the individ-
ual P values for each factor.

2. First factor. The null hypothesis is that the population means are identical for each
category of the first factor. In our example, the null hypothesis is that the mean
response is the same for each drug in the overall population and that all observed
differences are due to chance.

3. Second factor. The null hypothesis is that the population means are identical for
each category of the second factor. In our example, the null hypothesis is that the
mean response is the same for men and women in the overall population, and that
all observed differences are due to chance. The P value answers this question: If
the null hypothesis is true and you randomly select subjects, what is the chance of
obtaining means as different (or more so) than you observed?

As with one-way ANOVA, special methods have been developed to calculate
post tests focusing on particular differences. Methods have also been developed to deal
with repeated measures.

PERSPECTIVE ON ANOVA

Since this chapter is only eight pages long and stuck towards the end, I may have set
a record for writing the statistics book that places the least emphasis on ANOVA! I've
written this book to help you interpret results in biology and medicine, and this doesn't
require knowing too much about ANOVA. What's important is that you understand
the issues of multiple comparisons (see Chapter 13) and the basic idea of one-way
ANOVA (as explained in this chapter). In my experience, relatively few biomedical
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papers rely on fancier forms of ANOVA. In contrast, social scientists use ANOVA,
in all its forms, quite frequently.

If you're not satisfied with interpreting results, but want to delve into the math
and learn how statistical tests really work, then you'll need to learn far more about
ANOVA. In various forms, ANOVA is central to much of statistical analysis. For
example, the t test is really a simple form of ANOVA. Performing one-way ANOVA
with two groups is equivalent to performing an unpaired t test. Additionally, linear
regression can be explained in terms of ANOVA (partitioning variance into a portion
explained by the linear model and a portion that is not). See Appendix I for sug-
gested readings.



31

Multiple Regression

As you learned in Chapter 19, simple linear regression determines the best equation

to predict Y from a single variable, X. Multiple linear regression finds the equation
that best predicts Y from multiple independent variables.

THE USES OF MULTIPTE REGRESSION

Multiple regression can be used for three different purposes:

. To adjust data. Here you are mostly interested in the effect of one particular X
variable but wish to adjust the data for differences in other X variables.

. Devise an equation to predict Y from several X variables for future subjects. Medical
school admission committees might want to use multiple regression to obtain an
equation that predicts performance in medical school from variables known at the
time of application. Cardiologists might want to use multiple regression to obtain an
equation that predicts cardiac output from the blood pressure, pulse rate, and weight
of a patient.

. Explore relationships among multiple variables to find out which X variables influence
Y. It can be fascinating to analyze huge data sets that contain lots of variables and
see which ones matter.

Example 31.1

Staessen and colleagues investigated the relationship between lead exposure and kidney
function.* It is known that heavy exposure to lead can damage kidneys. It is also
known that kidney function decreases with age and that most people accumulate
small amounts of lead as they get older. These investigators wanted to know whether
accumulation of lead could explain some of the decrease in kidney function in aging.
They studied over 1000 ment and measured the concentration of lead in the blood
and assessed renal function (as creatinine clearance). The two variables correlated. but

*JA Staessen, RR Lauwerys, J-P Buchet, CJ Bulpitt, D Rondia, Y Vanrenterghem, A Amery. Impairment
of renal function with increasing blood lead concentrations in the general population. N Engl J Med
327:151-156, 1992.

tThey independently studied about 1000 women as well. The data for men and women were very similar.

263
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this is not a useful finding because it is known that lead concentration increases with
age and that creatinine clearance decreases with age. So the investigators used multiple
regression to adjust for age and other factors.

The Y value was the creatinine clearance. The main X variable was the logarithm
of lead concentrations. They used the logarithm of concentration, rather than the lead
concentration itself, to make the data conform more closely to a Gaussian distribution.
Other X variables were age, body mass, log gamma-glutamyl transpeptidase (a measure
of liver function), and previous exposure to diuretics (coded as 0 or 1). The investigators
asked this question: After adjusting for the other variables, is there a substantial linear
relationship between the logarithm of lead concentration and creatinine clearance?
You'll see the answer on the next page.

THE MULTIPTE REGRESSION MODEL

The multiple regression model is expressed by Equation 31.1:

Y  :  c  +  9 ' '  X r  *  B r .  X z +  B ,  .  X 3 . . .  +  e . ( 3 1 . 1 )

Each X can be a measured variable, a transformation of a measured variable (i.e., age
squared, or logarithm of gamma-glutamyl transpeptidase activity) or a discrete variable
(i.e., gender, previous diuretic therapy). In the latter case, X is called a dummy variable.
For example, X could be a dummy variable for sex where X : I is male and X : 0
is female. It is also possible to use dummy variables when there are more than two
categories (for example, four medical school classes). Consult more advanced books
if you need to do this, as it is far trickier than you would imagine. The final variable
e represents random variability (enor). Like ordinary linear regression, multiple regres-
sion assumes that the random scatter follows a Gaussian distribution.

The multiple linear regression model does not distinguish between the X variable(s)
you really care about and the other X variable(s) that you are adjusting for. You make
that distinction when interpreting the results.

ASSUMPTIONS OF MUtTIPtE REGRESSION

The assumptions of multiple regression are similar to those of linear regression:

. Sample from population. Your sample is randomly sampled from, or at least represen-
tative of, a larger population.

. Linearity. Increasing a X variable by one unit increases (or decreases) Y by the same
amount at all values of X. In the example, this means that the creatinine clearance
would decrease by a certain amount for any increase in log(lead), regardless of the
lead level.

. No interactio,n. Increasing a X variable by one unit increases (or decreases) Y by a
certain amount, regardless of the values of the other X variables. In the example,
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this means that the creatinine clearance would decrease by a certain amount for any

increase in log(lead), regardless of age.
. Independent observations. Knowing Y for any particular subject provides no informa-

tion about Y in other subjects. In the example, this would preclude multiple measure-
ment in one family.

. Gaussian distribution. For any set of X values, the random scatter of Y follows a
Gaussian distribution, at least approximately.

. Homoscedasticity. This fancy word means that the SD of Y values is always the
same, regardless of X variables. In the example, this means that the SD of creatinine
clearance is the same for all ases and all lead levels.

INTERPRETING THE RESUTTS OF MULTIPLE RECRESSION

When running a multiple regression program, you must give the program values of Y
and each X variable for each subject. The multiple regression program finds the best-
fit values of each B coefficient, along with a 95Vo CI for each. Here is how to think
about the value: If X1 changes by one unit while all other X values are constant, then
Y increases by 9i (Y decreases if B1 is negative). In the example, the B coefficient for
the X variable "previous diuretic therapy" was -8.8 mVmin. This means that after
adjusting for all the other variables, subjects who had taken diuretics previously had
a mean creatinine clearance that was 8.8 ml/min lower than subjects who had not taken
diuretics. The B coefficient for log(lead) was -9.5 mUmin. That means that after
adjusting for all other variables, an increase in log(lead) of I unit (which means that
the lead concentration increased l0-fold) is associated with a decrease in creatinine
clearance of 9.5 ml/min. The 95Vo CI ranged from -18.1 to -0.9 ml/min.

Multiple regression programs also calculate R2, which is the fraction of the overall
variance in Y "explained" by variation in all the X variables.* The programs generate
one value of R2 for the entire regression, not one for each X. In the example, ft2 :

0.27, meaning that 277o of the variability in creatinine clearance was explained by
variability in lead, age, and all the other variables. That leaves 737o of the variability
that is not explained by variability in any of the measured variables. Many programs
also report an adjusted R2. The adjustment lowers the value based on the number of
X variables. The adjusted R2 value is a better measure of goodness of fit than the
unadjusted value.

Multiple regression programs calculate several P value. One P value tests the
overall null hypothesis that all B coefficients equal0 in the overall population. In other
words, the null hypothesis is that none of the X variables influence Y. If that P value
is low, you can reject the overall null hypothesis that none of the X variables influence
the outcome. In the example, the investigators did not report the overall P value. More
interestingly, the programs report individual P values for each B1 coefficient, testing
the null hypothesis that that particular B' coefficient equals 0. In other words, each

*With multiple regression, the tradition is to use an upper case R. With linear regression, the tradition is
to use a lower case r.
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null hypothesis is that that particular X variable is not linearly related to Y, after
adjusting for all other X variables. In the example, the authors state that the P value
for lead was <0.05. If there really was no association between lead concentrations and
creatinine clearance, you'd find such a large correlation in a study this size (after
adjusting for age and the other variables) less than 5vo of the time.

Multiple regression is a powerful technique, but it can be difficult to interpret the
results. One problem is that it is difficult to visualize the results graphically. Here are
some other problems that can complicate the interpretation of the results of multiple
regression:

' Outliers. As with simple linear regression, a single outlying point can greatly diston
the results of multiple regression. With simple linearregression, this is usually obvious
if you look at a graph of the data. It is harder to visualize multiple regression data
graphically and easier to be misled by a few outliers.

' Too few subjecfs. A general rule of thumb is that there should be 5 to l0 data
points for each X variable. With fewer data points, it is too easy to be misled by
spurious findings.

' Inappropriate model. Even though the multiple regression model may seem compli-
cated to you, it is too simple for many kinds of data. The regression model assumes
that each X variable independently contributes towards the value of Y. In the example,
the model assumes that increasing log(lead) by a certain amount (equivalent to
multiplying the lead concentration a certain factor) will decrease creatinine clearance
by the same amount, regardless of whether the creatinine clearance started out high
or low, and regardless of the age of the subject. Despite this simplification, multiple
linear regression has proved to be useful for many kinds of biological data. Some
investigators extend the multiple regression model to situations where the influence
of one X variable depends on the value of another.

. Unfocused studies. If you give the computer enough variables, some relationships
are bound to turn up by chance, and these may mean nothing. You've already learned
about this problem of multiple comparisons in Chapter 13. Caution is needed to
avoid being impressed by chance correlation.

CHOOSING WHICH X VARIABTES TO INCLUDE IN A MODET

If you have collected many X variables, multiple regression programs can select a
subset of those X variables that are most useful in predicting Y. There are several
approaches, and this topic is more complicated than it seems.

The best approach is to fit the data to every possible model (each model includes
some X variables and may exclude others). This approach is termed all subsets regres-
sion. With many variables and large data sets, the computer time required is prohibitive.
To conserve computer time, other algorithms perform multiple regression in a stepwise
manner. One approach is to start with a very simple model and add new X variables
one at a time, always adding the X variable that most improves the model's ability to
predict Y. Another approach is to start with the full model (include all X variables)
and then sequentially eliminate the X variable that contributes the least to the model.
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In either case, the program needs to make a decision as to when to stop adding or

subtracting X variables from the model.
Automated methods for choosing variables to include in a multiple regression

equation can be a useful way to explore data and generate hypotheses. It is important

to realize that the final selection of X variables chosen by the program for the model

may depend on the order you present the X variables to the program and on the quirks

of the method that you select. When deciding which variables to include and which

to reject, none of the methods use clinical or scientific judgment and none take into

account biological plausibility. When looking at the relationship among many X vari-

ables, the program can't use common sense. That's your job.

Often several of the X variables may be correlated with each other (the statistical

term is multicolinearity). This happens when the two variables contain redundant

information. For example, you might want to predict blood pressure (Y) from age
(Xl), height (XZ), and weight (X3). Height and weight are correlated with each other

and are somewhat redundant ways of measuring the subject's size. When you feed all

the data to a multiple regression program, it may decide to keep height in the final

model and reject the weight. Or it may keep weight and reject height. You need to

use common sense to realize that the two variables are interrelated.

THE TERM MULTIVARIATE STATISTICS

The word multivariare is used inconsistently. Its looser definition refers to any method

that examines multiple variables at once. Under this definition, multiple regression is

a multivariate method. A more strict definition of the word multivariale refers only to

methods that simultaneously examine several outcomes. Since multiple regression is

used to predict or model one outcome from multiple explanatory variables, it is not a
"multivariate" method under the strict definition. The method for examining multiple
outcome variables at one time is called multiple analysis of variance (MANOVA, not
discussed in this book).
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Logistic Regression

Note to basic scientists: The methods
of clinical studies. You may skip this

described in this chapter are rarely used outside
chapter without loss of continuity.

INTRODUCTION TO LOCISTIC REGRESSION

Logistic regression quantifies the association between a risk factor (or treatment) and
a disease (or any event), after adjusting for other variables.

Example 32.1

Patients with severe atherosclerosis of the aorta can be treated with surgery. Many of
these patients also have severe atherosclerosis of the coronary arteries, which places
them at high risk for a heart attack during surgery or soon thereafter. Since the operation
is elective, it would be useful to predict which patients are especially prone to heart
attacks before deciding whether to operate on their aorta. Baron and colleagues investi-
gated whether patients with a low ejection fraction (which means that their heart is
not pumping properly) were more likely to have heart attacks (or other cardiac compli-
cations) during (or soon after) the aortic surgery.*

They studied 457 patients who received aortic grafts, 86 of whom had a cardiac
complication. First they analyzed the data using the simple techniques of Chapter 8.
Subjects with a low ejection fraction were more likely to have a cardiac complication.
The odds ratio was 2.1, with a confidence interval (CD ranging from 1.2to3.7.The
P value was less than 0.01. From this simple analysis, you'd conclude that patients
with low ejection fractions are more likely to have a cardiac complication. Therefore
it seems reasonable to think that measuring the ejection fraction would be helpful in
identifying patients at high risk. But that is not a fair conclusion without considering
the age of the subject and whether he or she had previous heart problems.

* J - F B a r o n , O M u n d l e r , M B e r t r a n d , E V i c a u t , E B a r r e , G G o d e t , C M S a m a m a , P C o r i a t , E K i e f f e r . P

Viars. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before
abdominal aortic surgery. N Engl J Med 330:663-669, 1994.
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Older patients are more likely to have a cardiac complication and are also more
likely to have a low ejection fraction. Additionally, patients with previous heart prob-
lems are more likely to have cardiac complications and more likely to have a low
ejection fractions. In other words, the relationship between ejection fraction and cardiac
complications is confounded by age and previous heart problems. To untangle these
interrelationships, the investigators used logistic regression to determine the odds ratio
for the association between low ejection fraction and cardiac complications, after
adjusting for age and history of previous heart disease. You'll learn a bit about how
this method works later in the chapter but can understand the results now. After
adjusting for age and previous heart problems, the odds ratio was 1.7, and the 957o
CI ranged from 0.9 to 3.2. The P value was greater than 0.05 (the authors did not give
the actual P value). The authors concluded that their data did not demonstrate a
statistically significant association between low ejection fraction and cardiac complica-
tions after adjusting for age and a history of previous heart problems.

Although logistic regression is a formidable technique, this example shows that
you can understand the results easily. The results are displayed as odds ratios, which
you already have learned to interpret. The only difference is that the odds ratios com-
puted by logistic regression adjust for differences in other variables.

HOW LOGISTIC REGRESSION WORKS

As its name suggests, logistic regression is similar to linear regression (and multiple
regression). Linear regression finds an equation that predicts an outcome variable Y
(which must be a measured, a variable that can take on any value) from one (or more)
X variables. Logistic regression finds an equation that best predicts an outcome variable
(which must be binary, such as the presence or absence of disease) from one or more
X variables. Some of the X variables may be quantitative variables (i.e., age or blood
pressure); others may be binary (i.e., gender, treatment received, or history of previous
heart disease).

Instead of working with probabilities (which range only from 0 to l), logistic
regression works with the logarithm of the odds (which can take on any value, negative
or positive). The logistic regression equation can be expressed in two equivalent forms,
shown as Equations 32.1 and 32.2 (ln is the abbreviation for natural logarithm):

l n ( o d d s )  :  c r  *  X , ' 9 ,  *  X r . p ,  . . . (32. r )

a is the log of the odds in the baseline group, defined as individuals for which every
X value equals 0. Each B; equals the natural logarithm of the odds ratio (OR) for the
ith X variable. Equation 32.2 expresses the model more conveniently. It defines the
log of the overall odds ratio for any individual from the individual odds ratios for each
X variable:

ln(OR) :  Xr. ln(OR,) *  X2. ln(ORr) . . . (32.2)

To run a logistic regression program, you must first enter the data for each subject.
Code the outcome as Y : 0 if the outcome did not occur and Y : I if it did occur.
Also enter all the X variables for each subject. The program finds the best-fit values
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for a and all the Bs (Equation 32.1) or each individual adjusted odds ratio (Equation
32.2). Most programs also report the 95Vo CI for the odds ratios or the B coefficients.

The computations of logistic regression are more difficult than linear regression
and will not be explained here. The method of least squares does not apply. Instead
logistic regression programs use an iterative maximum likelihood method. The details
are far beyond the scope of this book, but the idea of maximum likelihood was explained
in Chapter 19.

Extensions of logistic regression are used to analyze retrospective (case-control)
studies, studies with matched-pair data, and studies in which the outcome may have
more than two possibilities. As with multiple linear regression (see previous chapter),
logistic regression programs can be given a number of X variables and select those
that are most useful in predicting the outcome.

ASSUMPTIONS OF TOGISTIC RECRESSION

Logistic regression depends on these assumptions:

The subjects are randomly selected from, or representative of, a larger population.
Each subject was selected independently of the others. Knowing the outcome of any
one subject does not help you predict the outcome of any other subject.
No interaction. The influence of any particular X variable is the same for all values
of the other X variables. In the example, the model assumes that the low ejection
fraction would increase the risk of old and young subjects equally.

INTERPRETING RESUTTS FROM LOGISTIC REGRESSION

The logistic regression program either reports the best-fit values for each of the odds
ratios (Equation 32.2) or reports each B coefficient (Equation32.l). If you read a paper
(or computer output) that used Equation 32.1, convert the B coefficients to odds ratios

as follows: the odds ratio for the ith variable equals epi.
When X1 is a binary variable (i.e., X : 0 male, X : I female), the interpretation

of the odds ratio is familiar. Holding all other X values constant, the odds ratio is the

odds that the outcome will occur in someone who has X : I divided by the odds that

the outcome will occur in someone who has X : 0. In the example, the authors coded

one of the X variables as X : 0 if the patient did not have a low ejection fraction and

as X : I if they did have a low ejection fraction. The odds ratio is the odds of having

cardiac complications among patients with low ejection fractions divided by the odds

of having cardiac complications among patients with normal ejection fractions. This

is an adjusted odds ratio, as it corrects for the influence of all other X variables, such

as age.
When X; is a measurement, the interpretation of the odds ratio is less familiar.

The odds ratio is the relative increase in odds when X1 increases by 1.0. Holding all

other X values constant, the odds ratio is the odds that the outcome will occur in

someone who has Xi : Z (where Z is any value) divided by the odds that the outcome
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will occur in someone who has Xi - Z - 1. The method assumes that the odds ratio

is the same for all values of Z.
Note that the logistic regression programs do not distinguish between the variables

you really care about (in the example, decreased ejection fraction) and the variables

you are adjusting for (in the example, age and history of previous heart disease).

Logistic regression finds the odds ratio for each X variable after adjusting for all others.

In the example, the program would also give an adjusted odds ratio for the increased

risk of cardiac complication with increased age and with previous history of heart

disease. It is only when you interpret the data that you distinguish variables you care

about from variables you are adjusting for.
Logistic regression programs report several P values. One P value tests the null

hypothesis that the overall odds ratio in the population equals 1.0. In other words, this

null hypothesis states that none of the X variables are associated with the outcome.

If that P value is low, you can then look at individual P values for each odds ratio.

Each P value tests the null hypothesis that the adjusted odds ratio for that X variable

equals 1.0 in the overall population. In other words, the null hypothesis is that there

is no association between that X variable and the presence or absence of disease, after

adjusting for all other X variables.
Whenever you review the results of logistic regression, ask yourself these

questions:

. Are there enough subjects? A general rule of thumb is that there should be 5 to 10
events for each X variable. Don't count the subjects, count the number of the least
likely outcomes. With fewer events, it is too easy to be misled by spurious findings.
In the example, there were 86 cardiac complications, so the authors could study 8
to 16 X variables.

. Is the model appropriate? Remember that the logistic regression model is simple,
probably too simple to account for many kinds of data. The regression model assumes
that each X variable contributes independently to the odds ratio. It is possible to
extend the model to account for interactions.

. Do the results make sense? This is an important question when the computer chose
the X variables to include in the model. If you give the computer enough variables,
some relationships are bound to turn up by chance, and these may mean nothing.

. Is the study focused? If the investigators are exploring relationships among many
variables with no clear hypothesis, distinguish between studies that generate hypothe-
ses from studies that test hypotheses. If you study enough variables, some relation-
ships are bound to turn up by chance. These kinds of unfocused studies are useful
for generating hypotheses, but the hypotheses should be tested with different data.
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Comparing Survival Curves

COMPARING TWO SURVIVAT CURVES

You've already learned (Chapter 6) how to interpret survival curves. It is common to
compare two survival curves to compare two treatments. Compare two survival curves
using the log-rank test. This test calculates a P value testing the null hypothesis that
the survival curves are identical in the two populations. If that assumption is true, the
P value is the probability of randomly selecting subjects whose survival curves are as
different (or more so) than was actually observed.*

Example 33.1

Rosman and colleagues investigated whether diazepam would prevent febrile seizures
in children.t They recruited about 400 children who had had at least one febrile seizure.
Their parents were instructed to give medication to the children whenever they had a
fever. Half were given diazepam and half were given placebo.f They analyzed the
data in several ways, including survival analysis. Here the term survival is a bit
misleading, as they compared tirne until the first seizure, not time until death. When
they compared the times to first seizure with the log rank test, the placebo treated
subjects tended to have seizures earlier and the P value was 0.06. The difference in
survival curves was small. If diazepam was really no more effective than placebo,
you'd expect that 6Vo of experiments this size would find a difference this large or
larger. The authors did not reach a conclusion from this analysis because they analyzed
the data in a fancier way, which we will discuss later in the chapter.

*You will sometimes see survival curves compared with the Mantel-Haenszel test. This test is essentially
identical to the log-rank test. It is based on the same assumptions and produces virtually identical results.

fNP Rosman, T Colton, J Labazzo, PL Gilbert, NB Gardella, EM Kaye, C Van Bennekom, MR Winter. A
controlled trial of diazepam administered during febrile illnesses to prevent recurrence of febrile seizures.
N Engl J Med 329:79-84, 1993.

$The experimental therapy (diazepam) was compared with placebo because there is no standard therapy
known to be effective. Phenobarbital was previously used routinely to prevent febrile seizures, but recent
evidence has shown that it is not effective.
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ASSUMPTIONS OF THE LOG-RANK TEST

The log-rank test depends on these assumptions:

. The subjects are randomly sampled from, or
populations.

. The subjects were chosen independently.

273

at least are representative of, larger

. Consistent criteria. If patients are enrolled in the study over a period of years, it is

important that the entry criteria don't change over time and that the definition of

survival is consistent. This is obvious if the end point is death, but survival methods

are often used for other end points.
. Baseline survival rate is not changing over time. If the subjects are enrolled in the

study over a period of years, you must assume that the survival of the control patients

enrolled early in the study would be the same (on average) as the survival of those

enrolled later (otherwise you have to do a fancier analysis to adjust for the difference).
. The survival of the censored subjects would be the same, on average, as the survival

of the remaining subjects.

The calculations of the log-rank test are tedious and best left to computer. The
idea is pretty simple. For each time interval, compare the observed number of deaths
in each group with the expected number of deaths if the null hypothesis were true.
Combine all the observed andexpected values into one chi-square statistic and determine
the P value from that.

A POTENTIAL TRAP: COMPARINC SURVIVAL OF RESPONDERS
VERSUS NONRESPONDERS

This approach sounds reasonable but is invalid.

I treated a number of cancer patients with chemotherapy. The treatment seemed to work
with some patients because the tumor became smaller. The tumor did not change size in
other patients. I plotted separate survival curves for the responders and nonresponders,
and compared them with the log-rank test. The two differ significantly, so I conclude that
the treatment prolongs survival.

This analysis is not valid, because you only have one group of patients, not two.
Dividing the patients into two groups based on response to treatment is not valid for
two reasons:

. A patient cannot be defined to be a "responder" unless he or she survived long
enough for you to measure the tumor. Any patient who died early in the study was
defined to be a nonresponder. In other words, survival influenced which group the
patient was assigned to. Therefore you can't learn anything by comparing survival
in the two groups.

. The cancers may be heterogeneous. The patients who responded may have a different
form of the cancer than those who didn't respond. The responders may have survived
longer even if they hadn't been treated.
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The general rule is clear: You must define the groups you are comparing (and
measure the variables you plan to adjust for) before starting the experimental phase
of the study. Be very wary of studies that use data collected during the experimental
phase of the study to divide patients into groups or to adjust the data.

WILL ROGERS' PHENOMENON

Assume that you are tabulating survival for patients with a certain type of tumor. You
separately track survival of patients whose cancer has metastasized and survival of
patients whose cancer remains localized. As you would expect, average survival is
longer for the patients without metastases. Now a fancier scanner becomes available,
making it possible to detect metastases earlier. What happens to the survival of patients
in the two groups?

The group of patients without metastases is now smaller. The patients who are
removed from the group are those with small metastases that could not have been
detected without the new technology. These patients tend to die sooner than the patients
without detectable metastases. By taking away these patients, the average survival of
the patients remaining in the "no metastases" group will improve.

What about the other group? The group of patients with metastases is now larger.
The additional patients, however, are those with small metastases. These patients tend
to live longer than patients with larger metastases. Thus the average survival of all
patients in the "with-metastases" group will improve.

Changing the diagnostic method paradoxically increased the average survival of
both groups! Feinstein termed this paradox the Will Rogers' phenomenon from a quote
from the humorist Will Rogers ("When the Okies left California and went to Oklahoma,
they raised the average intelligence in both states.")*

MUTTIPLE REGRESSION WITH SURVIVAI DATA:
PROPORTIONAT HAZARDS REGRESSION

Proportional hazards regression applies regression methodology to survival data. This
method lets you compare survival in two or more groups after adjusting for other
variables.

Example 33.1 Continued (Diazepam and Febrile Seizures)

The investigators performed proportional hazards regression to adjust for differences
in age, number of previous febrile seizures, and several other variables. After those
adjustments, they found that the relative risk was 0.61 with a 95Vo CI ranging from
0.39 to 0.94. Compared with subjects treated with placebo, subjects treated with diaze-
pam had only 6IVo of the risk of having a febrile seizure. This reduction was statistically

xAR Feinstein, DA Sosin, CK Wells. Will Rogers phenomenon. Stage migration and new diagnostic

techniques as a source of misleading statistics for survival in cancer. New Engl J Med 312:l6M-1608, 1985.
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significant with a P value of 0.027. If diazepam was ineffective, there is only a 2.7Vo

chance of seeing such a low relative risk in a study of this size. This example shows

that the results of proportional hazards regression are easy to interpret, even though

the details of the analysis are complicated.

