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Preface

Our fi rst edition, Introduction to Biostatistics: A Guide to Design, Analysis, and Dis-
covery, was published in 1995 and was well received both by reviewers and readers. 
That book broke new ground by expanding the range of methods covered beyond what 
typically was included in competing texts. It also emphasized the importance of under-
standing the context of a problem — the why and what — instead of considering only 
the how of analysis.

Although the past several years have seen much interest in a second edition, our 
involvement with numerous other projects prevented us from tackling a new edition. 
Now that the stars are in alignment (or whatever), we fi nally decided to create a second 
edition. We are excited that Mike Hernandez has agreed to collaborate with us on this 
edition.

This new edition builds on the strengths of the fi rst effort while including several 
new topics refl ecting changes in the practice of biostatistics. Although parts of the 
second edition still serve as an introduction to the world of biostatistics, other parts 
break new ground compared to competing texts. For some of these relatively more 
advanced topics, we strongly advise the reader to consult with experts in the fi eld before 
setting out on the analyses.

This revised and expanded edition continues to encourage readers to consider the 
full context of the problem being examined. This context includes understanding what 
the goal of the study is, what the data actually represent, why and how the data were 
collected, how to choose appropriate analytic methods, whether or not one can general-
ize from the sample to the target population, and what problems occur when the data 
are incomplete due to people refusing to participate in the study or due to the researcher 
failing to obtain all the relevant data from some sample subjects. Although many bio-
statistics textbooks do a very good job in presenting statistical tests and estimators, they 
are limited in their presentations of the context. In addition, most textbooks do not 
emphasize the relevance of biostatistics to people’s lives and well-being. We have 
written and revised this textbook to address these defi ciencies and to provide a good 
guide to statistical methods.

This textbook also differs from some of the other texts in that it uses real data for 
most of the exercises and examples. For example, instead of using data resulting from 
tossing dice or dealing cards, real data on the relation between prenatal care and birth 
weight are used in the defi nition of probability and in the demonstration of the rules of 



probability. We then show how these rules are applied to epidemiologic measures and 
the life table, major tools used by health analysts. Other major differences between this 
and other texts are found in Chapters 11, 14, and 15. In Chapter 11 we deal with the 
analysis of the follow-up life table; its use in survival analysis is considered in Chapter 
14. In Chapter 15 we present strategies for analyzing survey data from complex sample 
designs. Survey data are used widely in public health and health services research, but 
most biostatistics texts do not deal with sample weights or methods for estimating the 
sample variance from complex surveys.

We also include material on tolerance and prediction intervals, topics generally 
ignored in other texts. We demonstrate in which situations these intervals should be 
used and how they provide different information than that provided by confi dence 
intervals. In addition, we discuss the randomized response technique and the general 
linear model for analysis of data sets with an unequal number of observations in each 
cell, topics generally not covered in other texts. The randomized response technique is 
one way of dealing with response bias associated with sensitive questions, and it also 
illustrates the importance of statistical design in the data collection process.

Although we did not write this book with the assumption that readers have prior 
knowledge of statistical methods, we did assume that readers are not the type to be 
rendered unconscious by the sight of a formula. When presenting a formula, we fi rst 
explain the concept that underlies the formula. We then show how the formula is a 
translation of the concept into something that can be measured. The emphasis is on 
when and how to apply the formula, not on its derivation. We also provide a review of 
some mathematical concepts that are used in our explanations in Appendix A. A website 
is provided that demonstrates the use of statistical software in carrying out the analyses 
shown in the text. As new versions of statistical packages become available, the website 
material will be updated.

The textbook is designed for a two-semester course for the fi rst-year graduate student 
in health sciences. It is also intended to serve as a guide for the reader to discover and 
learn statistical concepts and methods more or less by oneself. If used for a one-semester 
course, possible deletions include the sections on the geometric mean, the Poisson dis-
tribution, the distribution-free approach to intervals, the confi dence interval and test of 
hypothesis for the variance and coeffi cient of correlation, the Kruskal-Wallis and Fried-
man tests, the trend test for r by 2 contingency tables, the two-way ANOVA, ANOVA 
for unbalanced designs, the linear model representation of the ANOVA, the ordered and 
conditional logistic regression, the proportional hazards regression, and the analysis of 
survey data.

Several appendices are at the end of the book. Appendix A presents some basic 
mathematical concepts that are essential to understanding the statistical methods pre-
sented in this book. Appendix B contains several statistical tables referenced in the text. 
Appendix C is a listing of major governmental sources of health data, and Appendix D 
presents solutions to selected exercises.
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Introduction

Chapter Outline
1.1 What Is Biostatistics?
1.2 Data — The Key Component of a Study
1.3 Design — The Road to Relevant Data
1.4 Replication — Part of the Scientifi c Method
1.5 Applying Statistical Methods

1.1  What Is Biostatistics?
Biostatistics is the application of statistical methods to the biological and life sciences. 
Statistical methods include procedures for (1) designing studies, (2) collecting data, (3) 
presenting and summarizing data, and (4) drawing inferences from sample data to a 
population. These methods are particularly useful in studies involving humans because 
the processes under investigation are often very complex. Because of this complexity, a 
large number of measurements on the study subjects are usually made to aid the discovery 
process; however, this complexity and abundance of data often mask the underlying 
processes. It is in these situations that the systematic methods found in statistics help 
create order out of the seeming chaos. These are some of the areas of application:

1. Collection of vital statistics — for example, mortality rates — used to inform 
about and to monitor the health status of the population

2. Analysis of accident records to fi nd out the times during the year when the greatest 
number of accidents occurred in a plant and decide when the need for safety 
instruction is the highest

3. Clinical trials to determine whether or not a new hypertension medication 
performs better than the standard treatment for mild to moderate essential 
hypertension

4. Surveys to estimate the proportion of low-income women of child-bearing age 
with iron defi ciency anemia

5. Studies to investigate whether or not exposure to electromagnetic fi elds is a risk 
factor for leukemia

Biostatistics aids administrators, legislators, plant managers, and researchers in 
answering questions. The questions of interest are explicit in examples 2, 3 and 5 above 
— do seasonal patterns of accidents give any clues for reducing their occurrence?; is 
the new drug more effective than the standard?; and is exposure to the electromagnetic 
fi eld a risk factor? In examples 1 and 4, the values or estimates obtained are measure-
ments at a point in time that could be used with measures at other time points to deter-
mine whether or not a policy change, for example, a 10 percent increase in Medicaid 
funding in each state, had an effect.
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The words in italics in the preceding list suggest that statistics is not a body of sub-
stantive knowledge but a body of methods for obtaining, organizing, summarizing, and 
presenting information and drawing inferences. However, whenever we draw an infer-
ence, there is a chance of being wrong. Fortunately, statistical methods incorporate 
probability ideas that allow us to determine the chance of making a wrong inference. 
As Professor C.R. Rao (1989) suggested, “Statistics is putting chance to work.”

1.2  Data — The Key Component of a Study
Much of the material in this book relates to methods that are used in the analysis of 
data. It is necessary to become familiar with these methods and their use because it will 
help you to understand reports of studies, design studies, and conduct studies. However, 
readers should not feel overwhelmed by the large number of methods of analysis and 
the associated calculations presented in this book. More important than the methods 
used in the analysis are the use of the appropriate study design and the proper defi nition 
and measurement of the study variables. You cannot have a good study without good 
data! The following examples demonstrate the importance of the data.

Example 1.1

Sometimes, due to an incomplete understanding of the data or of possible problems 
with the data, the conclusion from a study may be problematic. For example, consider 
a study to determine whether circumcision is associated with cervical cancer. One 
issue the researcher must establish is how to determine the circumcision status. The 
easiest way is to just ask the male if he has been circumcised; however, Lilienfeld 
and Graham (1958) found that 34 percent of 192 consecutive male patients they 
studied gave incorrect answers about their circumcision status. Most of the incorrect 
responses were due to the men not knowing that they had been circumcised. Hence, 
the use of a direct question instead of an examination may lead to an incorrect con-
clusion about the relation between circumcision and cancer of the cervix.

Example 1.2

In Example 1.1, reliance on the study subject’s memory or knowledge could be a 
mistake. Yaffe and Shapiro (1979) provide another example of potential problems 
when the study subjects’ responses are used. They examined the accuracy of sub-
jects’ reports of health care utilization and expenditures for seven months compared 
to that shown in their medical and insurance records for two geographical areas. In 
a Baltimore area that provided data from approximately 375 households, subjects 
reported only 73 percent of the identifi ed physician offi ce visits and only 54 percent 
of the clinic visits. The results for Washington County, Maryland which were based 
on about 315 households, showed 84 percent accuracy for physician offi ce visits but 
only 39 percent accuracy for clinic visits. Hence, the reported utilization of health 
services by subjects can greatly underestimate the actual utilization, and, perhaps 
more importantly, the accuracy can vary by type of utilization and by population 
subgroups. Note that this conclusion is based on the assumption that the medical/ 
insurance records are more accurate than the subjects’ memories.
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Example 1.3

One example of how a wrong conclusion could be reached because of a failure to 
understand how data are collected comes from Norris and Shipley (1971). Figure 1.1 
shows the infant mortality rates calculated conventionally as the ratio of the number 
of infant deaths to the number of live births during the same period multiplied by 
1000 for different racial groups in California and the United States in 1967.

Norris and Shipley questioned the accuracy of the rate for American Indians 
because it was much lower than the corresponding U.S. American Indian rate and 
even lower than the rates for Chinese and Japanese Americans in California. There-
fore, they used a cohort method to recalculate the infant mortality rates. The cohort 
rate is based on following all the children who were born in California during a year 
and observing how many of those infants died before they reached one year of age. 
Some deaths were missed — for example, infants who died outside California — but 
it was estimated that almost 97 percent of the infant deaths of the cohort were cap-
tured in the California death records.

Norris and Shipley used three years of data in their reexamination of the infant 
mortality to provide better stability for the rates. Figure 1.2 shows the conventional 
and the cohort rates for the 1965–1967 period by race. The use of data from three 
years has not changed the conventional rates much. The conventional rate for Ameri-
can Indians in California is still much lower than the U.S. rate for American Indians, 
although now it is slightly above the Chinese and Japanese rates. However, the cohort 
rate for American Indians is now much closer to the corresponding rate found in the 
United States. The rates for the Chinese and Japanese Americans and other races 
have also increased substantially when the cohort method of calculation is used. 
What is the explanation for this discrepancy in results between these methods of 
calculating infant mortality rates?

Figure 1.1 Infant mortality rates per 1000 live births by race for California and the United States 
in 1967.
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So we can see that data rarely speak clearly and usually require an interpreter. The 
interpreter — someone like Norris and Shipley — is familiar with the subject matter, 
understands what the data are supposed to represent, and knows how the data were 
collected.

1.3  Design — The Road to Relevant Data
As we said, you cannot have a good study without good data. Obtaining relevant data 
requires a carefully drawn plan that identifi es the population of interest, the procedure 
used to randomly select units for study, and the process used in the observation/
measurement of the attributes of interest. Two standard methods of data collection 
are sample surveys and experiments (that may involve sampling).

Norris and Shipley attributed much of the difference to how birth and death cer-
tifi cates, used in the conventional method, were completed. They found that a birth 
certifi cate is typically fi lled out by hospital staff who deal primarily with the mother, 
so the birth certifi cate usually refl ects the race of the mother. The funeral director 
is responsible for completing the death record and usually deals with the father, who 
may be of a different racial group than the mother. Hence, the racial identifi cation 
of an infant can vary between the birth and death records — a mismatch of the 
numerator (death) and the denominator (birth) in the calculation of the infant death 
rate. The cohort method is not affected by this possible difference because it uses 
only the child’s race from the birth certifi cate.

Since the 1989 data year, the National Center for Health Statistics (NCHS) uses 
primarily the race of the mother taken from the birth certifi cate in tabulating data 
on births. This change should remove the problem caused by having parents from 
two racial groups in the use of the conventional method of calculating infant mortal-
ity rates.

Figure 1.2 Infant mortality rates per 1000 live births by conventional and cohort methods by 
race for California, 1965–1967.



Sample survey design deals with ways to select a random sample that is representa-
tive of the population of interest and from which a valid inference can be made. Unfor-
tunately, it is very easy to select nonrepresentative samples that lead to misleading 
conclusions about the population, emphasizing the need for the careful design of sample 
surveys.

Experimental design involves the creation of a plan for determining whether or not 
there are differences between groups. The design attempts to control extraneous factors 
so that the only reason for any observed differences between groups is the factor under 
study. Since it is very diffi cult to take all extraneous factors into account in a design, 
we also use the random allocation of subjects to the groups. We hope that through the 
use of the random assignment, we can control for factors that have not been included 
in the design itself. Experimental design is also concerned with determining the appro-
priate sample size for the study.

Sometimes we also analyze data that were already collected. In this case, we need 
to understand how the data were collected in order to determine the appropriate methods 
of analysis. The following examples demonstrate the importance of design.

Example 1.4

The Literary Digest (1936) failed to correctly predict the 1936 presidential election 
after correctly predicting every presidential election between 1912 and 1932. In 1936 
the Digest mailed out 10 million questionnaires and received 2.3 million replies. 
Based on the returned questionnaires, the Digest predicted that Alfred M. Landon 
would be elected. Actually, Franklin D. Roosevelt won in a huge landslide. What 
went wrong? The survey design was the problem. The questionnaires were initially 
mailed to magazine and telephone subscribers and automobile owners. The list 
clearly overrepresented people with high incomes. Given that there was a strong 
relation between income and party preference in the 1936 election, probably stronger 
than in previous elections, the embarrassingly wrong outcome should not have been 
a surprise. Another problem with the survey was the low response rate; bias due to 
a high nonresponse rate is a potential problem that must be considered when analyz-
ing surveys. Another point to be made from this example is that the sheer size of a 
sample is no guarantee of an accurate inference. The design of the survey is far more 
important than the absolute size of the sample.

Example 1.5

Careful statistical plans were lacking in early American census-taking procedures 
from the inception of the decennial census in 1790 until 1840. The discovery of 
numerous errors in the 1840 census led to statistical reforms in the 1850 census, 
which accelerated the government’s use of modern statistical procedures (Regan 
1973). Two important players in the statistical reforms were Edward Jarvis and 
Lemuel Shattuck. As a physician, Jarvis was interested in mental illness and began 
to look at census data on “insane and idiots.” To his surprise, he discovered numer-
ous errors in census reports. For example, Waterford, Connecticut, listed no “Negro” 
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1.4  Replication — Part of the Scientifi c Method
Even though most of the examples and problems in this book refer to the analysis of 
data from a single study, the reader must remember that one study rarely tells the com-
plete story.

Statistical analysis of data may demonstrate that there is a high probability of 
an association between two variables. However, a single study rarely provides proof 
that such an association exists. Results must be replicated by additional studies 
that eliminate other factors that could have accounted for the relationship observed 
between the study variables. The following examples demonstrate the importance of 
replication.

population but showed “seven Negro insane and idiots.” He published his fi ndings 
in the journal and urged correction (Jarvis 1844). Together with Shattuck he brought 
the issue to the American Statistical Association, and the Association submitted a 
petition to Congress. Among other reform measures, the collection of vital statistics 
had begun with the 1850 decennial census. However, Shattuck protested against the 
plan. He believed that vital statistics could be better collected through a registration 
system rather than through a census (Shattuck 1948). Shattuck successfully per-
suaded Massachusetts to adopt the vital statistics registration system and provided 
a pattern for other states to follow. The U.S. vital registration system was complete 
when Texas came on board in 1933.

Example 1.6

There have been many, many studies examining the role of cigarette smoking in lung 
cancer and other diseases. Many of the early studies were retrospective case-control 
studies — that is, studies in which a group of people with, for example, lung cancer 
(the cases) is compared to another group without the disease (the controls). Factors 
such as smoking status that precede the outcome (disease or no disease) are then 
compared to determine whether or not there is a relationship between smoking status 
and lung cancer. This type of study can show association but cannot be used to prove 
causation. The retrospective study is often used to generate hypotheses of interest 
that may be tested in a follow-up study. Some leading statisticians (e.g., Joseph 
Berkson and Sir Ronald Fisher) raised methodological concerns about conclusions 
drawn from these retrospective studies, and tobacco companies chimed in. Due to 
these concerns, a different design, the prospective study that was long-term in nature, 
was used. Large numbers of smokers and nonsmokers, usually matched on a number 
of other factors, were followed over a lengthy period, and the proportion of lung 
cancers were compared between the groups at the end of the study. The consistent 
results of these prospective studies helped establish the causative linkage between 
smoking and lung cancer and smoking and other diseases (Brown 1972; Gail 1996).



1.5  Applying Statistical Methods
The application of statistical methods requires more than the ability to use statistical 
software. In this text, we give priority to understanding the context for the use of sta-
tistical procedures. This context includes the study’s goal, the data, and how the data 
are collected and measured. We do not focus on the derivation of formulas. Instead, we 
present the rationale for the different statistical procedures and the when and why of 
their use. We would like the reader to think instead of simply memorizing formulas.

EXERCISES

1.1 Provide an example from your area of interest in which data collection is prob-
lematic or data are misused, and discuss the nature of the problem.

1.2 Since 1972 the National Institute on Drug Abuse has periodically conducted 
surveys in the homes of adolescents on their use of cigarettes, alcohol, and mari-
juana. In the early surveys, respondents answered the questions aloud. Since 
1979 private answer sheets were provided for the alcohol questions. Why do you 
think the agency made this change? What effect, if any, do you think this change 
might have had on the proportion of adolescents who reported consuming alcohol 
during the last month? Would you believe the reported values for the early 
surveys?

1.3 The infant mortality rate for Pennsylvania for the 1983–1985 period was 10.9 
per 1000 live births compared to a rate of 12.5 for Louisiana. Is it appropriate 
to conclude that Pennsylvania had a better record than Louisiana related to infant 
mortality? What other variable(s) might be important to consider here? The 
infant mortality rate for whites in Pennsylvania was 9.4, and it was 20.9 for 
blacks there. This is contrasted with rates of 9.1 and 18.1 for whites and blacks, 
respectively, in Louisiana (National Center for Health Statistics 1987). Hence, 
the race-specifi c rates were lower in Louisiana than in Pennsylvania, but the 
overall rate was higher in Louisiana. Explain how this situation could arise.

Example 1.7

The Food and Drug Administration (FDA) used to require several studies that 
demonstrated the effi cacy and safety of a drug before it was approved for general 
use. The FDA did not believe that a single trial provided suffi cient evidence of the 
drug’s effi cacy and safety. The story of thalidomide illustrates the case in point 
(Insight Team 1979). A German pharmaceutical company, Gruenenthal, developed 
thalidomide and marketed it as a tranquilizer. Its U.S. counterpart, Richardson-
Merrell, submitted an application to the FDA to obtain a U.S. license. Dr. Frances 
Kelsey questioned the validity of the submitted clinical data and demanded more 
complete and detailed evidence of the safety of the drug. As a result of her profes-
sionalism, the birth of thousands of deformed babies in the United States was 
prevented. Unfortunately, things have changed at the FDA in recent years (FDA 
2006).

Applying Statistical Methods  7
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1.4 Read the article by Bathlomew (1995) and prepare a short report commenting 
on the following points: What is your defi nition of statistics? Is the fi eld of sta-
tistics broader than what you believed? How would you effectively study 
statistics?
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Data and Numbers

Chapter Outline
2.1 Data: Numerical Representation
2.2 Observations and Variables
2.3 Scales Used with Variables
2.4 Reliability and Validity
2.5 Randomized Response Technique
2.6 Common Data Problems

Appropriate use of statistical procedures requires that we understand the data and the 
process that generated them. This chapter focuses on data, specifi cally: (1) the link 
between numbers and phenomena, (2) types of variables, (3) data reliability and validity, 
and (4) ways data quality can be compromised.

2.1   Data: Numerical Representation
Any record, descriptive accounts, or symbolic representation of an attribute, event, or 
process may constitute a data point. Data are usually measured on a numerical scale or 
classifi ed into categories that are numerically coded. Here are three examples:

1. Blood pressure (diastolic) is measured for all middle and high school students in 
a school district to learn what percent of students have a diastolic blood pressure 
reading over 90  mm  Hg. [data = blood pressure reading]

2. All employees of a large company are asked to report their weight every month 
to evaluate the effects of a weight control program. [data = self-reported weight 
measurement]

3. The question “Have you ever driven a car while intoxicated?” was asked of all 
licensed drivers in a large university to build the case for an educational program. 
[data = yes (coded as 1) or no (coded as 0)]

We try to understand the real world — for example, blood pressure, weight, and the 
prevalence of drunken driving — through data recorded as or converted to numbers. 
This numerical representation and the understanding of the reality, however, do not 
occur automatically. It is easy for problems to occur in the conceptualization and mea-
surement processes that make the data irrelevant or imprecise. Referring to the preced-
ing examples, inexperienced school teachers may measure blood pressure inaccurately; 
those employees who do not measure their weight regularly each month may report 
inaccurate values; and some drivers may be hesitant to report drunken driving. There-
fore, we must not draw any conclusions from the data before we determine whether or 
not any problems exist in the data and, if so, their possible effects. Guarding against 
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misuse of data is as important as learning how to make effective use of data. Repeated 
exposure to misuses of data may lead people to distrust data altogether. A century ago, 
George Bernard Shaw (1909) described people’s attitudes toward statistical data this 
way:

The man in the street.  .  .  .  All he knows is that “you can prove anything by fi gures,” though 
he forgets this the moment fi gures are used to prove anything he wants to believe.

The situation is certainly far worse today as we are constantly exposed to numbers 
purported to be important in advertisements, news reporting, and election campaigns. 
We need to learn to use numbers carefully and to examine critically the meaning of the 
numbers in order to distinguish fact from fi ction.

2.2   Observations and Variables
In statistics, we observe or measure characteristics, called variables, of study subjects, 
called observational units. For each study subject, the numerical values assigned to the 
variables are called observations. For example, in a study of hypertension among school-
children, the investigator measures systolic and diastolic blood pressures for each pupil. 
Systolic and diastolic blood pressure are the variables, the blood pressure readings are 
the observations, and the pupils are the observational units. We usually observe more 
than one variable on each unit. For example, in a study of hypertension among 500 
school children, we may record each pupil’s age, height, and weight in addition to the 
two kinds of blood pressure readings. In this case we have a data set of 500 students 
with observations recorded on each of fi ve variables for each student or observa -
tional unit.

2.3   Scales Used with Variables
There are four scales used with variables: nominal, ordinal, interval, and ratio. The 
scales are defi ned in terms of the information conveyed by the numeric values assigned 
to the variable. The distinction between the scales is not terribly important. These scale 
types have frequently been used in the literature, so we are presenting them to be sure 
the reader understands them.

In some cases the numbers are simply indicators of a category. For example, when 
considering gender, 1 may be used to indicate that the person is female and 2 to indicate 
that the person is male. When the numbers merely indicate to which category a person 
belongs, a nominal scale is being used. Hence, gender is measured on a nominal scale, 
and it makes no difference what numeric values are used to represent females and 
males.

In other cases the numbers represent an ordering or ranking of the observational 
units on some variable. For example, from a worker’s job description or work location, 
it may be possible to estimate the exposure to asbestos in the workplace, with 1 repre-
senting low, 2 representing medium, and 3 representing high exposure. In this case, the 
exposure to asbestos variable is measured on the ordinal scale. Values of 10, 50, and 
100 could have been used instead of 1, 2, and 3 for representing the categories of low, 
medium, and high. The only requirement is that the order is maintained.
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Other variables are measured on a scale of equal units — for example, temperature 
in degrees Celsius (interval scale) or height in centimeters (ratio scale). There is a subtle 
distinction between interval and ratio scales: A ratio scale has a zero value, which means 
there is none of the quantity being measured. For example, zero height means there is 
no height, whereas zero degrees Celsius does not mean there is no temperature. When 
a variable is measured on a ratio scale, the ratio of two numbers is meaningful. For 
example, a boy 140 centimeters tall is 70 centimeters taller and also twice as tall as a 
boy 70 centimeters tall. However, temperature in degrees Celsius is an interval variable 
but not a ratio variable because an oven at 300º is not twice as hot as one at 150º. This 
distinction between interval and ratio scales is of little importance in statistics, and both 
are measured on a scale continuously marked off in units.

These different scales measure three types of data: nominal (categorical), ordinal 
(ordered), and continuous (interval or ratio). The scale used often depends more on 
the method of measurement or the use made of it than on the property measured. 
The same property can be measured on different scales; for example, age can be mea-
sured in years (ratio scale), placed into young, middle-aged, and elderly age groups 
(ordinal scale), or classifi ed as economically productive (ages 16 to 64) and dependent 
(under 16 and over 64) age groups (nominal scale). It is possible to convert a higher-level 
scale (ratio or interval) into a lower-level scale (ordinal and nominal scales) but not to 
convert from a lower level to a higher level. One fi nal point is that all recorded measure-
ments themselves are discrete. Age, for example, can be measured in years, months, or 
even in hours, but it is still measured in discrete steps. It is possible to talk about 
a continuous variable, yet actual measurements are limited by the measuring 
instruments.

2.4   Reliability and Validity
Data are collected by direct observation or measurement and from responses to ques-
tions. For example, height, weight, and blood pressure of school children are directly 
measured in a health examination. The investigator is concerned about accurate mea-
surement. The measurement of height and weight sounds easy, but the measurement 
process must be well defi ned and used consistently. For example, we measure an indi-
vidual’s height without shoes on. Therefore, to understand any measurement, we need 
to know the operational defi nition — that is, the actual procedures used in the measure-
ment. In measuring blood pressure, the investigator must specify what instrument is to 
be used, how much training will be given to the measurers, at what time of the day the 
blood pressure should be measured, what position the person should be in (sitting or 
standing), and how many times it should be measured.

There are two issues in specifying operational defi nitions: reliability and validity. 
Reliability requires that the operational defi nition should be suffi ciently precise so that 
all persons using the procedure or repeated use of the procedure by the same person 
will have the same or approximately the same results. If the procedures for measuring 
height and weight of students are reliable, then the values measured by two observers 
— say, the teacher and the nurse — will be the same. If the person reading the blood 
pressure is hard of hearing, the diastolic blood pressure values, recorded at the point of 
complete cessation of the Korotkoff’s sounds, or, if no cessation, at the point of muffl ing, 
may not be reliable.
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Validity is concerned with the appropriateness of the operational defi nition — that 
is, whether or not the procedure measures what it is supposed to measure. For example, 
if a biased scale is used, the measured weight is not valid, even though the repeated 
measurements give the same results. Another example of a measurement that may not 
be valid is the blood pressure reading obtained when the wrong size cuff is used. In 
addition, the person reading the blood pressures may have a digit preference that also 
threatens validity. The data shown in Figure 2.1, from Forthofer (1991), suggests that 
there may have been a digit preference in the blood pressure data for children and ado-
lescents in the second National Health and Nutrition Examination Survey (NHANES 
II). This survey, conducted by the NCHS from 1976 to 1980, provides representative 
health and nutrition data for the noninstitutionalized U.S. population. In this survey, the 
blood pressure values ending in zero have a much greater frequency of occurrence than 
the other values.

The reliability and validity issues are not only of concern for data obtained from 
measurements but also for data obtained from questionnaires. In fact, the concern may 
be greater because of the larger number of ways that problems threatening data accuracy 
can be introduced with questionnaires (Juster 1986; Marquis, Marquis, and Polich 1986; 
Suchman and Jordan 1990). One problem is that the question may be misinterpreted, 
and thus a wrong or irrelevant response may be elicited. For example, in a mail survey, 
a question used the phrase “place of death” instead of instructing the respondent to 
provide the county and state where a relative had died. One person responded that the 
deceased had died in bed. Problems like this one can be avoided or greatly reduced if 
careful thought goes into the design of questionnaires and into the preparation of 
instructions for the interviewers and the respondents. However, even when there are no 
obvious faults in the question, a different phrasing may have obtained a different 

Figure 2.1 Blood 
pressure values (fi rst 
reading) for 4053 
children and 
adolescents in NHANES 
II. From Forthofer 
(1991).



response. For example, age can be ascertained by asking age at the last birthday or date 
of birth. It is known that the question about the date of birth tends to obtain the more 
accurate age.

Another problem often encountered is that many people are uncomfortable in appear-
ing to be out of step with society. As a result, these people may provide a socially 
acceptable but false answer about their feelings on an issue. A similar problem is that 
many people are reluctant to provide accurate information regarding personal matters, 
and often the respondent refuses to answer or intentionally distorts the response. Some 
issues are particularly sensitive — for example, questions about whether a woman has 
had an abortion or if a person has ever attempted suicide. The responses, if any are 
obtained, to these sensitive questions are of questionable accuracy. Now we’ll look at 
some ways to obtain accurate data on sensitive issues.

2.5   Randomized Response Technique
There is a statistical technique that allows investigators to ask sensitive questions, for 
example, about drug use or driving under the infl uence of alcohol, in a way that should 
elicit an honest response. It is designed to protect the privacy of individuals and yet 
provide valid information. This technique is called randomized response (Campbell and 
Joiner 1973; Warner 1965) and has been used in surveys about abortions, drinking and 
driving, drug use, and cheating on examinations.

In this technique, a sensitive question is paired with a nonthreatening question, and 
the respondent is told to answer only one of the questions. The respondent uses a chance 
mechanism — for example, the toss of a coin — to determine which question is to be 
answered, and only the respondent knows which question was answered. The inter-
viewer records the response without knowing which question was answered. It may 
appear that these answers are of little value, but the following example demonstrates 
how they can be useful.

In the drinking and driving situation, the sensitive question is “Have you driven a 
car while intoxicated during the last six months?” This question is paired with an unre-
lated, nonthreatening question, such as “Were you born in either September or October?” 
Each respondent is asked to toss a coin and not to reveal the outcome; those with heads 
are asked to answer the sensitive question and those with tails answer the nonthreatening 
question. The interviewer records the yes or no response without knowing which ques-
tion is being answered. Since only the respondent knows which question has been 
answered, there is less reason to answer dishonestly.

Suppose 36 people were questioned and 12 gave “yes” answers. At fi rst glance, this 
information does not seem very useful, since we do not know which question was 
answered. However, Figure 2.2 shows how we can use this information to estimate the 
proportion of the respondents who had been driving while intoxicated during the past 
six months.

Since each respondent tossed a fair coin, we expect that half the respondents answered 
the question about drunk driving and half answered the birthday question. We also 
expect that 1/6 (2 months out of 12) of those who answered the birthday question will 
give a yes response. Hence, the number of yes responses from the birthday question 
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should be 3 [(36/2)  *  (1/6)]; the expected number of yes responses to the drinking and 
driving question then is 9 (the 12 yes answers minus the 3 yes answers from the birthday 
question). Then the estimated proportion of drunk drivers is 50 percent (= 9/18).

There is no way to prove that the respondents answered honestly, but they are more 
likely to tell the truth when the randomized response method was used rather than the 
conventional direct question. Note that the data gathered by the randomized response 
technique cannot be used without understanding the process by which the data were 
obtained. Individual responses are not informative, but the aggregated responses can 
provide useful information at the group level. Of course, we need to include a suffi ciently 
large number of respondents in the survey to make the estimate reliable.

2.6   Common Data Problems
Examination of data can sometimes provide evidence of poor quality. Some clues to 
poor quality include many missing values, impossible or unlikely values, inconsisten-
cies, irregular patterns, and suspicious regularity. Data with too many missing values 
will be less useful in the analysis and may indicate that something went wrong with the 
data collection process. Sometimes data contain extreme values that are seemingly 
unreasonable. For example, a person’s age of 120 would be suspicious, and 200 would 
be impossible. Missing values are often coded as 99 or 999 in the data fi le, and these 
may be mistakenly interpreted as valid ages. The detection of numerous extreme ages 
in a data set would cast doubt on the process by which the data were collected and 
recorded, and hence on all other observations, even if they appear reasonable. Also, 
inconsistencies are often present in the data set. For example, a college graduate’s age 
of 15 may appear inconsistent with the usual progress in school, but it is diffi cult to 
attribute this to an error. Some inconsistencies are obvious errors. The following exam-
ples illustrate various problems with data.

Figure 2.2 Use of 
randomized response 
information.



Example 2.1

As described in Example 1.5, Edward Jarvis (1803–1884) discovered that there were 
numerous inconsistencies in the 1840 Population Census reports; for example, in 
many towns in the North, the numbers of black “insane and idiots” were larger than 
the total numbers of blacks in those towns. He published the results in medical 
journals and demanded that the federal government take remedial action. This 
demand led to a series of statistical reforms in the 1850 Population Census (Regan 
1973).

Example 2.2

A careful inspection of data sometimes reveals irregular patterns. For example, ages 
reported in the 1945 census of Turkey have a much greater frequency of multiples 
of 5 than numbers ending in 4 or 6 and more even-numbered ages than odd-numbered 
ages (United Nations 1955), as shown in Figure 2.3. This tendency of digit preference 
in age reporting is quite common. Even in the U.S. Census we can fi nd a slight 
clumping or heaping at age 65, when most of the social benefi t programs for 
the elderly begin. The same phenomenon of digit preference is often found in labora-
tory measurements as we just saw with the blood pressure measurements in 
NHANES II.

Figure 2.3 Population of Turkey, 1945, by sex and by single years of age.
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Example 2.4

The use of data from laboratories is another area in which it is crucial to monitor 
constantly the measurement process — in other words, the equipment and the per-
sonnel who use the equipment. In large multicenter trials that use different labora-
tories, or even with a single laboratory, referent samples are routinely sent to the 
laboratories to determine if the measurement processes are under control. This 
enables any problems to be detected quickly and prevents subjects from being either 
unduly alarmed or falsely comforted. It also prevents erroneous values from being 
entered into the data set. The Centers for Disease Control (CDC) has an interlabora-
tory program, and data from it demonstrate the need for monitoring. The CDC dis-
tributes samples to about 100 laboratories throughout the United States. The April 
1980 results of measuring lead concentration in blood are shown in Figure 2.4 

Example 2.3

Large and consistent differences in the values of a variable may indicate that there 
was a change in the measurement process that should be investigated. An example 
of large differences is found in data used in the Report of the Second Task Force on 
Blood Pressure Control in Children (NHLBI Task Force 1987). Systolic blood pres-
sure values for 5-year-old boys averaged 103.5  mmHg in a Pittsburgh study com-
pared to 85.6  mmHg in a Houston study. These averages were based on 61 and 181 
boys aged 5 in the Pittsburgh and Houston studies, respectively. Hence, these differ-
ences were not due to small sample sizes. Similar differences were seen for 5-year-
old girls and for 3- and 4-year-old boys and girls as well. There are large differences 
between other studies also used by this Task Force, but the differences are smaller 
for older children. These incredibly large differences between the Pittsburgh and 
Houston studies were likely due to a difference in the measurement process. In the 
Houston study, the children were at the clinic at least 30 minutes before the blood 
pressure was measured compared to a much shorter wait in the Pittsburgh study. 
Since the measurement processes differed, the values obtained do not refl ect the same 
variable across these two studies. The use of data from these two studies without 
any adjustment for the difference in the measurement process is questionable.

Figure 2.4 Distribution of measurements of blood lead concentration by separate laboratories, 
Centers for Disease Control.



(Hunter 1980). The best estimate of the blood lead concentration in the distributed 
sample was 41 micrograms per deciliter (mg/dL), but the average reported by all 
participating laboratories was 44  mg/dL. The large variability from the value of 41 
shown in Figure 2.4 is a reason for concern, particularly since the usual value in 
human blood lies between 15 and 20  mg/dL.

