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The Cre-loxP recombination system has been used as a tool to characterize DNA tertiary structure,
for example in difference-topology experiments that are based on tangle analysis. Difference topol-
ogy depends on the formation of a looped recombinase-DNA intermediate; however, kinetic details
of the Crerecombination pathway have not been sufficiently characterized for the recombination
system to be used quantitatively. By analyzing the synapsis steps in Cre recombination, Shoura and
Levene showed that the free energy of DNA-loop formation can be directly measured using a novel
fluorescence resonance energy transfer (FRET)-based reporter technique. The featured method
uses special DNAs bearing loxP recombination sites that contain fluorophore tags (in red and
green) at specific nucleotide positions. Addition of Cre protein (yellow) to the reaction generates
a looped synaptic complex and recombination products (linear and circular DNA). Innovative
applications of their technique include superhelical, knotted, or catenated DNA substrates in
vitro and in living cells. See the chapter by Shoura and Levene for more details. (Conceptual
design and artwork is by Massa Shoura and Udayana Ranatunga. Supercoiled DNA PDB are
from MD simulations by Sarah Harris. Other DNA structures were made using VMD and the
GraphiteLifeExplorer software. Final image was rendered using PovRay.)





Preface

Commonly used models in mathematical biology involve dynamical systems,
differential equations, and statistics. These fields often study the general behavior
and dynamics of biological systems either at the population level or in terms of
cell-to-cell interactions, tissue development, or organ function, but they are less
often used in the study of biomolecular processes such as genetics, biomolecular
structures and interactions.

With the explosion of research in molecular biology, and in particular the enor-
mous experimental data generated in the last couple of decades, new mathematical
tools are being developed using graph theory, algebra, combinatorics, discrete
stochastic processes, and topology. These new methods allow us to “zoom-in” to
the cell to better understand spatial macromolecular arrangements and molecular
interactions within the cell, or a portion of the cell.

With this volume, we wish to introduce several aspects of these contemporary
approaches in mathematical (molecular) biology that contain a variety of models,
covering a wide spectrum of problems in molecular biology.

The chapter authors are experts in their own fields and have diverse scientific
background ranging from biology to biophysics, physics, computer science, and
mathematics. The collection of their experiences gives different perspectives on
sometimes similar biological problems and, we hope, will help in understanding
the mathematical tools as well as the biological process.

The book is divided into five parts devoted to general biological themes, while
the mathematical methods introduced in each theme differ dramatically.

The first part of the book concentrates on data analysis, including genetic data
and data related to brain activities. The chapters by Franco and Angeleska et al.
deal with short nucleotide segments. While Franco describes methods from formal
language theory to learn about the functionality of genetic segments, Angeleska
et al. survey methods, mainly based on graph theory, for parsing and annotating
sequencing data for genome assembly. The next two chapters, by Carbone and
Bonizzoni et al., describe methods to understand gene or protein (co)evolutions
through analysis of distances in phylogenetic trees (Carbone) or graph theoretical
methods (Bonizzoni et al.). The last two chapters deal with different types of data
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viii Preface

analyses. Based on MRI scans, Daley describes a method to construct a graph for
the brain neural network through threshold functions, while Nanda and Sazdanović
show how to use algebraic topology to analyze a variety of data types, including
neural connections in the brain.

The second part of the book deals with biomolecular spatial arrangements.
Chapters in this part use techniques from combinatorics and graph theory as well
as purely algebraic methods using groups of symmetries. This segment starts with
problems about RNA secondary structures (Heitch and Poznanović); continues
with rigid and flexible regions in a protein ternary structure (Fox and Streinu),
supramolecular assembly of viral capsids with clusters of proteins (Sitharam), and
transitions of dodecahedral and icosahedral symmetries in viral capsid expansions
(Cermelli et al.); and concludes with three-dimensional synthetic DNA structures
(Ellis-Monaghan et al.).

DNA rearrangements have been observed on both developmental and evolution-
ary scales, and some of the most extensive shuffling of genetic material has been
observed in certain species of single-cell organisms (ciliates). Goldman et al. start
the third part of the book with a brief survey of the biological process, while the next
two chapters cover mathematical methods that describe the rearrangement process
using matrix algebras (Brijder and Hoogeboom) and topological aspects of graphs
(Dolzhenko and Valencia).

The fourth part on spatial embeddings of biomolecules starts with an introduction
to DNA topology by Darcy et al., providing basic biological and topological back-
ground of the subject. Buck’s exposition on methods from knot theory capturing
enzymatic actions that control topological embeddings of DNA is followed by
Baker’s mathematical development of these methods. This part of the book ends
with a chapter by Ishihara et al. applying the described methods to a specific
experimentally observed biological process.

The fifth and last part of the book deals with the kinetics and dynamics of
molecular interactions. It starts with analyzing looping of DNA through enzyme
kinetics (Shoura and Levene) and moves into reaction networks using the quasi-
steady-state assumption by differential and matrix equations (Pantea et al.) and a
survey of algebraic methods in systems biology (Laubenbacher et al.). This part, and
the book, concludes with chapters by Savageau and Lomnitz, who use dynamical
systems to study phenotype development, and Rejniak, who shows a computational
model that can capture spatial tissue development including mutant morphologies.

We hope this volume will be suitable as a reference book for researchers in math-
ematics and theoretical computer science who are interested in modeling molecular
and biological phenomena using discrete methods as well as for biologists looking
for available mathematical tools in discrete models. It may also serve as a guide
and supplement for a graduate course in mathematical biology or bioinformatics, to
introduce discrete aspects of mathematical biology. Many chapters end with open
problems that can serve as the basis for research developments.

We wish to thank all the contributing authors for their work in producing these
chapters. Every contribution was reviewed by at least two researchers, whose
valuable comments and suggestions helped in composing the final product. We
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express our deep gratitude to them for their time and effort. Many of the contributors
were also participants of a workshop on Discrete and Topological Models in
Molecular Biology held at the University of South Florida in March 2012. The
workshop received generous support from the National Science Foundation through
the grant DMS-1157242. This allowed for a very successful workshop and provided
opportunities for the research community to meet and exchange ideas that spurred
the development of this volume. Finally, we wish to acknowledge support for this
project, in part, by the NSF grant DMS-0900671 and CCF-1117254.

Tampa, FL, USA Nataša Jonoska
June 2013 Masahico Saito
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for Data Analysis



Perspectives in Computational Genome Analysis

Giuditta Franco

Abstract DNA segments which together cover a genome may be collected together
to form a genomic dictionary of specific words, which may be annotated either
by biological information (according to the functional role they may play in
regulatory mechanisms), or by numerical information (such as the position in the
genome, the total number of occurrences, the occurrences lying inside or outside
genic sequences, the CpG content, and more sophisticated informational indexes
of text analysis). In this chapter, two analogous and complementary dictionary-
based approaches to genome analysis are reviewed. We give a sketch of some of the
relevant knowledge about the (human) genome, in terms of structure and functional
role of its parts, and an informational view based on a mathematical analysis of k-
mer dictionaries, with the aim of opening the way to the formulation of a model.
Basic notions about genomic regulatory activity, where the underlying mechanisms
of information exchange are far from understood, are given. A description of an
initial attempt at computational modeling of genomes, seen as a new language to be
deciphered, concludes the chapter.

1 Introduction

Biological and computational human genome analysis is one of the most important
and intriguing research challenges we are currently facing. It involves efforts from
numerous countries all over the world, and any result towards an understanding
of the basic mechanisms underlying genome structure and functioning could have
high impact on major problems in medicine, such as the understanding and control

G. Franco (�)
Computer Science Department, University of Verona, Strada le Grazie 15, I–37136 Verona, Italy
e-mail: giuditta.franco@univr.it

N. Jonoska and M. Saito (eds.), Discrete and Topological Models in Molecular Biology,
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4 G. Franco

of (often incurable) genetic diseases such as multiple sclerosis, lupus, rheumatoid
arthritis, Crohn’s disease, celiac disease, and various kinds of cancer. Advances
in next-generation sequencing (NGS) technology have boosted studies of both
population genomics and genomic sequence analysis. However, it is still like having
at hand an encrypted book, written in an unknown language that we have to decipher.

After the revolutionary Human Genome Project, the retrieval of any sort of
genomic text is nowadays possible online, by freely accessible databases (for exam-
ple, the NCBI, UCSC, and EMBL-EBI websites1), containing genes, chromosomes,
and whole genomes. Unfortunately, there are many regions of the human genome
which, for a variety of reasons, are still not well characterized or have not been
characterized at all. However, at the end of the project, we had additional evidence
that only a small part of the genome (less than 2 %) is genic (an initial estimate of
35,000 traditional protein-coding genes was whittled down to about 21,000 genes,
with an average length of 3,000 bases, whereas the longest human gene known is
that for dystrophin, with a length of 2.4 million bases); the remaining part (98 %)
was denoted junk DNA (and often referred to as dark matter). Indeed, even including
the (about 20,000) RNA genes, encoding RNA strands with myriad roles, a large,
noncoding portion of the genome still appeared useless.

Discovered in 1977 [23], more than 18,000 pseudogenes were dismissed as junk
DNA as well. By definition, these derive from gene duplication (most of them
are associated with a few abundantly expressed gene families). They are located
either on the same chromosome as the genes from which they originate or on a
different chromosome, but have some alterations in the sequence structure (loss of
promoter sequences, premature stop codons, frameshift mutations, or alterations in
splice sites) which prevent them from being transcribed or translated (see Fig. 1 for
a simple sketch of the traditional central dogma). However, they are not functionally
disabled: they can promote or inhibit the expression, or enhance the function, of the
parental gene. In some cases, mutations acquired by RNA pseudogenes allow them
to perform functions unrelated to those of their parental genes, and even to produce
(truncated) proteins. Interestingly, they provide a mechanism whereby genomes
can evolve new functions from existing sequences (and represent a reservoir of
protein diversity): pseudogenic proteins are produced under different conditions
or in different cell types from the proteins derived from their parental genes. In
recent research, pseudogenes have turned out to be modulators of expression of
parental or unrelated genes [33]. Often, cancer-related genes (such as the PTEN
tumor suppressor gene and the oncogenic KRAS) possess “biologically active”
pseudogenes, which means that they regulate coding-gene expression [36]. Other
recent advances in the precise annotation of pseudogene loci and in pseudogene
statistics developed using computational approaches may be found in [32], within
the framework of the GENCODE project.

1See http://www.ncbi.nlm.nih.gov/sites/genome, http://hgdown\load.cse.ucsc.edu/downloads.
html, and http://www.ebi.ac.uk/genomes/, respectively.

http://www.ncbi.nlm.nih.gov/sites/genome
http://hgdown load.cse.ucsc.edu/downloads.html
http://hgdown load.cse.ucsc.edu/downloads.html
http://www.ebi.ac.uk/genomes/
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Fig. 1 The central dogma of molecular biology (so named by Francis Crick) states that genomic
information guides the formation of proteins. DNA is transcribed (copied) into single RNA
strands, called messenger RNA (mRNA), since it carries the information originally present in the
genome outside the nucleus, to the ribosomes, machines which synthesize proteins. Transcription
consists of two internal steps: the strand first assembled by the transcription process is called pre-
mRNA, which is then processed in the cell nucleus to become (mature) mRNA. This last process
consists of three phases: post-transcriptional capping, where a modified G is attached to the 50-
end, step-by-step removal of introns present in the pre-mRNA, that is, splicing of exons (done
by splicesomes), and a final post-transcriptional polyadenylation (elongation by a polyA) at the
30-end. The resulting protected information is moved to the cytoplasm, where translation into a
protein is performed by ribosomes, according to the genetic code, which associates three-letter
words, called codons, to single amino acids (the basic protein constituents). Different codons may
code for the same amino acid

Our current knowledge about the structure and function of the human genome
has been strongly influenced by recent results from the ENCODE (Encyclopedia
of DNA Elements) project, which are changing our previous characterizations
of genic regions. Several traditional computational (namely, machine-learning-
based) methods have supported this project, and genome informational analysis
has been emerging from the computational and linguistic investigation of genomic
dictionaries.

1.1 The ENCODE Project

Several revolutionary computational and experimental results about the crucial
informational and regulatory role of junk DNA have recently been published in
about 40 papers, mainly in Nature, Genome Research, and Genome Biology, and
some also in Biological Chemistry and Science. A selection of these papers are
listed in the references. The decade-long joint project ENCODE, involving 440
scientists from 32 laboratories around the world (at MIT, Harvard, Stanford, and
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SUNY in the USA, and at universities in Germany, the UK, Spain, Switzerland,
Singapore, China, and Japan) provided integrated evidence that about 80 % of the
human genome is covered by active regulatory elements (landing spots for proteins
in order to promote, inhibit, or silence gene activity) [10, 11], although if has a lot
of redundancy. More than half of it is transcribed into the direct output of genetic
information, that is, into different RNA types for synthesis, processing, transport,
modification, and translation activities [8, 10, 33]. In an initial effort, an ENCODE
pilot project focused on just 1 % of the genome, and its results (published in 2007)
indicated that the list of human genes (and corresponding intergenic regions) was
incomplete. Recent advances in low-cost, rapid DNA sequencing technology have
allowed investigators to scale up this research, from a more specifically driven
analysis to the whole genome, supported by massive data analysis work that has
been performed in specialized centers. NHGRI has invested about US$300 million
in ENCODE, including the pilot project, technology development, and preliminary
studies on the genomes of mice, nematodes, and fruit flies [34].

There are now 1,640 publicly available genome-wide datasets for different types
of cell,2 such as a complete catalogue of annotated human transcripts (identifying
different types of RNAs) and functional elements (such as promoters,3 switches,
transcription factors, protein-binding regions, transcription start sites (TSS), and
transcriptional repressors such as CTCF,4 also known as 11-zinc finger protein
or CCCTC-binding factor5). These data have enabled us to assign biochemical
functions to 80 % of the junk genomic portion. The newly identified elements also
show a statistical correspondence with sequence variants linked to human diseases,
and can thereby guide the interpretation of such variations [10].

The ENCODE project has systematically mapped regions of transcription,
transcription factor association, chromatin structure, and histone modification,6

providing new insights into the mechanisms of gene regulation [9, 30, 40]. The
creation of an encyclopedia of DNA elements was made possible by a special
enzyme (discovered by Vogelstein and Gillespie in 1979) called DNase, whose
hypersensitive sites (DHSs) result in markers for regulatory DNA. In fact, all classes

2Since genomic sequences are expressed differently in different kinds of cells and tissues, the
project first started work on three types of cell (an immature white blood cell line, a leukemia line
called K562, and a human embryonic stem cell line) and then extended the analysis to 147 cell
types (including the liver cancer cell line HepG2, the laboratory cancer cell line HeLa S3, and
human umbilical cord tissue) [34].
3See, for example, http://epd.vital-it.ch/.
4The human genome contains from 15,000 to 40,000 CTCF-binding sites, depending on cell type.
5This protein plays a major role as an enhancer, and was found to bind to three regularly spaced
repeats of the core sequence CCCTC.
6There is a helpful explorer at http://www.nature.com/ENCODE, which allows one to access
papers containing the results of the project and the investigate various topics, thematically
organized in to threads. For example, thread 3 is about the definition of a gene, threads 5 and
6 are about RNAs, thread 9 is about long-range looping, and thread 10 is about computational
methods.

http://epd.vital-it.ch/
http://www.nature.com/ENCODE
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of cis-regulatory elements, including enhancers, promoters, insulators, silencers,
and locus control regions, are attached to regulatory factors, which protect genomic
DNA (along with the underlying sequence) from cleavage by DNaseI (which leaves
nucleotide-resolution footprints of regulatory elements). About 2.9 million DHSs
were found and experimentally validated in the ENCODE project.

Annotating functional attributes has revealed novel relationships between chro-
matin accessibility, histone modification, gene expression, DNA methylation, and
regulatory factor occupancy patterns [42]. The DHSs in pluripotent and immor-
talized cells exhibit higher mutation rates than those in highly differentiated cells,
so exposing an unexpected link between chromatin accessibility, proliferative
potential, and patterns of human variation.

Of course, none of the discoveries above would have been possible without the
computational support of powerful software to process data and a data warehouse.
Ad hoc algorithms and specific computational approaches were often helpful for
cataloguing and analyzing datasets. As an example, in [17], a machine learning
approach was used to systematically identify locations of transcription factors.
There are plenty of genomic data analysis tools in the literature, such as genome
browsers and visual software for sequencing data. As an example, we shall mention
only one of the most recent of these tools, called ggbio [45], which is used to
visualize and explore genomics annotations and high-throughput data. The plots
produced by ggbio provide views of genomic regions, sequence alignments, splicing
patterns, and genome-wide overviews. The methods used by the tool include a
combination of statistical functionalities from the R software package7 and a
grammar of graphics.

1.2 Open Questions

The majority of the elements of the human genome have been annotated by
ENCODE in terms of their biochemical function. Also, from an informational
viewpoint, new insights into the mechanisms of gene regulation have been obtained,
with new data about the correspondence between promoter sequences, the binding
of specific protein combinations and encoding regions. However, there are still parts
of the genome that are not understood, and there is a clear lack of a model which
could explain how the major informational processes work to keep the cell alive by
means of an interplay of its metabolism, growth, and duplication.

The genome appears to be a stunningly complex system, with many open
questions. Namely, it is not clear how dark matter communicates with both the close
and the far genes that it affects. Promoters and distal elements engage in more than
1,000 long-range looping interactions (up to 120,000 bases upstream of the TSS),
which are not well understood [37]. The differences between proximal and distal

7The ggbio R package is available at http://tengfei.github.com/ggbio/.

http://tengfei.github.com/ggbio/.
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regulation (as well as the commensurately larger number of distal binding sites)
seem to be a unique feature of human regulation [17]; possibly they reflect the much
larger intergenic space in humans than in other organisms.

Furthermore, millions of genetic switches have been found packed into the
dark matter. They control which genes are active in a cell, thus determining when
those genes are transcribed and the type of cell. There are so many switches, to
control only 21,000 genes, and many complex diseases appear to be caused by tiny
changes (point mutations or polymorphisms) in hundreds of gene switches. It may
happen that one individual gets a disease (such as cancer or depression) while an
identical twin sibling remains perfectly healthy. This is related to environmental
causes, which may induce genome modification (and DNA damage). A key point for
attacking diseases is to control the activation process, that is, the genomic language
of signals that lead promoters to activate the corresponding genes, and the whole
gene regulation machinery.

In next section, a rather simplified description of the structure and functionality
the human genome is given, including the most recent results, in order to better
contextualize the main goals of computational genome analysis methods. A specific
approach in which genomes are represented by means of dictionary-based indexes
is presented in Sect. 3, along with a review of recent results and open problems.
This is based on a recent view, where the aim is to analyze collections of genomic
k-mers (factors of length k) to discover some sort of “genomic code” underlying
the communication between genes and their respective promoters.

2 Genomic Sequence

DNA molecules are chains of nucleotides of four types (A, T, C, G), chemically
concatenated by strong covalent phosphodiester bonds and paired by weak hydrogen
bonds with complementary strands (according to the Watson–Crick complemen-
tation C–G and A–T) having opposite (or antiparallel) orientations. The reading
direction of the sequence goes from a dangling phosphoric group, at the 50-
end, to a dangling hydroxyl group, at the 30-end. It may be argued that such a
bilinear, antiparallel complementarity in the structure has a logical motivation in the
efficiency of DNA replication algorithm [15]. The double strand is twisted into the
familiar DNA double helix, which is in turn wrapped around barrels called histones
(the cylindrical basic proteins of chromatin), so forming a nucleosome (a structure
about 30 nm long). The nucleosomes are assembled into higher-order structures,
called chromosomes (the human genome is organized into 46 chromosomes),
which are especially visible during cell division. This complex three-dimensional
agglomeration of DNA, about 3 m (and three billion bases) long when stretched out,
is stuffed into the microscopic nucleus of a cell (about 10�5 m in diameter), tightly
wound and coiled around itself, just like a ball of wool.

While floating, genomic DNA locally opens up its stitches to allow DNA repli-
cation, gene activation, and regulation of genomic activity. In fact, the chromatin is
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induced to expose a portion of one of its single strand sequences for transcription
by means of (cascades of) external signals, which may be activated, inhibited, or
promoted by binding of (possibly chemically modified) proteins. The secondary
and tertiary structures play an important functional role, because portions which are
far apart in the sequence may become close in the 3D structure (and therefore have
a reciprocal influence). For example, looping of chromosomes that brings enhancers
close to promoters (and promoters close to other promoters) is a mechanism to
ensure the expression (or inhibition) of groups of genes that must perform together.

In addition to genes, which are copied into messenger RNA (mRNA), the genome
contains large segments which are transcribed into RNA-based regulatory elements,
and another portion (including centromeres and telomeres, located at the middle
and the ends of chromosomes) is never transcribed (see Fig. 1). Of this RNA, only
mRNA codes for polypeptides; all the other classes are regulatory RNA. Whenever
genes in prokaryotes are contiguous segments, eukaryotic genes are segmented into
exons and introns (representing coding and noncoding parts, respectively), which are
cut off and reassembled in the nucleus in a splicing phase, in such a way that only
a concatenation of (some) exons (called an exome) is then translated into a protein.
One of the main results achieved in the ENCODE project was the annotation of
isoforms for human genes, i.e., the annotation of those genes whose product is due to
alternative splicing, a key mechanism in which only some of the exons in a gene are
assembled to be translated into protein (so that one gene may possibly code for
several different proteins). Human genes include untranslated regions (UTRs),
which are transcribed into mRNA but never translated into protein. The 50-flanking
regions of genes contain a specific TSS sequence where RNA polymerase starts the
transcription (unlike DNA polymerase, it does not need any primer to start, but just
recognizes some specific sites at which it stars and stops). Transcription is activated
by molecular signals (such as hormones), which interact with the regions where
promoters, switchers, enhancers, and protein-binding sites are located. Enhancers
may be located upstream, or downstream of the gene they control, or even within it,
and increase the rate of transcription.

A typical form of regulation is that due to transcription factors, which are
(not necessarily site-specific) binding proteins that may assume several chemical
states, capable of playing the role of activators or repressors. When repressor
or activator proteins bind, then expression of the gene is repressed or activated,
respectively. Transcription factors bind in a combinatorial fashion to specify the
on and off states of genes; the set of these binding events forms a cell regulatory
network. In [17], it was shown that distinct combinations of transcription factors
bind at specific genomic locations (the combinatorial coassociation of transcription
factors is thus highly context-specific), which are patterns in gene-proximal or
gene-distal regions. It is especially interesting to study the unique combination of
promoter sites (and transcription factors) for a single gene, since different genes
may share the same set of transcription factors. However, the principles that define
clearly the relationship between the regulatory elements and (distal) target genes
remain unknown.
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2.1 The Role of RNA

Eukaryotic cells make many types of primary and processed RNAs, which are
found either in specific subcellular compartments or throughout the cell. A complete
catalogue of these RNAs is not available yet, and their characteristic subcellular
localizations are also poorly understood [8]. There are 8,800 small RNA molecules
and 9,600 long noncoding RNA molecules that have recently been defined, all at
least 200 bases long, working in different compartments of the cell [34]. Some
regulatory RNAs, both long (up to a few thousand bases) and short (less than 200
bases), also have been identified [33], but much remains to be learned about the
function(s) of some of them. Here we would like to give a short (absolutely not
exhaustive) list of RNAs of interest, all synthesized in the nucleus of eukaryotic
cells, at very different rates.

Nuclear gene transcription relies on the work of small nuclear RNA (snRNA),
which catalyzes the splicing process to remove introns (as a component of the
spliceosomes), and small nucleolar RNA (snoRNA), molecules 60–300 bases long,
which produce large precursor molecules (“primary transcripts”) that must be
processed within the nucleus to form the functional molecules for export to the
cytosol.

The expression of mRNA is regulated by tiny RNA molecules (about 22
nucleotides long), called microRNAs (miRNAs), by means of several mechanisms,
including the famous pathway employing the Dicer protein. In one of these
mechanisms, it inhibits the translation of several mRNAs by binding to the UTR
region.8 Since miRNAs bind to RNA, they most likely possess a regulatory role
that relies on their ability to compete to bind, independently of their protein-
coding function [41]. Promising laboratory experiments have show that miRNAs
that inhibit genes needed for metastasis suppress the metastasis of treated human
breast cancer cells.9

The translation process in the cytoplasm is based on the work of both ribosomal
RNA (rRNA) to build ribosomes, which process mRNA to assemble proteins, and
32 kinds of transfer RNA (tRNA). These are molecules 73–93 nucleotides long that
carry one of the 20 amino acids by means of a 3D structure with one loop containing
three unpaired bases called an anticodon. Most of the amino acids have more than
one tRNA responsible for them. Base pairing between an anticodon on a tRNA
molecule and the complementary codon allows us to bring the correct amino acid
to the ribosome. Each tRNA is the product of a separate gene, called a structural
gene as it is not involved in regulation. These genes are needed for morphological
or functional traits of the cell.

8This phenomenon is called gene silencing. It is performed by means of small interfering RNAs
(siRNAs), which are stable when in a double structure, and which activate enzymatic destruction
of pre-RNAs.
9More details of various roles of RNA may be found at http://users.rcn.com/jkimball.ma.ultranet/
BiologyPages/T/Transcription.html#types.

http://users.rcn.com/ jkimball.ma.ultranet/BiologyPages/T/Transcription.html#types
http://users.rcn.com/ jkimball.ma.ultranet/BiologyPages/T/Transcription.html#types
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Our current knowledge of genome functioning seems to necessitate a redefinition
of the concept of a gene, where the basic unit of heredity should be the transcript –
RNA decoded from DNA – rather than, as in the traditional view, a portion of the
genome that finally codes for a protein [34]. The genome is exactly the same in all
cells of a human individual, but cells differentiate from each other on the basis of
their gene activation network, that is, of which RNA is transcribed, on the one hand,
and of which proteins are produced, with different functions, on the other hand.

The challenges for the future include the design of a model for the dynamic
changes in the regulatory landscape during specific developmental pathways.
To understand how regulation processes work, we could observe what happens in
the gene activation network during the differentiation from a stem cell to a specific
cell. Repression of gene expression by miRNAs appears to be a key mechanism
to ensure regulated and coordinated gene expression as cells differentiate along
particular paths. Thus miRNAs play an important role as transcription factors in
regulating and coordinating the expression of multiple genes, in a particular type of
cell, at particular times.

3 Dictionary Based Approaches

In the ENCODE project, the concept of a functional element is central, and is defined
as a genomic segment that codes for a defined product or displays a reproducible
biochemical signature. Furthermore, the distinct distribution of transcribed RNA
species across segments suggests that underlying biological activities are captured
in segmentation [10].

In an initial, simplified approach, a genome may be linearized, and then
analyzed by synthetic methods as just a long sequence of letters. Along with this
natural approach, alignment-free methods have recently been developed [43], where
systemic views replace local sequence analyses [2]; these methods are based on
empirical studies of the frequencies of DNA k-mers in whole genomes [7, 38,
39]. Regularity properties of long strings may be discovered by the application
combinatorial algorithms to biological strings [14], seen as collections of k-mers,
or of genomic words with different lengths, that may be studied as codes using
information theory methods [5]. Once we have a DNA dictionary, we may annotate
words by a biochemical description (as has been done in ENCODE project), by
statistical information [13, 21], or in terms of formal languages [26, 35]. In order
to get an understanding of the complexity of genomes, some work was done on
modeling biological sequences by means of formal languages [2, 20, 38, 39], and
by approaches inspired by linguistic semantics [18]. A recent development has
been the introduction of context-free grammars to formalize design principles for
new genetic constructs, by starting from a library of genetic fragments already
organized according to their biological function [3, 4]. Related previous dictionary-
based studies of genomes may be found in [19, 22], as well as in [29], where
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entropy measures were employed to estimate the randomness or repeatability of
DNA sequences; this has even been done as a function of the organism’s “biological
complexity” [44].

Among the numerous mathematical and computational genome analysis methods
in the literature, we would like here to present one developed as the Infogenomics
project. We report some of the results presented in [5], where the definition,
computation, and analysis of well-characterized dictionary-based genomic indexes
have identified some phenomena of genomic regularity and specificity.

3.1 Infogenomics

Infogenomics is a research project initiated in 2010 at the University of Verona
in Italy, where a methodology for genome analysis has been developed [5] for
computational investigations of k-mer distributions integrated with informational,
dictionary-based indexes. Here we report the main features of this approach, which
currently has several different trends in the ongoing research.

We assume an alphabet � D fa; t; c; gg, over which a given genome G is a
formal string, that is, G 2 � ?, and Dk.G/ � � k is the k-genomic dictionary of
all k-mers occurring in the genome G. As in [5], we refer to k-words that appear
once as hapaxes, to k-words that appear more than once as repeats, and to k-words
which do not appear in the genome G as forbidden.

Cardinalities of the corresponding dictionaries Dk.G/, Hk.G/, Rk.G/, and
Fk.G/, have been computed and analyzed by varying both the word length k and the
genome G. These dictionaries have also been analyzed with respect to other more
sophisticated informational indexes (such as k-lexicality, or k-dictionary selectivity,
which take into account the number of occurrences, i.e., the multiplicity, of single
repeats).

In Fig. 2, the variations of the number of genomic k-words (top chart), hapax
k-words (second chart), repeated k-words (third chart), and forbidden k-words
(bottom chart) in Homo sapiens chromosome 19, for k D 1; : : : ; 18, are shown.
The effect of evolutive pressure may be revealed by observing the top chart in
Fig. 2, where the number of genomic words longer than 11 is smaller than the
number of factors (of the same length) in randomly permuted sequences. Since, by
definition, the genomic dictionary is partitioned into hapax and repeat dictionaries
for each value of k, the curves in the top chart show values equal to the sum of
the values for the curves in the second and third charts. We may notice that the
human chromosome 19 contains fewer hapaxes and many more repeats longer than
14 than random permutations do; similar results were found in [5] for a series of
variegate, whole genomes. It may be deduced that the words in genomic dictionaries
are the result of a selection process, and that genomic repeats longer than 14 seem
to be significant from an informational viewpoint.
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Fig. 2 Variations of jDk.G/j (chart at top), jHk.G/j (second chart), jRk.G/j (third chart), and
jFk.G/j (bottom chart), where G is the Homo sapiens chromosome 19, for k D 1; : : : ; 18. The
blue lines and large, empty circles represent the dictionary size variation for the real genomic
sequence, and the red lines and small, filled circles represent the dictionary size variation for the
average of several random permutations of the original genomic sequence
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The curves describing the variation of such cardinalities show a similar pattern
for all the genomes investigated in [5], whose supplementary material10 presents
other diagrams that represent genomic information, including the k-multiplicity–
comultiplicity profiles (i.e., multiplicities of k-words versus amount of k-words
having given multiplicities). Quite intuitive genomic indexes, such as the minimal
hapax length (if we think that the genome itself is an hapax, and that any word
including an hapax is itself an hapax, it is reasonable to look for the minimal
length), maximal repeat length (any subword of a repeat is obviously a repeat),
minimal forbidden length, and k-repeat positions in a genome for a given repeat
length k, constitute a starting point of the infogenomic research we developed on
12 different genomic sequences, ranging from Nanoarchaeum equitans genome to
human chromosomes. The concept of minimal forbidden words, as finite words
which are not factors and are such that every proper factor of them appears in the
genome, was also studied in [22] and [27], where a linear-time algorithm was given
to reconstruct a finite word from a set of its factors (either with a fixed known
length and single occurrences [28], or being forbidden factors with a minimum
length [12]).

3.2 Some Results

The minimum (forbidden) length of nonappearing factors in a genome G tells us the
value of k such that the k-genomic dictionary Dk.G/ does not contain � k , that is,
the length for which the dictionary contains only some of the possible k-words. It
was found empirically that this k is smaller than 12 for all the genomes investigated
in [5].

As it can be seen in Table 1, from [5], the cardinalities jH12.G/j and jD12.G/j
appear not to be correlated to the length of G, while those of D18.G/ and H18.G/

increase with the genome length, as expected. The relative number of k-repeats,
measured by the value RDk D jRk.G/j=jDk.G/j, increases with the genome size
and decreases noticeably with the word length from k D 12 to k D 18. This is due
to the fact that 12-repeat words constitute a considerable portion of the 12-genomic
dictionaries; in fact, the percentage increases with the genome length (from 11 to
90 %). A surprising result though, is that the 18-repeat-factor ratio is firmly fixed
(over all of the genomes) in a very small portion of the 18-genomic dictionary,
mostly ranging from 0.01 to 0.07, independently of the genome length. On the other
hand, we can observe that the 12-hapax-repeat ratio HR12 D jH12.G/j=jR12.G/j is
a roughly decreasing function of the genome length, whereas the 18-hapax-repeat
ratio (which has much greater values) does not show any evident correlation with it.

10www.cbmc.it/external/Infogenomics3.

www.cbmc.it/external/Infogenomics3
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Fig. 3 (a) Ratio of the cardinality of all distinct k-words, jDk.G/j, to that of all the words
counted with their multiplicity, jTk.G/j, estimated for all the genomes listed in Table 1 and three
increasing values of k. This ratio is called the k-lexicality index, and is defined as Lk.G/ D
jDk.G/j=jTk.G/j. For all the genomes, this value increases with the word length k. This result is
confirmed by the relative increase in the number of k-hapax words in the genomic dictionary. The
set of repeats becomes smaller with increasing word length – see (b), where rough proportions are
visualized among the sizes of k-hapax, k-repeat, and k-forbidden words, which together make up
the set � k of all possible k-words

The computational results reported in Table 1 are visualized in Fig. 3. From these
data we may conclude that, in general, for greater lengths k, the number of k-repeats
is relatively smaller (compared with the dictionary); for k D 18, this number is
about 0.05 % of the genomic dictionary, independently of the genome size. The fact
that genomic words with a length of about 20 are almost all hapax gives an intuitive
explanation for the reliability of DNA microarrays.

Interestingly enough, in Fig. 4 one may observe the (very slow) exponential
decay of the number of genomic k-repeats with the word length k. Moreover, all of
the genomes reported in Table 1 proved to have only one repeat with the maximum
length (and multiplicity 2), and the distance between the two positions (in proportion
to the genome length) is reported in Table 2. We may notice that there is no apparent
correlation between the genome length and the maximum repeat length (denoted by
MR). For all the genomes analyzed in [5], we found that jRMRj D 1 (the maximal
repeat is unique, and occurs twice). The occurrences of the maximal repeat turned
out to be relatively close together (note that N. equitans is a prokaryote, with a
circular genome).
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Fig. 4 Length–cardinality repeat distributions of Mycoplasma mycoides, Escherichia coli, Pseu-
domonas aeruginosa, and Sorangium cellulosum. For all the genomes in Table 1 an exponential
decay of the number of repeats was observed when the MR value was computed [5]

Table 2 MR index (i.e., the maximum repeat length) and MRD,
which is the distance between the two occurrences of the maximal
repeat, normalized with respect to the genome length

Genome G Genome length (bp) MR MRD=jGj (%)

N. equitans 490,885 139 96:95

M. genitalium 580,076 243 0:15

M. mycoides 1,211,703 10,963 0:019

H. influenzae 1,830,138 5,563 8:05

E. coli 4,639,675 2,815 0:89

P. aeruginosa 6,264,404 5,304 12:37

S. cerevisiae 12,070,898 8,375 0:07

S. cellulosum 13,033,779 2,720 27:68

H. sapiens chr19 63,800,000 2,247 0:02

C. elegans 100,267,632 38,987 0:10

D. melanogaster 129,663,327 30,892 0:02

According to preliminary results, presented in [16] and discovered from compu-
tational analysis of the genomes of three specific organisms, the longest (i.e., most
significant) repeats seem to be located in genic regions, which is a good, basic
motivation to investigate the gene networks defined in the next section.
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Fig. 5 Repeat-sharing gene network N18 of E. coli. This genome has a high percentage (89 %) of
genes. The four genes in the figure on the right are all connected (thus forming a clique) by a few
repeats labeling half of the connections and quite a high number of common repeats labeling the
others [5]

3.3 Repeat-Sharing Gene Networks

Cells have evolved an intricate system of interconnections, which is often modeled
by biological networks. All retrieved networks, whether experimentally tested or
just predicted in-silico, are stored in databases such as KEGG (Kyoto Encyclopedia
of Genes and Genomes) [31].

Here we give a definition of genetic network which was inspired by our repeats
analysis and by the biological evidence of “communication among genes” observed
in recent experiments, where common substrings seem to compete for short (around
20 bp) miRNA sequences [36, 41]. We consider all genes of an organism as a set
of (labeled) nodes, and we connect each pair of nodes by an edge if the associated
genes contain at least one k-word as a common substring. We label each edge by the
set of all the k-words shared by the two genes, and delete from the network all the
gene-nodes which are not connected by any edge. We call this (k-parameterized)
graph a k-repeat-sharing gene network, Nk.G/. As an example, the gene network
for Escherichia coli is reported in Fig. 5.

When k is increased, the nodes and edges of Nk decrease in number, until the
network disappears. However, the network persists to high values of k, because the
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longest repeats are often located in genes [16]. There is a break point at k D 18,
where the observed networks pass from having a large connected component to
being a set of clusters, which vanishes as k is increased. Some work in progress [6]
focuses on the analysis of these gene networks, starting from the computation of
the maximum degree, maximum label weight, and number of complete clusters.
According to preliminary results, for N. equitans, E. coli, and S. cerevisiae, the genes
which are present in the networks Nk for k > 30 are all paralogs or pseudogenes,
and cliques in the network appear to have both informational relevance and a
biological meaning. Namely, highly connected genes are involved in important
biological pathways, such as DNA repair and replication.

4 Conclusion and Open Problems

The ENCODE and the Infogenomics projects share a dictionary-based view of
genome analysis and an effort to gather global, holistic information contained in
genomes, in order to understand how genomes orchestrate coordinated processes to
maintain cellular metabolism, growth, and replication. Recent advances in compu-
tational genomics in these contexts have opened up new perspectives on genome
analysis, focused on the understanding of a genomic code which explains how
promoters communicate with their corresponding (proximal or distal) genes; the
aim is to generate a sequence-based dynamical model for describing mechanisms of
gene activation and regulation.

We expect that systemic alignment-free methods will be helpful in cases where
alignment methods fail. For example, sequence similarities among coding regions
which produce proteins having very similar functions could be revealed by a
dictionary-based score, even in those cases (well known in the literature) where
the sequence alignment score is very low.

In future work, we would like to apply the Infogenomics methodology: to
genomes of patients affected by some disease (as individual phenotypic variations
are influenced by sequence variation across the entire genome), to the transcriptome
(via RNA sequence data), and to better understand the intricate links between
promoters and the corresponding genes. A systematic analysis of transcripts is
essential to identify regulatory regions, since the transcript may be considered as
the basic unit of heredity. Moreover, the bipartition of a genomic dictionary into
hapax and repeat words corresponds to an interesting genomic representation, by
which a string reconstruction problem may be seen as a graph problem. Some
preliminary results have been obtained from a variant of this approach where, given
a genome, we look for a characterization of other genomes that have the same set of
k-hapaxes.11

11Manuscript in preparation, available on request from the first author.
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Repeat-sharing gene networks (where genes are linked if they have common
factors) may be of interest for recognizing similarities among genes, such as
conserved miRNA binding sites; these could be investigated by further graph theory
methods [1] or defined differently. For example, we could associate nodes to the
exomes of genes, that is, sequences of the corresponding mature mRNA (where
the splicing of exons has been already performed, see Fig. 1). On the other hand, a
study of the networks described above, defined on generic nucleotidic sequences,
could include all cases of possible genomic variations, such as single-nucleotide
polymorphisms, which are of great biomedical interest. Indeed, understanding how
alterations in noncoding regions contribute to human diseases may result in new
DNA engineering interventions, or personalized drugs [24, 25]. The first challenge
in this context relates to the mechanism connecting such changes to cancer growth.

A further application of the Infogenomics methodology will concern the
computation of intersections of genomic dictionaries, to find evolutionarily
conserved motifs among genomes. As a test for functionality of DNA, one could
evaluate which sequences are conserved between species: DNA sequences which
are not conserved among multiple populations suggest that these regions are no
longer functional.
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The Sequence Reconstruction Problem

Angela Angeleska, Sabrina Kleessen, and Zoran Nikoloski

Abstract Despite recent advances, assembly of genomes from the high-throughput
data generated by the next-generation sequencing (NGS) technologies remains one
of the most challenging tasks in modern biology. Here we address the sequence
reconstruction problem, whereby, for a given collection of subsequences or factors,
one has to determine the set of sequences compliant with the collection. First,
we give a brief review of sequencing technologies, along with an exposition of
the advantages and shortcomings of the existing algorithmic approaches to sequence
assembly. In addition, we enumerate some properties of subsequences, which
have been overlooked in the existing heuristic solutions despite their effect on
the quality of the assembly. We then give an overview of the sequence reconstruction
problem from a language-theoretic perspective, and present a comprehensive review
of theoretical results that may prove relevant to the genome assembly problem.
Finally, we outline a new optimization-based formulation which casts the sequence
reconstruction problem as a quadratic integer programming problem.

1 Introduction

Next-generation sequencing (NGS) technologies of ever-increasing quality offer
the possibility to use the plethora of sequence data that results from them to
assemble whole genomes. Currently, tremendous amounts of time, money, and
computational resources are being invested in genome sequencing. The existing
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NGS technologies cannot be used to sequence entire genomes at once; in fact, only
short reads (i.e., substrings) are sequenced, and these must then be assembled to
form the original genome. The resulting reads differ in length, depending on the
technology used. To increase the coverage, the genome to be investigated is first
copied several times. These copies are broken up randomly into fragments, which
are then sequenced to produce reads. The aim of genome assembly is then to obtain
the entire genome sequence with the help of the overlaps of all the reads while taking
into account the particularities of the NGS technology used.

The contribution of this chapter is threefold: (1) to provide a brief review and
history of existing methods for genome assembly, while critically comparing and
contrasting them with existing results from language theory; (2) to offer a source
for interdisciplinary understanding of the genome assembly problem, by presenting
a comprehensive overview of the relevant mathematical results and pointing out
problems where mathematical endeavor may improve the existing solutions; and
(3) to formulate an optimization-based approach that provides a different framework
for the problem at hand.

2 A Brief Review of Sequencing Technologies

In this section, we present a short background on DNA and whole-genome
sequencing. In addition, we present a brief historical overview of the commonly
used sequencing technologies, including their advantages and drawbacks. For a
detailed review of next-generation sequencing technologies, we refer the reader
to [16].

2.1 The Basics of Sequencing

DNA sequencing is a process used to determine the order of nucleotides (adenine,
A; guanine, G; cytosine, C; and thymine, T) in a strand of a DNA molecule.
Knowing exact DNA sequences is necessary for research in molecular biology, and
such knowledge has resulted in numerous breakthrough applications in medicine,
forensics, and other fields. The process of DNA sequencing of the full genome of an
organism is referred to as complete or whole-genome sequencing. Whole-genome
sequencing includes the sequencing of chromosomal, mitochondrial, and (in plants)
chloroplast DNA.

Owing to the limited power of even the most modern technologies, a whole
genome or a long DNA strand cannot be sequenced affordably as a whole piece
in a reasonable time and with the desired quality. Therefore, most of the existing
techniques shatter the molecule into millions of smaller pieces (anywhere between
20 and 2,000 bp), amplify each of them by the polymerase chain reaction (PCR),
and then run them through sequencers. The resulting “small” DNA sequences are
called reads, and are then assembled into longer segments and, eventually, genomes.
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This process is known as genome assembly and is performed by the use of various
algorithms known as assembly algorithms (with their respective implementations
referred to as assemblers).

The sequencing can be de novo, where new sequences are assembled without
a reference sequence, or mapping-based, where the method relies on a reference
sequence. There are two types of assembly strategies, depending on the type of
sequencing. In the de novo assembly approach, sequence reads are compared
with each other, and then assembled into longer segments called contigs by using
the overlaps of the sequences. The reference-based assembly approach involves
mapping each read to a reference genome sequence [27].

To ensure that all nucleotides from the sequenced DNA are read, the sequencing
process must have a certain depth. The average number of reads that contain a given
nucleotide is called the sequencing coverage or the depth. It is denoted by C , and
can be calculated from C D NL=G, where N is the total number of reads, L is
the average read length, and G is the size of the whole genome. A higher-depth
sequencing provides greater accuracy of the assembly [25].

2.2 The History of Sequencing Technologies

The ultimate goal of the genome sequencing and assembly process is to correctly
determine the complete genome sequence of an organism and to characterize and
annotate the protein-coding genes.

An understanding of organismal genomes is expected to revolutionize molecular
medicine, pharmaceutics, and environmental studies [11]. The first genome to be
completely sequenced was bacterial, and this was done in 1995 [8]. The human
genome was sequenced de novo in the Human Genome Project, which started in
1990, and was completed in 2003. The total cost of the project has been estimated at
$3 billion [38]. To illustrate the advancement of genome assembly techniques since
then, we may mention that at the beginning of 2012, Life Technologies announced
a sequencer designed to sequence an individual human genome in 1 day for a cost
of $1;000 [9]. Despite the fact that the latter example is not de novo sequencing, it
shows a significant improvement in sequencing technologies, leading to a decrease
in the time invested and the cost.

Historically, sequencing technologies can be divided into several categories.
Before 1980, the sequencing procedure was performed manually [1]. Then, the
Sanger sequencing method was adopted in laboratories around the world and
was the prevalent method used for two decades. The capillary sequencer machine
incorporated Sanger’s sequencing method, for which Sanger won a Nobel Prize in
1980 [32]. This method was the main method used in the Human Genome Project.

The “Next-generation sequencing” (NGS) technologies are widely used today.
Some of the sequencing methods commonly used are based on the Roche/454,
Illumina, and SOLiD platforms [24]. More details of these platforms can be found
in recent reviews [19, 31].
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The Illumina reads are 50–150 bp long with up to six billion reads per run,
where as 454 can manage 400 bp but with lower throughput. Therefore, these
technologies are fast and cheap, and have relatively high coverage depth. Current
second-generation sequencing technologies produce read lengths ranging from 35
to 400 bp. The shortcomings of the NGS technologies are short reads and high data
volume, which often lead to difficulties in assembly. Correct assembly and mapping
are computationally challenging, as short segments create ambiguities in alignment
and in genome assembly, which, in turn, can produce errors when the results are
interpreted.

Recently, new technologies such as “single-molecule real-time technology”
(SMRT) and the nanopore sequencing method [19] have been proposed. The
general characteristics of these methods are a shorter DNA preparation time before
sequencing, capturing the nucleotide signal in real time, and longer reads. The error
rates of single-molecule reads are high (less than 85 % nucleotide accuracy). To
overcome this problem, a new hybrid method that combines these technologies with
NGS and yields very good accuracy for long reads has been developed [14].

3 Three Categories of Assembly Algorithms

Although NGS technologies provide the possibility of fast and cheap sequencing,
they result in a computationally challenging assembly problem. There are three
basic approaches to designing assembly algorithms: the greedy-algorithm approach;
overlap–layout–consensus methods, relying on overlap graphs; and de Bruijn
methods, based on de Bruijn graphs.

3.1 Greedy Assembly

Two reads are considered to overlap if a prefix of one nucleotide sequence is the
same as or very similar to a suffix of the other. The quality of an overlap is quantified
by the size of the overlapping sequence and the percentage of matching base pairs
in the overlapping region. All of the greedy assemblers use a variant of the greedy-
algorithm approach. Some of greedy algorithms start by iteratively joining the reads
with the best overlaps, forming multiple contigs. Others extend a given read to a
contig by consecutively attaching the read that has the best overlap with the previous
one. This is performed at both the 30 and the 50 end of the read until no further
extensions are possible. An unassembled read is then chosen to be the start of a
new contig. In this selection process, priority is given to reads of better quality. The
greedy approach was first used on Sanger data sets by assemblers such as TIGR
[35] and CAP3 [10]; a second approach was more recently applied to short-read
data assemblers (e.g., SSAKE [37], VCAKE [13], and SHARCGS [5]).
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Fig. 1 Genome misassembly by greedy algorithm. (I) A small genome is to be assembled from
four reads, labeled 1, 2, 3, and 4. The correct assembly is 1–2–3–4. (II) The greedy algorithm
assembles 1 and 4 first, since they have the best overlap, of three nucleotides, and then 2 and 3 are
assembled. As a result, the misassembled genome 1–4–2–3 is obtained

These assembly algorithms, like every other greedy algorithm, aim at determin-
ing the optimal global assembly by finding locally optimal assemblies at each step.
This is a simple assembly strategy and very easy to implement, but it does not
necessarily result in the optimal solution. In addition, a greedy assembly might also
lead a misassembly, as illustrated in Fig. 1.

3.2 Overlap–Layout–Consensus Assembly

The overlap–layout–consensus (OLC) assembly approach is graph-based. A graph
is a structure composed of a set of vertices connected by edges. If the edges are
directed, the graph is called directed. If a vertex u is an endpoint of an edge e, we
say that e is an incident edge on u. A path in a graph is an alternating sequence of
vertices and edges u1; e1; u2; e2; : : : ; ek�1; uk such that each edge ei in the sequence
is incident on both ui and uiC1. A Hamiltonian path is a path that visits every vertex
of the graph exactly once. Examples of a graph, a path, and a Hamiltonian path are
given in Fig. 2 (I), (II), and (III), respectively.

The assembly of a genome by the OLC approach method can be seen as a
mathematical problem of finding a Hamiltonian path in a directed graph. The
graph structure used by OLC assemblers is called an overlap graph. The vertices
of the overlap graph represent the reads, so that the graph has as many vertices as
there are reads. The first (overlap) step in an OLC assembly is the identification
of overlapping reads by pairwise comparison. The second (layout) step is the
construction of the graph, such that two vertices are connected with an edge if
the corresponding reads overlap. The direction of the edge is from the vertex
that contains the overlap as a suffix towards the vertex that contains the overlap
as a prefix. Each path in such a graph constructed in this way corresponds to
an assembled contig, and each Hamiltonian path corresponds to a completely
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Fig. 2 (I) A directed graph with five vertices, labeled u1; u2; u3; u4; u5. (II) The alternating
sequence of vertices and edges u1e1u2e2u5e3u4e4u5 is a path. (III) The alternating sequence of
vertices and edges u1e1u2e5u4e4u5e6u3 is a Hamiltonian path

Genome: AATGCTGGATGCCTA

reads:  1. AATGC,   2. TGCTG,   3. CTGGA,
4. GGATG,  5. ATGCC,    6. GCCTA

u1

u2

u3

u4

u5

u6

Fig. 3 Overlap graph. The graph corresponds to the overlap graph of the sequence used in
Example 1

assembled genome. Finding a Hamiltonian path is then the third step in the process.
A simplified example to illustrate the OLC assembly process is given in Fig. 3.

Example 1. This example refers to the overlap graph shown in Fig. 3. A small
genome � D AATGCTGGATGCCTA is to be assembled from reads 1, 2, 3, 4, 5, and
6. Each vertex of the graph corresponds to a read. Two vertices are connected by a
directed edge if the corresponding reads have an overlap of at least two nucleotides.
There is a Hamiltonian path 1–2–3–4–5–6 in the overlap graph. By listing the reads
corresponding to each vertex on this path (including only a single copy of each
overlap) in consecutive order as they appear in the path, one obtains the assembled
genome.

Two well-known assemblers that use the OLC method are Newbler [22] and
Celera Assembler [26]. The OLC assembly method is exact, and therefore more
accurate than the greedy approach. However, finding Hamiltonian paths in a graph
is, in general, an NP-hard problem, for which there exists no efficient algorithm.
It should also be pointed out that the resulting graphs include millions of vertices,
so even efficient heuristics need to scale linearly with the order and size of the
graph. Therefore, this approach might be convenient for smaller number of reads
(i.e., larger read lengths). As the reads become shorter, as in the case of NGS data,
the use of OLC assembly techniques becomes prohibitive. Some of the difficulties
can be resolved by considering Eulerian instead of Hamiltonian paths and creating
de Bruijn instead of overlap graphs, as discussed in the following section.
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Fig. 4 Eulerian path. The
sequence u1e1u2e2u4e3u5e4u4e5u2e6u5e7u3e8u1

is an Eulerian path in the
graph

3.3 De Bruijn Assembly

De Bruijn graphs were introduced in the 1940s by the Dutch mathematician
Nicholas Govert de Bruijn long before their application in genome assembly. De
Bruijn was interested in the following “string reconstruction problem”: Find the
shortest superstring that contains as substrings all possible strings of a given length k

over an arbitrary alphabet. He solved the problem by encoding it in directed graphs,
later known as de Bruijn graphs.

For every sequence of length k � 1, there is a vertex in the de Bruijn graph. Two
vertices u1 and u2 are connected by an edge directed from u1 to u2 if there is a k-mer
that has the .k � 1/-mer u1 as its prefix and the .k � 1/-mer u2 as its suffix. The
k-mer composed of u1 and u2 is the label of the edge connecting them. Therefore,
traversing each edge in the graph yields a path whose edge labels give the smallest
sequence that has all possible k-mers as subsequences.

A path that contains every edge of the graph exactly once is called an Eulerian
path. Hence, finding an Eulerian path in the de Bruijn graph solves the sequence
reconstruction problem. An example of an Eulerian path is depicted in Fig. 4.

De Bruijn graphs can readily be used to solve the genome assembly problem (see
[12, 28]). If we consider an alphabet fA; C; G; T g and, instead of using all possible
k-mers as edges, we use only those generated from the reads, we can construct a de
Bruijn graph as described above. An Eulerian path in such a graph corresponds to
an assembled DNA sequence.

This approach has been used in many assemblers, such as Velvet [39],
ABySS [34], and AllPaths [2]. For more details of how the de Bruijn graph was used
in these “DBG” assemblers, see [25]. A simple example of DBG genome assembly
is illustrated in Fig. 5 and described as follows.

Example 2. Consider the genome � D AATGCTGGATGCCTA. The set of reads is

fAATGC; TGCTG; CTGGA; GGATG; ATGCC; GCCTAg:

We construct a graph with a vertex set composed of every 3-mer obtained from the
reads
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Genome: AATGCTGGATGCCTA

Reads:  1. AATGC,   2. TGCTG,   3. CTGGA,
4. GGATG,  5. ATGCC,    6. GCCTA

Set of 3-mers: u = AAT,   u =ATG,  u =TGC,1 2 3

u =GCT,  u =CTG,  u =TGG,4 5 6

u =GGA, u =GAT,   u =GCC,7 8 9

u =CCT,  u =CTA10 11

u1
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Fig. 5 De Bruijn graph. The graph on the right is the de Bruijn graph that is used to assemble
the genome AATGCTGGATGCCTA

fu1 D AAT; u2 D ATG; u3 D TGC; u4 D GCT; u5 D CTG; u6 D TGG;

u7 D GGA; u8 D GAT; u9 D GCC; u10 D CCT; u11 D CTAg:

A directed edge from vertex v to vertex w is included if v is a prefix and w is a suffix
of a 4-mer that belongs to a read. The de Bruijn graph depicted in Fig. 5 is obtained.
The path u1e1u2e2u3e3u4e4u5e5u6e6u7e7u8e8u2e9u3e10u9e11u10e12u11 is an Eulerian
path which corresponds to the assembled genome � .

Finding an Eulerian path in a graph is a computationally easy problem, rendering
the de Bruijn approach more applicable than the Hamiltonian-path approach used in
the OLC method. On the other hand, one of the drawbacks of the de Bruijn approach
is the loss of information caused by decomposing a read into a path of k-mers [33].

3.4 Summary of Advantages and Disadvantages of the Popular
Assembly Methods

The quality of DNA sequencing and assembly can be quantified by a few character-
istics, including the speed, accuracy, and cost of the sequencing, the computational
complexity of the assembly, and the accuracy of the assembly. All of these categories
are interlaced with each other, and also all of them depend on the sequencing
method, the biotechnology used, the computational approach, and the software.
Unfortunately, there is no solve-it-all assembly or sequencing technique for the
genome assembly problem. All of the methods described above might perform very
well in terms of one characteristic, but not another.

The Sanger sequencing method produces reads ranging from 800 to 900 bp in
length, which are much longer than the NGS read lengths (50–150 bp). Therefore,
the assembly process is less complex, and an approach such as the OLC method
might yield reasonable computational complexity. But the cost of generating Sanger
data is much higher, and this technology is more time-consuming. Next-generation
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Fig. 6 Errors caused by repetition. On the left-hand side, a portion of an assembly graph that
contains a repetitive segment is shown. On the right-hand side, the correct assembly is depicted,
along with a possible incorrect assembly

sequencers can read base pairs at a thousandth of the cost of Sanger sequencers and
faster, but the size of the reads makes the computation very laborious and error-
prone. Therefore, there is no single assembler that will perform well on any type of
data set. For example, although the greedy approach is computationally feasible and
might work well on small genomes, its output may be far from the optimal. On the
other hand, the robustness of the OLC method comes at the price of its being more
computationally intensive, especially when the number of reads is large, which is the
case for the NGS technologies. The de Bruijn approach can easily be implemented,
but suffers from loss of information when the reads are chopped up into k-mers [30].

All existing assemblers and assembly approaches face the same problems, which
are largely due to sequencing errors and repeats in the genome. Sequencing errors
in the middle of the set of reads might produce “bubbles” (see Fig. 6 (III)) in the
graph structure used for assembly. This implies that there is no Hamiltonian path
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that traverses all vertices in the region and no Eulerian path that includes the edges
in both branches. On the other hand, if there is a sequencing error (or drop in
coverage) at the end of the reads (see Fig. 6 (IV)), the graph has a “spur” – a short
dead end that cannot belong to any path, but complicates the graph structure and
causes ambiguities [25].

Repeated segments might cause two types of misassembly. The first type occurs
when there are multiple consecutive copies of the same segment, as illustrated in
Fig. 6 (II). Any assembly algorithm will have a problem in detecting the correct
number of repeated copies, and, very often, fewer or more copies are included. The
second type of misassembly (see Fig. 6 (I)) occurs when the repeated segments are
apart from each other. There is then a possibility that the assembler will create a
chimera by falsely joining two regions, and the resulting genome will be rearranged
in comparison with the reference. Assembly errors that appear because of repeats
are a very serious problem because sometimes the number of repeated copies is
closely related to some phenotypic characteristic of an organism, and a shuffle of
regions might be mistaken for a DNA rearrangement event [29].

Different strategies have been developed for different assemblers to resolve the
problems caused by repeats. One of the most commonly used solutions is the use of
mate pairs or paired ends. Mate pairs and paired ends are reads (of size 150–500 bp)
generated in pairs from opposite ends of a longer DNA sequence. There is no
significant difference between paired ends and mate pairs in terms of assembly, even
though the laboratory techniques used to generate them are very different (see [23]).
The pairs span larger regions, ranging from 200 to 20,000 bp. If a pair contains a
repeat, it might provide enough information about the correct context of the repeated
segments. For instance, in the situation depicted in Fig. 6 (I), the assembler would
be able to identify the correct assembly if a mate pair which spans M –N (or the first
repeat r) and a mate pair that spans P –Q (or the second repeat r) were available.

Another widely used approach for resolving repeats is a comparison of the depth
of coverage for each contig (branch in the graph) that is in question. This method
is based on the assumption that the set of reads is uniformly distributed throughout
the genome (which is not generally true) and helps in estimating the number of
repeated copies. This approach might be particularly helpful when one is “popping”
bubbles or counting the number of repeats, as illustrated in Fig. 6. For instance, in
Fig. 6 (III), if there were proportionally more reads (edges) matching the segment
XY than matching the segment PN, the assembler would form a contig MXYQ.
Also, in Fig. 6 (III), if the number of reads covering the repeated segment r was
m-fold in comparison with the average depth of coverage, than m copies of r would
be included in the contig [36].

Despite the attempts to resolve these problems, none of the current assemblers
are applicable to all kinds of data sets while simultaneously exhibiting high accuracy
and low computational complexity.
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4 Theoretical Results

The results presented in this section are mainly combinatorial results on words
over a given alphabet. Combinatorics on words is an area of discrete mathematics
that initially dealt with problems in theoretical computer science, including formal
languages, automata theory, coding theory, and the theory of computation. In
mathematics, there are a number of problems that deal with reconstruction, for
instance reconstruction of a function from its values at some points, of a group from
its subgroups, of a graph from a subset of its subgraphs, and of an image from a
sample point set, to name just a few. Combinatorics on words is an area that, among
other problems, deals with the sequence reconstruction problem, and addresses the
following aspects:

• Uniqueness of sequences reconstructed from the same set of subsequences;
• The existence of a reconstruction based on the size and the number of available

subsequences; and
• Unambiguous reconstruction with respect to the structure and origin of the

subsequences.

Some of these theoretical results can be applied directly to sequence assembly,
and answer different questions related to DNA sequencing. Therefore, we have
included a few of the results that we believe are the most relevant to assembly
problems.

4.1 Definitions and Notation

Let ˙ be a finite alphabet of symbols. The elements of ˙ are called letters. The set
of all sequences over ˙ is denoted by ˙�, and the elements of ˙� are called words
(or sequences). The empty word is denoted by �. If w is a word over ˙ , then we
write jwj to denote the length (measured as the number of letters) of w. We denote
by ˙�

n the set of all sequences over ˙ of length n.
We often refer to the nth letter in w as the nth position. A sequence v over ˙ is

called a (scattered) subsequence of the word w D w1w2 � � �wn if v D vi1vi2 � � �vis ,
for some 1 � i1 < i2 < � � � < is � n. In other words, we say that w is a
supersequence of v. The set of all subsequences of length t of a sequence w is called
the t-spectrum of w, and we denote it by St .w/. A sequence v over ˙ is called a
factor of the word w if there are words x and y over ˙ such that w D xvy. Note that
x and/or y may be empty. These factors are special types of subsequences. Given a
word w such that w D xy, we define w � x D y. A factor v is said to be a prefix of
the word w D xvy if x D � and, similarly, v is a suffix of w if y D �. The overlap of
two words w and w0, denoted by o.w; w0/, is defined as the maximal factor v which
is a suffix of w and a prefix of w0. It may also be that v D �.



34 A. Angeleska et al.

For two words w and w0, we define an operation “ı”, called composition, by
which w ı w0 D w.w0 � o.w; w0//. In other words, we concatenate the two words,
though a single copy of their largest overlap.

Example 3. Let ˙ D fa; b; cg and w D aaaacccbabacc, w0 D bacccbba. The
word v D bacc is the maximal factor – a suffix of w and prefix of w0. Therefore,
v D o.w; w0/. The composition of w and w0 is w ı w0 D aaaacccbabacccbba.

4.2 Sequence Reconstruction from Subsequences

The Russian mathematician V. Levenshtein investigated the problem of recon-
struction of a sequence from its subsequences and supersequences. In [18],
Levenshtein determined the number of subsequences needed to reconstruct an
unknown sequence. The result is stated below in Theorem 1. Let X be an unknown
sequence of length n. For a number t < n we wish to determine how many different
subsequences of length t are needed to uniquely reconstruct X . This answers the
following question: What is the minimum number of reads of length t that one
needs to reconstruct a genome? We note here that considering subsequences instead
of factors might seem far from reality in terms of genome assembly, but in fact the
mate pairs are special types of subsequences and, furthermore, each read can be
viewed as a subsequence when we take sequencing errors into account.

All of the sequences in ˙�
n are considered first, and they are compared pairwise

to count the subsequences of length t that they have in common, i.e., we find
the cardinality of the sets St.w/\St .v/ for every w; v 2 ˙�

n . Let N.n; t/ denote the
maximum size of the set of subsequences of length t shared between two sequences
of length n, i.e.,

N.n; t/ D maxfjSt.w/ \ St .v/j; w; v 2 ˙�
n g:

Theorem 1. The minimum number of subsequences of length t that are needed to
reconstruct an unknown sequence X of size jX j D n equals N.n; t/C 1.

Levenshtein also provided an efficient algorithm in [18] for performing the
reconstruction. The number St.w/ depends on the sequence w (see [17]) and,
therefore, there is no exact formula for calculating N.n; t/. This number can be
calculated recursively as follows:

N.n; t/ D S.n; t/� S.n� 1; t/C S.n � 2; t � 1/;

where S.n; t/ D maxfjSt.w/j; w 2 ˙�
n g.

The problem with applying these results to genome assembly is the fact that
there are sequences for which the existence of N.n; t/C1 different subsequences is
not guaranteed. For more details, we refer the reader to Example 4 below. In some
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cases, more than half of the sequences of a given length do not have enough different
subsequences from which they can be reconstructed.

Example 4. Let ˙ D fA; G; T; C g and let X 2 ˙� be such that jX j D 5. Let
t D 3. According to Theorem 1, one needs N.5; 3/ C 1 different subsequences
of length 3 to reconstruct X . By examining the subsequences of length 3, one can
easily conclude that jS3.w/ \ S3.v/j D 7, where w D AGTCG and v D ATGCG.
Therefore, N.5; 3/ C 1 � 8, and one needs eight or more different subsequences
of length 3 to uniquely construct X . Note that no sequence composed of fewer than
three different symbols from ˙ has eight different subsequences. This implies that
those sequences composed of a single symbol (in total, four such sequences) and
those composed of two different symbols (in total, 25 � C.4; 2/ D 192 sequences)
do not have eight different subsequences. Therefore, at least 196 sequences of length
5, out of 1,024 in total, cannot be uniquely reconstructed. In other words, there are
high odds, greater than 1

6
, that a given sequence X cannot be reconstructed.

Besides the structure of X , the reconstruction depends on the size of the available
subsequences (reads). By changing the number t , one might be able to find enough
subsequences to reconstruct X , as discussed in the next subsection.

4.3 Reconstruction Based on the Size of the Subsequences

There are two types of questions that can be asked about reconstruction with respect
to the size of the given subsequences:

• What is the smallest k such that one can reconstruct any word of length n from
the multiset of its subsequences of length k?

• What is the smallest k such that one can reconstruct a word from the set of its
different subsequences of length k?

Note that a multiset is a set of elements such that multiple occurrences of an
element are allowed and their number is known. Therefore, the first problem is about
reconstruction of a sequence given all of the repeats and the number of copies of
each repeat, which is a far from realistic data requirement. The second problem is
more relevant to genome assembly, since it does not require input information about
the repeated reads.

Manvel et al. [21] showed that the reconstruction of a sequence of length n is
unique if all subsequences of size k are given, where k � n=2. In addition, it was
proven that a unique reconstruction is not possible for k < log2n. This implies that
two words of length n that have identical sets of subsequences up to n=2 might not
be identical. The lower bound on k has been improved several times. In [15], the
bound k � 5C 16

7

p
n was given, and Dudik et al. [6] showed that

k � 3.
p

2=3�o.1//log
1=2
3 n:

These results thus provide estimates of k as an answer to the first problem above.
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In any case, the condition k � n=2, which implies that to uniquely reconstruct
one particular small genome namely that of a virus found in Escherichia coli with
n D 5;386, the read sizes must be greater than 2,193 bp. This is when the repeats
and their multiplicities are known and also all subsequences are available, conditions
that are far from realistic.

The result most relevant to genome assembly is one presented in [7]. The
authors of that paper examined finite words over an alphabet � D fa; a; b; bg
of pairs of letters, where each word w1w2 : : : wt is identified with its reverse
complement wt wt�1 : : : w1. This approach takes account of the reads and their
reverse complements, as is actually done in the genome assembly process. It was
shown that the smallest k for which every word of length n over � is uniquely
determined by the set of its subwords of length up to k is given by k � 2n=3 [7]. To
put this result into perspective in relation to genome assembly, let us consider one of
the smallest genomes, of size n D 5;386. Then k � 2 � 5;386=3 D 3;590:6, which
implies that one needs all possible reads of length 3,590 to uniquely assemble a
genome of size 5,386. This number becomes significantly larger for larger genomes.
For instance, the size of the human genome is estimated at 3:2 billion bp, and thus
one needs all of the k � 2:13 billion bp long subsequences to uniquely reconstruct
the genome.

The following result shows that no sequence can be uniquely determined by a k-
spectrum composed of factors only. Namely, the maximum length n such that every
word of this length can be uniquely determined by its factors of size k, for some
k � n, is k. This implies that there are words of length greater than k which cannot
be uniquely reconstructed from their set of factors of length k (see [20]).

Example 5. Let w D ababab : : : ab and v D bababa : : : ba be two sequences of
size n. We consider the sets of factors of length k, Fk.w/ for w and Fk.v/ for v,
where k D n�1. We have Fk.w/ D Fk.v/ D fabab : : : a; baba : : : bg, and therefore
w cannot be uniquely reconstructed from Fk.w/.

4.4 Reconstruction Based on the Structure and Origin
of the Factors

In this section, we consider some results due to Carpi and De Luca [3] and Carpi
et al. [4]. Unlike Levenshtein, whose results do not guarantee reconstruction of every
possible sequence, these authors analyzed the reconstruction of sequences from sets
of factors which permit reconstruction of the entire word. This analysis is based
on the notion of boxes. Before we state the main result, we need some preliminary
definitions.

Definition 1. The initial box of a word w is the shortest unrepeated prefix of w. The
terminal box of a word w is the shortest unrepeated suffix of w.
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Definition 2. Superbox is a factor of w that can be written as asb, where a; b 2 ˙ ,
s is repeated factor and as; sb are un-repeated factors of w.

The main result can be summarized in the following theorem.

Theorem 2. Any finite word w is uniquely determined by the initial box, the
terminal box, and the set of superboxes.

Example 6. Consider the small genome ATCCTATCAT . The initial box is ATCC,
the terminal box is CAT, and the set of superboxes is CCT , CTA, TATCA.

An efficient algorithm for finding the initial box, terminal box, and superboxes
is given in [4]. In relation to the genome assembly problem, the theorem implies
that one can uniquely assemble a genome if special reads are known (they all
might be of different lengths). Those special reads are the maximal unrepeated
subsequences of the genome, i.e., the unrepeated sequences such that each of their
proper subsequences is repeated in the genome.

Long interspersed nuclear elements (LINEs) are repeated in the human genome
and can be as long as a million base pairs. Based on Theorem 2, one would require a
read of length approximately one million base pairs to uniquely assemble the human
genome.

5 An Optimization-Based Approach

In this section, we present some preliminary results obtained from our optimization-
based approach to solving the sequence reconstruction problem, by providing a set
of mathematical formulations as programming problems which deal with different
aspects of the assembly problem.

Let S be a sequence over ˙ such that jSj D n. Let W be a collection of
(all) factors of S with length k. Our goal is to reconstruct S by appropriately
ordering the elements of W . To this end, we determine the optimal solution with the
minimum number of mismatches by encoding the problem into a quadratic integer
programming problem.

Let W D fw1; w2; : : : ; wN g be a set of factors of S and let jwi j D l , where l � 2,
for every i 2 f1; 2; � � � ; N g. If there is a subset W 0 D fw0

1; : : : ; w0
N 0g 	 W and a

permutation P D .p1; p2; : : : pN 0/ such that S D w0
p1
ı w0

p2
ı � � � ı w0

pN 0
, then we

say that S is covered by W , and the pair .W 0; P / is called a perfect coverage of S.
There may be no perfect coverage or there may exist multiple perfect coverage pairs
for a givenS and W . ReconstructingS from a set of factors W D fw1; w2; : : : ; wN g
means finding a perfect coverage .W 0; P /, if it exists. Let .W 0; P / be a pair made up
of W 0 	 W and a permutation P D .p1; p2; : : : pN 0/ of the elements of W 0, such
that jSj D jw0

p1
ı w0

p2
ı � � � ı w0

pN 0
j. We call .W 0; P / a coverage of S. If the letters

at the i th positions of S and w0
p1
ıw0

p2
ı � � � ıw0

pN 0
differ, then we say that these two

words have a mismatch at the i th position. In the case where a perfect coverage does
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not exist for S, it is interesting to consider a coverage with the minimum number of
mismatches.

The sequence reconstruction problem described above can be translated directly
into the problem of genome assembly from a large number of reads (factors).
Namely, one can look at S as a genome that has to be reconstructed from a set
of reads W D fw1; w2; : : : ; wN g. Owing to mutations and errors in sequencing, the
sequence that is reconstructed from W may contain mismatches with respect to the
actual genome. Therefore, finding a coverage of S with the minimum number of
mismatches would optimize the problem of genome assembly.

We define xijk 2 f0; 1g for i 2 f1; 2; : : : ; N g; j 2 f1; 2; : : : ; lg; k 2 f1; 2; : : : ; ng
by

xik D
�

1 if the j th position of wi is assigned to the kth position in S;

0 otherwise.

Since jwi j D l for every i , the first constraint is given by

8i;

lX
j D1

nX
kD1

xijk D l: (1)

To satisfy the condition that each position in S is covered by at least one word wi

(i.e., there are no gaps in the sequence that we reconstruct), the following constraint
is added:

8k;

lX
j D1

NX
iD1

xijk � 1: (2)

In addition, we have to ensure the overlaps among the words are along the length l

of each word:

8i 8k; l � k � n;

lX
j D1

kCl�1X
mDk

xijm � l: (3)

We need three more constraints to obtain the intended result. The first of these
guarantees that every symbol of wi is matched to exactly one position in S. The
second prevents the inclusion of multiple copies of a word, and the third does not
allow stacking of words. These constraints are as follows:

8i 8j;

nX
kD1

xijk D 1; (4)
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8i 8k;

lX
j D1

xijk � 1; (5)

8j 8k;

NX
iD1

xijk � 1: (6)

We introduce two new binary variables zik and yik, such that zik; yik 2 f0; 1g such
that

zik D 1; yik D 1 if
lX

j D1

kCl�1X
mDk

xijm D l; (7)

zik D 0; yik D 1 if l <

lX
j D1

kCl�1X
mDk

xijm < 2l; (8)

zik D 1; yik D 0 if 0 �
lX

j D1

kCl�1X
mDk

xijm < l: (9)

The constraints in Eqs. (10)–(14) below ensure that the new variables are properly
defined (as described in Eqs. (7)–(9)):

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � .1 � zik/l; (10)

8i; 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � �zikl; (11)

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � .1 � yik/.�l/; (12)

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � yikl; (13)

8i 8k; 1 � zik C yik � 2: (14)

To ensure that a factor wi fits at only one position, the following constraint is added:

8i

nX
kD1

.zik C yik � 1/ D 1: (15)
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Moreover, owing to the consecutive property, we set

8i 8k; 1 � k � .l � 1/; 8j; .k C 1/ � j � l; xijk D 0; (16)

8i 8k; .n � l C 2/ � k � n; 8j; 1 � j � ..l � 1/� .n � k//; xijk D 0:

(17)

The optimal solution for the number of mismatches can then be found by using
the following objective function, which is to be minimized:

min
nX

kD1

X
i;j;i 0;j 0

.wj
i ¤ wj 0

i 0 /xijkxi 0j 0k � yikl for all i; i ¤ i 0: (18)

Note that this objective function is quadratic and that the number of variables that
we introduce depends on the number of reads. Furthermore, the constraints imposed
are linear in the integer variables, which render this formulation a quadratic integer
programming problem.

In addition to the general case of the quadratic programming problem described
above, one can consider three different variants of the problem, where (1) we use a
subset of the factors (instead of all possible factors), (2) we use a subset of paired
factors, and (3) we use a subset of the factors including their inverses. Each of these
variants is relevant to the genome assembly problem and can be matched to some of
the NGS technologies that are being employed. However, because of the nature of
this chapter, we shall not give details of the formulation of the optimization problem
for these cases.

Finally, we should point out that solving an integer programming problem is, in
general, an NP-hard problem. The computational challenges are reinforced by the
large number of variables that would arise in any realistic application. Although
there are efficient techniques for relaxing the integer constraints, it remains to
be investigated how well this optimization-based formulation and its relaxations
can solve the problem of genome assembly, even in the case of small, contrived
examples.

6 Conclusion

Efficient and accurate solution of the genome assembly problem offers the possi-
bility of improving not only our understanding of the diversity of nature but also
the state of the art in medical research. Owing to its numerous applications, this
problem has gained considerable attention in the bioinformatics community.

The principal aim of this chapter was to present a comprehensive overview
of overlooked mathematical results which may prove relevant to improving the
existing heuristic solutions to the genome assembly problem. This necessitated
the inclusion of a high-level description of the existing NGS technologies, so that
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researchers in applied mathematics might formulate the appropriate theoretical
settings. By illustrating the implications of language-theoretic results in realistic
scenarios, we may have given the impression that the current technologies do
not guarantee the uniqueness of the resulting genome assembly (regardless of the
algorithmic approach used). However, the existing theoretical results pertain to
special alphabets, use some special subsequences, or discard information about
the existence of particular subsequences (which could be empirically verified).
Therefore, we believe that a critical comparative view of these results could
propel the development of language-theoretical tools that are closer and thus more
relevant to realistic genome assembly scenarios.

To this end, we have also presented a preliminary optimization-based formulation
of the genome assembly problem as a quadratic integer programming problem,
whose performance, with appropriate relaxation, will be addressed in future work.
The merit of the integer programming formulation is that it provides a new and
potentially useful formulation of the genome assembly problem. We would like
to point out that the optimization-based formulation requires information about
the estimated size of the genome (here, N ). Interestingly, none of the graph-
based assembly methods have this as a requirement, rendering the comparison of
the resulting genomes (which are likely to be of different lengths and coverage)
a nontrivial task. Currently, however, we fail to see how the optimization-based
formulation may be used to address the comparison of assemblies from different
assemblers.
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Extracting Coevolving Characters from a Tree
of Species

Alessandra Carbone

Abstract Phylogenetic proximity has guided our understanding of the evolution of
species for decades. It is clear nowadays that the paradigm “phylogenetically close
species should share similar characters” is just one facet of the complex process
of evolution inherent in development and species differentiation. Today, there is a
need for novel mathematical approaches to cluster together symbolic information
organized into trees of characters that could highlight the evolutionary relations
between characters and the processes of coevolution of characters. We propose a
combinatorial method to do so and to derive groups of characters which appear to
be correlated through their evolutionary history. This approach was first developed
for protein sequences, but it is revealed to be general and applicable to any list of
characters describing species. In particular, one does not need to know all characters
for all species to perform coevolution analysis.

1 Introduction

Biological information is usually organized into a tree-like structure owing to
the underlying evolutionary process that traces the history of the evolution of
the data. Evolution is regarded as a branching process, whereby populations are
altered over time and may split into separate branches, hybridize together, or
terminate by extinction. The resulting tree, called a phylogenetic tree, represents
a hypothesis about the order in which evolutionary events occurred. Unraveling a
proper biological interpretation of this tree-like structure is a far from simple task,
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since the information observed is a very small part of what the evolution process
could have given. Most species have been lost, for instance, and the reasons are not
always a lack of fitness, that is, the ability to both survive and reproduce, nor a lack
of advantage, that is, the benefit gained over competitors. Random events that cause
a species to disappear or to evolve in some feasible (even though unlikely) manner
might also happen.

The basic mathematical structure underlying a group of species is the phylo-
genetic tree associated with their evolution, where the leaves of the tree represent
the species in the group and the internal nodes represent their ancestors. Based on
this tree, concepts such as “fitness” and “advantage” have been promoted to a great
extent, but not always accompanied by convincing explanations. In fact, quite often,
those species that are located close together in the tree happen to share the same
biological behavior, and hypotheses about the functional reasons for this behavior to
take place have been presented for various groups of organisms. When the branches
of the tree become long, though (i.e., the underlying pathways correspond to a
long evolutionary history), the paradigm “phylogenetic proximity”D “biological
similarity” is no longer true, and phylogenetically close species might start to
display different characteristics. An interesting example is illustrated by codon bias
in bacterial species. By studying this, it has been discovered that bacteria with
similar codon bias are likely also to share their environment and habitat [8, 40] (see
also [23, 28, 36]), but that species within a phylum do not necessarily share codon
bias. The phylum of proteobacteria, for instance, spans the whole range of codon
biases even though it forms a clade in the phylogenetic tree. In fact, only subsets of
the proteobacteria, that is, all known “proteobacteria classes”, share habitat, codon
bias, and phylogenetic proximity. Another example is provided by protein domain
evolution within species. For conserved protein domains, it has been found that
phylogenetically close species share conserved patterns in homologous sequences.
For proteins that have diverged by over 50 % sequence identity, we can still find
homologous sequences that display specific conserved patterns, but this is more
likely in distant species than in phylogenetically close ones [4].

Hence, to learn about the evolutionary process underlying the species that exist
today, it becomes particularly important to develop methods that take into account
the topology of the phylogenetic tree (and possibly the metric of its branches)
to identify where conservation takes place along the tree and whether characters
are correlated within conserved subtrees. The hope is that a careful handling of
the signals of evolution will lead to accurate interpretations of the coevolution of
characters.

The theory that we shall develop here concerns the identification of the correlated
evolutionary changes of characters in species. It is a generalization of the work
presented in [3], where the main concepts and the approach used were introduced
for biological sequences and the detection of coevolution of protein residues.
These residues are important in protein folding and allosteric movements, and our
approach allows the identification of networks of correlated residues [2,3,13,15,17,
19,20,27,31,33,35,39,41] (see also [11,12,30]). We shall demonstrate here that an
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approach based on protein residues can be generalized to a collection of characters
describing a set of species.

The applications may concern protein sequences, but also other biological data
where trees describe relations between species. Trees might have a phylogenetic
origin (where intermediate nodes v represent potential ancestors of the species
labeling the leaves of the subtree rooted at v); they might be trees capturing
environmental similarities and organismal differences; they might be trees tracing
the evolution of a population; or they might be distance trees arising from clustering
of characters (e.g., sequence alignment). The important point is that the trees may
be constructed from data that either are independent of the characters to be analyzed
(for instance, think of a tree of bacterial species constructed using codon bias
information, and a correlation analysis of the environmental properties of the species
in the tree) or they use the full set of characters associated with the species. In the
second approach, the tree is generated by taking into consideration the whole set of
characters (possibly many characters compared with those that will be analyzed)
and by solving a global optimization problem where the number of character
transformations in the tree is minimized. Coevolution of character pairs (or tuples)
is then studied, with local optimization analysis.

1.1 Evolution and Characters

In biology, coevolution of characters refers to a reciprocal genetic change in two
or more species [37]. Common examples are (1) a predator and its prey, where the
predator kills and eats the prey; (2) a herbivore and a plant, where the herbivore
eats the plant; (3) a host and a parasite, where the host is adversely affected and the
parasite benefits; (4) mutualism, where both species benefit from the change; and (5)
competition between two or more species. Given a number of characters describing
each species and a tree of species, one wants to identify correlations among a subset
of these characters. Ideally, one would like to identify several subsets of characters
that coevolve, and interpret the results within the categories above.

1.2 Evolution of Microbial Populations

The exponential growth of cellular cultures and the tracking of genetic differences
such as chromosomal rearrangements within populations provide a setting where
our theory might apply. Populations are intended here to be sets of individuals
of the same species for which an underlying tree organization describes their
evolutionary relations. A description of differences among individuals is usually
less precise for populations than for ensembles of species, owing to the strong
similarity between individuals. In practical terms, this means that events concerning
populations are studied in an isolated manner, one kind at a time, and that the
analysis targets the reconstruction of the distribution of events within the population.
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Unfortunately, population trees are often missing. Without knowing the tree, the
effects detectable from a population study are those that occur in the very early
stages of the evolutionary process generating the population. This is because early
events are sufficiently represented in later generations, while events occurring later
on the process are not able to emerge quantitatively from the observed population,
since the exponential process underestimates their number [18,21]. Having a tree is
therefore key to a thorough understanding of the evolution of a population. Ideally,
experiments on a population should be performed to track several characters at once;
in this case, a tree could be constructed based on all observations (it will not be a
tree arising from ancestral relations but a tree constructed from the events observed
in the experiment, all taken together) and screened for correlation discovery. Our
theory would help to find correlations among events in the tree.

1.3 Evolution and Single-Nucleotide Polymorphism (SNP)

One might envisage using the theory to study correlations among SNPs, that is,
DNA sequence variations that occur when a single nucleotide (A, T, C, or G) in the
genome sequence (or some other shared sequence) differs between members of a
species. Each individual has many single-nucleotide polymorphisms that together
create a unique DNA pattern for that individual. Our theory might help to define
correlations between SNPs, for both prokaryotic and eukaryotic populations. In fact,
specific phenotypes due to sequence variations might be induced by a single SNP or
by multiple SNPs. We expect that a functional relation among several SNPs could be
detectable through coevolution analysis. Trees of individuals could be constructed
from sequence similarity, with a sequence containing the SNPs under investigation
for each individual labeling the leaves.

1.4 Gene Responses in Microarray Data

Matrices of microarray data might be another interesting biological set to be
considered for analysis with our approach, where genes play the role of characters
and patients or organisms play the role of species. After clustering the data, one is
usually interested in determining the correlations between different genes, and our
approach might provide a way to do this, based on the tree obtained after clustering.

2 Why Look at Trees

Conservation and coevolution of characters are intimately linked concepts. Con-
servation refers to the persistence of a character during species variation, while
coevolution refers to the correlated changes of character values in two or more
species.
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Fig. 1 (a) Two lists of character values for characters i and j , displaying the same information
content. (b) Tree associated with the distribution of character i in (a), whose leaves are labeled by
character values. Two subtrees organize the character values B (solid black line) and D (dashed
line). The black dots at the roots of the subtrees represent preservation of character B for the
ancestors at the roots. Similarly, white dots represent character D at the roots. The gray dot
highlights the fact that neither B nor D can be inferred to hold (by the parsimony principle
that minimizes the number of changes in evolution). (c) Tree associated with the distribution of
character j in (a). The character values B and D are not organized in subtrees. Black and white
dots as in (b)

There are several ways to evaluate conservation. If the values of character lie in a
discrete interval Œ1; : : : ; N �, the “information content” of a character, that is, its level
of conservation, can be computed as the Kullback–Leibler relative entropy [10,24],
for instance; that is, IC.s/ D �Pi�N ps.vi /logN .ps.vi /=qs.vi //, where ps.vi / is
the observed frequency of value vi for character s, qs is a background frequency
distribution of character values, and the logarithm is to base N , where N is the
number of possible values that s can take [5, 34].

The notion of information content does not take into account the extra infor-
mation associated with biological data, such as the phylogenetic organization of
species. In this respect, we wish to distinguish between distributions of character
values in a tree of species that provide the same information content (Fig. 1a) but
display a different tree-like organization (see Fig. 1b, c). We make the hypothesis
that a tree-like structure governs the different species considered and that the way
characters change on the tree can be important for properly evaluating conservation
of characters. The tree in Fig. 1b presents the character value B as more conserved
than it is in the tree of Fig. 1c, where B occurs in different subtrees representing
species that display the character value D also. In Sect. 3, we shall develop such a
notion.
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2.1 Conserved Residues and Prediction of Interaction
Sites in Proteins

An important example of the effect of a proper detection of conservation signals
is given by families of homologous proteins. These families are characterized by
alignments, with conserved positions corresponding to residues sitting either in the
protein core or on the surface [38]. For the latter, it has been noticed that they
form, in three dimensions, patches of residues corresponding to interaction sites
[25, 26]. The level of conservation of the residues could have been detected by
using the notion of information content (see below), but it has been observed that
a careful analysis of the topology of the distance tree of sequences provides more
refined predictions [1, 9, 16, 22, 26, 29, 32]. Automatic detection of interaction sites,
combining conservation signals with preservation of physicochemical properties,
has become a feasible task. A tool for large-scale protein analysis was proposed in
[16]. In [7], we showed that the usage of trees for capturing conservation ameliorates
the problem of detection of protein binding sites compared with the use of IC.

Since conservation is detected better with the tree topology, we have extended
the use of the tree topology to the study of coevolution of characters. The idea is to
analyze the coexistence of pairs of character values in a tree of species by checking
that character values are conserved in the same “regions” of the tree, where a region
in the tree refers to branches close together in the tree. These might be subtrees,
but not only those captured by the notion of an “inner tree” presented in Sect. 3.
For a presentation of previously introduced methods for the study of coevolution in
biological sequences, see [6].

3 Coevolution of Trees and Characters

Let T be a tree of species, and suppose that each species labeling a leaf in T

is characterized by a set of characters. These characters are mostly shared by all
species, but some species might be missing some. In our analysis, each character
may or may not have the same alphabet of values, and the number of characters is
arbitrary. No order is imposed on the characters. They will be considered as a set.

Given T and a character s, we identify the maximal subtrees (MSTs) for s as
the largest subtrees of T that conserve a value of s. Formally speaking, let T be
a tree associated to some set of characters, let N.T / be its nodes, let L.T / be its
leaves, each labeled with values of characters, let T .x/ be the subtree of T rooted at
x 2 N.T /, and let f .x/ be the father node of x 2 N.T /, if it exists. We distinguish
S different characters and we allow certain species not to have a character. Let R.s/

be the set of values for a character s 2 Œ1 : : : S�, and let

R.S/ D
[

s2Œ1:::S�

R.s/:
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Fig. 2 Maximal subtrees (MSTs) of a tree T , and ranks. The tree T is made up of seven species
characterized by the two characters i and j , where i indicates species with or without wings, and
j indicates species living either in a dry or in a humid environment. Maximal subtrees in the tree
T defined with respect to characters i and j are highlighted by their roots: gray squares for MSTs
of i and white squares for MSTs of j . Character i has rank 5, since there are five distinguished
MSTs associated to it, and j has rank 2

The function charvalue W L.T / 
 Œ1 : : : S� ! R.S/ associates to a leaf l of T

and a character s the value r corresponding to the species labeling the leaf l , with
r 2 R.s/ � R.S/.

A subtree T .x/ is conserved for character s if all leaves in T have the same value
of s, that is, 8l1; l2 2 L.T .x//, charvalue.l1; s/ D charvalue.l2; s/. By convention,
species are allowed not to have a character, and if at least one of the leaves l1; l2
has an undefined value, then charvalue.l1; s/ ¤ charvalue.l2; s/. A subtree T .x/

is maximal for character s if T .x/ is conserved for character s and, if f .x/ exists,
then T .f .x// is not fully conserved for s.

3.1 Importance of a Character Within a Set of Characters

The importance of a character for a set of species is analyzed using the notion of
rank. The rank of a character s in T is defined as

R.T; s/ D jfx 2 N.T / j T .x/ is maximal for sgj;

with 1 � R.T; s/ � jL.T /j (see Fig. 2). Namely, the rank of a character s in a tree
T is the number of MSTs that decompose T with respect to the character s, that is,
the number of largest MSTs conserving the same value for s. Figure 2 illustrates the
concept and shows that the rank of a character is a piece of information extracted
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purely from the tree. This definition of the rank corresponds to the one used in [3].
A rank R.T; s/ D 1 means that T is maximal for character s, that is, the value
of s is conserved in all species, and a rank R.T; s/ D jL.T /j means that each
leaf in T for s is an MST, that is, each pair of neighboring leaves in the tree is
associated to different values of s. Intuitively, characters with small and large rank
have undergone strong and weak evolutionary pressure, respectively.

3.2 Combinatorics of MSTs and Correspondence Scores
Between Pairs of Values for the Same Character

To evaluate the coevolution of a pair of characters, we proceed in two steps.
First, we analyze the combinatorics of the MSTs associated to a pair of values for
these characters and construct a correspondence matrix summarizing the degree of
coevolution between all pairs of character values. In the second step, coevolution
scores for pairs of characters are inferred from the correspondence matrix. These
represent how well the MSTs associated to a character mirror the MSTs associated
to another character compared with what would be expected for ideally coevolved
characters (see “perfect inclusion” in Figs. 4 and 5a).

3.2.1 Correspondence Matrix Construction

Let Ai be a character value for a character i . For each pair of values Ai ; Aj of
characters i; j , we consider the “inner” tree T .Ai ; Aj / of T , for which only the
leaves of T which are labeled by the value Ai for character i or by Aj for character
j are considered (see the examples in Fig. 3). The inner tree is used to evaluate the
overlap of the MSTs associated to Ai and Aj . We denote by MST.Ai / the set of all
MSTs associated to a value Ai of character i .

A correspondence score C.Ai ; Aj / is assigned to each pair of values Ai ; Aj of
characters i; j :

C.Ai ; Aj / D N Ai CAj

N Ai CAj CN Ai �Aj CN Aj �Ai
;

where N Ai CAj is the number of nodes (leaves excluded) that are common to
MST.Ai / and MST.Aj /, and N Ai �Aj and N Aj �Ai are the numbers of nodes (leaves
excluded) of MST.Ai / and MST.Aj / that do not belong to MST.Aj / and MST.Ai /,
respectively. Correspondence scores vary between 0 � C.Ai ; Aj / � 1 with
C.Ai ; Aj / D 0 in the case of a perfect disjunction of MST.Ai / and MST.Aj /,
and C.Ai ; Aj / D 1 in the case of a perfect inclusion of MST.Ai / and MST.Aj /

(Fig. 4).
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Fig. 3 Inner trees. A tree T (a) and “inner” trees: T .A; E/, specific to the values A and E of
characters i and j , respectively (b); T .A; D/ (c); and T .A; F / (d). Only values of characters i

and j are taken into consideration. The branches of T labeled with A for character i and with E

for character j are shown by white and gray squares, respectively, and determine the inner tree
T .A; E/ (b). The inner trees T .A; D/ (c) and T .A; F / (d) are determined in a similar way. The
white squares in T .A; E/, T .A; D/, and T .A; F / identify the roots of MSTs associated to the
value A for character i , and the gray squares identify roots of MSTs associated to values E , D,
and F of character j (Figure reproduced from [3] under Creative Common Attribution Licence
(CCAL))

Fig. 4 Overlap of MSTs, and correspondence scores. Different inner trees specific to values
A and B of characters i and j and their corresponding correspondence scores. White squares
identify nodes of MST.A/ (leaves excluded), and black squares identify nodes of MST.B/. The
white and black squares identify common nodes MST.A/ and MST.B/. The first two trees illustrate
perfect inclusion and exclusion. The last two trees illustrate intermediate cases where the numbers
of species with values A and B are equal but the correspondence scores are different owing to
different distributions of species in the tree (Figure reproduced from [3] under CCAL)

Correspondence scores are calculated for each pair of values Ai ; Aj for charac-
ters i; j and are organized into a correspondence matrix Ci;j , indexed by values
from the most to the least frequent (an arbitrary order is followed for equal
frequencies). A row or column indexed by Ai or Aj contains all correspondence
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Fig. 5 Correspondence matrices and matrix patterns. (a) Tree composed of two MSTs
associated to character values A; C and B; D; characters i; j take values A; B and C; D,
respectively (left). The right part shows a representation of the tree on the left where the MSTs
associated to character values A; B; C; D are distinguished and denoted by triangles, pointing to
the left for character i and to the right for character j ; the MSTs for these values are represented
by triangles with the associated character indicated in the center. (b) Coupling pattern with an
identity correspondence matrix. (c) Multi-inclusion pattern, where a single value of character i is
associated to several values of character j . (d) Multi-overlapping pattern, where several values of
character i are associated to several values of character j ((b), (c), (d) are reproduced from [3]
under CCAL)

scores obtained for Ai or Aj with values of character j or i , respectively. The sum
of the correspondence scores in each line and in each column of the matrix Ci;j is
at most 1.

3.2.2 Patterns in a Correspondence Matrix

Specific patterns may appear in the correspondence matrix according to the com-
binatorics of the MSTs associated to pairs of character values. The evolution of a
character i with itself, for instance, corresponds to the ideal case of coevolution and
is characterized by a perfect inclusion of the MSTs associated to the same character
value (Ci;i .Ai ; Ai / D 1) and by a perfect disjunction of the MSTs associated to all
other character values (Ci;i .Ai ; Bi / D 0). This “perfect” configuration corresponds
to an identity matrix. In the case of a pair of independent characters i; j , a random
overlap of the MSTs MST.Ai / and MST.Aj / is expected instead.

The patterns in these matrices capture three kinds of relations between MSTs
associated to pairs of characters:

1. Coupling. The MSTs associated to values of character i mirror the MSTs
associated to values of character j . This correspondence is represented by an
identity correspondence matrix (Fig. 5a).

2. Multi-inclusion. The MST associated to a value of character i or j includes
several MSTs associated to different values of character j or i , respectively.
In Fig. 5b, value A obtains its best correspondence score with value C (since
it overlaps mostly with C ), but it lacks specificity for C since MST.A/ also
includes MST.D/. Values C and D are A-specific, since they do not overlap
with any other MST for character i .
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Fig. 6 Lack of conservation, and perfect coevolution. (a) Tree of characters where the pairs
of values .A; R/; .C; T /; .B; S/ for characters .i; j / occur in distinguished leaves. Characters are
not conserved (three distinct character values occur with the same frequency), but they coevolve
perfectly. The tree is composed of two main subtrees with six leaves each. One of the subtrees
shows no MST associated to character values. The second subtree has three MSTs with two leaves
each. (b) The inner tree T .A; R/ of the tree in (a) shows perfect inclusion. The inner trees T .B; S/

and T .C; T / have the same topology. Their correspondence score is 1. (c) The inner tree T .A; S/

of the tree in (a) shows perfect exclusion. The inner trees T .A; T /, T .B; R/, T .B; T /, T .C; R/,
and T .C; R/ have the same topology. Their correspondence score is 0. (d) Correspondence matrix
for the tree in (a), showing coupling for positions i and j

3. Multi-overlapping. The MSTs associated to different values of character i

overlap with the MSTs associated to several values of character j . In Fig. 5c,
value A shares values D with B . The interference of MST.D/ with MST.A/

neither excludes MST.D/ from MST.A/ nor includes it in MST.A/.

Coupling describes perfect coevolution between two characters. Since it is
unlikely to be observed in real data, the evaluation of coevolution between pairs
of characters cannot be reduced to a simple assessment of the presence or absence
of a perfect identity matrix. In particular, even for a pair of characters with
a good overlap of the MSTs, noise in the data caused by a single value that
disrupts the maximality of the tree can lead to a diagonal matrix which is not
an identity matrix. Thus, we define a coevolution score between two characters
by evaluating the “distance” between an ideal identity matrix (coupling) and the
actual correspondence matrix, which displays less regularity (because of a possible
combination of multi-overlapping and multi-inclusion), for all values associated to
the character.

Conservation of characters is not a necessary requirement for coupling. The tree
of characters in Fig. 6 illustrates the idea. Namely, characters i and j in the tree do
not display conservation, and the MSTs that preserve a character value at i or j have
at most two leaves. Nevertheless, notice that the associated correspondence matrix
highlights coupling, since all inner trees for pairs of character values display either
a perfect inclusion or a perfect exclusion of the values.
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3.3 Coevolution Score for Pairs of Characters

The coevolution score of two characters i; j is the sum of two subscores, one
evaluated for each value of character i according to all values taken by character
j , and the other evaluated for each value of j according to all values taken by i .
For each character value, three multiplicative factors are computed. Intuitively, they
numerically describe the divergence of the correspondence matrix from the identity
matrix, which would be expected in the ideal case. In case of perfect coevolution,
the three factors will provide no penalties; they equal 1 for all pairs of values of
i; j , and make the two subscores equal to 1. The more the correspondence matrix
diverges from the identity matrix, the more these factors tend to 0 and penalize the
coevolution score.

3.3.1 Maximal Correspondence Factor

This is defined as

Sj
max.Ai / D max

X2Rj

fCi;j .Ai ; X/g;

where Rj is the set of all values of character j ; this corresponds to the highest
correspondence score obtained for Ai when the scores for all values of character j

are compared. Note that 0 � S
j
max.Ai / � 1. We denote

Rj
max.Ai / D arg max

X2Rj

fCi;j .Ai ; X/g;

where, by convention, if the maximum of the function is reached on several values,
then R

j
max.Ai / is the most frequent value among them for character j . The maximal

correspondence factor penalizes the lack of perfect inclusion among MSTs, which
can be due to noise in the data, multi-inclusion, or multi-overlapping.

3.3.2 Specificity Factor

This is defined as

Sj
spec.Ai / D S

j
max.Ai /X

X2Rj

Ci;j .Ai ; X/
;

where Rj is the set of values of character j ; this evaluates the specificity of Ai for
the value R

j
max.Ai /. Note that 0 � S

j
spec.Ai / � 1. This factor penalizes the lack of

specificity which is observed in the case of multi-inclusion and multi-overlapping.
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3.3.3 Interference Factor

This is defined as

S
j
inter.Ai / D 1 �

X
X2Rj nR

j
max.Ai /

.
Ci;j .Ai ; X/X

Y 2Ri

Ci;j .Y; X/

 !j .X//;

where Ri is the set of values of character i , Rj is the set of values of character j ,
and !j .X/ is the frequency of value X for j . This evaluates the overlap between
MST.Ai / and MST.Xj /, with Xj 6D R

j
max.Ai /. Note that 0 � S

j
inter.Ai/ � 1.

This factor penalizes interference of MSTs at j , associated to Xj ’s that are not
R

j
max.Ai /, with MST.Ai/. Interference is observed in the case of multi-inclusion

and multi-overlapping.
Toy examples of 2 
 2 correspondence matrices are presented in Fig. 5. For

coupling (Fig. 5a), the factors for value A of character i are S
j
max.A/ D 1,

S
j
spec.A/ D 1=1 D 1, and S

j
inter.A/ D 1 � .0=1/ D 1, which give S

j
max.A/ 


S
j
spec.A/ 
 S

j
inter.A/ D 1. The perfect mirroring of the inner trees ensures that the

correspondence matrix is the identity matrix.
For multi-inclusion (Fig. 5b), the factors for value A of character i are S

j
max.A/ D

0:7, S
j
spec.A/ D 0:7=.0:7 C 0:3/ D 0:7, and S

j
inter.A/ D 1 � .0:3=0:3/ D 0,

which give S
j
max.A/
 S

j
spec.A/
 S

j
inter.A/ D 0. No correlation is observed between

characters i and j , since a value of j is associated to two values of i , leading
to a correspondence matrix far away from the identity matrix. The product of the
subscores equals 0 and penalizes the configuration. In the more general case of a
combination of several values of i and j displaying overall a good overlap of their
MSTs, local multi-inclusion between pairs of values might induce a weak penalizing
effect on the final score.

For multi-overlapping (Fig. 5c), the factors for value A of character i are
S

j
max.A/ D 0:7, S

j
spec.A/ D 0:7=.0:7 C 0:2/ D 0:77, and S

j
inter.A/ D 1 �

.0:2=.0:2C 0:6/ D 0:75, which give S
j
max.A/ 
 S

j
spec.A/ 
 S

j
inter.A/ D 0:4. Here

the correspondence matrix is closer to the identity matrix, and the score is penalized
less than in the previous case. However, the important multi-overlaps of MST.D/

with MST.A/, and of MST.D/ and MST.A/ with MST.C / and MST.D/ lead to a
rather low product of the subscores, namely 0:4.

3.3.4 Coevolution Score

The coevolution score CoE.i; j / sums the products of the three factors calculated
for each value of the pair of characters i; j and weights each product according to
the frequency of the value of a given character. We define
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Fig. 7 Flowchart of the analysis. The main algorithmic steps of the analysis are represented by
the two main boxes. Inner box: estimation of coevolution between pairs of characters; the indices
i; j run over characters only. Outer box: construction of the coevolution matrix for all characters
(Figure modified from [3] under CCAL)

CoEj .i/ D
X

X2Ri

Sj
max.X/ 
 Sj

spec.X/ 
 S
j
inter.X/ 
 !i .X/;

CoEi.j / D
X

Y 2Rj

Si
max.Y / 
 Si

spec.Y / 
 Si
inter.Y / 
 !j .Y /;

and

CoE.i; j / D CoEj .i/C CoEi.j /;

where Rj is the set of values of character j , Ri is the set of values of character i ,
and !i .X/ and !j .Y / are the frequencies of values X and Y for characters i and j ,
respectively. Note that 0 � CoE.i; j / � 2 and that CoE.i; j / D CoE.j; i/.

Notice that pairs of very conserved characters will show a high overlap of their
MSTs and obtain high coevolution scores. In the extreme case of two completely
conserved characters, the unique MSTs associated to the two characters will
perfectly mirror each other and lead to a maximal coevolution score of 2.

3.4 Networks Reconstruction

The matrix of coevolution CoE provides all of the information needed to extract
a network of coevolving characters for the species under consideration (see Fig. 7).



Extracting Coevolving Characters from a Tree of Species 59

There are clustering algorithms that can extract such a network of characters; see
[14] for a method for automatic selection of networks from a matrix and [3] for an
automatic method to cluster the matrix followed by manual extraction of networks
from the clustered matrix. Such networks are helpful for data interpretation.

3.5 Computational Complexity and Selection
of Character Seeds

When there are many characters and the combinatorics of the characters (that is, the
number of pairs of characters) to be analyzed results in a significant computational
time [3], it may be useful to restrict the analysis to characters that are “sufficiently
conserved” and to identify coevolution of them. We call these characters seeds and
select them by reading the persistency of the conservation signal along the subtrees
of the tree.

3.5.1 Conserved Characters and Stability of a Character Along the Tree

We assume that the absence of a character for a species is represented by a special
value. This implies that whenever a character is missing in several species then it
will be ranked high. We could have chosen to consider the absence of a character as
a specific value, and in this case a character missing in several species would imply
a low rank. The rank distribution and the mean rank calculated over all characters
turn out to be strictly dependent on the definition one chooses.

Let RD.T; s/.D R.T; s// be the rank of the character s in T and let RD.T / be the
mean rank calculated over all characters in T , when missing values of a character
are considered as different (D). RI .T; s/ and RI .T / denote the rank of character
s in the tree T and the mean rank calculated over all characters in T , respectively,
when missing values of a character are considered as an identical (I ) character. A
stable character s in T is such that RD.T; s/�RI .T; s/ < RD.T /�RI .T /, that is,
a character whose rank is not affected much by missing values.

Let R.T / be the mean rank calculated over all stable characters in T . A character
s in T is a character seed if R.T; s/ < R.T /. The intuition here is that we
identify (and select for coevolution analysis) as seeds those characters which exhibit
a stronger signal of conservation than the average.

Since simple variations in values of a character can lead to different tree
decompositions of T into MSTs, and different character ranking and mean ranks, we
check the robustness of the conservation of a character over a number of landmark
points on T , called checkpoint nodes. Below, we formally describe how to select
checkpoint nodes in T , and a detailed parameterization of the method for dealing
with protein sequences, handling sequence divergence, and evaluating persistency
of conservation of a character in all subtrees of T rooted at checkpoint nodes is
described.
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3.5.2 Checkpoint Nodes

Checkpoint nodes are selected in T going from the leaves of the tree up to the
root. The first checkpoint nodes are the roots of the smallest subtrees of T whose
corresponding species show enough diversity. We require that more than 50 % of the
characters have values that are not fully conserved across all species; that is, more
than 50 % of the characters will have rank greater than 1. This ensures that species
are sufficiently well represented by the pool of characters and are not too similar.
The intuition is that conserved characters detected using this threshold are supposed
to undergo strong evolutionary pressure and be relevant.

Checkpoint nodes with higher character divergence are defined inductively to
be nodes x in T that show at least 10 % of mutated characters more than in the
checkpoint node y with highest divergence lying below x. A minimum increase
of 10 % in character divergence in x is required between successive checkpoint
nodes in order to favor diversity of the subtrees in which positional conservation
is evaluated. Jumps of 10 %, the number of mutated characters provide a way to
discretize the tree by avoiding an evaluation on all its nodes, which could be affected
by phylogenetic effects (certain branches could be populated more heavily with very
similar sequences), leading to an overestimation of conservation signals.

Finally, a node in the tree that has reached 90 % of mutated characters is
considered to be a checkpoint node, as are its immediate children.

3.5.3 Persistent Conservation of a Character

At each checkpoint node x, the mean rank R.T .x// calculated over all stable
characters in T .x/ is compared with the rank R.T .x/; s/ for all characters s. The
persistency of conservation of a character s is measured at each checkpoint node in
the tree according to the conserved status of the character s within the subtree rooted
at that node. We define a function Ps for this as follows. If a character s is conserved
at checkpoint node x (i.e., R.T .x/; s/ < R.T .x//), Ps is incremented by a weight
i.T .x/; s/ corresponding to the maximum number of consecutive checkpoint nodes
encountered on a path of the tree T .x/ from x down to some leaf. If a character
s is not conserved (i.e., R.T .x/; s/ � R.T .x//), Ps is decremented by a weight
d.T .x/; s/ corresponding to the maximum number of consecutive checkpoint nodes
where s is not conserved encountered on a path of the tree T .x/ from x (including
that node) down to some leaf.

At the root of T , Ps measures the stability of conservation for the character
s in T . Characters that are conserved in all subtrees rooted at checkpoint nodes
have a positive persistency score Ps � 0, and characters conserved in none of
the subtrees rooted at checkpoint nodes have a negative persistency score Ps �
0. The persistency score of other characters might take a positive or negative
value according to the global conservation evaluated at different checkpoint nodes.
Characters with a positive persistency score Ps > 0 at the root of T are considered
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as persistently conserved and are selected as seed characters for the analysis of
coevolving characters.

Note that not all seed characters are guaranteed to belong to some coevolving
network at the end of the analysis. Seeds display some evolutionary pressure and
consistent behavior along the tree, and in this respect they form a set of potential
coevolving characters to which one can restrict the analysis so as to reduce the
overall computational time arising from the large number of pairs of combinatorial
characters. Note also that the thresholds defining the checkpoint nodes along the
distance tree provide a computationally fast way to avoid phylogenetic effects that
might contribute negatively to persistency conservation.

4 Discussion

The method introduced in this chapter provides a mathematical framework where
the concept of coevolution of characters can be defined combinatorially. The
advantage of developing combinatorial approaches compared with more implicit
statistical approaches is that combinatorial methods are based on a direct under-
standing of the building blocks involved in a structure. In this specific case, the
definition of coevolution helps to describe the interaction of coevolving information
within inner subtrees of a tree of species. In contrast, implicit approaches provide
little intuition about these building blocks.

One of the main questions for future investigation is to find mathematical prop-
erties that will highlight the interaction of networks of coevolving characters. Some
of these properties might correspond to nonobvious overlapping of inner subtrees.
This kind of question has never been addressed by the available approaches, and
we expect combinatorics to help provide new insights into evolutionary signals
in species. In the case of protein sequences, an attempt to unravel interactions of
networks of coevolving residues (providing insights to protein folding) can be found
in [13].

4.1 Coevolution and Number of Species

Coevolution analysis methods usually require sets of data to be of a sufficiently large
size. This is especially true for statistical approaches to coevolution analysis. The
combinatorial method presented here makes the analysis less subject to sample size
effects due to a small number of species. Novel approaches that allow the extraction
of coevolving characters for a small number of species (say, less than 50) need
to be developed. The answer provided in [13] for coevolution analysis of protein
sequences might plausibly be generalizable to characters. Other propositions are
envisageable and the question is still open, even though it is extremely important
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in biology, where the space of characters is typically very large and the number of
species small.

4.2 Conservation and Coevolution

At first, the notions of conservation and coevolution might appear to be distinct
concepts, but our combinatorial approach exploits the idea that during evolution,
conservation comes before coevolution in time (this is inherent in the counting of the
number of inner subtrees N Ai CAj in the correspondence score C.Ai ; Aj /) and that
conservation occupies a specific position in the continuous spectrum on which we
measure different degrees of coevolution. The model that we intend to use identifies
a set of species as an ensemble that evolves through mutational changes driven by
the functional roles of the characters. If two or more characters cooperate in serving
a function, they will coevolve together. Depending on the evolutionary constraints
due to the degree of specificity of the interaction between species, the signals of
coevolution will be stronger or weaker. Note that two characters which are fully
conserved are treated by the method as being “perfectly coevolving” and that, in this
sense, conservation can be treated mathematically as an extreme case of coevolution.

4.3 Random Processes and Constraints

Protein evolution occurs by random processes of mutation subject to a number of
functional and structural constraints governing the interactions of the molecule. A
way to think of this is to take an ancestor and imagine that within a set of constraints
on the ancestor, the process bifurcates by generating new evolutionary solutions and
develops until it produces the molecules observed today. We have shown [4] that
within the same protein, different domains follow evolutionary pathways that we
observe in very different branches of the tree of species. This observation highlights
the fact that the evolutionary process of proteins is in the first place a random
process, and that functional and structural constraints on a molecule cannot be
ignored if we wish to understand the process, since these constraints can give rise
to different functional solutions. Studies of the process of evolution on a large scale
do not take account of these constraints, which are molecule-specific. Because of
this, the computational exploration of divergent homologous proteins has reached
its limits and new insights are needed to overcome the difficulties. Methods such as
the one we have described, highlight new signals that can be taken into consideration
while searching for homologous proteins. In particular, the paradigm that we have
described for protein evolution might be reconsidered for evolutionary processes in
general.
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4.4 Application of the Theory to Protein Sequence Alignments

The theory of coevolving characters has been validated on families of protein
sequences, where residue positions in multiple alignments are considered as
characters, and the residues are their values. Based on this theory, networks of
coevolving positions within the alignments have been identified [3]. These networks
are clusters of residues, often entering into physical contact with one another, and
they relate residues which are located far apart in the three-dimensional structure.
Coevolved residues often play a major biological role in proteins, and the nature
of their interactions might be multiple, spanning binding specificity, allosteric
regulation, and conformational changes of the protein. By carefully tracing the way
residues evolved within the phylogenetic tree of sequences of a protein family,
the maximal-subtree method captures the transition from a conserved position
to a coevolved position during evolution, and provides a numerical evaluation
of the degree of coevolution of pairs of coevolved residues in a protein. This
combinatorial approach drops the constraints on high sequence divergence that limit
the range of applicability of the statistical approaches previously proposed, and it
can be applied with high accuracy to families of protein sequences with variable
divergence. Relative coevolution score matrices have been successfully computed
for four protein families: the hemoglobin, serine protease, leucine dehydrogenase,
and PDZ domain families, for which associated networks have been identified. The
program for the coevolution analysis and the clusterization procedure is publicly
available [3]. It can be used as a basis to develop new tools for coevolution of
characters. Further evaluations of the performance of this system compared with
others presented in [13, 19, 35, 41] were reported in [13].
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When and How the Perfect Phylogeny Model
Explains Evolution

Paola Bonizzoni, Anna Paola Carrieri, Gianluca Della Vedova,
Riccardo Dondi, and Teresa M. Przytycka

Abstract Character-based parsimony models have been among the most studied
notions in computational evolution, but research in the field stagnated until some
important, recent applications, such as the analysis of data from protein domains,
protein networks, and genetic markers, as well as haplotyping, brought new life
into this sector. The focus of this survey is to present the perfect phylogeny model
and some of its generalizations. In particular, we develop the use of persistency
in the perfect phylogeny model as a new promising computational approach to
analyzing and reconstructing evolution. We show that, in this setting, some graph-
theoretical notions can provide a characterization of the relationships between
characters (or attributes), playing a crucial role in developing algorithmic solutions
to the problem of reconstructing a maximum parsimony tree.