HOW PROPORTIONAT HAZARDS REGRESSION WORKS

A survival curve plots cumulative survival as a function of time. The slope or derivative

of the survival curve is the rate of dying in a short time interval. This is termed the

hazard. For example, if ZOVo of patients with a certain kind of cancer are expected to

die this year,then the hazardrs}}Vo per year. When comparing two groups, investigators

often assume that the ratio of hazard functions is constant over time. For example, the

hazard among treated patients might be one half the hazard in control patients. The

death rates change over the course of the study, but at any particular time the treated

patients' risk of dying is one half the risk of the control patients. Another way to say

this is that the two hazard functions are proportional to one another. This is a reasonable

assumption for many clinical situations.
The ratio of hazards is essentially a relative risk. If the ratio is 0.5, then the

relative risk of dying in one group is half the risk of dying in the other group. Proportional

hazards regression, also called Cox regression after the person who developed the

method, uses regression methods to predict the relative risk based on one or more

X variables.
The assumption of proportional hazards is not always reasonable. You would not

expect the hazard functions of medical and surgical therapy for cancer to be proportional.

You might expect that the surgical therapy to have the higher hazatd at early times
(because of deaths during the operation or soon thereafter) and medical therapy to
have the higher hazard at longer times. In such situations, proportional hazards regres-
sion should be avoided or used only over restricted time intervals for which the
assumption is reasonable.

Having accepted the proportional hazards assumption, we want to know how the
hazard ratio is influenced by treatment or other variables. One thought might be to
place the hazard ratio on the left side of a regression equation. It turns out that the
results are cleaner when we take the natural logarithm first.* So the logarithm of the
hazard ratio can be placed on the left side of the multiple regression equation to generate
Equation 33.1:

ln(hazard ratio) : ln(relative risk) : Xr . ln(RR1) * Xz . ln(RRz). (33.1)

The hazard ratio must be defined relative to a baseline group. The baseline group
is subjects in which every X variable equals 0. You can see in Equation 33.1 that the

*The problem is that the relative risk is not symmetrical with respect to decreased or increased risk. All
possible decreases in risk are expressed by relative risks between 0 and 1, while all possible increases in
risk are expressed by a relative risk between I and infinity. By taking the logarithm of the relative risk,
any negative value indicates a decrdased risk, and any positive value indicates an increased risk. For example,
a doubling of risk gives a ln(RR) of 0.69; a halving of risk gives a ln(RR) of -0.69.
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logarithm of the hazard ratio in the baseline group equals 0, so the hazard ratio (by
definition) equals 1.0 (antilogarithm of 0).

INTERPRETING THE RESUTTS OF PROPORTIONAL
HAZARDS REGRESSION

To run a proportional hazards regression program, you must first enter the data for
each subject. Enter the survival time for each subject, along with a code indicating
whether the subject died at that time* or was censored at that time (see Chapter 6 for
a definition of censoring). Also enter all the X variables for each subject.

Programs that calculate proportional hazards compute the best-fit values for each
of the relative risks (hazard ratios), along with their 95%o CI.If you encounrer a program
(or publication) that reports B coefficients instead of odds ratios, it is easy ro convert.
The relative risk for variable X; equals eFi.

Programs that calculate proportional hazards regression report several P values.
One P value tests the overall null hypothesis that in the overall population all relative
risks equal 1.0. In other words, the overall null hypothesis is that none of the X variables
influence survival. If that P value is low, you can reject the overall null hypothesis
that none of the X variables influence survival. You can then look at individual p
values for each X variable, testing the null hypothesis that that particular relative risk
equals 1.0.

Whenever you review the results of proportional hazards regression, ask yourself
these questions:

' Are there enough subjects? A general rule of thumb is that there should be 5 to 10
deaths for each X variable. Don't count the subjects, count the number of deaths.
With fewer events, it is too easy to be misled by spurious findings. For example, a
study with 1000 patients, 25 of whom die, provides enough data to study the influence
of at most 2 to 4 explanatory X variables.

' Is the model appropriate? The proportional hazards regression model is simple,
probably too simple to account for many kinds of data, as it assumes that each X
variable contributes independently to the relative risk. That means that a change in
one X value has the same impact on the relative risk, regardless of the values of the
other X values. Moreover, proportional hazards regression assumes that the hazard
ratio is constant at all times. If these assumptions are not true, the analysis will
be misleading.

' Do results make sense? This is an important question when the computer chose the
X variables to include in the model. If you give the computer enough variables, some
relationships are bound to turn up by chance, and these may mean nothing.

' Distinguish between studies that generate hypotheses and studies that test hypotheses.
If you study enough variables, some relationships are bound to turn up, and these
may be just a coincidence. It is OK to generate hypotheses with this kind of exploratory
research, but you need to test the hypothesis with different data.

xThe term survival is used generhlly. The event does not have to be death. Proportional hazards regression
can be used with any outcome that happens at most once to each subject.
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Using Nonlinear Regression
to Fit Curves

Linear regression calculations are easy to calculate and easy to understand. However,
many relationships of biological interest are not linear, so it is often necessary to fit
a curve that best predicts Y from X.

THE GOATS OF CURVE FITTING

You might have three reasons to fit a curve through data:

' Artistic. You just want the graph to look nice. In this case, you can draw the curve
by hand using a flexible ruler or French curve. Or you can use any computerized
curve-fitting method, without much thought about what the results mean, since all
you want is an attractive graph.

' Interpolation. You want to draw a curve through standard points, so you can read
off unknown values. You can use many different methods for obtaining the curve
and don't need to woffy about what the curve means.

' Model fitting. You want to fit a curve through your data, and you want the curve to
follow an equation that has biological or chemical meaning. If this is your goal, read
the rest of the chapter.

AN EXAMPLE

Pharmacologists perform radioligand binding experiments to figure out the number of
receptors (B,nu*) in a tissue and their affinity for the drug (Kp).* The results of a typical
experiment are shown in Figure 34.1. Various concentrations of a radioactively labeled
drug (radioligand) were added to a suspension of membrane fragments. The concentra-
tions are shown on the X axis, measured in nanomolar (nM). After waiting for the

xB'u" is the maximum amount of binding at very high concentrations of radioligand. It is the receptor
number, often expressed as receptors per cell, or femtomoles (fmol) of receptors per milligram of membrane
protein' The Ko is the equilibrium disscrciation constant. It is the concentration of radioligand needed to
bind half the receptors at equilibrium.
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Figure 34.1. Typical radioligand binding experiment. The X axis shows the various concentra-
tions of the radioactively labeled ligand. The Y axis shows the specific binding of the ligand to
receptors. These data are analyzed in later figures.

binding to equilibrate, the specific binding was measured. The measurements were of
the number of radioactive counts per minute. However, the experimenter knew the
specific radioactivity of the radioligand and the amount of protein in the membrane
suspension, so transformed the results to show femtomoles of receptor binding per

milligram of membrane protein. That is shown on the Y axis.
The results make sense. At low concentrations of the radioligand, there is little

binding. As the concentration increases, the binding increases. As the concentration
increases further, the binding begins to plateau as you approach l00Vo saturation of

receptors with ligand.

For many kinds of receptors, the radioligand binds reversibly to the receptors:

Receptor * Ligand & Receptor ' Ligand. (34.r)

From the chemical definition of equilibrium and the law of mass action, the relationship

between the concentration of radioligand and the amount of binding at equilibrium

follows Equation 34.2:

Specific binding :
B,u*' ll-igand]
Ko + [Ligand]' (34.2)

Y -
B r u , ' X

K+X.

The relationship between X (concentration) and Y (binding) is not linear, so the methods

of linear regression cannot be used. We need to fit a curve through the data points to

find the best-fit values of Bnu* and IQ.
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WHAT'S WRONG WITH TRANSFORMINC CURVED DATA INTO
STRAICHT LINES?

279

Before the age of cheap microcomputers, nonlinear regression was not readily available
to most scientists. Instead, scientists transformed their data to make the graph linear.
They then used linear regression to analyze the transformed data. For the particular
kind of data shown in the example, the Scatchard transformation linearizes the data,
as shown in Figure 34.2.

Other commonly used linear transformations are the double reciprocal or Line-
weaver-Burke plot used in enzymology and the log transform used in kinetic studies.
All these methods are outdated and should rarely be used to analyze data. The problem
is that linear regression assumes that the scatter of data around the line follows a
Gaussian distribution with a standard deviation (SD) that does not depend on the value
of X. This tissumption is rarely true with transformed data. Moreover, linear regression
assumes that X and Y are measured independently. With some transforms (for example,
the Scatchard transform), the X and Y values are intertwined by the transform, invalidat-
ing linear regression.

Figure 34.3 shows the problem of transforming data. The left panel shows data
from an experiment similar to the previous example but with more scatter. The solid
curve was fit by nonlinear regression. The right panel plots the same data after the
Scatchard transformation-it is a Scatchard plot. The Scatchard transformation ampli-
fies and distorts the scatter.* The solid line was created by applying the Scatchard
transform to the curve generated by nonlinear regression. The dotted line was created
by calculating the best-fit linear regression line to the transformed values. The two
lines are quite different, and correspond to different values for IQ and B,,". The values
generated from nonlinear regression are likely to be closer to the true values.

Analyzing data by performing linear regression with transformed data is like using
pH paper to measure acidity. Scientists rarely use pH paper any more, because it is
easier and more accurate to measure pH with a pH meter. But pH paper is still useful
when you need a crude measure of pH and a meter is not available. Similarly, fitting
curves with computerized nonlinear regression is easier than first transforming the data
and then calculating linear regression. Microcomputers cost less than pH meters, and
curve-fitting software is readily available.

Although it is usually inappropriate to analyze transformed data, it is often helpful
to graph transformed data. It is easier to visually interpret transformed data because
the human eye and brain evolved to detect edges (lines), not to detect rectangular
hyperbolas or exponential decay curves.

USINC A NONLINEAR REGRESSION PROGRAM

Nonlinear regression fits an equation to data and finds values of the variables that
make the equation best fit the data. To use nonlinear regression, follow these steps:

xThere are some cases for which transforming the data makes sense. You should transform the data when
the transformation makes the experimental scatter more uniform and more Gaussian. In most cases. however.
the transformation will make the scatter less uniform and less Gaussian.
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Figure 34.2. Scatchard transformation of the data in Figure 34.1. The X axis in the Scatchard
plot is the same as the Y axis sin Figure 34.1. The Y axis of the Scatchard plot equals the Y
axis from Figure 34.1 divided by the X axis of that figure. This transformation converts the
curve into a straight line. The slope of the line equals the reciprocal of the K{r. The X intercept
of the line equals the B,u,.

o 1
o
l-

l!
E
tr
=
o
o

I

50
I

401 0

t  t a  
I

\

io sb

Bound

Figure 34.3. Why linearizing transforms should be avoided. The left panel shows data similar
to those in Figure 34.1 but with more scatter. The curve was generated by nonlinear regression.
The right panel shows the Scatchard plot of the same data. If you did not use nonlinear regression
to fit a curve to the raw data, you would perform linear regression of the transformed data to
generate the dotted line. You could then derive values for B,u* and IQ from the slope and
intercept of that line. But these values would be far from the values determined by nonlinear
regression. To see this, look at the solid line that was generated by applying the Scatchard
transform to the nonlinear regression curve. This represents the correct lit of the data, displayed
on a Scatchard plot. The values of the 8n',* and K3 determined from the linear regression line
(dotted) would be far from their correct values (solid line).
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Table 34.1. Example Results Calculated by
Nonlinear Regression
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Variables

Br"^

&
Standard enor

Btu*

K.
95Vo Confidence intervals

B*u"

K
Goodness of fit

Degrees of freedom
R2
Absolute sum of squares

53.3
3.86

r .33
0.378

50.3 to 56.2
3.02 to 4.70

l 0
0.984

2 t .4

l .

2.

You must choose an equation that defines Y as a function of X and one or more
variables. You should choose an equation that expresses a chemical or biological
(or physical or genetic, etc.) model. Nonlinear regression programs rarely help you
choose an equation, as the choice depends on the theory behind the kind of experi-
ment you have done. The goal of nonlinear regression is to find the best values for
the variables in the equation so that the curve comes closest to the points.
Provide an initial value for each variable in the equation.* Providing initial values
is rarely a problem if you understand the equation in terms of biology or chemistry,
and have looked at a graph of the data. For the example, we can estimate that B,',u*
is a bit higher than the largest Y value, perhaps about 50. Since IQ is the concentration
(X value) at which Y equals half its maximal value, a glance at Figure 34.1 tells
you that the IQ is a bit less than 5. Many nonlinear regression programs automatically
provide initial values if you select a built-in equation.

3. The program fits the curve. First it generates the curve defined by the initial values
and calculates the sum of squares of the vertical distances of the points from the
curve. Then it adjusts the variables to make the curve come closer to the data points.
Several algorithms are available for doing this, but the one devised by Marquardt
is used most often. The program repeatedly adjusts the variables until no adjustment
is able to reduce the sum of the square of the vertical distance of the curve from
the points.

Nonlinear regression is based on the same assumptions as linear regression (see Chap-
ter 19).

THE RESUTTS OF NONTINEAR REGRESSION

For the exarnple, the results calculated by GraphPad Prism are shown in Table 34.1
(see also Figure 34.4).

xVariable refers to the parameters you wish to fit. In the example, IQ and B.u* are variables. The equation
also includes the variables X and Y, of course, but you don't have to estimate values of X and y.
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[Ligand, nMl

Figure 34.4. Results of nonlinear regression. The data from Figure 34.1 were fit with nonlinear
regression to generate the curve.

The whole point of nonlinear regression is to find values for the variables, and
these are reported first. If the equation expresses a biological or chemical model, these
values can be interpreted in terms of biology or chemistry. For example, B.*, the
number of receptors, equals 53.3 (it is measured in the units of the Y variable, in this

case femtomoles of receptor per milligram of membrane protein). Next comes the

standard enor and the approximate 95Vo confidence interval (CI) of each variable. The

957o CIs reported by nonlinear regression programs are considered to be approxima-
tions, because they are always symmetrical, even though the real CI may be asymmetri-
cal. They are optimistic approximations, as the true CIs may be wider.

Goodness of fit is quantified by Rt, a fraction between 0 and 1. When R2 : 0.0,

the best-fit curve fits the data no better than a horizontal line at the mean of all Y

values. When R2 : 1.0, the best-fit curve fits the data perfectly, going through every
point. You can think of R2 as the fraction of the total variance of Y that is explained

by the model (equation).

come out. There is no chance of ambiguity. Nonlinear regression is more tricky, and
Linear regression always finds unique results. Put the data in and the answers1l

i

the program can report the wrong answers. This happens because nonlinear regression

programs always adjust the variables in small steps to improve the goodness of fit.

The program is done when making a small change to any variable would make the fit

worse. Usually, this process finds the right answer. In some cases, however, this process

does not find the best curve. To find the best-fit curve would require making a large

change in one or more variables, but nonlinear regression programs always make small

changes. This problem is termed finding a local minimum. You will rarely encounter

a local rninimum if your data have little scatter, you collected data over an appropriate

range ofX values, you have chosen an appropriate equation and have provided reason-

able initial values.
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POLYNOMIAT RECRESSION
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Nonlinear regression techniques can fit data to any equation that defines Y as a function
of X and other variables. One particular equation, the polynomial equation (Equation
34.3), deserves special emphasis:

Y  :  c r  +  F ' '  X  +  B r '  X 2  +  F : '  X 3  +  F o '  X 4 . . . (34.3)

The polynomial equation is special because it is not strictly a "nonlinear" equation,
even though curves generated by this equation are curved.* Writing a program to fit
data to the polynomial equation is far easier than writing a program to fit data to a
nonlinear equation. For this reason, more programs offer polynomial regression than
nonlinear regression. Polynomial regression programs are easy to use, as you only
have to make one choice, how many terms to include in the equation. If the equation
ends with the B2 term above, it is called a second-order equation.If you stop after the
B3 term above, it is called a third-order equation. Unlike nonlinear regression, you
don't have to enter initial estimated values of the variables, and you don't have to
worry about the possibility that the results are a local minimum.

In addition to drawing the curve, such programs will yield an R2 value, as well
as values for all the parameters (cr, 9', Fr . . .) and a 957o CI for each. Polynomial
regression can produce attractive curves, and these curves are often used as standard
curves for interpolating unknown values. However, few biological or chemical processes
follow models described by polynomial equations, so the parameters can rarely be
interpreted in terms of chemistry or biology.

*Y is nar a linear function of X, so the XY graph is curved. Y is a linear function of the parameters B,,
Fr, Br, etc. so the equation is not "nonlinear."
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Probabilities

PROPAGATION OF ERRORS

Variables of biological or clinical interest often are not measured directly but instead
are calculated from two or more measured variables. This section explains how to
determine the confidence interval (CI) of the calculated variable.

Confidence Interval of a Difference

It is common to analyze a difference (D) determined by subtracting a baseline or non-
specific measurement (B) from a total measurement (A). In other words, D : A - B.
Both A and B are Gaussian variables, and you want to know the 957o CI for the
difference between the means (D). Assuming that the observations are not paired and
the two samples sizes are equal, you can calculate the SE of the difference between
means from this equation:

sE3: /sEN4l+s-ENG. (3s .1 )

Three notes:

. The SE of the difference is larger than both the SE of A and the SE of B.

. Equation 35.1 (identical to Equation 7.1) assumes that both groups have the same
number of observations. If the sample sizes are different, use Equatron 7.2 instead.

. Both A and B must be measured in the same units, and D is measured in the same units.

The 957o CI for the difference D is calculated using this equation, where t* is
the critical value of the t distribution for 95Vo confidence. The number of degrees of
freedom (df ) equals the total number of observations in groups A and B minus 2.

D  -  t * . S E o t o D  *  t * . S E o

d f : N n * N r .
(3s.2)

This equation assumes that the two variables A and B are not paired or matched, and

are distributed in a Gaussian manner. If the two variables are paired (and correlated),
then more complicated equations are needed that also include the correlation coefficient
between the two variables.
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Confidence lnterval of a Sum

Calculating the CI of a sum uses identical equations to the CI of a difference. If a sum
is defined by S : A + B, the 957o Cl of S is given by Equations 35.1 and 35.2.

Simply change D (for difference) to S (for sum).

Confidence Interval of a Ratio of Two Means

Another common situation is that the variable of interest is a quotient (Q) determined
by dividing one measurement by another (Q : A/B). A and B are Gaussian variables,
and you wish to know the 95Vo CI for the mean quotient Q. Since A and B can be
measured in different units, there is no way to directly combine the SEs (which may
also be measured in different units). Instead it is possible to combine the ratios of the
SE of A or B divided by the means. If the SE of the denominator B is small compared
to B, then you can approximate the CI of the quotient using Equation 35.3:

S E q : Q
sEMl , SEMi
N * nr

9 5 V o C l :  Q  -  t * . S E q t o Q  *  t * . S E a .

Since SEMA is expressed in the same units as A, the ratio is unitless. The ratios of
SEMB/B and SE./Q are also unitless.

If the SEM of the denominator is not small compared to the denominator, then
you need to use a more complicated equation, as the CI of the quotient is not symmetrical
around the quotient. The derivation of the equations (derived by Fieller) is not intuitive
and will not be presented here.

First calculate the intermediate variable g using Equation 35.4:

(3s.3)

(3s.4)

If g has a value greater than or equal to l, you cannot calculate the CI of the quotient.
The value will only be this large when the CI for the denominator (B) includes 0. If
the CI of the denominator includes 0, then it is impossible to calculate the CI of
the quotient. If g has a value less than 1.0, calculate the CI for the quotient from
Equation 35.5:

':('.ry)'

. sEMl SEMrB
1 1  - B )  

A -  
*  

n , ,
SE^:  a

-  ( 1 - g )
(3s.s)

957oCl : , ,  Q 
.  -  1x '  SE6to  . ,  

Q +  tx  .  SEo.
( l - g )  v  - ( l - g )  -  - - v '

Calculate g using Equation 35.4 and look up t* for 957o confidence with the degrees
of freedom equal to the total number of values in numerator and denominator minus two.

If the SEM of B is small, then g is very small, the CI is nearly symmetrical around
A./B and Equation 35.3 is a reasonable approximation. If the SEM of B is moderately
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large, then the value of g will be a large fraction, the CI will not be centered around
Q and you need Equation 35.5. If the SEM of B is large, then g will be greater rhan
1.0 and the CI cannot be calculated.

These equations are based on the assumption that the two variables A and B are
not paired or matched, and are distributed in a Gaussian manner. If the two variables
are paired (and thus correlated) then more complicated equations are needed that also
include the correlation coefficient between the two variables.

EXAMPTE OF ERROR PROPAGATION

Adenylyl cyclase activity was measured under basal conditions and after stimulation
by a hormone. Under basal conditions, the activity was 11 -f 3 pmoVmin/mg protein.
After stimulation, the activity was 105 -f 10 pmol/min/mg protein. Both values are
expressed as the mean and SE of four replicate determinations. We will analyze these
data as the difference between stimulated and basal levels and as the ratio of the two.

The difference between means is 105 - ll or94. Using Equation 35.1, the SE
of the difference is 10.4, and the 95Vo CI is 68 to 120 pmoVmin/mg. We can be957o
sure that the true difference lies within this range.

Now let's look at the ratio of stimulated to basal activities. These data showed a
105/11 or 9.5-fold increase in enzyme activity. To calculate the 95Vo Cl, first look up
t* : 2.45, then calculate g, which is 0.445. The 95Vo CI of the quotient is from 5.3
to 29.1. In other words, we can be 95Vo sure that, overall, the average stimulation is
between 5-fold and 29-fold.

DECISION ANALYSIS

Making decisions can be difficult because one has to integrate various probabilities
and various outcomes to decide what to do. Decision analysis is a procedure for explic-
itly mapping out the probabilities and outcomes, in an effort to focus one's thinking
about decisions and help reach the right one.

Decision analysis is useful because people often find it difficult to think about
multiple possibilities and probabilities. As an example I will use a problem that has
been widely discussed in diverse forums including Parade magazine (a supplement to
many Sunday newspapers), the New York Times, and "Car Talk" (a talk show on
National Public Radio that usually discusses car mechanics), as well as mathematical
and statistical journals.

Here is the problem: You are on a game show and are presented with three doors.
Behind one is afancy new car worth US$10,000 (which gives a clue as to how many
yeilrs this problem has been circulating). Behind the others is a booby prize. As the
problem was initially presented, this booby prize was a goat. However, to avoid
entanglement with animal activists, we'll just leave those two doors empty. You must
choose one door and get to keep whatever is behind it. All doors have identical
appearances, and the moderator (who knows which door has the car behind it) gives
no clues. You pick a door. At this point, the moderator opens up one of the other two
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doors and shows you that there is no car behind it. He now offers you the chance to
change your mind and choose the other door. Should you switch?

Before reading on, you should think about the problem and decide whether you
should switch. There are no tricks or traps. Exactly one door has the pize; all doors
appear identical; the moderator (who knows which door leads to the new car) has a
perfect poker face and gives you no clues. There is never a car behind the door the
moderator chooses to open. Most people find it difficult to think through the possibilities,
and most people reach the wrong conclusion. Don't cheat. Think it through yourself
before continuing.

A decision tree helps focus one's thinking (Figure 35.1). The first branch of the
tree presents the choice you are confronted with: Switch or don't switch. The next
branch presents the two possibilities: Either you picked the correct door the first time
or you didn't. The outcomes, in this case, the dollar value of the pize behind the door,
are shown at the end of the tree. In this tree, there is only one set of probabilities:
What is the chance that your first choice was correct? Given the rules of the contest,
and barring extrasensory perception, the probability that your initial guess was correct
is one third, which leaves a two-thirds chance that the initial choice was wrong.

The tree presents the outcomes and the probabilities. Now sum the product of
each outcome by the corresponding probability. If you stick with your initial choice
(don't switch doors), the expected outcome is l/3 * $10,000 + 213 * $0, which equals
$3333. If you switch doors, the expected outcome is 2/3 * $10,000 + 113 * $0, which
equals $6666. Thus your best choice is to switch! Of course, you can't be absolutely
sure that switching doors will help. In fact, one third of the time you will be switching

Switch Doors? Initially Correct? Prize

$0

$10,000

$10,000

$o
Figure 35.1. A decision tree. To determine the best choice, multiply the probability by the
prize, and sum the possibilities for each decision. If you choose to switch doors, your expected
prize (the average if you repeated the game many times) is $0 * (l/3) + $10,000 * (z/3), which
equals $6,666. If you choose not to switch doors, your expected prize is $10,000 * (l/3) + $0
* (213), which is only $3,333. Over the long run, you'll certainly do better by switching. If you
can only play the game once, you don't know which decision will be correct, but you have
a greater chance of winning by switching than by not switching. This conclusion surprises
many people.
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away from the prize. But the other two thirds of the time you will be switching to the
prize.If you repeat the game many times, you will maximize your winnings by switching
doors every time. If you only get to play once, the outcome is a matter of chance. It
is clear, however, that you have twice the chance of winning by switching doors.
Many, indeed most, people intuitively reach the wrong decision. It is very hard to
simultaneously think through two (or more) parallel tracks, as is needed.

Creating decision trees for medical decisions presents two additional complexities.
First, the various outcomes (monetary cost, disability, pain, and death) are not directly
comparable. Somehow these have to be normalized to one scale, called utility. This
means explicitly putting a dollar value on death and disability. People cringe at making
this decision explicit, although such decisions are made implicitly all the time. The
other problem is that the various probabilities are not always known exactly. However,
it is often possible to estimate the probabilities reasonably.

Most decision trees for medical applications have many more branches than the
simple example. For example, a decision tree for whether or not to operate on a certain
condition must include a branch for operative death and acquiring an infection during
the surgery. That branch must have sub-branches to deal with the possibility of devel-
oping an allergic reaction or other severe reaction to antibiotics.

Once the tree is complete, the probabilities and outcomes can be propagated down
the tree to find which decision is best. Before using such a tree, however, you want
to know how robust it is. What if one of the utility values were changed just a bit?
What if we doubled the probability of antibiotic reaction? When such questions are
pursued systematically, the results are called sensitivity analyses.