Example 2.5

Of course, the lack of inconsistencies and irregularities does not mean that there are 
no problems with the data. Too much consistency and regularity sometimes is 
grounds for a special inquiry into its causes. Scientifi c frauds have been uncovered 
in some investigations in which the investigator discarded data that did not conform 
to theory. Abbe Gregor Mendel, the 19th-century monk who pioneered modern gene 
theory by breeding and crossbreeding pea plants, came up with such perfect results 
that later investigators concluded he had tailored his data to fi t predetermined theo-
ries. Another well-known fabrication of data in science is the case of Sir Cyril Burt, 
a British pioneer of applied psychology. In his frequently cited studies of intelligence 
and its relation to heredity, he reported the same correlation in three studies of twins 
with different sample sizes (0.771 for twins reared apart and 0.944 for twins reared 
together). The consistency of his results eventually raised concern as it is highly 
unlikely that the exact same correlations would be found in studies of humans with 
different sample sizes. Science historians generally agree that his analyses were 
creations of his imagination with little or no data to support them (Gould 1981).

Example 2.6

Fabrication of data presents a real threat to the integrity of scientifi c investigation. 
The San Francisco Chronicle reported a case of data fabrication under the headline 
“Berkeley lab found research fabricated: Scientist accused of misconduct fi red” (SFC 
2002). A physicist at Lawrence Berkeley National Laboratory claimed the discovery 
of two new elements in the structure of the atomic nucleus in May 1998. Energy 
Secretary Bill Richardson called it “a stunning discovery which opens the door to 
further insights into the structure of the atomic nucleus.” However, in follow-up 
experiments, outside labs were unable to replicate the results. The Lawrence 
Berkeley Laboratory retracted the fi nding after independent scientists were 
unable to duplicate the results. In announcing the laboratory’s decision, director 
Charles V. Shank acknowledged that the false claim was “a result of fabricated 
research data and misconduct by one individual.” He further reported, “The most 
elementary checks and data archiving were not done.”

Conclusion
Data are a numerical representation of a phenomenon. By assigning numerical values 
to occurrences of the phenomenon, we are thus able to describe and analyze it. The 
assignment of the numerical values requires an understanding of the phenomenon and 
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careful measurement. In the measurement process, some unexpected problems may be 
introduced, and the data then contain the intended numerical facts as well as the unin-
tended fi ctions. Therefore, we cannot use data blindly. The meanings of data and their 
implications have been explored in a number of examples in this chapter.

EXERCISES

2.1 Identify the scale used for each of the following variables:
a. Calories consumed during the day
b. Marital status
c. Perceived health status reported as poor, fair, good, or excellent
d. Blood type
e. IQ score

2.2 A person’s level of education can be measured in several ways. It could be 
recorded as years of education, or it could be treated as an ordinal variable — for 
example, less than high school, high school graduate, and so on. Is it always 
better to use years of education than the ordinal variable measurement of 
education? Explain your answer.

2.3 In a health interview survey, a large number of questions are asked. For the fol-
lowing items, discuss (1) how the variable should be defi ned operationally, (2) 
whether nonresponse is likely to be high or low, and (3) whether reliability is 
likely to be high or low. Explain your answers.
a. Weight
b. Height
c. Family income
d. Unemployment
e. Number of stays in mental hospitals

2.4 The pulse is usually reported as the number of heartbeats per minute, but the 
actual measurement can be done in several different ways — for example:
a. Count the beats for 60 seconds
b. Count for 30 seconds and multiply the count by 2
c. Count for 20 seconds and multiply the count by 3
d. Count for 15 seconds and multiply the count by 4

 Which procedure would you recommend to be used in clinics, considering 
accuracy and practicality?

2.5 Two researchers coded fi ve response categories to a question differently as 
follows:
Response Category Researcher A Researcher B
Strongly agree 1  2
Agree 2  1
Undecided 3  0
Disagree 4 −1
Strongly disagree 5 −2
a. What type of scale is illustrated by Researcher A?
b. What type of scale is illustrated by Researcher B?
c. Which coding scheme would you use and why?



2.6 The fi rst U.S. Census was taken in 1790 under the direction of Thomas Jefferson. 
The task of counting the people was given to 16 federal marshals, who in turn 
hired enumerators to complete the task in nine months. In October 1791, all of 
the census reports had been turned in except the one from South Carolina, which 
was not received until March 3, 1792. As can be expected, the marshalls encoun-
tered many obstacles and the counting was incomplete. The fi rst census revealed 
a population of 3,929,326. This result was viewed as an undercount, as is indi-
cated in the following excerpt from a letter written by Jefferson:

I enclose you also a copy of our census, written in black ink so far as we have actual 
returns, and supplied by conjecture in red ink, where we have no returns; but the 
conjectures are known to be very near the truth. Making very small allowance for 
omissions, we are certainly above four millions.  .  .  .  (Washington 1853)

Discuss what types of obstacles they might have encountered and what might 
have led Jefferson to believe there was an undercounting of the people.

2.7 The National Center for Health Statistics matched a sample of death certifi cates 
in 1960 with the 1960 population census records to assess the quality of data 
and reported the following results (NCHS 1968):

 Do you think that the age reported in the death certifi cate is more accurate than 
that reported in the census? How do you explain the differential agreement by 
gender and race? How do you think these disagreements affect the age-specifi c 
death rates calculated by single years and those computed by fi ve-year age 
groups?

2.7 Discuss possible reasons for the digit preference in the 1945 population census 
of Turkey that is shown in Figure 2.3. Why was the digit preference problem 
more prominent among females than among males? How would you improve the 
quality of age reporting in census or surveys? How do you think the digit prefer-
ence affects the age-specifi c rates calculated by single years of age and those 
computed by fi ve-year age groups?

2.8 Get the latest vital statistics report for your state from a library and fi nd out the 
following:
a. Are residents of your state who died in a foreign country included in the 

report?
b. Are the data from your state report consistent with the data from the National 

Vital Statistics Report from the National Center for Health Statistics?
c. Is an infant born to a foreign student couple in your state included in the 

report?

Exercises  19

Agreement and Disagreement in Age Reporting, 1960

  White Nonwhite

 Total Male Female Male Female

Agreement 68.8% 74.5% 67.9% 44.7% 36.9%
Disagreement
 1 year difference 17.8 16.6 18.8 20.8 20.2
 2+ year difference 13.4  8.9 13.3 34.5 42.9
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Descriptive Methods

Chapter Outline
3.1 Introduction to Descriptive Methods
3.2 Tabular and Graphical Presentation of Data
3.3 Measures of Central Tendency
3.4 Measures of Variability
3.5 Rates and Ratios
3.6 Measures of Change over Time
3.7 Correlation Coeffi cients

The Scotsman William Playfair is credited with being the fi rst to publish graphics such 
as the bar chart, line graph, and pie charts that are commonly used in statistics today 
(Kennedy 1984). This chapter focuses on the summarization and display of data using 
the techniques Playfair fi rst published along with several other useful procedures. We 
will rely on both numerical and pictorial procedures to describe data. We use charts 
and other procedures because they may capture features in the data that are often over-
looked when using summary numerical measures alone. Although the utility of graphi-
cal methods has been well established and can be seen in all walks of life, the visual 
representation of data was not always common practice. According to Galvin Kennedy, 
the fi rst 50 volumes of the Journal of the Royal Statistical Society contain only 14 charts, 
with the fi rst one appearing in 1841.

3.1   Introduction to Descriptive Methods
The data we use in this section come from the Digitalis Investigation Group (DIG) trial 
(DIG 1997). The DIG trial was a multicenter trial with 302 clinical centers in the United 
States and Canada participating. (Its study design features will be discussed in a later 
chapter.) The purpose of the trial was to examine the safety and effi cacy of Digoxin in 
treating patients with congestive heart failure in sinus rhythm. Subjects were recruited 
from those who had heart failure with a left ventricular ejection fraction of 0.45 or less 
and with normal sinus rhythm. The primary endpoint in the trial was to evaluate the 
effects of Digoxin on mortality from any cause over a three- to fi ve-year period. Basic 
demographic and physiological data were recoded at the entry to the trial, and outcome 
related data were recorded during the course of the trial. The data presented in this 
chapter consists of baseline and outcome variables from 200 patients (100 on Digoxin 
treatment and 100 on placebo) randomly selected from the multicenter trial dataset.* 

3

*This trial was conducted and supported by the National Heart, Lung, and Blood Institute in cooperation 

with the study investigators. The NHLBI has employed statistical methods to make components of the full 

datasets anonymous in order to provide selected data as a teaching resource. Therefore, the data are inap-

propriate for any publication purposes. The authors would like to thank the NHLBI, study investigators, and 

study participants for providing the data.
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Table 3.1 Digoxin clinical trial data for 40 participants.

     Body Mass Serum Systolic Blood
ID Treatmenta Ageb Racec Sexd Indexe Creatininef Pressureg

4995 0 55 1 1 19.435 1.600 150
2312 0 78 2 1 22.503 2.682 104
 896 0 50 1 1 27.406 1.300 140
3103 0 60 1 1 29.867 1.091 140
 538 1 31 1 1 27.025 1.159 120
1426 0 70 1 1 19.040 1.250 150
4787 1 46 1 1 28.662 1.307 140
5663 0 59 2 1 27.406 1.705 152
1109 0 68 1 2 27.532 1.534 144
 666 0 65 1 1 28.058 2.000 120
2705 1 66 1 2 28.762 0.900 150
5668 0 74 1 1 29.024 1.227 116
 999 1 47 1 2 30.506 1.386 120
1653 1 63 1 1 28.399 1.100 105
 764 1 63 2 2 28.731 0.900 122
3640 0 79 1 1 18.957 2.239 150
1254 1 73 1 1 26.545 1.300 144
2217 1 65 1 1 23.739 1.614 170
4326 0 65 1 1 29.340 1.200 170
5750 1 76 1 1 39.837 1.455 140
6396 0 83 1 1 26.156 1.489 116
2289 0 76 1 1 30.586 1.700 130
1322 1 45 1 2 43.269 0.900 115
4554 1 58 1 2 28.192 1.352 130
6719 1 34 1 1 20.426 1.886 116
1954 1 77 1 1 26.545 1.307 140
5001 1 70 1 1 19.044 1.200 110
1882 0 50 1 1 25.712 1.034 140
5368 1 38 1 1 30.853 0.900 134
 787 0 58 2 2 27.369 0.909 100
4375 0 61 1 1 32.079 1.273 128
5753 1 75 1 1 37.590 1.300 138
6745 0 45 1 1 22.850 1.398 130
6646 0 61 1 1 27.718 1.659 128
5407 1 50 1 2 24.176 1.000 130
4181 0 44 2 2 26.370 1.148 124
3403 0 55 1 2 21.790 1.170 130
2439 1 49 1 1 15.204 1.307 140
4055 0 71 1 1 22.229 1.261 100
3641 0 64 1 1 21.228 0.900 130
aTreatment group (0 = on placebo; 1 = on Digoxin)
bAge in years
cRace (1 = White; 2 = Nonwhite)
dSex (1 = Male; 2 = Female)
eBody mass index (weight in kilograms/height in meters squared)
fSerum creatinine (mg/dL)
gSystolic blood pressure (mmHg)

We refer to this working dataset as DIG200 in this book. The DIG200 dataset is reduced 
to create a smaller dataset including 7 baseline variables from 40 patients referred to as 
DIG40. Table 3.1 displays the DIG40 dataset. Both data fi les are available on the supple-
mentary website.

3.2   Tabular and Graphical Presentation of Data
The one- and two-way frequency tables and several types of fi gures (line graphs, bar 
charts, histograms, stem-and-leaf plots, scatter plots, and box plots) that aid the descrip-
tion of data are introduced in this section.
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3.2.1   Frequency Tables

A one-way frequency table shows the results of the tabulation of observations at each 
level of a variable. In Table 3.2, we show one-way tabulations of sex and race for the 
40 patients shown in Table 3.1. Three quarters of the patients are males, and over 
87 percent of the patients are whites.

Table 3.2 Frequencies of sex and race for 40 patients in DIG40.

Sex Number of Patients Percentage Race Number of Patients Percentage

Male 30  75.0 White 35  87.5
Female 10  25.0 Nonwhite  5  12.5
Total 40 100.0 Total 40 100.0

Table 3.3 Frequency of age groups for 40 patients in DIG40.

Age Groups Number of Patients Percentage

Under 40  3  7.5
40–49  6  15.0
50–59  8  20.0
60–69 11  27.5
70–79 12  30.0

Total 40 100.0

Table 3.4 Cross-tabulation of body mass index and sex for 40 patients in DIG40 with 
column percentages in parentheses.

 Sex

Body Mass Index Male Female Total

Under 18.5 (underweight)  1 (3.3%)  0 (0.0%)  1 (2.5%)
18.5–24.9 (normal) 10 (33.3%)  2 (20.0%) 12 (30.0%)
25.0–29.9 (overweight) 14 (46.7%)  6 (60.0%) 20 (50.0%)
30.0 & over (obese)  5 (16.7%)  2 (20.0%)  7 (17.5%)

Total 30 10 40

The variables used in frequency tables may be nominal, ordinal, or continuous. When 
continuous variables are used in tables, their values are often grouped into categories. 
For example, age is often categorized into 10-year intervals. Table 3.3 shows the fre-
quencies of age groups for the 40 patients in Table 3.1. More than one half of the patients 
are 60 and over. Note that the sum of percents should add up to 100 percent, although 
a small allowance is made for rounding. It is also worth noting that the title of the table 
should contain suffi cient information to allow the reader to understand the table.

Two-way frequency tables, formed by the cross-tabulation of two variables, are 
usually more interesting than one-way tables because they show the relationship between 
the variables. Table 3.4 shows the relationship between sex and body mass index where 
BMI has been grouped into underweight (BMI < 18.5), normal (18.5 ≤ BMI < 25), 
overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30). The body mass index is calculated 
as weight in kilograms divided by height in meters squared. There are higher percent-
ages of females in the overweight and obese categories than those found for males, but 
these calculations are based on very small sample sizes.
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In forming groups from continuous variables, we should not allow the data to guide 
us. We should use our knowledge of the subject matter, and not use the data, in deter-
mining the groupings. If we use the data to guide us, it is easy to obtain apparent dif-
ferences that are not real but only artifacts. When we encounter categories with no or 
few observations, we can reduce the number of categories by combining or collapsing 
these categories into the adjacent categories. For example, in Table 3.4 the number of 
obesity levels can be reduced to 3 by combining the underweight and normal categories. 
There is no need to subdivide the overweight category, even though one-half of observa-
tions are in this category. Computer packages can be used to categorize continuous 
variables (recoding) and to tabulate the data in one- or two-way tables (see Program 
Note 3.1 on the website).

There are several ways of displaying the data in a tabular format. In Tables 3.2, 3.3, 
and 3.4 we showed both numbers and percentages, but it is not necessary to show both 
in a summary table for presentation in journal articles. Table 3.5 presents basic patient 
characteristics for 200 patients from the DIG200 data set. Note that the total number 
(n) relevant to the percentages of each variable is presented at the top of the column and 
percentages alone are presented, leaving out the frequencies. The frequencies can be 
calculated from the percentages and the total number.

Table 3.5 Basic patient characteristics at baseline in the Digoxin clinical trial 
based on 200 patents in DIG200.

Characteristics  Percentage (n = 200)

Sex Male 73.0
 Female 27.0
Race White 86.5
 Nonwhite 13.5
Age Under 40  3.5
 40–49 11.5
 50–59 25.0
 60–69 33.0
 70 & over 26.0
Body mass index Underweight (< 18.5)  1.5
 Normal (18.5–24.9) 37.5
 Overweight (25–29.9) 42.5
 Obese (≥ 30) 18.5

Other data besides frequencies can be presented in a tabular format. For example, 
Table 3.6 shows the health expenditures of three nations as a percentage of gross domes-
tic products (GDP) over time (NCHS 2004, Table 115). Health expenditures as a 
percentage of GDP are increasing much more rapidly in the United States than either 
Canada or United Kingdom.

3.2.2   Line Graphs

A line graph can be used to show the value of a variable over time. The values of the 
variable are given on the vertical axis, and the horizontal axis is the time variable. Figure 
3.1 shows three line graphs for the data shown in Table 3.6. These line graphs also show 
the rapid increase in health expenditures in the United States compared with those of 
two other counties with national health plans. The trends are immediately clear in the 
line graphs, whereas one has to study Table 3.6 before the same trends are recognized.
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It is possible to give different impressions about the data by shortening or lengthening 
the horizontal and vertical axes or by including only a portion of an axis. In creating 
and studying line graphs, one must be aware of the scales used for horizontal and verti-
cal axes. For example, with numbers that are extremely variable over time, a logarithmic 
transformation (discussed later) of the variable on the vertical axis is frequently used 
to allow the line graph to fi t on a page.

Table 3.6 Health expenditures as a percentage of gross domestic 
product over time.

Year Canada United Kingdom United States

1960 5.4 3.9  5.1
1965 5.6 4.1  6.0
1970 7.0 4.5  7.0
1975 7.0 5.5  8.4
1980 7.1 5.6  8.8
1985 8.0 6.0 10.6
1990 9.0 6.0 12.0
1995 9.2 7.0 13.4
2000 9.2 7.3 13.3

Source: National Center for Health Statistics, 2004, Table 115

Figure 3.1 Line graph: 
Health expenditures as 
percentage of GDP for 
Canada, United 
Kingdom, and United 
States.

Example 3.1

It is well accepted that blood pressure varies from day to day or even minute to 
minute (Armitage and Rose 1966). We present the following data on systolic blood 
pressure measurements for three patients taken three times a day over a three-day 
period in two different ways in Figure 3.2:

 Day 1 Day 2 Day 3

Patient 8am 2pm 8pm 8am 2pm 8pm 8am 2pm 8pm

1 110 140 100 115 130 110 105 137 105
2 112 138 105 105 133 120 110 128 100
3 105 135 120 110 130 105 115 135 110
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In the top graph we show the change in a patient’s systolic blood pressure over the 
three time points for each day without connecting between days. From the line graph, 
we notice that the individual under study has peaks in his systolic blood pressure, 
and the peaks occur consistently at the same time point, giving us reason to believe 
that there may be a circadian rhythm in blood pressure.

Depending on the time of day when the blood pressure is measured, the patient’s 
hypertension status may be defi ned differently because most cutoff points for stages 
of hypertension are based on fi xed values that ignore the time of day. In the bottom 
graph the lines are connected between days, with the recognition that the time inter-
val between days is twice as large as the measurement intervals during the day. The 
general trend shown in the top graph remains, but the consistency between days is 
less evident. Another measurement at 2am could have established the consistency 
between days.

Figure 3.2 Plot of systolic blood pressure taken three times a day over a three-day period for 
three patients.
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Example 3.2

It is possible to represent different variables in the same fi gure, as Figure 3.3 shows. 
The right vertical axis is used for lead emissions and the left vertical axis for sulfur 
oxide emissions. Both pollutants are decreasing, but the decrease in lead emissions 
is quite dramatic, from approximately 200 × 103 metric tons in 1970 to only about 8 
× 103 metric tons in 1988. During this same period, sulfur oxide emissions decreased 
from about 20 × 106 metric tons to 21 × 106 metric tons. The decrease in the lead 
emissions is partially related to the use of unleaded gasoline, which was introduced 
during the 1970s.

Figure 3.3 Line graph of sulfur oxides and lead emissions in the United States.
Source: National Center for Health Statistics, 1991, Table 64

3.2.3   Bar Charts

A bar chart provides a picture of data that could also be reasonably displayed in tabular 
format. Bar charts can be created for nominal, ordinal, or continuous data, although 
they are most frequently used with nominal data. If used with continuous data, the chart 
could be called a histogram instead of a bar chart. The bar chart can show the number 
or proportion of people by levels of a nominal or ordinal variable.

Example 3.3

The actual enrollment of individuals in health maintenance organizations (HMOs) 
in the United States was 9.1 million in 1980, 33.0 million in 1990, and 80.9 million 
in 2000 (NCHS 2004, Table 134). This information is displayed in Figure 3.4 using 
a bar chart. The numbers of people enrolled in HMOs in the United States is shown 
by year (ordinal variable). This bar chart makes it very clear that there has been 
explosive growth in HMO enrollment. The actual numbers document this growth, 
but it is more dramatic in the visual presentation.
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In bar charts, the length of the bar shows the number of observations or the value of 
the variable of interest for each level of the nominal or ordinal variable. The widths of 
the bar are the same for all the levels of the nominal or ordinal variable, and the width 
has no meaning. The levels of the nominal or ordinal variable are usually separated by 
several spaces that make it easier to view the data. The bars are usually presented verti-
cally, although they could also be presented horizontally.

Bar charts can also be used to present more complicated data. The tabulated data in 
two- or three-way tables can be presented in bar chart format. For instance, the data in 
a 2 × 5 table (e.g., the status of diabetes — yes or no — by fi ve age groups) can be pre-
sented by fi ve bars with the length of each bar representing the proportion of people in 
the age group with diabetes, as shown in Figure 3.5.

When both variables in a two-way table have more than two levels each, we can use 
a segmented bar chart. Example 3.4 illustrates the presentation of data in a 3 × 4 table 
using a segmented bar chart. Data in a three-way table can be presented by a clustered 
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Figure 3.4 Bar chart of the number of persons (in millions) enrolled in Health Maintenance 
Organizations by year.
Source: National Center for Health Statistics (NCHS), 2004, Table 134

Figure 3.5 Bar chart 
showing proportion of 
people in each age 
group with diabetes, 
DIG200.
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bar chart. Example 3.5 shows a presentation of data in a 2 × 3 × 4 table using a clustered 
bar chart.

Example 3.4

To examine the relationship between obesity and age, DIG200 data are tabulated in 
a 3 × 4 table:

 Age Group (column percent in parentheses)

Obesity level Under 50 50–59 60–69 70 & over

Normal or underweight 11 (36.6) 22 (42.3) 26 (39.4) 19 (36.5)
 (BMI < 25)
Overweight (25 ≤ BMI < 30) 11 (36.6) 23 (44.2) 30 (45.5) 21 (40.4)
Obese (BMI ≥ 30)  8 (26.7)  7 (13.5) 10 (15.2) 12 (23.1)

Total 30 52 66 52

The data in this table are presented in Figure 3.6 using two types of segmented bar 
charts. The fi rst segmented bar chart is based on frequencies (top fi gure), and the 
second segmented bar chart is based on percentages (bottom fi gure). The top fi gure 
shows that nearly two-thirds of obese patients are in the 60 and over age groups. The 
bottom fi gure shows that the obesity is more prevalent in the under 50 age group.

Figure 3.6 Segmented bar charts for levels of obesity by age group, DIG200 (the normal 
category includes underweight as well as normal)
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Example 3.5

To examine how the prevalence of diabetes differs by the level of obesity and age, 
the DIG200 data are tabulated in a 2 × 3 × 4 table. The results are presented in Figure 
3.7 using a clustered bar chart. Three bars depicting the percent of diabetes in three 
levels of obesity are clustered in each of the age categories. It is interesting to note 
that the level of obesity is closely associated with the prevalence of diabetes in all 
age groups except for the 70 and over age group.

Figure 3.7 Clustered bar charts showing proportion of people in each level of obesity (the 
normal category includes underweight as well as normal) and age group who have diabetes.

It is often possible for “graphs to conceal more than they reveal” by making 
comparisons across groups less evident (van Belle 2002). To highlight that individu-
als categorized as obese have a higher percentage of diabetes across all age categories 
with the exception of the 70 and over age group, we may introduce a line graph as 
shown in Figure 3.7. Careful attention should be paid when constructing graphical 
presentations of data, and possibly several methods should be considered when 
exploring data in order to fi nd the graph that best captures the data’s structure.

Many computer packages are available for creating bar charts (see Program Note 
3.2 on the website).

3.2.4   Histograms

As we said earlier, a histogram is similar to a bar chart but is used with interval/ratio 
variables. The values are grouped into intervals (often called bins or classes) that are 
usually of equal width. Rectangles are drawn above each interval, and the area of 
rectangle represents the number of observations in that interval. If all the intervals are 
of equal width, then the height of the interval, as well as its area, represents the fre-
quency of the interval. In contrast to bar charts, there are no spaces between the rect-
angles unless there are no observations in some interval.
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We demonstrate here the construction of a histogram for the data on systolic blood 
pressure values from patients in the DIG200. Before creating the histogram, however, 
we create a one-way table that will facilitate the creation of the histogram. Table 3.7 
gives the frequency of systolic blood pressure values (SBP) for each individual in the 
DIG200. Note that there are 199 observations because one individual in the placebo 
group has missing information on her systolic blood pressure.

After inspecting the data, you should notice that a large proportion of the blood pres-
sure values appear to end in zero — 137 out of 199, actually. All the values are even 
numbers, with the exception of 17 observations, and 15 values that end in 5. This sug-
gests that the person who recorded the blood pressure values may have had a preference 
for numbers ending in zero. This type of fi nding is not unusual in blood pressure studies; 
however, despite this possible digit preference, we are going to create some histograms 
based on these values shown in Table 3.7.

The following questions must be answered before we can draw the histograms for 
these data:

1. How many intervals should there be?
2. How large should the intervals be?
3. Where should the intervals be located?

Tarter and Kronmal (1976) discuss these questions in some depth. There are no hard 
and fast answers to these questions; only guidelines are provided.

The number of intervals is related to the number of observations. Generally 5 to 15 
intervals would be used, with a smaller number of intervals used for smaller sample 
sizes. There is a trade-off between many small intervals, which allow for greater detail 
with few observations in any category, and a few large intervals, with little detail and 
many observations in the categories.

One method of determining the number of intervals is suggested by Sturges and 
elaborated by Scott (1979). The suggested formula is (log2n + 1), where n is the number 
of observations, to calculate the number of intervals required to construct a histogram. 
Therefore, the width of the interval can be calculated using the expression (xmax − 
xmin)/(log2n + 1). Since there are 199 observations in Table 3.7, we need to fi nd the value 
of log2199 + 1. This value is 8.64, and we round it up to 9, meaning that 9 intervals 
should be used to construct the histogram.

We refer the reader to Appendix A for information on logarithms and how to calculate 
logarithms with different bases. The graph shown here also gives some feel for the shape 
of the logarithmic curve with 2 as the base. Briefl y, log2199 can be calculated dividing 

Table 3.7 Frequency of individual systolic blood pressures (mmHg): DIG200.

Value Freq. Value Freq. Value Freq. Value Freq. Value Freq. Value Freq.

 85  1 105  1 116  8 128  3 138  1 150 12
 90  5 106  2 118  5 130 23 139  2 152  3
 95  2 108  2 120 25 131  1 140 26 155  1
 96  1 110 16 122  4 132  2 142  1 160  3
100 14 112  1 124  4 134  1 144  3 162  1
102  1 114  5 125  3 135  2 145  1 165  1
104  2 115  2 126  1 136  1 148  1 170  5
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log10199 by log102, which is 7.64. The base 10 logarithm is available on most calculators 
or computer software. Alternatively, the value of log2199 can be read from the graph. 
The dotted line in the graph shows that the value of log2199 is about 7.6.

Table 3.8 Intervals of histogram suggested by Sturges for the systolic blood pressure data in Table 3.7.

    Cumulative
 Class Width  Relative Relative Cumulative
Class (Bin) (Bin Width) Frequency Frequency Frequency Frequency

1 [85–95)  6  3.02   3.02   6
2 [95–105) 20 10.05  13.07  26
3 [105–115) 27 13.57  26.63  53
4 [115–125) 48 24.12  50.75 101
5 [125–135) 34 17.09  67.84 135
6 [135–145) 36 18.09  85.93 171
7 [145–155) 17  8.54  94.47 188
8 [155–165)  5  2.51  96.98 193
9 [165–175)  6  3.02 100.00 199

 Total 199 100.00

Table 3.8 illustrates the 9 intervals, and the interval width can be calculated using 
the expression (xmax − xmin)/(log2n + 1). Since (170 − 85)/8.64 = (85)/8.64 = 9.84, we 
round the interval width to 10  mmHg. Notice in Table 3.8 that the notation [85–95) 
means all values from 85 to 95 but not including 95. Here we use the bracket (  [  ) to 
indicate that the value should be included in the interval, whereas the parenthesis (  )  ) 
means up to the value but not including it. We have started the intervals with the value 
of 85, although we could have also begun the fi rst interval with the value of 80.

This is a reasonable approach unless there are some relatively large or small values. 
In this case, exclude these unusual values from the difference calculation and adjust the 
minimum and maximum values accordingly. The location of the intervals is also arbi-
trary. Most researchers either begin the interval with a rounded number or have the 
midpoint of the interval be a round number. The computer packages create histograms 
using the procedures similar to the preceding approach with options to accommodate 
the users’ request (see Program Note 3.3 on the website).

Figure 3.8 displays the histogram for the data in Table 3.8.
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Example 3.6

Create histograms to compare the distributions of systolic blood pressures between 
individuals under 60 years of age and those 60 and over using the DIG200 data set. 
We begin by displaying the number of observations, the minimum value, and the 
maximum value for each of the age groups.

Under 60 years of age:  n = 81, minimum = 90  mmHg, maximum 
 = 170  mmHg

60 years and over:  n = 118, minimum = 85  mmHg, maximum 
 = 170  mmHg

We use Sturges’ rule to determine the number of intervals that should be used to 
construct each histogram. The suggested number of intervals are:

Under 60 years of age: (170 − 90)/(log281 + 1) = 10.9 or 11 intervals
60 years and over: (170 − 85)/(log2118 + 1) = 10.8 or 11 intervals

The same number of intervals is indicated. Even when different numbers of intervals 
were indicated, it will be better to keep the number of intervals the same for a better 
comparison.

Figure 3.9 presents two histograms for these groups. The fi rst histogram displays 
the SBP of patients under 60 years of age and the second histogram for the 60 years 
and over group.

Notice that in this case the relative frequencies are used rather than frequencies 
mainly because the histograms are to be compared and the two groups have an 
unequal number of observations as just shown (i.e., there are 81 patients under 60 
years of age and 118 who are 60 years and over). Relative frequencies allow for 
comparisons between two or more groups even if the groups do not have the same 
number of subjects. It is obvious, for subjects 60 years and over, that the highest 
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Under 60 years of age
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Figure 3.9 Histograms for systolic blood pressure distributions by age group.

percentages of systolic blood pressure readings fall in the intervals between 105 and 
145  mmHg. Subjects under 60 years of age have a third of their systolic blood pres-
sure observations in the interval between 115 and 125  mmHg. After comparing the 
two histograms, it is easy to see that the older age group has a higher concentration 
of subjects with systolic blood pressure values above 135  mmHg, an observation that 
was clearly expected.
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It is possible for histograms constructed from the same data to have different shapes. 
The shapes of the histogram depend on the number of intervals used and how the 
boundaries are set. These differences in constructing the histogram may lead to different 
impressions about the data. However, histograms say basically the same thing about the 
distribution of the sample data even though their shapes are different.

Equal size intervals are used in most histograms. In case the use of unequal size 
intervals is desired, we must make some adjustments. Since the area of the rectangle 
for a category in a histogram refl ects the frequency of the category, we need to adjust 
the height of an uneven size interval to keep the area at the same size. For example, 
assume we are interested in determining the number of subjects with SBP 155  mmHg 
and higher. We can collapse the last two intervals of the histograms presented in Figure 
3.8 into one large interval that is twice as wide as the previous intervals. The histogram 
with the combined category is presented in Figure 3.10. Note that the frequency for the 
combined interval is 11, but the height of this interval is 5.5, one-half of the combined 
frequency. We divided the height by 2 to refl ect the fact that the width of this last interval 
is twice as wide as the other intervals.

3.2.5   Stem-and-Leaf Plots

The stem-and-leaf plot looks similar to a histogram except that the stem-and-leaf plot 
shows the data values instead of using bars to represent the height of an interval. The 
stem-and-leaf plot is used for a relatively small dataset, while the histogram is used for a 
large dataset. Considering the systolic blood pressure readings of the 40 patients from the 
DIG40 data set, the stem contains the tens units and the leaves would be the ones units.

 4 10 | 0045
 9 11 | 05666
16 12 | 0002488
(8) 13 | 00000048
16 14 | 000000044
 7 15 | 00002
 2 16 |
 2 17 | 00

Figure 3.10 Histogram 
for systolic blood 
pressure with uneven 
intervals, DIG200.
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Notice that a stem-and-leaf plot looks like a histogram except we know the values of 
all the observations, and histograms don’t group data in the same way. The fi rst column 
shows a cumulative count of all the observations from the top and from the bottom to 
the interval in which the median value is found. The median is the value such that 50 
percent of the values are less than it, and 50 percent are greater than it. The number of 
observations in the interval containing the median is shown in parentheses. The second 
column is the stem, and the subsequent columns contain the leaves. For example, in the 
fi rst row we read a stem of 10 and leaves of 0, 0, 4, and 5. Since the stem represents 
units of 10 and the leaf unit is 1, these four numbers are 100, 100, 104, and 105. The 
second row has a stem of 11, and there are 5 leaves referring to the systolic blood pres-
sure values of 110, 115, 116, 116, and 116. Note that the fi rst number in the second row 
is 9, which is the cumulative count of observations in the fi rst two rows. There are 7 
values in the third row, and the cumulative count is now 16. The median is the fourth 
row, and its value is 130. The method of determining the median is discussed later.

Example 3.7

Here is a stem-and-leaf plot to compare SBP (mmHg) readings of the following males 
and females in the DIG40 data set:

Males: 100 104 105 110 116 116 116 120 120 128 128 130 130 130 134 138 140
 140 140 140 140 140 140 144 150 150 150 152 170 170
Females: 100 115 120 122 124 130 130 130 144 150

Females Stem Males

 0 10 045
 5 11 0666
420 12 0088
000 13 00048
 4 14 00000004
 0 15 0002
 16
 17 00

By displaying a two-sided stem-and-leaf plot, a comparison of the distributions of 
systolic blood pressures between males and females can be made. The comparison 
shows that female SBPs tend to be lower than male SBPs. The male observations 
have two extreme values occurring at 170  mmHg even though most of the male 
readings are concentrated at 140  mmHg.

A nice characteristic of the data that can be seen from histograms or stem-and-leaf 
plots is whether or not the data are symmetrically distributed. Data are symmetrically 
distributed when the distribution above the median matches the distribution below the 
median. Data could also come from a skewed or asymmetric distribution. Data from a 
skewed distribution typically have extreme values in one end of the distribution but no 
extreme values in the other end of the distribution. When there is a long tail to the right, 
or to the bottom if the data are presented sideways, data are said to be positively skewed. 
If there are some extremely small values without corresponding extremely large values, 
the distribution is said to be negatively skewed.
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3.2.6   Dot Plots

A dot plot displays the distribution of a continuous variable. Consider Example 3.9 fol-
lowing where we want to compare the distribution of the continuous variable, systolic 
blood pressure, across a nominal variable such as age grouped into two categories — 
under 60 years of age and 60 years and over. These plots give a visual comparison of 
the center of the observations as well as providing some idea about how the observations 
vary. Like stem-and-leaf plots, dot plots are used for a relatively small data set.

Example 3.8

A stem-and-leaf plot for the ages of patients in the DIG40 data set is

 3 3 | 148
 9 4 | 455679
17 5 | 00055889
(11) 6 | 01133455568
12 7 | 00134566789
 1 8 | 3

Notice that the data appears to be slightly asymmetric as the observations below the 
row containing the median are not grouped as tightly as those above it. In this case, 
we would consider the distribution of ages to be negatively skewed.

Example 3.9

Dot plots comparing SBP across the age groups of “<60” and “≥60” are shown in 
Figure 3.11.

Figure 3.11 Dot plots for systolic blood pressure by age group, DIG40.

The dot plots allow us to see the data in its entirety. From the graphs, we see that 
the largest systolic blood pressure observation in the 60 and over group is consider-
ably larger than the corresponding largest value in the under 60 years of age group. 
Also notice that dots are stacked up for observations with the same measurement 
value. For example, the stacked dots make it clear that there are two observations 
with the systolic blood pressure reading of 170  mmHg.
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3.2.7   Scatter Plots

The two-dimensional scatter plot is analogous to the two-way frequency table in that it 
facilitates the examination of the relation between two variables. Unlike the two-way 
table, the two-dimensional scatter plot is most effectively used when the variables are 
continuous. Just as it is possible to have higher dimensional frequency tables, it is pos-
sible to have higher dimensional scatter plots, but they become more diffi cult to 
comprehend.