1 Introduction

Evolution is a lens that allows us to study and understand a lot of phenomena in
molecular biology [8]. The prototypical representation of any evolutionary history
is a phylogeny, that is, a labeled tree whose leaves are extant species, or individuals,
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or simply data that we are currently able to analyze [11]. Phylogenetics is the
research area of computational biology devoted to computing phylogenies. In this
field, the focus has shifted over the years. The initial developments date back to
the pioneering work of Cavalli-Sforza and Edwards [6,9] in the 1960s, where some
fundamental ideas in the study of phylogenies were introduced, namely the fact
that evolution is a branching process where characters change, that an intuitive
approach is to find the minimum total number of evolutionary events compatible
with the available data, and the idea of maximizing the likelihood of the proposed
interpretation.

The limited computational resources at the time, together with the kind of data
available (phenotypical data were much more frequent than genomic data), initially
put the emphasis on maximum parsimony character-based approaches. Subsequent
advances, including some in the statistical modeling of evolution [11], made
approaches based on inferring maximum likelihood phylogenies more attractive.

More recently, the pendulum has swung again, as parsimony methods have found
new relevance, mostly as a result of new applications. The perfect phylogeny model,
which is conceptually the simplest, is based on the infinite-sites assumption; that is,
no character can mutate more than once in the whole tree. Although this assumption
is quite restrictive, bordering on plainly wrong in some cases, the perfect phylogeny
model has turned out to be splendidly coherent in the context of the haplotyping
problem [3, 18], where we want to distinguish between the two haplotypes present
in each individual when given only genotype data. More precisely, the interest here
is in computing a set of haplotypes and a perfect phylogeny such that the haplotypes
(i) label the vertices of the perfect phylogeny and (ii) explain the input set of
genotypes. This context has been studied deeply in the last decade, giving rise to
a number of beautiful algorithms [2, 7]. Those algorithms (and others on the same
topics) exploit a number of nice combinatorial properties of perfect phylogenies and
graphs. In [2], a graph-theoretical characterization of genotype matrices admitting a
tree representation was given by using properties of partial orders and Dilworth’s
Theorem [12]. In its original formulation, the haplotyping problem, under the
perfect phylogeny model [7, 18], has revealed an interesting connection with the
graph realization problem [29], a well-known graph problem used to decide whether
a matroid is graphic.

Still, the perfect phylogeny model and the assumptions that have been central in
previous decades cannot be employed without adaptations or improvements. One of
the main open problems regarding the model is finding generalizations that retain the
computational tractability of the original model but are more flexible in modeling
biological data. Following this research direction, we explore here some extensions
of the perfect phylogeny model that are capable of modeling some processes whose
study has been motivated by some recent applications.

In particular, we present two recent applications that can find only a partial
solution in perfect phylogenies. The first application is to carcinogenesis, i.e., the
factors and mechanisms that cause the onset of cancer in cells. Carcinogenesis can
result from many combinations of mutations, but only a few sequences of mutations,
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called progression pathways, seem to account for most human tumors [28]. The
main issue here is characterizing the common progression pathways as a first step
towards identifying therapeutic targets and reliable diagnostic tests. The natural
observation that tumors are evolving cell populations leads to phylogeny-based
studies. At the same time, the intrinsic nature of cancer cells, that is, cells that
proliferate quickly and in a degenerate way, results in a relatively high number of
sites with multiple mutations (in violation of the infinite-sites assumption).

The second application concerns the study of protein domains. A protein domain
is a part of the sequence and structure of a protein that can evolve, function, and
exist independently of the rest of the protein chain. Many proteins consist of several
structural domains, and a domain may appear in a variety of different proteins. In
this case, it is quite frequent for a protein to acquire a domain and then to lose it
(this is much more frequent than acquiring and then losing a whole gene). Again,
the infinite-sites assumption can be violated.

In this survey, we pay special attention to an approach proposed in [23], based on
the notion of persistent characters in the perfect phylogeny model and on its use to
exclude some characters from the construction of the phylogeny. The general focus
will be on computational issues, such as efficient algorithms.

2 Maximum Parsimony and the Perfect Phylogeny

Parsimony models, just like all models, are characterized by specific constraints
that are based on biological assumptions. The first basic assumption states that
each species or taxon is described by a set of attributes, called characters, where
each character is inherited independently, and each character can assume one of a
finite set of values, called states. Alternatively, the input is a matrix whose rows are
the taxa and the columns are the characters. Another basic assumption about the
evolution of characters, called homology, assumes that characters that are present in
more than one species must be inherited from a common ancestor.

The natural computational problem has, as input, a matrix M with n rows
and m columns, where each row can be viewed as an m-vector over the set of
states of characters. The matrix describes a set of n taxa (species or individuals),
corresponding to the rows of M , and a set of m characters, corresponding to the
columns of M , and we seek a minimum-cost tree that explains the input matrix M .
In a tree T explaining a matrix M , (i) the nodes are labeled by vectors of states, of
length m (ii) each row of M labels exactly one node of T , (iii) the leaves are labeled
by some rows of M , and (iv) each edge .r1; r2/ of T is labeled by the character c of
M whose state in r1 differs from that in r2 (see Fig. 1 for an example).

The cost of a tree is the number of mutations in the tree or, more formally, the
sum over all edges of the tree of the cost of each edge, given by the number of
characters with different states in the two nodes that make up the edge. In binary
parsimony models – the most widely used – characters can take only the values (or
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M c1 c2 c3 c4 c5
s1 1 1 0 0 0
s2 0 0 1 0 0
s3 1 1 0 0 1
s4 0 0 1 1 0

Fig. 1 Example of perfect phylogeny over a binary matrix M of five characters and four species

states) zero and one, usually interpreted as the presence or absence of an attribute in
the taxon.

We will now discuss how computing the maximum parsimony phylogeny can be
framed as a Steiner tree problem, which is one of the most widely studied problems
in operations research. Recall that each input taxon is viewed as a binary vector
of length m. The set of all possible binary vectors of length m forms a hypercube
H , whose edges are exactly the pairs of vertices .u; v/ where u and v differ in
exactly one position. Let S be the set of input species in the phylogeny problem,
and notice that S is also a subset of the vertices of the hypercube H . Then the
Steiner tree problem asks for a minimum-cost subtree T of H such that all vertices
in S are also in T . The cost of the solution T is the number of edges of T . The
Steiner tree problem is NP-hard [21], even in the case of a binary alphabet with
the metric induced by the Hamming distance [14], which is a restriction derived
from the reduction from the maximum parsimony phylogeny to the Steiner tree on
a hypercube. Extensive recent work, both experimental and theoretical, has focused
on the binary character set with the Hamming metric [25, 27].

We can now introduce some specific parsimony models, starting from the
simplest: the perfect phylogeny. A tree is called a perfect phylogeny if each
character i mutates exactly once (i.e., there is exactly one edge such that its vertices
are labeled by vectors differing in position i ). Note that a perfect phylogeny (if it
exists) minimizes the overall cost, as any perfect phylogeny has cost m. We call a
perfect phylogeny directed or rooted if there is a distinguished node corresponding
to the vector Œ0; : : : ; 0�. It can be noticed immediately that we can transform a
perfect phylogeny into a rooted perfect phylogeny by choosing an arbitrary node x

and flipping (for each species) the state of each character that initially has value 1

in x (those characters are called active in x). There is a well-known linear-time
algorithm for computing a binary perfect phylogeny [17], if it exists, and some more
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complicated fixed-parameter algorithms for the general perfect phylogeny problem,
where the parameter is the maximum number of states for each character [1, 20]. In
the following, unless specified differently, we mean by “perfect phylogeny” a rooted
perfect phylogeny, that is, characters mutate only from state zero to one.

3 The Dollo Parsimony Model and Its Variants

Unfortunately, there are some evolutionary phenomena, such as homoplasy, that
violate the fundamental assumptions of perfect phylogeny [11]. Two kinds of
homoplasy are recurrent mutations and back mutations. A recent mutation occurs
when a character changes state along divergent branches of the tree, and a back
mutation implies that a character may go back to the ancestral state in descendant
species after changing state. These two types of events justify the introduction of
different models, differing mainly in the allowed homoplasies. Although the perfect
phylogeny model does not allow any homoplasy, some extended models have been
introduced to allow recurrent or back mutations.

One extended model is the Camin–Sokal parsimony model [5] (Fig. 2), where
characters are directed; that is, only changes from zero to one are possible on any
path from the root to a leaf. This fact means that the root is assumed to be labeled by
the ancestral state with all zeros, and no back mutation is allowed, but any character
can be acquired more than once, i.e., recurrent mutations are possible.

Another possible way of extending the perfect phylogeny model is the Dollo
parsimony model, which allows any character to change state from zero to one
only once, but puts no restriction on the number of times that it mutates from one
to zero [11] (Fig. 3); that is, back mutations are allowed, but recurrent mutations
are not. The definition of the Dollo parsimony model implies that characters are
acquired at most once in the tree, but may be lost multiple times.

An interesting application of the Dollo parsimony model is to the analysis of
dynamic protein interactions [31], which has also shown an interesting connection
with graph theory. Protein networks are graphs that model protein interactions. More
precisely, the nodes of the graph are the proteins studied and the edges represent the
interactions. A functional module is a subset of the proteins that have a common
biological function. Usually, a functional module is not a generic graph, as it
is made of overlapping cliques or quasi-cliques (which are called functional groups
or complexes). It is possible to represent the interactions of those functional groups
and complexes by a tree, called a tree of complexes, whose nodes are the functional
groups (to be identified as cliques or quasi-cliques of an original protein network)
and are such that the set of nodes consisting of the functional groups containing any
given common protein is connected.

Let us denote each complex or protein with a distinct symbol from an alphabet
˙ . Then the tree-of-complexes (TC) problem, over an instance consisting of a set
A D fa1; a2; � � � ; amg of subsets of ˙ , asks for a tree T , if it exists, whose nodes
are the input sets and are such that for each � 2 ˙ , the set of nodes to which �
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Fig. 2 Example of a Camin–Sokal parsimony model over the same set of characters as in Fig. 3.
Observe that character c1 is gained twice in the tree

Fig. 3 Example of a Dollo parsimony model over a matrix of five characters. Observe that
character c1 is the only one that is lost in the tree

belongs is a subtree of T . Clearly, the TC problem admits several solutions that may
explain a set S . The following property has never been, to the best of our knowledge,
explicitly pointed out previously.

Lemma 1. Let A D fa1; a2; � � � ; amg be an instance of the TC problem admitting a
tree of complexes T . Then T is compatible with the Dollo parsimony model (i.e., no
two characters are acquired more than once).

Proof. Let � be a generic symbol, and let N.�/ be the set of nodes of T with � . By
the definition of the tree of complexes, N.�/ induces a connected subtree of T . It
is not a limitation to assume that jN.�/j > 1. Let x be the least common ancestor
of N.�/. We claim that the incoming arc in x is the only one where � is acquired.
By the definition of the least common ancestor in a tree, (i) only nodes that are
descendants of x can have the symbol � , and (ii) there are two nodes v1; v2 2 N.�/

such that all paths in T connecting v1 and v2 pass through x; therefore � is active
in x, for otherwise N.�/ would be disconnected. Consequently, � is acquired in
x. Assume now, on the contrary, that � is also acquired in node x1, which is a
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descendant of x, and let x2 be the parent of x1. Since � is acquired in node x1, �

is active in x1 but not in x2. Since all paths in T connecting x and x1 must pass
through x2, N.�/ is disconnected, contradicting the hypothesis that T is a tree of
complexes.

The connection between trees of complexes and graph theory is deeper. For
instance, when S is the set of cliques of a chordal graph, the tree of complexes
can be obtained from the clique tree associated with the chordal graph [31]. In fact,
chordal graphs are exactly those that admit a clique tree representation. Recall that
a graph is chordal if the only vertex-induced subgraphs that are also cycles have
exactly three vertices [16].

One of the main open questions in [31] is how to provide a characterization of
the protein networks that admit a tree-of-complexes representation. Lemma 1 shows
the equivalence of this open problem to the question of finding the protein networks
that admit an evolutionary representation of functional groups compatible with a
Dollo parsimony model.

As pointed out in the introduction, the perfect phylogeny model is too restrictive
for some applications, since it cannot explain the evolution of characters in the
presence of homoplasy events. On the other hand, the optimization problems
associated with the Dollo and Camin–Sokal parsimony models are NP-hard [11].
Moreover, these models are too general to be useful in practical applications
where interesting characters are usually affected by only a few back mutations or
recurrent mutations. Therefore, research activity has focused on finding models that
couple computational tractability with the capability to adequately model actual
phenomena, for example in the context of proteomics when one is analyzing the
properties of multidomain proteins [23, 24].

Notice that, unlike a perfect phylogeny, a Dollo phylogeny always exists. This
can be seen by assuming a special internal node Œ1; : : : ; 1� that is also the least
common ancestor of all leaves. This fact implies that a rooted Dollo parsimony
model always exists for any input matrix. Since there is no restriction on mutations
from 1 to 0, any binary vector can be generated. Although there is no guarantee
that such a tree is optimal, it suffices to prove the existence of a Dollo phylogeny.
However, such a tree makes no sense from a biological point of view, because
it implies the existence of an ancestral taxon that has all of the characters in the
extant taxa.

We have already pointed out that the problem of constructing a maximum
parsimony tree is a special case of the well-studied problem of a Steiner tree on
a hypercube, but the set of allowed homoplasies can influence in a fundamental way
the computational complexity of the resulting problem. An initial effort towards
describing new, relevant variants of the Dollo parsimony model has been the
introduction of the conservative Dollo and static Dollo parsimony models [24].

The static Dollo parsimony model is a Dollo parsimony model where, for each
node x and for each active character c in x, there exists a leaf l that is a descendant
of x and where c is active. The conservative Dollo parsimony model is a Dollo
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parsimony model where, for each node x and for each pair c1 and c2 of active
characters, there exists a leaf l that is a descendant of x and where both c1 and
c2 are active. Notice that both of these models forbid the presence of an ancestral
active character that is not shared with some extant species. The main motivations
for those models arise in the study of multidomain protein evolution in terms of
domain insertions and losses. A protein domain is a part of the sequence and
structure of a protein that can evolve, function, and exist independently of the rest
of the protein chain; the approach followed represents the domain structure as taxa,
and the domains are the characters. A character that is, active for a certain taxon
represents the fact that a domain is part of a given architecture. Hence, a state change
from 0 to 1 corresponds to the addition of a domain, and a change from 1 to 0

corresponds to a domain loss. A conservative Dollo parsimony model for a protein
family is a history where each domain pair that is observed in an extant taxon has
been generated from a single merge event. Since the simultaneous presence of two
domains in one protein often enhances the functionality of that protein, the model
suggests it is highly unlikely that such a pair has been separated (and its enhanced
functionality has not survived) in all extant species.

Although optimization problems associated with the static and conservative
Dollo parsimony model, where the number of back mutations is minimized, are both
NP-hard, there are two fast algorithms for testing if such a phylogeny exists [24].
However, an experimental analysis [24] shows that a sizable minority of multido-
main protein superfamilies do not admit a static Dollo parsimony model (and, a
fortiori, a conservative Dollo parsimony model). Hence an even less restrictive
model is necessary to successfully model those cases.

4 Persistent Phylogeny

An important ingredient that may affect the applicability and success of parsimony
methods is the set of characters used to infer the phylogeny. The issue of selecting
characters was addressed in [23], where the notion of a persistent or stable character
was proposed. Such characters are allowed to violate the properties of a perfect
phylogeny, as a persistent character is gained exactly once but can be lost at most
once in the tree.

Based on this notion, a different model, which is intermediate between the
perfect phylogeny and the Dollo parsimony models, called the persistent phylogeny
has been proposed [4]. Notice that a persistent perfect phylogeny is also a Dollo
phylogeny, and even a static Dollo parsimony model. In fact, a persistent phylogeny
is a static Dollo parsimony model where all but at most one of the descendants of
a species with any given character must retain that character. Moreover, differently
from the Dollo parsimony model, some matrices may not admit a persistent perfect
phylogeny. Therefore, the main computational problem that we will discuss in
this section is to compute (if it exists) a persistent perfect phylogeny compatible
with a given matrix M . The computational complexity of this problem is still
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unsettled; there exists an algorithm that is exponential in the number of characters
but polynomial in the number of species [4]. This time complexity makes the
algorithm of practical interest for the biological applications discussed above, as
usually the number of species is large, whereas the number of characters is bounded.

The notion of an overlap graph, which is a graph whose nodes are the characters
and where two characters are adjacent if and only if there exists a species with
both characters, is useful in this context. In fact, if a matrix M admits a persistent
phylogeny, then the corresponding overlap graph is chordal [23].

One of the first applications of the persistent phylogeny model was to the
study of introns, which are sequences of noncoding DNA in eukaryotic genes.
In fact, the Dollo parsimony model has led to an incorrect evolutionary tree for
such data, whereas assuming the persistent phylogeny model has resulted in an
evolutionary tree consistent with the Coelomata hypothesis, that is, that there is
a clade comprising arthropods and chordates. In contrast, an analysis of more
variable introns favored the Ecdysozoa topology, that is, a clade of arthropods and
nematodes [30]. The controversy about the Coelomata and Ecdysozoa topologies is
one of the most discussed and persistent problems in animal phylogeny.

For the sake of completeness, we recall here the definition of a persistent
phylogeny given in [4]. Let M be a binary matrix of size n 
 m. The persistent
phylogeny for M is a rooted tree T that satisfies the following properties:

1. Each node x of T is labeled by a vector lx of length m.
2. The root of T is labeled by a vector of all zeros, and for each node x of T the

value lxŒj � 2 f0; 1g is the state of character cj at this node.
3. For each character cj , there are at most two edges e D .x; y/ and e0 D .u; v/

such that lxŒj � ¤ lyŒj � and luŒj � ¤ lvŒj � (representing a change in the state
of cj ) and such that e, e0 occur along the same path from the root of T to a leaf
of T ; if e is closer to the root than e0, then the edge e where cj changes from 0

to 1 is labeled cC
j , and while edge e0 is labeled c�

j .
4. Each row of M labels exactly one leaf of T .

Thus the main problem investigated in this section, called the persistent phy-
logeny problem, is this: given a binary matrix M as input, find a persistent
phylogeny for M if such a tree exists.

We will devote the remainder of the section to the discussion of the algorithm
presented in [4] for determining whether an input matrix M admits a persistent
phylogeny and, if that is the case, for computing such a phylogeny (although the
solution computed might not be the most parsimonious).

First of all, we recall that there exists a very simple test to determine if M admits
an unrooted perfect phylogeny. Two characters c1 and c2 are in conflict in the matrix
M if and only if the two corresponding columns of M contain the four possible rows
.0; 0/, .0; 1/, .1; 1/, .1; 0/, called the four gametes. A matrix M has an unrooted
perfect phylogeny if and only if no two of its characters are in conflict. The test for
a matrix M in the rooted case consists of verifying that M has no induced matrix
consisting of the three configurations .0; 1/, .1; 1/, .1; 0/.
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Conflicting characters in a matrix can be represented by an undirected conflict
graph Gc D .C; E � C 
C /, where the nodes are the characters and two characters
are adjacent if they are in conflict in M . Clearly, having an edgeless conflict graph is
a necessary but not a sufficient condition for having a rooted perfect phylogeny, but
it implies that in that case a persistent phylogeny exists [4]. Moreover the conflict
graph is also a measure of the complexity of an instance of the reconstruction of the
persistent perfect phylogeny.

4.1 A Graph Theoretical Solution of the Persistent Phylogeny
Problem

We can associate an extended matrix Me to the input matrix M , by replacing each
column c of M by a pair of columns .cC; c�/, where cC is called the positive
character and c� is called the negated character. Moreover for each row s of M ,
MeŒs; cC� D 1 and MeŒs; c�� D 0 whenever M Œs; c� D 1, and MeŒs; cC� D
MeŒs; c�� D‹ otherwise. We want to complete the extended matrix Me, obtaining
a new matrix Mf which is equal to Me for all species s and characters c such that
MeŒs; c� D 1, while MfŒs; cC� D MfŒs; c�� whenever MeŒs; c� D 0 (in this case
we can interpret MfŒs; c�� D 1 as the fact that the species s does not have the
character c, but some of its ancestors used to have it). The idea of completing a
matrix with missing data in order to obtain a perfect phylogeny was introduced
in [22], but in our case the completion has some constraints, making the algorithm
of [22] inapplicable. Finding such a matrix Mf that admits a perfect phylogeny
is equivalent to computing a persistent phylogeny on the original matrix M . The
following theorem was proved in [4].

Theorem 1. Let M be a binary matrix and let Me be the extended matrix
associated with M . Then M admits a persistent phylogeny if and only if there exists
a completion Mf of Me admitting a perfect phylogeny.

Figure 4b provides an example of an extended matrix Me, with respect to Fig. 4a,
whose conflict graph is given in Fig. 5.

4.1.1 The Red–Black Graph and the Realization of a Character

In order to find a completion of the input matrix Me, another graph representation
of the input matrix, called the red–black graph, denoted by GRB, can be used. The
latter consists of the edge-colored graph .V; E/, where V D C [ S , with C D
fc1; � � � ; cmg and S D fs1; � � � ; sng being the sets of positive characters and species
of the matrix Me, and E is defined as follows: .s; c/ 2 E is a black edge if and only
if MeŒs; c� D 1 and MeŒs; c�� D 0. The algorithm for finding a persistent phylogeny
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M a b c d e
s1 0 0 0 1 0
s2 0 0 1 1 1
s3 0 1 1 0 0
s4 1 1 0 0 0
s5 1 1 1 0 1

M′ a+ a− b+ b− c+ c− d+ d− e+ e−
s1 ? ? ? ? ? ? 1 0 ? ?
s2 ? ? ? ? 1 0 1 0 1 0
s3 ? ? 1 0 1 0 ? ? ? ?
s4 1 0 1 0 ? ? ? ? ? ?
s5 1 0 1 0 1 0 ? ? 1 0

a b

Fig. 4 An example of a binary matrix M which is the input of the persistent phylogeny problem,
and its associated extended matrix. (a) Binary matrix M . (b) Extended matrix M 0

Fig. 5 The conflict graph Gc associated with the binary matrix M of Fig. 4a

basically determines a sequence of character realizations, which are represented
as very specific operations on the red–black graph. The graph operation is called
a realization of a character and consists of removing black edges and adding or
removing red edges.

Let c be a character, and let C .c/ be the connected component of the graph
GRB containing the node c. Then realizing the character c on GRB consists of the
following steps:

(i) Adding the red edges .c; s/ for all species s 2 C .c/ such that .c; s/ is not an
edge of GRB,

(ii) Removing all black edges .c; s/ (in this case c is called active);
(iii) If an active character c1 is connected by red edges to all species on C .c1/, then

all edges incident of c1 are deleted and c is called free.

Realizing a character c is associated with a canonical completion of c in the
matrix Me by completing incomplete pairs of characters cC; c� as Mf.c

C; s/ D
Mf.c

�; s/ D 1 for each species s 2 C .c/, while Mf.c
C; s/ D Mf.c

�; s/ D 0

for the other species – we recall that in a completion, Mf.c
C; s/ D Me.c

C; s/ and
Mf.c

�; s/ D Me.c
�; s/ if Me.c

C; s/ ¤Me.c
�; s/.

Consequently, any ordering hci1 ; : : : ; cimi of the character set represents a
possible solution, obtained by realizing the characters according to the ordering.
Not all orderings lead to an actual feasible solution, though, but only those whose
resulting red–black graph is edgeless [4]. Nevertheless, the fundamental result of [4]
is the following.
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Fig. 6 The realization of
hd; c; e; b; ai on the
red–black graph GR;B

Theorem 2. Let M be a binary matrix and GRB be the red–black graph for the
matrix M . Then M admits a persistent phylogeny if and only if there exists an
ordering of the characters of M such that the realization of characters in that
ordering in the graph GRB results in an edgeless red–black graph.

The main consequence of Theorem 2 is that one algorithm for finding a persistent
phylogeny, if it exists, is to enumerate all possible orderings of the character set and
to compute the red–black graph resulting from realizing the characters in each such
order. In fact, the algorithm of [4] builds a decision tree that explores all orderings of
the set C of characters. An experimental analysis of the computational performance
of this algorithm in building a persistent phylogeny has been presented in [4].

Example 1. Consider the matrix M given in Fig. 4a. In Fig. 6 shows an example
of a realization of characters in the red–black graph according to the ordering
hd; c; e; b; ai. The binary matrix M has associated with the conflict graph Gc rep-
resented in Fig. 5. The pairs of characters in conflict are .a; c/, .b; c/, .c; d /, .a; e/,
.b; e/, and .d; e/. The ordering hd; c; e; b; ai leads to the canonical completion M 0
shown in Fig. 7. The perfect phylogeny compatible with M 0 is also a persistent
phylogeny for the input matrix M and is represented in Fig. 8.
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M′ a+ a− b+ b− c+ c− d+ d− e+ e−
s1 0 0 0 0 0 0 1 0 0 0
s2 0 0 0 0 1 0 1 0 1 0
s3 1 1 1 0 1 0 1 1 1 1
s4 1 0 1 0 1 1 1 1 1 1
s5 1 0 1 0 1 0 1 1 1 0

Fig. 7 A completion M 0 of
the extended matrix Me of
Fig. 4b

Fig. 8 Realizing the
characters in the ordering
hd; c; e; b; ai results in a
persistent phylogeny for M

5 The Near-Perfect Phylogeny

We recall that there are instances M of the perfect phylogeny problem that
cannot be solved, motivating the need for different models. Another approach
to the construction of a most likely phylogeny in accordance with the input
data is to move towards an optimization problem, such as identifying a largest
subset of characters that admits a perfect phylogeny or, equivalently, removing the
minimum number of columns from the input matrix M so that the resulting matrix
has a perfect phylogeny. This problem is also called the character compatibility
problem. Unfortunately, these optimization problems are intractable, as identifying
the largest subset of characters admitting a perfect phylogeny is equivalent to MAX

CLIQUE [15], and also shares its inapproximability [19]. Consequently, different
versions must be sought.

An interesting problem stems from the observation that the perfect phylogeny is
the minimum-cost Steiner tree where the set of species sharing a common state for
any given character forms a connected subtree, and that the minimum-cost is exactly
equal to m (i.e., the number of characters). The near-perfect phylogeny problem
(NPPP) has a matrix M as input and asks for a minimum-cost Steiner tree whose
leaves are taken from the species (i.e., the rows of M ) and in which all species label
some vertices of the tree. By the previous argument about the optimum, the cost of
any solution can be expressed as mCq, where q (which is always positive) is called
the penalty. Note that the penalty can be related to a back mutation or a recurring
mutation, since we have no way to distinguish or prioritize these.
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The first result in this setting was an O.nmq2q2r2
/ time algorithm [13] which

draws upon some of the ideas of the first fixed-parameter algorithm for the perfect
phylogeny problem [1] to find a solution with a penalty of at most q, if such a tree
exists. Unfortunately, such a time complexity makes the algorithm impracticable;
in particular, the mq factor limits its usefulness to very small values of q. From a
theoretical point of view, the main question left open in [13] was whether the NPPP
admits a fixed-parameter (FPT) algorithm [10] when the parameters are q and r , r

being the maximum number of states of any character.
The question was answered positively in [27] for the binary perfect phylogeny,

that is, in the case r D 2. This case is especially important in both theory
and practice. In fact, a study of the perfect phylogeny problem shows that ideas
originating from the two-state case have, in time, percolated up to three-state and
four-state cases and then up to the r-state case, for any fixed r . Therefore, the binary-
state algorithm is a strong hint that an FPT algorithm exists for any fixed r . From a
practical point of view, most of the available data are binary or can be transformed
into binary characters via opportune clustering, and therefore the algorithm of [27],
which has O.72q C 8qnm2/ time complexity, can be applied.

We will briefly sketch the main ideas of the algorithm of [27], which follows
a randomized divide-and-conquer approach where, at each stage, a conflicting
character c is picked at random, and then c is allowed to mutate only once in the tree.
Since c mutates only once, the Steiner tree instance is partitioned into two subtrees
T0 and T1, according the state that the species assumes in c. Then two vertices r0

and r1 are chosen at random from T0 and T1, respectively (note that r0 and r1 might
be Steiner vertices, so we cannot sample directly from the leaves or the species).
A new edge .r0; r1/ is created and labeled by the character c. Then the algorithm
operators recursively on T0 and T1, by guessing no more than q edges overall and
checking that, at the end, the conflict graph is sufficiently small to be solved via
exhaustive enumeration.

The correctness of the algorithm derives mainly from the observation that at
most q characters can mutate more than once. Therefore, when the conflict graph
is large, the random choice of c has a high probability of being correct (i.e., there
exists a solution where c mutates once), whereas if the conflict graph is small, then
the optimal solution can be computed via brute force. The analysis of the time
complexity is quite involved, as computing the vertices r0, r1 requires efficiently
some combinatorial properties of Buneman graphs [26] (which are related to Steiner
trees). The aforementioned O.72qC8qnm2/ time complexity is for a derandomized
version of the algorithm. If we settle for finding the optimal solution with probability
at least 8�q , then the time complexity can be lowered to O.18q C 8nm2/.

A related problem studied in [25] is H.p; q/-NPP, where the input is a set of
genotypes and we want to compute a phylogeny where the vertices are labeled with
haplotypes so that (i) at most p sites can mutate, each at most q times (i.e., have
at most q homoplasy events), and (ii) the set of haplotypes labeling the vertices is
able to explain the input genotypes. An algorithm for H.1; q/-NPP, that is, when
only one character is allowed to have at most q recurrent mutations, was presented
in [25]. That algorithm nicely complements that of [27], where no restriction on
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the number of characters affected exists, and is based on an analysis of the conflict
graph, the main point being the property that the character with recurrent mutations
must be the only one with two adjacent characters in the conflict graph.

6 Open Problems

This chapter has presented some generalizations of the perfect phylogeny model
motivated by recent biological applications in which evolution was investigated
as a character-based process. The availability of a large amount of genomic and
proteomic data makes the use of genetic attributes or biological markers quite
appealing in evolution analysis, thus giving even more importance to applying
computationally efficient parsimony models. On the other hand, there is a huge
gap between tractable and NP-hard parsimony models that needs to be filled.
In fact, one extreme is the perfect phylogeny model, which has a linear time
solution but only a few specific biological applications. On the other hand, we have
models such as the Dollo and Camin–Sokal parsimony models, which are often too
generic from a biological viewpoint and computationally impracticable. A middle
ground is occupied by the persistent perfect phylogeny model, for which some
efficient, practical algorithms have recently been presented [4], and for which some
specific applications such as the analysis of protein networks and domains have
been found [23, 31]. However this research direction still needs to be explored. In
particular, finding a polynomial time algorithm for the persistent phylogeny model
is still an open problem, and the novelty of the algorithm of [4] hints that even
more practical approaches are possible, even for some optimization versions of the
problem that deserve to be investigated. It must be pointed out that the persistent
phylogeny model is useful for detecting persistent characters that can be excluded
from the evolutionary reconstruction process. In fact, having computational tools
to detect characters that should or should not be included in a parsimony model
analysis can improve the correctness of the tree that is built from such charac-
ters [23]. From a theoretical point of view, the investigation of variants of the perfect
phylogeny model and restrictions of the Dollo parsimony model other than those
presented here is still an important research direction. In particular, the tree-of-
complexes problem discussed in this chapter reveals that there may be interesting,
strong connections between graph theory and parsimony models representing the
evolutionary relationships between functional modules in a protein network. To
conclude, characterization of the structural properties of protein networks and of the
overlap graphs of characters seems to be a promising novel direction for building
parsimony models in a more efficient and biologically meaningful way.
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An Invitation to the Study of Brain Networks,
with Some Statistical Analysis of Thresholding
Techniques

Mark Daley

Abstract We provide a brief introduction to the nascent application of network
theory to mesoscale networks in the human brain. Following an overview of the
typical data-gathering, processing, and analysis methods employed in this field, we
describe the process for inferring a graph from neural time series. A crucial step in
the construction of a graph from time series is the thresholding of graph edges to
ensure that the graphs represent physiological relationships rather than artifactual
noise. We discuss the most popular currently employed methodologies and then
introduce one of our own, based on the theory of random matrices. Finally, we
provide a comparison of our random-matrix-theory thresholding approach with two
dominant approaches on a data set of 1,000 real resting-state functional magnetic
resonance imaging scans.

1 Introduction

In an age where humans are able, for the first time, to collect huge quantities of data
on the relationships between objects, network/graph theory has become a rising star
as a tool to help make sense of raw relational data. Nowhere is this more apparent
than in the field of neuroimaging, which has begun to embrace graph theory as
a tool for understanding relationships between brain areas at the mesoscale. In this
field, one does not study individual neurons and traditional “neural networks”, as the
imaging modalities available to us have a resolution which is far too coarse for this
application; instead, one studies relationships between medium-scale (mesoscale)
assemblies of tens of thousands, or more, neurons.
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Viewing this work from the standpoint of neuroscience, the motivations are
immediate: if large, four-dimensional, data sets can be reduced to single static
graphs – the topology of which varies according to the properties of interest – then
the complexity of the analysis can be greatly reduced. For example, a developmental
neuroscientist may hypothesize that global connectivity varies in the brain as we age
from children to adults. Given a method for converting functional neuroimaging
data into graphs, one now has an immediate way to test this hypothesis: scan
the brains of children and adults, convert the scans to graphs, and compute a
topological metric for each graph that captures the intuition of “global connectivity”;
indeed, this precise study has been performed [9]. Likewise, one can imagine a
clinician interested in whether or not there are metrics which can be applied to such
graphs that would distinguish clinical conditions such as Alzheimer’s disease [7] or
schizophrenia [17]. A broad introduction to the neuroscientific implications of this
line of research can be found in [21].

Viewing this work as a mathematician interested in graph theory, one sees the
opportunity to study very special classes of graphs and to investigate, for example,
new metrics better suited to quantifying the topological differences between graphs
in this class. As a computability theorist, one sees the opportunity to study snapshots
of an intriguing computing machine (the brain) within the familiar framework of
graph theory.

This chapter is meant to serve as a very brief introduction to the increasingly
popular application of graph-theoretic techniques to data derived from neuroimag-
ing experiments. In the background section, we will quickly review the fundamental
concepts and procedures employed to move from neural activity in the brain,
through several processing steps, to a static graph representation of the same
activity. We note that the ability to threshold signal from noise in our final graph
representation is a critical step in building physiologically credible graphs and,
after reviewing the currently popular techniques for thresholding, we suggest a
new approach based on the theory of random matrices. Finally, we conclude with
a summary and discussion of the many classes of open problem in this field, both
pragmatic and abstract.

2 Background

We now bring together the necessary background to understand how to map
mesoscale neural time series, derived from neuroimaging, to static graphs. We begin
with a short introduction to magnetic resonance imaging (MRI) and functional
magnetic resonance imaging (fMRI) and clarify our use of graph-theoretic concepts
and terminology. We discuss the specifics of the somewhat involved process of
preprocessing such data to remove artifacts and make it suitable for analysis. With
suitably preprocessed data, the next step towards constructing a graph involves the
pairwise comparison of time series. We review three dominant approaches in current
use: one linear time-domain measure (correlation), one linear spectral measure
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(coherence), and one nonlinear measure (mutual information). Finally, we discuss
the construction and analysis of a graph-theoretic representation of neuroimaging
data.

2.1 MRI, fMRI, the Resting State, and Functional Connectivity

The data with which we will build our graphs is most commonly derived from
resting-state functional magnetic resonance imaging (though similar approaches
exist for other neuroimaging modalities). Magnetic resonance imaging leverages
nuclear magnetic resonance in a carefully controlled fashion to generate volumes
containing information about spin-relaxation properties in particular voxels.1

We now give a very brief characterization of imaging via magnetic resonance.
A subject is placed in a very strong magnetic field (typically 1.5–7 tesla), which
causes the spin states of individual protons to become increasingly uniform, with
each proton precessing around the direction of the magnetic field.2 Electromagnetic
radiation at the resonant frequency of the protons is then introduced, causing the
protons to absorb the emitted photons and flip spin state; at the same time, this
process causes a synchronization of the precession of individual protons. When the
influx of photons from the electromagnetic field is removed, the spin states of the
protons flip back to the lower-energy state, while the individual precessions drift
increasingly out of synchronization. By measuring the photons emitted during this
process, the magnetic resonance scanner can determine the length of time it takes for
the spin vector of the bulk system to return to being parallel with the static magnetic
field and the length of time for the individual precessions to become completely
decoherent.

By superimposing a variable magnetic gradient on top of the static magnetic
field, one can spatially localize this process and extract resonance contrast for
a given spatial frequency in a particular location. After this k-space has been
sampled densely, a simple Fourier transform yields a volume in Euclidean 3-space.
By carefully choosing which properties (e.g., relaxation time, decoherence time,
proton density, flow, and spectral shift) one records, and developing different pulse
sequences,3 one can optimize the contrast for different tissue types. For a detailed

1A voxel is simply the three-dimensional analog of a pixel: a (usually cube-shaped) volume
assigned a homogenous scalar or vector value. In the context of fMRI, a typical voxel will represent
a volume of size roughly 1–5 mm3, depending on several technical details of the hardware and
software used for the imaging.
2Spin is a quantum property of elementary particles and, as such, may take on only a discrete
number of states (or some quantum superposition thereof). In the case of fermions such as the
proton, the two possible spin states are f 1

2
; � 1

2
g.

3Pulse sequences contain integrated information about the application of magnetic gradients,
electromagnetic pulses, and the recording of electromagnetic radiation emitted from the subject.
For more detail, see [4].
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exposition of the physics of nuclear magnetic resonance imaging, we direct the
reader to [11].

The contrast of interest for our purposes is the T2� contrast, which allows
imaging of the BOLD (blood-oxygen-level-dependent) response, which, roughly,
forms contrast from the oxygenation level of blood in a volume of tissue. Using
earlier magnetic resonance techniques, it is difficult to visualize oxygenated blood
versus deoxygenated blood without the use of an injectable contrast agent. The
ability to image the BOLD signal without the use of exogenous contrast agents
was first reported in [14, 18], with the suggestion that variation in blood flow to a
particular brain region was correlated with activity in that region. Follow-up work,
notably that in [16], demonstrated that this modulation of blood flow is strongly
linked with underlying electrical activity, although the exact nature of the BOLD
signal is still under active investigation. Interestingly, it has recently been linked to
astrocytes [19], suggesting a greater than previously acknowledged functional role
for glial cells. The BOLD signal is very slow, lagging behind electrical recordings
of neural activation by several seconds and effectively acting as a temporal low-pass
filter for the underlying neural activity. It is also spatially diffuse, as it is intrinsically
linked to the vasculature surrounding the recently activated area rather than the area
itself – one might view this as a spatial form of low-pass filtering. A thorough
introduction to the methodologies of fMRI can be found in [12].

Traditional fMRI studies involve measuring the BOLD response in block-
designed or event-related experiments and contrasting the BOLD signal between
different experimental conditions. Beginning with [5], and to an increasingly extent
recently, a different question has been addressed: “what can we learn about the brain
by observing basal, ‘spontaneous’, fluctuations in the BOLD signal during rest?”.
In this chapter, we shall describe work on resting-state data in which we record the
BOLD signal from subjects lying in the scanner and given no particular task other
than the instruction to relax and not think about anything in particular.

Resting-state fMRI data is typically used to build models of functional connectiv-
ity, in which two brain regions are said to be functionally connected if their BOLD
time courses are highly similar according to some metric such as correlation. It
is important to note that despite the use of the term “connectivity”, the information
obtained in this type of analysis is purely correlational and cannot give any definitive
information about actual anatomical connectivity. When we say that two brain
regions are functionally connected, what we mean is simply that their BOLD signals
“looked similar” during the period of time in which we recorded them. The study of
functional connectivity inferred from resting-state data is referred to as resting-state
functional-connectivity MRI (rs-fcMRI).

2.2 Graph Theory

Graph theory, at its simplest, is the study of objects which encode relationships. The
two fundamental building blocks of graph theory are a vertex (also, equivalently,
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called a node) and an edge. The common interpretation of a graph is very
straightforward: the vertices represent entities of some sort and the edges represent
relationships between those entities.

Here, we will limit ourselves to studying undirected graphs; while it is clear that
on the lowest physiological level, the connectivity between individual neurons is
directional, the issue becomes more complex at the macroscopic scale we wish to
study. Connections between gross anatomical regions are complex and, in many
cases, bidirectional, though both directions are likely not to be equally strong. We
choose to study undirected graphs not because we believe that the true underlying
system is undirected, but rather because of the limitations of our methods. The time
series analysis methods used here are inherently symmetric. And, worse, even when
one explicitly attempts to infer directionality, the best techniques are no more than
about 60 % accurate,4 and some common techniques, such as Granger causality,
perform no better than chance [20].

Graphs are often classified into broad categories according to their topological
properties. For example, a graph where every vertex has the same number of edges
is referred to as a regular graph. Clearly, regular graphs are very structured entities,
and if spatial constraints regarding how the edges are connected are added (viz.,
an edge vertex is connected to its closest neighbors only), we reach the extreme of
structure in a graph: a regular lattice. Imagine extending a small 4-regular graph to
several hundred nodes, but keeping each vertex of degree 4. This graph would have
high transitivity but a very long average path length.

At the far opposite extreme of structure, we have the Erdös–Renyi random graph,
which one can imagine being generated thus: after picking a fixed set of vertices,
we flip a coin for each pair and add an edge only if the coin comes up “heads”.
With edges chosen randomly, this graph will, with high probability, have very low
transitivity; however, because some “long-distance” edges will be chosen purely by
luck, the average path length in the graph will typically be very small – the long-
distance edges act as a shortcut through the graph.

Between these two extremes exists the class of small-world graphs. Small-world
graphs are characterized by having both relatively high transitivity and relatively
short path lengths; this is typically achieved with a structure consisting of densely
connected local clusters (thus achieving high transitivity) with the occasional long-
distance edge (thus shortening significantly the average path length). Small-world
networks appear to be common in both natural systems (e.g., cellular metabolic
networks, genetic transcription networks, food chains, and social networks) and
artificial systems (e.g., road networks and power grids). Most significantly for the
present chapter, the small-world structure has been proposed as a dominant feature
of brain networks (see, e.g. [3] for a review).

4This figure comes from an analysis in [20] in which known “ground truth” networks we used to
construct simulated fMRI data, to which various network inference techniques we then applied.
The accuracy reflects how much of the topology of the ground truth network the inference method
managed to capture.
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2.3 Preprocessing

Raw fMRI data is noisy and contaminated by a host of artifacts, necessitating fairly
aggressive preprocessing. Although the specific details of preprocessing pipelines
vary somewhat between studies, we present here a “consensus” preprocessing
pipeline based on the protocol optimization results in [23]. This is precisely the
pipeline that we use for our own work on thresholding. For each subject, we acquire
both a single high-resolution “anatomical” volume (3D) and a series of lower-
resolution “functional” volumes (a time series of lower-spatial-resolution volumes
that have been acquired sequentially).

The initial preprocessing steps consist of the following steps, applied to func-
tional data:

1. Deletion of first four low-resolution volumes acquired to allow for stabilization
of the T1 signal.

2. Brain extraction/skull stripping.
3. Slice-time correction – each “slice” in an fMRI volume is acquired at a slightly

later time than the previous slice. For our time series to be comparable along the
z-axis, it is necessary to compensate for this.

4. Motion correction – even when the subject is instructed to lie still, subject motion
is unavoidable. Images can be corrected to a single spatial baseline using standard
image registration algorithms.

5. Spatial smoothing (5 mm full width at half maximum Gaussian).
6. Prewhitening (removal of spurious/unwanted autocorrelations).
7. Removal of residual motion by linear regression.

This is followed by anatomically driven preprocessing on both the high-
resolution anatomical data and the functional data:

1. Brain extraction/skull stripping of the anatomical image.
2. Tissue-type segmentation into gray matter, white matter, and cerebrospinal fluid.

(white matter, and cerebrospinal fluid do not contain neuron soma, and any signal
detected in these areas is noise, rather than functionally induced).

3. Transformation of tissue masks generated in higher-spatial-resolution imagery
(viz., cerebrospinal fluid, white matter, or gray matter masks) into the corre-
sponding lower-resolution coordinate space of the functional imagery.

4. Extraction of mean time series for the cerebrospinal fluid and white matter to use
as regressors in the final processing step.

5. Registration of functional images to anatomical images according to the Mon-
treal Neurological Institute’s MNI 152 T1 2 mm standard space. This is a purely
linear, rigid, transformation.

In the penultimate step, we regress out the signals of the cerebrospinal fluid and
white matter from our functional data set. We then perform temporal band-pass
filtering (0:009 Hz < f < 0:08 Hz) and mask the output so that it includes only time
series derived from voxels containing gray matter. Cortical gray matter is distributed
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as a sheet on the surface of the brain which is approximately 2–4 mm thick; the gray
matter contains the neuron cell bodies of the cortex and, consequently, is where we
expect to find the BOLD signal when imaging.

2.4 Time Series Analysis

The first step towards building a graph of functional connectivity involves analyzing
which voxels in the data under study have related time courses. We generate
an n 
 n (where n is the number of gray-matter voxels) similarity matrix by
analyzing every pair of gray-matter voxel time series. In principle, one may use
any time series comparison method to evaluate the similarity of the time series
obtained from a pair of voxels. A full description of every metric currently in use is
beyond the scope of this review, so instead we explain here three commonly used,
but significantly different, similarity measures: the Pearson correlation, which is
a linear, time-domain measure; the band-averaged coherence, a linear frequency-
domain (spectral) measure; and the mutual information, a nonlinear measure.

Given the time series of two voxels, x and y, from an fMRI data set preprocessed
as described above (and, thus, hopefully consisting primarily of the low-frequency
BOLD signal), we will now define our similarity measures.

Formally, we define the population Pearson correlation coefficient in the usual
way:

Pm
iD1.xŒi � � Nx/.yŒi � � Ny/pPm

iD1.xŒi � � Nx/2
pPm

iD1.yŒi � � Ny/2
;

where xŒi � indicates the i th element in the time series x, and Nx is the mean of that
time series. Intuitively, one can think of the correlation coefficient in a very simple
way: step through the two time series under consideration, in a parallel fashion, and
construct an ordered pair .x; y/ from the values of the two series at each point in
time. Plot these pairs and fit a straight a line to the plot. The closer the plotted points
are to the best-fit line, the higher the correlation of the two series. Note carefully here
the importance of the line. If two series are linearly correlated, then they will surely
have a high correlation coefficient; imagine, though, that you were to perform such a
plot and find a perfect monochrome rendering of the Sierra Nevada mountains. The
Pearson correlation between these two series would be quite low (since there is no
single line fitting a photograph of the Sierra Nevada mountains), but you might feel
justified in supposing that, in truth, these two series do indeed have a very special
relationship. In principle, this is an inherent weakness of linear methods – they can
find only lines. In the case of low-frequency BOLD signals, however, this may pose
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less of a problem than it seems as the bulk of the informative relationships do indeed
appear to be linear [20].5

It is clear from the description of the correlation that it inherently provides a time-
domain method answering the question “how similar is the variation in amplitude
of these series over time?” An alternative question one might wish to ask is “how
similar are the power spectra of these two time series?” That is to say, “how similar
are the frequency components in each time series?” Instead of comparing the time
series directly at the temporal level, we are suggesting transforming them into the
frequency domain and comparing their spectra. We desire a metric that will be
high if two series are composed of components having very similar frequencies and
amplitudes, and low otherwise. The band-averaged spectral coherence is just such a
metric.

In its most general form, the coherence Cxy between x and y can be computed
as

Cxy D jGxy j2
GxxGyy

;

where Gxx is the autospectral density of x, and Gxy is the cross-spectral density
between x and y. Note that Cxy is a function of frequency, and thus, to obtain
a scalar value, we average Cxy over the frequency band of interest. In a typical
implementation, one estimates power and cross spectra using Welch’s modified
periodogram averaging methods, with a window length of 50 and an overlap of 25.
Each windowed segment is then normalized and weighted by a Hanning window
(also of length 50). The power spectral density is estimated as

Gxx.�/ D 1

N

NX
nD1

jXn.�/j2;

where Xn is the discrete Fourier transform of the nth windowed segment of x, and
� is a variable depending on frequency. The cross-spectral density is estimated as

Gxy.�/ D 1

N

NX
nD1

Xn.�/Y �
n .�/:

Finally, we estimate the coherence, averaged over the band of interest ( N�), as

Cxy. N�/ D jP� Gxy. N�/j2P
� Gxx. N�/

P
� Gyy. N�/

5The careful reader may find, as does this author, this conclusion somewhat disturbing. The brain
is a Turing-complete computational system, and accurate measures of its state should show useful
statistics far transcending the first moment; yet, the smoothed, preprocessed BOLD signal does
not, it would appear.
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Although the coherence moves us from the time domain to the frequency
domain – which enables the detection of temporal relationships regardless of phase
shifts – it is still a linear measure, as it is only capable of detecting linear spectral
relationships. To search for nonlinear relationships in time series, we turn to the
mutual information.

Where as the correlation and coherence operate directly on the time series (or
the Fourier transforms thereof) under investigation, the mutual information operates
instead on the probability distributions of the hidden sources generating the series.
Intuitively, if I am gathering time series data on two possibly related processes called
A and B , the mutual information answers the following question: “How much does
knowing the statistics of A allow me to infer about the statistics of B?”

More formally; let A and B be the random variables modeling the process
generating x and y, respectively. We compute the mutual information I.AIB/

between A and B as

I.AIB/ D
X
b2B

X
a2A

p.a; b/ log

�
p.a; b/

p.a/p.b/

�
;

where p.a; b/ is the joint probability distribution function of A and B , and p.a/ and
p.b/ are the marginal probability distribution functions of A and B , respectively.
The quantity I.AIB/ measures how much knowing the distribution of A tells us
about B , and vice versa. For example, if A and B are independent, then clearly
I.AIB/ D 0. If there is some statistical dependency between A and B , then I.AIB/

can quantify this dependency in units of bits.
In reality, of course, we do not have closed, analytical, expressions for A and

B and must instead estimate them, ad hoc, from our data for example, with a k-
nearest-neighbor estimation technique such as that of [13].

Even for relatively large data sets, the computational burden of these approaches
is reasonably small. A Pearson correlation matrix for a data set with 15,000
gray-matter voxels can be computed in under 3 min on a typical quality laptop
available in 2012 (viz., a hyperthreaded two-core (four effective cores), 2.2 GHz
Intel i7-based 2011 MacBook Pro), and the calculation has only very modest
memory requirements, as the results are streamed to disk. The band-averaged
spectral coherence for the same data set, on the same machine, can be computed
in approximately 1 h. Estimation of a mutual information matrix, however, requires
more significant computational resources and would require approximately 1 day to
complete.

2.5 Graph-Theoretical Analysis

Once a correlation (or coherence or mutual information) matrix has been generated,
we may reinterpret it as the adjacency matrix of a graph thus:
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Fig. 1 Node degree projected back into voxel space and superimposed on an anatomical image.
The degree is heatmapped so that lighter colors indicate higher degrees. The views from left to
right are sagittal, coronal, and axial

• Each voxel is treated as a node in the graph.
• For every entry .i; j / in the correlation matrix:

– If the entry falls below a user-specified threshold, do nothing.
– If the entry exceeds the threshold, add an edge between nodes i and j , having

a weight specified by this entry.

With the graph constructed, we can now begin to investigate its topological
properties. A currently popular approach is to characterize such graphs in terms
of both per-vertex and whole-graph metrics; for example, one might calculate the
degree of each vertex in the hope of identifying regions of the brain which are “more
connected” than others. In Fig. 1, we show the result of computing the degree of each
vertex for a graph derived from a resting-state fMRI scan for a single subject. Once
we have computed the degrees on the graph, we invoke our trivial mapping from
graph vertices to voxels to visualize the degree in “brain space” rather than “graph
space”; here, the degree is heatmapped so that brighter colors represent vertices
(voxels) with higher degrees. The degree is a very coarse metric, and putatively
neuroscientifically interesting results have been obtained using more sophisticated
combinatorial and spectral methods such as those based on vertex betweenness,
which can be informally characterized as measuring the fraction of shortest paths
which travel through a given vertex.

An interesting consequence of using more sophisticated metrics such as between-
ness is that although the topological interpretation of these metrics on a graph is as
straightforward as for the degree, the same cannot be said of the neuroscientific
interpretation of the results in “brain space”. A vertex with high degree represents
a “more connected” brain region, but what does a vertex with high “betweenness”
represent? Recall that the relationships in our graph are not defined by anatomical
connectivity, but by functional connectivity, which is simply to say that two regions
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Fig. 2 Node modularity (computed using Markov clustering) projected into voxel space and
superimposed on an anatomical image. Nodes with the same color belong to the same module

are considered related if their patterns of activity are similar enough. In such
a framework the intuitive definition of betweenness, and very many other more
complex graph metrics, breaks down; however, even without clear physiological
semantics, such metrics have already proven useful in characterizing, for example,
developmental trajectories in the brain [9].

Work in this area is still very exploratory in nature. It is clear that different metrics
can yield different insights, although the correct physiological interpretation of these
results is often less clear. It is equally apparent that many metrics recapitulate the
same results; sometimes this is a consequence of a rigorously provable relationship
between metrics, and other times it is a consequence of the particular topologies of
the graphs themselves. We have recently provided a comparison of the repeatable
intra-metric similarity (and robustness to parameters) for several commonly used
metrics [8], but it seems likely that a more interesting direction for future work will
be to develop metrics which are specialized for the restricted class of graphs derived
from neuroimaging data.

An alternative approach to studying the topology of neuroimaging-derived
graphs is to attempt a modular decomposition. In Fig. 2 we show an example of
the result of applying Markov clustering [24] to the same resting-state scan used
for Fig. 1, but restricted here to the prefrontal cortex. Following convergence of
the clustering algorithm, the vertices were again mapped back into brain space and
colored according to module membership. The modularization here yields strong
support for a dorsal/ventral6 distinction in the prefrontal cortex. Support for a

6“Dorsal” refers here to the top of the brain – the part above the eyeline in a human standing
upright – and “ventral” refers to the bottom part.
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rostro-caudal7 gradient is less clear; instead, we find a complex pattern of inter-
acting, nesting, and embedded networks along the rostro-caudal axis. Intriguingly,
this challenges the model of two parallel strict hierarchies in dorsolateral prefrontal
cortex and dorsomedial prefrontal cortex recently suggested in [22].

3 On Thresholding Graphs

Determining a reasonable threshold to use in the generation of the connectivity
graph is a crucial issue, and we must be aware that, by design, any similarity matrix
is composed of multiple comparisons (quadratic in the number of time series).
We begin this section with a brief theoretical discussion of an overly conservative
thresholding approach that applies only to correlation matrices. This is followed
by a description of two thresholding procedures which are dominant in the current
literature: thresholding by fixing topological expectations (the so-called S -value
method) and thresholding by using the false discovery rate (FDR) to control the
error. Noting the limitations of these techniques, we extend them with a new
approach which computes thresholds based on the expectation of modular structure
in the underlying graph; we implement this approach using the tools of random
matrix theory (RMT).

3.1 Current Approaches

In the case of the Pearson correlation, we can rely upon theory to guide our
thresholding. Given a desired global p-value, we apply a Bonferroni correction to
obtain a corrected p-value, which we may then convert into a minimum r-score for
the observed correlation.

For example, our preprocessing pipeline typically produces approximately
15,000 gray matter voxel time series, which results in

1

2
� .15;0002 C 15;000/ D 112;507;500

comparisons during correlation analysis. Assuming that our acceptable global
threshold for significance is p D 0:05, we can correct to p � 4:4 
 10�10.

7The rostro-caudal axis follows a curved path through the head, beginning roughly in the region
of the nose, and proceeding straight back towards the midbrain, at which point it bends 90ı

downwards to follow the spine.



An Invitation to the Study of Brain Networks 97

Although this looks bleak, for time series of length 300, this yields a threshold of
r � 0:34.8

This is, of course, overly conservative. Following this train of thought, a more
statistically appropriate approach might be bootstrapping the correlation matrix.
Unfortunately, the computational demands of computing the full correlation matrix
make not only permutation analysis, but also a Monte Carlo approach, relatively
infeasible. Worse still, a resampling approach to the band-averaged coherence
and mutual information may be out of reach owing to significant computational
requirements. Fortunately, in the discussion below, we find that these problems may
be irrelevant.

Although the Bonferroni-corrected approach should be overly conservative,
when we apply it to real data we find that it is, in fact, overly liberal. The
Bonferroni-corrected r-value introduces edges in the graph which are well below
the physiological noise floor in our data (viz., they are the product of spurious
correlations). This is a consequence of the fact that our simple analysis treats the
time series of each voxel as if it were generated by a unique, statistically independent
source. The reality of the situation could scarcely be more different: voxels are
highly temporally and spatially correlated as a consequence of both the underlying
physiological processes being measured and the physical properties of the machines
performing the measurement. Without appealing to detailed statistical models of
these processes (in both spatial and temporal dimensions), a completely analytical
approach to this problem is untenable.

An alternative approach is to define the cutoff threshold post hoc, attempting to
match the properties of the induced graph to those expected from other analyses
presented in the literature. A straightforward approach is to demand a constant
relationship, S , between the number of nodes in the graph and the average node
degree. The relationship S D log jV j= log K (where jV j is the number of vertices
in the graph and K is the average degree) has been suggested in the literature. If one
chooses a fixed S value at which to compare graphs, the only value that then needs
to be computed is K , since the number of voxels, jV j, in each scan is fixed. With
K computed from the formula, finding a threshold value for each particular graph is
simply a matter of determining what threshold retains E edges in the graph, where
K D E=jV j.

Note also that our definition of S is an approximation to the average path length
in a large Erdös–Rényi graph (see the scaling relation of [1]), so we are, in some
sense, fixing a target minimum path length. Of course, the graphs we are dealing
with in practice are most certainly not random graphs (in the sense of an Erdös–
Rényi graph), so this characterization of the metric S is at best heuristic, and at
worst completely misleading.

That said, this approach has one overwhelmingly positive attribute: it facilitates
easier cross-modality, cross-analysis, cross-subject comparison. By setting the

8We derived is r-value threshold by converting the corrected p threshold to a t -score with 298
degrees of freedom, giving t D �6:33, and computing 6:33=

p
298 C 6:332 .
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threshold based on structural properties of the graph, rather than statistical properties
of the underlying analysis (such as r-values), we are more likely to end up
“comparing apples with apples”. At the same time, we also run the risk of missing
significant structural differences by forcing the structures to be similar.

Recently, a thresholding approach based upon controlling the false discovery rate
(FDR) has become popular. When performing multiple comparisons, we refer to the
rate of false positives (for us this would be ascribing a functional relationship to a
pair of time series which are, in fact, unrelated) as the false discovery rate. We
control the FDR by specifying a rate of false discovery, between 0 and 1, which we
are willing to accept, and applying a procedure to ensure that, on average, this rate
is maintained. Specifically, let E be the set of measurements for potential edges in
our graph (equivalently, the set of entries in our similarity matrix). We then do the
following:

1. Select an acceptable FDR bound ˛ (a common choice is ˛ D 0:05).
2. Sort E into an ordered set, from smallest to largest: E 0 D fe0; e1; : : : ; eng; e0 �

e1 � : : : � en.
3. Find the largest i 2 N such that ei < ˛ � i=jEj.
4. Select ei as the threshold.

One potential drawback to the FDR approach is that it necessarily treats all values
in E as exchangeable, in the sense that one can reasonably expect the semantics of
comparing a pair of values to be constant across any pair in E . This conflicts with
our understanding of real neuroimaging results, in that some brain areas (e.g., the
primary visual cortex) are dominated by extremely strong correlations in activity
while other areas (e.g., the parietal cortex) show correlations which are still very
much physiologically “real” and scientifically interesting, but up to an order of
magnitude weaker. A possible solution is to consider an approach in which one
allows local structure to influence the threshold, rather than a simple globally
compared magnitude.

3.2 Thresholds from Random Matrix Theory

We suggest here a mathematically elegant approach to choosing graph thresholds
starting from a statistical basis rather than a post hoc heuristic. In particular, we
note that a failing of the currently popular thresholding techniques is that they are
conceived at the level of abstraction of the graph rather than that of the correlation
matrix. Although a correlation matrix can certainly be profitably viewed as the
adjacency matrix of a graph, it is an error to jump to this view prior to examining
the statistics of the matrix. While all correlation matrices can be viewed as graphs,
most graphs do not have adjacency matrices that are correlation matrices, and by
analyzing thresholds at the graph level, we are thus throwing away our knowledge
of the special structure of correlation matrices.
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The theory of random matrices was proposed originally by Wigner and Dyson,
in the context of studying the spectra of complex nuclei (see, e.g., [25]), and is
specifically suited to studying phase transitions between disordered and ordered,
modular, systems defined by correlation matrices. Consider the matrices studied
here of correlations between the (filtered) time series of gray-matter voxels. A
simple model for the value of the correlation between voxels i and j might look
like this:

ri;j D r
�
i;j C ";

where r
�
i;j represents the true correlation between the physiological processes

underlying the signals observed at voxels i and j and " represents the sum of
the many noise sources (e.g., physiological noise and scanner noise). For a single
correlation, we have no way of separating r� from ", but if we have a priori a model
for the global structure of the matrix of true correlations r�, then we can attempt to
extract a reasonable estimate of r� from r

�
i;j C ".

In essence, this is exactly what the currently popular thresholding methods
attempt to do, albeit in a nonrigorous way: remove " from the matrix by setting
a threshold that yields a matrix corresponding to a graph with an expected structure.

In random matrix theory, one studies – amongst many other things – the spectra
of real, symmetric matrices representing systems composed of a sum of signal and
noise. In particular, we are interested here in looking at the statistical properties
of the eigenvalue spacing of our correlation matrices. RMT tells us that when we
observe the spacing of eigenvalues of a correlation matrix, we should expect to
find a distribution of spacings conforming to one of two possibilities: the Gaussian
orthogonal ensemble (GOE), where there are strong correlations everywhere, and,
at the other extreme, Poisson statistics, where there exist strong correlations only
along the (block) diagonal of the matrix.

In the context of our correlation matrices, the former case – in which the
eigenvalue spacings follow a GOE distribution – is indicative of a matrix which is
dominated by noise and spurious correlations; the latter case, where the eigenvalues
follow Poisson statistics, is indicative of a matrix describing a highly modular
system.

If one is prepared to accept the hypothesis that the physiological networks
generating the observed BOLD signal in our neuroimaging data sets are indeed
modular, then we now have exactly the statistical tools we need to separate these
modular networks from noise. We must simply find the threshold at which the
distribution of eigenvalue spacings for our matrix completes the transition from
GOE to Poisson statistics. Once we have identified a threshold which generates
Poisson eigenvalue spacings, we can be mathematically sure that we have extracted,
to the best of our ability given the signal-to-noise ratio of the data, the modular true
correlations present in the data while having sacrificed the minimum number of true
correlations during the elimination of spurious, noisy correlations.



100 M. Daley

More formally, for a correlation matrix of order n, let Ei for i 2 f1; : : : ; ng
denote the magnitude-ordered list of eigenvalues of the matrix. We perform a
spectral unfolding procedure to obtain a distribution with the eigenvalue spacing
represented in units of the local mean eigenvalue spacing. In particular, we unfold
our eigenspectrum by estimating the integrated density of the spectrum, which
we then fit to a cubic spline.9 Individual eigenvalues are then projected into the
unfolded representation by evaluation on the spline; we denote these transformed
eigenvalues by ei . We then simply compute the pairwise difference between adjacent
transformed eigenvalues (i.e., d D eiC1�ei ), and from this generate the probability
density P.d/ of the unfolded eigenvalue spacing. Formalizing the relationships
noted above, we consider two extreme distributions for P.d/: the Wigner–Dyson
distribution (for the GOE case), where

P.d/ � 1

2
�de��d2=4;

and the Poisson distribution

P.d/ � e�d :

Indeed, we can see in Fig. 3 that the nearest-neighbor spacing distribution
(NNSD) for the eigenvalues of a raw, unthresholded, fMRI-derived correlation
matrix pictured in the upper left very closely follows GOE statistics. If the same
matrix is subjected to strict thresholding, the empirical NNSD looks a great deal
“more Poisson”.

For a candidate threshold value, we can do the following: threshold the matrix at
the candidate value, unfold the eigenspectrum and compute P.d/, and compare
P.d/ with the GOE and Poisson distributions. If P.d/ follows the GOE, it is
dominated by noise and our threshold is too low. If P.d/ is a Poisson distribution, it
represents a modular network, and we assume it is thus dominated by signal rather
than noise. Maximizing the signal-to-noise ratio then simply becomes a game of
identifying the threshold at which the statistics of the unfolded eigenvalue difference
(UED) change from Wigner–Dyson to Poisson statistics. The transition between
GOE and Poisson distributions cannot occur instantaneously between thresholds,
but rather resembles a phase transition, with intermediate threshold values having
some degree of “Poissonness” and some degree of “Wignerness”.

A very liberal estimate of the threshold, certain to still include a great deal of
noise, can be obtained by finding the first point at which the UED distribution begins
to differ significantly from the Wigner–Dyson distribution. Likewise, a conservative

9One may, of course, fit the curve to an arbitrarily sophisticated function; we chose cubic splines
here, as they have been demonstrated to work well in applications ranging from neutron scattering
to quantitative finance.
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PGOE s
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Fig. 3 Left: a plot of the GOE (green) and Poisson (blue) distributions. Right: above, the NNSD of
eigenvalues from an unthresholded fMRI correlation matrix; below, the NNSD for the same matrix
following strict thresholding

estimate may be obtained by identifying the threshold at which the UED distribution
becomes significantly Poisson.

We now propose a very simple algorithm for finding such a threshold for a given
correlation matrix M . Begin with a very low threshold t � 0. Compute M 0  M ,
where all matrix entries mi;j < t are set to zero, followed by E  eigenvalues of
M 0 and e  U.E/, where U.E/ is the smoothed, integrated eigenvalue density.
Then, compute the distribution P of nearest-neighbor spacings in U.E/. If an
Anderson–Darling goodness-of-fit test of P against a Poisson distribution yields
p < ˛ (for, say, ˛ D 0:05), terminate and report the threshold t ; otherwise, increase
t by some small increment ı and repeat until this process terminates. The choice of
value for ı controls a trade-off between computation time and threshold precision.

The result of applying this approach to matrices derived from ten resting-state
fMRI scans can be seen in Fig. 4. The unthresholded matrices have very high
Anderson–Darling scores (when tested against an exponential distribution), but
these scores rapidly drop as we increase the threshold to an r-value of approximately
0.15. Beyond this value, the scores remain relatively stable, modulo some apparently
stochastic factor. Thus, for the matrices considered in this diagram, thresholding in
the neighborhood of r > 0:15 would be appropriate.

The computational complexity of this approach is tractable, even for large
matrices, in a high-performance computing environment given the wide availability
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Fig. 4 Plots of Anderson–Darling test statistic, testing the fit of the empirical NNSD to an
exponential distribution, for increasing thresholds (values below the threshold in the correlation
matrix are set to zero) for ten resting-state fMRI scans. Horizontal black lines denote critical values
for the Anderson–Darling score

of excellent parallel eigenvalue finding libraries10 (see, e.g., LAPACK [2]); finding
the eigenvalues is the dominant computational step in our algorithm.

3.3 Evaluation of RMT-Based Thresholding

We now compare the real-world effectiveness of our RMT-derived thresholding
approach with two approaches commonly used in the neuroimaging literature, based
on the S -value and the false discovery rate. Our test data set consists of 1,000
resting-state fMRI scans from the 1,000 Functional Connectomes Project [6]. Each
scan was preprocessed and then converted into a correlation matrix according the
protocol we outlined above. We focus solely on correlation matrices here, as these
are presently by far the mostly commonly used basis for building graphs in the
neuroimaging literature.

For each matrix, we computed an optimal threshold (below which all entries in
the matrix should be set to zero) using the S -value approach (with S D 2:0), The
FDR, and our RMT approach. The resulting thresholds are plotted in Fig. 5. Three
trends are immediately visible:

10It is also worth noting that significant progress has been made in spectral decomposition on
commodity GPU hardware; see, e.g., [15].
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Fig. 5 Optimal thresholds for 1,000 resting-state fMRI scans as determined by the S-value
approach (red), the FDR (green), and the proposed RMT approach (blue)

1. The variance in thresholds for the FDR approach is significantly lower than for
either the S -value or the RMT-based approach.

2. The RMT and FDR thresholds are almost always lower than the S -value-based
thresholds.

3. There is no consistent greater/less than relationship between the FDR- and RMT-
based approaches, though it appears that were the variance of the RMT thresholds
smaller, the two values would track each other relatively well.

It is not possible to draw a clear conclusion about which method is “best”
from the data at hand; we can, however, offer some observations. If one expects
thresholds to vary very little between subjects, then the significantly lower variance
in the FDR scores would make this approach quite attractive. Conversely, if
one expects some nontrivial physiological differences between subjects, then one
might interpret the higher variance in the results from the RMT and S -value
approaches as higher intrasubject sensitivity. We can investigate this hypothesis by
looking at the distributions of thresholds while limiting ourselves to considering
subjects from a single site (to avoid possible confounds from the use of different
equipment at different sites contributing to the 1000 Functional Connectomes
Project (http://fcon_1000.projects.nitrc.org/) data set).

In Fig. 6 we plot the distribution of thresholds for the S-value, FDR, and RMT
approach for 198 scans from the Harvard site only. As expected, the width of the
histogram is significantly lower for the FDR approach, but it is the shape of the
histograms which is more interesting. While the FDR and S -value histograms have
a roughly Gaussian-appearing shape, the RMT histogram appears to have a long
right tail. It is, of course, impossible to make any definitive inferences from such a
crude analysis, but this does suggest that, at the very least, the source of variance in
the RMT thresholds is different from that in the FDR and S -value thresholds.
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Fig. 6 Histograms of threshold values obtained for 198 resting-state fMRI scans from a single site
for the S-value, FDR, and RMT approaches

Although providing food for thought, these results cannot conclusively identify
a “best” approach to thresholding. Future work in which physiologically and
physically accurate models generate simulated fMRI data based on precisely
specified networks will allow qualitative comparison of thresholding techniques.
If we have a contrived “ground truth” mesoscale brain network to hand, and a
reasonable model for the physiological and physical processes that would produce a
BOLD signal for this network (e.g., inverse dynamic casual modeling [10]), we can
directly test the results of our thresholding against a 100 % known ground truth – a
concept not available to us in real data sets.

4 Closing Thoughts

We have provided a brief overview of the growing interest in applying tools
from graph theory to the analysis of graphs derived from neuroimaging data. We
introduced fMRI – currently the most popular functional neuroimaging technique –
and touched on the details of what is required to preprocess fMRI data. Moving
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from preprocessed neuroimaging-derived time series, we discussed methods for
comparing time series and thus inferring a static graph describing relationships
between these time series. We then focused in on the critical issue of choosing a
threshold to separate “real” physiologically relevant relationships from noise in our
graphs, including the description of a new thresholding technique based on random
matrix theory.

The bulk of the work done in this area to date has been very pragmatic and
applied in nature; the field is driven by neuroscientists who seek tools which can
help them further understand the brain, with relatively less interest in the nature
of the tools themselves. Several clear, pragmatic problems remain open, including
two quite significant ones. First, the correct interpretation of complex graph metrics
(e.g., betweenness or PageRank) on functionally derived graphs is still unclear.
Second, the metrics that are typically employed are classical metrics optimized for
studying abstract graph topologies, and networks which arise in physics and the
social sciences. It would be surprising if there did not exist better metrics, tailored
specifically to the questions most interesting to neuroscientists.

Moving to a more abstract, theoretical level, there has been little investigation of
the deeper topological properties of neuroimaging-derived graphs. Is there a theory
of descriptional complexity for these graphs? Can we define hierarchies of structure
which correspond to, for example, clinical metrics of impaired neurological func-
tion? This has been done, for example, for simple measures such as the clustering
coefficient, but is there a deeper unifying theory underlying these observations?
Questions of computability arise naturally as well: if we imagine these graphs
to represent a snapshot of synchronizations between the nodes of a computing
machine, what can we say about the nature of the machine from such a snapshot?
Is it even possible to reason about questions of computability and complexity given
such a coarse projection of the dynamics of a computing system?

For one who studies the theory of computation and its application to natural
systems, it is difficult to ignore the attraction of the dynamic computational system
that is the human brain. With the recent, and rising, interest in graph theory
from neuroscientists, it is now possible to find collaborators in the mathematical
sciences and neurosciences who speak a common language and have a common
interest in the dynamics of complex computational systems. Many problems – both
straightforward and pragmatic and deeper, more philosophical – remain open and
ready for investigation; and, as always, with each solution comes even more open
problems.
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Simplicial Models and Topological Inference
in Biological Systems

Vidit Nanda and Radmila Sazdanović

Abstract This article is a user’s guide to algebraic topological methods for data
analysis with a particular focus on applications to datasets arising in experimental
biology. We begin with the combinatorics and geometry of simplicial complexes
and outline the standard techniques for imposing filtered simplicial structures on a
general class of datasets. From these structures, one computes topological statistics
of the original data via the algebraic theory of (persistent) homology. These statistics
are shown to be computable and robust measures of the shape underlying a dataset.
Finally, we showcase some appealing instances of topology-driven inference in
biological settings, from the detection of a new type of breast cancer to the analysis
of various neural structures.

1 Introduction

Recent advances in genomics [40] have made it possible to sequence the entire DNA
of an individual from a very small amount of that person’s genetic material, say
in the form of a saliva sample or a hair follicle. For each individual, one obtains
as the raw output of this full sequencing process an ordered list of roughly 15

billion letters, representing the base pairs which comprise that person’s DNA. This
technological achievement is absolutely amazing in itself, but in all probability the
bulk of its benefits will materialize over time as scientists analyze the structure of
such sequences in detail. Now consider another marvel of modern engineering: the
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Fig. 1 A dataset consisting
of points sampled from a
circle. Although traditional
line-fitting methods are likely
to be uninsightful for such
datasets, the methods of
persistent homology can
extract knowledge about the
underlying shape from the
point samples alone

Protein Data Bank [39] contains a wealth of structural information about protein
molecules, down to the location of individual atom centers. Again, the fact that such
data can now be effectively measured and collected is fascinating, but ideally one
desires the ability to understand how the physical structure of a protein relates to its
role in the body.

In both cases, one is confronted with enormous quantities of high-dimensional
data prone to the usual amounts of noise or errors. From such data, one would
like to extract robust, qualitative information and gain insight into the processes
which generated the data in the first place. The standard toolkit for such inference
is statistical at its core, and it provides computable, noise-tolerant answers to
questions such as “what does the average data point look like?” or “what is the line
or plane of best fit through the data?” These statistical tools are well understood,
accessible to the experimentalist with a rudimentary mathematical background, and
efficiently implemented in various standard software packages.

However, when the experimental data in question is produced by an essentially
nonlinear process, the utility of our ordinary statistical tools is somewhat diminished
even in the simplest of cases. Consider the dataset of Fig. 1, consisting of points
sampled uniformly from a large circular figure sitting in the plane. With high
probability, the average point lies near the center (but far away from the actual
circle), and there is no reasonable line of best fit. It is not clear how to recover
knowledge about the circle from statistics alone. Perhaps one might get lucky by
noticing that the mean is roughly equidistant from all the data points, but it is
easy to create slightly more complicated examples where recovering the underlying
objects with any reasonable degree of accuracy from the standard statistical tools
becomes hopeless. Thus, one might ask, is there a complementary set of tools which
detects the shape of the object underlying a dataset?

A partial answer to this question comes from a previously esoteric branch
of mathematics called algebraic topology. In particular, the theory of persistent
homology has witnessed some success in the context of analyzing large-scale
nonlinear data [16]. The basic idea behind this theory is to build an increasing
family of simplicial complexes (indexed by a scale parameter) around the data points
while carefully keeping track of the appearance and disappearance of topological
features – connected components, tunnels, cavities, and their higher-dimensional
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cousins – as the scale parameter is increased. Numerous applications of persistent
homology to various problems in the experimental sciences have been thoroughly
documented elsewhere [4, 13, 18].

Although one can easily find efficient software [24, 29] for computing the
persistent homology of filtered simplicial complexes, two key obstacles undermine
the effective use of persistent homology to analyze experimental data. The first
obstacle is an issue of input: how should one build a simplicial complex that
captures the interesting aspects of one’s data? The second issue involves the
output: how does one make inferences about the data from the persistent homology
of the input complex? With these issues in mind, the purpose of our work is
threefold.

1. We provide a gentle and example-filled introduction to the mathematical theory
which underlies (filtered) simplicial complexes. Starting with elementary com-
binatorial properties, we describe the connection between simplicial complexes
and piecewise-linear geometry. We also discuss those algebraic objects which
generate persistent homology, how they relate to simplicial geometry, and how
one computes them in practice.

2. We highlight the standard methods of constructing filtered simplicial complexes
around point cloud data via the Vietoris–Rips and Čech filtrations. We mention
the relative advantages and disadvantages of these filtrations.

3. We showcase some examples of persistent homology in action on biological
data. Recent applications have involved detection of a certain subtype of breast
cancer [31] and yielded insight into the nature of neural activity – of crickets [3],
monkeys, and rats [35]!

The outline of this chapter is as follows. The fundamentals of simplicial
complexes and their filtrations are described in Sect. 2. Section 3 contains the core
ideas needed for establishing connections between experimental data and filtrations.
Section 4 describes the linear algebra of (persistent) homology and formally defines
the topological features which can be detected by the theory. Finally, in Sect. 5, we
survey several biological applications of persistent homology and closely related
topological methods.

2 The Yoga of Simplicial Complexes

Our main goal throughout this Sect. 2 is to understand simplicial complexes and
various related constructions. These combinatorial objects serve as a bridge between
the discrete, computable world of data on one side and the continuous realm of
geometric or topological spaces on the other. Our presentation here is far from
complete, so we invite the interested reader to consult the wonderful texts of
Munkres [28, Chaps. 1 and 2] and Spanier [36, Chap. 3] for the many gory details
which we have omitted.
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2.1 Simplicial Complexes

We start with a finite set V , whose elements we call vertices. A simplicial complex
with vertex set V is a collection K of subsets of V which is closed under inclusion.
More precisely, we require that the following two conditions hold:

• For each vertex v in V , the one-element set fvg lies in K , and
• If 	 is in K and � 	 	 is a subset, then � is also in K .

Each element 	 of K is called a simplex, and its dimension (written dim 	) is defined
to be #.	/� 1, where # denotes the cardinality (i.e., it counts the number of vertices
of 	). Any subset � of 	 is called a face of 	 , and this relationship is denoted
by �  	 . We write Kd to indicate the collection of d -dimensional simplices
in K for each d � 0. It is clear from the first property of simplicial complexes
that the elements of V correspond in a one-to-one manner with those of K0, and
it is therefore customary to speak of the two sets interchangeably. Consequently,
one often encounters phrases resembling “let K be a simplicial complex” with no
explicit mention of the underlying vertex set. Before proceeding any further, we will
examine a small simplicial complex in some detail.

Example 1. Given a vertex set V D fa; b; : : : ; f; gg, we may construct a simplicial
complex K in layers, one dimension at a time. We denote subsets of V by their
elements in alphabetical order, so that fa; b; cg is simply written abc. As we have
already seen, K0 is completely determined by V . Next, K1 can contain any pair of
distinct vertices in V and there is some freedom to choose such pairs. For instance,
we can select

K1 D fab; ac; ae; bc; bd; be; bg; cd; cg; dg; ef g :

Fixing K1 immediately constrains which simplices can lie in K2. For instance, abe is
allowed in K2, since all of its one-dimensional faces ab; ae; be are in K1. However,
acd is banned because ad � acd but ad is not present in K1. We add the following
(legal!) two-dimensional simplices to K:

K2 D fabe; bcg; bcd; bdg; cdgg ;

and note that the only three-dimensional simplex whose faces all exist in K2 is bcdg.
Let us include that simplex as well, and we obtain

K3 D fbcdgg :

No four-dimensional simplices are allowed, since the presence of a single such
simplex would require K3 to have at least four elements, so our K is just the union of
Kd for d in f0; 1; 2; 3g. This complex K is reasonably small and low-dimensional;
it is often useful to visualize such simplicial complexes as embedded in Euclidean
space (see Fig. 2).
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Fig. 2 A pictorial representation of the simplicial complex K of Example 1 with points repre-
senting vertices. The lines, triangles, and tetrahedra stand in for one, two, and three-dimensional
simplices, respectively. We note that K consists of a single connected component and that the
1-simplices ab; ac; bc form a loop

2.2 Subcomplexes, Filtrations, and Sublevelsets

Let K be any simplicial complex. A subcollection L of simplices from K which
forms a simplicial complex in its own right is called a subcomplex of L, written
L ,!K . In other words, if a simplex 	 lies in L, then all of its faces in K are also
present in L. In general, the vertex set of L may be strictly smaller than that of K ,
with equality only occurring when L0 D K0. The reader may enjoy proving the
following result, but we have our doubts.

Proposition 1. If simplicial complexes K , L, and M satisfy L ,!K and K ,!M ,
then we also have L ,!M .

Let N � 1 be a natural number and K a simplicial complex. A filtration F of
the simplicial complex K is a nested collection of subcomplexes FnK ,!K for n

in f0; : : : ; N g which ascends from the empty set ; all the way up to K like this:

; D F0K ,!F1K ,!F2K ,! � � � ,!FN �1K ,!FN K D K:

Here, N is called the length of F . The simplicial complex K trivially forms a
length-1 filtration, since we have ; 	 K . A slightly less obvious filtration could be
constructed by dimension: let FnK be the collection of all simplices of dimension
at most n. But we will consider a more interesting example. In particular, we would
like to illustrate the fact that the process of building K from subcomplexes along F
causes various interesting intermediate features to appear and disappear.

Example 2. Let K be the simplicial complex of Example 1. We will define a
filtration F of K which has length 4 by describing each subcomplex FnK
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individually. Since F0K is empty, we ignore it and move on to the first subcomplex,

F1K D fa; b; c; d; f; ac; cd; ebg :

There are three pieces in this subcomplex, as the first quarter of Fig. 3 reveals. Next,
we consider

F2K D F1K [ fg; ab; ae; bc; bd; ef ; bcdg ;

where [ indicates a union of sets. The addition of the vertex g adds yet another
piece to the three already present in F1K , but ab and ef join three of those pieces
into a single large component. The sequences .ab; ae; be/ and .ab; ac; bc/ of one-
dimensional simplices form two loops. A similar loop formed by .bc; bd; cd/ is
immediately filled by the two-dimensional simplex bcd. Moving on, we define

F3K D F2K [ fabe; bcg; bdg; cdgg :

The simplex abe fills up the loop .ab; ae; be/ consisting of its faces. The addi-
tion of the other simplices reveals a new feature: a void, or cavity, formed by
.bcd; bcg; bdg; cdg/. This cavity is very different from the loops that we have
encountered before, in the sense that – at least as pictured in Fig. 3 – it encloses
a three-dimensional region rather than a planar one. Finally, we add

F4K D F3K [ fbcdgg ;

and this last simplex fills the cavity obtained from F3K .

Let K be any simplicial complex, and let N denote the natural numbers. Consider
a function g W K ! N which assigns to each simplex � a natural number
g.�/. Then, the sublevelset of g at the natural number n is defined by Sn.g/ D
f� 2 K j g.�/ � ng. Clearly, we have Sn.g/ 	 SnC1.g/ as sets. Unfortunately,
Sn.g/ is not always a subcomplex of K for arbitrary functions g: if g.�/ > n �
g.	/ with � � 	 , then Sn.g/ contains 	 but not its face � . It turns out that this is the
only obstruction to having a filtration by sublevelsets, so we will restrict our choice
of g to functions which avoid this behavior.

We call g W K ! N monotone if it increases with dimension along faces. Thus,
g is monotone (or order-preserving) if g.�/ � g.	/ whenever �  	 . In this case,
it is easy enough to check that setting

FnK D Sn.g/ D f	 2 K j g.	/ � ng

yields a filtration of K whose length equals the maximum number of distinct values
attained by g on K . One could also consider monotone maps g W K ! R to the real
numbers, but this would be largely for convenience. Since there are only finitely
many simplices in K , the image of g may assume only finitely many distinct real
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Fig. 3 An illustrated view of the filtration F defined in Example 2. Note that the intermediate
stages of the filtration look very different from K! A systematic study of the appearance and
disappearance of features such as connected components, loops, and cavities provides a coarse-
grained view of how K is incrementally built along its subcomplexes in F . See Example 2 for
details

values. Indexing these values fc1; : : : ; cN g in ascending order yields a one-to-one
monotone correspondence with a subset of N: just send cn to n. Thus, an R-valued
g can easily be replaced by an N-valued cousin with no essential change in the
structure of the sublevelset filtration. Sublevelset filtrations are ubiquitous for the
following simple reason.

Proposition 2. For any filtration F of a simplicial complex K , there is a unique
monotone function g W K ! N such that F is the sublevelset filtration of g.

The proof is easy: let g be the function that sends each simplex � in K to
the smallest n such that � is a simplex in FnK . The reader may wish to check,
for example, that setting g.�/ D dim.�/ retrieves the filtration by dimensions
mentioned before Example 2.

2.3 The Geometry of Simplices: Realizations
and Simplicial Maps

As we have remarked before, a primary advantage of simplicial complexes is their
ability to interface between discrete and continuous spaces. When we visualize
simplicial complexes (see Fig. 2, for example), we use nondiscrete geometric objects
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such as lines, triangles, and tetrahedra. The reader may have noticed that much of
the terminology for simplicial complexes (for instance “dimension” and “vertex”)
appears to have been borrowed from corresponding notions for these familiar and
concrete geometric objects. There is a standard protocol underlying this dictionary
between simplices and these objects, which we will now describe. All that is
assumed of the reader is a basic understanding of d -dimensional Euclidean real
space Rd , each point of which consists of an ordered sequence of d real numbers.
For each j between 1 and d , the j -th basis vector ej of Rd is identified with the
point which contains a 1 in the j -th component and 0’s everywhere else.

We fix a dimension d , and let u D fu1; : : : ; uM g be a collection of M � 1

points in Rd . A convex combination of these points is any point in Rd which can be
expressed as an R-linear combination

x D p1u1 C � � � C pM uM ;

where each coefficient pm is nonnegative and the sum p1 C � � � C pM of all these
coefficients equals 1. The convex hull of this collection u is the set of all such
convex combinations,1 and we denote this subset of Rd by Conv.u/. Now let
v D fv1; : : : ; vN g be another collection of points in Rd , and assume that we are
given a map 
 W u ! v. Then, 
 provides a standard and fairly obvious recipe for
concocting a map N
 W Conv.u/! Conv.v/ as follows:

N
.p1u1 C � � � C pM uM / D p1
.u1/C � � � C pM 
.uM /:

If we restrict our attention to the subcollection u0 of u and let 
 be the inclusion
map u0 ! u, we immediately see that Conv.u0/ 	 Conv.u/. The d -dimensional
standard simplex �d 	 RdC1 is defined to be Conv.e1; : : : ; edC1/, the convex hull
of the basis elements of RdC1. Equivalently,

�d D ˚.x1; : : : ; xdC1/ j each xj � 0 and x0 C � � � C xdC1 D 1
�

:

For example, �2 is the two-dimensional triangle determined by the standard basis
vectors e1 D .1; 0; 0/, e2 D .0; 1; 0/ and e3 D .0; 0; 1/ in three-dimensional
Euclidean space.

Let K be a simplicial complex with d C 1 vertices, which we order as
fv1; : : : ; vdC1g. We will construct a concrete subset jKj of the standard simplex
�d , which is the canonical geometric space associated to K . For each simplex

1It is easy to work out that the convex hull of two points is the line segment connecting them, and
that the convex hull of three points (which do not all lie on the same line) is the triangle containing
those three points as vertices. In higher dimensions and with many more points, things become less
obvious. Determining convex hulls is a fundamental problem in computational geometry.
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� in K consisting of vertices fvi1 ; : : : ; vimg, we first define j� j 	 �d by j� j D
Conv.ei1 ; : : : ; eim/.

Definition 1. The geometric realization jKj 	 �d of K is the union of all j� j as �

ranges over simplices in K .

Thus, a counterpart to K has been delineated within �d as a concrete geometric
object. Before being completely satisfied with this definition, however, one might
wonder: what happens if we order the vertices fv1; : : : ; vdC1g differently? In order to
arrive at a satisfactory answer, we must understand when two simplicial complexes
are considered equivalent; for this purpose, we turn our attention to simplicial maps.
These maps will require a domain and a range, so let K and L be simplicial
complexes with vertex sets U and V , respectively.

Definition 2. A simplicial map � W K ! L assigns to each vertex u in U a vertex
�.u/ in V so that the image of each simplex � 2 K constitutes a simplex �.�/ 2 L.

Here, by �.�/ we mean the set of vertices in V obtained by mapping each vertex of
� by � into V . We have already seen examples of simplicial maps: if K ,!L, then
the map sending each vertex of K to itself as a vertex of L is simplicial. It turns
out that any simplicial map � W K ! L induces a continuous function of geometric
realizations, which we denote by j�j W jKj ! jLj. This map acts exactly as one
would expect. Namely, we note first that jKj is a union of realizations of simplices
j� j where � 2 K , so it suffices to understand how each individual j� j is mapped by
j�j. Since � maps the vertices of � into the vertices of its image �.�/, the map N�
linearly maps the convex hull j� j into the convex hull j�.�/j. We define the function
j�j to be that transformation from jKj to jLj which acts on each j� j 	 jKj as the
linear map N�. Thus, although j�j W jKj ! jLj itself may not be a linear map, its
action on each convex piece j� j of jKj is linear. For this reason, the continuous maps
between realizations induced by simplicial maps are often called piecewise-linear
maps.

The reader is warned that arbitrary simplicial maps do not preserve dimension:
one might have dim �.�/ < dim � if � is not one-to-one on the vertices of � . On
the other hand, if � is a bijection – a map that associates each vertex of U to a single
vertex of V and vice versa – then not only are dimensions preserved, but also the net
effect of mapping K into L via � is essentially that of relabeling the vertices. In such
a case, K and L are called isomorphic and we write K ' L. Although the geometric
realizations jKj and jLj might disagree in terms of exactly how they sit in Rd , they
are topologically (and indeed, geometrically) equivalent because an invertible linear
transformation of Rd (i.e., an invertible matrix) maps jKj to jLj, with its inverse
taking jLj back into jKj. More precisely, any simplicial map � W K ! L induces a
map from the basis of R#U to that of R#V as follows:

basis element vertex of K vertex of L basis element:�� ��' ��
�

�� ��'
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Following this diagram from left to right produces a matrix which maps �#U �1 to
�#V �1 so that the image of jKj is contained inside jLj. In the special case where �

is a bijection of vertices, this matrix is invertible. It is in this sense that simplicial
complexes (up to equivalence by isomorphism) are uniquely associated with their
geometric realizations (up to equivalence by invertible linear transformations).

3 Constructing Filtrations Around Points

The process of conducting experiments and collecting data is, by its very nature, the
crux of all experimental science. Experimental data can take many forms, including
text, images, and even video. For our purposes, we will restrict our attention to a
very specific form of data: a point cloud. By a point cloud, we simply mean a finite
collection P of points in Rd for some suitable dimension d , and make no further
assumptions regarding the nature of P . We would like to remark here that it is
possible to construct faithful point cloud representations of just about any type of
data, although it may not be advantageous to do so because the dimension d might
become enormous.

A first step towards applying topological machinery to a point cloud is to
construct a filtration of a simplicial complex whose vertex set can in some way be
identified with P . We will discuss two standard filtrations that may be constructed
around point clouds. Along the way, we will try to highlight their relative advantages
and disadvantages.

The largest possible simplicial complex with vertex set P is, of course, the
complete simplicial complex, where every possible subset of P constitutes a
simplex. We will denote this complex by KP throughout this section.2 All the
filtrations that we encounter here will be – either implicitly or explicitly – filtrations
of KP .

There are many notions of distance that one can reasonably impose on Rd . For
any p � 1, we can consider the p-distance

dp.x; y/ D p

vuut dX
mD1

jxm � ymjp;

so that the familiar Euclidean distance is recovered when one sets p D 2. Another
option is the max-distance,

d1.x; y/ D max
1�m�d

fjxm � ymjg :

2In fact, KP consists of a single .#P � 1/-dimensional simplex along with all its faces!
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Fig. 4 An example of a
small point cloud sitting in
two-dimensional Euclidean
space. Note that the points
appear to have the shape of
two circles, one larger than
the other

The filtrations that one constructs around P 	 Rd depend on which notion of
distance is chosen. In order to provide the most flexibility, we will simply denote
the distance we use by d and leave the explicit choice to the reader.

For any positive real number r � 0 and a point x 2 Rd , we define the ball of
radius r around x as

Br.x/ D ˚y 2 Rd j d.x; y/ < r
�

:

The shape of this ball depends on the distance d. The reason for calling this type of
set a “ball” becomes clear when one uses the standard distance d2.

As a running example, we will consider a toy example of a point cloud in R2

as shown in Fig. 4. The exact coordinates of each point are relatively unimportant;
we are only seeking qualitative information. Thus, what we will focus on here is
the fact that the point cloud appears to contain two distinct loops, with the one on
the right-hand side having a larger diameter than the other. In our running example,
we will use the distance d2.

3.1 The Vietoris–Rips Filtration

Let P 	 Rd be our point cloud. One can compute all the pairwise distances
d.p; p0/ between pairs of points p and p0 in P . This data structure – consisting of P

along with the pairwise distances – suffices to construct the Vietoris–Rips filtration
(Fig. 5). At any given scale � � 0, we define the simplicial subcomplex V�KP of the
complete complex KP as follows. The vertex set is P , and each simplex � in V�KP

consists of a subcollection of vertices so that the pairwise distance between any two
is less than �. Let � 	 P be a subcollection of points .p1; : : : ; pm/. Restricting the
indices i and j to f1; : : : ; mg, we have

� is a simplex in V�KP if d.pi ; pj / < � for all i; j;

or equivalently,

� is a simplex in V�KP if B�=2.pi /\ B�=2.pj / ¤ ; for all i; j:
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Fig. 5 Two stages of the Vietoris–Rips filtration around the point cloud from Fig. 4. The scale �

increases from left to right, and the balls of radius � have been shown underlying the simplices.
The smaller loop is captured faithfully at the smaller � value, and the larger loop is captured at the
larger � value. But no single scale captures both!

Here \ stands for the intersection of sets.
It is easy to see that for any value of �, our definition of V� yields a genuine

simplicial complex. After all, if � is a simplex and 	 is a face of � , then the set of all
pairwise distances between vertices of 	 is contained in the set of the corresponding
pairwise distances of �’s vertices. On the other hand, we can also immediately check
that for ı > �, we have V�KP ,! VıKP because if all pairwise distances are less
than �, they are also less than ı.

We define the function gV W KP ! R as follows. For any simplex � in KP ,

gV .�/ D max
p;q in �

fd.p; q/g :

Whenever � � 	 , we obtain gV .�/ � gV .	/ because we are taking the maximum
over a larger set. Thus, g is monotone, and the following definition makes sense by
Proposition 2.

Definition 3. The Vietoris–Rips filtration around P 	 Rd is the sublevelset
filtration of gV .

We place the pairwise distances between points in P in ascending order, 0 �
�1 � � � � � �N , and note that we have

V�1KP ,! V�2 KP ,! � � � ,! V�N KP D KP :

In practice, one stops well short of constructing the Vietoris–Rips filtration all the
way up to �N , unless the number of points in P is very small. The reason for this is
simple: the complete complex KP contains as many simplices as there are nonempty
subsets of P , so its cardinality is 2#P � 1. Even for a tiny cloud containing only 40

points, building the full Vietoris–Rips filtration requires storing well over a trillion
simplices in system memory!
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Fig. 6 A collection of balls
in the plane with nonempty
pairwise intersection but no
triple intersection. The union
of these balls clearly encloses
a hole, which the overlaid
Vietoris–Rips filtration fails
to capture at the current
radius

Advantages. Pairwise distances are easily computable in most settings, so, at least
in principle, it is very easy to determine the scale at which a given simplex joins the
Vietoris–Rips filtration. Since one only requires knowledge of pairwise distances,
this filtration is extremely flexible in the sense that one can construct it around
extremely general data types. For instance, consider a situation where the data
arises from measuring correlations between various states of a complex system. In
this case, it may not be natural to try to embed these states as points in some Rd .
However, a knowledge of the pairwise correlations alone is enough to construct the
Vietoris–Rips complex!

Disadvantages. As we have already discussed, the Vietoris–Rips filtration is liable
to become gigantic in terms of the number of simplices because its size scales
exponentially with the number of points. Moreover, there is no control over the
dimensions of simplices that are built, even for small values of the scale �: if there
are 20 points with pairwise distances all less than �, then the 19-dimensional simplex
containing those points will belong to V�KP even if those points are sitting in two-
dimensional space! A subtler issue with these filtrations is that they are merely
approximations to the structure of the underlying space which do not recover its
structure accurately at each scale �. It is easy to construct – at least with the distance
d2 – three balls so that any pair intersects, but there is no common point in the
intersection of all three, thus forming a hole (see Fig. 6). However, the geometric
realization of the resulting Vietoris–Rips filtration at the given scale fails to capture
that hole, because it contains the two-dimensional simplex spanning the ball centers.

A description of efficient algorithms for constructing Vietoris–Rips filtrations
may be found in [41]. Most persistent-homology software packages (e.g., [29])
contain implementations of these algorithms.
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3.2 The Čech Filtration

Letting P 	 Rd be our point cloud and KP the complete simplicial complex with
vertex set P , we define a simplicial subcomplex C�KP of KP at each scale � > 0

in the following way. A subcollection � 	 P of points forms a simplex of C�KP if
there exists some point x in Rd whose distance3 from each vertex of � is at most �.
More precisely, let � D .p1; : : : ; pm/. Then,

� is a simplex in C�KP if d.x; pi / < � for all i and some fixed x;

or, equivalently,

� is a simplex in C�KP if the intersection
m\

j D1

B�.pi/ ¤ ;:

It is apparent that the construction of Čech filtrations depends crucially on the
following computation: given a collection � of points in Rd , what is the smallest
radius r so that there exists some point x in Rd whose distance from each point
in � is less than r? Discrete and computational geometers often refer to this
as the smallest enclosing ball problem: after all, the ball of radius r around x

encloses all the points in � and, by definition, it must be the smallest ball to do
so. Although there are various algorithms available to compute this minimal ball
(some sacrifice exactness for speed), in general (for large point sets sitting in high
dimensions) this is a complicated, nontrivial problem. Certainly, one requires a lot
more computational muscle than the simple pairwise distance calculations that must
be performed for constructing a Vietoris–Rips filtration.

Consider the function gC W KP ! R defined on the simplex � D
.p1; : : : ; pm/ by

gC .�/ D min
˚
r � 0 j there is an x in Rd with d.x; pj / < r for 1 � j � m

�
:

It is clear that gC is monotone; if 	 � � and some ball Br.x/ contains all the vertices
of � , then it also contains the subset of vertices which belong to 	 , and hence the
smallest enclosing ball for 	 can have radius no larger than r .

Definition 4. The Čech filtration around P 	 Rd is the sublevelset filtration of gC .

Since there are only finitely many simplices in KP , this function gC assumes
only finitely many values. Listing them in increasing order as 0 D �0 � �1 � � � � �
�N , one obtains

3This x is not necessarily a point in the cloud P , so typically the Čech filtration cannot be built
from knowledge of pairwise distances alone!
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Fig. 7 Two stages of the Čech filtration of the point cloud of Fig. 4. Note that there are fewer
simplices of dimension 2 and above when compared with Fig. 5 at the larger scale. For instance,
the two differently colored simplices are not present in the Čech filtration, although they are present
in the Vietoris–Rips filtration at the same scale

C�1 KP ,! C�2KP ,! � � � ,!C�N KP D KP :

The fact that higher-order intersections are taken into account when one is
building the Čech filtration incurs a computational burden, but there is a substantial
payoff. In particular, it follows from a result known as the nerve theorem that the
geometric realization jC�KP j is topologically equivalent4 to the union of all balls
B�.p/, where p ranges over the points in P .

Advantages. At each scale �, the Čech filtration is faithful to the topology of the
union of balls. In particular, keeping track of higher-order intersections allows one
to bypass the issue highlighted in Fig. 6: the two-dimensional simplex concerned
will not enter the Čech filtration until the scale where all three balls intersect, at
which point there is no loop. For the same reason, the Čech filtration at a given
scale is typically much smaller, in the sense that it contains fewer simplices than the
Vietoris–Rips filtration at the same scale: see Fig. 7.

Disadvantages. As we have already noted, the complexity of the enclosing
ball problem makes it difficult to construct Čech filtrations around point clouds
in dimensions exceeding 3. As with the Vietoris–Rips filtration, a cluster of
nearby points produces a simplex of high dimension regardless of the ambient
dimension d .

Algorithms to construct the Čech filtration are described in [11], and an
implementation is available as part of [24].

4This equivalence is up to a fundamental topological invariant known as homotopy.
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3.3 Other Filtrations

While the two filtrations mentioned above are the most common ones encountered
in practice, there are several other approaches to imposing simplicial structures on
point clouds. In particular, the witness complex filtration [12] attempts to reduce the
number of simplices by preprocessing the point cloud P itself as follows. We fix an
acceptable “fuzz” parameter ı > 0, and restrict our attention to a subset P 0 	 P

of landmark points so that no two are within ı of each other. This preprocessing
allows us to reduce the dimension (and hence the number) of simplices which
appear at each scale � > ı in either the Vietoris–Rips or the Čech filtration.
This computational advantage is not without a price, however: to the best of our
knowledge, there are no explicit results about how faithfully a witness complex
represents the topology of the underlying union of balls.

A drastically different approach, which is especially useful in low dimensions,
involves the use of filtered alpha complexes [15]. Although these complexes require
even more computational-geometry muscle to construct than the Čech filtration, the
benefits are immense. The nerve theorem applies in the context of alpha complexes,
so they are also topologically faithful to the underlying union of balls, like Čech
filtrations. At the same time, the dimension of the simplices encountered in an alpha
complex never exceeds d , the ambient Euclidean dimension!

4 Homology and Its Computation

Throughout the preceding sections, we have discussed various topological features –
such as loops and cavities – which appear in geometric realizations of simplicial
complexes or in the context of point clouds thickened into balls by some scale �. In
order to precisely understand the objects which encode and catalog such features, we
must turn to algebra. Any reader who experiences moral qualms about our descent
from the Olympus of geometric shapes to the Hades of algebraic formalism stands
in distinguished company:

Algebra is the offer made by the devil to the mathematician. The devil says: “I will give you
this powerful machine, it will answer any question you like. All you need to do is give me
your soul: give up geometry and you will have this marvellous machine.”

Sir Michael Atiyah

4.1 The Linear Algebra of Holes

The “marvellous machine” called homology detects “holes” of all dimensions
by using linear algebra. It associates to each simplicial complex K a collection
of algebraic objects Hd .K/ called homology groups, where d ranges over the
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dimensions of the simplices encountered in K . Given a simplicial map � W K ! L,
homology produces group homomorphisms ��

d W Hd .K/ ! Hd .L/. The type
of groups and homomorphisms that one obtains depends on the choice of some
underlying coefficient system. Here, we will use the real numbers R. In this setting,
each homology group is just some Euclidean space and each homomorphism a
matrix with entries in R.

Let K be a simplicial complex with ordered vertices. What this means for our
purposes is that the vertices of any simplex � can be uniquely written in some
ascending order .v0; : : : ; vd /. The d -dimensional chain group Cd .K/ of K consists
of R-linear combinations of d -dimensional simplices. Thus, a typical element of
Cd .K/ – called a d -dimensional chain – is a1�1 C � � � C am�m, where the a’s are
real numbers and the �’s are d -dimensional simplices. Clearly, this chain group
is equivalent to #Kd -dimensional Euclidean space: just use the d -dimensional
simplices as a basis. Let � D .v0; : : : ; vd / be such a basis element, and for each
j in f0; : : : ; d g let �j be that .d � 1/-dimensional proper face of � which contains
all the vertices except vj . Now, the boundary of � is a .d � 1/-dimensional chain
given by the alternating sum of these faces:

@d .�/ D �0 � �1 C � � � C .�1/d �d :

Thus, @d defines a linear transformation Cd .K/ ! Cd�1.K/, and hence may be
thought of as a matrix once we order the simplices into a basis. We define the d -
dimensional cycle group Zd .K/ to be the subspace corresponding to the kernel of
this matrix in Cd .K/, and the .d � 1/-dimensional boundary group Bd�1.K/ is
the image of this matrix as a subspace of Cd�1.K/. The elements of Zd .K/ and
Bd .K/ are called the d -dimensional cycles and boundaries, respectively. It can be
checked that each d -dimensional boundary is also a cycle.5 Now, the d -dimensional
homology group is defined as the quotient

Hd .K/ D Zd .K/

Bd .K/
:

Thus, we are interested in cycles, but do not distinguish between two cycles if
they are related by a boundary. That is, we partition the cycles x from Zd .K/ into
homology classes Œx�, with Œx� D Œy� whenever x � y lies in Bd .K/.

To see why we care about this quotient, let us go back to the complex of
Example 1. Observe that the loop formed by ab; ac; bc corresponds to the algebraic
cycle x D abC bc � ac, whose boundary is 0. So far, so good. But, algebraically,
even ab; ae; be forms a “loop”: let y D abCbe�ae, and check that @1.y/ D 0. The
difference between these cycles – transparent to the eye but opaque to the algebra
at this point – is the presence of abe which fills up the latter cycle. In order to make

5To see why this is the case, note that the composition @d ı @dC1 is the zero map from CdC1.K/

to Cd�1.K/ for each dimension d .
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the chain algebra recognize this fill-up, we note that @2.abc/ D abC bc� ac. In the
quotient space, this cycle y therefore ends up in the trivial homology class Œ0�. This
is why algebraic cycles alone are not enough; we need to quotient by the boundaries
of higher simplices.

4.2 Smith Normal Form and Betti Numbers

Staying with the simplicial complex K of Example 1, let us see what it takes to
compute H0.K/. First, we order the zero- and one-dimensional simplices of K in
some consistent way. For convenience, we may choose the alphabetical order, and
hence obtain the following sequences of cells:

K0 D .a; b; c; d; e; f / and K1 D .ab; ac; ae; bc; bd; be; bg; cd; cg; dg; ef /:

Next, we express the boundary operator @1 W C1.K/ ! C0.K/ as a matrix M1 in
our chosen basis. For instance, in the column for ac and the row for a, one finds
the dot product h@1.ac/; ai D �1, which simply extracts the coefficient of a in the
boundary of ac. Proceeding in this fashion yields the following matrix:

M1 D

2
666666664

ab ac ae bc bd be bg cd cg dg ef

a �1 �1 �1 0 0 0 0 0 0 0 0

b 1 0 0 �1 �1 �1 �1 0 0 0 0

c 0 1 0 1 0 0 0 �1 �1 0 0

d 0 0 0 0 1 0 0 1 0 �1 0

e 0 0 1 0 0 1 0 0 0 0 �1

f 0 0 0 0 0 0 0 0 0 0 1

g 0 0 0 0 0 0 1 0 1 1 0

3
777777775

:

Using standard row and column operations (with coefficients in R), we can put M1

in Smith normal form, so that the off-diagonal entries are all zero, and the diagonal
contains only zeros and ones. The number of zero entries in the diagonal of the
Smith normal form is then equal to the rank of H0.K/ as a vector space over the
real numbers. One can repeat this process for all dimensions d � 1: order the cells,
generate a matrix representation Md of @d in the chosen basis, and compute its
Smith normal form. The number of zero entries in the diagonal of Md ’s Smith
normal form is called the .d � 1/-th Betti number of K , and it equals the rank
of Hd�1.K/ as a Euclidean space. Keeping track of the change-of-basis matrices of
the row and column operations also produces an explicit basis for Hd�1.K/ in terms
of the chains in Cd�1.K/.

One may ask: what does it all mean? The answer is easy in low dimensions: the
zero-, one-, and two-dimensional Betti numbers count the connected components,
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tunnels, and cavities, respectively, of the underlying simplicial complex.6 In higher
dimensions, the answer is subtler because we lose the ability to visualize geometry.
But in any case, the Betti numbers of a simplicial complex provide computable
topological statistics of that complex. The structure encoded by the actual groups
(not just the Betti numbers) is much more intricate, but it should be clear (at least
in principle) that knowledge of those groups as quotients of chains enables one to
actually find components, tunnels, cavities, and their higher-dimensional analogs as
linear combinations of simplices.

The situation is very similar for simplicial maps � W K ! L. Since � sends
simplices of K to simplices of L, for each dimension d it induces a chain map
�#

d W Cd .K/ ! Cd .L/ determined by the following action on the basis elements.
Given � 2 Kd , we define

�#
d .�/ D

(
�.�/ if dim �.�/ D d;

0 otherwise:

One can check that �#
d sends Zd .K/ to Zd .L/, and likewise for boundaries.

Thus, �#
d descends to a map Hd .K/ ! Hd .L/ of quotient spaces, which is our

homomorphism ��
d . More precisely, the following assignment of homology classes

is well defined in the sense that it never sends two members of the same homology
class in K to different homology classes in L:

��
d .Œx�/ D Œ�#

d .x/�:

From a computational perspective, one constructs a matrix representation of �#
d and

computes its Smith normal form in order to explicitly construct ��
d .

For a classical and theoretical account of simplicial homology, one can turn to
the canonical algebraic-topology texts [28,36]. But for a much more computational
approach to homology (with cubical rather than simplicial complexes!), the reader
is invited to consult [22]. There are highly optimized software libraries [29, 37, 38]
for computing homology groups of various types of complexes.

4.3 Persistent Homology, Diagrams, and Stability

Suppose we start with a simplicial complex, and add a single extra vertex to
it, disconnected from everything else. This change effectively increments the
dimension of the zero-dimensional homology group by 1. One can easily construct
examples where removing a single simplex also changes the dimensions drastically.

6So, there is precisely one zero in the diagonal of the Smith normal form of M1, since K has only
one connected component.
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In this sense, the homology of a complex is not very stable to small changes in that
complex. The antidote to this lack of stability is provided by persistent homology.

Persistent homology is to filtrations what homology is to simplicial complexes.
Consider a filtration F of a simplicial complex K as shown,

; D F0K ,!F1K ,! � � � ,!FM K;

and note that each inclusion corresponds to a simplicial map of simplicial com-
plexes, so one may apply the homology machine to get a sequence of Euclidean
spaces connected by matrices for each dimension d :

Hd .F1K/ Hd .F2K/ � � � Hd .FM K/:��
�1!2

d ��
�2!3

d ��
�

.M�1/!M
d

This structure is called a persistence module. The horizontal maps of homol-
ogy groups are induced by chain maps arising from simplicial inclusions
FmKd ,!FmC1Kd . Let us write �1!3 to denote the obvious matrix product
�2!3 � .�1!2/, which gets us from the first to the third Euclidean space in our
persistence module and so forth. These horizontal matrices allow one to track
homological features (components, tunnels, cavities, etc.) across the entire filtration.
The p-persistent d -dimensional homology group of the subcomplex FmK is
defined as the following subspace of Hd .FmCp/:

Hp

d .FmK/ D �
m!mCp

d .Hd .FmK//:

The basic idea behind this formulation is simple. Each homology class Œx� living in
the d -dimensional homology group of FmK is included into the d -dimensional
homology group of FmCpK by a string of maps on homology groups induced
by simplicial inclusions. However, FmCp contains more simplices than FmK in
general, so there might be a collection of .d C 1/-dimensional simplices which fill
out this cycle by making it a boundary. If this is not the case, then x has survived
the journey from FmK to FmCpK safely. Otherwise, x must have met its demise
at some stage q occurring before p. In the latter case, it corresponds to the trivial
element Œ0� in the homology group of FmCpK .