Decision analysis should not be used as a way to avoid taking responsibility for
decisions, nor for relegating decisions to computers. However, decision analysis is a
very useful way to force one to think clearly about decisions and to explicitly state
the assumptions (probabilities and relative utilities) upon which they are based.

META-ANAtYSIS

If you read the medical literature pertaining to a clinical problem, you will often find
several similar studies that reach somewhat different conclusions. How can one best
pool the results of the studies?

There are two distinct problems. The first is the scientific problem of deciding
which studies are best. Various investigators will have used different study designs
and different patient populations, and have measured different end points. It can be
difficult to decide which studies to emphasize and which to ignore. This is a fundamental
challenge of evaluating clinical research, and there are no shortcuts. The second problem
is more manageable. Once you have selected comparable studies (and eliminated
seriously flawed studies), how can their results be pooled?

An obvious, but seriously flawed, solution is majority rules. Simply tabulate how
many studies show a significant difference and how many don't, and go with the larger
number. This is not a good way to pool data. The problem is that significance depends
on both the size of the effect and on sample size. A better approach is to tabulate the
CIs from each study. Sometimes it requires a bit of recalculating to create comparable
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CIs for each study. These individual CIs can then be graphed and pooled (using methods

not discussed here) to yield an overall CI.
Combining together the results of many studies is called meta-analysis. It takes

a lot of work to do a good meta-analysis, and the pooled results can be far more useful

than the individual studies. Medical journals often publish meta-analyses. In addition
to tabulating the results, a good meta-analysis also discusses the strengths, weaknesses,
and potential biases of each study. Even if each individual study is inconclusive, a
meta-analysis can lead to clear conclusions.

When reading a meta-analysis, here are some questions to ask: How did the
authors select papers to study? How many of the papers did they include in the formal
analysis? Why did they exclude the others? Who were the patients in each study? How
similar were the diagnoses and treatments? How were the results pooled? Did they
look at various patient subgroups separately? Who paid for the study? How similar
were the results in the studies?
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Adiusting for Confounding Variables

This chapter reviews topics that were introduced in many different chapters.

WHAT IS A CONFOUNDING VARIABTE?

When comparing means, proportions, or survival times between two groups, you
ordinarily must assume thatthe only difference between the two groups is the experimen-
tal treatment. What if the groups differ in other ways? What if one group was older
than the other? What if the placebo-treated group were more sick to start with? In
these situations, there are several possible explanations for differences between groups.
It is difficult to know whether the difference is due to the treatment or due to the other
differences between the groups.

When results can be explained in more than one way, the results are said to be
confounded. The confounding variable is associated both with the outcome you care
about and the treatment group or risk factor. The presence of confounding variables
complicates the analysis of many studies.

Here is a more formal way to define confounding variables. In any experiment,
there are three kinds of variables: independent, dependent, and extraneous. Variables
that the experimenter manipulates (or used to select subjects) are called independent
variables. The response that the experimenter measures is called the dependent variable.
The whole point of the study is to see if the independent variable influences the
dependent variable. Variables that affect the dependent variable but are not part of the
experimental design are called extraneous variables. When an extraneous variable is
systematically related to the independent variable, the two variables are said to be
confounded, and it is difficult to tell whether differences in the dependent variable are
due to the independent variable or to the extraneous variable.

DESIGNINC STUDIES TO AVOID CONFOUNDING VARIABTES

A good study is designed to reduce the influence of extraneous variables. This is done
using these techniques (most of which were already discussed in Chapter 20):

' Random allocation of treatments. Treatments should be assigned randomly. Any
other scheme may potentially introduce confounding variables.
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' Blinding. Physicians should not know which treatment the patient receives, and the
patient should not know what treatment they are getting.

' Matching. Some studies compare pairs of subjects, matched for age, disease stage,
ethnic group, etc.

' Stratffied randomization. Some studies divide the subjects into groups (strata) based
on age or disease stage. Subjects in each group are randomly divided between
the two treatments. This ensures that the grouping variable (age) cannot confound
the results.

' Compulsive controls. The two treatment groups must be treated identicatly, except
for the experimental treatment.

' Crossover design. In some studies, each subject serves as his or her own control.

THE NEED TO CORRECT FOR CONFOUNDINC VARIABTES

Example 36.1

Tables 36.1 and 36.2 present hypothetical results from two experiments that compare
two operations. In both studies the relative risk was 1.00, so you conclude the overall
success rate is identical for the two operations. There is no reason to prefer one over
the other. These are fake data. With real data, even if there is no difference in the
operations overall, you'd expect to see some differences in the sample you study.

What happens if you combine the two studies and analyze the pooled data? The
results, shown in Table 36.3, are surprising.

Overall, operation I failed in l40l32o : 43.75Vo of the subjects, and operation
II failed in only 801240:33.37o of the subjects. The relative risk is 1.31. If you test
the null hypothesis of no difference with Fisher's test, the P value is 0.014. Operation
2 is significantly better. If you take this analysis on face value (you shouldn't), you
would conclude the difference between the two operations is statistically significant
and that operation II is 3l%o better.

How is this possible? In each study, the two operations were indistinguishable.
Why are the combined data different? The pooled analysis violates a key assumption
of chi-square (or Fisher's) test, that every observation is independently sampled from
one population. Here the subjects are sampled from two populations that differ substan-
tially. Overall (pooling the two operations), 507o of the operations in the first study
failed, while only 25Vo of the operations in the second study failed. Pooling the data
into one contingency table is not valid and leads to an incorrect conclusion.

Table 36.1. Study l: Results

Outcome Analysis

Failed Worked
P :  1 .00

Total RR : 1.00

Operation I
Operation II

Total

120
40

160

120
40

160

240
80

320
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Table 36.2. Study 2: Results
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Outcome Analysis

Failed Worked
P : 1.00

Total RR : 1.00

Operation I

Operation II

Total

20
40
60

60
120
180

80
160
240

To analyze these data properly, you need to use a fancier test to test this null
hypothesis: After adjusting for differences between the failure rate of the two popula-
tions, there is no difference between the failure rates of the two operations. Several
statistical tests can calculate a P value to test this null hypothesis. One is the Mantel-
Haenszel test, which was briefly mentioned in Chapter 29, and the other is logistic
regression, which was described in Chapter 32. Either way, the resulting P value is

1.00. You can conclude that there is no difference between the two operations after

adjusting for differences between the populations used in the two studies.
In this example, the presence of a confounding variable created the illusion of a

major difference between treatments. Adjusting for the confounding variable raised

the P value. In other examples, a confounding variable could hide the presence of a

real difference. In these cases, adjusting for the confounding variable would decrease

P values.

STATISTICAL TESTS THAT CORRECT FOR

CONFOUNDING VARIABLES

Many tests have been developed to test for differences between groups after adjusting
for one or more confounding variables. Table 36.4lists some tests that you will encoun-
ter in the medical literature.

While these tests are rarely used by basic scientists, many of the articles you read
in clinical journals use one or more of these tests. Three regression methods are used
most often, as regression techniques can analyze the same kinds of data analyzed by
the Mantel-Haenszel test and bv two-wav ANOVA.

Table 36.3. Combined Results of Studies I and 2

Outcome Analysis

Failed Worked
P :  0 . 0 1 4

Tota l  RR:  l .3 l

Operation I
Operation II
Total

140
80

220

180
160
340

320
240
560
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Table 36.4. Statistical Texts Correcting for Confounding Variables

OVERVIEWS

Outcome Variable

What kinds of variables can it adjust for?

Binomial

Variable Measurements
(discrete (Continuous Several

categories) scale) Variables

Two-way ANOVA
Mantel-Haenszel
Multiple regression
Logistic regression
Cox proportional

hazards resression

Continuous (measurement)

Survival time or binomial (fraction)

Continuous (measurement)

Binomial (fraction)

Survival time

NO
NO
YES
YES

YES

*No, unless you divide the measurements into two or more categories. For example, you could divide cholesterol levels
into low, medium and high.

INTERPRETING RESUTTS

If you need to analyze data using these tests, you'll need to consult with a statistician
or read more advanced books. You'll frequently encounter results of these tests in the
biomedical literature and shouldn't have much trouble understandins the results. Here
are some questions to ask yourself:

' Has the study been designed well? Fancy statistical tests cannot make up for poor
experimental design.

' Can you see the main findings on graphs or tables? First try to understand the data.
Then look at the P values.

' When you see a P value, are you sure you know what null hypothesis is being tested?
These tests commonly generate more than one P value, and it is easy to get mixed
up as to what they mean. Unless you can clearly state the null hypothesis, you
shouldn't try to interpret the P value.

' How did the investigators decide which variables to adjust for? Sometimes the
investigators collect many variables and let the computer decide which of these are
confounding the results and worth adjusting for. This is a powerful technique, but
one that can be abused.

' Are the investigators testing a focused hypothesis, or are they fishing for P values?
Beware of unfocused studies in which the authors adjust for many combinations of
variables. Even if all null hypotheses are true, you expect" 5Vo of P values to be
"significant." If the investigators gave the computer enough potentially confounding
variables, it is easy to generate dozens or hundreds of P values. You may be misled
if they only show you the significant P values without telling you the number of
P values that are not significant. See the discussion of multiple comparisons in
Chapter 13.

YES
YES
YES
YES

YES

NO*
NO*
YES
YES

YES
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Choosing a Test

REVIEW OF AVAILABTE STATISTICAL TESTS

This book has discussed many different statistical tests. To select the right test, ask

yourself two questions: What kind of data have you collected? What is your goal?

Then refer to Table 37.I.
All tests are described in this book and are performed by InStat, except for tests

marked with asterisks. Tests labeled with a single asterisk are briefly mentioned in

this book, and tests labeled with two asterisks are not mentioned at all.

REVIEW OF NONPARAMETRIC TESTS

Choosing the right test to compare measurements is a bit tricky, as you must choose

between two families of tests: parametric and nonparametric. Many statistical tests are

based upon the assumption that the data are sampled from a Gaussian distribution.

These tests are referred to as parametric tests. Commonly used parametric tests are

listed in the first column of the table and include the t test and analysis of variance.

Tests that do not make assumptions about the population distribution are referred

to as nonparametric tests. You've already learned a bit about nonparametric tests in

previous chapters. All commonly used nonparametric tests rank the outcome variable

from low to high and then analyze the ranks. These tests are listed in the second

column of the table and include the Wilcoxon, Mann-Whitney test, and Krusak-Wallis

tests. These tests are also called distribution-free tests.

CHOOSING BETWEEN PARAMETRIC AND NONPARAMETRIC
TESTS: THE EASY CASES

Choosing between parametric and nonparametric tests is sometimes easy. You should

definitely choose a parametric test if you are sure that your data are sampled from a
population that follows a Gaussian distribution (at least approximately). You should
definitely select a nonparametric test in three situations:

. The outcome is a rank or a score and the population is clearly not Gaussian. Examples
include class ranking of students, the Apgar score for the health of newborn babies
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(measured on a scale of 0 to l0 and where all scores are integers), the visual analogue

score for pain (measured on a continuous scale where 0 is no pain and 10 is unbearable

pain), and the star scale commonly used by movie and restaurant critics (* is OK,
***** is fantastic).

. Some values are "off the scale," that is, too high or too low to measure. Even if

the population is Gaussian, it is impossible to analyze such data with a parametric

test since you don't know all of the values. Using a nonparametric test with these

data is simple. Assign values too low to measure an arbitrary very low value and

assign values too high to measure an arbitrary very high value. Then perform a

nonparametric test. Since the nonparametric test only knows about the relative ranks

of the values, it won't matter that you didn't know all the values exactly.
. The data are measurements, and you are sure that the population is not distributed

in a Gaussian manner. If the data are not sampled from a Gaussian distribution,

consider whether you can transform the values to make the distribution become

Gaussian. For example, you might take the logarithm or reciprocal of all values. There

are often biological or chemical reasons (as wetl as statistical ones) for performing a

particular transform.

CHOOSING BETWEEN PARAMETRIC AND NONPARAMETRIC
TESTS: THE HARD CASES

It is not always easy to decide whether a sample comes from a Gaussian population.

Consider these points:

. If you collect many data points (over a hundred or so), you can look at the distribution
of data and it will be fairly obvious whether the distribution is approximately bell
shaped. A formal statistical test* can be used to test whether the distribution of
the data differs significantly from a Gaussian distribution. With few data points,
it is difficult to tell whether the data are Gaussian by inspection, and the formal
test has little power to discriminate between Gaussian and non-Gaussian distribu-
tions.

. You should look at previous data as well. Remember, what matters is the distribution
of the overall population, not the distribution of your sample. In deciding whether
a population is Gaussian, look at all available data, not just data in the current
experiment.

. Consider the source of scatter. When the scatter comes from numerous sources
(with no one source contributing most of the scatter), you expect to find a roughly
Gaussian distribution.

When in doubt, some people choose a parametric test (because they aren't sure
the Gaussian assumption is violated), and others choose a nonparametric test (because
they aren't sure the Gaussian assumption is met).

*Komogorov-Smimoff test, not explained in this book.
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CHOOSING BETWEEN PARAMETRIC AND NONPARAMETRIC
TESTS: DOES IT MATTER?

Does it matter whether you choose a parametric or nonparametric test? The answer
depends on sample size. There are four cases to think about:

' Large sample. What happens when you use a parametric test with data from a non-
Gaussian population? The central limit theorem (discussed in Chapter 5) ensures that
parametric tests work well with large samples even if the population is non-Gaussian.
In other words, parametric tests are robust to deviations from Gaussian distributions,
so long as the samples are large. The snag is that it is impossible to say how large
is large enough, as it depends on the nature of the particular non-Gaussian distribution.
Unless the population distribution is really weird, you are probably safe choosing a
parametric test when there are at least two dozen data points in each group.

' Large sample. What happens when you use a nonparametric test with data from a
Gaussian population? Nonparametric tests work well with large samples from
Gaussian populations. The P values tend to be a bit too large, but the discrepancy
is small. In other words, nonparametric tests are only slightly less powerful than
parametric tests with large samples.

' Small samples. What happens when you use a parametric test with data from non-
Gaussian populations? You can't rely on the central limit theorem, so the P value
may be inaccurate.

' Small samples. When you use a nonparametric test with data from a Gaussian
population, the P values tend to be too high. The nonparametric tests lack statistical
power with small samples.

Thus, large data sets present no problems. It is usually easy to tell if the data
come from a Gaussian population, but it doesn't really matter because the nonparametric
tests are so powerful and the parametric tests are so robust. Small data sets present a
dilemma. It is difficult to tell if the data come from a Gaussian population, but it
matters a lot. The nonparametric tests are not powedul and the parametric tests are
not robust.

ONE- OR TWO-SIDED P VATUE?

With many tests, you must choose whether you wish to calculate a one- or two-sided
P value (same as one- or two-tailed P value). The difference between one- and two-
sided P values was discussed in Chapter 10. Let's review the difference in the context
of a t test. The P value is calculated for the null hypothesis that the two population
means are equal, and any discrepancy between the two sample means is due to chance.
If this null hypothesis is true, the one-sided P value is the probability that two sample
means would differ as much as was observed (or further) in the direction specified by
the hypothesis just by chance, even though the means of the overall populations are
actually equal. The two-sided P value also includes the probability that the sample
means would differ that much in the opposite direction (i.e., the other group has the
larger mean). The two-sided P value is twice the one-sided P value.
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A one-sided P value is appropriate when you can state with certainty (and before

collecting any data) that there either will be no difference between the means or that

the difference will go in a direction you can specify in advance (i.e., you have specified
which group will have the larger mean). If you cannot specify the direction of any
difference before collecting data, then a two-sided P value is more appropriate. If in
doubt, select a two-sided P value.

If you select a one-sided test, you should do so before collecting any data and
you need to state the direction of your experimental hypothesis. If the data go the other
way, you must be willing to attribute that difference (or association or correlation) to
chance, no matter how striking the data. If you would be intrigued, even a little, by
data that goes in the "wrong" direction, then you should use a two-sided P value. For
reasons discussed in Chapter 10, I recommend that you always calculate a two-sided
P value.

PAIRED OR UNPAIRED TEST?

When comparing two groups, you need to decide whether to use a paired test. When
comparing three or more groups, the term paired is not apt and the term repeated
measures is used instead.

Use an unpaired test to compare groups when the individual values are not paired
or matched with one another. Select a paired or repeated-measures test when values
represent repeated measurements on one subject (before and after an intervention) or
measurements on matched subjects. The paired or repeated-measures tests are also
appropriate for repeated laboratory experiments run at different times, each with its
own control.

You should select a paired test when values in one group are more closely
correlated with a specific value in the other group than with random values in the other
group. It is only appropriate to select a paired test when the subjects were matched or
paired before the data were collected. You cannot base the pairing on the data you
are analyzing.

FtSHER',S TEST OR THE CH!-SQUARE TEST?

When analyzing contingency tables with two rows and two columns, you can use either
Fisher's exact test or the chi-square test. The Fisher's test is the best choice as it always
gives the exact P value. The chi-square test is simpler to calculate but yields only an
approximate P value. If a computer is doing the calculations, you should choose Fisher's
test unless you prefer the familiarity of the chi-square test. You should definitely avoid
the chi-square test when the numbers in the contingency table are very small (any
number less than about six). When the numbers are larger, the P values reported by
the chi-square and Fisher's test will be very similar.

The chi-square test calculates approximate P values, and the Yates' continuity
correction is designed to make the approximation better. Without the Yates' correction,
the P values are too low. However, the correction goes too far, and the resulting P
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value is too high. Statisticians give different recommendations regarding Yates' correc-
tion. With large sample sizes, the Yates' correction makes little difference. If you
select Fisher's test, the P value is exact and Yates' correction is not needed and is not
available.

RECRESSION OR CORRETATION?

Linear regression and correlation are similar and easily confused. In some situations
it makes sense to perform both calculations. Calculate linear correlation if you measured
both X and Y in each subject and wish to quantify how well they are associated. Select
the Pearson (parametric) correlation coefficient if you can assume that both X and Y
are sampled from Gaussian populations. Otherwise choose the Spearman nonparametric
correlation coefficient. Don't calculate the correlation coefficient (or its confidence
interval) if you manipulated the X variable.

Calculate linear regressions only if one of the variables (X) is likely to precede
or cause the other variable (Y). Definitely choose linear regression if you manipulated
the X variable. It makes a big difference which variable is called X and which is called
Y, as linear regression calculations are not symmetrical with respect to X and Y. If
you swap the two variables, you will obtain a different regression line. In contrast,
linear correlation calculations are symmetrical with respect to X and Y. If you swap
the labels X and Y, you will still get the same correlation coefficient.
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The Big Picture

When reading research papers that include statistical analyses, keep these points in mind.

TOOK AT THE DATA!

Statistical tests are useful because they objectively quantify uncertainty and help reduce
data to a few values. While such calculations are helpful, inspection of statistical
calculations should never replace looking at the data. The data are important; statistics
merely summarize.

BEWARE OF VERY LARGE AND VERY SMAtt SAMPTES

The problem with very large sample sizes is that tiny differences will be statistically
significant, even if scientifically or clinically trivial. Make sure you look at the size
of the differences, not just their statistical significance.

The problem with small studies is that they have very little power. With small
sample sizes, large and important differences can be insignificant. Before accepting
the conclusion from a study that yielded a P value greater than 0.05 (and thus not
signiflcant), you should look at the confidence interval and calculate the power of the
study to detect the smallest difference that you think would be clinically or scientifi-
cally important.

BEWARE OF MUTTIPLE COMPARISONS

When analyzing random data, on average I out of 20 comparisons will be statistically
significant by chance. Beware of large studies that make dozens or hundreds of compari-
sons, as you are likely to encounter spurious "significant" results. When reading
papers, ask yourself how many hypotheses the investigators tested.

303
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DON'T FOCUS ON AVERAGES: OUTIIERS MAY BE IMPORTANT

Statistical tests (t tests, ANOVA) compare averages. Variability in biological or clinical
studies is not always primarily due to measurement uncertainties. Instead, the variability
in the data reflects real biological diversity. Appreciate this diversity! Don't get mesmer-
ized by averages; the extreme values can be more interesting. Nobel prizes have been
won from studies of individuals whose values were far from the mean.

NON.GAUSSIAN DISTRIBUTIONS ARE NORMAT

Many statistical tests depend on the assumption that the data points come from a
Gaussian distribution, and scientists often seem to think that nature is kind enough to
see to it that all interesting variables are so distributed. This isn't true. Many interesting
variables are not scattered accordins to a Gaussian distribution.

GARBAGE IN, GARBAGE OUT

Fancy statistics are not useful if the data have not been collected properly. Statistics are
the easy part of interpreting data. The hard part is evaluating experimental methodology.
Statistical tests cannot tell you whether the study was conducted properly. Many studies
are designed badly, and statistical tests from such studies can give results that are
misleading. If the data were not collected properly (or as statisticians say if the study
was biased), statistical tests are hard to interpret. Thinking about experimental design
is the challenging part of science. Perfect studies arerate, so we need to draw conclusions
from imperfect studies. This requires judgment and intuition, and the statistical consider-
ations are often minor.

CONFIDENCE LIMITS ARE AS INFORMATIVE AS P VATUES
(MAYBE MORE SO)

The P value is the likelihood that the difference you observed would occur if the null

hypothesis were true. The confidence interval tells you how certain you know the

overall difference. The two are complementary, and the best policy is to report both.

Many published papers show P values without confidence intervals. Usually it is not

too difficult to construct a confidence interval from the data presented.

STATTSTICALTY SIGNIFICANT DOES NOT MEAN

SCI ENTI FICAttY IMPORTANT

With large sample sizes, small differences can be statistically significant but may not

be important. P values (and statistical significance) are purely the result of arithmetic;

decisions about importance require judgment.
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P < O.O5 IS NOT SACRED

There really is not much difference between p : 0.045 and p : 0.055! By convention,

the first is statistically significant and the second is not, but this is completely arbitrary.

A rigid cutoff for significance is useful in some situations but is not always needed.

Don't be satisfied when someone tells you whether the P value is greater or less than

some arbitrary cutoff; ask for its exact value. More important, ask for the size of the

difference or association. and for a confidence interval.

DON'T OVERINTERPRET NOT SIGNIFICANT RESUTTS

If a difference is not statistically significant, that means that the observed results are
not inconsistent with the null hypothesis. It does not mean that the null hypothesis is
true. You often read that "there is no evidence that A causes B." That does not
necessarily mean that A doesn't cause B. It may mean that there are no data, or that

all the studies have used few subjects and don't have adequate power to find a difference.

DON'T IGNORE PAIRING

Paired (or repeated-measures) experiments are very powerful. The use of matched pairs
of subjects (or before and after measurements) controls for many sources of variability.
Special methods are available for analyzing such data, and they should be used when
appropriate.

CORRETATION OR ASSOCIATION DOES NOT
IMPTY CAUSATION

A significant correlation or association between two variables may indicate that one
variable causes the other. But it may just mean that both are related to a third variable
that influences both. Or it mav be a coincidence.

DISTINGUISH BETWEEN STUDIES DESIGNED TO GENERATE A
HYPOTHESIS AND STUDIES DESIGNED TO TEST ONE

If you look at enough variables, or subdivide subjects enough ways, some "significant"
relationships are bound to turn up by chance alone. Such an approach can be a useful
way to generate hypotheses. But such a hypothesis then needs to be tested with new data.
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DISTINGUISH BETWEEN STUDIES THAT MEASURE AN
IMPORTANT OUTCOME AND STUDIES THAT MEASURE A
PROXY OR SURROGATE OUTCOME

Measuring important outcomes (i.e., survival) can be time consuming and expensive.
It is often far more practical to measure proxy or surogate variables (i.e., white cell
count). But, although the relationship between the proxy variable and the real variable
may be "obvious," it may not be true. Treatments that improve results of lab tests
may not improve health or survival.

PUBTISHED P VALUES ARE OPTIMISTIC (TOO tOW)

By the time you read a paper a great deal of selection has occurred. When experiments
are successful, scientists continue the project. Lots of other projects get abandoned.
And when the project is done, scientists are more likely to write up projects that lead
to significant results. And journals are more likely to publish "positive" studies. If
the null hypothesis were true, you would get a significant result 57o of the time. But
those 5Vo of studies are more likely to get published than the other 95Vo.

coNFTDENCE tNTERVALS ARE OpTtMtSTtC (TOO NARROW)

The "real" confidence interval (CD is nearly always wider than the CI calculated from
a particular experiment. The strict interpretation of a CI assumes that your samples
are randomly sampled from the population of interest. This is often not the case. Even
if the sample were randomly selected, the population of interest (all patients) is larger
and more heterogeneous than the population of patients studied (limited to certain ages,
without other disease, living in a certain area, and receiving medical care from a certain
medical center). Thus the true 957o Cl (which you can't calculate) is often wider than
the interval you calculate.
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Appendix I

References

Table A1.1 lists the statistics books that I have found to be most useful. For each topic
I indicate up to three excellent references. In many cases, it was difficult to limit the
recommendations to three books.

1. DG Altman. Practical Statisticsfor Medical Research. New York, Chapman and Hall, 1991,
596 pages. Compared to most statistics books, this one is much more oriented towards
explaining what the tests mean. Lots of clinical examples.

2. JC Bailar III, F Mosteller, Medical (Jses of Statistics, 2nd ed. Boston, New England Journal
of Medicine Books, 1992,449 pages. Uneven collection of articles from the New England
Journal of Medicine. Yery strong in study design and interpretation of results. Includes
some surveys of how statistics are really used in the medical literature.

3. WW Daniel. Applied Nonparametric Statistics, 2nd ed. Boston, PWS-Kent,1990,635 pages.
Comprehensive cookbook for nonparametric tests.

4. AR Feinstein. Clinical Biostatistics. St. Louis, MO, CV Mosby , 1977,468 pages. Collection
of essays about statistics. Very opinionated and thought provoking.

5. LD Fisher, G vanBelle. Statistics. A Methodologyfor the Health Sciences. New York, Wiley-
Interscience, 1993,991 pages. This book has more depth than most others, with many
examples, explanations, and cautions.

6. JL Fleiss. Statistical Methods for Rates and Proportions,2nd ed. New York, John Wiley
and Sons, 198I, 321 pages. Thorough reference for analyses of rates and proportions.
Oriented towards epidemiology.

7. SA Glantz. Primer of Biostatisfrcs, 3rd ed. New York, McGraw Hlll, 1992,440 pages.
Wonderful primer that really explains how basic statistical tests work. The explanations of
ANOVA and power are wonderful. Nothing about analysis of survival curves, multiple
regression, or logistic regression.