The scatter plot pictorially represents the relation between two continuous variables. 
In a scatter plot, a plotted point represents the values of two variables for an individual. 
We examine the relationship between serum creatinine levels and systolic blood pres-
sure for 40 patients in the DIG40 data set (Table 3.1) using a scatter plot. Let us look at 
the top scatter plot in Figure 3.12. Each circle represents a patient’s serum creatinine 
and systolic blood pressure values. For example, the circle in the upper left-hand corner 
of the plot represents the second patient (ID = 2312) in Table 3.1 with serum creatinine 
of 2.682  mg/dL and SBP of 104  mmHg. Overall, the scatter plot does not appear to show 
any relationship at all. There is a positive association between the variables when larger 
(smaller) values on one variable appear with larger (smaller) values of the other variable. 

Figure 3.12 Scatter 
plot of serum creatinine 
versus systolic blood 
pressure for 40 patients 
with and without 
jittering, DIG40.



The association would be negative if individuals with large values of one variable tended 
to have small values of the other variable and conversely.

It is possible that several patients have the identical values of both variables. A careful 
examination of the data in Table 3.1 shows that three patients (ID = 4787, 1954, 2439) 
have the identical serum creatinine of 1.307  mg/dL and SBP of 140  mmHg. They are 
represented by one circle in the top scatter plot but by overlapping circles in the bottom 
scatter plot. In the bottom scatter plot a jittering (a very small random value) is added 
to the values of serum creatinine variable. If the jittering is performed for both vari-
ables, then the relative distances between circles could be slightly shifted in one or both 
directions.

Scatter plots are most effective for small to moderate sample sizes. When there are 
many variables such as in the DIG40 data set, a scatter plot matrix can be useful in 
displaying multiple two-way scatter plots (see Figure 3.13). From the plots we can see 
that there is a tendency for a very slight positive relationship between age and serum 
creatinine level and a slight negative relationship between serum creatinine and body 
mass index. There is no visual evidence of a relationship between other variables. Com-
puter packages can be used to create stem-and-leaf plots and scatter plots (see Program 
Note 3.4 on the website).

Figure 3.13 Scatter 
plot matrix examining 
the interrelationship 
among systolic blood 
pressure, creatinine, 
body mass index, and 
age, DIG40.
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This completes the presentation of the pictorial tools in common use with the excep-
tion of the box plot, which is shown later in this chapter. The following material intro-
duces the more frequently used statistics that aid us in describing and summarizing 
data.

3.3   Measures of Central Tendency
Simple descriptive statistics can be useful in data editing as well as in aiding our under-
standing of the data. The minimum and the maximum values of a variable are useful 
statistics when editing the data. Are the observed minimum and maximum values rea-
sonable or even possible? For the patient’s systolic blood pressure readings shown in 
Table 3.9, the minimum reading is 100  mmHg and the maximum is 170  mmHg. These 
values are somewhat unusual given that the average systolic blood pressure is approxi-
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mately 131.4  mmHg, but they are not impossible. We will consider other ways of iden-
tifying unusual values in later sections.

3.3.1   Mean, Median, and Mode

In terms of describing data, people usually think of the average value or arithmetic 
mean. For example, the average systolic blood pressure was useful in determining 
whether or not the maximum and minimum values were reasonable. There are three 
frequently used measures of central tendency: the mean, the median, and the mode.

The sample mean (x–) is the sum of all the observed values of a variable divided by 
the number of observations. The median is defi ned to be the middle value — that is, the 
value such that 50 percent of the observed values fall above it and 50 percent fall below 
it. It can also be called the 50th percentile, where the ith percentile represents the value 
such that i percent of the observations are less than it. The mode is the most frequently 
occurring value.

Table 3.9 Systolic blood pressure reading in ascending order, DIG40.

100 100 104 105 110 115 116 116
116 120 120 120 122 124 128 128
130 130 130 130 130 130 134 138
140 140 140 140 140 140 140 144
144 150 150 150 150 152 170 170

Example 3.10

Calculate the mean systolic blood pressure reading using 40 patients in the DIG40 
data set presented in Table 3.9.

The average or arithmetic mean is

100 100 104 170

40

5256

40
131 4

+ + + + = =
. . .

. mmHg.

We can also represent the mean succinctly using symbols. We shall use upper-case 
X as the symbol for the variable under study — in this case, the SBP for patients in the 
DIG40 data set. We use lower-case x, with subscripts to distinguish each patient’s sys-
tolic blood pressure, to represent the observed value of the variable. For example, the 
fi rst patient’s SBP is represented by x1 and its value is 100  mmHg. The second patient’s 
systolic blood pressure is x2 and its value is also 100  mmHg. In the same way, x3 is 
104  mmHg,  .  .  .  , and x40 is 170  mmHg. Then the sum of the SBP can be represented 
by
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The symbol Σ means summation. The value of i beneath Σ gives the subscript of the 
fi rst xi to be included in the summation process. The value above Σ gives the subscript 



of the last xi to be included in the summation. The value of i increases in steps of 1 from 
the beginning value to the ending value. Thus, all the observations with subscripts 
ranging from the beginning value to the ending value are included in the sum. The 
formula for the sample mean variable, x– (pronounced x-bar), is
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If we have the data for the entire population, not for just a sample of observations 
from the population, the mean is denoted by the Greek letter m (pronounced “mu”). 
Values that come from samples are statistics, and values that come from the population 
are parameters. For example, the sample statistic x– is an estimator of the population 
parameter m. The population mean is defi ned as
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∑ x

N

i

i

N

1

where N is the population size.

In calculating the median, it is useful to have the data sorted from the lowest to the 
highest value as that assists in fi nding the middle value. Table 3.9 shows the sorted 
systolic blood pressure values for the 40 patients. For a sample of size n, the sample 
median is the value such that half (n/2) of the sample values are less than it and n/2 are 
greater than it. When the sample size is odd, the sample median is the [(n + 1)/2]th 
largest value. For example, the median for a sample of size 33 is thus the 17th largest 
value. The value 17 comes from (33 + 1)/2. When sample size is even, as in the case of 
the data on systolic blood pressure readings presented in Table 3.9, there is no observed 
sample value such that one-half of the sample falls below it and one-half falls above it. 
By convention, we use the average of the two middle sample values as the median — that 
is, the average of the (n/2)th and [(n/2) + 1]th largest values.

Example 3.11

Calculate the median systolic blood pressure readings using 40 patients in the DIG40 
data set presented in Table 3.9. The data are already sorted in ascending order:

x1 = 100, x2 = 100, x3 = 104,  .  .  .  , x40 = 170.

Since we have an even number of patients, identify the (n/2)th observation or the 
(40/2) = 20th observation and the [(n/2) + 1]th observation or [(40/2) + 1] = 21st 
observation. Since x20 = 130 and x21 = 130, the average of these two values is 130.

Measures of Central Tendency  41
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The mode is the most frequently occurring value. When all the values occur the same 
number of times, we usually say that there is no unique mode. When two values occur 
the same number of times and more than any other values, the distribution is said to be 
bimodal. If there are three values that occur the same number of times and more than 
any other value, the distribution could be called trimodal. Usually one would not go 
beyond trimodal in labeling a distribution.

It is not unexpected to have no unique mode when dealing with continuous data, since 
it is unlikely that two units have exactly the same values of a continuous variable. 
However, in our data set of systolic blood pressure readings present in Table 3.9, the value 
of 140  mmHg occurs seven times, more frequently than any other reading, and is thus 
the mode. Although blood pressure is a continuous variable, the measurer often has a 
preference for values ending in zero, resulting in multiple observations of some values.

3.3.2   Use of the Measures of Central Tendency

Now that we understand how these three measures of central tendency are defi ned and 
found, when are they used? Note that in calculating the mean, we summed the observa-
tions. Hence, we can only calculate a mean when we can perform arithmetic operations 
on the data. We cannot perform meaningful arithmetic operations on nominal data. 
Therefore, the mean should only be used when we are working with continuous data, 
although sometimes we fi nd it being used with ordinal data as well. The median does 
not require us to sum observations, and thus it can be used with continuous and ordinal 
data, but it also cannot be used with nominal data. The mode can be used with all types 
of data because it simply says which level of the variable occurs most frequently.

The mean is affected by extreme values, whereas the median is not. Hence, if we are 
studying a variable such as income that has some extremely large values, that is posi-
tively skewed, the mean will refl ect these large values and move away from the center 
of the data. The median is unaffected, and it remains at the center of the data. For data 
that are symmetrically distributed or approximately so, the mean and median will be 
the same or very close to each other.

As was just mentioned, the SBP readings ranged from 100 to 170  mmHg for the 40 
observations. The sample mean was 131.4  mmHg, and the sample median was 130  mmHg. 
These two values do not differ very much, since the data set contains observations that are 
relatively extreme on both the low and high end. However, the two values of 170  mmHg 
have caused the mean of 131.4  mmHg to be slightly larger than the median of 130  mmHg.

3.3.3   The Geometric Mean

We use another measure of central tendency when the numbers refl ect population counts 
that are extremely variable. For example, in a laboratory setting, the growth in the 
number of bacteria per area is examined over time. The number of microbes per area 
does not change by the same amount from one period to the next, but the change is 
proportional to the number of microbes that were present during the previous time 
period. Another way of saying this is that the growth is multiplicative, not additive. The 
areas under study may also have used different media, and the microbes may not do 
well in some of the media, whereas in other media the growth is explosive. Hence, we 
may have counts in the hundred or thousands for some of the cultures, whereas a few 
other cultures may have counts in the millions or billions.



The arithmetic mean would not be close to the center of the values in this situation 
because of the effect of the extremely large values. The median could be used in this 
situation. However, another measure that is used in these situations is the geometric 
mean. The sample geometric mean for n observations is the nth root of the product of 
the values — that is,

 x x x xg n
n= ∗ ∗1 2 � .

Note that since the nth root is used in its calculation, the geometric mean cannot be 
used when a value is negative or zero.

This defi nition of the geometric mean is completely analogous to the arithmetic 
mean. The arithmetic mean is the value such that if we add it to itself (n − 1) times, it 
equals the sum of all the observations. It is found by summing the observations and 
then dividing the sum by n, the sample size. Since in the preceding situation we are 
dealing with data resulting from a multiplicative process, our measure of central ten-
dency should refl ect this. The geometric mean is the value such that if we multiply it 
by itself (n − 1) times, it equals the product of all the observations. It is found by multi-
plying the observations and then taking the nth root of the product.

When n is 2, there is little diffi culty in fi nding the geometric mean, since the product 
of the two observed values is usually not large, and we know that the second root is the 
square root. However, for larger values of n, the product of the observed values may 
become very large, and we may lose some accuracy in calculating it, even when a 
computer is used. Fortunately, there is another way of calculating the product of the 
observations that does not cause any accuracy to be lost.

We can transform the observations to a logarithmic scale. Use of the logarithmic 
scale provides for accurate calculation of the geometric mean. After fi nding the loga-
rithm of the geometric mean, we will transform the value back to the original scale and 
have the value of the geometric mean. In this section, we shall use logarithms to the 
base 10, although other bases could be used.

Again, we refer the reader to Appendix A for more information on logarithms and 
how to perform logarithmic transformation. The following chart shows some idea about 
the relationship between positive numbers and the corresponding base 10 logarithms.
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A key property of the logarithmic transformation is that the level of the mathematical 
operation performed on the arithmetic scale is reduced a level when the logarithmic 
scale is used. For example, a product on the arithmetic scale becomes a sum on the 
logarithmic scale. Therefore, the logarithm of the product of n values is
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In addition, taking the nth root of a product on the arithmetic scale becomes division 
by n on the logarithmic scale — that is, fi nding the mean logarithm. In symbols, this 
is
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We now have the logarithm of the geometric mean, and, to obtain the geometric mean, 
we must take the antilogarithm of the mean logarithm — that is,

 x xg = ( )antilog log10 .

Example 3.12

Suppose that the number of microbes observed from six different areas are the fol-
lowing: 100, 100, 1000, 1000, 10,000, and 1,000,000. The geometric mean is found 
by taking the logarithm of each observation and then fi nding the mean logarithm. 
The corresponding base 10 logarithms are 2, 2, 3, 3, 4, and 6, and their mean is 3.33. 
The geometric mean is the antilog of 3.33, which is 2154.43. The arithmetic mean of 
these observations is 168,700, a much larger value than the geometric mean and also 
much larger than fi ve of the six values. The usual mean does not provide a good 
measure of central tendency in this case. The value of the median is the average of 
the two middle values, 1000 and 1000, giving a median of 1000 that is of the same 
order of magnitude as the geometric mean.

The geometric mean has also been used in the estimation of population counts 
— for example, of mosquitos — through the use of capture procedures over several 
time points or areas. These counts can be quite variable by time or area, and hence, 
the geometric mean is the preferred measure of central tendency in this situation, 
too.

These (mean, median, mode, and geometric mean) are the more common measures 
of central tendency employed in the description of data. The value of central tendency, 
however, does not completely describe the data. For example, consider the nine systolic 
blood pressure readings

 100 101 102 110 115 124 125 126 135.

Suppose that the four smallest observations were decreased by 10  mmHg and the four 
largest were increased by 10  mmHg. The values would now be the following:



 90 91 92 100 115 134 135 136 145.

The means and medians of the two data sets are the same, 115  mmHg, yet the sets 
are very different. The sample mean of 115.3  mmHg and the sample median of 115  mmHg 
capture the essence of the fi rst data set. In the second data set, however, the measures 
of central tendency are less informative as only one value is close to the mean and 
median. Therefore, some additional characteristics of the data must be used to provide 
for a more complete summary and description of the data and to distinguish between 
dissimilar data sets. The next section deals with this additional characteristic, the vari-
ability of the data.

3.4   Measures of Variability
The observations in the preceding second set of data corresponding to the systolic blood 
pressure of patients varied much more than those in the fi rst set of data, but the means 
were the same. Hence, to provide for a more complete description of the data, we need 
to include a measure of its variability. A number of measures or values — the range, 
the interquartile range, selected percentiles, the variance, the standard deviation, and 
the coeffi cient of variation — are used to describe the variability in data.

3.4.1   Range and Percentiles

The range is defi ned as the maximum value minus the minimum value. It is simple to 
calculate, and it provides some idea of the spread of the data. For the patients under 60 
years of age in Table 3.10, the range is the difference between 152 and 100, which is 52. 
In the second data set pertaining to patients 60 and over, the range is the difference 
between 170 and 100, which is 70.

This difference in the two ranges points to a dissimilarity between the two data sets. 
Although the range can be informative, the range has two major defi ciencies: (1) It 
ignores most of the data, since only two observations are used in its defi nition, and (2) 
its value depends indirectly on sample size. The range will either remain the same or 
increase as more observations are added to a data set; it cannot decrease. A better 
measure of variability would use more of the information in the data by using more of 
the data points in its defi nition and would not be so dependent on sample size.

Percentiles, deciles, and quartiles are locations of an ordered data set that divide the 
data into parts. Quartiles divide the data into four equal parts. The fi rst quartile (q1), 
or 25th percentile, is located such that 25 percent of the data lie below q1 and 75 percent 
of the data lie above q1. The second quartile (q2), or 50th percentile or median, is located 

Table 3.10 Systolic blood pressure (mmHg) of patients under 60 years and 60 years and over, DIG40.

 Under 60 Years 60 Years and Over

100 115 116 120 120 100 104 105 110 116
124 130 130 130 130 116 120 122 128 128
134 140 140 140 140 130 130 138 140 140
150 152    140 144 144 150 150
     150 170 170
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such that half (50 percent) of the data lie below q2 and the other half (50 percent) of the 
data lie above q2. The third quartile (q3), or 75th percentile, is located such that 75 
percent of the data lie below q3 and 25 percent of the data lie above q3. The interquartile 
range, the difference of the 75th and 25th percentiles (the third and fi rst quartiles), uses 
more information from the data than does the range. In addition, the interquartile (or 
semiquartile) range can either increase or decrease as the sample size increases. The 
interquartile range is a measure of the spread of the middle 50 percent of the values. To 
fi nd the value of the interquartile range requires that the fi rst and third quartiles be 
specifi ed, and there are several reasonable ways of calculating them. We shall use the 
following procedure to calculate the 25th percentile for a sample of size n:

1. If (n + 1)/4 is an integer, then the 25th percentile is the value of the [(n + 1)/4]th 
smallest observation.

2. If (n + 1)/4 is not an integer, then the 25th percentile is a value between two 
observations. For example, if n is 22, then (n + 1)/4 is (22 + 1)/4 = 5.75. The 25th 
percentile then is a value three-fourths of the way between the 5th and 6th smallest 
observations. To fi nd it, we sum the 5th smallest observation and 0.75 of the dif-
ference between the 6th and 5th smallest observations.

The sample size is 40 for the systolic blood pressure data in Table 3.11. According 
to our procedure, we begin by sorting the data in ascending order. Next, we calculate 
(40 + 1)/4, which is 10.25. Hence the 25th percentile is a value one-fourth of the way 
between the 10th and 11th smallest observations. Since the 10th and 11th smallest obser-
vations have the same value of 120, the 25th percentile of the fi rst quartile is 120  mmHg. 
The 75th percentile is found in the same way except that we use 3(n + 1)/4 in place of 
(n + 1)/4. Since 3(40 + 1)/4 yields 30.75, the 75th percentile is a value three-fourths of 
the way between the 30th and 31st observations. Since the 30th and 31st observations 
have the same value of 140, the 75th percentile, or the third quartile, is 140  mmHg. 
Hence, the interquartile range is 140 − 120 = 20. Calculating the interquartile range for 
systolic blood pressure readings of patients under 60 years of age and 60 years and over 
gives the values 20 and 28, respectively. The larger interquartile range for the 60 and 
over age group suggests that there is more variability in the data compared to the systolic 
blood pressure readings for the younger age group.

The values of fi ve selected percentiles — the 10th, 25th, 50th, 75th, and 90th — when 
considered together provide good descriptions of the central tendency and the spread of 
the data. However, when the sample size is very small, the calculation of the extreme 
percentiles is problematic. For example, when n is 5, it is diffi cult to determine how the 
10th percentile should be calculated. Because of this diffi culty, and also because of the 
instability of the extreme percentiles for small samples, we shall calculate them only 
when the sample size is reasonably large — say, larger than 30. The next measure of 
variability to be discussed is the variance, but, before considering it, we discuss the box 
plot because of its relation to the fi ve percentiles.

Table 3.11 Systolic blood pressure of patients who have had a previous myocardial infarction stratifi ed 
by the dose level of Digoxon treatment assigned, DIG200.

 Low Dose Digoxon Treatment (0.125  mg/dL) High Dose Digoxon Treatment (0.375  mg/dL)

140 102  85 160 150  96 118 120 124 140
144 130 130 110 110 120 122 130 140 150



3.4.2   Box Plots

The box and whiskers plot, or just box plot, graphically gives the approximate location 
of the quartiles, including the median, and extreme values. The advantage of using box 
plots when exploring data is that several of the characteristics of the data such as outli-
ers, symmetry features, the range, and dispersion of the data can be easily compared 
between different groups. The lower and upper ends (hinges) of the box mark the 25th 
and 75th percentiles or the locations of the fi rst and third quartiles, while the solid band 
indicates the 50th percentile or the median. The whiskers represent the range of values, 
and the default option used in most statistical packages is to draw the whiskers out to 
1.5 or 3 times the interquartile range. If the box plot is presented vertically, the area 
from the top edge to the bottom edge of the box represents the interquartile range.

From the systolic blood pressure data in Table 3.9, we already found the following 
information:

minimum value = 100  mmHg,
fi rst quartile = 120  mmHg,
median = 130  mmHg,
third quartile = 140  mmHg,
maximum value = 170  mmHg.

These values are plotted in a box plot in Figure 3.14.

We can use Figure 3.14 to assess the symmetry of the systolic blood pressure distri-
bution. The box plots and histograms give us an indication of whether or not the data 
are skewed. For these patients, the distance from the median to the third quartile looks 
about the same as the corresponding distance to the fi rst quartile. But there is a slightly 
longer tail to the right than to the left, indicating the distribution is slightly skewed to 
the right. In the Example 3.13, we go one step further by comparing the systolic blood 
pressures across all the age groups.

100 120 140 160 180
Systolic Blood Pressure (mmHg)

Figure 3.14 Box plot of 
systolic blood pressure 
values, DIG40.
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Example 3.13

Using the data from Table 3.11, individual box and whisker plots of systolic blood 
pressure for the two age groups are created in Figure 3.15.

90 100 110 120 130 140 150 160 170 180

Systolic Blood Pressure (mmHg)

60 & Over

Under 60

Figure 3.15 Box plots of systolic blood pressure across age groups, DIG40.

By looking at the box and whiskers plots side by side, it’s possible to compare the 
distributions of systolic blood pressures for the two age categories. The medians are 
identical for both age groups. However, systolic blood pressure readings are more 
variable for the 60 and over group. This greater variability is shown in the larger 
width from the fi rst quartile to the third quartile and through the greater range of 
the 60 and over group.

3.4.3   Variance and Standard Deviation

The variance and its square root, the standard deviation, are the two most frequently 
used measures of variability, and both use all the data in their calculations. The variance 
measures the variability in the data from the mean of the data. The population variance, 
denoted by s 2 for a population of size N, is defi ned as

 
σ

μ
2

2

1=
−( )

=
∑ x

N

i
i

N

.

For a sample of size n, the sample variance s2, an estimator of s2, is defi ned by

 
s

x x

n

i

i

n

2

2

1

1
=

−( )

−
=
∑

,

and the sample standard deviation is defi ned by



 
s

x x

n

i

i

n

=
−( )

−
=
∑ 2

1

1
.

The population variance could be interpreted as the average squared difference from 
the population mean, and the sample variance has almost the same interpretation about 
the sample mean.

The variance uses the sum of the squared differences from the mean divided by N, 
whereas the sample variance uses n − 1 in its denominator. Why were the squared differ-
ences chosen for use instead of the differences themselves? Perhaps the following table 
will clarify this. In Table 3.12 we fi nd the systolic blood pressure readings for patients on 
low and high dose Digoxin treatment who have had a previous myocardial infarction.

If we consider only the 10 patients who were on high dose treatment, we can construct 
the information provided in Table 3.12. The sum of systolic blood pressure minus the 
mean must be zero since the positive differences cancel the negative differences.

Table 3.12 Differences and squared differences from the mean systolic 
blood pressure for 10 patients on high dose (0.375  mg/dL) Digoxin 
treatment who have had a previous myocardial infarction.

 SBP (mmHg) SBP - mean (SBP - mean)2

  96 −30  900
  118 −8  64
  120 −6  36
  124 −2   4
  140 14  196
  120 −6  36
  122 −4  16
  130  4  16
  140 14  196
  150 24  576

Total 1260  0 2040
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Additionally, why is n − 1 used instead of n in the denominator of the sample vari-
ance? It can be shown mathematically that the use of n results in an estimator of the 
population variance, which on the average slightly underestimates it. The following will 
give some feel for the use of n − 1.

In the formula for the sample variance, the population mean is estimated by the 
sample mean. This estimation of the population mean reduces the number of indepen-
dent observations to n − 1 instead of n as is shown next. For example, you are told that 
there are three observations and that two of the values along with the sample mean are 
known. Can you fi nd the value of the other observation? If you can, this means that 
there are only two independent observations, not three, once the sample mean is calcu-
lated. Suppose that the two values are 6 and 10 and the sample mean is 9. Since the 
mean of the three observations is 9, this indicates that the sum of the values is 27 and 
that the unknown value is [27 − (6 + 10)] = 11. In this sample of size three, given 
knowledge of the sample mean, only two of the observations are independent or free to 
vary. Hence, once a parameter (in this case the population mean) is estimated from the 
data, it reduces the number of independent observations (degrees of freedom) by one. 
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To account for this reduction in the number of independent observations, n − 1 is used 
in the denominator of the sample variance.

For the 10 systolic blood pressure values from patients on high dose Digoxin treat-
ment in Table 3.12, the value of the sample variance is
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and the value of the sample standard deviation is
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The sample variance and standard deviation for the 10 values from patients on low dose 
Digoxin treatment in Table 3.11 are 561.4 and 23.7, respectively — much larger values 
than the corresponding statistics for the 10 values in the high dose group. These statistics 
refl ect the greater variation in the low dose values than in the high dose values.

The variance changes when nonconstant changes are made to all observations in the 
data. How does the value of the variance change when (1) a constant is added to (sub-
tracted from) all the observations in the data set and (2) all the observations are multi-
plied (divided) by a constant?

The answer to the fi rst question is that there is no change in the value of the variance, 
as can be seen from the following. If all the observations are increased by a constant 
— say, by 10 units — the mean is also increased by the same amount. Therefore, the 
constants will simply cancel each other out in the squared differences — that is,

 [(xi + 10) − (m + 10)]2 = (xi − m)2

and thus there is no change in the sum of the squared differences or in the variance.

When all the observations are multiplied by a constant, the variance is multiplied by 
the square of the constant as can be seen from the following. If all the observations are 
multiplied by a constant — say, by 10 — the mean is also multiplied by the same amount. 
Therefore, in the squared differences we have

 [(xi  *  10) − (m  *  10)]2 = [(xi − m)  *  10]2 = (xi − m)2  *  102

and the sum of the squared differences, and thus the variance, is multiplied by the con-
stant squared. This means that the standard deviation is multiplied by the constant. 
These two properties will be used in Chapter 5.

In later chapters, the variance and the standard deviation are shown to be the most 
appropriate measures of variation when the data come from a normal distribution, as 
knowledge of them and the mean is all that is necessary to completely describe the data. 
The normal distribution is the bell-shaped distribution often used in the grading of 
courses, and it is the most widely used distribution in statistics. The interquartile range 
and the fi ve percentiles are useful statistics for characterizing the variation in data regard-
less of the distribution from which the data are selected, but they are not as informative 
as the mean and variance are when the data come from a normal distribution.



One last measure of variation is the coeffi cient of variation, defi ned as 100 percent 
times the ratio of the standard deviation to the mean. In symbols this is (s/m)100 percent, 
and it is estimated by (s/x–)100 percent. The coeffi cient of variation is a relative measure 
of variation, since in dividing by the mean, it directly takes the magnitude of the values 
into account. Large values of the coeffi cient suggest that the data are quite variable.

The coeffi cient of variation has several uses. One use is to compare the precision of 
different studies. If another experiment has a much smaller coeffi cient of variation than 
that in your study of the same substance, this suggests that there may be room for 
improvement in your study procedures. Another use is to determine whether or not there 
is so much variability in the data that the measure of central tendency is of little value. 
For example, the NCHS does not publish sample means for variables if the estimated 
coeffi cient of variation is greater than 30 percent.

Let us calculate the estimated coeffi cients of variation for our two sets of 10 observa-
tions in Table 3.11. For the fi rst set, s was 23.7 and s was 15.1 in the second set. The 
sample mean was approximately 126  mmHg in both sets. These values lead to coeffi -
cients of variation of 18.8 percent (= [23.6946/126.1] 100 percent) and 12.0 percent in 
sets one and two, respectively. These values reinforce our feeling that the mean provided 
more useful information in the second set but was of less value in describing the data 
in the fi rst set.

See Program Note 3.5 on the website for the use of computer packages for descrip-
tive statistics and box plots.

3.5   Rates and Ratios
Various forms of rates and ratios have been used in describing the health status and the 
change or growth of population. Rates and ratios are relative numbers that relate some 
absolute number of events to some other number such as the total population at that 
time. In this section we examine vital rates and population growth rates.

The rates of diseases and vital rates, which include death rates in general, infant 
mortality rates, feto-infant, neonatal and postneonatal mortality rates, and birth rates, 
are frequently used measures in public health. These rates are useful in determining the 
health status of a population, in monitoring the health status over time, in comparing 
the health status of populations, and in assessing the impact of policy changes.

For example, the infant mortality rate is often used in comparing the performance of 
health systems in different countries. In 2000, the United States had an infant mortality 
rate higher than that of 26 other nations. The U.S. rate was 6.9 infant deaths under 1 year 
of age per 1000 live births compared to a low rate of 3.2 for Japan. Most of the Western 
European nations and some Pacifi c Rim nations or large cities (Japan, Singapore, and 
Hong Kong) had lower rates than the United States. Canada’s health system is often touted 
as a model for the United States because of its lower cost. How does Canada’s infant 
mortality rate compare to that of the United States? Canada’s infant mortality rate in 
2000 was 5.3, almost 25 percent lower than the U.S. rate. The progress in reducing infant 
mortality has been most impressive, as can be seen from the U.S. rate for 1967 of 22.4 
shown in Figure 1.1 in Chapter 1 compared to its 2000 rate of 6.9.

As can be seen from the following defi nition, a rate is basically a relative number 
multiplied by a constant. A rate is defi ned as the product of two parts: (1) the number 
of persons who have experienced the event of interest divided by the population size 
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and (2) a standard population size. For example, according to the data compiled by the 
National Center for Health Statistics, there were 4,021,726 live births in an estimated 
population of 288,369,000 in the United States in 2002. The corresponding birth rate 
per 100,000 is found by taking (4,021,726/288,369,000) times 100,000, and it equals 
13.9 births per 100,000 population. This is considerably lower than the corresponding 
rate for the United States in 1960 of 23.7 births per 100,000.

However, as is often the case with rates, there is a problem in determining the value 
of the denominator — that is, the 2002 U.S. population. What is meant by the 2002 
population size? Is it as of January 1, July 1, December 31, or some other date? Conven-
tion is that the middle of the period (mid-2002) population size is used. An additional 
problem is that Census data were available for 2000 but not for 2002, which introduces 
some uncertainty in the value used. In this case, NCHS used an estimate of the 2002 
midyear resident population based on the estimates of the U.S. Bureau of Census. The 
uncertainty in the value of the denominator of the rate should be of little concern given 
the magnitude of the numbers involved in this situation.

Vital rates are usually expressed per 1000 or per 100,000 population. As was just 
mentioned, infant mortality rates are expressed per 1000 live births with the exception 
of feto-infant mortality rates. Feto-infant mortality rates are based on the number of 
late fetal deaths plus infant deaths under 1 year per 1000 live births. Neonatal mortality 
rates are based on deaths of infants who were less than 28 days old, and postneonatal 
rates are based on deaths of infants between 28 and 365 days old. This split of infant 
deaths is useful because often the neonatal deaths may be due to genetic factors, whereas 
the postneonatal deaths may have more to do with the environment.

Note that as the infant mortality of 1988 rate example in Chapter 1 showed, the 
children whose deaths are used in the conventional method of calculating this rate may 
have been born in 1987, not 1988. Hence, the numerator, the number of deaths, comes 
from both 1987 and 1988 births, whereas the denominator is based solely on 1988 births. 
This should cause no problem unless something happened that caused the mortality 
experience or the number of births to differ greatly between the two years. One way of 
dealing with this possibility of a difference between the years is to combine several 
years of data. Often health agencies pool data over three years to provide protection 
against the instability of small numbers and to reduce the possible, but unlikely, effect 
of very different birth or mortality experiences across the years.

3.5.1   Crude and Specifi c Rates

Rates may be either crude or specifi c. Crude rates use the total number of events in 
their defi nition, whereas specifi c rates apply to subgroups in the population. For example, 
there may be age-, gender-, or race-specifi c birth or death rates. For an age-specifi c 
death rate, only the deaths to individuals in the specifi c age group are used in the 
numerator, and the denominator is the total number of individuals in the specifi c age 
group. Specifi c rates are used because they supply more information and also allow for 
more appropriate comparisons of groups.

For example, the crude death rate for the United States in 2002 was 847.3 per 100,000 
population, and the age-specifi c death rates, as shown in Table 3.13, varied from 17.4 
for the 5- to 14-year-old group to 14,828.3 for the 85-year-old and over group (NCHS 



2004). The age-specifi c rates provide more information than the crude rates. For the 
same year the crude death rate for males was 846.6 versus 848.0 for females. There is 
no appreciable gender difference in the crude death rates. However, the age-specifi c 
death rates for males are higher than the female-specifi c rates in all age groups. Perhaps 
the lack of a difference between genders in the crude rate is related to differences in 
the age distributions. The age-specifi c rates by gender, shown in Table 3.13, provide a 
better description of the mortality experience than the crude rates. Without knowledge 
of the age distributions, it is diffi cult to conclude whether or not the age variable is 
responsible for the lack of a difference in the crude rates.
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Table 3.13 Crude and age-specifi c death rates for the United States by gender in 2002.

 US Total Population Male Population Female Population

All ages, crude 847.3 846.6 848.0

Under 1 695.0 761.5 625.3
1–4 31.2 35.2 27.0
5–14 17.4 20.0 14.7
15–24 81.4 117.3 43.7
25–34 103.6 142.2 64.0
35–44 202.9 257.5 148.8
45–54 430.1 547.5 316.9
55–64 952.4 1,184.0 738.0
65–74 2,314.7 2,855.3 1,864.7
75–84 5,556.9 6,760.5 4,757.9
85 & over 14,828.3 16,254.5 14,209.6

Source: NCHS, 2004, Tables 1, 34, and 35 and page 442

As just shown, one problem with the use of specifi c rates is that they are not easily 
summarized. They do provide more information than the crude rate, which gives a single 
value for a population, but sometimes it is diffi cult to draw a conclusion based on the 
examination of the specifi c rates. However, because of the strong linkage between 
mortality and age, age often must be taken into account in the comparison of two or 
more populations. One way of adjusting for age or other variables while avoiding the 
problem of many specifi c rates is to use adjusted rates.

3.5.2   Adjusted Rates

Adjusted rates are weighted rates, as will be shown following. There are direct and 
indirect methods of adjustment; the choice of which method to use depends on what 
data are available. The direct method requires that we have the specifi c rates for each 
study population and a standard population. Table 3.14 provides the age-specifi c death 
rates for both male and female populations of the year 2002. The 2000 U.S. population 
proportions represent the standard population. The standard population provides a refer-
ent for purposes of comparison. Starting with 2001, NCHS uses the 2000 U.S. resident 
population as the standard for age-adjusting death rates. Prior to 2001 the 1940 U.S. 
population was used as the standard for age-adjusting mortality statistics. The choice 
of a standard population is subjective. For example, in comparing the rates between 
states, often the U.S. population would be used as the standard. In comparing counties 
of a state, the state population often would be used as the standard. For comparing rates 
over time, the population at a previous time point could be used as the standard. Another 
alternative might be to pool the populations of the areas or times under study and use 
the pooled population as the standard.
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Table 3.14 Direct method of adjusting the 2002 U.S. male and female death rates using 2000 U.S. 
population as the standard.

  Male Population Female Population

 U.S. Population Specifi c Expected Specifi c Expected
Age Proportion Ratesa Deathsa Ratesa Deathsa

Under 1 0.013818 761.5 10.5 625.3 8.6
1–4 0.055317 35.2 1.9 27.0 1.5
5–14 0.145565 20.0 2.9 14.7 2.1
15–24 0.138646 117.3 16.3 43.7 6.1
25–34 0.135573 142.2 19.3 64.0 8.7
35–44 0.162613 257.5 41.9 148.8 24.2
45–54 0.134834 547.5 73.8 316.9 42.7
55–64 0.087247 1,184.0 103.3 738.0 64.4
65–74 0.066037 2,855.3 188.6 1,864.7 123.1
75–84 0.044842 6,760.5 303.1 4,757.9 231.4
85 & over 0.015508 16,254.5 252.1 14,209.6 220.4

Total 1.000000  1013.7b  715.2b

aPer 100,000 population
bAge-adjusted death rate per 100,000 population
Source: NCHS, 2004, Tables 1, 34, and 35, and page 442

In performing the age adjustment in Table 3.14, the 2000 U.S. age distribution is used 
as the standard. The adjustment process consists of applying the male and female age-
specifi c death rates to the standard population’s age distribution and then summing the 
expected number of deaths over the age categories. Another way of saying this is that each 
age category’s death rate is weighted by that age category’s share of the standard popula-
tion. The direct age-adjusted death rates for 2002 male and female populations using the 
U.S. as the 2000 standard population are 1013.7 and 715.2 deaths per 100,000 population, 
respectively. The male morality rate is about 30 percent higher than the female rate.