In order to compute homology, we had to put matrix representations of boundary
operators into Smith normal form using row and column operations with coefficients
in R. Computing persistent homology groups requires a similar calculation, except
that we now perform these operations over polynomials in one variable with
coefficients in R. Using these techniques (see the canonical reference [42, Sect. 4.2]
for an explicit algorithm), one can compute for each nontrivial homology class Œx�

in Hd .FmK/ an unambiguous interval Œbx; dx/, where the birth bx � m and the
death dx > m are defined as follows:

• bx is the smallest ` such that there is some homology class Œy� in Hd .F`K/ with
Œ�`!m

d .y/� D Œx�, and
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Fig. 8 A sample persistence diagram generated by the Perseus software package [29]. Births are
plotted along the horizontal axis and deaths along the vertical axis. The points near the diagonal
correspond to homology generators which do not persist across a large section of the filtration, and
hence correspond to unstable or noisy features. On the other hand, the dots far from the diagonal
correspond to robust features with long lifespans

• dx is the smallest n such that Œ�m!n
d .x/� is the trivial homology class Œ0� in

Hd .FnK/.

This collection of persistence intervals Œbx; dx/ over all such x is called the d -
dimensional persistence diagram of the filtration F , and it can be easily visualized
as a two-dimensional cluster of points (see Fig. 8). For each x, the length .dx � bx/

measures the lifespan of the homology class Œx� across the filtration. The persistence
diagram is the filtered analog of the Betti numbers in the following sense: the
d -dimensional Betti number of FmK is simply the number of d -dimensional
persistence intervals which contain m.

Stability. There is a well-defined notion of distance between persistence diagrams,
called the bottleneck distance. It is known [8] that the persistence diagram is stable
to fluctuations in the filtration. In particular, consider a point cloud P in Euclidean
space and a “noisy” version P 0, which is another point cloud obtained by perturbing
each point of P by some distance less than a fixed  > 0. Then, one can prove that
the bottleneck distance between the dimension-d persistence diagrams of the Čech
or Vietoris–Rips filtrations of P and P 0 is smaller than  for every d . In this sense,
the output persistence diagram is no more noisy than the input point cloud.

It is crucial to note that this stability result is a one-way street. That is, if P

and P 0 are near each other, then their persistence diagrams will also be close. But it
would be wrong to conclude that P and P 0 are close if their persistence diagrams are
similar. Thus, having similar persistent homology only allows one to conjecture the
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similarity of the underlying datasets; however, having different persistent homology
actually furnishes a solid proof that the two datasets are topologically distinct.
Thus, persistent homology is better at telling things apart than at confirming their
similarity.

There are various excellent resources for the persistent-homology neophyte; see
[5, 6, 13, 16–18] and the references therein for many more details. The reader may
also be relieved to know that using persistent homology does not require a personal
desire to compute Smith normal forms of huge matrices by hand: efficient software
is available for this purpose [24, 29].

5 Applications to Biological Datasets

Having established the basics of simplicial complexes and their homology, we
would like to highlight some particularly appealing instances of topological infer-
ence – that is, inference based on topological techniques – from biological datasets.
Selecting the right filtration to impose on a point cloud is a bit of an art form:
even choosing an expedient distance function between data points requires highly
specialized knowledge about the data itself, as well as a genuine understanding of
the desired features which one wishes to investigate. In the absence of a general
recipe that fits all possible data, the next best thing is a host of successful and
interesting examples which the reader can use as signposts in his or her personal
quest to build a convenient filtration.

5.1 Identification of Breast Cancer Subtypes

Breast cancer is one of the most widespread and most frequently occurring types of
cancer. Since there are several variants of this cancer, considerable efforts have been
made to distinguish these from each other in the search for specialized and effective
treatments.

5.1.1 The Discovery of c-MYBC

A new subtype of breast cancer was detected in [31] by clustering methods acting
on a filtered simplicial complex built using microarray data.

The data. A microarray [2] is a thin glass slide with distinguished regions –
called features – onto which DNA molecules can attach in an orderly fashion.
Using these slides, it is possible to measure efficiently as patterns the differences in
expression between two sets of genes (from a common cell) which have been kept
under different conditions. In [30], a framework called Disease-Specific Genomic
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Fig. 9 Progression Analysis of Disease (PAD) results from [31] produced by Mapper [34]: the
data points correspond to tumors, and their colors represent the order of magnitude of deviation
from normal as measured by DSGA: red tumors have the largest deviation

Analysis (DSGA) was introduced, which highlights differences in expression
patterns of microarrays of diseased tissue relative to a continuous range of normal
phenotypes. The input data was precisely the result of DSGA performed over a
sufficiently large class of normal and diseased tissues.

The complex. Nicolau et al. [30] constructed the complete simplicial complex K

whose vertices T correspond to a set of tumors, and defined a function g W T ! R
derived from the distance of each tumor from some large collection of normal
phenotype tissue as yielded by regular DSGA analysis. The precise details of this
distance function may be found in [31, Sect. 1.3]. Associating each simplex to
the highest g-value encountered among its vertices extended g to all of K . The
sublevelset filtration of g was then fed into the clustering tool Mapper [34].

The results. As shown in Fig. 9, Mapper revealed an intrinsic structure of the space
of breast cancer transcriptional data that remained undetected by common clustering
methods. Without any clinical or biological input except for DSGA, the construction
of a suitable filtered simplicial complex followed by clustering enabled the detection
of a new, unique subgroup of breast cancers called c-MYBC. These cancers are
estrogen receptor-positive (ERC), and have high levels of x-MYB and low levels of
innate inflammatory genes. Perhaps most importantly, there is a 100 % survival rate
and no metastasis. This type of cancer does not fit into the standard classification of
Luminal A/B and Normal-like subtypes of ERC breast cancers obtained by ordinary
clustering analysis.
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Fig. 10 Chromosome 8 plots of average Betti numbers ˇ0 in dimension 4 calculated for recurrent
and nonrecurrent data, for radii between 0:01 and 0:25. (a) Patients treated with chemotherapy
(AC group). (b) Patients not treated with chemotherapy (non-AC group). Non-AC patients have
significantly higher ˇ0 values in the recurrent population

5.1.2 Distinguishing Between Recurrent and Nonrecurrent Subtypes

Dewoskin et al. [14] established that topological methods can partially differentiate
those breast cancer subtypes which have a high recurrence rate from those which
do not.

The data. Comparative genomic hybridization (CGH) is a method which detects
chromosomal aberrations [33]. DNA from a tumor sample and from a normal
reference sample are given different fluorescent labels and cohybridized onto a
thin glass surface in a regular pattern. The fluorescent intensity of each region
measures the differences (either amplifications or deletions) between the two
samples as the logarithm of a ratio. The starting point of this analysis, therefore, is an
ordered list

` D .`1; `2; : : : ; `N /

of these logarithms of ratios of intensities.

The complex. One chooses an embedding dimension d , and creates points in Rd by
sliding a window of width d along the list ` as follows. The first point is .`1; : : : ; `d /,
the second one is .`2; : : : ; `dC1/ and so forth. This creates a point cloud Pd .`/ 	
Rd . Although this point cloud does not retain precise knowledge of where the tumor
DNA differs from the normal DNA, the pairwise distances are preserved and similar
regions are mapped near the origin in Rd . If the intensities are similar, then their
ratio is close to 1, and hence the logarithm of the ratio is near 0. The Vietoris–
Rips filtration was constructed around the point cloud Pd .`/ for various choices of
dimension d .

The results. For d D 4, the average zero-dimensional Betti numbers (Fig. 10)
over all of the Vietoris–Rips subcomplexes for chromosomes 8 and 11 clearly
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Fig. 11 Outline of the method used in [1]. (a) Gene expression for chromosome 17q for patients
with two different types of breast cancer. (b) Point clouds and plots of ˇ0. (c) Plots associated with
different sets of patients for a window size equal to 3. The final steps include statistical analysis
for combining and correcting values

distinguished between recurrent and nonrecurrent patients who did not receive
anthracycline-based chemotherapy after surgery. This method reproduced results
presented in [7]. See Fig. 11 for a pictorial summary.
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5.1.3 Drawing Finer Distinctions with Persistent Homology

Arsuaga et al. [1] used persistent homology instead of Betti number averages,
and, starting with the same data and complex, extended the results of [14].
For an embedding dimension d D 3, analyzing zero-dimensional persistence
diagrams had partial success in differentiating various subtypes of breast cancer.
In particular, it was possible to differentiate between cancers with varying disease
progression: the less aggressive types included Normal-like and Luminal A, whereas
the more aggressive types were Luminal B, Basal, and Her2. The zero-dimensional
persistence diagrams could differentiate intrinsic subtypes such as Basal-like and
Her2 further within the class of aggressive cancers. The persistence intervals suggest
that Luminal B has features in common with both the Her2 and the Basal-like
subtypes.

In the future work, Arsuaga et al. hope to relate these results to cancer recurrence
predictions and use the full strength of persistent homology. The fundamental
question is that of which properties of breast cancers – if any – are captured by
higher-dimensional homology groups. The ultimate goal is to gain insight into the
periodicity of disease progression and hence select the most effective treatments.

5.2 Analysis of Neural Structures

A fundamental question arising from investigations of the brain’s perception
mechanisms is how a physical environment is mapped into the visual cortex, and
how the resulting mental maps are used by the hippocampus for spatial navigation.

5.2.1 Activity Patterns in the Visual Cortex

The central thesis of [23] is that spontaneous cortical states resemble the patterns in
oriented stimuli, i.e., that they have the same topology. The work of Singh et al. [35],
described below, provides supporting evidence for this claim.

The data. The basic data consisted of multielectrode recordings from the primary
visual cortex of a macaque7 in two different settings: spontaneous activity when
both eyes were closed, and natural image stimulation when one eye was open and
exposed to a video sequence.

The complex. The recorded data was split into 10-s segments, and the five neurons
with the highest firing rates were selected. The spike trains were binned into 50-ms
intervals, so that each segment corresponded to 200 points. Finally, a witness

7Simia inuus, an Old World monkey.
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Fig. 12 Different topological signatures obtained in the experiment [35]. The top row contains
examples of complexes, with the prescribed Betti number sequence signature .ˇ0; ˇ1; ˇ2/ shown
below the corresponding complex

complex approximation to the Vietoris–Rips filtration was built around 35 landmark
points.

The results. Singh et al. [35] computed the persistence intervals in dimensions
0, 1, and 2, at various scales in the Vietoris–Rips filtration and referred to such
strings of Betti numbers as signatures. Several different Betti number sequences
observed during the experiment are shown in Fig. 12, along with a sample complex
whose homology exhibits those Betti numbers. Figure 13 shows histograms of Betti
number distributions obtained for spontaneous and natural image stimulation, where
the Betti numbers follow the same order as in Fig. 12. The features present for higher
threshold scales correspond to more persistent features of the Vietoris–Rips filtration
built around the data.

The experiment showed that the homology of a circle and sphere dominated the
data, although the circle was much more prevalent during natural image stimulation
than during spontaneous activity. The main difference between the two experimental
settings appeared at lower thresholds, where the spontaneous activity exhibited
much more diverse topological structures.

5.2.2 Activity Patterns in the Hippocampus

The hippocampus is a part of the brain which contains place cells – neurons that
can detect location – clustered into regions called place fields. The hippocampus
plays a central role in an animal’s ability to navigate in its environment. However,
the process by which visual data is converted into a spatial map in the brain remains
mysterious. Dabaghian et al. [10] worked under the hypothesis that the topology of
the map obtained from the place cells in the brain matches the topological features
of the environment. That is, they conjectured that the brain does not have access
to the geometric information and that it converts neural signals into a spatial map
(similar to a subway map) of the surroundings based only on the spiking activity of
the place cells [9,19] and on the connectivity and adjacency information. They also
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Fig. 13 Histograms of Betti number distributions obtained in the spontaneous and natural image
stimulation phases of neural activity. The thresholds correspond to different Vietoris-Rips scale
values. Higher thresholds correspond to more persistent features of the data. For lower threshold
values, the spontaneous activity exhibits diverse topological structures, while natural image
stimulation is still dominated by the homology of a circle and a sphere

assumed that the hippocampus constructs the connectivity map based on the place
cell cofiring patterns.

For example, consider a rat running through a maze. As it begins to explore the
environment, place fields in its hippocampus become active: in the beginning, they
are be disconnected, but over time, as various navigation routes are explored, the
connectivity of the active regions increases and eventually holes begin to appear.

The data. To model the activity of the place cells in a computer simulation, the
authors of [10] considered the firing rate f ; the size of the place field s (the part of
the hippocampus that is activated when a place cell fires), of ellipsoidal shape; and
the number of cells N .
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The complex. A simplicial complex K was constructed as follows. Each place
field was a vertex, and a d -dimensional simplex � of K consisted of .d � 1/ place
fields which fired simultaneously during the experiment. Let k�k denote the total
number of place cells involved in the simultaneous firing. The monotone function
g W K ! R defined by

g.�/ D 1 � c

rk�k
N

for any c > 0 provides a measure of the dissimilarity between the place fields which
form the vertices of � . A positive c was chosen, and sublevelsets of g were used to
generate a filtration of K . This is precisely the simplicial model presented in [9].

The results. The most amazing result obtained by computing persistent homology
was that, if one ignored features with very small lifespans, then the homology of
K was the same as the homology of the environment. The results for different
experimental conditions are summarized and explained in Fig. 14, from [10]. The
top row (i) shows three different experimental configurations of the environment, but
we note that (B) and (C) are topologically the same. The second row (ii) contains the
mean map formation times; each dot represents a place cell with a certain .f; s; N /,
and the size of the dot represents the percentage of trials in which this state produced
the correct outcome. The color range denotes the time needed to form the map,
blue denoting a short time and red almost the whole time period. Note how the
third scenario (C) contains a preponderance of blue dots, which means that it was
much easier for a rat to map this configuration rather than (B), even though they are
topologically indistinguishable.

5.2.3 Terminal Ganglia of Crickets

The cricket Acheta domesticus uses hairs on its rear appendage (called a cercus)
to detect changes in its environment. The hairs are connected via nerve endings
called afferent terminals to the terminal ganglion, one of the three dense neural
centers present in the cricket’s body. These hairs are broadly classified as proximal
and distal, depending on their distance from the ganglion. The proximal hairs are
further divided into long, medium, and short categories, whereas the distal hairs are
always long. Each hair has an orientation, a preferred direction to which it is most
sensitive.

The afferent terminals of hairs with different orientations are in different places in
the terminal ganglion. Hence, the cricket’s response to an external stimulus depends
on the region in the terminal ganglion which is excited by the stimulus, and this
region depends on the direction of the stimulus. A natural question is to determine
whether there is a similar dependence for spatial stimuli: i.e., whether different
spatial stimuli correspond to a spatial segregation of the terminal ganglion. This
would imply that the projections of the long, medium, and short hairs in the terminal
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Fig. 14 (i) Three different experimental configurations of the environment: (B) and (C) are
topologically identical. (ii) Point cloud approximations that reveal mean map formation times
for each space configuration. Each dot represents a hippocampal state as defined by the three
parameters .f; s; N /; the size of the dot reflects the proportion of trials in which a given set of
parameters produced the correct outcome. The color of the dot reflects the mean time taken over
ten simulations: blue denotes a short time, whereas red stands for almost the entire period. The
maximum observed time was 4:3 min for configuration (A), 11:7 min for (B), and 9:3 min for C

ganglion are concentrated in different regions of the terminal ganglion. Since the
structure of afferent terminals and their attachment to the terminal ganglion is rather
complicated, this question remained open until 2012. Recently, however, a positive
answer was provided by Brown and Gedeon [3] using topological tools.

The data. The data came from experiments on afferent terminals [20, 21, 32], with
the data points representing the three-dimensional locations of terminal endings
in ganglia across a large number of crickets. This data was preprocessed via
various standard methods, including Gaussian mixture models and nearest-neighbor
techniques. The data for the afferent terminals of long, short, and medium hairs was
isolated into three separate point clouds.

The complex. The authors of [3] constructed a Vietoris–Rips filtration around each
point cloud, but used the distance d1. The scale-thickened version of such a complex
consists of cubes rather than balls. The reason for doing this involved the large size
of the dataset: cubes require less memory to store on a computer than do simplices,
and there is a parallel theory of cubical homology.

The results. The authors of [3] compared the persistent homology of the initial
point clouds for the long, medium, and short hairs separately, then for all pairwise
unions, and finally for the complete dataset. The results are shown in Fig. 15 as
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Fig. 15 Experimental data for (a) the short hairs, (b) the medium hairs, and (c) the medium
and short hairs combined, together with the generators of the first homology. (a) and (b) have
three persistent generators (orange, purple, and gray), but the last generator is filled up in the
combined set

0 5 25201510 0 5 25201510 0 5 25201510

a b c

Fig. 16 Barcodes of dimension 1: ˇ1 persistence intervals of length more than two for the reduced
datasets for the proximal hairs. (a) Long hairs; (b) medium hairs; (c) short hairs. Persistent
generators are shown in red

barcodes, where each bar is drawn from the birth scale to the death scale and
its length represents the lifespan of the corresponding homological feature. The
persistence of the cubical filtration complex was computed using the software pack-
age cubPersistenceMD [25–27]. The persistent homologies of the individual point
clouds and their unions were found to be significantly different.

As an example of the methodology, we compare the union of the short and
medium proximal hairs. There are three persistent generators in each point cloud
when the clouds are viewed individually. However, when one considers the com-
bined point cloud consisting of data from both short and medium hairs, then only
two of these three persistent generators remain (see Fig. 15). Computations reveal
that one of the persistent generators for the medium set is filled by the terminals
from the short hairs (Fig. 16).

In light of these observations, one can conclude that the nerve endings connected
to the hairs are actually concentrated at different places in the terminal ganglion.
Thus, there is the potential for downstream neurons to use information from the
hairs. The precise nature of how these neurons synapse with the nerve endings in
the terminal ganglion is unknown, and is currently under investigation.
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Part II
Molecular Arrangements and Structures



Combinatorial Insights into RNA Secondary
Structure

Christine Heitsch and Svetlana Poznanović

Abstract The interaction of discrete mathematics with molecular biology advances
our understanding of important sequence/structure/function relationships. By their
nature, biological sequences are often abstracted to combinatorial objects namely
strings over finite alphabets and their representation as graphs or formal languages.
As described in this chapter, results based on these mathematical abstractions
have been used to count, compare, classify, and otherwise analyze RNA secondary
structures. In this way, they provide important insights into the base pairing of RNA
sequences, thereby advancing our understanding of RNA folding.

1 Introduction

RNA has long been known to mediate the production of proteins from DNA.
Moreover, RNA molecules are now understood to perform many vital regulatory
and catalytic functions [21, 28, 33], other than the well-known roles of messenger,
transfer, and ribosomal RNA. Like DNA, RNA molecules are nucleotide sequences.
Unlike the canonical double-stranded DNA helix, most RNA molecules are single-
stranded and fold into different structures via intra-sequence base pairings. Like
proteins, the 3D structure of an RNA molecule has functional significance. Unlike
many proteins, the size of RNA molecules, particularly for longer sequences
such as viral genomes, poses challenges for the experimental determination of
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three-dimensional structures.1 Hence, understanding RNA folding remains a fun-
damental problem in molecular biology.

Experimental methods for RNA structure determination are an active area of
research. To a first approximation, though, the structure of an RNA molecule can
be understood from its 2D configuration. RNA folding is hierarchical [11, 90], with
intermediate states characterized by their dimensionality. The sequence is the 1D,
or primary, structure. Via the noncrossing pairing of complementary bases, RNA
is said to fold into a 2D, or secondary, structure. The runs of stacked base pairs,
known as helices, are interspersed by single-stranded regions, called loops. For
instance, the sequence g6a4c6 D gggggg aaaa cccccc folds into a structure with
one helix and one loop, known as a hairpin. A variety of tertiary interactions,
such as pseudoknot formation and RNA–protein binding, govern the arrangement
of secondary structures in three dimensions. Since many aspects of these 3D
interactions are still not well understood, quantitative modeling and analysis of RNA
folding has focused mainly on secondary-structure prediction [59, 80, 102].

Given a suitable multiple sequence alignment, a common set of base pairs can
be inferred from the mutual information in covarying positions [14, 67]. This is
the current gold standard for RNA secondary-structure determination, especially
for ribosomal sequences. For too many others, however, a sufficiently informative
multiple sequence alignment is not available, and other quantitative methods must
be used to predict RNA base pairing. A basic biological premise is that molecules
fold to minimize the overall free energy. Hence, the majority of current RNA
prediction programs are based on discrete optimization using a nearest-neighbor
thermodynamic model (NNTM).

These methods are computationally similar to DNA sequence alignment, involv-
ing a recursive formulation of the optimal solution which can be solved efficiently
using dynamic programming. In fact, one of the first approaches [68] was simply
to maximize the number of matchings, that is, of complementary base pairs. This is
often called the Nussinov model for RNA base pairing. More sophisticated objective
functions soon followed [95, 105], and have continued to evolve over the years; the
Turner99 parameter set for the NNTM available in the Nearest Neighbor DataBase
(NNDB) [92] has over 8,000 loop energy parameters.2

The optimization methods themselves have also been refined and extended.
The original approach predicted a single minimum-free-energy (MFE) secondary

1On March 5, 2013, the PDB [7] contained 82,105 protein and 2,510 nucleic acid structures.
Concurrently, the Rfam database [12] listed 60 families of RNA molecules with at least one
member having a three-dimensional structure available in the PDB. Of those, five-sixths had an
average length below 250 nucleotides. The only families with an average length exceeding 400
nucleotides were three ribosomal RNA ones (archaeal, bacterial, and eukaryotic). It is worth noting
that a high-resolution structure of the E. coli ribosome was first published only in 2005 [82].
2Nearly all of these are for the special cases of small internal loops, denoted by the number of
single-stranded bases on each side as 1 � 1, 2 � 1/1 � 2, and 2 � 2. The same special cases are
included in the Turner04 parameters. It is worth noting that the number of parameters for formal-
language models can also be quite large, depending on the grammar.
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structure, and this is still the default output for widely used prediction programs
such as UNAfold [58]/mfold [104] and RNAfold [43]. However, it has long been
recognized that this optimization problem is “ill-conditioned” [102], and hence
that it is important to investigate alternative low-energy secondary structures.
These suboptimal configurations can be generated as representative of different
substructures [103], exhaustively computed within a given energy window [97], or
sampled efficiently [23] from the Gibbs/Boltzmann distribution according to the
partition function [61], which also allows the calculation of base pair probabilities.

An alternative to these physics-based methods is an approach grounded in formal
language theory. In this formulation, the noncrossing pairings of an RNA secondary
structure are generated by a stochastic context-free grammar (SCFG), which, when
coupled with phylogenetic information from a multiple sequence alignment, can be
used to predict the common base pairings for a set of RNA sequences [52, 53].

However, there remain questions about RNA folding which these computational
prediction methods are not well suited to answer. Hence, researchers have turned
to combinatorial methods and models to count, compare, classify, and otherwise
analyze RNA secondary structures. By their nature, biological sequences are often
abstracted to discrete mathematical objects, namely strings over finite alphabets and
their representation in graph-theoretic or formal language terms. As we describe
below, this combinatorial abstraction has been particularly effective for RNA folding
since it captures important aspects of the discrete base pairings.

2 Secondary Structures as Matchings: Enumeration

The primary structure of an RNA molecule is a biochemical sequence of four
nucleotides, represented as a string over the alphabet fa; c; g; ug with an orientation
from left (50) to right (30). We denote the pairing of the i th base with the j th as
.i; j /, for i < j . The separation along the sequence between the two base-paired
nucleotides, that is, j � i � 1, is known as the “contact distance” [27], denoted
here by c.i; j /. A set of base pairs containing .i; j / and .i 0; j 0/ is a secondary
structure provided that i D i 0 if and only if j D j 0 and that if i < i 0 then either
i < j < i 0 < j 0 or i < i 0 < j 0 < j . The first condition prohibits base triples, and
the second constrains base pairings to be noncrossing, that is, pseudoknot-free. Both
pseudoknots and base triples are known to occur in RNA molecules; however, they
are typically classified as belonging to the tertiary-structure interactions. Thus, if an
RNA sequence is pictured as points on a line (or a circle), the secondary structure
corresponds to a noncrossing matching.

It is natural to ask for bounds on the number of possible secondary structures for
a sequence of length n. Under the assumption that all pairings .i; j / with c.i; j / � 1

are allowed, there is a recursive formula [95] for the number of secondary structures
S1.n/. More generally, assuming that c.i; j / � m � 1, there is a generating
function for Sm.n/, and first-order asymptotics can be derived for m D 1 using the
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“folklore” theorem of Bender. This yields the oft-cited exponential growth formula
for the number of secondary structures [87]:

S1.n/ �
s

15C 7
p

5

8�
n�3=2

 
3Cp5

2

!n

as n!1.

If base pairs .i; iC1/ were allowed, then S0.n/ would be the Motzkin numbers [26].
However, such pairings are biophysically infeasible. In reality, m should be at least
3, if not 4, but solving the functional equation analytically when m � 3 is signif-
icantly more challenging. In these cases, techniques from analytic combinatorics
guarantee that there is a precisely defined asymptotic limit, which can then be
approximated numerically.

It is also natural to ask for the growth rates of various types of substructures,
which can be broadly categorized as helices and loops. A base pair .i 0; j 0/ is stacked
on .i; j / if i 0 D i C 1 and j 0 D j � 1, and a helix is a run of stacked base
pairs. If .i; j / has no stacking base pair, then it closes a loop of degree d , which
contains k � 1 unpaired nucleotides and d � 0 base pairs. (This definition of
degree is consistent with that for rooted trees [86], where only the children of a
vertex are counted, and it distinguishes the number of enclosed base pairs from
the closing one.) A nucleotide i 0 (or base pair .i 0; j 0/) is in the loop closed by
.i; j / if i < i 0 .< j 0/ < j and there exists no other base pair .i 00; j 00/ for which
i < i 00 < i 0 .< j 0/ < j 00 < j . When d D 0, the loop is a hairpin and, realistically,
k D c.i; j / � 3. When d D 1, the loop contains a single base pair .i 0; j 0/. If
k D i 0 � i � 1 � 1, then the loop is a left bulge; if k D j � j 0 � 1 � 1,
it is a right bulge. Otherwise, there are unpaired bases on both sides of an internal
loop. A multiloop (or multibranch loop or junction) has degree d � 2. Finally, any
remaining nucleotides or base pairs not enclosed by a base pair .i; j / belong to an
exterior loop.

The growth rate of substructures was first addressed numerically in [35], where
various statistical properties were computed for random sequences with lengths up
to n D 100. These included the mean numbers of base pairs and of helices/loops,
which grew linearly with sequence length, as well as the average loop degree, helix
length, and loop size, which converged to “almost constant” values (given as 1.82,
4.57, and 5.42, respectively)3 with increasing sequence length. These values were
calculated for random sequences of length n D 500, and were shown to agree well
with the values for natural sequences.

Subsequent work [44] gave exact asymptotics for these and other characteristics
of RNA secondary structures. The methods paralleled the original enumeration
results for secondary structures by giving recursion formulas and then first-order
asymptotics for the distribution of different substructures using methods from
analytic combinatorics, in particular Darboux’s theorem. Thus, for instance, the

3The degree of a loop here is the total number of base pairs in the loop.
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ratio of the expected number of helices Nn to the expected number of secondary
structures Sn of length n with hairpins of length at least m is

Nn

Sn

� .1� ˛/2.1C ˛/

2Cm � 2m˛
n

where ˛ > 0 is real, and arises from the only singularity of the generating function
on its radius of convergence when the generating function is expressed in the form
of Darboux’s theorem. Hence, the growth rate of the average number of helices is
linear in the sequence length.

While noncrossing matchings are the most immediate combinatorial abstraction
of RNA secondary structures, the most broadly used one has been trees. A plane tree
(also known as a linear tree) is a rooted tree whose subtrees are linearly ordered.
Hence, the linear ordering respects the 50–30 orientation of an RNA secondary
structure, and the root recognizes the ends of the sequence. Under a bijection which
maps unpaired nucleotides to leaves, and base pairs to internal vertices [79], it was
shown that the number of secondary structures for a sequence of length n with k

base pairs is

1

k

 
n � k

k C 1

! 
n � k � 1

k � 1

!
:

The impact of these enumerative results is to highlight the exponentially large
number of possible secondary structures for a given sequence, as well as the
expected growth rate for different classes of substructures, such as the number of
helices.

3 Secondary Structures as Trees: Comparison,
Classification, Motifs, and Analysis

The bijection given above is not the only mapping from RNA secondary structures
to plane trees. These graphical objects are also very useful as a more coarse-grained
model of RNA loops and helices.

Initially, plane trees were used as an abstraction of RNA base pairing to
compare predicted secondary structures of closely related sequences. In the first
approach [84], each loop was represented as one of four types of labeled vertices
(“H”, “I”, “B”, or “M”), and the helices were edges connecting the loops. A similar
representation was used in [55], except that each vertex and edge was additionally
annotated with the number of single-stranded nucleotides or base pairs, respectively.
In the former approach, the trees were converted to strings using parentheses to
indicate subtrees/nesting relations, which were further simplified to retain only the
branching information. These were then compared using a string homology program
developed for DNA sequence alignments to determine similar structures (Fig. 1).
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Fig. 1 An RNA secondary structure and its associated tree representations, ranging from most to
least detailed

In contrast, the latter approach compared trees by introducing a value, the ratio
of the number of identical nodes to the total number of nodes in the two trees,
as an approximation to the tree edit distance. As with strings, the edit distance is
the minimum-cost sequence of operations (insertion, deletion, and substitution of
nodes) needed to transform one tree into the other [101]. Likewise, trees can also be
compared by finding an optimal alignment [48]. In contrast to strings, though, the
alignment distance between two trees may be greater than the editing cost, since all
insertions must occur before any deletions. (See [8] for a comprehensive survey of
results on tree edits.)

An algorithm for comparing RNA secondary structures as trees using edit
operations was given in [85]. A feature of note is that the cost function could
accommodate varying levels of resolution of the tree abstraction. The most coarse-
grained would be the model introduced in [84], followed by that of [55], and
down through further refinements to the nucleotide level [79]. Once all the pairwise
distances had been computed, the next step was to cluster similar structures together,
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resulting in a taxonomy of predicted secondary structures for the 100 tRNA test
sequences.

To facilitate the comparison of larger RNA secondary structures, tree edits
were generalized by introducing the additional operations of node fusion and edge
fusion [2]. These address some of the biological complexity not captured by the
classical tree edit operations. Although string edit operations capture important
aspects of DNA sequence evolution, for RNA sequences it is the structure, and not
the base composition, which is most strongly conserved. These new operations take
this into account by allowing helices to merge (edge fusion) or be disregarded (node
fusion), with an appropriate cost function. This approach was then extended to a
multiscale method for comparing RNA secondary structures [1].

The methods above were primarily focused on comparing predicted secondary
structures for different but related sequences, such as the small subunits of two
ribosomal RNAs. In contrast, there is the problem of comparing different possible
secondary structures for the same sequence. Recall that the space of possible
secondary structures is very large, growing exponentially as a function of sequence
length. Moreover, numerical evidence indicates that the number of low-energy
structures also grows exponentially as a function of the window size above the
minimum free energy. Although exhaustive generation of suboptimal configurations
is possible [97], the space of potential secondary structures is typically explored
through sampling, either deterministically [103] or stochastically [23, 61]. Subop-
timal structures are frequently compared using a “base pair” metric. Often, this
is just the symmetric difference between the two sets of base pairs, but more
sophisticated approaches are also possible, along with other options such as the
mountain metric [62].

No matter what the metric, however, the challenge of making sense of a large
number of different secondary structures remains. One approach [24] has been to
use standard techniques to cluster secondary structures sampled according to the
Gibbs/Boltzmann distribution and the unadorned base pair metric.

A more combinatorial alternative is provided by the RNAshapes program [38].
Although it can be defined more formally, the shape of an RNA secondary structure
is simply the most abstract tree representation, where two or more helices connected
by bulges or internal loops are represented by a single edge. Hence, the shape
of an RNA secondary structure is its branching pattern, which corresponds to a
plane tree with no vertices of degree 1, except possibly the root. Each shape has an
associated shrep, which is the lowest-energy secondary structure with that branching
configuration. As with suboptimal-structure prediction, it is possible to compute
efficiently the shapes of all secondary structures within a given energy window of
the MFE, and their associated shreps. For the sequences tested, the native secondary
structures were always among the shreps identified.

The classification of RNA secondary structures into shapes substantially reduces
the number of distinct folds under consideration, allowing a broader overview of
the RNA configuration space. (If a more detailed perspective is desired, the shape
of an RNA secondary structure can be represented at different levels of abstraction,
as with the tree model.) Furthermore, many of the enhancements to thermodynamic
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optimization for RNA secondary-structure prediction – in particular, the ability to
compute probabilities and to sample stochastically – extend to this more coarse-
grained representation [93]. In theory, this allows a complete probabilistic analysis
of the configuration space by computing the probability of a shape as the sum of all
structures with that branching signature. In practice, this computation is currently
feasible only for shorter sequences such as tRNA (76 nt) or the HIV-1 leader
(281 nt). This is due to the fact that the growth rate of shapes is still exponential
in the sequence length, albeit at a slower rate than that of the secondary structures
themselves.

Under the assumption that any two bases can pair, the asymptotic enumeration
of RNA shapes of length n, where n must be even, was given [57] as

r
6

�
n�3=2

p
3

n
:

Furthermore, the number of different possible shapes for a sequence of length n

is also exponential in n, asymptotically 2:44251 � n�3=2 � 1:32218n. The proof
methods used a context-free grammar, another combinatorial representation for
RNA secondary structures, and techniques from analytic combinatorics. Since this
type of approach has yielded a number of different insights into RNA folding, it will
be addressed in Sect. 4.

Even when RNA secondary structures have different shapes, they may still share
common substructures. Hence, the identification of motifs is an important problem
in the study of RNA folding. This has been approached combinatorially using trees,
which in this case are unrooted and unordered, or more generally using “dual
graphs” to capture pseudoknotted RNA base pairings, as introduced in [36]. In
this context, theoretical bounds on the number of pseudoknot-free RNA motifs are
provided by known enumeration results, such as Cayley’s formula for labeled trees.
It was found that known RNA secondary structures correspond to only a small
subset of the possible motifs, indicating that the “missing” ones would be novel
RNA motifs if found. These results and subsequent work have been very fruitful in
identifying candidates for novel “RNA-like” motifs, especially for their potential in
a more combinatorial approach to aid in the design of such structures. To aid in the
search for new RNA motifs, the RNA-As-Graphs database was developed [37], and
is freely available online.

A similar graph-theoretical approach was used in [41] to distinguish “RNA-like”
trees from those that are very unlikely to be RNA structural motifs. These results
used the domination number of a graph, which is the minimum size of a dominating
set. A subset of vertices D 	 V is dominating if every vertex in V nD is adjacent
to one in D. It was shown that this graph invariant captures biologically meaningful
differences between different candidate RNA motifs.

A more general graph-theoretic method for identifying common motifs in a set
of n unaligned RNA sequences was given in [47]. This approach is based on first
identifying common helices across multiple sequences, and then constructing an
n-partite weighted graph where common helices, with a similarity score exceeding
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some threshold, are connected by edges weighted with their similarity. Putative
motifs, which can include pseudoknots, are found by identifying maximum cliques
of a large enough size. Although the worst-case complexity is exponential in the
number of sequences, the observed run times are much less, owing to the sparsity of
the graph. A more recent algorithm [25] uses graph theory to identify tertiary motifs
in three-dimensional RNA structures.

In addition to comparing RNA secondary structures, classifying them according
to common branching signatures, and identifying motifs in them, plane trees can be
used as a combinatorial model of RNA base pairing.

For instance, the question of “inverse folding,” that is, of designing an RNA
sequence with a particular MFE secondary structure, is of interest in applications
ranging from biomedical therapeutics to biomolecular computation [20, 91]. To
appreciate the challenges, consider an arbitrary plane tree T with n edges, which
represents the desired configuration. In a thermodynamic model where an optimal
secondary structure has the maximum number of stacked base pairs, the sequence
R D .g6a4c6a4/n has an optimal set of 5n base pairs .i; j / stacked on another
base pair .i � 1; j � 1/, with the desired arrangement of helices and loops specified
by T . Hence, we say that R has an optimal secondary structure corresponding to T .
However, any plane tree with n edges corresponds to an optimal secondary structure
for R, since there are

Cn D 1

nC 1

 
2n

n

!

(the nth Catalan number) different ways of pairing the poly-g and poly-c segments
which maximize the base pair stacking. Hence, R does not correspond uniquely
to T .

To achieve the desired configuration, then, we must strengthen the association
between the segments which are intended to pair with each other. In the above
thermodynamic model which maximizes base pair stacking, this can be achieved.
Starting at the root, we walk around the boundary of T , recording a string s of edge
labels. We label each edge first with a distinct integer k � 3 (to ensure stable helices)
and then with a complementary Nk on the return trip. We then expand the string s

into nucleotides by replacing k by gka4 and Nk by cka4. The resulting sequence has
a unique optimal secondary structure corresponding to T .

Although n different labels are sufficient, it is natural to ask whether they are
necessary. From a design perspective, the fewer distinct labels needed, the more
realistic the prospect becomes under less simplified thermodynamic models. In
particular, for a given T , what is the minimum number of integers k needed to
produce a string s which, when expanded into nucleotides, has a unique optimal
secondary structure with the desired arrangement of helices and loops? That is, what
is the minimum k � 3 needed to produce an s corresponding uniquely to T with the
maximum number of stacked base pairs?
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The answer depends exactly on the degree of branching in T . First, consider the
“star” tree T with n edges, which has the maximum degree of branching, with a root
vertex and n leaves. Then dn=2e integers k are necessary and sufficient to produce
a string 3N3N334N4N44 : : : ; which corresponds uniquely to T under the association of
.k; Nk/ and . Nk; k/ for integers 1 � k � 2 � dn=2e. This follows from the fact that
there is exactly one noncrossing matching of k Nk Nk k; however, there are two distinct
ways of pairing up k Nk k Nk.

In general, let m be the maximum number of edges incident on a vertex v in T .
Then dm=2e integers are necessary to label the edges of v according to a preorder
walk, where the label on the second transversal of an edge is the complement of the
first and where each label is used at most once when entering a vertex. Moreover,
if each vertex is sequentially labeled appropriately, beginning with the root, these
integers are sufficient to produce a string which corresponds uniquely to T .

This analysis suggests that local constraints are necessary and sufficient for the
formation of a global structure. In principle, then, any branched structure could be
encoded in an RNA sequence, provided that the helices associate uniquely with
their correct pairing partner. This insight was the basis for a combinatorial approach
to the design problem [42], in contrast to the more common heuristic local search
strategies [4, 13, 43].

Furthermore, analysis of this combinatorial model points to the importance of
branching, especially the degree of branching, in RNA secondary structures. Results
following from [36] have shown that there are many branching topologies that
have not (yet) been observed in known RNA molecules. For instance, the RNA-
As-Graphs Database [37] lists no known examples of secondary RNA structures
with the star topology, having a central loop radiating n helices, when n D 7; 8; 9.
Furthermore, the structures in RNA STRAND [5] exhibit a low degree of branching
overall, with a mean degree for multiloops of 2.66 (and a standard deviation of 0.90),
as do the predicted secondary structures for sequences such as 23S ribosomal RNA
and picornaviral genomes [6].

What then determines the degree of branching of RNA secondary structures?
The MFE secondary structure for an RNA molecule is understood to be an optimal
balance between helices and loops, where base pair stacking is thermodynamically
beneficial and the formation of loops is necessarily “energetically unfavorable” [97].
However, there are different types of loops, with different functions and parameters
for their free energies in the thermodynamic model. What, if anything, can be said
about the trade-offs within the different types of loops?

The energy of a loop in the NNTM is a function of the number (and type) of base
pairs and of single-stranded nucleotides [92]. A comparison of the length-dependent
initiation parameters indicates that, in general, hairpins are the energetically most
expensive class, followed by internal loops and bulges, and finally by multiloops.
(The exterior loop is treated separately from the others.) Of particular note is the
fact that the free energy of multiloops can be increasingly negative as a function of
the loop degree because of the favorable dangling ends and terminal mismatches,
that is, because of the single-stranded stacking interactions with adjacent base pairs.
This suggests that a high degree of branching could be locally favorable. How do we
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reconcile this with the low degree of branching in both known and predicted RNA
secondary structures?

To address this apparent contradiction, let Tn be the set of plane trees with n

edges. Since the trees are rooted, the degree of a vertex is defined to be the number
of children [86]. Hence, a leaf has degree 0. The type of a plane tree T 2 Tn is
the sequence .d0; d1; : : : ; dn�1; dn/, where di is the number of vertices of degree i .
Furthermore [86], a sequence .d0; d1; d2; : : : ; dn/ of nonnegative integers is the type
of a plane tree with nC 1 vertices if and only if

nX
iD0

di D nC 1 and
nX

iD0

.i � 1/di D �1:

Consider again the combinatorial sequence R D .g6a4c6a4/n whose secondary
structures that maximize the number of stacked base pairs are in bijection with Tn.
To simplify the thermodynamics even further, let R0 D .g5ca4gc5a4/n so that
structures with the maximum number of stacks have the property that all enclosed
base pairs are g–c and all closing base pairs are c–g. Then, using the Turner99
parameters [92], the total free energy of the stacks is equal for all these structures,
while the free energy of the hairpins is 4:10 kcal/mol, that of the internal loops
is 2:3 kcal/mol, that of the branching loops with d enclosed base pairs is 3:4 �
1:5.d C 1/, and that of the exterior loop with d enclosed base pairs is �1:9d .
Clearly, the free energy of the loops is increasingly negative as a function of the
degree d . Yet, for a given n, the MFE structure has a low degree of branching, with
d � 2, as expected.

The key to understanding this lies in the fact that, in our combinatorial model,
the energy of a hairpin loop can be assigned to the branching loop which created it.
Using a network-flow-type analysis, an exterior loop of degree d creates d hairpins
and a branching loop of degree d creates d � 1 new hairpins in addition to the
incoming one, which it propagates. An internal loop creates no new hairpins, merely
propagating the incoming one.

The MFE secondary structure for R0 has the maximum number of stacked
base pairs, and the difference in free energy between the MFE structure and other
secondary structures for R0 with 5n stacks is exactly the sum of the loop energies.
Disregarding the special energy function for the exterior loop for the moment, these
are given by the function

a0d0 C a1d1 C
nX

iD2

Œc2 C a2.i C 1/�di ; (1)

where a0 D 4:1, a1 D 2:3, c2 D 3:4, and a2 D �1:5. Using the results for
plane trees given above, the optimum can be calculated by considering the cases
d0 D 1 with d1 D n, and 2 � d0 � n with n � 2d0 C 2 � d1 � n � d0 for
0 � d1 < n separately. The conclusion is that the maximally stacked secondary
structures for R0 which minimize the associated loop energies correspond to plane
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trees with type ..nC 2/=2; 0; n=2; 0; : : : ; 0/ when n > 2 is even and the type
..nC 1/=2; 1; .n� 1/=2; 0; : : : ; 0/ when n > 3 is odd. The analysis when the
exterior loop is treated with its separate function, is considerably more involved;
however, the conclusion remains the same.

Thus, in this combinatorial model, the energetically most favorable configura-
tions are those which maximize the number of multiloops, but which keep the
degree of branching to a minimum. Hence, this analysis suggests that although
branching in RNA secondary structures may be locally favorable, it is globally
balanced by the cost of increasing numbers of hairpins. This trade-off has been
analyzed stochastically in [6], where a large-deviation principle with an explicit rate
function was given, and parametrically in [46], by constructing a polytope of RNA
secondary structures and its normal fan.

As we have seen, representing RNA secondary structures as trees has enabled
researchers to compare structures, to classify them, to identify important motifs,
and, finally, to analyze their branching. As fruitful as this combinatorial abstraction
has been, however, it is certainly not the only possible abstraction. In particu-
lar, interpreting RNA base pairing as a formal language and analyzing it using
(stochastic) context-free grammars provides another compelling illustration of the
importance of discrete mathematics in molecular biology.

4 Secondary Structures as SCFGs: Asymptotics, Prediction,
Homology, and Statistics

Modeling the base pairing of an RNA sequence as a stochastic context-free
grammar has enabled researchers to derive asymptotics for structural motifs.
This combinatorial formulation has also proven very useful in secondary-structure
prediction approaches which do not rely on a thermodynamic model, and especially
for predicting a consensus secondary structure by comparative analysis using
phylogenetic information. Furthermore, SCFGs have been used for structural-
homology recognition in database searches, and as statistical models for evaluating
the prediction accuracy of thermodynamic optimization methods.

In the 1980s, several scientists began applying Chomsky’s linguistic methods to
molecular biology [83]. The first results established that biological sequences can
be modeled using regular grammars; since then, hidden Markov models (HMMs),
which are their stochastic extensions, have been extensively used in biological
sequence analysis. The usual assumption in biological sequence analysis algorithms
is that the positions in the strings are uncorrelated, i.e., the identity of the nucleotide
in one position has no effect on the identity of another nucleotide. However,
this assumption breaks down in RNA sequence analysis because the secondary
structure produces long-distance correlations between nucleotides that base-pair.
These correlations cannot be modeled using regular grammars and, instead, a larger
class of grammars, called context-free grammars (CFGs), needs to be used. In this
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section, we review how CFGs and their probabilistic versions are used to model and
predict RNA secondary structure.

A formal grammar is a quadruple G D .˙; N; S; R/, where ˙ is a finite
alphabet of terminal symbols, N is a finite set of nonterminals, S 2 N is the start
nonterminal, and R is a finite set of production rules that specify how sequences
that contain nonterminals can be rewritten by expanding the nonterminals to new
subsequences. For RNA sequences, the terminals are ˙ D fa; c; g; ug. A grammar
is context-free if all production rules are of the form V ! ˛, where V is a single
nonterminal symbol and ˛ is a string of terminal and nonterminal symbols (˛ may
be the empty string �). An example of a CFG [52] for modeling RNA secondary
structures with at least two unpaired bases in each hairpin loop is the grammar with
nonterminals N D fS; L; F g, terminals ˙ D fa; c; g; ug, and the following rules:

S ! LS j L loops;

L! dFd 0 .d; d 0/ 2 ˙2 base pair starting a helix;

L! t t 2 ˙ unpaired nucleotide in a loop;

F ! LS termination a helix;

F ! dFd 0 .d; d 0/ 2 ˙2 base pair extending a helix:

The vertical bar here serves as a separator between two productions. The parse

S ! LS ! aF uS ! acFguS ! acLSguS ! acaSguS

! acaLguS ! acaaguS ! acaaguL! acaaguc

corresponds to the structure with primary sequence acaaguc and base pairs .1; 6/

and .2; 5/.
CFGs coupled with analytic combinatorics can be used as an efficient tool for

deriving the asymptotics of the expected number of motifs in secondary structures
as a function of sequence length. For example, Clote et al. [19] computed the
expected 50–30 distance over all secondary structures with n nucleotides in which
all hairpins have at least � unpaired bases, and showed that it does not depend on
n. The 50–30 distance in a secondary structure on a1; : : : ; an is the minimum path
length from a1 to an in the graphical representation of the structure as a matching
of n points on a line to which the edges .ai ; aiC1/, 1 � i � n � 1, are added.
Clote et al. constructed a CFG which generates strings over fı; .; /g, in which the
parentheses are correctly matched and each pair of corresponding parentheses is
at least � positions apart. The grammar productions were defined so that exterior
nucleotides could be distinguished from nucleotides that are not in the exterior
loop. Using the DSV methodology [81] Clote et al. obtained a functional equation
for the generating function S�.z; u/ of secondary structures with respect to the
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sequence length and the number of exterior bases in the structure. The average 50–30
distance (and its higher moments if desired) can be computed from the asymptotics
of the coefficients of S� .z; u/ and its derivatives. The same techniques can be
used to find the expected 50–30 distance in a structure over a sequence compatible
with a stickiness p. The stickiness parameter p represents the probability that any
two positions i; j can base-pair. For example, for sequences with mononucleotide
frequencies pA; pC ; pG; pU , in which only canonical base pairs are allowed, the
stickiness is p D 2.pApU C pGpU C pGpU / [44]. The asymptotic number of
canonical (without isolated base pairs) and saturated (no additional base pair can
be added without violating the noncrossing condition) structures with n nucleotides
was derived in [18] using the same method.

Adding a stochastic structure to a grammar allows the development of proba-
bilistic models, which can be used for a variety of computational problems related to
RNA. These include secondary-structure prediction for a single sequence, consensus
secondary-structure prediction by comparative analysis, and structural homology
recognition in database searches. Formally, a stochastic CFG is a quintuple G D
.˙; N; S; R; P /, where P is a probability function that assigns a probability
P.V ! ˛/ to every production rule V ! ˛ such that

P
˛ P.V ! ˛/ D 1 for

every nonterminal V [31]. The SCFG induces a probability distribution over the set
of parses if one allows “infinite parses” as well: the probability of each parse is the
product of the probabilities of the rules applied to produce it.

An SCFG that can be used for RNA structure prediction generates a language of
RNA sequences, and productions are chosen so that parses of a string correspond
to secondary structures. Ideally, this correspondence is one-to-one and the optimal
parse of a sequence can be interpreted as the optimal structure. Such grammars
are called structurally unambiguous. A secondary structure for a single nucleotide
sequence can then be predicted using two methods. The first one predicts the most
probable parse of the sequence. This can be done efficiently using the Cocke–
Younger–Kasami (CYK) algorithm [31, 99], which computes the probability of
the most likely derivation, and traceback can be used to find the most likely
structure. The CYK algorithm is analogous to the Viterbi algorithm for HMMs
and was originally designed for SCFGs in Chomsky normal form, but other
parsers [15, 32, 88] can deal with any SCFG. The second method applies posterior
decoding using base-pair probability matrices. These can be computed using the
inside–outside algorithm [54]. The method then predicts the structure with the
maximum expected number of correct positions via dynamic programming.

The idea of using formal language methods for RNA secondary-structure
prediction goes back to Sakakibara et al. [74] and Eddy and Durbin [34]. Since then,
a number of prediction methods that combine thermodynamics and evolutionary
information have been designed [9,10,16,45,49,60,76]. One of the most successful
of the fully developed probabilistic methods that predict a consensus structure
for a given alignment of sequences was developed by Knudsen and Hein [52]
and implemented in Pfold [53]. For a single sequence, the method predicts the
most likely structure for the SCFG, while for multiple sequences it maximizes
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the joint probability of the structure and the alignment given the maximum
likelihood estimate of the phylogenetic tree relating the sequences. This model
can be readily extended to include experimental information about the structure
obtained from chemical probes [89]. It is worth mentioning here that chemical
and enzymatic-probing data have been integrated into the thermodynamic model
as well [22, 94, 96, 100].

Designing SCFG-based methods for structure prediction requires constructing
a grammar with appropriate production rules and obtaining good probability
parameters. A good design would be one that captured the important statistics of
structural features with as much biological realism as possible. However, it must
also be simple enough, with a reasonable number of parameters that could be
trained on existing data. The space of SCFGs that can be used for RNA secondary-
structure modeling is quite large. However, the currently dominant ones seem to
have been constructed using the intuition of the researchers [29]. The seemingly
arbitrary choice of grammars and the issue of grammar comparison was addressed
in [29], where several grammars were compared. However, the set of grammars
tested was by no means exhaustive. It is only recently that automated search
techniques have been employed to find potentially more effective grammars [3].
The search was done on grammars in which the production rules are of the type
T ! U V , T ! :, T ! .U /, for nonterminals T; U; V . The number of such
grammars with n nonterminals is 2n3Cn2Cn, which allows exhaustive search for
n D 2. Larger grammars were explored using an evolutionary algorithm. The search
proved effective in finding grammars that have strong predictive accuracy, as good as
or slightly better than those designed manually. The probabilities in a grammar are
usually taken to be the maximum-likelihood probabilities obtained from a selected
set of trusted secondary structures. If the grammar is structurally unambiguous,
these can easily be found by counting the frequencies of the productions used in
parsing the structures. Otherwise, they can be estimated using the inside–outside
algorithm, analogously to the forward–backward algorithm for HMMs.

Note that even though the sum of the probabilities of all productions starting with
a fixed nonterminal is 1, this may not define a probability distribution on the whole
language. This happens if a parse starting from S does not end in finitely many
steps with probability 1. Such grammars are called inconsistent. A simple example
is the grammar with one nonterminal and one terminal symbol, and production rules
S ! SS and S ! a [17]. Let p be the probability of the first production, let 1�p

be the probability of the second one, and let Ph be the total probability of all the
parse trees with depth less than or equal to h. Then P1 D 1 � p (corresponding
to the parse S ! a) and PhC1 D pP 2

h C 1 � p for h > 1. It is not difficult to
show that Ph is nondecreasing and converges to minf1; .1� p/=pg. This means
that proper probability over all parses is obtained if and only if p � 1

2
. Interestingly,

SCFGs with inside–outside parameters obtained from a finite training set are always
consistent [75]. However, even for inconsistent grammars, it always makes sense
to consider the probability distributions induced by the SCFG on strings of fixed
length n by taking appropriate conditional probabilities. Namely, the probability of
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a structure with n nucleotides is the sum of the probabilities of all its parses divided
by the total probability of a parse to finish with a string of length n.

It then becomes natural to ask how, given a CFG, the induced probability
distribution changes with a change in the probability parameters. Motivated by
Dowell and Eddy [29], where the Pfold grammar was benchmarked against eight
other SCFGs for secondary-structure prediction, with the conclusion that it achieves
the best prediction accuracy, the present authors analyzed this grammar in detail
in [69]. Specifically, we analyzed the distribution of the numbers of base pairs,
helices, and various types of loops in structures over a sequence of length n. Using
the DSV methodology and analytic combinatorics, we proved that the distributions
of these motifs converge to a Gaussian, and we computed the expected number
of motifs as a function of n. As a surprising consequence, we obtained some
relations between the expected numbers of motifs which do not depend on the
probability parameters of the SCFG which define the distributions. For example, the
expected number of helices is always four times larger than the expected number of
multiloops. This provided a mathematical explanation of a fact that was observed
previously by Knudsen [51], that the Pfold grammar predicted the structure of tRNA
much more accurately than that of 5S rRNA. Namely, the tRNA structure is known
to resemble a cloverleaf – it has one multiloop with four helices – whereas the helix-
to-multiloop ratio in the 5S structures is about 8. We also showed that the expected
50–30 distance is bounded by a constant that does not depend on the sequence length.
As already mentioned, this phenomenon was proved by Clote for the homopolymer
model and for structures with stickiness p [19], and it has been experimentally
observed for the thermodynamic model [98].

Besides providing a simple method for secondary-structure prediction using the
CYK algorithm, SCFGs can also be a basis for more complex prediction approaches.
For example, a stochastic sampling algorithm can be designed as a probabilistic
counterpart to Sfold using SCFGs [65,78]. Moreover, modeling secondary structure
with an SCFG has the advantage that it provides a way of designing a probabilistic
model that combines information from different scoring systems that otherwise do
not combine naturally. Pfold was one example; it computed the optimal structure
for a given alignment. Another example of such an application is the design of
a consensus structure prediction algorithm for two homologous sequences which
are not a priori aligned. Such an algorithm should also combine evolutionary
and thermodynamic information. However, it is not clear what score should be
optimized by the algorithm so that a mathematically optimal structure is most
likely to represent the biologically correct structure. The initial algorithms used
an ad hoc additive combination of alignment-scoring matrices and base pair
maximization [40], or optimized the sum of two structures’ predicted free energies,
while using an ad hoc pseudoenergy penalty for insertions/deletions [60].

Dowell and Eddy [30] developed an algorithm for simultaneous folding and
alignment of two sequences using “pairSCFGs”. These extend traditional SCFGs
for RNA modeling by emitting two correlated sequences instead of just one, and
an RNA sequence is also allowed to contain a gap to accommodate insertions
and deletions. Good pairSCFGs can be constructed from structurally unambiguous
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traditional SCFGs, albeit with some modifications to ensure that the design is
also alignment-unambiguous. This is an additional desired property of pairSCFGs,
which guarantees that the optimal parse corresponds to the optimal alignment and
structure.

In addition to prediction, SCFGs can be also be used for measuring the similarity
of a sequence to a given family of aligned homologous sequences with a known
structure. This is applicable in situations where one is presented with a multiple
alignment of an RNA sequence family with known secondary structure and wants to
search a sequence database for homologs that significantly match both the sequence
and the structure of the query. An SCFG built to capture the consensus structure of
an alignment with position-specific scores is called a profile SCFG, or a covariance
model, and was first described by Eddy and Durbin [34]. It is built around the
consensus structure tree so that each node corresponds to one or more nonterminals.
One of those nonterminals corresponds to the type of the node (a base pair, unpaired
bases on the 50 or 30 side of a helix, or a bifurcation), and other nonterminals are
used to model deletions and insertions in the target sequence with respect to the
consensus. Profile-SCFG-based search for homologs of a single RNA molecule with
a known secondary structure is also possible [50]. A collection of RNA sequence
families, represented by multiple sequence alignments and covariance models, is
freely available from the online database Rfam [39].

Finally, we mention an SCFG-based statistical method for estimating the accu-
racy of structures predicted by other models, such as the MFE structure, proposed
by Nebel [63, 64]. This method uses a kind of distance function defined in terms of
secondary-structure motifs and their lengths to compare the MFE structure with the
expected values for the model, which are supposed to describe the set of structures
used for the training of the grammar probabilities and can be obtained using analytic
combinatorics.

5 Conclusion

As we have illustrated, there are several combinatorial structures that have been used
as models for RNA base pairing. Historically, matchings were the first one used,
and were very appropriate for obtaining bounds on and asymptotic estimates of the
size of the space of secondary structures. Trees, on the other hand, are well-studied
mathematical objects that are useful for capturing more coarse-grained information
and for multiscale comparison of secondary structures. SCFGs are attractive because
they are readily extendable to allow incorporation of different types of information
in applications such as secondary-structure prediction. In other words, all of these
different models emerged as the right tool for answering some relevant biological
and computational questions, and their future use will depend on how easily they
can be extended to model biological reality.

For example, although this review does not address pseudoknots, much has
been done in understanding their combinatorics. A pseudoknot is formed by base
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pairs .i; j / and .i 0; j 0/ such that i < i 0 < j < j 0. Following directly from
the definition, pseudoknotted structures can be modeled as matchings which, when
drawn on a circle, have some base pairings that cross. Appropriate restrictions on
the type of crossings allowed can be introduced to reflect the biological complexity
of pseudoknots. Hence, matchings provide a model which permits an in-depth
combinatorial and probabilistic analysis of pseudoknots, including their uniform
generation [70]. On the other hand, using CFGs for general pseudoknot modeling
is challenging because arbitrary nonnested correlations cannot be generated using a
single CFG. The next category of languages in the Chomsky hierarchy, the context-
sensitive ones, are not attractive because their parsing is an NP-complete problem.
However, modeling pseudoknotted structures using SCFGs becomes possible if
some restrictions on the complexity of the pseudoknots are assumed. For example,
Rivas and Eddy [72, 73] have described a class of extended SCFGs that can model
a restricted class of pseudoknots; see also [56, 66, 71, 77].

In addition to pseudoknots, there are many open problems in RNA folding
which may be amenable to combinatorial modeling and analysis. The foremost
remains that accurate prediction of RNA secondary structures, particularly of longer
sequences with many thousands of nucleotides. Related problems include the incor-
poration of kinetic effects into secondary-structure prediction algorithms, the
identification of structural motifs, the design of RNA secondary structures, and
the challenge of extending our understanding beyond base pairing to the modeling,
analysis, and prediction of three-dimensional RNA molecular structures.
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Redundant and Critical Noncovalent
Interactions in Protein Rigid Cluster Analysis

Naomi Fox and Ileana Streinu

Abstract A protein’s fold is held together by weak noncovalent interactions,
known to break and form during naturally occurring fluctuations. Rigidity analysis
leverages connectivity information about these interactions, calculated from PDB
structural data, and computes a decomposition of the molecule into groups of
atoms, called rigid clusters, that tend to remain together during such local motions.
A crucial question in the application of this technique is how robust the results
of rigidity analysis are to small variations in the noncovalent network. If any
particular interaction within a cluster were to break, would the cluster remain rigid,
would it “shatter” into many smaller clusters, or would the flexibility increase
but only negligibly? In this chapter, we overview the mathematical principles
underlying rigidity analysis, and propose a method for classifying the interactions
which are redundant or critical for a computed cluster decomposition. We also
measure the change in cluster size upon the interaction’s removal, which we refer
to as its criticality value. In addition, we propose a new method for assigning
scores to the rigid clusters based on the fraction of interactions that are redundant.
We demonstrate this classification scheme on a data set of multiple conformations
of 16 proteins. We have found that typically the dominant rigid clusters do not
contain highly critical interactions, yet, when such interactions exist, they tend to be
concentrated around the active site. In our case studies, we have found that removal
of these interactions results in functionally relevant changes in rigidity. We present
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our results on the redundancy and presence of critical interactions on benchmarking
data sets, with case studies on adenylate kinase, dihydrofolate reductase, DNA
polymerase ˇ, HIV-1 protease, and cytochrome-c. We also provide survey results
on a larger data set of 150 proteins. These methods have been implemented in
the KINARI-Redundancy server, publicly available from the KINARI-Web site
(http://kinari.cs.umass.edu).

1 Introduction

Atomic fluctuations are essential for protein function, because they permit the
structure to adjust to the binding of another molecule [32]. The native state is
stabilized by weak noncovalent interactions, namely hydrogen bonds (H-bonds) and
hydrophobic interactions, which break and form frequently during these fluctua-
tions. When existing weak interactions are broken, the released atomic groups can
make new interactions of comparable energy, potentially resulting in conformational
rearrangement. Protein structures continuously fluctuate about the equilibrium
conformation observed in X-ray crystallography and NMR experiments. Therefore,
when developing methods that rely on Protein Data Bank (PDB) structural data to
predict protein rigidity and flexibility, it is crucial to assess how these fluctuations
may affect the results.

Rigidity analysis is a computationally efficient method for predicting rigid and
flexible regions in proteins. Examples of systems for this include MSU-FIRST (now
Proflex) [20], ASU-FIRST [4], and our own KINARI [9]. A typical application
to a 100 residue protein takes seconds, permitting large data sets to be analyzed.
Rigidity analysis has been used to show the change in flexibility between different
conformations and complexes, such as HIV-1 protease [20] and the Ras–Raf
complex [13].

Figure 1 depicts the step-by-step processing performed by KINARI. The protein
is first modeled as a body–bar–hinge framework, and then a special multigraph
is built, where each body is assigned a vertex, each hinge is assigned five
edges, and each bar is assigned one edge. This graph serves as input to a
pebble game algorithm, which determines the components in terms of .6; 6/-graph
sparsity, a concept introduced in [27]. The output of the pebble game is then
converted back in terms of clusters of atoms within the protein. An educational site
(http://linkage.cs.umass.edu/pg/) and a video [28] introducing these mathematical
concepts to a general audience are linked to from the KINARI-Web site.

A simplifying assumption of this approach is that the set of interactions is static.
Yet, as demonstrated in molecular dynamics simulations, noncovalent interactions
break and form rapidly, typically over nanoseconds [26]. An open question con-
cerns the sensitivity and robustness of the rigidity results obtained from a single
conformation, typically taken from the PDB. When using a rigidity analysis system,
how confident should we be in the resulting rigid cluster decomposition? If any
particular interaction within a cluster were to break, would the cluster remain rigid,

http://kinari.cs.umass.edu
http://linkage.cs.umass.edu/pg/
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Fig. 1 Steps of protein rigidity analysis. “BBH” stands for the calculated body–bar–hinge
mechanical model that captures the interconnectivity of the resulting rigid clusters

would it “shatter” into many smaller clusters, or would the flexibility increase but
only negligibly?

In this chapter, we present our investigation of the prevalence of redundant and
rigidity-critical interactions:

1. Redundant interactions. How much redundancy is built into the network of
interactions which hold the rigid clusters together? What is the tolerance of a
cluster to the loss of any particular interaction?

2. Rigidity-critical interactions. How prevalent are nonredundant (critical) inter-
actions? These are the interactions which, when broken, cause a nonnegligible
change in flexiblity that may affect function. How much will a cluster’s size
decrease when a critical interaction breaks?

We address these questions by proposing a method to classify noncovalent
interactions. Based on their individual contribution to the rigidity of the cluster,
they are labeled as either redundant or critical. In addition, we describe a method
for scoring clusters using the classification. The criticality value of an interaction
is the change in cluster size upon the interaction’s removal. We characterize the
typical occurrence of redundant and critical interactions with an evaluation on a
benchmark data set of over 120 proteins. We show with case studies that interactions
with criticality values greater than or equal to 0:10 tend to be concentrated in the
same local region and their removal causes functionally relevant changes in rigidity.
We have made these methods available from the KINARI-Web server (http://kinari.
cs.umass.edu) [9].

http://kinari.cs.umass.edu
http://kinari.cs.umass.edu
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2 Background

Protein rigidity analysis processes molecular data and provides a coarse-grained
representation capturing a few essential mechanical properties of the molecule.
The coarse-grained representation directly provides flexibility information, and this
can, in principle, be subsequently leveraged in motion generation methods [12].
In this section, we describe the details of the steps undertaken by KINARI, as
depicted in Fig. 1. First, we provide a brief introduction to the mathematical rigidity
theory on which the software relies. Then we discuss how the protein modeling is
performed.

2.1 Rigidity Theory

A body–bar–hinge framework is a 3D mechanical structure made from rigid bodies,
pairs of which are connected through hinges and bars. The hinges admit only a
rotation of the two incident bodies around the hinge axis. The fixed-length bars
connect the bodies at universal joints which allow full rotational freedom. If the
only motions of the framework are the trivial rigid motions (those which move the
whole system rigidly, maintaining all the pairwise distances between all points),
then the framework is said to be rigid. Otherwise, it is flexible. Figure 1 shows an
example of a body-bar-hinge framework created in Step 1, composed of three bodies
connected through two hinges and one bar.

In isolation, a rigid body has six trivial degrees of freedom (DOFs): all rigid
motions can be generated by translations along, and rotations about, the x, y, and z
axes. Two disconnected rigid bodies have a total of 12 DOFs; k disconnected rigid
bodies have a total of 6k DOFs. To a body–bar–hinge framework we associate a
multigraph (called the Tay graph), in which a body is represented by a vertex. Then,
each bar between two bodies is represented by an edge between the corresponding
vertices in the Tay graph, and a hinge is represented by five edges. The intuition
behind this association is that when two bodies are connected by a bar, one DOF is
removed. If two rigid bodies are connected at a hinge joint, five DOFs are removed.
Adding additional bars between the two bodies can remove up to six DOFs, at
which point the two rigid bodies are rigidly attached and form a single rigid body.
The remaining trivial six DOFs cannot be removed by connecting the bodies by
additional bars or hinges.

A simple counting rule, due to Tay [34] (see also [35]) and rigorously proven to
be valid by Tay’s theorem, can be used on a multigraph associated to a body–bar–
hinge framework to determine the rigidity and the DOFs of the framework.

Theorem 1. Tay’s theorem: Theorem for 3D body–bar–hinge framework
(Tay, Whitely). A multigraph G, with n vertices and m edges, is the graph of a
generic minimally rigid body–bar–hinge framework iff any subset of n0 vertices in
G spans at most 6n0 � 6 edges and m D 6n � 6.
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This theorem gives a combinatorial condition for a generic body–bar–hinge
framework to be minimally rigid. Generic means that it holds for most of the
geometric realizations of the graph. However, it is possible that some very special
situations may still be flexible, owing to specific geometric dependencies which can-
not be detected by combinatorics only. Minimal rigidity means that the framework
is rigid, but the removal of any constraint equivalent to one bar will turn it into a
flexible structure.

For body–bar–hinge frameworks, the (6,6)-pebble game algorithm of [27] run
on the associated graph determines if the framework is generically minimally
rigid and, if not, computes its rigid components, DOFs, and overconstraints.
The pebble game algorithm runs in time O.n2/, where n is the number of vertices
in the multigraph [27]. Internally, the algorithm operates on an auxiliary directed
multigraph, called the pebble-game graph, as follows. The graph is initialized by
placing six pebbles on each vertex, representing the six DOFs contributed by each
body. Then edges are considered one at a time, in an arbitrary order. An attempt is
made to insert the edge into the pebble-game graph. The acceptance rule is that at
least seven pebbles must be present on the vertices that mark its endpoints. Special
rules are applied in order to collect seven pebbles from neighbors, following the
existing directed edges and a depth-first search strategy, but if this is not possible,
then the edge is rejected and declared “overconstrained”. Otherwise, the edge is
declared “independent” and is inserted into the pebble-game graph. As this is done,
a pebble is removed from one of the two endpoints, and the newly inserted edge is
oriented away from the endpoint which has just lost a pebble. Figure 2 shows the
execution of the pebble game on the example graph of Fig. 1. The algorithm also
maintains collections of edges that cannot be extended further, and these correspond
to rigid components (shown in red in the last snapshot in Fig. 2).

2.2 Modeling Molecules for Rigidity Analysis

We focus now on the modeling core of our software package KINARI. We use
modeling to refer to the process and the rules for associating a body–bar–hinge
framework to a molecule. The bodies, made of rigid groups of atoms, are determined
first, then bar and hinge constraints are placed between them, depending on the type
of bond. Figure 3 illustrates how bodies are determined from atoms connected by
covalent bonds. Each multivalent atom, together with its bonded neighbors, forms
a rigid body (outlined in the figure by blue and green pipes). When two bodies
overlap, the overlap consists of two bonded atoms; they determine an axis which acts
as a hinge (Fig. 3b). When two atoms are connected by a nonrotatable bond, such
as a peptide or double covalent bond, an additional bar is placed between the two
bodies in the mechanical model to lock the hinge, prohibiting rotation. Stabilizing
noncovalent interactions, namely hydrogen bonds (“H-bonds”) and hydrophobic
interactions, can in principle be modeled in many ways, depending on how “strong”
we believe the interaction to be. This is done by placing between one and six
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input graph

flexible
1 degree-of-freedom

Fig. 2 Execution of the pebble game algorithm for determining rigidity of a 3D body–bar–hinge
framework. The pebble game is run on an auxiliary directed graph. At the start of the game, six
pebbles are placed on each vertex, representing the six degrees of freedom contributed by each
body. When an edge is placed, a pebble is removed. In this example, vertices 2 and 3 have been
found to belong to a single component (The images were generated with the Java applet from [28])

body 1

body 2 hinge axis

a

body 1

body 2

hinge axis

b

Fig. 3 Modeling the mechanics of a molecule. (a) Each body is composed of a carbon atom (gray)
and its covalently connected neighbors. The two bodies are outlined in green and blue. Note that
each C atom belongs to both bodies. The C–C bond is mechanically equivalent to the hinge shown
in (b)

bars in the model. In KINARI, the default model used for H-bonds is the same
as for covalent bonds. Hydrophobic interactions are modeled with the heuristic
of ASU-FIRST [4], placing an interaction between C–C, C–S, or S–S pairs when
their van der Waals surfaces are within a cutoff distance of 0.25 Å. By default, for
each hydrophobic interaction, two bars are placed into the mechanical model. Since
this kind of modeling may sometimes give biologically unrealistic results (e.g., by
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producing a protein that appears to be more rigid than is known from experimental
data), KINARI allows the modeling of noncovalent interactions to be changed by
the user, either at the level of individual interactions or using a cutoff value which
eliminates those interactions considered to be too weak.

Once the modeling has been performed, the algorithm for rigidity analysis
described in the previous section is applied. The resulting output provides a list of
groups of atoms that remain rigidly attached to each other by the given interactions;
these sets of atoms form larger rigid bodies, referred to as rigid clusters. These
clusters are maximal; no other atom can be added to expand any of them (under the
given set of interactions).

3 Literature Review

The most accurate computational methods for studying protein motion are based
on all-atom physical simulations, called molecular dynamics (MD) simulations.
At short simulation times, these methods reveal atomic fluctuations. Longer simula-
tion times, long enough for domain-level conformation changes, are prohibitively
expensive, computationally. Therefore, other, more efficient methods, which do
not rely on simulation, have been proposed to probe the rigidity and flexibility of
macromolecular structures.

When two distinct conformations are available, it has been proposed that
a rigid cluster decomposition can be computed by comparing them. Heuristics
for accomplishing this decomposition have been developed in HingeFind [41],
DynDom[16], and RigidFinder [1]. A more challenging task is to compute a rigid
cluster decomposition based on a single conformation, since most of the available
data in the PDB is of this nature. The pebble game rigidity analysis described in the
previous section is one such method. An alternative approach is based on normal
mode analysis; this examines a single structure to detect the mobility of atoms by
computing correlated motions [6]. It does not directly determine information about
the rigidity and flexibility of structural regions, but several heuristics have been
proposed to address this issue. Normal mode analysis may show that atoms in a
certain domain, such as a mobile ˛-helix, move collectively, but it will not show that
this region is rigid and unlikely to deform while other regions, which are flexible,
will permit deformation.

Various other efforts have been made to quantify local flexibility in a protein.
Flexibility indices have been proposed based on B-values from PDB files and
normal mode analysis [23, 25, 37].

Pebble-game-based rigidity analysis was pioneered by Jacobs, Thorpe, and
collaborators at Michigan State University, and implemented in the FIRST soft-
ware package (now called Proflex) [19, 20]. A second implementation of FIRST,
developed in Thorpe’s laboratory at Arizona State University, was based on a
different underlying model and a variation of the pebble game, and made available
on the Flexweb server (http://flexweb.asu.edu) [4]. To distinguish between the two

http://flexweb.asu.edu


174 N. Fox and I. Streinu

systems, we refer to the two versions as MSU-FIRST and ASU-FIRST. The FRODA
method was included in ASU-FIRST to generate motions by moving rigid clusters
and maintaining chemical constraints [38]. Recently, we have developed a compre-
hensive library for rigidity analysis of molecular structures, together with a Web
application, KINARI-Web (http://kinari.cs.umass.edu) [9]. The modular design of
our software allows easy extensions and tool development. A specific feature is
the inclusion of several modeling options, allowing more freedom in exploring
biological hypotheses and future benchmarking experiments. We have also recently
released a library, KINARI-Lib, which contains an implementation of core data
structures and algorithms for rigidity analysis [10]. A rigorous mathematical and
computational presentation of pebble game algorithms is available [27].

One of the main differences between KINARI and ASU-FIRST is accuracy
in modeling. KINARI builds a mechanical model where rigid bodies of atoms
overlap on rotatable bonds behaving like hinges, as shown in Fig. 3. By contrast,
ASU-FIRST models the protein using a special kind of multigraph where vertices
represent the atoms and each edge represents the removal of a single degree of
freedom between the atoms, skipping the mechanical modeling steps (steps 1 and 5
shown in Fig. 1). As a result, the rigid clusters computed by ASU-FIRST are disjoint
and share no hinge joints. The rigid clusters identified by KINARI and ASU-FIRST
are thus not identical, but when the same input PDB files, bonds and interactions,
and modeling options are used, they will be in one-to-one correspondence. There
is ongoing work on KINARI to investigate extensions that will further increase and
stabilize the modeling accuracy, with the goal of obtaining a set of biologically
validated modeling rules. In particular, we have used KINARI to investigate
improved modeling accuracy of H-bonds and hydrophobic interactions [8]. Also,
KINARI has been applied to predict deleterious effects of mutations [22] and to
probe flexibility changes in crystals and biological assemblies [21].

Finally, we discuss those extensions of pebble game rigidity analysis which
provide insight into cluster redundancy and deformability. The output of MSU-
FIRST included a flexibility index, associated with each bond, to “characterize the
degree of flexibility” [20]. We will describe the MSU-FIRST flexibility index in
further detail in Sect. 5.4, where we compare it with our method for scoring rigid
clusters. Gohlke et al. extended the MSU-FIRST flexibility index from a single
protein to an MD trajectory, and used it to show changes in flexibility during protein
docking [13].

A related method, made available in ASU-FIRST and on the Flexweb server,
is dilution analysis [17, 33]. This has been interpreted as simulated unfolding
because H-bonds are broken one by one, in order of energy. The rigid clusters
of the protein are computed at each step, with the most stable part, called the
folding core, remaining at the end. Dilution analysis was used to show that proteins
undergo a rapid phase transition from rigid to floppy [17], to computationally
identify the folding core of a protein [33], and to compare patterns of rigidity within
homologues [11, 39].

Dilution analysis studies an ensemble of models which are hypothesized to reveal
the unfolding path. Other efforts have been made to study an ensemble around

http://kinari.cs.umass.edu
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the native state. The duty cycle, calculated from MD snaphots, the duty cycle is
the percentage of time a particular interaction is present. It has been used as a
criterion for determining which interactions to include in a rigidity analysis [26].
More recently, Gonzalez et al. proposed a heuristic method, called the virtual pebble
game, for predicting the ensemble-averaged rigidity for a protein with fluctuating
noncovalent interactions [14].

The method we propose here, redundancy analysis, has two goals. First, to assess
the sensitivity of predicted clusters to small variations in the network of interactions.
Second, to validate if deformability is an intrinsic property of protein rigid clusters.
This approach is distinct from all previous extensions of rigidity analysis. Rather
than studying unfolding, as was done with dilution analysis, our goal is to better
understand the rigidity, stability, and flexibility properties of the protein in its native
state. Since we are interested in finding explicit critical interactions, we cannot do
this by sampling, which may miss them; instead, our method performs an exhaustive
study of all the existing weak interactions, and classifies them.

4 Materials and Methods

In this section, we present our methodology for redundancy analysis of proteins.
We introduce two algorithms, which are applied to a rigid cluster first for classi-
fying redundant and critical noncovalent interactions and second for calculating a
redundancy score. Later in this chapter, we will evaluate the method through case
studies and surveys on several data sets. The resulting software package, KINARI-
Redundancy, is available as an extension to the KINARI-Web server [9].

To apply redundancy analysis, we must preprocess the PDB file and select the
modeling options. The KINARI curation tool allows the user to select atoms, lig-
ands, chains, water molecules, etc. for the rigidity analysis. If the PDB file does not
include hydrogen atoms, they can be added by the REDUCE software package [40],
which is incorporated in KINARI. The curation tool then calculates the various
atom–atom interactions, such as covalent bonds, hydrophobic interactions, and
H-bonds, and assigns energies to the H-bonds. KINARI identifies H-bonds using
the HBPLUS software package [31], and calculates the energy with the Mayo Lab
function [30]. The curation tool discards the weaker H-bonds with energies smaller
than a user-specified cutoff. Hydrophobic interactions are calculated using the same
methodology as that developed in ASU-FIRST, and described as function H3 in the
FIRST user guide [7]. For every carbon–carbon, carbon–sulfur, or sulfur–sulfur pair,
if the van der Waals surfaces are within a cutoff distance of 0.25 Å, the curation tool
places a hydrophobic interaction on the pair.

For each type of interaction, the user selects how to model the interaction from
the available options of hinge, or 0 to 6 bars. As previously described, KINARI
uses a body–bar–hinge model and the (6,6)-pebble game [27, 35]. A hinge models
the particular type of constraint imposed by a covalent bond, fixing the bond length
and bond-bending angle, but permitting rotation around the bond.
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Algorithm: Classify redundant and critical interactions in a cluster

Input: A single rigid cluster computed by rigidity analysis. The
cluster is a protein fragment represented as a list of n atoms, covalent
bonds and noncovalent interactions (hydrogen bonds, and hydrophobic
interactions). Each interaction is labeled with how it is modeled (hinge
or 1 to 6 bars).

Output: A set of interactions labeled as critical and redundant,
with associated criticality values.

Method: For each noncovalent interaction in the cluster:

1. Remove interaction from the set and rerun rigidity analysis (as shown
in Fig. 1).

2. If result is a single rigid cluster containing all n atoms, label the inter-
action as redundant. Otherwise, label the interaction as critical. Find
the largest cluster in the result and let k be its number of atoms. Assign
the interaction a criticality value of (1− k=n).

Fig. 4 Algorithm for redundancy analysis of a rigid cluster

Once the protein has been curated and the modeling options specified, the rigidity
analysis identifies the rigid clusters. Our two methods which work on each rigid
cluster are described below. Also included is a description of the data set that will
be used in our evaluation.

4.1 Identifying the Critical and Redundant Interactions
Within a Cluster

A rigid cluster is a maximal set of atoms and of all bonds and interactions that
hold them rigidly together. An interaction is redundant if its removal does not lead
to the cluster becoming flexible. To identify the redundant interactions among the
noncovalent interactions, we proceed as follows. One after another, we remove a
noncovalent interaction, perform rigidity analysis, and verify if the cluster remains
rigid, in which case we classify it as redundant. Otherwise, the interaction is
classified as critical. Note that once an interaction has been classified, it is placed
back in the cluster. This is different from the analysis performed during dilution
analysis, where a removed interaction is not placed back. See Fig. 4 for a description
of the classification algorithm. Another difference is that hydrophobic interactions
are not involved in dilution analysis, only H-bonds, which have an associated energy.

To classify each interaction, we run the pebble game. In the worst case, this takes
O.n2/ time, thus the entire classification runs in cubic time.
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Fig. 5 (a) The largest rigid cluster of 1HRC, shown with H-bonds (green) and hydrophobic
interactions (blue). (b) Removing the red hydrophobic interaction (with a criticality value of 0.44)
from the largest rigid cluster of 1HRC causes the two ˛-helices in the cluster to break apart into
separate rigid clusters (colors chosen at random)

To further distinguish the impact of each interaction on the overall stability of
the protein, we define its criticality value, based on how much the cluster size is
impacted. We measure the size of the rigid cluster once an interaction has been
removed and the rigidity analysis rerun. The change in size of the cluster becomes
the criticality value of the interaction. For example, the removal of an interaction
with a criticality value of 0.10 will cause 10 % of the cluster’s atoms to break off
into one or more separate clusters. We are interested in the cases in which high-
impact critical interactions occur.

To illustrate this, see Fig. 5, which shows the largest rigid cluster in cytochrome-c
(1HRC). The redundancy of this protein will be discussed in a case study in
Sect. 5.2. The cluster is composed of two ˛-helices bound together by hydrophobic
interactions (shown in blue). The hydrophobic interaction colored in red is critical.
When it is removed, each ˛-helix breaks off into its own rigid cluster. The criticality
value of this interaction is 0.44.

4.2 Scoring of Clusters by Redundancy

We now define the cluster redundancy score, ˚.i/ in Eq. 1 below, which requires
the classification of noncovalent interactions. The set of all noncovalent interactions
in cluster i is denoted by N.i/, and we denote the subset of N.i/ which are
redundant by R.i/. Each interaction j is assigned a weight wj , determined by how
it is modeled. In the study described below, H-bonds and hydrophobic interactions
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had weights of 5 and 2, respectively. Theoretically, these values correspond to the
maximum number of degrees of freedom that may be removed when the interaction
is included in the mechanical model; in terms of our software, these values refer to
the modeling of H-bonds as hinges (which place five edges in the associated Tay
graph) and of hydrophobic interactions as two bars (which place two edges in the
graph).

The formula defining the cluster redundancy score is

˚.i/ D
P

j 2R.i/ wjP
k2N.i/ wk

: (1)

If all of the noncovalent interactions within the cluster a redundant, the redundancy
score is 1; when they are all critical, the redundancy score is 0.

4.3 Data Sets

We employed several different data sets in this current study.
Multiple conformations. In this first data set, we included the PDB files of
proteins used in various publications for the validation of the MSU-FIRST software
package [20]. The proteins were HIV-1 protease (1HHP, 1HTG), dihydrofolate
reductase (1RA1, 1RX1, 1RX6), adenylate kinase (1AKY, 1DVR), and lysine–
arginine–ornithine-binding (LAO-binding) protein (1LST, 2LAO). We curated the
protein data using the KINARI-Web curation tool. Ligands were removed for all
structures except that of adenylate kinase. Hydrogen atoms, bonds, and interactions
were calculated with the default options, as described in [9]. Since 1HHP is a
homodimer but only chain A is included in the PDB file, we applied a symmetry
operation to compute the dimer [5]. Building the biological unit is available as an
option from the KINARI-Web curation tool. We also employed a data set of 12
proteins used by the Gerstein Laboratory to validate the RigidFinder server [1]. We
excluded five of the proteins in this data set that contained more than 500 residues.

Proteins with known foldons. We included a case study of cytochrome-c, a protein
for which the foldons, intermediate structures which form during the folding
process, are known [29].

Pdomain benchmark data set. In order for our survey to characterize the presence
of redundant and critical interactions over a range of different proteins, we used the
Pdomain Balanced Domain Benchmark 3 data set [18]. The original purpose of this
data set was for benchmarking domain identification systems. We chose to use this
set because of the good coverage of protein fold space. We excluded six PDB files
with clusters larger than 6,000 atoms, so in total we included 121 PDB files in the
analysis.
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4.4 Redundancy Server

The redundancy analysis methods presented here can serve as a tool for investigating
the robustness of rigidity results, in particular for users who wish to hand-edit their
interaction set. We have deployed a server for redundancy analysis on the KINARI
website, to accompany the KINARI-Web standard rigidity analyzer [9] and the
KINARI-Mutagen tools [22]. Preprocessed examples and a video tutorial are avail-
able to facilitate use. KINARI-Redundancy provides the following functionality:

• To curate PDB data and assign modeling options, as supported by the KINARI-
Web server [9].

• To color clusters according to their redundancy score.
• To examine one cluster at a time in further detail and to color critical and

redundant interactions.
• To filter the set of interactions displayed. A threshold can be selected to show

only interactions with higher criticality values.

5 Results and Discussion

We have applied our new methods to the data sets described in the previous section,
and we present the results in the next three subsections. We then compare the
redundancy score with the flexibility index of MSU-FIRST [20] and present a
discussion of future applications of our method.

5.1 Analysis of Multiple Conformations

We performed redundancy analysis on the multiple-conformation data set described
in Sect. 4.3. The rigidity analysis results for some of these proteins have been
presented previously [20]. What we seek out here is the additional information that
the redundancy analysis can give us about these proteins.

The table in Fig. 6 lists the results of our analysis. Most of the proteins had very
few interactions with criticality values greater than or equal to 0:10. We investigate
these outliers in case studies on adenylate kinase, dihydrofolate reductase, DNA
polymerase ˇ, and HIV-1 protease.

5.1.1 Adenylate Kinase

We first discuss the results on yeast adenylate kinase, a monomer known to
undergo domain-level hinge motion upon ligand binding. Figure 7 shows decompo-
sitions of this monomer, depicted in the ATP-bound, open conformation (1DVR).
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Gersteein Lab daata set

Bungarotoxin
1IDG 74 1084 59 0.44 3 3 3 3 0 7 0 0 0

Bungarotoxin
1IDI 74 1085 51 0 0 0 0 0 0.41 8 3 3 1

Calmodulin
1CLL 147 2185 1068 0.43 109 31 20 17 0.41 47 27 9 9

Calmodulin
1CTR 147 2139 456 0.26 41 12 2 2 0.06 19 5 0 0

Cro repressor
5CRO 61 958 324 0.02 24 5 0 0 0.03 22 6 0 0

Cro repressor
6CRO 61 948 306 0.43 23 10 6 3 0.09 29 7 0 0

HIV-1 protease
3HVP 198 1534 771 0.28 48 24 7 3 0.12 77 30 4 0

HIV-1 protease
4HVP 198 1534 638 0.36 48 26 19 9 0.04 38 18 0 0

S100A6
1K9K 90 1426 841 0.09 85 21 0 0 0.02 23 7 0 0

S100A6
1K9P 90 1435 338 0.49 39 9 2 2 0.49 10 7 6 6

Alcohol 6ADH 374 1757 1757 0.08 85 24 0 0 0.1 181 55 3 0
Dehydrogenase 8ADH 374 3819 3819 0.07 284 74 0 0 0.07 243 99 0 0

Antigen 85C
1DQY 282 3360 3360 0.02 269 43 0 0 0.02 306 51 0 0

Antigen 85C
1DQZ 282 3118 3118 0.02 254 48 0 0 0.01 219 41 0 0

Aspartate 1AMA 410 3576 3576 0.05 303 62 0 0 0.02 181 48 0 0
Aminotransferase 9AAT 410 3383 3383 0.03 317 63 0 0 0.01 147 46 0 0

Bacterio- 1BRD 226 1818 1818 0.04 136 16 0 0 0.02 152 57 0 0
rhodopsin 2BRD 226 2148 2148 0.06 208 34 0 0 0.03 146 56 0 0

DNA Polymerase 2FMQ 335 3106 3106 0.29 273 74 9 3 0.29 144 64 7 4
Beta 9ICI 335 2336 2336 0.03 147 25 0 0 0.02 222 56 0 0

Malate 1BMD 332 3136 3136 0.08 292 52 0 0 0.01 146 53 0 0
Dehydrogenase 4MDH 333 2939 2939 0.04 220 51 0 0 0.04 192 69 0 0

Adenylate Kinase
2ECK 214 444 444 0.09 34 7 0 0 0.02 29 9 0 0

Adenylate Kinase
4AKE 214 549 549 0.71 43 26 18 12 0.71 38 17 4 4

All LRC H-bonnds in LRRC Hydrophhobics inn LRC

Protein PDB Num. Num. Num. max crit. total
with criticality value: max crit. total

with crriticality value:
Protein PDB Residues Atoms Atoms val. total

>0 >0.10 >0.25 val. total
>0 >0.10 >0.25

MSU--FIRST datta set

HIV 1 protease
1HHP 198 3126 1802 0.02 134 36 0 0 0.01 96 54 0 0

HIV-1 protease
1HTG 198 3126 1791 0.36 134 31 14 0 0.02 87 48 0 0

Dih d f l t
1RA1 159 2484 1683 0.11 122 37 13 0 0.1 98 37 2 0

Dihydrofolate 
Reductase

1RX1 159 2484 1606 0.06 122 27 0 0 0.01 110 40 0 0
Reductase

1RX6 159 2484 1461 0.1 118 21 1 0 0.1 99 43 0 0

Adenylate Kinase
1AKY 220 3469 2032 0.12 176 51 5 0 0.01 89 29 0 0

Adenylate Kinase
1DVR 220 3435 1787 0.17 144 25 2 0 0.01 124 36 0 0

LAO-binding 1LST 238 3554 1224 0.07 112 22 0 0 0.02 35 20 0 0g
protein 2LAO 238 3608 1289 0.09 120 25 0 0 0.03 50 27 0 0

Fig. 6 Prevalence of critical and redundant interactions in the largest rigid clusters (LRCs) of the
MSU-FIRST and Gerstein Laboratory data sets. For each PDB files, the total number of residues
and atoms are shown, as well as the size of the LRC. We classified each of the H-bonds and
hydrophobics as either critical or redundant to its cluster’s rigidity. The numbers of interactions
with criticality values �0:0, �0:0, and �0:0 are displayed. There were no interactions with
criticality values �0:50 in the data set

The domain containing the binding site is labeled as the LID domain. In early
work of Jacobs et al. to validate the MSU-FIRST system, six flexible loops were
detected in the open conformation (1DVR) [20]. Four of the six flexible loops were
also detected in the closed conformation, 1AKY. The two loops not detected in
1AKY were those at the N- and C-terminals of the six ˛-helices (95 ILE to 108
GLN). The loops are labeled a–f in Fig. 7.

When the redundancy analysis was ran, two of the H-bonds (1 and 2) were found
to decrease the size of the largest rigid cluster (LRC) by 17 and 12 %, respectively,
and are shown in Table 1. H-bond 1 lies near the N-terminal, at the end of the parallel
ˇ-sheet, and connects the ˇ-sheet to the f-loop, between 6 ARG O and 113 GLU H.
H-bond 2 is between 105 LEU O and 110 THR H, and anchors the end of the six
˛-helices to the f-loop. Figure 7a shows the residues which engage in the two very
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(a) 1DVR, RCD, default (b) 1DVR, locations of critical
H-bonds

(c) 1DVR, RCD, without
critical H-bond

(d) 1AKY, RCD, default (e) 1AKY, locations of critical
H-bonds

(f) 1AKY,RCD, without 
critical H-bond

Fig. 7 Case study of adenylate kinase. (a–c) Open conformation 1DVR. (a) The rigid cluster
decomposition (RCD) determined by KINARI v1.0. The gray regions are flexible, and each colored
region is a rigid cluster. (b) H-bonds with criticality values of 0.17 (1) and 0.12 (2) were found in
the largest rigid cluster (green). The residues which engage in these H-bonds are highlighted in red.
(c) Upon removing H-bond 1, the e-loop and part of the f-loop become flexible. (d) Similarly, for
H-bond 2, both the e- and the f-loops gain flexibility, although the region of flexbility in the f-loop
is closer to the ˇ-sheet than the ˛-helix (d and e) Closed conformation 1AKY. (d) Rigid cluster
decomposition with default options. (e) Location of the five interactions which have the greatest
impact on cluster size. (f) After removing a critical interaction

Table 1 Critical interactions in adenylate kinase (open, 1DVR). Two H-bonds (HB) and no
hydrophobic interactions with criticality values �0:10 were detected

ID Atom 1 Atom 2 Type Energy Criticality value

1 6 ARG O 113 GLU H HB �5.3 0.17
2 105 LEU O 110 THR H HB �0.58 0.12

critical interactions, highlighted in red. When either of these interactions is removed,
the 6-alpha-helix breaks apart from the cluster and the e- and f-loops become
flexible. The rest of the LRC remains intact. These two H-bonds were assigned
energies of �0.58 and �5.3 kcal/mol by the Mayo Laboratory energy function [30].
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Table 2 Critical interactions in largest rigid cluster of adenylate kinase closed conformation
(1AKY). Five H-bonds (HB) and no hydrophobic interactions with criticality values �0:10 were
detected

ID Atom 1 Atom 2 Type Energy Criticality value

1 34 ALA O 38 ALA H HB �3.96 0.12
2 37 ASP OD1 40 ASP HH21 HB �4.78 0.12
3 40 ARG HH12 301 AP5 O1E HB �2.22 0.12
4 40 ARG HH22 301 AP5 O1E HB �4.68 0.12
5 33 LEU O 89 LEU H HB �4.89 0.12

We investigated whether using a dilution analysis would identify these critical
interactions [33]. In dilution, or simulated unfolding, H-bonds are removed one by
one, cumulatively, in order of weakest to strongest, simulating H-bonds breaking
during denaturation. Of the 146 H-bonds in the LRC, H-bond 2 was the 18th weak-
est, with an energy of �0.58 kcal/mol. H-bond 1, with an energy of �5.3 kcal/mol,
ranked 109th, and would not have been revealed by a dilution analysis.

We next analyzed the closed conformation, 1AKY. With the default options,
KINARI predicts a larger LRC than for 1DVR, the open conformation. The MSU-
FIRST software package detected four flexible loop regions (b, c, d, and f) [20].
With the default options, KINARI detected three of these loops (b, c, and d). Our
redundancy analysis detected five H-bonds with criticality values greater than or
equal to 0:12, listed in Table 2. When any of these interactions are removed, the
resulting RCD contains a flexible region in the a-loop.

To summarize, the LRCs of 1AKY and 1DVR both contained multiple inter-
actions with criticality values greater than or equal to 0:10, and these were
concentrated together in the structure. In 1DVR, the removal of either of the two
very critical interactions caused the same two loops to gain flexibility concurrently.
In 1AKY, the removal of any of the five very critical interactions all caused the
a-loop to become flexible. These loops were determined to be important to the
flexibility and mobility that are required for ADK to perform its function.

5.1.2 Dihydrofolate Reductase

1RA1, 1RX1, and 1RX6 are the structures of the open, closed, and occluded
conformations, respectively, of E. coli dihydrofolate reductase, a small enzyme
which plays an essential role in building DNA. The flexibility of the Met20 loop
(residues 9–24) and the ˇF–ˇG loop (residues 116–132) near the active site plays
a role in promoting the release of the product. Figure 8a shows an alignment of the
three DHFR structures, demonstrating the high mobility of the Met20 loop.

The KINARI rigid cluster decompositions of the three structures show the protein
to be mostly rigid, with most of the protein contained in the LRC. Each of the
decompositions shows flexible regions in the ˇF–ˇG loop. In 1RX1, the closed
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(a) 3 conformations (b) RCD, default

(c) locations of critical interactions (d) RCD, without critical H-bond

Fig. 8 Case study of dihydrofolate reductase. (a) A 3D alignment of three conformations (1RA1,
1RX1, and 1RX6) shows the high mobility of the Met20 loop. (b) With the default options, the
rigidity results for 1RA1 show flexibility in the Met20 loop, but the ˇF–ˇG loop is almost entirely
rigid. (c) The residues which engage in very critical interactions in the largest rigid cluster of 1RA1
are almost all within the Met20 and ˇF–ˇG loops. (d) After removal of a very critical interaction,
a smaller cluster (blue) composed of part of the Met20 and ˇF–ˇG loops breaks off from the LRC,
and a region in the ˇF–ˇG loop becomes flexible

conformation, the Met20 loop was determined to be locked – it is contained in the
largest rigid cluster. In 1RA1 and 1RX6, the open and occluded conformations,
some regions of the Met20 loop were determined to be flexible, but there was some
variation between the two RCDs. These results agree with earlier results of Jacobs
et al. obtained using the MSU-FIRST rigidity analysis software package [20].

Table 6 (see Sect. 5.2) includes the results of our redundancy analysis on
these three conformations. The closed conformation contained no interactions with
criticality values greater than or equal to 0:10, and the occluded conformation
contained only one. In the open conformation (1RA1), over 10 % of the H-bonds
(13 of 122) and two of the hydrophobic interactions had criticality values greater
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Table 3 Critical interactions in dihydrofolate reductase (1RA1). Thirteen H-bonds (HB) and
twelve hydrophobic interactions (HP) with criticality values �0:10 were detected. The type, energy
(kcal/mol), and criticality value for each interaction are shown. Also, the locations of both atoms
involved in the interaction, with respect to the Met20 and ˇF–ˇG loops are shown. Any of these
interactions, when removed, leads to increased flexibility in the ˇF–ˇG loop, whether or not the
two atoms a located within the loops. See also Fig. 8

ID Atom 1 Atom 2 Type Energy Criticality value In Met20 or ˇF–ˇG loop?

1 8 LEU H 113 LEU O HB �4.84 0.10 Neither
2 116 ASP H 150 ASP O HB �7.07 0.10 Both in ˇF–ˇG loop
3 8 LEU O 115 LEU H HB �5.58 0.10 Neither
4 115 ILE O 117 ILE H HB �1.74 0.10 One in ˇF–ˇG loop
5 9 ALA H 13 ALA O HB �5.77 0.10 Both in Met20 loop
6 10 VAL O 13 VAL H HB �2.69 0.10 Both in Met20 loop
7 10 VAL H 117 VAL O HB �6.33 0.10 Met20 and ˇF–ˇG loop
8 12 ARG O 125 ARG H HB �5.4 0.10 Met20 and ˇF–ˇG loop
9 12 ARG HE 125 ARG O HB �6.79 0.10 Met20 and ˇF–ˇG loop
10 14 ILE H 123 ILE O HB �6.91 0.11 Met20 and ˇF–ˇG loop
11 15 GLY O 122 ASP H HB �1.81 0.11 Met20 and ˇF–ˇG loop
12 15 GLY O 123 GLY H HB �2.02 0.11 Met20 and ˇF–ˇG loop
13 15 GLY H 123 GLY O HB �2.38 0.11 Met20 and ˇF–ˇG loop
14 11 ASP C 12 ARG CG HP N/A 0.10 Both in Met20 loop
15 123 THR C 124 HIS CG HP N/A 0.10 Met20 and ˇF–ˇG loop

than 0.10. These very critical interactions are all concentrated around the active
site, adjacent to the Met20 and ˇF–ˇG loops. Table 3 lists the set of very critical
H-bonds and hydrophobic interactions and their locations. The majority (7 of the
13) of very critical H-bonds connect the Met20 and ˇF–ˇG loops. The remainder
of the H-bonds are in the local area of the two mobile loops. Removing any of these
H-bonds increases the extent the flexible region in the Met20 or ˇF–ˇG loop. None
of these very critical interactions involve the ligand.

For example, when we remove the H-bond between atoms 8 LEU H and 113 LEU
O, the flexible regions of the Met20 loop and ˇF–ˇG loop increase substantially, as
depicted in Fig. 8d, even though this particular H-bond does not involve residues
within those loops.

The LRCs of 1RX1 (closed) and 1RX6 (occluded) contain few or no H-bonds
with high criticality values. These structures already have more flexibility in the
ˇF–ˇG loop.

The prevalence of very critical interactions in the active site region for the open
conformation shows that the rigidity of the ˇF–ˇG loop is “hanging by a thread”.
These H-bonds tend to be strong, and mostly backbone–backbone H-bonds, so
they are unlikely to break independently. But snipping any of these very critical
interactions will cause the ˇF–ˇG loop to gain flexibility.
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(a) domains (b) two conformations

(c) RCD, default (d) highly critical interactions (e) RCD, without critical
H-bond

Fig. 9 Case study of DNA polymerase ˇ (2FMQ). (a) Four important functional domains. The
lyase domain (gray) is the important catalytic site. The N domain interacts more strongly with the
lyase domain in the closed conformation. (b) 3D structural alignment of 2FMQ (red) and 9ICI
(gray). (c) The rigid cluster decomposition of 2FMQ shows one dominant rigid cluster (green)
containing both the lyase and the N domains. Gray regions are flexible. (d) If any of the H-bonds
(red) and hydrophobic interactions (pink) shown are removed, the lyase domain breaks off from the
dominant rigid cluster, as shown in (e). Note that only two of these interactions actually crossbrace
between the lyase domain and the other domains in the protein; the rest lie completely in the lyase
domain. Therefore, the loss of an interaction within the lyase domain will cause the separation of
the lyase domain from the rest of the cluster

5.1.3 DNA Polymerase “

DNA polymerase ˇ (POLB) is a 335-residue DNA- and metal-binding enzyme,
responsible for base excision repair of DNA. It is active as a monomer and is
composed of an N-terminal 90-residue lyase domain connected to a C-terminal
polymerase domain, composed of three subdomains [2]. The lyase domain and
three subdomains are depicted in Fig. 9a. We examined the redundancy of one
conformation of POLB, 2FMQ. The rigidity analysis determined that the LRC
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Table 4 Critical interactions in the largest rigid cluster of DNA polymerase ˇ (2FMQ). Three
H-bonds (HB) and four hydrophobic interactions (HP) with criticality values �0:25 were detected.
The type, energy (kcal/mol), and criticality value for each interaction are shown

ID Atom 1 Atom 2 Type Energy Criticality value

1 26 GLU O 32 GLU H HB �6.98 0.29
2 40 ARG HH12 276 ARG OD2 HB 1.08 0.29
3 40 ARG HH22 276 ARG OD2 HB �1.61 0.29
4 27 LYS CB 36 LYS CG HP N/A 0.29
5 27 LYS CB 36 LYS CD1 HP N/A 0.29
6 36 TYR CE1 40 TYR CD HP N/A 0.29
7 36 TYR CZ 40 TYR CD HP N/A 0.29

contains 3,106 atoms. When redundancy analysis was performed on the cluster,
200 of 274 H-bonds were determined to be redundant and 80 of 144 hydrophobic
interactions were determined to be redundant, leading to a redundancy score of 0.70.
Three of the H-bonds and four of the hydrophobic interactions had criticality values
of 0.29 or greater (see Table 4).

When any of these seven interactions was removed, the lyase domain broke off
from the largest rigid cluster. The lyase domain did not form a single cluster, but
instead shattered into many smaller clusters. For example, when we removed the
H-bond between 26 GLU O and 32 GLU H and reran our redundancy analysis,
we obtained the results shown in Fig. 9e. The large rigid cluster now remaining con-
tained no interactios with criticality value greater than 0.03. The results of removing
any of the other six critical interactions were similar. The 2FMQ conformation is
more closed than the 9ICI conformation. We repeated the redundancy analysis on
9ICI and found that the rigid clusters were in good agreement with the clusters of
2FMQ after the removal of any of the critical interactions (as in Fig. 9e). For the
largest rigid cluster of 9ICI, composed of 2,336 atoms, the maximum criticality
value of any of its consituent interactions was 0.03.

To summarize, the decomposition determined by KINARI, run with the default
options on the closed conformation (2FMQ), is very rigid, and the lyase domain
is included in a large rigid cluster spanning other functional domains of the
protein. With our redundancy analysis, we found seven interactions with very high
criticality values (0.29 or greater). When any of these interactions were removed,
the lyase domain decoupled from the other domains and became very flexible, better
matching the rigidity results for the open conformation (9ICI).

5.1.4 HIV-1 Protease

Our analysis of two conformations of HIV-1 protease, 1HHP (open) and 1HTG
(closed), uncovered interesting differences due to asymmetries in the 1HTG dimer.
The PDB file for 1HHP contains only a single chain, and therefore we computed
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(a) RCD, default (b) highly critical interactions

(c) RCD, without critical H-bond

Fig. 10 Ten interactions with criticality values �0:10 were found in PDB 1HTG. (a) Before
removing any interactions. (b) The interactions with criticality values �0:10 in the LRC are all
H-bonds in the ˇ-sheet of chain A. (c) After the removal of any of these interactions, the ˇ-sheet
of chain A breaks off from the LRC and becomes flexible

the positions of the atoms in chain B, resulting in a dimer that was completely
symmetric. The rigidity analysis results showed a large rigid cluster consisting of
78 of the 99 residues in each chain (residues 1–14, 19–36, 43–45, and 56–98).
No interactions with a criticality value greater than 0.10 were found.

For 1HTG, which was crystallized as a dimer, both chains are already included
in the PDB file. The results of the rigidity analysis of 1HTG reflect some of the
asymmetries in the two chains (see Fig. 10). With the default options, the largest
rigid cluster contained 81 residues from chain A (residues 9–33 and 43–98) and 90
residues from chain B (residues 1–33 and 43–98). More differences in the rigidity
properties of the two chains were detected when the redundancy of the structure was
analyzed. Fourteen interactions were found with criticality values greater than or
equal to 0:25 (see Table 5). All of these critical interactions were found in a ˇ-sheet
of chain A. Owing to asymmetries between chains A and B, the sets of H-bonds
and hydrophobic interactions were not the same in the two chains. For example,
in chain B, 65 GLU CG and 68 GLY C were a distance of 3.60 Å and fell within
the cutoff distance for a hydrophobic interaction. The same pair of atoms in chain
B were a distance of 5.18 Å, much greater than the 3.65 Åcutoff distance, and no
hydrophobic interaction was placed on them.
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Table 5 Critical interactions in the largest rigid cluster of HIV-1 protease (1HTG). Fourteen
H-bonds (HB) with criticality values �0:25 were detected, all in chain A. The type, energy
(kcal/mol), and criticality value for each interaction are shown

ID Atom 1 Atom 2 Type Energy Criticality value

1 9 PRO O 24 LEU H HB �7.22 0.36
2 11 VAL O 22 ALA H HB �5.82 0.36
3 11 VAL H 22 ALA O HB �5.53 0.36
4 13 ILE O 20 LYS H HB �5.98 0.27
5 13 ILE H 20 LYS O HB �5.13 0.27
6 14 LYS O 65 GLU H HB �6.17 0.27
7 14 LYS H 65 GLU O HB �3.34 0.27
8 15 ILE H 18 GLN O HB �6.89 0.27
9 64 ILE H 71 ALA O HB �6.28 0.27
10 62 ILE O 73 GLY H HB �4.10 0.27
11 62 ILE H 73 GLY O HB �5.52 0.27
12 64 ILE O 71 ALA H HB �5.57 0.27
13 66 ILE O 69 HIS H HB �0.82 0.27
14 66 ILE H 69 HIS O HB �4.94 0.27

5.2 Correlating Redundancy and Foldons; Case Study
of Cytochrome-c

Figure 11a shows the five largest rigid clusters of cytochrome-c (1HRC). The rigid-
ity of this protein has been previously investigated [33, 36, 39]. Here, we describe a
refinement of the analysis from the point of view of redundancy (Table 6). When we
focus on the largest rigid cluster (blue in Fig. 5a and shown in Fig. 5b), composed
of two ˛-helices, we can identify 24 H-bonds (shown in green) and 10 hydrophobic
interactions (shown in blue). Each ˛-helix is held together by H-bonds, while the
hydrophobic interactions effectively “zip up” the two ˛-helices and hold them
rigidly together. Redundancy analysis determined that 25 % of the H-bonds and
40 % of the 10 hydrophobic interactions were critical. Removing any of these critical
interactions will cause the cluster to break up and become flexible. Most of the
interactions that we have labeled as “critical” do not have a large impact on the
cluster size. For each of the critical noncovalent interactions, we monitored how
the original cluster size of 251 atoms decreased when the critical interactions were
removed. For all of the H-bonds, the cluster size after removal remained at at least
86 % of its original value. For three of the four hydrophobic interactions, the cluster
size remained at at least 98 %. For one hydrophobic interaction, the cluster size
dropped to 56 %. Figure 5b shows how the cluster rigidity is affected when this
particular interaction is removed. This demonstrates how each critical interaction
may have a different degree of impact on a cluster’s rigidity when it is removed.

Extensive studies have been undertaken to understand the folding kinetics of this
protein. The foldons, intermediate structures which form during the folding process,
and the order in which they form have been experimentally identified using HX
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Fig. 11 Case study of cytochrome-c (1HRC), where the rigid clusters and foldons are compared.
(a) The five largest rigid clusters of 1HRC are colored by their redundancy score, from least
redundant (red) to most redundant (blue). (b) Experimentally determined foldons are numbered
by their stepwise folding order

Table 6 Redundancy scores for the five largest rigid clusters of 1HRC, shown in Fig. 11a. Listed
for each cluster are the number of atoms, the number of redundant H-bonds and the total number of
H-bonds in the cluster, the corresponding numbers for the hydrophobic interactions, our calculated
redundancy score, and the greatest decrease in size observed after removing an interaction

Cluster Atoms HB redundant/all HP redundant/all Score Max. criticality value

Blue 251 18/24 6/10 0.73 0.44
Left yellow 194 2/13 6/12 0.25 0.55
Red 80 0/4 0/0 0.00 0.88
Green 35 0/1 5/6 0.59 0.40
Right yellow 30 0/1 2/3 0.36 0.34

experiments [29]. The foldons are shown in Fig. 11b in blue (residues 1–19 and
87–105, i.e., the N- and C-terminal ˛-helices), green (residues 60–70 and 19–36,
the ˛-helix and V-loop), yellow (residues 37–39 and 58–61, the short two-stranded
antiparallel ˇ-sheet), red (residues 71–85, the V-loop), and white (residues 40–57,
the V-loop). Although the helix and V-loop marked in green appear disconnected,
the two parts engage in hydrophobic interactions between the side chains PHE 36
and LEU 64. The HEME ligand is not shown in the picture.

Visually, there is some nice agreement between these experimentally identified
foldons and those determined by KINARI. In particular, the first foldon, i.e., the
N- and C-terminal ˛-helices, correlates well with the most redundant rigid cluster
found in our analysis. The ˛-helix of the second foldon and the entire third
and fourth foldons (yellow and red) lie in the yellow cluster, which has a lower
redundancy. The last foldon, white, has not been placed in a single cluster but was
instead determined to be flexible and lies in a number of clusters. A nice result is
that the redundancy scores calculated (Table 6) also correlate with the foldon order.
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(a) foldons (b) default (c) -2 kcal/mol cutoff (d) -3 kcal/mol cutoff

Fig. 12 Case study of SNase protein (1SNP). Here, we compare the experimentally determined
foldons of 1SNP with the KINARI rigid cluster decompositions. (a) Experimentally determined
foldons. (b) With default options, the entire protein is determined to be almost completely rigid
with a redundancy score of 0.72. (c) After removal of the H-bonds using a cutoff of �2 kcal/mol,
the minor ˇ-strands are determined to be flexible, while the ˇ-barrel remains in the largest rigid
cluster. (d) With a cutoff of �3 kcal/mol, the ˇ-barrel no longer lies in a larger rigid cluster, and
two of the ˛-helices have remained rigid. Rigidity and redundancy analysis do not appear to give
strong insight into these SNase foldons, unlike the case of cytochrome-c, which is all alpha, and
for which there has been success in determining foldons

Although this case study of cytochrome-c demonstrates that KINARI with the
default parameters can assist in identifying these foldons, further analysis is needed
for us to know if this extends to other proteins for which foldons are known. SNase
is a 149-residue mixed ˛/ˇ protein with three ˛-helices, a major five-stranded
ˇ-barrel, and three minor ˇ-strands. It is composed of five foldons, the first foldon
of which is composed primarily of the ˇ-barrel. Analysis of SNase (PDB file 1SNP)
[3] using the default parameters revealed an almost entirely rigid structure, with no
differentiation between the structural elements identified to form foldons (Fig. 12).
Excluding the weaker H-bonds, which is the conventional way to tune rigidity
results, leads to the ˇ-barrel losing rigidity before other foldon regions, which does
not agree with the experimental data.

A more thorough investigation to correlate foldon stability and redundancy
remains to be done.

5.3 Survey of a Pdomain Benchmark Data Set

We calculated critical and redundant interactions for the largest rigid cluster of each
protein in the Pdomain benchmark 3 data set described earlier in Sect. 4.3. To get
a better sense of how redundancy and the presence of critical interactions correlate
with size, we divided the 121-protein data set into three parts according to the size
of the LRC: small (fewer than 500 atoms, 12 % of data set), medium (500–1,000
atoms, 20 % of data set), and large (greater than 1,000 atoms, 69 % of data set).