8. SA Glantz, BK Slinker. Primer of Applied Regression and Analysis of Variance. New York,
McGraw-Hill, 1990, 777 pages. Very clear explanation of multiple and logistic regression,
one- and two-way analysis of variance, and nonlinear regression.

9. GR Norman, DL Streiner. PDQ Statistics. New York, BC Decker, 1986, 172 pages. Short,
funny, clear introduction to the basics with very brief explanations of many advanced tests.

l0- WH Press, SA Teukolsky, WT Vetterling, BP Flannery. Numerical Recipes in C. The
Art of Scientific Computing, 2nd ed. Cambridge, Cambridge University Press, lgg2, gg4
pages. Only a small part of this book deals with statistics. Look here if you plan to write
computer programs that calculate P values, or if you want a mathematical explanation of
regression.

I l. WL Hays. Statistics,4th ed. Orlando, Harcourt Brace Jovanovich, 1988, 1029 pages. Wonder-
fully lucid explanation of fundamental statistical principles. Contains a fair amount of math,
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Table A1.1. Reference Books on Statistics

APPTNDICES

Reference (see list below)

Topic 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Mathematical explanation of statistical
principles

Critique of statistical practice

One-way ANOVA

Two-way ANOVA

Nonparametric tests

Multiple and logistic regression

Nonlinear regression

Survival curves

Rates and proportions

Sample size and power

Computer algorithms

Designing clinical studies

Comprehensi ve reference

Interpretingresults * * x

Epidemiology * * *

but with text that really explains what is going on. Little about nonparametric tests. It was
written for social scientists, so has nothing about survival curves and has no biological or

clinical examples.
12. JH Zar. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ, Prentice-Hall, 1984, 696

pages. Good comprehensive reference for all aspects of biostatistics except for analyses of

survival curves. If you need to find an equation or table, it will be here. Does not cover

survival curves or logistic regression.
13. HA Kahn, CT Sempos. Statistical Methods in Epidemiology. New York, Oxford University

Press, 1989,291pages. Good explanation of multivariate methods (logistic regression and

proportional hazards regression).
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GraphPad InStat and GraphPad Prism

The author of this book is president of GraphPad Software, Inc., which has created
two innovative programs for data analysis.

CRAPHPAD INSTAT@

GraphPad InStat, available in Windows and Macintosh versions, helps scientists and
students master routine statistical procedures with speed and ease. Unlike larger (and
much more expensive) packages, InStat is designed for scientists and students analyz-
ing small amounts of data. Four features make InStat stand out from the other statis-
tics programs:

InStat Guides You Step by Step

InStat conquers the learning curve by escorting you through statistical analyses.
You'll master the program in just a few minutes.

Clear Analysis Choices with Explanations

You don't have to know the name of the test you need. InStat helps you pick an appro-
priate test by asking questions about your data. If you are unsure, consult the exten-
sive help screens, which explain the statistical reasoning in plain language.

Easy to Understand Results

InStat does not assume that you are a statistics whiz. It presents results in simple para-
graphs, with a minimum of statistical jargon. InStat's help screens review the use of
each test and explain every portion of the results.

Unique Analysis Checklists

With other statistics software, it is too easy to get the right answer to the wrong ques-
tion. That's why InStat provides a unique analysis checklist. Double-check that your

3 1 1
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data have not violated any assumptions of the
matches your experimental design and really

GRAPHPAD PRISM@

APPENDICES

test, and that you have picked a test that
answers the question you had in mind.

GraphPad Prism, available in Windows and Macintosh versions, combines scientific
graphics, curve fitting and statistics. In fact, all graphs in this book were made with

Prism.

Udique Approach

Store your entire project (all related data, results, graphs, page layouts, and notes) to-

gether in one organized file. Everything is linked-if you edit or replace data, Prism

updates the rest of your project automatically.

lnstant Graphs

Just enter your data and click once. Prism instantly creates a graph, including auto-

matic error bars and legend. Then summarize your experiment by combining graphs,

data, and results on a single page.

Easy Curve Fitting

Fit curves to several experimental conditions in a single step. Simply pick an equation

from Prism's extensive built-in list, and Prism does the rest automatically.

Statistical Help

Prism's help screens and manual assist you in choosing analyses and interpreting the

results. You don't have to be a statistics expert to use Prism.

MORE INFORMATION AND FREE DEMOS

Read more about InStat and Prism, and download free demonstration versions, from

GraphPad's web site at www.graphpad.com. Or contact GraphPad Software, Inc.:

GraphPad Software
5755 Oberlin Drive #l l0
San Diego CA92l2l USA

Phone: OqA) 858-457-3909 or 800-3881723 (US only)

Fax: (USA) 858-457-8 141
Email: sales@ graphPad.com
W.eb: www. I rap hpad.com
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Analyzing Data With a Spreadsheet
or Statistics Program

SPREADSHEET PROGRAM FUNCTIONS

Although designed for business use, spreadsheet programs are also very useful for
analyzing scientific data and performing statistical calculations. The most popular
spreadsheet is Microsoft Excel. Its statistical functions are powerful, but poorly docu-
mented. The table below lists some of the functions available. I use version 5 for
Windows, and the Macintosh version is supposed to be identical. Other spreadsheet
programs may have similar functions. Note that all the tables in Appendix 5 were
created using Excel, and the formulae used to calculate the values are documented at
the beginning of that Appendix.

To calculate Use this function Comments

The mean of a range of values. AVERAGE (range)
The median of a range of values. MEDIAN (range)
The SD of a range. STDEV (range)

The "population SD" of a range. STDEVP (range)

The SEM of a range of values.

This function correctly uses
N - I in the denominator, so
calculates the "sample SD,"
which is what you usually want.

This function uses N in the
denominator, so calculates the
"population SD," which is
only appropriate when you
have collected data for the
entire population.

There is no function for the
standard error, so you need to
calculate the SEM as the SD
divided by the square root of
sample size.

This finds the critical value of the
t distribution to use in
calculating P7o confidence
intervals.

Two-tailed P value.
(continued\

The value of tx for DF degrees of
freedom for PVo confidence.

A P value from z

STDEV (range)/SQRT (COUNT
(range)).

TINV (l - 0.01 * P, DF).

2* (1.0 - NORMSDIST (z))

3 1 3
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To calculate Use this function Comments

A P value from t with DF degrees TDIST (t, DF, 2)
of freedom

APvaluefromX2withDFdegrees CHIDIST (Xt, DF).
of freedom

A P value from F with DFn FDIST (F, DFn, DFd)
degrees of freedom in the
numerator and DFd degrees of
freedom in the denominator

Two-tailed P value.

lf there is only DF, then the P
value is two sided. If there is
more than one DF, there is no
distinction between one and
two tails.

Don't mix up DFn and DFd!

ANATYZING DATA WITH SPREADSHEETS

Using the functions listed in the previous section, you can instruct Excel to do many
statistical calculations. Beyond that, Excel can perforrn some statistical tests for you
without you having to write any equations. Pull down the Tools menu and choose
Analysis. (If Analysis does not appear on the menu, run the Excel Setup program again
and include the Analysis ToolPak.) Then choose the analysis from the menu.

Here is a partial list of the analyses that Excel can perform from the analysis
menu: One-way analysis of variance, two-way analysis of variance (no missing values
allowed), descriptive statistics by column (mean, median, SD, etc.), frequency distribu-
tions, random number generation, linear regression, and t tests (paired and unpaired).

USING A STATISTICS PROCRAM

If you use a statistics program other than InStat and Excel, you may be confused by
data entry. Table A3.1 shows how you enter data from two groups that you wish to
compare with an unpaired t test using InStat or Excel. The two columns represent the
two groups you are comparing.

Most other statistics programs expect you to enter the data differently, as shown
in Table A3.2. This is sometimes called an indexedformat. All of the values for both

Table A3.1.
Arrangement of Data
for InStat or Excel

Group I Group 2

2.4
4.3
3.4
2.9

3.7
5.4
4.5
3.9
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Table A3.2.
Arrangement of Data
for Most Other
Programs

Group Value

2
2
2
2

2.4
+ . J

3.4
2.9
3.7
5.4
4.5
3.9

groups go into one column. Another column (the first in this example) tells you which
group the value belongs to. In this format, each row represents one subject, and each
column represents one variable. Groups are indicated by a variable. Although this
format seems far more confusing when you simply want to compare two groups, it
makes things easier when you want to perform more complicated analyses.
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Answers to Problems

CHAPTER 2

1. Of the first 100 patients to undergo a new operation,6 die. Can you calculate the
957o Cl for the probability of dying with this procedure? If so, calculate the interval.
If not, what information do you need? What assumptions must you make?

Yes, it is possible to calculate a CI. This is a straightforward calculation of the 95Vo
CI from a proportion. The proportion is 6/100. The denominator is too big to use the
table in the Appendix, so we need to calculate the CI using Equation 2.1:

Approximate95Vo CI of proportion: p - 1.96

0.06 - 1.96
- o'oo to o.o6 + 1.96

006- re6 
::ii'::::,; 

'e6 0024

You can calculate the answer more exactly using a computer program. Using InStat,
the 957a CI is 0.02 to 0.13.

To interpret these results, you need to define the population. If these were real

data, you'd want to see how the investigators selected the patients. Are they particularly

sick? Do they represent all patients with a certain condition, or only a small subset?
If you can't figure out how the investigators selected their patients, then the data are
not very useful. If you can define the population they selected from, you must assume

that the 100 patients are representative of these patients and that each was selected

independently. If you accept these assumptions, then you can be 95%a sure that the

overall death rate in the population lies somewhere within the 957o Cl.

2. A new drug is tested in 100 patients and lowers blood pressure by an average of

6Vo. Can you calculate the 95Vc Cl for the fractional lowering of blood pressure by

this drug? If so, calculate the interval. If not, what information do you need? What

3 1 6
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is the CI for the fractional lowering of blood pressure? What assumptions must
you make?

Although this looks similar to the previous question, it is quite different. In the previous
question, the percentage was really a proportion. In this question, the percentage is
really change in a measured value. You can't use Equation 2.1. You will learn how
to calculate CIs for these kinds of data in later chapters, but you need to know something
about the scatter of the data (the standard deviation or standard error).

Beware of percentages. Percentages can express a proportion, a relative difference
in proportions, or a relative difference in a measured value, or many other things. Use
the methods of Chapter 2 only with proportions.

3. You use a hemocytometer to determine the viability of cells stained with Trypan
Blue. You count 94 unstained cells (viable) and 6 stained cells (indicating that they
are not viable). Can you calculate the 95Va CI for the fraction of stained (dead)
cells? If so, calculate the interval. If not, what information do you need? What
assumptions must you make?

This is essentially the same problem as #1 above. The population is the entire tube of
cells, and you have assessed the viability of a sample of these cells. Assuming that
you mixed the tube well, it is reasonable to assume that your sample is randomly
selected from the population. You can calculate a 95Vo CI for the proportion of viable
cells in the entire population. Using Equation 2.1, you can say that you are 957o sure
that the fraction of stained (dead) cells is between 0.013 and 0.107.

4. In 1989, 20 out of 125 second-year medical students in San Diego failed to pass
the biostatistics course (until they came back for an oral exam). Can you calculate
the 957o CI for the probability of passing the course? If so, calculate the interval.
If not, what information do you need? what assumptions must you make?

It is easy to plug the numbers into Equation 2.1 (or into a computer program) to
calculate a CI. But what would it mean? There were only 125 students in 19890 so we
don't really have a sample. It would make sense to calculate a CI only if you imagined
the 125 students in 1989 to be representative of students in other years (or other cities),
and that there is no change in course content, student preparation, exam difficulty, or
passing threshold. You would also have to assume that students in future years haven't
read this question, as it would give them an incentive to study harder.*

Because those assumptions are unlikely to be true, I don't think it would be
meaningful to calculate a CI. If you are persuaded that the assumptions are met, you
can calculate that the 95Vo CI for passing ranges from 777o to 90Va (using Equation
2.1) or 76%o to 90Vo (using InStat).

5. Ross Perot won 197o of the vote in the 1992 Presidential Election in the United
States. Can you calculate the 957o CI for the fraction of voters who voted for him?
If so, calculate the interval. If not, what information do you need? What assumptions
must you make?

xThe students in 1990 read this question. They got the message that the course required work, and they
studied hard. All passed.
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It wouldn't be meaningful to calculate a CI. We know the exact fraction of voters
who voted for each candidate. This is not a poll before the election-these are results
from the election. Since we have not sampled from a population, there is no need for
a CI.

6. In your city (population : I million) last year a rare disease had an incidence of
25l10,000 population. Can you calculate the 95Vo Cl for the incidence rate? If so,
calculate the interval. If not, what information do you need? What assumptions
must you make?

First, ask yourself whether it makes sense to calculate a CI. You know the incidence
of the disease in the entire population last year, so there is no need for a CI for the
incidence of the disease last year. If you assume that the overall incidence of the
disease is not changing, it may be reasonable to consider last year's population to be
a sample from the populations of the next few years. So you can calculate a CI for

the overall incidence rate for the next few years.
The problem is stated as number of disease cases per 10,000 population, but

10,000 is not really the denominator, as the data were collected from a population of

1,000,000. So the sample proportion is 2500 out of a population of 1,000,000. Use

Equation 2.1 to determine that the CI ranges from 0.247o to 0.267a. Assuming that the

incidence of the disease is not changing, you can be 957o sure that the true average

incidence rate for the next few years will be somewhere within that range.

7. Is it possible for the lower end of a CI for a proportion to be negative? To be zero?

It is impossible for the end of the CI to be negative. The CI is a range of proportions,

and the proportion cannot be negative. The lower confidence limit equals 0 only when

the numerator of the proportion is 0.

8. Is it possible to calculate a lO0Va CI?

If you want to be l0o7o sure that an interval includes the population proportion, that

interval must range from 0 to I007o. That is a 1007o CI, but it is not the least bit useful.

CHAPTER 3

l. Estimate the SD of the age of the students in a typical medical school class (ust

a rough estimate will suffice).

Without data, you can't determine the SD exactly. But you can estimate it. The mean

age of first-year medical students is probably about 23. Lots of students are 1 year

older or younger. A few might be a lot younger or a lot older. If you assume that the

age distribution is approximately Gaussian, you will include two thirds of the students

in a range of ages that extends one SD either side of the mean. Therefore the SD is

probably about I year. Obviously it will vary from class to class.

The point of this question is to remind you that the SD is not just a number that

falls out of an equation. Rather, the SD describes the scatter of data. If you have a rough

idea how the values are scattered, you can estimate the SD without any calculations.
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2. Estimate the SD of the number of hours slept each night by adults.

Without data, you can't know the SD exactly. But you can estimate it. On average,
adults sleep about 8 hours. Some sleep more, some less. If you go one SD from the
mean, you'll include two thirds of the population, assuming that sleep time is roughly
Gaussian. I'd estimate that the SD is about t hour. If this were true, then about two
thirds of adults would sleep between 6 and t hours per night.

Again, the point of this question is to remind you that the SD is not just a number
that falls out of an equation. Rather, the SD describes the scatter of data. If you
have a rough idea how the values are scattered, you can estimate the SD without
any calculations.

3. The following cholesterol levels were measured in 10 people (mg/dl):
260, 150, 160, 200, 210, 240, 220, 225, 210, 240

Calculate the mean, median, variance, standard deviation, and coefficient of varia-
tion. Make sure vou include units.

Mean :211.5 mg/dl

Median : 215 mg/dl

Variance : 1200.28 (mg/dl)2

SD : 34.645 mg/dl

CV: 34.6451211.5 : 16.4%o

4. Add an llth value (931) to the numbers in Question 3 and recalculate all values.

Mean : 276.9 mg/dl

Median : 220 mg/dl

Variance : 48,140 (mg/dl)2

SD : 219.4 mg/dl

CV : 219.4/276.9 :79.237o

One value far from the rest increases the SD and variance considerablv. It has little
impact on the median.

5. Can a SD be 0? Can it be negative?

The SD will be 0 only if all values are exactly the same. The SD describes scatter
above and below the mean, but it is always a positive number. Mathematically, the
SD is the square root of the variance. By convention, the square root is always defined
to be positive.

CHAPTER 4

1. The level of an enzyme in blood was measured in 20 patients, and the results were
reported as 79.6 -r 7.3 units/ml (mean -r SD). No other information is given about
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the distribution of the results. Estimate what the probability distribution might have
looked like.

With no other information to go on, it is reasonable to speculate that the enzyme
activity would be roughly Gaussian. Since we know the mean and SD, we can sketch
this distribution (Figure ,{4.1).

2. The level of an enzyme in blood was measured in 20 patients and the results were
reported as 9.6 -r 7.3 units/ml (mean -r SD). No other information is given about
the distribution of the results. Estimate what the probability distribution might have
looked like.

Again, you might start with the assumption that the distribution is roughly Gaussian.
If that were true, then 95Vo of the population would be within 2 SDs of the mean. But
to go down 2 SDs from the mean, you need to include negative numbers. But enzyme
activity cannot be negative. Therefore, the distribution cannot possibly be Gaussian
with the stated mean and SD. The distribution must either have a "tail" to the right,
or it might be bimodal. Two possibilities are illustrated in Figure A4.2.

3. The values of serum sodium in healthy adults approximates a Gaussian distribution
with a mean of 141 mM and a SD of 3 mM. Assuming this distribution, what
fraction of adults has sodium levels less than 137 mM? What fraction has sodium
levels between I37 and 145?

What fraction has values below 137 mM? 7: (I41 - 137)/3: 1.33. Interpolating
from the third column of Table A5.2 in the Appendix, the answer is about 9.27o.

What fraction are between 137 and 145? To answer this question, calculate the
fraction with values below 137 and the fraction above 145. Subtract these fractions
from I007o to get the answer. You've already calculated the fraction below 137. What
fraction have values above 145 mM? The value of z : (145 - L37)13 : 2.67. From
the second column of Table A5.2 in the Appendix, the answer is just a bit under
O.40Vo. The fraction with values between 137 and 145 is l00Vo - 9.2Vo - A.4Vo :

9O.4Vo.

Enryme Activity (units/ml)

Figure A4.1.
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Figure A4.2.

4. You measure plasma glucose levels in five patients and the values are 146, I57,
165, 13l, 157 mg/100 ml. Calculate the mean and SD. What is the 95Va prediction
interval? What does it mean?

The mean is 151.2 mg/100 ml. The SD is 13.2 mg/100 ml. With a sample of N : 5,
the prediction interval extends 3.04 standard deviations on either side of the mean. So
the 957o prediction interval goes from 111.1 to 191.3 mg/100 ml.

5. The Weschler IQ scale was created so that the mean is 100 and the standard deviation
is 15. What fraction of the population has an IQ greater than 135?

The value of z : (135 - 100y15 : 2.33. The problem asks what fraction of a standard
Gaussian distribution has a z score greater than2.33. From Table A5.2 in the Appendix,
you can interpolate that the value is about I%o.lf IQ scores are distributed in a Gaussian
manner, l7o of scores are greater than 135.

CHAPTER 5

1. Figure 5.4 shows the probability distribution for the time that an ion channel stays
open. Most channels stay open for a very short time, and some stay open longer.
Imagine that you measure the open time of 10 channels in each experiment and
calculate the average time. You then repeat the experiment many times. Sketch the
expected shape of the distribution of the mean open times.

The probability distribution is an exponential curve. Lots of channels stay open a short
period of time, a few stay open longer. If you repeatedly calculated the mean open
time of 10 channels, the distribution of the means would follow a roughly Gaussian
distribution. This is a consequence of the central limit theorem.

2. An enzyme level was measured in cultured cells. The experiment was repeated on
3 days; on each day the measurement was made in triplicate. The experimental
conditions and cell cultures were identical on each day; the only purpose of the
repeated experiments was to determine the value more precisely. The results are
shown as enzyme activity in units per minute per milligram of membrane protein.
Summarize these data as you would for publication. The readers have no interest
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in the individual results for each day; just one overall

the scatter. Give the results as mean, error value, and

APPENDICES

mean with an indication of
N. Justify your decisions.

Replicate I Replicate 2 Replicate 3

Monday
Tuesday
Wednesday

234
269
254

220
967
249

229
275
246

There are two difficulties with this problem. First, you need to decide what to do with

Tuesday's second replicate. It is wildly out of whack with the others. Deciding what

to do with outlying values is a difficult problem, and different scientists have different

policies. In this case, I think it is clear that the value can't possibly be correct. Not

only is it far far away from the other two replicates, but it is far far away from the

six replicates measured on other days. Since the experiment was performed with

cultured cells, there is no biological variability from day to day. The only contribution

to scatter are experimental errors. It seems plain to me that the 961 value is clearly

incorrect. First, I would look back at the lab notebook and see if the experimenter

noticed anything funny about that tube during the experiment. If there was a known

problem with that replicate, then I would feel very comfortable throwing it out. Even

otherwise, I would delete it from the analysis, while recording in a lab notebook exactly

what I had done. Including that value would throw off the calculations, so the result

wouldn't be helpful.
If the rows represented different patients (rather than different experiments on the

same cell cultures), then my answer would be different. With different patients, biologi-

cal variability plays a role. Maybe the large number is correct and the two small

numbers are wrong. Maybe the second patient is really different than the first and

third. If possible, I'd do the experiment with patient #2 a second time to find out.

The second problem is how to pool the eight remaining values. It is not really

fair to consider these to be eight independent measurements. The replicates in one day

are closer to one another than they are to measurements made on other days. This is

expected, since there are more contributions to variability between days than between

replicates. So calculating the mean and SD or SEM of all eight values is not valid.

Instead, I would calculate the mean value for each day, and then calculate the

mean and SEM of the three means and then calculate a 95Vo CI. This makes sense if

you think of the population as the means of all possible experiments with N : 3. We

can be 95Va sure that the true mean lies somewhere within the CI.*

The calculations are given in the following table.

Replicate I Replicate 2 Replicate 3

Monday
Tuesday
Wednesday
Grand Mean

234
269
254

220
-9+
249

229
275
246

227.67
272.W
249.67
249.78

*It would be better to use a technique that also takes into account the variability between replicates. But

this is difficult to calculate, confusing to explain, and doesn't change the results very much'
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The SEM of the three means is 12.8. The 95Vo CI for the grand mean is from 194.7
to 304.9.If you were to repeat a similar experiment many times, the 95Vo CI would
contain the true mean in 95Vo of experiments.

"The experiment was performed three times in triplicate. After excluding one
wildly high replicate, the mean for each experiment was calculated. The grand mean
is 249.8 with a sEM of 12.8 (n : 3). The 957o cI ranges from 194.i to 304.9."

3. Is the width of a 99Vo CI wider or narrower than the width of a gOVo CI?

To be more confident, you need to span a wider range of values. The 99Vo CI is wider
than the 907o Cl.

4. The serum levels of a hormone (the Y factor) was measured to be 93 -r 1.5 (mean
-f SEM) in 100 nonpregnant women and I I0 -r 2.3 (mean -f SEM) in 100 women
in the flrst trimester of pregnancy.

A. Calculate the 95Va Cl for the mean value in each group.

with 100 subjects in each group, df :99, and t* : 1.984 (from Table A5.3 in the
Appendix). The 95Vo Cls are the mean plus or minus 1.984 times the SEM. For the
nonpregnant women, the CI ranges from 90.0 to 96.0. For the pregnant women,
the CI ranges from 105.4 to 114.6.

B. Assuming that the measurement of Y is easy, cheap, and accurate, is it a useful
assay to diagnose pregnancy?

NO! The SEM values only tell you about how well you know the means. The 95Vo
CIs for the nonpregnant and pregnant women don't overlap (and don't even come
close), so it is pretty clear that the mean values of the two populations are really
different. In other words, it is very clear that the mean level of the Y factor increases
with pregnancy. But that does not mean that measuring the level of y will be helpful
in diagnosing pregnancy. To assess its usefulness as a diagnostic test, you need to look
at how much the two distributions overlap.

The957o CI is the range of values that you can be 95Vo surecontains the population
mean. To think about the diagnostic usefulness of this test, we need to think about the
prediction interval, the range of values that you expect to contain 95Vo of the values
in the population. First, you need to calculate the SDs. This is done by multiplying
the SEM by the square root of sample size. The SD of the nonpregnant women is 15;
the SD of the pregnant women is 23. For N : 100, the prediction interval extends
1'99 standard deviations either side of the mean (Table 4.2). For the nonpregnant
women' the prediction interval extends from 63.2 to 122.9. For pregnant women, the
prediction interval extends from 64.2 to 155.8. The two distributions overlap consider-
ably, so the test would be completely useless as a diagnostic test.

The CI is only useful when you wish to make inferences about the mean. you
must calculate the much wider prediction interval when you wish to make inferences
about the actual distribution of the populations.

5. A paper reports that cell membranes have 1203 t 64 (mean -{- sEM) fmol of
receptor per milligram of membrane protein. These data come from nine experiments.
A. calculate the 95%o cr. Explain what it means in plain language.
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With N : 9, df : 8 and t* :2.306. So the 95Vo CI ranges from 1055.4 to 1350.6
fmoVmg protein. Assuming that each of the nine experiments was conducted indepen-
dently, you can be 95Vo sure that the true mean (if you were to perform an infinite
number of such experiments) lies within this range.

B. Calculate the 957o prediction interval. Explain what it means in plain language.

To calculate the prediction interval, you first have to calculate the SD. The SD equals
the SEM times the square root of the sample size, or 192. For N : 9, the prediction
interval extends 2.43 SDs on each side of the mean (Table 4.2). So the 95Vo prediction
interval ranges from 736.4 to 1669.6 fmol/mg. The prediction interval is much wider
than the CI.

C. Is it possible to sketch the distribution of the original data? If so, do it.

If you are willing to assume that population is distributed in a Gaussian manner, you
can draw the distribution. This is a reasonable assumption, because the experimental
scatter is due to many factors acting independently. From the mean and SD, we can
draw this distribution in Figure A4.3.

D. Calculate the 907o CI.

With df : 8, t* for 90Vo CI is 1.86 (Table A5.3 in the Appendix). So the CI extends
1.86 SEMs on each side of the mean. The9OVo CI ranges from 1084.0to 1322.0.

E. Calculate the coefficient of variation.

The coefficient of variation (CV) is the SD divided by the mean, l92ll2o3 or 16.O7o.

6. You measure blood pressure in 10 randomly selected subjects and calculate that

the mean is 125 and the SD is 7.5 mmHg. Calculate the SEM and 957o CI. Then

you measure blood pressure in 100 subjects randomly selected from the same

population. What values do you expect to find for the SD and SEM?