The indirect method is an alternative to be used when we do not have the data 
required for the direct method or when the specifi c rates may be unstable because they 
were based on small numbers. The indirect method requires the specifi c rates for the 
standard population and the age (or, for example, gender or race) distribution for 
the population to be adjusted. It is more likely that these data will be available than the 
age-specifi c death rates in the population to be adjusted. The fi rst step in calculating 
the indirect age-adjusted death rate is to multiply the age-specifi c death rates of the 
standard population (the U.S.) by the corresponding age distribution of the population 
to be adjusted. Table 3.15 shows the calculation of indirect age-adjusted rate for 
American Indian or Alaskan Native male and female populations using the 2000 
U.S. age-specifi c rates as the standard.

The observed crude death rates for American Indian/Alaskan Native male and female 
populations are 439.6 and 367.7 per 100,000, respectively. The male crude death rate is 
about 20 percent higher than the female rate. When age is taken into account, the gender 
difference in mortality may increase, since the average age of the female population is 
older than that of the male population.

In performing the indirect age standardization, the 2000 U.S. age-specifi c mortality 
rates are applied to the age distribution of the male and female populations of American 
Indian/Alaskan Natives. The expected death rates are created by multiplying the U.S. 
age-specifi c death rates by the proportion of people in the corresponding age groups for 
the male and female American Indian/Alaskan Native populations and then summing 
these expected numbers of deaths over the age categories. The ratio of the observed to 



the expected death rates is the standardized mortality ratio (SMR). From Table 3.15, we 
see that the SMRs for the male and female populations are 1.063 and 0.695, respectively. 
The male SMR is 53 percent higher than the female SMR and the gender difference is 
more markedly shown, just as we expected. To fi nd the indirect age-adjusted death rate 
for American Indian/Alaskan Native populations, we now multiply the crude rate for 
the standard population (854.0 per 100,000) by the SMRs. Thus, the indirect age-
adjusted mortality rates for American Indian/Alaskan Native male and female popula-
tions are 907.8 and 593.3 per 100,000, respectively.

Both the direct and indirect age-adjustment methods can be used to adjust for more 
than one variable; for example, age and gender are often used together. Gender is frequently 
used because the mortality experiences are often quite different for females and males.

3.6   Measures of Change over Time
To understand the change in the height of a child or the growth of population over time, 
we may plot the data against time. We look fi rst for an overall pattern and then for 
deviations from that pattern. For certain phenomena the points follow a straight line, 
and for other phenomena the points are nonlinear. In this section, we examine two well-
known patterns of growth: linear and exponential.

3.6.1   Linear Growth

Linear growth means that a variable increases by a fi xed amount at each unit of time. 
The height of a child or the production of food supply may take this pattern. To describe 
this pattern, we write a mathematical model for the straight-line growth of variable y.

 y = a + bt.

Table 3.15 Indirect age-adjusted death rates for the 2002 male and female populations of American 
Indian or Alaska Natives using the 2000 U.S. age-specifi c death rates as the standard.

  American Indian or Alaskan Native, 2002

  Male Population Female Population

 U.S. Age-Specifi c Population Expected Population Expected
Age Ratesa 2000 Proportion Deathsa Proportion Deathsa

All ages, crude 854.0 439.6a  367.7a

Under 1 736.7 0.013681 10.1 0.012970 9.6
1–4 32.4 0.065798 2.1 0.063554 2.1
5–14 18.0 0.192182 3.5 0.186122 3.4
15–24 79.9 0.186971 14.9 0.175746 14.0
25–34 101.4 0.154397 15.7 0.144617 14.7
35–44 198.9 0.151792 30.2 0.154345 30.7
45–54 425.6 0.117915 50.2 0.124514 53.0
55–64 992.2 0.065798 65.3 0.070687 70.1
65–74 2,399.1 0.033225 79.7 0.038911 93.4
75–84 5,666.5 0.014332 81.2 0.020752 117.6
85 & over 15,524.4 0.003909 60.7 0.007782 120.8

Total  1.000000 413.6 1.000000 529.4

Standardized mortality ratio (SMR) 439.6/413.6 = 1.063 367.7/529.4 = 0.695
Indirect age-adjusted death rate 854(1.063) = 907.8a 854(0.695) = 593.3a

aPer 100,000 population
Source: NCHS, 2004, Tables 1, 34, and 35 and page 442
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In this model, b is the increment by which y changes when t increases by one unit and 
a is the base value of y when t = 0.

Example 3.14

The stature-for-age growth chart of U.S. boys is shown in Figure 3.16 (NCHS) 2006. 
The growth pattern exhibits a roughly linear trend between ages 2 to 15 years. For 
a typical child (50th percentile) a is about 34 inches (at age 2) and b is roughly 2.5 

Figure 3.16 Growth chart (stature-for-age) for U.S. boys, 2 to 20 years of age.



inches. From this we can tell that the stature of a 12-year-old boy would be about 59 
inches [= 34 + 2.5(10)], and the chart also shows this value. The chart also shows 
that the stature of boys varies more as they grow older.

We will explore this linear growth model further in Chapter 13. Because no straight 
line usually passes exactly through all data points, we need to fi nd a line that fi ts the 
points as well as possible. We will learn how to estimate the best fi tting line from the 
data.

3.6.2   Geometric Growth

The population size of a community usually does not follow the linear growth model. 
The change in the population size over time in an area can simply be described as the 
number of people added or reduced between two time points. For comparison purposes, 
we can express the change as percent of the base population. If the time period is the 
same, the percent of change can be compared between populations. The percent of 
change from time 0 to time t in the population P is calculated by

 

P P

P

P

P
t t− ( ) = −( ) ( )0

0 0

100 1 100 .

For example, the U.S. population increased from 248,709,873 in 1990 to 281,421,906 in 
2000, showing a 13.15 percent increase over a 10-year period.

Percent change indicates a degree of change, but it is not yet a “rate of change.” Like 
other vital rates, a rate of change should express change as a relative change in popula-
tion size per year. We need to convert the percent change into an annual rate. But we 
cannot simply take one-tenth of the percent change (arithmetic mean) as an annual 
growth rate. Equal degrees of growth do not produce equal successive absolute incre-
ments because they follow the principle of compounded interest. In other words, a con-
stant rate of growth produces larger and larger absolute increments, simply because the 
base of total population steadily becomes larger. Therefore, the linear growth model 
would not apply to population growth.

If a population is growing at an annual rate of r, then the population at time 1 would 
be the base plus an incremental change — that is, (a + ar) or a(1 + r). If the population 
is subject to the same constant growth rate, the population at time t will be

 y = a(1 + r) t.

Example 3.15

The geometric growth model fi ts well to the growth of money deposited at a bank 
with the interest added at the end of each year. Suppose $1000 is deposited and earns 
interest at an annual rate of 10 percent for 10 years. The amount in the account (y) 
at each anniversary date can be calculated by y = 1000(1 + 0.1) t, where t ranges from 
1 to 10. Figure 3.17 shows the results. The money grew more than 100 percent 
because the interest was compounded annually.
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3.6.3   Exponential Growth

We know that population is changing continuously as births and deaths occur through-
out the year. We want to fi nd a model that describes the growth as a continuous process. 
This new model is the exponential growth model and it has the following form:

 y = aert

where r is annual growth rate, e is a mathematic constant approximately equal to 
2.71828, and a is the population at t = 0. Figure 3.18 graphically shows the exponential 
growth of a population of 10,000 at an annual growth rate of 5 percent over a 30-year 
period.

Relating to the bank interest rate example, this model assumes that the interest is 
compounded continuously.

Figure 3.17 Account value over time for $1000 earning an annual interest rate of 10 percent.

If one wants to have the $1000 to be tripled over the 10-year period, then what 
level of annual interest rate would be required? We can solve 3000 = 1000(1 + r)10 
for r as follows:

r + =
( )( ) = ( ) =1
3

10
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10
1 1161exp

ln
exp
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One needs to fi nd a bank that offers an annual interest rate of 11.6 percent.

Example 3.16

The U.S. population grew from 248,709,873 in 1990 to 281,421,906 in 2000. What 
would be an annual growth rate over the 10-year period? We can solve the following 
equation for r as follows:



281421906 = 248709873e10r

ln(281421906/248709873) = 10r

r = ( )⎛
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The U.S. population grew at the annual rate of 1.24 percent.

Using the growth rate computed, we could project future size of population. Let us 
project the U.S. population in 2009 assuming the rate of growth remains constant.

y = 281421906(e9(0.01236)) = 292050102

Over 10 million people would be added to the U.S. population in 9 years. This type 
of projection is acceptable for a short time period, but it should not be used for a 
long-range projection.

Example 3.17

(population doubling time): How long would it take to double the 2000 U.S. popula-
tion assuming the annual growth rate remains constant? To answer this question, we 
solve the following equation for t.

2a = aert, where r = 0.01236

2 = e0.01236t

ln(2) = 0.01236t

t =
( )

= =ln

.

.

.
. .

2

0 01236

0 69315

0 01236
56 09

The U.S. population will double in 56 years or in 2056.

Doubling means that y/a = 2 and natural logarithm of 2 is 0.69315. The solution 
suggests that if a population is increasing at an annual rate of 1 percent, then the 
population size will double in about 70 years. The time required to triple the popula-
tion can be obtained by using ln(3). Similarly, the time required to increase the 
population by 50 percent can be obtained by using ln(1.5).

Figure 3.18 Increase of 
population of 10,000 at 
an annual rate of 
increase of 5 percent.
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3.7   Correlation Coeffi cients
Earlier in the chapter, we presented a scatter plot of serum creatinine level and systolic 
blood pressure for 40 patients in the DIG40 data set, and we concluded that there was 
no appreciable association between serum creatinine and systolic blood pressure. 
Although this statement is informative, it is imprecise. To be more precise, a numerical 
value that refl ects the strength of the association is needed. Correlation coeffi cients are 
statistics that refl ect the strength of association.

3.7.1   Pearson Correlation Coeffi cient

The most widely used measure of association between two variables, X and Y, is the 
Pearson correlation coeffi cient denoted by r (rho) for the population and by r for the 
sample. This measure is named after Karl Pearson, a leading British statistician of 
the late 19th and early 20th centuries, for his role in the development of the formula for 
the correlation coeffi cient.

We want the correlation coeffi cient to be large, approaching +1 as a limit, as the 
values of the X, Y pair show an increasing tendency to be large or small together. When 
the values of the X, Y pair tend to be opposite in magnitude — that is, a large value of 
X with a small value of Y, or vice versa — the measure should be large negatively, 
approaching −1 as the limit. If there is no overall tendency of the values of the X, Y pair, 
the measure should be close to 0.

By large or small, we mean in relation to its mean. Because of the preceding require-
ments for the correlation coeffi cient, one simple function that may be of interest here is 
the product of (xi − x–) with (yi − y–). Let us focus on the sign of the differences, tempo-
rarily ignoring the magnitude. The possibilities are as follows:

xi − x– yi − y– (xi − x–)(yi − y–)

+ + +
− − +
+ − −
− + −

The product of the differences does what we want; that is, it is positive when the X, Y 
pairs are large or small together and negative when one variable is large and the other 
variable is small. By summing the product of the differences over all the sample pairs, 
the sum should give some indication whether there is a positive, negative, or no associa-
tion in the data. If all the products are positive (negative), the sum will be a large positive 
(negative) value. If there is no overall tendency, the positive terms in the sum will 
tend to cancel out with the negative terms in the sum, driving the value of the sum 
toward 0.

However, the value of the sum of the products depends on the magnitude of the 
data. Since we want the maximum value of our measure to be 1, we must do something 
to remove the dependence of the measure on the magnitude of the values of the vari-
ables. If we divide the measure by something refl ecting the variability in the X and Y 
variables, this should remove this dependence. The actual formula for r, refl ecting these 
ideas, is
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Dividing the numerator and denominator of this formula by n − 1 enables us to rewrite 
the formula in terms of familiar statistics — that is,
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In this version, we used the formula for the sample variance — that is, s x xx i
2 2= −( )Σ

n −( )1 . The sample variance can also be expressed as s x x x x nx i i
2 1= −( ) −( ) −Σ . 

Hence, the sample variance could also be said to measure how X varies with itself. The 
numerator looks very similar to this, and it measures how the variables X and Y covary.

The denominator, s sx y
2 2* , standardizes r so that it varies from −1 to +1. For example, 

if Y = X, then the numerator becomes Σ x x ni −( ) −2 1— that is, s2
x, which is the same 

as the denominator, and their ratio is +1.

For the data shown in Figure 3.12 the correlation coeffi cient turns out to be 0.025, 
confi rming our earlier statement of a very slight positive relationship between serum 
creatinine and systolic blood pressure.

Example 3.18

We consider the following data on diastolic and systolic blood pressure readings for 
12 adults.

Systolic blood pressure: 120 118 130 140 140 128 140 140 120 128 124 135
Diastolic blood pressure:  60  60  68  90  80  75  94  80  60  80  70  85

We fi rst use a scatter plot of systolic blood pressure versus diastolic blood pressure 
(shown in Figure 3.19) to get a feel for the data. The jittering is added in the plot to 

Figure 3.19 Scatter plot of systolic blood pressure versus diastolic blood pressure.
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show the identical values for four adults. By adding vertical and horizontal lines 
showing the mean diastolic and mean systolic blood pressures, we can partition the 
scatter plot into four quadrants. Because most of the data cluster in the upper right 
and lower left quadrants, we expect that there will be a very strong correlation 
between these two variables.

The calculated correlation coeffi cient is 0.894, showing a strong positive 
association.

The correlation coeffi cient is not a general purpose measure of association, but it 
measures linear association — that is, the tendency of the (xi, yi) pairs to lie on a straight 
line. The following example demonstrates this point.

Example 3.19

For this example we consider the following values of Y and X:

 Y: 4 1 0 1 4
X:  −2  −1  0  1  2

The sample mean of Y is 2, and the sample mean of X is 0. The pieces required to 
calculate r are

          Y X (Y − 2) * (X − 0) = product (Y − 2)2 (X − 0)2

          4 −2 2 * −2 = −4 4 4
          1 −1 −1 * −1 =  1 1 1
          0  0 −2 *  0 =  0 4 0
          1  1 −1 *  1 = −1 1 1
          4  2 2 *  2 =  4 4 4

Total 10  0 0  0   0 14 10

The estimated Pearson correlation coeffi cient, r, is then 0 14 10 0∗ = .  There is 
no linear association between Y and X. However, note that the fi rst column (values of 
Y) and the last column (X 2) are the same. Hence, there is a perfect quadratic (squared) 
relation between Y and X that was not found by the Pearson correlation coeffi cient. 
The scatter plot in Figure 3.20 graphically shows this relationship. Connecting these 
points gives the parabola shape associated with a quadratic relationship.

Thus, even if r is 0, it does not mean that the two variables are unrelated; it means 
that there is no linear relation between the two variables. The use of a scatterplot 
fi rst, followed by the calculation of r, may fi nd the existence of a nonlinear associa-
tion that could be missed when r alone is used.



Figure 3.20 Scatter plot for the data in Example 3.20.

3.7.2   Spearman Rank Correlation Coeffi cient

The Pearson correlation coeffi cient was designed to be used jointly with normally dis-
tributed variables. However, it is used, sometimes incorrectly, with all types of data in 
practice. Instead of using the Pearson correlation coeffi cient with nonnormally distrib-
uted variables, it may be better to use a modifi cation suggested by Spearman, an infl u-
ential British psychometrician, in 1904. Spearman suggested ranking the values of Y 
and also ranking the values of X. These ranks are then used instead of the actual values 
of Y and X in the formula for the sample Pearson correlation coeffi cient. The result of 
this calculation is the sample Spearman rank correlation coeffi cient, denoted by rs. In 
addition to being used with nonnormal continuous data, the Spearman rank correlation 
coeffi cient can also be used with ordinal data.

When ranking the data, ties (two or more subjects having exactly the same value of 
a variable) are likely to occur. In case of ties, the tied observations receive the same 
average rank. For example, if three observations of X are tied for the third smallest 
value, the ranks involved are 3, 4, and 5. The average of these three ranks is 4, and that 
is the rank that each of the three observations would be assigned. The occurrence of 
ties causes no problem in the calculation of the Spearman correlation coeffi cient when 
the Pearson formula is used with the ranks.

Example 3.20

Let us calculate the Spearman rank correlation coeffi cient for the data used in 
Example 3.19. The values of systolic and diastolic blood pressure values and their 
respective rankings are shown here. Note that there are several ties in ranking and 
average rankings are given.
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 SBP DBP

Value Rank Value Rank

120 2.5 60 2
118 1.0 60 2
130 7.0 68 4
140 10.5 90 11
140 10.5 80 8
128 5.5 75 6
140 10.5 94 12
140 10.5 80 8
120 2.5 60 2
128 5.5 80 8
124 4.0 70 5
135 8.0 85 10

The calculated rs is 0.866, slightly less than the Pearson correlation coeffi cient of 
0.894.

See Program Note 3.6 on the website for calculation of Pearson and Spearman correla-
tion coeffi cients.

Conclusion
In this chapter we presented tables, graphs, and plots, as well as a few key statistics. 
The pictures and statistics together enable one to describe single variables and the rela-
tionship between two variables for the sample data. Although the description of the 
sample data and the provision of estimates of the population parameters are important, 
sometimes we wish to go beyond that — for example, to give a range of likely values 
for the population parameters or to determine whether or not it is likely that two popula-
tions under study have the same mean. Doing this requires the use of probability dis-
tributions, a topic covered in a subsequent chapter.

EXERCISES

3.1 Create a bar chart of the following data on serum cholesterol for non-Hispanic 
whites based on Table II-42 in Nutrition Monitoring in the United States (Life 
Sciences Research Offi ce 1989)

Gender Age N Mean Serum Cholesterol (mg/dL)a

Male 40–49 572 223.5
 50–59 575 228.9
 60–69 1354 226.2
 70–74 427 215.8
Female 40–49 615 218.5
 50–59 649 243.6
 60–69 1487 249.0
 70–74 533 248.3
aThese data are from the Second National Health and Nutrition Examination 
Survey of noninstitutionalized persons conducted during the 1976–1980 period 
(NCHS 1981)



 A high value of serum cholesterol is thought to be a risk factor for heart disease. 
The National Cholesterol Education Program (NCEP) of the National Institutes 
of Health in 1987 stated that the recommended value for serum cholesterol is 
below 200  mg/dl, and a value between 200 and 240 is considered to be the 
borderline. A value above 240 may indicate a problem, and NCEP recom-
mended that a lipoprotein analysis should be performed. Based on these data, 
it appears that many non-Hispanic whites have serum cholesterol values that 
are too high, particularly women. The medical literature is also fi nally begin-
ning to recognize that homocysteine is a very important risk factor for heart 
disease, even among people with normal levels of serum cholesterol (http://
www.quackwatch.org/03HealthPromotion/homocysteine.html).
a. Give some possible reasons why non-Hispanic white males have higher 

mortality from heart and cerebrovascular diseases when it appears from 
these data that non-Hispanic white females should have the higher rates.

b. Provide a possible explanation why the serum cholesterol values for older 
males are lower than for the younger males and the reverse is true for 
females.

3.2 Create line graphs for the following expenditures for the Food Stamps Program 
in New York State during the 1980s.

Year Actual Expenditures (in millions of dollars) Infl ation-adjusted Expendituresa

1980 745.3 745.3
1981 901.2 814.1
1982 835.7 717.3
1983 930.9 766.8
1984 904.4 709.3
1985 939.4 712.2
1986 926.5 685.3
1987 901.8 638.7
1988 909.1 613.4
1989 964.7 616.4
aExpenditures adjusted for infl ation using the consumer price index for the Northeast 
Region with 1980 as the base.
Source: Division of Nutritional Sciences, 1992

 What, if any, tendencies in the expenditures (both actual and infl ation-adjusted) 
do you see? Which expenditures data do you think should be used in describing 
the New York State Food Stamps Program? Explain your choice.

3.3 Use line graphs to represent the short-stay hospital occupancy rates shown 
here.

 Hospital Ownership

Year Federal Nonprofi t Proprietary State/Local

1960 82.5 76.6 65.4 71.6
1970 77.5 80.1 72.2 73.2
1975 77.6 77.4 65.9 69.7
1980 77.8 78.2 65.2 70.7
1985 74.3 67.2 52.1 62.8
1989 71.0 68.8 51.7 64.8

Source: NCHS, 1992

 Discuss the trends, if any, in these data.
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3.4 Based on DIG200 data on the Web, explore prevalence of hypertension (variable 
name: HYPERTEN) by age, sex, and race, using appropriate descriptive tools 
you learned in Chapter 3. Present and discuss your fi ndings, offering possible 
explanations for your fi ndings and suggesting ways to conduct further study on 
the subject.

3.5 The following data on hazardous government jobs appeared as a bar chart in 
the “USA SNAPSHOTS” section of USA Today on April 30, 1992. The variable 
shown was the number of assaults suffered by federal offi cers based on 1990 
FBI fi gures. The least number of assaults suffered were by the Internal Revenue 
Service (three assaults), the Bureau of Indian Affairs (fi ve assaults), and the 
Postal Inspectors (six assaults). The most assaults were suffered by the Immi-
gration and Naturalization Service with 409, followed by U.S. attorneys with 
269 and the Bureau of Prisons with 185 assaults. What additional information 
do you need to conclude anything about which federal offi cers have the more 
hazardous — from the perspective of assaults — jobs?

3.6 A study was performed to determine which of three drugs was more effective 
in the treatment of a health problem. The responses of subjects who received 
each of three drugs (A, B, and C) were provided by Cochran (1955). The fol-
lowing shows the pattern of response for the 46 subjects:

             Response to

A B C Frequency

yes yes yes 6
yes yes no 16
yes no yes 2
yes no no 4
no yes yes 2
no yes no 4
no no yes 6
no no no 6

 Total        46

a. Give an example of a type of health problem that would be appropriate for 
this study.

b. Create a two-way frequency table showing the relationship between drugs 
A and C. Does it appear that the responses to these drugs are related?

c. Create a bar chart that shows the number of subjects with a favorable 
response by drug.

3.7 Using the data shown in Table 3.1, calculate the coeffi cient of variation for body 
mass index. Do you think that any measure of central tendency adequately 
describes these data? Explain your answer.

3.8 Lee (1980) presented survival times in months from diagnosis for 71 patients 
with either acute myeloblastic leukemia (AML) or acute lymphoblastic 
leukemia (ALL).

AML patients:
18 31 31 31 36 01 09 39 20 04 45 36 12 08 01 15 24 02 33 29 07 00 01 02 12 09 01 01 09 05 27 01 13 01 
05 01 03 04 01 18 01 02 01 08 03 04 14 03 13 13 01

ALL patients:
16 25 01 22 12 12 74 01 16 09 21 09 64 35 01 07 03 01 01 22



a. Calculate the sample mean and median for both AML and ALL patients 
separately. Which measure do you believe is more appropriate to use with 
these data? Explain.

b. Create box plots, histograms, and stem-and-leaf plots to show the distribu-
tions of the survival times for AML and ALL patients. Which type of fi gure 
is more informative for these data? Which type of patient has the longer 
survival time after diagnosis?

c. Give examples of additional variables that are needed in order to interpret 
appropriately these survival times.

3.9 Is it possible to calculate the mean occupancy rate for the short-stay hospitals 
in 1960 given the data provided in Exercise 3.3? If it is, calculate it. If not, state 
why it cannot be calculated.

3.10 Provide an appropriate summarization of the following data on the results of 
inspections of food establishments (e.g., food processing plants, food ware-
houses, and grocery stores) conducted by the Division of Food Inspection Ser-
vices of the New York State Department of Agriculture and Markets.

 Number Inspected Approximate Number Failed

Year Upstate NYC & LIa Upstate NYC & LI

1980 19,599 23,676 2,548 5,209
1982 17,183 22,767 3,093 6,830
1984 13,731 18,677 2,746 6,350
1986 10,915 15,948 2,292 6,379
1988 13,614 15,070 3,267 6,179
1990 12,609 16,285 3,026 6,677
aNew York City and Long Island
Source: Division of Nutritional Sciences, 1992

 Do you think that there were more or fewer cases of foodborne illness in New 
York State in 1990 than in 1980?

3.11 Diagnosis Related Groups (DRGs) are used in the payment for the health care 
of Medicare-funded patients. In the creation of the DRGs, suppose that the 
lengths of stay for 50 patients in one of the proposed groups were the 
following:

1  1  2  2  2  2  2  2  3  3  3  4  4  4  5  5  5  5  6  6
6  7  7  8  8  8  9  9 10 12 13 15 15 17 17 18 19 19 20 23
26 29 31 34 36 43 49 52 67 96

 Calculate the mean, standard deviation, coeffi cient of variation, and the fi ve key 
percentiles for these data. Are these data skewed? Do the patients in this DRG 
appear to have homogeneous lengths of stay? Which measures, if any, should 
be used in the description of these data? Explain your answer.

3.12 The following data represent bacteria counts measured in water with levels of 
0, 1, and 3% sodium chloride. The counts are the number per milliliter.
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a. Calculate the mean and the coeffi cient of variation for these data.
b. Calculate the median and the geometric mean.
c. Comment on which measure of central tendency is appropriate for these 

data.
3.13 Of the estimated 1,488,939 male residents of Harris County, Texas, in 1986, 

there were 8,672 deaths. Of the 1,453,611 female residents, there were 6,913 
deaths. The estimated 1986 U.S. population was approximately 48.7 percent 
male and 51.3 percent female.
a. Calculate the crude death rate and the sex-specifi c death rates for Harris 

County in 1986.
b. Do you believe that a sex-adjusted death rate will be very different from the 

crude death rate? Provide the reason for your belief.
c. Calculate a sex-adjusted death rate for Harris County in 1986.

3.14 The Pearson correlation coeffi cient between age and creatinine for the data in 
Table 3.1 was 0.319. This suggests a modest linear relation between these two 
variables.
a. Create a scatter plot of protein per age and creatinine. Is there a linear rela-

tionship? Are there any observations that clearly deviate from the linear 
trend?

b. Calculate the Pearson correlation coeffi cient, ignoring the one or two obser-
vations that are considered to be outliers. Which measure of correlation do 
you think best characterizes the strength of the relation?

3.15 The U.S. population (in 1000) in 1980 and 2000 are shown below by ethnic 
groups:

Level of Sodium Chloride Counts

0% 107, 106, 108, 109, 108, 1010

1% 104, 104, 105, 106

3% 103, 104, 104, 103, 105

Ethnic Groups 1980 2000

White 194,811 229,086
Black/African American 25,531 36,594
American Indian/Alaskan Native 1,420 2,984
Asian/Pacifi c Islander 3,729 11,757

Source: U.S. Bureau of the Census, 2000

a. Calculate the annual growth rate, and show which group grew the fastest.
b. Project the population in 2015 by ethnic group, assuming the growth rate 

remains constant over time.
c. When will the 2000 population be doubled if the growth rate remains 

constant?

REFERENCES

Armitage, P., and G. A. Rose. “The Variability of Measurements of Casual Blood Pressure.” 
Clinical Science 30:325–335, 1966.



Cochran, W. G. “The Comparison of Percentages in Matched Samples,” Biometrika 37:356–366, 
1955.

The Digitalis Investigative Group. “The Effect of Digoxin on Mortality and Morbidity in Patients 
with Heart Failure.” New England Journal of Medicine 336:525–533, 1997.

Division of Nutritional Sciences, Cornell University in Cooperation with the Nutrition Surveil-
lance Program of the New York State Department of Health. New York State Nutrition: State 
of the State, 1992. NYSDH, New York, 1992, Tables 2.5 and 3.2.

Kennedy, G. Invitation to Statistics. Blackwell, 1984, pp. 43–47.

Lee, E. T. Statistical Methods for Survival Data Analysis. Belmont, CA: Wadsworth, 1980.

Life Sciences Research Offi ce, Federation of American Societies for Experimental Biology. 
Nutrition Monitoring in the United States: An Update Report on Nutrition Monitoring. DHHS 
Publ. No. (PHS) 89-1255. U.S. Department of Agriculture and the U.S. Department of Health 
and Human Services, Public Health Service, Washington, U.S. Government Printing Offi ce, 
1989.

National Center for Health Statistics. McDowell, A., A. Engel, J. T. Massey, and K. Maurer. “Plan 
and Operation of the Second National Health and Nutrition Examination Survey, 1976–80,” 
Vital and Health Statistics, Ser. 1, No. 15, DHHS Publ. No. (PHS) 81-1317. Public Health 
Service, Washington, U.S. Government Printing Offi ce, 1981.

National Center for Health Statistics. Health, United States, 1990. Hyattsville, MD: DHHS Pub. 
No. 91-1232. Public Health Service, 1991.

National Center for Health Statistics. Health, United States, 1991 and Prevention Profi le. DHHS 
Publ. No. 92-1232. Public Health Service, Hyattsville, MD, 1992.

National Center for Health Statistics. Health, United States, 2004 with Chartbook on Trends in 
the Health of Americans. Hyattsville, MD: DHHS Pub. No. 2004-1232, 2004.

National Center for Health Statistics. www.cdc.gov/nchs/data/nhanes/growthcharts/set1/
chart07.pdf, 2006.

Scott, D. W. “On Optimal and Data-Based Histograms.” Biometrika 66:605–610, 1979.

Tarter, M. E. and R. A. Kronmal, “An Introduction to the Implementation and Theory of Non-
parametric Density Estimation.” American Statistician 30:105–112, 1976.

U.S. Bureau of the Census. The 2000 Census of Population and Housing. Summary Tape File 
1A.

van Belle, G. Statistical Rules of Thumb. John Wiley, 2002, pp. 162–167.

References  69



This page intentionally left blank



Probability and 
Life Tables

Chapter Outline
4.1 A Defi nition of Probability
4.2 Rules for Calculating Probabilities
4.3 Defi nitions from Epidemiology
4.4 Bayes’ Theorem
4.5 Probability in Sampling
4.6 Estimating Probabilities by Simulation
4.7 Probability and the Life Table

As was mentioned in Chapter 3, often we want to do more than simply analyze or sum-
marize the data in graphs or statistics. For example, we may want to determine whether 
two drugs or treatments are equally effective and safe or whether the age-adjusted death 
rates for two areas are the same. To answer these questions, we require knowledge of 
probability, the topic of this chapter.

4.1   A Defi nition of Probability
We have all encountered the use of probability — in the weather forecast, for example. 
The forecast usually involves an estimate of the probability of rain, as in the statement 
that “the probability of rain tomorrow is 20 percent.” As its use in the weather forecast 
demonstrates, probability is a numerical assessment of the likelihood of the occurrence 
of an outcome of a random variable. In the weather forecast, weather is the random 
variable and rain is one of its possible outcomes.

Before considering the numerical assessment of likelihood, we should consider 
random variables. There are both discrete and continuous random variables. A discrete 
(nominal, categorical or ordinal) random variable is a quantity that refl ects an attribute 
or characteristic that takes on different values with specifi ed probabilities. A continuous 
(interval or ratio) random variable is a quantity that refl ects an attribute or characteristic 
that falls within an interval with specifi ed probabilities.

Hypertension status is a discrete random variable when the values or levels of this 
variable are defi ned as its presence (can be defi ned as systolic blood pressure greater 
than 140  mmHg, diastolic blood pressure greater than 90  mmHg, or taking antihyper-
tensive medication) or absence. Other examples of discrete random variables include 
racial status, the number of children in a family, and type of health insurance. Examples 
of continuous random variables include height, blood pressure, and the amount of lead 
emissions as they are usually measured.

4
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We shall defi ne probability of the occurrence of an outcome or interval of a random 
variable as its relative frequency in an infi nite number of trials or in a population. A 
probability is a population parameter. An observed proportion (relative frequency) from 
a sample is a statistic that can be used to estimate a probability. We shall use the data 
in Table 4.1 to demonstrate the calculation of the probability of different racial categories 
in the United States in 2000. As shown in Table 4.1, there are four major racial groups 
used in the U.S. Population Census and a fi fth category that combines all other races. 
Those who claimed two or more races are in the sixth category.

The probability of a person selected at random being white was 0.751 (= 211460626 
/281421906), or 75.1 percent. The corresponding probabilities of being black, Asian and 
Pacifi c Islander, American Indian, and some other races were 0.123, 0.038, 0.009, 
and 0.055, respectively. Finally, the probability of a person claiming two or more races 
was 0.024. These six probabilities sum to 1.000 or 100.0 percent, as shown in Table 
4.1.

Since a probability is the number of occurrences of an outcome divided by the total 
number of occurrences of all possible outcomes of the variable under study, this means 
that a probability cannot be larger than 1.00 or 100 percent in value. By the same reason-
ing, a probability cannot be smaller than 0.00 or 0 percent in value. Therefore, the only 
valid values for probabilities range from 0 to 1 or 0 to 100 percent. Additionally, use of 
the relative frequency defi nition means that the sum of the probabilities of all the possible 
outcomes of a random variable must be 1.00 or 100 percent. If a probability falls outside 
the 0 to 1 range, or if the sum of the probabilities of all the possible outcomes of a vari-
able do not sum to 1 (with allowance for rounding), a mistake has been made.

For many variables in the health fi eld, the probability of an outcome is estimated 
from a large number of observations and may change over time. For example, the prob-
abilities of the different racial groups in the United States in 2020 will be different from 
the 2000 probabilities. As an additional example of changing probabilities, the estimates 
of the age-adjusted probabilities of obese persons (body mass index greater than or equal 
to 30) among U.S. adults (ages 20–74 years) increased from 0.151 in 1976–1980 to 0.233 
in 1988–1994 and to 0.311 in 1999–2002 (NCHS 2004). This change in the values of a 
probability contrasts with the lack of change in the probabilities associated with physical 
phenomena, such as tossing a coin or a pair of dice. For example, when a fair coin is 
tossed, the probability of a head is assumed to be 0.5 or 50 percent, and it does not 
change.

The listing of the probabilities of all possible outcomes of a discrete variable is its 
probability distribution. For example, the probability distribution of the racial composi-

Table 4.1 Percent of population in selected racial groups: United States, 2000.

Race Number Percent

Total ............................................................................  281,421,906 100.0
White ..........................................................................  211,460,626 75.1
Black or African American ....................................  34,658,190 12.3
Asian and Pacifi c Islander .....................................  10,641,833 3.8
American Indian and Alaskan Native .................  2,475,956 0.9
Some other races ....................................................  15,359,073 5.5
Two or more races ..................................................  6,826,228 2.4

Source: U.S. Bureau of the Census, 2000



tion of the U.S. population in 2000 is shown in the last column of Table 4.1. More will 
be said about probability distributions and their use in the next chapter.

4.2   Rules for Calculating Probabilities
A few basic rules govern the calculation of probabilities of compound outcomes or 
events, and we will use the data in Table 4.2 to explain them. Entries in Table 4.2 are 
the number of live births by birth weight and the trimester in which prenatal care was 
begun. For example, the entry in the third row and the second column, 3271, is the 
number of live births to women who had begun their prenatal care during their second 
trimester and whose babies’ birth weights were greater than 7.7  lb.

4.2.1   Addition Rule for Probabilities

The data in Table 4.2 can be used to determine whether or not there is a relation between 
the timing of the beginning of prenatal care and birth weight. However, before examin-
ing this issue, let us calculate a few additional probabilities. For example, the probability 
of a woman in Harris County, Texas, in 1986 having a low birth weight baby (less than 
or equal to 5.5  lb) was 0.069 (= 3541/51473). This value is very close to the 1986 value 
of 0.068 for the United States (NCHS 1992). Let us consider a slightly more complex 
example. The probability of late prenatal (third trimester) or no prenatal care is simply 
the sum of their individual probabilities, that is, 2337/51473 + 1695/51473 which is 0.078 
(= 4032/51473). This value is slightly greater than the corresponding 1986 U.S. value 
of 0.060 (NCHS 1992). In these calculations of probabilities, we are considering births 
in Harris County, Texas, in 1986 as our population. If the intended population were 
Texas or the United States, then the preceding values would be sample estimates — that 
is, observed proportions — of the probabilities. However, a sample consisting of births 
in Harris County should not be used to draw inferences about births in Texas or the 
United States because the Harris County births are likely not to be representative of 
either of these two larger units.