• Redundancy scores. Overall, the mean redundancy score (and standard deviation,
s) was 0.74 (sD 0.10). The small clusters had a lower mean redundancy, 0.66
(sD 0.17), than the medium clusters, with a redundancy score of 0.73 (sD 0.11),
and the large clusters, with a redundancy score of 0.75 (sD 0.07), showing a
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trend in which the redundancy score increases and the variance decreases with
cluster size. Therefore, the larger rigid clusters were shown to be more robust,
and less sensitive to changes in rigidity.

• Prevalence of highly critical interactions. Figure 13 shows the cumulative
distributions of clusters containing interactions with increasing criticality values.
Although virtually all of the clusters contained some critical interactions, most
of the clusters did not contain interactions with criticality values greater than or
equal to 0:10. Interactions with criticality values greater than or equal to 0:50

occurred in 13 % of the small and medium-sized clusters, but were quite rare in
the large clusters, occurring in fewer than 4 % of them.

5.4 Comparison with Other Techniques

MSU-FIRST included a feature to assign each bond a flexibility index, using a
count of the redundant constraints [20]. In the underlying bar-and-joint model of the
protein used by MSU-FIRST, each bond was represented by a number of constraints:
central-force constraints for holding bond lengths, and external constraints for
holding bond-bending and dihedral angles. Using the MSU-FIRST pebble game,
the input macromolecule was decomposed into three types of regions: isostatically
rigid, overconstrained, and underconstrained. An isostatically rigid region was a
rigid cluster in which the removal of any of the constraints would cause the cluster to
become flexible. An overconstrained region was a rigid cluster in which at least one
of the constraints was redundant. An underconstrained region was a region in which
placing any additional bond-bending or dihedral-angle constraints would cause a
rigid cluster to form.

Once the different regions had been identified, Eq. 2 below was used to calculate
the flexibility index for each bond [20]. Here, Hk and Fk are the number of
rotatable bonds and the number of degrees of freedom, respectively, in the kth
underconstrained region. Cj and Rj are the numbers of bonds and redundant
constraints, respectively, in the j th overconstrained region. The flexibility index is
negative for overconstrained regions and positive for underconstrained regions. The
equation for this index is

fi �

8̂̂
<
ˆ̂:

Fk

Hk
in an underconstrained region;

0 in an isostatically rigid region;
�Rj

Cj
in an overconstrained region:

(2)

The flexibility index was defined for bonds in any region of the protein, not just
the rigid clusters. In order to directly compare our redundancy score, we transformed
the flexibility index formula to an equation for scoring rigid clusters,

�.i/ D Ri

Ci

: (3)
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(a) overall

(b) H-bonds, by cluster size

(c) hydrophobics, by cluster size

Fig. 13 Prevalence of critical interactions in the Pdomain benchmark data set. (a) Overall
comparison of occurrence of critical H-bonds and hydrophobic interactions. (b–c) Occurrence of
critical H-bonds and hydrophobic interactions for small, medium, and large clusters
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Here, �.i/ is the MSU-FIRST redundancy score for cluster i , and Ri and Ci are the
numbers of redundant and central-force constraints in the cluster.

This scoring formula and ours (Eq. 1) are not equivalent. We can demonstrate
this with a small example. A cluster consisting of a ring of five atoms connected by
four single covalent bonds and one H-bond is assigned a score of 0 by our method.
This score signifies that there is no redundancy in the set of noncovalent interactions
and that if the H-bond were removed, the cluster would break. MSU-FIRST assigns
the same cluster a score of 1=5 (one redundant constraint and five bonds). Unlike
our approach, the MSU-FIRST approach does not detect the critical interactions.

ASU-FIRST also included a flexibility index that did not use any information
about redundancy. The index for bonds in rigid clusters was based on the size of the
cluster [7].

6 Conclusion and Further Directions

Motivated by the need to understand the sensitivity of rigid clusters to changes
in the set of noncovalent interactions, we have proposed a method for classifying
the noncovalent interactions as critical or redundant. An interaction is critical if,
when it is removed, the cluster it is contained in breaks up and becomes flexible.
We have also proposed a method to score clusters using the redundancy of the
noncovalent interactions. We have implemented these methods in the KINARI-
Redundancy extension to KINARI, our protein rigidity analysis software package.
We have provided results of our classification and scoring for the clusters obtained
from a data set of PDB files. This method may be applicable to other related
questions previously posed in the literature.

• Energy. Energy functions provide a way to compare the relative strengths of
H-bonds. Different functions have been proposed that calculate the energy
required to break an H-bond, using the local bond geometry [24, 30]. We may
infer that the stronger interactions, the ones that require more energy to break,
are the critical ones.

• Flickering. The flickering phenomenon is the forming and breaking of interac-
tions at varying rates during the natural fluctuations of a protein about the native
state [26]. The duty cycle, which is the percentage of time a particular interaction
is present, may be used similarly to the energy, to rank interactions by how
likely they are to break. An advantage of the duty cycle concept is that it can
be generalized to any interaction which may break and form. This is especially
valuable for hydrophobic interactions, since the associated energy is unknown.

• Evolutionary conservation. Using proteins within the same family with high
structural conservation, it has been shown that even when there is low
sequence identity, a network of hydrophobic interactions between residues is
conserved [15]. The conserved interactions may be considered the “critical”
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ones, and, similarly to the high-duty-cycle interactions, identifying conserved
interactions does not rely on computing an energy function.

• Other flexibility index methods. Another type of flexibility index has been
computed from the amino acid sequence using parameters derived from B-values
from a training set of PDB files [23, 37]. Yet another method has used normal
mode analysis to calculate the local chain deformability for each residue along
the backbone [25]. This method was shown to produce results comparable to the
MSU-FIRST flexibility index in a case study on 16pk kinase [25].

• Dilution. Dilution analysis reveals an unfolding pathway of a protein by remov-
ing H-bonds one by one and performing rigidity analysis. It would be interesting
to correlate the set of H-bonds identified as critical using our method with those
which cause the greatest changes in the rigidity during dilution. Dilution analysis
was used as a tool to show the coordinated states of thermophilic and mesophilic
protein homologues [11]. This study used measures of the rigidity properties to
identify the transition point from flexible to rigid, and showed that in two-thirds
of the proteins in the data set, the transition point occurred at a higher temperature
in the thermophilic than in the mesophilic homologue. The classification of the
critical and redundant interactions may be used as additional information to
improve the order in which the bonds are removed in dilution analysis, which
may lead to more consistently corresponding transition points.

• Computational efficiency. Our algorithm for classifying all interactions as critical
or redundant, described in Sect. 4.1, takes in the worst case cubic time in the
number of atoms, so the method does not scale well to proteins with more than
500 residues. We have shown that owing to the rarity of very critical interactions,
a uniform sampling approach is inadequate. Because these critical interactions
tend to be concentrated together, however, a targeted sampling approach may
be sufficient if some knowledge of the structure is available a priori. Another
reasonable approach to speeding up the algorithm would be to devise a method
that leverages common intermediate states of the pebble game, so that a new run
of the pebble game would not need to be performed for each interaction.
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Modeling Autonomous Supramolecular
Assembly

Meera Sitharam

Abstract Supramolecular assembly is often a remarkably robust, rapid and spon-
taneous process, starting from a small number of monomeric types. Although
the process occurs widely in nature and is increasingly important in healthcare
and engineering, it is poorly understood. Icosahedral viral shell assembly is one
such outstanding example. We sketch the experimental roadblocks that necessitate
mathematical and computational modeling of assembly, and list the types of exper-
imental data available for model validation, thereby defining the models’ input and
output, and framing the scope of model predictions. We isolate the various factors,
specifically configurational and combinatorial entropy that influence spontaneous
supramolecular assembly, pinpointing the modeling challenges and motivating the
use of multiscale models. We then survey existing modeling paradigms for the
modeling different scales, emphasizing the newest models and paradigms developed
by the author’s group, geared towards not only predicting, but also intuitively
explaining, analyzing and engineering assembly processes. The models leverage
geometric and algebraic characteristics unique to molecular assembly (as opposed
to folding), and permit provable performance guarantees together with some level of
forward and backward analysis as well as a desired level of precision and refinability
of prediction.

1 Motivation

Understanding supramolecular assembly is useful for many practical applications.
Rational drug design is a vast area of study and requires understanding the site-
specific assembly or docking of ligands with proteins and other biomolecules.
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Similarly, nanoscale self-assembly of materials is a vast area of study in nanotech-
nology. Many viral capsids form by self-assembly of an icosahedral shell from
nearly identical coat protein monomers enclosing genomic material. Understanding
how to disrupt assembly permits us to target this part of the viral lifecycle using
drugs and vaccines The pathophysiology of viral infections includes other parts of
the viral lifecycle that involve site-specific docking and assembly. Understanding
how to encourage assembly can help engineer effective viral vectors that are used
as transport for gene therapy or potentially for bacteriophage virus therapy to attack
specific bacteria.

Scope. In this paper, we are interested only in structures formed by direct,
autonomous assembly rather than structures assembled with the aid of extraneous
chaperones or scaffolding molecules that do not end up as part of the assembled
structure. Furthermore, we are not interested in structures formed by multistage
assembly; i.e., by various deformation and/or folding processes subsequent to the
assembly of an initial structure.

1.1 Limitations of Experimental Data and Modeling
Motivation

Supramolecular assembly is a rapid, economical process driven by weak interactions
and non-covalent binding between the constituent molecular components. The
assembly takes place spontaneously at room temperature, in solution, or in a
lipid bilayer membrane. Available types of experimental data on supramolecular
assembly include:

• X-ray crystallography for details of relatively large assembled structures (often
possessing nontrivial symmetries, as in the case of icosahedral viruses);

• Cryo-electron microscopy and stoichiometry studies of various approximate
subassembly intermediate structures and their sizes;

• Primary sequence or even NMR spectroscopy structure of the starting monomers
and smaller (sub)assemblies;

• Calorimetric studies to determine dissociation energies for (sub)assemblies;
• In vitro systems to measure concentrations of various subassembly intermediates;
• Selective mutagenesis of starting monomers, and its effect in encouraging or

disrupting assembly; and
• Mining a comparable database of all of the above types of data for assembly

systems classified by various similarity criteria, for example, by structural or
biological similarity of viruses.

Despite the above types of experimental data and exploration capabilities,
supramolecular assembly processes are poorly understood partly because of their
remarkable rapidity, spontaneity and robustness. Spontaneity makes it difficult to
control in vitro, rapidity makes it difficult to get snapshots, and robustness (multiple
pathways and insensitivity to individual interactions of the constituent molecules)
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makes it difficult to isolate crucial combinations of assembly-driving interactions—
from among a combinatorial explosion of possible combinations. In addition, many
of these experimental methods are labor- and resource-intensive, making blind
alleys extremely expensive.

This generates a strong motivation to go beyond guesswork guided by theoretical
first principles alone, and develop effective mathematical and computational models
for supramolecular assembly that can inform further experimentation. On the other
hand, the necessity to validate model predictions using the available experimental
data and within the prevailing experimental capabilities frames the scope of our
models, and defines their inputs, outputs and tuning parameters.

1.2 Prediction Tasks

Based on the previous discussion, we focus on models for the following types of
prediction tasks.

• Input: the 3D configurations of the rigid components of the starting monomers,
and the inter-component interactions (Sect. 2 describes how they are formally
specified). Output: prediction of the terminal assembly structures and their
concentrations (or probabilities).

• Input: as in the previous item, plus a 3D configuration of final assembly. Output:
prediction of those atoms or monomers that are crucial for the assembly process
to terminate in the given input assembly configuration.

• Input: as in the previous item. Output: prediction of minimal atomic alterations
that would significantly increase probability of the assembly process terminating
in the given input assembly configuration.

• Input: as in the previous item, additionally more than one choice of final assem-
bly configuration. Output: prediction of key events such as specific intermediate
subassembly configuration choices during assembly that determine which one of
the final assembly configuration results.

These types of predictions cannot be made by theoretical first principles, combi-
natorial experimentation (trying various possibilities), and guesswork alone, even
with the help of known data on similar assemblies and biological knowledge
about evolutionarily conserved structures. In addition, for larger assemblies, these
predictions cannot be made by direct application of standard methods such as Monte
Carlo or molecular dynamics mixed with informatics style approaches for mining
existing knowledge for similar assemblies.

1.3 The Methods of This Paper

The methods emphasized in this paper begin with isolating and abstracting crucial
factors influencing assembly, thus motivating a multiscale model of assembly.
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One such factor influencing supramolecular assembly at the nanoscale is config-
urational entropy of small assemblies at inter-monomeric interfaces, driven by weak
forces and non-covalent binding. The exact computation of configurational entropy
is considered a notoriously difficult problem in chemical theory and computational
chemistry.

This paper describes our new modeling paradigm towards the judicious approxi-
mation of configurational entropy suited to a specific type of prediction that can be
validated by mutagenesis experiments. The paradigm consists of two aspects. The
first aspect is the generation of an atlas of the configuration space using classical
Thom–Whitney stratification from algebraic geometry. The second aspect is our
new theory of convexification, i.e., choosing parameters by which the regions of the
stratification can be represented as convex regions. Both aspects are implemented as
a prototype software EASAL (efficient atlasing and search of assembly landscape).
Recent mutagenesis validation of predictions of crucial interactions for the assembly
of AAV2 (Adeno Associated Virus) were based on an approximation of interface
configurational entropy obtained by EASAL.

Another crucial factor influencing assembly at the microscale is combinatorial
entropy in the formation of larger assemblies from smaller subassembly interme-
diates, especially when symmetries are present. This, too, is difficult to model or
compute. Traditional approaches have been primarily based on simplified geometric
approximations of the assembly constituents, and local assembly rules, together with
statistical mechanics simulation heuristics that incorporate kinetics as well. Most
of these methods do not provide performance guarantees, nor facilitate backward
analysis of the computational model’s input–output function; nor are they suited to
providing intuitive, mechanistic explanations and predictions.

This paper details our approach for combinatorial entropy at the microscale,
using algorithms with performance guarantees (or even generating functions), for
counting assembly pathways with desired features, especially in the presence of
symmetry.

1.4 Organization

In Sect. 2 we discuss factors influencing assembly, motivating a multiscale model
of assembly. In Sect. 3 we discuss the crucial nanoscale factor that influences
supramolecular assembly namely interface configurational entropy at inter-
monomeric interfaces. We give a brief sketch of the literature tracing the long
and distinguished history of the notoriously difficult problem of configurational
entropy computation. We then describe our modeling paradigm for approximating
interface configurational entropy: generation of an atlas of the configuration space
using stratified convexification, implemented as a prototype software EASAL. In
Sect. 4 we discuss the crucial microscale factor of that combinatorial entropy,
which influences the number of pathways to formation of larger assemblies from
smaller subassembly intermediates, especially when symmetries are present.
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We briefly survey traditional approaches based on local assembly rules and
statistical mechanics simulation heuristics that incorporate kinetics. We describe our
approach for computing combinatorial entropy at the microscale, using algorithms
(or even generating functions), for counting assembly pathways. In Sect. 5 we
briefly present recent mutagenesis validation of predictions of crucial interactions
for the assembly of AAV2 (Adeno Associated Virus), based on an approximation of
interface configurational entropy obtained by EASAL. We conclude by highlighting
the remaining challenges in Sect. 6.

2 Multiscale Model Based on Factors Influencing Assembly

First we describe an assembly system, i.e., the typical input to an assembly process.
This is followed by a discussion of the key factors that influence assembly which
highlights the challenges of the above prediction tasks and motivates a multiscale
assembly model.

2.1 Assembly System

An input to a computational model of an assembly process is an assembly system
consisting of the following.

• A collection of of monomers drawn from a small set of monomeric types (often
just a single type). Each monomeric type is specified as a collection of rigid
molecular components; a rigid component is in turn specified as the set of
positions of the centers of their constituent atoms, in a local coordinate system.
In many cases, an atom could be the representation for the average position of a
collection of atoms in an amino acid residue. Note that an assembly configuration
is given by the positions and orientations of the entire set of n rigid molecular
components in an assembly system, relative to one fixed component. Since each
rigid molecular component has 6 degrees of freedom, a configuration is a point
in 6.n� 1/-dimensional Euclidean space.

• The pairwise component of the potential energy function of the assembly system,
specified as a sum of potential energy (also called enthalpy) terms between
pairs of constituent atoms i and j in two different rigid components of the
assembly system. The weak interactions between the rigid molecular components
is captured by this potential energy function. The pairwise potential energy terms
are, in turn, specified using pairwise Lennard-Jones and Hard-Sphere pairwise
potential energy functions. The pairwise Lennard-Jones term is typically present
only for selected pairs of atoms, i and j , one from each component, while
the Hard-Sphere potentials apply to all other pairs. Both are functions of the
distance di;j between i and j ; the former function is typically discretized
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to take different constant values on 3 intervals for the distance value di;j :
.0; li;j /; .li;j ; ui;j /; and.ui;j ;1/: Typically, li;j is the so-called Van der Waal
or steric distance given by “forbidden” regions around atoms i and j: And ui;j

is a distance where the attractive (electrostatic or other weak) forces between the
two atoms is no longer strong (typically these forces decay as the reciprocal of
some power of di;j ). Intuitively, the interval .0; li;j / is where the repulsive force
dominates, and .li;j ; ui;j / is where the attractive force and repulsive forces are
balanced, and .ui;j ;1/ is where neither force is strong. Over these 3 intervals,
respectively, the Lennard-Jones potential assumes a very high value hi;j , a small
value si;j , and a medium value mi;j : All of these bounds for the intervals for
di;j , as well as the values for the Lennard-Jones potential on these intervals are
specified constants as part of the input to the assembly model. These constants
are specified for each pair of atoms i and j , i.e., the subscripts are necessary. The
middle interval is called the well. The Hard-Sphere potentials are defined solely
by the Van der Waal’s forbidden distance, li;j D ui;j .

• A non-pairwise component of the potential energy function in the form of global
potential energy terms that capture the tethers between the rigid components
within a monomer, as well as other global potential energy terms that implicitly
represent the solvent (water or lipid bilayer membrane) effect [16, 23, 24]. These
are specified using discrete values over intervals of the distances or angles
between pairs of entire rigid components (as opposed to pairs of atoms).

It is important to note that all the above potential energy terms are functions of the
assembly configuration.

Observe that an assembly system can alternatively be represented as a set of rigid
molecular components drawn from a small set of types, together with assembly
constraints, in the form of distance and angle intervals. These constraints define
feasible configurations (where the pairwise inter-atoms distances are larger than
li;j , and any relevant tether and implicit solvent constraints are satisfied). The set
of feasible configurations is called the assembly configuration space. The active
constraint regions of the configuration space are regions where at least one of the
Lennard-Jones inter-atom distances lies in the well, i.e., the interval .li;j ; ui;j /.

Note that for the prediction tasks given above, the input to the assembly model
consists of an assembly system, optionally accompanied by one or more final
assembly configurations.

2.2 Factors, Challenges, Multiscale

The assembly configuration space can be partitioned into regions with constant
potential energy. The free energy of such a region is related to the probability of
finding the assembly system in a configuration in the region and is dependent on
both its potential energy (inversely) and on the log volume of the region (directly).
The former is constant over the region, as defined, and is easy to compute for our
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model. Roughly speaking, the latter represents the configurational entropy of the
region. We refer the reader to [18, 42] for a succinct exposition of the relationship
between these properties.

2.2.1 Nanoscale: Interface Configurational Entropy

At equilibrium, the configuration space (complex of constant potential energy
regions) partitions into potential energy basins representing equilibrium
configurations.

The potential energy computation for these configurations is immediate, and the
challenge is to compute the configurational entropy, i.e., volumes of these basins to
determine the stability or binding affinity for these equilibrium configurations.

The dimension as well as geometric and topological complexity of a potential
energy basin corresponding to an equilibrium assembly configuration make the
computation of the basin volume challenging. If the volume is determined by sam-
pling, it takes time exponential in the dimension, and each rigid component in the
assembly system punishingly adds 6 to this dimension. Already for small, interface
assembly systems that are associated with specific types of interfaces between rigid
molecular components, this interface configurational entropy computation at the
nanoscale is thus highly challenging.

2.2.2 Microscale: Combinatorial Entropy

For larger, microscale assemblies, this type of direct configurational entropy
computation is impossible. Instead, they are treated as being recursively assembled
as an interface assembly system, from a small number of stable intermediate
subassemblies [35]. This recursive assembly is usually represented as an assembly
tree whose leaves are the rigid molecular components of the assembly system,
the root is the final large assembly configuration, and the internal nodes are the
intermediate subassembly configurations. The overall entropy of a configuration
space region of the large assembly C is a combination of:

• The entropies of its small number of constituent equilibrium subassemblies Ci ;
• The interface configurational entropy of the assembly of the Ci ’s to form C ;
• The combinatorial entropy at the microscale that arises from the number of

different collections of subassemblies Ci that assemble to form C , heavily
influenced by the symmetries of C [6, 7, 36]; and, finally,

• The microscale kinetics that interrelate the stability and binding affinity of differ-
ent interface assembly configurations, with the concentrations of the constituent
subassembly configurations.

The potential energy basins corresponding to equilibrium configurations of the
large assembly system C as well as their stability and binding affinity are again
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Fig. 1 Multiscale assembly model scales shown; Left: combinatorial entropy using nanoscale
interface assembly system of 2 rigid molecular components with pair potentials; Mid: Large T D 1
viral, microscale assembly shown as polyhedron; Right: whose combinatorial entropy is given
using (recursive) assembly trees

determined by the geometry and topology of the initial partition into constant
potential energy regions as well as microscale kinetics.

The above discussion isolates the factors influencing assembly as: potential energy;
interface configurational entropy and nanoscale kinetics; combinatorial entropy
and microscale kinetics. This motivates a 3-scale model for assembly (see Fig. 1).

3 Nanoscale Models: Interface Configurational Entropy

We discuss three types of models that attempt to capture the following related
properties of interface configuration space regions for small assemblies: free energy,
partition function (relative probability), stability, binding affinity, configurational
entropy. We refer the reader again to [18,42] for understanding the exact relationship
between these properties.

3.1 Stability Based on Extent of Rigidity

In [35], rigidity was roughly equated with being an equilibrium assembly config-
uration (i.e., low-energy representative configuration of a potential energy basin)
and a further shortcut was used to quantify the stability of an equilibrium assembly
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configuration, namely, the number of Lennard-Jones pairs that had to be removed
in order to degenerate into a flexible configuration with many small rigid sub-
assemblies. This shortcut has also been suggested by Ileana Streinu in a personal
communication. However, as mentioned in the previous section, even for small
assemblies, the bottleneck in computing the stability and binding affinity of
equilibrium configurations is the computation of the volume of the high-dimensional
potential energy basin corresponding to the equilibrium configuration, possessing
a complicated geometry and topology. This rigidity-based approximation of the
volume is too coarse to be effective, as demonstrated for example in trying to
determine crucial interactions for AAV2 assembly as in Sect. 5, for which a different
method had to be used. In particular, for that example, even a straightforward PCA
or eigenvalue-based method outperformed the rigidity-based method.

3.2 Traditional Methods for Configurational Entropy and Free
Energy

There has been a long and distinguished history of configurational entropy and free
energy computation methods [2, 8, 12–15, 18–20], many of which use as input the
configuration trajectories of molecular dynamics or Monte Carlo simulations.

All configurational entropy computations reduce to computing cartesian volumes
of constant potential energy regions of a configuration space, as mentioned earlier
[18,42]. Even methods that directly compute partition integrals (i.e., probabilities of
a configuration being in a region of the configuration space) or directly compute free
energy (e.g., the Mining Minima method [12]) must effectively compute volumes
of configuration space regions since free energy gradients (binding affinities) are
effectively based on entropy differences between the configuration space regions that
correspond to “before” and “after” assembly. Again, the picture of configurational
entropy as volume computation for configuration space regions clarifies the intrinsic
nature of the two mutually compounding challenges that any method will have to
overcome: dimensionality and topological/geometric complexity.

As mentioned earlier, accurate computation of volumes of configuration space
regions cannot escape exponential dependence on dimension as long as the compu-
tation is achieved by counting samples explicitly. Sampling is often the only way to
compute the volume of constant potential energy regions, since they are typically
semi-algebraic sets (i.e., sets of configurations satisfying systems of quadratic
inequalities, since distance is a quadratic function of the cartesian configuration).
Such semi-algebraic sets have high geometric and topological complexity, going
beyond just the inherent nonlinearity, even in relatively low-dimensional scenarios.
In addition, during sampling, Jacobian computations are necessary to map from
the “free” internal coordinates to constant potential energy regions of the cartesian
configuration space. Such Jacobian computations are necessary since Lennard-Jones
and Hard-Sphere pair potentials are both dependent on interatom distances, which
depend quadratically (not linearly) on the cartesian coordinates of a configuration.
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For instance, with two rigid molecular components, the dimension of the
cartesian configuration space is just 6. However, when each component has tens of
atoms, the active constraint regions induced by any standard potential landscape are
complexes of nested boundaries of different (effective) dimensions. It is due to this
reason that one cannot guarantee the ergodicity of Monte Carlo sampling nor give
any reasonable bounds on the number of rejected samples. For both Monte Carlo and
molecular dynamics, uniform sampling can only be claimed in the limit, or “if run
for sufficiently long, or starting from sufficiently many initial configurations.” This
also causes problems for many entropy computation methods that rely on principal
component analyses of the covariance matrices from a trajectory of samples
in internal coordinates, followed by quasiharmonic [2] or nonparametric (such
as nearest-neighbor-based) [14] estimates. Such methods generally overestimate
the volumes of configuration space regions with high geometric or topological
complexity, even when hybridized with higher-order mutual information [15], and
nonlinear kernel methods, such as the Minimally Coupled Subspace approach of
[13]. Ab initio methods such as [8] based on geometric algebras (Lie algebra,
Grassman-Cayley algebra, etc., common in robotics) are used to give bounds or to
approximate configurational entropy without relying on Monte Carlo or molecular
dynamics sampling. However, it is not clear how to extend them beyond restricted
assembly systems such as a chain or loop of rigid molecular components each
consisting of at most three atoms, where each component is noncovalently bound
to each neighboring component at exactly two sites.

There has been some research on inferring the topology of the configuration
space [11, 22, 30, 38] starting from Monte Carlo and molecular dynamics samples,
and using the topology to guide dimensionality reduction [41].

3.3 Approximations of Configurational Entropy via Atlas
of Configuration Space

As mentioned earlier, geometric constraints on interatom distances and angles can
be extracted from our potential energy function. A recent paper by the author
introduces the notion of an atlas of a configuration space, which consists of two
ingredients. The first ingredient is a stratification of the configuration space into
active constraint regions 3.3.1. The second ingredient is a representation of each
active constraint region by carefully chosen parameters that make the region convex
(following subsection).

3.3.1 Stratification, Active Constraint Regions

Consider an assembly configuration space A of k rigid components, defined
by a system A of assembly constraints. The configuration space has dimension
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m � 6.k � 1/, the number of internal degrees of freedom of the configurations since
a rigid object in Euclidean 3-space has 6 rotational and translational degrees of
freedom. For k D 2, m is at most 6 and in the presence of two tether constraints, it
is at most 4.

A Thom-Whitney stratification [21] of the configuration space A (see Fig. 2) is a
partition of the space into regions grouped into strata Xi of A that form a filtration
; 	 X0 	 X1 	 : : : 	 Xm D A , m D 6.k � 1/. Each Xi is a union of nonempty
closed active constraint regions RQ where m � i inequality constraints Q � A are
active, meaning equality is attained and they are independent. Each active constraint
set Q is itself part of at least one, and possibly many, hence l-indexed, nested chains
of the form ; 	 Ql

0 	 Ql
1 	 : : : 	 Ql

m�i D Q 	 : : : 	 Ql
m. These induce

corresponding reverse nested chains of active constraint regions RQl
j
: ; 	 RQl

m
	

RQl
m�1
	 : : : 	 RQl

m�i
D RQ 	 : : : 	 RQl

0
. Note that here for all l; j , RQl

m�j
�

Xj is closed and j dimensional.
We represent the active constraint system for a region by an active constraint

graph whose vertices represent the participating atoms (at least 3 in each rigid
component) and edges representing the active constraints between them. Between a
pair of rigid components, there are only a small number of possible active constraint
graph isomorphism types since there are at most 12 contact vertices.

There could be regions of the stratification of dimension j whose number
of active constraints exceeds 6.k � 1/ � j , i.e., the active constraint system is
overconstrained, or whose active constraints are not all independent. Dependent
constraints diminish the set of realizations. For entropy calculations, these regions
should be tracked explicitly, but in the present paper we do not consider these special
regions in the stratification. Our regions are obtained by choosing any 6.k � 1/� j

independent active constraints.

3.3.2 Convex Representation of Active Constraint Region and Atlas

A new theory of Convex Cayley Configuration Spaces (CCCS) recently developed
by the author [37] gives a clean characterization of active constraint graphs whose
configuration spaces are convex when represented by a specific choice of so-called
Cayley parameters, i.e., distance parameters between pairs of atoms that are inactive
in the given active constraint region (see Fig. 3). Such active constraint regions are
said to be convexifiable, and the corresponding Cayley parameters are said to be its
convexifying parameters.

The Atlas of an assembly configuration space is a stratification of the config-
uration space into convexifiable regions. In [26] we have shown that molecular
assembly configuration spaces with 2 rigid molecular components have an atlas.
The software EASAL (Efficient Atlasing and Search of Assembly Landscapes)
efficiently finds the stratification, incorporates provably efficient algorithms to
choose the Cayley parameters [37] that convexify an active constraint region,
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Fig. 2 Top: atlas portion, with active constraint regions labeled by their active constraint graphs
(dark edges); the regions are shown as sweeps around a stationary reference molecule. Bottom:
active constraint regions with convexifying Cayley parameters (light edges), which decrease with
dimension, as edges are added to the active constraint graph; note intersection with the complement
of a convex subregion in the center. Edges are successively added to the active constraint graphs
for the child and descendant atlas regions as more constraints become active
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Fig. 3 Top Left: atlas region showing interiors and boundaries sampled in its convexifying Cayley
parameters; boundary/child regions sampled in their own Cayley parameters and mapped back
to the parent region’s Cayley parameters (note increase in samples). Top Right: boundary/child
regions sampled in their own Cayley parameters shown as sweeps around grey reference (toy)
helix. Bottom Left: union of boundary regions sampled in parent’s Cayley parameters, shown
as sweep around blue reference helix ( notice (b) is bigger) Bottom Right: sweep of one of the
boundary regions sampled in parent’s Cayley parameters is shown in red around gray reference
helix; the sampling misses the other colored configurations in the same boundary region, obtained
by sampling in its own Cayley parameters

efficiently computes bounds for the parametrized convex regions [9], and converts
the parametrized configurations into standard cartesian configurations [29].

The key point is that EASAL is tailored for assembly and leverages its unique
properties; in particular, even simple folding configuration spaces (e.g., the classic
cycloheptane or cyclooctane) do not have atlases.

3.3.3 EASAL-Based Approximations of Configurational Entropy

There are many natural ways to approximate configurational entropy. Their efficacy
depends on the particular application where they are used. We give one example here
that we used for determining crucial constraints as in Sect. 5. The potential energy
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basins of an interface assembly system are centered around the configurations in the
zero-dimensional active constraint regions of the configuration space atlas. These
regions cannot be found by EASAL without finding the higher-dimensional regions
of the atlas. Furthermore, each distinct configuration in such a region is rigid and
could be considered an equilibrium assembly configuration with its own potential
energy basin. Any configuration in a basin satisfies at least 6.n � 1/ of the input
constraints (for n rigid molecular components), i.e., the corresponding interatomic
distances fall within their respective Lennard-Jones wells. The number of copies of
one of the configurations in a basin is the number of higher-dimensional regions of
the atlas whose active constraint graphs are subgraphs of the active constraint graph
of the given configuration. This is an approximate measure of the size or volume of
a potential energy basin (configurational entropy associated with that basin).

4 Microscale Model: Combinatorial Entropy

As mentioned in Sect. 2, the computation of combinatorial entropy requires both (a)
a count of assembly trees (defined in Sect. 2; see Fig. 4) weighted by the combined
probability of their constituent stable subassemblies (in turn obtained from their free
energies); and (b) microscale kinetics as described in Sect. 2.

4.1 Combinatorial Entropy via Simplified Assembly
Components and Local Rules

The assembly model [34] combines both (a) and (b) above, based on the “local-
rules” theory of [3–5, 33]. In addition, differentiation of these models from other
similar [17, 25, 31, 32, 43] models is given in [34]. The model in [34] relies
crucially on the following: (i) full-blown dynamic simulation (their approach
has no static analogy for analyzing successful assembly trees alone); (ii) simple
polygonal representations of monomers and an explicitly specified set of stable
configurations for the subassemblies; (iii) simplified geometric interactions between
monomeric types explicitly and procedurally specified as local rules. The above type
of assembly model provided just the necessary level of detail to answer these kinds
of questions about concentrations of subassembly configurations. However, forward
and reverse analysis are difficult as are intuitive explanations as to what sets of local
rules and stable subassemblies are likely to result in a given final assembly.

4.2 Combinatorial Entropy via Assembly Trees and Orbits
(Pathways)

To compute the weighted sum of assembly trees for an assembly configuration A as
given in (a) above, it is useful to analyze orbits of assembly trees under the action of
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Fig. 4 Top: icosahedral assemblies shown as 12 pentamers, or 20 trimers; Bottom: Assembly Trees
based on (left) sequential addition of pentamers, and starting with a trimer of pentamers, with
bottom level triangles representing pentamers, or (right) sequential addition of trimers starting
with a pentamer, with bottom level triangles representing trimers

automorphism group G of A, or the polyhedral graph corresponding to A. Similarly
it is useful to analyze orbits of subassemblies A0 under the action of G. The induced
action of G on an assembly tree is obtained by the G acting on each subassembly
occurring as a node in the tree. Two trees in the same orbit under this induced action
represent the same assembly process (properties such as the combined probabilities
of its constituent subassemblies are the same), hence we call each orbit under this
action an assembly pathway. Similarly the orbit of a subassembly A0 under G is
called an assembly type. More generally, if any finite group G acts on a finite set
S , there is an induced action of G on the set of assembly trees for S . Even if
all assembly trees have equal probability of occurring, not all assembly pathways
have equal probability of occurring, since the corresponding orbits have different
sizes depending on their stabilizer subgroup in G. In [36], we formulated various
questions about probabilities of pathways with various properties. In [6, 7] we
answered some of these questions; specifically, in [7], we gave explicit generating
functions for counting all pathways with a given orbit size.
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5 Validation of EASAL Prediction of AAV2 Crucial
Interactions

The results in this section have appeared in [40]. We started from simplified potential
energy landscapes designed from the known X-ray structure of AAV2 coat protein
monomers and interfaces [1, 27, 28] (data provided by Mavis Agbandje-McKenna’s
lab, see Fig. 2). For each of the three interfaces (2-fold, 3-fold and 5-fold), we
determined the pairs of interacting atoms that are conserved in related viruses
(10–20 pairs for each interface). These were used as the candidate interactions for
the crucial interactions. For the mutagenesis experiment in McKenna’s lab, these
candidate interactions were disabled one by one, by mutating one of the atoms in the
pair. The effect of the mutation on assembly efficacy was determined by measuring
concentration of successfully assembled viral shells via cryo-electron microscopy.
This experiment (Bennett, 2012, unpublished manuscript) took at least 2 years.

For EASAL’s predictions, we treated monomers as single rigid components in
the interface assembly systems. We used Lennard-Jones potentials for the above
pairs of interacting atoms and hard spheres for the sterics of the remaining atoms.
No solvent effects were considered. For each interface, for each of its interactions,
the approximate interface configurational entropy was computed as described in
Sect. 3, when the specific interaction was dropped. We called this the sensitivity of
that interaction. In fact, for each of the interfaces we generated a new atlas and
computed the above quantity for more than one assembly system obtained from
different pairs of participating multimers—see below for a detailed description. The
rationale was that the same interface drives assembly of different types of multimer-
pairs during the formation of larger intermediate subassemblies. We obtained a
cumulative sensitivity ranking for each interaction, over all of the relevant interface
assembly systems for that interaction. This computation took 1 week.

The tabulated results for dimer and pentamer interfaces are given in the two parts
of Table 1. The atom numbers in the first two columns are standard numbering used
in the cited papers. In some cases, Atom 1 interacts with more than one partner Atom
2. Mutagenesis disables all interactions in which a mutated atom participates. Atom
1 and Atom 2 give the residue. In both cases, the highest ranked interactions (the
corresponding atom pair names are given) output by EASAL indicate that assembly
is most sensitive to these interactions. They were validated by mutagenesis, resulting
in assembly disruption (the “Confirmed” column). Note that blank entries in the
“Confirmed” column indicate that mutagenesis was not performed to disable those
interactions, i.e., it is as yet unknown whether EASAL’s predictions are correct.

5.1 Pentamer Interface with Participating Multimers

During the formation of larger assembly intermediates two multimers (as opposed to
monomers) could assemble across the same interface. We obtained a new pentamer
interface atlas for a monomer and a dimer. While the weak-force interactions remain
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Table 1 Sensitivity ranking: dimer (top), pentamer (bottom) interfaces

Atom 1 Atom 2 Confirmed

P293 W694, P696 Yes (Bennett, 2012, unpublished manuscript)
R294 E689, E697 Yes (Bennett, 2012, unpublished manuscript) [39]
E689 R298 Yes (Bennett, 2012, unpublished manuscript)
W694 P293, Y397 Yes (Bennett, 2012, unpublished manuscript)
P696 P293 Yes (Bennett, 2012, unpublished manuscript)
Y720 W694 Yes (Bennett, 2012, unpublished manuscript)

N227 Q401 Yes [39]
R389 Y704
K706 N382
M402 Q677 Yes (Bennett, 2012, unpublished manuscript)
K706 N382
N334 T337,Q319
S292 F397 Yes [39]

the same, the number of hard-sphere sterics increases and changes the interface
configuration space significantly. Factoring this into the rankings, we found two
other crucial interactions for the pentamer interface: S292-F397 and N227-Q401.
Both were confirmed by assembly disruption through mutagenesis, and have been
included in the above tables.

Note concerning the trimer interface: We could not obtain useful sensitivity
rankings for the trimer interface due to the heavy influence of sterics (caused by
interdigitation). This tallied with the fact that mutagenesis of any of the trimer
interface interactions could not disrupt assembly. We do not believe that assembly
of the AAV2 shell is sensitive to any of the trimer interactions. We conjecture that
the assembly proceeds primarily by dimeric and pentameric interface interactions.
Trimers interdigitate and contribute to the stability of the capsid after the assembly
is complete.

6 Conclusions and Open Questions

We defined the scope of assembly models based on the type of experimental data
available for validation. We gave factors influencing assembly, and motivated a
multiscale model. We surveyed traditional models and new modes for both the
nanoscale and the microscale and highlighted the issues that are still outstanding. We
then gave an example of model prediction that could be experimentally validated.

6.1 Open Questions on Configurational Entropy

At the moment the exact computation of configurational entropy, i.e., volumes
of atlas regions, is done by sampling, which, as mentioned, does not escape the
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exponential time dependence on dimension. However, for convexified regions,
faster methods, for example based on [10], may help with volume computation
for atlas regions. Another unresolved issue is that kinetics influence the stucture
of equilibrium potential energy basins, which we have not taken into account.

6.2 Open Questions on Combinatorial Entropy

The generating function in [7] for counting pathways with the same orbit size does
not extend to pathways with a given property, not even those whose intermediate
subassemblies are stable. Sacrificing the generating function for an algorithm opens
the field to matroid basis-exchange-type algorithms, provided stable subassemblies
can be defined appropriately. We gave a randomized counting algorithm [35]
based on matroid basis exchange, for counting all assembly trees with stable
subassemblies. However, what is needed is to count pathways (i.e., tree orbits) with
stable subassemblies. Furthermore, the question is open how to combine microscale
kinetics with the above type of orbit counting.
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The Role of Symmetry in Conformational
Changes of Viral Capsids: A Mathematical
Approach

Paolo Cermelli, Giuliana Indelicato, and Reidun Twarock

Abstract For many viruses, structural transitions of the viral protein containers,
which encapsulate and hence provide protection for the viral genome, form an
integral part of their life cycle. We review here two complementary mathematical
models for the expansion of an icosahedral viral capsid. The first is based on a
geometrical description of the capsid involving a library of point sets obtained by
affine extensions of the icosahedral group, and allows us to characterize the space
of the possible transition paths between the initial and the final state. In the second
approach, the capsid is described as a union of rigid tiles that interact with each other
and with the genomic material, placing emphasis on the energetic determinants of
the transition event. Both models predict loss of icosahedral symmetry along the
transition path, even though the final state is icosahedral.

1 Introduction

Viruses are prime examples of symmetry in biology. In their simplest form,
they consist of a protein shell, called a capsid, that envelops and hence protects
the genetic material (RNA or DNA). For a large number of viruses, structural
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rearrangements of the capsid’s proteins are an integral part of the life cycle and
a prerequisite for the particles becoming infective. For example, in the maturation
of the bacteriophage Hong Kong 97 (HK97), the viral head expands from a
procapsid to an elongated shell. In cowpea chlorotic mottle virus (CCMV), equine
rhinitis A virus (ERAV), tomato bushy stunt virus (TBSV) and red clover necrotic
mosaic virus (RCNMV), structural changes result in the opening of pores through
which the genomic material is exposed to the environment and eventually released
[25, 27, 28, 31].

Here we review two mathematical approaches to the study of the structural
transitions of icosahedral viral capsids. The first approach is based on the use of
suitable geometric descriptors of the relevant topological features of the capsid.
These descriptors are special point arrays that embody the icosahedral symmetry
of the capsid [16]. By modelling the non-crystallographic symmetry via projection
from lattices in a higher-dimensional space, we can use the theory of crystallo-
graphic phase transitions to induce transformations of the point arrays associated
with conformational changes of the capsid. In particular, we consider transitions
akin to the Bain strain, i.e. a transformation between cubic lattices such that the
intermediate lattices maintain a maximal symmetry [3, 23], and demonstrate their
relevance in the context of virology. The second approach consists of a coarse-
grained model of a viral capsid and focuses on the energetic contributions, rather
than geometric (symmetry) arguments.

The question arises as to whether a geometric approach is suitable for character-
izing structural transitions in viruses. Viral capsids are complex protein structures,
and it is reasonable to assume that their structural changes are driven by chemistry
and physics, rather than by six-dimensional geometric features. However, math-
ematical techniques for explaining virus architecture using symmetry arguments
have been highly successful. For example, icosahedral point arrays obtained via
affine extensions of the icosahedral group seem to be remarkably good descriptors
of capsid geometry [13–16, 32–34], and provide geometric constraints on the full
3D organization of viruses, including genome organization, generalizing an earlier
approach of Caspar and Klug [4]. They also provide boundary conditions for tilings
that, in turn, could be used to approximate the proteins that make up the capsid.
Importantly, the points in the arrays are not necessarily associated with actual atoms
in the capsid; rather, they correlate with material boundaries [16]. Indeed, when a
configurational change occurs, it may happen that the point sets approximating the
initial and final structures have different cardinalities. This fact implies that there
is no natural way to construct transition maps from one array to another, simply
because there is no natural way of associating points with atoms, or associating
points belonging to different arrays. However, the point arrays used to approximate
the geometry of the capsid are a union of icosahedral orbits, and crystallographic
transformations with maximal intermediate symmetry have the property that they
conserve the maximum possible number of points during the transformation. Hence,
transformations between point arrays obtained by projecting to 3D crystallographic
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phase transitions with maximal symmetry have the advantage both of providing a
canonical framework for constructing transformations and of conserving the largest
possible number of points during the transition.

In this chapter we first review the work presented in [10], in which we applied
the above procedure to the structural transition of the cowpea chlorotic mottle virus
capsid. We have developed the machinery necessary to determine all pathways with
either icosahedral symmetry or a maximal subgroup thereof. The results pave the
way to studying transition paths in icosahedral tilings. In this context, we shall
also review the work in [11], where we have applied the above machinery to
transitions between mathematical quasicrystals. In particular, we were interested
in understanding the effect of high-dimensional phase transitions on tilings such
as the Penrose tiling. We proved that, for tilings obtained by projection, the
transformations of the tiles can be understood in terms of three simple rules: tile
flip, tile merger and tile bisection.

The work on CCMV suggests that the symmetry of transition intermediates
is not necessarily icosahedral, in contrast to a widespread assumption in the
literature. We have therefore constructed a coarse-grained model to investigate
the energetic determinants of such structural transitions, and we also review this
second approach here. Based on this model, and very general assumptions about
the physical forces governing the transition, we have shown that the transition is
most likely not icosahedral, especially in the presence of asymmetric components
or local fluctuations in the environmental conditions that locally affect the inter-
subunit bonds. In particular, we have investigated the stability of viral capsids and
constructed explicit transition paths.

The existing approaches are based mainly on shell mechanics (see, for instance,
[8]) or biomolecular simulations. For example, one well-developed approach to the
prediction of the pathway along which a viral capsid undergoes a conformational
change is normal mode analysis. This approach has been applied to capsids in
a series of papers [29, 30] with the purpose of identifying ‘soft modes’, i.e.
deformation modes corresponding to valleys or mountain passes on the energy
landscape. The analysis, applied to many different ensembles of atoms of the capsid,
yields consistently the result that even though the lowest-energy modes involve
isotropic expansion of the capsid, there are often other low-energy modes with non-
maximal symmetry.

The above is a very important result, but normal mode analysis seems to have the
drawback that, since it involves linearized force fields, it can only give information
about the initial stages of the conformational changes. Hence, it is natural to enquire
whether symmetry loss along the expansion pathway is a general feature, not
restricted to small deformations from the closed reference form of the capsid. Our
series of papers on the mathematical description of viral capsid transitions suggests
that this is indeed the case.
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2 Exploring the Role of Symmetry in Conformational
Changes of Viral Capsids: The Bain Strain

2.1 3D Point Arrays

Our first step is to construct a library of point sets, also called 3D point arrays, that
encode structural information about virus structure. As Crick and Watson observed
[6], the protective protein containers (viral capsids) of many viruses are organized
with icosahedral symmetry. This means that the proteins are organized into clusters
that are positioned following the rotational symmetries of an icosahedron. Caspar
and Klug’s seminal work recognized the fact that icosahedral symmetry is not
the only constraint on virus architecture [4]. These authors introduced quasi-
equivalence theory to explain how the proteins may be organized in the fundamental
domain of the symmetry group (also called the asymmetric unit in the literature).
More recently, we have shown that quasi-equivalence theory is part of a wider set
of constraints on virus architecture [13]. In analogy to lattices that encode how
crystallographic symmetries occur at different radial levels around their origin, it
has been shown in [13] that affine extensions of icosahedral symmetry, a non-
crystallographic symmetry, describe how the occurrence of icosahedral symmetry at
different radial levels of a structure with long-range order may be coordinated. Via
a classification of all possible affine extensions with suitable properties, a library of
blueprints has been derived, and it has been demonstrated that a number of viruses,
from different families and infecting different hosts, follow these blueprints [16].
These affine symmetries can be visualized as point arrays, which can be generated
from a single point in space via an application of the affine extended group [13].
The classification of affine extensions of icosahedral symmetry has thus resulted
in a library of point arrays, which we use here as a coarse-grained approximation
to a virus, via a description that reduces the complexity of all-atom models and is
amenable to analysis.

In order to explain the construction of these point arrays in some detail, we
first recall a few notions about the icosahedral group. As an abstract group, the
icosahedral group I is the 60-element group generated by two elements a and b

that satisfy the relations a2 D b5 D .ab/3 D 1. Its more familiar representation
is as the symmetry group of the icosahedron in 3D, denoted I3, where a is a
twofold rotation about an edge of the icosahedron, and b is a fivefold rotation about
a vertex. All elements of the icosahedral group are rotations about either twofold,
threefold or fivefold axes. We exclude reflections, since the observed capsids lack
such symmetry. Notice that by applying the icosahedral group to an arbitrary point
in space we obtain orbits with 60 elements, but the orbits of points lying on the
twofold, threefold and fivefold axes of the icosahedral symmetry are smaller, and
are the vertices of an icosidodecahedron (30 points), a dodecahedron (20 points)
and an icosahedron (12 points), respectively. In the following, we will write ICO,
DOD and IDD for the icosahedral orbits of the points .	; 1; 0/, .1; 1; 1/ and .	; 0; 0/,
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respectively, with 	 D .1Cp5/=2 (the motivation for such choices of scaling for
the polyhedra will be described below). Analogously, by translating the points of a
generic icosahedral orbit (60 points) by an arbitrary vector and all of its copies under
icosahedral symmetry, we obtain a set of points with 3,600 elements, but there are
special translations that yield smaller orbits. Specifically, consider one of the ‘small’
icosahedral orbits ICO, DOD or IDD. For each of these, there is only a finite number
of special translations, parallel to a high-symmetry axis, that map at least one point
of the orbit onto a symmetry axis. Such translations are termed admissible, and
they are similar to the translations that generate lattices from crystallographic point
groups. Hence, the admissible translations have the property that they generate a set
of points with small cardinality by the following procedure: (i) take a polyhedron
from among ICO, DOD and IDD; (ii) choose an admissible translation for that
polyhedron, and construct its icosahedral orbit (which is either a rescaled ICO, DOD
or IDD); (iii) translate all points of the initial polyhedron by all translations in the
orbit of the admissible translation above; and (iv) add the initial polyhedron to the
set.

Further, since there is a finite number of admissible translations for each start
polyhedron, there is also a finite number of point sets that can be generated in
that way: these provide a finite library by which a first approximation of the viral
capsid can be attempted. We demonstrate this idea for a two-dimensional example,
described in Fig. 1. The group there is the symmetry group D10 of the regular
pentagon, the starting orbit is the pentagon itself; the admissible translation is
indicated by an arrow pointing to a symmetry axis of the pentagon; and the resulting
set of points, obtained by applying the admissible translation and its orbit, are
indicated. Each of the above point sets is therefore identified by a polyhedron (either
ICO, DOD or IDD with suitable scalings; see below) and an admissible translation t.
The possible point sets that can thus be obtained are described and labelled in [13].
For instance, the structure labelled 10 in that reference is an icosahedron (ICO)
translated along a three-fold axis (DOD) by an amount 	2, so that t10 D 	2.1; 1; 1/.

It turns out that the above point sets are too simplistic to provide a useful tool
for approximating complex structures such as viral capsids. The next step is to
construct a library whose elements are point sets obtained by superimposing two
simpler structures from the above classification. In order to keep the feature that the
resulting point set is still small enough (relative to the cardinality of generic orbits),
a compatibility condition is imposed on the admissible translations of the simpler
structures. Specifically, we require that one of the two structures is rescaled so
that its admissible translation coincides with the admissible translation of the other
structure. This results in an augmented, yet still finite, library of point arrays, which
still have considerably fewer points than the superposition of general icosahedral
orbits. Each such point set can be labelled by two numbers, each referring to one of
the elementary structures used to generate it. For instance, the structure (10-44) is
generated by superimposing the structure 10 (ICO, t10), and the structure 44 (IDD,
t44), which is an icosidodecahedron with admissible translation t44 D 1

2
	.1; 1; 1/,

rescaled by a factor 2	 , since 2	t44 D t10. The classification shows that there are in
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Fig. 1 A two-dimensional example of how affine extensions of non-crystallographic groups yield
sets of points with pentagonal symmetry

total 342 such combinations (see [13] for details). Deeper motivations using ideas
of affine extensions of Coxeter groups are discussed in [22].

To summarize, we define a point array, or viral configuration, S as a point set
obtained by the above procedure. Formally, let I3 denote the 3D representation of
the icosahedral group. As recalled above, if u, r, t are vectors pointing along either
a twofold, threefold, or fivefold axis of I3, then the icosahedral orbits I3u, I3r
and I3t correspond to the polyhedra ICO, DOD and IDD with suitable scalings.
For every element in the classification of icosahedral point arrays [13], associated to
a triple of the form (POLY, POLY0, t), we define a point array or viral configuration
S as the point set

S � S.u; r; t/ D I3u [I3r [ .I3uCI3t/[ .I3rCI3t/:

where u 2 POLY, r 2 POLY0 and t is a common admissible translation of the two
polyhedra. Therefore, every point array is completely determined by a list of 3D
vectors .u; r; t/.

In order to apply the above mathematical concept to virology, we associate a
point array with each viral capsid through the algorithm proposed by Keef et al.
[16]. Starting from the pdb data available from either the Protein Data Bank or the
ViPER website [9], the atoms are first approximated by spheres of radius 1.9 Å
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Fig. 2 3D point arrays modelling the layout of the viral capsid and of the pentameric units of
CCMV before (above) and after (below) expansion

around each atomic position, which corresponds to the maximum van der Waals
radius of all atoms in the Protein Data Bank file. After aligning each point array
with the capsid along their common symmetry axes, each point array is rescaled so
that the capsid surface is contained in the convex hull of the points of the array. The
goodness of fit of the point array to the capsid is then measured by the sum of two
scores: a root-mean-square deviation (RMSD) score and a topography (TOP) score.

The first score is computed as follows: for each point (i , say) in the fundamental
domain of the icosahedral group, and for each protein (more precisely, for each
quasi-equivalent conformer of the monomer in the fundamental domain), labelled
by j , the minimum Ri;j of the distances of point i from the van der Waals spheres
of the atoms of protein j in the vicinity of point j is computed. The RMSD score
is the square root of the mean of the squares of Ri;j , where only those proteins with
distances lower than a cut-off of 2 Å are considered in the sum. In fact, points with
distances lower than 2 Å from at least two proteins are likely to lie at the interface
between these proteins. The topography score determines which point array best
matches the overall surface topography of the virus. In short, the most radially
distant 5 % of C˛ atoms in the viral capsid are clustered, and the barycentre of each
cluster is calculated: the shortest distance of the barycentre from the points of the
array is the topography score. The best match for the given capsid virus is the point
array with the lowest total score.

Notice that the points of these arrays are located near structurally or functionally
important geometric features of the capsid [16], but are not necessarily associated
with actual atomic positions. For an example, see the match of points with the capsid
of CCMV before and after expansion shown in Fig. 2.
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2.2 Lattices and Symmetry

In this section, we review some basic concepts and notation about Bravais lattices
that will be useful later. We write GL.n;Z/ for the group of n
 n integral matrices
with determinant˙1, GL.n;R/, for the group of n
n invertible real matrices, O.n/

and SO.n/ for the orthogonal and special orthogonal groups of Rn, and SymC.n;R/

for the set of n
n symmetric positive-definite matrices with real coefficients. Given
a basis fb˛g˛D1;:::;n in R

n, we denote by B 2 GL.n;R/ the matrix with columns
given by the components of the vectors b˛ in the canonical basis fe˛g˛D1;:::;n of Rn.
B is a matrix, but we will often identify it with the linear operator on R

n of which
B is the matrix representation in the canonical basis. Throughout this chapter, we
assume that all bases have the same orientation. We denote by L .B/ D fx DPn

˛D1 m˛b˛ W m˛ 2 Zg the Bravais lattice with basis B , i.e. the set of points that
are integral linear combinations of the vectors of the lattice basis fb˛g. All bases of
the form MB , with M 2 GL.n;Z/, generate the same lattice L .B/.

The symmetry of the lattice is described by its lattice group

�.B/ D fM 2 GL.n;Z/ W 9Q 2 SO.n/ such that QB D BM g;

and its point group

P.B/ D fQ 2 SO.n/ W 9M 2 GL.n;Z/ such that QB D BM g:

The point group operations are rotations that map the lattice into itself, and are
characterized by the property that they transform lattice bases into lattice bases,
whose vectors are therefore integral linear combinations of the original basis
vectors. Hence, to each point group operation Q, an integral invertible matrix
M representing a change of lattice basis is associated: these matrices form the
lattice group. Notice that, in view of the applications to viral capsids, we exclude
orthogonal transformations with determinantD �1 from the definition of the point
and lattice groups, since actual capsids lack these symmetries. A lattice basis is
characterized (modulo rotations) by its lattice metric

C D B>B 2 SymC.n;R/;

and, by definition, the lattice group is the subgroup of GL.n;Z/ that fixes the metric
[23]:

M 2 GL.n;Z/; M >CM D C , M 2 �.B/: (1)

Let L be an n-dimensional lattice with point group P . Consider a subgroup G of
P , and assume that there exists a k-dimensional subspace E 	 R

n invariant under
G . Denote by E? the orthogonal complement of E , so that Rn D E ˚ E?, where
� W Rn ! E , and �? W Rn ! E? are the corresponding projection operators. If we
denote by GE the representation of G on E , then Q0 2 GE corresponds to Q 2 G



The Role of Symmetry in Conformational Changes of Viral Capsids 225

in this representation if Q0�v D �Qv for all v 2 R
n, and it follows that G -orbits in

R
n project onto GE orbits in E . For a matrix group H 	 GL.n;Z/, we define its

centralizer Z .H ;R/ in GL.n;R/ as the group

Z .H ;R/ D ˚N 2 GL.n;R/ W N �1GN D G; 8G 2H
�

:

An important property of the elements of the centralizer is that, by definition, for
every v 2 R

n, NGv D GN v, where N 2 Z .H ;R/ and G 2 H . Hence, H -
orbits are mapped into H -orbits by N . Further, if we interpret an element N of
the centralizer of H as a change of basis (or as a linear mapping) of Rn, then the
definition above is equivalent to require that every symmetry operation G 2H has
the same matrix representation in the old and in the new basis.

Finally, we recall the definition of the simple cubic (SC), body-centred cubic
(BCC) and face-centred cubic (FCC) lattices, defined by

LSC D fx D .x1; : : : ; xn/ W xi 2 Z; i D 1; : : : ; ng ;
LBCC D

˚
x D 1

2 .x1; : : : ; xn/ W xi 2 Z; xi D xj mod 2; i; j D 1; : : : ; n
�

;

LFCC D
n
x D 1

2 .x1; : : : ; xn/ W xi 2 Z;
X

xj D 0 mod 2
o

:

The common point group PC of the cubic lattices (of nŠ2n�1-elements) is PC D
SO.n/ \ GL.n;Z/, but their lattice groups are distinct, and not even conjugate in
GL.n;Z/, since the lattices belong to different Bravais types [23].

2.3 Embedding of the Point Arrays in a 6D Icosahedral Lattice

We show here that point arrays generated by affine extensions of the icosahedral
group are projections of subsets of points of a six-dimensional cubic lattice. An
analogous assertion has been rigorously proved for affine extensions of Coxeter
groups in [22]. It is well known that the smallest dimension in which the icosahedral
group is crystallographic is 6. Therefore, let I be a 6D representation of the
icosahedral group [12]: I leaves all three 6D cubic lattices (SC, FCC and BCC)
invariant, and is a subgroup of their common cubic point group. As the three
6D cubic lattices are the only 6D lattices with the above property [19], they are
also often referred to as the icosahedral 6D lattices. The action of I on R

6

decomposes into two non-equivalent three-dimensional irreducible representations
on two 3D subspaces, which are therefore invariant under icosahedral symmetry and
are orthogonal to each other: the parallel space and the orthogonal space, denoted
by E and E?, respectively. In particular, following [12], we choose as the parallel
space E the subspace in which the orthogonal projection of the standard basis of R6

corresponds to the vectors pointing to the vertices of an icosahedron. We denote by
I3 the 3D representation of the icosahedral group on E .
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Recall that icosahedral orbits in R
6 project to icosahedral orbits in R

3 D E , and
the same property holds for any subgroup G 	 I : G -orbits in R

6 project onto G3-
orbits in R

3, where G3 is the 3D representation of G in E . In order to associate a
point array with a 6D lattice, we use the following facts:

(i) If L is one of the 6D cubic lattices (LSC; LFCC and LBCC), the projection
� W R6 ! E is one-to-one onto its image when restricted to L , since E is
totally irrational (i.e. E \L D f0g).

(ii) The icosahedral group commutes with the projection, so that the 6D pre-images
of the icosahedral polyhedra are, in turn, icosahedral orbits.

(iii) A dilatation by a factor of 	 in 3D corresponds to a symmetry operation of the
cubic lattices in 6D, called the quasidilatation.

Consider now a viral configuration S.u; r; t/ in 3D. Recalling that the icosahedral
orbits of u and r are a rescaled icosahedron, icosidodecahedron or dodecahedron,
as a first step we rescale the standard polyhedra (defined in Sect. 2.1) so that
they are the projections of the 6D icosahedral orbits of SC, FCC or BCC lattice
vectors, respectively. Then, since the icosahedral orbits of u and r are one of these
normalized polyhedra at different scalings by 	 (i.e. scalings by 	k with k 2 Z; see
[13]), we create their 6D counterparts via the action of the quasidilatation. Finally,
it turns out that the admissible translation vector t 2 R

3, along which the double-
shell structure is translated to generate the point arrays, also belongs to a rescaled
polyhedron. Therefore the vector s WD ��1.t/ and its orbit belong to one of the
6D icosahedral lattices. In this manner, we associate with each 3D point array S a
unique set ˙ of 6D points in either LSC, LFCC or LBCC such that �.˙/ D S . This
set is called the lifted viral configuration or lifted point array. It follows that ˙ is a
union of icosahedral orbits in R

6 and suitable translates of them:

˙ D ˙.v; w; s/ D I v [I w [ .I vCI s/ [ .I wCI s/;

where �v D u, �w D r, �s D t.
By construction, all points of a given lifted viral configuration ˙ are points of

some 6D icosahedral lattice, and there exists a unique minimal lattice, which is
also icosahedral, that contains any given lifted viral configuration. We say that the
lifted point array is embedded into this minimal lattice. From the above argument, it
follows that since the point arrays can be realized by projection of a 6D lattice onto
a completely irrational icosahedrally invariant subspace in 3D, they are subsets of
(aperiodic) icosahedral 3D quasilattices (see below).

2.4 Transition Paths for Lattices with Maximal Intermediate
Symmetry

In materials science, it is often the case that phase transformations between
crystalline substances follow a path along which the intermediate phases have the
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maximum allowable symmetry. The classical examples are reconstructive phase
transformations between cubic phases, such as between SC and BCC or between
SC and FCC phases. In these cases, both the parent and the product phase have
cubic symmetry, but since they belong to different Bravais types there is no
continuous transition between them that maintains cubic symmetry. However, there
are transition paths (the Bain strain) that involve small atomic displacements and
keep high symmetry (either rhombohedral or tetragonal), and it is a widespread
belief that these are minimum-energy paths. We explore here the applicability of
this notion in the context of viral transitions: given that the pre- and post-transitional
states of the capsid both have icosahedral symmetry, do there exist paths with non-
icosahedral but maximal symmetry between them? Or, equivalently, is the transition
a simple isotropic expansion of the capsid or given by a more complicated structure?

To answer these questions, we define a lattice transition as a continuous
transformation between two lattices L0 and L1 along which some symmetry is
preserved, described by a common subgroup H 	 GL.n;Z/ of the lattice groups
of the intermediate lattices. The definition is best formalized in terms of the lattice
group: it G 	 P.L0/ is a subgroup of the point group of L0, we say that there
exists a transition between L0 and L1 with intermediate symmetry G if there exist
bases B0 and B1 of L0 and L1, and a continuous path B W Œ0; 1�! GL.n;R/, with
B.0/ D B0 and B.1/ D B1, such that the lattice groups of all intermediate lattices
L .B.t// have H D B�1

0 G B0 	 �.B0/ as a common subgroup, i.e.

H 	 �.B.t// for all t 2 Œ0; 1�: (2)

We call the linear mapping

T WD B1B
�1
0 W L0 ! L1 (3)

the transition, and the curve T .t/ D B.t/B�1
0 is the transition path.

As mentioned earlier, we are mostly interested in transitions with maximal
symmetry corresponding to a maximal subgroup. The following proposition char-
acterizes lattice transitions (two slightly different proofs of it are given in [10, 11]):

Proposition 1. Let L0 and L1 be two lattices, and let G 	P.L0/. The following
statements are equivalent:

(i) There exists a transition between L0 and L1 with intermediate symmetry G .
(ii) The lattice groups of the initial and the final states have a common non-trivial

subgroup: there exist bases B0 and B1 of L0 and L1 such that for H D
B�1

0 G B0,

H 	 �.B0/ \�.B1/: (4)

(iii) Transitions belong to the centralizer of G . In particular, there exist bases B0

and B1 of L0 and L1 such that
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B1 D RUB0; with R 2 SO.n/ and U 2 Z .G ;R/\ SymC.n;R/:

(5)

(iv) Transition paths belong to the centralizer. In particular, there exist a basis B0

of L0 and continuous paths

R W Œ0; 1�! SO.n/; and U W Œ0; 1�! Z .G ;R/ \ SymC.n;R/;

such that R.0/ D U.0/ D I and R.1/U.1/B0 D B1 is a basis of L1.
(v) Transitions conserve the lattice metrics: there exist bases B0 and B1 of L0

and L1 and a continuous path C W Œ0; 1� ! SymC.n;R/ such that, letting
C0 D B>

0 B0, C1 D B>
1 B1 and H D B�1

0 G B0, then C.0/ D C0, C.1/ D C1

and

M >C.t/M D C.t/ for all M 2H and t 2 Œ0; 1�: (6)

The following result is an immediate consequence of the above characterization
of lattice transitions, and shows that any centralizer of G , not necessarily symmetric,
defines a transition with that symmetry (for a proof, see [10]).

Corollary 1. Any continuous path

T W Œ0; 1�! Z .G ;R/; T .0/ D I; T .1/ D B1B
�1
0 ;

where B0 and B1 are lattice bases of L0 and L1, defines a transition between L0

and L1 with intermediate symmetry G .

As an example, consider a transition between the simple cubic and the face-
centred lattices in 3D, with intermediate threefold symmetry (Fig. 3). By the above
corollary, we can construct such a transition using the centralizers of the group G D
C3 (the threefold rotation group about the main diagonal of the cube) as follows. We
define

T .t/ D
0
@1 � 1

2
t 0 1

2
t

1
2
t 1 � 1

2
t 0

0 1
2
t 1 � 1

2
t

1
A :

Then

T .0/ D B0 D
0
@1 0 0

0 1 0

0 0 1

1
A ; T .1/ D B1 D

0
@

1
2

0 1
2

1
2

1
2

0

0 1
2

1
2

1
A ;

so that T is indeed a transition between the SC and FCC lattices. Moreover, T .t/

belongs to the centralizer of C3 for all t , since
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Fig. 3 A Bain transition between a simple cubic lattice and a face-centered cubic lattice with
intermediate threefold symmetry

GT .t/ D T .t/G; with G D
0
@0 0 1

1 0 0

0 1 0

1
A ;

where G is the generator of C3.

2.5 Viral Transitions

Consider a lifted viral configuration ˙ D ˙.v; w; s/ embedded in a 6D lattice L .
A basis B of L is called admissible for ˙ if the I -orbits of the basis vectors and
of v; w; s coincide. If B is an admissible basis, we write ˙ D ˙.B/. Now let S0

and S1 be two 3D viral configurations, with corresponding lifted viral configurations
˙0 and ˙1 in 6D, ˙0 embedded in L0 and ˙1 in L1. We define a viral transition
between two viral configurations S0 and S1 in 3D with intermediate symmetry G 	
I as a transition T between the lattices L0 and L1 in 6D, such that B0 and B1 are
admissible for ˙0 and ˙1, i.e. ˙0 D ˙.B0/ and ˙1 D ˙.B1/ (see (3)).

By Corollary 1, given a transition T , the possible transition paths are curves
in the centralizer Z .G ;R/ connecting the identity with T . To derive from these
paths the information about the actual intermediate structure of a viral capsid, let
T .t/ 2 Z .G ;R/, for t 2 Œ0; 1�, be a transition path with intermediate symmetry
G . Moreover, let v0, w0 and s0 be three vectors of the basis B0 such that ˙0 D
˙.v0; w0; s0/. For t 2 .0; 1/, we define

v.t/ D T .t/v0; w.t/ D T .t/w0; s.t/ D T .t/s0:

By definition, v.t/, w.t/ and s.t/ are vectors of the basis B.t/ D T .t/B0 of the
intermediate lattice. We associate with the transition path T .t/, for any t 2 .0; 1/, a
lifted viral configuration ˙.t/ defined as

˙.t/ D G v.t/ [ G w.t/ [ .G v.t/C G s.t// [ .G w.t/C G s.t// 	 L .B.t//:
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Fig. 4 Viral transitions

The resulting point array, when projected into R
3 via � , yields a family of non-

icosahedral point sets S.t/ parametrized by t , with constant G -symmetry, that
should encode structural boundary conditions on the intermediate viral configura-
tions (see Fig. 4).

The icosahedral group has three maximal subgroups (the tetrahedal group A4 and
the dihedral groups D10 and D6), and therefore we focus on viral transitions with
intermediate symmetry corresponding to one of these maximal subgroups. Since
viral transitions, by definition, belong to the centralizer of one of these subgroups
G , they commute with all its elements and, as a consequence, map G -orbits into
G -orbits. Hence, these orbits are conserved along the transition path. Thus, viral
transitions are transformations between point arrays that conserve large subsets
of points, namely the orbits of the intermediate symmetry group. This property
is non-trivial, since in general point arrays corresponding to the initial and final
configurations of the capsid have different cardinalities.

2.6 Application to CCMV

We have applied the procedure outlined in the previous sections to transitions in
the CCMV capsid during maturation. The point arrays were determined based on
the pdb files with the IDs 1cwp for the pre-transition and ccmv_swln_1 for the
post-transition configuration. The algorithm of Keef et al. [16] showed that the pre-
transition geometry of the CCMV capsid was given by one of two possible viral
configurations, and the swollen form of CCMV was best approximated by one of a
group of ten other viral configurations.



The Role of Symmetry in Conformational Changes of Viral Capsids 231

In [10], we developed a computational algebra technique to determine all
possible Bain transitions for a capsid configuration given by a point array S0 and
a post-transition configuration given by an array S1. The results were as follows:

(i) There exist no Bain transitions with either A4 or D10 symmetry between any of
the initial and final configurations for CCMV.

(ii) There exist four Bain transitions with D6 symmetry, mapping one of the initial
configurations corresponding to the point set (10-44) to one of a group of three
final configurations.

It is not possible to determine the actual transition path without any information
about the physics involved in the process. However, our analysis provides some
insights into the likely symmetry of the transition path. In particular, our results
for CCMV imply that the configurations of the capsid during the transition will
not be icosahedral, unlike the start and end structures, and will have at most D6

symmetry. D6 has a representation as the dihedral group of a triangular prism, with
one distinguished threefold axis. Assuming that the virus particle will maximize
its symmetry throughout the transition, this implies that a threefold axis will play
a crucial role during the structural transition. The is result is consistent with a
phenomenon observed for transition events in viruses: structural transitions seem
to start on a symmetry axis of the spherical particle, for example a threefold axis,
and then propagate over the surface of the capsid like a circular wave until the entire
particle has undergone the transition. This implies that intermediate configurations
presumably preserve one of the symmetry axes, and our method can be used to
determine a priori which symmetry axis this is most likely to be.

3 A Case Study of High-Dimensional Symmetry-Preserving
Transitions: Transitions of the Penrose Tiling and
Icosahedral Tilings of Space

In this section, we review the work presented in [11], where the high-dimensional
crystallographic approach was applied to study how quasiperiodic tilings change
under symmetry-preserving transformations. The main motivation for that work was
to understand the effect of such transformations on the tiles, in order to assess the
applicability of this approach to the problem of configurational changes of viral
capsids, when proteins are approximated by icosahedral tiles. We focus on tilings
associated with cut-and-project quasicrystals (see [26] for an excellent introduction
to the subject). Quasicrystals are regular point sets, i.e. sets such that there is a
minimum distance between points and a minimum density, that are obtained by
projecting a subset of a higher-dimensional lattice onto an irrational subspace. The
subset can be chosen to be the intersection of the lattice with a strip between two
irrational hyperplanes. If the whole lattice were projected, the resulting set would be
dense in the projection subspace, but restricting the set to such a strip guarantees that
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a

b

Fig. 5 A 2D square lattice is deformed into a rhombic lattice by an affine deformation. The
corresponding 1D quasicrystals are obtained by projecting onto the subspace E the lattice points
that lie within a strip whose width is determined by the Voronoi cell U D V .0/ at the origin
(the shaded polygon; see Sect. 3.1). As a result of the lattice deformation, the Voronoi cell changes
structure: new facets are created and this, in turn, induces the formation in the projection subspace
E of new tiles and changes of shape of the existing ones. (a) Square lattice: the Voronoi cell is a
square and only two tiles are present (dashed and solid segments); (b) rhombic lattice: the Voronoi
cell is a hexagon and there are three different types of tiles (dashed, dotted and solid segments)

the set is regular. Note that the viral configurations defined in the previous sections
are subsets of three-dimensional icosahedral quasicrystals.

Aperiodic tilings of the space or the plane can be obtained from a cut-and-project
quasicrystal through a general method known as the dualization technique (de Brujin
[7]; see also [26] for general references). Dualization provides a general procedure
for the construction of aperiodic tilings with non-crystallographic symmetry, such
as icosahedral tilings of space. Crystallographic phase transformations of the high-
dimensional lattice naturally induce transformations of the quasicrystal, much as in
the previous section, and this results in a transformation of the associated tilings.
Figure 5 gives a low-dimensional sketch of the procedure: a 2D square lattice
is deformed into a rhombic lattice by an affine deformation, the 2D analogue of
the Bain strain. The point sets (quasicrystals) change accordingly, and this in turn
induces a transformation of the tilings in the projection subspace E through the
formation of new tiles and changes of shape of the existing ones. Analogous effects
occur in higher dimensions.

Our first application is to the transformations of the Penrose tiling of the plane
into the tilings induced by the 5D face-centred cubic and body-centred cubic lattices,
with conserved fivefold symmetry in intermediate configurations. The associated
quasicrystals are obtained by projection of the 5D lattices onto a plane invariant
with respect to a suitable integral representation of the cyclic group C5. One of the
lattice paths in the higher-dimensional space is obtained by compression of the 5D
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hypercubic cell along a body diagonal, similarly to the rhombohedral strain relating
the SC and BCC lattices in 3D (see [23] and Fig. 3). We find that, in projection, the
classical Penrose rhombic tiling of the plane transforms into triangle tilings through
three basic mechanisms, involving the flipping, bisection and merging of tiles. These
mechanisms result from, and indeed correspond to, changes in the geometry of
the projection window as a consequence of the deformation of the 5D lattice. We
also apply this technique to the study of the transformations of 3D icosahedral
quasicrystals and their associated tilings obtained by projection of the SC and FCC
lattices in 6D [20, 21], suggesting that the same mechanisms as above occur also in
the 3D aperiodic structure transformations that are relevant in the context of virus
architecture.

3.1 Cut-and-Project Quasicrystals and Canonical Tilings

Consider an n-dimensional lattice L with point group P D P.L /, and a
subgroup H 	P . We assume that there exists a k-dimensional subspace E 	 R

n

invariant under H , and write, as before, � W Rn ! E and �? W Rn ! E? for the
corresponding projection operators. Also, we denote by U 	 R

n the Voronoi cell
of the lattice at the origin (see e.g. [26]):

U D fx 2 R
n W jx � yj � jxj; 8y 2 L g:

U is invariant under the point group of the lattice [26], and hence also under H .
We now fix now a regular shift vector in R

n, i.e. a vector g (possibly 0) such that
.gC E/ \F D ; for every d -dimensional facet F of U , with d < n � k. If we
define the projection window as

W D �?.U / 	 E?;

a cut-and-project quasicrystal is a point set given by

.L ; E/ WD f�.x/ W �?.g/� �?.x/ 2 W g 	 E: (7)

When E is totally irrational, i.e., E\L � D f0g, where L � is the dual lattice, the set
�.L / is dense in E; otherwise it is a Z-module, possibly a lattice, in E . There exists
a canonical method for constructing aperiodic tilings of the space E using the points
of a cut-and-project quasicrystal as vertices [12, 18]. In this method, the Voronoi
cells at each point of the lattice define a cell complex that provides a periodic tiling
of Rn; its dual complex is also a periodic tiling of Rn, called the Delone tiling. By
construction, the vertices of the Delone tiling are lattice points. The Delone tiling
of Rn induces a tiling of E by projection on E of those Delone k-facets dual to the
.n � k/-facets of the Voronoi tiling that have a non-empty intersection with gC E ,
where k D dim E . By construction, the tiling of E thus obtained has vertices at the
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points of the corresponding quasicrystal. If g is fixed by H , the associated tiling
is invariant under the representation of H on E . In fact, H commutes with the
projection � , so that H -orbits in R

n project on H k-orbits in E , where H k is the
representation of H in E .

The techniques summarized above have been extensively applied in the study of
quasicrystals and tilings of the plane and space [7, 12, 17, 20, 21, 24].

3.2 Structural Transformations of Cut-and-Project
Quasicrystals

Consider two n-dimensional lattices L0 and L1, with point groups P0 and P1,
and two subgroups H0 	 P0 and H1 	 P1. Assume that H0 and H1 have the
same invariant subspaces E , with dim E D k, and consider the cut-and-project
quasicrystals .L0; E/ and .L1; E/.

Definition 1. We say that there exists a transition between the cut-and-project
quasicrystals .L0; E/ and .L1; E/ with intermediate symmetry G 	 H0 if there
exists a transition with intermediate symmetry G between L0 and L1 such that for
T .t/ D R.t/U.t/, with R.t/ 2 SO.n/ and U.t/ 2 SymC.n;R/ \ Z .G ;R/, E is
invariant under Gt , i.e.

Gt E D E; t 2 Œ0; 1�; (8)

with

Gt D R.t/>G R.t/ DP.Lt /; Lt D T .t/L0: (9)

Any such transition defines a family of cut-and-project quasicrystals .Lt ; E/ in the
same projection space E , all of which have symmetry G .

3.3 Transformations Between Planar Aperiodic Tilings
Preserving the Fivefold Symmetry

In this section, we present an example of a transformation of the Penrose tiling that
preserves the global fivefold symmetry. We adopt here a five-dimensional approach
instead of the usual one based on a 4D minimal embedding [2], because it is simpler
to describe the transitions in terms of deformations of the unit cubic cell in R

5.
Consider the five-dimensional SC, BCC, and FCC lattices, and the standard basis
.e˛/˛D1;:::;5 in R

5, together with the group G D C5 	 SO.5/ of fivefold rotations
about the body diagonal n DP5

˛D1 e˛ of the unit cube. The group G which leaves
all the three of the above 5D cubic lattices invariant has two mutually orthogonal
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Fig. 6 Three snapshots of a tiling along the transition path (10), showing the splitting of the tiles
and their merging

invariant subspaces: the 2D subspace E and its 3D orthogonal complement E?,
with E generated by the vectors

v1 D e1 C cos.2�=5/e2 C cos.4�=5/e3 C cos.6�=5/e4 C cos.8�=5/e5;

v2 D sin.2�=5/e2 C sin.4�=5/e3 C sin.6�=5/e4 C sin.8�=5/e5:

With reference to Sect. 3.1, we choose g D 1
2
n; projection of the SC lattice and

the related Delone tiling on E produces the well-known Penrose tiling of the plane,
whereas projecting the FCC and BCC lattices gives more complex aperiodic planar
tilings with global fivefold symmetry about the origin (see also [24]). Corollary 1
guarantees that the C5-preserving transitions for the associated 5D lattices belong to
the centralizer of C5 in GL.5;R/: hence, we consider a specific transition path with
fivefold symmetry between the SC and the BCC lattices in 5D (a direct calculation
shows that the path does indeed belong to the centralizer of C5):

T .t/ D .1 � t/I C tBBCC; BBCC D 1

2

0
@

1 1 1 �1 �1

�1 1 1 1 �1

�1 �1 1 1 1

1 �1 �1 1 1

1 1 �1 �1 1

1
A: (10)

Since T .t/n D .1 � t=2/n, this path involves a compression of the unit cube along
a body diagonal n. This path also entails, through the dualization technique applied
at each step, a transformation between the Penrose and the BCC tilings.

Since the tiles are the projection of the duals of the three-dimensional facets of
the Voronoi cell for each intermediate lattice, the transformations of the tilings along
these paths can be explained via the changes that occur in these three-dimensional
regions, i.e. in terms of rearrangements of the tiles in these regions. In our case, the
tiles transform in three possible ways: splitting of a tile into two, tile flips and tile
mergers. These correspond to the possible changes of the facets of the Voronoi cell
[11]. Figure 6 shows three steps in the transformation from SC to BCC along the
path defined by (10): the first step in the transition is a splitting of all tiles along
their long diagonal, followed by deletions of vertices and splits/recombinations.
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Fig. 7 Three snapshots of the tilings corresponding to the transition path (11)

3.4 Example of a Transformation Between 3D Icosahedral
Quasicrystals

We briefly discuss here a transformation with D10 symmetry between icosahedral
tilings in R

3. As discussed above, such transitions belong to the centralizer of D10.
As an example, we consider a path between the six-dimensional SC lattice and the
FCC lattice of the form

T .t/ D .1 � t/I C tBFCC; BFCC D 1

2

0
B@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 1 1 1 1 2

1
CA: (11)

Figure 7 shows three snapshots of a patch of the corresponding 3D tiling around a
fixed vertex, i.e. projections on E of a portion of the Delone tiling of the lattices
L .B.t//, for t D 0; 0:233 and 1. Throughout the transition, the tile arrangements
have D10 symmetry, and they evolve by mechanisms similar to those discussed for
the planar case in Sect. 3.3. Since the point arrays used as descriptors for virus
geometry are subsets of 3D icosahedral quasicrystals, icosahedral tilings can be
used to obtain additional information about the organization of viral capsids. An
example is provided by CCMV; see Fig. 8. The above considerations can hence be
used to extend our previous model for structural transitions in CCMV.

4 The Physics of Conformational Changes: A Coarse
Grained Model

As mentioned in the introduction, our approach based on point arrays and crystallo-
graphic phase transitions is a powerful tool that allows us to canonically construct
transformation paths between sets of points with icosahedral symmetry. In turn,
this allows us to construct paths between tilings that approximate the arrangement
of proteins in a capsid, taking into account the symmetry of the intermediate states.
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Fig. 8 Two views of an icosahedral tiling of the closed form of the CCMV capsid

The question arises as to how to account for the physics and biochemistry driving the
conformational change in this setting. In the quasicrystals community, transitions
are described by the so-called phason strain, which represents the orthogonal-
space component of a six-dimensional linear transformation, and the energy of a
quasicrystal is assumed to be a function of the high-dimensional strain as a whole.
We have not explored this path yet, but we have tried a more direct approach, in
which we approximate groups of proteins making up the capsid as rigid tiles. Here,
their mutual interactions and their interactions with the genomic material inside the
capsid are described by suitable potentials or geometrical constraints.

This approach provides a coarse-grained method to explain the main features of
the expansion of a large class of viral capsids. Some results, presented in [5], are as
follows:

(i) The expansion is a collective rearrangement of the proteins that occurs as a
cascade of local events, and is due essentially to the competition between the
expansive force of the genomic material acting radially outwards from the
inside of the capsid, and the cohesive interaction force between the capsomers.
A small local perturbation of the bond strength between two capsomers, due for
instance to a change in the chemical environment, can be enough to weaken the
total binding force acting on them, so that the capsomers start detaching. This,
in turn, decreases the force acting on neighbouring capsomers, and this triggers
their detachment, generating an expansion wave over the capsid.

(ii) As a result, the expansion of an icosahedral capsid propagates as a transition
wave over the shell: the intermediate states are not icosahedral, and the
expansion is not uniform. Eventually, the capsid reaches its final expanded state,
which turns out always to be icosahedral.

A fundamental step in the above approach is the identification of the basic
building blocks of the capsid, which in this approximation may be regarded as rigid
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Fig. 9 A few snapshots of the expansion of a dodecahedral capsid according to the model
described in Sect. 4

bodies. This can be accomplished by combining a number of different pieces of
information about the structure of the capsid, such as knowledge about the assembly
and disassembly units, and by using available protein domain decomposition
software, such as PiSQRD, developed by Micheletti’s group at SISSA in Trieste [1].

We chose as a test case the equine rhynitis A virus, a picornavirus that is believed
to release its RNA without disassembling [31]. In this case, both disassembly data
and the protein domain decomposition method suggest that the rigid units involved
in the capsid expansion are groups of 20 proteins that form a pentagon. We therefore
modelled the ERAV capsid as a dodecahedron, and assumed that each pentagonal
face can detach by translating along and rotating about its axis. This approximation
allows us to reduce the total degrees of freedom to 24. Further, as mentioned above,
we assumed that the total energy of the system is the sum of terms accounting for the
expansive force of the RNA on the pentagons and a cohesive force acting across their
edges. The only parameters of the model are the weights of the pairwise interaction
energies, which we call the bond strengths. Finally, we assumed the existence of
cross-links, made by peptidic chains, between adjacent capsomers, which maintain
the integrity of the capsid as a whole after expansion.

Under very general hypotheses about the energy functions, we were able to prove
that it is energetically favourable for the expansion of the capsid to occur through
a cascade of local events that propagate over the capsid, which eventually recovers
icosahedral symmetry in an open form in which large holes are present. These holes
appear to serve the purpose of allowing the release of the RNA into the environment.
A few snapshots of the expansion of the ERAV capsid according to our model are
shown in Fig. 9.

5 Conclusion

We have presented an overview of two different modelling techniques for structural
transitions in viruses. The first is rooted in geometric principles and studies transi-
tions from the point of view of symmetry. The second approach is complementary,
and focuses on the energetics of the transition, describing it via a dynamical system
and constraints on the stability of the capsid configuration. In particular, it can be
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used to study how the transition behaviour depends on the distribution of bond
strengths across the capsid, and it has highlighted the fact that inhomogeneous
solution conditions and the presence of asymmetric components in the capsid result
in a wave-like cascade of local expansion events. Both approaches show that the
symmetries of the capsid intermediates are likely to be non-icosahedral, in contrast
to the pre- and post-transition configurations. These insights shed new light on
the mechanisms of capsid transitions, open up new opportunities for biomolecular
simulations of the transition events and may potentially lead to the design of new
anti-viral strategies that act by blocking these transitions.

Acknowledgements RT and GI thank the Leverhulme Trust for financial support via a Research
Leadership Award. PC and GI acknowledge the Italian PRIN 2009 project “Mathematics and
Mechanics of Biological Systems and Soft Tissues”.
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Minimal Tile and Bond-Edge Types
for Self-Assembling DNA Graphs

Joanna Ellis-Monaghan, Greta Pangborn, Laura Beaudin, David Miller,
Nick Bruno, and Akie Hashimoto

Abstract We employ a model for self-assembling graph-theoretical complexes
using tiles representing branched-junction DNA molecules with free cohesive ends.
We determine the minimum number of tile and bond-edge types necessary to create
a given graph as a self-assembled complex under three different scenarios: (1)
where the incidental creation of complexes of smaller size than the target graph
is acceptable; (2) where the incidental creation of complexes the same size as the
target graph is acceptable, but not smaller complexes; and (3) where no complexes
the same size as or smaller than the target graph are acceptable. In each of these
cases, we find bounds for the minimum number of tile and bond-edge types that
must be designed, and give specific minimum values for common graph classes
(including cycles and trees, as well as complete, bipartite, and regular graphs). For
these classes of graphs, we provide either explicit descriptions of optimal tile sets
or efficient algorithms for generating the desired set.

1 Introduction

The promise of nanotechnology, in particular for drug delivery, biosensors, and
biomolecular computing (see [1, 15, 16, 19, 24]), has driven recent research into
DNA self-assembly of nanoscale geometric constructs. We focus here on the
assembly of graph-theoretical complexes, that is, molecules whose structure may
be modeled as the vertices and edges of a graph. Several different graph-theoretical
complexes have been constructed from self-assembling DNA molecules, including
cubes [3], truncated octahedra [25], rigid octahedra [21], and buckyballs (see the
Molbel announcement in [4]). An essential step in building a self-assembling
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Fig. 1 Two DNA molecules join via bonding of complementary base pairs on cohesive ends

DNA nanoconstruct, whether for biomolecular computing or physical applications,
is designing the component molecules. There are several models for DNA
self-assembly including linear-strand methods [1, 3, 25], branched-junction
molecules [11], and origami foldings [17]. Here we consider the flexible-tile model
introduced in [13]. We address approaching this process as efficiently as possible
by providing theoretical tools to minimize the number of component molecules that
must be designed to create a given nanoconstruct.

In [13], Jonoska et al. introduced a formalism for analyzing the combinatorial
properties underlying self-assembly via branched-junction molecules. This involved
a combinatorial representation of flexible-armed branched-junction molecules,
called tiles, and the notion of a pot, that is, a set of these tiles. With this, they
addressed the questions of guaranteeing that a given pot will produce complexes and
also of what complete complexes might be assembled from a given pot. Although
there are some difference in the technical details (for example, we use half-edges
here, whereas [13] used vertices of degree one), the essential ideas here are based
on those of [12–14, 22], particularly the use of a matrix associated with a pot. We
emphasize, though, that whereas [12–14, 22] were concerned with the question of
what complete complexes might be assembled from a given pot, here we address
the inverse problem: given a target graph, what is the smallest-size pot from which
a complete complex with the structure of the given graph might be assembled.
In a related direction, [8, 9, 11, 18] have demonstrated the utility of this model
for biomolecular computing and considered associated computational complexity
questions.

Given a connected graph (called the target graph, and allowed to have loops
and multiple edges), we want to design a self-assembling DNA complex with this
structure. The basic building blocks of our model are k-armed branched-junction
molecules, for example those developed by Wang et al. [23], whose arms, in the
simplest case, are double strands of DNA with one strand extending beyond the
other. This strand forms a ‘cohesive end’ at the end of the arm that can bond
to any other cohesive end with complementary Watson–Crick bases (see Fig. 1).
While there are more sophisticated branched-junction molecules, for example those
described in [7], the essential property is some form of cohesive attachment at the
ends of arms. Like [11–14, 22], we assume that the arms are sufficiently long and
flexible enough to achieve the targeted connectivity. We note that although we focus
here on DNA assembly, the methods presented may apply to any form of self-
assembly, at any scale, that may be modeled by armed components with bonding
sites at the ends of the arms.
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We seek to construct the target graph from these branched molecules, with a
vertex of degree k given by a k-armed branched molecule, and where two vertices
in the target graph have an edge between them if and only if their two branched
molecules have an arm joined between them via complementary bases on the
cohesive ends. Thus, the joined arms form the edges of the target graph. We require
that the resulting DNA complex be complete, that is, that it has no unmatched
cohesive ends.

We call the combinatorial abstraction of a branched molecule a tile, and the
abstraction of a cohesive end together with its complementary cohesive end a bond
edge. Tile types and bond-edge types are defined more formally in Sect. 3. We
represent the bond-edge types by letters, with the corresponding cohesive ends
represented by hatted and unhatted copies of the letter. The tile type is the multiset
of letters corresponding to the cohesive end types for the tile. Thus, given a graph,
we wish to know the minimum number of tile and bond-edge types that must be
designed to construct the complex. We consider this question under three different
conditions:

• Scenario 1. We allow the possibility that graph-theoretical complexes of smaller
size (that is, complexes representing graphs with fewer vertices) than the target
graph could be created from the set of tile types used to build the target graph.

• Scenario 2. We allow the possibility that graph-theoretical complexes with the
same number of vertices as, but not isomorphic to, the target graph could be
created from the set of tile or bond-edge types that builds the target graph, but
require that no complexes with fewer vertices can be created from the set of tile
types used to build the target graph.

• Scenario 3. We require that no complexes with a number of vertices less than or
equal to that of the target graph can be created from the set of tile types used to
build the target graph.

The more restrictive design rules generally decrease the likelihood of extraneous
(undesired) complexes being formed in the laboratory, but at the cost of requiring
the design of additional component molecules. For flexible tiles, it is impossible
to prevent the creation of larger complexes, as we discuss in Sect. 3. For each of
these scenarios, we provide general upper and lower bounds for these values and
determine specific values for some important classes of graphs. We either provide
constructive proofs, that is, we give explicit sets of tile types achieving these bounds,
or provide fast algorithms to generate the desired sets.

We let Ti .G/, for i D 1; 2; 3 in each of the three scenarios, respectively, denote
the minimum number of tile types needed to construct a graph G. Likewise, in
scenario i , for i D 1; 2; 3, we let Bi .G/ denote the minimum number of bond-edge
types needed to construct G.

Our results for Ti.G/ for i D 1; 2; 3 on various classes of graphs are summarized
in Table 1. Here we write av.G/, ev.G/, and ov.G/ for the numbers of different
vertex degrees, different even vertex degrees, and different odd vertex degrees,
respectively, that appear in the graph G. By convention, Cn refers to the cycle on
n vertices, Kn refers to the complete graph on n vertices, and Km;n refers to the
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Table 1 Minimum tile types

Scenario 1 T1.G/ D Minimum number of tile types required if complexes of smaller
size than the target graph are allowed

General graph G av.G/ � T1.G/ � ev.G/ C 2ov.G/

Trees av.T / � T1.T / � av.T / C 1

Cn T1.Cn/ D 1

Kn T1.Kn/ D 1 if n is odd, and T1.Kn/ D 2 if n is even
Km;n T1.Km;n/ D 1 if n D m and is even, and T1.Km;n/ D 2 otherwise
K-regular graphs T1.G/ D 1 if n is even, and T1.G/ D 2 if n is odd

Scenario 2 T2.G/ D Minimum number of tile types required if complexes of the same
size as the target graph but not smaller are allowed

Trees T2.T / D Number of different lesser-size subtree sequences
Cn T2.Cn/ D dn=2e C 1

Kn T2.Kn/ D 2 if n is even, and T2.Kn/ D 3 if n is odd
Km;n T2.Km;n/ D 2 if gcd.m; n/ D 1, and T2.Km;n/ D 3 if gcd.m; n/ > 1

Scenario 3 T3.G/ D Minimum number of tile types required if no complexes of the
same size as the target graph or smaller are allowed

Trees T3.T / D Cardinality of the maximum subset of induced nonisomorphic
trees

Cn T3.Cn/ D dn=2e C 1

Kn T3.Kn/ D n

Km;n T3.Km;n/ D m C 1

complete bipartite graph with partitions of size m and n (where m � n). Lesser-
size subtree sequences are defined in Sect. 5, and the maximum subset of induced
nonisomorphic trees is defined in Sect. 6. We shall show that B1.G/ D 1 for all
graphs, and that B2.G/ C 1 � T2.G/. Although it is not true in general, it is true
for the specific classes that we have here, except for trees, that B2.G/C 1 D T2.G/

and B3.G/C 1 D T3.G/.
It is difficult at this stage to predict the directions that will be taken in the future

by laboratories producing these nanostructures. The graph-theoretical complexes
assembled previously have, for the most part, been the skeletons of Platonic or
Archimedean solids. The graphs in these two small, finite families may be treated
individually, and design strategies for them may be found at [20]. Here we seek
general strategies that may be applied to common infinite families of graphs, such as
complete or bipartite graphs, and as such may be adapted more readily to emerging
design challenges as laboratories begin to build more complex structures.

2 Graph Theory Conventions

The following conventions are used throughout this chapter. Graphs are finite and
connected, with loops and multiple edges allowed. The size of a graph is the number
of its vertices, and we say that a graph G is smaller than a graph H if G has fewer
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vertices than H . We typically write n or jV.G/j for the number of vertices of G,
and jE.G/j for the number of edges of G. We also consider digraphs, that is, graphs
with a direction, usually indicated by an arrow, assigned to each edge. An edge
with an assigned direction is also called an arc. Because an arm of a branched-
junction molecule forms half an edge in the target graph, it is natural to consider
half-edges and half-arcs here. In a geometric realization of a graph, for example an
embedding of the graph in the plane or in three-space, an edge is simply a curve
joining two points, namely the vertices at its endpoints. A half-edge is then simply
the subcurve from the midpoint of this curve to one or the other of its endpoints.
Half-arcs are similarly defined, with the addition that the curve is directed from
one endpoint to the other. In an abstract setting, where the graph G is defined in
terms of a vertex set V , and an edge set E consisting of unordered pairs of elements
of V , a half-edge may be denoted as, for example, .v; fv; ug/, where v 2 V and
fv; ug 2 E; here, .v; fv; ug/ is the half-edge of fu; vg incident with the endpoint v.
A full formalization of the notions of edges, arcs, half-edges, half-arcs, etc. may be
found in the introductory chapter, “mixed graphs and their basic parts,” of the book
by Fleischner [5].

We use two notations for a vertex together with its incident half-edges: v�, if it
is not necessary to specify the half-edges, and .vI e1; : : : ; ek/, if the half-edges are
specified (ei D ej for some i; j in the case of a loop).

The applications we consider often involve Eulerian graphs, which are connected
graphs wherein the degree of every vertex is even. An Eulerian digraph has directed
edges (i.e., arcs) with equal indegree and outdegree at each vertex. A walk traverses
consecutive edges in a graph (following the direction of the arcs in the case of a
digraph), allowing repeated edges and vertices; a trail allows repeated vertices but
not edges; and a path repeats neither. A circuit is a closed trail, and a cycle is a
closed path. Given a connected graph G, an augmented graph results from drawing
an edge between any two vertices of odd degree and continuing the process until no
odd-degree vertices remain (a graph necessarily has an even number of odd-degree
vertices). The resulting augmented graph is then Eulerian. A full formalization of
these concepts may be found, for example, in the books by Fleischner [5, 6].

3 Combinatorial Formulation of Design Parameters

We formalize the essential combinatorial properties of branched-junction molecules
as follows. A tile is a graph-theoretical representation of a branched DNA molecule
with cohesive ends as a vertex with some half-edges. Cohesive ends are distin-
guished by cohesive end types (letter labels on the half-edges) such that a cohesive
end labeled with an “unhatted” letter can join to a cohesive end labeled with
its complementary “hatted” label (e.g., the cohesive end types c and Oc represent
complementary strands of bases such as those in Fig. 1, and so could form an edge).
The letters used (without regard to being hatted or not) are the bond-edge types.
Thus, combinatorially, a tile may be thought of as a vertex with labeled half-edges.
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Fig. 2 Two tiles, t1 and t2, both representating the same tile type

Because we assume that the branched molecules have flexible arms, we do not
distinguish between permutations of cohesive end labels about a vertex, so a tile may
be identified with the multiset of its cohesive end labels. In Fig. 2, tiles t1 and t2 are
of the same tile type, since they correspond to the same multiset,

˚
a2; Oa; b; Oc�, where

the exponent indicates a repeat in the multiset. A complete complex constructed
using tiles t1 and t2 would have the bond-edge types a, b, and c. Note that our
model differs from the model introduced in [11] in that we allow loops (which may
be formed by a tile type containing both a hatted and an unhatted cohesive end
corresponding to the same bond-edge type).

A pot P is a set of tile types such that for each cohesive end of type h that
appears in any tile ti 2 P , there exists a cohesive end of type Oh (its complement)
in some tile tj 2 P (possibly i D j ), and vice versa. We say that a graph G may
be constructed from a pot P , or equivalently that the pot P realizes G, if there is a
map f W fv�g ! P from the set of vertices with half-edges to the tile types with
the following properties:

1. If v� 7! t , then there is an associated one-to-one correspondence between the
cohesive ends of t and the half-edges of v.

2. If fu; vg 2 E.G/, then the two half-edges of fu; vg are assigned complementary
cohesive ends; that is, if v� 7! t1 with a cohesive end h corresponding to
.v; fv; ug/, and u� 7! t2, then t2 must have a cohesive end Oh corresponding to
.u; fu; vg/.
These two conditions taken together ensure that any graph constructed from P

is realized by a complete complex; that is, there are no unmatched cohesive ends.
Note that any tile type may be used multiple times in the construction of a graph G.

Proposition 1. B1.G/ � B2.G/ � B3.G/ and T1.G/ � T2.G/ � T3.G/.

Proof. It is clear that any pot that realizes G with B3.G/ bond-edge types or T3.G/

tile types, but does not realize any graph smaller than or the same size as but not
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Fig. 3 Two equivalent edge labelings

isomorphic to G, does not realize any graph smaller than G. Hence B2.G/ � B3.G/

and T2.G/ � T3.G/, and similarly for B1.G/ � B2.G/ and T1.G/ � T2.G/. ut
Definition 1. Given a pot P , we define C.P / to be the set of graphs that can be
constructed from P . The set of graphs of minimum size that may be constructed
from P is denoted Cmin.P /. We write mP for the size of a smallest graph that may
be constructed from P .

Because there typically are arbitrarily many tiles of each type present in the
assembly process, a pot that realizes a graph G may realize many other graphs
as well. In particular, if a pot realizes a loopless graph G, then it can theoretically
realize any covering graph of G (see [10]). A graph H covers a graph G if there is a
function from the vertices of H to the vertices of G that induces a surjection on the
edges incident to every vertex. For example, by identifying antipodal points, it can
be seen that a cube is a covering graph of K4, so any pot that realizes K4 will also
realize a cube.

Since we require a complex to be complete, we may adopt the convention of
orienting edges from unhatted cohesive ends toward hatted cohesive ends. With this
convention, a complete complex may be identified with an edge labeling of some
orientation of the underlying graph. That is, any complex induces an orientation and
an edge labeling of the underlying graph, but what is more important, from any edge
labeling of an oriented graph, one may ‘read off’ a pot from which the corresponding
complex may be constructed by listing the multiset of cohesive end types incident
with each vertex. For example, the pot read off from either of the labeled graphs in
Fig. 3 is P D ˚t1 D ˚ Oa2; Oc; c

�
; t2 D

˚
a4
��

.
We will frequently use the following propositions and matrix formulation, the

essential aspects of which appear in [8, 13, 14]. However, we emphasize that we are
addressing a different question here. Whereas prior work began with a pot P and
asked what complete complexes could be constructed from that pot, here we begin
with a target graph and ask for a minimal pot that realizes it.

Given a pot P D ˚
t1; : : : ; tp

�
, we define Ai;j to be the number of cohesive

ends of type ai on tile tj , and OAi;j to be the number of cohesive ends of type Oai .
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The observations below are immediate consequences of requiring complexes to be
complete.

Proposition 2. Let P D ft1; : : : ; tpg be a pot. Then:

1. The total number of hatted cohesive end types must equal the total number of
unhatted cohesive end types in a complete complex.

2. If a graph G with n vertices may be constructed from the pot P , then there are
nonnegative integers Rj for j D 1; : : : ; p (representing the number of each
tile of type tj used in the construction of G) with

P
j Rj D n and such thatP

j Rj .Ai;j � OAi;j
/ D 0 for all i . That is, the number of hatted cohesive ends

of each type used in the construction of G must equal the number of unhatted
cohesive ends of the same type that appear in the construction.

It is often expedient to encode this information in a matrix.

Definition 2. Let P be a pot with p tile types labeled t1; : : : ; tp , and let zi;j be the
net number of cohesive ends of type ai on tile tj , i.e., zi;j D Ai;j � OAi;j . Define ri to
be the proportion of tile type ti used in the assembly process. The following system
of equations captures the requirements outlined in Item 2 of Proposition 2:

z1;1r1 C z1;2r2 C : : :C z1;prp D 0

:::

zm;1r1 C zm;2r2 C : : :C zm;prp D 0

r1 C r2 C : : :C rp D 1

The construction matrix of P , M.P /, is the corresponding augmenting matrix:

M.P / D

2
6664

z1;1 z1;2 : : : z1;p 0
:::

:::
:::

zm;1 zm;2 : : : zm;p 0

1 1 : : : 1 1

3
7775 : (1)

Proposition 3. Let P D ft1; : : : ; tpg be a pot. Then:

1. If a graph G of size n may be constructed from P , using Rj tiles of type Tj , then
.1=n/hR1; : : : ; Rpi is a solution of the construction matrix M.P /.

2. If hr1; : : : ; rpi is a solution of the construction matrix M.P /, and there is a
positive integer n such that nrj 2 Z�0 for all j , then there is a graph of size
n that may be constructed from P using nrj tiles of type Tj .

3. mP D minflcmfbj jrj ¤ 0 and rj D aj =bj g, where hr1; : : : ; rpi is a solution to
M.P /g, and where the minimum is taken over all solutions to M.P / such that
rj � 0 and aj =bj is in reduced form for all j .
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Proof. Item 1 is just a restatement of Item 2 of Proposition 2. Item 2 is a conse-
quence of the use of flexible-armed tiles: provided that there are the same numbers of
hatted and unhatted cohesive ends of each bond-edge type summed over all the tiles
used, these cohesive ends may join with one another to form a complete complex.
Being a solution to M.P / assures this. For Item 3, note that since the entries of
M.P / are integers, a solution to M.P / must have rational entries. Thus, the least
common multiple of the denominators will be the smallest integer multiplier n

that makes all the entries integers, and hence gives the size of the smallest graph
corresponding to that solution. We take the minimum of this over all solutions to
M.P / with nonnegative entries, i.e., those that correspond to graphs in C.P /. ut

We make one further observation.

Proposition 4. If P and P 0 are pots such that M.P / � M.P 0/, then P and P 0
realize graphs of exactly the same size, so that, in particular, mP D mP 0 .

Proof. Suppose G is a graph of size n realized by P . Then, by Proposition 2, the
proportions of tiles used, hr1; : : : ; rpi, are a solution to M.P /, and nrj 2 Z�0 for
all j . Since M.P / � M.P 0/, then hr1; : : : ; rpi is also a solution to M.P 0/ with
nrj 2 Z�0 for all j , so, again by Proposition 2, there is a graph G0 of size n that is
realized by P 0. Similarly, if G0 is any graph realized by P 0, then there is a graph G

of the same size realized by P . ut
Note, however, in Proposition 4 that M.P / � M.P 0/ does not necessarily

mean that P and P 0 have the same sets of tiles, nor that they realize the same
graphs. In particular, while the number of vertices may be the same for two graphs
constructed from proportions hr1; : : : ; rpi solving both M.P / and M.P 0/, they may
have different numbers of edges.

4 Scenario 1

In this scenario, we allow the possibility that graph-theoretical complexes of smaller
size could be created from the set of tiles that builds the target graph G. Thus, we
seek pots P using the smallest number of bond-edge or tile types so that G 2 C.P /.

Recall that the vertex degree sequence of a graph G is the sequence, in increasing
order, of the degrees of each of the vertices of G. This sequence has repeated values
if G has multiple vertices of the same degree. Here, however, we are usually
concerned with how many different degrees appear in the graph, so we define the
valency sequence of G to be the sequence of vertex degrees of G without repeats.
The even-valency sequence is the sequence of even degrees that appear in G, and
the odd-valency sequence the sequence of odd degrees. We write av.G/, ev.G/,
and ov.G/ for the lengths of the valency, even-valency, and odd-valency sequences,
respectively.

We begin with a linear-time algorithm that, given a target graph G, returns at most
ev .G/C2ov .G/ tile types from which G may be constructed, and uses exactly one
bond-edge type.
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Algorithm 1. Input: A target graph G.

Output: At most ev .G/C 2ov .G/ tile types from which G may be constructed.

1. Create an augmented graph G0 from G by adding edges between pairs of odd-
degree vertices. G0 is then Eulerian.

2. Construct an Eulerian circuit for G0.
3. Choose a direction to traverse the Eulerian circuit, and then record the orienta-

tion of each edge as the circuit is traversed.

4. Delete the augmented edges, leaving an orientation
�!
G of the original graph G.

5. Record a tile type with j cohesive ends of type a and k cohesive ends of type Oa
whenever there is a vertex of

�!
G with indegree j and outdegree k.

Correctness: Since the orientation came from an Eulerian circuit in the augmented
graph of G, it follows that there is one tile type for each element of the even-valency
sequence of G, and it will have equal numbers of cohesive ends of type a and type
Oa. There will be at most two tile types for each element of the odd-valency sequence
of G, and the numbers of cohesive ends of type a and type Oa will differ by 1. Thus,
the algorithm outputs at most ev .G/C 2ov .G/ tile types.

Running time: The running time is O .jE.G/j/, since an Eulerian circuit can be
found in linear time and the additional preprocessing and labeling work is also
linear.

Corollary 1. B1 .G/ D 1, for all G.

Proof. This follows immediately from Algorithm 1, which uses only one cohesive
end letter. ut
Theorem 1. av.G/ � T1.G/ � ev.G/C 2ov.G/, and these bounds are tight.

Proof. The lower bound is clear, since vertices of different degrees require different
tile types. The upper bound follows from Algorithm 1. That the bounds are tight
follows from observing that, for Eulerian graphs, av .G/ D ev .G/C 2ov .G/. ut
Corollary 2. For Cn, the cycle on n vertices, T1.Cn/ D 1.

Corollary 3. If G is a k-regular graph, then T1.G/ D 1 if k is even and 2 if k is
odd.

Proof. The even case follows immediately from Theorem 1. The odd case follows
from Theorem 1 combined with Proposition 2, which rules out the possibility of
constructing the graph from a single tile with an odd number of cohesive ends. ut
Corollary 4. For Kn, the complete graph with n nodes,

T1.Kn/ D
�

1 if n is odd;

2 if n is even:
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Fig. 4 Tree labeling showing that sufficient conditions are not necessary

Corollary 5. For Km;n, the complete bipartite graph,

T1.Km;n/ D
�

1 if m D n and both are even;

2 otherwise:

Proposition 5. If T is a tree, then av .T / � T1 .T / � av .T / C 1, and these
bounds are tight.

Proof. For the upper bound, choose any vertex of T as a root, and direct the edges
of G away from the root. If the root has degree d , use one tile type with d cohesive
ends of type a. For every other element of the valency sequence, create a tile type
with one cohesive end of type Oa and the rest of type a. If there are vertices other than
the root with degree d , then create an additional tile type with one cohesive end of
type Oa and d � 1 of type a. This gives at most av .T /C 1 tile types in general, and
exactly av .T / tile types if T has a vertex of unique degree which we then choose
as the root. The path on four vertices demonstrates that the upper bound is tight. ut
Proposition 6. If G is a bipartite graph with all vertices of the same degree in the
same bipartition, then T1 .G/ D av .G/.

Proof. If the bipartition is .X; Y /, then all the vertices in X may be represented by
a tile type with all cohesive ends of type a, and all vertices in Y by a tile type with
all cohesive ends of type Oa. ut

Proposition 6 gives a second sufficient condition for a tree, other than having a
vertex of unique degree, to achieve the lower bound on the minimum number of tile
types. However, neither condition is necessary, as illustrated in Fig. 4, which gives a
tree that achieves the lower bound while satisfying neither the bipartition condition
nor the vertex-of-unique-degree condition.
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5 Scenario 2

In this scenario, we allow the possibility that graph-theoretical complexes the same
size as, but not isomorphic to, the target graph could be created from the set of tiles
that builds the target graph G, but require that no smaller complexes can be built
from the set of tiles. Thus, we seek pots P using the smallest number of bond-edge
or tile types such that G 2 Cmin.P /.

We begin with a theorem relating the minimum number of bond-edge types and
the minimum number of tile types, which will streamline our work.

Theorem 2. If G is a graph with n > 2 vertices, then B2.G/C 1 � T2.G/.

Proof. Suppose P is a pot with p D T2.G/ tile types and m � B2.G/ bond-edge
types that realizes G, and consider the construction matrix M.P /,

2
6664

z1;1 z1;2 : : : z1;p 0
:::

:::
:::

zm;1 zm;2 : : : zm;p 0

1 1 : : : 1 1

3
7775 : (2)

Suppose that the rows are not linearly independent, and let rowi refer to the i th
row of the construction matrix. Since the bottom row is clearly not in the span of
the remaining rows, this means that rowm DPm�1

iD1 ˛i rowi , with not all ˛i D 0. By
switching the roles of am and Oam if necessary (this corresponds to multiplying rowm

by �1), we may assume that there is a b with ˛b … f0;�1g.
Now let P 0 be the pot derived from P by first interchanging all the am’s and

Oam’s in each tile type if necessary so that there is an ˛b … f0;�1g in the equation
rowm D Pm�1

iD1 ˛i rowi , and then replacing every cohesive end of type am and Oam

by ab and Oab , respectively, for each tile type.
The construction matrix M.P 0/ is then

2
6666666664

z1;1 z1;2 : : : z1;p 0
:::

:::
:::

zb;1 C zm;1 zb;2 C zm;2 : : : zb;p C zm;p 0
:::

:::
:::

0 0 : : : 0 0

1 1 : : : 1 1

3
7777777775

: (3)

Note that M.P 0/ �M.P / since M.P 0/ is the result of performing elementary row
operations on M.P /: first multiply rowm by�1 if necessary, then add rowm to rowb ,
and then add 1=.1C ˛b/

Pm�1
iD1 ˛i rowi to rowm. The pot P 0 clearly constructs G,

and, by Proposition 4, it realizes no smaller graphs. However, P 0 uses one fewer
bond-edge type than P .
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We may then continue this process of reducing the number of bond-edge types
until the rows are no longer linearly dependent, creating a pot P 00 with B 00 bond-
edge types and T2.G/ tile types that realizes G. However, since the rows are linearly
independent, then B 00 � T2.G/. If B 00 D T2.G/, then Gauss–Jordan elimination
gives the identity matrix, and hence there is no solution to the system of equations,
a contradiction, and so B 00.G/ C 1 � T2.G/. Noting that B2.G/ � B 00 completes
the proof. ut

Although in the instances of the standard graphs given below it happens that
B2.G/C 1 D T2.G/, in general T2.G/ � B2.G/ may be arbitrarily large, as in the
following construction.

Proposition 7. Given n, there exists a graph of size nC1 with T2.G/�B2.G/ D n.