The SEM is the SD divided by the square root of sample size, so it equals 7.5/'m

or 2.37 . With N : 10. df : 9. and t* -- 2.26. The 95Vo CI extends 2.26 SEMs either

side of the mean: 119.6 to 130.4 mmHg.
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Figure A4.3.
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When you increase the sample size, you don't expect the SD to change. The SD

measures the scatter of the data, and the scatter doesn't change by sampling more

subjects. You'll know the SD more accurately, so the value will probably change. But

the SD is just as likely to increase as to decrease when you add more subjects. Your

best guess is that the SD will still equal 7.5 mmHg.

The SEM quantifies how well you have determined the population mean. When

you increase the sample size, your sample mean will probably be closer to the population

mean. So the SEM gets smaller as the sample size gets larger. With N : 100, your

best guess for the SEM is 7.51Y 100, or 0.76 mmHg.

Many students mistakenly think that the SD ought to get smaller as the sample

size gets larger. Not so. The SD quantifies variability or scatter, and the scatter is real.

The values in the population are not all the same. Collecting a larger sample helps

you know the SD better, but the size of the SD does not change predictably as sample

size increases. The SD quantifies an attribute of the population, and that attribute

(scatter) doesn't change when you sample more subjects.

If you are still confused, think of how the mean will change when you sample

more subjects. If you collect a larger sample, you'll know the population mean better

and your sample mean from N : 100 won't exactly equal the sample mean from

N : 10. But it is just as likely that the mean will increase as decrease. The sample

mean quantifies an attribute of the population (its average), and the population doesn't

change by sampling more subjects.
The standard error is different. It does not quantify an attribute of the population.

It quantifies sampling error, and its value is determined (in part) by the sample size.

Collecting bigger samples reduces the value of the standard elror of the mean.

7. Why doesn't it ever make sense to calculate a CI from a population SD (as opposed

to the sample SD)?

If you know the population SD, then you must know all the values in the population.

If this is true, then you know the population mean exactly. So there is no point in

calculating a CI. Confidence intervals are only useful when you are unsure about the
true population mean, so want to calculate a CI to quantify your uncertainty.

8. Data were measured in 16 subjects, and the 95Vo CI was 97 to 132.

A. Predict the distribution of the raw data.

Since the CI is symmetrical around the mean, the mean must equal the average of 97
and 132, or 114.5. With 16 subjects, the 95Vo Cl extends about 2 SEMs on either side
of the mean, so the SEM must be one quafter of the difference between 132 and 97,
or about 8.75. The SD equals the SEM times the square root of sample size, or 35.
With nothing else to go on, we assume that the population is roughly Gaussian.
The prediction interval extends 2.20 SDs either side of the mean, from 37.5 to
1 9 1 . 5 .

B. Calculate the 99%o CI.

For df : 15, t* : 2.95 (Appendix Table A5.3). The 997o CI extends 2.95 SEMs either
side of the mean: from 88.7 to L4O.3. The 99Vo CI is wider than the 95Vo CI. To be
more sure that the interval includes the population mean, you have to make it
wider.
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9. Which is larger, the SD or the SEM? Are there any exceptions?

The SD is larger, without exception. The SD quantifies scatter; the SEM quantifies
how well you know the population mean. The SEM must be smaller. If you look at
Equation 5.2, you can see mathematically why the SEM is smaller. With that equation,
the SEM would equal the SD if N : 1 . But if N : 1, it wouldn't make any sense ro
think about scatter and the SD is not defined.

CHAPTER 6

1. Why are the CIs in Figure 6.3 asymmetrical?

Survival can't possibly be greater than lO}Vo or less than \Vo. At the early time points
when the survival is close to l00%o the upper confidence limit is constrained at l\OVo
while the lower confidence limit is not constrained.

2. Why is it possible to calculate the median survival time when some of the subjects
are still alive?

If you listed all the survival times in order, the median would be the middle time. If
subjects are still alive, then you don't know their survival time. But you do know that
their survival time will be longer than any subject who already died. So you can still
find the median time, even if subjects are still alive. Median survival is the time at
which half the subjects are still alive and half are dead.

3. Why are survival curves drawn as staircase curves?

The curves plot the survival of the subjects in your sample. Whenever a subject dies,
the percent survival drops. The percent survival then remains at a steady plateau until
the next patient dies.

You could imagine drawing the curve differently if your goal were to draw your
best guess of survival in the population. You might then draw a sloping line from one
patient's death to the next. Then the curve would not look like a staircase. But the
convention is to draw survival curves showing the survival of your sample, so staircase
curves are used.

4. A survival curve includes many subjects who were censored because they dropped
out of the study because they felt too ill to come to the clinic appointments. Is the
survival curve likely to overestimate or underestimate survival of the population?

Since the censored patients were sicker than the average subjects, on average they
probably died sooner than the noncensored patients. So the remaining patients probably
die laterthan the overall average, and so the data on the remaining patients overestimates
the survival of the entire population.

A survival curve can only be interpreted when you assume that the survival of
the censored subjects would, on average, equal the survival ofthe uncensored subjects.
If many subjects are censored, this is an important assumption. If the study is large
and only a few subjects were censored, then it doesn't matter so much.
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5. A study began on January l, lggl and ended on December 31, 1994. How will

each of these subjects appear on the graph?

A. Entered March l, 1991. Died March 31, 1992.

This subject is shown as a downward step at time : 13 months.

B. Entered April 1, 1991. Left study March l, 1992.

This subject was censored at 11 months. He or she will appear as a blip at time :

11 months.

C. Entered January l, 199I. Still alive when study ended.

The subject was alive for the entire 48 months of the study. He or she will appear as

a blip at time : 48 months. Since the graph ends at 48 months, the blip may not

be visible.

D. Entered January l, 1992. Still alive when study ended.

This subject was alive for 36 months after starting the trial. So he or she was censored

at 36 months and will appear as a blip at time : 36 months.

E. Entered January l, 1993. Still alive when study ended.

This subject was alive for 24 months at the time the study ended. So he or she appears

as a censored subject at time : 24 months.

F. Entered January I, 1994. Died December 30, 1994.

This subject died 12 months after starting the trial. So he or she will appear as a

downward step at time : 12 months.

G. Entered July l, 1992. Died of car crash March I, 1993.

This is ambiguous. After 8 months the subject died of a car crash. This might count

as a death or as a censored subject, depending on the decision of the investigator.

Ideally, the experimental protocol should have specified how to handle this situation

before the data were collected. Some studies only count deaths from the disease being

studied, but most studies count deaths from all causes. Some studies analyze the data

both ways. Why would you include a death from a car crash in a study of cancer? The
problem is that it is impossible to know for sure that a death is really unrelated to the
cancer (and its therapy). Maybe the car crash in this example would have been avoided
if the study medication hadn't slowed the reaction time or if the cancer hadn't limited
peripheral vision.

6. A survival study started with 100 subjects. Before the end of the fifth year, no
patients had been censored and 25 had died. Five patients were censored in the
sixth year, and five died in the seventh year. What is the percent survival at the
end of the seventh year? What is the 95Vo CI for that fraction?

This book did not give the equations for calculating a survival curve, but it is pretty
easy to figure out. At the end of the fifth year, 25 patients had died and 75 are still
alive. So the fraction survival is75Vo. During the sixth yeff, five subjects are censored.
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This does not change percent survival, which remains at75Vo. Now five subjects die
in the next year. At the start of that year, 70 subjects were alive (100 - 25 - 5). At
the end of the seventh year, 65 subjects are alive. So for subjects alive at the start of
the seventh year, the probability of surviving that year is 65/70 or 92.86Vo. The
probability of surviving up to the beginning of the seventh year, as we already calculated,
is 757o. So the probability of surviving from time zero to the end of the seventh year
is the product of those two probabilities, 75vo x 92.86vo : 69.6vo.

To calculate the CI, you have to know the number of subjects still being followed
at the end of the seventh year. This equals 100 - 25 - 5 - 5 : 65. use Equation
6.1 with p : .696 and N : 65. Theg\Vo CI is from 0.696 - 0.093 to 0.696 + 0.093.
or 0.603 to 0.789. or 60.3Vo to 78.9Vo.

CHAPTER 7

1. (Same data as in Problem 4 in Chapter 5.) The serum levels of a hormone (the Y
factor) was measured to be 93 -t_ 1.5 units/ml (mean -t SEM) in 100 nonpregnant
women and I l0 +- 2.3 units/ml in 100 women in the first trimester of pregnancy.

A. What is the 95Va Cl for the difference between mean levels of the Y factor?

The SE of the difference is the square root of the sum of the square of the two SEM
values (Equation 7.1), or 2.75 units/ml. With 100 subjects in each group, there are 100
+ 100 - 2 - 198 degrees of freedom. With so many degrees of freedom t* : 1.97.
The difference between the means is 110 - 93 : l7.The95Vo CI extends 1.97 SEs
oneach side, or 11.6 to 22.4units/ml. If we assume thatboth samples arerepresenta-
tive of the overall populations, we can be 95Vo sure that the mean level of the Y factor
in pregnant women is between 11.6 and 22.4 units/ml higher than in nonpregnant
women.

B. What assumptions do you have to make to answer that question?

We assume that the two samples are representative of the overall populations of pregnant
and nonpregnant women of the appropriate age range. Since the samples are so large,
we don't need to assume that the distributions are Gaussian. We do have to assume
that the two populations have similar standard deviations, and that the subjects have
each been selected independently.

2. Pullan et al. investigated the use of transdermal nicotine for treating ulcerative
colitis. The plasma nicotine level at baseline was 0.5 -f 1.1 ng/ml (mean -r SD; N
: 35). After 6 weeks of treatment, the plasma level was 8.2 'r 7.1 ng ml (N :

30). Calculate a 95Vo Cl for the increase in plasma nicotine level.

Using Equations 7.2 and 7.3, the 95Vo CI for the difference extends from 5.3 to 10.1
nglml.

What assumptions are you making? Are these valid?

. The subjects are representative of all patients with ulcerative colitis. This seems
reasonable but to really know you'd have to investigate how the investigators re-
cruited subjects.
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. The populations follow a Gaussian distribution. Since the samples are fairly large,

this isn't too important. From the data it is obvious that the populations cannot be

Gaussian. If ths populations were Gaussian, 957o of the values in the population

would be within 2 SDs of the mean and the distribution would be symmetrical around

the mean. With the values given in this problem, this would be possible only if

nicotine levels could be negative.
. Each subject was selected independently of the others. Without knowing the details

of the eiperimental design, it is impossible to evaluate this assumption. It seems

reasonable.
. The values in the rwo groups are not paired or matched. Clearly this assumption is

violated. Each subject was measured twice.
. The two populations have equal SDS. This assumption has been violated.

If you had access to all the data, how might you analyze the data?

There are two problems with the analysis. First, the data are paired, so the analysis

should take into account the pairing. Second, and less important, the data are not

sampled from a Gaussian distribution.

If you had access to the raw data, you could calculate the change in nicotine for

each subject and then calculate the mean change and the 957o CI of the mean change.

This analysis does not require that the data be sampled from Gaussian distributions

but does assume that the changes are distributed in a Gaussian manner. You could

also express the results as the logarithm of concentration, which may result in a more

Gaussian distribution.

3. You measure receptor number in cultured cells in the presence and absence of a

hormone. Each experiment has its own control. Experiments were performed several

months apart, so that the cells were of different passage numbers and were grown

in different lots of serum. The results are reproduced below. Each value is receptor

number in fmoVmg (femtomole of receptor per milligram of membrane protein).

How would you summarize and graph these results? What CI would you calculate?

The results are given in the following table.

Experiment No. Control Hormone Change

Experiment I
Experiment 2
Experiment 3
Experiment 4

123
64

r89
265

209
103
343
485

86
39

t54
220

The mean of the changes is 124.8 fmol/mg, with a SE of 39.6 fmoUmg. The 95Vo CI
for the overall average change is from -l.l to 250.6 fmoVmg. This is a very wide
range, ranging from a slight decrease to an enormous increase.

That approach is based on the assumption that the most consistent measure of
change is the difference between the control and hormone values. In many experiments
it is more consistent to express the change as a fold difference. For this example, you'd
calculate the ratio of the hormone/control. You can see that this is a more consistent way
to quantify the change, as the receptor number almost doubles in all four experiments. If
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the results are more consistent when
indicated in the following table.

APPENDICES

expressed this way, the CI will be narrower. as

Experiment No. Control Hormone

Experiment I
Experiment 2
Experiment 3
Experiment 4

t23
u

r89
265

209
103
343
485

r .70
l . 6 l
1  . 8 1
1 .83

The mean ratio is 1.74 with a SE of 0.05. Theg|Vo CI for the ratio is 1.58 to 1.90.
You can be 95Vo sure that hormone treatment increases receptor number 1.58- to
1.90-fo1d.

Chapter 25 explains this approach in more detail. It is better to calculate the
logarithm of the ratios and then calculate the mean and 95Vo CI for the logarithms.
You can then take the antilogarithms of each confidence limit. With this example, you
get almost the same results this way. The 95Vo CI for the mean ratio ranges from 1.55
t o  1 . 9 1 .

4. Why is the SE of a difference between two means larger than the SE of either mean?

The SE of a difference quantifies how well you know the difference between two
population means. It depends on how well you know each mean as reflected in the two
SEMs. Uncertainty in each of the two means contributes to uncertainty in the difference.

CHAPTER B

l. The relative risk of death from lung cancers in smokers (compared with nonsmokers)
is about 10. The relative risk of death from coronary artery disease in smokers is
about 1.7. Does smoking cause more deaths from lung cancer or from coronary
artery disease in a population where the mortality rate in nonsmokers is 5/100,000
for lung cancer and 170/100,000 for coronary artery disease?

The table analvzes the data.

Number of Deaths in
100,000 Nomsmokers

Number of Deaths in Excess Deaths Among
100,000 Smokers 100,000 Smokers

Lung cancer

Coronary disease

5
t70

50
289

45
l 1 9

The first column shows the number of deaths among 100,000 nomsmokers, calculated
from the mortality rate. The second column shows the number of deaths among the
smokers. It is calculated by multiplying the number of deaths among nonsmokers times
the relative risk. The final column shows the number of excess deaths, calculated as
the difference between the number of deaths among smokers and among nonsmokers.
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Even though the relative risk is much higher for lung cancer, there are far more excess

deaths for coronary disease. This is because coronary heart disease is so much more

common than lung cancer. This question points out how overemphasizing relative risks

can be misleading.

2. Goran-Larsson et al. wondered whether hypermobile joints caused symptoms in

musicians. They sent questionnaires to many musicians and asked about hypermobil-

ity of the joints and about symptoms of pain and stiffness. They asked about all

ioints, but this problem concerns only the data they collected about the wrists. Of

96 musicians with hypermobile wrists, 5Vo had pain and stiffness of the wrists. In

contrast, lSVo of 564 musicians without hypermobility had such symptoms.

A. Is this a prospective, retrospective, or cross-sectional study?

B. Analyze these data as fully as possible.

A. This is a cross-sectional study. The subjects were selected because they were

musicians. The investigators did not select subjects according to pain and stiffness of

their joints, not because they do or don't have hypermobile joints. The investigators

sampled subjects from the population of musicians and determined whether the joints

were hypermobile and whether the joints were painful and stiff at the same time.

A retrospective study could also address this question. The investigators chose one

group of musicians with painful and stiff joints and another group of musicians without

painful or stiff joints. They would then ask both groups about hypermobility.

This would be a prospective study if the investigators chose one group of subjects

with hypermobile joints and another group of musicians without hypermobile joints.

The investigators would then wait and see how many musicians in each group developed

pain and stiff joints.

B. Before analyzing the data, it helps to display the data on a contingency table. To

start, 57o of 96 musicians with hypermobile wrists had pain and stiffness. If you

multiply 0.05 times 96, the result is 4.8. Since the result must be an integer, the

investigators must have rounded off the percentage. So we place the number 5 into

the upper left cell of the spreadsheet. The rest of the table is calculated in the

same wav.

Pain and Stiffness No Pain or Stiffness Total

Hypermobile wrists
Normal wrists
Total

5
t02
t07

9 l
462
553

96
564
192

It is meaningful to calculate a relative risk from cross-sectional studies. The
relative risk is 0.29. Musicians with hypermobile wrists are only 297o as likely to have
painful or stiff wrists than are musicians without hypermobility. Using InStat or Equa-
tion 8.7, you can calculate that the approximate 95Vo CI ranges from 0.12 to 0.69. We
are 957o sure that musicians with hypermobile joints have somewhere between I2Vo
and 69Vo as high a prevalence of wrist pain and stiffness compared to musicians with
normal wrists. Hypermobile wrists protect musicians from pain and stiffness.
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You could also calculate the difference of prevalence rates. Among musicians
with hypermobile wrists, the prevalence of pain and suffering is 5.2Vo.Among musicians
without hypermobile wrists, the prevalence of pain and suffering is 18. lTo. Thediffer-
ence is 12.97o, with an approximate 95Va CI for the difference ranging from 7.4Vo
to l8.4%o.

To interpret these results, you have to assume that the musicians studied here are
representative of musicians in other places. You also have to assume that the assessment
of hypermobility is objective, and not influenced by the presence or absence of pain
and stiffness.

3. The same number of cells (100,000 per ml) were placed into four flasks. Two cell
lines were used. Some flasks were treated with drug, while the others were treated
only with vehicle (control). The data in the following table are mean cell counts
(thousands per milliliter) after 24 hours.

No drug Drug

Cell Line I
Cell Line 2

145
256

198
356

Analyze these data as fully as possible. If you had access to all the original data,
how else might you wish to summarize the findings?

This table is not a contingency table, and none of the methods presented in Chapter
8 are appropriate. The values in the table are mean cell counts, not counts of the
number of subjects in each category. If this were a true contingency table, there would
be 145 + 198 + 256 + 356 subjects or experiments. In fact, there is only one experiment
reported here. A larger number in the table means that the cells grew faster, not that
a certain outcome occurred in more subjects.

4. Cohen et al. investigated the use of active cardiopulmonary resuscitation (CPR).*
In standard CPR the resuscitator compresses the victim's chest to force the heart
to pump blood to the brain (and elsewhere) and then lets go to let the chest expand.
Active CPR is done with a suction device. This enables the resuscitator to pull up
on the chest to expand it as well as pressing down to compress it. These investigators
randomly assigned cardiac arrest patients to receive either standard or active CPR.
Eighteen of 29 patients treated with active CPR were resuscitated. In contrast, 10
of 33 patients treated with standard CPR were resuscitated.

A. Is this a cross-sectional, prospective, retrospective, or experimental study?
B. Analyze these data as you see fit.

A. This is an experimental study. The investigators sampled one group of subjects
(victims of cardiac arrest) and gave them two different treatments.

*TJ Cohen, BG Goldner, PC Maccaro, AP Ardito, S Trazzera. MB Cohen, SR Dibs. A comparison of active
compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for
cardiac arrests occurring in the hospital. N Engl J Med 329:1918-1921, 1993.
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B. As always with these kind of data, it helps to arrange the data onto a contingency

table. The results can be summarized with a relative risk which is (18/29)(10/33) :

2.05. Cardiac arrest victims given active CPR were about twice as likely to be

resuscitated as cardiac arrest victims given standard CPR. The approximate 95Vo

CI for the relative risk ranges from 1.14 to 3.70.

Resuscitated Not Resuscitated Total

Active CPR

Standard CPR

Total

l 8
l 0
28

l 1
23
34

29
J J

62

You could also calculate the results as the difference in success rates. Among

victims given active CPR, 62.l%o were resuscitated. Among victims given standard

cPR, only 30.37o were resuscitated. The difference in resuscitation rates is 3l.8vo,

with a 95Vo Cl of 6.97o to 56.6Vo.
To interpret these results, you have to assume that these victims of cardiac arrest

are representative of others in other places. You also have to assume that there was

no difference between the two groups except for the kind of CPR. The results wouldn't

be hetpful, for example, if the group given active CPR happened to be much younger

than the group given standard CPR or if the two groups of subjects lived in different

areas or were treated by different paramedics.
To fully assess these results, you would want to look at more than just the

resuscitation rate. You'd also want to know how many of the resuscitated patients

survived long enough to be discharged from the hospital, and how many survived for

one or more years after that. You'd also want to know whether the survivors were
living active lives or whether they had lost mental function.

5. In a letter in Nature (356:992, 1992) it was suggested that artists had more sons
than daughters. Searching Who's Who in Art, the author found that artists had 1834
sons and 1640 daughters, a ratio of 1.118. As a comparison group, the investigator
looked at the first 4002 children of nonartists listed in Who's Who and found that
the ratio of sons/daughters is 1.0460. Do you think the excess of sons among the
offspring of artists is a coincidence?

Let's create a contingency table from these data.

Sons Daughters Total

Artists in WW
Nonartists in WW
Total

1834
20/,6
3880

r640
1956
3596

3474
4002
7476

The only trick in creating the contingency table is filling in the numbers for the
nonartists. We know that the total number in the sample is 4002 and that the ratio of
boys/girls is 1.046. This means that the ratio of boys/(boys * girls) is I .046/( I + 1.046)
or 5l.IVo.Thercfore there are .5ll * 4002:2046 boys, which leaves 1956 daughters.
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You can calculate the relative risk. The word risk is a bit awkward here, and
relative proportion is more appropriate. The relative proportion equals (1534/34j4)/
(2046/4002):1.033. The artists were 1.033 times more likely to have a son than
were the nonartists. The 95%o Cl ranges from 0.99 to 1.0g.

Is the difference in sex ratio a coincidence in these samples, or is it a real difference
between artists and nonartists? There is no way to answer this question for sure. you'll
learn more about how to approach the question in Chapter 27. For now, you can see
that the 95Vo Cl contains the value 1.00, so it is certainly reasonable to suspect that
the observed difference is a coincidence. The relative risk is not so far from 1.0 that
you feel compelled to believe that the difference is real.

In assessing these data, you also need to consider the background of the study.
Why did the investigators suspect that artists would have more sons? It doesn't seem
to make any biological sense. And why study artists? Why not architects or plumbers
or surgeons? If you look at enough occupations, you are sure to find some that have
a higher or lower fraction of sons than average.

So there are two reasons to be dubious about the conclusions. First, the findings
are not very striking, the relative risk is not far from 1.0 and the 95Vo CI contains 1.0
(barely). Second, the investigators do not appear to have a logical reason to think that
the findings could be real. I conclude that the difference between this sample of artists
and nonartists is almost certainlv a coincidence.

CHAPTER 9

1. Can an odds ratio be greater than one? Negative? Zero?

The odds ratio ranges from 0 to 1. It cannot be negative.

2. Can the logarithm of the odds ratio be greater than one? Negative? Zero?

The logarithm of the odds ratio can be any value, including negative values.

3. Gessner and colleagues investigated an outbreak of illness in an Alaskan community.
They suspected that one of the town's two water supplies delivered too much fluoride
leading to fluoride poisoning. They compared 38 cases with 50 controls. Thirty-
three of the cases recalled drinking water from water system l, while only four of
the controls had drunk water from that system.

Analyze these data as you think is appropriate. State your assumptions.

Cases Controls Total

System I
System 2
Totals

J J

5
38

37
5 l
88

4
46
50

This is a retrospective study. The subjects were selected either because they had
the illness or did not. Therefore a relative risk would be meaningless, and the results
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should be summarized with an odds ratio. The odds ratio is (3314)l(5/46) : 75-9. The

approximateg5Zo CI ranges from 18.9 to 304.4.If you assume that the disease was

rare in the community, then you can conclude that people drinking from system I were

76 times more likely to have the illness than people drinking from system 2. These

findings are striking and are strong evidence that the water system may be involved

in causing the disease.
In interpreting these data, you must assume that the subjects and controls studied

are representative of other people who did or didn't get the illness. You must also

assume that the subjects and controls were selected independently. For example, the

study wouldn't be valid if the investigators chose several cases or controls from the

same household (of course, they all drink from the same water system). Finally, you

must assume that there are no other differences between people who drank from the

two water systems. You wouldn't be able to interpret the results if the two groups of

people also bought their food at different sources, or worked in different villages, or

were different in some other way.

How could these authors have conducted a prospective study to test their hypothesis?

To do a prospective study, the investigators should choose people based on which
system provides their drinking water and then assess whether they got the illness. If
the illness is rare, it will require more subjects to perform a prospective study than a
retrospective study.

CHAPTER 1O

1. You wish to test the hypothesis that a toin coss is fair. You toss the coin six times
and it lands on heads each time. What is the null hypothesis? What is the P value?
Is a one- or two-tailed test more appropriate? What do you conclude?

The null hypothesis is that the coin is flipped fairly, so the probability of landing on
heads is exactly 0.5. If this were true, the chance that six consecutive flips would all
land on heads is 0.56 : l/64 : 0.016. If the null hypothesis were true, the chance that
six consecutive flips would all land on tails is also 0.016. These are one-tailed P values.
The chance that six flips would be identical (either heads or tails) is twice 0.016 or
3.ZVo. This is the two-tailed P value.

It is impossible to evaluate these results without any context. Why did anyone
suspect that the coin flipping was unfair? If you use a one-tailed P value, you must
have decided before the data were collected that you expected to see too many heads.
Otherwise you should choose the two-tailed P value of 0.032. How should the results
be interpreted? Either there is a systematic problem with the coin flipping so heads
comes up more than half the time or a coincidence occurred. This coincidence would
occur with a fair coin 3.2Vo of the time. Unless I had some reason to suspect that the
coin flipping was unfair (for example, if this were part of a magic show), I'd be inclined
to believe that it is a coincidence.

2. You conduct an experiment and calculate that the two-tailed P value is 0.08. What
is the one-tailed P value? What assumptions are you making?
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You can only calculate a one-tailed P value if the direction of the expected change
were predicted before the data were collected. If the change occurred in the predicted
direction, then the one-tailed P value is half the two-taiteo p value, or 0.04.

If the change occurred in the opposite direction, the situation is more tricky. The
one-tailed P value answers this question: If the null hypothesis were true, what is the
chance of randomly picking subjects such that the difference goes in the direction of
the experimental hypothesis with a magnitude as large or larger than observed? The
answer is a bit ambiguous when the result went in the diiection opposite to the
experimental hypothesis. One answer is that the one-tailed P value is 1.0 minus half
the two-tailed value. so the one-tailed p value is 0.96.

It really doesn't help to calculate a one-tailed P value when the observed difference
is opposite in direction to the experimental hypothesis. You should conclude that the
P value is very high and the difference was due to chance.