So far, these probabilities have focused on row or column totals (marginal totals), 
not on the numbers in the interior of the table (cell entries). Entries in the interior of 
the table deal with the intersection of outcomes or events. For example, the outcome of 
a woman having a live birth of less than or equal to 5.5  lb and having begun her prenatal 
care during the fi rst trimester is the intersection of those two individual outcomes. The 

Table 4.2 Number of live births by birth weight and trimester of fi rst prenatal care: Harris County, 
Texas, 1986 (excluding 1,180 births with unknown birth weight or trimester of fi rst prenatal care).

 Trimester Prenatal Care Began

Birth Weight 1st 2nd 3rd No Care Total

≤5.5  lb; ∼2,500  g  2,412 754 141 234 3,541
5.6–7.7  lb; ∼2,500–3,500  g 20,274 5,480 1,458 1,014 28,226
>7.7  lb; ∼3,500  g 15,250 3,271 738 447 19,706

Total 37,936 9,505 2,337 1,695 51,473

Source: Harris County Health Department, 1990, Table 1.S
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probability of this intersection — that is, of these two outcomes occurring together — is 
easily found to be 0.047 (= 2412/51473).

We just found the probability of a baby weighing less than or equal to 5.5  lb by using 
the row total of 3541 and dividing it by the grand total of 51,473. Note that we can also 
express this probability in terms of the probability of the intersection of a birth weight 
of less than or equal to 5.5  lb with each of the prenatal care levels — that is,
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This can be expressed in symbols. Let A represent the outcome of a birth weight less 
than or equal to 5.5  lb and Bi, i = 1 to 4, represent the four prenatal care levels. The 
symbol ∩ is used to indicate the intersection (to be read as “and”) of two individual 
outcomes. Then we have

 Pr{A} = Pr{A ∩ B1} + Pr{A ∩ B2} + Pr{A ∩ B3} + Pr{A ∩ B4}

which, using the summation symbol, is

 
Pr Pr .A A Bi

i

{ } = ∩{ }∑
 

(4.1)

Suppose now that we want to fi nd for a woman who had a live birth the probability 
that either the birth weight was 5.5  lb or less or the woman began her prenatal care 
during the fi rst trimester. It is tempting to add the two individual probabilities — of a 
birth weight less than or equal to 5.5  lb and of prenatal care beginning during the fi rst 
trimester — as we had done previously. However, if we added the entries in the fi rst 
row (birth weights less than or equal to 5.5  lb) to those in the fi rst column (prenatal 
care begun during the fi rst trimester), the entry in the intersection of the fi rst row 
and column would be included twice. Therefore, we have to subtract this intersection 
from the sum of the two individual probabilities to obtain the correct answer. The 
calculation is

 

Pr . Pr . Pr Pr .≤{ } = ≤{ } + { } − ≤5 5 5 5 1 5 5 1lb or 1st trim. lbst trim. and st trrim.{ }

= + − =3541 37936 2412

51473
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This can be succinctly stated in symbols. Let A represent the outcome of live births of 
5.5  lb or less and B represent the outcome of the initiation of prenatal care during the 
fi rst trimester. An additional symbol ∪ is used to indicate the union (to be read as “or”) 
of two individual outcomes. The intersection of these two outcomes is represented by 
A ∩ B. In symbols, the rule is

 Pr{A ∪ B} = Pr{A} + Pr{B} − Pr{A ∩ B}. (4.2)

This rule also was used in the earlier example of late or no prenatal care, but, in that 
case, the outcomes were disjointed — that is, there was no overlap or intersection. 
Hence, the probability of the intersection was zero.



As the sum of the probabilities of all possible outcomes is one, if there are only two 
possible outcomes — say, A and not A (represented by A

–
) — we also have the following 

relationship:

 Pr{A} = 1 − Pr{A
–}. (4.3)

4.2.2   Conditional Probabilities

Suppose we change the wording slightly in the preceding example. Based on the data 
in Table 4.2, we now want to fi nd the probability of a woman having a live birth of less 
than or equal to 5.5  lb (event A) conditional on or given that her prenatal care was begun 
during the fi rst trimester (event B). The word conditional limits our view in that we 
now focus on the 37,936 women who began their prenatal care during the fi rst trimester. 
Thus, the probability of a woman having a live birth weighing less than or equal to 
5.5  lb, given that she began her prenatal care during the fi rst trimester, is 0.064 (= 2412
/37936). Dividing both the numerator and denominator of this calculation by 51473 (the 
total number of women) does not change the value of 0.064, but it allows us to defi ne 
this conditional probability (the probability of A conditional on the occurrence of B) in 
terms of other probabilities. The numerator divided by the total number of women (2412 
/51473) is the probability of the intersection of A and B, and the denominator divided 
by the total number of women (37936/51473) is the probability of B. In symbols, this is 
expressed as

 
Pr

Pr

Pr
A B

A B

B
{ } = ∩{ }

{ }  
(4.4)

where Pr{A | B} represents the probability of A given that B has occurred.

Conditional probabilities often are of greater interest than the unconditional proba-
bilities we have been dealing with as will be shown following. Before doing that, note 
that we can use the conditional probability formula to fi nd the probability of the inter-
section — that is,

 Pr{A ∩ B} = Pr{A | B}  ⋅  Pr{B}. (4.5)

Thus, if we know the probability of A conditional on the occurrence of B, and we also 
know the probability of B, we can fi nd the probability of the intersection of A and B. 
Note that we can also express the probability of the intersection as

 Pr{A ∩ B} = Pr{B | A}  ⋅  Pr{A}. (4.6)

Table 4.3 repeats the data from Table 4.2 along with three different sets of probabili-
ties. The fi rst set of probabilities (row R) is conditional on the birth weight; that is, it 
uses the row totals as the denominators in the calculations. The second set (row C) is 
conditional on the trimester that prenatal care was begun; that is, it uses the column 
totals in the denominator. The third set of probabilities (row U) is the unconditional set 
— that is, those based on the total of 51,473 live births. The probabilities in the Total 
column are the probabilities of the different birth weight categories; that is, the probabil-
ity distribution of the birth weight variable and those beneath the Total row are the 
probabilities of the different trimester categories — that is, the probability distribution 
of the prenatal care variable. As just mentioned, these probabilities are based on the 
population of births in Harris County, Texas, in 1986.
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Let us consider the entries in the row 1, column 1 cell. The fi rst two entries below 
the frequency of the cell are conditional probabilities. The value 0.681 (= 2412/3541) is 
the probability based on the row total; that is, it is the probability of a woman having 
begun her prenatal care during the fi rst trimester given that the baby’s birth weight was 
less than or equal to 5.5  lb. The value 0.064 (= 2412/37936) is the probability based on 
the column total; that is, it is the probability of a birth weight of less than or equal to 
5.5  lb given that the woman had begun her prenatal care during the fi rst trimester. The 
last value, 0.047 (= 2412/51473), is the unconditional probability; that is, it is based on 
the grand total of 51,473 live births. It is the probability of the intersection of a birth 
weight less than or equal to 5.5  lb with the prenatal care having been begun during the 
fi rst trimester.

As Table 4.3 shows, at least three different probabilities, or observed proportions if 
the data are a sample, can be calculated for the entries in the two-way table. The choice 
of which probability (row, column, or unconditional) to use depends on the purpose of 
the investigation. In this case, the data may have been tabulated to determine whether 
or not the timing of the initiation of the prenatal care had any effect on the birth weight 
of the infant. If this is the purpose of the study, the column-based probabilities may be 
the more appropriate to use and report. The column-based calculations give the proba-
bilities of the different birth weight categories conditional on when the prenatal care 
was begun. The row-based calculations give the probability of the trimester prenatal 
care was initiated given the birth weight category. However, these row-based probabili-
ties are of no interest because the birth weight cannot affect the timing of the prenatal 
care. The unconditional probabilities are less informative in this situation, as they also 
refl ect the row and column totals. For example, compare the unconditional probabilities 
in the fi rst and third columns in the fi rst row — 0.047 and 0.003. Even though we have 
seen that there is little difference in the corresponding column-based probabilities of 
0.064 and 0.060, these unconditional values are very different. The value of 0.047 is 
larger mainly because there are 37,936 live births in the fi rst column compared to only 
2337 live births in the third column. However, the unconditional probabilities may be 

Table 4.3 Number and probabilities of live births by trimester of fi rst prenatal care and birth weight: 
Harris County, Texas, 1986.

  Trimester Prenatal Care Began

Birth Weight  1st 2nd 3rd No Care Total

≤5.5  lb; ∼2,500  g   2,412 754 141 234 3,541
 Ra 0.681 0.213 0.040 0.066
 C 0.064 0.079 0.060 0.138 0.069
 U 0.047 0.015 0.003 0.005

5.6–7.7  lb; ∼2,500–3,500  g  20,274 5,480 1,458 1,014 28,226
 R 0.718 0.194 0.052 0.036
 C 0.534 0.577 0.624 0.598 0.548
 U 0.394 0.106 0.028 0.020

>7.7  lb; ∼3,500  g  15,250 3,271 738 447 19,706
 R 0.774 0.166 0.037 0.023
 C 0.402 0.344 0.316 0.264 0.383
 U 0.296 0.064 0.014 0.009

Total  37,936 9,505 2,337 1,695 51,473
 R 0.737 0.185 0.045 0.033 1.000
aR, row; C, column; and U, unconditional



useful in planning and allocating resources for maternal and child health services 
programs.

Using the column-based values, women who began their prenatal care during the 
fi rst trimester had a probability of a low birth weight baby of 0.064. This value is com-
pared to 0.079, the probability of a low birth weight baby for those who began their 
prenatal care during their second trimester, to 0.060 for those who began their prenatal 
care during the third trimester, and to 0.138 for those who received no prenatal care. 
There is little difference in the probabilities of a low birth weight baby among women 
who received prenatal care. However, the probability of a low birth weight baby is about 
twice as large for women who received no prenatal care compared to women who 
received prenatal care. The effect of prenatal care is most clearly evident in the probabil-
ity of having a baby with a birth weight of greater than 7.7  lb. In this category, the 
probabilities are 0.402, 0.344, 0.316, and 0.264 for the fi rst, second, and third trimesters 
and no prenatal care, respectively.

Based on the trend in the probabilities of a birth weight of greater than 7.7  lb, one 
might conclude that there is an effect of prenatal care. However, to do so is inappropriate 
without further information. First, although these births can be viewed as constituting 
a population — that is, all the live births in Harris County in 1986 — they could also 
be viewed as a sample in time, one year selected from many, or in place, one county 
selected from many. From the perspective that these births are a sample, there is sam-
pling variation to be taken into account, and this will be covered in Chapter 11. Second, 
and more important, these data do not represent a true experiment. Chapter 6 presents 
more on experiments, but, briefl y, the women were not randomly assigned to the differ-
ent prenatal care groups — that is, to the fi rst, second, or third trimester groups or to 
the no prenatal care group. Thus, the women in these groups may differ on variables 
related to birth weight — for example, smoking habits, amount of weight gained, and 
dietary behavior. Without further examination of these other factors, it is wrong to 
conclude that the variation in the probabilities of birth weights is due to the time when 
prenatal care was begun.

Example 4.1

Suppose that a couple has two children and one of them is a boy. What is the probabil-
ity that both children are boys? For a couple with two children, there are four possible 
outcomes: boy and boy, boy and girl, girl and boy, girl and girl. If one of the two 
children is a boy, then there are three possible outcomes, excluding the (girl and girl) 
outcome. Therefore, the probability of having two boys is 1/3 (one of three possible 
outcomes). Applying the conditional probability rule, Equation (4.4), we can calcu-
late this probability by (1/4) / (1 − 1/4).

4.2.3   Independent Events

Suppose we were satisfi ed that there are no additional factors of interest in the examina-
tion of prenatal care and birth weight and only the data in Table 4.2 were to be used to 
determine whether or not there was a relation between when prenatal care was initiated 
and birth weight. Row C in Table 4.3 shows the column-based probabilities — that is, 
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those conditional on which trimester care was begun or whether care was received — 
and these are the probabilities to be used in the study.

If there was no relationship between the prenatal care variable and the birth weight 
variable — that is, if these two variables were independent — what values should the 
column-based probabilities have? If these variables are independent, this means that the 
birth weight probability distribution is the same in each of the columns. The last column 
in Table 4.3 gives the birth weight probability distribution, and this is the distribution 
that will be in each of the columns if the birth weight and prenatal care variables are 
independent. Table 4.4 shows the birth weight probability distribution for the situation 
when these two variables are independent.

Table 4.4 Probabilities conditional on trimester under the assumption of independence of birth weight 
level and trimester of fi rst prenatal care: Harris County, Texas, 1986.

 Trimester Prenatal Care Began

Birth Weight 1st 2nd 3rd No Care Total

≤ 5.5  lb; ∼2500  g 0.069 0.069 0.069 0.069 0.069
5.6–7.7  lb; ∼2500–3500  g 0.548 0.548 0.548 0.548 0.548
> 7.7  lb; ∼3500  g 0.383 0.383 0.383 0.383 0.383

Total 1.000 1.000 1.000 1.000 1.000

Example 4.2

For a couple with one child, there are two possible outcomes: a boy or a girl. It is 
assumed that the probability of a girl is the same as the probability of a boy — that 
is, 0.5. For a couple with two children, there are four possible outcomes, as seen in 
Example 4.1. The probability of each outcome is 0.25 (one out of the four possible 
outcomes). We have to realize that the probability of having one boy and one girl is 
0.5, accounting for two of four possible outcomes. However, U.S. vital statistics 
consistently show that about 105 boys are born per 100 girls (a sex ratio at birth of 
105; Mathews and Hamilton 2005), which suggests that the probability of having a 

The entries in Table 4.4 are conditional probabilities — for example, of a birth weight 
less than or equal to 5.5  lb (A) given that prenatal care began during the fi rst trimester 
(B) under the assumption of independence. Hence, under the assumption of indepen-
dence of A and B, the probability of A given B is equal to the probability of A. In symbols, 
this is

 Pr{A | B} = P{A}

when A and B are independent. Combining this formula with the formula for the prob-
ability of the intersection — that is,

 Pr{A ∩ B} = Pr{A | B}  ⋅  Pr{B}

yields

 Pr{A ∩ B} = Pr{A}  ⋅  Pr{B}

when A and B are independent.



boy is 0.51 and the probability of having a girl is 0.49. If we use these values of the 
case of two children, the probabilities of the four possible outcomes are 0.26 (= 0.51 
[0.51]), 0.25 (= 0.51 [1 − 0.51]), 0.25 (= [1 − 0.51] 0.51), and 0.24 (= [1 − 0.51] [1 − 
0.51]), respectively. The four probabilities add up to 1. The reason for multiplying 
two probabilities will become clearer in Example 4.3.

Example 4.3

Since the gender of the second child is independent of that of the fi rst child, the 
probability of two boys in row, based on vital statistics, is 0.51(0.51) = 0.26, as shown 
in Example 4.2. When considering diseases, it is unlikely that the disease status of 
one person is independent of that of another person for many infectious diseases. 
However, it is likely that the disease status of one person is independent of that of 
another for many chronic diseases. For example, let p be the probability that a person 
has Alzheimer’s disease. One person’s Alzheimer’s status should be independent of 
another’s status. Therefore, the probability of two persons having Alzheimer’s disease 
is the product of the probabilities of either having the disease — that is, p ⋅ p.

Establishing the dependence (a relation exists) or independence (no relation) of 
variables is what much of health research is about. For example, in the disease 
context, is disease status related to some variable? If there is a relation (dependency), 
the variable is said to be a risk factor for the disease. The identifi cation of risk factors 
leads to strategies for preventing or reducing the occurrence of the disease.

Example 4.4

Let us apply these defi nitions of probabilities to the example used for the randomized 
response technique in Chapter 2. In Figure 2.2 there were 12 yes responses among 
36 individuals to whom the randomized response technique was administered. We 
can denote as the probability of yes, Pr(Y) = 12/36 = 1/3. We know this observed 
probability is a combination of probabilities under two circumstances — that is, 
Pr(Head and Drunken driving) + Pr(Tail and Born in September or October). In 
symbols, this relationship is expressed as

Pr{Y} = Pr{H ∩ D} + Pr{T ∩ B}.

The two probabilities of intersection in the right hand side of equation can be 
expressed in terms of conditional probabilities, applying Equation (4.6) as follows:

Pr{Y} = Pr{D | H} ⋅ Pr{H} + Pr{B | T} ⋅ Pr{T}.

We know that Pr(H) = 1/2 and Pr(T) = 1 − Pr(H) = 1/2. Pr(D | H) is unknown quan-
tity, and we want to estimate this conditional probability. Pr(B | T) is known — that 
is, 2 months out of 12 months, 2/12 = 1/6.

If we solve the above equation for the unknown probability, Pr(D | H), then we 
have
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The result is 50 percent, which is the same as in Figure 2.2.

4.3   Defi nitions from Epidemiology
There are many quantities used in epidemiology that are defi ned in terms of probabili-
ties, particularly conditional probabilities. Several of these useful quantities are defi ned 
in this section and used in the next section to illustrate Bayes’ rule.

4.3.1   Rates and Probabilities

Various rates and relative numbers are used in epidemiology. A rate is generally inter-
preted as a probability — as a measure of likelihood that a specifi ed event occurs to a 
specifi ed population. Prevalence of a disease is the probability of having the disease. It 
is the number of people with the disease divided by the number of people in the defi ned 
population. The observed proportion of those with the disease in a sample is the sample 
estimate of prevalence. When the midyear population is used for the denominator, it is 
possible that the numerator contains persons not included in the denominator. For 
example, persons with the disease that move into the area in the second half of the year 
are not counted in the denominator, but they are counted in the numerator. When preva-
lence or other quantities use midyear population or person-years lived values, they are 
not really probabilities or proportions, although this distinction usually is unimportant. 
However, this distinction is important when estimating the probability of dying from 
the age-specifi c death rate as will be discussed later in conjunction with the life table.

Incidence of a disease is the probability that a person without the disease will develop 
the disease during some specifi ed interval of time. It is the number of new cases of the 
disease that occur during the specifi ed time interval divided by the number of people 
in the population who do not already have the disease.

Prevalence provides an idea of the current magnitude of the disease problem, whereas 
incidence informs as to whether or not the disease problem is getting worse.

Example 4.5

We consider the incidence and prevalence rates of AIDS based on the data from 
Health, United States, 2004 (NCHS 2004, Tables 1 and 52). By the end of 2002, 
829,998 cases of AIDS had been reported to the Centers for Disease Control and 
Prevention, and of those, 42,478 cases were reported in 2002. The estimated U.S. 
population as of July 1, 2002, was 288,369,000. Based on the cases reported in 2002 
and the estimated midyear population of 2002, the 2002 incidence rate of AIDS in 



A specifi c rate of a disease is the disease rate for people with a specifi ed character-
istic, such as age, race, sex, occupation, and so on. It is the conditional probability of a 
person having the disease given that the person has the characteristic. For example, an 
age-specifi c death rate is a death rate conditional on a specifi ed age group, as seen in 
Chapter 3.

4.3.2   Sensitivity, Specifi city, and Predicted Value 
Positive and Negative

Laboratory test results are part of the diagnostic process for determining if a patient 
has some disease. Unfortunately in many cases, a positive test result — that is, the 
existence of an unusual value — does not guarantee that a patient has the disease. Nor 
does a negative test result, the existence of a typical value, guarantee the absence of the 
disease. To provide some information on the accuracy of testing procedures, their devel-
opers use two conditional probabilities: sensitivity and specifi city.

The sensitivity of a test (symptom) is the probability that there was a positive result 
(the symptom was present) given that the person has the disease. The specifi city of a 
test (symptom) is the probability that there was a negative result (the symptom was 
absent) given that the person does not have the disease. Note that one minus sensitivity 
is the false negative rate, and one minus specifi city is the false positive rate. Thus, large 
values of sensitivity and specifi city imply small false negative and false positive rates.

Sensitivity and specifi city are probabilities of the test result conditional on the disease 
status. These are values that the developer of the test has estimated during extensive 
testing in hospitals and clinics. However, as a potential patient, we are more interested 
in the probability of disease status conditional on the test result. Names given to two 
conditional probabilities that address the patient’s concerns are predicted value positive 
and predicted value negative. Predicted value positive is the probability of disease given 
a positive test result, and predicted value negative is the probability of no disease given 
a negative test result.

These four quantities can be expressed succinctly in symbols. Let T + represent 
a positive test result and T − represent a negative result. The presence of disease is 

the United States was 0.00014730 (42478/288369000) or 14.7 per 100,000 population. 
Since the rate is low, the rate is expressed as the number of cases per 100,000.

Based on the preceding data, it is diffi cult to estimate the prevalence rate because 
there is no information on the number of individuals with AIDS who had died prior 
to 2002. The AIDS death rate was reported starting in 1987. It steadily increased 
from 5.6 per 100,000 to 16.2 per 100,000 in 1995 and steadily declined to 4.9 per 
100,000 in 2002. Based on an average death rate of AIDS for the last two and half 
decades, it is roughly estimated that about 80 percent of those diagnosed prior to 
2002 had died by the end of 2001. Thus, of the 874,230 reported cases, we are assum-
ing that 630,016 (0.8{874230 − 42479}) had died, leaving 199,982 persons with AIDS 
in 2002. The prevalence rate of AIDS then was 0.00069349 (= 199982/288369000) 
or 69.3 per 100,000 population.

Defi nitions from Epidemiology  81



82  Probability and Life Tables

indicated by D+ and its absence is indicated by D−. Then these four quantities can be 
expressed as conditional probabilities as follows:

Sensitivity ..............................................  Pr{T + | D+}
Specifi city ..............................................  Pr{T − | D−}
Predicted value positive ....................  Pr{D+ | T +}
Predicted value negative ...................  Pr{D− | T −}

All four of these probabilities should be large for a screening test to be useful to the 
screener and to the screenee. Discussions of these and related issues are plentiful in the 
epidemiologic literature (Weiss 1986).

It is possible to estimate these probabilities. One way is to select a large sample of 
the population and subject the sample to a screening or diagnostic test as well as to a 
standard clinical evaluation. The standard clinical evaluation is assumed to provide the 
true disease status. Then the sample persons can be classifi ed into one of the four cells 
in the 2 by 2 table in Table 4.5. For example, hypertension status is fi rst screened by 
the sphygmomanometer in the community and by a comprehensive clinical evaluation 
in the clinic. Or persons are screened for mental disorders fi rst by the DIS (Diagnostic 
Interview Schedule) and then by a comprehensive psychiatric evaluation. The results 
from a two-stage diagnostic procedure would look like Table 4.5.

Table 4.5 Disease status by test results for a large sample from 
the population.

Disease Test Result

Status Positive Negative Total

Presence a b a + b
Absence c d c + d

Total a + c b + d a + b + c + d

Sensitivity is estimated by a/(a + b), specifi city is estimated by d/(c + d), predicted 
value positive is estimated by a/(a + c), and predicted value negative is estimated by 
d/(b + d). Similarly, the false positive rate is estimated by c/(c + d) and the false nega-
tive rate by b/(a + b).

For many diseases of interest, the prevalence is so low that there would be few 
persons with the disease in the sample. This means that the estimates of sensitivity and 
the predicted value positive would be problematic. Therefore, some alternate sample 
design must be used to estimate these conditional probabilities. When a large number 
of people are screened by a test in a community and a sample of persons with positive 
test results and those with negative test results are subjected to clinical evaluations, the 
predicted value positive and the predicted value negative can be directly calculated from 
the results of clinical evaluations, and sensitivity and specifi city can be indirectly esti-
mated. Conversely, when sensitivity and specifi city are directly estimated by applying 
the test to persons with the disease and persons without the disease in the clinic setting, 
the predicted value positive and the predicted value negative can be indirectly estimated 
if the prevalence rate of disease is known. These indirect estimation procedures are 
explained in the next section.



4.3.3   Receiver Operating Characteristic Plot

In evaluating a diagnostic test for a certain disease, we need to consider relative impor-
tance of sensitivity and specifi city. For incidence, if the disease in question is likely to 
lead to death and the preferred treatment has few side effects, then it will be more 
important to make sensitivity as large as possible. On the other hand, if the disease is 
not too serious and the known treatment has considerable side effects, then more weight 
might be given to specifi city. The cost of the treatment given to those with positive test 
results could also come into consideration. In many situations, we need to consider both 
sensitivity and specifi city. But sensitivity and specifi city are relative to how we defi ne 
the status of disease. Different cut-off points in the defi nition of the condition would 
give different results.

Here we illustrate how the sensitivity and specifi city of a test change with respect to 
the cut-off point chosen for indicating a positive test result. Let us consider the case 
of using the serum calcium level as a test for detect hyperparathyroidism (Lundgren 
et al. 1997). The following data show the level of serum calcium and the status 
of hyperparathyroidism:

  Serum Calcium Levels mg/dL

  8  mg/dL 9  mg/dL 10  mg/dL 11  mg/dL 12  mg/dL Total

Disease Negative 40  7 4  2  1 54
Status Positive  2  3 5  8 17 35

 Total 42 10 9 10 18 89

If we consider 9  mg/dL or more as positive test result, the data can be summarized as 
follows:

 Serum Calcium Levels mg/dL

  9  mg/dL or more Less than 9  mg/dL Total

Disease Negative 14 40 54
Status Positive 33  2 35

 Total 47 42 89

From this summary, the estimated sensitivity is 0.94 (= 33/35) and the specifi city is 0.74 
(= 40/54). As the cut-point changes, the sensitivity and specifi city of the diagnostic test 
also change. As we increase the cut-point for serum calcium levels, the sensitivity of 
the test decreases and the specifi city increases as shown here.

Cut-Point Sensitivity Specifi city

<8  mg/dL | 8  mg/dL 35 / 35 = 1.00  0 / 54 = 0.00
 8  mg/dL | 9  mg/dL 33 / 35 = 0.94 40 / 54 = 0.74
 9  mg/dL | 10  mg/dL 30 / 35 = 0.86 47 / 54 = 0.87
10  mg/dL | 11  mg/dL 25 / 35 = 0.71 51 / 54 = 0.94
11  mg/dL | 12  mg/dL 17 / 35 = 0.48 53 / 54 = 0.98
12  mg/dL | >12  mg/dL  0 / 35 = 0.00 54 / 54 = 1.00
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We generally use the Receiver Operating Characteristic (ROC) plot to examine the 
tradeoff between sensitivity and specifi city. This is a plot of sensitivity versus 1 − speci-
fi city. Figure 4.1 shows the ROC plot for the preceding data. By looking at the curve 
relative to a 45-degree line, we notice that as the curve extends farther away from the 
line, the accuracy of the diagnostic test improves, and as the curve draws nearer to the 
45-degree line, the diagnostic test’s accuracy becomes worse. Therefore, we can con-
sider the area under the ROC curve as a measure of a diagnostic test’s discrimination 
or the test’s ability to correctly classify individuals with and without the disease. An 
excellent test would have an area under the curve of nearly 1.00, while a poor test would 
have an area under the curve of nearly 0.50.

4.4   Bayes’ Theorem
We wish to fi nd the predicted value positive and predicted value negative using the 
known values for disease prevalence, sensitivity, and specifi city. Let us focus on pre-
dicted value positive — that is, Pr{D+ | T +} — and see how it can be expressed in terms 
of sensitivity, Pr{T + | D+}, specifi city, Pr{T − | D−}, and disease prevalence, Pr{D+}.

We begin with the defi nition of the predicted value positive:
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Applying Equation (4.6), Pr{A ∩ B} = Pr{B | A}  ⋅  Pr{A}, the probability of the intersec-
tion of D+ and T + can also be expressed as

 Pr{D+ ∩ T +} = Pr{T + | D+} Pr{D+}.

On substitution of this expression for the probability of the intersection in the defi nition 
of the predicted value positive, we have

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.1 The receiver 
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which shows that predicted value positive can be obtained by dividing the product of 
sensitivity and prevalence by Pr{T +}.

Applying Equation (4.1), Pr{T +} can be expressed as the sum of the probabilities of 
the intersection of T + with the two possible outcomes of the disease status: D+ and D−; 
that is,

 Pr{T +} = Pr{T + ∩ D+} + Pr{T + ∩ D−}.

Applying Equation (4.5) to the two probabilities of intersections, we now have

 Pr{T +} = Pr{T + | D+}Pr{D+} + Pr{T + | D−}Pr{D−}.

Substituting this expression in Equation (4.7), the predictive value positive is
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Note that the numerator and the fi rst component of the denominator is the product of 
sensitivity and disease prevalence. The second component of the denominator is the 
product of (1 − specifi city) and (1 − disease prevalence). Predicted value negative follows 
immediately, and it is
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These two formulas are special cases of the theorem discovered by Reverend Thomas 
Bayes (1702–1761). In terms of the events A and Bi, Bayes’ theorem is
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Example 4.6

Consider the use of the count of blood vessels in breast tumors. A high density of 
blood vessels indicates a patient who is at high risk of having cancer spread to other 
organs (Weidner et al. 1992). Use of the count of blood vessels appears to be worth-
while in women with very small tumors and no lymph node involvement — the 
node-negative case. Suppose that during the development stage of this procedure, its 
sensitivity was estimated to be 0.85; that is, of the women who had cancer spread to 
other organs, 85 percent of them had a high count of blood vessels in their breast 
tumors. The specifi city of the test was estimated to be 0.90; that is, of the women 
for whom there was no spread of cancer, 90 percent of them had a low count of blood 
vessels in their tumors. Assume that the prevalence of cancers spread from breast 
cancers is 0.02. Given these assumed values, what is the predicted value positive 
(PVP) of counting the number of blood vessels in the small tumors?
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Example 4.7

Let us recast the question in Example 4.6 using frequencies instead of probabilities. 
Suppose that 20 out of every 1000 women with breast tumors have cancer spread to 
other organs (the prevalence of cancer spread is 0.02). Of these 20 women with 
cancer spread, 17 will have a high count of blood vessels (sensitivity of the test was 
estimated to be 0.85). Of the remaining 980 women without cancer spread, 882 will 
have a low count of blood vessels in their tumors (specifi city of the test was estimated 
to be 0.90). Then what percent of women with a high density of blood vessels do 
actually have cancer spread (predicted value positive)?

This question can be answered easily without using the Bayes’ formula. Looking 
at the frequencies just stated, the total number of women with high-density blood 
vessels is the sum of 17 from those with cancer spread and 98 (980 minus 882) from 
those without cancer spread. The sum is 115. Of these, 17 saw their cancers spread. 
Therefore, the predicted value positive is 0.148 (= 17/115), which is the same value 
obtained by the formula in Example 4.5. You can see it more clearly in the following 
2 by 2 table:

Using Equation (4.8),
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Using the preceding assumed values for sensitivity, specifi city, and prevalence, 
there is approximately a 15 percent chance of having cancer spread from a small 
breast tumor given a high density of blood vessels in the tumor. This value may be 
too low for the test to be useful. If the true values for specifi city or prevalence are 
higher than the values just assumed, then the PVP will also be higher. For example, 
if the prevalence is 0.04 instead of 0.02, then the PVP is 0.262 instead of 0.148.

  Blood Vessel Count

Cancer Spread High Low Total

Yes (17)**   3 (20)*
No  98 (882)*** 980

Total 115 885 1000

*Prevalence rate of 0.02 Predicted value positive: 17/115 = 0.148
**Sensitivity of 0.85 Predicted value negative: 882/885 = 0.997
***Specifi city of 0.90

This example demonstrates that Bayes’ theorem is to enhance and expedite our 
reasoning rather than to be memorized blindly.



4.5   Probability in Sampling
Sampling means selecting a few units from all the possible observational units in the 
population. To infer from the sample to the population, we need to know the probability 
of selection. A sample selected with unknown probability of selection cannot be linked 
appropriately to the population from which the sample was drawn. A sample drawn with 
known probability of selection is called a probability sample. We examine the simplest 
probability sample that assigns an equal probability of selection to every unit of obser-
vation in the population. More complex sample selection designs will be discussed in 
Chapter 6.

4.5.1   Sampling with Replacement

A sample that allows duplicate selections is called a sample with replacement. Allow-
ance of duplicate selection implies that sample selections are independent — each selec-
tion is not dependent on previous selections. To understand the probability of selection 
in a sample with replacement, let us consider the case of selecting three units from a 
population of four units (A, B, C, and D). There are 64 (= 43) ways of selecting such 
samples as listed in Table 4.6.

Table 4.6 Possible samples of drawing 3 from (A, B, C and D) 
with replacement.

AAA ACA BAA BCA* CAA CCA DAA DCA*
AAB ACB* BAB BCB CAB* CCB DAB* DCB*
AAC ACC BAC* BCC CAC CCC DAC* DCC
AAD ACD* BAC* BCD* CAD* CCD DAD DCD
ABA ADA BBA BDA* CBA* CDA* DBA* DDA
ABB ADB* BBB BDB CBB CDB* DBB DDB
ABC* ADC* BBC BDC* CBC CDC DBC* DDC
ABD* ADD BBD BDD CBD* CDD DBD DDD

*Samples without duplications
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Since selections are independent, the probability of selecting each of these 
samples is 1/64 (= [1/4]3). As shown in the table, the total number of samples without 
duplications is 24(4 × 3 × 2); that is, there are 4 ways to fi ll the fi rst position of 
the sample, 3 ways to the second position, and 2 ways to fi ll the third position. The 
probability of selection with replacement samples that do not contain duplication is 
0.375 (= 24/64). The probability of obtaining samples with duplications is 0.625 (= 1 
− 0.375).

When selecting n units from N units in the population, there are Nn possible samples 
with replacement. Of these, N(N − 1)  .  .  .  (N − n + 1) samples contain no duplications. 
Then the probability of obtaining with replacement samples that contain duplica -
tions is
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Example 4.8

How likely is it that at least two students in a class of 23 will share the same birthday? 
The chance may be better than we might expect. If we assume that the birthdays of 
23 students are independent and that each day out of 365 days in a year, eliminating 
February 29, is equally likely to be a student’s birthday, the situation is equivalent 
to selection of a random sample of 23 days from the 365 days using the sampling 
with replacement procedure. The probability can be calculated using Equation (4.9) 
— that is,

1
365 364 343
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0 507
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The calculation may require the use of a computer (the SAS program is available on 
the website). If the size of class increases to 50, the probability increases to 0.97.

Let us consider the probability of selecting a particular unit. In the list of samples in 
Table 4.6, unit A appears 16 times in the fi rst position of the sample, 16 times in the 
second position, and 16 times in the third position. Then the probability of A being 
selected into the sample is [3(16) / 43] = (48 / 64) = (3 / 4). Thus, in general, the selec-
tion probability of a unit is n / N.

4.5.2   Sampling without Replacement

A sample that does not allow duplications is called a sample without replacement. In 
sampling without replacement, a selection of a unit is no longer independent because 
the selection is conditional on the unit being not selected in a previous draw. In this 
sampling, once a subject is selected, it is removed from the population, and the number 
of units in the population is decreased by one unit. Does this decrease in the denomina-
tor as a unit is selected invalidate the equal probability of selection for subsequent units? 
The following example addresses this.

Suppose that a class has 30 students, and a random sample of 5 students is to be 
selected without allowing duplicate selections. The probability of selection for the fi rst 
draw will be 1 / 30, and that for the student selected second will be 1 / 29, since one 
student was already selected. This line of thinking seems to suggest that random sam-
pling without replacement is not an equal probability sampling model. Is anything 
wrong in our thinking?