Proof. Given n, let G be the bipartite graph with one vertex of degree 2n � 1 in
one partition, and n vertices in the other partition, one of each of the degrees 2i for
i 2 f0; : : : ; n � 1g (G has many multiple edges, with multiplicities 2i for each i ).
Since G has nC 1 vertices, all with different degrees, T2.G/ D nC 1. Moreover,
G may be constructed from the pot P D fai gn�1

iD0 [ f Oa2n�1g, which uses only one
bond-edge type. To see that nothing smaller than G may be constructed from P ,
note that any graph H constructed from P must use at least one tile of type Oa2n�1.
Furthermore, any two copies of a tile of type ai that are used in the construction
of a graph may be replaced by one copy of a tile of type aiC1, resulting in a graph
of smaller size. Thus, a graph H 2 Cmin.P / must have one tile of type Oa2n�1 and
may have at most one tile of type ai for each i . For the number of hatted cohesive
ends to equal the number of unhatted cohesive ends, H must use exactly one tile of
type ai for each i . Thus, H is the same size as G, and so G 2 Cmin.P /, and hence
B2.G/ D 1. ut
Proposition 8. B2 .Cn/ D dn=2e.
Proof. If B2 .Cn/ < dn=2e, then at least one bond-edge type appears at least three
times in the complete complex forming Cn. At least two of the three edges must have
the same orientation going around the cycle, when the design strategy is viewed
using the labeling convention illustrated on the right-hand side of Fig. 3. These two
edges may be detached and rejoined as in Fig. 5 to make two smaller-size complexes.
Therefore, B2 .Cn/ > dn=2e.

The following two pots, one for n even and one for n odd, build Cn using dn=2e
bond-edge types, as shown in Fig. 6:

Peven D
n
t1 D

˚
a2

1

�
; ti D fOai�1; ai g for i D 2; : : : ;

ln

2

m
; tdn=2eC1 D

n
Oa2

dn=2e
oo

;

(4)
and

Podd D
n
t1 D ˚

a2
1

�
; ti D fOai�1; ai g for i D 1; : : : ;

ln

2

m
� 1; tdn=2e D

n
Oadn=2e�1; adn=2e

o
;

tdn=2eC1 D
n

Oadn=2e�1; Oadn=2e
oo

: (5)
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To see that nothing smaller can be made from these pots, note that

M.Peven/ D

2
666666666664

2 �1 0 0 0 0 0 0

0 1 �1 0 0 0 0 0

0 0
: : :

: : : 0 0 0 0

0 0 0
: : :

: : : 0 0 0

0 0 0 0 1 �1 0 0

0 0 0 0 0 1 �2 0

1 1 1 1 1 1 1 1

3
777777777775

(6)

has a unique solution of the form h1=n; 2=n; : : : ; 2=n; 1=ni, and
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M.Podd/ D

2
666666664

2 �1 0 0 0 0 0

0 1 �1 0 0 0 0

0 0
: : :

: : : 0 0 0

0 0 0 1 �1 �1 0

0 0 0 0 �1 1 0

1 1 1 1 1 1 1

3
777777775

(7)

has a unique solution of the form h1=n; 2=n; : : : ; 2=n; 1=n; 1=ni, and apply
Proposition 3, Item 3. ut
Corollary 6. T2 .Cn/ D dn=2e C 1.

Proof. By Theorem 2, B2.Cn/ C 1 � T2.Cn/, and the pots given in Proposition 8
achieve this bound. ut
Proposition 9.

B2 .Kn/ D
�

1 if n is even;

2 if n is odd:

Proof. The following two pots, one for n even and one for n odd, realize Kn, as in
Fig. 7:

Peven D
˚
t1 D fan�1g; t2 D

˚ Oan=2; an=2�1
��

; (8)

Podd D
˚
t1 D fan�1g; t2 D

˚ Oa; c.n�3/=2; Oc.n�1/=2
�

; t3 D
˚ Oa; c.n�1/=2; Oc.n�3/=2

��
:

(9)

For n even, it then suffices to show that Peven realizes no smaller-size graph. For n

odd, we must show not only that Podd realizes no smaller-size graph, but also that
Kn … Cmin.P / for any pot with just one bond-edge type.
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For n even, note that

M.Peven/ D
�
n � 1 �1 0

1 1 1

�
; (10)

which has h1=n; .n� 1/=ni as its unique solution, and apply Proposition 3, Item 3.
For n odd, note that

M.Podd/ D
2
4n � 1 �1 �1 0

0 �1 1 0

1 1 1 1

3
5 ; (11)

which has h1=n; .n� 1/=2n; .n � 1/=2ni as its unique solution, where 2 divides
.n � 1/ since n is odd, and apply Proposition 3, Item 3.

Now, by way of contradiction, with n odd, assume there is a pot P with just one
bond-edge type with Kn 2 Cmin.P /. The construction matrix of P must have the
form

M.P / D
�

z1;1 z1;2 : : : z1;p 0

1 1 : : : 1 1

�
: (12)

Since n is odd, each tile type has an even number of cohesive ends, and thus z1;j ¤
0 for all j , since a tile with equal numbers of hatted and unhatted cohesive ends
could form a graph with one vertex and .n � 1/=2 loop edges. Again, because each
tile type has an even number of cohesive ends, each z1;j must be even. Also, by
Proposition 2, Item 1, not all of the z1;j ’s can have the same sign, so we may assume,
by reordering the tile numbers if necessary, that z1;1 > 0 and z1;2 < 0. Thus, M.P /

is row-equivalent to

"
1 0 ��z1;3Cz1;2

z1;1�z1;2
: : : ��z1;pCz1;2

z1;1�z1;2
� z1;2

z1;1�z1;2

0 1
z1;1�z1;3

z1;1�z1;2
: : :

z1;1�z1;p

z1;1�z1;2

z1;1

z1;1�z1;2

#
; (13)

and so has a solution of the form h�z1;2=.z1;1 � z1;2/; z1;1=.z1;1 � z1;2/; 0; : : : ; 0i.
Since z1;1 and z1;2 are both even, and both are less than n in absolute value, this
solution has the form ha=m; b=m; 0; : : : ; 0i, for some integer m < n, and so P

realizes some graph of size m < n by Proposition 3, Item 3, a contradiction. ut

Corollary 7.

T2 .Kn/ D
(

2 if n is even,

3 if n is odd:

Proof. By Theorem 2, B2.Kn/C 1 � T2.Kn/, and the pots given in Proposition 9
achieve this bound. ut
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Fig. 8 Constructions of bipartite graphs

Proposition 10.

B2 .Km;n/ D
(

1 if gcd .m; n/ D 1;

2 if gcd .m; n/ > 1:
(14)

Proof. This proof follows the same form as that of Proposition 9. The following two
pots, P1 for gcd.m; n/ D 1 and Pd for gcd.m; n/ D d , realize Km;n, as in Fig. 8:

P1 D ft1 D fang; t2 D fOamgg ; (15)

Pd D
˚
t1 D fa; cn�1g; t2 D fOamg ; t3 D fOcmg� : (16)

It suffices to show that P1 realizes no smaller-size graph, but we must show that Pd

realizes no smaller-size graph and also that if m D sd and n D td , then K.sd;td/ …
Cmin.P / for any pot with just one bond-edge type.

In the first case, note that

M.P1/ D
�
n �m 0

1 1 1

�
; (17)

which has hm=.nCm/; n=.nCm/i as its unique solution, and apply Proposition 3,
Item 3. In the second case,

M.Pd / D
2
4 1 �m 0 0

n � 1 0 �m 0

1 1 1 1

3
5 ; (18)

which has hm=.nCm/; 1=.nCm/; n � 1=.nCm/i as its unique solution, so that
it follows from Proposition 3, Item 3 that Pd realizes no smaller graph.
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Now, with m D sd and n D td , by way of contradiction, assume there is a pot
P with just one bond-edge type with Km;n 2 Cmin.P /. The construction matrix of
P must have the form

M.P / D
�

z1;1 z1;2 : : : z1;p 0

1 1 : : : 1 1

�
: (19)

Again, z1;j ¤ 0 for all j , since a tile with equal numbers of hatted and unhatted
cohesive ends could form a graph with one vertex and all loop edges, and, by
Proposition 2, Item 1, not all of the z1;j ’s can have the same sign, so we may assume,
by reordering the tile numbers and switching the roles of a and Oa if necessary, that
t1 has n cohesive ends with z1;1 > 0 and t2 has m cohesive ends with z1;2 < 0. Now,
M.P / is row-equivalent to

"
1 0 ��z1;3Cz1;2

z1;1�z1;2
: : : ��z1;pCz1;2

z1;1�z1;2
� z1;2

z1;1�z1;2

0 1
z1;1�z1;3

z1;1�z1;2
: : :

z1;1�z1;p

z1;1�z1;2

z1;1

z1;1�z1;2

#
; (20)

and so has a solution of the form h�z1;2=.z1;1 � z1;2/; z1;1=.z1;1 � z1;2/; 0; : : : ; 0i.
If either z1;1 < n or z1;2 < m, then, by Proposition 3, Item 3, this solution

implies that P realizes some graph of size less than m C n, a contradiction.
Thus, z1;1 D n D td and z1;2 D m D sd , and this solution becomes
h�sd=.td C sd/; td=.td C sd/; 0; : : : ; 0i D h�s=.t C s/; t=.t C s/; 0; : : : ; 0i,
implying that P realizes some graph of size s C d < mC n, again a contradiction.

ut
Corollary 8.

T2 .Km;n/ D
�

2 if gcd .m; n/ D 1;

3 if gcd .m; n/ > 1:

Proof. By Theorem 2, B2.Km;n/ C 1 � T2.Km;n/, and the pots given in Proposi-
tion 10 achieve this bound. ut

We now turn our attention to trees. Let T be an unrooted tree. Deleting any edge
of T results in two subtrees, one of which has a smaller size than the other (except
possibly in the case of one unique edge, which we will call the size-center edge).
We call this smaller-size subtree a lesser subtree of T . In the case of a size-center
edge, we arbitrarily designate one of the subtrees as the lesser subtree.

Definition 3. If we orient each edge of a tree T to point toward its lesser subtree,
then we say T has a lesser-subtree orientation, or LSO.

See Fig. 9 for a sample tree and its corresponding lesser-subtree orientation.
Essentially, creating an LSO corresponds to finding a “most central vertex” (referred
to as the size-center vertex), making it the root, and directing all edges away from
the root.
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Fig. 9 A tree and its corresponding lesser-subtree orientation
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Fig. 10 Three subtrees rooted at v

Lemma 1. Any vertex in a tree T with an LSO has at most one incoming edge.

Proof. Suppose a vertex v has two incoming edges from vertices x and y (see
Fig. 10). We may consider three subtrees of the tree rooted at v:

• A tree X , consisting of v, the edge fx; vg, and the subtree rooted at x;
• A tree Y , consisting of v, the edge fy; vg, and the subtree rooted at y;
• A tree Z, consisting of v, all edges adjacent to v except fv; xg and fv; yg, and

the subtrees rooted at each of the children of v other than x and y.

Let A, B , and C be the sizes of subtrees X , Y , and Z, respectively. Since v 2
X; Y; Z, then A, B , and C are all of size at least 1. The orientation on fx; vg implies
that its lesser subtree is Y [ Z and has size B C C � 1, so B C C � 1 � A.
Similarly, the orientation on fy; vg implies that its lesser subtree is X [ Z and has
size A C C � 1, so A C C � 1 � B . By the uniqueness of the size-center edge,
equality can hold in only one of these cases, so suppose the latter inequality is strict.
Thus, A C C � 1 < B � A � C C 1, and hence C � 1 < � .C � 1/, which is
impossible, since 1 � C . ut

Corollary 9. A tree with an LSO has a unique source vertex, which we can call the
size-center vertex.
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Proof. A tree with an LSO is a directed acyclic graph and hence has at least
one source. Now suppose there are at least two sources, and consider the edge
orientations along the unique path between a pair of them. Since the edges incident
with the two sources are both directed into this path, there must be some vertex on
the path with two incoming edges, a contradiction of Lemma 1. ut
Definition 4. The lesser-subtree sequence s .v/ of a vertex v in a tree with an LSO
is the nondecreasing sequence of the sizes of the lesser subtrees on its outgoing
edges. Thus, s .v/ is empty if and only if v is a leaf, it has length deg .v/ if and only
if v is the size-center vertex, and it has length deg .v/ � 1 otherwise.

Let Q .T / be the number of different sizes of a lesser subtree of a tree T , and
let R.T / be the number of distinct lesser-subtree sequences in the LSO of T .

We use the convention that the root is at the top of the tree, with the leaves below.

Algorithm 2. Input: The target graph, an unrooted tree T .

Output: A set of R.T / tile types using Q .T / bond-edge types from which T may
be constructed, but nothing smaller.

1. Create a lesser-subtree orientation for T . Take the size-center vertex to be the
root. (Note that all edges will then be directed downward in the tree, from the
root toward the leaves.)

2. For each directed edge .u; v/, label the edge with the bond-edge type bk , where
k is the size of the subtree rooted at v.

3. The tile types are given by the labeled orientation of the graph.

Correctness: The fact that the number of bond-edge types is Q .T / follows
directly from our labeling of the edges in step 2. Note that the only vertex that
can have no incoming edges is the size-center vertex, and in this case the sum
of the indices on the bi ’s is n � 1, where n is the size of the tree, so the lesser-
subtree sequence and tile type for the root will be unique. Every other vertex v

has exactly one incoming edge. Note that the label bk on an edge incoming to v

must have k D 1CPi2s.v/ i . So, the tile type assigned to another node u will be
the same as for v if and only if they have the same lesser-subtree sequence.

The labeling scheme on the edges, corresponding to subtree sizes, demonstrates
why no smaller graph can be formed from the pot. Any tile with an incoming edge
bk will force the selection of a tile corresponding to a vertex higher in the original
tree: either the root node, or a vertex with incoming edge bj with j > k. Similarly,
the outgoing edges will force the selection of tiles corresponding to vertices, with
appropriately sized subtrees, that appear lower in the original tree.

Running time: The running time is O
�
n2
	

if, in step 1, each edge is considered
in turn, and we compute the connected components created by removing the edge
to determine the corresponding lesser subtree. This can be improved to O .n/

by choosing an arbitrary root, computing the size of all rooted subtrees using a
postorder traversal, and then determining the orientation of each edge by comparing
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Fig. 11 A tree construction
for Scenario 2

the size s of the subtree rooted at its lower endpoint with n � s. The labeling work
in step 2 is O .n/.

See Fig. 11 for the labeling of the tree given in Fig. 9.

Proposition 11. B2 .T / D Q .T /.

Proof. If B2 .T / < Q .T /, then by the pigeonhole principle, there are two edges
with the same bond-edge type but different-size lesser subtrees. If these two edges
are both oriented either toward or away from their lesser subtrees, then the smaller
subtree could replace the larger, resulting in a smaller complex. If one edge is
oriented toward its lesser subtree and the other away, then the two lesser subtrees
could be joined, again resulting in a smaller complex. Thus B2 .T / > Q .T /, but
the algorithm returns Q .T / bond-edge types. ut
Proposition 12. T2 .T / D R .T /.

Proof. Consider a labeling L1 induced by a complex realizing T2 .T / < R .T /, by
labeling each vertex by the index of the tile type and each edge by the index of the
bond-edge type used for it in the construction of T . There must be two vertices u, v

with the same tile type in the complex realizing T , but with s .u/ ¤ s .v/. Consider
also a second labeling L2, given by Algorithm 2. Since s .u/ ¤ s .v/, the multisets
representing the tile types u and v in L2 must be different. Therefore there must be
half-edges adjacent to u and v that have the same label in L1 but different labels in
L2. Assume that the bond-edge types for these edges in L2 are bk and bj .

If k ¤ j , then by Algorithm 2, the sizes of the subtrees rooted at the neighbors
of u and v are different. Assume, without loss of generality, that the subtree on the
edge incident with u is smaller than the corresponding subtree on an edge incident
with v. Then, in the case of the L1 labeling, a copy of the smaller subtree incident
with u can replace the larger one incident with v, resulting in a smaller-size graph,
a contradiction.

Since bond-edge types in L2 always have the hatted half-edge toward the smaller
subtree, if k D j it must be true that k D j D n=2. This means that the bond-edge
type bk corresponds to the unique size-center edge e D fu; vg. However, this means
that in the L1 labeling, both ends of e have the same cohesive end type, so they
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need to be complementary. Thus, we have a contradiction and there can be no such
labeling L1. Consequently, T2 .T / > R .T /, but Algorithm 2 returns R.T / tile
types. ut

6 Scenario 3

In this case, we require that not only may no complexes smaller than the target be
created from the given pot, but also that no nonisomorphic complexes of the same
size be possible. Thus, we seek pots P using the smallest number of bond-edge or
tile types so that fGg D Cmin.P /.

The constraints of Scenario 3 significantly limit the possibilities for tile types and
their locations in a realization of a graph.

Lemma 2. If P is a pot such that fGg D Cmin.P /, and G has no loops, then no tile
type T 2 P used in the construction of G may have both a hatted and an unhatted
cohesive end of the same type.

Proof. If such a tile, with cohesive ends a and Oa, were used in the construction of
G to form edges fu; v1g and fu; v2g, then P would also realize a graph G0 with a
loop edge at u and a new edge fv1; v2g, as in Fig. 12. Although G0 has the same size
as G, it has a loop, and so is not isomorphic to G, contradicting the assertion that
fGg D Cmin.P /. ut
Lemma 3. If P is a pot such that fGg D Cmin.P /, and G has no loops, then no
tile type T 2 P used in the construction of G may be used for two adjacent vertices
in G.

Proof. Suppose a tile type T 2 P was used for adjacent vertices u and v. Since
the edge fu; vg must be formed from complementary cohesive ends, say a and Oa, it
follows that T must include both a and Oa, contradicting Lemma 2. ut

Recall that the chromatic number � .G/ of a graph is the minimum number of
colors needed to properly color G, i.e., to color the vertices of G so that no two
adjacent vertices receive the same color.

Theorem 3. If G is loopless, then T3 .G/ > � .G/.

Proof. By Lemma 3, fGg D Cmin.P / implies that no two adjacent vertices are
formed from the same tile type. Thus the tile type indices give a proper coloring of
G, and hence there must be at least � .G/ different tile types. ut

Similar constraints hold for bond-edge types in this scenario.

Lemma 4. If P is a pot such that fGg D Cmin.P /, and two nonadjacent edges
fu; vg and fs; tg of G D fV; Eg use the same bond-edge type, then G is isomorphic
to G0 D fV; E 0g, where E 0 D E � ffu; vg; fs; tgg [ ffu; tg; fs; vgg.
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Fig. 12 Resulting nonisomorphic graphs. Note that G0 must be connected, since otherwise its
components would have smaller size than G, contradicting the assertion that G D Cmin.P /

âa

âa

âa

âa

Fig. 13 Swapping nonadjacent edges

Proof. If P realizes G with fu; vg and fs; tg receiving the same bond-edge type,
then P also realizes G0, as in Fig. 13. Since G0 is the same size as G, and fGg D
Cmin.P /, this means that G is isomorphic to G0. ut

Proposition 13. T3 .Cn/ D dn=2e C 1 and B3 .Cn/ D dn=2e.
Proof. The fact that T3 .Cn/ � dn=2e C 1 and B3 .Cn/ � dn=2e follows from
Proposition 8, Corollary 6, and Proposition 1. Equality holds by noting that if P is
the pot given in Proposition 8, then fCng D Cmin.P /. ut
Proposition 14. T3 .Kn/ D n.

Proof. This follows immediately from Theorem 3. ut
Proposition 15. B3 .Kn/ D n � 1.

Proof. We proceed by induction on n, first noting that K3 D C3 and B3 .C3/ D 2 by
Proposition 13. Now assume that n is the minimum value such that B3 .Kn/ < n�1,
and let v be a vertex of Kn. Since there are fewer than n � 1 bond-edge types, one
of them must be repeated in the tile type used for v, and, by Lemma 2, the cohesive
ends must be either both unhatted or both hatted. Without loss of generality, we
assume that both are unhatted and that the bond-edge type is a. We call the two
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Fig. 14 Construction of K4

edges involved e and f . Since, by induction, the complete graph on the vertices
V.Kn/� v requires n� 2 bond-edge types, there is an edge g using bond-edge type
a in this subgraph. Since Kn has no multiple edges, and multiple edges would be
created by exchanging the cohesive ends of any two nonadjacent edges of Kn, as in
Lemma 4, then by Lemma 4, the edge g must be adjacent to both e and f . However,
this forms a triangle using just one bond-edge type, and thus one of the vertices of
the triangle must have both an a and an Oa cohesive end, contradicting Lemma 2.
Thus, B3 .Kn/ � n � 1.

For the equality, we claim that the pot P D ft1 D fOan�1
1 ; ti D

fa1; : : : ; ai�1; Oan�i
i gg; for i from 2 to n � 1; tn D fa1; : : : ; an�1gg, using n � 1

bond-edge types, has fKng D Cmin.P /. That this pot realizes Kn may be seen
from Fig. 14. No graph of smaller size can be constructed from this pot, since the
construction matrix

M.P / D

2
6666666664

�.n � 1/ 1 1 1 1 1 0

0 �.n � 2/ 1 1 1 1 0

0 : : :
: : :

: : :
:::

::: 0

0 : : : : : :
: : :

: : :
::: 0

0 0 0 0 �1 1 0

1 1 1 1 1 1 1

3
7777777775

(21)

has a unique solution, h1=n; : : : ; 1=ni, so mP D n and Kn 2 Cmin.P /. To see that
equality holds, note that any graph G0 2 Cmin.P / � fKng must use exactly one of
each tile, and must have loops or multiple edges. However, no loops may be realized
from this tile set, and for a multiple edge to be formed, there must be two tiles with
two sets of complementary cohesive ends, and there is no such pair. ut

Next we consider complete bipartite graphs. For Km;n, we take m � n, write
X for the partition of size m and Y for the partition of size n, and observe in the
following that Lemma 4 places considerable restrictions on the construction of Km;n.
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Fig. 15 Construction of K2;3

Lemma 5. In any pot P such that fKm;ng D Cmin.P /, the following must be
true:

1. Any two edges formed from the same bond-edge type must be incident with
the same vertex, and, moreover, that vertex must have the two corresponding
cohesive ends either both hatted or both unhatted.

2. Two tiles corresponding to vertices in the same partition of Km;n (whether of the
same or different tile types) cannot both have two cohesive ends of the same kind.

Proof. Item 1 follows from Lemma 4 in the case of a bipartite graph by observing
that the reconfiguring of the edges results in multiple edges (if the two hatted
cohesive ends are on tiles used for vertices in the same partition) or edges in the
same partitions (if the two hatted cohesive ends are on tiles used for vertices in
different partitions). That the two cohesive ends must both be hatted or unhatted
follows from Lemma 2, since Km;n has no loops.

Item 2 follows from Item 1, which implies that all four of the edges involved
must be pairwise adjacent. This cannot occur in a complete bipartite graph which
has no multiple edges. ut

Proposition 16. B3 .Km;n/ D m.

Proof. By Lemma 5, Item 1, if a bond edge of type a appears, all edges of that type
must be incident with the same vertex. Thus, there can be at most n edges with each
bond-edge type. But Km;n has mn edges, so there must be at least m bond-edge
types.

The following pot achieves this bound:

P D ffti D fOan
i g for i from 1 to mg; tmC1 D fa1 : : : amgg : (22)

This P realizes Km;n when there is one copy each of the tiles t1; : : : ; tm in one
partition and n copies of tile tmC1 in the other partition (see Fig. 15). That P does
not realize any graph of smaller size than Km;n follows from the construction matrix,
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M.P / D

2
6664

1 1 1 1 1

�n 0 0 1 0

0
: : :

:::
::: 0

0 0 �n 1 0

3
7775 ; (23)

which has the unique solutions h1=.mCn/; : : : ; 1=.mCn/; n=.mCn/i. To see that
no graph of size m C n not isomorphic to Km;n may be realized by this pot, note
that any such graph G0 2 Cmin.P / � fKm;ng must use exactly the same numbers
of each tile type as Km;n. Since the tiles form a bipartition in which tiles with all
cohesive ends hatted are on one side and tiles with all cohesive ends unhatted are
on the other, G0 must also be bipartite. Thus, if G0 is not isomorphic to Km;n, then
it must have loops or multiple edges. However, no loops may be realized from this
tile set, and for a multiple edge to be formed, there must be two tiles with two sets
of complementary cohesive ends, but there is no such pair. ut
Proposition 17. T3 .Km;n/ D mC 1.

Proof. Clearly, T3 .K1;n/ D 2 for all n, so we may assume m > 2. By way of
contradiction, suppose T3 .Km;n/ � m, and let P be a pot using m tiles with
fKm;ng D Cmin.P /.

Then, since by Lemma 3 no tile type can represent a vertex in both X and Y , the
vertices in each of X and Y must be represented by m�1 or fewer tiles. Thus, there
are two vertices, say x1 and x2, in X using the same tile type, and two vertices y1

and y2 in Y using the same tile type. Suppose the edge from x1 to y1 uses bond-edge
type a. Then the tile type at x2 also has a cohesive end labeled a, and by Lemma 5,
Item 1, the edge using bond-edge type a must also be incident with y1. Thus, the tile
type at y1 has two cohesive ends with the same label. But y2 uses the same tile type,
so there are two tile types forming two vertices, y1 and y2, in the same partition
of Km;n, so that both have two of the same kind of cohesive end. This contradicts
Lemma 5, Item 2, and so T3 .Km;n/ � m.

The pot in Proposition 16 achieves T3 .Km;n/ D mC 1. ut
Finally, we consider trees. For a rooted tree, we call the height the number of

vertices in the longest path from the root to any leaf node, so a single vertex has
height 1, and the tree consisting of two vertices joined by an edge has height 2.
The level of a node v is the number of vertices in the path from the root to v. For
a tree T with a lesser-subtree orientation we consider the set of trees induced by
considering the subtree rooted at each vertex (i.e., the tree consisting of the vertex
and all of its descendants in the tree). Let I.T / denote the size of the maximum
subset of nonisomorphic trees in this set.

Algorithm 3. Input: The target graph, a tree T .

Output: A set of I.T / tiles using I .T /�1 bond-edge types from which T may be
constructed but no smaller or same-size graphs.
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Fig. 16 A tree construction
for Scenario 3

1. Create a lesser-subtree orientation of the graph, and choose the unique size-
center vertex to be the root. (Note that all edges will be directed downward in the
tree.) Let h be the height of this rooted tree.

2. Label all edges incident to leaf nodes b1:

3. Set j D 1.
4. For i from h to 1, examine each edge .u; v/ from a node at level i � 1 to a node

at level i successively.

• If the edge is already labeled b1, continue and consider the next edge.
• Examine the subtree rooted at v.
• If it is isomorphic to the subtree below edge e for any edge e that has already

been labeled, then give .u; v/ the same label as edge e. Otherwise, let j D
j C 1, and label .u; v/ by bj .

5. The tile types are given by the labeled orientation of the graph.

Correctness: The fact that the number of bond-edge types is I .T / � 1 follows
directly from our labeling of the edges. Note that the only vertex that can have no
incoming edges is the size-center vertex, and in this case the set of subtrees rooted
at that vertex and the corresponding tile type for the root will be unique. Every other
vertex v has exactly one incoming edge. The tile type assigned to another node u will
be the same as for v if and only if the subtrees rooted at those nodes are isomorphic.

The labeling scheme for the edges, corresponding to subtree isomorphisms,
demonstrates why no nonisomorphic complex the same size as or smaller than the
target graph can be formed from the pot. Any tile with an incoming edge bk will
force the selection of a tile corresponding to a vertex higher in the original tree:
either the root node or a vertex with an incoming edge bj , where j corresponds
to the label of a subtree isomorphism that has a subtree corresponding to the label
k. Similarly, the outgoing edges will force the selection of tiles corresponding to
subtree isomorphisms that appear lower in the original tree.

Running time: The running time of this algorithm is O.n3/, since each tree
isomorphism may be checked in linear time [2].

See Fig. 16 for the labeling of the tree given in Fig. 9.
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Proposition 18. B3 .T / D I .T / � 1.

Proof. If B3 .T / < I .T /�1, then by the pigeonhole principle, there are two edges
with the same bond-edge type but with nonisomorphic lesser subtrees. If these two
edges are both oriented either toward or away from their lesser subtrees, then the
smaller (or same-size) subtree could replace the larger. If the subtree is smaller, the
result is clearly nonisomorphic. If the subtree is the same size, the fact that the result
is nonisomorphic follows from the fact that the lesser-subtree orientation will be
unaffected. If one edge is oriented toward its lesser subtree and the other away, then
the two lesser subtrees could be joined, again resulting in a nonisomorphic complex
no larger than the target graph. Thus B3 .T / > I .T /�1, but the algorithm returns
I .T /� 1 bond-edge types. ut
Proposition 19. T3 .T / D I .T /.

Proof. Consider a labeling L1 induced by a complex realizing T2 .T / < I .T /.
There must be two vertices u, v with the same tile type in the complex realizing
T , but where the subtree rooted at u is not isomorphic to the subtree rooted at v.
Consider also a second labeling L2, given by Algorithm 2. Since the corresponding
subtrees are nonisomorphic, the multisets representing the tile types u and v in L2

must be different. Therefore there must be half-edges adjacent to u and v that have
the same label in L1 but different labels in L2. Assume, without loss of generality,
that the subtree on the edge incident with u is smaller than (or the same size as)
the corresponding one on an edge incident with v. Then, in the case of the L1

labeling, a copy of the smaller (or same-size) subtree incident with u can replace
the one incident with v, resulting in a nonisomorphic complex no larger than the
target graph. ut

7 Conclusion

Although we have found optimal design strategies for some common infinite
families of graphs, there are many other graph-theoretical constructs to consider,
as well as other assembly models. Recent further work in this area may be
found at [20]. Also, several open questions immediately arise. These include the
following:

1. In Scenario 1, there is a need to characterize trees that need av.T / tile types for
their assembly and those that need av.T /C 1.

2. Although for each of the examples given here we were able to find a pot that
simultaneously achieved both the minimum number of bond-edge types and
the minimum number of tile types, it is not clear that this is always possible.
There is a need to determine whether or not it is alway possible to find a pot
that simultaneously achieves both minimums, and if it is not always possible, to
determinine conditions under which it is possible.

3. There is a need to characterize graphs for which B2.G/C 1 D T2.G/.
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4. There is a need to find a bounding relation between B3.G/ and T3.G/ similar
to that for Scenario 2, if one exists, and again to determine conditions for when
equality holds.
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Programmed Genome Processing in Ciliates

Aaron David Goldman, Elizabeth M. Stein, John R. Bracht,
and Laura F. Landweber

Abstract The ciliates are a group of protists distinguished by the hair-like cilia on
their cell surfaces. Ciliates also possess two types of nuclei, a germline micronucleus
and a somatic macronucleus. The micronuclear genome contains segmented genes
divided by spacer sequences of DNA that are removed to generate the macronuclear
genome during development. For some species, certain micronuclear gene segments
can be reordered and/or inverted with respect to their final gene sequence in the
macronucleus. This chapter explores the similarities of and differences between
micronuclear genomes and the processes of macronuclear development across
different ciliate species.

1 Sex and Nuclear Dimorphism in Ciliates

The ciliates (phylum Ciliophora) are a highly diverse, monophyletic clade of
unicellular protists composed of more than 8,000 species that diverged from a
common ancestor with alveolates like Plasmodium about 1.25 billion years ago
[1]. The name “ciliate” describes the most obvious feature that unites members
of this group, the presence of hair-like cilia on their cell surfaces that function in
motility, feeding, and sensation. But within the cell, ciliates also share the otherwise
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Fig. 1 Images of three model
ciliate species superimposed
onto an evolutionary tree.
Cells were stained to reveal
DNA (in cyan) and tubulin (in
green). Locations of
micronuclei are indicated by
“MIC” and macronuclei by
“MAC”. The guide tree is
based on Doak et al. [46]
(Image credits: Tetrahymena
thermophila (credit Kensuke
Kataoka), Paramecium
tetraurelia (credit Janine
Beisson), and Oxytricha
trifallax (credit Wenwen
Fang))

uncommon trait of nuclear dimorphism, wherein each cell has two distinct kinds
of nuclei, a micronucleus and a macronucleus, that contain related but different
genomes (Fig. 1).

Ciliates engage in nonreproductive sex in which a haploid version of each
genome is transferred between mating partners, transforming the mating cells into
progeny (Fig. 2). The micronucleus serves the role of sexual exchange, much like
sperm and egg cells in animals. The micronuclear genome is diploid and composed
of long eukaryotic chromosomes. It becomes haploid through meiosis, again like
the genomes of developing sperm and egg cells, and is exchanged between mating
partners. However, the micronuclear genomes of ciliates are segmented such that
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Fig. 2 The ciliate sexual cycle is sex without reproduction. During conjugation, the micronuclei
of both cells undergo meiosis. One haploid micronucleus is exchanged between each cell and
combined with one haploid micronucleus retained by the cell to create a new diploid micronucleus.
The new micronucleus undergoes mitosis, and one of the progeny micronuclei differentiates into
a new macronucleus. The old macronucleus degrades. The result is two sexual progeny, each
possessing a new micronucleus and macronucleus with alleles from both conjugating cells

individual pieces of genes and other informational sequences are in a nonfunctional
form. These genes are interrupted by spacer DNA that is eliminated following sexual
exchange. In some species, segments of the same gene can be inverted and out of
order with respect to one another. In these cases, the micronuclear genes are said to
be “scrambled”.

The macronucleus serves the somatic function, with genes in their functional
form. Macronuclear genomes are not exchanged during sex. After sexual exchange,
the parent macronuclear genome is dismantled and a new macronuclear genome is
built from micronuclear DNA (Fig. 2). This process is referred to as “development”,
and the developing macronucleus is referred to as the “anlagen”, a phrase borrowed
from animal embryology that refers to an early stage in animal development.
Macronuclear development requires that micronuclear segments are faithfully
joined to create a functioning genome with open reading frames and appropriate
regulatory elements. Unlike micronuclear DNA, macronuclear DNA typically exists
as very short chromosomes that can be as small as a few hundred base pairs. In
some ciliate species, these small chromosomes often encode only a single gene.
Macronuclear chromosomes usually exist at high copy number, ranging from tens
to thousands of copies in a single macronucleus.

Since the parental macronucleus is not exchanged between mating partners, there
must be some mechanism capable of developing a macronuclear genome from
micronuclear DNA. Simple mitotic replication of each parent cell’s macronucleus
would remove the benefit of sexual recombination between micronuclei. Several
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mechanisms for macronuclear development have been proposed which usually
rely on noncoding RNAs to provide information about the content and/or order
of micronuclear segments in the macronuclear genome. Recent evidence suggests
that alternative models appear to be true for several different groups within the
ciliates. This chapter is dedicated to reviewing our understanding of macronuclear
development and DNA differentiation in different groups of ciliates.

2 Genome Structure and Macronuclear Development
in Oligohymenophorea

The Oligohymenophorea are a class of ciliates that includes two well-studied
genera, Tetrahymena and Paramecium. Within these genera, T. thermophila, P.
tetraurelia, and P. primaurelia represent the most commonly used model organisms
for elucidating the molecular processes that underlie macronuclear development.
Paramecium and Tetrahymena both contain a single ovoid macronucleus. However,
Tetrahymena species have only one micronucleus, while Paramecium species have
at least two micronuclei [2]. The sequence of events that occurs following meiosis
and conjugation differs between Paramecium and Tetrahymena. Following meiosis
and conjugation in P. tetraurelia, for example, the diploid zygotic micronucleus
divides mitotically in two rounds, producing four daughter nuclei. Two of the four
remain as micronuclei, and the other two become macronuclei. In T. thermophila,
however, only one mitotic division of the zygote occurs, and one of the resulting
micronuclei becomes a macronucleus (for reviews, see [2, 3]).

In addition to these slight differences in the overall life cycles of Paramecium
and Tetrahymena, the DNA content of the two organisms also differs. The Parame-
cium macronucleus contains chromosomes at around 800
 copy number, and the
chromosome size ranges from 50 to 1,000 kb [4]. In Tetrahymena species, however,
macronuclear chromosomes are present at an average of 45
 copy number, although
the length of each chromosome is similar to the lengths of those of Paramecium
tetraurelia, 700 kbp (Orias, http://www.lifesci.ucsb.edu/~genome/Tetrahymena/).
Each Tetrahymena haploid micronuclear genome contains an estimated 6,000
eliminated sequences [5], comprising between 10 % and 20 % of the genome and
ranging in size from approximately 500 to 20,000 bp (Yao et al. [6]; for a review,
see Yao et al. [7]).

Following conjugation, in both Tetrahymena and Paramecium, several rounds of
DNA replication amplify the micronuclear DNA in the developing macronucleus.
Around the same time, early in the DNA amplification period, spacer DNA in
between macronuclear segments is precisely excised. In the developing macronu-
cleus of Tetrahymena, approximately 30 % of the micronuclear DNA sequence is
eliminated (http://www.broadinstitute.org/annotation/genome/Tetrahymena/). Most
of the deleted DNA in Tetrahymena consists of moderately repetitious sequences
with copy numbers of around 200 that may be distantly related to transposable

http://www.lifesci.ucsb.edu/~genome/Tetrahymena/
http://www.broadinstitute.org/annotation/genome/Tetrahymena/
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elements. Some unique sequences are also found among the eliminated DNA (for
reviews, see [2, 3]).

Each Paramecium haploid micronuclear genome contains approximately 45,000
eliminated sequences [8]. Some of these eliminated sequences are found in non-
coding regions, but most interrupt open reading frames, making their precise
excision necessary for the developing ciliate [9]. In addition, the spacer sequences
eliminated from Paramecium micronuclear DNA are short. In P. tetraurelia, these
eliminated sequences range from 26 to 5,316 bp. Seventy-six percent of them are
less than 100 bp, and almost one-third are between 26 and 30 bp ([9]; supported
by [8]). Furthermore, all Paramecium eliminated sequences are flanked by 50-TA-30
dinucleotide repeats. After these sequences are deleted, one dinucleotide repeat is
retained on the new somatic chromosome [9]. An 8-bp consensus sequence for these
repeats, which is a larger version of the typical 50-TA-30 repeat, has been proposed –
50-TA(C/T)AG(C/T)N(A/G)-30 [10]. The similarity of this consensus sequence to
the ends of the Tc1-related transposons suggests that these eliminated sequences
may have evolved from ancestral transposons [10, 11].

Following the excision of eliminated sequences, telomeres are added to the
ends of the new macronuclear chromosomes. In Tetrahymena, telomeric sequences
consistently end in single-stranded overhangs of 16 to 20 repeated bases of the form
30-dG4T2-50 [12]. In Paramecium, however, telomeres consist of a mixture of 30-
dG4T2-50 and 30-dG3T3-50 sequences [13]. Following the addition of these telomeres
in both organisms, the chromosomes replicate continually until a final copy number
is reached. After this replication, macronuclear development is complete, and
vegetative proliferation follows.

The epigenetic control of macronuclear development by maternal cells has been
studied substantially in ciliates. In Paramecium, some of these effects appear to
result from small RNA molecules of approximately 22–23 nucleotides that accumu-
late in the parental macronucleus prior to development of the new macronucleus,
following sexual exchange [14]. Several experiments in Paramecium have revealed
that the silencing of certain genes through the RNA interference pathway (RNAi)
correlates with the accumulation of these small RNAs ([15–17]; Lepère et al. 2008).
Small RNAs may be involved in homology-dependent maternal silencing of genes
in Tetrahymena as well, and can be produced at a few loci in the organism [18].
Although these small RNAs may be involved in shutting off maternally controlled
genes, they cannot account for other epigenetic phenomena, such as maternal
inheritance of alternately arranged genes, that are not the result of the action of
RNAi on specific, maternally controlled genes [19]. An alternate model, the “scan
RNA model”, has been proposed to account for macronuclear development in
oligohymenophoreans [20, 21].

The scan RNA model for programmed DNA elimination in ciliates (Fig. 3),
originally proposed by Mochizuki et al. [20] and modified by Lepère et al. [17],
suggests that portions of the micronuclear DNA are bidirectionally transcribed at
the start of conjugation to form double-stranded RNA molecules. These double-
stranded RNA molecules are processed by a dicer-like enzyme to form scan RNAs
[22]. Although the model is somewhat vague about the mechanism by which these
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Fig. 3 The scan RNA model of macronuclear development in the Oligohymenophorea. (a) After
sexual exchange, long bidirectional RNA transcripts are produced from the new micronuclear
DNA. (b) The RNAs are cut into smaller RNAs and (c) enter the old macronucleus. (d) Those
RNA segments with a macronuclear sequence are retained by long RNAs transcribed from the
old macronuclear genome. (e) RNAs that are not homologous to the old macronuclear sequence
are transferred to the developing macronucleus. (f) These RNAs correctly signal the micronuclear
sequence for deletion, allowing the new macronuclear genome to form

scan RNAs function, it has been suggested that they base-pair to longer RNA
transcripts of the maternal macronuclear genome [15, 23]. Micronuclear scan RNAs
that paired to homologous sequences would be degraded, while those that did not
would migrate to the newly developing macronucleus, and target regions of the
developing macronuclear genome for deletion [20].

Mochizuki and Gorovsky [24] conducted early tests of the scan RNA model
in Tetrahymena thermophila. Two hours following conjugation, the small RNAs
hybridized to DNA found only in the micronuclear genome three times as often
as they did to macronuclear DNA. Eight hours following conjugation, the small
RNAs hybridized to DNA found only in the micronuclear genome twenty times
as often as to macronuclear DNA. This progression was recently confirmed by
deep sequencing of RNAs [21]. Scan RNA transcription was observed to originate
from the micronuclear DNA and the majority of the transcripts match eliminated
sequences. Those that match retained macronuclear sequences are depleted from
the set of small RNA sequences.

A protein in the Piwi family called Twi1p is required for both scan RNA
stability and proper DNA elimination [20]. Twi1p concentrations were previously
observed to mirror the presence of scan RNAs from the parental macronucleus to
the developing macronucleus, indicating that Twi1p may be associated with the
scan RNAs during conjugation [24]. A similar phenomenon is likely to control
Paramecium macronuclear development [17].
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In Paramecium, mutation of the TA repeat marking the ends of eliminated DNA
can inhibit elimination [25]. This observation implies that some aspects of DNA
excision may not simply be mediated by scan RNAs alone, and may require some
sequence recognition. Indeed, eliminated DNA segments in Paramecium are marked
by an 8 bp inverted repeat motif (containing the TA repeat) similar to that found in
Tc1/mariner transposons (Klobutcher and Herrick [10]; confirmed by Arnaiz et al.
[8]); this motif is important for targeting the PiggyBac transposase that mediates
DNA cleavage events [26, 27].

A modified scan RNA model has been proposed, where the scanning occurs by
base-pairing across maternal RNA transcripts of the macronuclear genome rather
than the maternal macronuclear DNA itself [17]. However, this modification does
not completely account for the specificity of information transfer achieved during
macronuclear development and programmed DNA deletion, since RNA can tolerate
multiple noncanonical base pairs [19]. This conflicting observation suggests that
further examination is required for a full understanding of oligohymenophorean
genome development and the role of scan RNAs in this process.

3 Genome Structure and Macronuclear Development
in the Stichotrichia

The stichotrichs are a subclass of the spirotrichous ciliates and include the genera
Oxytricha and Stylonychia. O. trifallax and S. lemnae are representative model
organisms for stichotrich genome rearrangement. Genome rearrangement in these
organisms is much more complex at the molecular level than it is in the oligo-
hymenophoreans Paramecium and Tetrahymena. In many stichotrichs, more than
95 % of the micronuclear genome content is eliminated during macronuclear devel-
opment [28, 29]. Perhaps the most important feature of stichotrich macronuclear
development is that the macronuclear segments within the micronuclear genome
can be scrambled, with the order of gene pieces inverted and permuted with
respect to one another. Because the scan RNA model explains only the removal
of eliminated segments, the rearrangement of a scrambled micronuclear genome
requires a different mechanism than that of macronuclear development in the
Oligohymenophorea.

The micronuclear chromosomes of stichotrichs are similar in size and structure
to those of the Oligohymenophorea. Stichotrich macronuclear genomes, however,
are composed of very short chromosomes called “nanochromosomes”, which
typically contain only one gene ([30–32]; Swart et al. 2013). The O. trifallax
macronuclear genome, for example, is composed of over 16,000 nanochromosomes
that have an average length of 3.2 kbp and are each represented at around
1,000
 copy number [32]. The Oxytricha and Stylonichia 30 telomeres have
G-rich single-stranded tails that indicate an unusual “G-quartet” DNA structure via
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Hoogsteen base-pairing of single stranded G-rich regions [33]. S. lemnae telomeres
were observed to form these structures in vivo [34].

Thousands of genes are composed of segments that are scrambled in the micronu-
clear genome. Macronuclear-destined segments in the micronuclear genome typ-
ically contain short sequences that are repeated on both sides of the segment,
though only one copy is retained in the final macronuclear version. These “pointer”
sequences can be very short, usually 2 bp or more, but possibly a single base
pair, and sometimes do not provide a perfect match with their counterpart. It
is not possible that information from these pointers alone can guide genome
rearrangement.

Macronuclear development in stichotrichs begins with the formation of polytene
chromosomes of micronuclear DNA. These giant chromosomes form as a result of
extensive genome replication without mitosis [28, 35]. Polytene micronuclear DNA
provides the source of DNA for the developing macronuclear genome. Following
the formation of polytene chromosomes and the elimination of spacer DNA and
transposable elements, between 20 % and 30 % of the remaining macronuclear
segments are unscrambled by inversion and permutation (reviewed in [19]). The
scrambling of the macronuclear sequence in the micronucleus can be very complex.
One well-described gene encodes DNA polymerase ’ in O. trifallax, which appears
in the micronuclear genome as �50 permuted macronuclear segments [36, 37].

Homologous recombination at pointers appears to be necessary for the rearrange-
ment of some macronuclear chromosomes. In early estimates, the pointers that exist
between scrambled segments were approximately 9 bp in average length, whereas
those that exist between nonscrambled segments were 4 bp in average length [38].
No consensus sequence for pointers has been identified, but some motifs may be
enriched [37]. Prescott et al. [39] proposed that the eliminated sequences would
form a loop, allowing the pointers to align, at which point a recombinase would
cut the sequences at either end and they would undergo recombination, excising the
eliminated DNA in the form of a closed circle. However, although pointers may
be necessary for unscrambling to occur, their short lengths suggest that they are
probably not capable of doing so alone.

A major feature of the scan RNA model is that the primary function of scan RNAs
is to tag portions of the germline genome for deletion. Scan RNAs, by themselves,
are probably too short to direct the permutation and inversion process involved
in genome unscrambling in these organisms. In addition, some eliminated regions
between macronuclear segments in Oxytricha and Stylonychia are smaller than the
scan RNAs. Prescott et al. [39] proposed an alternative model to the scan RNA
model, in which a template derived from the parent macronucleus facilitates correct
rearrangement in the developing macronucleus (Fig. 4).

Nowacki et al. [40] tested the hypothesis that these templates are composed of
RNAs with sequences derived from the parental macronuclear genome. RNA inter-
ference that targeted predicted templates resulted in aberrant rearrangements and
incomplete elimination of micronuclear spacer DNA. In a more direct experiment,
Nowacki et al. [40] injected developing O. trifallax with artificial nanochromosomes
(in the form of double-stranded DNA) or templates (in the form of single- or
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Fig. 4 The template model of macronuclear development in the Stichotrichia. We refer the reader
to Bracht et al. [3] for a more comprehensive representation of the model. (a) Segments of
micronuclear DNA must be retained to form the developing macronuclear genome. (b) RNA
transcripts of complete nanochromosomes are generated from the parental macronucleus and
delivered to the new, developing macronucleus. (c) Retained segments of micronuclear DNA are
guided by the RNA template and rejoin to form the new macronuclear genome

double- stranded RNA), both of which contained macronuclear segments that were
out of order. In both sets of experiments, the resulting macronuclear genome con-
tained nanochromosomes with the misordered segments. These artificially ordered
nanochromosomes appeared to be stable through multiple sexual generations after
their original introduction, indicating that the misordered nanochromosome itself
must have been producing templates capable of guiding rearrangements.

Several other recent observations can be added to the template model of genome
rearrangement. First, point substitutions artificially introduced into the template
sometimes appear in the new macronuclear genome if they are close to a boundary
between retained macronuclear segments. One explanation for this observation is
that the micronuclear DNA is imprecisely cut somewhere near the retained sequence
and that any missing macronuclear sequence is filled in from the template by an
RNA-dependent DNA polymerase [40]. Some of this cutting may be performed by
a class of transposons called “telomere-bearing elements”, or TBEs, which appear
to play an important role in macronuclear assembly [41].

It was recently discovered that an additional class of RNAs related to piRNAs
(small RNAs that interact with the protein Piwi) are required for identifying the
micronuclear sequences that are retained in the macronuclear genome [42, 43]. This
phenomenon represents an evolutionary “sign change” in the following sense. In
the Oligohymenophorea, small RNAs (scan RNAs) mark micronuclear DNA for
removal; but in Oxytricha, small RNAs (piRNAs) mark DNA for retention. In
both cases, small RNAs mark the minority fraction of the micronuclear genome.
Another recent study suggests that destruction of repetitive DNA and the parental
macronuclear genome in Oxytricha requires methylation and/or hydroxymethyla-
tion of cytosine nucleotides in the eliminated DNA [44]. Similar methylation was
previously observed in transposon-like sequences of developing macronuclear DNA
in S. lemnae [45].

Even with the recent discoveries of template RNA and piRNAs in Oxytricha, our
understanding of genome rearrangement is limited. It is not known whether there
are templates for every gene, or just for a subset that require rearrangement; it is
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not known whether macronuclear nanochromosomes are rearranged simultaneously
or at times depending on the role of their gene products with respect to the
developmental process; and, aside from TBEs, very little is known about the
proteins that orchestrate the developmental process. Stichotrichous ciliates exhibit
the most complex genome rearrangements yet described, and these outstanding
issues suggest that the mechanisms underlying the genome rearrangement process
are accordingly complex.

4 Genome Structure and Macronuclear Development
in Other Ciliates

Most of what we know about genome rearrangement in ciliates comes from the
study of four genera – Paramecium, Tetrahymena, Oxytricha, and Stylonychia. Yet,
these species represents only a small subset of ciliate diversity. Noteworthy research
on the ciliate genera Euplotes, Chilodonella, and Nyctotherus has yielded a partial
understanding of macronuclear genome development and diversity in these distantly
related groups. Surveying macronuclear development across the full diversity of
ciliates is an indispensible step toward resolving the evolutionary history of nuclear
dimorphism.

Euplotes is a ciliate of the class Spirotrichea, which also includes Oxytricha and
Stylonychia, but Euplotes does not belong to the subclass Stichotrichea, to which
Oxytricha and Stylonychia belong. The macronuclear segments in the Euplotes
micronuclear genome are thought to be in order, rather than scrambled as in
Oxytricha and Stylonichia; however, this has not been explored at a genome
level. Nonetheless, Euplotes is more closely related to Oxytricha and Stylonychia
than to the oligohymenophoreans Paramecium and Tetrahymena [46]. Like the
stichotrichs, Euplotes deletes up to 95 % of its micronuclear genome throughout
the course of macronuclear development. In Euplotes, as in other ciliates, genome
rearrangement follows the general pattern of elimination, chromosomal fragmen-
tation, and amplification. First, as in Oxytricha and Stylonychia, the beginning of
macronuclear development in Euplotes coincides with the formation of gigantic
polytene chromosomes and the subsequent degradation of these chromosomes into
gene-sized molecules. Within Euplotes, E. crassus is the best-studied species, and a
draft of its macronuclear genome sequence is available [47].

In macronuclear development in E. crassus, the first elements deleted are the
transposon-like Tec elements that are present within gene segments, of which
approximately 15,000 copies are dispersed throughout the micronuclear genome
[48]. Tec elements that interrupt the macronuclear sequence are deleted precisely.
The sequence 50-TTdGdAdA-30, which flanks each Tec transposon, appears to be
necessary for this deletion [49]. Approximately one-third of the Tec elements inter-
rupt genes [50]. On the other hand, Tec elements that do not interrupt macronuclear
DNA may or may not be specifically excised, indicating that Tec elements are
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eliminated at different times and, potentially, by different mechanisms based on
their location within the micronuclear genome [48].

The Chromatin structure in E. crassus likely plays a role in marking sequences
for elimination [51]. Three types of chromatin structure appear to be involved in
differentiating between excised elements and the macronuclear sequence. First,
the macronuclear sequence in the micronuclear genome has a typical nucleosome
structure. A second type of chromatin structure, which exhibits atypically long
sequence stretches between nucleosomes, was observed for micronuclear sequences
containing Tec elements and telomeres [52]. Finally, a third, highly compact
chromatin structure was observed for the circular forms of the excised Tec elements.

Chilodonella is a member of class Phyllopharyngea, and includes four known
species: C. cyprini, C. fluviatilis, C. hexasticha, and C. uncinata. C. uncinata
is the best-studied species of Chilodonella. Although Tetrahymena, Paramecium,
and Chilodonella were once classified as holotrichous ciliates, a subclass of the
phylum Ciliophora, Chilodonella processes its macronuclear genome much more
extensively than do Tetrahymena and Paramecium [53].

The micronuclear genome architecture of Chilodonella has been minimally
explored, with descriptions of a small number of genes, such as those encoding
’-tubulin and “-tubulin for C. uncinata [54, 55]. The extensively fragmented
macronuclear genome contains nanochromosomes that are typically less than 15 kbp
in length and are probably composed of only a single gene [53]. Katz and Kovner
[56] recently discovered that the micronuclear genome of Chilodonella contains
scrambled genes. For example, the first gene segment of actin, including the start
codon and the 50untranslated region (50-UTR), is inverted relative to adjacent
sequences [56].

Nyctotherus is a genus of the order Clevelandellida. N. ovalis is the best-studied
species within Nyctotherus. One difficulty that arises when attempting to study the
genome architecture of Nyctotherus is that cells must be obtained by hand from the
hindguts of cockroaches, where they reside [57]. In spite of this difficulty, studies
have indicated that the Nyctotherus macronuclear genome contains tiny gene-sized
chromosomes similar to those in other ciliates such as Oxytricha [58], and a
pilot macronuclear genome sequence is available [57]. The fact that Nyctotherus
macronuclear genomes are composed of gene-sized chromosomes suggests that
either this phenomenon appeared early in ciliate evolution or it arose in parallel
at multiple points during ciliate evolution [57].

Only a handful of ciliate species have been studied at the molecular level.
These species represent a small subset of the full diversity of the ciliate phylum
on our planet. The two best studied groups, the Oligohymenophorea and the
Stichotrichia, do not share key features of their macronuclear and micronuclear
genome architectures and have strikingly different developmental processes. The
further investigation of ciliates outside of these two well-studied groups can help
resolve the question of the ancestral state and subsequent evolution of nuclear
dimorphism.
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5 Conclusion: Why Nuclear Dimorphism?

The existence of nuclear dimorphism and the extensive genomic processing that
takes place during macronuclear development appear, at first glance, to defy an
evolutionary explanation. However, traits such as polytene chromosomes, gene-
sized macronuclear chromosomes, and even possibly scrambled genes could be
adaptive and contribute to selection efficiency [56, 59, 60]. Gene scrambling
appears linked to the presence of polytene chromosome formation and gene-sized
macronuclear chromosomes, and together these phenomena could enable enhanced
generation of diverse proteins.

These extensive processing events also destroy gene linkages, allowing selection
to operate more directly on individual genes. Zufall et al. [61] suggested that
extensive processing allows heterogeneous rates of protein evolution. Meanwhile,
purifying selection maintains conserved macronuclear sequences within rapidly
evolving micronucleus-limited sequences. For example, in C. uncinata, despite
the fact that the eliminated micronuclear sequences are highly divergent, the
macronuclear sequences for the genes encoding ’-tubulin and actin have been
maintained throughout the evolution of the species [56].

The molecular mechanisms underlying ciliate macronuclear development are
some of the most complex and intriguing examples of genetically and epigeneti-
cally programmed genome rearrangement that have been observed. Macronuclear
processing and genome rearrangement in ciliates is an extreme case of the type of
genome plasticity that exists in the development of some metazoa [62, 63], the estab-
lishment of some cancers [64, 65], and the evolution of genomes [66]. Examining
the unique phenomena associated with ciliate nuclear dimorphism will contribute to
our understanding of the genomic and epigenetic limits of cellular life [67].
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The Algebra of Gene Assembly in Ciliates

Robert Brijder and Hendrik Jan Hoogeboom

Abstract The formal theory of intramolecular gene assembly in ciliates is fitted
into the well-established theories of Euler circuits in 4-regular graphs, principal
pivot transformations, and delta-matroids.

1 Introduction

Gene assembly is an intricate process that occurs in the class of unicellular organ-
isms called ciliates. During this process a nucleus, called the micronucleus, is
transformed into a functionally and structurally different nucleus, called the
macronucleus. This is accomplished using complicated DNA splicing and
recombination operations. Gene assembly has been studied formally on the level of
individual genes (e.g., [16, 23]).

The theory of Euler circuits in 4-regular graphs was initiated in a seminal
paper by Kotzig [31]. Bouchet developed the theory further by relating it to
delta-matroids [6] and isotropic systems [5, 7]. In [6], Bouchet used a matrix
transformation that turns out to be “almost” a principal pivot transform (PPT) [42].
PPT, delta-matroids, and isotropic systems have many interesting properties which
have direct consequences for the theory of Euler circuits in 4-regular graphs.

Although, at first glance, the formal theory of gene assembly seems to be related
to the theory of Euler circuits in 4-regular graphs (this will become clear when we
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consider Fig. 5 in Sect. 3), there have been few attempts to fit the former theory into
the latter. In this chapter, we do exactly this. We show that the formal model of gene
assembly can be defined quite efficiently in terms of 4-regular graphs. In a survey-
style fashion, we discuss consequences of known results in the theory of 4-regular
graphs (including, for example, results related to PPT and delta-matroids) for the
theory of gene assembly.

This chapter is organized as follows. In Sect. 2 we briefly recall the biology of
gene assembly in ciliates and its string model [21, 22] (see also [23]). In Sect. 3, we
view gene assembly in terms of Euler circuit transformations (or, more generally,
circuit partition transformations) in 4-regular graphs, and in terms of the corre-
sponding local and edge complementation transformations on looped circle graphs.
These operations of local and edge complementation turn out to be special cases
of principal pivot transform defined on arbitrary square matrices (see Sect. 4). In
Sect. 5, we find that we can view local and edge complementation in terms of a very
elementary operation, called pivot, on set systems. Finally, in Sect. 6, we combine
pivot on set systems with another operation, called loop complementation, on set
systems. Together, the two operations turn out to form a group, which enables us to
replace intricate graph operations by a simple algebra on set systems.

2 Gene Assembly in Ciliates

Ciliates contain two different kinds of nuclei, which differ both functionally and
structurally. The relatively large macronucleus (MAC for short) has many copies
of short chromosomes, each containing only a single gene or just a few genes. The
micronucleus (MIC for short) contains a much smaller number of chromosomes,
each containing numerous genes (as is usual for chromosomes in general). The
germ-line MIC is used only for reproduction, while the somatic MAC is used
for general cell regulation. During sexual reproduction, a newly formed MIC is
transformed into a MAC. This process is called gene assembly and is accomplished
using extensive DNA splicing and recombination operations.

The genetic material in the MIC is scrambled: the genes are broken up into
segments, called macronuclear destined sequences (or MDSs for short), which are
reordered and possibly inverted with respect to the corresponding MAC genes.
Moreover, the MDSs in the MIC genes are separated by internal eliminated
sequences (IESs for short), which are not part of the genes. For example, the MIC
form of the Actin I gene of the ciliate Sterkiella nova is depicted in Fig. 1 and can be
described as the string I0 M3 I1 M4 I2 M6 I3 M5 I4 M7 I5 M9 I6 M 2 I7 M1 I8 M8 I9

[38], where the Mi ’s are MDSs and the Ii ’s are IESs. Note that the inversion of the
MDS M2 is indicated by a bar. The MDSs M1; : : : ; M9 are oriented and numbered
according to the order in which they occur in the corresponding “unscrambled”
MAC gene; see Fig. 2. Note that consecutive MDSs overlap (the gray segments in
Fig. 2). These segments are called pointers in the MIC gene, as they indicate the
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M3

M2

M1 M8M9M7M5M6M4

Fig. 1 The structure of the MIC gene encoding for the Actin I protein in Sterkiella nova

· · ·
Mk

Mk−1

M3

M2

M1

Fig. 2 The structure of a MAC gene consisting of � MDSs

3→ 4→
4→ 5→I

I

Ir

Ir

4→

4→3→ 5→
I

I

Ir

Ir

Fig. 3 Recombination on pointer 4 joins MDSs M3 and M4. The left and right pointers of M3 are
denoted by 3 and 4, respectively (and similarly for M4)

complex recombination schema that is to be performed to obtain the corresponding
MAC gene.

The generic form of recombination aligns two MDSs on their common pointer
and then performs a crossover operation at that pointer; see Fig. 3. In that way, the
two segments are joined into a larger MDS segment. Note that the order (or the
level of parallelism) in which recombination operations are applied has no influence
on the outcome. This general confluency property of recombination ensures that the
MAC gene is uniquely obtained from the MIC gene by performing recombination
on each pointer pair (regardless of the order in which recombination takes place)
[19]. Biologically, the pointer pair no longer exists after recombination, as it cannot
be used for another recombination operation. Mathematically, it turns out to be
worthwhile to leave the pointer pair for further consideration.

We consider the intramolecular model for gene assembly presented in [23, 39].
In this model, three specific types of recombination operations are distinguished;
see Fig. 4. (a) Two consecutive MDSs (i.e., a single IES separates the two MDSs)
having the same orientation can be recombined by loop excision. In that process, a
circular molecule is removed from the segment containing an IES. (b) Two MDSs in
opposite orientations can be recombined by hairpin recombination. This operation
inverts the segment that was originally between the two MDSs. This segment may
contain other MDSs. (c) Two interleaved pairs of consecutive MDSs, where the
MDSs in each pair are in the same orientation, can be recombined by double
loop recombination. During this operation, two segments between the MDSs are
swapped. A sequence ' of recombination operations (of these types) is called
successful for a given MIC gene g if (i) ' is applicable to (defined on) g and
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3→ 4→ 4→ 5→

3→ 4→
4→ 5→

4→

4→3→ 5→

3→ 4→ 5←− 4←−

3→ 4→
4→ 5→

3→ 5→4→ 4←−

3→ 4→
4→ 5→

7→ 8→
8→ 9→

Fig. 4 Three operations: loop excision (left-hand side), hairpin recombination (upper-right
corner), and double loop recombination (intermediate stage only, lower-right corner)

(ii) applying ' on g yields the MAC gene corresponding to g. Because of the above-
mentioned confluence property of recombination in general, we have the result that
' is successful for g iff ' is applicable to g and each pointer pair is used exactly
once in '.

The above recombination operations are formalized on strings as follows. We fix
a positive integer �. We denote pointers and their orientation by the alphabet … D
f1; 2; : : : ; �g [ fN1; N2; : : : ; N�g. The inversion of the string w D w1w2 : : : wn 2 …� is
the string Nw D Nwn : : : Nw2 Nw1, where we let NNp D p for each p 2 ….

A directed double-occurrence string, or doc-string for short (called a legal string
in [23]), is a string w over … that contains each pointer of w exactly twice, in either
orientation (barred or unbarred). The MIC gene is then encoded by concatenating
the pointers (including their orientations) in the same order as they appear in the
MIC gene. Hence, if there are � MDSs, then MDS Mi (for i 2 f2; : : : ; � � 1g)
corresponds to i .i C 1/, its inversion M i corresponds to .i C 1/ i , MDSs M1 and
M� correspond to 2 and �, respectively, and their inversions correspond to N2 and
N�, respectively (recall that M1 and M� have only one neighboring MDS). Note that
there is no pointer 1. Thus the MIC form of the Actin I gene of Sterkiella nova
mentioned above is written as 34 45 67 56 78 9 N3N2 2 89, with spaces added for
clarity.

The three recombination operations can be described using doc-strings in the
following straightforward manner [21, 22]. First we define the following three
mappings on doc-strings. Let u1; : : : ; u5 2 …�, and let p; q 2 f1; : : : ; �g. Then, unp
deletes occurrences of p and Np in u; if u D u1 p u2 Np u3, then u � p D u1 p Nu2 Np u3;
and if u D u1 p u2 q u3 p u4 q u5, then u � fp; qg D u1 p u4 q u3 p u2 q u5. In a
similar way, we define u � p in the case u D u1 Np u2 p u3 (i.e., the bars on the
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two occurrences of p are swapped), and u�fp; qg in the case where the positions of
p and q are interchanged and/or in the case where the two occurrences in the p-pair
or q-pair are barred.

Then (a) u n p models loop excision, provided u contains pp (or Np Np) as consec-
utive pointers; (b) u�p np models hairpin recombination; and (c) u� fp; qg np n q

models double loop recombination.
Given a doc-string, any sequence of these three operations that reduces this string

to the empty string is called a successful reduction. Note that if a doc-string w
represents a MIC gene g, then successful reductions of w correspond precisely to
successful reductions of g. It is easily verified that every doc-string has a successful
reduction [20]. This reduction is usually not unique.

3 Graph Models

It is not surprising that graph-theoretical concepts are important tools in modeling
and understanding the process of gene assembly in ciliates. Consider for instance
the diagram of the Actin I gene of Sterkiella nova as depicted by Prescott [37].
A simplified representation is given in Fig. 5 (see Example 1 below for details). The
structure of the genetic material is given as a “bicolored” graph, with pointers as
vertices, and MDS and IES segments as edges. We can read both the original MIC
sequence and the target MAC sequence from the graph. If we follow the IES and
MDS edges in an alternating fashion, then we obtain the MIC, and if we follow the
edges according their colors, then we obtain the MAC (with flanking IESs).

Example 1. In the MDS–IES description of the MIC form of Actin I of Sterkiella
nova (see Sect. 2), we can explicitly add the pointers flanking the MDSs to obtain the
sequence � D I0 p3 M3 p4 I1 p4 M4 p5 I2 p6 M6 p7 I3 p5 M5 p6 I4 p7 M7 p8 I5 p9

M9 I6 p3 M 2 p2 I7 M1 p2 I8 p8 M8 p9 I9.
One may view � as an Eulerian path in a multigraph G: the pointers pi are the

vertices of G, and the strings between the vertices are the (labeled) edges of G. In
this way, � induces Fig. 5. Apart from the MDS edges Mi (between pi and piC1)
and the IES edges Ii , there are also “mixed” edges, such as the loop I7 M1 on p2,
caused by the fact that M1 has no initial pointer. Note that we may have parallel
edges; for example, there are two edges from p5 to p6.

The MAC form is obtained by recombining MDSs at each pointer. For example,
at p5 in � we have both M4 p5 I2 and I3 p5 M5, whereas in the MAC form M4

and M5 are joined at vertex (pointer) p5, and we have both M4 p5 M5 and I3 p5 I2.
Recall from Fig. 3 that when MDSs are recombined at a pointer, IESs are at the same
time joined together at that pointer.

As MDS M2 is inverted in the MIC form, it has to be read “backwards” in
the MAC form. Thus, in the MAC form we follow edge p3 M 2 p2 in the opposite
direction. Also, when recombining M1 and M2 at p2, IESs I7 and NI8 are at the same
time joined together at p2.
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Fig. 5 Actin I gene of Sterkiella nova. Schematic diagram, based on [37]

In this way, the MAC form of the gene consists of three molecules. The string
(where the pointers are omitted) I 9I 5I 8I 7M1M2 : : : M8M9I6I 0 represents the
strand consisting of the recombined MDSs and flanking IESs. The MAC form also
has two circular IES molecules (that are excised), I1 and I2 I4 I3 (again the pointers
are omitted). ut

In the manner described above, every (unbarred) doc-string defines a 4-regular
multigraph (every vertex has degree 4; we allow loops and parallel edges) together
with an Euler cycle (which visits every edge of the graph exactly once). We start
by representing every pointer pair by a vertex. We then follow the string, adding
an edge as we step from pointer to pointer. We treat the string as if it is circular,
and connect the last pointer to the first. Obviously, the multigraph is 4-regular, and
the string traces an Euler cycle through the multigraph. The result is very similar
to the representation of the gene in Fig. 5, if we merge the initial and final “edges”
I0 and I9. Conversely, every 4-regular multigraph with an Euler cycle induces a
(unbarred) doc-string w (in fact, a set of “equivalent” doc-strings that are obtained
from w by conjugation).

We now briefly describe the theory of operations on cycles in 4-regular multi-
graphs as initiated by Kotzig [31] and continued by Bouchet. Given a 4-regular
multigraph, we obtain a set of cycles by “joining” pairwise the edges at each vertex.
These pairings can be unambiguously described using a fixed Euler circuit as an
anchor; see Fig. 6a–c. The pairings may follow the Euler circuit; otherwise, they
may reconnect in a way that may or may not agree with the orientation of the Euler
circuit. The pairings in Fig. 6a–c are called smoothings in [3] and transitions in [6].

Example 2. (1) Consider the (unbarred) doc-string w D 126134563245. Then w
defines a 4-regular graph G along with an Euler circuit Ew in G; see Fig. 7a. For
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a b c

p q

Fig. 6 Three ways to connect pairs of edges in a 4-regular graph relative to an Eulerian cycle;
(a) following the cycle; (b) orientation consistent; (c) orientation inconsistent. Two interleaved
vertices in the cycle (rightmost diagram)

1

23

4

5 6

a

1

23

4

5 6

b

1

23

4

5 6

c

Fig. 7 Recombining edges of an Euler cycle (see Example 2)

convenience, the edges in G are directed according to w. (2) If we take the pairing
at vertex 2 that is different from Ew in an orientation-consistent way, and if we take
the same pairings as in Ew at the other vertices, then we obtain two disjoint cycles,
wa D 1245 and wb D 26134563; see Fig. 7b. (3) If we take the pairing at vertex 2

that is different from Ew in an orientation-inconsistent way, and if we take the same
pairings as in Ew at the other vertices, then we obtain the Euler circuit described by
w0 D 123654316245; see Fig. 7c. ut

Note how an orientation-inconsistent transition induces a “reversal” of part of
the original Euler circuit, which agrees with hairpin recombination. Note also that
an orientation-consistent transition breaks the Euler circuit into two disconnected
parts. Now consider two vertices p and q that are interleaved in the Euler
circuit, occurring in the order � � �p � � �q � � �p � � �q � � � : see Fig. 6 (right). Then a
synchronized orientation-consistent transition at both p and q again yields an
Euler circuit. This Euler circuit is obtained from the original one by swapping two
segments in exactly the same way as in double loop recombination.

Then, to correctly model the gene assembly process, we have to keep track of
which pointers (vertices) we can apply successive transitions to while maintaining
an Euler circuit. Both the orientation and the interleavings may change during the
process. The tool that we use is a circle graph, which represents the intersections
of the chords in a circle: each chord is represented by a vertex, and two vertices are
adjacent iff the corresponding chords intersect. A (barred) doc-string w defines a
circle graph C.w/ in a natural way if we write w in a circular way and connect the
pointer pairs. Additionally, we encode the relative orientation of the pointers of each
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V1 V2

V3

u
v

V1 V2

V3

u
v

Fig. 8 A pivot on an edge fu; vg in a graph. The adjacency between two vertices x and y is toggled
iff x 2 Vi and y 2 Vj with i ¤ j . Note that u and v are adjacent to all vertices in V3 – these
edges are omitted in the diagram. The operation does not affect edges adjacent to vertices outside
the sets V1; V2; V3

pointer pair by adding a loop to a vertex when the two pointers of the pointer pair
have different orientations (i.e., one is with a bar, and the other is without a bar).
In [23], ˙ signs are used instead of loops, and the corresponding graph, equivalent
to a (looped) circle graph, is called a signed graph. The advantage of using loops
instead of ˙ signs will become clear in Sect. 4. The (looped) circle graph C.w/ of
the doc-string w D 1 2 6 N1 3 4 N5 6 3 N2 4 5 is given in Fig. 9 (middle, bottom row).

From now on, by a graph we mean an undirected graph G where loops are
allowed, but parallel edges are not allowed. More precisely, G D .V; E/, where V

is a finite set of vertices and E � ffx; yg j x; y 2 V g is a set of edges (we have
fxg 2 E iff x is a looped vertex). If the graph G is clear from the context, then we
shall simply denote its vertex set by V . For X � V , we denote the subgraph of G

induced by X by GŒX�.
We now define the basic operations of local and edge complementation on graphs

[7, 31]. If G is a graph with a looped vertex u, then the local complement of G

on u, denoted by G � u, is obtained from G by complementing the edges in the
neighborhood NG.u/ D fv 2 V j fu; vg 2 E; u ¤ vg of u in G. Thus, for v; w 2
NG.u/, e D fv; wg is an edge of G �u iff e is not an edge of G �u (we allow v D w,
i.e., e is a loop). All other edges remain the same in G and G � u.

For an edge fu; vg of G where u and v are distinct unlooped vertices, we define
the edge complement of G on fu; vg, denoted by G � fu; vg, as follows. The closed
neighborhood of vertex w, denoted by NGŒw�, equals NG.w/ [ fwg. The neighbors
of u and v can be partitioned into the three sets NGŒu� nNGŒv�, NGŒv� nNGŒu�, and
NGŒu�\NGŒv�. The graph G�fu; vg is obtained from G by complementing all pairs
fx; yg such that x and y are each neighbors of u or v, but not in the same partition;
see Fig. 8. This will not change any adjacencies to vertices not adjacent to u and v,
nor will it change any loops.
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Fig. 9 Local complement on looped vertex 2 (left-hand side) and edge complement on unlooped
edge f3; 4g (right-hand side). The top row indicates how the pointer segments overlap in the
underlying doc-strings; the bottom row contains the circle graphs

Theorem 1 ([31]). Let w be a doc-string and let p; q 2 f1; : : : ; �g. If w � p is
defined (i.e., w contains both p and Np), then C.w/ � p D C.w � p/. If w � fp; qg is
defined, then C.w/ � fp; qg D C.w � fp; qg/.

Of course, Theorem 1 may be reformulated using Euler cycles in 4-regular
multigraphs instead of doc-strings.

Example 3. Consider the doc-string w D 1 2 6 N13 4 N5 6 3 N2 4 5. This defines the
circle graph C.w/ in Fig. 9 (middle). If we complement the neighborhood
NC.w/.2/ D f1; 4; 5g of vertex 2 in C.w/, we obtain the graph C.w/ � f2g D
C.1 2 N3 N6 5 N4 N3 1 N6 N2 4 5/; see Fig. 9 (left). The edge complement on the unlooped
edge f3; 4g in C.w/ yields C.w/ � f3; 4g D 1 2 6 N1 3 N2 4 N5 6 3 4 5, depicted in Fig. 9
(right). ut

Theorem 1 suggests a generalization of the three recombination operations on
doc-strings that model loop excision, hairpin recombination, and double loop
recombination (defined in Sect. 2). We have that (a) removing an isolated unlooped
vertex corresponds to loop excision, (b) local complementation followed by the
deletion of the vertex involved corresponds to hairpin recombination, and (c) edge
complementation followed by the deletion of the vertices involved corresponds to
double loop recombination.

A reduction of a graph G is a sequence of these three operations, and a successful
reduction of G is a reduction of G to the empty graph. Every graph has a successful
reduction: we can apply local complement reductions until there are no more loops,
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then apply edge complement reductions until the graph contains only isolated
unlooped vertices, and finally remove these isolated unlooped vertices.

If a doc-string w can be successfully reduced by a sequence of operations, then
the associated circle graph C.w/ can be rewritten by the corresponding sequence of
graph operations. A similar result holds for the converse, except that we may have to
reorder the loop excision operations [21,22]. For the string w D 2332, for example,
there is a unique sequence of two loop excisions (“inside out”), whereas its circle
graph C.w/ consists of two isolated unlooped vertices which can be removed in any
order.

Since not every graph is a circle graph C.w/ for some doc-string w, the operations
of local complementation�p and edge complementation�fp; qg are generalizations
of the corresponding operations � p and � fp; qg, respectively, for doc-strings.

We remark that a polynomial called the Martin polynomial [32] (its multivariate
variant is called the transition polynomial [30]) has been defined with respect to
Euler circuits C in 4-regular multigraphs. This polynomial records the number of
circuits cT .C / obtained when one performs on C a set T of transitions of the form
described as in Fig. 6. In a similar way to that described in this section, the Martin
polynomial corresponds to a graph polynomial called the interlace polynomial
[4] (or Tutte–Martin polynomial [8]), in which local and edge complementation
play a central role. Interestingly, the well-known Tutte polynomial on the diagonal
coincides with the interlace polynomial when consideration is restricted to bipartite
graphs [2]. A number of variations of the Martin and interlace polynomials have
been studied in the literature, as we may restrict or loosen the allowed types of
transitions T . Among them is the Penrose polynomial [1, 35] and the bracket
polynomial for graphs [41]. We refer the reader to [24, 25] for a detailed survey
of these polynomials.

4 Matrices

With the definitions of local complementation � u and edge complementation
�fu; vg in place, we are now interested in sequences of these operations (and, in
particular, successful reductions). Since the definition of edge complementation is
already complicated in itself, it seems even more difficult to reason about the effect
of sequences such as �fu; vg�fv; wg. Fortunately, it turns out that sequences of local
and edge complementations correspond to (a special case of) the so-called principal
pivot transform operation on square matrices. This leads to a different perspective
in which sequences of local and edge complementations are much easier to study.
Let us first recall the principal pivot transform operation.

Let V be a finite set, and let A be a V 
V matrix, i.e., a matrix where the columns
and rows are indexed by V . For a set X � V we use AŒX� to denote the principal
submatrix induced by X (i.e., the rows and columns are indexed by X ). Moreover,
we define A n X D AŒV n X�. Let A be a V 
 V matrix (over an arbitrary field),
and let X � V be such that AŒX� is nonsingular, i.e., det AŒX� ¤ 0. The principal
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pivot transform (PPT or pivot for short) of A on X , denoted by A �X , is defined as
follows (see [43]). If

A D
�X V nX

X P Q

V n X R S

�
;

then

A �X D
� X V n X

X P �1 �P �1Q

V n X RP �1 S � RP �1Q

�
:

Hence, A � X is defined iff AŒX� is nonsingular. The matrix .A � X/ n X D S �
RP�1Q is called the Schur complement of X in A.

Pivot is sometimes considered a partial inverse, since A and A �X are related as
follows, where the vectors x1 and x2 correspond to the elements of X . In fact, the
following relation defines A �X given A and X [42]:

A

�
x1

y1

�
D
�

x2

y2

�
iff A �X

�
x2

y1

�
D
�

x1

y2

�
: (1)

Note that if det A 6D 0, then A � V D A�1. By Eq. (1), we see that a pivot operation
is an involution (i.e., an operation of order 2) and, more generally, if .A �X/ � Y is
defined, then A� .X�Y / is defined (applying the symmetric difference of X and Y )
and the resulting matrices are equal. Note that in order to apply the pivot � X to
matrix A, it is required that AŒX� is nonsingular.

We may apply pivot to graphs through its adjacency matrix representation. The
adjacency matrix A.G/ of a graph G D .V; E/ is a V 
 V matrix .au;v/ over F2

(the binary field) with au;v D 1 iff fu; vg 2 E . Obviously, for X � V , A.GŒX�/ D
A.G/ŒX�. In this chapter, we make no distinction between G and A.G/ and so we
write, for example, det G to denote det A.G/, the determinant of A.G/ computed
over F2. In this way, graphs correspond precisely to symmetric V 
 V matrices
over F2. By convention, the determinant of the empty matrix (or graph) is 1.

For a graph G and nonempty X � V , X is called elementary in G if GŒX�

is nonsingular and, for all nonempty Y ¨ X , GŒY � is singular. Hence, if X is
elementary in G, then G �X is defined, but G � Y is not defined for any nonempty
proper subset of X . It is easy to see that if X is elementary in G, either (1) X D
fug 2 E.G/ (i.e., X is a loop) or (2) X D fu; vg 2 E.G/ and fug; fvg 62 E.G/ (i.e.,
X is an edge on unlooped vertices). Geelen [26] observed that a pivot in case (1)
is precisely a local complementation and a pivot in case (2) is precisely an edge
complementation.

Indeed, if vertex u has a loop in G, then the matrix GŒfug� is equal to the 1 
 1

identity matrix:
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� u

u 1
	
:

Hence, � fug is indeed applicable to G, and

G � fug D
� u V n fug

u 1 �T
u

V n fug �u GŒV � u� � �u�T
u

�
;

where �u is the column vector belonging to u, without the element at the position
.u; u/. One may easily verify that G � fug is indeed the graph obtained from G by
applying local complementation on u.

Turning to edge complementation, if fu; vg is an edge in G and u and v are
unlooped vertices, then the matrix GŒfu; vg� is equal to

� u v

u 0 1

v 1 0

�
:

Hence, � fu; vg is indeed applicable to G, and

G � fu; vg D
0
@

u v V n fu; vg
u 0 1 �T

v

v 1 0 �T
u

V n fu; vg �v �u GŒV � u � v� � .�v�T
u C �u�T

v /

1
A;

where �u is the column vector of G belonging to u without the elements at positions
.u; u/ and .v; u/ (and similarly for �v). One may again verify that G � fu; vg is
indeed the graph obtained from G by applying edge complementation on fu; vg.

Having thus characterized local and edge complementation in terms of pivot, we
are ready to study sequences of these operations. For example, let u, v, and w be
mutually distinct unlooped vertices of G. If .G � fu; vg/ � fv; wg is defined (i.e., if
fu; vg is an edge of G and fv; wg is an edge of G � fu; vg), then we immediately
find that .G � fu; vg/ � fv; wg D G � .fu; vg�fv; wg/ D G � fu; wg (and that fu; wg
is an edge of G, since G � fu; wg is defined and u and w are unlooped vertices). In
general, we have the following confluence result.

Let ' D � X1 � X2 � � � � Xn be a sequence of pivot operations (we assume
left-associativity of the pivot operation). The support of ', denoted by sup.'/, is
defined as �i Xi , i.e., the set of vertices that occur an odd number of times in '. If
' is applicable to a graph G, then, by the above, G' D G � .X1�X2� : : : �Xn/ D
G � sup.'/. This observation may be seen as a highly generalized version of the
confluence property of DNA recombination described in Sect. 2. If we specialize
this observation to the case where the � Xi ’s are elementary (i.e., local or edge
complementations), then we obtain the following.
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G∗{2;3;4}
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5

G∗{3;4}
2

3 4

5

G

Fig. 10 Circle graph G for 4534N523N2 (left and right). G � f2; 3; 4g is computed twice, as G �
f2g � f3g � f4g and as G � f3; 4g � f2g (reading from right to left)

Theorem 2 ([17]). If ' and ' 0 are applicable sequences of local and edge comple-
mentations for a graph G, then sup.'/ D sup.' 0/ implies G' D G' 0.

Special cases of this result are mentioned in the literature. The triangle equality
stated above, � fu; vg � fv; wg D �fu; wg for a graph with an induced loopless
triangle fu; v; wg, can be found as [4, Lemma 10], [27, Proposition 1.3.5], and
[33, Proposition 2.5]. A “classical” proof typically involves keeping track of
numerous neighboring edges. Also, commutativity of edge complementation has
been obtained in the context of gene assembly by Harju et al. [29]: if two disjoint
edge complementations are applicable in either order, then the two results are
identical. In short, � fu; vg � fw; xg D � fw; xg � fu; vg.
Example 4. Consider the MDS sequence M4 M3

NM5 M2
NM1. This defines the

pointer sequence 4534N523N2, which in turn has the circle graph G depicted in
Fig. 10. The figure illustrates that G � f2g � f3g � f4g D G � f3; 4g � f2g. ut

Note also that G is nonsingular iff there is a sequence ' of local and edge
complementations with sup.'/ D V such that G' is defined. Moreover, if this is
the case, then we may choose ' in such a way that each vertex of V appears exactly
once. In the context of gene assembly, we thus find that there is a sequence of hairpin
and double loop recombinations that transforms a MIC gene into the corresponding
MAC gene iff the circle graph G corresponding to the MIC gene is nonsingular.
Moreover, if this is the case, then the circle graph corresponding to the MAC gene
is G � V D G�1, the inverse matrix of the adjacency matrix of G! Thus, from this
point of view, we have the curious fact that the construction of the MAC gene entails
inverting a matrix. The intermediate products obtained during the transformation of
a MIC gene into its MAC gene, using only hairpin and double loop recombinations,
correspond in this way to partially inverted matrices.

For each possible set S of operation types (loop excision, hairpin recombination,
and double loop recombination), there is a characterization of the existence of
a sequence of recombination operations that transforms a MIC gene into the
corresponding MAC gene, where each recombination operation is of a type from S ;
see [23, Sect. 13.3] when S contains loop excision, and [15, 17] for the remaining
cases where only hairpin recombination and/or double loop recombination are
allowed.
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We remark that an extension of the interlace polynomial from graphs to arbitrary
matrices (over some field), using PPT instead of local and edge complementation
on graphs, has been studied in [13, 28].

5 Set Systems

In this section, we provide yet another perspective on local and edge complementa-
tion. It turns out that we may define local and edge complementation (and pivot for
graphs in general) in terms of a very elementary operation on set systems, essentially
involving only the symmetric difference.

First we recall a fundamental result on PPT due to Tucker [43] (see also [18,
Theorem 4.1.1] and [34]). This result allows one to formulate the applicability of
the pivot � Y to the resulting matrix A �X in terms of the applicability of the pivot
�.X�Y / to the original matrix A.

Proposition 1 ([43]). Let A be a V 
 V matrix, and let X � V be such that AŒX�

is nonsingular. Then, for all Y � V , det.A � X/ŒY � D det AŒX�Y �= det AŒX�.

We remark here that Proposition 1 for the case Y D V n X is called the Schur
determinant formula, det..A �X/ nX/ D det A= det AŒX�, and was shown as early
as 1917 by Issai Schur [40].

A set system (over V ) is an ordered pair M D .V; D/ with V a finite set and D

a family of subsets of V . We write simply Y 2M to denote Y 2 D. Let M be a set
system over V . We define, for X � V , the pivot (often called twist in the literature;
see, e.g., [26]) M �X D .V; D �X/, where D �X D fY�X j Y 2 Dg.

For a V 
V matrix A, we let MA D .V; DA/ be the set system with DA D fX �
V j det AŒX� ¤ 0g. As observed in [6], we have, by Proposition 1, Z 2 MA�X iff
det..A � X/ŒZ�/ ¤ 0 iff det.AŒX�Z�/ ¤ 0 iff X�Z 2 MA iff Z 2 MA � X .
Hence MA�X DMA �X .

Using the adjacency matrix representation of graphs, we may carry the notion
of MA for matrices over to graphs. Let G be a graph. Given only the set system
MG D .V; DG/, one can (re)construct the graph G: fug is a loop in G iff fug 2 DG ,
and fu; vg is an edge in G iff .fu; vg 2 DG/˚ ..fug 2 DG/ ^ .fvg 2 DG// (where
˚ denotes the exclusive or); see [9, Property 3.1]. Hence the function M.�/ which
assigns to each graph G its set system MG is injective. In this way, the family of
graphs (with a set V of vertices) can be considered as a subset of the family of set
systems (over the set V ).

As MG�X D MG � X , the pivot operation for graphs coincides with the pivot
operation for set systems. Therefore, pivot on set systems forms an alternative
definition of pivot on graphs. Note that while for a set system M over V , M �X is
defined for all X � V , for a graph G, G�X is defined precisely when det GŒX� D 1,
or, equivalently, when X 2 DG , which in turn is equivalent to ¿ 2 DG � X . Thus,
for example, whereas on a graph � fug � fvg and � fu; vg cannot both be defined,
they are both defined on set systems, where they have the same outcome.
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Example 5. Consider the circle graph G in Example 4 (see Fig. 10). The corre-
sponding set system equals MG D .V; f¿; 2; 5; 34; 23; 25; 45; 35; 234; 245; 345g/,
where V D f2; 3; 4; 5g. Note that we have abbreviated sets in this example, so, for
example, 245 denotes f2; 4; 5g. Then MG � f3g D .V; f3; 23; 35; 4; 2; 235; 345; 5;

24; 2;345; 45g/. This does not represent a graph (as ¿ is not a set of MG �f3g). ut
It turns out that MG for graphs G has a special structure, that of a delta-matroid

[6]. A consequence of the fact that MG is a delta-matroid is that the maximal sets of
MG with respect to inclusion, denoted by max.MG/, are all of cardinality equal to
the rank r.A.G// of the matrix A.G/. Thus, if G is the circle graph corresponding to
a MIC gene, then the nullity n.A.G// D jV j�r.A.G// of A.G/ (i.e., the dimension
of the null space of A.G/) is equal to the number of loop recombinations in every
successful transformation of that gene to its MAC form. Equivalently, the number
of loops created during the transformation of a MIC gene to its MAC gene is equal
to the nullity of the adjacency matrix of the circle graph corresponding to that MIC
gene. In fact, a set Sl � V is the support of the loop excision part of a successful
reduction of G iff V n Sl 2 max.MG/.

Example 6. Consider the circle graph G in Example 4 and the corresponding set
system MG (see Example 5). As G has nullity 1, the maximal sets of MG are of
cardinality 3. Considering the maximal sets f2; 3; 4g, f2; 4; 5g, f3; 4; 5g of MG , we
see that loop recombination can be performed on every pointer except 4. ut

6 Loop Complementation

The concept of local complementation defined in this chapter is defined only on
looped vertices, and thus cannot be applied to simple graphs. A related concept,
which is also called local complementation, is defined for each simple graph G and
vertex u of G: local complementation of G on u complements the neighborhood of u
(without introducing loops). By abuse of notation, we denote local complementation
for simple graphs G by G � fug also. The operation of edge complementation can
be defined as for graphs with loops. In this context of simple graphs, we have the
“curious” identity �fu; vg D �fug�fvg�fug D �fvg�fug�fvg [7, Corollary 8.2],
which is not valid for graphs with loops. In fact, in that case, the left and right sides
of the equation do not have the same support.

The operation loop of complementation is useful for dealing with loops. For a
graph G and a set X of vertices of G, the loop complementation of G on X , denoted
by G C X , is the graph obtained from G by toggling the loops on the vertices in
X . This operation can be faithfully represented on set systems. For a set system
M D .V; D/ and an element u 2 V , the loop complementation of M on u, denoted
by M C u, is the set system .V; D0/, where D0 D D�fX [ fug j X 2 D; u 62 Xg.
As the operation is commutative, we can extend it to M C X for a set X � V by
performing the C u’s, u 2 X , in any order. We have MGCX DMGCX for any set
X � V .
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+{u}

∗{u} ∗{v}

Fig. 11 Verification of applicability of �fu; vg C fug � fug � fvg C fug � fug C fug to any graph
F having an edge fu; vg, where both u and v are nonloop vertices

Pivot � X and loop complementation C X for set systems together form an
interesting algebra. On a single common element u, the operations � u and C u
are involutions (i.e., of order 2) generating a group isomorphic to the group S3 of
permutations on three elements [12]. In particular, we have Cu�uCu D �uCu�u,
which is the third involution (in addition to pivot and loop complementation). On
different elements u 6D v, the operations commute; thus, � uCv D Cv�u,CuCv D
Cv C u, and �u � v D �v � u.

This algebra makes it possible to understand the relation between edge comple-
mentation and local complementation for simple graphs mentioned above. First we
note that the sequence of operations ' D �fu; vgCfug � fug � fvgCfug � fugCfug
is applicable to any graph with an edge fu; vg, where u and v are unlooped vertices,
by checking the existence of loops on u and v in successive stages; see Fig. 11. Then
we observe that ' is the identity on set systems using the group structure (using the
fact that, for set systems, we have �fu; vg D �fug � fvg). This makes ' the identity
on any graph where it is applicable (without having to consider the involved graph
operations). We can project ' from graphs to simple graphs by skipping the loop
complementation operations, and obtain the equality �fu; vg D �fug � fvg � fug.

Inspired by and motivated by the context of gene assembly, Brijder and
Hoogeboom [10] implicitly studied the interplay of loop complementation and
pivot (but only for the case of doc-strings). This interplay led to an extension of the
interlace polynomial (including the related bracket polynomial for graphs) and an
extension of the Penrose polynomial from graphs and matroids to delta-matroids
[11, 14].

7 Discussion

We have fitted the theory of gene assembly in ciliates into the theory of 4-regular
graphs and have carried over results from the latter theory to the former. Interest-
ingly, operations on Euler circuits in 4-regular graphs (see Fig. 6) also occur (often
implicitly) in the context of other topics in computational molecular biology. For
instance, the monograph [36] by Pevzner has three chapters where the operations
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of Fig. 6 are used: Chap. 2, on restriction mapping, refers to them under the
names of “order exchange” and “order reflexion”; Chap. 5, on sequencing by
hybridization, features rearrangements of Eulerian cycles; and Chap. 10, on genome
rearrangements, studies reversal in the so-called breakpoint graph. Hence we expect
that these topics (and others) may benefit from a similar approach as is done in this
chapter; to carry over the general theory of 4-regular graphs to these topics.
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Invariants of Graphs Modeling Nucleotide
Rearrangements

Egor Dolzhenko and Karin Valencia

Abstract Nucleotide rearrangements occur in many biological systems. These
genome reorganisations are especially widespread in ciliates, making these proto-
zoans an attractive model system for experimental, computational, and theoretical
studies. Rearrangements of ciliate chromosomes are modeled by the so-called
assembly graphs. Edges of these graphs represent double-stranded DNA molecules,
while vertices correspond to DNA recombination sites. This work is an expository
article in which we discuss topological and combinatorial invariants of assembly
graphs. The topological invariant, called the genus range, gives information about
possible spatial arrangement of the corresponding DNA molecule. The combina-
torial invariant, called the assembly polynomial, is closely related to the possible
products of the rearrangement modeled by the assembly graph.

1 Introduction

Complex genome rearrangements are common in many biological contexts. These
include trans-splicing of RNA transcripts [4,13], somatic recombination (e.g., V(D)J
recombination in jawed vertebrates and VLR recombination in jawless fish [1]),
and the development of the somatic genome from its precursor germline genome
in binucleate ciliates. Furthermore, complex genome rearrangements have been
recently associated with 2–3 % of human cancers [16].
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Developmental genome rearrangements in ciliates are particularly striking due
to their complexity and scale. Computational techniques for analysis of rearrange-
ments in ciliates [8] perform well in other biological contexts, indicating that ciliates
are also suitable model organisms for computational studies.

Theoretical models are, for the most part, focused on elucidating the biological
mechanisms behind genome-wide DNA rearrangements, both in ciliates and other
contexts. The chief aim of the work presented herein is to contribute to this effort
by studying topological and polynomial invariants of assembly graphs, since these
graphs have been specifically designed to model nucleotide rearrangement in ciliates
and other biological systems [3]. This article is a short summary of results presented
in [5] and [6].

1.1 Genome-Wide Rearrangements in Ciliates and Assembly
Graphs

A more comprehensive exposition of the biology of genome-wide rearrangements in
ciliates can be found in the chapter by Goldman et al. of this book. Here we present
a transition from the biology to mathematical ideas and questions.

Ciliates constitute a large group of unicellular protozoans that possess two
functionally distinct types of nuclei: the germline micronucleus (MIC) – a transcrip-
tionally silent nucleus whose purpose is to pass on genetic information to sexual
progeny – and the somatic macronucleus (MAC) – a transcriptionally active nucleus
made up of short, gene-sized chromosomes.

After conjugation, old macronuclei disintegrate, while some of the new micronu-
clei transform into the new macronuclei in a process that involves thousands of
deletions of the non-coding DNA and rearrangement of the remaining pieces,
to create new somatic chromosomes. This process of developing MAC from
MIC is called differentiation. Such DNA transactions are achieved by performing
homologous DNA recombination at specific places in the MIC DNA sequences
[15]. In this article, a mathematical model of the intricate process of differentiation
is presented and used to further investigate features of this system.

Portions of MIC chromosomes involved in the rearrangement consist of three
types of subsequences: macronuclear destined sequences (MDSs), internal elimi-
nated sequences (IESs) and pointer sequences. MDSs are subsequences of MAC
chromosomes that are sometimes present in a permuted or inverted order in the MIC,
relative to their order in MAC chromosomes. IESs are segments of noncoding DNA
positioned between MDS. Pointer sequences are short segments of DNA flanking
MDSs that appear in pairs. If the MDSs are numbered by integers according to
their order in MAC chromosomes, the upstream pointer of MDS i � 1 would be the
same as the downstream pointer of MDS i . Formation of transcriptionally competent
genes in the macronucleus requires that the non-coding IESs and one partner of
each pair of pointer sequences are excised, and that the MDSs are spliced together
in order. This is achieved through a series of homologous recombination events that
happen at the pairs of pointer sequences (Fig. 1).
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Fig. 1 A schematic representation of assembly of a MAC chromosome (bottom) of Oxytricha
trifallax containing an Actin I gene from pieces (MDSs) of its MIC counterpart (top) (The diagram
is adapted from [3])

1.2 Mathematical Model of Differentiation

In [3] the authors developed a graph-theoretic model of differentiation. In summary,
in this model, the pointer sequences in a MIC chromosome inherit numbering
from the MDSs as explained above. Reading the chromosome from left to right,
and taking note of the numbered pointer sequences only, yields a sequence of
numbers with each integer appearing either 0 or 2 times, called a double-occurrence
word. Given a double-occurrence word, a graph is constructed as follows: place
a crossing on the plane for each integer in the double-occurrence word, and label
them accordingly. Pick a point (base point) in the plane and, following a chosen
direction, connect the crossings in the order of appearance in the double-occurrence
word making sure that consecutive edges are not neighbours (see section 1.3).
When all of the crossings are exhausted, connect the path back to the base point.
There may be instances when the edges self-cross, or cross other edges, but their
crossings are not new vertices, and to avoid confusion an under crossing is drawn
instead (this is intuitively illustrated in Fig. 2). Specifically, the graph constructed is
called a “simple assembly graph” (see below for mathematical definitions). In this
model, edges of the graph represent double stranded DNA in the MIC, and vertices
correspond to the alignment of the DNA recombination sites. Smoothing (removal)
of vertices from these graphs corresponds to homologous recombination.

In this chapter, this simple assembly graph model of differentiation is adopted,
and results from [5] and [6] are summarized.

1.3 Mathematical Preliminaries

A vertex v of a graph G is said to be rigid if it has a cyclic order of the adjacent
edges assigned to it. We draw rigid vertices in such a way that taking a regular disc
neighborhood of the vertex and traveling around its boundary, the edges appear in
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Fig. 2 Annotated MIC sequence (top) that gives rise to a double-occurrence word (middle) and an
assembly graph (bottom) (Image modified from [3])
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e1

e2
e4

e5

e3

e0

Fig. 3 Example of an assembly graph

the specified cyclic order. If v is a rigid vertex of G, e and e0 are said to be neighbors
(with respect to v) if one of these edges is the immediate successor of the other
when traveling around the vertex in some direction. For example, in Fig. 3, e1; e4 are
neighbors with respect to vertex 1. An assembly graph A is a connected 4-regular
graph whose vertices are rigid. Assembly graphs may have loops (which are counted
twice when calculating the degree of a vertex). The size of an assembly graph A is
the number of vertices of the graph, and is denoted jAj. Two assembly graphs are
isomorphic if they are isomorphic as graphs and the graph isomorphism preserves
the cyclic order of edges associated with every vertex. A path in an assembly graph
is called a transverse path (or a transversal) if consecutive edges of the path are never
neighbors with respect to their common incident vertex. Transversals are denoted by
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˛. An assembly graph that has an Eulerian (visiting all edges) transversal is called
a simple assembly graph. Note that the mathematical model of differentiation of a
single molecule developed in [3] and outlined above, yields graphs that are simple
assembly graphs. Only these assembly graphs are considered in this chapter and
henceforth are called assembly graphs.

Let A be an assembly graph and ˛ D v0; e0; : : : ; vn; en; v0 be its transversal
path. Let w D v0 � � �vn be the subsequence of ˛ consisting of the vertices
only; each vertex appears twice in w. Call w a double-occurrence word (DOW)
corresponding to the assembly graphA. Conversely, an assembly graph is associated
to a DOW w as described in Sect. 1.1. It was proved in [3] that isomorphic classes
of assembly graphs are in one-to-one correspondence with equivalence classes of
DOW. Therefore an assembly graph with DOW w is denoted A.w/.

An embedding of a graph in a surface is called cellular if each component of the
complement of the graph in the surface is an open disc. For a graph G, the minimum
orientable genus of G, denoted gmin.G/, is the smallest non-negative integer g such
that G admits an embedding in a closed (compact, empty boundary) orientable
surface F of genus g. The maximum orientable genus of G, denoted gmax.G/, is
the largest non-negative integer g such that G admits a cellular embedding in a
closed orientable surface F of genus g. The genus range gr.G/ of a graph G is the
set of values of genera over all surfaces into which G can be embedded cellularly.

2 Genus Ranges of Assembly Graphs

In this section, the genus ranges of assembly graphs is discussed. Intuitively, an
embedding of a graph into a surface is a drawing of the graph on the surface in such
a way that its edges may intersect only at their endpoints. The genus is a topological
measure of the spatial complexity of graphs and hence provides information about
the spatial organization of the DNA at the moment of rearrangement. Only the
orientable genus is considered. The work presented here is a summary of [5].

Specifically, the following two problems are of interest:

Problem 1.

(a) Characterise the sets of integers that appear as genus ranges of assembly graphs
with n 4-valent vertices for each positive integer n.

(b) Characterise the assembly graphs with a given set of genus ranges.

The two questions in Problem 1 were tackled in [5] as follows. First, computer
calculations were used to find genus ranges of assembly graphs with up to seven
vertices (Fig. 4). This information was then used to make various observations about
genus ranges and the following were proved in the general case.

• A genus range of an assembly graph is always a set of consecutive integers
(Lemma 2.10 in [5]).

• Every set fm; mC 1; : : : ; m0g for 0 � m < m0 � n appears as a genus range of
some assembly graph with 2n vertices (Theorem 6.1 in [5]).
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n = 2 {0};{1}
n = 3 {0};{0;1};{1};{1;2}
n = 4 {0};{0;1};{1};{0;1;2};{1;2}
n = 5 {0};{0;1};{1};{0;1;2};{1;2};{2};{1;2;3};{2;3}
n = 6 {0};{0;1};{1};{0;1;2};{1;2};{2};{0;1;2;3};{1;2;3};{2;3};{3}
n = 7 {0};{0;1};{1};{0;1;2};{1;2};{2};{0;1;2;3};{1;2;3};{2;3};{3};

{1;2;3;4};{2;3;4};{3;4}

Fig. 4 Genus ranges of assembly graphs with up to seven vertices. The bolded genus ranges
correspond to the tangled cord (Sect. 2.1)

c
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Fig. 5 The graphs that are isomorphic as non-rigid vertex graphs but not as rigid vertex graphs
and have different genus ranges

• Every set fm; mC 1; : : : ; m0g for 0 � m < m0 � n without the set f0; 1; : : : ; ng
appears as a genus range of some assembly graph with 2n� 1 vertices.

• No assembly graph with 2n�1 vertices has genus range f0; : : : ; ng (Lemma 3.9)
nor genus range fng (Lemma 3.10 in [5]).

• Families of graphs that achieve certain sets of genus ranges are constructed,
including a family of graphs with 2n vertices that have genus range f0; 1; : : : ; ng
(Proposition 4.5 in [5]).

• The genus range of the special subfamily of assembly graphs, called tangled
cords, is characterized (Theorem 5.5 in [5] and Theorem 1 below).

Remark 1. There exist equivalent results about the genus ranges of classic (non-
rigid vertex) graphs [9,14]. However, a priori these do not necessarily extend to rigid
vertex graphs: two graphs that are isomorphic as non-rigid vertex graphs may not
necessarily be equivalent as rigid vertex graphs. Figure 5 shows such an example
where the genus range of these graphs (without considering the rigidity of the
vertices) is f0; 1; 2g, however, the genus range of the graph with rigid vertices to
the left is f1g.

2.1 Genus of the Tangled Cord

In this section the genus range of a special family of assembly graphs is found in the
general case. Preliminary data suggests that these graphs may appear as subgraphs
of graphs modeling ciliate rearrangements. Furthermore, odd-sized tangled cords
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Fig. 6 Tangled cords (a) Tn and (b) TnC1

have been shown to maximize (see Fig. 4) the genus range over all assembly graphs
with the same number of vertices (the same is conjectured for even-sized graphs)
[5]. This implies that tangled cords represent the most complex DNA-recombination
intermediates that appear during ciliate nuclei differentiation.

Angeleska et al. [2, 3] studied paths in assembly graphs that correspond to fully
assembled MAC chromosomes. These so-called Hamiltonian polygonal paths visit
every vertex exactly once and every pair of edges in the path that are adjacent to a
vertex v are v-neighbors. It turns out that the tangled cord has the largest number
of Hamiltonian polygonal paths among all odd-sized assembly graphs with a fixed
number of vertices [6]. Hence tangled cords can “facilitate” the largest number of
distinct MAC chromosomes.

Definition 1. The tangle cord, denoted Tn, is an assembly graph corresponding to
the unsigned DOW

1213243 � � � .n � 1/.n � 2/n.n � 1/n:

For example, T1 D 11, T2 D 1212, T3 D 121323, etc. A tangle cord with
n vertices (and 2n edges) is illustrated in Fig. 6. Specifically, for Tn, the adjacent
edges to each vertex are listed below, in the (rigid) order that they are encountered,
clockwise around the vertex, up to cyclic permutation:

v1 W e1; e3; e2n; e2

v2 W e1; e5; e2; e4

vi W e2.i�1/; e2i ; e2.i�2/C1; e2iC1 for i ¤ 1; 2; n � 1; n

vn�1 W e2.n�2/; e2n�2; e2.n�3/C1; e2n�1

vn W e2n; e2n�2; e2n�1; e2n�3
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Fig. 7 Possible connectivity types of the boundary components of a ribbon surface, locally at a
vertex

The main result of this section is the following.

Theorem 1. Let Tn be the tangled cord with n vertices. Then

gr.Tn/ D
( ˚

n�2
2

; n
2

�
if n is even;˚

n�1
2

; nC1
2

�
if n is odd:

Two approaches for proving this result are summarized below. These differ in that
while one works directly with the assembly graphs and rigid vertices, the other uses
standard results for non-rigid vertex graphs in the final steps of finding the genus.
The proofs overlap in two key places: the use of a regular surface neighborhood
of the graph and formulas of the genus as a function of the number of boundary
components of this surface, derived from the Euler characteristic.

In [5] it was shown that the genus range of assembly graphs consists of
consecutive integers.

We construct a regular surface neighborhood F of Tn, called a ribbon surface
obtained by thickening the edges of the graph as ribbons (see [11, 12]). This is
a closed, connected, orientable surface with circle boundary components. Due to
rigidity, locally, at any vertex the boundary components of F have one of the two
possible connectivity types illustrated in Fig. 7. Therefore there are 2n (possibly not
distinct) ribbon surfaces for a Tn.

The formula g.F/ D .1=2/.n � b.F/ C 2/ (a consequence of the Euler
characteristic of a surface, where g.F/, b.F/ and n denote the genus of F, the
number of boundary components of F and the number of vertices of Tn, respectively
[11, 19]) implies that to find the genus range of Tn it is enough to find the numbers
of boundary components of all the ribbon surfaces F of Tn. In the approach in [5],
it is shown by induction, and by checking all possible connectivity types, that if n is
odd (resp. even) the number of boundary components of any F of Tn is either 1 or 3

(resp. 2 or 4) and each of these situations occur.
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Fig. 8 Squared perturbation at a rigid 4-valent vertex yields four new non-rigid 3-valent vertices
�4k�3; �4k�2; �4k�1; �4k and eight new edges f1; f2; f3; f4; "1; "2; "3; "4

In the other approach [18], from a tangled cord, one can construct a classic
(non-rigid vertex) regular 3-valent graph by replacing each rigid vertex of Tn by a
squared perturbation as indicated in Fig. 8. Each squared perturbation at each rigid
vertex is explicitly chosen to be unknotted and unlinked; in particular they bound
a planar disc. This preserves the rigidity structure of the vertices of Tn. Denote the
squared perturbation of a tangled cord by Tsqn

.
As above, one constructs a ribbon surface F of Tsqn

. Again, there are two types
of connectivity of the boundary components locally at each squared perturbation.1

These are illustrated in Fig. 9a, and for simplicity they are denoted
J

and
N

.
Standard results of the genus of classic graphs are used to find the genus Tsqn

.
As above, the genus range of a graph consists of consecutive numbers. In addition,
the genus formula from the Euler characteristic gives the maximal and minimal
number of boundary components over all ribbon surfaces of Tsqn

, respectively. The
result follows from a lemma equivalent to the observations when rigid vertices were
considered. That is, if n is odd (resp. even) the number of boundary components of
any F of Tsqn

is either n C 1 or n C 3 (resp. n C 2 or n C 4) and each of these
situations occur.

3 Assembly Polynomials

This section discusses a polynomial invariant of assembly graphs called assembly
polynomial (AP). These polynomials were first proposed by Burns at al. [6] as a
way to study connectedness properties of the assembly graphs, and are a natural
extension of Jones and Tutte polynomials [10, 17]. The AP’s definition relies on
two operations called p- and n-smoothings, modeling the excision of DNA during

1Locally at each non-rigid vertex there are two possible connectivities of the boundary components

of a ribbon surface and . However, since each squared perturbation
represents a rigid vertex of Tn, only the cases where all four vertices of a squared perturbation
have the same connectivity of the boundary components are considered.
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Fig. 9 (a) Ribbon surfaces at a squared perturbation (compare with Fig. 7). (b) Example of the
global connectivity of the boundary components at a vertex with local connectivities

N
and

J
.

The number of boundary components change if the local connectivity is swapped between
N

and
J

the rearrangement. The AP counts the number of smoothing operations it takes to
separate a given graph into a given number of connected components. We start with
a few definitions.

Let A D A.w/ be an assembly graph with n vertices and let ˛ D v0e1v1 � � � env2n

(with vn D v0) be A’s transversal. Consider 2n vertices on a unit circle labeled by
v0; : : : ; v2n�1 (in this order) and 2n arcs between these vertices that we identify with
A’s edges, so that the arc between vi and viC1 is identified with eiC1. Note that each
vertex of A appears exactly twice on this list. If each pair of vertices with the same
label is connected by a chord, then the result is the chord diagram C D C.A/ of A
(see Fig. 10a, b). To ensure that C.A/ is well-defined, we identify chord diagrams
under rotations and reflections.

Each assembly graph defines a circle graph via its chord diagram. Given a chord
diagram C D C.A/ of an assembly graph A, consider a graph whose vertices are
the distinct labels of C. Two vertices are connected by an edge if the corresponding
chords intersect. The resulting graph is called the circle graph of A and is denoted
by G.A/ (see Fig. 10b, c).



Invariants of Graphs Modeling Nucleotide Rearrangements 319

1

2

2
3

3
1

2

3

1 2 3e1

e1

e2

e2e3

e3

e5

e5e4 e4
e6

e6 1

a b c

Fig. 10 (a) Assembly graph A D A.123231/, (b) chord diagram C D C.A/, and (c) circle graph
G.C/
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Fig. 11 p- and n-smoothings of a rigid vertex v

We consider two operations on assembly graphs with rigid vertices called p- and
n-smoothings. Let v be a vertex of an assembly graph A with transversal ˛, and
let e1, e3, e2, and e4 be the edges incident to v in order of their appearance in ˛.
Consider a graph obtained from A by replacing a vertex v with vertices v0 and v00
so that (1) v0 is the new endpoint of edges e1 and e2 and (2) the vertex v00 is the new
endpoint of e3 and e4. We say that the resulting graph is obtained by p-smoothing of
a vertex v and denote it by p.A; ˛; v/. The result of the n-smoothing of a vertex v

is the graph n.A; ˛; v/ which is defined similarly except that v0 is the new endpoint
of e2 and e3, and v is the new endpoint of e1 and e4 (see Fig. 11). Observe that in
both cases, the new graph has one rigid vertex fewer than the original.

The graphs obtained by p- and n-smoothings of vertices in assembly graphs
are called intermediates to emphasize that they represent partially rearranged DNA
molecules. We are particularly interested in intermediates obtained by smoothing all
of the rigid vertices in an assembly graph because they represent possible products
of the rearrangement. For an assembly graph with k vertices and an a priori chosen
transversal, these intermediates are specified by k-tuples from fp; ngk once the
order of vertices has been fixed. We call these tuples smoothings of a graph. That
is .p; n; p/-smoothing of a graph with rigid vertices v1, v2, and v3 defines an
intermediate obtained by p-smoothing of vertices v1 and v3, and n-smoothing of
vertex v2.

For a smoothing s of an assembly graph A with transversal ˛, define �.A; ˛; s/

to be the number of symbols p in s, and �.A; ˛; s/ to be the number of connected
components in an intermediate corresponding to s-smoothing of A. When the graph
and a transversal are clear from the context, we simply write �.s/ and �.s/.