3. (Same data as Problem 4 in Chapter 5 and Problem I in Chapter 7.) The serum
levels of a hormone (the Y factor) was measured to be 93 + 1.5 (mean -r SEM)
in 100 nonpregnant women and 110 -f 2.3 (mean -r- SEM) in women in the first
trimester of pregnancy. When the two groups are compared with a t test, the p
value is less than 0.0001.

A. Explain what the P value means in plain language.

The null hypothesis is that the mean levels of the Y factor are identical in pregnant
and nonpregnant women. If this null hypothesis were true, there is less than a 0.OlTo
chance that the difference between the means of two randomly selected samples
(N : 100 each) would be 17 units/ml or greater.

B. Review your answers to Problem 4 in Chapter 5 and Problem 1 in Chapter 7.
Explain how the results complement one another.

The low P value tells us that the results are very unlikely to be due to coincidence.
And it cenainly is not surprising to find that the mean value of the hormone is elevated
in pregnant women (it might be surprising to find a hormone whose level does not
change in pregnancy!). The question in Chapter 5 asked whether measurements of this
hormone would be useful for diagnosing pregnancy. That is a very different question.
To be useful for diagnosis, it is not enough that the means differ. The two distributions
must also differ, with very little (if any) overlap. As explained in the answer in Chapter
5, the two distributions in this example overlap substantially, so the test is worthless
for diagnosis.

4. (Same data as Problem 4 in Chapter 8.) Cohen et al. investigated the use of active
cardiopulmonary resuscitation (CPR). In standard CPR the resuscitator compresses
the victim's chest to force the heart to pump blood to the brain (and elsewhere)
and then lets go to let the chest expand. Active CPR is done with a suction device.
This enables the resuscitator to pull up on the chest to expand it as well as pressing
down to compress it. These investigators randomly assigned cardiac arrest patients
to receive either standard or active CPR. Eighteen of 29 patients treated with active
CPR were resuscitated. In contrast, l0 of 33 patients treated with standard CPR
were resuscitated.

Using Fisher's test, the two-sided P value is 0.0207. Explain what this means in
plain language.
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The null hypothesis is that the resuscitation rate is the same for active and standard

CPR. If thaf hypothesis were true, the chance of observing such a large difference (or

larger) in a study this size is 2.17o.

CHAPTER 11

1. For Problems 3 and 4 of the last chapter, explain what a Type I and Type II error

would mean.

problem 3. (hormone Y in pregnancy). Since the P value is low, you would

conclude that the mean levels of hormone are significantly different. You'd be making

a Type I error if the mean levels in the overall population were really identical. It is

only possible to make a Type II error if you conclude that there is no statistically

significant difference. Since the P value is so low in this example (below any reasonable

value for cr), you'll definitely conclude that there is a significant difference, so it is

impossible to make a Type II error.
Problem 4. (CPR). If you set cr : 0.05, you would conclude that the resuscitation

rates are significantly different. You'd be making a Type I error if the resuscitation

rates in the overall populations were really identical. If you set a : 0.01, would you

conclude that the resuscitation rates are not significantly different? If you did this,

you'd have made a Type II error if the rates are really different.
2. Which of the following are inconsistent?

A. Mean difference : 10. The 957o CI: -20 to 40. P : 0.45.

Consistent.

B. Mean difference : 10. The 95Vo CI: -5 to 15. P : 0.02.

Inconsistent. The 957o Cl includes 0, so the P value must be greater than 0.05.

C. Relative risk : 1.56. The 95Vo CI: I .23 to 1.89. P : 0.013.

Consistent.

D. Relat ive r isk :  1.56. The95Vo CI:  0.81 to2. l2.  P :  0.04.

Inconsistent. The P value is less than 0.05. so the 95Vo CI for the relative risk cannot
include 1.0.

E. Relative risk : 2.03. The 957o CI: 1.01 to 3.13. P < 0.001.

Inconsistent. The P value is way less than 0.05, so the 95Vo Cl must not include 1.0
and shouldn't even come close. But the 957o CI starts at a value just barely greater
than 1.00.

CHAPTER 13

1. Assume that you are reviewing a manuscript prior to publication. The authors have
tested many drugs to see if they increase enzyme activity. All P values were

calculated using a paired t test. Each day they also perform a negative control, using
just vehicle with no drug. After discussing significant changes caused by some
drugs, they state that "in contrast, the vehicle control has consistently given a
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nonsignificant response (P > 0.05) in each of 250 experiments." Comment on these
negative results. Why are they surprising?

In the negative control experiments, you expect the null hypothesis to be true. Therefore
you expect I out of 20 control experiments to have a P value less than 0.05. In 250
experiments, therefore, you expect to see about 0.05 * 250 : 12.5 ..significant,,
responses. You'd be very surprised to see zero significant responses results among the
250 control experiments.

CHAPTER 14

l. A test has a specificity of 92Vo and a sensitivity of 99Vo. Calculate the predictive
values of positive and negative tests in a population in which 5Vo of the individuals
have the disease.

Create this table following the same steps as used for the examples in the book.

Disease Presenl Disease Absent Total

Positive test
Negative test
Totals

495
5

500

760
8740
9500

1255
8745

10000

The predictive value of a positive test is 49511255 : 39.4Vo. When a patient has
a positive test, there is a39.4Va chance that he or she actually has the disease.

The predictive value of a negative test is 874018745 : 99.97o. When a patient
has a negative test, you can be 99.9Vo sure that he or she does not have the disease.

2. A test has a specificity of 92Vo and a sensitivity of 997o. Calculate the predictive
values of positive and negative tests in a population in which 0.1Vo of the individuals
have the disease.

Disease Present Disease Absent Total

Positive test
Negative test
Totals

99
I

100

7992
91908
99,900

8091
91909

100.000

The predictive value of a positive test is 9918091 : 1.27o. When a patient has a
positive test, there is a 1.27o chance that he or she actually has the disease. Virtually
all (98.8Vo) of the positive tests are false positives.

The predictive value of a negative test is 91908/91909 : 99.97o. When a patient
has a negative test, you can be 99.9Vo sure that he or she does not have the disease.

3. A woman wants to know if her only son is color blind. Her father is color blind,
so she has a 5OVo chance of being a carrier (color blindness is a sex-lined trait).
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This means that, on average, half her sons will be color blind (she has no other

sons). Her son is a smart toddler. But if you ask him the color of an object, his

response seems random. He simply does not grasp the concept of color' Is he color

blind? Or has he not yet figured out what people mean when they ask him about

color? From your experience with other kids that age, you estimate that 757o of

kids that age can answer correctly when asked about colors' Combine the genetic

history and your estimate to determine the chance that this kid is color blind'

The sensitivity is 1007o, the specificity is 757o, and the prior probability is 507o' If

you were to see the infants of 1000 women whose fathers are color blind, the results

you'd expect to see are given in the following table'

Color Blind Not Color Blind

No sense of color

Knows colors

Total

500
0

500

t25
375
s00

625
375

r000

Of the kids who have no sense of color, 500/625 : 8O7o are color blind, while

the other 207o simply are slow to learn colors. You conclude that there is an 807o

chance that this kid is color blind. Of course, the accuracy of this conclusion depends

on how accurate the number "75Vo" is for the fraction of non-color blind kids who

can answer questions about color blindness at this age.

4. For patient C in the porphyria example, calculate the predictive value of the test if

your clinical intuition told you that the prior probability was 75Vo.

You can create this table.

Disease Present Disease Absent Total

<99 units
>99 units
Total

6 1 5
r35
750

9
241
250

624
376

1000

The predictive value ts 6151624 : 98.6Vo. Since the prior probability is higher,

the predictive value must be higher too. Before obtaining the test results, you already

thought the chance was higher. The test results increase the probability further.

CHAPTER 15

1. A student wants to determine whether treatment of cells with a particular hormone

increases the number of a particular kind of receptors. She and her advisor agree

that an increase of less than 100 receptors per cell is too small to care about. Based

on the standard deviation of results you have observed in similar studies, she

calculates the necessary sample size to have 90Vo power to detect an increase of
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100 receptors per cell. She performs the experiment that number of times, pools
the data, and obtains a p value of 0.04.

The student thinks that the experiment makes a lot of sense and thought that
the prior probability that her hypothesis was true was 60Vo. Her advisor is more
skeptical and thought that the prior probability was only 5vo.
A. Combining the prior probability and the P value, what is the chance that these

results are due to chance? Answer from both the student's perspective and that
of the advisor.

The student's perspective is illustrated by the following table which shows the results
of 1000 hypothetical experiments.

Prior
Probability :
0.60

Receptor Number
Really Increases by

More than 100 Sites/
Cell

Null Hypothesis Is
True: Receptor

Number Doesn't
Change Total

P < 0.(x
P > 0.04
Total

540
60

600

t 6
384
400

s56
444

r000

Of 556 experiments with a P value less than 0.04, receptor number really increases
in 540. So the chance that the receptor number really increases is 540/556 : 9'l.l%o,
leaving a 2.97o chance that the results are due to coincidence.

The advisor's perspective is different, as illustrated in the following table.

Prior
Probability :

0.05

Receptor Number
Really Increases by

More than 100 Sites/
Cell

Null Hypothesis Is
True: Receptor

Number Doesn't
Change

P < O . M
P > 0.04
Total

45
5

50

38
912
950

83
9t7

1000

Of all the hypothetical experiments with P < 0.04, 45183 : 54.2Vo occurred when
receptor number really increased. The other 45.8Va of the low P values were Type I
elrors, due to random sampling. So the new evidence is not convincing to the advisor,
as she still thinks there is only about a 50Vo chance that the effect is real.

B. Explain why two people can interpret the same data differently.

The results could have been obtained in two ways:
First possibility; The treatment really does not change receptor number, and the

change we observed is simply a matter of coincidence. The statistical calculations tell
you how unlikely this coincidence would be. For this example, you would see a
difference as large or larger than you observed in 4Vo of experiments, even if the null
hypothesis were true.
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Second possibility; The hormone really does increase receptor number.

In interpreting the results, you have to decide which of these possibilities is more

likely. The student in this example thought that the second possibility was probably

true even before collecting any data. She is far happier believing this hypothesis is

true rather than believing in a coincidence that happens only 1 in every 25 experiments.
The advisor has reasons to think that this experiment shouldn't work. Perhaps

she knows that the cells used do not have receptors for the hormone used, so it seems
very unlikely that the hormone treatment could alter receptor number. So the advisor
has to choose between believing that an "impossible" experiment worked or believing
that a 4Vo coincidence has occurred. It is a toss up, and the conclusion is not clear.

To interpret experimental results, you need to integrate the results from one
particular experiment (summarized with a P value) with your prior opinions about the
experiment. If different people have different prior opinions, they may reach different
conclusions when the P value is only moderately low.

C. How would the advisor's perspective be different if the P value were 0.001 (and
the power were still 90Vo)?

Now the advisor has to choose between a result that makes no sense to her or a
coincidence that happens only 1 time in 1000. She believes the result, rather than such
an unlikely coincidence. Although she probably makes this judgment intuitively, you
can explain it with this table. Given the assumptions of this problem, only I in 46
results like this would be due to chance, while 45 out of 46 reflect a true difference.
(To maintain the power with a smaller threshold value of p requires increasing the
sample size.)

Prior
Probability :

0.05

Receptor Number
Really Increases by

More than 100 Sites/
Cell

Null Hypothesis Is
True: Receptor

Number Doesn't
Change Total

P < 0.001
P > 0.001
Total

45
5

50

1
949
950

46
954

1000

2. You go to Las Vegas on your 25th birthday, so bet on the number 25 in roulette.
You win. You bet a second time, again on25, and win again! A roulette wheel has
38 slots (l to 36, 0, and 00), so there is a I in 38 chance that a particular spin will
land on 25.

A. Assuming that the roulette wheel is not biased, what is that chance that two
consecutive spins will land on 25?

The chance is (1/38) * (1/38) : l/1444 : O.0697o.

B. If you were to spend a great deal of time watching roulette wheels, you would
note two consecutive spins landing on 25 many times. What fraction of those
times would be caused by chance? What fraction would be caused by an unfair
roulette wheel?

There are two possibilities. Either it is a coincidence or the roulette wheels are biased
in your favor. Deciding between the two depends on the context. If you are in a
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commercial casino, the chance that the roulette wheel is unfair is pretty small, and the
chance that it is biased in your favor is very very small. I find it easier to believe that
a 1 in 1444 coincidence has occurred than that the casino has a roulette wheel biased
in my favor. If you are watching a magic show, then you expect the roulette wheel to
be rigged and your conclusion would be different. You can't answer the question
without knowing the context (the prior probability).

CHAPTER 16

l. In Example 16.1, assume that the woman had three unaffected sons. What is the
probability that she is a carrier?

Carrier Not Carrier Total

All sons without disease
At least one son with disease
Total

62
438
500

562
438

1000

500
0

500

Follow the same steps as Example 16.1. In step 3 substitute l/8 for l/4. The chance
she is a carrier is 62/562 : 11.OVo).

2. If the lod score is -3, what is the probability that the marker is linked to the disease?

The post-test odds equals the pretest odds times the antilogarithm of the lod score.

Assuming a randomly selected marker, the pretest odds are about 0.02. So the post-

test odds equal 0.02 * 0.001 : 0.00002. With such low values, the probability and

the odds are almost identical. So the probability of linkage is only A.}OZVo. A lod score

of -3 is strong evidence that the marker is not linked to the gene.

3. It would be possible to calculate a P value from linkage data. Explain in plain

language what it would mean.

The P value would answer this question: If a marker and gene are truly not linked,

what is the chance of randomly observing as few or fewer recombination events than

were observed in an experiment this size (number and size of families studied). P

values are rarely calculated from linkage data.

4. You perform a t test and obtain a P value less than 0.05. You used enough subjects

to ensure that the experiment had a SOVo power to detect a specified difference

between population means with P < 0.05. Does it make sense to calculate a likelihood

ratio? If so, calculate the ratio and explain what it means.

The likelihood ratio is a ratio. The numerator is the probability of obtaining a P value

less rhan 0.05 if the specified difference really exists. The denominator is the probability

of obtaining a P value less than 0.05 if the null hypothesis is true. In other words, the

likelihood ratio is the power divided by o. For this example, the likelihood ratio is

0.80/0.05 : 16. You are 16 times more likely to obtain a statistically significant result

if the experimental hypothesis is true than if the null hypothesis is true.
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You will rarely, if ever, see a likelihood ratio calculated for a statistical test. This

is partly because it is hard to define the experimental hypotheses in many situations

and thus hard to calculate power. But it is also just a tradition.

CHAPTER 17

1. In Example 17.1, how should the investigators have analyzed the data if they had
measured the insulin sensitivity and VoC20-22 twice in each subject?

The straightforward approach would be to consider each separate pair of measurements
as a separate point on the graph. If you did this, you would have N -- 26 instead of
N : 13. But this is not a legitimate way to analyze the data, as you would be violating
the assumption that the points are obtained independently. The second measurement
from each subject is likely to be closer to the first measurement on that subject than
to measurements from other subjects.

You should first average the two insulin sensitivity measurements for each subject
and then average the two 7oC20-22 measurements in each subject. Then calculate
the correlation coefficient between the average insulin measurement and the average
7oC20-22 measurement.

2. The P value in Example 17.1 was two tailed. What is the one-tailed P value? What
does it mean?

The two-tailed P value is 0.0021. Recall what this means. If there really were no
correlation between the X and Y variables in the overall population, there is a O.2I7o
chance of observing such a strong correlation (or stronger) in a study of this size. If
the null hypothesis were true, there is a 0.l%o chance of randomly picking 13 subjects
and finding that r > O.l7 and a O.lVo chance of randomly picking 13 subjects and
finding that r < 0.77.

You can only calculate a one-tailed P value if you decided to do so, and specified
the direction of the experimental hypothesis, before collecting the data. If you predicted
that the correlation was positive (increasing insulin sensitivity with increasing 7oC20-
22), then the one-tailed P value is 0.001.

3. Do X and Y have to be measured in the same units to calculate a correlation
coefficient? Can they be measured in the same units?

As Example l7.I shows, X and Y do not have to be measured in the same units.
However, they can be measured in the same units.

4 .  what  i s  the  Pva lue  i f  r :0 .5  w i th  N:  l0?  what is  the  P va lue  i f  r :0 .5  w i th
N :  1 0 0 ?

Use Equation 17.3. When N : 10, z : L45. When N : 100, z : 5.4L Using the
last column of Table A5.2 in the Appendix, the P values are 0.147 for N: l0 and
P < 0 . 0 0 0 1  f o r N : 1 0 0 .

It makes sense that the P value is smaller with the bigger sample. You are far
less likely to get r : 0.5 by coincidence with N : 100 than with N : 10.
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5. Can you calculate the correlation coefficient if all X values are the same? If all Y
values are the same?

You can't calculate the correlation coefficient if all X or all Y values are identical.

You can see this mathematically by looking at Equation 17.1. If all X values are
identical, then the SD of X is 0, and you'd be dividing by 0 in the equation. If all Y

values were identical, the SD of Y would be 0, again leading to a division by 0.

You can see this intuitively as well. The correlation coefficient quantifies the

degree to which the variation in one variable can be explained by variability in the

other. If one of the variables has no variation, then the whole idea of correlation makes

no sense.

6. Golino et al. investigated the effects of serotonin released during coronary angi-

oplasty. After angioplasty (inflating a balloon positioned inside to coronary artery

to force open a blocked artery) they measured the degree of vasoconstriction in the

next few minutes as the percent change in cross sectional area (monitored by

angiograms). They also measured the amount of serotonin in blood sampled from

the coronary sinus. The data for eight patients are shown (I read these values off

the graph in the publication, so they may not be exactly correct). To make the

serotonin levels follow a distribution closer to a Gaussian distribution, the authors

calculated the logarithm of serotonin. Calculate the correlation between the logarithm

of serotonin levels and the percent change in cross sectional area'

Serotonin
(nglml)

Vo Change in

Cross-Sectional
Area

2.0
5.0
6.0

10.0
15.0
60.0
6s.0

r65.0

4.0
7.0

28.0
26.0
30.0
34.0
3s.0
42.O

First calculate the logarithm of the X values. Then use Equation 18'1' The correla-

tion coefficient, r, equals-O.89 and r2 equals 0.79. This means that 79Vo of the variance

in cross-sectional area can be explained by differences in serotonin levels'

CHAPTER 19

1. Will the regression line be the same

correlation coeffi cient?

if you exchange X and Y? How about the

The regression line is the best line to predict Y from X' If you swap the definitions

of X and y, the regression line will be different unless the data points line up perfectly

so every point is on the line'
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The correlation coefficient measures the correlation between two variables. It
makes no difference which variable is called X and which is called Y. Swapping the
two will not change the value of r.

2. Why are the 95Vo CIs of a regression line curved?

Within 95Vo confidence, there are many different regression lines that could be the
best-fit Une for the entire population. This spectrum of lines is obtained by combining
a wobbly slope and an uncertain intercept. The outer limits of the possible regression
line is defined by a curve. This is because there is more uncertainty about the position
of the regression line at the fringes of the data than in the middle.

3. Do the X and Y axes have to have the same units to perform linear regression?

No.

4. How many P values can be generated from a simple linear regression?

You can generate a P value for any null hypothesis. For linear regression, the standard
null hypothesis is that the slope equals 0. You could also test the null hypothesis that
the intercept equals 0. You don't have to stop there. You could also test the null
hypothesis that the slope : 3.56, if that was of interest. Or the null hypothesis that
the Y-intercept equals 2.0. Or 3.92. Or 11.28. There are an infinite number of possible
null hypotheses, so there are an infinite number of P values. You can't intelpret a p
value unless you know what null hypothesis it is testing.

5. The results of a protein assay are presented in the following table. Chemicals are
added to tubes that contain various amounts of protein. The reaction forms a blue
color. Tubes with higher concentrations of protein become a darker blue. The
darkness of the blue color is measured as optical density.

Concentration
(Micrograms) Optical Density

0
4
8

t 2
l 6

Unknown 1
Unknown 2

0
0.017
0.087
0 . 1 l 6
0. t72
0.097
0.123

A' Calculate the best-fit linear regression line through the standard curve (five
known concentrations).

The slope is 0.011 optical density units per microgram. The y-inrercept is -0.0102.
The graph is shown, with 95Vo CIs (Figure A4.4).

B. Read the unknown concentrations from the standard curve.

You can approximate the values by reading graphically off the curve. But you can do
it exactly by rearranging the equation. The lineai equation is y : 0.011 * x - 0.0102.
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Figure 44.4.

Simple algebra puts X in front: X : (Y + 0.0102)/0.011. Now enter in the two known
Y values and determine the unknown X values. Unknown t has X : 9.68. Unknown
2 has X : 12.03. Both of these values are well within the range of the standard curve,
which is good. You shouldn't trust values extrapolated from a regression line outside
the range of the known values.

6. What is r2 if all points have the same X value? What about if all points have the
same Y value?

If all points have the same X values or the same Y values, you can't calculate r2. This
makes sense intuitively. If all X values are the same, or all Y values are the same,
there is no need to calculate linear regression. The value of 12 is the fraction of the
variation in Y that is explained by the regression line. If all Y values are the same,
there is no variation in Y, so it makes no sense to partition the variation into various
components. If all X values are the same it makes no sense to ireate a regression line,
because the point of regression is to find the line that best predicts Y from X. If all
X values are identical, then there is no way to create a regression line.

7. Sketch some examples of residual plots for data that do not meet the assumptions
of linear regression.

See Figure A4.5. The first graph shows data that appear to follow all the assump-
tions of linear regression. The residuals (shown on the top right of the figure) are
randomly scattered above and below the line at Y : 0, and the distance of the residuals
from that line is not related to the value of X. The data in the second graph have
increasing scatter with increasing X. The distance of the residuals from the Y : 0 line
increases as X increases. The data in the third graph are not linear. If you look at the
graph carefully, you can see that the points with low and high values of X tend to be
above the linear regression line and the points in the middle tend to be below the line.
This is easier to see in the residual graph.
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Figure A4.5.

8. Can r2 ever be 0? Negative?

It will equal 0 if there is no trend whatsoever between X and Y. The best-fit line is
exactly horizontal. Its value cannot be negative.

9. Do you need more than one Y value for each X value to calculate linear resression?
Does it help?

You do not need more than one Y value for each X value to calculate linear regression.
If you do have replicate Y values, you can perform some extra calculations (not
explained in this book) to test whether the data are best fit by a straight line.

t
o
t
P
o
o
E.

o
.E
p
o
o
tr

ll

o
I
tt
o
o
E

Scatter Increases With X

Not Linear



348

CHAPTER 22

APPENDICES

l. You are preparing a grant for a study that will test whether a new drug treatment
lowers blood pressure substantially. For previous experience, you know that 15
rats in each group is enough. Prepare a convincing power analysis to justify that
sample size.

We need to use Equation 22.5. We know the answer we are looking for, N : 15, and
need to find values for the other values to justify this. There are many combinations
of variables that would work. Here is one. Set cr : 0.05 and B : 0.20. This means
(from Table 22.I) that the square of the sum of zoand zp equals 7.9.We know from
prior work, that we expect the SD to be about l0 mmHg. Now we can solve for A,
the minimum difference we wish to detect as significant. Using the numbers of this
example, A : 10.2 mmHg. So you could write in a paper: "From previous work, we
expected the SD of blood pressure to be 10 mmHg. Setting the significance level to
0.05, we calculated that a study with 15 subjects in each group would have 80Vo power
to detect a mean difference in blood pressures of 10 mmHg."

As this example shows, sample size calculations do not always proceed from the
assumptions to the sample size. Sometimes, the sample size is chosen first and then
justified. This is OK, so long as the assumptions are reasonable.

2. The overall incidence of a disease is I in 10,000. You think that a risk factor
increases the risk. How many subjects do you need if you want to have 957o power
to detect a relative risk as small as 1.1 in a prospective study?

You need to use Equation 22.6. From the problerr, pr equals 0.00010. p2 equals 1.1
times pl or .00011. Since we want 957o power, F : 0.05. The problem doesn't specify
cr, so we'll use the conventional value of 0.05 (two-tailed). Plugging all those values
into Equation22.6, N equals 22 milhon subjects in each group, obviously an impracti-
cal number.

Why such a large sample size? First, the disease is rare, with an incidence of only
1 in 10,000. So it will take a large number of subjects to get a reasonable number with
the disease. Since you are looking for a small change in incidence, and want high
power, you will need even larger samples. Detecting small changes in rare diseases is

virtually impossible in prospective studies. The required sample size is enormous. That

is why case-control studies are so useful.

3. How large a sample would you need in an election poll to determine the percent

voting for each candidate to within l%o? What assumptions are you making?

Here you need to use Equation 22.3. The precision is stated in the problem, 0.01. We
don't know what number to expect for p, so we'll set p : 0.50. This is the worst case,
as any other value would lead to a higher sample size. The sample size required is 10,000.

4. Can a study ever have lOOVo power?

Only if the study collects information on 1007o of the population. But then there would

be no need for statistical inference.

5. About lOVo of patients die during a certain operation. A new technique may reduce

the death rate. You are planning a study to compare the two procedures. You
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will randomly assign the new and standard technique, and compare the operative
death rate.

A. How many subjects do you need to have 957o power to detect a lOTo reduction
in death rate (a : 0.05)?

pr  :9 .10 ,pr . :0 .90  *  p ,  :0 .09 .  c r :0 .05 ,9  :  .05 .  UseEquat ion22.6  toca lcu la te
that you require 22,354 subjects in each group. It takes an enorrnous study to have a
high power to detect a small difference.

B. How many subjects do you need to have 6O7o power to detect a SOVo reduction
in death rate (a : 0.10)?

pr :  Q.10; pz :  0.5 *  p,  :  0.05; cr  :  0.10; B :  0.40.

You can't use the table in the chapter to find the sum of the square of the z values,
because the table doesn't include F : 0.40. Look in the second column of Table A4.2
in the Appendix to find 407o, then read over to see that zu is about 0.25 (40Vo of a
Gaussian population has z >0.25). For a : 0.10 (two-tailed), use the fourth column
of Table A4.2 to find thatz is about 1.65 (l0To of a Gaussian population has either
z > 7 . 6 5 o r 2 < 1 . 6 5 ) .

Now, you can plug all the values into Equation 22.6. You need 200 subjects in
each group. Finally, we have a reasonable number.

C. Is it ethical to compare a new technique (that you think is better) with a standard
technique. why shouldn't all the subjects get the new technique?