We have to realize that the selection probability of 1 / 29 for the second draw is a 
conditional probability. The student selected in the second draw is available for selection 
only if the student were not selected in the fi rst draw. The probability of not being 
selected in the fi rst draw is 29 / 30. Thus, the event of being selected during the second 
draw is the intersection of the events of not being selected during the fi rst draw and 
being selected during the second draw. Applying {Pr{A ∩ B} = Pr{A | B} ⋅ Pr{B}, the 
probability of this intersection is (1 / 29) (29 / 30), which yields 1 / 30. The same argu-
ment can be made for subsequent draws, as shown in Table 4.7.



The demonstration in Table 4.7 indicates that the probability of being selected in any 
draw is 1 / 30, and hence the equal probability of selection also holds for sampling 
without replacement. Now we can state that the probability for a particular student to 
be included in the sample will be 5 / 30, since the student can be drawn in any one of 
the fi ve draws. Thus, in general, the selection probability of a unit without replacement 
is n / N, the same as in the case of replacement sampling.

A sampling procedure that assigns n / N chance of being selected into the sample to 
every unit in the population is called simple random sampling, regardless of whether 
sampling is done with or without replacement. We usually use sampling without replace-
ment. The distinction between sampling with and without replacement is moot when 
selecting a sample from large populations because the chance of selecting a unit more 
than once would be very small. The statement that each of the possible samples is 
equally likely implies that each unit in the population has the same probability of being 
included in the sample as demonstrated in this and the previous section.

4.6   Estimating Probabilities by Simulation
Our approach to fi nding probabilities has been to enumerate all possible outcomes and 
to base the calculation of probabilities on this enumeration. This approach works well 
with simple phenomena, but it is diffi cult to use with complex events. Another way of 
assessing probabilities is to simulate the random phenomenon by using repeated sam-
pling. With the wide availability of microcomputers, the simulation approach has become 
a powerful tool to approach many statistical problems.

Table 4.7 Calculation of inclusion probabilities in drawing an SRS of 5 from 30 without replacement.

 Conditional Probability Probability Not Selected Product of
Order of Draw (1) in Previous Draws (2) (1) & (2)

1 1/30 1 1/30
2 1/29 29/30 1/30
3 1/28 (29/30)(28/29) = 28/30 1/30
4 1/27 (29/30)(28/29)(27/28) = 27/30 1/30
5 1/26 (29/30)(28/29)(27/28)(26/27) = 26/30 1/30

Example 4.9

Let us reconsider the question posed in Example 4.8. In a class of 30, what will be 
the chance of fi nding at least 2 students sharing the same birthday? It should be 
higher than the 50 percent that we found among 23 students in Example 4.8. Let us 
fi nd an answer by simulation. We need to make the same assumptions as in Example 
4.8. Selecting 30 days from 365 days using the sampling procedure, we can use the 
random number table in Appendix B. For example, we can read 30 three-digit 
numbers between 1 and 365 from the table and check to see if any duplicate numbers 
are selected. We can repeat the operation many times and see how many of the trials 
produced duplicates. Since this manual simulation would require considerable time, 
we can use a computer program (see Program Note 4.1 on the website). The results 
of 10 simulations are shown in Table 4.8.

Estimating Probabilities by Simulation  89
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Eight of these 10 trials have duplicates, which suggests that there is an 80 percent 
probability of fi nding at least one common birthday among 30 students. Not 
shown are the results of 10 additional trials in which 6 of the 10 had duplicates. 
Combining these two sets of 10 trials, the probability of fi nding common birthdays 
among 30 students is estimated to be 70 percent (= [8 + 6] / 20). Using

Pr duplications
N N N n

N n
( ) = −

−( ) − +( )
1

1 1�
 we get 70.6 percent. Using 20 re- 

plicates is usually not enough to have a lot of confi dence in the estimate; we usually 
would like to have at least hundreds of replicates.

Table 4.8 Simulation to fi nd the probability of common birthdays among 30 students.

 Simulations

Student 1 2* 3* 4* 5* 6* 7 8* 9* 10*

 1 4 2 3 44 8 3 7 5 8 12
 2 10 30 10* 52 21 4 47 7 18 19
 3 21 46 10* 72 24 22 48 7 27 31
 4 47 67 15 85 76 23 54 18 45 48
 5 48 97 23 106 91 27 80 23 50 65
 6 64 100 26 116 100 42 82 37 66 80
 7 65 105 35 120 113 57 93 54 90 82
 8 78 106 41 123 124 64 119 59 91 103
 9 93 106 53 132 143* 72 123 64 94 116
10 95 109 73 143 143* 104 137 89 97 169
11 101 133 78 151 147 107 138 109 104 175
12 115 140 86 180 150 119 140 120 132 182
13 154 145 87 181 155 132 162 138 149 193
14 165 158 163 188 166 152 179 143 153 195
15 167 191 166 208 172 167 185 173 180 208
16 185 209* 176 231 200 210 191 201 187 217
17 193 209* 186 248 205 229 199 209* 188 247
18 220 220 200 249 241 230 203 209* 189 249
19 232 223 209 255 243 233 213 215 193 261
20 242 229 220 259* 248 236 232 223 196 262*
21 257 241 251 259* 250 253 238 224 242 262*
22 282 249 260 267 263 307 252 231 250 305
23 284 268 264 270 281 321 259 239 324 307
24 285 286 265 285 283 326 267 259 333 309
25 288 317 283 286 307 327 272 274 338 321
26 299 323 295 288 310 334 287 335 354 326
27 309 335* 297 296 311 336 295 342 360* 328
28 346 335* 300 310 326 343* 308 352 360* 330
29 347 336 352 327 335 343* 313 357 360* 347
30 357 356 355 352 336 362 363 358 360* 356

Let us consider another example.

Example 4.10

Population and family planning program planners in Asian countries have been 
dealing with the effects of the preference for a son on population growth. If all 
couples continue to have children until they have two sons, what is the average 
number of children they would have? To build a probability model for this situation, 
we assume that genders of successive children are independent and the chance of a 
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4.7   Probability and the Life Table
Perhaps the oldest probability model that has been applied to a problem related to health 
is the life table. The basic idea was conceived by John Graunt (1620–1674), and the fi rst 
life table, published in 1693, was constructed by Edmund Halley (1656–1742). Later 
Daniel Bernoulli (1700–1782) extended the model to determine how many years would 
be added to the average life span if smallpox were eliminated as a cause of death. Now 
the life table is used in a variety of fi elds — for example, in life insurance calculations, 
in clinical research, and in the analysis of processes involving attrition, aging and 
wearing out of industrial products.

We are presenting the life table here to show an additional application of the probabil-
ity rules described above. Table 4.10 is the abridged life table for the total U.S. popula-
tion in 2002. It is based on information from all death certifi cates fi led in the 50 states 
and the District of Columbia. It is called an abridged life table because it uses age-
groupings instead of single years of age. If single years of age are used, it is called a 
complete life table. Prior to 1997, a complete life table was construed only for a census 
year and for all off-census years abridged life tables were constructed. Beginning with 
1997 mortality data, a complete life table was constructed every year, and abridged 
tables are derived from the complete tables. Previously, the annual life tables were closed 
at age 85, but they have been extended to age 100 based on old-age mortality data from 
the Medicare program. Other types of life tables are available from the National Center 
for Health Statistics. A brief history and sources for life tables for the United States can 
be found in Appendix C.

son is 1 / 2. To simulate the number of children a couple has, we select single digits 
from the random number table, considering odd numbers as boys and even numbers 
as girls. Random numbers are read until the second odd number is encountered, and 
the number of values required to obtain two odd values is noted. Table 4.9 shows the 
results for 20 trials (couples).

The average number of children based on this very small simulation is estimated 
to be 4.25 (= 85 / 20). Additional trials would provide an estimate closer to the true 
value of four children.

Table 4.9 Simulation of child-bearing until the second son is born.

Trial Digits No. of Digits Trial Digits No. of Digits

 1 19 2 11 37 2
 2 2239 4 12 367 3
 3 503 3 13 6471 4
 4 4057 4 14 509 3
 5 56287 5 15 940001 6
 6 13 2 16 927 3
 7 96409 5 17 277 3
 8 125 3 18 544264882425 12
 9 31 2 19 3629 4
10 425448285 9 20 045467 6
   Total number of digits 85
   Average = 85/20 = 4.25
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One use of the life table is to summarize the life experience of the population. A 
direct way of creating a life table is to follow a large cohort — say, 100,000 infants born 
on the same day — until the last member of this cohort dies. For each person the exact 
length of life can be obtained by counting the number of days elapsed from the date of 
birth. This yields 100,000 observations of the length of life. The random variable is the 
length of life in years or even in days. We can display the distribution of this random 
variable and calculate the mean, the median, the fi rst and third quartiles, and the 
minimum and maximum. Since most people die at older ages, we expect that the dis-
tribution is skewed to the left, and hence the median length of life is larger than the 
mean length of life. The mean length of life is the life expectancy. We can tabulate the 
data using the age intervals 0–1, 1–5, 5–10, 10–15,  .  .  .  , 95–100, and 100 or over. All 
the intervals are the same length — fi ve years — except for the fi rst two and the last 
interval. The fi rst interval is of a special interest, since quite a few infants die within 
it. From this tabulation, we can also calculate the relative frequency distribution by 
dividing the frequencies by 100,000. These relative frequencies give the probability of 
dying in each age interval. This probability distribution can be used to answer many 
practical questions regarding life expectancy. For instance, what is a 20-year-old 
person’s probability of surviving to the retirement age of 65?

However, acquiring such data poses a problem. It would take more than 100 years 
to collect it. Moreover, information obtained from such data may be of some historical 
interest but not useful in answering current life expectancy questions, since current life 
expectancy may be different from that of earlier times. To solve this problem, we have 
to fi nd ways to use current mortality information to construct a life table. The logical 

Table 4.10 Abridged life table for the total U.S. population, 2002.

     Total Number
 Probability of Number Number Dying Person-Years of Person-Years Expectation
 Dying Between Surviving to Between Ages Lived Between Lived Above of Life at
 Ages x and x + n Age x x and x + n Ages x and x + n Age x Age x

Age nqx lx ndx nLx Tx ex

 0–1  ....... 0.006971 100,000 697 99,389 7,725,787 77.3
 1–5  ....... 0.001238 99,303 123 396,921 7,626,399 76.8
 5–10  ..... 0.000759 99,180 75 495,706 7,229,477 72.9
10–15  ..... 0.000980 99,105 97 495,311 6,733,771 67.9
15–20  ..... 0.003386 99,008 335 494,345 6,238,460 63.0
20–25  ..... 0.004747 98,672 468 492,189 5,744,116 58.2
25–30  ..... 0.004722 98,204 464 489,871 5,251,927 53.5
30–35  ..... 0.005572 97,740 545 487,395 4,762,056 48.7
35–40  ..... 0.007996 97,196 777 484,164 4,274,661 44.0
40–45  ..... 0.012066 96,419 1,163 479,362 3,790,497 39.3
45–50  ..... 0.017765 95,255 1,692 472,292 3,311,135 34.8
50–55  ..... 0.025380 93,563 2,375 462,186 2,838,843 30.3
55–60  ..... 0.038135 91,188 3,478 447,838 2,376,658 26.1
60–65  ..... 0.058187 87,711 5,104 426,603 1,928,820 22.0
65–70  ..... 0.088029 82,607 7,272 395,866 1,502,217 18.2
70–75  ..... 0.133076 75,335 10,025 352,791 1,106,350 14.7
75–80  ..... 0.201067 65,310 13,132 294,954 753,560 11.5
80–85  ..... 0.304230 52,178 15,874 222,013 458,606 8.8
85–90  ..... 0.447667 36,304 16,252 140,041 236,593 6.5
90–95  ..... 0.599618 20,052 12,024 67,822 96,552 4.8
95–100  ... 0.739020 8028 5933 23,056 28,730 3.6
100+ ....... 1.000000 2095 2095 5675 5675 2.7

Source: Arias, 2004
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current mortality data for this purpose are the age-specifi c death rates. For the time 
being, we assume that age-specifi c death rates measure the probability of dying in each 
age interval. Note that these rates are conditional probabilities. The death rate for the 
5- to 10-year-old age group is computed on the condition that its members survived the 
previous age intervals.

As presented in Chapter 3, the age-specifi c death rate is calculated by dividing the 
number of deaths in a particular age group by the midyear population in that age group. 
This is not exactly a proportion, whereas a probability is. Therefore, the fi rst step in 
constructing a life table is to convert the age-specifi c death rates to the form of a prob-
ability. One possible conversion is based on the assumption that the deaths were occur-
ring evenly throughout the interval. Under this assumption, we expect that one-half of 
the deaths occurred during the fi rst half of the interval. Thus, the number of persons at 
the beginning of an interval is the sum of the midyear population and one-half of the 
deaths that occurred during the interval. Then the conditional probability of dying 
during the interval is the number of deaths divided by the number of persons at the 
beginning of the interval. Actual conversions use more complicated procedures for dif-
ferent age groups, but we are not concerned about these details.

4.7.1   The First Four Columns in the Life Table

With this background, we are now ready to examine Table 4.10. The fi rst column shows 
the age intervals between two exact ages. For instance, 5–10 indicates the fi ve-year 
interval between the fi fth and tenth birthdays. This age grouping is slightly different 
from those of under 5, 5–9, 10–14, and so on used in the Census publications. In the 
life table, age is considered a continuous variable, whereas in the Census, counting of 
people by age (ignoring the fractional year) is emphasized.

The second column shows the proportion of the persons alive at the beginning of the 
interval who will die before reaching the end of the interval. It is labeled as nqx, where 
the fi rst subscript on the left denotes the length of the interval and the second subscript 
on the right denotes the exact age at the beginning of the interval. The fi rst entry in the 
second column, 1q0, is 0.006971, which is the probability of newborn infants dying 
during the fi rst year of life. The second entry is 4q1, which equals 0.001238. It is the 
conditional probability of dying during the interval between ages 1 and 5, provided the 
child survived the fi rst year of life. The rest of the entries in this column are conditional 
probabilities of dying in a given interval for those who survived the preceding intervals. 
These conditional probabilities are estimated from the current age-specifi c death rates. 
Note that the last entry of column 2 is 1.000000, indicating everybody dies sometime 
after age 100.

Thus, we have a series of conditional probabilities of dying. Given these conditional 
probabilities of dying, we can also fi nd the conditional probabilities of surviving. The 
probability of surviving the fi rst year of life will be

 (1 − 1q0) = 1 − 0.006971 = 0.993029.

Likewise, the conditional probability of surviving the interval between exact ages 1 and 
5, provided infants had survived the fi rst year of life will be

 (1 − 4q1) = 1 − 0.001238 = 0.998762.
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Surviving the fi rst fi ve years of life is the intersection of surviving the 0–1 interval 
and the 1–5 interval. The probability of this intersection can be obtained as the product 
of the probability of surviving the 0–1 interval and the conditional probability of surviv-
ing the 1–5 interval given survival during the 0–1 interval — that is,

 Pr{surviving the intervals 0–1 and 1–5} = (1 − 1q0) (1 − 4q1)

 = (1 − 0.006971) (1 − 0.001238) = (0.993029) (0.998762) = 0.991800.

Similarly, the probability of surviving the fi rst 10 years of life, the fi rst three intervals, 
will be

 (1 − 1q0) (1 − 4q1) (1 − 5q5).

Using this approach, we can calculate the survival probabilities from birth to the begin-
ning of any subsequent age intervals. These survival probabilities are refl ected in the 
third column, the number alive, lx, at the beginning of the interval which begins at x 
years of age, out of a cohort of 100,000. Note that the entries in this column may differ 
slightly from the product of the survival probabilities and 100,000 because, although 
only four digits to the right of the decimal point are shown in the second column, more 
digits are used in the calculations. The fi rst entry in this column is l0, called the radix, 
is the size of the birth cohort. The second entry, the number alive at the beginning of 
the interval beginning at 1 year of age, l1, is found by taking the product of the number 
alive at the beginning of the previous interval and the probability of surviving that 
interval — that is,

 l1 = l0 (1 − 1q0) = l0 − (l0 − 1q0) = l0 − 1d0.

This quantity, l1, is equivalent to taking the number alive at the beginning of the previ-
ous period minus the number that died during that period, 1d0. The numbers that died 
during each interval are shown in the fourth column, which is labeled as ndx.

The number who died during the four-year age interval from 1 to 5 is 4d1. This is 
found by taking the product of the number alive at the beginning of this interval, l1, and 
the probability of dying during the interval, 4q1 — that is, 4d1 = l1(4q1). The number alive 
at the beginning of the interval of 5 to 10 years of age, l5, can be found by subtracting 
the number who died during the previous age interval, 4d1, from the number alive at the 
beginning of the previous interval, l1 — that is, l5 = l1 − 4d1. Repeating this operation, 
the rest of the entries in the third and fourth columns can be obtained. The fourth column 
can also be obtained directly from the third column. For example,

 1d0 = l0 − l1, 4d1 = l1 − l5, etc.

Note that the last entry of the third column is the same as the last entry in the 
fourth column because all the survivors at age 100 will die subsequently. Note further 
that the lx value in each row is a cumulative total of ndx values in that and all 
subsequent rows.

Dividing the entries in the third and fourth columns by 100,000, we obtain the prob-
abilities of surviving from birth to the beginning of the current interval and dying during 
the current interval, respectively. Note that the entries in the fourth column sum to 
100,000, meaning that the probability of dying sums to one. As we expected, the dis-
tribution is negatively skewed, with the larger probabilities of dying at older ages.
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4.7.2   Some Uses of the Life Table

Before looking at expected values in the life table, we wish to show how the fi rst four 
columns, particularly the third column, can be used to answer some questions regarding 
life chances.

Example 4.11

What is the probability of surviving from one age to a subsequent age, say from age 
5 to age 20? This is a conditional probability, conditional on the survival to age 5. 
The intersection of the events of surviving to age 20 and surviving to age 5 is sur-
viving to age 20. Thus, the probability of this intersection is the probability of sur-
viving from birth to age 20. This is the number alive at the beginning of the 20–25 
interval divided by the number alive at the beginning — that is, l20/l0. The probability 
of surviving from birth to age 5 is l5/l0. Therefore, the conditional survival probability 
from age 5 to age 20 is found by dividing the probability of the intersection by the 
probability of surviving to age 5 — that is,
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The survival probabilities from any age to an older age can be calculated in a similar 
fashion.

Example 4.12

What is the probability of dying during the fi rst 5 years of life? This probability can 
be found by subtracting the probability of surviving the fi rst 5 years from 1 — that 
is,
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This is simply 1 minus the ratio of the number alive at the beginning of the fi nal 
interval of interest and 100,000.

We know the conditional probability of dying in any single interval. However, we 
may be interested in the probability of dying during a period formed by the fi rst two or 
more consecutive intervals.

Example 4.13

A similar question relates to the probability of dying during a period formed by two 
or more consecutive intervals given that one had already survived several intervals. 
For example, what is the probability that a 30-year-old person will die between the 
ages of 50 and 60? This conditional probability is found by dividing the probability 
of the intersection of the event of dying between the ages of 50 and 60 and the event 
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of surviving until 30 by the probability of the event of surviving until 30 years of 
age. The intersection of dying between 50 and 60 and surviving until 30 is dying 
between 50 and 60. The probability of dying between 50 and 60 is the number of 
persons dying, l50 minus l60, divided by the total number, l0. The probability of sur-
viving until age 30 is simply l30 divided by l0. Therefore, the probability of dying 
between 50 and 60 given survival until 30 is

l l
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l

l l

l
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50 50
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Example 4.14

Another slightly more complicated question concerns the joint survival of persons. 
Suppose that a 40-year-old person has a 5-year-old child. What will be the probability 
that both the parent and child survive 25 more years until the parent’s retirement? 
If we assume that the survival of the parent and that of the child are independent, 
we can calculate the desired probability by multiplying the individual survival prob-
abilities. Applying the rule for the probability of surviving from one age to a subse-
quent age from the fi rst question, this is
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The probability that the parent will die but the child will survive during the 25 years 
is

1 1 0 856750 0 985481 0 14117065
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The probability that the parent will survive but the child will die during the 25 years 
is
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The probability that both the parent and the child will die during the 25 years is

1 1 1 0 856750 1 0 985481 0 00208065
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These four probabilities sum to 1 because those four events represent all the pos-
sible outcomes in considering the life and death of two persons.

4.7.3   Expected Values in the Life Table

The last three columns contain the information for various expected values in the life 
table. The fi fth column of the life table, denoted by nLx, shows the person-years lived 
during each interval. For instance, the fi rst entry in the fi fth column is 99,389, which is 
the total number of person-years of life contributed by 100,000 infants during the fi rst 
year of life. This value consists of 99,303 years contributed by the infants that survived 
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the full year. The remaining 86 (= 99389 − 99303) person-years came from 697 infants 
who died during the year. The value of 86 years is based on actual mortality data coupled 
with mathematical smoothing. It cannot be found from the fi rst four columns in the 
table. The value of 86 years is much less than 348.5 expected if the deaths had been 
distributed uniformly during the year. This value also suggests that most of the deaths 
occurred during the fi rst half of the interval. The second entry of the fi fth column is 
much larger than the fi rst entry, mainly refl ecting that the length of the second interval 
is greater than the length of the fi rst interval. Each person surviving this second interval 
contributed 4 person years of life.

The fi fth column is often labeled as the “stationary population in the age interval.” 
The label of stationary population is based on a model of the long-term process of birth 
and death. If we assume 100,000 infants are born every year for 100 years, with each 
birth cohort subject to the same probabilities of dying specifi ed in the second column 
of the life table, then we expect that there will be 100,000 people dying at the indicated 
ages every year. This means that the number of people in each age group will be the 
numbers shown in the fi fth column. This hypothetical population will maintain the same 
size, since the number of births is the same as the number of deaths and it also keeps 
the same age distribution. That is, the size and structure of population is invariant, and 
hence this is called a stationary population.

The sixth column of the life table, denoted by Tx, shows cumulative totals of nLx 
values starting from the last age interval. The Tx value in each interval indicates the 
number of person years remaining in that and all subsequent age intervals. For example, 
the T95 value of 28,730 is the sum of 5L95 (= 23056) and ∞L100 (= 5675).

The last column of the life table, denoted by ex, shows the life expectancies at various 
ages, which are calculated by ex = Tx/lx. The fi rst entry of the last column is the life 
expectancy for newborn infants, and all subsequent entries are conditional life expectan-
cies. Conditional life expectancies are more useful information than the expectancies 
fi gured for newborn infants. For instance, those who survived to age 100 are expected 
to live 2.7 years more (e100 = 2.7), the last entry of the last column, whereas newborn 
infants are expected to live 0.06 years beyond age 100 (T100 / l0 = 5675/100000 = 
0.06).

Example 4.15

Based on Tx values, more complicated conditional life expectancies can be calculated. 
For instance, suppose that a 30-year-old person was killed in an industrial accident 
and had been expected to retire at age 65 if still alive. For how many years of 
unearned income should that person’s heirs be compensated? The family may request 
a compensation for 35 years. However, based on the life table, the company argues 
for a smaller number of years. The total number of years of life remaining during 
the interval from 30 to 65 is T30 minus T65, and there are l30 persons remaining at age 
30 to live those years. Therefore, the average number of years of life remaining is 
found by
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Example 4.16

The notion of stationary population can be used to make certain inferences for popu-
lation planning and manpower planning. The birth rate of the stationary population 
can be obtained by dividing 100,000 by the total years of life lived by the stationary 
population, or
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or 13 per 1000 population. The death rate should be the same. But note that the birth 
rate equals the reciprocal of the life expectancy at birth (1/e0). In other words, the 
birth rate (replacement rate) and death rate (attrition rate) are entirely determined 
by the life expectancy under the stationary population assumption.

4.7.4   Other Expected Values in the Life Table

The most widely used fi gures from the life table are life expectancies. These are average 
values. As discussed in Chapter 3, the mean value may not represent the distribution 
appropriately in some circumstances. Let us fi nd the median length of life at birth. To 
fi nd the median, the second quartile, we must fi nd the value such that 50 percent of the 
radix falls below it. By examining column 3 in the life table, we fi nd that 52,178 persons 
are alive at the beginning of the age interval 80–85, whereas only 36,304 are alive at 
the beginning of the interval 85–90. Since 50,000 is between 52,178 and 36,304, we 
know that the median is somewhere between 80 and 85 years of age. If we assume that 
the 15,874 deaths are uniformly distributed over this age interval, we can fi nd the median 
by interpolation. We add a proportion of the fi ve years, the length of the interval, to the 
age at the beginning of the interval, 80 years. The proportion is the ratio of the differ-
ence between 52,178 and 50,000 to the 15,304 deaths that occurred in the interval. The 
calculation is

 
median = + ⋅ −⎛

⎝⎜
⎞
⎠⎟

=80 5
52178 50000

15874
80 69. .

As expected, the mean is smaller than the median. Perhaps, it is more enlightening to 
know that one-half of a birth cohort will live to age 81 than to know that an average 
length of life is about 77 years.

The corresponding calculations for the fi rst and third quartiles are

 
Q1 70 5

75335 75000

10025
70 17= + ⋅ −⎛

⎝⎜
⎞
⎠⎟

= .

 
Q3 85 5

36304 25000

16252
88 48= + ⋅ −⎛

⎝⎜
⎞
⎠⎟

= . .



Conclusion
Probability has been defi ned as the relative frequency of an event in an infi nite number 
of trials or in a population. Its use has been demonstrated in a number of examples, and 
a number of rules for the calculation of probabilities have been presented. The use of 
probabilities and the rules for calculating probabilities have been applied to the life table, 
a basic tool in public health research.

Now that we have an understanding of probability, we shall examine particular prob-
ability distributions in the next chapter.

EXERCISES

4.1 Choose the most appropriate answer.
a. If you get 10 straight heads in tossing a fair coin, a tail is _________ on the 

next toss.
 ___ more likely
 ___ less likely
 ___ neither more likely nor less likely
b. In the U.S. life table, the distribution of the length of life (or age at death) 

is ___.
 ___ skewed to the left
 ___ skewed to the right
 ___ symmetric
c. A test with high sensitivity is very good at _________.
 ___ screening out patients who do not have the disease.
 ___ detecting patients with the disease.
 ___ determining the probability of the disease.
d. In the U.S. life table the life expectancy (mean) is _________ the median 

length of life.
 ___ the same as
 ___ greater than
 ___ less than
e. 4q1 is called a _________ because an infant cannot die in this interval unless 

it survived the fi rst year of life.
 ___ personal probability
 ___ marginal probability
 ___ conditional probability
f. In the life table, the mean length of life for those who died during ages 0–1 

is _________.
 ___ about 1/2 year
 ___ more than 1/2 year
 ___ less than 1/2 year

4.2 The following table gives estimates of the probabilities that a randomly chosen 
adult in the United States falls into each of six gender-by-education categories 
(based on relative frequencies from the NHANES II, NCHS 1982). The three 
education categories used are (1) less than 12 years, (2) high school graduate, 
and (3) more than high school graduation.
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a. What is the estimate of the probability that an adult is a high school graduate 
(categories 2 and 3)?

b. What is the estimate of the probability that an adult is a female?
c. From the NHANES II data, it is also estimated that the probability that a 

female is taking a vitamin supplement is 0.426. What is the estimate of the 
probability that the adult is a female and taking a vitamin supplement?

d. From the NHANES II, it is also estimated that the probability of adults 
taking a vitamin supplement is 0.372. What is the estimate of the probability 
that a male is taking a vitamin supplement?

4.3 Suppose that the failure rate (failing to detect smoke when smoke is present) 
for a brand of smoke detector is 1 in 2000. For safety, two of these smoke detec-
tors are installed in a laboratory.
a. What is the probability that smoke is not detected in the laboratory when 

smoke is present in the laboratory?
b. What is the probability that both detectors sound an alarm when smoke is 

present in the laboratory?
c. What is the probability that one of the detectors sounds the alarm and the 

other fails to sound the alarm when smoke is present in the laboratory?
4.4 Suppose that the probability of conception for a married woman in any month 

is 0.2. What is the probability of conception in two months?
4.5 A new contraceptive device is said to have only a 1 in 100 chance of failure. 

Assume that the probability of conception for a given month, without using any 
contraceptive, is 20 percent. What is the probability of having at least one 
unwanted pregnancy if a woman were to use this device for 10 years? [Hint: 
This would be the complement of the probability of avoiding pregnancy for 10 
years or 120 months. The probability of conception for any month with the use 
of the new contraceptive device would 0.2 * (1 − 0.99). This and related issues 
are examined by Keyfi tz 1971.]

4.6 In a community, 5500 adults were screened for hypertension by the use of 
a standard sphygmomanometer, and 640 were found to have a diastolic 
blood pressure of 90  mmHg or higher. A random sample of 100 adults 
from those with diastolic blood pressure of 90  mmHg or higher and 
another random sample of 100 adults from those with blood pressure less than 
90  mmHg were subjected to more intensive clinical evaluation for hyperten-
sion, and 73 and 13 of the respective samples were confi rmed as being 
hypertensive.
a. What is an estimate of the probability that an adult having blood pressure 

greater than or equal to 90 at the initial screening will actually be hyperten-
sive (predicted value positive)?

b. What is an estimate of the probability that an adult having blood pressure 
less than 90 at the initial screening will not actually be hypertensive (pre-
dicted value negative)?

Categories of Education

Gender (1) (2) (3)
Female 0.166 0.194 0.164
Male 0.149 0.140 0.187



c. What is an estimate of the probability that an adult in this community is 
truly hypertensive (prevalence rate of hypertension)?

d. What is an estimate of the probability that a hypertensive person will be 
found to have blood pressure greater than or equal to 90 at the initial screen-
ing (sensitivity)?

e. What is an estimate of the probability that a person without hypertension 
will have blood pressure less than 90 at the initial screening (specifi city)?

4.7 What is the average number of children per family if every couple were to have 
children until a son is born? Simulate using the random number table in Appen-
dix B or a random number generator in any statistical software.

4.8 Calculate the following probabilities from the 2002 U.S. Abridged Life Table.
a. What is the probability that a 35-year-old person will survive to retirement 

at age 65?
b. What is the probability that a 20-year-old person will die between ages 55 

and 65?
4.10 Calculate the following expected values from the 2002 U.S. Abridged Life 

Table.
a. How many years is a newborn expected to live before his fi fth birthday?
b. How many years is a 20-year-old person expected to live after retirement at 

age 65? Repeat the calculation for a 60-year-old person. How would you 
explain the difference?

4.11 Suppose that a couple wants to have children until they have a girl or until they 
have four children.
a. What is the probability that they have at least two boys?
b. What is the expected number of children?

4.12 The following are tallies of the fi rst digits of the 50 states’ populations in the 
2000 U.S. Census:

Digit 1 2 3 4 5 6 7 8 9 Total

Frequencies 14 6 4 7 6 5 3 3 2 50

a. Why do you think digit 1 appears most frequently and digit 9 least 
frequently?

b. Tabulate the fi rst digits of numerical data that appeared on the front page 
of today’s newspaper, and see whether your fi ndings conform to Benford’s 
law (Hill 1999) [Pr(fi rst signifi cant digit = d) = log10 (1 + 1 / d), d = 1, 
2,  .  .  .  9].

4.13 About 1 percent of women have breast cancer. A cancer screening method can 
detect 80 percent of genuine cancers with a false alarm rate of 10 percent. What 
is the probability that women producing a positive test result really have breast 
cancer?

4.14 Suppose that a factory hires 500 men at age 25 and 200 women at age 25 
each year. The factory maintains the fi xed number of workforce. From the 
2002 life tables, the following values are available: For men: l25 = 97746; l65 = 
78556; e25 = 51.0; e65 = 16.6. For women: l20 = 98922; l65 = 86680; e20 = 60.7; 
e65 = 19.5.
a. What would be the expected number of retirees at age 65?
b. What would be the expected number of total employees?
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Probability 
Distributions

Chapter Outline
5.1 The Binomial Distribution
5.2 The Poisson Distribution
5.3 The Normal Distribution
5.4 The Central Limit Theorem
5.5 Approximations to the Binomial and Poisson Distributions

This chapter introduces three probability distributions: the binomial and the Poisson for 
discrete random variables, and the normal for continuous random variables. For a dis-
crete random variable, its probability distribution is a listing of the probabilities of its 
possible outcomes or a formula for fi nding the probabilities. For a continuous random 
variable, its probability distribution is usually expressed as a formula that can be used 
to fi nd the probability that the variable will fall in a specifi ed interval. Knowledge of 
the probability distribution (1) allows us to summarize and describe data through the 
use of a few numbers and (2) helps to place results of experiments in perspective; that 
is, it allows us to determine whether or not the result is consistent with our ideas. We 
begin the presentation of probability distributions with the binomial distribution.

5.1   The Binomial Distribution
As its name suggests, the binomial distribution refers to random variables with two 
outcomes. Three examples of random variables with two outcomes are (1) smoking 
status — a person does or does not smoke, (2) exposure to benzene — a worker was or 
was not exposed to benzene in the workplace, and (3) health insurance coverage — a 
person does or does not have health insurance. The random variable of interest in the 
binomial setting is the number of occurrences of the event under study — for example, 
the number of adults in a sample of size n who smoke or who have been exposed to 
benzene or who have health insurance. For the binomial distribution to apply, the status 
of each subject must be independent of that of the other subjects. For example, in the 
hypertension question, we are assuming that each person’s hypertension status is unaf-
fected by any other person’s status.

5.1.1   Binomial Probabilities

We consider a simple example to demonstrate the calculation of binomial probabilities. 
Suppose that four adults (labeled A, B, C, and D) have been randomly selected and 

5
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asked whether or not they currently smoke. The random variable of interest in this 
example is the number of persons who respond yes to the question about smoking. The 
possible outcomes of this variable are 0, 1, 2, 3, and 4.

The outcomes (0, 1, 2, 3, and 4) translate to estimates of the proportion of persons 
who answer yes (0.00, 0.25, 0.50, 0.75, and 1.00, respectively). Any of these outcomes 
could occur when we draw a random sample of four adults. As a demonstration, let us 
draw 10 random samples of size 4 from a population in which the proportion of adults 
who smoke is assumed to be 0.25 (population parameter). We can use a random number 
table in performing this demonstration. Four 2-digit numbers were taken from the fi rst 
10 rows of the fi rst page of random number tables in Appendix B. The 2-digit numbers 
less 25 are considered smokers. The results are shown here:

Sample Random Number No. of Smokers Prop. Smokers

 1 17 17 47 59 2 0.50
 2 26 58 06 84 1 0.25
 3 24 04 23 38 3 0.75
 4 74 83 87 93 0 0.00
 5 72 86 25 09 1 0.25
 6 82 27 49 45 0 0.00
 7 77 58 68 91 0 0.00
 8 17 80 21 66 2 0.50
 9 10 27 10 61 2 0.50
10 07 78 05 54 2 0.50

Three samples have no smokers (estimate of 0.00); two samples have 1 smoker (0.25); 
four samples have 2 smokers (0.50); one sample has 3 smokers (0.75); and no sample 
has 4 smokers (1.00). The sample estimates do not necessarily equal the population 
parameter, and the estimates can vary considerably. In practice, a single sample is 
selected, and in making an inference from this one sample to the population, this 
sample-to-sample variability must be taken into account. The probability distribution 
does this, as will be seen later. Now let us calculate the binomial probability distribution 
for a sample size of four.

Suppose that in the population, the proportion of people who would respond “yes” 
to this question is p, and the probability of a response of “no” is then 1 − p. The probabil-
ity of each of the outcomes can be found in terms of p by listing all the possible out-
comes. Table 5.1 provides this listing.

Since each person is independent of all the other persons, the probability of the joint 
occurrence of any outcome is simply the product of the probabilities associated with 
each person’s outcome. That is, the probability of 4 yes responses is p 4. In the same 
way, the probability of three yes responses is 4p 3(1 − p), since there are four occurrences 
of three yes responses. The probability of two yes responses is 6p 2(1 − p)2; the probabil-
ity of one yes response is 4p (1 − p)3; and the probability of zero yes responses is (1 − p)4. 
If we know the value of p, we can calculate the numerical value of these 
probabilities.