Definition 2. An assembly polynomial of an assembly graph A with vertices
v1; : : : ; vk , corresponding to the transversal ˛ is

P.A; ˛/ D
X

s2fp;ngk

p�.s/t�.s/�1
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Table 1 Assembly words
with three distinct symbols
and their assembly
polynomials

Assembly word Assembly polynomial

112233 1 C 3pt C 3p2t2 C p3t3

121233 t C 2p C p2 C pt2 C 2tp2 C tp3

122133 1 C 3pt C 3p2t2 C p3t3

122313 t C 2p C p2 C pt2 C 2tp2 C tp3

122331 1 C 3pt C 3p2t2 C p3t3

112323 t C 2p C p2 C pt2 C 2tp2 C tp3

121323 1 C 2p C pt C 2p2 C tp2 C tp3

123123 3pt C t 2 C 3p2 C tp3

123213 1 C 2p C pt C 2p2 C tp2 C tp3

123231 t C 2p C p2 C pt2 C 2tp2 C tp3

112332 1 C 3pt C 3p2t2 C p3t3

121332 t C 2p C p2 C pt2 C 2tp2 C tp3

123132 1 C 2p C pt C 2p2 C tp2 C tp3

123312 t C 2p C p2 C pt2 C 2tp2 C tp3

123321 1 C 3pt C 3p2t2 C p3t3

where the sum is taken over all possible smoothings of A. For an assembly word w,
we define P.w/ D P.A.w//.

Proposition 1. If ˛ and ˛0 are two transversals of an assembly graph A.w/ then

P.w; ˛/ D P.w; ˛0/:

The above proposition shows that the assembly polynomial is the same for any
choice of the transversal. Thus we can refer to the assembly polynomial of a word
w by P.w/.

Table 1 contains a list of assembly words with three distinct symbols and their
corresponding assembly polynomials.

An assembly word is strongly irreducible if it does not contain a proper subword
that is a double-occurrence word. For example, 123123 is irreducible, but 1221 is
not (because it contains a subword 22).

Proposition 2 (Lemma 6.5 in [6]). If w is an assembly word that is not strongly
irreducible, then P.w/ D P.u/P.v/ for some assembly words u and v.

We show that assembly graphs that define isomorphic circle graphs also define
the same assembly polynomials. We also show that the converse is false, i.e.,
there are assembly graphs with identical assembly polynomials and non-isomorphic
circle graphs. The proof of this result requires a few additional definitions.

A share of a chord diagram consists of two disjoint closed arcs that contain both
endpoints of each chord they intersect [7]. We assume (without loss of generality)
that no endpoint of an arc in a share is also an endpoint of a chord. Two shares
are called complementary if they are disjoint and contain the endpoints of all of the
chords of the diagram. Because the segments of the chord diagram’s unit circle are
identified with the edges of the assembly graph, we can denote the endpoints of
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h g
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hg
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ef

g h

a bc c2

c1

Fig. 12 A chord diagram C.A/ (left) with two complementary shares c1 and c2. The middle graph
(b) is obtained by rotating share c1 and the graph to the right is obtained by reflecting the same
share along a vertical axis

the arcs in a share by the corresponding edges of the assembly graph. We call these
edges the border edges of the share; e.g., fe; f; g; hg is the set of border edges of
share c1 (and also of the complement share c2) for the example depicted in Fig. 12a.

A mutation of a chord diagram is obtained by separating the chord diagram into
two complementary shares and recombining the shares into a new chord diagram
through a rotation or a reflection. In Fig. 12b, c two mutations of the chord diagram
in (a) are depicted, in (b) by rotation of c1 and in (c) by reflection of c1 about the
vertical axis. One can describe these operations as pairwise swapping of the border
edges fe; f; g; hg. Hence the rotation (Fig. 12b) can be described by transposing
edges e and g (as well as h and f ), while the reflection can be described as a
transposition of e and f (as well as g and h). In this way, we can specify a rotation
or reflection of a share by a permutation of the border edges (here we assume that
symbols for all border edges are distinct even if some of them represent the same
edge). We refer to these permutations as insertion maps. There are four insertion
maps for each pair of complementary shares corresponding to the three ways of
pairwise swapping the edges and the identity.

Two chord diagrams are said to be mutant if they are related by a sequence of
mutations. S. Chumutov and S. Lando showed that chord diagrams define the same
circle graphs if and only if they are mutant [7]. We use the same terminology for
assembly graphs, i.e., two assembly graphs are mutant if their chord diagrams are.
In the proof of the following proposition we show that mutant assembly graphs,
and hence the graphs that define isomorphic circle graphs, have the same assembly
polynomials. The result and the proof are similar to those for Jones polynomials and
mutant knots [10].

Proposition 3. Let A and A0 be two assembly graphs. If C.A/ is isomorphic to
C.A0/ then P.A/ D P.A0/.

Proof. Two assembly graphs define the same circle graph if their chord diagrams
are related by a sequence of mutations [7]. Thus the claim is proven by showing that
a single mutation preserves the assembly polynomial.
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Let A be an assembly graph and consider the corresponding chord diagram C D
C.A/. Consider a pair of complementary shares c1 and c2 of C depicted in Fig. 12.
Note that c1 and c2 have the same border edges and we denote the set of these edges
by B D fe; f; g; hg.

There are exactly four ways to form a new chord diagram by rotating and
reflecting the share c1 corresponding to four assembly graphs Ai , 1 � i � 4, one of
which is the original assembly graph A D A1. For each i D 2; 3; 4, Ai is obtained
from A1 by one of the insertion maps: .ef /.gh/ (reflection vertically), .eh/.fg/

(reflection horizontally) and .eg/.f h/ (rotation) all of which belong to Sym.B/.
We can show that for every 1 � i; j � 4, a given smoothing separates both Ai

and Aj into the same number of connected components (and hence the equality of
P.Ai / and P.Aj / follows).

Consider a smoothing s. For every 1 � i � 4, let Ki be the collection of
connected components resulting from s-smoothing of Ai . Define K1

i (resp. K2
i ) to

be the portion of Ki obtained by restricting the components in Ki to the edges of
c1 (resp. c2) including the portions of the border edges. After smoothing, the border
edges will be shared between K1

i and K2
i . This means that after smoothing s, each

border edge belongs to a component of Ki whose one portion is in K1
i and the other

in K2
i . Hence, the border edges either all belong to the same component in Ki or

there are two components in Ki each containing a pair of edges.
Let a; b; c; d 2 B. After a smoothing s, each pair of the edges a; b; c; d can be

either connected within a component of Ki or not. For each i D 1; 2; 3; 4, consider
�i 2 Sym.B/ such that �i D .ab/.cd/ if the pair of edges a; b belongs to one
component and the pair c; d belongs to another component in Ki . We take �i D
id 2 Sym.B/ the identity map to represent the case when all four border edges
remain in the same component in Ki . Since the components that do not contain the
border edges are the same in every Ki , this implies that jKi j D jKj j if and only if
�i D �j .

Let K D f.ab/.cd/ j .ab/.cd/ 2 Sym.B/g be a Klein 4-subgroup of Sym.B/.
Let �i;j 2 Sym.B/ be the insertion map transforming Ai to Aj as described above.
Observe that �i;j 2 K and because �i;j is its own inverse, �i;j D �j;i . For every
1 � i � 4, both �i and �j belong to K and �i;j �i �i;j D �j . However, because K

is abelian, and �i;j D ��1
i;j , �i D �i;j �i�i;j D �j implying jKi j D jKj j as needed.

The converse of the above proposition is false. The assembly polynomial of both
12345156246737 and 12345261564737 is

P D1C 4p C 9p2 C 16p3 C 17p4 C 12p5 C 4p6 C 3pt C 10p2t C 14p3t

C 15p4t C 8p5t C 3p6t C p7t C 2p2t2 C 5p3t2 C 3p4t2 C p5t2:

However the circle graph of 12345156246737 has two vertices of degree 1 and
the circle graph of 12345261564737 has only one such vertex.
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Introduction to DNA Topology

Isabel K. Darcy, Stephen D. Levene, and Robert G. Scharein

Abstract In this expository chapter we give an elementary introduction to DNA
and to proteins that can knot and link circular DNA, with a special focus on
recombination. We also describe the Ernst and Sumners tangle model of the action
of proteins on circular DNA.

1 Introduction to DNA

In 1953, Rosalind Franklin and her student R. G. Gosling published their crystal
structure of DNA upon which our current models of DNA are based. As discussed
in her 1953 paper [36], “DNA is a helical structure” with “two co-axial molecules.”
The “co-axial molecules,” shown as blue ribbons in Fig. 1a, refer to a chain of
phosphate groups connected via sugar groups. The sugar groups are shown in red in
Fig. 2. Each sugar group is connected to a base: A, T, G, or C. These bases spell out
our genetic information, i.e., they form our DNA sequence. Using Franklin’s data
without her knowledge, Watson and Crick came to similar conclusions regarding
the structure of DNA and published their model in the same issue of Nature [90].
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Base pairs

Adenine Thymine

Guanine

Sugar phosphate
backbone

U.S. National Library of Medicine

Cytosine

a b

Fig. 1 (a) Structure of DNA. Per Franklin and Gosling, the “period is 34 Å” and “one repeating
unit contains ten nucleotides on each of two : : : co-axial molecules.” They conclude “The
phosphate groups lie on the outside of the structural unit, on a helix of diameter about 20 Å”
and “the sugar and base groups must accordingly be turned inwards towards the helical axis.” [36].
The four bases are called adenine (A), thymine (T), cytosine(C), and guanine (G). Figure courtesy
of the National Library of Medicine (NLM). (b) Computer model of a DNA molecule
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Fig. 2 Chemical structure of DNA. The sugars are shown in red. Note that the pairing of backbone
strands is antiparallel (Figure from [50])

In most cases, the base A pairs with the base T while the base G pairs with the
base C [90]. Thus, knowing the sequence of one strand of double-stranded DNA
(dsDNA) means knowing the sequence of both strands. However, the two strands
making up dsDNA are read in opposite directions. Rosalind Franklin noted that the
two sugar–phosphate backbones are antiparallel [35]. A sugar residue contains five
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a b c d

Fig. 3 (a) Linear DNA with sticky ends. (b) Nicked circular DNA. (c) Closed circular
DNA. (d) Atomic-force microscopy image of supercoiled DNA (Unpublished data courtesy of
Dr. Alexandre Vetcher)

carbons that are numbered from 10 to 50, as shown in Fig. 2 for the sugar in the upper
left corner, which is connected to the base A. The 50 carbon of this sugar is circled
in green. Its 30 carbon is connected via a phosphate bond to the 50 carbon of the next
sugar (which is connected to the base G). Hence the chemistry of this connection
can be used to assign an orientation to a DNA strand. Sequences are read from 50 to
30. Thus the strand on the left is read from top to bottom, and thus its sequence is
AGCTC. The direction of the strand on the right goes from bottom to top. Hence its
sequence is read GAGCT. Thus both AGCTC and GAGCT refer to exactly the same
double-stranded DNA sequence.

In the laboratory, molecular biologists often work with linear DNA that has
sticky ends. The end of the DNA is sticky if the portion at the end is single-stranded,
as shown in Fig. 3a. This means that there are unpaired bases. If linear DNA
contains two sticky ends that have complementary sequences, then if the DNA is
sufficiently long, the linear DNA will circularize to form nicked circular DNA as
shown in Fig. 3b. The DNA is called nicked because the phosphate backbone is not
closed. A protein called ligase is needed to create a phosphodiester bond to close
the nicks to form closed circular DNA (Fig. 3c). This closed DNA can be modeled
by an annulus. Since the phosphate backbones are antiparallel, DNA cannot form
a Möbius band (under normal circumstances). DNA has a preferred twist of about
10.5 base pairs per turn [36, 68, 85]. Closed circular DNA is called relaxed if it is
as close as possible to its preferred twist. In nature, DNA is usually underwound,
and hence it supercoils negatively (Fig. 3d). Since the DNA is underwound, the two
strands are easier to pull apart for replication or transcription. For an elementary
introduction to DNA, see [12]. For more on DNA topology, see [4].

2 DNA Knots and Topoisomerase

There are many beautiful knot tables in the literature and online. For an excellent
introduction to knot theory, see [1]. Knots were first tabulated by Tait in the late
1800s [81]. The knot/link table shown in Fig. 4 was created by KnotPlot [72] based
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Fig. 4 Knot/link table containing prime knots up to seven crossings and two- and three-component
prime links up to six crossing. Twist knots include 31 (the trefoil knot), 41 (the Fig. 8 knot), 52, 61,
and 72. Torus knots include 31, 51, and 71. The unknot, 01, can also be considered to be a twist
knot and a torus knot

on data provided by Dale Rolfsen. The knot nk refers to the kth knot in the list of
knots containing n crossings in their minimal crossing diagram. The superscript in
the link table refers to the number of components. Mathematicians sometimes use
the term “link” to include knots (and in rare cases, a link may be referred to as a
knot). Molecular biologists normally use the term catenane when referring to links
with at least two components. Most tables, including the one in Fig. 4, only contain
prime knots. These are knots that cannot be subdivided into two or more simpler
nontrivial knots. Knots that are not prime are called composite. Composite knots
correspond to the operation of tying two separate knots sequentially in a piece of
rope and closing the ends, as shown in Fig. 5a, where the individual prime knots are
colored differently.

A knot is called chiral if it cannot be smoothly deformed into its own mirror
image. The mirror image of a knot K is denoted K�. The simplest example of a
chiral knot is 31; it is shown together with its mirror image, 3�

1 , in Fig. 5b. Most
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Fig. 5 (a) The composite
knot 31#41. (b) Chiral pair of
trefoil knots, 31 (in gold) and
3�

1 (in blue)

knot tables like the one in Fig. 4 list only one enantiomer of a chiral pair. Knots that
are not chiral are achiral. The simplest three achiral knots are 01, 41, and 63.

One of the most beautiful knot tables is the one created by topoisomerase I.
This protein acting on nicked circular DNA, was able to create all different types
of knots up to six crossings, 10 of the 16 possible seven-crossing knots, and a few
eight- and nine- crossing knots [30]. There are two main types of topoisomerase.
Type I topoisomerase will break and reconnect one strand of DNA, while type
II topoisomerases will break and reconnect both strands of dsDNA. Thus type I
topoisomerases can knot circular single-stranded DNA (ssDNA) as well as nicked
DNA. Type II topoisomerases can knot dsDNA [89]. The normal function of
topoisomerases is to keep DNA unknotted, unlinked, and properly supercoiled. For
more on topoisomerase, see [87, 88].

3 Recombinases

The genome of any organism must possess two key characteristics. It must be stable
enough to pass accurate information through inheritance, yet remain sufficiently
dynamic to respond to selective environmental pressures. These requirements create
a tension between genome integrity and flexibility. In all organisms, recombination
systems are the principal mechanism that regulates genome stability. Chromoso-
mal breakages and mutations stemming from problems in DNA replication or
environmental stress can be repaired by recombination. Most organisms have
multiple recombination pathways by which damage can be repaired, underscoring
the importance of this process.

We focus here on several examples of site-specific recombination mechanisms.
These processes involve interactions among specialized DNA-sequence elements
that also contain specific binding sites for recombination proteins. The requirements
for sequence specificity and specialized proteins distinguish site-specific recombi-
nation from general or homologous recombination, which can occur with arbitrary
DNA sequences that share very high levels of sequence identity (see [58, 92] for
reviews). Site-specific-recombination target sequences form the point of genetic
exchange and usually are present in few copies in the genome. Often these sites
are present in pairs; in the case of the bacteriophage-lambda integration site, only
one copy is present in the E. coli genome. This extraordinary degree of specificity
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leads to precisely defined genetic rearrangements. In the examples considered here,
the rearrangements that occur are essentially uniquely defined.

Another important attribute of a site-specific recombination locus is the polarity
of the recombination site. These loci are frequently nonpalindromic and therefore
have an intrinsic polarity (Fig. 6). Recombination normally occurs only when a pair
of recombination sites has been juxtaposed in a particular spatial alignment, thereby
imparting both positional and orientational specificity to these systems [37,73]. This
specificity has important biological consequences; moreover, the site-orientation
specificity leads to the formation of specific DNA topologies in the recombination
products. If two recombination sites are oriented in opposite polarities on a circular
DNA molecule as shown in Fig. 6a, then the sites are said to be inversely repeated.
Recombination on inversely repeated sites is called an inversion because it results
in the inversion of one of the DNA segments between the two recombination sites
with respect to the other DNA segment. In Fig. 6b, the two recombination loci are
oriented in the same direction and are thus called directly repeated. Recombination
on directly repeated sites results in the deletion (also called excision) of a DNA
segment, changing the number of components of the substrate. The reverse reaction
is called integration.

When supercoiled DNA substrates are used in reconstituted in-vitro (i.e., in
the test tube) recombination reactions, it is possible to examine the topological
changes that take place during recombination. For intramolecular recombination
reactions, supercoiled plasmid substrates bearing inversely oriented sites generate
knotted recombination products, whereas supercoiled substrates containing directly
repeated sites generate topologically linked circles called catenanes (Fig. 6). The
knots and catenanes that are formed during recombination are never random;
instead, recombination generates a highly restricted subset of all the possible knotted
or catenated structures that can be formed. For example, all of the knots with up
to 13 crossings are known – there are over 12,000 topologically distinct knots.
Integrative recombination on a circular substrate with inverted sites yields only
seven of the possible knots containing up to 13 crossings, each containing an odd
number of crossings. Among all possible recombination mechanisms that can lead
to the formation of a knotted DNA product, the formation of this particular set
of observed products can be ascribed uniquely to a particular mechanism. The
topological specificity of site-specific recombination systems has been exploited to
great effect in unraveling the mechanisms of many site-specific recombinases (see,
e.g., [10, 21, 23, 34, 41, 79, 80, 82–84, 95]).

The complementarity of DNA strands normally plays a very limited role in site-
specific recombination, more as a feature of specific recombinase–DNA interactions
than a necessity for homologous pairing or strand exchange. Unlike other modes of
recombination, site-specific recombination is conservative in that no DNA is gained
or lost during the recombination reaction. This aspect of site-specific recombination
applies both at the level of genetic information (recombination products are merely
permutations of the original parental DNA) and at the level of actual DNA
nucleotides (no DNA synthesis or nucleolytic degradation is involved).
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Fig. 6 (a) Recombination on inversely repeated sites on a circular DNA molecule can result in
knotted DNA. (b) Recombination on directly repeated sites changes the number of components of
the DNA substrate

All site-specific recombination systems that have been investigated to date
fall into two superfamilies: the lambda-integrase and resolvase/invertase families.
Particular examples from the lambda-integrase family are discussed below. The
products of the lambda-integrase recombination reaction depend on the orientation
and disposition of recombination sites; this variability permits systems such as
lambda-integrative recombination to carry out excisive as well as integrative recom-
bination in a highly regulated fashion. The two superfamilies are also distinct in
terms of the intermediate structure of the DNA segments undergoing recombination;
whereas lambda-integrase-type mechanisms proceed through a four-stranded DNA
intermediate called a Holliday junction, the resolvase/invertase mechanisms do
not. Site-specific recombination systems participate in a wide range of biological
processes in both prokaryotes and eukaryotes: viral integration, antigenic varia-
tion, gene duplication and copy-number control, and the integration of antibiotic
resistance cassettes. For a very nice review of site-specific recombination, including
resolvase/invertase recombination, see [42].

3.1 Holliday Junctions

In 1964, Robin Holliday proposed that recombination could be mediated by a hypo-
thetical DNA structure consisting of four polynucleotide strands associated by a
single-stranded crossover (Fig. 7) [48]. This structure, later to be named the Holliday
junction, has played a central conceptual role in models of recombination. A large
body of evidence has accumulated in the intervening decades that substantiates the
role of these junctions in both general recombination mechanisms [46, 93, 94] and
those belonging to the lambda-integrase superfamily of site-specific recombinases
[3, 21].

Although the existence of this intermediate structure is no longer questioned, the
details of Holliday junction geometry remain controversial. Since the early 1990s, a
wide range of biochemical and biophysical tools have been used to characterize
the conformation of these recombination intermediates, both as complexes with
recombination proteins [6, 15, 39, 43, 49, 84] and as free DNA molecules [13, 14,
16, 18–20]. Many studies of protein-free junctions were focused on the structure
and dynamics of immobile four-way DNA junctions, in which four synthetic DNA
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Fig. 7 Molecular model of a
Holliday-like four-way DNA
junction. The DNA sequences
of the four strands in this
structure lack the symmetry
of a true Holliday junction,
thereby inhibiting migration
of the junction’s branch point

strands designed with specific patterns of homology have been annealed together
(Fig. 7) [51]. The limited homology among the DNA strands fixes the branch point
of the junction; thus, such structures lack the ability to undergo branch migration,
an essential isomerization step in general recombination. The extent to which the
behavior of such immobile analogs actually mimics that of mobile junctions is an
interesting issue that has remained largely unaddressed. However, it is clear that
even immobile four-way junctions are conformationally quite flexible, a feature
that is likely to be, if anything, more pronounced in fully mobile junctions [77].
Several groups have succeeded in obtaining high-resolution X-ray structures of
four-way junctions [31, 61, 62]. These high-resolution structures exemplify many
features that are consistent with those of immobile junctions based on studies in
solution.

3.2 �-Int: Integration and Excision of Phage Genomes

The �-integrase (�-Int) system is vital to the lysogenic stage of the life cycle of
bacteriophage � and is one of the most intensively studied site-specific recombi-
nation systems. A notable feature of this system is the nonsymmetrical nature of
the integrative and excisive recombination reactions: although the strand exchange
activities are identical for both integration and excision of the phage-� genome, each
reaction has distinct requirements for specific DNA sequences at the recombining
loci and the subsets of protein cofactors involved in recombination.

Integration of phage � occurs at a unique 25-bp site, termed attB, on the 4.6-Mbp
E. coli chromosome. The catalytic activity for strand exchange resides in the
�-encoded integrase protein (Int), which functions in concert with a number of
DNA-binding accessory proteins: the integration host factor (IHF) and factor for
inversion stimulation (Fis) proteins of E. coli, and the �-excisionase (Xis), which is
phage-encoded. In contrast to the attB site, which by itself has negligible affinity for
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the recombination proteins, the recombination locus on the phage genome, attP,
is about 250 bp in size and has multiple binding sites for Int and the accessory
factors. Integrative recombination most likely involves assembly of Int and IHF
proteins to form an organized nucleoprotein structure called the intosome [5], which
subsequently captures a protein-free attB site during synapsis [67]. The products
of the integrative recombination reaction are a functionally distinct pair of new
recombination sites called attL and attR that are no longer competent to participate
in subsequent rounds of integrative recombination. Instead, these sites are substrates
for excisive recombination, a reaction that requires Fis and Xis in addition to Int and
IHF. By coupling recombination to the intracellular levels of specific protein factors,
tight regulation of the phage-� life cycle can be achieved in vivo. The topology of
�-Int recombination is discussed in [21].

3.3 Cre and XerC/D: Excision and Resolution of DNA Dimers

The genome of bacteriophage P1 is a 90-kbp circular molecule; as with all circular
genomes, daughter molecules must be decatenated after replication [91]. This
process is facilitated by a protein called Cre recombinase, a phage-encoded member
of the �-Int superfamily. The Cre mechanism acts on specific sites, denoted loxP in
a multistep reaction scheme that involves fusion followed by resolution (Fig. 8a).
A common feature of the �-Int superfamily is phosphoryl transfer based on a
catalytic tyrosine residue. The enzymatic reaction progresses in two distinct stages
(Fig. 8b): an initial round of strand cleavage followed by DNA strand exchange to
form a stable recombinase-bound Holliday junction. The junction is resolved by
a second set of tyrosine-catalyzed cleavage and strand-exchange steps that lead to
recombinant products.

The wild-type loxP target site for Cre is a 34-bp DNA sequence that consists
of two 13-bp inverted repeats flanking an asymmetric 8-bp core region [38]. The
core sequence confers an overall directionality on the loxP site. Recombination of
directly repeated loxP sites leads to the exclusive formation of deletion products,
whereas recombination of inversely repeated loxP sites results in an inversion of the
intervening DNA sequence with respect to the parental substrate [84].

Normal replication of the E. coli chromosome yields intermediate forms con-
sisting of multiply linked circular DNA molecules. The linked intermediates are
resolved to unlinked monomers by the action of type II topoisomerases, most
notably topo IV [78]. However, homologous recombination during replication
generates concatenated dimers at a significant frequency; such structures cannot
be resolved by topoisomerases. These dimers are instead resolved by the XerC/D
system, which also belongs to the �-Int superfamily. The activity of Xer is tightly
coupled to that of FtsK, a molecular machine that controls the transport of DNA
across the intercellular septum during cell division [66]. Cells lacking functional
XerC or XerD genes cannot properly segregate daughter chromosomes. These
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Fig. 8 (a) Unlinking by Cre recombinase: Cre activity initially generates circular concatamers
from linked circular substrates. This fused intermediate is subsequently unlinked via an excision
reaction that is also mediated by Cre. (b) Mechanism of Cre acting on a pair of loxP target
sequences. The loxP site consists of two inversely repeated, 13-bp Cre-binding sequence elements
(cyan) flanking an 8-bp spacer region (yellow). Recombination takes place via ordered and
reversible strand cleavage, exchange, and resolution reactions. The central intermediate is a
Holliday junction, shown in an open, square planar conformation similar to that in Fig. 7

cells develop an anomalous filamentous-growth phenotype, in which cells elongate
without dividing [59].

The target site for Xer recombination on the E. coli chromosome is a 28-bp
sequence called dif. This sequence is located opposite the chromosomal replication
origin and consists of a pair of 11-bp inverted repeats that flank a central 6-bp spacer
region. Unlike the loxP site of Cre, the dif repeats are targeted by the Xer C and D
subunits. In other respects, however, the similarities between Xer and Cre are more
striking than their differences. Like the Cre–loxP mechanism, Xer recombination
proceeds via a Holliday-junction intermediate [7].

Plasmids in E. coli can also become dimerized during replication. Resolution of
these concatameric forms occurs via Xer activity at plasmid sequences such as cer
and psi. These sequences contain the 28-bp core sequence from the chromosomal
dif element in addition to flanking sequences that bind the accessory proteins PepA
and either ArgR (in cer) [74] or ArcA (in psi) [8]. These proteins are required for
recombination and play a role in organizing the active synaptic complex of proteins
and DNA sequences needed for site pairing and strand exchange. This also ensures
that recombination occurs exclusively via an intermolecular pathway involving
directly repeated target sites. A similar mode of synaptic-complex organization
occurs in gamma/delta resolvase recombination (based on a serine recombinase)
and accounts for exclusivity of deletion in that system [71].
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4 The Tangle Model for Protein Action

In this section, we start by giving some mathematical background on tangles and
then describe how tangles are applied to study protein action. An N -string tangle
is a collection of N disjoint arcs properly embedded in a three-dimensional ball
(3-ball) that have their endpoints fixed on the 2-sphere boundary of the 3-ball.
Examples of 2-string tangles are shown in Fig. 9. A tangle is rational if it can be
formed from a zero crossing tangle by moving the endpoints in an arbitrary fashion
with the constraint that they remain on the boundary of the 2-sphere and the arcs are
confined to stay within the 3-ball. It is common practice and sufficient to consider
only 180ı rotations about the horizontal and vertical axes. Conway introduced
rational tangles in a paper that was concerned with enumerating prime knots and
links [17]. He discovered a curious relationship between rational tangles and the set
of extended rational numbers1 (hence the name rational tangle). He showed that
two rational tangles are equivalent (in the sense that one may be converted into the
other, keeping the boundary of the 3-ball fixed) if and only if the continued fractions
corresponding to the individual tangles are equal to the same extended rational
number. The details of this proof are beyond the scope of this chapter, however, a
few examples will be illustrative. First of all, let us consider how to associate a tangle
with a continued fraction. We denote a tangle by a list of integers .c1; c2; : : : ; cn/,
n odd, and create this tangle by starting with the 0 tangle and rotating about the
horizontal axis by c1 
 180ı, followed by a rotation about the vertical axis by
c2 
 180ı, alternating the axes in this way until we reach the end of the list. Since n

is odd, we always end in horizontal twists. For the tangle .c1; c2; : : : ; cn/, we assign
the rational number

r D cn C 1

cn�1 C 1

:::C 1
c1

:

Figure 10 shows several rational tangles and one nonrational tangle. We can see that
tangle .2; 3; 4/ and tangle .�1;�1;�4; 1; 3/ have the same rational number 30=7,
and therefore must be equivalent tangles from Conway’s theorem.

Tangles that cannot be formed from the operations described above are known as
nonrational tangles. Informally, these are tangles whose construction would require
one of the endpoints of an arc to leave the 2-sphere, and pass through the 3-ball
and around one of the arcs inside. An example is shown in Fig. 10e. Nonrational
tangles are not uncommon in DNA; however, their analysis is considerably more
complicated than the rational case, and we will not discuss them further in this
chapter.

Ernst and Sumners [34] were the first to apply tangles to DNA biology. In
their model, a protein complex binding N segments of DNA is represented by

1The rational numbers plus infinity.



338 I.K. Darcy et al.

Fig. 9 Various tangles. (a) The 0 tangle. (b) The infinity tangle. (c) the C1 tangle. (d) The �1

tangle. (e) The 1
2

C � 1
3

tangle

Fig. 10 Four rational tangles with their associated rational numbers and one nonrational tangle.
(a) The (2) tangle. (b) The .2; 3; 0/ tangle D 2

7
tangle. (c) The .2; 3; 4/ tangle D 30

7
tangle.

(d) The .�1; �1; �4; 1; 3/ tangle D 30
7

tangle. Note that the signs of the integers in
.�1; �1; �4; 1; 3/ determine the handedness of the crossings. (This tangle can be created in
KnotPlot by using the command: tangle 1z1z4z13o.) (e) A nonrational tangle

a tangle ball, and the DNA itself by the disjoint arcs. Of course, this is a
highly simplified model of the binding of proteins with DNA. A sphere is a very
rough approximation to a protein complex, and the DNA is likely to exist in
more complicated conformations than the arcs seen in the above illustrations. For
example, the DNA likely winds around the tangle ball rather than being embedded
within the 3-ball.

If at least two DNA segments are bound in a protein–DNA complex, then this
complex is referred to as a synaptic complex. The protein complex together with
the segments of DNA bound by protein is called a synaptosome. In many cases it is
possible to prove that a tangle modeling a synaptosome is rational (e.g., [22,23,32–
34, 47]), but there are also several biological reasons why rational tangles are the
most likely models of synaptosomes. Although an upper bound for the number of
DNA crossings that can be bound in a synaptosome has not yet been determined, it is
believed that synaptosomes cannot be overly complicated. The simplest nonrational
two-string tangles are the five-crossing tangles shown in Figs. 9e and 10e. Moreover,
as protein complexes bind supercoiled DNA (Fig. 3d), rational tangles are likely
models of synaptosomes, since such tangles are formed by adding twists. Lastly, a
tangle is rational if and only if one can push the strings to lie on the boundary of
the 3-ball so that the strings do not cross themselves on the 3-ball. Thus if DNA
wraps around a protein complex without crossing itself and if the protein complex
can be modeled by a topological sphere, the tangle modeling the synaptosome must
be rational. Since DNA is negatively charged, it is unlikely to cross itself on the
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a b c d e

Fig. 11 (a) N.Uf C B/. (b) Tangle addition, Uf C B . (c) Numerator closure of a tangle N.B/.
(d) N. 2

7
/ D N.2/. (e) Same link as in (d), but shown in 2-bridge D 4-plat form

boundary of a protein. There are, however, protein complexes that can be modeled
by higher-genus objects such as tori; but in all known cases, the protein–DNA
complex can still be modeled by a spherical tangle.

Let K represent knotted circular DNA. For those who like to think of this circular
DNA as living in S3, then the tangle model of Ernst and Sumners [34] divides S3

into two tangles (Fig. 11a). One tangle, B , models the synaptosome (i.e., the protein
complex together with the portion of DNA bound by protein), whereas the unbound
DNA is in the complementary tangle, Uf . For simplicity, this is written as the tangle
equation N.Uf CB/. Tangle addition, Uf CB , corresponds to the operation shown
in Fig. 11b. The numerator closure operation is shown in Fig. 11c. The numerator
closure of a rational tangle is a rational knot/link (Fig. 11d). By rotating the vertical
crossings in a rational tangle so that they appear horizontal, it is easy to see that
rational knots/links are equivalent to 2-bridge knots/links (also known as called 4-
plats); see the example in Fig. 11e. If ac � 0, then two rational knots N.a=b/ D
N.c=d/ are equivalent if a D c and bd �1 D 1 mod a.

Let the tangle B represent the synaptosome before protein action, and let the
tangle E represent it after protein action. Recall that the tangle Uf represents the
DNA not bound by protein. A protein action that changes the knot K1 into the knot
K2 is represented by the system of two tangle equations (Fig. 12):

N.Uf CB/ D K1; (1)

N.Uf CE/ D K2: (2)

The starting conformation of the DNA, K1, is called the substrate, while K2 is
called the product. Different recombinases have different topological mechanisms.
A tangle model of Cre recombination, is shown in Fig. 12b, and tangle model of
Xer acting on psi sites, is shown in Fig. 12c. For a tangle model of Xer acting
on Ftsk, see [76]. The software packages TangleSolve [70], TopoICE-R [25], and
TopoICE-X [27] can be used to solve certain types of tangle equations and visualize
the solutions.

In the original tangle model, the tangle B is divided into a sum of two tangles
B D Ub C P , where the tangle P represents the local action of the protein, and
the tangle Ub represents protein-bound DNA whose conformation is unchanged by
protein action. Often proteins act on very short segments of DNA, and thus one
can often assume that P is a zero-crossing tangle. Protein action is represented by
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a b c

Fig. 12 (a) Protein action is represented by the tangle equations N.Uf CB/ D K1, N.Uf CE/ D
K2. (b) A tangle model for Cre recombination. (c) Tangle model for Xer acting on psi sites

Uf Ub

B

P R
P R

E

B E

Uf Ub

Uf Ub Uf Ub

a
b

Fig. 13 (a) The Ernst and Sumners model of protein action is represented by the tangle equations
N.Uf C Ub C P / D K1, N.Uf C Ub C R/ D K2. (b) A more general tangle model

replacing the tangle P by the tangle R, as shown in Fig. 13 and modeled by the
equations N.Uf C Ub C P / D K1, N.Uf C Ub CR/ D K2. However, this model
assumes that the local protein action can be separated from the remaining protein-
bound DNA by a disk that intersects the strings of tangle B in exactly two points.
However, this eliminates potential biologically relevant models. A more general
tangle model is shown in Fig. 13b [23]. Note that the tangle B is transformed into the
tangle E via replacing the subtangle P with the subtangle R. For more on rational
subtangle replacement, see [9].

5 Concluding Remarks

We have only touched the surface regarding the topological modeling of protein–
DNA complexes. In addition to modeling the action of proteins that can knot circular
DNA, tangles can also be applied to probe the structure of multiple DNA segments
in any stable protein–DNA complex regardless of the action (or inaction) of the
protein via an experimental technique called difference topology [2, 26, 28, 40,
45, 52–57, 63–65]. This technique uses a recombinase or topoisomerase to trap
crossings bound by the protein under study. This requires knowledge regarding
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how the recombinase or topoisomerase acts. However, there are still unsolved
problems regarding how these proteins act. With respect to recombination, we can
only determine all solutions to the tangle equations modeling these reactions in
special cases, even when the substrate and product are both rational knots/links (e.g.
[10,24,29,47]). Although we can solve all tangle equations modeling topoisomerase
action when the substrate and product are rational knots/links [24], there are still
questions regarding preferred pathways [11, 44, 60, 69, 75, 86].
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Reactions Mediated by Topoisomerases
and Other Enzymes: Modelling Localised
DNA Transformations

Dorothy Buck

Abstract Many proteins cleave and reseal DNA molecules in precisely orches-
trated ways. Modelling these reactions has often relied on the axis of the DNA
double helix being circular, so these cut-and-seal mechanisms can be tracked by
corresponding changes in the knot type of the DNA axis. However, when the DNA
molecule is linear, or the protein action does not manifest itself as a change in knot
type, or the knot types are not 4-plats, these knot-theoretic models are less germane.
We thus give a taxonomy of local DNA axis configurations. More precisely, we
characterise all rational tangles obtained from a given rational tangle via a rational-
subtangle replacement. This classification is then endowed biologically with a
distance that determines how many enzyme-mediated reactions of a particular type
are needed to proceed from one local DNA conformation to another, or indeed if it is
even possible. We conclude by discussing a variety of biological applications of this
categorisation, including reactions mediated by type II topoisomerase, site-specific
recombinase and transposase.

1 Introduction

The two strands of the DNA double helix wrap around an imaginary axis. How this
axis is contorted in space (topologically and geometrically) affects many cellular
processes, including replication, recombination and transcription. This chapter
considers the topological and geometric conformations of this axis in space. We
model the localised transformations mediated by type II topoisomerases, as well as
recombinases, transposases and other enzymes, that make transient breaks in DNA,
followed by rearrangement and ligation.
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Fig. 1 The axis of DNA can
be circular

Fig. 2 Type II
topoisomerases unlink DNA
molecules by performing
local crossing changes

The axis of the DNA molecule can exhibit many non-trivial conformations. For
example, mitochondrial DNA, chloroplast DNA, some viral DNA and bacterial
genomic DNA are all circular (see Fig. 1). In the laboratory, experiments are
typically conducted with plasmid DNA: small circular molecules most commonly of
around 4,000 bp (although they range from 1 to 10 kbp in length). Although human
genomic DNA is not circular, in cells DNA wraps around a core histone to form
a nucleosome fibre, which undergoes many further folding process to form higher-
order, large chromatin fibre loops. As each loop is attached to a protein scaffolding,
the DNA inside each loop can be viewed as topologically constrained similarly to
covalently closed circular DNA.

Moreover, this circular DNA can become knotted or linked as a result of a
variety of cellular processes. For example, in E. coli, newly replicated daughter
DNA molecules are non-trivially linked, with the linking number proportional to
the number of base pairs of the original circular DNA molecule. The unlinking of
these daughter molecules is one of the first steps in proliferation, and is mediated by
type II topoisomerases [24, 30, 33, 34] (see Fig. 2).

1.1 Localised DNA Transformations

Most proteins, such as the topoisomerases mentioned above, that change the
DNA topology or geometry act locally – that is, the binding, rearrangement and
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old new 

Fig. 3 Most proteins that
change the DNA topology or
geometry act via localised
transformations

Fig. 4 Genome
rearrangements arising from
site-specific recombination
(From [21])

subsequent ligation all occur within a small, well-defined spatial region. Type II
topoisomerases bind to a segment of double-stranded DNA, the gate segment, which
is then transiently cleaved. Subsequently, a second DNA segment, the transport
segment, is passed through the ‘open’ gate segment, and the gate segment is then
ligated. (The crossing change effected then changes the linking number of the
underlying molecule by 2, hence the terminology of ‘type II topoisomerases’.)
As this crossing change occurs within a restricted region, leaving the rest of the
DNA molecule unchanged, the unknotting/unlinking reactions mediated by type II
topoisomerases are examples of localised DNA transformations (see Fig. 3).

Site-specific recombination is the reshuffling of the DNA sequence, and is
mediated by a protein, a site-specific recombinase [21]. Site-specific recombinases
fall into two families, the serine recombinases and the tyrosine recombinases,
classified according to their active nucleophile.

The result of site-specific recombination can be the excision, insertion or
inversion of a sequence, as shown in Fig. 4. In the simplest case, as with some
serine recombinases, a tetramer of recombinases binds to two short identical DNA
sequences (the crossover sites), makes double-stranded breaks in both, interchanges
the ends via subunit rotation and then ligates before releasing. Most tyrosine
recombinases perform this in two steps, where they cleave single backbones,
interchange them and then repeat before ligating (see Fig. 5). In some cases, such as
recombination mediated by tyrosine recombinases (defined below) which includes
branch migration within an intermediary Holliday junction, there are larger-scale
effects, yet even here, the recombinases form phosphotyrosol intermediates at well-
defined short DNA sequences.
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Fig. 5 Steps of site-specific recombination mediated by a tyrosine recombinase. The enzymes
bind, cleave and ligate short, defined DNA sequences. The intermediary stage (images 2 and 3) is
a Holliday junction

? 

Fig. 6 Subquestion 1: What is the enzyme choreography? The arc represents the axis of the double
helix

2 Guiding Questions

In this arena, the motivating question is to understand how these unknotting/
unlinking or recombination reactions proceed. Ideally, a dynamic, all-atom under-
standing of these localised transformations would be available. However, despite
studies of the crystal structures of various recombinase–DNA co-complexes and
single-molecule experiments (as well as numerous simulations, including Metropo-
lis Monte Carlo and molecular dynamics techniques), this is still unfortunately a
distant fantasy. So the main issue is how to unveil the salient features of this process.

This breaks down into two subquestions about these protein-mediated reactions,
the first querying the verb (the mechanism) and the second a noun (the initial or
final DNA conformation). First, what is the enzyme mechanism or choreography?
(See Fig. 6.) That is, given the substrate and product conformations, what is the
process that takes the former to the latter? We are primarily concerned with the
movement of the DNA segments during this process, rather than, for example, the
exact biochemical bonds.

An example of this is the question of what happens during recombination
mediated by the recombinase PhiC31. This is a member of the important but poorly
understood family of large serine recombinases. Initially there were two competing
models for how recombination proceeded: either via a subunit rotation mechanism
(that is, the two sites are simultaneously cleaved, one cleaved side is then rotated
right-handed by 180ı relative to the other and then the DNA is resealed) or a
domain-swapping mechanism. A combination of biochemical experiments, includ-
ing yoking PhiC31 to Tn3 resolvase, a well-understood recombinase, together with
a topological analysis of the reaction using coherent band surgery, enabled Buck
and colleagues to showed that PhiC31 acts via the subunit rotation mechanism [28]
(Fig. 7).
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Fig. 7 Are the sites aligned in an anti-parallel or parallel orientation during site-specific recombi-
nation mediated by the Flp recombinase? Note in particular the difference in the Holliday junctions.
The small dots denote the four recombinase proteins, and the base pairs are omitted for clarity

known 

known ? 

? 

Fig. 8 Subquestion 2: what is the structure of the pre or post-recombinant local DNA conforma-
tions?

The second subquestion assumes knowledge of this enzymatic pathway and
either the initial or the final DNA conformation, and queries what is the other DNA
conformation (see Fig. 8).

One setting for this is during site-specific recombination when the initial DNA
conformation, the synaptic complex, is understood, for example from a crystal
structure, and the recombinase mechanism is well understood. Then the second sub-
question asks if we can predict the final DNA conformation, the post-recombinant
complex. The resolvase subfamily of the serine recombinases has been shown to
utilise a subunit rotation mechanism, and there are crystal structures of the synaptic
complex for several members (see, e.g., [21]). We then hope to predict, or at least
constrain the possibilities for, the post-recombinant complex.

3 Earlier Treatments

Previous work has been able to answer these questions if this localised action yields
a change in DNA knot type.

One particularly fruitful avenue has been topological modelling of the action of
these proteins. This field was initiated by the Ernst–Sumners tangle model, which
helped determine both structural and mechanistic information about particular
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site-specific recombination systems [17]. (Tangles are defined below.) In this model,
the DNA is represented as a sum of two two-strand tangles where the recombination
replaces one of the summands with another tangle. In the original applications, the
substrate and product DNA were each taken to be two-bridge knots or links. Then
Ernst and Sumners proved that certain summands were rational, and so could apply
the cyclic surgery theorem [14] to their corresponding double branched covers (as
two-bridge knots and links lift to lens spaces and rational tangles lift to solid tori) to
determine the exact tangles.

Modified versions of the original tangle model have been helpful in
understanding several DNA–protein interactions. For example, site-specific
recombination mediated by the Flp recombinase, a member of the tyrosine family
of recombinases, yields a spectrum of .2; p/-torus knots or links, depending on the
orientation of the initial sites. Using a combination of biochemical experiments,
including utilising a mutant version of Flp which binds but does not cleave, together
with new topological proofs in a three-summand setting of the tangle model, Buck,
Grainge and Jayaram showed that the recombination sites must be oriented in an
anti-parallel alignment [19].

There have been several other useful developments and generalisations of this
model in the 20 years since its introduction (see [4] and references therein, as
well as [10, 11]). More recently, Cabrera-Ibarra and Lizárraga-Navarro developed
a model that allows potential tangles to be three-strand braids [12, 13], and Buck
and Mauricio developed a model that allows substrates and products to include
composite knots [8].

In another vein, one can also make reasonable assumptions about the enzyme
mechanism to predict the knots and links arising from site-specific recombination.
In some cases, this has been experimentally possible, by using electron microscoy
or atomic force microscopy to determine the precise knot or link. However, these
techniques are limited both by the difficulty involved in resolving the crossings
and the paucity of experimentalists with the necessary training. An alternate
experimental method has been to perform gel electrophoresis, which will resolve
knots by the minimal crossing number. Unfortunately, there are many knots which
share the same minimal crossing number, so alternative methods are needed.

A topological model has thus been successfully developed for unknot, unlink and
torus knot/link substrates [3, 7] and twist knot/link substrates [9, 32]. This model,
under very mild assumptions, can dramatically restrict the putative knot/link prod-
ucts. For example, it predicts that recombination mediated by a serine recombinase
on an unlink substrate can only yield an unknot, an unlink or a Hopf link.

4 The Limitations

This range of topological models has dramatically increased our understanding
of localised DNA transformations in a variety of settings. However, they thus far
have all relied on one basic assumption: the localised DNA transformation effects
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a corresponding global change in the topology of the DNA. (For example, it is
assumed that the type II topoisomerase-mediated crossing change transforms a DNA
trefoil into an unknot, rather than the crossing change being of a trivial Reidemeister
type I removal of writhe.)

However, this is not always the case. For example, the topology of the DNA axis
may not change (for example, the most common product of recombination of an
unknot mediated by a tyrosine recombinase is another unknot). Or the resulting
DNA product may be a topology type not yet covered by the model (e.g. an
algebraic, non-Montesinos knot). Or, most dramatically, the DNA axis may be linear
(and unconstrained) throughout the reaction. (Note: although the study of open
knots, partly spurred on by the recent discovery of ‘knotted’ proteins, is an exciting
and emerging area, it has yet to be considered in this context, as most of the time
the linear DNA is not knotted in this ‘open’ sense.)

5 The Solution: Think Locally

To overcome these obstacles, we model these localised DNA transformations
exclusively locally. That is, we model the reaction without placing restrictions on
the global topology of the DNA axis. This enables us to consider a wider variety of
reactions, including those where the cleavage/ligation occurs within a subregion of
a larger complex. Perhaps unsurprisingly though, the topological methods used to
model these are different as well.

One similarity with the tangle model described above is the sensible topological
description of localised DNA conformations. As visualised by electron microscopy
and atomic force microscopy in situ (at physiological conditions), DNA in vivo
and in vitro is (negatively) plectonemically supercoiled and, typically, branched.
That is, the DNA axis naturally forms rows of twists, broken by branch points,
where additional rows of twists can emanate in another direction. Thus, as with the
Ernst–Sumners method above, a natural model for two nearby segments of DNA is
a (two-string) rational tangle.

A tangle is an ordered pair .B3; t/, where B3 is a 3-ball and t is a pair of properly
embedded arcs, i.e. two arcs whose four endpoints are on the boundary of B3,
typically parameterised as NE, SE, SW, NW, considered up to strong equivalence.
A rational tangle is composed of alternating horizontal and vertical rows of twists,
and via a continued fraction expansion can be written as a rational number (or
1). Each rational tangle is endowed with a meridional disc whose boundary is
on the boundary of the 3-ball and which separates the two tangle arcs. Additionally,
each tangle is endowed with a core arc that joins the midpoints of the two tangle
segments, and thus the tangle can be thought of as the neighbourhood of this core
arc. (See Fig. 9, and [4] for a more detailed introduction to rational tangles.)

We then model the enzymatic reaction as a rational tangle replacement: the
removal of one rational tangle from a 3-manifold with a properly embedded
1-manifold and replacement with another, leaving the rest of the (linear or circular)
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Fig. 9 Left: Two segments of (double-stranded) DNA, one red and one green, are modelled as a
rational tangle. Right: A rational tangle, its meridional disc and the core arc (Figure courtesy of
K. Baker)

DNA molecule(s) unchanged. For example, the crossing change initiated by a type
II topoisomerase is modelled as replacing a .�1/-tangle with a .C1/-tangle (or vice
versa). While this is a very simple replacement, we can consider more intricate
replacements as well. One measure of this intricacy is via the distance � between
two rational tangles, defined as half the number of intersections of the boundaries
of their respective meridional discs. In this notation, the distance between the type
II topoisomerase-mediated crossing change is 2. (Note, however, that this ‘distance’
is not a metric; it parallels the notion of distance between Dehn surgeries. See [5]
for more details of this correspondence.)

We emphasise that in this model there are many options for the ambient space: for
example, it could be S3 containing a circular or linear segment, or itself a 3-ball with
properly embedded arcs (i.e. a tangle itself). Thus we can also readily model more
complicated protein–DNA systems, such as the resolvases, which utilise additional
resolvase subunits to trap a fixed number of supercoils within a larger complex (itself
a rational tangle) and perform the cleavage/rearrangement/ligation reaction within a
smaller complex (a rational subtangle).

6 Results

Within this paradigm, the two questions above about these protein-mediated
reactions – what is the verb (the mechanism) and what is one of the nouns (the
initial or final DNA configuration) – can be rephrased. The topological answers to
these questions and the related proofs were found determined in joint work with
Ken Baker [6].

The first question asks which tangle replacements can occur, i.e. which rational
tangles are at a distance � from a given rational tangle by a full rational-tangle
replacement.

Theorem 1 ([6,17]). If a (full) rational-tangle replacement of distance d takes the
p=q-tangle to the u=v-tangle, then the following relation must hold: pv�qu D ˙d:

This can be generalised to consider the much larger and more difficult question
of which tangles are related via a rational-subtangle replacement, or RSR.
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Theorem 2 ([6]). If a rational-subtangle replacement of distance d takes the p=q-
tangle to the u=v-tangle, then u=v belongs to one of the following families of
rational numbers (depending on p=q and d ):

I. .d � 1/
n

pC�da.aq�bp/

qC�db.aq�bp/

ˇ̌
ˇ a; b coprime; � D ˙

o
,

II. .d D 1/
n

pC�4a.aq�bp/

qC�4b.aq�bp/

ˇ̌
ˇ a; b coprime; � D ˙

o
,

III. .d D 1/
n

p.b�1/.4ab�4a�2b�1/C�p0 .2ab�2a�b/2

q.b�1/.4ab�4a�2b�1/C�q0.2ab�2a�b/2 ;
p.1�2a/2.b�1/C�p0.2ab�2a�b/2

q.1�2a/2.b�1/C�q0.2ab�2a�b/2

ˇ̌̌

a; b; p0; q0 integers, pq0 � p0q D 1; � D ˙
o
,

IV. .d D 1/
n

p.2a�1/.2abCa�bC1/C�p0.2abCa�b/2

q.2a�1/.2abCa�bC1/C�q0.2abCa�b/2 ;
p.2bC1/.2abCa�bC1/C�p0.2abCa�b/2

q.2bC1/.2abCa�bC1/C�q0.2abCa�b/2

ˇ̌
ˇ

a; b; p0; q0 integers, pq0 � p0q D 1; � D ˙
o
.

The answer to this which question is obtained by building on the work of
Berge [1] and Gabai [18] (and Moser [26]) on surgeries on knots in solid tori that
yield solid tori via the Montesinos technique [25].

Of course, between any two rational tangles, for a given distance, there may
exist many possible subtangle replacements if one considers all possible places
where these (subtangle) replacements can occur within the given tangle. The second
question asks where these subtangle replacements can take place.

Theorem 3 ([6]). The rational-subtangle replacements occur, up to homeomor-
phism, only at the core arc for the full tangle replacement or, as indicated in Fig. 10,
for the subtangle replacements.

Note that in Fig. 10, we draw the tangles in a slightly different way to show this
replacement more clearly. Here, we view B3 as the one-point compactification of
the lower half-space in R3 and place the four endpoints of the boundary arcs on the
x-axis at .i; 0; 0/ for i D 1; 2; 3; 4. A rational tangle within B3 can then be arranged
so that its z-coordinates have only two local minima and, moreover, it has an open 4-
plat form with projection to the xz-plane. The oblong rectangles in Fig. 10 labelled
with integers indicate twist regions, where the longer direction of the rectangle gives
the twist axis.

The answer to the where question for rational-subtangle replacements is more
difficult to prove, as, unlike the which question above, it does not follow from
the Montesinos technique of passing to the double branched cover. (As illustrated
in [6], in fact two non-homeomorphic tangles may have homeomorphic branched
double covers.) The proofs then have three components: generalising some results
of Ernst [16], adapting some results of Paoluzzi [29] and considering tangles
as hyperbolic orbifolds. The first relies upon the corresponding knot exteriors
being Seifert fibred, the second addresses mutations of tangles and involutions
of manifolds with non-trivial JSJ decompositions, and the last relies upon the
hyperbolic orbifold surgery theorem. (See [6] for the full proofs.)
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Fig. 10 All rational-subtangle replacements between the tangles 	 and 	 0 occur, up to homeomor-
phism, only as indicated (From [6])

Finally, we can consider the closure of these rational tangles, which are two-
bridge knots or links, and ask the same questions: which two-bridge knots are
links are related by a rational-subtangle replacement, and where can these subtangle
replacements occur?

Theorem 4 ([6]). If the two-bridge link S.p; q/ D Œa1; a2; : : : ; an� has an RSR to
S.u; v/ with distance d � 2, then there exist integers c1; c2; : : : ; ck such that

S.p; q/ D Œa1; a2; : : : ; an; 0; c1; c2; : : : ; ck; 0;�ck; : : : ;�c2;�c1�

and

S.u; v/ D Œa1; a2; : : : ; an; 0; c1; c2; : : : ; ck ;˙d;�ck; : : : ;�c2;�c1�:

Up to homeomorphism, the site of the RSR is the twist region corresponding to the
0 between the ck and the �ck in the plat associated to the continued fraction for
S.p; q/ and to˙d in the plat associated to the continued fraction for S.u; v/.

To prove this, we have developed the relationship between rational tangles
and their closures in the two-bridge classifications by Darcy and Sumners [15]
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and Torisu [31] in which two-bridge links are related by an RSR of distance at
least 2. We then applied Ernst’s theorem above [16] to classify where these RSRs
occur. (We have also conjectured, building on results of Greene [20] and Lisca [23],
which two-bridge links are related to the unknot or unlink by a distance-1 RSR,
although the generic case is still open.)

7 Applications

These results can be applied to a variety of protein–DNA interactions to help
elucidate local structures and/or the enzyme mechanism. As an illustration, we
conclude with two examples below, but emphasise that there are many others.

For site-specific recombination, these theorems can suggest (up to homeomor-
phism) the DNA configuration of the post-recombinant complex given the synaptic
complex (or vice versa), if the protein operation is understood. (This is the case
for the resolvase family, which, as discussed above, acts via the subunit rotation
mechanism.) Note that the theorems above predict configurations, independent
of the global topology of the substrate and/or product molecule(s), and so are
particularly useful for recombinases such as the tyrosine recombinases and large
serine recombinases which act at sites on the same or separate circular or linear
DNA molecule(s). Conversely, if there is structural information available for both
the pre- and the post-recombinant DNA, then these theorems predict the possible
choreographies of the recombinase.

A natural candidate for understanding subrational-tangle replacement is recom-
binases that utilise additional accessory proteins to trap a fixed conformation near
the cleavage/ligation sites. For example, Fig. 11 displays an experimentally derived
model of how the rather baroque synaptic complex for the recombinase Sin may
look [27]. The two sites on the right are where the cleavage and ligation occur,
and the three negative vertical crossings of the DNA axis on the left are trapped by
the accessory protein IHF throughout the cleavage/ligation reaction. Recombination
mediated by Sin can thus be modelled as a subtangle replacement, as diagrammed
in Fig. 12. Within this, by assuming either that the Sin recombinase acts by subunit
rotation or the experimentally derived model is correct, one can utilise Theorem 2
above to predict the possible post-recombinant structures. Similarly, one could
also use the theorems above to predict whether the subunit rotation mechanism
could give rise to a DNA conformation faithful to the experimental evidence (see,
e.g., [22]).

A final application considers type II topoisomerases. Their operation, the cross-
ing change, is understood (although the exact details of it are still under discussion).
Thus one can use the theorems above to classify all possible local structures arising
from these crossing changes, as well as predict where these crossing changes must
occur if the local structures are known (see Fig. 13).
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Fig. 11 An experimental model of the complex architecture of the synaptic complex for the Sin
recombinase (From [27])

Fig. 12 An application of rational-subtangle replacement theorems to recombination mediated
by Sin

 = 2

T = (1/2)  T S  = ( ) S

? 

Fig. 13 An application of rational-subtangle replacement theorems to a crossing change mediated
by type II topoisomerase

8 Conclusions

The applications above illustrate some of the ways that our topological model
and results can complement partial experimental knowledge of protein systems
that perform localised tranformations. Given structural information (e.g. via X-ray
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crystallography), these theorems can predict the possibilities for other structures
and/or the trajectories of the configurations during the transformation. One subtlety
here is understanding how to determine the boundary points of the relevant tangles.
Given a larger complex, such as that discussed above for the Sin recombinase [27]
or the full �-Int recombinase–DNA complex structure [2], one needs to establish a
natural reference frame for considering subtangle replacement (at the catalytic sites)
within the larger rational tangle (composed of accessory sites as well).

This approach should thus complement previous treatments (including the
original model of Ernst and Sumners [17]), which also used the closure of the
tangles (the global knotting information) to deduce the local structures. Conversely,
understanding the mechanism or dynamics of the reaction can help predict some
of the static DNA conformations at various points in time (e.g. within the synaptic
complex).

We are currently working to implement this computationally, so that exper-
imentalists can easily visualise the putative mechanisms and/or structures. One
particularly nice way to see this is via a graph, whose vertices are the structures
(the rational tangles or subtangles) and the weighted edges are the distance-�
replacements between them.

We conclude by noting that these localised DNA transformations are generalisa-
tions of crossing changes within knots and links. Given the extraordinary amount of
activity to understand which knots/links are related by crossing changes, it is clear
that on the purely topological front, as well as the DNA topology front discussed
here, there are many tantalising questions to consider within this framework.
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Site-Specific Recombination on Unknot
and Unlink Substrates Producing
Two-Bridge Links

Kenneth L. Baker

Abstract Site-specific recombinases act upon circular DNA, transforming it from
one conformation into another. Keeping track of just the axial backbone of the
DNA, we may represent the DNA as topological knots and links and model the
transformations as localized bandings. As single unknotted loops of DNA and pairs
of unlinked unknotted loops of DNA are the typical substrates generated in the
laboratory for recombination, and two-bridge links are among the more common
conformations arising from recombination, we survey both the classification of
which two-bridge links may be thus obtained and the current state of knowledge
about where these transformations may occur.

1 Introduction

Site-specific recombinases act upon circular DNA, changing it from one conforma-
tion to another. All site-specific recombinases experimentally characterized to date
operate by the type of transformation represented in Fig. 1a [7]. Keeping track of just
the backbone axis of the DNA rather than its actual double helix, this transformation
can be further abstracted and represented as the banding in Fig. 1b.

The single unknotted circle and the pair of unlinked unknotted circles, which
we call the unknot and unlink, respectively, are perhaps the easiest to generate
in the laboratory as substrates for recombination. Site-specific recombinases often
produce two-bridge links1 (of one or two components) from DNA molecules in

1Two-bridge links are defined in Sect. 2.1. Links with one component are commonly called knots.
Links with more than one component are often called catenanes by biologists.
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bandingrecombination

a b

Fig. 1 Recombination may be represented by banding

the conformations of unknots and unlinks [16]. To understand aspects of how
recombination may occur, we thus focus our attention here upon bandings (Sect. 2.2)
of the unknot and unlink that yield two-bridge links. Two broad questions towards
this end may be addressed topologically: Which two-bridge links admit a banding
from the unknot or unlink? Where may these bandings occur?

The purpose of this chapter is to convey the present state of what is known about
the answers to these two questions to an audience without much of a background in
knot theory or low-dimensional topology. As such, we forgo proofs in favor of only
suggesting the overall structure of the results. Nevertheless, we hope that collecting
the results and conjectures together here will be of use to the topologists as well.

One further comment. Through taking double branched covers, bandings
between links translates to Dehn surgeries between 3-manifolds. Most of the
publications, concepts, and results we discuss here we are actually developed in
the context of Dehn surgeries on knots between S3 or S1 
 S2 and lens spaces.
Thus our presentations of these are a translation or adaptation from the sources
cited. The correspondence is discussed a bit further in Sect. 2.5.

1.1 Which?

The which question has a complete solution. The classification of two-bridge
links that admit a banding from the unknot follows from the work of Greene [15].
The classification of those two-bridge links that admit a banding from the unlink fol-
lows from the work of Lisca [17] when blended with an observation of Rasmussen
recorded in [15] though an oversight is corrected in [4]. Section 2 gives the relevant
definitions and sets out the notation K.p; q/ for a two-bridge link. (Recall that we
also include two-bridge knots among the two-bridge links.)

Theorem 1 (Greene [15]). A two-bridge link L admits a banding from the unknot
if and only if L or its mirror image is isotopic to the two-bridge link K.p; q/, where
q � �k2 .mod p/ and, for some integers i; d , either
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I. p D ik ˙ 1, gcd.i; k/ D 1;
II. p D ik ˙ 1, gcd.i; k/ D 2, and i; k � 4;

III.

(
.a/˙ p � ˙.2k � 1/d .mod k2/; d jk C 1; .k C 1/=d odd;

.b/˙ p � ˙.2k C 1/d .mod k2/; d jk � 1; .k � 1/=d odd;

IV.

(
.a/˙ p � ˙.k � 1/d .mod k2/; d j2k C 1;

.b/˙ p � ˙.k C 1/d .mod k2/; d j2k C 1;

V.

(
.a/˙ p � ˙.k C 1/d .mod k2/; d jk C 1; doddI
.b/˙ p � ˙.k � 1/d .mod k2/; d jk � 1; doddI

VII. k2 C k C 1 � 0 .mod p/;
VIII. k2 � k � 1 � 0 .mod p/;

IX. p D 1
11

.2k2 C k C 1/; k � 2 .mod 11/; or
X. p D 1

11
.2k2 C k C 1/; k � 3 .mod 11/.

The numbering of these nine families comes from condensing Berge’s list of twelve
families [5] as reorganized by Rasmussen [19]. Family VI is contained in family V,
and allowing k to run over all integers subsumes families XI and XII into IX and X,
respectively.

Theorem 2 (Lisca [17] C Rasmussen via [15], Baker et al. [4]). A two-bridge
link L admits a banding from the unlink if and only if L or its mirror image is
isotopic to the two-bridge link K.p; q/, where, for some integers m; d , we have
p D m2 and either

I. q � mdC 1 .mod m2/, gcd.m; d/ D 1;
II. q � mdC 1 .mod m2/, gcd.m; d/ D 2;

III. q � d.m� 1/ .mod m2/; d jk � 1; d odd; or
IV. q � d.m� 1/ .mod m2/; d j2mC 1.

Family II is missing from the statement of the main result of [17], although it arises
in the proof; this detail is unaddressed in [15]. A discussion of this along with a
corrected statement is given in [4].

1.2 Where?

The where question so far only has a conjectural solution. The conjectural classi-
fication of bandings between two-bridge links and the unknot follows from work
of Berge (Some knots with surgeries yielding lens spaces, unpublished manuscript)
and is described in [1, 2]. A conjectural classification of bandings between two-
bridge links and the unlink has more recently been given in [4], building on the
ideas of Berge [5]. These two conjectural classifications are unified with the notion
of a doubly primitive band, which we explain in Sect. 2.3.
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Conjecture 1. Any banding from the unknot or unlink to a two-bridge link is along
a doubly primitive band.

The collections of doubly primitive bands for the unknot and the unlink parallel
one another, and can be related by simple changes that will be apparent from our
presentation of the known bandings in Sect. 3.

To describe these bandings succinctly, let us first remark that a banding from one
link to another confers a dual banding back to the first link. It turns out that the core
arc of a banding from a two-bridge link to either the unknot or the unlink that is
dual to a doubly primitive banding admits a special presentation as a simple arc.
The definition of the simple arc K.p; q; k/ for the two-bridge link K.p; q/ is given
in Sect. 2.4.

The following theorem may be derived from Berge’s work [5] with the aid of
Rasmussen’s reorganization [19].

Theorem 3 (Berge [5]). Each two-bridge link K.p; q/ with q � �k2 .mod p/, as
given in Theorem 1, admits a banding to the unknot along the simple arc K.p; q; k/.

Greene’s work [15] together with the relationship between simple arcs and
doubly primitive bandings of the unknot [5] implies that the bandings given in [1,2]
(and derived from [5]) constitute all the doubly primitive bandings from the unknot
to a two-bridge link.

Theorem 4 (Greene [15] C Berge [5]). If a two-bridge link L is obtained from a
doubly primitive banding of the unknot and a is the core arc of the dual banding,
then, after perhaps taking a mirror image, there is an isotopy taking L to K.p; q/

and a to K.p; q; k/, as given in Theorem 3.

Each arc of Theorem 3 may be labeled according to its associated family as given
in Theorem 1. We will relabel them according to their broader groupings. The first
five are, collectively, the BERGE–GABAI bandings, which we denote BGI–BGV; the
next two are the 3-STRING BRAID types 3SBVII and 3SBVIII , and last two are the
SPORADIC types SPORIX and SPORX. We have a similar labeling for the bandings
between two-bridge links and the unlink.

Theorem 5 (Baker et al. [4]). Each two-bridge link K.p; q/ with integers m; d as
given in Theorem 2 (so that p D m2) admits a banding to the unlink along the
simple arc K.p; q; k/ in the following cases.

I. q � mdC 1 .mod m2/, gcd.m; d/ D 1, and either

BGI. k � ˙m .mod m2/ or
3SB. k � ˙dm .mod m2/.

II. q � mdC 1 .mod m2/, gcd.m; d/ D 2, and

BGII. k � ˙m .mod m2/.
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III. q � d.m� 1/ .mod m2/; d jm� 1; d odd, and either

BGIII. k � ˙dm .mod m2/,
BGV. k � ˙d .mod m2/, or

SPOR. k � ˙2m .mod m2/ and m D 1 � 2d .

IV. q � d.m� 1/ .mod m2/; d j2mC 1, and

BGIV. k � ˙m .mod m2/ or k � ˙dm .mod m2/.

Conjecture 2. If a two-bridge link L is obtained from a doubly primitive banding
of the unlink and a is the core arc of the dual banding then, after perhaps taking a
mirror image, there is an isotopy taking L to K.p; q/ and a to K.p; q; k/ for some
p; q; k given in Theorem 5.

Our work [4] and Cebanu’s dissertation [8] establishes the foundations for the
proof of this conjecture. Calculations by Cebanu in [8] confirm the conjecture for
two-bridge links in families I and II. He has since claimed proof for families III and
IV as well, thereby confirming the conjecture.

2 Two-Bridge Links, Bandings, and Equivalences

To describe these results and indicate their nature, we must develop terminology.
Most of these notions should be familiar to experts, although there are variances in
the notations. We recommend Cromwell’s text [10] for further details.

A link is a finite collection of nonintersecting loops in 3-space. A link of a single
component is more commonly called a knot. Two links are considered equivalent
if there is an isotopy (i.e., deformation) that brings one into the configuration of
the other.2 Links are represented by pictures of their projections onto the plane of
the page, and over/under information is represented by breaks in the undercrossing
strands; this information is sufficient to reconstruct the link in 3-space up to
isotopy.

In our figures, we also describe a set of twists in two strands of a link by an
oblong rectangle and an integer coefficient. The longer dimension of the rectangle
indicates the axis of the twist. The magnitude of the integer denotes the number of
half-twists, and its sign gives the handedness of the twisting, following the right-
hand rule. Figure 2a demonstrates this with an example. Frequently, our diagrams
will have pairs of twist regions with the same magnitude but opposite handedness.

2Technically, two links are equivalent if they are related by an ambient isotopy, which is a
deformation of the space containing the link, but let us just say “isotopy” for simplicity. Using
ambient isotopies avoids pathologies that arise if one were to permit any continuous isotopy of
a link.
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Fig. 2 (a) Oblong rectangles with integer coefficients, twist boxes, represent twist regions. (b) An
illustration of the flype isotopy. (c–e) A two-bridge link is groomed by flypes and isotopies and
then represented with twist boxes

2.1 Two-Bridge Links

A two-bridge link (also called a rational link) is a link of one or two components that
may be isotoped into the form of a 4-plat, such as that shown in Fig. 2c. Sequences of
flypes and further isotopies may be performed to transfer the twists in the rightmost
two strands to the leftmost two strands as in Fig. 2d. (A flype is the isotopy illustrated
in Fig. 2b that flips a region over, transferring a twist from one side to the other;
see [9].) To a two-bridge link in the form of Fig. 2d, we may associate a rational
number by putting the numbers in the twist boxes into a continued fraction. In
particular, using the coefficients a1; a2; : : : ; an from the figure, we associate the
extended rational number3 determined by the continued fraction

�p=q D Œa1; a2; : : : ; an�1; an�� D a1 �
1

a2 �
1

:::

an�1 �
1

an

for coprime integers p; q to the link and denote the link by K.p; q/. Note the
use of minus signs. Figure 2e (as well as (c) and (d)) shows the two-bridge link
K.�136; 59/. The two-bridge links K.p1; q1/ and K.p2; q2/ are isotopic if and only
if p1 D ˙p2 and either q1 � ˙q2 mod p1 or q1q2 � ˙1 mod p1, where the
choice of C or � for ˙ is used consistently. The link K.�p; q/ D �K.p; q/ is
the mirror image of K.p; q/. For example, the link in Fig. 2e may also be denoted

3Here, “extended” means we also include 1 D ˙ 1
0

among the rational numbers.
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Fig. 3 The square pillowcase model may be rescaled for a cleaner picture

K.136; 77/, �K.136; 59/, and K.136; 53/. The unknot is K.1; 0/, and the (two-
component) unlink is K.0; 1/.

Two-bridge links also admit a “pillowcase” or “billiards” model. Two rectangles
sewn together along their boundaries topologically form a sphere, with four
distinguished points coming from the vertices and four arcs connecting these points
in a loop coming from the edges. We may view this loop as dividing the sphere
into the two rectangles, one in front and one in back. To obtain the knot K.p; q/

for coprime integers p and q, we first regard the rectangles of the pillowcase as
unit squares lying on top of each other flat in the plane, with a pair of opposite
vertices at .0; 0/ and .1; 1/. Then, starting from .0; 0/, we draw a polygonal curve
in the square of segments with slopes˙q=p, ricocheting off the edges until another
vertex is reached. (This will begin with the segment from .0; 0/ to either .1; jq=pj/
if jqj � jpj > 0, .jq=pj; 1/ if jqj � jpj > 0, or .0; 1/ if p D 0.) The segments with
slope�q=p will be on top and those with slope q=p will be on the bottom. A second
polygonal curve may then be drawn in a similar manner, connecting the remaining
pair of vertices so that it is disjoint from the first on the inflated pillowcase. A flip
across the horizontal (if p is even) or vertical (if p is odd) axis of the pillowcase
will make the two curves coincide. Finally, we join the vertices .0; 0/ and .0; 1/

by an arc to the left of the square and the vertices .1; 0/ and .1; 1/ by an arc to
the right of the square. The resulting curves form the two-bridge link K.p; q/. This
square pillowcase construction of K.7;�3/ D K.7; 4/ is illustrated in Fig. 3, left.
Rescaling the unit square to the q 
 p rectangle can make for a cleaner picture in
which the slopes of the polygonal curves are all˙1 (except when p D 0 or q D 0),
as shown in Fig. 3, right.

One may geometrically invoke a generalized Euclidean algorithm to show that
the “continued fraction” and the “pillowcase” descriptions of the two-bridge links
are equivalent. If p D a � q � r , then an isotopy transforms the pillowcase model
of K.p; q/ into a pillowcase model of K.q; r/ with a twists in the pair of strands
exiting along one of the “q-sides”. Reversing this isotopy stretches jqj � 1 pieces
of arcs on that q-side of the K.q; r/ pillowcase through the a twists to produce
the K.p; q/ pillowcase, after perhaps another isotopy that “grooms” the arcs on
the pillowcase. Since p and q are relatively prime, this may be repeated until the
remainder is ˙1, so that the final pillowcase is itself a set of twists. A final isotopy
pushes the resulting sequence of twists into a standard 4-plat form that exhibits a
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b
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Fig. 4 (a) A visual application of the Euclidean algorithm to the pillowcase model provides an
isotopy to the continued fraction model. (b, c) An illustration of the effects of choices in the
generalized Euclidean algorithm

continued fraction expansion of p=q. A straightforward demonstration of the full
process is given in Fig. 4a for K.25; 7/ using �25=7 D Œ�3; 1;�1; 3�� with an
underlay of boxes to highlight the relationship, between of the twist regions in the
descriptions. Figure 4b, c highlight the two choices 7 D 2 �3�.�1/ and 7 D 3 �3�2

in the first step of the algorithm for K.7; 3/. Observe how the intermediate steps in
the isotopy of the latter correspond to the rearrangement 2 � 3C .3 � 3/ � .�1/ D
.2 � 3C 3/� .3C .�1//.

2.2 Bandings

A band is a topological solid rectangle, a disk whose boundary is divided by four
points into four edges. If the intersection of a link L and a band b is exactly a pair of
opposite edges of b, then the link L0 obtained by deleting those edges from L and
reconnecting the other pair of edges of b is said to have been obtained from L by
a banding along b; see Fig. 5. Observe that if b gives a banding from L to L0, the
same band may be regarded as giving a dual banding from L0 to L.
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banding

Fig. 5 The transformation between two links caused by a banding

Two bandings b1 and b2 on a link L are equivalent if there is an isotopy of L[b1

to L [ b2. Note that in a particular configuration of L, the bands b1 and b2 may be
on separate components, but an isotopy of L may exchange these components while
bringing b1 to b2.

The core arc of a banding from L to L0 along a rectangle b is an arc in b

connecting the opposite edges of b \ L. By twisting b, one can see that the same
arc may be the core arc of different bandings.

2.3 Three-Bridge Links and Doubly Primitive Bandings

Link may, more generally, be put into a bridge position with many more bridges
than two. Those with a two-bridge presentation admit convenient descriptions as
discussed above; only the unknot admits a one-bridge presentation. The known
bandings from the unknot and unlink to two-bridge links arise from presentations of
the unknot and unlink as three-bridge links.

A three-bridge link L, also called a 6-plat, admits a configuration in which there
is a plane P transversally intersecting L in six points and dividing L into two
sets of three strands, each with the following property: for each of these two sets
individually, the three strands can collectively be isotoped, keeping their endpoints
fixed, into the dividing plane P without crossing one another and without crossing
into the other side of P . Note that there are many such ways to isotope these arcs
into P . Moreover, a link L may admit multiple nonisotopic presentations as a three-
bridge link. (Observe that this also provides an analogous description of two-bridge
links. Compare with the description given above.)

An arc a in that plane P connecting two of the six points of L is called doubly
primitive if each of the two sets of three strands may be isotoped into the plane so
that one of the three strands meets a in only a single endpoint. Such an isotopy may
be indicated for each strand with a disk whose boundary is divided into the initial
and final positions of the strand and whose interior is filled out with the intermediate
stages. Moreover, if the arc a in P is doubly primitive, then each set of the three
strands of L to either side of P may be isotoped into P so that one is disjoint from
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cba

Fig. 6 (a) A three-bridge presentation of the unlink with a doubly primitive arc on the bridge
plane. (b) Isotopies of a strand on each side of the plane into the plane verify that the arc is
doubly primitive. Once in the plane, the isotoped strand only meets the arc in one point. (c) Further
isotopies of the remaining strands into the plane, disjoint from the interior of the arc

banding

Fig. 7 The banding associated to the doubly primitive arc in Fig. 6a

a and the other two each share an endpoint with a. The point is that a band b for L

that meets P in the arc a offers a banding from L to a two-bridge link.
Figure 6a shows the unlink with a plane, giving a three-bridge presentation along

with a doubly primitive arc on that plane. Figure 6b demonstrates that this arc is
doubly primitive by showing the result of isotoping a strand on each side of the
plane into the plane. The remaining strands on each side may be isotoped further
onto the plane as in Fig. 6c. Figure 7 shows the banding associated to this doubly
primitive arc. It belongs to the SPORADIC family of bandings from the unlink to
two-bridge links, as we will see in Sect. 3.3.
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Fig. 8 Examples of the simple arcs K.25; 7; 5/ and K.25; 7; 10/

2.4 Simple Arcs

Given a two-bridge link L D K.p; q/ in its pillowcase presentation as described
above, the link intersects the interior of the left edge of the pillowcase in jpj C 1

points, two of which are corners. The arc in the plane of the page connecting the kth
of these points to the arc joining the left-hand vertices of the square is the simple
arc K.p; q; k/. Figure 8 illustrates the simple arcs K.25; 7; 5/ and K.25; 7; 10/.
By flipping along a horizontal axis, we see that the arc K.p; q; k/ is equivalent
to the arc K.p; q; p � k/. It turns out that the core arcs dual to doubly primitive
bandings of the unknot and unlink are actually simple arcs [4, 5].

2.5 Topological Background

The preceding two sections give a description of the “tangle version” of Berge’s
doubly primitive property that ensures a knot admits a surgery yielding a lens
space [5]. To be a little more precise, a knot in a genus-2 Heegaard surface
of a 3-manifold is doubly primitive if each genus-2 handlebody to either side
of the Heegaard surface contains a compressing disk whose boundary transver-
sally intersects the knot once (Saito provides an account of the main ideas
of Berge’s unpublished manuscript in his appendix to [20].) Surgery on the
knot along the framing induced by the Heegaard surface transforms the man-
ifold and the splitting into a lens space with its genus-1 Heegaard splitting.
Our tangle version comes from considering the quotient by the hyperelliptic
strong involution induced by the genus-2 splitting. (Montesinos nicely illustrates
strong involutions and their tangle quotients in [18].) Under this quotient, the
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n is even n is odd

Fig. 9 Strong involutions of surgery descriptions of lens spaces on linear chain links quotient to
give our continued fraction models of two-bridge links

manifold is recorded with the link L as its double branched cover, the genus-2
Heegaard surface becomes the dividing plane P that presents L as a three-bridge
link, the doubly primitive knot becomes the arc a, and its lens space surgery is given
by the banding along b. Here we are actually considering our links L as being in the
three-sphere S3 rather than the three-space R3. The relevant links L at hand are the
unknot, the unlink, and the two-bridge links in general, and their double branched
covers are the manifolds S3, S1 
 S2, and the lens spaces, respectively.

Through double branched coverings, our diagrams of the two-bridge links shown
later in Figs. 11–16 and 19–22 may be regarded as giving presentations of the
covering lens spaces as integral surgery on a chain link, or Kirby diagrams for
plumbing manifolds bounded by these lens spaces; see Fig. 9. (Among others,
Gompf and Stipsicz [13] have provided a nice introduction to Kirby diagrams and
their calculus.) In the branched covering, the bands on those two-bridge links lift to
framed knots that indicate surgeries from these lens spaces (and in particular, four-
dimensional two-handle attachments to these plumbing manifolds) to either S3 or
S1 
 S2.

The Berge conjecture proposes that any longitudinal surgery on a knot in S3 that
produces a lens space arises from this doubly primitive mechanism [5,14]. In [4], we
have extended this conjecture with S1 
S2 in place of S3. Conjecture 1 in Sect. 1.2
is a subconjecture of these two conjectures, as there might be knots that are not
strongly invertible yet admit longitudinal lens space surgeries.

3 The Known Bandings Between Two-Bridge Links
and the Unknot and Unlink

The doubly primitive bandings of the unknot and unlink constitute the known
bandings to two-bridge links from the unknot and unlink. These bandings for
the unknot and unlink parallel one another in form and break into three broad
families: the Berge–Gabai, sporadic, and 3-string braid families. We present all these
bandings up to mirror images and isotopies of the link and band.
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Fig. 10 The four families of bandings between rational tangles up to homeomorphism. The bands
of type BGIII and BGV are related by the banding operation, but are generally not homeomorphic

3.1 The Berge–Gabai Bandings

The Berge–Gabai bandings arise from the bandings that transform a rational
tangle into a rational tangle. This classification is derived from the work of Berge
and Gabai that classified knots in solid tori using longitudinal surgeries yielding
solid tori [6, 11, 12]. Baker and Buck [3] have shown that each such knot admits a
unique involution whose quotient yields a site in a rational tangle. These sites for
bandings between rational tangles partition up to homeomorphism into five types,
BGI–BGV, following the numbering of Berge [6]. (Berge also lists a sixth type which
is a subfamily of the fifth.) Types BGI, BGII, and BGIV are self-dual, while types
BGIII and BGV are dual to one another. These results are summarized in Fig. 10 up to
mirror images and isotopy. The tangles are drawn as if in the lower half-space so that
the horizontal line represents the boundary plane of the space containing the tangle
below. The middle row of Fig. 10 shows the duality between bands of type BGIII
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Fig. 11 The BGI and BGII families of bandings between the unknot and a two-bridge knot

and bands of type BGV. For each of the other types in that figure, the tangle together
with the band on the right may be isotoped, allowing the endpoints of the strands to
move in the boundary into the form of the tangle and band on the left or its mirror,
though with different parameters for the twists. We have kept the endpoints of the
strands fixed throughout the isotopies and bandings shown in Fig. 10.

To obtain the Berge–Gabai bandings between the unlink or unknot and a two-
bridge link, we attach another rational tangle to an input (or output) tangle in Fig. 10
in order to obtain either the unlink or the unknot. To obtain the unlink, only the
mirrored tangle suffices; to obtain the unknot, these need only be altered by an
integral family. (This follows by considering the double branched covers: among
surgeries on the unknot, only 0-surgery yields S1 
 S2 while 1=n-surgery for any
n 2 Z yields S3.) The Berge–Gabai bandings from the unknot to a two-bridge link
are given in Figs. 11–13. The Berge–Gabai bandings from the unlink to a two-bridge
link are given in Figs. 14–16.

3.2 The 3-String Braid Bandings

The 3-string braid bandings arise from presentations of the unknot and the unlink as
closed 3-string braids. (In the double branched cover, these bandings correspond to
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Fig. 12 The BGIII and BGV families of bandings between the unknot and a two-bridge knot

knots that embed on the fiber of a genus-one fibered knot.) Up to conjugation and
braid moves, Fig. 17a–c show the three 3-string braid presentations of the unknot,
and (d) and (e) show the three 3-string braid presentations of the unlink. Observe
that (a) and (c) are mirror images, as are (d) and (e).

Given a 3-string braid  whose closure is the link L, closures of the various
conjugates of  are all still isotopic to L. Bandings of the arcs that close up these
conjugates produce the family of 3-string braid bandings from L to two-bridge
links. Figure 18 illustrates such bandings from L to a two-bridge link based on
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Fig. 13 The BGIV and BGIV0 families of bandings between the unknot and a two-bridge knot

the conjugation of  by another 3-braid ˇ. Using the braids of Fig. 17a, b, d for 

gives the various 3-string braid bandings from the unknot and unlink to a two-bridge
knot up to a mirror image. These are shown in Figs. 19 and 20.

3.3 The Sporadic Bandings

The sporadic bandings for the unknot and unlink are depicted in Figs. 21 and 22
up to mirror images. One may regard them as “almost 3-braid” bandings because
the clasp at the bottom is the only obstruction to the braiding of the presentation,
although the naming refers to them being doubly primitive bandings that do not
appear to exhibit as clear a unifying structure as the Berge–Gabai or 3-string braid
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Fig. 14 The BGI and BGII families of bandings between the unlink and a two-bridge knot

bandings do.4 Greene’s work [15] recently established that these were the only
remaining doubly primitive bandings of the unknot aside from the Berge–Gabai
and the 3-string braid bandings. This remains unconfirmed in general for the unlink;
compare the comments following Conjecture 2.

4 Example

We conclude with an illustration of the equivalence between the bandings along
simple arcs given in Theorem 2 and their descriptions in Sect. 3. The two-bridge
link K.36; 25/ is shown at the beginning of Fig. 23 along with the simple arc
K.36; 25; 6/. The rest of that figure shows a sequence of simplifying isotopies:
the link’s right-hand side is given a half-twist producing the isotopic presentation
as K.36;�13/ with the simple arc K.36;�13; 10/, then a generalized Euclidean

4There are doubly primitive bandings of other links that fit neither the Berge–Gabai nor the 3-string
braid bandings and yet do not appear to admit similar “almost 3–braid” presentations.
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Fig. 15 The BGIII and BGV families of bandings between the unlink and a two-bridge knot

algorithm that fixes the simple arc is applied, and the link is finally isotoped into a
4-plat presentation where the banding for the simple arc is shown. Using m D 6

and d D 5, Theorem 2 shows that the two-bridge link K.36; 25/ of type III admits
a banding to the unlink. Taking k D dm D 30, Theorem 5 implies there should
be a banding from the BGV family along the simple arc K.36; 25; 30/. Flipping
the arc and link over a horizontal axis shows that this is equivalent to the simple
arc K.36; 25; 6/ of Fig. 23. Figure 24 demonstrates that the banding does indeed
produce the unlink. Figure 25 shows that this banding is isotopic to the BGV banding
of Fig. 15 with a D �2 and b D 2.
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a b c d e
UnknotUnknot Unknot Unlink Unlink

Fig. 17 (a–c) There are three closed three-string braids, up to braid isotopy, that represent the
unknot. (Note a and c are orientation reversing homeomorphic.) (d, e) There are two closed three-
string braids, up to braid isotopy, that represent the unlink (Note these two are orientation reversing
homeomorphic)
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ˇˇ�1. (b) Each conjugate of  gives a banding of its braid closure to a two-bridge link
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Fig. 19 The two families of three-string braid bandings between the unknot and a two-bridge link
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Fig. 21 The two families of sporadic bandings between the unknot and a two-bridge link (Also
shown are isotopies verifying the claimed unknots are indeed unknots)
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Fig. 22 The family of sporadic bandings between the unknot and a two-bridge link (Also shown
are isotopies verifying the claimed unknot is indeed an unknot)

Fig. 23 An isotopy of the pillowcase model of K.36; 25/ along with its simple arc K.36; 25; 6/

into a cleaner form
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Fig. 24 The result of Fig. 23 is given along with its banding. The result of the banding is then
isotoped until it is clearly the unlink

2

-2

2

-2

Fig. 25 The result of Fig. 23 is given and followed by an isotopy that recognizes its banding as
belonging to family BGV
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Site-Specific Recombination Modeled as a Band
Surgery: Applications to Xer Recombination

Kai Ishihara, Koya Shimokawa, and Mariel Vazquez

Abstract The tangle method, first introduced by Ernst and Sumners in the late
1980s, uses tools from knot theory and low-dimensional topology to analyze the
topological changes induced by site-specific recombination on a circular DNA
substrate. Often, a recombination reaction can be modeled by a band surgery. Here
we provide a brief description of the tangle method, followed by an overview of
recent applications of Dehn surgeries and band surgeries to the study of XerCD
recombination.

1 Introduction

In 1953, Watson and Crick discovered the double-helical structure of DNA [48].
The axis of the double helix can be modeled as a curve in three-dimensional space;
when the molecule is circular its topology can be studied. Circular DNA molecules
may be knotted or linked. Linear DNA forms are topologically trivial unless the two
ends are fixed. In this chapter, we consider enzymes which change the topology of
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DNA. In particular, we deal with site-specific recombinases and show an application
of knot theory to their study.

DNA topology is the study of the geometrical and topological properties of
circular DNA. Essentially all reactions involving DNA are influenced by its
topology. A good overview of the field of DNA topology can be found in [4].
Some knot theory books include expository chapters on the applications of low-
dimensional topology and knot theory to the study of DNA [1, 22, 33]. These books
focus on the tangle method introduced by Ernst and Sumners for the analysis of
site-specific recombination [21]. In Sects. 2 and 3, we introduce knots, links, and
the tangle method. In Sects. 4 and 5, we discuss site-specific recombination as
modeled by a rational tangle surgery, which can be interpreted as a Dehn surgery
in the covering space. Rational tangle surgeries are divided into band surgeries and
nonband surgeries (Sect. 5). The action of tyrosine recombinases is modeled as a
band surgery. In Sect. 6, we introduce results on band surgeries which are relevant
to the study of site-specific recombination. In Sect. 7, we present an application to
the Xer system.

2 Knots and Tangles

A knot is a simple closed curve in a three-dimensional space. A disjoint union of
knots is called a link or catenane. Intuitively, a tangle is a ball with two strings
as illustrated in Fig. 1a. In what follows, we use formal mathematical language to
define tangles and related technical terms [33]. A two-string tangle, or simply a
tangle, denoted by T D .B3; t/, is a pair consisting of a three-dimensional ball B3

and two arcs t . The arcs t are properly embedded in the ball, and the endpoints lie on
the boundary of the ball. The endpoints can be mapped to points fNW, NE, SW, SEg
on the equatorial circle, thus defining the framing for the tangle (Fig. 1a). A tangle is
rational if it can be obtained by smooth deformations of the trivial tangle (shown in
Fig. 1a, left). More formally, a tangle .B3; t/ is rational if there is a homeomorphism
of pairs between .B3; t/ and .D2 
 Œ0; 1�; fp1; p2g 
 Œ0; 1�/, where p1 and p2 are
points in the interior of a two-dimensional disk D2. Rational tangles are illustrated in
Fig. 1a. The class of rational tangles is the simplest class of tangles. There is a one-
to-one correspondence between the set of rational tangles and the extended rational
numbers Q [ f 1

0
g [11]. A rational tangle can be untangled by a finite sequence of

horizontal and vertical twists, and can be expressed using a vector representation,
called the Conway vector (Fig. 1a, legend).

The numerator N.T / of a tangle T is a knot or link obtained by adding arcs
outside the tangle ball to connect NW and NE, and SW and SE (Fig. 1b). A knot or
link is rational if it can be constructed as the numerator N.T / of a rational tangle T .
Rational knots and links are the same as 4-plats and 2-bridge knots and links. The
tangle sum S CT can be obtained from two tangles S and T by connecting the two
east endpoints of S to the two west endpoints of T (Fig. 1c).
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Fig. 1 (a) Rational tangles with Conway vectors .0/, .2; 3; 4/, and .�3; 0/ (left, middle, and right,
respectively). The corresponding rational numbers are 0, 30

7
D 4 C 1

3C
1
2

and � 1
3

D 0 C 1
�3

,

respectively. (b) The numerator N.T / of a tangle T is a knot or a 2-component link. (c) The tangle
sum S C T of two tangles S and T

3 Knots, Links, Site-Specific Recombination and the Tangle
Method

Circular genomes and naturally occurring plasmids are subject to knotting and
linking. Circular DNA forms are common in prokaryotes (e.g. the genome of
the bacterium Escherichia coli is circular). Even though the DNA in higher-order
organisms is commonly linear, it often appears to be subdivided into loops as a
consequence of the tight organization of DNA in the cell nucleus, thus justifying its
topological study.

Site-specific recombinases are ubiquitous enzymes whose cellular role is to
change the genetic code of an organism by integrating a DNA segment into another
one, excising a DNA segment, moving a DNA segment to a new location, or
inverting a DNA segment within a genome. They belong to one of two families,
based on sequence homology and strand-passage mechanism: serine recombinases
and tyrosine recombinases [25]. Serine recombinases bind two specific DNA sites,
introduce one double-stranded break at each site, recombine the open ends, and
reseal the ends. Unlike enzymes in the serine family, tyrosine recombinases act
through a Holiday junction intermediate, performing single-stranded cleavage in
two steps.

Through the process of cleavage and strand exchange, site-specific recombinases
are able to change the topology of their DNA substrates. Changes in topology can be
observed experimentally by taking closed circular DNA substrates and incubating
them with the enzyme of choice (e.g. [46, 47]). The recombination products are
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B

Fig. 2 The tangle B represents two strands of DNA trapped in an enzymatic complex. The tangle
Of represents the DNA outside the complex. B is partioned into the sum of Ob and P . The
tangle Ob contains the DNA inside the complex which remains unchanged during recombination.
Recombination changes P into another tangle R. We assume P and R are rational

analyzed by gel electrophoresis, electron microscopy, or atomic force microscopy,
reviewed in [4]. The enzymatic mechanism can be analyzed using tangles (reviewed
in [40]). The tangle method was introduced by Ernst and Sumners [21] and has been
used to characterize topologically the action of several site-specific recombinases
(e.g. [3, 8, 9, 13, 16–18, 21, 38, 40, 44, 45]).

In the tangle method, the pair consisting of the enzyme (D 3-ball) and the bound
DNA (D two strings) is modeled as an two-string tangle B . The tangle Of is
the exterior of B and contains the DNA not bound by the enzyme. The following
biologically reasonable assumptions are made [21]:

1. The topological mechanism of recombination is constant and independent of the
topology of the substrate. The tangle B is modeled as the sum of two tangles
Ob and P . Recombination occurs in the tangle P . The tangle O D Of C Ob

is called the outside tangle, and it remains unchanged during recombination (see
Fig. 2).

2. Recombination is modeled by tangle surgery, where the tangle P is changed
into another tangle R. The new tangle Ob C R is denoted by E . P can be
assumed to be a rational tangle by restricting the ball to enclose two very short
DNA regions (5–50 base pairs long) where cleavage takes place. Sometimes R

can be proven to be rational (e.g. [21, 44]). In other cases, enough biological
evidence is available to assume that R is a tangle with at most one or two
crossings.

In the case of the Xer recombination system in E. coli, P is defined so that the
length of the DNA inside P is short (32 base pairs) [39,45], so the tangles P and R

cannot be very complicated (see assumption 2 above). By pushing any extraneous
twists outside P , we can assume that P D .0/. In this example, knowledge of the
biochemical reaction of cleavage and strand exchange at the local level allows us to
assume that R D .�1/; .0; 0/ or .1/ (reviewed in [3, 45]).
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Suppose the substrate has a knot or link of type K1 and that the product is of type
K2. Then site-specific recombination taking K1 into K2 is modeled as a system of
tangle equations as follows:

(
N.O C P / D K1

N.O CR/ D K2

(1)

When the tangles involved are rational or sums of rational tangles, solutions
to the equations can be obtained using tangle calculus [19–21]. TopoICE-R and
TangleSolve are computer programs which can be used to find solutions to such
tangle equations [15, 35].

4 Tangle Surgeries and Dehn Surgeries

We refer the reader to [33,34] for the mathematical terminology used in this section.
By the second assumption of the tangle method, a site-specific recombination
reaction can be modeled as a tangle surgery, where the tangle P is converted into R

(Fig. 3). Such a tangle surgery can be studied at the covering-space level. Consider
the case where P and R are rational. The double branched cover of B3 along
two strings of a rational tangle is a solid torus. Hence a rational tangle surgery
corresponds to a particular type of surgery in the covering space, called a Dehn
surgery.

Dehn surgery is a method of constructing 3-manifolds using knots and links. Let
K be a knot in a 3-manifold M , and let Ext.K/ D M � N.K/ be the exterior
of K , where N.K/ is an open regular neighborhood of K . Let  be a simple closed
curve on @Ext.K/. Consider the equivalence class of all such curves under ambient
isotopy, which we call the isotopy class of  (see [1,33] for more formal definitions).
This isotopy class is called a slope. We attach a solid torus D2 
 S1 to Ext.K/ so
that  bounds a meridian disk of D2
S1. Let K./ denote the 3-manifold obtained.
We say that K./ is obtained from M by a Dehn surgery along K .

Let M be a 3-manifold such that @M is a torus. Let  be an isotopy class of
a simple closed curve on @M ; this isotopy class is also called a slope. Let M./

denote the closed 3-manifold obtained by attaching a solid torus to @M so that 

bounds a meridian disk of the solid torus. This operation is called a Dehn filling. A
Dehn surgery can be achieved by removing an open regular neighborhood of a knot
and applying a Dehn filling to the resulting space.

As stated before, the action of site-specific recombination can be interpreted
at the covering-space level in terms of a Dehn surgery. In many cases, the
recombination substrates are trivial knots and the products are rational knots and
links. The double cover of the 3-sphere branched along the trivial knot is the
3-sphere, and the double cover of the 3-sphere branched along a rational knot or
link is a lens space. Hence, the enzymatic action is modeled as a rational tangle
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OP RO

Fig. 3 The tangle method for site-specific recombination. The recombination is modeled by a
tangle surgery that changes P into R. The outside tangle O remains unchanged during the
recombination reaction

surgery, which corresponds to a Dehn surgery along a knot in the 3-sphere yielding
a lens space. By construction, the knot is strongly invertible. Hence results on
Dehn surgeries on strongly invertible knots, such as those in [12, 26], have direct
applications to the study of site-specific recombination.

5 Rational Tangle Surgeries

Rational tangle surgeries can be divided into two types: band surgeries and non-
band surgeries. See Sect. 6 for the definition of a band surgery. In the tangle method,
the rational tangle surgery taking P D .0/ into R D .1=w/ for some integer w
corresponds to a band surgery. In particular, if P D .0/ and R D .�1/; .0; 0/, or
.1/, the tangle surgery is a band surgery.

A rational tangle surgery can be converted into a Dehn surgery on a knot by
taking the double branched covering. A rational tangle surgery between rational
knots and links corresponds to a Dehn surgery on a knot embedded in a lens space,
yielding a lens space.

Culler et al. [12] studied Dehn surgeries on knots yielding a 3-manifold M with
a cyclic fundamental group (denoted by �1.M /). As a lens space has a cyclic
fundamental group, we can apply the following result to Dehn surgeries on knots
yielding lens spaces.

Theorem 1 ([12] Cyclic surgery theorem). Let M be a compact, connected,
irreducible, orientable 3-manifold such that @M is a torus. Suppose M is not a
Seifert fibered space. If �1.M.r// and �1.M.s// are cyclic, then �.r; s/ � 1. Hence
there are at most three slopes r such that �1.M.r// is cyclic.

Here, the distance �.r; s/ between the slopes r and s is defined by the
geometrical intersection number of r and s.

As a corollary to the cyclic surgery theorem, we have the following result about
rational tangle surgeries. A nonrational tangle M is called a Montesinos tangle if
it is homeomorphic to the tangle sum R1 C R2 C � � � C Rk of rational tangles
R1; R2; : : : ; Rk [19]. The double covering space of S3, branched along a rational



Site-Specific Recombination Modeled as a Band Surgery: Applications to Xer. . . 393

knot or link, is a lens space. Ernst [19] showed that a tangle is either rational or a
Montesinos tangle if its double branched covering space branched along two strings
is a Seifert fibered space, and obtained the following corollary to the cyclic surgery
theorem.

Corollary 1 ([19]). Suppose N.OCP / and N.OCR/ are rational knots and links
(including the unknot and the two-component unlink). Assume that P D .0/ and R

is a rational tangle. If R ¤ .1=w/ .w 2 Z/, then O is rational or a Montesinos
tangle.

All such solutions in the case where the tangle O is rational or a Montesinos
tangle are calculated in [14, Theorem 3]. Algorithms for computing solutions that
are rational or Montesinos, when R is assumed to be integral, were also developed
in [20, 43]. Computer programs presented in [15, 35] solve tangle equations under
suitable assumptions.

6 Band Surgeries

6.1 Definition of a Band Surgery

Let L be a link in S3 and let b W Œ0; 1� 
 Œ0; 1� ! S3 be an embedding such that
b�1.L/ D Œ0; 1� 
 f0; 1g. Let Lb be a link obtained from L by replacing a pair
of subarcs b.Œ0; 1� 
 f0; 1g/ with b.f0; 1g 
 Œ0; 1�/. This operation is called a band
surgery. For simplicity we use the symbol b to denote the image b.Œ0; 1�
Œ0; 1�/. If L

and Lb are oriented and have the same orientation except for the band b, the band
surgery is called coherent. A coherent band surgery always changes the number of
components of the link.

Suppose that two sites on a knot occur in direct repeats. (See the legend of Fig. 4
for the definition of a direct repeat.) We assume that the substrate and the product
have orientations inherited from the orientations of the sites.

Observation. Suppose that a site-specific recombination reaction converting a knot
with directly repeated sites to a link, or converting a link to a knot, is modeled by a
band surgery. Then the band surgery is coherent with respect to the orientations of
the knot and the link induced by the site orientations. (See Fig. 4.)

6.2 Characterization of Band Surgeries

The following characterizations are known for coherent band surgeries between
knots and links.
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a

b

Fig. 4 (a) A coherent band surgery from a trefoil knot to a Hopf link (2-cat). The knot and link
have the same orientation except at the band. (b) The orientation of the site is defined by using its
sequence. This orientation induces an orientation of the entire circle. A pair of two sites on a knot
is called a direct repeat if the orientations induced on the entire circle by each of these sites agree.
Otherwise, it is called an inverted repeat. Site-specific recombination with directly repeated sites
corresponds to a coherent band surgery. The part A represents the head part of the site, and B the
tail part

a b c

Fig. 5 (a) An antiparallel RH (right-handed) 2k-cat. (b) An antiparallel RH 4-cat. (c) An
antiparallel RH 6-cat

Theorem 2 ([36]). Let L be a trivial knot. Then Lb is a two-component trivial link
if and only if the band is trivial, i.e., there is a disk D bounded by L and b 	 D.
(See Fig. 6a.)

Theorem 3 ([26]). Let L be a trivial knot. Then Lb is a 2k-cat (see Fig. 5) if and
only if b is standard, i.e. there is a disk D bounded by L, b.f 1

2
g 
 Œ0; 1�/ 	 D, and

b has 2k half-twists with respect to D. (see Fig. 6b.)

Thompson [42] characterized this band surgery for the case where Lb is a Hopf
link. (See Fig. 4a, right.)

Band surgeries on a rational knot C.2m; 2n/ yielding a 2k-cat are characterized
in [18]. Note that C.2m; 2n/ corresponds to a twist knot if jmj D 1 or jnj D 1.
(See [30] for the definition of twist knots.) See Fig. 5 for pictures of antiparallel
right-handed 2k-cats.

Theorem 4 ([18, 27]). Let L be a rational knot C.2m; 2n/, and let Lb be an
antiparallel 2k-cat. Then b is isotopic to one of the six bands in Fig. 6c, and one
of the following holds:

1. Lb is right-handed and m D k, n D k, mC nC 1 D k, or mC n � 1 D k.
2. Lb is left-handed and m D �k, n D �k, mCnC 1 D �k, or mCn� 1 D �k.
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a

b

c

Fig. 6 (a) Band surgery from a trivial knot to a two-component trivial link. (b) Band surgery from
a trivial knot to a 2k-cat. The band has 2k half-twists. (c) Band surgeries from C.2m; 2n/ to 2k-cat

ba

Fig. 7 (a) Band surgery from a trivial knot to a trivial knot. (b) Band surgery from a trivial knot
to a .2; p/-torus knot. The band has p half-twists

For noncoherent band surgeries, there are two results on the characterization of
band surgeries.

Theorem 5 ([6]). Let L be a trivial knot. Then Lb is a trivial knot if and only if the
band is trivial, i.e., there is a disk D bounded by L; b.f 1

2
g 
 Œ0; 1�/ 	 D, and b has

a half-twist with respect to D. (See Fig. 7a.)

By using recent results on Dehn surgery of knots [31, 41], the following result
was obtained in [27].

Theorem 6 ([27]). Let L be a trivial knot. Then Lb is a .2; p/-torus knot if and
only if one of the following holds:

1. b is standard, i.e., there is a disk D bounded by L, b.f 1
2
g 
 Œ0; 1�/ 	 D, and b

has p half-twists with respect to D. (See Fig. 7b, left.)
2. p D 5 and b is isotopic to the band in (Fig. 7b, right).

6.3 Band Surgeries and Polynomial Invariants of Links

In order to show the nonexistence of a band surgery between two given links,
link invariants such as the link signature, the Alexander polynomial, and the Jones
polynomial are useful.

Let �.L/ denote the signature of an oriented link L. See [33] for the definition
of �.L/.
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Theorem 7 ([32]). Suppose Lb is obtained from L by a coherent band surgery.
Then j�.Lb/ � �.L/j � 1.

It is known that �.L�/ D ��.L/, where L� is the mirror image of L.

Corollary 2. Suppose a link L is changed into another link L0 by a sequence of
coherent band surgeries. Let n D j�.L/ � �.L0/j. Then the number of coherent
band surgeries in the sequence is at least n.

Let �K.t/ denote the Alexander polynomial of a knot K .

Theorem 8 ([23]). Let L be a two-component trivial link. Suppose a knot Lb is
obtained by a coherent band surgery from L. Then �Lb

.t/ D ˙t r f .t/f .t�1/ for
some integer r and some integral polynomial f .t/.

Kawauchi [29] generalized Theorem 8 to coherent band surgeries on parallel and
antiparallel 2k-cats.

Theorem 9 ([29]). Let L be a parallel 2k-cat. Suppose a knot Lb is obtained
by a coherent band surgery from L. Then �Lb

.t/ � ˙t r f .t/f .t�1/ mod
.1 � t/.1 � t2k/=1� t2 for some integer r and some integral polynomial f .t/.

Theorem 10 ([29]). Let L be an antiparallel 2k-cat. Suppose a knot Lb is obtained
by a coherent band surgery from L. Then �Lb

.t/ � ˙t r f .t/f .t�1/ mod k for some
integer r and some integral polynomial f .t/.

Kanenobu [28] gave a relation between special values of the Jones polynomial
and the Q-polynomial of knots and links before and after a band surgery. Here, we
include one result on the Jones polynomial. Let V.LI t/ denote the Jones polynomial
of a link L, and let ! D e�i=3.

Theorem 11 ([28]). Suppose Lb is obtained from L by a band surgery. Then it

follows that V.LI!/=V.Lb I!/ 2 f˙i;�p3
˙1g.

7 Applications to Xer Recombination

In this section, we discuss applications of band surgery theory to the tangle analysis
of Xer site-specific recombination. The Xer system of E. coli consists of two tyro-
sine recombinases, XerC and XerD, that act cooperatively at specific recombination
sites. The topological mechanism of XerCD has been studied experimentally for
unknotted substrates with two psi sites in direct repeats [10], and for substrates
that are RH torus catenanes with psi sites in antiparallel orientations [5]. Xer
recombination at psi sites requires the presence of two accessory proteins believed to
stabilize a specific synapse geometry prior to recombination, thus conferring topo-
logical specificity to the system [10]. In vivo the Xer enzymes act on the bacterial
chromosome at dif sites to resolve chromosome dimers produced by homologous
recombination. More recently, it has been proposed that Xer recombination plays
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a role in the unlinking of replication links (in the absence of topoIV) [24]. In this
section, we briefly review the tangle analysis of the various Xer reactions.

Remark 1. The knot table in [34] is commonly used to identify knots and links.
However, this table does not provide a consistent way to distinguish a knot from
its mirror image, and this is particularly important when dealing with biological
objects. We use here the writhe-guided nomenclature for knots reviewed in [7]. This
nomenclature offers a way to systematically distinguish a knot from its mirror image
based on the mean writhe of an unbiased ensemble of conformations of the given
knot type. The writhe is a geometrical property, which provides a way to measure the
chain’s entanglement complexity and chirality. Here, given a chiral pair .K1; K2/ of
a fixed knot type K , the knot Ki is called K if its mean writhe is positive, otherwise
it is called K�, the mirror image of K .

7.1 Xer–psi Recombination on an Antiparallel 2k-cat

In [45], the recombination mechanism of Xer acting on psi sites of an unknot to
yield an antiparallel RH 4-cat (.2; 4/-torus link) was characterized using the tangle
method. There, it was shown that the tangle O from the tangle equation is rational,
using a result from [26].

In [5], it was shown that Xer–psi recombination on an antiparallel RH 2k-cat
produces a 2k C 1 crossing knot for k � 3. In these reactions, the 4-cat was not
recombined by XerCD. Using hybrid psi–loxP sites and a mutant of the recombinase
Cre, the authors of [2] achieved recombination on an antiparallel RH 4-cat, which
was converted to a five-noded knot. Here we consider mathematically the case where
an antiparallel RH 2k-cat produces a (2k C 1)-crossing knot for k D 2 and 3.

The following theorems follow from the arguments in [27] and [18]. See [27] for
the details of the proof. In this section, we use the notation for knots given in [34].

Theorem 12 ([18, 27]). Suppose the substrate L D N.O C P / is an antiparallel
RH 4-cat and the product K D N.O C R/ is a 5 crossing knot. Suppose further
that P D .0/ and R D .1=w/ for some integer w. Then K is 5�

2 . If P D .0/ and
R D .�1/, then O D .�4=3/.

Proof. First, note that �.L/ D 1. The product K is either a torus knot 51, a twist
knot 52, or one of their mirror images. As �.51/ D 4 and �.52/ D �2, K must be
5�

2 . The characterization of such a tangle surgery follows from Theorem 4.

For the case where the substrate is an antiparallel RH 6-cat and the product is a
seven crossing knot other than 77, we have the following theorem.

Theorem 13 ([18, 27]). Suppose the substrate L D N.O C P / is an anti-parallel
RH 6-cat and the product K D N.O C R/ is a seven crossing knot other than 77

and 7�
7 . Suppose further that P D .0/ and R D . 1

w / for some integer w. Then K is
7�

2 or 7�
4 .
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RH 6-cat 7∗
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Fig. 8 Tangle models of recombination from antiparallel right-handed 6-cat to 7�

2 and 7�

4

1. If K is 7�
2 , P D .0/ and R D .�1/, then O D .� 6

5
/.

2. If K is 7�
4 , P D .0/ and R D .�1/, then O D .� 1

3
/C .� 1

3
/.

(See Fig. 8.)

Proof. As �.L/ D 1, from Theorem 7 we have �.K/ D 0 or 2. Then the seven-
crossing candidates for K are 7�

2 , 7�
4 , 7�

6 , 77, 7�
7 and 3�

1 #41. As V.LI!/ D �p3

and V.7�
6 I!/ D �1, by applying Theorem 11, we see that there is no coherent band

surgery between L and 7�
6 . Theorem 10 gives the proof of nonexistence of a band

surgery from L to 7�
6 , as well as to 3�

1 #41. Band surgeries between antiparallel 6-cats
and 7�

2 or 7�
4 are classified in Theorem 4.

We do not know whether a band surgery from an antiparallel RH 6-cat to 77 or
7�

7 exists or not.
In [43], we assumed that R D .k/ for some integer k, and computed solutions

to the above equations that are rational and sums of rational tangles. A solution
(which does not correspond to a band surgery) that takes RH 6-cat to the 7�

7 knot was
obtained, but in this case R D .3/, which is not consistent with the local biochemical
mechanism of tyrosine recombinases.

7.2 Unlinking of a Parallel 2k-cat by the Xer–dif–FtsK System

In [24] unlinking of DNA catenanes by the Xer–FtsK system at dif sites was
reported. In those experiments, parallel 2k-cats were unlinked gradually. The
authors of [24] proposed a stepwise unlinking model (Fig. 9) to account for the
experimental data. We will characterize the shortest unlinking pathway, as well as
the mechanism of each individual step from the trefoil to the unlink. We will also
use tangle calculus to find rational and Montesinos tangle solutions to those steps
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Fig. 9 The stepwise unlinking model proposed in [24]. A right-handed 6-cat with sites in parallel
alignment is gradually unlinked. The intermediates are an RH five-crossing torus knot, a parallel
RH 4-cat, an RH trefoil, a Hopf link, and a trivial knot. In this model, the parallel RH 6-cat is
unlinked in six-steps

where a full characterization is not available. The results of this research will be
presented in a forthcoming paper [37]. The iterative recombination model of this
unlinking is also discussed in [38].
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Understanding DNA Looping Through
Cre-Recombination Kinetics

Massa J. Shoura and Stephen D. Levene

Abstract The interior of a cell is a crowded and fluctuating environment where
DNA and other biomolecules are both highly constrained and subject to many
mechanical forces. The extensive compaction of DNA in living cells is a challenge
to many critical biological functions. An evolutionary solution to this challenge may
be the juxtaposition of cis-acting elements such that multimeric protein complexes
simultaneously interact with two or more protein-binding sites. This mode of
biological activity involves the formation of looped DNA structures, which, by
themselves, are thermodynamically unfavorable. Our knowledge about the roles of
DNA bending, twisting, and their respective energetics in DNA looping has come
mainly from analyses of ligase-dependent DNA cyclization experiments, which are
quantitatively described by the Jacobson–Stockmayer, or J, factor. In this chapter,
we discuss a novel quantitative approach to measuring the probability of DNA loop
formation in solution using ensemble Förster resonance energy transfer (FRET)
measurements of intramolecular and intermolecular Cre-recombination kinetics.
Because the mechanism of Cre recombinase does not conform to a simple kinetic
scheme, we employ numerical methods to extract rate constants for fundamental
steps that pertain to Cre-mediated loop closure.

1 Overview

In order to better understand the physical mechanism of protein-mediated DNA
looping, it is necessary to complement both in vitro and in vivo experiments with
theoretical approaches that account for the dynamic flexibility of DNA. In the
last decade, there has been a series of notable experiments investigating DNA
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flexibility and folding that motivated the work described here. We describe a
novel analysis of synaptic-complex formation based on the kinetics of the Cre
recombination reaction, which yields a quantitative measure of the probability
of DNA loop formation, J. Our approach uses time-dependent Förster resonance
energy transfer (FRET), a technique that has been used effectively in the analysis
of DNA cyclization, to obtain the rates of both intermolecular and intramolecular
recombination site synapsis [1]. In addition to providing information about the
probability of Cre-mediated loop formation in vitro, our method is potentially
applicable to studies of DNA loop formation in living cells.