If you are really really sure that the new technique is superior, then it is not ethical to
give the older technique to anyone. But how sure are you really? The history of
medicine is full of examples of new techniques that turned out to be worthless, despite
the enthusiasm of people who used the technique early. The way to really 

"o.fur.two techniques is to perfonn an experiment. The patients who get the standard treat-
ment may turn out to be better off than the patients who received the new treat-
ment.

6. Lymphocytes contain beta-adrenergic receptors. Epinephrine binds to these receptors
and modulates immune responses. It is possible to count the average number of
receptors on human lymphocytes using a small blood sample. You wish to test the
hypothesis that people with asthmahave fewer receptors. By reading various papers,
you learn that there are about 1000 receptors per cell and that the coefficient of
variation in a normal population is about 25Vo.
A. How many asthmatic subjects do you need to determine the receptor number to

plus or minus 100 receptors per cell with govo confidence?

You need to use Equation 22.1. Since you know that the coefficient of variation is
25Vo, you know that the SD is about 250 receptors/cell. Equation 22.1 calctlates sample
size for 95Vo CIs. To make gOVo intervals (which are narrower) the value of t* must
be replaced with a smaller number. From Table A5.3 in the Appendix, you can see
that the value of t* for gOVo confidence and many degrees of freedom is 1.65.

So N : 1.652 * (25}ll}0)t : 17 subjects in each group.

B. You want to compare a group of normal subjects with a group of asthmatics.
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How many subjects do you need in each group to have 80Vo power to detect a
mean decrease of l}Vo of the receptors using a : 0.05 (two-tailedf

Use Equation 22.5. N : 99 in each group.

C. How many subjects do you need in each group to have 957o power to detect a
mean difference in receptor number of 5Vo with a : 0.01?

Here you need 890 subjects in each group. You are looking for a smaller difference

and have set harsher criteria for a and B.

7. You read the following in a journal

Before starting the study, we calculated that with a power of 807o and a significance level

of 5Va, 130 patients would be required in each group to demonstrate a l5-percentage-

point reduction in mortality (from the expected rate of 33 percent to 18 percent).

A. Explain in plain language what this means.

If the null hypothesis were really true (the two treatments are identical in terms of

mortality), then there is a57o chance of obtaining a significant difference by coincidence

of random sampling. (The statement that the "significant level is 5Vo" means that

ct : 0.05.) If the alternative hypothesis is true (that the mortality drops ftom 33Vo to

ISVo), then there is a 807o chance that a study with 130 patients in each group will

end up with a statistically significant difference and a 20Vo chance of ending up with

a conclusion of not statistically significant.

B. Show the calculations, if possible.

It sounds like they are analyzing the results by comparing survival curves. The methods

needed to calculate sample size for comparing survival curves are complicated, and

not discussed in this book. However, we can probably come up with a similar answer

by treating the data as comparison of proportions.

we know that p, : .33 and p1 : .18. We also know ct and B. So you can use

Equation 22.6. With this equation, N -- 134 in each group. The difference between N :

130 and N : 134 is not important, as all these calculations are based on assumptions

that may not be exactlY true.

CHAPTER 23

1. Calculate the t test for Example 7.1. The authors compared stool output between

treated and untreated babies. The results were 260 -r 254 (SD) for 84 control babies

and 182 -r I97 for 85 treated babies.

First calculate the two SEM s, 27.7 and 2L4 for the control and treated babies. Then

calculate the SE of the difference between means using Equation 23'3' The SE of

the difference is 34.8. The difference between the means is 78' So the t ratio is

gg/34.g -- 2.24. There are !67 degrees of freedom. If you use a computer program'

you can determine that the P value (two-tailed) is 0.0269. Using Table A5'4 in the

Appendix, you can see that the P value must be a bit more than 0'02'
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2. Calculate the t test for Problem 2 in Chapter 7.

3. t : 6.3 with 63 degrees of freedom. P < 0.0001.

A. Explain why power goes up as Ag gets larger.

It is easier to find a big difference than a small one. Sampling error is more likely to
produce a small difference than a large one. Since a large AH is less likely to be due
to chance, it is more likely to be due to a real difference. In other words, the power
is higher.

B. Explain why power goes down as SD gets larger.

If the SD is large, the data are scattered more. With more scatter, sampling error is
likely to produce larger differences. So an observed difference is more likely to be
due to random sampling with a large SD than with a small one. So the power is lower.

C. Explain why power goes up as N gets larger.

If you collect more evidence, you have more power. With a larger sample size, sampling
error is likely to produce small differences. So an observed difference is less likely to
be due to random sampling with a large N than with a small N.

D. Explain why power goes down as o gets smaller.

When you make o smaller, you set a harsher criteria for finding a significant difference.
This decreases your chance of making a Type I error. But you have made it harder to
declare a difference significant even if the difference is real. By making a smaller,
you increase the chance that a real difference will be declared not significant. You
have decreased the power.

4. For the study in Example 23.2, calculate the following:

A. Calculate the t test and determine the t ratio and the P value.

t :  . 2 4 0  P  :  . 8 1

B. What was the power of that study to detect a mean difference of 25 sites/cell?

use Equation23.7. Au : 25, sE of difference : 25,andt* : z.o4.zpower: -1.04.

From Table A5.6, the power is about 157o. From the example in the text, we know
that the study had a 48Vo power to detect a mean difference of 50 sites/cell. Of
course the study had less power to detect a smaller difference as statistically signifi-
cant.

C. What was the power of that study to detect a mean difference of 100 sites/cell?

Use Equation 23.7. As : 100, SE of difference : 25, and t* : 2.04. zpower : 2.96.
From Table 45.6, the power is >99Vo.If the difference between population means was
really huge, this study had plenty of power to find a significant difference.

D. If the study were repeated with 50 subjects in each group, what would the power
be to detect a difference of 50 sites/cell?

If we were to repeat the study with more subjects, we can't be sure what the SD values
will be. But our best guess is that the SD will be the same as observed in the first



352 APPENDICES

study. The problem gives SEM values, but these can be converted to SD values since
you know the sample size. Then you can calculate the pooled SD, which is 73.85
receptors/cell (Equation 23.3). From this value and the new sample sizes, you can
calculate that the SE of the difference will be about 14.8 receptors/cell. Now you can
use Equation 23.7 to find th&t Zp.*.' : 1.33. The power is 917o. This is the same
problem as the example (we haven't changed the SD of the data or the size of An)
except that the samples are now larger. Increasing the sample size increased the power.

CHAPTER 24

l. The data compare the number of beta-adrenergic receptors on lymphocytes of control
subjects and those taking a drug.

Control Drug

1t62
1095
1327
l26l
r 103
t235

892
903

tt64
roo2
961
875

A. Calculate the Mann-Whitney test.

The best thing to do is use a computer program. It tells you that the sum of ranks in
the control group is 54 and that the sum of ranks in the drug-treated group is 24. The
P value is 0.0152 (two tailed).

If you want to analyze the data manually, the first step is to rank the values,
without respect to whether they are control or drug treated. Then sum the ranks in
each group.

Control Rank Drug Rank

r t 6 2
1095
t327
r26r
1 103
r235

Sum of ranks

892
903

116/.
1002
96r
875

Sum of ranks

8
6

l 2
l l
7

l 0
54

2
J

9
5
A
+

I
24

Many books (not this one) give tables for the Mann-Whitney test, so you might look

up the P value from the sum of ranks and the sample size.
'I'o 

calculate it manually, you need to use Equations 24.2 and 24.3, which give

approximate answers. Equation24.2 calculates two values for U. U : 33 and U : 3.

You will get the same value of Z no matter which U value you use. Using Equation
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24.3 (and knowing that N, : Nu : 6), Z:2.40. From Table A5.2 in the Appendix,
you can see that I.647o of a Gaussian population has z > 2.40 or z I -2.40. So the
two-tailed P value is approximately 0.0164.

B. Calculate the t test.

Again, you'll find it easiest to use a computer program. InStat tells us that t : 3.978
and P : 0.0026.

To calculate the t test manually, first calculate the mean and SEM of each group.

Control: Mean : l l97.2,SEM : 37.8

Treated: Mean : 966.2, SEM : 44.1

Then calculate the SE of the difference between means as the square root of the sum
of the square of the two SEM values. It equals 58.1. The t ratio equals the difference
between means divided by the SE of the difference : (1197.2 - 966.2)/58.1 : 3.97.
To determine the degrees of freedom, sum the total number of subjects minus 2.
DF : 10. Look in Table A5.7 of the Appendix. DF : 10, and p : 0.003.

CHAPTER 25

1. These data are the same as those presented in Problem 1 from Chapter 24. The
experimenters compared the number of beta-adrenergic receptors on lymphocytes
of control subjects and those taking a drug. Assume that each subject was first
measured as a control and then while taking the drug.
A. Calculate the paired t test.

First, calculate the difference for each subject.

Control Drug Difference
Rank of

Difference

t t 6 2
1095
1327
t26 r
l 103
1235

892
903

t t64
1002
961
875

210
192
163
259
142
360

- 5
- 3
- 2
-4
- l
- 6

Then calculate the mean and SEM of the differences. Mean difference : Z3l with a
SE of 33.2.The t ratio is the ratio of the mean difference divided by its SE, which is
231/33.2 : 6.964. The number of degrees of freedom is the number of pairs minus
one' or five. Table A5.4 does not go down to five degrees of freedom, so use Table
A5.5. With 5 dl the critical t ratio for a : 0.001 is 6.869. Since the r ratio in this
example is higher than this, the P value must be less than 0.001. A program would
tell you that P : 0.0009.

B. Calculate the Wilcoxon test.
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First rank the differences, as shown in the last column above. Assign a negative rank
when the value decreases and positive when it increases. In this problem, all values
decrease so all ranks are negative. Then separately sum the ranks for the subjects that
increase and decrease. The sum of the ranks for the increases is - 21 ; the sum of the
ranks for the decreases is zero. This book doesn't give a table to determine a P value
from the sum of ranks, but a program would tell you that P : 0.0313 (two-tailed).

CHAPTER 26

1. You hypothesize that a disease is inherited as an autosomal dominant trait. That
means that you expect that, on average, half of the children of people with the
disease will have the disease and half will not. As a preliminary test of this hypothesis,
we obtain data from 40 children of patients and find that only 14 have the disease.
Is this discrepancy enough to make us reject the hypothesis?

With 40 children, you expect 2O to have the disease and 20 to not. You need to compare
the observed and expected values with the chi-square test.

Observed (O) Expected (E) (o-E),/E

Disease
No disease
Total

t 4
26
40

1 . 8
1 . 8
3.6

20
z0
40

So Xt : 3.6 with one degree of freedom (number of categories minus one).
From Table A5.7 in the Appendix, you can see that P : 0.0578. The null hypothesis

is that the disease really is an autosomal dominant trait, and that all discrepancies
between observed and expected are due to chance. If this hypothesis were true, you
would see a discrepancy as large (or larger) than observed here rn 5.7 8Vo of experiments.
You have to decide if that probability is low enough to reject the hypothesis.

CHAPTER 27

l. Perform the chi-square test for the cat-scratch disease data for Example 9.1. State

the null hypothesis, show the calculations, and interpret the results.

Here again are the observed data.

Observed Data Cases Controls Total

Cats have fleas

Cats don't have fleas
Total

32
24
56

4
52
56

36
'16

I 1 2
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You can calculate the expected data directly from the experimental data. You

don't need any special theory to calculate the expected values. Let's first figure out

how many cases you expect to see where the cats have fleas, if the cases and controls

were equally likely to have cats with fleas. Altogether 36 of the cases and controls

had cats with fleas. Since there were equal number of cases and controls, we'd expect

18 cases with cats with fleas and 18 controls. So the expected values look like the

following table. Of course, the row and column totals are the, same in the expected and

observed tables. The expected values were calculated from the row and column totals.

Expected Data Cases Controls Total

Cats have fleas

Cats don't have fleas

Total

l 8
38
56

t 8
38
56

36
76
n 2

Now calculate 12 using Equation 27.2. X2 : 29.8. There is only a single degree
of freedom. With such an enormous value of Xt, the P value is tiny. The P value is
less than 0.0001.

The null hypothesis is that the cases and controls are equally likely to have cats
with fleas. If this hypothesis were true, you'd find this big a discrepancy between
observed and expected values in less than 0.01Vo of experiments of this size.

2. (Same as Problem 2 from Chapter 8.) Goran-Larsson et al. wondered whether
hypermobile joints caused symptoms in musicians. They sent questionnaires to
many musicians and asked about hypermobility of the joints and about symptoms
of pain and stiffness. They asked about all joints, but this problem concerns only
the data they collected about the wrists. Of 96 musicians with hypermobile wrists,
57o had pain and stiffness of the wrists. In contrast, l87o of 564 musicians with-
out hypermobility had such symptoms. Analyze these data as fully as pos-
sible.

Observed Data Pain and Stiffness No Pain or Stiffness

Hypermobile wrists
Normal wrists
Total

5
102
107

9 l
462
553

96
5g
660

If you use a computer program, you can analyze the data with Fisher's exact test. The
P value (two-tailed) is 0.0008. If there were no association between hypermobility of
the wrist and pain and stiffness, there is only a 0.O8Vo chance that you'd find an
association this strong (and a relative risk this high) in a study this size.

If you do the calculations yourself, you need to first calculate the expected values.
If the null hypothesis were true, how many subjects would you expect to find with
both hypermobile wrists and pain/stiffness? Overall lO71660: 16.ZVo of the subjects
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had pain/stiffness. Therefore, out of the 96 subjects with hypermobile wrists, you'd
expect 96 * .162: 15.6 would have pain and stiffness. You can work out the remainder
of the expected values using similar logic, or by subtraction from the row and column
totals. The expected results are given in the following table.

Expected Data Pain and Stiffness No Pain or Stiffness Total

Hypermobile wrists
Normal wrists
Total

15.6
9t.4

r07

80.4
472.6
553

96
564
660

It's OK that the expected results include fractional components. The table really shows

the average expected results if you were to repeat the experiments many times. To

calculate the chi-square test, you need to combine the observed and expected values.

If you use the Yates' correction, the result is 12 : 9.088. The P value is 0.0026.

3. Will a study with N : 50 have greater power to detect a difference betweer Pr :

0.10 and p2 : 0.20, or between p, : 0.20 and p2 : 0.40?

First answer intuitively. A chance difference of just one or two cases will change the

proportions more when the proportions are low. Therefore, you'd expect to have

more power to detect the difference betweefl p1 : 0.20 and pz : 0.40. To answer

mathematically, calculate Equation 27.3. For the first example, H : 0.28. For the

second example, H : 0.44. A bigger vlaue of H means more power.

4. Calculate a P value from the data in Problem 4 of Chapter 8. Interpret it.

show the data as a contingency table.

Resuscitated Not Resuscitated Total

Active CPR

Standard CPR

Total

l 8
l 0
28

l l
23
34

29
33
62

The best way to analyze the data is to perform the Fisher's test with a computer. The

P value is 0.0207 (two sided).

To calculate a P value yourself, use the chi-square test. Using Yates' colrection,

chi-square : 5.072. The two-sided P value is 0.024 from Table A5'7'

5. In response to many case reports of connective tissue diseases after breast implants,

the FDA called for a moratorium on breast implants tn 1992. Gabriel and investiga-

tors did a prospective study to determine if there really was an association between

breast implants and connective tissue (and other) diseases. They studied 749 women

who had received a breast implant and twice that many control subjects. They

analyzed their data using survival analysis to account for different times between

impiant and disease and to correct for differences in age. You can analyze the key
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findings more simply. They found that 5 of the cases and l0 of the controls developed
connective tissue disease.

A. What is the relative risk and P value? What is the null hypothesis?

The null hypothesis is that there is no association between breast implants and connec-
tive tissue diseases. If the null hypothesis is true, the overall incidence of connective
tissue diseases among cases ought to equal the incidence among controls.

They used twice as many controls as patients with breast implants. Twice as many
controls as cases developed connective tissue disease. This is exactly what you expect
under the null hypothesis, so the relative risk is exactly 1. To calculate the relative risk:
(51749)l(l0/1494) : 1.0. The data provide no evidence whatsoever of any association
between breast implant and connective tissue disease.

The P value (two-tailed) must be 1.0. The P value answers this question: If the
null hypothesis is true, what is the chance of randomly sampling subjects and obtaining
such strong evidence (or stronger) that there is an association. Since there was absolutely
no evidence of association in this study, I}OVz of all studies would produce evidence
this strong or stronger. If you were to calculate the chi-square test, you'd find that the
expected values equaled the observed values. Chi-square equals zero, so P : 1.0.

B. What is the 95Vo Cl for the relative risk?

Before concluding that breast implants don't cause connective tissue disease, you
should do further calculations. One is to calculate the 95Vo CI for the.relative risk.
This is best done by computer. The answer is 0.34 to 2.92. So the data are consistent
with a reduction of risk by a factor of three or an increase in the risk by a factor of
three. Even though the study shows no evidence of association, the study is too small
to be convincingly negative.

C. If breast implants really doubled the risk of connective tissue disease, what
is the power of a study this size to detect a statistically significant result with
P < 0.05?

One way to think about the usefulness of the data from the study is to ask what power
the study had to find hypothetical differences. For example, if patients with breast
implants really got connective tissue disease at twice the rate of control patients, what
was the power of this study to find a statistically significant difference?

We'll set pr to 0.0067, since this is the fraction of controls (and cases) who had
connective tissue disease (10/1484). We'll set p2 to half thar value or 0.0034. To
calculate power first use Equation 27.3 to calculate that H : 0.0412.

Figure 27.I isn't very useful with such small values of H, so use Equation 27.4.
Set zo : 1.96, since we are using the conventional definition of statistical significance
(P < 0.05, two tailed). Since the sample sizes are different, you need to calculate the
harmonic mean according to Equation27.5. N : 2 * 747 * 1484/(747 + l4B4):
993.7. Now, use Equation27.4 to calculate Zpo*.,: 0.91. From Table A4.14 in the
Appendix, power is about l87o.lf breast implants really increased the risk of connective
tissue disease twofold, a study this size would observe a significant association less
than one time in five. Since the study had such low power, you shouldn't interpret the
findings too strongly.
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CHAPTER 28

APPENDICES

1. You use a hemocytometer to count white blood cells. When you look in the micro-
scope you see lots of squares and 25 squares enclose 0.1 microliter. You count the
number of cells in nine squares and find 50 white blood cells. Can you calculate
the 957o CI for the number of cells per microliter? If so, calculate the interval. If
not, what information do you need? what assumptions must you make?

You counted 50 cells in 9 squares. Since there are 250 squares per microliter, there
are 50 * (250/9) : 1389 cells per microliter. To calculate the CI, we must work with
the number actually counted, 50. From Tabte A5.9 in the Appendix, you can see that
the 95Vo CI for the average number of cells in 9 squares ranges from 37.1 to 65.9.
Multiply each confidence limit by (25019) to determine the 957a Cl for the number of
cells permicroliter. The 957o CI ranges from 1031 to 1831 cells permicroliter.

2. In 1988 a paper in Nature (333:816, 1988) caused a major stir in the popular and
scientific press. The authors claimed that antibodies diluted with even 10-r20 of the
starting concentration stimulated basophils to degranulate. With that much dilution,
the probability that even a single molecule of antibody remains in the tube is almost
0. The investigators hypothesized that the water somehow "remembered" that it
had seen antibody. These results purported to give credence to homeopathy, the
theory that extremely low concentrations of drugs are therapeutic.

The assay is simple. Add a test solution to basophils and incubate. Then stain.
Count the number of stained cells in a certain volume. Compare the number of
cells in control and treated tubes. A low number indicates that many cells had
degranulated, since cells that had degranulated won't take up the stain.

The authors present the "mean and standard error of basophil number actually
counted in triplicate." In the first experiment, the three control tubes were reported
as 81.3 t 1.2,81.6 -f 1.4, and 80.0 -f 1.5. A second experiment on another day
gave very similar results. The tubes treated with the dilute antibody gave much
lower numbers of stained cells, indicating that the dilute antibody had caused
degranulation. For this problem, think only about the control tubes.

A. Why are these control values surprising?

The authors counted only the cells that still had granules. In the results shown, the
average number of cells in the volume counted was about 80. If this is true, then the
Poisson distribution tells us what we expect to see in different experiments. From
Table A5.9 in the Appendix, the 957o CI ranges from 63 to 100. If you repeated the
experiment many times, you'd expect the number of cells counted to be within this
range 95Vo of the time and outside the range 57o of the time. The results reported by
the authors have far less variation than that. There is way too little scatter.

B. How could these results have been obtained?

One possibility is that the investigators were lucky and just happened to have so little
variation. The chance of having so little variation is very small, so this is quite unlikely.
If the cells are well mixed and randomly sampled, the Poisson distribution tells us the
distribution of values we expect to see. This is the "best" you can do, assuming perfect

experimental technique. Any sloppiness in the experiment will lead to more variability.
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No matter how carefully you do the experiment, you can't get less scatter than predicted

by the Poisson distribution unless you are extremely lucky.

So how then could the results have been obtained? There is no way to be sure,

but here is one possibility. It is difficult to count cells in a reliable way. Counting

requires some judgment as you ask yourself these kinds of questions: How do you

deal with cells on the border? How do you distinguish between real cells and debris?

How do you deal with clumps? If you know the results you are "supposed" to get,

your answers might be swayed to get the count you expect to get.

For an assay like this one (counting cells manually), the only way to avoid bias

is to have the person counting the cells not know which tube is which, so he or she

can't let the expected results bias the count. Even better, use a machine that counts in

an unbiased way. The machines can also count a larger volume, thus narrowing the

confidence interval.
You could also improve the experimental methodology in other ways. Why not

count all cells, not just the ones that haven't degranulated. Why not use a more precise

assay, such as measuring histamine release from the cells?



Appendix 5

Statistical Tables

This appendix contains tables that you will find useful when you do your own calcula-
tions. To keep this book compact, I have only tabulated certain values. You can easily
calculate other values using the spreadsheet program Microsoft Excel, which I used
to create all the tables (version 5 for Windows).* The spreadsheet formulas are listed
below. While most are straightforward and documented in the Excel function manual,
the equations for Tables 1 and 9 are not obvious. I obtained these equations from
Lothar Sachs, Applied Statistics. A Handbook of Techniques. 2nd ed., New York,
Springer-Verlag, 1984.

Table I
Lower  l im i t :  N / (N+ (D-N+1)  *F INV((1  00-p) /200,  (2*D-2*N+2) ,2*N) )
upper l imit: 1 l( + (D - N) / ((N + 1 ) *Ft NV((1 00 - p)/200,2*N + 2,2x D - 2*N)))
[N:Numerator, D:Denominator, P:Percentage confidence, i.e. 95]

Table 2
First column: 2*NORMSDIST(Z) - 1
Second and third columns: 1 - NORMSDIST(Z)
Fourth column: Sum of the values in the second and third column.

Table 3
Tf NV(t1 00-Pl /100,DF)[P:Percent conf idence, i .e.95, DF:degrees of  f reedom]

Table 4
TDIST(T, DF,2)

Table 5
TtNV(ALPHA,DF)

Table 6
NORMSDTST(ZPOWER)- 1

Table 7
cHtDtsT(cHt2,1)
Table 8
cH l tNV(ALPHA,DF).

*The Macintosh version is identical. Other spreadsheet programs have similar functions.
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Table 9
Lower confidence limit: cHllNV((l 00+ P)/200,2*c)*0'5

Upper confidence limit: CHIINV((1 00- P)/200,2"C+2)*0.5

[C:Counts, Percent confidence, i.e.95]

Table 10
FINV(ALPHA,  DFN,DFD)
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TABIE A5.1. 95"/o coNFIDENcE INTERVAI oF A PRopoRTtoN

Find the column coffesponding to the numerator (N) and the row corresponding to the
denominator (D). The values are the lower and upper 95Vo Cl for the proportion. For
example if you observe that 4 of 20 patients have a certain complication, the proportion
is 0.200 and the 95Vo CI ranges from 0.057 to 0.437.
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TABTE A5.2. THE CAUSSIAN DISTRIBUTION

For any value y from a Gaussian distribution, calculate

z : lY - meanl/standard deviation.