Suppose p is 0.25. Then the probability of each outcome is as follows:

Pr {4 yes responses} = 1 * (0.25)4 * (0.75)0 = 0.0039 = Pr {0 no responses},

Pr {3 yes responses} = 4 * (0.25)3 * (0.75)1 = 0.0469 = Pr {1 no response},
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Pr {2 yes responses} = 6 * (0.25)2 * (0.75)2 = 0.2109 = Pr {2 no responses},

Pr {1 yes response} = 4 * (0.25)1 * (0.75)3 = 0.4219 = Pr {3 no responses},

 Pr {0 yes responses} = 1 * (0.25)0 * (0.75)4 = 0.3164 = Pr {4 no responses}.

The sum of these probabilities is one, as it must be, since these are all the possible out-
comes. If the probabilities do not sum to one (with allowance for rounding), a mistake 
has been made. Figure 5.1 shows a plot of the binomial distribution for n equal to 4 and 
p equal to 0.25.

Table 5.1 Possible binomial outcomes in a sample of size of 4 and their probabilities of occurrence.

 Person

A B C D Probability of Occurrence

ya y y y p * p * p * p = p4 * (1 − p )0

y y y n p * p * p * (1 − p ) = p3 * (1 − p )1

y y n y p * p * (1 − p ) * p = p3 * (1 − p )1

y n y y p * (1 − p ) * p * p = p3 * (1 − p )1

n y y y (1 − p ) * p * p * p = p3 * (1 − p )1

y y n n p * p * (1 − p ) * (1 − p ) = p2 * (1 − p )2

y n y n p * (1 − p ) * p * (1 − p ) = p2 * (1 − p )2

y n n y p * (1 − p ) * (1 − p ) * p = p2 * (1 − p )2

n y y n (1 − p ) * p * p * (1 − p ) = p2 * (1 − p )2

n y n y (1 − p ) * p * (1 − p ) * p = p2 * (1 − p )2

n n y y (1 − p ) * (1 − p ) * p * p = p2 * (1 − p )2

y n n n p * (1 − p ) * (1 − p ) * (1 − p ) = p1 * (1 − p )3

n y n n (1 − p ) * p * (1 − p ) * (1 − p ) = p1 * (1 − p )3

n n y n (1 − p ) * (1 − p ) * p * (1 − p ) = p1 * (1 − p )3

n n n y (1 − p ) * (1 − p ) * (1 − p ) * p = p1 * (1 − p )3

n n n n (1 − p ) * (1 − p ) * (1 − p ) * (1 − p ) = p0 * (1 − p )4

ay indicates a yes response and n indicates a no response

Figure 5.1 Bar chart 
showing the binomial 
distribution for n = 4 
and p = 0.25.

Are these probabilities reasonable? Since the probability of a yes response is assumed 
to be 0.25 in the population, in a sample of size four, the probability of one yes response 
should be the largest. It is also reasonable that the probabilities of zero and two yes 
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responses are the next largest, since these values are closest to one yes response. The 
probability of four yes responses is the smallest, as is to be expected. Figure 5.1 shows 
the rapid decrease in the probabilities as the number of yes responses moves away from 
the expected response of one.

In the calculation of the probabilities, there are several patterns visible. The exponent 
of the probability of a yes response matches the number of yes responses being consid-
ered and the exponent of the probability of a no response also matches the number of 
no responses being considered. The sum of the exponents is always the number of 
persons in the sample. These patterns are easy to capture in a formula, which eliminates 
the need to enumerate the possible outcomes. The formula may appear complicated, but 
it is really not all that diffi cult to use. The formula, also referred to as the probability 
mass function for the binomial distribution, is
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symbol n! is called n factorial, and nCx is read as n combination x, which gives the 
number of ways that x elements can be selected from n elements without regard to order 
(see Appendix A for further explanations). In this formula, n is the number of persons 
or elements selected, and x is the value of the random variable, which goes from 0 to 
n. Another representation of this formula is
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where B represents binomial. The equality of B(x; n, p) and B(n − x; n, 1 − p) is a 
symbolic way of saying that the probability of x yes responses from n persons, given 
that p is the probability of a yes response, equals the probability of n − x no 
responses.

The smoking situation can be used to demonstrate the use of the formula. To fi nd 
the probability that X = 3, we have
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This is the same value we found by listing all the outcomes and the associated probabili-
ties. There are easier ways of fi nding binomial probabilities, as is shown next.

There is a recursive relation between the binomial probabilities, which makes it easier 
to fi nd them than to use the binomial formula for each different value of X. The relation 
is
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for x ranging from 0 to n − 1. For example, the probability that X equals 1 in terms of 
the probability that X equals 0 is
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which is the same value we calculated above.

A still easier method is to use Appendix Table B2, a table of binomial probabilities 
for n ranging from 2 to 20 and p beginning at 0.01 and ranging from 0.05 to 0.50 in 
steps of 0.05. There is no need to extend the table to values of p larger than 0.50 because 
B(x; n, p) equals B(n − x; n, 1 − p). For example, if p were 0.75 and we wanted to fi nd 
the probability that X = 1 for n = 4, B(1; 4, 0.75), we fi nd B(3; 4, 0.25) in Table B2 and 
read the value of 0.0469. These probabilities are the same because when n = 4 and the 
probability of a yes response is 0.25, the occurrence of three yes responses is the same 
as the occurrence of one no response when the probability of a no response is 0.75.

Another way of obtaining binomial probabilities is to use computer packages (see 
Program Note 5.1 on the website). The use of computer software is particularly nice, 
since it does not limit the values of p to being a multiple of 0.05 and n can be much 
larger than 20. More will be said about how large n can be in a later section.

Table 5.2 Probability mass (Pr{X = x}) and cumulative (Pr{X £ x}) distribution functions for the 
binomial when n = 4 and p = 0.25.

 x 0 1 2 3 4

Mass: Pr{X = x} 0.3164 0.4219 0.2109 0.0469 0.0039
Cumulative: Pr{X ≤ x} 0.3164 0.7383 0.9492 0.9961 1.0000

The probability mass function for the binomial gives Pr{X = x} for x ranging from 
0 to n (shown in Figure 5.1). Another function that is used frequently is the cumulative 
distribution function (cdf). This function gives the probability that X is less than or 
equal to x for all possible values of X. Table 5.2 shows both the probability mass func-
tion and the cumulative distribution function values for the binomial when n is 4 and p 
is 0.25. The entries in the cumulative distribution row are simply the sum of the proba-
bilities in the row above it, the probability mass function row, for all values of X less 
than or equal to the value being considered. Cumulative distribution functions all have 
a general shape shown in Figure 5.2. The value of the function starts with a low value 
and then increases over the range of the X variable. The rate of increase of the function 
is what varies between different distributions. All the distributions eventually reach the 
value of one or approach it asymptotically.

Figure 5.2 Cumulative 
binomial distribution 
for n = 4 and p = 0.25.
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As seen above, if we know the data follow a binomial distribution, we can completely 
summarize the data through their two parameters, the sample size and the population 
proportion or an estimate of it. The sample estimate of the population proportion is the 
number of occurrences of the event in the sample divided by the sample size.

5.1.2   Mean and Variance of the Binomial Distribution

We can now calculate the mean and variance of the binomial distribution. The mean is 
found by summing the product of each outcome by its probability of occurrence — that 
is,
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This appears to be different from the calculation of the sample mean in Chapter 3, but 
it is really the same because in Chapter 3 all the observations had the same probability 
of occurrence, 1/N. Thus, the formula for the population mean could be reexpressed 
as
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The mean of the binomial variable — that is, the mean number of yes responses out 
of n responses when n is 4 and p is 0.25 is

0 ⋅ (0.3164) + 1 ⋅ (0.4219) + 2 ⋅ (0.2109) + 3 ⋅ (0.0469) + 4 ⋅ (0.0039) = 1.00 
 = np

or in general for the binomial distribution,

 m = np.

The expression of the binomial mean as np makes sense, since, if the probability of 
occurrence of an event is p, then in a sample of size n, we would expect np occurrences 
of the event.

The variance of the binomial variable, the number of yes responses, can also be 
expressed conveniently in terms of p. From Chapter 3, the population variance was 
expressed as
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In terms of the binomial, the X variable takes on the values from 0 to n, and we again 
replace the N in the divisor by the probability that X is equal to x. Thus, the formula 
becomes
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which, with further algebraic manipulation, simplifi es to

 s2 = np (1 − p).
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When n is 4 and p is 0.25, the variance is then 4(0.25)(1 − 0.25), which is 0.75.

There is often interest in the variance of the proportion of yes responses — that is, 
in the variance of the number of yes responses divided by the sample size. This is the 
variance of the number of yes responses divided by a constant. From Chapter 3, we 
know that this is the variance of the number of yes responses divided by the square of 
the constant. Thus, the variance of a proportion is
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Example 5.1

Use of the Binomial Distribution: Let us consider a larger example now. In 1990, 
cesarean section (c-section) deliveries represented 23.5 percent of all deliveries in 
the United States, a tremendous increase since 1960 when the rate was only 5.5 
percent. Concern has been expressed, for example, by the Public Citizen Health 
Research Group (1992) in its June 1992 health letter, reporting that many unneces-
sary c-section deliveries are performed. Public Citizen believes unnecessary c-sec-
tions waste resources and increase maternal risks without achieving suffi cient 
concomitant improvement in maternal and infant health. It is in this context that 
administrators at a local hospital are concerned, as they believe that their hospital’s 
c-section rate is even higher than the national average. Suppose as a fi rst step in 
determining if this belief is correct, we select a random sample of deliveries from 
the hospital. Of the 62 delivery records pulled for 1990, we found 22 c-sections. Does 
this large proportion of c-section deliveries, 35.5 percent (= 22/62), mean that this 
hospital’s rate is higher than the national average? The sample proportion of 35.5 
percent is certainly larger than 23.5 percent, but our question refers to the population 
of deliveries in the hospital in 1990, not the sample. As we just saw, we cannot infer 
immediately from this sample without taking sample-to-sample variability into 
account. This is a situation where the binomial distribution can be used to address 
the question about the population based on the sample.

To put the sample rate into perspective, we need to fi rst answer a question: How 
likely is a rate of 35.5 percent or higher in our sample if the rate of c-section deliver-
ies is really 23.5 percent? Note that the question includes rates higher than 35.5 
percent. We must include them because if the sum of their probabilities is large, we 
cannot conclude that a rate of 35.5 percent is inconsistent with the national rate 
regardless of how unlikely the rate of 35.5 percent is.

We can use the cdf for the binomial to fi nd the answer to this question. The cdf 
enables us to fi nd the probability that a variable is less than a given value — in this 
case, less than the result we observed in our sample. Then we can subtract that prob-
ability from one to fi nd how likely it is to obtain a rate as large or larger than our 
sample rate. It turns out to be 0.0224 (see Program Note 5.1 on the website). This 
means that the probability of 22 or more c-section deliveries is 0.0224. The probabil-
ity of having 22 or more c-sections is very small. It is unlikely that this hospital’s c-
section rate is the same as the national average, and, in fact, it appears to be higher. 
Further investigation is required to determine why the rate may be higher.
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5.1.3   Shapes of the Binomial Distribution

The binomial distribution has two parameters, the sample size and the population pro-
portion, that affect its appearance. So far we have seen the distribution of one binomial 
— Figure 5.1 — which had a sample size of 4 and a population proportion of 0.25. 
Figure 5.3 examines the effect of population proportion on the shape of the binomial 
distribution for a sample size of 10.

Figure 5.3 Binomial 
probabilities for n = 10 
and p = 0.1, 0.2, and 0.5.



The plots in Figure 5.3 would look like bar charts if a perpendicular line were drawn 
from the horizontal axis to the points above each outcome. In the fi rst plot with p equal 
to 0.10, the shape is quite asymmetric with only a few of the outcomes having probabili-
ties very different from zero. This plot has a long tail to the right. In the second plot 
with p equal to 0.20, the plot is less asymmetric.

The third binomial distribution, with p equal to 0.50, has a mean of 5 (= np). The 
plot is symmetric about its mean of 5, and it has the familiar bell shape. Since p is 0.50, 
it is as likely to have one less occurrence as one more occurrence — that is, four occur-
rences of the event of interest are as likely as six occurrences, three as likely as seven 
and so on, and the plot refl ects this.

This completes the introduction to the binomial, although we shall say more about 
it later. The next section introduces the Poisson distribution, another widely used 
distribution.

5.2   The Poisson Distribution
The Poisson distribution is named for its discoverer, Siméon-Denis Poisson, a French 
mathematician from the late 18th and early 19th centuries. He is said to have once 
remarked that life is good for only two things: doing mathematics and teaching it (Boyer 
1985). The Poission distribution is similar to the binomial in that it is also used with 
counts or the number of events. The Poisson is particularly useful when the events occur 
infrequently. It has been applied in the epidemiologic study of many forms of cancer 
and other rare diseases over time. It has also been applied to the study of the number 
of elements in a small space when a large number of these small spaces are spread at 
random over a much larger space — for example, in the study of bacterial colonies on 
an agar plate.

Even though the Poisson and binomial distributions both are used with counts, the 
situations for their applications differ. The binomial is used when a sample of size n is 
selected and the number of events and nonevents are determined from this sample. The 
Poisson is used when events occur at random in time or space, and the number of these 
events is noted. In the Poisson situation, no sample of size n has been selected.

5.2.1   Poisson Probabilities

The Poisson distribution arises from either of two models. In one model — quantities, 
for example — bacteria are assumed to be distributed at random in some medium with 
a uniform density of l(lambda) per unit area. The number of bacteria colonies found 
in a sample area of size A follows the Poisson distribution with a parameter m equal to 
the product of l and A.

In terms of the model over time, we assume that the probability of one event in a 
short interval of length t1 is proportional to t1 — that is, Pr{exactly one event} is approxi-
mately lt1. Another assumption is that t1 is so short that the probability of more than 
one event during this interval is almost zero. We also assume that what happens in one 
time interval is independent of the happenings in another interval. Finally, we assume 
that l is constant over time. Given these assumptions, the number of occurrences of the 
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event in a time interval of length t follows the Poisson distribution with parameter m , 
where m is the product of l and t.

The Poisson probability mass function is

 
Pr

!
X x

e

x
x

x

=( ) = =
−μμ

for ,1, 2 . . . . . . . . .0

where e is a constant approximately equal to 2.71828 and m is the parameter of the 
Poisson distribution. Usually m is unknown and we must estimate it from the sample 
data. Before considering an example, we shall demonstrate in Table 5.3 the use of the 
probability mass function for the Poisson distribution to calculate the probabilities when 
m = 1 and m = 2. These probabilities are not diffi cult to calculate, particularly when m 
is an integer. There is also a recursive relation between the probability that X = x + 1 
and the probability that X = x that simplifi es the calculations:
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for x beginning at a value of 0. For example, for m = 2,

 Pr{X = 3} = (2/3) Pr{X = 2} = (2/3) 0.2707 = 0.1804

which is the value shown in Table 5.3.

Table 5.3 Calculation of poisson probabilities, Pr{X = x} = e-m mx/x!, for 
m = 1 and 2.

 m = 1 m = 2

x e−1 * 1x/x! = Pr{X = x} e-2 * 2x/x! = Pr{X = x}

0 0.3679 * 1/1 = 0.3679 0.1353 *  1/1 = 0.1353
1 0.3679 * 1/1 = 0.3679 0.1353 *  2/1 = 0.2707
2 0.3679 * 1/2 = 0.1839 0.1353 *  4/2 = 0.2707
3 0.3679 * 1/6 = 0.0613 0.1353 *  8/6 = 0.1804
4 0.3679 * 1/24 = 0.0153 0.1353 *  16/24 = 0.0902
5 0.3679 * 1/120 = 0.0031 0.1353 * 32/120 = 0.0361
6 0.3679 * 1/720 = 0.0005 0.1353 * 64/720 = 0.0120
7 0.3679 * 1/5040 = 0.0001 0.1353 * 128/5040 = 0.0034
8   0.1353 * 256/40320 = 0.0009
9   0.1353 * 512/362880 = 0.0002

  1.0000  0.9999

These probabilities are also found in Appendix Table B3, which gives the Poisson 
probabilities for values of m beginning at 0.2 and increasing in increments of 0.2 up to 
2.0, then in increments of 0.5 up to 7, and in increments of 1 up to 17. Computer software 
can provide the Poisson probabilities for other values of m (see Program Note 5.1 on 
the website). Note that the Poisson distribution is totally determined by specifying the 
value of its one parameter, m. The plots in Figure 5.4 show the shape of the Poisson 
probability mass and cumulative distribution functions with m = 2.

The shape of the Poisson probability mass function with m equal to 2 (the top plot in 
Figure 5.4) is similar to the binomial mass function for a sample of size 10 and p equal 



to 0.2 just shown. The cdf (the bottom plot in Figure 5.4) has the same general shape 
as that shown in the preceding binomial example, but the shape is easier to see here, 
since there are more values for the X variable shown on the horizontal axis.

5.2.2   Mean and Variance of the Poisson Distribution

As just discussed, the mean is found by summing the products of each outcome by its 
probability of occurrence. For the Poisson distribution with parameter m = 1 (see Table 
5.3), the mean is
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The mean of the Poisson distribution is the same as m, which is also the parameter of the 
Poisson distribution. It turns out that the variance of the Poisson distribution is also m.

Figure 5.4 Poisson (m = 
2) probability mass and 
cumulative distribution 
functions.
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5.2.3   Finding Poisson Probabilities

A famous chemist and statistician, W. S. Gosset, worked for the Guinness Brewery in 
Dublin at the turn of the 20th century. Because Gosset did not wish his competitor 
breweries to learn of the potential application of his work for a brewery, he published 
his research under the pseudonym of Student. As part of his work, he studied the dis-
tribution of yeast cells over 400 squares of a hemacytometer, an instrument for the 
counting of cells (Student 1907). One of the four data sets he obtained is shown in 
Table 5.4.

Table 5.4 Observed frequency of yeast cells in 400 squares.

 X

 0 1 2 3 4 5 6

Frequency 103 143 98 42 8 4 2
Proportion 0.258 0.358 0.245 0.105 0.020 0.010 0.005
Poisson Probability 0.267 0.352 0.233 0.103 0.034 0.009 0.002

Do these data follow a Poisson distribution? As we just said, the Poisson distribution is 
determined by the mean value that is unknown in this case. We can use the sample 
mean to estimate the population mean m. The sample mean is the sum of all the obser-
vations divided by the number of observations — in this case, 400. The sum of the 
number of cells is

 103(0) + 143(1) + 98(2) + 42(3) + 8(4) + 4(5) + 2(6) = 529.

The sample mean is then 529/400 = 1.3225. Thus, we can calculate the Poisson probabili-
ties using the value of 1.3225 for the mean. Since the value of 1.3225 for m is not in 
Appendix Table B3, we must use some other means of obtaining the probabilities. We 
can calculate them using the recursive relation just shown. We begin by fi nding the 
probability of squares with zero cells, e−1.3225, which is 0.2665. The other probabilities 
are found from this value. Computer packages can be used to calculate Poisson proba-
bilities (see Program Note 5.1 on the website). The results of calculation are shown in 
the third row of Table 5.4. Based on the visual agreement of the actual and theoretical 
proportions (from the Poisson), we cannot rule out the Poisson distribution as the dis-
tribution of the cell counts. The Poisson distribution agreed quite well for three of the 
four replications of the 400 cells that Gosset performed.

One reason for interest in the distribution of data is that knowledge of the distribution 
can be used in future occurrences of this situation. If future data do not follow the pre-
viously observed distribution, this can alert us to a change in the process for generating 
the data. It could also indicate, for example, that the blood cell counts of a patient under 
study differ from those expected in a healthy population or that there are more occur-
rences of some disease than was expected assuming that the disease occurrence follows 
a Poisson distribution with parameter m. If there are more cases of the disease, it may 
indicate that there is some common source of infection — for example, some exposure 
in the workplace or in the environment.

A method of visual inspection of whether or not the data could come from a Poisson 
distribution is the Poissonness plot, presented by Hoaglin (1980). The rationale for the 



plot is based on the Poisson probability mass distribution formula. If the data could 
come from a Poisson distribution, then a plot of the sum of the natural logarithm of the 
frequency of x and the natural logarithm of x! against the value of x should be a straight 
line. Using a computer package (see Program Note 5.2 on the website) with the data 
in Table 5.4, a Poissonness plot is created, as shown in Figure 5.5.

Figure 5.5 Poissonness 
plot for Gosset’s data in 
Table 5.4.

Example 5.2

Use of the Poisson Distribution: In 1986, there were 18 cases of pertussis reported 
in Harris County, Texas, from its estimated 1986 population of 2,942,550. The 
reported national rate of pertussis was 1.2 cases per 100,000 population (Harris 
County Health Department 1990). Do the Harris County data appear to be consistent 
with the national rate?

The data are inconsistent if there are too many or too few cases of pertussis 
compared to the national rate. This concern about both too few as well as too many 
adds a complication lacking in the binomial example in which we were concerned 
only about too many occurrences. Our method of answering the question is as 
follows.

First calculate the pertussis rate in Harris County. If the rate is above the national 
rate, fi nd the probability of at least as many cases occurring as were observed. If the 
rate is below the national rate, fi nd the probability of the observed number of cases 
or fewer occurring. To account for both too few as well as too many in our calcula-
tions, we double the calculated probability. Is the resultant probability large? If it is 
large, there is no evidence that the data are inconsistent with the national rate. If it 
is small, it is unlikely that the data are consistent with the national rate.
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The plot appears to be approximately a straight line, with the exception of a dip for 
x = 4. In Table 5.4, we see that the biggest discrepancy between the actual and theoreti-
cal proportions occurred when x = 4, confi rmed by the Poissonness plot.



116  Probability Distributions

The rate of pertussis in Harris County was 0.61 cases per 100,000 population, 
less than the national rate. Therefore, we shall calculate the probability of 18 or fewer 
cases given the national rate of 1.2 cases per 100,000 population. The rate of 1.2 per 
100,000 is multiplied by 29.4255 (the Harris County population of 2,942,550 divided 
by 100,000) to obtain the Poisson parameter for Harris County of 35.31. This value 
exceeds those listed in Table B3. Therefore, we can either fi nd the probability of zero 
cases and use the recursive formula shown above or use the computer. Using a com-
puter package (see Program Note 5.1 on the website), the probability of 18 or fewer 
cases is found to be 0.001. Multiplying this value by 2 to account for the upper tail 
of the distribution gives a probability of 0.002, a very small value. It is therefore 
doubtful, since the probability is only 0.002, that the national rate of pertussis applies 
to Harris County.

This completes the introduction to the binomial and Poisson distributions. The fol-
lowing section introduces the normal probability distribution for continuous random 
variables.

5.3   The Normal Distribution
The normal distribution is also sometimes referred to as the Gaussian distribution after 
the German mathematician Carl Gauss (1777–1855). Gauss, perhaps the greatest math-
ematician who ever lived, demonstrated the importance of the normal distribution in 
describing errors in astronomical observations (published in 1809), and today it is the 
most widely used probability distribution in statistics. Recently, historians discovered 
that an American mine engineer, Adrian, used the similar distribution for random errors 
of measurements (published in 1808) (Stigler 1980). The normal distribution is so 
widely used because (1) it occurs naturally in many situations, (2) the sample means of 
many nonnormal distributions tend to follow it, and (3) it can serve as a good approxi-
mation to some nonnormal distributions.

5.3.1   Normal Probabilities

As we just mentioned, the probability distribution for a continuous random variable is 
usually expressed as a formula that can be used to fi nd the probability that the continu-
ous variable is within a specifi ed interval. This differs from the probability distribution 
of a discrete variable that gives the probability of each possible outcome.

One reason why an interval is used with a continuous variable instead of considering 
each possible outcome is that there is really no interest in each distinct outcome. For 
example, when someone expresses an interest in knowing the probability that a male 
45 to 54 years old weighs 160 pounds, exactly 160.000000000  .  .  .  pounds is not what 
is intended. What the person intends is related to the precision of the scale used, and 
the person may actually mean 159.5 to 160.5 pounds. With a less precise scale, 160 
pounds may mean a value between 155 and 165 pounds. Hence, the probability distribu-
tion of continuous random variables focuses on intervals rather than on exact values.

The probability density function (pdf) for a continuous random variable X is a 
formula that allows one to fi nd the probability of X being in an interval. Just as the 



probability mass function for a discrete random variable could be graphed, the probabil-
ity density function can also be graphed. Its graph is a curve such that the area under 
the curve sums to one, and the area between two points, x1 and x2, is equal to the prob-
ability that the random variable X is between x1 and x2.

The normal probability density function is
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where m is the mean and s is the standard deviation of the normal distribution, and p 
is a constant approximately equal to 3.14159. The normal probability density function 
is bell-shaped, as can be seen from Figure 5.6. It shows the standard normal density 
function — that is, the normal pdf with a mean of zero and a standard deviation of one 
— over the range of −3.5 to plus 3.5. The area under the curve is one and the probability 
of X being between any two points is equal to the area under the curve between those 
two points.

Figure 5.7 shows the effect of increasing s from one to two on the normal pdf. The area 
under both of these curves again is one, and both curves are bell-shaped. The standard 
normal distribution has smaller variability, evidenced by more of the area being closer 
to zero, as it must, since its standard deviation is 50 percent of that of the other normal 
distribution. There is more area, or a greater probability of occurrence, under the second 
curve associated with values farther from the mean of zero than under the standard 
normal curve. The effect of increasing the standard deviation is to fl atten the curve of 
the pdf, with a concomitant increase in the probability of more extreme values of X.

In Figure 5.8, two additional normal probability density functions are presented to 
show the effect of changing the mean. Increasing the mean by 3 units has simply shifted 
the entire pdf curve 3 units to the right. Hence, changing the mean shifts the curve to 
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the right or left and changing the standard deviation increases or decreases the spread 
of the distribution.

5.3.2   Transforming to the Standard Normal Distribution

As can be seen from the normal pdf formula and the plots, there are two parameters, 
the mean and the standard deviation, that determine the location and spread of the 
normal curve. Hence, there are many normal distributions, just as there are many bino-
mial and Poisson distributions. However, it is not necessary to have many pages of 
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normal tables for each different normal distribution because all the normal distributions 
can be transformed to the standard normal distribution. Thus, only one normal table is 
needed, not many different ones.

Consider data from a normal distribution with a mean of m and a standard deviation 
of s. We wish to transform these data to the standard normal distribution that has a 
mean of zero and a standard deviation of one. The transformation has two steps. The 
fi rst step is to subtract the mean, m , from all the observations. In symbols, let yi be equal 
to (xi − m). Then the mean of Y is my, which equals
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The second step is to divide yi by its standard deviation. Since we have subtracted a 
constant from the observations of X, the variance and standard deviation of Y is the 
same as that of X, as was shown in Chapter 3. That is, the standard deviation of Y is 
also s. In symbols, let zi be equal to yi/s. What are the mean and standard deviation of 
Z? The mean is still zero but the standard deviation of Z is one. This is due to the second 
property of the variance shown in Chapter 3 — namely, when all the observations are 
divided by a constant, the standard deviation is also divided by that constant. Therefore, 
the standard deviation of Z is found by dividing s, the standard deviation of Y, by the 
constant s. The value of this ratio is one.

Therefore, any variable, X, that follows a normal distribution with a mean of m and 
a standard deviation of s can be transformed to the standard normal distribution by 
subtracting m from all the observations and dividing all the observed deviations by s. 
The variable Z, defi ned as (X − m)/s, follows the standard normal distribution. A symbol 
for indicating that a variable follows a particular distribution or is “distributed as” is 
the asymptote, ∼. For example, Z ∼ N (0, 1) means that Z follows a normal distribution 
with a mean of zero and a standard deviation of one. The observed value of a variable 
from a standard normal distribution tells how many standard deviations that value is 
from its mean of zero.

5.3.3   Calculation of Normal Probabilities

The cumulative distribution function of the standard normal distribution, denoted by 
Φ(z), represents the probability that the standard normal variable Z is less than or equal 
to the value z — that is, Pr{Z ≤ z}. Table B4 presents the values of Φ(z) for values of z 
ranging from −3.79 to 3.79 in steps of 0.01. The table shows that the value of 0.9999 at 
z = 3.79, meaning that the probability of Z less than 3.79 is practically 1.0000. It also 
means that the area under the curve of pdf function shown in Figure 5.6 is 1.0000, a 
requirement for any probability distribution.

Figure 5.9 shows the cumulative distribution function for the standard normal dis-
tribution. The vertical axis gives the values of the probabilities corresponding to the 
values of z shown along the horizontal axis. The curve gradually increases from a prob-
ability of 0.0 for values of z around −3 to a probability of 0.5 when z is zero (as marked 
in Figure 5.9) and on to probabilities close to 1.0 for values of z of 3 or larger. We can 
calculate various probabilities associated with a normal distribution using its cdf without 
directly resorting to its pdf.
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Example 5.3

Probability of Being Greater than a Value: Suppose we wish to fi nd the probability 
that an adult female will have a diastolic blood pressure value greater than 95  mmHg 
given that X, the diastolic blood pressure for adult females, follows the N(80, 10) 
distribution. Since the values in Table B4 are for variables that follow the N(0, 1) 
distribution, we fi rst must transform the value of 95 to its corresponding Z value. To 
do this, we subtract the mean of 80 and divide by the standard deviation of 10. The 
z value of 95  mmHg, therefore, is

z = − = =95 80

10

15

10
1 5. .

Thus, the value of the Z variable corresponding to 95  mmHg is 1.5, which means 
that the diastolic blood pressure of 95 is 1.5 standard deviations above its mean of 
80. We now want the probability that Z is greater than 1.5. Using Table B4, look for 
1.5 under the z heading and then go across the columns until reaching the .00 column. 
The probability of a standard normal variable being less than 1.5 is 0.9332. Thus, 
the probability of being greater than 1.5 is 0.0668 (= 1 − 0.9332).

Example 5.4

Calculation of the Value of the ith Percentile: Table B4 can be used to answer a 
slightly different question as well. Suppose that we wish to fi nd the 95th percentile 
of the diastolic blood pressure variable for adult females — that is, the value such 
that 95 percent of adult females had a diastolic blood pressure less than it. We look 
in the body of the table until we fi nd 0.9500. We fi nd the corresponding value in the 
z column, and transform that value to the N(80, 10) distribution. Examination of 



Table B4 shows the value of 0.9495 when z is 1.64 and 0.9505 for a z of 1.65. There 
is no value of 0.9500 in the table. Since 0.9500 is exactly half way between 0.9495 
and 0.9505, we shall use the value of 1.645 for the corresponding z. We now must 
transform this value to the N(80, 10) distribution. This is easy to do since we know 
the relation between Z and X.

As Z = (X − m)/s, on multiplication of both sides of the equation by s, we have 
sZ = X − m. If we add m to both sides of the equation, we have sZ + m = X. Therefore, 
we must multiply the value of 1.645 by 10, the value of s, and add 80, the value 
of m , to it to fi nd the value of the 95th percentile. This value is 96.45 (= 16.45 
+ 80) mmHg.

This calculation can also be performed by computer packages (see Program Note 
5.3 on the website).

The percentiles of the standard normal distribution are used frequently, and, there-
fore, a shorthand notation for them has been developed. The ith percentile for the stan-
dard normal distribution is written as zi — for example, z0.95 is 1.645. From Table B4, 
we also see that z0.90 is approximately 1.28 and z0.975 is 1.96. By the symmetry of the 
normal distribution, we also know that z0.10 is −1.28, z0.05 is −1.645 and z0.025 is −1.96.

The percentiles in theory could also be obtained from the graph of the cdf for the 
standard normal shown in Figure 5.9. For example, if the 90th percentile was desired, 
fi nd the value of 0.90 on the vertical axis and draw a line parallel to the horizontal axis 
from it to the graph. Next, drop a line parallel to the vertical axis from that point down 
to the horizontal axis. The point where the line intersects the horizontal axis is the 90th 
percentile of the standard normal distribution.

Example 5.5

Probability Calculation for an Interval: Suppose that we wished to fi nd the proportion 
of women whose diastolic blood pressure was between 75 and 90  mmHg. The fi rst 
step in fi nding the proportion of women whose diastolic blood pressure is in this 
interval is to convert the values of 75 and 90  mmHg to the N(0, 1) distribution. The 
value of 75 is transformed to an N(0, 1) value by subtracting m and dividing by s — 
that is, (75 − 80)/10, which is −0.5, and 90 is converted to 1.0. We therefore must 
fi nd the area under the standard normal curve between −0.5 and 1.0. Figure 5.10 aids 
our understanding of what is wanted. It also provides us with an idea of the proba-
bility’s value. If the numerical value is not consistent with our idea of the value, 
perhaps we misused Appendix Table B4. From Figure 5.10 the area under the curve 
between z = −0.5 and z = 1.0 appears to be roughly 1/2 of the total area.

One way of fi nding the area between −0.5 and 1.0 is to fi nd the area under the 
curve less than or equal to 1.0 and to subtract from it the area under the curve less 
than or equal to −0.5. In symbols, this is

Pr{−0.5 < Z < 1.0} = Pr{Z < 1.0} − Pr{Z < −0.5}.
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5.3.4   The Normal Probability Plot

The normal probability plot provides a way of visually determining whether or not data 
might be normally distributed. This plot is based on the cdf of the standard normal dis-
tribution. Special graph paper, called normal probability paper, is used in the plotting of 
the points. The vertical axis of normal probability paper shows the values of the cdf of 
the standard normal. Table B4 shows the cdf values corresponding to z values of −3.79 
to 3.79 in steps of 0.01, and it is not diffi cult to discover that that the increase in the cdf’s 
value is not constant per a constant increase in z. It is more clearly shown in Figure 5.9. 
The vertical axis refl ects this with very small changes in values of the cdf initially, then 
larger changes in the cdf’s values in the middle of plot, and fi nally very small changes 
in the cdf’s value. Numbers along the horizontal axis are in their natural units.

If a variable, X, is normally distributed, the plot of its cdf against X should be a 
straight line on normal probability paper. If the plot is not a straight line, then it suggests 
that X is not normally distributed. Since we do not know the distribution of X, we 
approximate its cdf in the following fashion.

We fi rst sort the observed values of X from lowest to highest. Next we assign ranks 
to the observations from 1 for the lowest to n (the sample size) for the highest value. 
The ranks are divided by n and this gives an estimate of the cdf. This sample estimate 
is often called the empirical distribution function.

The points, determined by the values of the sample estimate of the cdf and the cor-
responding values of x, are plotted on normal probability paper. In practice, the ranks 
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From Table B4, we fi nd that the area under the standard normal pdf curve less 
than or equal to 1.0 is 0.8413. The probability of a value less than or equal to −0.5 
is 0.3085. Thus, the proportion of women whose diastolic blood pressure is between 
75 and 90  mmHg is 0.5328 (= 0.8413 − 0.3085). Computer packages can be used to 
perform this calculation (see Program Note 5.3 on the website).

Figure 5.10 Area under the standard normal curve between z = −0.5 and z = 1.0.



divided by the sample size are not used as the estimate of the cdf. Instead, the transfor-
mation, (rank − 0.375)/(n + 0.25), is frequently used. One reason for this transformation 
is that the estimate of the cdf for the largest observation is now a value less than one, 
whereas the use of the ranks divided by n always results in a sample cdf value of one 
for the largest observation. A value less than one is desirable because it is highly unlikely 
that the selected sample actually contains the largest value in the population.

Example 5.6

We consider a small data set for vitamin A values from 33 boys shown in Table 5.5 and 
examine whether the data are normally distributed. An alternative to normal probability 
paper is the use of a computer (see Program Note 5.4 on the website). Applying the 
probability plot option in a computer package to vitamin A data, Figure 5.11 is produced. 
The straight line helps to discern whether or not the data deviate from the normal dis-
tribution. The points in the plot do not appear to fall along a straight line. Therefore, it 
is doubtful that the vitamin A variable follows a normal distribution, a conclusion that 
we had previously reached in the discussion of symmetry in Chapter 3.

Table 5.5 Values of vitamin A, their ranks, and transformed ranks, n = 33.