1.1 Fluorescence and Förster Resonance Energy Transfer

Absorption of light (photons) by a population of molecules can induce electronic
transitions from a singlet ground level S0 to an excited state S1. The excited state can
return to the ground state via several different competitive processes. Fluorescence
occurs when most of the energy absorbed is emitted as photons while the remaining
absorbed energy is nonradiatively dissipated in the surroundings as thermal energy.
Thus, the energy of the emitted photons is always lower than that of the absorbed
photons. After excitation, a fluorophore (a molecule that emits photons) remains
in the excited state for a short time before returning to the ground state; the
excited-state, or fluorescence, lifetime ranges from picoseconds to nanoseconds.
Fluorescence is characterized by parameters such as the intensity, which equals the
number of photons emitted at a given wavelength multiplied by the photon energy,
and the quantum yield, the ratio of the number of photons emitted to the number
absorbed.

Exogenous molecules added to a fluorescent system can quench the emission and
therefore reduce the quantum yield. Furthermore, fluorophores can, under certain
conditions, interact through the transfer of energy from an electronically excited
fluorophore (the “donor”) to a fluorophore in the ground state (the “acceptor”). The
excited state of the donor induces an oscillating electric field that excites acceptor
electrons, a phenomenon first considered by Theodor Förster [2] and denoted Förster
resonance energy transfer. Energy transfer leads to a measurable decrease in both
the fluorescence intensity and the fluorescence lifetime of the donor owing to an
additional decay pathway from the excited state in the presence of an acceptor. The
efficiency of energy transfer, E, is strongly distance-dependent and is given by

E D R6
0

R6
0 CR6

; (1)

where R is the distance between the fluorophores and R0 is the distance at which E
is 50 %, which depends on the spectroscopic characteristics of the specific donor–
acceptor dye pairs and the spatial relationship between the fluorophores [3–5].
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Fig. 1 Principle of Förster resonance energy transfer (FRET) applied to DNA loop formation.
A linear DNA molecule is labeled with donor (green) and acceptor (red) modifications near the
termini. The FRET detection method described here is based on donor quenching, in which the
labeled DNA is excited at a wavelength that primarily excites the donor moiety. In the unlooped
state shown on the left, the emission intensities from the donor and acceptor are comparable to
those observed for the free fluorophores. Addition of a protein that mediates formation of a loop
(right) brings the DNA ends into close proximity (measured in terms of the end-to-end distance
R), giving rise to resonant energy transfer between the fluorophores. Energy transfer in this case is
manifested through a decrease in the donor, and corresponding increase in the acceptor, emission
intensities

This dependence on R makes FRET a very powerful tool, in principle, for measuring
fluorophore–fluorophore distances in the range of 1–10 nm (Fig. 1).

1.1.1 Why FRET?

FRET has been widely used in ensemble and single-molecule studies to characterize
both intermolecular interactions and intramolecular conformational transitions. For
example, FRET has been used to investigate various protein-protein interactions,
such as oligomerization of receptors [6] and transcription factor interactions [7].
Intramolecular FRET can give distance information for dyes tethered to spe-
cific atoms within a fluorophore-labeled molecule such as in complex molecular
structures of nucleic acids and protein–nucleic acid complexes [8]. Short oligonu-
cleotides can be covalently labeled with dyes and assembled in a specific manner
to form structures of interest such as four-way DNA junctions [9]. More recently,
single-molecule FRET has been used to probe the dynamics of specifically labeled
DNA duplexes [10] and partially mobile four-way DNA junctions and RNA hairpins
[11, 12].

Kinetic information about complex biological phenomena such as intrinsic
or protein-induced conformational changes can also be obtained from FRET.
Chromatin has been studied to examine torsional features of nucleosomal DNA
[13]. Nucleosomes with combinations of labeled DNA and labeled histones have
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been used to test the effects of transcription factor interactions on nucleosome
structure [14], and to investigate DNA–histone association or dissociation [15, 16].
Other examples include the nucleoprotein filaments formed by E. coli RecA and
similar protein assemblies [17]. These bind nonspecifically to DNA and promote
strand exchange during homologous recombination. Whereas electron microscopy,
crystallographic, and NMR studies have provided important insights into the
structure and activity of DNA–recombinase complexes, FRET studies can overcome
the deficiencies of those techniques to estimate average fluorophore distances and
distance distributions within such protein–DNA complexes [18]. With the advent
of advanced single-molecule FRET techniques [17, 19, 20], information can be
obtained about the conformational dynamics of macromolecules. The capability
to directly address conformational flexibility makes FRET a powerful adjunct to
classical structural-biology techniques.

1.2 Cre–loxP Site-Specific Recombination

From viruses to vertebrates, many organisms use transposition and site-specific
recombination as efficient mechanisms for rearranging genetic material [21–24].
Site-specific recombination differs from homologous recombination in that DNA
is exchanged exclusively at specific sequences [25]. Hallmarks of site-specific
recombination systems include target-sequence recognition and specific cleav-
age/religation chemistry. The integrase system of the bacteriophage œ (œ Int)
has served as a paradigm for a large superfamily of conservative site-specific
recombinases [26].

The genome of the bacteriophage P1 is a 90-kbp circular molecule; like all
circular genomes, daughter molecules must be decatenated after replication [27–29].
This process is facilitated by a protein called Cre recombinase, a phage-encoded
member of the œ-Int superfamily of recombinases. The Cre mechanism acts on
specific sites, denoted loxP, in a multistep reaction scheme. A common feature of
the œ-Int superfamily is a catalytic tyrosine residue (in the case of Cre Y324), which
cleaves DNA in a mechanism similar to the chemistry of topoisomerase IB [30].
The enzymatic reaction progresses in two distinct stages – an initial round of strand
cleavage followed by DNA strand exchange to form a stable recombinase-bound
Holliday junction [31, 32]. This junction is resolved by a second set of cleavage and
strand-exchange steps, yielding recombinant products.

It has been challenging to study the key steps of such reactions in the context
of the entire pathway. The mechanism of Cre recombinase and other members
of the integrase family remains controversial owing to limited and contradictory
three-dimensional structural information for the protein–DNA synaptic complexes
that are central intermediates in these pathways [33]. Although crystallographic
structures of Cre [31, 34–36], Flp [37], and œ-Int [38] recombinases with various
oligonucleotides are available, the structures of the recombinase–DNA intermedi-
ates in solution, such as the Cre–DNA synaptic complex, have remained elusive.
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Moreover, the dynamic properties of these intermediates and their relation to the
overall kinetics of the reaction pathway remain unclear.

The wild-type loxP target site for Cre is a 34-bp DNA sequence that consists
of two 13-bp inverted repeats flanking an asymmetric 8-bp core region [39]. The
core sequence confers an overall directionality on the loxP site. Recombination on
directly repeated loxP sites leads to the exclusive formation of deletion products,
whereas recombination of inversely repeated loxP sites results in an inversion of the
intervening DNA sequence with respect to the parental substrate [40, 41].

2 Thermodynamics of DNA Looping

The bending and twisting flexibility of DNA has been measured by a number of
groups by employing ligase-mediated cyclization [1, 42–45]. The Cyclization effi-
ciencies of DNA fragments can be measured in terms of the Jacobson–Stockmayer
factor, J, also termed the J factor. The J factor for a DNA segment of specified
length can be thought of as the effective concentration of one end of the DNA in the
vicinity of the other. Thermodynamically, J is the ratio of an equilibrium constant
for conversion of a linear monomer to a circular molecule, Kc, to the corresponding
rate constant for dimerization of a linear monomer, Kb [42, 43, 46]. Dividing Kc by
Kb removes the thermodynamic contribution from covalent-bond dissociation and
reformation so that the resulting expression for J reflects only the thermodynamic
cost of constraining the chain ends. The associated free energy for this process in
the standard state is then given by

�G0 D �RT ln J D �RT ln .Kc=Kb/ ; (2)

where R is the gas constant and T is the absolute temperature. Theoretically, J can
be calculated, in principle, from probability densities computed in Monte Carlo
simulations of DNA chains subject to specified boundary conditions imposed on
the ends of the chain [47].

Zhang et al. [47] developed a rigorous statistical-mechanical theory for DNA
looping based on a generalization of polymer cyclization. In their model, DNA
conformations are described by standard base-step parameters of tilt, roll, and
twist [48]. Their analysis revealed that there are significant quantitative differences
between DNA cyclization and looping. These differences are manifested in the
amplitude and phase of J as a function of the helical phasing and are sensitive to
both the structure of the protein complex that mediates looping and its intrinsic
flexibility. Protein-specific geometry and flexibility can couple to the DNA twist
in a loop to give unexpected deviations in the periodicity of J compared with
that expected according to results for cyclization. Moreover, unlike the case for
cyclization, multiple looped conformations involving the same protein structure but
different loop geometries can coexist. These details should be considered when one
is analyzing DNA loop formation, both in vitro and in vivo.
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Fig. 2 Comparison between ligase-catalyzed DNA cyclization and DNA looping via Cre recombi-
nase. The cyclization kinetics measures J factors from rates of conversion of linear to circular DNA
in the presence of DNA ligase. Rate constants for the intramolecular reaction (a linear to a circular
monomer) are then normalized by a factor containing rate constants for the equivalent dimerization
reaction for linear molecules (two linear monomers forming a single linear dimer). We extend this
scheme to DNA looping performed by Cre recombinase. The intramolecular recombination model
shows a linear DNA substrate bearing directly repeated Cre2loxP sequences (SE4). Formation of
the synaptic complex (SC) occurs with forward and reverse rate constants k3

(c) and k� 3
(c). The

rate constants k4
(c) and k� 4

(c) govern the resolution reaction, which leads to product formation.
The corresponding model for the intermolecular reaction takes place between two loxP-bearing
DNA molecules fully occupied by Cre (SE2). The rate constants for the corresponding synapsis
and resolution steps are k3

(b), k� 3
(b), k4

(b), and k� 4
(b), respectively

3 Measurements of Cre-Mediated DNA Looping

It is not generally possible to measure Kc and Kb directly. The most general method
for measuring J experimentally involves determining rate constants separately for
intramolecular and intermolecular end-association reactions [46]. We used a similar
approach to analyze loop formation in intramolecular Cre-mediated recombination,
but this required a number of technical advancements to address the increased
complexity of recombinase kinetics relative to ligase-mediated cyclization kinetics
(Fig. 2).

3.1 Experimental and Numerical Methods

We used bulk FRET measurements that monitored quenching of a donor dye to
quantitate the rate of Cre-mediated site synapsis and recombination. Our experimen-
tal design monitored the recombination-mediated exchange of fluorophore-labeled
strands on parental duplexes, placing donor and acceptor moieties at adjacent
positions on opposing DNA strands in the products (Figs. 3 and 4) Rate constants
were obtained by fitting the time-dependent fluorescence signal, F(t), to a system of
ordinary differential equations, as described below. This analysis requires knowing
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Fig. 3 Time-dependent FRET measurements of intermolecular synapsis and recombination
kinetics. (a) Recombination reactions using equimolar ratios of donor-labeled (TDB) and acceptor-
labeled (TBA) duplexes in reactions having total loxP concentrations of 12.5 and 25 nM.
(b) Time-dependent fluorescence signal, F(t), which monitors recombination-mediated exchange
of DNA strands via donor quenching. The recombinant product harbors donor and acceptor
moieties at adjacent positions on opposing DNA strands and has a FRET efficiency of 0.99. Rate
constants were obtained by fitting each set of F(t) data to the numerical solution of a system of
ordinary differential equations (see Fig. 4), which described the time-dependent concentrations of
reactants, intermediates, and products along the intermolecular recombination pathway

the extent of donor quenching in the recombination product, which we determined
independently from the ratio of the intrinsic donor emission signal from donor-only
(TDB) duplexes to that from doubly labeled (donor plus acceptor) duplexes with the
probes located at positions identical to those in the recombination product (TDBA)
(see the supplementary information for Ref. [49]). The kinetics of recombination
were essentially independent of Cre concentration.

To reduce the number of unknowns that needed to be fitted to the data, we
determined the duplex quenching constant, �DA

Dup D f TDBA=f TDB, which is equal
to the ratio of the quantum yields for the donor-labeled duplex in the presence
and absence of the acceptor. We obtained a value of 0.01, implying that the donor
emission is quenched by 99 % in the duplex bearing donor and acceptor fluorophores
in the positions expected in the recombinant product. The same value of this
parameter was obtained in the presence and absence of Cre protein, indicating that
there is negligible excess quenching of donor emission due to Cre binding alone.
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Fig. 4 Intramolecular synapsis and recombination kinetics obtained from time-dependent FRET
measurements. (a) Schematic of the intramolecular reaction carried out on a DNA fragment
bearing donor- and acceptor-labeled loxP sites. (b) Fluorescence signal, F(t), which monitors
donor quenching via FRET during site synapsis and recombination. The Fluorescence decays are
for molecules having 3-kbp and 870-bp DNA loops. The positions of the donor and acceptor
fluorophores in the labeled product loxP sequences are the same as in Fig. 2. Rate constants
were obtained by fitting F(t) to a system of ordinary differential equations that described the
time-dependent concentrations of reactants, intermediates, and products along the intramolecular
recombination pathway (see Fig. 5)

3.1.1 Recombination Pathway for Cre Recombinase: A Mathematical
Model

The mechanism of Cre recombinase does not obey a simple Michaelis–Menten
scheme; therefore, we employed numerical methods to extract rate constants for
fundamental steps in the recombination pathway. The proposed mechanisms of both
the intermolecular and the intramolecular recombination pathways and additional
details of the curve-fitting procedure are given below and in [49].

The intermolecular and intramolecular recombination pathways share a common
set of four rate constants for the elementary recombinase binding and dissoci-
ation steps, k1, k� 1, k2, k� 2. The intermolecular and intramolecular site synapsis
kinetics are characterized by the apparent rate constants k3

(b), k� 3
(b), k4

(b), k� 4
(b)

and k3
(c), k� 3

(c), k4
(c), k� 4

(c), respectively (Figs. 5 and 6) In our analysis, we fixed



Understanding DNA Looping Through Cre-Recombination Kinetics 413

Fig. 5 Mechanistic steps and kinetic description of the pathway of Cre intermolecular recombina-
tion

the parameters k1, k� 1, k2, k� 2 at values that were experimentally determined by
Ringrose et al. [50] under reaction conditions closely similar to ours. For the
intermolecular FRET data, we fitted the time-dependent reduced fluorescence
intensity F(t) to five parameters: k3

(b), k� 3
(b), k4

(b), k� 4
(b), and �SC

DA, an empirical
quenching constant for the donor–acceptor pair in the synaptic complex. This
parameter is expected to be significantly different from the duplex value, �Dup

DA.
For intramolecular reactions, we fixed �SC

DA at the value obtained for the inter-
molecular data sets and fitted F(t) using k3

(c), k� 3
(c), k4

(c), and k� 4
(c) as adjustable

parameters. Curve-fitting routines were implemented in MATLAB and used the
functions lsqcurvefit for nonlinear least-squares fitting and ode15s to solve the
initial-value problem for the systems of ordinary differential equations.

3.2 Kinetic Characterization of Intermolecular
and Intramolecular Cre Recombination

The time-dependent fluorescence of the intermolecular reaction is described very
well by the single-intermediate mechanism shown in Fig. 3. The apparent value
of �SC

DA was virtually constant and equal to 0.12˙ 0.014 for all data sets,
independent of [loxP] or [Cre]. Detailed studies of the intramolecular reaction were
facilitated by a novel fluorophore-labeling method, which places donor and acceptor
modifications at specific sites in covalently closed plasmids. We investigated the
intramolecular reaction using two linear plasmids that form loops of 3 kbp and
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Fig. 6 Mechanistic steps and kinetic description of the pathway of Cre intramolecular recombina-
tion

870 bp on synapsis. These substrates had fluorophore-labeled loxP sites positioned
near the ends of the molecule. In order to avoid interference from the intermolecular
reaction, intramolecular-kinetics assays were carried out at substrate concentra-
tions of less than 2 nM ([loxP] < 4 nM). This range was below the target-site
concentration threshold for intermolecular recombination, which generally requires
significantly greater concentrations of the DNA substrate and the recombinase
protein. Figure 4 shows that the time-dependent FRET signals were fitted quite well
by the solutions of the ordinary differential equations for the intramolecular single-
intermediate Cre-recombination pathway. We fixed the value of �SC

DA at 0.12, the
best-fit value obtained from analysis of the intermolecular reaction, and treated k3

(c),
k� 3

(c), k4
(c), and k� 4

(c) as adjustable parameters.
The intramolecular recombination reactions showed time-dependent fluores-

cence signals that were qualitatively different from those observed for the inter-
molecular reaction. There was a rapid initial decay of the fluorescence emission,
followed by a slower, more extended kinetic phase with little change in the
fluorescence amplitude beyond 10 min. In the case of the 870-bp substrate, the initial
decay phase was faster, and therefore more difficult to characterize, than that for the
3-kbp substrate.
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Table 1 Comparison of experimental J-
factor values obtained from Cre recombi-
nation, Jexp, with theoretical J values, Jtheor,
obtained by a transfer matrix method [49]

Loop size (bp) Jtheor (nM) Jexp (nM)

3,044 20 18 (˙ 4.7)
870 55 37 (˙ 18)

4 Estimating the Probability of Loop Closure
by Recombination Kinetics

Independent measurements of intermolecular and intramolecular recombination rate
constants permit quantitative determination of the probability of loop formation, i.e.,
the J factor. This probability, which is normally expressed in units of concentration,
is a generalization of the quantity J defined for cyclization in Sect. 2. Formally, J is
a quotient of apparent rate constants for intramolecular and intermolecular synapsis
and is given by

J D Kc

Kb
D k

.c/
3 k

.b/
�3

k
.c/
�3k

.b/
3

: (3)

Our values of J are based on the kinetics of substrate conversion to synaptic
complex and therefore not dependent on the apparent values of k4

(c), k� 4
(c) and

k4
(b), k� 4

(b) determined from the fits to the fluorescence-decay data. Indeed, the
latter rate constants are less accurately determined than the other four kinetic
parameters because strongly quenched product species contribute little to the total
fluorescence signal.

Using (3), we obtained the values of J reported in Table 1. The experimental
value Jexp for the 3-kbp looped substrate is in excellent agreement with the
theoretical J value for both loop conformations. The Jexp value for the 870-bp loop
falls somewhat below the theoretical value. There is greater uncertainty associated
with this measurement, due in large part to the fact that the initial phase of the
fluorescence decay is too rapid to be accurately captured in a manual mixing
experiment. We note that significant modulations of J due to the helical geometry
of DNA are not expected in the range of loop sizes examined here [47]. These
modulations were not taken into account in the theoretical calculations.

5 Discussion and Summary

Many methods have been used to directly observe DNA looping in vitro, such
as scanning-probe microscopy [51] and electron microscopy [52], and single-
molecule techniques [53]. In vivo assays based on helical dependence, in which
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the DNA length between two protein-binding sites is varied and excess repression
or activation of a reporter gene is measured [54, 55], have been a powerful
tool in bacterial systems. Several techniques have been developed in the last
decade to investigate loop formation in the cells of higher organisms. Chromosome
conformation capture (3-C) technology and variants thereof [56] make use of
nonspecific protein–protein crosslinking combined with digestion and religation of
protein-bound DNA fragments to identify long-range interactions across complex
genomes.

However, the number of techniques available for quantifying DNA looping in
solution is limited. Extensions of solution-phase in vitro approaches would be
valuable complements to multi-C technologies in vivo and may offer improved res-
olution. We have described a novel approach to characterizing the rate-determining
steps for intermolecular and intramolecular synapsis in a Cre site-specific recom-
bination reaction. Cre recombination does not require accessory proteins, DNA
supercoiling, or particular metal-ion cofactors and is thus a highly flexible system
for quantitatively analyzing DNA loop formation in vitro and in vivo. Our method-
ology, which could be extended to future in vivo studies, uses time-dependent
FRET in conjunction with numerical modeling of the recombination pathway to
monitor target site synapsis and the time-dependent yield of Cre-recombination
products. The quotient of apparent equilibrium constants for the intramolecular
and equivalent intermolecular Cre reactions yields a quantity J that characterizes
the thermodynamics of loop-mediated intramolecular site synapsis. Additional
information about the synapse geometry is potentially available from FRET, but
would require more sophisticated modeling of dye motion within the nucleoprotein
complex. The present FRET study was not designed to fully characterize the
geometry of the recombination intermediate; however, extensions of this approach
could be used in subsequent studies to reveal the dynamic nature of recombination
intermediates in solution.
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The QSSA in Chemical Kinetics: As Taught
and as Practiced

Casian Pantea, Ankur Gupta, James B. Rawlings, and Gheorghe Craciun

Abstract Chemical mechanisms for even simple reaction networks involve many
highly reactive and short-lived species (intermediates), present in small concentra-
tions, in addition to the main reactants and products, present in larger concentrations.
The chemical mechanism also often contains many rate constants whose values
are unknown a priori and must be determined from experimental measurements of
the large species concentrations. A classic model reduction method known as the
quasi-steady-state assumption (QSSA) is often used to eliminate the highly reactive
intermediate species and remove the large rate constants that cannot be determined
from concentration measurements of the reactants and products. Mathematical
analysis based on the QSSA is ubiquitous in modeling enzymatic reactions. In this
chapter, we focus attention on the QSSA, how it is “taught” to students of chemistry,
biology, and chemical and biological engineering, and how it is “practiced” when
researchers confront realistic and complex examples. We describe the main types
of difficulties that appear when trying to apply the standard ideas of the QSSA,
and propose a new strategy for overcoming them, based on rescaling the reactive
intermediate species.

First, we prove mathematically that the program taught to beginning students
for applying the 100-year-old approach of classic QSSA model reduction cannot
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be carried out for many of the relevant kinetics problems, and perhaps even most
of them. By using Galois theory, we prove that the required algebraic equations
cannot be solved for as few as five bimolecular reactions between five species (with
three intermediates). We expect that many practitioners have suspected this situation
regarding nonsolvability to exist, but we have seen no statement or proof of this
fact, especially when the kinetics are restricted to unimolecular and bimolecular
reactions. We describe algorithms that can test any mechanism for solvability. We
also show that an alternative to solving the QSSA equations, the Horiuti–Temkin
theory, also does not work for many examples.

Of course, the reduced model (and the full model, for that matter) can be solved
numerically, which is the standard approach in practice. The remaining difficulty,
however, is how to obtain the values of the large kinetic parameters appearing in
the model. These parameters cannot be estimated from measurements of the large-
concentration reactants and products. We show here how the concept of rescaling the
reactive intermediate species allows the large kinetic parameters to be removed from
the parameter estimation problem. In general, the number of parameters that can be
removed from the full model is less than or equal to the number of intermediate
species. The outcome is a reduced model with a set of rescaled parameters that is
often identifiable from routinely available measurements. New and freely available
computational software (parest_dae) for estimating the reduced model’s kinetic
parameters and confidence intervals is briefly described.

1 Introduction

The quasi-steady-state assumption (QSSA) has become a cornerstone of chemical
kinetic modeling and model reduction since its introduction almost a 100 years
ago [4,5]. Typical kinetic mechanisms describing any reasonably complex chemical
system involve species that have large concentrations, namely the reactants and
products, and species that have vanishingly small concentrations, usually referred
to as reactive intermediates or simply intermediates. The reactive intermediates
have small concentrations because their rates of formation are small compared with
their rates of consumption over the range of species concentrations of interest.
Models that contain highly reactive intermediates usually display a behavior with
two (or more) timescales. The full model exhibits a fast timescale, during which
the highly reactive intermediates change from their starting conditions (often zero)
to quasi-steady values relative to the reactants and products, and a slow timescale,
during which the large-concentration reactants and products evolve. The QSSA is
used to remove the highly reactive, low-concentration species from the model and
produce a reduced model valid on the slow timescale, which is usually the timescale
of interest for analyzing measurements, identifying reduced mechanisms, estimating
model parameters, and designing experiments and industrial reactors. As taught in
introductory examples, the QSSA reduced model usually contains only the reactants
and products. The rate expressions for the production and consumption of reactants
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and products in terms of only the reactants and products are called the reduced
mechanism. Like the QSSA itself, the reduced mechanism is valid over the usual
range of species concentrations exhibited by the chemical system of interest.

The quasi-steady-state assumption is widely used in modeling enzymatic reac-
tions, where the intermediates are various enzyme–substrate complexes. The QSSA
is at the core of most enzyme kinetics models, such as the Michaelis–Menten
kinetics for the basic enzyme reaction [18, 20], the Hill kinetics for cooperative
enzymatic models [11, 18], models for enzyme inhibition processes [18], and the
Goldbetter–Koshland function in models of futile cycles [9, 24].

The model reduction provides several advantages.

1. Model validation. The reduced mechanism allows the model developer to test
the structure of the mechanism against experimental measurements. Since the
reduced mechanism involves only the more easily measured high-concentration
reactants and products, the experimental measurements and therefore the model
validation are streamlined.

2. Parameter estimation. The full mechanism involving the reactive intermediates
involves both large and small rate constants, in which the large rate constants
usually correspond to the reactions that consume the intermediates. The large
rate constants corresponding to intermediate consumption reactions cannot easily
be identified from experimental measurements. To identify these parameters,
measurements of the rapidly evolving, low-concentration intermediates are
required. In the reduced model, however, these large rate constants often
are removed entirely or appear as ratios to other large rate constants. This change
in parametrization of the model facilitates estimating the model parameters
from slow-timescale measurements of only the high-concentration reactants and
products that are typically available.

3. Model solution. The evolution of species concentrations is usually described by
sets of nonlinear ordinary differential equations (ODEs) that must be solved
numerically. Because of the large and small rate constants, the full model’s ODEs
are often stiff. Even in fortuitous cases in which the large rate constants were
somehow available, early ODE solvers often failed to produce accurate solutions
for the stiff equations generated by the full model. ODE solvers have improved
to the point that even reasonably stiff ODEs corresponding to large, complex
chemical mechanisms can be solved accurately. Simplifying the mechanism and
reducing the stiffness may, however, lead to a large decrease in the required
computation time.

The QSSA method has a long history and a prominent place in the education of
chemists, biologists, and chemical and biological engineers. Although the validity
of the QSSA model as an approximation to the full mechanism has been studied
extensively [6, 10, 20, 21], some fundamental questions about the method have not
been addressed. In this chapter, we first explore the following unanswered question:
for what class of chemical reactions can the standard procedure for applying the
QSSA actually be carried out? The answer to even this basic question is surprising.
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We prove in Sect. 2 that the classic QSSA method cannot be carried out for
chemical reactions as simple as those with second-order kinetics involving only
three intermediates and two reactants and products. In Sect. 3, we consider two
simple alternatives to the classical reduction method of the QSSA to overcome this
limitation. We show that neither of these simple alternatives is sufficient for model
reduction. In Sect. 4, we consider the numerical solution of the full and reduced
models, and show how to rescale the species and parameters to obtain a tractable
parameter estimation problem. In Sect. 6, we draw conclusions from this study and
comment on future research directions.

2 The QSSA and Its Limitations

2.1 The QSSA Method

Reaction networks can involve the formation and consumption of intermediate
species, which sometimes are transitory, highly reactive, and unlikely to exist out-
side the reaction mixture. The quasi-steady-state assumption in based on the rapid
equilibration of these species. A slow-timescale model can be derived by setting
the net rate of formation of these intermediates to zero. This results in a system of
algebraic equations, which, if solved, provides expressions for the concentrations
of the intermediates in terms of the reactant and product concentrations. Finally,
this permits the construction of reaction-rate expressions for the stable reactants and
stable products in terms of the reactant and product concentrations only.

We identify prospective highly reactive intermediates using characteristics such
as a high rate of consumption, short lifetime, short induction time, or low concen-
trations. To see if a model reduction is appropriate for a given chemical mechanism,
we also need to see how well the approximate solution obtained using the QSSA
describes the exact solution. A detailed discussion of the selection of species in the
QSSA and a list of references on this topic are given in [19].

We illustrate the QSSA approach using the following simple reaction network:

A
k1�*)�

k�1

2B; B
k2�! C: (1)

The corresponding system of differential equations is

PcA D �k1cA C k�1c2
B;

PcB D 2k1cA � 2k�1c
2
B � k2cB;

PcC D k2cB: (2)
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Suppose that k2 � k1; so that the consumption rate of B is large compared
with its rate of production; B is a highly reactive intermediate and a candidate for
elimination. Setting the production rate of B to zero gives

RB D 2k1cA � 2k�1c
2
B � k2cB D 0: (3)

The reduced model for this example is obtained by solving this equation for cB

and substituting into the differential equations for A and C in (2). Here we select
the single nonnegative solution for cB, but multiple nonnegative roots of QSSA
algebraic systems are possible in general. In those cases, one usually selects the
solution that leads to the reduced model which best fits the available data [23]. We
call this procedure the standard approach to applying the QSSA. We obtain the
system of differential equations

PcA D �k1cA C k�1

0
B@�k2 C

q
k2

2 C 16k1k�1cA

4k�1

1
CA

2

;

PcC D k2 �
�k2 C

q
k2

2 C 16k1k�1cA

4k�1

; (4)

which corresponds to the simple reaction

A
Qr�! 2C; Qr D k2

2

0
B@�k2 C

q
k2

2 C 16k1k�1cA

4k�1

1
CA:

Here, the Qr on top of the reaction arrow denotes a reaction rate function (and
not a reaction rate constant). A comparison of the solutions to the differential
equations (2) and (4) is depicted in Fig. 1. The rate constants used in the simulation
were k1 D k�1 D 1; k2 D 100 and the initial conditions were cA.0/ D 1; cB.0/ D
cC.0/ D 0: The two solutions are very close; the QSSA hypothesis for B is
legitimate. Another lesson that is learned from model reduction by the QSSA is
that complex kinetics (see the cA dependence in the reaction rate Qr) can emerge
from nothing more complicated than a few first- and second-order reactions when
reactive intermediates are involved.

A key fact that allowed us to apply the QSSA was the possibility of explicitly
solving equation (3) using a finite number of operations of addition, subtraction,
multiplication, division, and radicals; explicit solutions of this kind are usually
referred to as solutions expressible by radicals. While we are always able to solve
quadratic equations explicitly, solutions expressible by radicals do not always exist
for higher-degree polynomial equations. The next section reviews classical results
that address this issue.
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Fig. 1 The concentrations cA and cC with and without applying the QSSA to the intermediate B

2.2 Solvability by Radicals

It has been known since 1824, from the work of Niels Abel [1], that there is
no formula expressible by radicals for the solution of the general fifth-degree
polynomial equation. Around 1830, Évariste Galois produced his celebrated theory
that gives a definitive answer to the question of solvability by radicals for any
polynomial equation. In particular, this theory shows that the general polynomial
equation of degree n cannot be solved using radicals for any n � 5:

Here, we introduce a few notions and theorems that will allow us to use the results
of Galois theory. For an excellent overview of the subject, see [15]. The notions and
facts about groups and fields presented below are standard and can be found in most
textbooks on abstract algebra; see, for example, [14].

Consider the general polynomial equation of degree n,

anxn C : : :C a1x C a0 D 0; (5)

with arbitrary coefficients a0; : : : ; an in a field F . For our purposes, F will be
the field generated by the coefficients of a polynomial whose roots we want to
find. According to the overview of the QSSA in the previous section, we need
to solve for the concentrations of intermediates in terms of the concentrations of
nonintermediates. Thus our coefficients are not simply elements of the field Q

of rational numbers; they may be polynomial expressions involving variables that
represent concentrations of the nonintermediate species. Consequently, our field will
be the smallest field that includes all these variables. This field is usually denoted
by Q.c1; : : : ; cl /, the set of quotients of real polynomials in the variables c1; : : : ; cl ,
representing the concentrations of the nonintermediate species. For instance, in the
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example represented by Eq. (2), to find the concentration cB we solved 2k1cA �
2k�1c

2
B � k2cB D 0, viewed as an equation in cB with coefficients in Q.cA/:

If the roots of Eq. (5) are not in F , there always exists a larger field that contains
all these roots; let us denote these roots by x01; : : : ; x0n. The set of polynomials
with variables x1; : : : xn and coefficients in the field F is denoted by F Œx1; : : : ; xn�:

A polynomial Q in F Œx1; : : : ; xn� that vanishes at the point .x01; : : : ; x0n/ is called
a relation among the roots of (5). Recall that the symmetric group Sn is the group of
all permutations of n distinct elements.

Definition 1. The Galois group of the algebraic equation (5) over the field F is
the subgroup of the symmetric group Sn consisting of the permutations of the roots
.x01; : : : ; x0n/ that preserve all the relations among these roots.

Galois theory introduces the key notion of a solvable group; for a detailed
description of this notion, see [14]. The following theorem is the main result
regarding solvability of algebraic equations by radicals.

Theorem 1. An algebraic equation of the form (5) is solvable by radicals if and
only if its Galois group is solvable.

Therefore, the question of whether or not the solution of an algebraic equation
can be made explicit using radicals is equivalent to checking a certain property of
a group involving the coefficients of the equation. Most modern computer algebra
software can handle the latter problem; we find the software package Maple [17]
particularly suitable for this task.

It can be shown that the Galois group of the general polynomial equation of
degree n with arbitrary coefficients is Sn. In view of Theorem 1, the nonsolvability
by radicals of the general polynomial equation of degree �5 is then explained by
the following result.

Theorem 2. The symmetric group Sn is solvable if and only if n < 5.

Before concluding this section, we shall mention another algebraic notion that
we will use. Roughly speaking, a Groebner basis replaces a system of polynomial
equations for n variables by a “nicer” one which has the same set of solutions as
the first. For example, if the original system has a finite number of solutions (which
will usually be the case for systems arising from chemical kinetics), we can choose
a Groebner basis where one of the equations is a univariate polynomial in one of the
variables. This way, we are able to address the problem of the explicit solvability of
the initial multivariate polynomial system by using Galois theory on the univariate
polynomial in the Groebner basis. A standard reference on Groebner bases is [7].

2.3 Nonsolvable Examples

As we saw above, a key step in the standard QSSA approach is solving a certain
system of polynomial equations. But this is not always possible, and thus we are
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confronted with an important limitation of this approach to applying the QSSA.
In what follows, we present two chemical reaction networks where the standard
QSSA approach cannot be used because of the nonsolvability by radicals of the
resulting systems of algebraic equations.

The first example consists of the following mechanism:

2Y
k1�*)�

k�1

2B;

Y C B
k2�! Z C A;

Z C B
k3�*)�

k�3

2X;

A C X
k4�! Y C B;

2Z
k5�! 2A;

whose dynamics is given by the equations

PcA D k2cBcY � k4cAcX C 2k5c
2
Z;

PcB D 2k1c
2
Y � 2k�1c

2
B � k2cBcY � k3cBcZ C k�3c

2
X C k4cAcX;

PcX D 2k3cBcZ � 2k�3c
2
X � k4cAcX;

PcY D �2k1c
2
Y C 2k�1c

2
B � k2cBcY C k4cAcX;

PcZ D k2cBcY � k3cBcZ C k�3c2
X � 2k5c

2
Z: (6)

To obtain fast equilibration of X, Y, and Z, we choose k1; k�3; k5 to be “large”,
k�1; k4 to be “small”, and k2; k3 to be of order O.1/. Then the species X, Y, and
Z are fast intermediates, and are candidates for the QSSA approach. Therefore, we
need to solve the following system of algebraic equations for cX; cY, and cZ:

2k3cBcZ � 2k�3c
2
X � k4cAcX D 0;

�2k1c
2
Y C 2k�1c

2
B � k2cBcY C k4cAcX D 0;

k2cBcY � k3cBcZ C k�3c
2
X � 2k5c

2
Z D 0: (7)

We have used the software package Maple to generate a Groebner basis of this
algebraic system. To facilitate the computation, we chose all the “large” reaction
constants to be equal to K , the “small” ones equal to k, and all other reaction
constants to be 1. An element of this basis was then found to be the univariate
polynomial

P.cZ/ D 32k2c8
BK � 4k3c6

Bc2
A � 2k5c4

Bc4
AC

.�k4c4
Ac3

B � 2k2c2
Ac5

B � 16k3Kc5
Bc2

A/cZC
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.32k3K2c4
Bc2

A C 4k4c4
Ac2

B � 64kK2c6
B C 4k2Kc2

Ac4
B/c2

ZC
.8K2k4c4

AcB C 48k2K2c3
Bc2

A/c3
ZC

.32K3c4
B � 16K3k2c2

Ac2
B C 8K3k4c4

A � 256kK4c4
B/c4

Z�
64K4k2c2

AcBc5
ZC

.�128K5k2c2
A C 256K5c2

B/c6
ZC

512K7c8
Z:

Any cZ that comes from a solution of the system (7) must also be a root of P:

However, using Maple, we found that the Galois group over Q.cA; cB; k; K/ of the
equation P.cZ/ D 0 is S8. Hence, according to Theorem 1, cZ cannot be found
explicitly in terms of cA and cB. Therefore, the QSSA equations are not solvable
this case.

Remark 1. To simplify the computations, we set all reaction rates equal to K , k, or
1 in the above calculations. On the other hand, if it were possible to find explicit
formulas using radicals for the general set of parameters k1; k�1; k2; k3; k�3; k4; k5,
then the same formulas would apply for the special case of the parameters K; k; 1,
which, according to the computations above, is impossible.

The second example is a real chemical mechanism for the photochemical
decomposition of propanone,

CH3COCH3 �! C2H6 C CO:

The following mechanism was proposed in [25]:

CH3COCH3
k1�*)�

k�1

CH3CO• C CH•
3;

CH3CO• k2�! CH•
3 C CO;

CH•
3 C CH3COCH3

k3�! CH4 C •CH2COCH3;

CH•
3 C CH•

3
k4�! C2H6;

CH•
3 C •CH2COCH3

k5�! CH3CH2COCH3;

•CH2COCH3 C •CH2COCH3
k6�! CH3COCH2CH2COCH3;

•CH2COCH3
k7�! CH2CO C CH•

3;

CH3CO• C CH3CO• k8�! CH3COCOCH3:
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To simplify the notation, we write

A D CH3COCH3; B D CO; C D C2H6; D D CH4; E D CH3CH2COCH3;

F D CH3COCH2CH2COCH3; G D CH2CO;

H D CH3COCOCH3; X D CH3CO•; Y D CH•
3; Z D •CH2COCH3:

The corresponding system of differential equations is

PcA D �k1cA C k�1cXcY � k3cAcY; (8)

PcB D k2cX;

PcC D k4c
2
Y;

PcD D k3cAcY;

PcE D k5cYcZ;

PcF D k6c
2
Z;

PcG D k7cZ;

PcH D k8c
2
X;

PcX D k1cA � k�1cXcY � k2cX � 2k8c
2
X;

PcY D k1cA C k2cX � k�1cXcY � k3cAcY � 2k4c
2
Y � k5cYcZ C k7cZ;

PcZ D k3cAcY � k5cYcZ � 2k6c
2
Z � k7cZ:

The prospective QSSA intermediates are the radicals X, Y, and Z. The algebraic
system in cX; cY, and cZ is

k1cA � k�1cXcY � k2cX � 2k8c
2
X D 0; (9)

k1cA C k2cX � k�1cXcY � k3cAcY � 2k4c
2
Y � k5cYcZ C k7cZ D 0;

k3cAcY � k5cYcZ � 2k6c
2
Z � k7cZ D 0:

If we choose all reaction rate parameters to be 1, then this system has a Groebner
basis that contains the following univariate polynomial in cZ:

R.cZ/ D �c5
A C c6

A C .5c4
A � 4c5

A/cZ C .�12c3
A � 4c5

A C c2
A C 5c4

A/c2
Z C

.�16c3
A C 16c2

A � 2cA C 8c4
A/c3

Z C .4C 42c2
A � 4cA � 8c3

A C 4c4
A/c4

Z C
.44c2

A C 20/c5
Z C .44C 8cA C 20c2

A/c6
Z C 48c7

Z C 24c8
Z:
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As in the previous example, the Galois group of the polynomial R.cZ/ over the field
Q.cA/ is S8. Therefore cX; cY, and cZ cannot be expressed in terms of cA, i.e., the
QSSA approach is not solvable in this case.

2.4 Challenges in the Characterization of Systems
to Which the Standard QSSA Procedure Can Be Applied

The method described in the previous section can be extended to an algorithm for
checking whether the standard QSSA procedure can be applied to a generic system.
With all rate constants regarded as symbolic entries, Groebner bases are computed
using appropriate monomial orderings, and univariate polynomials are obtained for
each intermediate. If all corresponding Galois groups are solvable, we conclude
that the standard QSSA procedure may be applied. If at least one such group is not
solvable, then the standard QSSA procedure cannot be carried out.

On the other hand, calculations of Groebner bases are combinatorially explosive
even for polynomials over real numbers, and are even more computationally expen-
sive over fraction fields with several variables. Therefore, for large enough networks,
the computation may not terminate. Moreover, even if the computation terminates
and the standard QSSA procedure can be applied, constructing the actual equations
of the reduced model may involve further complications, including convoluted
algebraic expressions whose signs need to be analyzed, and the possibility of
multiple nonnegative roots of the QSSA algebraic system.

Setting some rate constants to simple numerical values, as we have done above,
can reduce dramatically the computational size of the problem. However, while this
easier problem may be computationally tractable, it is only informative if one of the
resulting Galois groups is not solvable. In that case we can conclude that the QSSA
procedure cannot be applied to the system with general reaction rates. On the other
hand, even if all resulting Galois groups are solvable for some fixed reaction rate
values, we cannot conclude that the system with general reaction rates is solvable.

3 Alternatives to Solving the QSSA Equations

3.1 Eliminating Reactions Involving Intermediates

The goal in QSSA model reduction is usually not to evaluate the concentrations of
the intermediates but to eliminate them from the reduced model. We next investigate
whether there is a general method to remove them short of solving for them.
Consider first an example in which this elimination can be done:

A
r1�! B; B

r2�! C:
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We do not assume any simple form for the rate expressions. If B is an intermediate,
we set its production rate to zero and obtain

RB D r1.cA/ � r2.cB/ D 0:

This relationship defines cB as an implicit function of cA, but we assume that the
algebraic complexity of the function r2 prevents solving this equation explicitly. For
this simple example, knowing only that r2.cB/ D r1.cA/ is sufficient. In fact, the
production rates of A and C using r2 D r1 are expressible by

RA D �r1.A/; RC D r1.A/;

and we have eliminated B and any large rate constants from the model without
solving explicitly for cB as a function of cA, i.e., cB.cA/.

But now consider a slightly more complex example:

A
r1�! 2B; 2B

r2�! D; BC C
r3�! E:

If we say B is an intermediate again, we have

RB D 2r1.cA/� 2r2.cB/� r3.cB; cC/ D 0:

In general, this equation implicitly defines a function cB.cA; cC/, but we again
assume that we cannot solve for this function explicitly. The production rates of
the reactants and products are as follows:

RA D �r1.cA/; RC D �r3.cB; cC/; RD D r2.cB/; RE D r3.cB; cC/:

To eliminate B from the model, we require r2 and r3. But the QSSA relation provides
only the relation 2r1 � 2r2 � r3 D 0. We can remove r2 or r3 from the model using
this equation, but not both. We require the function cB.cA; cC/ to substitute into r2

and r3 in order to remove B from the reduced model in this example. Eliminating
reactions is not a general procedure. If the number of reaction rate expressions in
which intermediates appear exceeds the number of intermediates, we do not obtain
enough equations to eliminate the intermediates. In the preceding example, we have
one intermediate (B), but it appears in two reaction rate expressions (r2; r3).

The generalization of this idea of elimination to sets of reactions is known as
the Horiuti–Temkin theory [13, 22]. We shall not discuss this generalization further
here, because the second simple example shows that the Horiuti–Temkin theory is
insufficient in general to eliminate the reaction rates containing intermediates as
required to apply the QSSA.
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3.2 Solving the Full or Reduced Model Numerically

Since we cannot solve the algebra of the QSSA and we cannot eliminate all reaction
rates containing intermediates, we consider next the numerical solution of the full
model. A simple approach is to set the rate constants corresponding to consumption
of the intermediates large and solve the full model. We assume that the ODE
solver can provide accurate solutions given any choice of large rate constants.
Alternatively, one can replace the differential equations for the intermediates with
the algebraic equations that result from setting their production rates to zero. This
procedure produces a set of differential–algebraic equations (DAEs) in place of the
ODEs of the full model. The procedure for generating and numerically solving these
DAE models is known as computational singular perturbation (CSP). A discussion
of the CSP method is provided in [16, 26, 27]. Whether one is numerically solving
the full model or the reduced, slow-timescale DAE model, it is generally assumed
that all kinetic parameters are known.

To illustrate the issues that arise when the large rate constants are not all known,
we consider the following example:

A
k1�! B; B

k2�! C; 2B
k3�! D; (10)

with the full model

PcA D �k1cA;

PcB D k1cA � k2cB � 2k3c
2
B;

PcC D k2cB;

PcD D k3c
2
B:

The production rate of B is given by

RB D k1cA � k2cB � 2k3c
2
B: (11)

Setting this production rate to zero and solving for cB gives the QSSA result,

cB D 2k1=k2

1Cp1C ˇcA

cA; ˇ D 8k1k3=k2
2:

We then express the production rates in terms of the concentrations of only the
reactants and products (A, C, and D)

RA D �k1cA; (12)

RC D 2k1

1Cp1C ˇcA

cA; (13)
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Fig. 2 Numerical solutions of the full model and QSSA approximation. Left: cA; cB; cC; cD versus
time. Middle: RC versus cA. Right: RD versus cA. (a) k1 D 1, k2 D 102, k3 D 2 � 102, ˇ D
16 � 10�2 . RC versus cA is linear. (b) k1 D 1, k2 D 102, k3 D 2 � 104, ˇ D 16. Neither RC nor
RD is linear with cA. (c) k1 D 1, k2 D 10, k3 D 2 � 105, ˇ D 16 � 103. RD versus cA is linear

RD D 1

2
k1

 
�1Cp1C ˇcA

1Cp1C ˇcA

!
cA: (14)

If we were unable to solve the algebra, and instead tried the simple approach of
setting all rate constants for consumption of intermediates large, we would set k2

and k3 large. But this does not specify the value of ˇ. If we examine the two limiting
cases of ˇ large and ˇ small, we obtain the production rates

ˇ! 0; ˇ !1;

RA D �k1cA; RA D �k1cA;

RC D k1cA; RC D 0;
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RD D 0; RD D 1

2
k1cA

corresponding to the two reduced mechanisms

A
k1�! C .ˇ ! 0/; A

k1�! 1

2
D .ˇ !1/: (15)

Some relevant numerical results for the example (10) are shown in Fig. 2. Notice
that neither the limit k2 � k3 nor k3 � k2 can describe the behavior of the QSSA
model for the intermediate range of ˇ shown in Fig. 2b. We see that the QSSA
treatment of the full model remains valid, but we cannot obtain the correct behavior
by simply setting rate constants large. We need to know the relative sizes of some
large rate constants; in this case, we need k3=k2

2 . It is a simple matter to estimate the
parameters k1 and ˇ from measurements of C and D, but it is not a simple matter to
know the form of the production rates of C and D given in Eqs. (13) and (14). The
knowledge of the form of the production rates is the primary benefit of the standard
QSSA in this simple example.

4 Rescaling Intermediates, and Parameter Estimation
from Data

Since solving for the intermediates in closed form is not always possible, in this
section we explore an alternative procedure of rescaling the intermediates. The
choice of how to rescale is not unique, but we show in the next section how to
automate the procedure for any kinetic model; a primary benefit is that the rescaling
procedure often provides a tractable parameter estimation problem as well. For
illustrative purposes, consider again the previous example, but assume that we are
unable to solve the algebra to determine cB from setting RB D 0. Instead, we
introduce a rescaled B concentration, denoted cZ, by writing

cZ D k2cB:

Note that this choice is not unique. Setting RB D 0 then adds an algebraic equation
to the other species’ differential equations. The reduced DAE model is

PcA D �k1cA;

0 D k1cA � cZ � 2K3c
2
Z;

PcC D cZ;

PcD D K3c
2
Z:
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Fig. 3 Measurement of the
concentration of C versus
time and prediction of the
concentrations of A, B, and C
from the rescaled model using
optimal parameter estimates

Notice that the rescaling removes the two potentially large kinetic parameters k2 and
k3 and introduces one new scaled parameter, K3 D k3=k2

2 . Without concentration
measurements of reactants and products, we have no idea about the size of K3; the
low concentration of the intermediate B tells us only that k3 or k2 or both are large,
and it is silent regarding the ratio k3=k2

2 .
Next, we attempt parameter estimation using both the full and the reduced

models. Consider the data set with measurement noise depicted in Fig. 3. To make
the parameter estimation problem challenging, we assume that only species C can
be measured conveniently at the fairly slow sampling rate (� D 0:34) shown in the
figure. This data set was generated from the full model using k1 D 1:0, k2 D 100,
and k3 D 2 
 104, and the initial conditions cA0 D 1:0 and cB0 D cC0 D cD0 D 0:0.
Note that these choices correspond to the intermediate case (b) in Fig. 2.

Normally distributed measurement noise (zero mean, standard deviationD 0.03)
was added to the cC of the full model to create the measurement set. Attempting to
estimate k1; k2; k3 of the full model from these data is hopeless. An optimizer would
find a set of infinitely many estimates with approximately constant k2=k2

3 , and all
points in this set would fit the measurements equally well. This lack of identifiability
of parameters plagues all overly complex models using realistic measurement sets.

The estimates obtained for the parameters k1; K3 of the reduced model are shown
in Fig. 4. Notice that the parameters are well determined and that the approximate
95 % confidence interval is small and contains the “true” parameters used to
generate the data.1 The method used to generate the confidence interval is discussed
in standard texts [3,19]. The values of the estimates and the plus/minus interval (the
bounding box of the ellipse shown in Fig. 4) are

1Note that these are not quite the true parameter values, because we used the full model rather than
the reduced model to generate the data.
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" Ok1

OK3

#
D
�
0:910

2:06

�
˙
�
0:151

0:271

�
;

"
k1
k3

k2
2

#
D
�

1:0

2:0

�
:

As we can see, applying the QSSA to the full model provides a validated reduced
model that is useful for other scientific studies and for engineering design purposes.

5 A Reparametrization of the QSSA Model

Recall the rescaling of intermediates presented in the previous section, where two
kinetic parameters k2 and k3 were replaced by a single new parameter K3: In this
section, we show how this rescaling procedure can be performed for any set of
QSSA differential–algebraic equations, and highlight some interesting properties of
the rescaled model.

Let .S/ denote a system of DAEs corresponding to a QSSA model with unknown
kinetic parameters and with variables x1; : : : ; xn: Suppose that the first m variables,
x1; : : : ; xm; correspond to nonintermediate chemical species, and that the variables
xmC1; : : : ; xn correspond to intermediate species. We assume that .S/ fulfills the
following assumption, which is satisfied by most QSSA systems encountered in
practice: for any t � 0; if x1.t/; : : : ; xm.t/ are known, then the n�mC 1 algebraic
equations of (S) have unique nonnegative solutions for xmC1.t/; : : : ; xn.t/ (note
that, as illustrated in Sect. 2.3, these solutions may not be expressible by radicals).
As a consequence, a solution of .S/ is determined by specifying only the first m

coordinates of the initial condition vector.
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In what follows, we devise a simpler model . NS/ of .S/ with variables Nx1; : : : ; Nxn

that captures the dynamics of the nonintermediate species x1; : : : ; xm: More pre-
cisely, . NS/ will satisfy the following two properties:

(i) . NS/ has fewer parameters than .S/;
(ii) If .x1.t/; : : : ; xn.t// and . Nx1.t/; : : : ; Nxn.t//; t � 0; are solutions of .S/ and

. NS/ with xi .0/ D Nxi .0/ for all i 2 f1; : : : ; mg; then xi .t/ D Nxi .t/ for all
i 2 f1; : : : ; mg and all t � 0:

In other words, condition .ii/ specifies that the outputs x1; : : : ; xm from . NS/ and .S/

corresponding to nonintermediates are the same.

5.1 Rescaling of the Intermediates

Our strategy is to consider rescalings of intermediates

Nxi D ˛i xi for i 2 fmC 1; : : : ; ng (16)

that are “optimal” in the sense that the rescaled DAE system has the minimum
number of parameters that can be obtained by any reparametrization of the
form (16). More precisely, the ˛i are chosen such that some monomials with
unknown coefficients in .S/ are replaced by monomials with coefficient 1 in the
reparametrized system . NS/; and this is achieved for as many monomials as possible.

To illustrate, suppose that the DAE system .S/ has intermediate variables
x; y; z; w; u and suppose that the monomials of .S/ involving the intermediate
variables are

k1xy; k2zw; k3yz; k4xw; k5wu; and k6yu:

Note that these monomials might contain more factors corresponding to noninter-
mediate variables, but, since these factors do not play a role in our analysis, we will
neglect them.

Since the kinetic parameters k1; : : : ; k6 are unknown positive constants, we treat
them as (linearly independent) symbolic indeterminates. Letting

Nx D ˛x; Ny D ˇy; Nz D z; Nw D ıw; Nu D 
u;

the monomials become

k1

˛ˇ
Nx Ny;

k2

ı
Nz Nw;

k3

ˇ
NyNz; k4

˛ı
Nx Nw;

k5

ı

NwNu;

k6

ˇ

Ny Nu: (17)
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Let C denote the vector of the logarithms of the six coefficients in the monomials
above, and let ln k; v, and ‰ denote the 6
 1 and 5
 1 vectors and the 6
 5 matrix,
respectively, in the equality

C D ln k�‰v D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

1 1 0 0 0

0 0 1 1 0

0 1 1 0 0

1 0 0 1 0

0 0 0 1 1

0 1 0 0 1

3
77777775

2
666664

ln ˛

ln ˇ

ln 

ln ı

ln 


3
777775
D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

M1 � v
M2 � v
M3 � v
M4 � v
M5 � v
M6 � v

3
77777775

; (18)

where Mj denotes row j of ‰: The maximum number of zero coordinates for the
vector C equals rank ‰ D 4:

Since M1; M2; M3, and M5 are linearly independent, we can make the corre-
sponding coordinates of C equal to zero (and therefore make the coefficients of the
first two monomials in (17) equal to 1). We have

C D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

M1 � v
M2 � v
M3 � v

.M1 CM2 �M3/ � v
M5 � v

.M1 CM5 �M4/ � v

3
77777775
D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

ln k1

ln k2

ln k3

ln k1 C ln k2 � ln k3

ln k5

ln k1 C ln k5 � ln k4

3
77777775

:

The new monomials

Nx Ny; Nz Nw; NyNz; K1 Nx Nw; NwNu; and K2 Ny Nu (19)

contain only two parameters,

K1 D k4k3

k1k2

and K2 D k6k4

k1k5

:

In general, the number of new parameters is equal to the number of old parameters
minus the rank of ‰:

Remarks.

1. The reparametrized system (S) indeed satisfies the desired properties .i/ and
.ii/: Condition .i/ is true, as explained above. Also, the differential equations for
Nx1; : : : ; Nxm in . NS/ are exactly the same as the corresponding differential equations
for x1; : : : ; xm in .S/; therefore, for identical initial conditions, the solutions must
coincide, i.e., Nxi D xi for i 2 f1; : : : ; mg:
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2. Our example shows that the optimal scaling is not always obvious, and that, in
general, the number of parameters that can be eliminated may be smaller than
the number of intermediates present in the system.

3. Note that, in some cases, even after reducing the number of parameters as
described above, we might not obtain a system with uniquely identifiable
parameters. This may be the case even if there are no intermediate species; see
[8] for examples. In future work, we will analyze this issue in more detail.

5.2 Equivalence of Reparametrizations

As explained above, the reparametrization (19) is optimal with respect to the number
of parameters that it removes. However, this reparametrization is not the only one
that is optimal. Similarly to the way M1; M2; M3, and M5 determined an optimal
reparametrization in the previous section, any choice of linearly independent rows
of ‰ determines another optimal reparametrization.

Recall that the new parameters K1 and K2 in (19) are products of powers (positive
or negative) of the original parameters k1; : : : ; k6: This is true for any reparametriza-
tion. Interestingly, any two optimal reparametrizations of a system (S), with
parameter sets denoted P and QP ; are parameter-set equivalent, i.e., any element
of QP is a product of powers of elements of P and vice versa.

For example, if we choose v in (18) such that the second, fourth, fifth, and sixth
coordinates of C are zero (using the fact that M2; M4; M5, and M6 are linearly
independent), we have

C D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

.M4 CM6 �M5/ � v
M2 � v

.M2 CM6 �M5/ � v
M4 � v
M5 � v
M6 � v

3
77777775
D

2
66666664

ln k1

ln k2

ln k3

ln k4

ln k5

ln k6

3
77777775
�

2
66666664

ln k4 C ln k6 � ln k5

ln k2

ln k2 C ln k6 � ln k5

ln k4

ln k5

ln k6

3
77777775

;

and the new monomials are

QK1 Nx Ny; QK2Nz Nw; NyNz; Nx Nw; NwNu; and Ny Nu;

where

QK1 D k1k5

k4k6

and QK2 D k3k5

k2k6

:

Note that QK1 D 1=K2 and QK2 D K1=K2, and the two reparametrizations are indeed
parameter-set equivalent.
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5.3 Propanone Example

We shall now illustrate the usefulness of the reparametrization discussed in this sec-
tion by estimating parameters for the photochemical decomposition of propanone.
A representative data set was generated from the full model described by (8) using
k1 D 10�2, k�1 D 107, k2 D 103, k3 D 102, k4 D 5 
 104, k5 D 103, k6 D 101,
k7 D 10�1, k8 D 109, cA0 D 1, cB0 D cC0 D cD0 D cE0 D cF0 D cG0 D
cH0 D cX0 D cY0 D cZ0 D 0. These parameter values were chosen so that the
major products and reactants A, B, C, D, and H would be present in larger amounts
than the minor species E, F, and G, and the reactive intermediates X, Y, and Z
would be present in much smaller quantities. Normally distributed measurement
noise (zero mean, varianceD 10�5) was added to cA, cB, cC, cD, cE, cF, cG, and cH

to create the measurement set. Similarly to the example represented by Eq. (10),
estimating all nine parameters of the full model would result in infinitely many
parameter sets which fit the data equally well. The reparametrized DAE model had
six (rescaled) parameters k1, K�1 D k�1=.k2k3/, K4 D k4=k2

3 , K5 D k5=.k3k7/,
K6 D k6=k2

7 , and K8 D k8=k2
2 , which were estimated using the software package

parest_dae to obtain a good fit to the measurement data and to obtain reasonably
small 95 % confidence intervals containing the “true” parameters used to create
the measurement data. Figure 5 shows the fit between the measurement data and
the estimated solution. The Estimated values of the rescaled parameters and their
corresponding confidence intervals are

2
66666664

Ok1

OK�1

OK4

OK5

OK6

OK8

3
77777775
D

2
66666664

0:0099

98:4

5:03

101

993

996

3
77777775
˙

2
66666664

0:0017

82

0:39

5:03

76

68

3
77777775

;

2
66666664

k1

K�1

K4

K5

K6

K8

3
77777775
D

2
66666664

0:01

100

5

100

1000

1000

3
77777775

:

Note that the confidence interval for the parameter OK�1 is the largest in a relative
sense, indicating that this parameter is the least well determined by this experiment.
If this uncertainty were deemed too large, one could then apply experimental
design methods to determine the optimal experiment to be performed next in order
to provide more information about this parameter [2, 19]. This example shows,
however, that although estimation of all of the parameters of the full model is not
possible, reparametrization of the corresponding DAE model allows us to identify
all of the parameters of the reparametrized DAE model. The reduced model is
perfectly adequate for predicting the concentrations of all measurable species. If
one were interested in identifying all of the full model’s rate constants, different
experiments using measurements of the QSSA species would be required.
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Fig. 5 Measurements of major and minor species and predictions of all species by the reduced
DAE model. Top left: concentrations of major species cA; cB; cC; cD; cH versus time. Top right:
concentrations of minor species cE; cF; cG versus time. Bottom: concentrations of reactive interme-
diates cX; cY; cZ versus time

6 Conclusions

The 100-year-old approach of classic QSSA model reduction, as taught in intro-
ductory courses, cannot be carried out for many relevant kinetics problems. We
have proved that the algebra cannot be solved for even as few as five reactions
involving five species (with three intermediates) with nothing more complex than
bimolecular mass action kinetics. If any readers can find simpler nonsolvable
examples, the authors would like to know about them. We have also analyzed
a chemical mechanism taken from the literature and shown that it cannot be
reduced by the classical approach. We have described algorithms that can test any
mechanism for solvability. We have shown that the alternative approach of the
Horiuti–Temkin theory also does not achieve the requirements of model reduction.

The first goal of this chapter was simply to make instructors aware of the
limitations of trying to apply the QSSA in this way. Students should probably
be told of these limitations when they are introduced to the approach. A second,
longer-term goal was to promote the idea of rescaling the low-concentration species
rather than solving for them. Although the choice of the rescaled parameters is
not unique, the minimum number of rescaled parameters remaining in the reduced
model is unique, and all reduced models with this minimum number of rescaled
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parameters are equivalent. We expect that in most large enough examples, one
cannot solve the QSSA equations explicitly using radicals. Moreover, even when
one can solve them explicitly, it may still be preferable to use rescaling in order
to identify key combinations of parameters which can be identified from data. The
result of the procedure can be a reduced (DAE) model with rescaled parameters that
are identifiable from standard measurements. Calculations using the open source
software package parest_dae that estimates parameters and confidence intervals
for DAE models were presented. This package makes use of the recently released
SUNDIALS implicit ODE solver IDAS [12].

Looking to the future, as ab initio methods for predicting rate constants become
more capable, we may be able to reduce the number of large rate constants
and functions of these large constants that must be estimated from measure-
ments. Model validation studies may then be carried out numerically with the full
model, rather than by inspecting the reduced model’s structural dependence on
large-concentration reactants and products. Further research and tool development
supporting both rate constant prediction and numerical model validation should
prove highly useful to scientists developing and using complex chemical models.
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Abstract Progress in systems biology relies on the use of mathematical and
statistical models for system-level studies of biological processes. Several dif-
ferent modeling frameworks have been used successfully, including traditional
differential-equation-based models, a variety of stochastic models, agent-based
models, and Boolean networks, to name some common ones. This chapter focuses
on discrete models, and describes a mathematical approach to the construction
and analysis of discrete models which relies on combinatorics and computational
algebraic geometry. The underlying mathematical concept is that of a polynomial
dynamical system over a finite field. Examples are given of the advantages of this
approach, and several applications are discussed.
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1 Introduction

Molecular systems biology is one of the important developments in the life
sciences in the last 20 years, made possible by a succession of new so-called
“-omics” technologies (genomics, proteomics, metabolomics, etc.) that allow the
simultaneous measurement of many molecular species in a cell, a tissue, or an
entire organism. The fundamental paradigm of systems biology is the construction
and study of entire networks, or systems, rather than isolated proteins, genes, or
metabolites. In the words of [7]:

The advent of functional genomics has enabled the molecular biosciences to come a long
way towards characterizing the molecular constituents of life. Yet, the challenge for biology
overall is to understand how organisms function. By discovering how function arises in
dynamic interactions, systems biology addresses the missing links between molecules and
physiology.

In this description, it is important to note the characterization of “function”
as arising through dynamic interactions of many molecular species. This clearly
points to mathematical and computational models of dynamical systems as the key
enabling technology of systems biology. And, indeed, mathematical and statistical
models have been used extensively to study interaction networks of molecular
species, ranging from mechanistic biochemical models to statistical phenomeno-
logical models. For a sample of such models, see [12] for a model of an iron
homeostasis regulatory network in breast epithelial cells, consisting of a system of
ordinary differential equations; [31] for a model of the budding yeast cell cycle in the
form of a Boolean network; [21] for a Petri net model of systemic iron homeostasis;
and [6] for a Bayesian network model of root epidermis cell differentiation in
Arabidopsis.

The common structure of all these modeling frameworks is as follows. We are
given a collection of variables x1; : : : ; xn, representing biological or biochemical
entities, such as the concentration of certain gene products, such as proteins. These
variables may also reflect contextual information, such as the location of a protein
in the nucleus or the cytosol, and conditions such as a protein being phosphorylated
or not, for example in a signaling network. Each variable xi takes values in a set Xi ,
which may be finite or infinite, and with or without additional structure. The xi are
related to each other through a collection of relationships

R1.x1; : : : ; xn/; : : : ; Rn.x1; : : : ; xn/;

where Ri encodes the dependence of xi on the other variables and itself. For
instance, each Ri could be a differential equation describing the change in con-
centration of a molecular species represented by variable xi . Or it could be a
logical rule (or a family of such), such as in a Boolean network model. It could
also be a stochastic relationship, such as a probability distribution. Finally, there is
given a scheme that updates the state of each variable in time. This may happen in
continuous or discrete time, synchronously or asynchronously, and in a deterministic
or stochastic manner.
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In this chapter, the focus is on the special case in which all the value sets Xi are
finite sets, and the Ri are given by functions

Ri D Ri .x1; : : : ; xn/ W X1 
 � � � 
Xn �! X1 
 � � � 
Xn:

The update rule can be deterministic or stochastic, and synchronous or asyn-
chronous. That is, variables can be updated in parallel or sequentially, and can be
determined by a deterministic rule or by a stochastic process. We will call such a
structure a finite dynamical system.

The goal of this chapter is to look at finite dynamical systems from an algebraic
point of view, which makes accessible additional tools for model construction
and analysis. Accordingly, we introduce the term “algebraic model” for a finite
dynamical system represented as a time-discrete dynamical system over a finite
field. We will show how algebraic models can be used to study dynamic molecular
networks, and how they can be constructed and analyzed. We will discuss both
deterministic and stochastic models. An important tool for model construction
within a differential-equation framework is the ability to use parameter estimation
methods to fit the model to given experimental data. We will discuss discrete
versions of parameter estimation in this chapter. Steady-state analysis of models is a
standard problem to be solved. We will discuss both computational and theoretical
tools for this purpose. Along the way, we will describe some software tools specific
to this framework that are available to the user. Finally, we will briefly discuss
stochastic models, as well as a special class of models constructed from logical
rules that capture important features of molecular regulatory networks, namely so-
called nested canalizing rules. Models constructed from these rules have special
dynamic properties that are commonly found in biological systems. The topics
selected are intended to represent examples of research questions in this field to
provide the reader with snapshots of topics to be explored further. The theme that
ties the sections together is the use of a polynomial representation of discrete models
and the use of computational and theoretical tools that this representation provides.

2 Background

The work presented in this chapter is a small part of a larger research field that
studies and uses finite dynamical systems in biology. In this section, we provide
a context by discussing some examples of other work related to finite dynamical
systems and, hence, to algebraic models, which may serve as a starting point
for the reader who wishes to inquire further. This section is not intended to be
comprehensive in any way. The reader might also consult the work presented at the
May 2012 workshop “Algebraic Methods in Systems and Evolutionary Biology”
at the Mathematical Biosciences Institute (MBI) at The Ohio State University
(www.mbi.osu.edu). Video recordings of some lectures are available on the MBI
website.

www.mbi.osu.edu
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The use of Boolean networks as models for gene regulatory networks goes back
to Kauffman [35]. Regulatory mechanisms for each gene are represented by logical
functions. This framework was extended in several ways by René Thomas and his
collaborators [65,66]. It allows network nodes to take on any finite number of states,
and it emphasizes the importance of an asynchronous update scheme for the nodes,
with the argument that the molecular processes that underlie the changing states of
the different nodes take different lengths of time to complete, so that synchronous
updating of the network nodes is not realistic. These so-called logical models have
been used very successfully to model a variety of molecular networks, and a Web
tool, GINsim, is available for their construction and analysis at http://gin.univ-
mrs.fr/. The choice of the update schedule for the network nodes influences the
network dynamics, potentially quite strongly. Although the steady states of a model
are independent of the choice of the update schedule, the periodic behavior of the
model can be affected quite strongly. The analysis of logical models takes into
account the effect of all possible update schedules. For a more detailed introduction
to logical models and the GINsim software package the reader can consult [51], for
example.

An alternative approach is to choose an update schedule at random at each
update of the model. It was shown in [11], using a Boolean model of the segment
polarity network in Drosophila melanogaster [1], that this leads to an improved fit
of the model dynamics with known biology. This approach is taken in the software
package BoolNet [50], which allows the construction and analysis of Boolean net-
works using random sequential updating. Thus, effectively, this approach replaces
deterministic models with stochastic ones. For more details of how this model type
is used in systems biology, see [59].

An alternative approach to making Boolean and multistate discrete models
stochastic was introduced in [62] in the form of so-called probabilistic Boolean
networks. In this setting, each node has assigned to it a set of possible update
rules, endowed with a probability distribution. At each update of the model, an
update rule is chosen at random from the node’s probability space. A comprehensive
introduction to this model type and its use in systems biology can be found in [61].

Another discrete modeling framework that can be used very effectively in
systems biology is the language of Petri nets. These have been used in a variety
of application areas to describe distributed processes, such as workflow design
and software engineering. Another important application area is the modeling of
chemical reaction processes. A Petri net is defined as a bipartite graph, with one
set of nodes called places and the other set called transitions. When it is applied to
modeling chemical reaction networks, one can think of the places as representing
molecular species. In specifying the state of a Petri net, each place is assigned a
nonnegative integer, referred to as the number of tokens at that place. This can be
thought of as the number of molecules present. A transition represents a chemical
reaction which moves tokens between places according to a chemical reaction
equation. For an introduction to the use of Petri nets in systems biology, see [60].
A software package for the construction and analysis of biological Petri net models
is described in [58]. There are also stochastic versions of Petri nets available. A good

http://gin.univ-mrs.fr/
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introduction can be found in [78]. It was shown in [10] that logical models can be
translated into Petri nets for further analysis.

Each of these modeling frameworks comes with its own methods for model
construction, in particular methods to infer network models from experimental data.
Furthermore, each framework has its own methods for model analysis, such as
computation of steady states or model reduction.

3 An Example: The lac Operon

For the reader not familiar with finite dynamical systems, we present here an
example of such a model for a well-known gene regulatory network. The lac operon
is a set of genes that regulate lactose metabolism in E. coli. It has been studied
extensively and is one of the earliest gene regulatory networks found to have positive
and negative control. In this section, we briefly describe a Boolean model of the lac
operon proposed in [71]. This model is capable of reproducing known features of
this network, including bistability.

3.1 Biological Background

We first describe the key features of the lac operon used in the Boolean model.
The main components of the lac operon network are lac mRNA, lac permease, lac
ˇ-galactosidase, lactose, allolactose, CAP (catabolite activator protein), and LacI
(repressor protein). Transcription of lac mRNA produces the proteins lac permease
and lac ˇ-galactosidase, where lac permease is in charge of transporting lactose into
the cell and lac ˇ-galactosidase is in charge of converting lactose into allolactose.
Allolactose deactivates LacI. CAP and LacI regulate the transcription of the lac
operon genes and, hence, the production of lac mRNA; CAP activates transcription,
while LacI inhibits it. Glucose is thought to regulate the lac operon by inhibiting the
activation by CAP and by inhibiting the transport by lac permease. This information
is summarized in the wiring diagram in Fig. 1, where the following notation is used:

M D lac mRNA;
P D lac permease;
BD lac ˇ-galactosidase;
C DCAP;
RDLacI;
AD allolactose;
LD intracellular lactose;
LeD extracellular lactose;
GeD extracellular glucose.
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Fig. 1 Wiring diagram of the
lac operon network

3.2 Boolean Model

Figure 1 shows which variables depend on which others. We now provide each
variable with a (Boolean) function that describes how it depends on the others.
We will use the Boolean operators ANDD^, ORD_, and NOTD:. The AND
operator is used when all the variables are required for a process to happen; the OR
operator is used when the variables act independently; the NOT operator is used to
represent inhibition. For example, since glucose inhibits the activation by CAP, the
Boolean function for C is fC D :Ge . Since lac permease and lac ˇ-galactosidase
will only be produced when lac mRNA is present, we have that fP D M and
fB D M . Since allolactose is produced from lactose by ˇ-galactosidase, we have
that fA D L ^ B . Also, intracellular lactose is present when it is brought into the
cell by lac permease; however, this process is inhibited in the presence of glucose.
Therefore, fL D P ^ Le ^ :Ge . The Boolean functions for the other variables are
created similarly. The complete Boolean model is given below:

fM D C ^ :R ^ :Rm;

fP DM;

fB D M;

fC D :Ge;

fR D :A ^ :Am;

fRm D .:A ^ :Am/ _R;

fA D L ^ B;

fAm D L ^ Lm;

fL D P ^Le ^ :Ge;

fLm D ..P ^ Lem/ _Le/:Ge:

In order to have better resolution, the authors of [71] considered some variables
to have more than two states, namely, R, A, L, and Le; the subscript m denotes
a medium concentration. This allows us to distinguish between three instead
of two concentration levels; for example, for lactose we have low (represented
by .Lm; L/ D .0; 0/), medium (represented by .Lm; L/ D .1; 0/), and high
(represented by .Lm; L/ D .1; 1/). The quantities Le and Ge are parameters of
the model that can be set to represent different levels of lactose and glucose outside
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the cell. Computationally, this is accomplished by introducing additional variables,
so that all variables in the model remain Boolean.

Given an initial configuration of the variables, the next configuration (time is
discrete) is computed by updating the values of all variables using the Boolean func-
tions. That is, if we consider f D .fM ; fP ; fB; fC ; fL; fLm ; fA; fAm; fR; fRm /,
then we have a function f W f0; 1g10 ! f0; 1g10 that encodes all the information
about the network. The dynamics of the network is given by iteration of f :
x.t C 1/ D f .x.t//, where x D .M; P; B; C; R; Rm; A; Am; L; Lm/. Thus, this
model is a finite dynamical system with synchronous update.

3.3 Model Analysis

Now that the model has been constructed, we need to analyze it and compare its
dynamics with known features of the lac operon, which we review briefly. The lac
operon is said to be OFF if mRNA, permease, and ˇ-galactosidase are low; it is ON
if mRNA, permease, and ˇ-galactosidase are high. The most important features of
the dynamics of the lac operon are its steady states. It is known that with high levels
of extracellular glucose, the lac operon will eventually be OFF. On the other hand,
with low levels of extracellular glucose, we have the following: with low levels of
extracellular lactose, the lac operon will eventually be OFF; with high levels of
extracellular lactose, the lac operon will eventually be ON; and with medium levels
of extracellular lactose, the lac operon can be ON or OFF (depending on the initial
conditions). The latter is a feature called bistability.

Now we analyze the model. We first find the steady states, i.e., those states x

for which f .x/ D x. As explained above, the variables of interest are M , B , and
P . If .M; P; B/ D .0; 0; 0/, then we say that the lac operon model is OFF; and
if .M; P; B/ D .1; 1; 1/, then we say that the model is ON. Extracellular glucose
can take two values: low (Ge D 0) and high (Ge D 1). Extracellular lactose can
take three values: low (represented by .Lem; Le/ D .0; 0/), medium (represented by
.Lem; Le/ D .1; 0/), and high (represented by .Lem; Le/ D .1; 1/). Using the results
presented in [30], we find that, for Ge D 1, there is one steady state regardless
of the value of Le , namely, x D 0000110000 (commas have been omitted).
Furthermore, all of the 210 initializations eventually reach this steady state. Since
.M; P; B/ D .0; 0; 0/, we obtain the result that the lac operon model is OFF in the
presence of glucose. On the other hand, when Ge D 1, that is, when extracellular
lactose is present, we have the following cases:

• If extracellular lactose is low (that is, .Lem; Le/ D .0; 0/), there is only one
steady state, namely, x D 0001110000. That is, the lac operon model is OFF.
Furthermore, all of the 210 initializations eventually reach this steady state.

• If extracellular lactose is at a medium concentration (that is, .Lem; Le/ D .1; 0/),
there are two steady states, namely, x D 0001110000 and x D 1111000101.
Thus, the lac operon model can be either OFF or ON. Furthermore, all of the 210
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initializations eventually reach one of these steady states. That is, the system is
bistable.

• If extracellular lactose is high (that is, .Lem; Le/ D .1; 1/), there is only one
steady state, namely, x D 1111001111. That is, the lac operon model is ON.
Furthermore, all of the 210 initializations eventually reach this steady state.

In summary, the behavior of the Boolean model agrees with the biological
behavior described above.

4 A General Mathematical Framework: Polynomial
Dynamical Systems

For finite dynamical systems that have a small number of nodes (such as the one
in the previous section), one can use exhaustive enumeration to analyze them.
However, when the number of nodes increases, exhaustive search very quickly
becomes unfeasible, as the number of system states grows exponentially with the
number of network nodes. In a model with 100 nodes, there are 2100 possible
network configurations. One current (2011) processor can handle 177,000 million
instructions per second (MIPS). Even if we needed only one instruction to test each
configuration, it would still take a 100 billion years to check the complete space
of configurations of network nodes. We therefore need other tools to replace or
supplement model simulation. One way to do this is to frame the problem within a
mathematical context that has such tools available, similarly to the introduction of
a coordinate system in the plane, which allows the use of algebraic tools to answer
geometric questions that could previously only be solved by inspection, such as
whether two lines in the plane intersect. With a coordinate system, that question can
be answered by computing the solution to a system of two linear equations.

Our objects of study are mappings

f D .f1; : : : ; fn/ W X1 
 � � � 
Xn �! X1 
 � � � 
Xn;

where the Xi are finite sets. The “coordinate system” to be introduced is given by an
algebraic structure on the Xi that makes them into a finite field. Furthermore, for the
purposes of analysis, we would like the Xi all to be the same. Both of these aims are
accomplished by adding states to the sets, so that all Xi have the same number of
elements, and this number is equal to a prime p. (Typically, the number of states will
end up being quite small, such as 3 or 5.) So, we are now dealing with one set X of
cardinality p. Then the functions fi are extended to this larger set in a suitable way
that allows the removal of “artificial” network states later on. Finally, we impose
the structure of a finite field on X by relabeling the elements as 0; 1; : : : ; p � 1

and using addition and multiplication in Z=p. We will denote the resulting field by
k. We emphasize that the algebraic structure serves as a computational tool only,
and there is no biological meaning to it. The last observation that motivates the
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definition below is that it is well known [45] that any function kn �! k can be
represented uniquely as a minimal-degree polynomial in the variables x1; : : : ; xn

with coefficients in k. The polynomial can be constructed from the function using
Lagrange interpolation. (Computationally, of course, this is only feasible in the case
where the function depends on only a small number of variables, which is typically
the case in the setting we are concerned with.) These observations motivate the
framework we propose, polynomial dynamical systems (PDSs) over finite fields.

4.1 Polynomial Dynamical Systems

Definition 1 ([33]). A polynomial dynamical system f over a finite field k is a
function

f D .f1; : : : ; fn/ W kn ! kn;

where the coordinate functions fi are elements of kŒx1; : : : ; kn�, the ring of
polynomials in the variables x1; : : : ; xn, with coefficients in k. Iteration of f results
in a time-discrete dynamical system with states in kn.

In the case of a Boolean network, the corresponding PDS is over
k D F2 D .f0; 1g;C; �/. The elements of k can have different biological
interpretations for different variables. For example, x1 may be present at different
concentration levels, and x2 may be in a phosphorylated or nonphosphorylated state;
therefore 0 represents “low” when used for x1 and “nonphosphorylated” when used
for x2.

Example 1.

fx.x; y/ D .:x ^ :y/ _ .x ^ y/; (1)

fy.x; y/ D x: (2)

The Boolean model described by Eqs. (1) and (2) is equivalent to the following PDS:
f .x; y/ D .fx.x; y/; fy.x; y// W k2 ! k2 over k D F2,

fx.x; y/ D x C y C 1;

fy.x; y/ D x:

One can easily check that the polynomial system f .x; y/ evaluated over
F

2
2 D f0; 1g 
 f0; 1g has the same dynamics as the Boolean model, namely .1; 1/

is a steady state, and the other three points in the state space form a limit cycle of
length 3. Section 4.2 describes how to construct the desired polynomials.
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Example 2. Consider the production of allolactose in the Boolean model of the lac
operon:

fA D L ^ B;

fAm D L ^ Lm:

Lactose must be present in high concentration for allolactose to be present at a
medium level; if, in addition, ˇ-galactosidase is present, allolactose will be present
in high concentration. We can express this behavior with the following polynomial
over F3 (using 0, 1, and 2 for low, medium, and high, respectively):

fA.B; L/ D �B2 � L2 C B2 � L �L2 C L:

4.2 Generating a Polynomial from Data Points

Every function in r variables over a finite field k can be uniquely expressed by
a polynomial of degree at most r jkj. The polynomial is unique. To construct the
polynomial that matches the data points, we can use the following interpolation
procedure. For simplicity, we will use k D Fp .

Theorem 1. Given a function f W kr ! k, with f .sj;1; : : : ; sj;r / D tj for j 2
f1; : : : ; prg, the polynomial

Qf .x1; : : : ; xr / D
prX

j D1

tj

rY
iD1

.1 � .xi � sj;i /
p�1/ (3)

describes the same mapping. Note that kr is the Cartesian product of r copies of k,
and a point in kr is an r-tuple. The number of points in kr is pr , and the index j

iterates over all these points.

Proof. For any point s D .s1; : : : ; sr / 2 kr ,
Qr

iD1.1� .xi � si /
p�1/ vanishes for all

x 2 kr , except for x D s. For x D s, the product evaluates to 1. Thus, for the index
j such that x D sj ,

Qf .x/ D 0C � � � C 0C tj C 0C � � � C 0 D tj D f .sj / D f .x/:

Thus, Qf .x/ D f .x/.

Example 3. Using the dynamics of the Boolean model of Example 1, i.e.,

f .0; 0/ D .1; 0/;

f .0; 1/ D .0; 0/;
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f .1; 0/ D .0; 1/;

f .1; 1/ D .1; 1/;

Theorem 1 yields the following PDS f .x; y/ D .fx.x; y/; fy.x; y//:

fx.x; y/ D1 � .1 � .x � 0//.1� .y � 0//C
0 � .1 � .x � 0//.1� .y � 1//C
0 � .1 � .x � 1//.1� .y � 0//C
1 � .1 � .x � 1//.1� .y � 1// D
.1 � x/.1 � y/C 0C 0C .x/.y/ D
1 � x � y � xy C xy D
x C y C 1;

fy.x/ D0 � .1 � .x � 0//C
1 � .1 � .x � 1// D
0C x D
x:

As expected, f .x; y/ D .xCyC1; x/ is the PDS that represents the Boolean model
of Example 1.

Example 4. The polynomial fA for allolactose in Example 2 was constructed as
follows. The behavior for allolactose as dictated by the Boolean rules for xA and
xAm is described in Table 1. Using the data points in the table and interpolation
according to Theorem 1 yields the polynomial fA over F3:

fA.B; L/ D1 � .1 � .B � 0/3�1/.1 � .L� 2/2/C
2 � .1 � .B � 1/2/.1 � .L � 2/2/C
2 � .1 � .B � 2/2/.1 � .L � 2/2/ D
B2 � L2 � B2 � L �L2 C LC
� B2 � L2 C B2 � L � B � L2 C B � L

� B2 � L2 C B2 � LC B � L2 � B � L D
� B2 � L2 C B2 � L �L2 C L:

Note that a different finite field yields different polynomials.
Thus, in principle, any model that can be expressed as a finite dynamical system

can also be expressed as a PDS. This procedure was carried out explicitly for the
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Table 1 Expression levels of allolactose (A)
based on the levels of ˇ-galactosidase (B) and
lactose (L), using 0, 1, and 2 for low, medium,
and high, respectively. We assume that medium
and high concentrations have the same effect on
allolactose, since the Boolean model does not
distinguish between those levels

B L A

0 0 0
0 1 0
0 2 1
1 0 0
1 1 0
1 2 2
2 0 0
2 1 0
2 2 2

case of logical models and bounded Petri nets in [72]. The Web tool ADAM [30]
carries out this conversion for logical models in the GINSim format and Petri nets in
the Snoopy format. This shows that for analytical purposes, the PDS framework is
universal for a wide range of (deterministic) discrete models. However, the language
of polynomials is not very intuitive for the purpose of interpreting model features
biologically.

5 Reverse Engineering

The inference of molecular regulatory networks from experimental data is one
of the central problems in systems biology, and a very active research area. An
annual competition organized by the DREAM (Dialogue for Reverse Engineering
and Methods) project provides one focal point of research, and is a good guide
to the literature (http://www.the-dream-project.org/). Typically, reverse engineering
methods provide as output a directed or undirected graph with genes as nodes
and with edges indicating regulatory relationships. A variety of network infer-
ence methods are now available, using techniques from statistics [17, 20, 27, 40],
dynamical systems [46], metabolic control analysis [16], and parameter estimation
[19,77], to name a few. Different methods have different data requirements and give
different output. Some, such as biclustering, give regulatory relationships between
modules of coexpressed genes [14], while others infer causal relationships between
individual genes [75]. Some can be applied to infer genome-scale networks [20],
whereas others are limited to much smaller networks [16, 17, 22], either because
of their high data requirements or because of computational limitations. It has been
argued (see, e.g., [4]) that a significant improvement in performance can be obtained

http://www.the-dream-project.org/
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Table 2 Partial information
for polynomial f1

x f1.x/

s1 D 01210 0
s2 D 01211 0
s3 D 01214 1
s4 D 30000 3
s5 D 11113 4

with methods that make use of data that capture the dynamics of the response of
genes to perturbations in the form of time course data. This point of view has been
adopted in several recent publications presenting new methods that take into account
time course data as well as perturbations of the network (see, e.g., [39, 46, 53]).

5.1 Inferring the Wiring Diagram

Here, the goal is to use partial information about the dynamics to construct the
wiring diagram of a molecular network, assumed to be described by a PDS. It turns
out that the problem can be studied coordinatewise (see, for example, [33, 69]).
That is, given partial information about a polynomial fj , we want to estimate which
variables affect it. The set of the variables on which a polynomial depends is called
the support and is denoted by supp.fi /. Graphically, the support of a polynomial
translates into regulatory arrows coming into the corresponding node, which then
results in the wiring diagram of the network.

For example, consider a PDS f D .f1; f2; f3; f4; f5/ W F5
5 ! F

5
5, and suppose

we are given information about the first coordinate function as listed in Table 2.

5.1.1 Unsigned Wiring Diagram

Given this information, we want to infer the support of f1, that is, the set of variables
on which f1 depends. Of course, this is an underdetermined problem; therefore, we
want to find the “simplest” or “minimal” wiring diagrams from among the usually
many possible ones. We say that a polynomial is minimal if it fits the data and there
is no other polynomial that fits the data with strictly smaller support (with respect
to inclusion). We say that a wiring diagram is minimal if it is the wiring diagram of
a minimal polynomial. For example, consider the polynomials

h1 D �2x4
1 � 2x4

5 � 2x3
5 � x5;

h2 D �2x4
2x4

5 Cx4
2x3

5 C 2x4
2x2

5 C x3
2x3

5 C 2x4
2x5C 2x3

2x2
5 Cx2

2x3
5 C 2x4

2 C 2x3
2x5

C2x2
2x2

5 C x2x3
5 C 2x4

5 C 2x2
2x5 C 2x2x

2
5 C 2x2x5 � 2;

h3 D �2x4
2x4

5x4Cx4
2x3

5x4C 2x4
2x2

5x4Cx3
2x3

5x4C 2x4
2x5x4 C 2x3

2x2
5x4 C x2

2x3
5x4

C2x4
2x4 C 2x3

2x5x4 C 2x2
2x2

5x4 C x2x3
5x4 C 2x4

5x4 C 2x2
2x5x4 C 2x2x2

5x4

C2x2x5x4 � 2:
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x3

f1

x4x2x1 x5x3

f1

x2 x4 x5x1Fig. 2 Two minimal wiring
diagrams for Table 2

It is not difficult to show that these polynomials all fit the data. Also, supp.h1/

D fx1; x5g, supp.h2/ D fx2; x5g, and supp.h3/ D fx2; x4; x5g. Since supp.h2/

is strictly contained in supp.h3/, h3 is not minimal. On the other hand, there is no
polynomial with support equal to fx2g that fits the data. Indeed, according to the first
row in Table 2, such a polynomial would have to be 0 when evaluated at x2 D 1;
and, according to the third row in Table 2, such a polynomial would have to be 1
when evaluated at x2 D 1. Similarly, there is no polynomial with support equal to
fx5g that fits the data. Therefore, h2, with support supp.h2/ D fx2; x5g, is a minimal
polynomial. It can also be shown that h1 is minimal. Therefore, we have that the
wiring diagrams in Fig. 2 are minimal wiring diagrams (these are not necessarily all
possible wiring diagrams).

If we were to try to find all the minimal wiring diagrams by exhaustive search,
we would need to find all functions that fit the data, then find their support, and,
finally, find which polynomials are minimal. This very quickly becomes unfeasible.
For example, for Table 2, there are about 6 
 102;180 polynomials that fit the data.
Therefore, we need to compute the minimal wiring diagrams using a different
approach. In [33], Jarrah et al. proposed a framework and method to compute all
minimal unsigned wiring diagrams, using theoretical and computational tools from
commutative algebra. First, a monomial ideal is constructed in the polynomial ring
that encodes information about the given transitions, namely, which variables must
be present in order to fit the partial transition table. It is known that any ideal in a
polynomial ring can be written uniquely as an intersection of powers of prime ideals,
a generalization of the unique factorization property of integers. Those prime ideals
that are minimal with respect to inclusion are called minimal primes. The algorithm
below is based on the observation that the minimal wiring diagrams are in one-to-
one correspondence with the minimal primes:

• For fi .s/ ¤ fi .s
0/, define Ps;s0 DQkW sk¤s0

k
xi .

• Define the ideal I D hPs;s0 W fi .s/ ¤ fi .s
0/i.

• Compute the minimal primes of I .
• The minimal wiring diagrams are given by the generators of the minimal primes.

For example, since f1.0; 1; 2; 1; 0/ D 0 ¤ 1 D f1.0; 1; 2; 1; 4/ and .0; 1; 2; 1; 0/

differs from .0; 1; 2; 1; 4/ in the fifth variable, then P01210;01214 D x5. Similarly,
since f1.0; 1; 2; 1; 0/ ¤ f1.3; 0; 0; 0; 0/, we have P01210;30000 D x1x2x3x4. Then the
ideal is I D hx5; x1x2x3x4; : : :i. Using the open source computer algebra system
Macaulay2 [26], we have obtained the minimal primes as hx1; x5i, hx2; x5i, hx3; x5i,
and hx4; x5i. Then, by Jarrah et al. [33, Corollary 4], we have the four minimal
wiring diagrams shown in Fig. 3.
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x3

f1

x4x2x1 x5x3

f1

x2 x31x

f1

x2x4 x5 x4 x5 x31x

f1

x2 x4 x5x1

Fig. 3 All the minimal wiring diagrams for Table 2

This result shows the advantage of introducing the algebraic framework of finite
fields, since its theoretical and algorithmic tools can then be used to compute more
effectively with functions and data than can be done at the set-theoretic level, where
the only tool available is enumeration.

5.1.2 Signed Wiring Diagram

Since the polynomials are intended to represent molecular regulation, which can
be either positive or negative, one could also require the polynomials to be unate
functions (also known as biologically meaningful functions [54]); that is, each
polynomial in a PDS has to be increasing or decreasing with respect to each variable.
For example, in the field F2, the polynomial x1.1� x2/ is increasing with respect to
x1 and decreasing with respect to x2 (using the order 0 < 1), so it could represent
molecular regulation. On the other hand, the polynomial x1Cx2 is neither increasing
nor decreasing with respect to its variables, so it is less likely to be biologically
relevant.

For example, let us revisit Table 2 and the polynomials h1, h2, h3. One can show
that h1 is unate (increasing with respect to x1 and x5). However, neither h2 nor h3

is unate. So, in addition to keeping track of which polynomials fit the data, we may
want to consider unate functions only. Once again, this problem cannot be solved
by exhaustive search; so, we need a different approach.

In [69], Veliz-Cuba proposed a framework and method to compute minimal
signed wiring diagrams. The mathematical tools are similar to those used in [33].
The algorithm is summarized below:

• For fi .s/ < fi .s
0/, define Ps;s0 DQkW sk¤s0

k
.xi � sign.s0

k � sk//.
• Define the ideal I D hPs;s0 W fi .s/ < fi .s

0/i.
• Compute the primary decomposition (or minimal primes) of I .
• The minimal wiring diagrams are given by the generators of each primary ideal,

and the signs are given by the constant term.

For example, since f1.0; 1; 2; 1; 0/ D 0 < 1 D f1.0; 1; 2; 1; 4/ and .0; 1; 2; 1; 0/

differs from .0; 1; 2; 1; 4/ in the fifth variable, then P01210;01214 D .x5 � sign.4 �
0// D x5 � 1. Similarly, since f1.0; 1; 2; 1; 0/ < f1.3; 0; 0; 0; 0/, we have
P01210;30000 D .x1 � 1/.x2 C 1/.x3 C 1/.x4 C 1/. Then, the ideal is I D hx5 �
1; .x1 � 1/.x2 C 1/.x3 C 1/.x4 C 1/; : : :i. Using Macaulay2, we have obtained the
result that the primary ideals in the primary decomposition are hx1 � 1; x5 � 1i
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x3

f1

x4x2x1 x5x3

f1

x2 x4 x5x1

Fig. 4 All the minimal signed wiring diagrams for Table 2. Normal arrows indicate activation,
and circles indicate inhibition

and hx3 C 1; x5 � 1i. Then, by Veliz-Cuba [69, Theorem 3.6], we have two
minimal wiring diagrams, shown in Fig. 4. Notice that we have only two such wiring
diagrams, which means that the second and fourth wiring diagrams in Fig. 3 do not
correspond to any unate function.

It is important to note that the key advantage of the algebraic framework is that
it efficiently finds all minimal wiring diagrams without making any assumptions
about the structure of the models, the number of inputs, or the number of states.
In practice, this means that given enough data points, perfect recovery of the
wiring diagram is guaranteed. For example, in [69], it was shown that as the partial
information increases, the estimated wiring diagram quickly approaches the actual
wiring diagram. For instance, using the lac operon model above, it was shown
that only 1.9 % of knowledge was enough to obtain perfect recovery of the wiring
diagram. In other words, the algebraic framework provides a systematic approach
to studying the problem of perfect network inference.

5.2 Inferring the PDS

Here, the goal is to use partial information about the dynamics to estimate the actual
polynomials of the PDS. It turns out again that the problem can be studied coordi-
natewise (see, e.g., [41]). For example, consider a PDS f D .f1; f2; f3; f4; f5/ W
F

5
5 ! F

5
5 and suppose we are given information about the first coordinate function

in Table 2. The goal is to find a polynomial that fits the data and is in some sense
minimal. It turns out that for any given monomial ordering, it is possible to define
the concept of a minimal polynomial. We fix a monomial ordering and consider
an ideal I . Then there exists a unique polynomial h such that h fits the data and,
if h D h0 C g0, where h0 fits the data and g0 2 I , then we must have that g0 D 0.
We can call this polynomial h the minimal polynomial (with respect to the monomial
ordering) that fits the data.

Laubenbacher and Stigler [41] gave an algorithm to compute the minimal
polynomial that fits a given data set. The algorithm is summarized below. Suppose
that we know the values of a polynomial at s1; : : : ; sr :

• Compute any polynomial that fits the data, h0.
• Define the ideal I DTr

kD1hx1 � sk
1 ; : : : ; xn � sk

ni.
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• Reduce h0 modulo I .
• The result of the reduction is the minimal polynomial.

The polynomial h0 can be computed in many ways, for example, using Lagrange
interpolation or the formula given in [41]. For our example, let us consider the
polynomial h0 D �2x4

1�2x4
5�2x3

5�x5. It is important to mention that the minimal
polynomial does not depend on the choice of h0. Then we define the ideal

I D hx1; x2 � 1; x3 � 2; x4 � 1; x5i \ hx1; x2 � 1; x3 � 2; x4 � 1; x5 � 1i
\ hx1; x2 � 1; x3 � 2; x4 � 1; x5 � 4i \ hx1 � 3; x2; x3; x4; x5i
\ hx1 � 1; x2 � 1; x3 � 1; x4 � 1; x5 � 3i:

We now reduce h0 modulo I (e.g., using the command h0%I in Macaulay2). Using
the graded reverse lexicographic monomial ordering (with x1 > x2 > x3 > x4 >

x5), we obtain the minimal polynomial h D �2x2
5 � x3 � x4 C 2x5 � 2. Notice

that if we change the monomial ordering, then we may obtain a different minimal
polynomial. For example, using the lexicographical monomial ordering, we obtain
the minimal polynomial h D 2x4�x3

5 �2x2
5 �2x5�2. The order of the monomials

can be chosen so that “important” variables have more weight.
Similarly to Sect. 5.1.2, we may want to restrict the polynomials to unate

polynomials. For the Boolean case, an algorithm is given in [28] to find the
(Boolean) nested canalizing functions that fit a data set. Nested canalizing functions
have been identified as a class of unate functions that appear in many Boolean
models of biological systems [47] (see also Sect. 8).

5.3 The Polynome Software Package

The software package Polynome, a freely available Web tool, helps users construct
Boolean network models based on experimental data and biological input [18, 19].
For given data, Polynome infers a wiring diagram, polynomial functions, or both,
depending on the user’s choice. Depending on other choices and the characteristics
of the data set, Polynome may invoke different algorithms that lead to (deterministic
or probabilistic) PDSs. Polynome presents the user with limited options in order
to simplify the process of model inference. More options are available when the
algorithms described in [19] are applied manually instead of being invoked through
the Polynome interface.

It has been argued (e.g., [9]) that it is advantageous to combine different reverse
engineering methods. In [63], the algebraic method described here was combined
with a parameter estimation method for systems of ordinary differential equations.
An obvious approach to reverse engineering is to set up a generic set of linear
ordinary differential equations with unknown parameters and then fit the parameters
to given time course data sets. This is the underlying principle in [22], for instance.
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The problem is that, if the network has n variables, there will be in excess of n2

parameters to be fitted (taking into account external-perturbation variables, etc.).
Even for relatively small values of n, this becomes a computationally intractable
problem. The method presented in [22] deals with this issue by assuming that each
node has only a small number of inputs, which dramatically reduces the number
of parameters to be estimated. While this assumption is reasonable, there are many
cases in which it is not warranted. The approach in [63] is to use the algebraic
method as a preprocessing method to identify parameters that can be set equal to 0 in
the system of ordinary differential equations. This is done by applying the algebraic
method to obtain a collection of minimal wiring diagrams, which are then combined
into a consensus network. This network is then biased toward false positives, but will
still generally result in a sparse network. The parameters in the system of ordinary
differential equations that correspond to nonedges in the consensus network are then
set equal to 0. This approach avoids the need to make biological assumptions which
may or may not hold.

The combined method, called DICORE (DIscrete and COntinuous Reverse
Engineering), was applied in [63] to several time courses of DNA microarray data,
collected from experiments to elucidate a transcriptional network that controls the
oxidative stress response network in Saccharomyces cerevisiae. The benchmark was
a network constructed from results in the literature, consisting of 13 genes, which
has two transcriptional hubs that control essentially all other genes in the network.
In a comparison of DICORE with the methods presented in [8,22,80], it performed
very favorably. For instance, it was the only method that correctly identified the two
regulatory hubs in the network.

6 Steady-State Analysis

Once we have constructed a PDS representing the computational model, we can use
algebra to analyze it efficiently. One way in which algebraic theory can be used
is in the computation of steady states, or fixed points. The algebraic machinery
that allows us to handle complex models too large for a brute force enumeration
algorithm is the theory of Gröbner bases. We encourage the reader to follow the
algebraic calculations; the example code here is written for Macaulay2. For an
introduction to varieties, we recommend [13].

Theorem 2 (steady states [30]). The steady states of a PDS f W kn ! kn

are the points in the variety V D V.I /, where the ideal I is equal to
hf1.x/ � x1; : : : ; fn.x/ � xni.
Example 5. Here, we use Theorem 2 to identify the steady states of the model of
Example 1, f .x; y/ D .xCyC1; x/. The ideal I is generated by fx.x; y/�x and
fy.x; y/ � y, i.e., I D hx C y C 1 � x; x � yi D hy C 1; x � yi. It is easy to see
that, over F2, V .I / D f.1; 1/g, just as expected.
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The following Macaulay2 code computes the variety V :

R = ZZ/2[x,y]
F = matrix(R, {{x+y+1, x}})
I = ideal apply( flatten entries F, gens R,

(f, x) -> f - x )
loadPackage "RationalPoints"
rationalPoints I

In Example 1, there are only four possible steady states, since the state space
has size 4, and we can easily look at all trajectories to determine the steady state.
The Macaulay2 command rationalPoints uses a simple-minded brute force
approach to find the solutions. For larger systems, however, we would run into the
same computational problem as with the computational model. The trick here is
to use a Gröbner basis of I in lexicographic order, from which one can easily
infer the solutions. For larger models, we see a dramatic decrease in the time it takes
for the calculation of steady states by solving polynomial systems as compared with
brute force calculation. Even though the complexity of computing a Gröbner basis
may be doubly exponential in general, it is fast in practice for ideals representing
biological systems [30].

6.1 Analysis of Oscillatory Behavior

A model may also have an attractor that is a set of states between which the system
oscillates. We can compute limit cycles of length m by composing f with itself m

times, and then solve the system f m � x D 0.

Theorem 3 (limit cycles [30]). The limit cycles of length m of a PDS f W kn ! kn

consist of the points in the variety V D V.I / that are not part of a smaller cycle or
a steady state, where the ideal I is equal to hf m.x/� xi, and F m denotes function
composition.

Remark 1. Any point belonging to a cycle of length l is an element in the variety
V .hf r � xi/ for r a multiple of l .

Remark 2. A 1-cycle is the same as a steady state.

Example 6. Here, we use Theorem 3 to identify the limit cycles in the model of
Example 1, f .x; y/ D .xC yC 1; x/. We have previously identified f.1; 1/g as the
steady state of the system. Since there are four different configurations, the longest
cycle we may find is a 4-cycle. We first look at 2-cycles. Note that f 2.x; y/ D
f .f .x; y//, i.e., f .x; y/ D .fx.fx.x; y/; fy.x; y//; fy.fx.x; y/; fy.x; y///:

f .f .x; y// D .fx.x C y C 1; x/; fy.x C y C 1; x//

D ..x C y C 1/C x C 1; x C y C 1/

D .y; x C y C 1/:
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Then we compute the variety

V .hf .f .x; y//� .x; y/i/ D V .hy � x; x C y C 1 � yi/ D V .hy � x; x C 1i/ D f.1; 1/g:

We see that the only point in V .f 2 � x/ is f.1; 1/g, a point that we previously
identified as a steady state; thus there are no cycles of length 2. We can repeat this
exercise for 3- and 4-cycles:

f 3.x; y/ D .fx.F x.x; y//; fy.F x.x; y///

D .fx.y; x C y C 1/; fy.y; x C y C 1//

D .y C .x C y C 1/C 1; y/

D .x; y/:

Thus, the system we need to solve is x � x; y � y, or 0 D 0. Any point in F
2
2 is

a solution to this trivial system of equations, and since we have identified f.1; 1/g
as a steady state, the remaining three points must constitute a 3-cycle. We can now
compose f once more with itself to calculate the 4-cycles, or, since all points in F

2
2

are part of a steady state or a 3-cycle, we know that there cannot be any 4-cycles.
Again, we can use Macaulay2 to carry out the calculations for us. We use

sub(F,F) to compose f with itself:

restart
R = ZZ/2[x,y]
F = matrix(R, {{x+y+1, x}})
F2 = sub(F,F)
I2 = ideal apply( flatten entries F2, gens R,

(f, x) -> f - x )
loadPackage "RationalPoints"
rationalPoints I2
F3 = sub(F2, F)
I3 = ideal apply( flatten entries F3, gens R,

(f, x) -> f - x )
rationalPoints ideal gens gb I3
F4 = sub(F3, F)
I4 = ideal apply( flatten entries F4, gens R,

(f, x) -> f - x )
rationalPoints ideal gens gb I4

Composing a system containing many variables with itself several times quickly
becomes computationally infeasible, because the polynomials grow too quickly.
For large systems, computing f 3 is already impossible, since even for polyno-
mials that involve only a few of the variables, their third iteration can consist
of 100,000 monomial terms. To overcome this problem, we use the following



Algebraic Models and Their Use in Systems Biology 463

computational trick. Instead of solving f .f .x// D x, we introduce an extra set
of variables, y, and solve a system that now has twice as many equations:

f .x/ D y; f .y/ D x:

Then we compute a Gröbner basis of the ideal generated by f .x/ � y; f .y/ � x,
and use the elimination theorem, another theoretical result about Gröbner bases, to
delete the unnecessary y variables [13]:

restart
R = ZZ/2[x1, x2, y1, y2]
xVars = {(gens R)_0, (gens R)_1}
yVars = {(gens R)_2, (gens R)_3}
F = matrix(R, {{x1+x2+1, x1}})
I1 = ideal apply( flatten entries F, yVars,

(f, y) -> f - y )
Fy = sub(F, {x1=>y1, x2=>y2})
I2 = ideal apply( flatten entries Fy, xVars,

(f, x) -> f - x )
I = I1 + I2
I = eliminate({y1, y2}, I)
I = sub(I, ZZ/2[x1, x2])
loadPackage "RationalPoints"
rationalPoints ideal gens gb I

6.2 ADAM: Analysis of Dynamic Algebraic Models

The Web-based tool Analysis of Dynamic Algebraic Models (ADAM) provides
analysis methods for discrete models [29, 30]. ADAM analyzes discrete models for
their dynamical features and provides a graphical representation of the dynamics
when possible. ADAM accepts several types of discrete models, including Boolean
models, Petri nets, logical models, and PDSs. Internally, the models are transformed
to PDSs to allow efficient computation. Once the model has been translated to
a PDS, ADAM creates the corresponding system of equations in the appropriate
polynomial ring and finds the steady states by using a Gröbner basis calculation,
based on Theorems 2 and 3. Furthermore, ADAM constructs the interpolating
polynomial for a given set of data points. ADAM’s computational engine uses
Macaulay2, but can be used without knowledge of the underlying algebra, and, as a
Web tool, does not require the installation of any computer algebra system, which
makes it accessible to a wide range of users. ADAM can currently compute steady
states of models with up to 72 nodes and limit cycles of models with up to 30 nodes.
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6.3 Theoretical Results about Model Steady States

As mentioned before, as the number of network nodes grows, it becomes infeasible
to analyze discrete dynamical systems through enumerative exploration of the state
space. Beyond a certain range, even methods from computational algebra lose their
effectiveness. Sometimes, however, it is possible to carry out a theoretical analysis
of the network’s steady states, in combination with effective model reduction
methods. Here, we briefly describe some theoretical approaches that can be helpful
in many concrete cases. The results presented here outline a comprehensive program
to analyze steady states of Boolean networks and, ultimately, general multistate
models.

• Reduction methods. The first step in the program is to carry out model reduction
while keeping steady-state information. It is possible to transform a Boolean
network into another one, with typically many fewer nodes, such that they
share dynamical properties [52, 59, 68]. In [68], a reduction method was used to
transform a Th-cell differentiation model with 12 nodes into a Boolean network
with 2 nodes, and a lac operon model with 10 nodes into a Boolean network
with only one node. The reduction process is such that one can algorithmically
determine the steady states of the original model from the steady states of the
reduced model.

• Conjunctive and disjunctive Boolean networks. A Boolean network all of whose
functions are constructed using only the AND operator is called conjunctive
(and similarly for disjunctive networks). This is a very special class of networks,
which can be used to model gene regulatory networks in which all interactions are
synergistic activating regulations. For this class of Boolean networks, it has been
shown that the number of steady states can be computed directly from topological
features of the wiring diagram [34], namely, the strongly connected components
and the maximal antichains in the partially ordered set of strongly connected
components. Recall that the nodes of the wiring diagram of a Boolean network
are the nodes of the network. There is a directed edge from xi to xj if the variable
xi appears in the update function for xj . For a strongly connected conjunctive
Boolean network (that is, one in which every node can be reached by a directed
path from any other node), there is a closed formula that computes the number of
periodic states of the Boolean network for all possible periods [34]. In particular,
this formula allows the determination of all steady states. A similar result holds
for disjunctive networks, constructed using only the OR operator [34].

• AND–NOT networks. The applicability of conjunctive networks to the modeling
of gene regulatory networks is limited in that it does not allow for negative
regulation. We can overcome this problem by also allowing the NOT operator, in
addition to the AND operator, resulting in AND–NOT networks. Although the
nice formula for AND networks giving the number of steady states does not hold
anymore, it has been shown for a certain class of AND–NOT networks (normal
AND–NOT networks) that the steady states can also be computed directly from
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the wiring diagram, namely, via the maximal independent sets [70]. This is a
generalization of the results about AND–OR networks presented in [3]. Also,
it is possible to transform any AND–NOT network into a normal AND–NOT
network while preserving steady-state information.

• Boolean networks as AND–NOT networks. Finally, in [74], it was shown that any
Boolean network can be transformed into an AND–NOT network with a modest
increment in the number of nodes. This can make the results about AND–NOT
networks accessible to the steady-state analysis of any Boolean network.

• Relationship with continuous models. Although it may seem that the algebraic
tools described in this chapter can only be used to study discrete models, it
has been shown that our approach can also be used to study certain classes of
continuous models [73].

7 Stochastic Polynomial Dynamical Systems

In this section, a stochastic modeling framework for gene regulatory networks
is presented. Stochastic modeling tools are important because of the inherent
stochasticity of gene regulation processes. Accurately modeling this stochasticity
is a complex and important goal in molecular system biology. one can follow
several different approaches depending on one’s level of knowledge about the
biological system and the availability of data. For instance, if a gene regulatory
network is viewed as a biochemical reaction network, the Gillespie algorithm can be
applied to simulate each biochemical reaction separately, generating a random walk
corresponding to a solution of the chemical master equation of the system [24, 25].
At an even more detailed level, one could introduce time delays into the Gillespie
simulations to account for realistic time delays in activation or degradation, such as
in the case of circadian rhythms [5,55,57]. At a higher level of abstraction, stochastic
differential equations [67] contain a deterministic approximation of the system and
an additional random white noise term. However, all these schemes require all the
kinetic rate constants to be known, which could represent a strong constraint owing
to the difficulty of measuring kinetic parameters, limiting these approaches to small
systems.

As mentioned in Sect. 4, discrete models are an alternative to continuous
models, and do not depend on rate constants. To account for stochasticity in this
setting, several methods have been considered. In particular, for Boolean networks,
stochasticity has been introduced by flipping node states from 0 to 1 or vice versa
with some flip probability [2, 15, 56, 79]. However, it has been argued that this
way of introducing stochasticity into the system usually leads to overrepresentation
of noise [23]. The main criticism of this approach is that it does not take into
consideration the correlation between the expression values of input nodes and
the probability of flipping the expression of a node due to noise. In fact, this
approach models the stochasticity at a node regardless of the susceptibility to noise
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of the underlying biological function [23]. Probabilistic Boolean networks (PBNs)
[42, 61, 62] allow another stochastic method within the discrete-model paradigm.
PBNs model a choice among alternative biological functions during the iteration
process, rather than modeling the stochasticity of the failure of the function itself.
We have adopted a special case of this setting, in which every node has associated
to it two functions: a function that governs its evolution over time and the identity
function. If the first is chosen, then the node is updated based on its logical rule.
When the identity function is chosen, then the state of the node is not updated. The
key difference from a PBN is the assignment of probabilities that govern which
update is chosen. In our setting, each function has two probabilities assigned to
it. More precisely, let x be a variable. We assign to it a probability p", which
determines the likelihood that x will be updated based on its logical rule if this
update leads to an increase or activation of the variable. Likewise, a probability p#
determines this probability in the case where the variable is decreased or inhibited.
The necessity for considering two different probabilities arises because activation
and degradation represent different biochemical processes and, even if these two
are encoded by the same function, their propensities are different in general. This is
very similar to what is considered in modeling by differential equations, where, for
instance, the kinetic rate parameters for activation and for degradation or decay are,
in principle, different. For other approaches to modeling stochasticity in the Boolean
setting, see [23, 44, 56, 64].

7.1 Framework

The framework described below, published in [49], incorporates propensity param-
eters for activation and degradation. Here, the aim is to model stochasticity at
the biological-function level, assuming that even if the expression levels of the
input nodes of an update function guarantee activation or degradation, there is a
probability that the process will not occur owing to stochasticity. This could happen,
for instance, if some of the chemical reactions encoded by the update function fail to
occur. This is similar to models based on the chemical master equation. This model
type introduces activation and degradation propensities. Since the definition of such
models does not depend on a polynomial representation, we discuss them in full
generality.