APPENDICES

Fraction of the population whose distance from the mean is

Within z SDs )z SDs (z SDs Outside z SDs

0.00
0.05
0 .10
0 . l 5
0.20
0.25
0.30
0.3s
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
L05
l . l 0
l . l 5
t .20
t .25
1.30
1 .35
1.40
1.45
1.50
1.55
1.60
l .65
t .70
1.75
l .80
1.85
1.90
1.95
2.00
2.05
2 . 1 0
2 . t 5

0.00Vo
3.997o
7.97Vo

ll.92Vo
15.85Vo
19.74Vo
23.58Vo
27.37Va
3l.08Vo
34.73Vo
38.29Vo
4l.77Vo
45.r5Vo
48.43Vo
51.6lVo
54.67Va
57.63Vo
60.47Vo
63.l9vo
65.797o
68.27Vo
70.63Vo
72.87Va
74.99Vo
76.99Vo
78.8',tVo
80.647o
82.30Va
83.85Vo
85.297o
86.64Vo
87.89Vo
89.047o
90. l lVo
9l.09Vo
9l.99Va
92.8lVa
93.57Vo
94.26Vo
94.88Vo
95.45Vo
95.96Vo
96.43Vo
96.84Vo

50.00Vo
48.017o
46.02Vo
44.O4Va
42.07Vo
40.l3Vo
38.2l%o
36.327o
34.46Va
32.64Vo
30.85Vo
29. l2Vo
21.43Vo
25.78Vo
24.20Vo
22.66Vo
2 l . l 9 % o
19.77Va
18.4l%o
l T . l l V o

15.87Vo
14.69Vo
13.57Va
1 2 . 5 l V o
l l . 51Vo
r0.56vo
9.687o
8.85Vo
8.08Vo
7.35Vo
6.68Vo
6.067o
5.48Vo
4.957o
4.467o
4 .0 lVo
3.59Vo
3.22Vo
2.877o
2.56Vo
2.2890
2.027o
l .79Vo
| .58Vo

50.ffiVo
48.0lVo
46.02Vo
44.0470
42.07Vo
4O.l3Vo

38.2lVo
36.327o
34.46Va

32.64Vo
30.85Vo
29.l2%a
27.43Vo
25.78Va
24.207o
22.66Vo
2 l . l 9 V a
19.77Vo
18.4lVo
l T . l l % o
15.87Vo
l4.69Vo

13.577o
12.5l%o
l l . 5 lVo
l0.56Vo

9.68Vo
8.85Vo
8.O8Vo
1.357o
6.68Vo
6.067o
5.48Vo
4.957o
4.467o
4 .O lVo
3.59Vo
3.22Vo
2.87Vo
2.56Vo
2.287o
2.02Vo

|.79Vo
l .58Vo

100.007o

96.0lVo
92.03Vo
88.087o
84.l5Vo
80.26Vo
76.42Vo
72.63Vo
68.92Vo
65.27Vo
6l .7 lVa
58.237a
54.85Vo
5l.57Vo
48.39Vo
45.337o
42.37Vo
39.537o
36.8lVo
34.217o

3l.73Vo
29.37Va

27 .137o
25.0l%o
23.OlVo
2 l . l 3 % o
l9.36Vo
l7.10Vo
l6. l5Vo
14.7l%o
13.36Vo
12 . l l%o
l0.96Vo
9.89Vo
8 .9 lVo
8.01Va
1 . l9%o
6.43Vo
5.74Va
5 . lZ%a
4.55Vo
4.04Va

3.57Vo
3 . l6Vo

(continuefi
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Fraction of the population whose distance from the mean is

Within z SDs )z SDs <z SDs Outside z SDs

2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3 . r0
3 . 1 5
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00

97.22Vo
97.56Vo
97.86Vo
98.l2Vo
98.36Vo
98.57Vo
98.76Vo
98.92Vo
99.07Vo
99.207o
99.3l%o
99.40Vo
99.49Vo
99.56Vo
99.63Vo
99.68Vo
99.73Vo
99.77Vo
99.8l%o
99.84Vo
99.867o
99.88Vo
99.90Vo
99.92Vo
99.93Vo
99.94Vo
99.95Vo
99967o
99.97Vo
99.97Vo
99.98Vo
9998Va
99.99Vo
99.99Vo
99.99Vo
99.99Vo
99.99Vo

l .39Vo

1.227o
|.07Vo

0.94Vo
O.82Vo
0.7lVo
O.627o
O.54Vo
0.477o
0.40Vo
0.35Vo
03070
0.267o

0.22Vo
0. l9%o
0.16Vo
0 . l3vo

0 . l r v o
0. l0Vo
0.08Vo
0.07Vo
0.O6Vo
0.05Vo

0.04Vo

0.O3Vo
0.03Vo
0.OZVo
0.027o
0.02Vo
0.0lVa
0.Ol%o
0.OlVa
0.0lVo

0.OlVo
0.00Vo
0.00Vo
O.O0Vo

l .39Vo

l .22Vo

l .07Vo

0.94Vo
0.82Vo
0.717o
0.62Vo
O.547o
0.47Vo
0.4OVo
0.35Vo
0.30Vo
0.26Vo
0.22Vo
O.l9%o
0.16%o
0. l3%o
0 . l l % o
0. l l%o
0.087o
0.O7Vo
O.06Vo

0.05Vo

0.04Vo

0.03vo
O.03Vo
0.02Vo
O.02Vo
0.02Vo
0.017o
0.0rvo
0.0lVo
0.0l%o
0.017o
0.NVo
0.00Vo
0.00Vo

2.787o

2.MVo
2. l4Vo

l .88Vo
l.64Vo
l.43Vo
l.24Vo
l.08Vo
0.93Vo
0.80Vo
O.69Vo
0.6OVo
0.517o
0.44Vo

O.377o
0.32Vo
O.27Vo

0.23Vo
0. l9%o
0.16Vo
0. l4%o
0. l7%o
0. l0Vo

0.087o

0.07Va
0.067o
0.05Vo
0.MVo
0.03Vo
0.03Vo
0.02Va
O.02Vo
0.01Vo

0,0lVo
0.UlVo
0.0lVo
0.0l%o
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TABLE A5.3. VALUES OF t* USED TO CATCUTATE
CONFIDENCE INTERVATS

APPENDICES

This table shows the values of t* needed to calculate confidence intervals. A confidence
interval of a mean extends in both directions from the mean by a distance equal to the
SEM times the critical t value tabulated here. Set df equal to one less than the number
of data points. This book uses the symbol t* to denote the critical value of the
t distribution.

Critical value of t for
CI

90Vo Cl 95Vo CI 99Vo CI

I
2
a

J

4
5
6

8
9

l 0
l l
r 2
1 3
t4
l 5
l 6
1 7
l 8
l 9
20
2 l
22
23
24
25
26
27
28
29
30
35
40
45
50

100
200
500

1000

6.3137
2.9200
2.3534
2.1318
2.0150
r.9432
r.8946
1.8585
1 .8331
1 .8125
t.1959
1.7823
t.7709
1.7613
1.7 531
1.7459
1.7396
r.7341
r.7291
1.7247
1.7207
1.7 t7 l
r.7139
1.7t09
1.7081
r.7056
1.7033
1.701 I
r.6991
r.6973
1.6896
1.6839
1.6794
1.6759
r.6602
1.6525
r.&79
t.64M

12.7062
4.3027
3.1824
2.7765
2.5706
2.4r'i69
2.3646
2.3060
2.2622
2.2281
2.20t0
2.r788
2.t604
2.1448
2.13t5
2.n99
2.1098
2.1009
2.0930
2.0860
2.0796
2.0739
2.0687
2.0639
2.0595
2.0555
2.0sr8
2.0484
2.0452
2.0423
2.0301
2.02r1
2.Ot4l
2.0086
1.9840
r.9719
1.964'7
1.9623

63.6559
9.9250
5.8408
4.6041
4.0321
3.7074
3.4995
3.3554
3.2498
3.1693
3. I  058
3.0545
3.0t23
2.9768
2.9467
2.9208
2.8982
2.8784
2.8609
2.8453
2.8314
2 .8188
2.80'73
2.7970
2.7874
2.7787
2.7'707
2.7633
2.75&
2.7500
2.7238
2.70/.5
?.6896
2.6778
2.6259
2.600,6
2.5857
2.5807
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TABIE A5.4.  DETERMINING A P VALUE FROM t

369

To determine a p value (two-tailed), find the row that corresponds to the value of t

that you calculated from your data and the column that corresponds to df. For an

unpaired t test, df equals the total number of values (both groups) minus two. For a

paired t test, df equals the number of pairs minus one.
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TABLE A5.5. CRITICAT VALUES OF t

APPENDICES

The table shows critical values from the t distribution. Choose the row according to
the number of degrees of freedom and the column depending on the two-tailed value
for cr. If your test finds a value for t greater than the critical value tabulated here, then
your two-tailed P value is less than cr.
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TABLE 45.6. CONVERTINC zoo*u, TO POWER

4.00 >99.99Vo
3.95 >99.99Vo
3.90 >99.99Vo
3.85 99.99Vo
3.80 99.997o
3.75 99.99Vo
3.70 99.99Va
3.65 9999Vo
3.60 99.98Vo
3.55 99.987a
3.50 99.987o
3.45 99.97Vo
3.40 99.9',t70
3.35 99.96Vo
3.30 99.95Vo
3.25 99.947o
3.20 99.93Vo
3.15 9992Vo
3.10 99.90Vo
3.05 99.89Va
3.00 99.87Vo
2.95 99.84Vo
290 99.8lvo
2.85 99.78Vo
2.80 99.74Vo
235 99.70Vo
2.70 99.65Vo
2.65 99.60Vo
2.60 995370
2.55 99.46Vo
2.5O 99.38Vo
2.45 99.29Vo
2.40 99.l8Vo
2.35 99.06Vo
230 98.93Vo
2.25 98.78Vo
2.2O 98.6lvo
2.15 98.42Vo
2.10 98.2l%o
2.05 97.987o
2.N 97.7290

APPENDICES

Use this table when calculating sample size. Calculate Zpo*., usiog Equations 23.6 or
27.4. Then use this table to determine the power.

Zpo*er POWef

0.00 50.00Vo
-0.05 48.0lVo
-0.10 46.02Vo
-0.15 M.04Vo
-0.20 42.07Vo
-0.25 40.13Vo
-0.30 38.2l%a
-0.35 36.327o
-0.40 34.46Ta
-0/5 32.64Vo
-0.50 3O.85Vo
-0.55 29.l2vo
-0.60 27.43Vo
-0.65 25.78Vo
-0.70 24.207o
-0.75 22.66Vo
-0.80 2 l . l97o
-0.85 l9.77%o
-0.90 l8.4lVo
-0 .95  17 . l l%o
- 1.00 l5.87%o
- 1.05 14.69Vo
- I . l0  13.57Vo
-  l . l 5  l Z .S l vo
-  1 .20 l l .5 l%o
- 1.25 10.56%o
- 1.30 9.68Vo
- L35 8.85Vo
- 1.40 8.087o
- 1.45 7.35Vo
- 1.50 6.68Vo
- 1.55 6.06Va
- 1.60 5.48Vo
- 1.65 4.95Vo
- 1.70 4.46Vo
-1.75 4.0l%o
- 1.80 3.59Va
- 1.85 3.22Vo
- 1.90 2.87Vo
- 1.95 2.56Vo
-2.W 2.28Va

2.00 97.72Vo
1.95 97 .44Va
1.90 97 . l3%o
1.85 96;787o
1.80 96.4l%o
1.75 95.997o
1.70 95.54Vo
1.65 95.05Vo
1.60 94.527o
1.55 93.947o
1.50 93.32Vo
1.45 92.65Vo
1.40 91.92Vo
1.35 91. l5%o
1.30 90.32Vo
1.25 89.44Vo
1.20 88.49Vo
1.15 8-l .49Vo
l. l0 86.43Vo
1.05 85.3lVo
1.00 84.l3%o
0.95 82.89Vo
0.90 8l.59Vo
0.85 80.23Vo
0.80 78.8lvo
0.75 77.34Vo
0.70 75.807o
0.65 74.22Vo
0.60 72.57Vo
0.55 70.88Vo
0.50 69.l5Vo
0.45 67.36Vo
0.40 65.54Vo
0.35 63.68Vo
0.30 6l.79%o
0.25 59.87Vo
O.20 57.93Va
0.15 5596Vo
0.10 53.987o
0.05 5l99%o
0.00 50.00Vo



APPENDIX 5

TABLE As.7. DETERMININC A P VATUE FROM x2 (CHI-SQUARE)
WITH 1 DEGREE OF FREEDOM

375

This table assumes that you have one degree of freedom, which is the case when
analyzing a 2 x 2 contingency table. The P values tabulated here are two sided.

X2 P PX2 Px' Px2

0.0 1.000
0.1 0 .7518
0.2 0.6547
0.3 0.5839
0.4 0.5271
0.5 0.4795
0.6 0.4386
0.1 0.4028
0.8 0.3711
0.9 0.3428
1.0 0.3113
l.r 0.2943
t.2 0.2733
1.3 0.2542
1.4 0.2367
1.5 0.2207
1.6 0.2059
r.7 0.1923
1.8 0.1797
1 .9  0 .168  r
2.0 0.1573
2. r  0 .1473
2.2 0 .1380
2.3 0.1294
2.4 0.1213
2 .5  0 .1138
2.6 0.1069
2.7 0.1003
2.8 0.0943
2.9 0.0886
3.0 0.0833
3.1 0.0783
3.2 0.0736
3.3 0.0693
3.4 0.0652
3.5 0.0614
3.6 0.0578
3.7 0.0544
3.8 0.0513
3.9 0.0483
4.0 0.0455

4.1 0.M29
4.2 0.0404
4.3 0.0381
4.4 0.0359
4.5 0.0339
4.6 0.0320
4.7 0.0302
4.8 0.0285
4.9 0.0269
5.0 0.0253
5.1 0.0239
5.2 0.0226
5.3 0 .0213
5.4 0.0201
5.5 0 .0190
5.6 0 .0180
5.7 0 .0170
5.8 0 .0160
5.9 0 .0151
6.0 0.0143
6.1 0 .0135
6.2 0.0128
6.3 0 .0121
6.4 0 .0114
6.5 0.0108
6.6 0.0102
6.7 0.0096
6.8 0.0091
6.9 0.0086
7.0 0.0082
7.r 0.0077
7.2 0.0073
7.3 0.0069
7.4 0.0065
7.5 0.0062
7.6 0.0058
7.7 0.005s
7.8 0.00s2
7.9 0.0049
8.0 0.0047

8.1 0.0044
8.2 0.0042
8.3 0.0040
8.4 0.0038
8.5 0.0036
8.6 0.0034
8.7 0.0032
8.8 0.0030
8.9 0.0029
9.0 0.0027
9.1 0.0026
9.2 0.0024
9.3 0.0023
9.4 4.0022
9.5 0.0021
9.6 0.0019
9.7 0.0018
9.8 0.0017
9.9 0.0017
0.0 0.0016
0.1 0 .0015
0.2 0.0014
0.3 0.0013
0.4 0.0013
0.5 0.0012
0.6 0 .001I
0.7  0 .0011
0.8 0.0010
0.9 0.0010
1.0 0.0009
r.l 0.0009
1.2 0.0008
1.3 0.0008
t.4 0.0007
1.5 0.0007
1,6 0.0007
t.7 0.0006
1.8 0.0006
t.9 0.0006
2.0 0.0005

tz.t 0.0005
r2.2 0.0005
r2.3 0.0005
t2.4 0.0004
r2.5 0.0004
12.6 0.0004
t23 0.0004
r2.8 0.0003
12.9 0.0003
13.0 0.0003
13.1 0.0003
13.2 0.0003
13.3 0.0003
13.4 0.0003
13.5 0.0002
13.6 0.0002
r3.7 0.0002
13.8 0.0002
t3.9 0.0002
14.0 0.0002
r4.r 0.0002
14.2 0.0002
t4.3 0.0002
t4.4 0.0001
14.5 0.0001
14.6 0.0001
t4;t 0.0001
14.8 0.0001
r4.9 0.0001
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TABTE As.B. CRTTTCAI VALUES OF THE CH|-SQUARE
DISTRIBUTION

APPENDICES

This table shows the critical values of Xt. The rows denote degrees of freedom, and
the columns denote the value of a. If your test results in a value of Xt larger than the
tabulated value, then your P value is less than cr.
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TABTE A5.9. 95% CONFIDENCE INTERVATS FOR THE
POISSON DISTRIBUTION

APPENDICES

C is the number of
The table shows the
unit time or number
C-r .g1t r roC*
the number of events

events per unit time or number of objects per unit of space.
95Vo confidence interval for the average number of events per
of objects per unit of space. For larger C, use this equation:
l.96JC. Don't normalize C to some standard unit; C should be
or objects actually counted.

0 0.00
l 0.03
2 0.24
3 0.62
4 1.09
5 r.62
6 2.20
7 2.8r
8 3.45
9  4 . r2

l0 4.80
l l 5.49
12 6.20
13 6.92
14 7.65
15 8.40
16 9.15
t7 9.90
18 10.67
19 tt .M
20 12.22
2r t3.m
22 13.79
23 14.58
24 15.38
25 16.18
26 16.98
27 17.79
28 18.61
29 19.42
30 20.24
31 2t.06
32 2t.89
33 22.72
34 23.55
35 24.38
36 25.2r
37 26.05
38 26.89
39 27.73
40 28.58

Upper

3.69
5.57
7.22
8.77

to.24
rr.67
13.06
r4.42
t5.76
17.08
18.39
19.68
20.96
22.23
23.49
u.74
25.98
27.22
28.45
29.67
30.89
32.rO
33.31
34.51
35.71
36.90
38.10
39.28
40.47
4t.65
42.83
4.ffi
45.17
46.34
47.51
48.68
49.U
51.00
52.t6
53.31
54.47

Upper

82 65.21 101.78
83 66.r l 102.89
84 67.00 104.00
85 67.89 105,10
86 68.79 106.2r
87 69.68 107.31
88 70.58 t08.42
89 71.47 1W.52
90 72.37 110.63
91 73.27 n r.73
92 74.16 rr2.83
93 75.M l 13.93
94 75.96 r 15.03
95 76.86 I16.13
96 77.76 rr7.23
97 78.66 I18.33
98 79.56 l19.43
99 80.46 120.53

100 81.36 t21.63
l0l 82.27 122.72
102 83.17 123.82
103 84.07 t24.92
104 E4.98 126.01
105 85.88 l27.l l
106 86.78 128.70
r07 87.69 129.30
r08 88.59 130.39
r09 89.50 r3r.49
l l0 90.41 132.58
l l l  91.31 133.67
fi2 92.22 134.77
113 93.13 135.86
I 14 94.M 136.95
I t5 94.94 138.04
I 16 95.85 139.13
tt7 96.76 l&.22
l l8 97.67 l4l.3l
ll9 98.58 r42.N
120 99.49 143.49
r2r 1m.40 144.58
122 l0l.3l 145.67

4t 29.42 55.62
42 30.27 56.77
43 3r.r2 57.92
M 3r.97 59.W
45 32.82 ffi.zr
46 33.68 6r.36
47 34.53 62.s0
48 35.39 63.9
49 36.25 &.78
50 37.11 65.92
51 37.97 67.06
52 38.M 68.19
53 39.70 69.33
54 40.57 70.46
55 4r.43 7r.59
56 42.30 72.72
57 43.17 73.85
58 4.M 74.98
59 491 76.rr
60 45.79 77.23
61 46.6 78.36
62 47.54 79.48
63 48.41 80.60
& 49.29 81.73
65 50.17 82.85
6 51.04 83.97
67 51.92 85.@
68 52.80 86.2r
69 53.69 87.32
70 54.57 88.44
1t 55.45 89.56
72 56.34 90.67
73 57.22 91.79
74 58.11 92.90
75 58.99 94.01
76 59.88 9s.13
77 ffi.77 96.24
78 61.66 97.35
79 62.55 98.46
80 63.4 99.57
81 &.33 100.68
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TABTE A5.10. CRITICAL VALUES OF THE F DISTRIBUTION

379

Find the column coffesponding to the number of degrees of freedom in the numerator

and the row conesponding to the number of degrees of freedom in the denominator.

Be very sure that you are not mixing up the two df values, as it matters a lot. Find

the critical value of F in the table. If you have obtained a value for F greater than that,
then your P value is less than a. The next page gives values for a : 0.05 and the
following page gives values for cr : 0.01.
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Adjusting data for confounding variables,
293-296

Alpha
choosing an appropriate value, 109
defined, 106
relationship to confidence intervals, 111
relationship to P value, 110

Alternative hypothesis, 96
Analysis of variance

multiple comparison post tests, 258-259
nonparametic, 260
one-way, 255-258
repeated measures, 260
two-way, 261

Attributable risk, 73
Average. See Mean

Bayesian analysis
controversy, 145
equation, 137
genetic counseling, 149
genetic linkage, 150
informal use, 145
interpreting lab tests, 129-138
interpreting statistical signifi cance, 142

Beta. ,See Power
Bias.22
Binomial distribution

defined. ll
equation, 19
used to generate confidence interval, 12

Blind, double, 185
Bonferroni's method for multiple

comparison, 259
Box and whiskers plot, 25
Case-control study. See Retrospective study
Calculating sample size. See Sample size

INDEX

Central limit theorem. 42-44

Chi-square test
analyzing2 x 2 contingency tables,

233-235
analyzing larger contingency tables,

25r-253
compared to Fisher's test, 236, 301
comparing observed and expected counts,

230
power of,236-240
table, 375-377
for trend, 253

Choosing a test, 297-302
Clinical trial

designing, 183-l9l
example, 71

Coefficient of determination, 173
Coefficient of variation, 29
Coincidences, 118
Confidence interval

of correlation coefficient, 161
of counted variable, 245-247,379
of difference between two proportions, 78
of difference of two means, 63, 65,67
of linear regression line, 178
of mean, 39-41
of odds ratio, 78
of proportion, 12-18, 362-364
of ratio of two means. 285
of relative risk. 78
of slope in linear regression, 177
of survival curve, 55
what it means to be 95Vo sure, 13

Contingency table,77
Confoundi ng variables, adj usti ng f or, 293 -29 6
Continuity correction. .See Yates' continuity

correction

383



384

Contrasts, in multiple comparison, 259
Correlation coeffi cient

assumptions, 157
calculating, 160
comparison with linear regression, 169
confidence interval, 161
effect of outliers. 158
example, 155
interpreting, 157
P value. 162
r  vs .  f ,  158
Spearman correlation coefficient, 160

Cox regres sion, 27 4-27 6
Cross sectional study, 70
Cross-over design in clinical trials, 186
Curve fitting, 277-282
CV (coefficient of variation), 29

Decision analysis, 286
Double blind, 185
Dunnett's method for multiple comparison,

259

Excel, 313, 360
Error bars, 48-49
Errors, type I vs. type II

compared to errors in lab tests, 140
defined, 109

Exact randomization test, 217
Experimental hypothesis, 96

F distribution
in ANOVA, 257
table, 379-381

Fisher's exact test, 233,236,301
Friedman test, 261

Gaussian distribution
basis of many statistical tests, 46-47
central limit theorem, 42-44
deciding when to use nonparametric tests,

297-300
def ined,31-33
and normal limits. 36-37
table, 366-367

Genetics
Bayesian analysis in genetic counseling, 149
Bayesian analysis of genetic linkage,

l 5 l  -  1 5 3
Graphpad InStat, 3II-3LZ
Graphpad Prism, 3lI-312

INDEX

Histogram, 23
Homoscedasticity, 17 l, 265
Human subjects committees, 189
Hypothesis testing, 106

Innocent until proven guilty, 108
InStat, 3lI-312
Intention to treat, in clinical trials, 186
Interim analyses, 191
Interquartile range, 25

Kaplan-Meier curves, 55
Kruskal-Wallis test, 261

Life tables. See survival curves
Likelihood ratio

in genetic counseling, l5l
and lod score, 152
for lab tests, 137

Linear regression
assumptions, 171
calculating, 176-178
comparison with correlation, 169
fallacy,175
least squares,172
meaning of 12, 173
model, 170

Linkage, genetic, 15 1- 153
Lod score, 152
Log-rank test to compare survival curves,

273
Logistic regression, 268-27 |

Mann-Whitney test, 221
Mantel-Haenszel test

comparing survival curves, 273
pooling several contingency tables, 253

Matched subjects. See Paired subjects
Maximum likelihood, 173
Mean

confidence interval of, 39-41
defined,24

Median, 24
Mcnemar's test of paired observations, 250
Meta analysis, 288
Microsoft Excel, 313, 360
Multiple comparisons

following one-way ANOVA, 258-259
principles, I l8-126

Multiple regression, 263-267
Multivariate statistics. 267
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Negative predictive value, 130
Newman-Keuls method for multiple

comparison, 259
Nonlinear regression, 277 -282

Nonparametric tests
exact randomization test, 217
Friedman's test, 261
instead of ANOVA, 261
introduction, 217
Kruskal-Wallis test, 261
Mann-Whitney test,22l
Spearman correlation, 159
when to use, 297-300
Wilcoxon signed rank sum test,228

Normal limits, 36
Null hypothesis, 96

Odds ratio
calculating a confidence interval, 78, 88
defined, 76
interpreting frcm retrospective studies, 82
logistic regression, 269-27 |
relationship to relative risk, 83

Odds vs. probabilities, 75, 136

P values
common misinterpretations, 97
definition, 96
one-tail vs. two-tails. 97. 300

Paired subjects
CI of difference between means, 67
in case-control studies. 87
McNemar's chi-square test, 250
need for special analyses, 66,301
paired t test, 225-227
repeated measures ANOVA, 260

Percentiles, 25
Picking a statistical test, 297-302
Placebos, 189
Poisson distribution, 245, 379
Population vs. sample, 4
Post tests. ̂ See Multiple comparisons
Positive predictive value, 130
Power

analysis to determine sample size. See
Sample size

defined, 140
interpreting, 201
power of chi-square test, 236-240
of t test. 213.-315
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used to interpret "not significant" results,
l l 6

Predictive value of lab test, 130
Prediction interval

of mean, 35
of regression line, 178

Pr i sm,  3 l l - 312
Probabilities vs. odds. 75. 136
Probability distribution

def ined,31
Gauss ian.3 l -38
t , 4 4

Proportion, confidence interval of, l2-18,
362-364

Proportional hazalds regression, 27 4-27 6
Prospective study, 70
Protocols in clinical trials. 187

R. ,See Correlation coefficient
R2. See Linear regression
Randomization in clinical trials, 185
Randomization test, 217
References, 309-310
Regression

different kinds, 166
linear. See Linear regression
logistic, 268-211
multiple, 262-267
nonlinear, 277-282
polynomial,283
proportional hazards, 27 4-2'1 6

Relative risk
calculating a confidence interval, 78
defined, 73
from survival studies, 76
why it can be misleading, 74

Repeated measures ANOVA, 260
Residuals, 174
Retrospective study

advantages and disadvantages, 85-86
defined, 70
example, 8l
interpreting odds ratios, 83

Robust tests. See Nonparametric tests

Sample size
comparing survival curves, 200
difference between two means. 196. 198
difference between two proportions, 197,

r99
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Sample size (cont.)
one mean, 195
one proportion, 196

Sample vs. population, 4
Scheffe's method for multiple comparison, 259
SD. See Standard deviation
SEM. See Standard error of the mean
Sensitivity of lab test, 129
Significance level, 106
Significant, statistically, 107
Spearman correlation, 160
Specificity of lab test, 129
Standard deviation

checking the accuracy ofyour calculator, 28
deciding between SD and SEM enor bars, 48
equation, 27
interpreting, 28
sample SD vs. population 5D,27

Standard error of the mean
calculating, 44
central limit theorem, 42-44
deciding between SD and SEM enor bars, 48

Statistically signifi cant
defined, 107, l13
"extremely" significant, I 13
"marginally" significant, I 14
relationship to scientific importance, I I I

Stratified randomization, 185
Student's t test. See T test
Student-Newman-Keuls method for multiple

comparison, 259
Survival curves

assumptions, 58
censored observations, 54
comparing, 272-276
confidence interval of, 56
creating, 55

INDEX

log-rank test,2l3
Mantel-Haenszel test, 273
median survival, 57
sample size for, 200

T distribution
defined, 44
relationship between confidence interval and

hypothesis testing, 2I 1 -213

table, 368-373
used to calculate a confidence interval. 4l

T test
paired, 225-227
power of,2L3-215
unpaired, 207-213

Tukey's method for multiple comparison,
259

Type I vs. Type II errors
compared to errors in lab tests, 140
defined, 109

Variability
display with histogram, 23
sources of,22

Variance, 26-27 
|
I

Wilcoxon signed rank sum test, 228
Will Roger's phenomenon, 27 4

Yates' continuity correction
in chi-square test to compare two

proportions , 235-236, 301-302
comparing observed and expected, 23I

Z table
uses, 34
table.366-367