Let x1; : : : ; xn be variables which can take values in finite sets X1; : : : ; Xn,
respectively. Let X D X1 
 � � � 
Xn be the Cartesian product. A stochastic discrete
dynamical system in the variables x1; : : : ; xn is a collection of n triplets

F D ffi ; p
"
i ; p

#
i gniD1;

where

• fi W X ! Xi is the update function for xi , for all i D 1; : : : ; n;
• p

"
i is the activation propensity;
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• p
#
i is the degradation propensity;

• p
"
i ; p

#
i 2 Œ0; 1�.

7.2 Dynamics of Stochastic Discrete Dynamical Systems

Let F D ffi ; p
"
i ; p

#
i gniD1 be a stochastic discrete dynamical system, and consider

x 2 X . For all i , we define �i;x.xi ! fi .x// and �i;x.xi ! xi / by

�i;x.xi ! fi .x// D

8̂
<̂
ˆ̂:

p
"
i ; if xi < fi .x/;

p
#
i ; if xi > fi .x/;

1; if xi D fi .x/;

�i;x.xi ! xi / D

8̂
<̂
ˆ̂:

1 � p
"
i ; if xi < fi .x/;

1 � p
#
i ; if xi > fi .x/;

1; if xi D fi .x/:

That is, if the possible future value of the i -th coordinate is larger or smaller,
respectively, than the current value, then the activation or degradation propensity
determines the probability that the i -th coordinate will increase or decrease its
current value. If the i -th coordinate and its possible future value are the same, then
the i -th coordinate of the system will maintain its current value with probability 1.
Notice that �i;x.xi ! yi / D 0 for all yi … fxi ; fi .x/g.

The dynamics of F is given by a weighted graph X , which has an edge from
x 2 X to y 2 X if and only if yi 2 fxi ; fi .x/g for all i . The weight of an edge
x ! y is equal to the product

wx!y D
nY

iD1

�i;x.xi ! yi /:

By convention, we omit edges with weight zero. The software package ADAM,
described in Sect. 6.2, contains algorithms for the construction and analysis of
stochastic discrete dynamical systems.

Given a stochastic discrete dynamical system F D ffi ; p
"
i ; p

#
i gniD1, it is

straightforward to verify that F has the same steady states as the deterministic
system G D ffi gniD1. It is also important to note that the dynamics of F includes
the different trajectories that can be generated from G using other common update
mechanisms, such as synchronous and asynchronous schemes. Thus, stochastic
discrete dynamical systems take advantage of the PDS representation of the
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regulatory functions ffi gniD1 for model analysis, for instance to compute the steady

states of F D ffi ; p
"
i ; p

#
i gniD1 as described in Sect. 6.

The propensity parameters fp"
i ; p

#
i gniD1 can be interpreted as a measure of

relative speeds among the modeled processes, and these can be given a biological
meaning. For instance, in [49], a simple degradation model was analyzed and
the degradation propensity p

#
1 was related to the degradation rate (in the setting

of the Gillespie algorithm) by a linear equation. The propensity parameters are
useful when one is trying to distinguish fast from slow processes. Furthermore, two
small stochastic biological systems were studied in [49], and it was shown there
that stochastic discrete dynamical systems are a suitable framework for studying
stochasticity in gene regulatory networks.

8 Nested Canalizing Networks

Finally, we return to a theme touched upon earlier, the nature of the regulatory rules
that are biologically most meaningful. An important theoretical principle that has
been discussed in evolutionary biology since the 1940s is that of canalization, a
property of gene regulatory networks that buffers the functioning of the network
against various sources of noise, as well as against the deleterious effects of
mutations (see, e.g., [76]). Stuart Kauffman and his collaborators introduced an
abstracted notion of canalization to Boolean network models of gene regulation.
Taking the concept a step further, the authors of [36, 37] introduced the concept of
a nested canalizing Boolean function, and they showed that networks constructed
from such functions exhibited features associated with the dynamics of gene
regulatory networks, in particular robustness with respect to perturbations. Within
the general framework described in Sect. 4, a definition of the notion of a multistate
nested canalizing function was introduced in [47, 48] that reduces to the Kauffman
definition in the Boolean case. For a more detailed discussion of this modeling
framework, the user is encouraged to consult the references in this section.

8.1 Nested Canalizing Rules

Here we present the general definition of a nested canalizing rule in variables
x1; : : : ; xn, with state space X D X1 
 � � � 
Xn.

Assume that each Xi is totally ordered; that is, its elements can be arranged
in linear increasing order. In the Boolean case, this could be Xi D f0 < 1g.
Let Si 	 Xi; i D 1; : : : ; n; be subsets that satisfy the property that each Si is a
proper, nonempty subinterval of Xi ; that is, every element of Xi that lies between
two elements of Si in the chosen order is also in Si . Furthermore, we assume that
the complement of each Si is also a subinterval; that is, each Si can be described by
a threshold si , with all elements of Si either larger or smaller than si .
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• The function fi W X ! Xi is a nested canalizing rule in the variable order
x�.1/; : : : ; x�.n/ with canalizing input sets S1; : : : ; Sn 	 X and canalizing output
values b1; : : : ; bn; bnC1 2 Xi , with bn ¤ bnC1, if it can be represented in the form

f .x1; : : : ; xn/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂:

b1 if x�.1/ 2 S1;

b2 if x�.1/ … S1; x�.2/ 2 S2;

b3 if x�.1/ … S1; x�.2/ … S2; x�.3/ 2 S3;
:::

bn if x�.1/ … S1; : : : ; x�.n/ 2 Sn;

bnC1 if x�.1/ … S1; : : : ; x�.n/ … Sn:

• The function fi W X ! Xi is a nested canalizing function if it is a nested
canalizing function in some variable order x�.1/; : : : ; x�.n/ for some permutation
� on f1; : : : ; ng.
It is straightforward to verify that if Xi D f0; 1g for all i , then we recover

the definition of a Boolean nested canalizing rule given in [36]. As mentioned in
previous sections, several important classes of multistate discrete models can be
represented in the form of a dynamical system f W X �! X , so that the concept of
a nested canalizing rule defined in this way has broad applicability.

8.2 The Dynamics of Nested Canalizing Networks

Through extensive simulations [47], it has been shown that dynamical systems
constructed from nested canalizing rules as coordinate functions have important
dynamical properties characteristic of molecular networks, namely very short limit
cycles and very few attractors, compared with the set of all possible functions. Thus,
aside from incorporating the biological concept of canalization, networks whose
nodes are controlled by combinatorial logic expressed by nested canalizing rules
have dynamical properties resembling those of biological networks. In particular,
they are robust, owing to the fact that they have a small number of attractors, which
are therefore large. That is, perturbations are more likely to remain in the same
attractor. In addition, limit cycles tend to be very short, compared with random
networks, which implies that these networks have very regular behavior.

8.3 Nested Canalizing Rules Are Biologically Meaningful

To test the hypothesis that nested canalizing rules are biologically meaningful,
a range of published Boolean models have been investigated [36, 37] and their
frequency of appearance has been quantified. In the multistate case, it has also been
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shown that many published models use logical interaction rules whose polynomial
form is nested canalizing and that they are very prevalent [47], providing evidence
that nested canalization is indeed a common pattern for the regulatory logic
in molecular interaction networks. This raises the question of incorporating an
additional constraint into network inference algorithms, so they return only nested
canalizing functions. In its generality, this problem is unsolved at this time.

8.4 Theoretical Results about Nested Canalizing Functions

The polynomial representation of nested canalizing functions [32, 48] offers a vari-
ety of tools to analyze these functions. For instance, in [43], a new characterization
for Boolean nested canalizing functions was obtained in terms of the polynomial
representation, which provides a finer categorization of nested canalizing functions
that takes into account the level of influence of individual variables. The concept of
the layer number of a nested canalizing function was introduced in [43] as a measure
of the extent of the hierarchy of influence among its variables. It was shown there
that layer numbers are good indicators of the stability of networks whose nodes
are controlled by nested canalizing functions. Thus the concept of the layer number
gives a division of the class of nested canalizing functions into subfamilies with
different stability properties; see [43]. However, these results still remain to be
extended to the multistage case. The concept of the layer number was also used
to evaluate the number of nested canalizing functions, their Hamming weight, the
activity of their variables and their average sensitivity. A conjecture about a sharp
upper bound for the average sensitivity of nested canalizing functions given in [43]
was recently proved in [38].

References

1. R. Albert, H.G. Othmer, The topology of the regulatory interactions predicts the expression
pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18
(2003)

2. E.R. Álvarez-Buylla, Á. Chaos, M. Aldana, M. Benítez, Y. Cortes-Poza, C. Espinosa-Soto,
D.A. Hartasánchez, R.B. Lotto, D. Malkin, G.J. Escalera Santos, P. Padilla-Longoria, Floral
morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE
3(11), e3626 (2008)

3. J. Aracena, J. Demongeot, E. Goles, Fixed points and maximal independent sets in AND-OR
networks. Discret. Appl. Math. 138(3), 277–288 (2004)

4. R. Bonneau, Learning biological networks: from modules to dynamics. Nat. Chem. Biol.
4(11), 658–664 (2008)

5. D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, Delay-induced stochastic oscillations in gene
regulation. Proc. Natl. Acad. Sci. U.S.A. 102(41), 14593–14598 (2005)

6. A. Bruex, R.M. Kainkaryam, Y. Wieckowski, Y.H. Kang, C. Bernhardt, Y. Xia, X. Zheng,
J.Y. Wang, M.M. Lee, P. Benfey, P.J. Woolf, J. Schiefelbein, A gene regulatory network for



Algebraic Models and Their Use in Systems Biology 471

root epidermis cell differentiation in arabidopsis. PLoS Genet. 8(1), e1002446 (2012). PMID:
22253603

7. F.J. Bruggeman, H.V. Westerhoff, The nature of systems biology. Trends Microbiol. 15(1),
45–50 (2007)

8. A. Butte, I. Kohane, Mutual information relevance networks: functional genomic clustering
using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 415–426 (2000)

9. I. Cantone, L. Marucci, F. Iorio, M. Ricci, V. Belcastro, M. Bansal, S. Santini, M. di Bernardo,
D. di Bernardo, M. Cosma, A yeast synthetic network for in vivo assessment of reverse-
engineering and modeling approaches. Cell 137(1), 172–181 (2009)

10. C. Chaouiya, E. Remy, P.R.D. Thieffry, Qualitative modeling of genetic networks: from logical
regulatory graphs to standard Petri nets. Springer Lect. Notes Comput. Sci. 3099, 137–156
(2004)

11. M. Chaves, E. Sontag, R. Albert, Methods of robustness analysis for Boolean models of gene
control networks. IET Syst. Biol. 153, 154–167 (2006)

12. J. Chifman, A. Kniss, P. Neupane, I. Williams, B. Leung, Z. Deng, P. Mendes, V. Hower,
F.M. Torti, S.A. Akman, S.V. Torti, R. Laubenbacher, The core control system of intracellular
iron homeostasis: a mathematical model. J. Theor. Biol. 300, 91–99 (2012). PMID: 22286016

13. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 2nd edn. (Springer, New York,
1997)

14. P. Dao, R. Colak, R. Salari, F. Moser, E. Davicioni, A. Schonhuth, M. Ester, Inferring cancer
subnetwork markers using density-constrained biclustering. Bioinformatics 26(18), 625–631
(2010)

15. M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission
yeast. PLoS One 3(2), e1672 (2008)

16. A. de la Fuente, P. Brazhnik, P. Mendes, Linking the genes: inferring quantitative gene
networks from microarray data. Trends Genet. 18(8), 395–398 (2002)

17. A. de la Fuente, N. Bing, I. Hoeschele, P. Mendes, Discovery of meaningful associations in
genomic data using partial correlation coefficients. Bioinformatics 20(18), 3565–3574 (2004)

18. E. Dimitrova, L.D. Garcia-Puente, F. Hinkelmann, A.S. Jarrah, R. Laubenbacher, B. Stigler,
M. Stillman, P. Vera-Licona, Polynome (2010). Available at http://polymath.vbi.vt.edu/
polynome/

19. E. Dimitrova, L.D. Garcìa-Puente, F. Hinkelmann, A.S. Jarrah, R. Laubenbacher, B. Stigler,
M. Stillman, P. Vera-Licona, Parameter estimation for Boolean models of biological networks.
Theor. Comput. Sci. 412(26), 2816–2826 (2011)

20. J. Faith, B. Hayete, J. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. Collins,
T. Gardner, Large-scale mapping and validation of Escherichia coli transcriptional regulation
from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)

21. D. Formanowicz, A. Sackmann, P. Formanowicz, J. Błazewicz, Petri net based model of the
body iron homeostasis. J. Biomed. Inform. 40(5), 476–485 (2007). PMID: 17258508

22. T. Gardner, D. di Bernardo, D. Lorenz, J. Collins, Inferring genetic networks and identifying
compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

23. A. Garg, K. Mohanram, A. Di Cara, G. De Micheli, I. Xenarios, Modeling stochasticity and
robustness in gene regulatory networks. Bioinformatics 25(12), i101–i109 (2009)

24. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
81(25), 2340–2361 (1977)

25. D. Gillespie, Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55
(2007)

26. D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry
(1992). Available at http://www.math.uiuc.edu/Macaulay2/

27. A. Haury, F. Mordelet, P. Vera-Licona, J. Vert, TIGRESS: trustful inference of gene regulation
using stability selection. BMC Syst. Biol. 6, 145 (2012)

28. F. Hinkelmann, A.S. Jarrah, Inferring biologically relevant models: nested canalyzing
functions. ISRN Biomath. 2012, 7 (2012)

http://polymath.vbi.vt.edu/polynome/
http://polymath.vbi.vt.edu/polynome/
http://www.math.uiuc.edu/Macaulay2/


472 R. Laubenbacher et al.

29. F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, A. Veliz-Cuba, G. Blekherman,
R. Laubenbacher, ADAM: analysis of analysis of dynamic algebraic models (2010). Available
at http://adam.vbi.vt.edu/

30. F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, G. Blekherman, A. Veliz-Cuba,
R. Laubenbacher, ADAM: Analysis of discrete models of biological systems using computer
algebra. BMC Bioinform. 12(1), 295 (2011)

31. C. Hong, M. Lee, D. Kim, D. Kim, K.-H. Cho, I. Shin, A checkpoints capturing timing-robust
Boolean model of the budding yeast cell cycle regulatory network. BMC Syst. Biol. 6(1), 129
(2012). PMID: 23017186

32. A. Jarrah, B. Raposa, R. Laubenbacher, Nested canalyzing, unate cascade, and polynomial
functions. Physica D 233, 167–174 (2007)

33. A.S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman, Reverse-engineering of polynomial
dynamical systems. Adv. Appl. Math. 39(4), 477–489 (2007)

34. A. Jarrah, R. Laubenbacher, A. Veliz-Cuba, The dynamics of conjunctive and disjunctive
Boolean network models. Bull. Math. Biol. 72, 1425–1447 (2010)

35. S.A. Kauffman, The large-scale structure and dynamics of gene control circuits: an ensemble
approach. J. Theor. Biol. 44, 167 (1973)

36. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Random Boolean network models and
the yeast transcriptional network. Proc. Natl. Acad. Sci. 100(25), 14796–14799 (2003)

37. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Genetic networks with canalyzing
Boolean rules are always stable. Proc. Natl. Acad. Sci. 101(49), 17102–17107 (2004)

38. J.G. Klotz, R. Heckel, S. Schober, Bounds on the average sensitivity of nested canalizing
functions. PLoS ONE 8(5), e64371 (2013)

39. N. Kramer, J. Schafer, A. Boulesteix, Regularized estimation of large-scale gene association
networks using graphical Gaussian models. BMC Bioinform. 10, 384 (2009)

40. R. Küffner, T. Petri, P. Tavakkolkhah, L. Windhager, R. Zimmer, Inferring gene regulatory
networks by ANOVA. Bioinformatics 28(10), 1376–1382 (2012)

41. R. Laubenbacher, B. Stigler, A computational algebra approach to the reverse engineering of
gene regulatory networks. J. Theor. Biol. 229, 523–537 (2004)

42. R. Layek, A. Datta, R. Pal, E.R. Dougherty, Adaptive intervention in probabilistic Boolean
networks. Bioinformatics 25(16), 2042–2048 (2009)

43. Y. Li, J.O. Adeyeye, D. Murrugarra, B. Aguilar, R. Laubenbacher, Boolean nested canalizing
functions: a comprehensive analysis. Theor. Comput. Sci. 481(0), 24–36 (2013)

44. J. Liang, J. Han, Stochastic Boolean networks: an efficient approach to modeling gene
regulatory networks. BMC Syst. Biol. 6(1), 113 (2012)

45. R. Lidl, H. Niederreiter, Finite Fields (Cambridge University Press, New York, 1997)
46. A. Madar, A. Greenfield, E. Vanden-Eijnden, R. Bonneau, DREAM3: network inference using

dynamic context likelihood of relatedness and the Inferelator. PLoS ONE 5(3), e9803 (2010)
47. D. Murrugarra, R. Laubenbacher, Regulatory patterns in molecular interaction networks.

J. Theor. Biol. 288(0), 66–72 (2011)
48. D. Murrugarra, R. Laubenbacher, Multi-states nested canlyzing functions. Phys. D Nonlinear

Phenom. 241, 921–938 (2012)
49. D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S. Arat, R. Laubenbacher, Modeling stochasticity

and variability in gene regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2012, 5 (2012)
50. C. Müssel, M. Hopfensitz, H.A. Kestler, BoolNet – an R package for generation, reconstruction

and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010)
51. A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, C. Chaouiya, Logical modelling of

regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)
52. A. Naldi, E. Remy, D. Thieffry, C. Chaouiya, A reduction of logical regulatory graphs

preserving essential dynamical properties, in Computational Methods in Systems Biology,
ed. by P. Degano, R. Gorrieri. Volume 5688 of Lecture Notes in Computer Science (Springer,
Berlin/Heidelberg, 2009), pp. 266–280

53. R. Porreca, E. Cinquemani, J. Lygeros, G. Ferrari-Trecate, Identification of genetic network
dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)

http:/adam.vbi.vt.edu/


Algebraic Models and Their Use in Systems Biology 473

54. L. Raeymaekers, Dynamics of Boolean networks controlled by biologically meaningful
functions. J. Theor. Biol. 218(3), 331–341 (2002)

55. A.S. Ribeiro, Stochastic and delayed stochastic models of gene expression and regulation.
Math. Biosci. 223(1), 1–11 (2010)

56. A.S. Ribeiro, S.A. Kauffman, Noisy attractors and ergodic sets in models of gene regulatory
networks. J. Theor. Biol. 247(4), 743–755 (2007)

57. A. Ribeiro, R. Zhu, S.A. Kauffman, A general modeling strategy for gene regulatory networks
with stochastic dynamics. J. Comput. Biol. 13(9), 1630–1639 (2006)

58. C. Rohr, W. Marwan, M. Heiner, Snoopy – a unifying Petri net framework to investigate
biomolecular networks. Bioinformatics 26(7), 974–975 (2010)

59. A. Saadatpour, I. Albert, R. Albert, Attractor analysis of asynchronous Boolean models of
signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)

60. A. Sackmann, M. Heiner, I. Koch, Application of Petri net based analysis techniques to signal
transduction pathways. BMC Bioinform. 7(1), 482 (2006)

61. I. Shmulevich, E.R. Dougherty, Probabilistic Boolean Networks: The Modeling and Control
of Gene Regulatory Networks (SIAM, Philadelphia, 2010)

62. I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

63. B. Stigler, D. Camacho, A. Martins, W. Sha, E.S. Dimitrova, P. Vera-Licona, V. Shulaev,
P. Mendes, R. Laubenbacher, Reverse engineering a yeast oxidative stress response network.
Under review (2013)

64. S. Teraguchi, Y. Kumagai, A. Vandenbon, S. Akira, D.M. Standley, Stochastic binary modeling
of cells in continuous time as an alternative to biochemical reaction equations. Phys. Rev. E
Stat. Nonlinear Soft Matter Phys. 84(6 Pt 1), 062903 (2011)

65. D. Thieffry, R. Thomas, Qualitative analysis of gene networks. Pac. Symp. Biocomput. 3,
77–88 (1998)

66. R. Thomas, Regulatory networks seen as asynchronous automata: a logical description.
J. Theor. Biol. 153, 1–23 (1991)

67. T. Toulouse, P. Ao, I. Shmulevich, S. Kauffman, Noise in a small genetic circuit that undergoes
bifurcation. Complexity 11(1), 45–51 (2005)

68. A. Veliz-Cuba, Reduction of Boolean network models. J. Theor. Biol. 289, 167–172 (2011)
69. A. Veliz-Cuba, An algebraic approach to reverse engineering finite dynamical systems arising

from biology. SIAM J. Appl. Dyn. Syst. 11(1), 31–48 (2012)
70. A. Veliz-Cuba, R. Laubenbacher, On the computation of fixed points in Boolean networks.

J. Appl. Math. Comput. accepted (2011)
71. A. Veliz-Cuba, B. Stigler, Boolean models can explain bistability in the lac operon. J. Comput.

Biol. 18(6), 783–794 (2011)
72. A. Veliz-Cuba, A.S. Jarrah, R. Laubenbacher, Polynomial algebra of discrete models in

systems biology. Bioinformatics 26(13), 1637–1643 (2010)
73. A. Veliz-Cuba, J. Arthur, L. Hochstetler, V. Klomps, E. Korpi, On the relationship of steady

states of continuous and discrete models arising from biology. Bull. Math. Biol. accepted
(2012)

74. A. Veliz-Cuba, K. Buschur, R. Hamershock, A. Kniss, E. Wolff, R. Laubenbacher, AND-NOT
logic framework for steady state analysis of Boolean network models (2012). arXiv:1211.5633

75. M. Vignes, J. Vandel, D. Allouche, N. Ramadan-Alban, C. Cierco-Ayrolles, T. Schiex,
B. Mangin, S. de Givry, Gene regulatory network reconstruction using Bayesian networks,
the Dantzig selector, the Lasso and their meta-analysis. PLoS ONE 6(12), e29165 (2011)

76. C.H. Waddington, Canalisation of development and the inheritance of acquired characters.
Nature 150, 563–564 (1942)

77. H. Wang, L. Qian, E. Dougherty, Inference of gene regulatory networks using S-system: a
unified approach. IET Syst. Biol. 4(2), 145–156 (2010)

78. D. Wilkinson, Stochastic Modeling for Systems Biology (Chapman and Hall/CRC, Boca Raton,
2006)



474 R. Laubenbacher et al.

79. K. Willadsen, J. Wiles, Robustness and state-space structure of Boolean gene regulatory
models. J. Theor. Biol. 249(4), 749–765 (2007)

80. P. Zoppoli, S. Morganella, M. Ceccarelli, TimeDelay-ARACNE: reverse engineering of gene
networks from time-course data by an information theoretic approach. BMC Bioinform. 11(1),
154 (2010)



Deconstructing Complex Nonlinear Models
in System Design Space

Michael A. Savageau and Jason G. Lomnitz

Abstract Achieving predictive understanding of complex nonlinear systems, such
as those manifested at various levels of biological organization, represents an
enormous challenge. The task would be facilitated if such systems could be
generically decomposed into a series of tractable subsystems and the results of their
analysis reassembled to provide insight into the original system. In this chapter, we
describe an approach in which subsystems are integrated into a system design space
that allows qualitatively distinct phenotypes of a complex system to be rigorously
defined and counted, their relative fitness to be analyzed and compared, their global
tolerance to be measured, and their biological design principles to be identified. We
then illustrate the approach in the context of the “genotype–phenotype” question
for a couple of simple, well-studied systems. Finally, we discuss the extent to
which this approach might be generalized to other classes of nonlinear models.
Although this effort has been the focus of our recent biological work, we believe
that this methodology has application beyond biology. It also raises a number of
mathematical issues that need to be explored further and extended.

1 Introduction

Throughout the pregenomic era, there was sustained interest in the relationship
between genotype and phenotype [1]. Although we now have a generic concept
of “genotype” provided by the detailed DNA sequence, there is no corresponding
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generic concept of “phenotype”. Without a generic concept of a phenotype, there can
be no rigorous framework for a deep understanding of the complex nonlinear sys-
tems that link genotype to phenotype. The concept of “phenotype” must ultimately
be grounded in the underlying biochemistry. The vast majority of biochemical
models are represented in terms of the power functions of chemical kinetics or the
rational functions of biochemical kinetics, which result from chemical kinetics plus
constraints.

Although simple models within these formalisms can occasionally be treated
analytically, this is seldom possible when the models become even moderately
complex. For this reason, the more complex models are typically analyzed by
linearization about fixed points and simulated by numerical methods. Finding the
fixed points of nonlinear models is a challenging problem in its own right [2].
Indeed, there is no method that is guaranteed to find all the roots of a complex
nonlinear model. Numerical simulation also has limitations because it is impractical
to sample all combinations of parameter values; as a result, important behaviors can
be missed because of failure to sample certain regions of parameter space.

One is often interested in comparing alternative models as a way of testing
hypotheses. If such comparisons are to be well controlled, one must take pains to
ensure that the portions of the alternative models that should remain identical do
in fact operate around the same states. This is a subtle issue that only comes up in
nonlinear models. If the comparisons are not well controlled in this sense, then the
resulting differences that one would like to attribute to the specific alternatives being
tested might actually result from nonspecific consequences attributed to a change in
state elsewhere in the model.

Because of these and other difficulties that arise in the analysis of nonlinear
models [3], it would be highly desirable if there were a method to decompose a
complex model into a collection of simpler nonlinear models that are analytically
tractable, and then to reassemble the results to provide understanding of the original
complex nonlinear model. One of the so-called Grand Challenges of modern biology
is to understand the relationship between the information in our genes (the genotype)
and the expression of that information (the phenotype) as the structure, function, and
behavior of the organism in its environmental context [1]. It is hard to overestimate
the magnitude of this challenge, and for this reason it manifests all of the difficulties
mentioned above. Thus, it provides an ideal context in which to address these
difficulties.

In this chapter, we review the elements of a method, developed in the context of
this “genotype to phenotype” problem, that has shown promise for accomplishing
the desirable goal of systematic deconstruction mentioned above [4]. It involves a
concept of qualitatively distinct phenotypes that is rigorously defined and applies to
systems at levels from the molecular to the organismal. We have provided examples
elsewhere to demonstrate how this concept is manifested within a system design
space, in which qualitatively distinct phenotypes can be identified and counted, their
relative fitness analyzed and compared, their tolerance to global change measured,
and biological design principles identified. In this approach, the link between
genotype and phenotype is a mathematical model whose parameter values are
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genetically determined, whose independent (input) variables are environmentally
determined, and whose dependent (output) variables determine the phenotype.

First, we show here how chemical and biochemical models can be recast into a
generic nonlinear form called a generalized mass action system, or GMA system,
within a power-law formalism. Second, we introduce the concept of dominant
processes and define a phenotype as a valid combination of dominant processes
characterized by a class of tractable nonlinear subsystems, called S-systems. Third,
we show how the results of analyzing these subsystems yield a repertoire of
qualitatively distinct phenotypes, which, when integrated into a system design
space, provide important understanding of the original model. Finally, we discuss
the extent to which this approach might be generalized to other classes of nonlinear
models, and raise a number of mathematical issues that need to be explored further
and extended.

2 Recasting Chemical and Biochemical Models
into a Generic Nonlinear Representation

Although chemical change can be described in a variety of ways [5–7], the most use-
ful ways deal with its quantitative characteristics: to what extent a reaction normally
takes place, and how fast it proceeds. These thermodynamic and kinetic aspects
have had extensive mathematical development [8–10]. Not only do these approaches
provide useful information about the mechanism of individual processes, but the
information they provide is in such a form that it can also be incorporated into an
appropriate description of systems containing many such processes. Hence, in the
search for a formalism that is appropriate to the analysis of organizationally complex
systems, one naturally looks to kinetic approaches.

Among the kinetic approaches, there are several complementary ways to describe
chemical change. The most common in biology are stochastic [11], deterministic
[12], and Boolean [13] rate laws. One biologist might say, “I am interested in
knowing when a chemical bond breaks, and this involves a probability distribution
function,” which is a discrete stochastic description. Another biologist might say, “I
am interested in large numbers of such events in a given increment of time, and for
this I would like to know the rate law function,” which is a continuous deterministic
description. Finally, a developmental biologist might say, “I am only interested
in knowing whether or not some gene gets turned on or off during development,
and for this purpose it is sufficient to use a Boolean function,” which is a discrete
deterministic description.

The rate law description has the advantage of permitting mathematical analysis
in addition to computer simulation. It is particularly relevant when one is more
interested in population means than in individuals. It also facilitates the elucidation
of biological design principles and leads to qualitative predictions that can be
readily tested experimentally. From a pragmatic point of view, testable predictions
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that are experimentally verified provide the ultimate justification for this approach.
Nevertheless, there are inherent limitations, involving small numbers and short time
scales, that must be kept in mind; adding stochastic variation to the deterministic
description in these cases can lead to additional insights [14].

2.1 Rate Law Representation

The rate law for a process is defined as the mathematical function that represents
the instantaneous rate of the process as an explicit function of all the state variables
that have a direct influence on the rate of the process. In general, the rate law is a
function of n state variables and can be written in functional form as

v D v .X1; X2; � � � ; Xn/ : (1)

The state variables and flux variables in biological systems can nearly always
be represented as positive quantities. Therefore, the rate law can be represented
equivalently in a logarithmic space, i.e., a space in which the logarithm of the rate is
a function of the logarithms of the state variables [15, 16]. Indeed, this is a natural
representation for biological systems because the logarithm of a concentration (the
“activity”) is the thermodynamic potential (or “across variable”) in a chemical
system. The functional form of the general rate law in logarithmic coordinates is
given by

ln v D f .ln X1; ln X2; � � � ln Xn/ : (2)

Rate laws exhibit a wide variety of forms when they are expressed explicitly. It is
necessary to find a convenient generic representation for rate laws in explicit form if
we are to develop systematically structured methods of representation and analysis
for systems composed of many variables. Otherwise, the representation and analysis
of such systems can only be treated in an ad hoc fashion, and our ability to develop
general principles is greatly diminished.

2.2 Taylor Series in Logarithmic Space

One generic representation of functions that has been enormously useful, and that
has formed the basis for much of classical mathematical analysis, is the Taylor series
[17]. When a state variable ln X deviates only slightly from a reference value ln X0,
a rate law can be approximated by the first two terms of the Taylor series, and
all higher-order terms in (ln X� ln X0) are negligible. The equation for this linear
approximation in logarithmic space is

ln v .ln X/ D ln v .ln X0/C Œd .ln v/ =d .ln X/�0 .ln X � ln X0/ ; (3)
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or

ln v D ln ˛ C g ln X; (4)

where the coefficients have been redefined as ln ˛D ln v0� [d(ln v)/d(ln X)]0 ln X0

and gD [d(ln v)/d(ln X)]0. The subscript 0 signifies that the appropriate function or
variable is evaluated at the nominal operating point. Exponentiating both sides of
(4) gives the equivalent expression in Cartesian space,

v.X/ D ˛Xg: (5)

A natural extension of this approach to processes influenced by several variables
yields the equation

ln v D ln ˛ C g1 ln X1 C g2 ln X2 C � � � C gn ln Xn (6)

and the equivalent expression in Cartesian space,

v.X/ D ˛X
g1

1 X
g2

2 � � �Xgn
n : (7)

The two types of parameters in this rate law will be referred to as multiplicative
parameters (˛) and exponential parameters (gi). They also will be referred to as rate
constants and kinetic orders, respectively, since these are the conventional terms in
the context of chemical and biochemical kinetics.

2.3 Power-Law Formalism

The power-law function above has the mathematical simplicity desired. It also
has the ability to conform approximately to a variety of nonlinearities. However,
the full repertoire of nonlinear behavior capable of representation by power-
law functions only becomes evident when they are combined into a system of
differential equations, in what is called the power-law formalism [15]. The two most
commonly used representations within this formalism are the synergistic (S-system)
representation

dXi

dt
D ˛i

nCmY
j D1

X
gij

j � ˇi

nCmY
j D1

X
hij

j ; Xi .0/ D Xi0 i D 1; 2; � � � ; n; (8)

and the generalized mass action system representation,

dXi

dt
D

rX
kD1

˛ik

nCmY
j D1

X
gijk
j �

rX
kD1

ˇik

nCmY
j D1

X
hijk
j ; Xi.0/ D Xi0 i D 1; 2; � � � ; n; (9)
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where the X’ s are nonnegative real variables that typically represent chemical
concentrations in the system, the ˛’s and ˇ’s are non-negative real parameters that
represent rate constants for production and loss, the g’s and h’s are parameters that
represent kinetic orders for production and loss, m is the number of independent
variables whose values are determined by the natural environment of the system or
by direct experimental manipulation, and n is the number of dependent variables
whose values are dependent upon the values of the independent variables and
parameters.

A focus on the elementary chemical reactions in a system leads to a special case
of (9) known as traditional mass action kinetics. The representation in this special
case involves rate laws that are simple power-law functions with integer exponents.
That is, the g and h parameters in (9) have only small integer values (<4).

2.4 Rational-Function Representation

A focus on the biochemical reactions in a system typically leads to a mathematical
representation in terms of rational-function kinetics [18, 19],

dXi

dt
D

rX
kD1

˛ik

nCmY
j D1

X
gijk

j

rX
kD1

ik

nCmY
j D1

X
pijk

j

�

rX
kD1

ˇik

nCmY
j D1

X
hijk

j

rX
kD1

ıik

nCmY
j D1

X
qijk

j

; Xi.0/ D Xi0 i D 1; 2; � � � ; n;

(10)

where again the X’ s are nonnegative real variables that represent chemical concen-
trations in the system, the multiplicative (Greek) parameters are nonnegative real
numbers, and the exponential parameters have small integer values.

Rational-function kinetics arise when constraints are imposed on a mass action
system. The simplest and most familiar examples are provided by the Michaelis–
Menten expressions of enzyme kinetics. For example, the equation for a reversible
mechanism for a single enzymatic reaction,

dP

dt
D Vmax f

S
Kf

1C S
Kf
C P

Kr

� Vmax r
P
Kr

1C S
Kf
C P

Kr

D
Vmax f

S
Kf



1 � 1

Keq�

�
1C S

Kf
C P

Kr

; P.0/ D P0; (11)

is obtained when the sum of the concentrations for the various forms of the enzyme
(free, substrate- bound, and product- bound) is constrained to be a constant. The net
flux of production for the product P in the steady state is the difference between the
forward rate (synthesis of P from the substrate S) and the reverse rate (synthesis



Deconstructing Complex Nonlinear Models in System Design Space 481

of S from the product P). The four kinetic parameters represent the maximum
velocities in the forward (Vmax. f) and reverse (Vmax,r) directions, the concentrations
of substrate for half the maximum velocity in the forward direction in the absence
of product (Kf), and the concentrations of product for half the maximum velocity in
the reverse direction in the absence of substrate (Kr). Only three of the four kinetic
parameters are independent [20–22], since the equation for the overall equilibrium
constant (KeqDVmax,fKr/(Vmax,rKf)) must be satisfied and the displacement from
thermodynamic equilibrium is given by � D S/P.

2.5 A Generic Nonlinear Representation via Recasting

We showed some time ago that a broad class of nonlinear functions and systems of
ordinary nonlinear differential equations can be recast exactly into the power-law
formalism [23]. The recasting procedure consists of a few simple steps repeated a
finite number of times to yield the generic representation in (8) or (9). Equation
(9) differs from the traditional mass action representation in two ways: (a) the
exponential parameters need not have small integer values but can have real values
(positive or negative), and (b) there are specific algebraic constraints among the
initial conditions for the equations. Although it is perhaps less obvious, the rational-
function representation can also be considered a special case of (9) as a result of
recasting (see Sect. 2.6).

The recasting steps can be summarized as follows:

1. Reorganization of the original equations. Rewrite the equations as sums of
products of factors:

dXi

dt
D
X

j

Y
k

fijk; i D 1; 2; � � � ; n; (12)

where the factors fijk can be any nested set of elementary functions.
2. Translocation to the positive orthant. If any variable has the potential to become

negative, transform it in such a manner that the new variable is always positive
and then return to Step 1. If all the variables are always positive, then proceed to
Step 3.

3. Decomposition by the chain rule of differentiation. Any fijk that is not already
a power-law function is replaced by a new variable. An additional differential
equation is then generated by differentiating the new variable. The chain rule
of differentiation results in the decomposition of complex composite functions
into products of simpler functions. After all the original functions have been
treated in this fashion, return to Step 1. When all fijk are in the form of power-law
functions, the procedure is complete and the resulting equations have a GMA
system representation within the power-law formalism.
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Fig. 1 System consisting of a two-step pathway of reversible enzymatic reactions governed by the
Michaelis–Menten mechanism. See the text following (11) for a discussion of this mechanism

4. Reduction of sums by the product rule of differentiation. If the maximum number
of terms with the same sign in a given equation is r, then let the corresponding
dependent variable be replaced by a product of r new variables. Differentiation of
this product then generates r derivatives in the new variables that can be equated
to a single positive term and a single negative term. When this operation has been
completed for all equations in the GMA system, the resulting set of differential
equations will be in the S-system form.

In what follows, we need only be concerned with recasting into the GMA system
representation. The recasting of rational-function models into GMA models is a
particularly simple process. Since all the concentrations are nonnegative variables
by definition, there is no need to consider Step 2. Although there are alternative
strategies for Step 3, the simplest is to define each polynomial in the denominator as
a new variable. The differentiation of each new variable generates a new differential
equation that is already in the GMA form. A simple example will illustrate the
recasting procedure.

2.6 An Example of Recasting

Consider the example of two reversible reactions governed by Michaelis–Menten
mechanisms shown in Fig. 1. In this example, the substrate and product concen-
trations are environmentally determined independent variables, there is a chem-
ically determined equilibrium for each reaction, and three of the four kinetic
parameters for each reaction are determined genetically (see (11)). The resulting
equation for the dependent variable X1, whose values are determined by the
values of the independent variables, the parameters, and the initial conditions, is

dX1

dt
D

V1f
S

K1f



1 � X1

Ke1S

�
1C S

K1f
C X1

K1r

�
V2f

X1

K2f



1 � P

Ke2X1

�
1C X1

K2f
C P

K2r

; X1.0/ D X10; (13)

where VDVmax, Ke D Keq, and the additional subscript signifies the reaction in
question.
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The recast GMA version of (13) is obtained by the procedure described in
Sect. 2.5, in which two new variables (X2D 1C S/K1fCX1/K1r and X3D 1CP/K2rC
X1/K2f) are defined and differentiated:

dX1

dt
D V1f

K1f
SX�1

2 C
V2f

K2fKe2

PX�1
3 �

V1f

K1fKe1

X1X
�1
2 �

V2f

K2f
X1X

�1
3 ; (14)

dX2

dt
D V1f

K1fK1r
SX�1

2 C
V2f

K2fKe2K1r
PX�1

3 �
V1f

K1fKe1K1r
X1X

�1
2 �

V2f

K2fK1r
X1X

�1
3 ;

(15)

dX3

dt
D V1f

K1fK2f
SX�1

2 C
V2f

K2fKe2K2f
PX�1

3 �
V1f

K1fKe1K2f
X1X

�1
2 �

V2f

K2fK2f
X1X

�1
3 ;

(16)

with initial conditions X1(0)DX10, X2(0)D 1C S/K1fCX10/K1r, and X3(0)D 1C
P/K2rCX10/K2f.

Alternatively, the result can be expressed as a set of differential–algebraic
equations in the GMA representation,

dX1

dt
D V1f

K1f
SX�1

2 C
V2f

K2fKe2

PX�1
3 �

V1f

K1fKe1

X1X
�1
2 �

V2f

K2f
X1X

�1
3 ;

X1.0/ D X10; (17)

X2 D 1C S

K1f
C X1

K1r
; (18)

X3 D 1C P

K2r
C X1

K2f
: (19)

The fixed points for this GMA system can then be obtained from the following
set of nonlinear algebraic equations:

0 D V1f

K1f
SX�1

2 C
V2f

K2fKe2

PX�1
3 �

V1f

K1fKe1

X1X
�1
2 �

V2f

K2f
X1X

�1
3 ; (20)

0 D X2 � 1 � S

K1f
� X1

K1r
; (21)

0 D X3 � 1 � P

K2r
� X1

K2f
: (22)
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Fig. 2 Three selected
metabolites in an arbitrary
biochemical system

3 Dominant Processes

In any realistic biochemical system there are typically several processes that
contribute to the influx into or efflux from the pool of molecules for any given
biochemical entity. This corresponds to a GMA system with several positive terms
and several negative terms in each equation. In general, such nonlinear systems are
very intractable. However, in any given condition, it is highly probable that one
of the terms in each sum is larger than the others in that sum; in other words,
that one process dominates the net influx and another dominates the net efflux
of each entity. For example, suppose Fig. 2 represents an arbitrary biochemical
system in which three metabolites have been singled out. Metabolite A has three
processes contributing to its net influx and one to its net efflux, metabolite B has
three processes contributing to its net influx and three to its net efflux, and metabolite
C has two processes contributing to its net influx and three to its net efflux. The red
arrows indicate a possible combination of dominant processes for these metabolites.

3.1 A Collection of Dominant Terms Corresponds
to an S-System

The intuitive picture in the previous paragraph corresponds in general to a reduction
of the GMA system in (23) below to a particular S-system in (24) that is
considerably more tractable. (We will have more to say about S-systems in Sect. 5.)
These equations are as follows:

dXi

dt
= ik X j

gijk

j =1

n+ m

k =1

r

ik X j
hijk

j =1

n+ m

k =1

r

Xi (0) = X,

, ,

, ,

,

i0 i = 1,2, ,n (23)

dXi

dt
= ip X j

gijp

j =1

n+ m

iq X j
hijq

j =1

n+ m

Xi (0) = Xi0 i = 1,2, ,n (24)
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There are 162 combinations of potentially dominant terms for the simple example
illustrated in Fig. 2; there are 36 combinations of potentially dominant terms
for the system in Fig. 1, as can be seen from (20) to (22). However, not all
combinations of dominant terms are valid. To be valid, a particular combination
must meet two requirements. First, the resulting S-system must have a steady-
state solution. Second, given that solution, all of the other terms in each sum
must be smaller than the presumed dominant term. In general, many combinations
of potentially dominant terms are not valid. Finding the valid combinations is a
tractable linear programming problem that involves solving the S-system equations
(a set of linear equations in log space) along with the dominance conditions (a set
of linear inequalities in log space) [4].

3.2 Valid Combinations of Dominant Terms

An example of a valid combination of dominant terms (or processes) for the model
illustrated in Fig. 1 is the following. Selecting the second positive term in (20), and
the first, second, and third negative terms in (20), (21), and (22), respectively yields
the following S-system in the steady state:

0 D V2f

K2fKe2

PX�1
3 �

V1f

K1fKe1

X1X
�1
2 ; (25)

0 D X2 � S

K1f
; (26)

0 D X3 � X1

K2f
: (27)

This is a system of linear equations in logarithmic coordinates; it can easily be
solved for the logarithm of the dependent concentration variable and converted back
to Cartesian coordinates:

X1 D
s

V2fKe1SP

V1fKe2

: (28)

Thus, the intermediate concentration increases with an increase in the square root
of the substrate concentration; it also decreases with a decrease in the square root of
the product concentration.

The corresponding dominance conditions that must be satisfied are

V1f

K1f
SX�1

2 <
V2f

K2fKe2

PX�1
3 ;

V1f

K1fKe1

X1X
�1
2 >

V2f

K2f
X1X

�1
3 ; (29)

S

K1f
>

X1

K1r
; 1 <

S

K1f
; (30)
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P

K2r
<

X1

K2f
; 1 <

X1

K2f
: (31)

When the steady-state solution is substituted into this system of inequalities,
which is also linear in logarithmic coordinates, one obtains the boundaries for the
parameter values within which this dominant S-system is valid:

V1fK2f

V2fK1fKe1

> 1;
V1fK2f

V2fK1fKe1

<
1

�Keq
; (32)

V1fK2f

V2fK1fKe1

�
K2

1r

K1fK2fKe1

�
>

1

Keq�
;

S

K1f
> 1; (33)

V2fK1fKe1

V1fK2f

�
K2

2r

K1fK2fKe2Keq

�
>

1

Keq�
;

V2fK1fKe1

V1fK2f

�
SP

K1fK2fKe2

�
> 1;

(34)

where the two additional parameters represent the overall thermodynamic equi-
librium between S and P (KeqDKe1Ke2) and the displacement from equilibrium
(� D S/P).

The values for the net flux in the steady state can also be obtained by substituting
the steady-state solution for the dependent concentration variable into the rate law
for the influx or efflux in the S-system equation. Thus,

Vnet � �
s

V1fV2fKe1

Keq�
: (35)

The flux in the reverse direction increases with an increase in the square root of
the product concentration; it also decreases with an increase in the square root of
the substrate concentration.

We define a phenotype as the manifestation of a valid combination of dominant
processes. Each system has a finite number of qualitatively distinct phenotypes,
whose characteristics and interrelationships are made evident in the construction
of the system design space, which is described in Sect. 4.

3.3 Invalid Combinations of Dominant Terms

An example of an invalid combination of dominant terms for the model illustrated
in Fig. 1 is the following. Selecting the first positive term in (20), and the second,
second, and third negative terms in (20), (21), and (22), respectively yields the
following S-system in the steady state:
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0 D V1f

K1f
SX�1

2 �
V2f

K2f
X1X

�1
3 ; (36)

0 D X2 � S

K1f
; (37)

0 D X3 � X1

K2f
: (38)

This is an underdetermined system of linear equations in logarithmic coordinates.
It is consistent if V1fDV2f, but there is no unique solution. Instead, we have

max

(
K2f

K2f
K2r

P

)
< X1 <

K1r

K1f
S: (39)

4 System Design Space

The process of constructing the system design space is best illustrated by a two
simple examples, one chemical and the other biochemical. These examples are
already well understood, so our purpose here is not to show that the system design
space methodology leads to new information. Rather, these examples have been
selected so that the results from our methodology can be compared easily with well-
known results and intuition.

4.1 A Chemical Example

Interconversion of the two cyclic forms of glucose involves two reversible reactions
and an acyclic intermediate in a chemical process that has been studied for decades
[24]. This simple system is represented in Fig. 3, and the equation describing the
interconversion is

dX1

dt
D Œk1fS � k1rX1� � Œk2fX1 � k2rP � ; X1.0/ D X10: (40)

The intermediate X1 is the one dependent variable. The forward rate constants
kif and the reverse rate constants kir are related through the equilibrium constants
KeiD kif/kir, and, as a result, only two of the four parameters are independent.
Thus, the behavior of the system (its phenotypes) is determined by two equilibrium
constants (which are fixed thermodynamic quantities), two kinetic parameters
(which are subject to change with the design of a catalyst), and two independent
concentration variables, the substrate S and product P (which are subject to direct
experimental manipulation of the environment).
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Fig. 3 System consisting of a two-step pathway of reversible chemical reactions. See text

4.1.1 Qualitatively Distinct Phenotypes Based on Dominant Terms

There are four qualitatively distinct phenotypes based on the dominance among the
positive and negative terms of (40):

Case 1: dX1

dt
� Œk1fS � k1rX1� when k1r

k2f
> 1

Keq�
and k1r

k2f
> 1;

Case 2: dX1

dt
� Œk1fS � k2fX1� when k1r

k2f
> 1

Keq�
and k1r

k2f
< 1;

Case 3: dX1

dt
� Œk2rP � k1rX1� when k1r

k2f
< 1

Keq�
and k1r

k2f
> 1;

Case 4: dX1

dt
� Œk2rP � k2fX1� when k1r

k2f
< 1

Keq�
and k1r

k2f
< 1;

where the two additional parameters again represent the overall thermodynamic
equilibrium between S and P (KeqDKe1Ke2) and the displacement from equilibrium
(� D S/P).

This method of selecting one dominant positive term and one dominant negative
term generates, in general, a set of nonlinear equations known as an S-system,
whose solution in the steady state reduces to a linear problem for which one can
obtain a solution explicitly. This method of selecting dominant terms from the
differential equation has several advantages. First, finding the steady-state solution
of the dominant differential equations is much simpler than finding an analytical
solution of the original system. Second, having the differential equations based on
dominant positive and negative terms means that we also have access to the local
dynamic behavior for each of the phenotypes. However, will this method tell us
how many distinct phenotypes the system is capable of exhibiting? By integrating
information from all the steady-state solutions and their corresponding conditions
for validity, we can address this question in the context of the system design space.

4.1.2 Mathematically Defined Boundaries in System Design Space

The phenotypes corresponding to the steady-state solutions only make sense if
the solutions also satisfy the set of inequalities required to justify the assumption
of dominance. Furthermore, determining if the set of inequalities is satisfied
somewhere in the design space is equivalent to solving for the feasibility of a
special class of geometric programming problems. These geometric programming
problems involve the solution of the steady-state equations, which are linear
equations in logarithmic coordinates, along with the corresponding set of dominance
conditions, which are linear inequalities in logarithmic coordinates. This class of
problems includes linear programming problems in logarithmic coordinates for
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Fig. 4 System design space for the chemical mechanism illustrated in Fig. 3. The environmentally
determined variables are plotted on the horizontal axis, and the chemically determined parameters
are plotted on the vertical axis. The color bar indicates the case number, and the steady-state
solution of the concentration of the intermediate is shown for each qualitatively distinct phenotype.
The vertical black line represents thermodynamic equilibrium and the arrows indicate the direction
of the net flux. All values are logarithms to base 10. Nominal parameter values: ke2 D 0.1,
S D 1,000, and k1f D k2f D ke1 D P D 1

which feasibility can be readily determined [25, 26]. The result is a set of linear
boundaries in logarithmic space delimiting valid regions, which define qualitatively
distinct phenotypes; these can be visualized graphically in the system design space,
as shown in Fig. 4.

4.1.3 S-System Characterization of Phenotypes in System Design Space

The representation of the system within each phenotypic region is always a
simple S-system, for which determination of the local nonlinear behavior reduces
to conventional linear analysis [15, 16]. Thus, the phenotypes involving local
(small) variations are completely determined, and their relative performance can
be compared on the basis of relevant performance criteria. These criteria can
be quantified using the logarithmic gain, parameter sensitivity (local robustness),
and response time (see Sect. 5). The boundaries that delineate a given phenotype
can be used to quantify the global tolerance to large changes in the genotype
and the environment [27]. An example involving the steady-state solution in each
phenotypic region is shown in Fig. 5.
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Fig. 5 Concentration of the intermediate normalized with respect to a fixed concentration of
product, plotted in the z-direction as a heat map in the system design space of Fig. 4. (a) Actual
solution with intuitive boundaries between qualitatively distinct regions. (b) Solution by means
of dominant S-systems, with mathematically defined boundaries between qualitatively distinct
regions. (c) Quantitative differences, showing errors on the boundaries between regions. See text
for discussion

Fig. 6 A fixed environment corresponding to a particular slice through the system design space.
(a) The system design space of Fig. 5 with an environment fixed at a value of Keq� D 10,000. (b) A
slice through the design space exhibiting only the independent chemically determined parameters
k1f and k2f

The intuitive boundaries in Fig. 5a do not capture the real significance of the
differences. However, the mathematically defined boundaries in Fig. 5b do. These
show that the behavior in the upper right region depends only on the environmentally
determined independent variables, the behavior in the upper left region depends only
on the chemically determined parameters, the behavior in the lower right region
depends on both the chemically determined parameters and the environmentally
determined independent variables, and the behavior in the lower left region is
influenced by neither.

A fixed environment corresponds to a slice through the design space involving
only the chemically determined parameters of the system. For example, a slice
in which the net flux to the right is fixed is shown in Fig. 6a along with the
corresponding view involving only the kinetic parameters in Fig. 6b. This slice
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Fig. 7 Phenotypic characteristics of the chemical mechanism plotted as a heat map in the
z-direction of the system design space. (a) The design space as represented in Fig. 6b,
(b) intermediate concentration X1, (c) net flux Vnet and (d) toxicity T D X1/Vnet. All values are
logarithms to base 10

is also shown in Fig. 7a for comparisons with the intermediate concentration X1,
net flux Vnet and the toxicity (defined here as the intermediate concentration for
a given net flux TDX1/Vnet), which are plotted in the z-direction as heat maps.
The intermediate concentration (Fig. 7b) is an average of the values resulting from
quasi-equilibrium with the substrate or with the product. When the rate of the second
reaction is greater than that of the first, the intermediate concentration approaches
its minimum; when the rate of the second reaction is less than that of the first, the
intermediate concentration approaches its maximum.

The corresponding net flux (Fig. 7c) is limited by the rate of the slower of the
two reactions. For a given net flux, an increase in the forward rate constant of the
first reaction results in an amplified increase in the intermediate concentration. On
the other hand, an increase in the forward rate constant of the second reaction results
in an amplified decrease in the intermediate concentration. This is consistent with
our intuition. It also shows that specifying only the net flux ignores the importance
of the intermediate concentration. In many cases, intermediates are highly reactive,
and in high concentrations are toxic to cells. The toxicity (Fig. 7d) decreases as the
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net flux increases, particularly when the flux is increased by increasing the rate of
the second reaction. Thus, other things being equal, it is an advantage if the forward
rate constant of the first reaction is less than that of the second.

4.2 A Biological Example

Although the example in Fig. 3 illustrates the basic concepts in a straightforward
analytical fashion, it is a linear system, for which a method of deconstruction is
not really required. Nor are the values of the chemically determined parameters
subject to biological selection; rather, they were determined by the particular
chemistry during the chemical evolution of the universe [28]. More complex
biological mechanisms are nonlinear and typically involve recasting systems of
rational-function equations into GMA systems. These systems, which are subject
to biological selection based on their relative fitness as manifested through their
phenotype, are of greater interest for us. The fitness of a biological system, as
defined here, refers to how well the system performs its function in a given context,
measured according to some performance criteria. For example, in the context of
bacterial growth, this criterion might refer to reproductive success as measured by
growth rate. In another context, it might simply be survival over some period of
time (e.g., a dry season) as measured by survival rate. In the context of a given
intracellular pathway it might refer to the maximum flux that the pathway can
deliver for cellular growth, or the maximum concentration of a highly reactive
intermediate, as measured by the steady-state value of that dependent variable.

The model illustrated in Fig. 1 appears to be very similar to that in Fig. 3;
however, the mechanisms represented are very different. The nonlinear equation
describing the biological system in Fig. 1 involves rational functions [(13)]. Fixed
points can be determined from the recast GMA system [(20), (21), and (22)]. A
bound on the possible number of qualitatively distinct phenotypes is given by the
number of combinations of potentially dominant terms; in this case, the number
is 36. However, as noted in Sect. 3.3, some of these are invalid; in this case,
the number of invalid combinations is 4. Thus, this system exhibits a total of 32
qualitatively distinct phenotypes. The fitness of the phenotypes can be characterized
and compared according to putative selection criteria by analyzing the S-system in
each case.

Thus, we can consider some characteristics of the phenotypes in addition to
the intermediate concentration, net flux, and toxicity. For example, two additional
measures of system fitness might be the metabolic cost and the efficiency of
producing a given net flux. The cost can be defined as the sum of the two enzyme
concentrations or, for simplicity, as CDV1fCV2f, and the efficiency can be defined
as the net flux for a given cost, EDVnet/C. Selection might well tend to minimize the
toxicity T, minimize the cost C, and maximize the efficiency E, subject to constraints
and trade-offs. Other characteristics might also be considered. Our purpose here is
not to be exhaustive or to capture the evolutionary path for any specific system;
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Fig. 8 Characterization of the qualitatively distinct phenotypes in the system design space for
the enzymatic mechanism illustrated in Fig. 1 within its linear range of operation. (a) A slice
through the design space with V1f/K1f on the horizontal axis and V2f/K2f on the vertical axis.
(b) Intermediate concentration, (c) net flux, (d) toxicity, (e) cost (only relevant when there are
changes in enzyme levels), and (f) efficiency, plotted in the z-direction as heat maps. All values
are logarithms to base 10. Nominal parameter values: Ke1 D 1, Ke2 D 0.1, S D 1,000, P D 1, and
V1f D V2f D K1f D K2f D K1r D K2r D 10,000. See text for discussion

rather, it is to show how hypotheses can be formulated and their consequences
explored using the system design space approach. Given this objective, we shall
examine this particular example briefly from three different perspectives.

4.2.1 Characterization of Phenotypes for the System in Its Linear Range

As our first example, consider the situation in which the system is in a fixed environ-
ment and operating in its linear range. This corresponds to a particular slice through
the system design space, as shown in Fig. 8a, and the resulting phenotypes are
characterized by the independent kinetic parameters that are genetically determined.
In this context, the ratio of the maximum velocity Vif to the associated Michaelis
constant Kif is mathematically equivalent to the corresponding rate constant of the
chemical system, kif. Thus, the results plotted with the ratio V1f/K1f on the x-axis
and V2f/K2f on the y-axis (Fig. 8a–d) are essentially identical to those in Fig. 7.

However, the phenotypic consequences of changes in the different classes of
genetically determined parameters can be very different. If the net flux (Fig. 8c)
were to increase because of a coordinated increase in the amounts of the two
enzymes, there would be a corresponding increase in the metabolic cost to the cell
(Fig. 8e). Alternatively, if the same increase in net flux were to occur because of a
coordinated decrease in the two Michaelis constants, there would be no increase in
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the cost (data not shown). However, there is a limit to the extent of such a decrease;
for example, if K1f were to become less then S (or K1f were to become less then X1),
then the system would no longer be operating in its linear range.

If the system were under strong balancing selection to maintain a given net flux,
there are options for the further evolution of the system. For example, starting from
the operating point marked by the dot, mutations that lead to an increase in V1f alone
leave the net flux (Fig. 8c) and toxicity (Fig. 8d) unchanged; however, they lead to
an increase in the intermediate concentration (Fig. 8b) and the cost (Fig. 8e), with a
loss in efficiency (Fig. 8f). These results suggest a decrease in fitness. On the other
hand, mutations that lead to an increase in V2f alone would lead to similar results for
the net flux (Fig. 8c), the cost (Fig. 8e), and the efficiency (Fig. 8f); however, they
would lead to a decrease in the intermediate concentration (Fig. 8b) and the toxicity
(Fig. 8d). This result suggests an increase in fitness. Thus, if the net flux were the
primary criterion for selection, these results suggest that the system could evolve an
appropriate trade-off between increased efficiency and reduced toxicity by selection
for a preferential increase in the amount of the second enzyme.

Alternatively, if the changes were to involve a decreases in K1f alone or K2f alone,
the results would be the same, except that there would be no change in the cost.
The conclusions would then suggest that an appropriate trade-off between increased
efficiency and decreased toxicity could be achieved by a reduction in K2f alone.

4.2.2 Characterization of Phenotypes in the Nonlinear Range
with Saturation

Another view of the system design space is shown in Fig. 9a where the maximum
velocity of the first reaction (normalized with respect to the corresponding Michaelis
constant, i.e., V1f/K1f) is on the horizontal axis, the Michaelis constant of the second
reaction with respect to the intermediate (normalized with respect to the fixed
equilibrium constant of the second reaction and the constant product concentration,
i.e., K2fKe2/P) is on the vertical axis, and the geometrical landmarks are represented
by the other genetically determined parameters: the maximum velocity of the second
reaction V2f, and the Michaelis constants K1r and K2r.

Give an initial state of the system corresponding to a point in the upper left
portion of this design space, with a high value of K2fKe2/PD 1,000 and a low value
of V1f, mutations that lead to an increase in the maximum velocity for the first
reaction would causes the intermediate concentration (Fig. 9b), the net flux (Fig. 9c),
and the cost (Fig. 9e) to increase monotonically. On the other hand, the efficiency
would increase, reaches a maximum and then decrease (Fig. 9f), whereas the toxicity
would decrease and then remain essentially constant (Fig. 9d). This behavior, which
is equivalent to a transition of V1f from left to right across the tops of the panels in
Fig. 8, is expected, since the system is then operating in its linear range.

The results associated with the lower portion of Fig. 9a reflect the nonlinear
behavior that comes into play when K2f approaches the concentration of the
intermediate. Given an initial state of the system in the lower portion of this design
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Fig. 9 Characterization of the qualitatively distinct phenotypes in the system design space for the
enzymatic mechanism illustrated in Fig. 1 within its unrestricted nonlinear range of operation.
Regions 1, 10, and 28 correspond to linear operation, and regions 3 and 30 represent nonlinear
operation involving saturation of the second enzyme. (a) A slice through the design space with
V1f/K1f on the horizontal axis and K2fKe2/P on the vertical axis. (b) Intermediate concentration,
(c) net flux, (d) toxicity, (e) cost, and (f) efficiency, plotted in the z-direction as heat maps. All
values are logarithms to base 10. See text for discussion

space, with a value of K2fKe2/P < 1 and a low value of V1f, mutations that lead to an
increase in the maximum velocity for the first reaction would cause the intermediate
concentration (Fig. 9b), net flux (Fig. 9c), and cost (Fig. 9e) to increase sharply when
V1f exceeds the fixed value of V2f and the rate of the second reaction saturates. On
the other hand, the efficiency would increase, reach a maximum and then decrease
(Fig. 9f), whereas the toxicity would decrease, reach a minimum, and then increase
(Fig. 9d).

Similar results are obtained when the first reaction is saturated by the substrate;
the results plotted with K1f/S on the y-axis and V1f/K1f on the x-axis are, essentially,
flipped horizontally compared with those in Fig. 9 (data not shown). In the linear
region of operation, with K1f increasing, the critical values are now shifted to higher
values of V1f to compensate for the saturation of the first enzyme.

A few other scenarios are the following. If mutations were to result in a
simultaneous increase in V1f and K1f (or V2f and K2f), there would be no change
in the intermediate concentration, the net flux, or the toxicity, but there would be an
increase in the cost and a decrease in the efficiency. If V1f and V2f were to increase
simultaneously, there would be no change in either the intermediate concentration
or the efficiency, but the cost and the net flux would increase, whereas the toxicity
would decrease. Alternatively, if K1f and K2f were to increase simultaneously, there
would be no change in either the intermediate concentration or the cost, but the net
flux and efficiency would decrease whereas toxicity would increase.
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Fig. 10 Characterization of the qualitatively distinct phenotypes in the system design space for
the enzymatic mechanism illustrated in Fig. 1 within its unrestricted nonlinear range of operation.
Regions 1, 10, and 28 correspond to linear operation, and regions 7, 16, and 34 represent nonlinear
operation involving inhibition of the first enzyme. (a) A slice through the design space, with V1f/V2f

on the horizontal axis and K1r/(SKe1) on the vertical axis. (b) Intermediate concentration, (c) net
flux, (d) toxicity, (e) cost, and (f) efficiency, plotted in the z-direction as heat maps. All values are
logarithms to base 10. See text for discussion

4.2.3 Characterization of Phenotypes in the Nonlinear Range
with Inhibition

Another type of nonlinear behavior is exhibited in the system design space shown
in Fig. 10a. The maximum velocity of the first reaction (normalized with respect
to the maximum velocity of the second reaction, i.e., V1f/V2f) is on the horizontal
axis, the Michaelis constant of the first reaction with respect to the intermediate
(normalized with respect to the fixed equilibrium constant of the first reaction
and the constant substrate concentration, i.e., K1r/(SKe1)) is on the vertical axis,
and the geometrical landmarks are represented by the other genetically determined
parameters: the Michaelis constants K1f, K2f and K2r.

Again, given an initial state of the system in the upper left portion of this design
space with a high value of K1f/(SKe1)D 10 and a low value of V1f, mutations that
result in a systematic increase in the maximum velocity of the first reaction would
lead to a monotonic increase in the intermediate concentration (Fig. 10b), net flux
(Fig. 10c), and cost (Fig. 10e). On the other hand, the efficiency would increase,
reach a maximum and then decrease (Fig. 10f); whereas the toxicity would decrease
and then remain essentially constant (Fig. 10d). This behavior, which is equivalent
to a transition of V1f from left to right across the tops of the panels in Fig. 8, is
expected since the system is then operating in its linear range.
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The results associated with the lower portion of Fig. 10a reflect the nonlinear
behavior that comes into play when K1r approaches the concentration of the
intermediate. Given an initial state of the system represented in the lower portion
of this design space with a value of K1f/(SKe1) < 0.01 and a low value of V1f,
mutations that result in a systematic increase in the maximum velocity of the first
reaction would cause the intermediate concentration (Fig. 10b), net flux (Fig. 10c),
and cost (Fig. 10e) to increase monotonically. However, the value of V1f at which
these increases commence shifts to higher values as K1r decreases. This is because a
decrease in K1r leads to an increase in the competitive inhibition of the first reaction;
this causes a decrease in the effective activity of the first enzyme, which must be
compensated by an increase in the amount of the first enzyme V1f. The efficiency
would increase, reach a maximum and then decrease (Fig. 10f); whereas the toxicity
would decrease and then remain essentially constant (Fig. 10d). Thus, the results
are nearly the same as in the linear range of operation, except for a shift due to the
competitive inhibition of the first enzyme.

Similar results are obtained when the second reaction is inhibited by the product;
the results plotted with K2r/P on the y-axis and V1f/V2f on the x-axis are, essentially,
flipped horizontally compared with those in Fig. 10 (data not shown). In the
nonlinear region of operation, when K2r decreases, the critical values are now shifted
to higher values of V2f to compensate for the competitive inhibition of the second
enzyme.

The full system design space for the mechanism illustrated in Fig. 1 is an eight-
dimensional space filled with 32 irregular polytopes. A slice through each of the
qualitatively distinct phenotypes (or polytopes) can always be obtained, and at least
one set of parameter values can be found to identify a point that lies within that
phenotypic region [29]. Although we could continue the analysis in the same vein if
space permitted, our purpose here is not to treat this particular example exhaustively.
Rather, our goal is only to suggest how the function, design, and evolution of such
biochemical systems can be analyzed to achieve greater understanding by using the
system design space approach.

5 S-Systems

As suggested in Sect. 3, the power-law formalism has within it a special class of
nonlinear equations known as S-systems, which have properties that make them
tractable. Their tractability derives in large part from the fact that much of their
analysis can be reduced to linear analysis in a logarithmic space. This class of
equations was first introduced in the late 1960s. There are many applications of
these equations in the literature [30], so we need only summarize a few of the key
properties here.

The analytical methods of the theory of linear systems provide powerful tech-
niques for predicting the behavior of systems that are well represented by the
linear formalism [31]. However, most complex systems of biological interest are
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highly nonlinear, and the S-system equations are still nonlinear. How, then, are
we to proceed when faced with the task of analyzing such nonlinear systems?
The task of extracting an understanding of systemic behavior from the equations
that characterize the system is conventionally broken down into two steps. In the
first, one determines the steady-state behavior. This is the long-term behavior that
remains after all the initial transients have died away. In the second, one determines
the transient behavior that occurs whenever there is an abrupt change in the state of
the system.

This separation into steady-state and transient responses is an idealization.
Such idealizations are important because they provide a conceptual basis for
understanding the behavior of complex systems. However, steady-state analysis also
has practical significance, because many systems in nature operate in a quasi-steady
state. When the differences in time scale are sufficiently great, these systems can be
treated as if they were in a bona fide steady state.

5.1 Explicit Steady-State Solution

In general, the S-system representation in the power-law formalism has the follow-
ing form:

dXi

dt
D ˛i

nCmY
j D1

X
gij

j � ˇi

nCmY
j D1

X
hij

j ; Xi.0/ D Xi0; i D 1; 2; � � � ; n; (41)

where n is the number of dependent state variables and m is the number of
independent state variables. The steady-state equations are obtained by setting
dXi/dtD 0 for all i in (41). When none of the Xj ’ s and none of the rate constants

are equal to zero, these equations can be divided by ˛i

nCmY
j D1

X
hij

j , resulting in the

following linear system [16]:

ŒA� y �D b� ; (42)

where [A] is a matrix with elements representing differences in kinetic orders,
aijD (gij� hij); y] is a column vector with elements representing logarithms of vari-
ables, yiD ln Xi; and b] is a column vector with elements representing differences in
logarithms of rate constants biD ln ˇi� In ˛i .

The arrays in (42) can be partitioned into dependent and independent elements,

h
Ad

::: Ai

i yd

� � �
yi

3
5 D b� ; (43)
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and separated as follows:

ŒA�d y�d D �ŒA�i y�i C b�; (44)

where the subscript “d” signifies that the matrix [A]d contains only kinetic orders
with respect to dependent state variables and the vector y]d contains only logarithms
of dependent state variables. The subscript “i” has a similar interpretation, but for
the independent state variables.

For all matrices [A]d with nonzero determinant, there exists an inverse operator,
[A]d

� 1D [M] [16]. The inverse operator allows one to solve (44) and obtain the
dependent state variables explicitly in terms of the independent state variables and
the parameters of the system. The explicit steady-state solution for the S-system in
(41) can then be written [16]

y�d D ŒL� y�i C ŒM � b�;

" "
slope intercept

(45)

where [L]D� [M] [A]i. This solution for the logarithms of the dependent
concentrations y]d(yj, jD 1, � � � , n) is divided into two parts. The first exhibits
the linear dependence on the logarithms of the independent state variables
y]i(yj, jD nC 1, � � � , nCm); the second exhibits the linear dependence on the
logarithms of the rate constants b](bjD ln(ˇj/˛j), jD 1, � � � , n).

The flux through any pool Xk in the steady state is obtained by a simple secondary
calculation involving the aggregate rate law for the influx or efflux of Xk and the
known values for the state variables in the steady state. For example, starting with
the rate law

VCk D ˛k

nCmY
j D1

X
gij

j ; k D 1; 2; � � � ; n; (46)

taking logarithms and expressing the results in matrix notation yields

.ln VC/ � D .ln ˛/�C ŒG� y�: (47)

The solution for the flux variables is also a linear function of the independent state
variables. This is readily demonstrated by separating the dependent and independent
components of the solution, substituting the explicit solution for the dependent state
variables, and regrouping terms; for example,

.ln VC/� D
n
ŒG�i C ŒG�d ŒL�

o
y�i C

n
.ln ˛/ �CŒG�d Œ M � b�

o
:

" "
fslopeg finterceptg

(48)
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Thus, the explicit solution presented in (45) and (48) gives the complete
relationship between the steady-state values of the dependent state variables on the
one hand and the values of the independent state variables and the parameters of the
system on the other.

The behavior of the dependent variables in (45) and (48) was separated delib-
erately into two components and represented by distinct symbols to emphasize
the influence of the independent state variables and the parameters of the system.
The independent state variables may be thought of as those that are determined by
factors outside the system of interest, i.e., as the environment of the system. The
parameters, which characterize the relatively fixed aspects of the system itself, may
be thought of as physically and genetically determined. To use an analogy, the music
emanating from a CD player is a function of the externally supplied stimuli (the
disks), which are variables, and of the system parameters, which are relatively fixed
and determined by the optical–electromechanical components of the player. The
separation of these two types of influences is important for a clear understanding of
the behavior of the system.

5.2 Systemic Measures of Signal Propagation: Logarithmic
Gain

The behavior of a complex system in response to its environment is characterized
by the responses of the dependent variables to changes in the independent variables.
The explicit solution obtained with the S-system representation provides a complete
characterization of the local steady-state behavior about any operating state. How-
ever, it is also useful to characterize the properties of the system in terms of standard
factors that relate its outputs (dependent variables) to its inputs (independent
variables), namely logarithmic-gain factors [16]. The elements Lik of the m
 n
matrix [L]D� [M] [A]i are analogous to the conventional gain or amplification
factors of linear network theory, and they are referred to as logarithmic-gain factors
in the power-law formalism because the changes are characterized in a logarithmic
rather than a Cartesian space.

The magnitudes of the logarithmic-gain factors provide a quantitative measure
of the influence exerted by a given independent variable over a particular dependent
variable. These magnitudes allow one to determine the distribution of total influ-
ence either over independent variables or over dependent variables. Because the
logarithmic-gain factors can be expressed explicitly in terms of the kinetic orders of
the component processes, they also are important for relating systemic behavior of
the system to the underlying determinants of the system.
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5.3 Systemic Measures of Local Robustness: Parameter
Sensitivity

The global behavior of a given system in response to changes in its underlying
structure is characterized by the responses of the dependent variables to changes
in the parameters internal to the system. The explicit solution in the power-law
formalism provides a complete characterization of the local steady-state behavior
about any operating state of the system. However, it also is useful to characterize
the system’s behavior in terms of standard factors that relate its outputs (dependent
variables) to its parameter values (rate constants and kinetic orders); these factors
are referred to as parameter sensitivities [16, 32]. The elements Mik of the n
 n
matrix [M], which is the inverse of the n
 n system matrix [A]d, are identical to
the traditional parameter sensitivities [33–36]. In the power-law formalism, they are
referred to as rate-constant sensitivities. The sensitivities with respect to the expo-
nential parameters have also been presented and a variety of relationships among
this class of parameter sensitivities have been summarized elsewhere [16, 32].

By means of the parameter sensitivities described in this section one can
characterize the systemic response to change in each parameter of the system, and,
because these parameter sensitivities can be expressed explicitly in terms of the
kinetic orders of the component processes, they also are important for relating the
systemic behavior to the underlying determinants of the system.

If every quantity that can change is treated as a variable, then the parameters
considered in this section are actually fixed quantities within a given representation.
The changes considered in this section would then be virtual changes, and the
corresponding systemic responses would be virtual responses. What meaning can
be attached to such virtual changes? The answer has to do with the interpretation
of experimental error. The actual values of the parameters are unknown to us, and
they must instead be estimated from appropriate experimental data. These estimates
are inevitably corrupted to some degree by error and, consequently the values that
we assign to the parameters of our models are altered from their true values. If the
parameter sensitivities are small, then the use of an erroneous parameter value will
have little affect on the systemic behavior that is predicted by the model. In this
case, the model is said to be robust. On the other hand, if the parameter sensitivities
are large, then even a small error will produce major changes in the expected
systemic behavior. In this case, the model is said to be fragile. In general there will
be a distribution of parameter sensitivities, and one can use a knowledge of these
sensitivities to direct experimental effort toward the most efficient determination
of the parameter values. Effort should be directed toward careful measurement
of those parameters that have the largest sensitivities. However, if the sensitivity
is sufficiently large, then the parameter may be impossible to determine with the
current experimental error. In this situation, it may be possible to estimate the value
of the parameter by adjusting its value in the model until the systemic response of
the model matches that of the actual system. By using the model itself as an amplifier
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of changes in the sensitive parameter, one may achieve a more accurate estimate by
indirect means.

5.4 Dynamic Behavior of S-Systems

One of the principal goals of biochemical systems theory is to relate the behavior of
the system (the dependent variables) to that of its environment (the independent
variables) and that of its genetic determinants (the parameters). The algebraic
methods discussed in Sects. 5.1, 5.2, and 5.3 are very useful for analyzing the
steady-state behavior of systems described by S-system equations, but they tell us
nothing about the system’s dynamic properties. To gain insight into these properties,
the differential equations of the system must be examined. In this subsection, we
shall consider the simplest forms of dynamic behavior, which are associated with
responses to small disturbances about a nominal steady state. The more complex
forms of dynamic behavior that are associated with the nonlinearities of the S-
system representation [16] are beyond the scope of this chapter.

“Local dynamics” refers to the behavior of a system in response to small
perturbations or disturbances. If the perturbation is sufficiently small or sufficiently
localized about the normal operating point, then the behavior of a nonlinear system
will be identical to that of its linearized representation. Thus, the analysis of local
dynamics reduces to the analysis of the dynamics of linear systems [31, 37].

The general S-system equations for an n- variable problem (41) can be linearized
as follows [16]:

du

dt
D F TA u; (49)

where uiD yi� yi0D (Xi�Xi0)/Xi0 (i.e., the percentage variation in Xi), and
aijD gij� hij. The elements of the premultiplier are

Fi D ˛i

nCmY
j D1

X
gij

j 0 =Xi0 D Vi0=Xi0; i D 1; 2; � � � ; n; (50)

and thus Fi may be viewed as a pseudo-first-order rate constant, or the reciprocal of
the turnover time for the pool Xi.

The eigen values of such systems can be determined by well-known methods, and
the local stability is reflected in the character of their complex values: the system
response is locally stable if all of the eigen values have negative real parts, locally
unstable if one or more have a positive real part, and marginally stable if one or
more has a zero real part and all others have negative real parts.
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5.5 Telescopic Properties

Algebraic constraints among the dependent variables Xi in (41) can also be
expressed readily in the power-law formalism [16, 38]. When the redundant
equations in (41) are eliminated and the algebraic dependencies substituted into the
remaining equations, the resulting set has exactly the same form as the original set
in (41), but with fewer variables.

For example, if p of the n dependent variables in (41) are temporally dominant in
the system (and these are renumbered to be the first p variables) so that the remaining
(n� p) differential equations reduce to the algebraic equations

˛i

nCmY
j D1

X
gij

j D ˇi

nCmY
j D1

X
hij

j ; i D p C 1; � � � ; n; (51)

then this algebraic system can be solved explicitly for the “fast” variables in terms
of the “slow” variables:

Xk D k

pCmY
j D1

X
fkj

j ; k D p C 1; � � � ; n: (52)

When the explicit expression for the “fast” variables is substituted into the
p equations for the “slow” variables, the result is an S-system with different
parameters but lower dimension:

dXi

dt
D ˛0

i

pCmY
j D1

X
g0

ij

j � ˇ0
i

pCmY
j D1

X
h0

ij

j ; i D 1; � � � ; p: (53)

This is called the “telescopic property” of the representation [38]. It allows an
integrated approach to the modeling and analysis of nonlinear systems at various
hierarchical levels of organization. The linear representation has this important
property, but very few nonlinear representations do. Once the algebraic dependen-
cies have been taken into account in this manner, the representation and subsequent
analysis are identical to that given in Sects. 5.1, 5.2, 5.3, and 5.4.

6 Discussion

The task of characterizing complex nonlinear systems could be facilitated if such
systems could be generically decomposed into a series of tractable subsystems
and the results of the analysis of those subsystems reassembled to provide insight
into the original system. This may sound reminiscent of the traditional notion of
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identifying modular structures in a biological system. It is therefore important to
emphasize that the subsystems identified in the system design space approach do
not correspond to the conventional notion of “modularity”. The S-systems of our
approach are rigorously defined by the underlying mechanisms of the system itself,
and all of the parameters are involved in determining the geometrical landmarks in
the design space. Moreover, these S-systems typically involve distributed aspects of
the entire system and not a localized module clearly separable from the remainder
of the system.

We have attempted to present the system design space methodology in terms
of simple didactic examples. More complex realistic examples would require a
great deal more space, in order to provide the biological background as well as
details of the method. This approach has been applied to a number of biological
systems, including the induction of prophage lambda [39], the NADPH redox cycle
in human erythrocytes [40], anaerobic–aerobic transitions regulated by the global
transcription factor FNR [41, 42], lactose operon induction [43], growth phase
transitions in E. coli [44], and the coupling of toxin–antitoxin systems in persistence
[14]. These are still relatively small systems.

Applying the system design space methodology to larger systems is still a
considerable challenge. This is probably true of any methodology for dealing
with large systems. Some of the challenges are obvious. The number of possible
phenotypes grows rapidly with the number of combinations, although the analysis
of any given phenotype is a manageable problem. This is an “embarrassingly
parallelizable” problem [45], so this challenge will soon be addressed. Visualization
in dimensions greater than three is another challenge [46]. Other types of nonlinear
models, outside the range of the mass action and rational-function models typically
found in biology, have yet to be examined systematically. There are some trivial
examples, such as

dx1

dt
D 1 C ˛1x2 � ˇ1

x2
1q

x2
1 C x2

2

; (54)

dx2

dt
D 2 C ˛2x1 � ˇ2

x2
2q

x2
1 C x2

2

; (55)

which can be written as the following differential–algebraic GMA system:

dx1

dt
D 1 C ˛1x2 � ˇ1x2

1x�1
3 ; (56)

dx2

dt
D 2 C ˛2x1 � ˇ2x2

2x�1
3 ; (57)

x2
3 D x2

1 C x2
2 : (58)
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Dynamics in system design space is an interesting topic that has only been
touched upon, and the treatment of partial differential equations is another important
challenge. Clearly, there are many avenues that need to be explored before we can
know the full potential of this approach. It is hoped that this chapter will stimulate
others to take up some of these challenges.
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IBCell Morphocharts: A Computational Model
for Linking Cell Molecular Activity with
Emerging Tissue Morphology

Katarzyna A. Rejniak

Abstract Despite the fact that many genes and signaling pathways responsible for
early carcinoma lesions have been identified, it is not yet fully understood how
these molecular defects produce emergent abnormal morphologies. Nonetheless,
morphological changes in three-dimensional multicellular cultures provide the first
insight into invasive potential of cells and phenotypic/genotypic changes when
compared with normal nontumorigenic morphologies. Thus, a quantitative tool
for matching the molecular and morphological scales can be useful for designing
testable experimental hypotheses. The computational model presented here can
capture both the spatial and the temporal dynamics of developing multicellular
structures and produces multidimensional charts (morphocharts) of various acinar
and mutant morphologies arising from simultaneously varied model parameters.
These morphocharts allow us to map experimental morphologies onto the model
parameter space to identify deregulated molecular processes that can be subjected
to further experimental validation. This approach provides mechanistic information
on intermediate scales between molecular pathways and multicellular organization.

1 Introduction

Three-dimensional (3D) multicellular cultures are widely used in cancer biology to
characterize the proliferative potential of cells in in-vivo-like conditions, in which
the cells need to compete for space and resources and respond to local cell–cell
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interactions and microenvironmental pressures. Many non–tumorigenic cells grown
in 3D in vitro cultures can preserve the form and, to some extent, the function
of their organs of origin. For instance, epithelial cells derived from breast (MCF-
10A), kidney (MDCK), prostate (RWPE-1), and ovary (OVAR-5) each produce
cyst-like structures with an epithelial shell enclosing a hollow lumen [1–11] when
grown in 3D conditions. On the other hand, when the epithelial cells are mutated
so that certain oncogenes are overexpressed, the growing cell clusters lose their
well-organized epithelial architecture and form either multicellular spheroids with
filled lumens or irregularly shaped condensed cell masses [12–22]. It is widely
believed that the aggressiveness of any particular cancer cell line correlates with the
degree to which its 3D structure departs from the normal epithelial-like architecture
[23–26]. However, there is still limited understanding of the cellular steps that
link a specific precancerous molecular alteration to a specific pattern of disruption
in the epithelial architecture. This is a challenging problem because it requires
integration across several scales: from genes to molecules, cellular phenotypes,
and multicellular organization. For example, alterations in an oncogene-related
molecular pathway may change proliferation rates, which may lead to disorganized
glandular morphologies. Computational modeling can provide an overall theoretical
framework and quantitative links between these different scales.

In this chapter, we describe a computational model, IBCell, which represents a
two-dimensional central cross section through a 3D cell culture. We do not model
the whole 3D structure, in order to reduce the computational cost of simulations.
However, the model can recapitulate quite faithfully the development of a normal
epithelial acinus and various acinar mutants. We describe the construction of the
IBCell morphocharts, a tool for the analysis and classification of different multicel-
lular morphologies. We give examples of morphocharts generated by altering three
different cellular traits (3D morphocharts), but, in principle, morphocharts of higher
dimensions can be generated. We also discuss how experimental morphologies
obtained from a 3D culture system can be mapped onto the IBCell morphochart
space in order to identify alterations in cell properties that lead to specific acinar
mutant morphologies.

2 The IBCell Model

To address questions about morphological and molecular changes in a growing
cell cluster, we developed the two-dimensional IBCell model (Immersed Boundary
model of the Cell [27]), which can recapitulate morphological changes in individual
cells and in the emerging multicellular architectures, based on the local cell–cell
and cell–microenvironment interactions governed by the molecular state of cells.
This model is based on the immersed boundary method [28–30], a classic method
for studying fluid–structure interactions, designed to capture interactions between
elastic bodies (here, cells) and a surrounding viscous incompressible fluid (here,
the cytoplasm inside the cells, the extracellular matrix (ECM) outside the tissue,
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Fig. 1 (a) Schematic illustration of IBCell receptors and nuclear staining. (b) A sequence of
consecutive stages of acinar development from a single cell to a monolayer of epithelial cells
enclosing a hollow lumen. Receptor and nuclear staining as in (a)

and the lumen inside the hollow acinar structure). In IBCell, all cells are modeled
as two-dimensional fully deformable bodies. The cell structure includes an elastic
plasma membrane, represented by a network of linear springs that define the cell
shape and enclose a viscous, incompressible fluid, representing the cytoplasm
and providing cell mass. Individual cells can interact with one another and with
the environment via a set of discrete membrane receptors located on the cell
boundaries. These receptors are used to sense signals from other cells and from
the microenvironment, as well as to secrete various ECM molecules. By integrating
these external signals, the host cell can initiate certain cell life processes, such as
proliferation, division, apoptotic death, and epithelial polarization. The decision
to enter or continue a specific process depends on the cell’s molecular signature
(a distribution of growth, death, apical, cell–cell adhesion, and cell–ECM adhesion
receptors along the cell boundary; see Fig. 1a). In IBCell, we prescribe the receptor
signature thresholds for each of the cell life process (proliferation, apoptosis, cell–
cell adhesion, cell–ECM adhesion, and cell polarization), but the model has no
built-in knowledge about the shape of the tissue structures that the individual cells
may construct together. Instead, the form of the multicellular architecture emerges
from local interactions between cells, and between the cells and their environment.
By examining various receptor thresholds (see IBCell morphocharts in Sect. 3), we
can identify the combinations of thresholds that lead to the self-assembly of hollow
mammary acini, and those that result in acinar mutants.

A sequence of consecutive stages in the development of a hollow acinus is
shown in Fig. 1b. We initiated these simulations with a single cell, which upon
consecutive divisions gives rise to a cluster of randomly oriented cells that adhere
to their immediate neighbors (green receptors). All cells secrete ECM proteins in
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the vicinity of those membrane receptors that are not engaged in cell–cell adhesion,
that is, initially along the whole cell boundary. However, with the increased number
of adhesive receptors, the ECM secretion remains confined to the outer part of the
cell membrane that is in direct contact with the external medium. Moreover, upon
accumulation of the ECM (increased intensity of staining, from pink to red, around
cell receptors), the free growth receptors (blue) change their function to ECM
receptors (yellow), subsequently leading to the differentiation of all outer cells and
their epithelial polarization. The polarized cells possess three different membrane
domains: lateral domains in contact with other cells (green receptors), basal domain
in contact with the ECM (yellow receptors), and apical domains (cyan receptors),
which eventually develop as a result of breaking all adhesive connections with the
inner cells. This subsequently increases the number of death receptors (gray) on the
boundaries of the inner cells and triggers their apoptotic death.

The following equations describe the mathematical basis of the IBCell model
and couple the interactions between the cells, the fluid, and the ECM molecules:
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In this system, Eq. (1) is the Navier–Stokes equation of a viscous, incompressible
fluid with a velocity u defined on a Cartesian grid x D .x1; x2/, where p is the
fluid pressure, � is the fluid viscosity, � is the fluid density, s is the local fluid
expansion, and f is the external-force density. Equation (2) is the law of mass
balance. The fluid flow is influenced both by the force density F.li ; t/, defined
at the material points X.li ; t/ that form the boundary �i of the i th cell (li is the
position along the cell boundary), and by point sources Yi;k and sinks Zi;m that
are nonzero if the i th cell is either growing or dying. The source and sink points
are defined in the local microenvironment of the i th cell, i.e., Yi;k; Zi;m 2 ‚"

�i
DS

X2�i
fx W kx � Xk < "g. The interactions between the fluid and the material

points on cell boundaries are defined in Eqs. (3)–(7). Here, both the force density
F.li ; t/ and the sources SC.Yi;k; t/ and sinks S�.Zi;m; t/ are applied to the fluid
using the two-dimensional Dirac delta function ı, and all material boundary points
X.li ; t/ are carried along with the fluid. The boundary forces F.li ; t/ arise from
the elastic properties of the cell membranes, from cell–cell adhesion, and from
contractile forces that split the cell during its division, and are represented by short
linear Hooke springs in Eq. (4), where F� is the stiffness of the spring, L � is the
resting length, and X.l�

i ; t/ is the adjacent, opposite, or neighboring point for the
elastic, contractile, or adhesive force, respectively. The strengths of the individual
sources SC.Yi;k; t/DS C and sinks S�.Zi;m; t/DS � are chosen such that they
balance around every cell separately. The kinetics of the ECM protein concentration
 is described at the material points X.li ; t/ on the cell boundaries in Eq. (8). It
includes a constant rate of ECM secretion at the boundary points (receptors) that
are not engaged in cell–cell and cell–ECM adhesion (i.e., free growth receptors)
and a decay proportional to the local concentration at each boundary point. Since
we are modeling a generic ECM protein, an arbitrary small value is chosen for the
receptor secretion rate �1. The decay rate �2 is defined in such a way as to allow
the natural decay of ECM around receptors in which protein secretion has been
stopped owing to a change in receptor function (such as in the case of adhesive
or apical receptors), but still allow the steady accumulation of ECM around free
growth receptors. All physical parameters used in the model are listed in Table 1.
Computational implementation of this model requires a discrete version of the Dirac
function and periodic boundary conditions on the domain boundaries in order to
solve the immersed boundary equations. These numerical procedures are described
in detail in [27, 35].

All cell life processes in the IBCell model, such as growth, division, death,
cell–cell adhesion, and cell–ECM adhesion, depend entirely upon cues sensed from
neighboring cells and from the ECM. This takes place through the cell membrane
receptors located on the boundary of each cell (color-coded in Fig. 1a). The default
state of the receptors is growth (blue). A cell–cell adhesive receptor (green) is
activated when some boundary points of two distinct cells are sufficiently close
to one another. An ECM receptor (yellow) is specified by a boundary point that
is always in contact with the extracellular medium and is activated when the
concentration of ECM in its vicinity exceeds a prescribed density. An apical sensor
(cyan) is activated in an outer polarized cell when existing cell–cell adhesive links
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Table 1 Physical parameters of the IBCell model of acinar morphogenesis

Model parameter Value Units References

Fluid density � D 1.35 g=cm3 [31, 32]
Fluid viscosity � D 100 g=.cm � s/ [31, 32]
Elastic-membrane force stiffness Felastic D 500 g=.cm � s2/ [32]
Adhesive-force stiffness Fadhesive D Felastic g=.cm � s2/ [33]
Contractile-force stiffness Fcontractile D 50 � Felastic g=.cm � s2/ [33]
Fluid sources and sinks SC D S� D 5 � 10�10 g=s [33]
Elastic-spring resting length Lelastic D 0.5 �m [33]
Adhesive-spring resting length Ladhesive D 0.5 �m [33]
Contractile-spring resting length Lcontractile D 2.5 �m [33]
ECM secretion rate (at the growth receptors) �1 D 1 � 10�10 mM=s [34]
ECM decay rate �2 D 0:05 � �1 1=s [34]

with inner cells are disassembled. A death receptor (gray) is created in an inner cell
upon its detachment from a polarized cell or from another dying cell.

The activation of a growth receptor causes a certain amount of extracellular
fluid to move into the cell, so the overall size of the cell increases. When the
cell doubles in size, the division process is triggered. Division itself is modeled
by the recruitment of boundary points to internal receptors that attract each other
across the cell diameter, forming a furrow (the contractile ring) and eventually
separating the mother cell into two daughter cells. The state of a cell is modulated
by the percentage of recruited receptors and by the critical receptor thresholds.
By varying these thresholds, one can explore the spectrum of model behavior (via
IBCell morphocharts). For example, the cell can grow only if it can sense sufficient
space in its vicinity, as defined by a threshold level of growth receptors. If this
threshold is not met, the cell is considered to be resting. Similarly, cell death is
triggered if the host cell accumulates a certain percentage of death receptors. If
this threshold is not met, the cell is viable, but quiescent. The dynamics of cell
membrane receptors is summarized in a flowchart in Fig. 2a, and the rules for their
emergence and activation, as well as their links to the model equations, are listed in
Table 2.

Each simulation in our model is initiated with a single, circular cell, and
each of its membrane receptors is activated as a growth receptor. This results
in a uniform distribution of sources and sinks of fluid along the cell boundary
and, as a result, the growth of this first cell is uniform. After that, the cell
receptors are activated depending on the local interactions of the host cell with
other cells and the microenvironment. The receptor thresholds provide a decision
mechanism that modifies the state of a cell by initiating certain life processes
based on the cell receptor distribution. Figure 2b depicts a flowchart showing the
evolution of five phenotypically distinct subpopulations of cells: resting, growing,
polarized, apoptotic, and dead. Each cell phenotype (except the dead cells) can make
decisions based on the configuration of cell membrane receptors (growth, death,



IBCell Morphocharts 513

Fig. 2 (a) Flowchart describing the dynamics of cell membrane receptors. The default state is
growth; transition to another state (ECM, adherent, apical, or death) depends on cues sensed
from other cells and from the microenvironment. (b) Flowchart describing the evolution of
phenotypically different subpopulations of resting, growing, polarized, apoptotic, and dead cells.
The initiation of cell life processes depends on the distribution of all cell membrane receptors and
the predefined receptor thresholds (Reproduced from [34], Fig. 1, with permission)

Table 2 Rules for the emergence and activation of cell membrane receptors in the IBCell model
and their links to the model equations. Cell membrane receptors are color-coded as in Fig. 1

Cell receptors Receptor activation/emergence Model equations

Adhesion (green) Activated when two receptors from
distinct cells are close enough

Adhesive forces F.li ; t / in
Eqs. (3) and (4)

ECM (yellow) Activated when the expression of ECM
proteins exceeds the threshold

ECM .X.li ; t // kinetics in
Eq. (8)

Growth (blue) All receptors free from any cell–cell or
cell–ECM contacts (a default state)

Sources SC.Yi;k ; t / inside and
sinks S�.Zi;m; t / outside the
growing cell, Eqs. (5) and (6)

Death (gray) Emerge after detachment from a
polarized or another dying cell

Sinks S�.Zi;m; t / inside and
sources SC.Yi;k ; t / outside
the dying cell, Eqs. (5) and (6)

Apical (cyan) Emerge during the development of a
cell’s apical membrane domain

Adhesive forces F.li ; t / in
Eqs. (3) and (4) are
disassembled; all extrinsic
signals are blocked

apical, cell–cell, and cell–ECM) to enter the associated cell life processes (growth,
polarization, apoptotic death, and rest) that are responsible for movement through
the flowchart.



514 K.A. Rejniak

3 The IBCell Morphocharts

In order to connect molecular defects in individual cells with altered morphologies
of emerging multicellular structures, we can explore the whole parameter space
of the IBCell thresholds. This can be done by producing multidimensional charts
(morphocharts) that plot collections of final morphologies arising from IBCell
simulations that were done with distinct combinations of receptor thresholds in the
initial cells, inherited thereafter by every newborn daughter cell. This establishes a
direct computational link between morphology and cell properties, enabling us to
classify the final morphologies into similarity classes with respect to the imposed
cell sensitivities (receptor thresholds). The IBCell morphocharts then provide a tool
for exploring what morphological structures will be produced when individual cell
responses (as defined by the receptor thresholds) are combined simultaneously in
the same simulation.

Moreover, the IBCell morphocharts can integrate multiple cell processes trig-
gered by the receptor thresholds. These thresholds are defined as the percentages
of receptors needed to initiate certain cell life processes. That is, in the case of
proliferation or apoptosis, the cell must accumulate a predefined percentage of
particular cell membrane receptors, namely growth or death, respectively. In the case
of the ECM receptor threshold, we included an external inhibitory growth signal
that proliferating cells may receive from the ECM they secrete. This inhibitory
growth signal is directly proportional to the density of ECM accumulated on the
outer boundary of the cells, establishing a negative feedback between proliferation
and ECM density. Therefore, as the density of the matrix increases in the vicinity
of a cell, the receptors in contact with the ECM cross the critical threshold of ECM
density and are converted to ECM receptors, thus inhibiting growth.

Figure 3 shows an example of an IBCell morphochart that integrates the
three individual processes of cell growth, death, and ECM adhesion, resulting in
the formation of normal epithelial acini (red subspace), acini with filled lumens
(blue subspace), acini with degenerate shapes (yellow subspace), or nonstabilized
growing acinar structures (green subspace). Figure 3b shows the whole 3D param-
eter space, with representative morphologies from each class. Figure 3a shows one
plane of the 3D morphochart (a middle horizontal cross section), with morphologies
for all combinations of growth and death receptor thresholds and a fixed threshold
for the ECM receptors. Note that in this case, for a fixed growth receptor threshold
(with a value in the range from 5 to 25 %), the acinar structure changes from
hollow to partially occupied (by inner cells) and then to completely filled, as
the death receptor threshold increases from 5 to 35 % and then to 55 %. With
an increased death receptor threshold, the cells need to accumulate more death
receptors in order to start the apoptotic process, and thus they become more resistant
to the death signals. For a growth threshold of 0 %, all structures are nonstabilized
(still growing), since cell growth stabilization requires that all outer cells become
epithelially polarized. When the cells cannot acquire this phenotype, they initiate
the proliferation process, since there is no constraint on the cell growth receptor
threshold.
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Fig. 3 (a) 2D cross section through the center of the 3D IBCell morphochart obtained from
(b), generated by varying the thresholds for death, growth, and ECM receptors that trigger
the corresponding cell life processes of proliferation, apoptosis, and ECM adhesion. The final
morphologies are divided into four classes: hollow acini (red), filled cysts (blue), degenerate forms
(yellow), and nonstabilized structures (green). Cell phenotypes are color-coded (Adapted from
[34], Fig. 3, with permission)

On the other hand, for a fixed death receptor threshold and an increasing growth
receptor threshold (from 5 to 35 %), the structures become more deformed as a
result of growth arrest of individual cells. In such cases, the cells cannot accumulate
enough growth receptors to initiate cell proliferation. Note that when the receptors
are engaged in either cell–cell or cell–ECM adhesion, the percentage of growth
receptors is diminished. Thus, the growing capability of the cell in our model is
correlated with its sensitivity to contact inhibition. The more contacts the cell makes
with other cells or with the ECM, the less likely it is to start to grow. Thus, the lower
the growth receptor threshold is set, the less sensitive the host cell is to contact
inhibition. For example, in the case when the growth receptor threshold is equal to
5 %, the cell may have up to 95 % of its receptors engaged in adhesion either to
other cells or to the ECM, and the cell will still be able to initiate the proliferation
process.

Finally, when the ECM threshold is varied, the model generates acinar structures
of various sizes. This threshold regulates the time at which cell receptors become
engaged in ECM adhesion. For low values of the ECM threshold, the ECM receptors
emerge early, leading to cell growth suppression and the formation of smaller stable
(growth-arrested) structures, either hollow or filled. For higher values of the ECM
threshold, the acini grow larger before stabilizing, and in extreme of high values,
cases the structures never stabilize, and instead continue to proliferate. Therefore,
ECM adhesion contributes to cell growth arrest and to the stabilization of acinar
structures, and the higher the ECM threshold, the larger the final acinar morphology.

The subspaces for each morphological class in Fig. 3 are quite broad, showing
how robust the emerging acinar morphologies are to perturbations (here, in the
growth, death, and ECM adhesion sensitivities). This may also be interpreted as
adaptability and plasticity of the cells in response to extrinsic cues, or as a measure
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of the robustness of the acinus-building algorithm with respect to fluctuations of
cellular traits.

4 The IBCell Morphological Classification

In Fig. 3b, we identified four broad classes of acinar morphologies. However,
each class can be subdivided into subcategories containing significantly different
structures. We will discuss each of the four subspaces separately here in order
to identify the cellular traits and molecular components responsible for each
morphological class.

The subspace of normal, hollow acini comprises a quarter of all simulated acini
(Fig. 4). These structures, composed of one layer of epithelially polarized cells
enclosing a hollow lumen, arise from fully filled multicellular clusters in which, first,
all outer cells in contact with the ECM become epithelially polarized, and second,
the inner cells are triggered to die by apoptosis, forming the hollow lumen. The
final sizes of these acinar structures depend on when the outer cells became growth-
arrested because of their polarization. This, in turn, is modulated by the ECM
threshold. Thus, small acini are observed for small values of the ECM threshold
(pale pink region in Fig. 4), moderate-sized acini (red region in Fig. 4) are generated
for medium values of the ECM threshold, and large acini (brown region in Fig. 4)
occur at the top threshold values. For a fixed ECM threshold value, the final size of
the acinar structures diminishes with increased growth receptor threshold (a step-
wise change in the color-coded parameter subspace, that is, a change from brown to
red and from red to pink in the horizontal plane). In contrast, there is no change
in the final acinar size classification for a fixed growth receptor threshold and
an increased death receptor threshold. Thus, our model indicates that the normal,
hollow acinar structures have much greater plasticity in adapting to death signals
than to proliferation signals or ECM-related cues. The results of changes in the
growth and ECM thresholds show that the cells in our model are more resistant to
variation in apoptotic signals and more sensitive to extrinsic ECM-related cues.

The transition from the normal acinar space to the space of stabilized but
nonhollow structures is quite sharp across the whole parameter space. In our model,
a death receptor threshold of 35 % separates the hollow acini from the acini with
cells that are able to survive inside the luminal compartment. The subspace of filled
acini comprises about 20 % of all simulated acini (Fig. 4) and is divided into two
categories, completely filled structures (light blue region in Fig. 4) and structures
with small microlumens (blue region in Fig. 4). The subspace of partially filled
acini is limited to structures of moderate size, with the death receptor threshold
at the lower end of the nonhollow-acini space. Small structures (with small ECM
thresholds) do not produce lumens, because they stabilize quickly and the inner cells
have no time to accumulate enough death receptors to trigger the apoptotic process.
In the structures emerging when the ECM threshold is set high, the epithelial
polarization process occurs late, since the outer cells proliferate continuously. But
once the polarization takes place, it happens in all outer cells almost simultaneously,
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Fig. 4 Parameter subspace of hollow and filled cysts, subdivided into subcategories of small (pale
pink), medium (red), and large (brown) normal acinar structures, and partially filled (blue) and
fully filled (pale blue) architectures resembling DCIS (ductal carcinoma in situ). The inset shows
the whole 3D parameter space divided into four classes. Receptors are color-coded as in Fig. 1

preventing the inner cells from initiating the death process, owing to inadequate
numbers of expressed death receptors. However, in acinar structures of moderate
size, the process of epithelial polarization is prolonged, which enables the inner
cells to collect larger numbers of death receptors upon the disassembly of adhesion
contacts with multiple outer cells. Thus, these acini contain small luminal areas near
the layer of epithelial cells but with an intact core cluster of cells. In our model, we
assume that the inner cells are not capable of reentering the proliferation process,
even if the dying nearby cells create free space. If this assumption is not made, the
inner microlumens can be repopulated, as we simulated in [36].

When the growth receptor threshold is increased, some of the outer cells become
growth-arrested while their neighbors may still be able to proliferate. This results
in irregular, degenerate final acinar morphologies (Fig. 5). This subspace comprises
about 30 % of all simulated acini and includes structures with hollow lumens (yellow
region in Fig. 5) and structures with partially or fully filled luminal compartments
(orange region in Fig. 5). The transition from one subcategory to the other depends
on the death receptor threshold. Multicellular patterns resembling shapes from this
subspace may emerge when cells are resistant to growth signals or sensitive to
contact inhibition.

Finally, when either the growth receptor threshold is set up to 0 % (meaning that
the cells are insensitive to contact inhibition) or the ECM receptor threshold is very
high, the final acinar structures remain nonstabilized and contain cells that prolifer-
ate continuously (Fig. 5). The subspace of nonstabilized acinar structures comprises
about 30 % of all simulated cases, but these structures are highly localized on the
boundary of the parameter space considered here. Among these structures, we can
identify dense growing clusters (forest green region in Fig. 5), growing clusters
with microlumens (dark green region in Fig. 5), and empty acini with cells growing
within the outer monolayer (green region in Fig. 5). Again, the fully filled structures
arise when the death receptor threshold is high, and the structures with empty
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Fig. 5 Parameter subspace of degenerate and nonstabilized structures subdivided into subcate-
gories of degenerate filled (orange) and empty (yellow) architectures, and still-growing hollow
(green), partially filled (dark green), and fully filled (forest green) morphologies. The inset shows
the whole 3D parameter space divided into four classes. Receptors are color-coded as in Fig. 1.
Green nuclei represent growing cells, and the nuclei of resting cells are blue

lumens are produced when the death receptor threshold is low. The non-stabilized
morphologies with microlumens form a transition zone between the structures with
empty and filled lumens, but they arise sporadically. Morphologies corresponding
to the shapes generated in this subspace may arise either from high resistance to the
ECM adhesion signals or from elevated cell proliferation accompanied by changes
in the response of cells to accumulated ECM.

The ten specific morphological classes identified by the IBCell model can be used
to map the experimentally observed 3D morphologies onto the model parameter
space in order to delineate the cell processes that are deregulated and to design
laboratory experiments to confirm or rule out the predictions of the model.

5 The IBCell Morphochart Mapping

Many of the morphological structures identified by our computational model have
been observed experimentally or clinically, indicating that IBCell has the potential
to reproduce and analyze the formation of epithelial acini and acinar mutants.

We have shown that our model is capable of generating hollow acinar structures
of various sizes (Fig. 4, red subspace). This is consistent with results reported in
[13], where nontumorigenic breast cells (MCF10A) were grown in 3D Matrigel
cultures and produced hollow acini that reached a diameter of 67:5˙ 13:4 �m over
a period of 10–20 days. Similar results have also been reported in [37], where 3D
Matrigel cultures of lung alveolar cells (AT II) formed hollow cysts with diameters
varying from 20 to 65 �m depending on the initial seeding density. Moreover, we
have shown previously [36] that our model parameters can be tuned to qualitatively
and quantitatively match experimental data collected from the MCF10A cell line
and a particular MCF10A-derived mutant cell line, MCF10A-Her2YVMA.
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The parameter space of nonhollow acinar structures (Fig. 4, blue regions)
contains morphologies that resemble early carcinoma lesions, such as breast ductal
carcinoma in situ and prostate intraepithelial neoplasias, in which luminal filling is
often observed [38–41]. Similarly, filled DCIS-like structures have been observed
in 3D in vitro cultures of tumorigenic cell lines, such as prostate RWPE-1 cells [19]
and breast MCF10CA1a cells [20]. Moreover, the acinar structures with multiple
microlumens have been detected in 3D cultures of mammary cells derived from
transgenic mice exposed to doxycycline treatment [42], in the breast tumor cells
21 MT and 21 MT�187, with the DEAR1 mutation [43], and in the kidney cell line
MDCK [44, 45].

Furthermore, the transition from the hollow to filled acini that emerges naturally
in our model (the border between the red and blue subspaces in Fig. 4) has been
observed experimentally [13]. It was shown there that normal hollow acinar mor-
phologies could be preserved even if either inner-cell apoptosis was inhibited (by
overexpressing the antiapoptotic proteins Bcl-2 and Bcl-XL) or the cell proliferation
rate was increased (by overexpressing cyclin D1 or the oncoprotein HPV16E7).
However, when both of these perturbations were combined, the hollow morphology
was disrupted, resulting in filled lumens. This phenomenon is recapitulated by our
morphocharts, which show that a simultaneous change in two receptor thresholds
(growth and apoptosis) is needed for the lumen to become fully filled (Fig. 3).

Our model has also identified a subspace of acinar morphologies that deviate
from the normal regular spherical architecture and become stabilized as irregular,
often tortuous structures (Fig. 5, yellow subspace). Such irregular morphologies
have also been noticed in experimental cultures. MCF10A cells with an activated
ErbB2 oncogene [13] or overexpressed Mek2-DD [14] grow in structures composed
of multiple acini merged together. Similarly, the premalignant MCF10AT cell line
[20] and the iFGFR1-activated HC11 cell line [15] both form highly distorted
architectures in 3D cultures.

The last acinar subspace established by our computational model contains
nonstabilized structures with actively growing cells even at a time corresponding
to 30 days in culture (Fig. 5, green region). Morphologies of this type have
been observed experimentally when MCF10A cells were overexpressing various
oncogenes (Her2, HER2-Bcl2, Her2-E7, Her2YVMA, and Ras-Scrible [16, 18, 36]).
These experimental structures are characterized by various levels of cell death. In
most cases, only small empty (luminal) spaces of a size corresponding to one to
two cells were visible. However, we are not aware of any experimental examples in
which the cells form an outer monolayer and are capable of persistent proliferation.
Thus, this acinar phenotype may represent a combination of model parameters that
do not coexist in nature.

In each experimental case mentioned above, the particular cell line was grown
in a 3D in vitro culture that reconstructed some of the cell–cell and cell–
microenvironment interactions typical of in vivo situations. These cultures were
used to investigate the impact that certain intrinsic and extrinsic factors might
have on multicellular growth and on anticancer treatments. However, it is very
difficult to quantify how these factors alter individual cell behavior, especially
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in terms of multiple processes. By utilizing our computational morphocharts, we
can inspect multiple processes in a systematic manner and tease out which ones
have been altered and how. This can be done by mapping a particular experimental
morphology onto a set of semiquantitative model parameters in order to quantify the
range of possible changes in cell sensitivities defined by the particular cell receptor
thresholds.

We have previously applied the IBCell morphochart mapping technique to
estimate changes in the proliferation, death, and ECM rates in the MCF10A-
Her2YVMA mutant compared with the parental MCF10A cell line [36]. Our approach
consisted of several steps. (1) A generic two-dimensional model of the development
of hollow acini was tuned to qualitatively and quantitatively match the data acquired
from central cross sections through MCF10A three-dimensional cultures. These
data included the size, diameter, and shape of the central cross section through the
developing 3D acinus at several time points, starting with the day of seeding and
ending on the 28th day, when the acini were stabilized. We also used the counts
and locations of all viable, proliferating, and dying cells in each acinar cross
section. (2) The MCF10A-tuned model, that is, the model with a parameter set
that reproduced an average MCF10A acinus, was tuned again to quantitatively
reproduce a sequence of data from the developing MCF10A-Her2YVMA mutant,
and all parameter changes were recorded. (3) The modified parameters were
interpreted biologically in order to highlight which cellular features drove the
morphology of the mutant acini compared with that of the normal MACF10A acini
and to formulate experimentally testable hypotheses. In the case of the MCF10A-
Her2YVMA mutant, the morphocharts showed that alterations in the proliferation
and apoptosis sensitivities, no matter how extreme, were not able to account
for the observed mutant morphologies until a third process had been considered.
We showed that after changing the ECM thresholds, we were able to recover both
the mutant 3D architecture and the quantitative metrics in terms of cell counts
and structure size. Thus, we hypothesized that the lack of structure stabilization
in the MCF10A-Her2YVMA mutant is a result of its altered interactions with the
microenvironment – particularly with ECM proteins that in vivo would account for
the formation of the stabilizing basement membrane, but in vitro are manifested as
a band of ECM proteins accumulating on the edge of the acinus.

6 Conclusions

The IBCell model (Immersed Boundary model of the Cell) was introduced in
[46] to model abnormal bending of the human trophoblast bilayer tissue and was
subsequently applied to simulate early tumor growth [27, 47] and the emergence of
several types of pathological ductal tumors [48]. It was the first mathematical model
used to investigate how epithelial acini and their mutants are formed [33, 49], and
how their morphologies can be compared through computational simulations and
morphocharts in order to delineate molecular or genetic differences between them
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[34, 36]. In comparison with other recently developed models of acinus formation
[50–52], which are based on hexagonal cellular automata, the IBCell model is not
defined on a fixed grid, and each cell has a variable number of neighbors and
communicates with other cells and with the microenvironment via a set of cell
membrane receptors that, taken together, account for cell plasticity and the dynamic
molecular status.

We have used IBCell to address the changes in cellular traits underlying the
transformation of normal epithelial acinar morphologies into mutant-like cancerous
structures. In principle, such fundamental insights into tissue organization and
cancer progression could be derived by measuring changes in real time for multiple
traits, as cells in a tissue respond to perturbations. However, this task is technically
impractical or, at least, exceedingly labor-intensive. Thus, we developed an in silico
acinus culture that integrates multiple traits of individual cells in a tissue and, by
systematically varying model parameters, explores the morphogenetic space relative
to trait combinations (resulting in a morphochart). Morphocharts provide a tool to
integrate experimental data on a given cancer type and to quantify the relative impact
of each of the cellular core traits that are modified in relation to the normal cell line.
However, it is important to realize that IBCell must initially be tuned to the normal
cell line for a given cancer in terms of both morphology and quantitative data (e.g.,
cell counts, acinar diameters, cellular density, and lumen/cellular ratio) in order
to generate relevant morphocharts. Subsequently, the experimental morphologies
can be mapped onto the morphocharts to estimate, from the position of the mutant
acini, the changes in the proliferation, death, and extracellular matrix secretion rates
(or other cellular traits of interest) that must have occurred in the mutant cells to
produce the given morphology. Thus, IBCell effectively links genetic mutations to
cell traits and can guide further experimentation to identify relationships between
cancer mutations and tissue lesions, especially in early lesions that are driven by the
mutation itself.

The application of the IBCell model that we have presented in this chapter is
a tangible example of the interactions between theory and experimentation that
lead to new biology. The morphocharts provide an analytical predictive tool in an
area of biology (i.e., tissue morphogenesis) where a multiscale understanding of
observed phenomena is especially difficult. The individual scales of this process
(e.g., genetics, signaling, and cell trait behavior) continue to be extensively studied
and have produced a massive amount of information. The task of integrating this
information across scales is, however, daunting and easily escapes human intuition.
Nowhere is this more evident than in the case of neoplastic diseases: there is
understanding of the correlations between genetic mutations and tissue structure
aberrations, but causal links remain elusive. Computational and mathematical
modeling approaches, such as the use of IBCell morphocharts, can provide the
necessary link bridging different biological scales.
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