Vit. A  Trans.a Vit. A  Trans. Vit. A  Trans.
(IUs) Rank Rank (IUs) Rank Rank (IUs) Rank Rank

820 1 0.0188 3747 12 0.3496 6754 23 0.6805
964 2 0.0489 4248 13 0.3797 6761 24 0.7105
1379 3 0.0789 4288 14 0.4098 8034 25 0.7406
1459 4 0.1090 4315 15 0.4398 8516 26 0.7707
1704 5 0.1391 4450 16 0.4699 8631 27 0.8008
1826 6 0.1692 4535 17 0.5000 8675 28 0.8308
1921 7 0.1992 4876 18 0.5301 9490 29 0.8609
2246 8 0.2293 5242 19 0.5602 9710 30 0.8910
2284 9 0.2594 5703 20 0.5902 10451 31 0.9211
2671 10 0.2895 5874 21 0.6203 12493 32 0.9511
2687 11 0.3195 6202 22 0.6504 12812 33 0.9812

Source: From dietary records of 33 boys7

aTransformed by (rank − 0.375)/(n + 0.25)

Figure 5.11 Normal probability plot of vitamin A.
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Let us now examine data from a normal distribution and see what its normality 
probability plot looks like. The example in Figure 5.12 uses 200 observations generated 
from an N(80, 10) distribution. The plot looks like a straight line, but there are many 
points with the same normal scores. The points appear to fall mostly on a straight line 
as they should. The smallest observed value of X is slightly larger than expected if the 
data were perfectly normally distributed, but this deviation is relatively slight. Hence, 
based on this visual inspection, these data could come from a normal distribution.

It is diffi cult to determine visually whether or not data follow a normal distribution 
for small sample sizes unless the data deviate substantially from a normal distribution. 
As the sample size increases, one can have more confi dence in the visual 
determination.

5.4   The Central Limit Theorem
As was just mentioned, one of the main reasons for the widespread use of the normal 
distribution is that the sample means of many nonnormal distributions tend to follow 
the normal distribution as the sample size increases. The formal statement of this 
is called the central limit theorem. Basically, for random samples of size n from 
some distribution with mean m and standard deviation s, the distribution of x–, the 
sample mean, is approximately N(m , σ n ). This theorem applies for any distribution 
as long as m and s are defi ned. The approximation to normality improves as n 
increases.

The proof of this theorem is beyond the scope of this book and also unnecessary for 
our understanding. We shall, however, demonstrate that it holds for a very nonnormal 
distribution, the Poisson distribution with mean one.

Figure 5.12 Probability 
plot of 200 observations 
from N (80, 10).



Example 5.7

As seen Figure 5.4, the Poisson distribution with a mean of 1 is very nonnormal in 
appearance. The following demonstration consists of drawing a large number of 
samples — say, 100 — from this distribution, calculating the mean for each sample, 
and examining the sampling distribution of the sample means. We shall do this for 
samples of size 5, 10, and 20. Figure 5.13 shows three boxplots for each of these 
sample sizes. All three means are around 1, and the variances of the means are 
decreasing as the sample size increases.

As was just stated, the mean of the means should be 1, and the standard deviation 
of the means is the standard deviation divided by the square root of the sample size. 
It was also stated that the distribution of means should approach a normal distribu-
tion when the sample size is large. Figure 5.14 examines the case for n = 20. The 
mean is 1.003, which is very close to 1. The standard deviation is 0.2058, which is 
close to 0.2236( = 1 20 ). The probability plot lines up around the straight line, 
suggesting that the distribution of the sample means does not differ substantially 
from normal distribution.

Figure 5.13 Boxplot of 100 sample means from Poisson (m = 1) for n = 5, 10, and 20.
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Besides showing that the central limit theorem holds for one very nonnormal distri-
butions, this demonstration also showed the effect of sample size on the estimate of the 
population mean. This example reinforces the idea that the mean from a very small 
sample may not be close to the population mean and does not warrant the use of the 
normal distribution. The idea of central limit theorem and sampling distribution plays 
a key role in referring from the sample to the population as will be discussed in sub-
sequent chapters.

5.5   Approximations to the Binomial and 
Poisson Distributions

As we just said, another reason for the use of the normal distribution is that, under 
certain conditions, it provides a good approximation to some other distributions — in 
particular the binomial and Poisson distributions. This was more important in the past 
when there was not such a widespread availability of computer packages for calculating 
binomial and Poisson probabilities for parameter values far exceeding those shown in 
tables in most textbooks. However, it is still important today as computer packages have 
limitations in their ability to calculate binomial probabilities for large sample sizes or 
for extremely large values of the Poisson parameter. In the following sections, we show 
the use of the normal distribution as an approximation to the binomial and Poisson 
distributions.

5.5.1   Normal Approximation to the Binomial Distribution

In the plots of the binomial probability mass functions, we saw that as the binomial 
proportion approached 0.5, the plot began to look like the normal distribution (see Figure 
5.3). This was true for sample sizes even as small as 10. Therefore, it is not surprising 
that the normal distribution can sometimes serve as a good approximation to the bino-

Figure 5.14 Probability plot of 100 means of size 20 from Poisson (m = 1).



mial distribution. Figure 5.15 demonstrates the effect of n on a binomial distribution, 
suggesting why we used the modifi er sometimes in the preceding sentence.

Both plots in Figure 5.15 are based on p = 0.2. The fi rst plot for n = 10 is skewed, 
and the normal approximation is not warranted. But the second plot for n = 60 is sym-
metric, and the normal distribution should provide a reasonable approximation here.

The central limit theorem provides a rationale for why the normal distribution can 
provide a good approximation to the binomial. In the binomial setting, there are two 
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Figure 5.15 Binomial 
mass functions for 
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outcomes — for example, disease and no disease. Let us assign the numbers 1 and 0 to 
the outcomes of disease and no disease, respectively. The sum of these numbers over 
the entire sample is the number of diseased persons in the sample. The mean, then, is 
simply the number of diseased sample persons divided by the sample size. And accord-
ing to the central limit theorem, the sample mean should approximately follow a normal 
distribution as n increases. But if the sum of values divided by a constant approximately 
follows a normal distribution, the sum of the values itself also approximately follows a 
normal distribution. The sum of the values in this case is the binomial variable, and, 
hence, it also approximately follows the normal distribution.

Unfortunately, there is not a consensus as to when the normal approximation can be 
used — that is, when n is large enough for the central limit theorem to apply. This issue 
has been examined in a number of recent articles (Blyth and Still 1983; Samuels and 
Lu 1992; Schader and Schmid 1989). Based on work by Samuels and Lu (1992) and on 
some calculations we performed, Table 5.6 shows our recommendations for the size of 
the sample required as a function of p for the normal distribution to serve as a good 
approximation to the binomial distribution. Use of these sample sizes guarantees that 
the maximum difference between the binomial probability and its normal approximation 
is less than or equal to 0.0060 and that the average difference is less than 0.0017.

The mean and variance to be used in the normal approximation to the binomial are 
the mean and variance of the binomial, np and np (1 − p), respectively. Since we are 
using a continuous distribution to approximate a discrete distribution, we have to take 
this into account. We do this by using an interval to represent the integer. For example, 
the interval of 5.5 to 6.5 would be used with the continuous variable in place of the 
discrete variable value of 6. This adjustment is called the correction for continuity.

Table 5.6 Sample size required for the normal distribution to serve as a good approximation to the 
binomial distribution as a function of the binomial proportion p .

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
n 440 180 100 60 43 32 23 15 11 10
Differencea 0.0041 0.0048 0.0054 0.0059 0.0059 0.0057 0.0059 0.0060 0.0049 0.0027
Mean diff.b 0.0010 0.0012 0.0013 0.0016 0.0016 0.0016 0.0016 0.0017 0.0016 0.0013
aMaximum difference between binomial probability and normal approximation
bMean of absolute value of difference between binomial probability and normal approximation for 
all nonzero probabilities

Example 5.8

We use the normal approximation to the binomial for the c-section deliveries example 
in Example 5.1. We wanted to fi nd the probability of 22 or more c-section deliveries 
in a sample of 62 deliveries. The values of the binomial mean and variance, assuming 
that p is 0.235, are 14.57 (= 62  *  0.235) and 11.146 (= 62  *  0.235  *  0.765), respec-
tively. The standard deviation of the binomial is then 3.339. Finding the probability 
of 22 or more c-sections for the discrete binomial variable is approximately equiva-
lent to fi nding the probability that a normal variable with a mean of 14.57 and a 
standard deviation of 3.339 is greater than 21.5.

Before using the normal approximation, we must fi rst check to see if the sample 
size of 62 is large enough. From Table 5.6, we see that since the assumed value of p 



is between 0.20 and 0.25, our sample size is large enough. Therefore, it is okay to 
use the normal approximation to the binomial.

To fi nd the probability of being greater than 21.5, we convert 21.5 to a standard 
normal value by subtracting the mean and dividing by the standard deviation. The 
corresponding z value is 2.075 (= [21.5 − 14.57]/3.339). Looking in Table B4, we fi nd 
the probability of a standard normal variable being less than 2.075 is about 0.9810. 
Subtracting this value from one gives the value of 0.0190, very close to the exact 
binomial value of 0.0224 found in Example 5.1.

Example 5.9

According to data reported in Table 65 of Health, United States, 1991 (NCHS 1992), 
14.0% of high school seniors admitted that they used marijuana during the 30 days 
previous to a survey conducted in 1990. If this percentage applies to all seniors in 
high school, what is the probability that in a survey of 140 seniors, the number 
reporting use of marijuana will be between 15 and 25? We want to use the normal 
approximation to the binomial, but we must fi rst check our sample size with Table 
5.7. Since a sample of size 100 is required for a binomial proportion of 0.15, our 
sample of 140 for an assumed binomial proportion of 0.14 is large enough to use the 
normal approximation.

The mean of the binomial is 19.6 and the variance is 16.856 (= 140  *  0.14  *  0.86). 
Thus, the standard deviation is 4.106. These values are used in converting the values 
of 15 and 25 to z scores. Taking the continuity correction into account means that 
interval is really from 14.5 to 25.5.

We convert 14.5 and 25.5 to z scores by subtracting the mean of 19.6 and dividing 
by the standard deviation of 4.106. The z scores are −1.24 (= [14.5 − 19.6]/4.106) and 
1.44(= [25.5 − 19.6]/4.106). To fi nd the probability of being between −1.24 and 1.44, 
we will fi rst fi nd the probability of being less than 1.44. From that, we will subtract 
the probability of being less than −1.24. This subtraction yields the probability of 
being in the interval.

These probabilities are found from Table B4 in the following manner. First, we 
read down the z column until we fi nd the value of 1.44. We go across to the .00 
column and read the value of 0.9251; this is the probability of a standard normal 
value being less than 1.44. The probability of being less than −1.24 is 0.1075. Sub-
tracting 0.1075 from 0.9251 yields 0.8176. This is the probability that, out of a sample 
of 140, between 15 to 25 high school seniors would admit to using marijuana during 
the 30 days previous to the question being asked.

5.5.2   Normal Approximation to the Poisson Distribution

Since the Poisson tables do not show every possible value of the parameter m , and since 
the tables and computer packages do not provide probabilities for extremely large values 
of m , it is useful to be able to approximate the Poisson distribution. As can be seen from 
the preceding plots, the Poisson distribution does not look like a normal distribution for 
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small values of m. However, as the two plots in Figure 5.16 show, the Poisson does 
resemble the normal distribution for large values of m. The fi rst plot shows the probabil-
ity mass function for the Poisson with a mean of 10 and the second plot shows the 
probability mass function for the Poisson distribution with a mean of 20.

As can be seen from these plots, the normal distribution should be a reasonable 
approximation to the Poisson distribution for values of m greater than 10. The normal 
approximation to the Poisson uses the mean and variance from the Poisson distribution 
for the normal mean and variance.
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Conclusion
Three of the more useful probability distributions — the binomial, the Poisson, and the 
normal — were introduced in this chapter. Examples of their use in describing data 
were provided. The examples also suggested that the distributions could be used to 
examine whether or not the data came from a particular population or some other popu-
lation. This use will be explored in more depth in subsequent chapters on interval esti-
mation and hypothesis testing.

EXERCISES

5.1 According to data from NHANES II (NCHS 1992), 26.8 percent of persons 
20–74 years of age had high serum cholesterol values (greater than or equal to 
240  mg/dL).
a. In a sample of 20 persons ages 20–74, what is the probability that 8 or more 

persons had high serum cholesterol? Use Table B2 to approximate this value 
fi rst and then provide a more accurate answer.

b. How many persons out of the 20 would be required to have high cholesterol 
before you would think that the population from which your sample was 
drawn differs from the U.S. population of persons ages 20–74?

c. In a sample of 200 persons ages 20–74, what is the probability that 80 or 
more persons had high serum cholesterol?

5.2 Based on reports from state health departments, there were 10.33 cases of 
tuberculosis per 100,000 population in the United States in 1990 (NCHS 1992). 
What is the probability of a health department, in a county of 50,000, observing 
10 or more cases in 1990 if the U.S. rate held in the county? What is the proba-
bility of fewer than 3 cases if the U.S. rate held in the county?

5.3 Assume that systolic blood pressure for 5-year-old boys is normally distributed 
with a mean of 94  mmHg and a standard deviation of 11  mmHg. What is the 
probability of a 5-year-old boy having a blood pressure less than 70  mmHg? 
What is the probability that the blood pressure of a 5-year-old boy will be 
between 80 and 100  mmHg?

Example 5.10

We use the preceding pertussis example to demonstrate the normal approximation 
to the Poisson distribution. In the pertussis example, we wanted to fi nd the probabil-
ity of 18 or fewer cases of pertussis, given that the mean of the Poisson distribution 
was 35.31. This value, 35.31, will be used for the mean of the normal and its square 
root, 5.942, for the standard deviation of the normal. Since we are using a continuous 
distribution to approximate a discrete one, we must use the continuity correction. 
Therefore, we want to fi nd the probability of values less than 18.5. To do this, we 
convert 18.5 to a z value by subtracting the mean of 35.31 and dividing by the stan-
dard deviation of 5.942. The z value is −2.829. The probability of a Z variable being 
less than −2.829 or −2.83 is found from Table B4 to be 0.0023, close to the exact 
value of 0.001 given above.
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5.4 Less than 10 percet of the U.S. population is hospitalized in a typical year. 
However, the per capita hospital expenditure in the United States is generally 
large — for example, in 1990, it was approximately $975. Do you think that the 
expenditure for hospital care (at the person level) follows a normal distribution? 
Explain your answer.

5.5 In Harris County, Texas, in 1986, there were 173 cases of Hepatitis A in a popu-
lation of 2,942,550 (HCHD 1990). The corresponding rate for the United States 
was 10.0 per 100,000 population. What is the probability of a rate as low as or 
lower than the Harris County rate if the U.S. rate held in Harris County?

5.6 Approximately 6.5 percent of women ages 30–49 were iron defi cient based on 
data from NHANES II (LSRO 1989). In a sample of 30 women ages 30–49, 
6 were found to be iron defi cient. Is this result so extreme that you would 
want to investigate why the percentage is so high?

5.7 Based on data from the Hispanic Health and Nutrition Examination Survey 
(HHANES) (LSRO 1989), the mean serum cholesterol for Mexican-American 
males ages 20 to 74 was 203 mg/dL. The standard deviation was approximately 
44  mg/dL. Assume that serum cholesterol follows a normal distribution. What 
is the probability that a Mexican-American male in the 20–74 age range has a 
serum cholesterol value greater than 240  mg/dL?

5.8 In 1988, 71% of 15- to 44-year-old U.S. women who have ever been married 
have used some form of contraception (NCHS 1992). What is the probability 
that, in a sample of 200 women in these childbearing years, fewer than 120 of 
them have used some form of contraception?

5.9 In ecology, the frequency distribution of the number of plants of a particular 
species in a square area is of interest. Skellam (1952) presented data on the 
number of plants of Plantago major present in squares of 100 square centimeters 
laid down in grassland. There were 400 squares and the numbers of plants in 
the squares are as follows:

Plants per Square 0 1 2 3 4 5 6 7

Frequency 235 81 43 18 9 6 4 4

 Create a Poissonness plot to examine whether or not these data follow the 
Poisson distribution.

5.10 The Bruce treadmill test is used to assess exercise capacity in children and 
adults. Cumming, Everatt, and Hastman (1978) studied the distribution of the 
Bruce treadmill test endurance times in normal children. The mean endurance 
time for a sample of 36 girls 4–5 years old was 9.5 minutes with a standard 
deviation of 1.86 minutes. If we assume that these are the true population mean 
and standard deviation, and if we also assume that the endurance times follow 
a normal distribution, what is the probability of observing a 4-year-old girl with 
an endurance time of less than 7 minutes? The 36 values shown here are based 
on summary statistics from the research by Cumming et al. Do you believe that 
these data are normally distributed? Explain your answer.

Hypothetical Endurance Times in Minutes for 36 Girls 4 to 5 Years of Age

 5.3 6.5 7.0 7.2 7.5 8.0 8.0 8.0 8.0 8.2 8.5 8.5
 8.8 8.8 8.9 9.0 9.0 9.0 9.0 9.5 9.8 9.8 10.0 10.0
10.6 10.8 11.0 11.2 11.2 11.3 11.5 11.5 12.2 12.4 12.7 13.3



5.11 Seventy-nine fi refi ghters were exposed to burning polyvinyl chloride (PVC) in 
a warehouse fi re in Plainfi eld, New Jersey, on March 20, 1985. A study was 
conducted in an attempt to determine whether or not there were short- and 
long-term respiratory effects of the PVC (Markowitz 1989). At the long-term 
follow-up visit at 22 months after the exposure, 64 fi refi ghters who had been 
exposed during the fi re and 22 fi refi ghters who were not exposed reported on 
the presence of various respiratory conditions. Eleven of the PVC exposed 
fi refi ghters had moderate to severe shortness of breath compared to only 1 of 
the nonexposed fi refi ghters.

What is the probability of fi nding 11 or more of the 64 exposed fi refi ghters 
reporting moderate to severe shortness of breath if the rate of moderate to severe 
shortness of breath is 1 case per 22 persons? What are two possible confounding 
variables in this study that could affect the interpretation of the results?
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Study Designs

Chapter Outline
6.1 Design: Putting Chance to Work
6.2 Sample Surveys and Experiments
6.3 Sampling and Sample Designs
6.4 Designed Experiments
6.5 Variations in Study Designs

In meeting a set of data we must fi rst check the credentials of the data: what the data 
represent and how the data were collected. In Chapter 2 we discussed the linkage 
between concepts and numbers — that is, what the data represent. As far as data col-
lection is concerned, there are two basic methods used to obtain data: the sample survey 
and the designed experiment. In this chapter we examine these two basic methods and 
some variations of them.

6.1   Design: Putting Chance to Work
In collecting sample data we should try to avoid all potential causes of bias. When 
conducting an experiment, we should try to eliminate the effect of potential confounding 
factors. Strangely, adhering to these ideas involves the use of a chance mechanism. Let 
us explore why and how a chance mechanism plays a role in designing surveys and 
experiments.

A smart shopper is conscious of the possible variability in the quality of fruit between 
the top and the bottom of the fruit basket. The smart shopper looks at pieces of fruit 
throughout the basket, even though it is more convenient to look only at the pieces on 
top, before making a purchase. In the same way, a researcher is aware of the possible 
variability among observational units in the population. A good researcher takes steps 
to ensure that the process for selecting units from the population deals with this possible 
variability. The failure to take adequate steps would introduce a selection bias. Selecting 
a sample of units because of convenience also poses a problem for a researcher just as 
it did for the shopper. For example, the opinions of people interviewed during lunchtime 
on downtown street corners, although convenient to obtain, usually are not representa-
tive of the residents of the city. Those who never go to the center of the city during 
lunchtime are not represented in the sample, and they may have different opinions from 
those who go to the city center.

We are familiar with the use of a chance mechanism to remove possible biases. For 
example, to start a football game, a coin toss — a chance mechanism — is used in 
deciding which team receives the opening kickoff. The use of a chance mechanism is 
also involved in selecting a sample in an attempt to avoid biases. One method of drawing 
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a fair sample is to place numbered slips of paper in a bowl, mix them up thoroughly, 
and then have a neutral party pick out the slips. This chance mechanism sounds fair but 
may not be satisfactory, as shown the following example.

Example 6.1

In 1970, Selective Service offi cials used a chance mechanism, a lottery, to determine 
who would be drafted for military service. Offi cials put slips of paper representing 
birthdates into cylindrical capsules, one birthdate per capsule, and then placed the 
capsules into a box. The January birthdates were put into the box fi rst and pushed 
to one side, and then the February capsules were placed in the box and pushed to 
the side of the box with the January capsules, and then so on with March. The box 
was then closed, shaken several times, carried up three fl ights of stairs, and carried 
back down to the room, where the capsules were poured into a bowl. A public fi gure 
then selected the capsules to determine the order of drafting men. Figure 6.1 shows 
the lottery results (Fienberg 1971). It appears that the process did not work as 
intended, since the months at the end of the year, which were put into the container 
last and were not mixed thoroughly, have much smaller lottery numbers than the 
earlier months. 

Figure 6.1 Average lottery number by month from the 1970 draft lottery.

A better way of selecting a fair sample is using random numbers that were used to 
estimate probabilities in Chapter 4. The random numbers can be described as the 
sequence of numbers we get when we draw balls numbered 0, 1,  .  .  .  9 from an urn, 
replacing the ball drawn, thoroughly remixing the balls, and then drawing another ball. 
This process is repeated several times.

The fi rst random numbers were produced by Tippett in 1927. It is said that Tippett 
obtained the numbers from the fi gures of areas of parishes given in the British census 
returns, and omitted the fi rst two and last two digits in each fi gure of area. The truncated 
numbers were arranged in sets of four in eight columns. This 26-page book containing 



41,600 digits became the best-seller among technical books. Table 6.1 shows the fi rst 
10 rows of page 14 of his random number table and contains 320 digits. The appearance 
of each digit is random in the sense that we cannot predict the appearance of a particular 
digit based on the previous sequence of digits. Despite this uncertainty, we can expect 
that each digit is equally likely to appear. From Table 6.1, the frequencies of each digit 
from 0 to 9 are 27, 33, 39, 32, 36, 22, 31, 31, 35, and 34, which slightly deviates from 
the expect frequency (10 percent of 320).

Now random numbers are generated by computer algorithms, and most statistical 
software packages contain a random number generator. Table B1 in Appendix B show 
1000 random digits generated from MINITAB. Considerable research is still devoted 
to random number generation. No defi nition of random numbers exists except for a 
vague description that they do not follow any particular pattern. The use of random 
numbers helps reduce the possibility of selection bias in surveys and also helps reduce 
the possible effect of confounders when designing experiments.

6.2   Sample Surveys and Experiments
There are many similarities as well as some differences between sample surveys and 
experiments. We learn the characteristics of some population from sample surveys. The 
sample survey focuses on the selection of individuals from the population. We discover 
the effect of applying a stimulus to subjects from experiments. The experimental design 
focuses on the formation of comparison groups that allow conclusions about the effect 
of the stimulus to be drawn.

As emphasized in Chapter 4, a probability sample is a carefully drawn blueprint or 
design as is an experiment. The blueprint or design of a survey or an experiment is 
based on both statistical and substantive considerations. An experiment is different from 
a sample survey in that the experimenter actively intervenes with the experimental 
subjects through the assignment of the subjects to groups, whereas the survey researcher 
passively observes or records responses of the survey subjects. Experiments and surveys 
often have different goals as well.

In a survey, the primary goal is to describe the population, and a secondary goal is 
to investigate the association between variables. In a survey, variables are usually not 
referred to as independent or dependent because all the variables can be viewed as being 
response variables. The survey researcher usually has not manipulated the levels of any 
of the variables as the experimenter does.

Table 6.1 The fi rst 10 rows from page 14 of Tippett’s random numbers.

7816 6572 0802 6314 0702 4369 9728 0198
3204 9243 4935 8200 3623 4869 6938 7481
2976 3413 2841 4241 2424 1985 9313 2322
8303 9822 5888 2410 1158 2729 6443 2943
5556 8526 6166 8231 2438 8455 4618 4445
2635 7900 3370 9160 1620 3882 7757 4950
3211 4919 7306 4916 7677 8733 9974 6732
2748 6198 7164 4148 7086 2888 8519 1620
7477 0111 1630 2404 2979 7991 9683 5125
5379 7076 2694 2927 4399 5519 8106 8501

Sample Surveys and Experiments  137
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The goal in an experiment is to determine whether or not there is an association 
between the independent or predictor variables with the dependent or response variable. 
The different groups to which the subjects are assigned usually represent the levels of 
the independent variable(s). Independent and dependent were chosen as names for the 
variable types because it was thought that the response variable depended on the levels 
of the predictor variables. To determine whether or not there is an association, the 
experimenter assigns subjects to different levels of one or more variables — for example, 
to different doses of some medication. The effects of the different levels — the different 
doses — are found by measuring the values of an outcome variable — for example, 
change in blood pressure. An association exists if there is relationship between the 
change in blood pressure values and the dosage levels. Let us examine fi rst how surveys 
are designed and then consider the basic principles of experimental design.

6.3   Sampling and Sample Designs
Sampling means selecting a few units from all the possible observational units in the 
population. For practical purposes, any data set is a sample. Even if a complete census 
is attempted, there are missing observations. This means that we must pay attention to 
the intended as well as the unintended sampling when evaluating a sample. This also 
suggests that we cannot evaluate a sample by looking at the sample itself, but we need 
to know what sampling method was used and how well it was executed. We are inter-
ested in the process of selection as well as the sample obtained.

Sampling is used extensively today for many reasons. In many situations a sample 
produces more accurate information about the population than that provided by a census. 
Two reasons for obtaining more accurate information from a sample are the following. 
As was just mentioned, a census often turns out to be incomplete, and the impact of the 
missing information is most often unknown. Additionally, in obtaining a sample, fewer 
interviewers are required, and it is likely that they will be better trained than the huge 
team of interviewers required when conducting a census.

Even more pragmatically, collecting data from a sample is cheaper and faster than 
attempting a complete census. In addition, in many situations a census is impractical 
or even impossible. The following three examples will illustrate situations in which 
sampling was used and reasons for the use of samples.

Example 6.2

Even in the U.S. Population Census, many data items are collected from a sample of 
households. In the 2000 Census, for example, only a few basic demographic data 
items — gender, age, race, and marital status — were asked from each individual in 
all households in the short form of the questionnaire. Many questions about socio-
economic characteristics such as education, income, and occupation are included in 
the long form of the questionnaire that was distributed to about 17 percent of U.S. 
households. In small towns, a larger proportion of households received the long form 
to ensure reliable estimates. Conversely, in large cities, proportionately fewer house-
holds received the long form. Use of sampling not only reduced the cost of the census, 
but also shortened the data collection burden and time.
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6.3.1   Sampling Frame

Before performing any sampling, it is important to defi ne clearly the population of 
interest. Similarly, when we are given a set of data, we need to know what group the 
sample represents — that is, to know from what population the data were collected. The 
defi nition of population is often implicit and assumed to be known, but we should ask 
what the population was before using the data or accepting the information. When we 
read an election poll, we should know whether the population was all adults or all reg-
istered voters to interpret the results appropriately. In practice, the population is defi ned 
by specifying the sampling frame, the list of units from which the sample was selected. 
Ideally, the sampling frame must include all units of the defi ned population. But as we 
shall see, it is often diffi cult to obtain the sampling frame and we need to rely on a 
variety of alternative approaches.

The failure to include all units contained in the defi ned population in the sampling 
frame leads to selecting a biased sample. A biased sample is not representative of the 
population. The average of a variable obtained from a biased sample is likely to be 
consistently different from the corresponding value in the population. Selection bias is 
the consistent divergence of a sample value (statistic) from the corresponding population 
value (parameter) due to an improper selection process. Even with a complete sampling 
frame, selection bias can occur if proper selection rules were not followed. Two basic 
sources of selection bias are the use of an incomplete sampling frame and the use of 
improper selection procedures. The following example illustrates the importance of the 
sampling frame.

Example 6.3

Pharmaceutical companies routinely sample a small fraction of their products to 
examine the quality and the chemical contents. On the basis of this examination, a 
decision is made whether to accept the entire lot and ship them or reject the lot and 
change the manufacturing process. In this case the sample is destroyed to check the 
quality and, therefore, a company cannot afford to inspect the entire lot.

Example 6.4

Health departments of large urban areas monitor ambient air quality. Since the health 
department cannot afford to monitor the air everywhere in its coverage area, sample 
sites are selected and the values of several different pollutants are continuously 
recorded.

Example 6.5

The Report of the Second Task Force on Blood Pressure Control in Children (1987) 
provides an example of the possibility of selection bias in data. This Task Force used 
existing data from several studies, only one of which could be considered representa-
tive of the U.S. noninstitutionalized population. In this convenience sample, over 70 
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In order to avoid or minimize selection bias, every sample needs to be selected based 
on a carefully drawn sample design. The design defi nes the population the sample is 
supposed to represent, identifi es the sampling frame from which the sample is to be 
selected, and specifi es the procedural rules for selecting units. The sample data are then 
evaluated based on the sample design and the way the design was actually executed.

6.3.2   Importance of Probability Sampling

Any sample selected using a random mechanism that results in known chances of selec-
tion of the observational units is called a random or a probability sample. This defi nition 
requires only that the chances of selection are known. It does not require that the chances 
of the observational units being selected into the sample are equal. Knowledge of the 
chance of selection is the basis for the statistical inference from the sample to the popu-
lation. A sample selected with unknown chances of selection cannot be linked appro-
priately to the population from which the sample was drawn. This point was explained 
in Chapter 4. Various sampling designs are discussed in the following sections starting 
with simple random sampling.

percent of the data came from Texas, Louisiana, and South Carolina, with little data 
from the Northeast or the West. Data from England were also used for newborns and 
children up to three years of age. The representativeness of these data for use in the 
creation of blood pressure standards for U.S. children is questionable. Unlike the 
Literary Digest survey in which the errors in the sampling were shown to lead to a 
wrong conclusion, it is not clear that the blood pressure standards are wrong. All we 
can point to is the use of convenience sampling, and with it, the likely introduction 
of selection bias by the Second Task Force.

Example 6.6

Telephone surveys may provide another example of the sampling frame failing to 
include all the members of the target population. If the target population is all the 
resident households in a geographical area, a survey conducted using the telephone 
will miss a portion of the resident households. Even though more than 90 percent of 
the households in the U.S. have telephones, the percentage varies with race and 
socioeconomic status. The telephone directory was used frequently in the past as the 
sampling frame, but it excluded households without telephones as well as households 
with unlisted numbers. A technique called random digit dialing (RDD) has been 
developed to deal with the unlisted number problem in an effi cient manner 
(Waksberg 1978). As the name implies, telephone numbers are basically selected at 
random from the prefi xes — the fi rst 3 digits — thought to contain residential 
numbers, instead of being selected from a telephone directory. But the concern about 
the possible selection bias due to missing households without telephones and people 
who do not have a stable place of residence remains.
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6.3.3   Simple Random Sampling

The simplest probability sample is a simple random sample (SRS). In an SRS, each unit 
in the sampling frame has the same chance of being included in the sample as any other 
unit. The use of an SRS removes the possibility of any bias, conscious or unconscious, 
on the part of the researcher in selecting the sample from the sampling frame. An SRS 
is drawn by the use of a random number table or random numbers generated by a com-
puter. If the population is relatively small, we can number all units sequentially. Next 
we locate a starting point in the random number table, Table B1 in Appendix B. We 
then begin reading random numbers in some systematic fashion — for example, across 
a row or down a column or diagonal — but the direction of reading should be decided 
ahead of time. The units in the sampling frame whose unique numbers match the random 
numbers that have been read are selected into the sample.

Example 6.7

Suppose that we have 50 students in a classroom and they are sequentially labeled 
from 00 to 49 by row starting at the left end of the fi rst row. We wish to select an 
SRS of 10 students. We decide to use the left-hand corner of line 1 of Table B1 as our 
starting point, and we will go across the row. By reading the two-digit numbers from 
the fi rst row of the random digit table, the following 10 numbers are obtained:

 17, 17, 47, 59, 08, 43, 30, 67, 70, 61

Since four numbers are greater than 49, they cannot be used, and we must draw 
additional numbers until we have 10 random numbers smaller than 50. In addition, 
the number 17 occurred twice. Since there is no good practical reason for including 
the same element twice in the sample, we should draw another number that has not 
been selected previously. We usually sample without replacement, as mentioned in 
Chapter 4. The next fi ve valid numbers are 07, 44, 48, 36, and 47. Since the number 
47 is already used, the next valid number 24 is drawn. The students whose labels 
match the 10 valid numbers drawn are selected as the sample.

Example 6.8

One way of dealing with the problem of drawing invalid numbers is to subtract 50 
from values greater than or equal to 50 in the fi rst set of 10 random numbers. For 
example, 59, 67, 70, and 61 become 09, 17, 20, and 11. We now select the students 
with labels 09, 17, 20, and 11. This procedure is based on the premise that each 
student is represented by two numbers differing by 50 in value. For example, the 
fi rst student will be selected if either 00 or 50 were read, the second would be selected 
if either 01 or 51 were read, and so on until the last student would be selected if 49 
or 99 were read. Note that even with the subtraction of 50, we again have another 
17. We would still have to draw two more valid random numbers: 25 and 02 (obtained 
by subtracting 50 from 75 and 52) to have 10 distinct values.
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In using the procedure in Example 6.8, each unit (student) in the sampling frame had 
the same number (two) of labels associated with it. If there are 30 students in a class, 
we can label them in three cycles, 1 through 30, 31 through 60, and 61 through 90, but 
we cannot assign 91 through 99 and 00 to any student. If we assigned these last 10 
values to some of the students, some students would have three labels associated with 
them, whereas other students would have four labels. The students would have unequal 
chances of being selected. By not using the last 10 values, each student has three labels 
(numbers). The fi rst student is assigned the numbers 01, 31, and 61, and the second 
student is assigned the numbers 02, 32, and 62, and so on for the other students.

In Examples 6.7 and 6.8, we used two-digit random numbers because we could not 
provide distinct labels for all 50 students with only a single digit. The number of digits 
to be used is dependent on the size of the population under consideration. For example, 
when we have 570 units in the population, we need to use three digits. A population 
that contains 7870 units would require four-digit random numbers.

The SRS design is modifi ed to accommodate other theoretical and practical con-
siderations. The common practical methods for selecting a sample include systematic 
sampling, stratifi ed random sampling, single-stage cluster sampling, multistage cluster 
sampling, PPS (probability proportional to size) sampling, and other controlled selection 
procedures. These more practical designs deviate from SRS in two important 
ways. First, the inclusion probabilities for the elements (also the joint inclusion pro b-
abilities for sets for the elements) may be unequal. Second, the sampling unit(s) can be 
different from the population element of interest. These departures complicate the usual 
methods of estimation and variance calculation and, if no adjustments are made, can 
lead to a bias in estimation and statistical tests. We will consider these departures in 
detail, using several specifi c sampling designs, and examine their implications for 
survey analysis.

Computer packages can be used to draw random samples (see Program Note 6.1 on 
the website).

6.3.4   Systematic Sampling

Systematic sampling is commonly used as an alternative to SRS because of its simplicity. 
It selects every kth element after a random start. Its procedural tasks are simple, 
and the process can easily be checked, whereas it is diffi cult to verify SRS by examin -
ing the results. It is often used in the fi nal stage of multistage sampling when the fi eld 
worker is instructed to select a predetermined proportion of units from the listing 
of dwellings in a street block. The systematic sampling procedure assigns each element 
in a population the same probability of being selected. This assures that the sample 
mean will be an unbiased estimate of the population mean when the number of elements 
in the population (N) is equal to k times the number of elements in the sample (n). If N 
is not exactly nk, then the equal probability is not guaranteed, although this problem 
can be ignored when N is large. When N is not exactly nk, we can use the circular 
systematic sampling scheme. In this scheme, the random starting point is selected 
between 1 and N (any element can be the starting point) and every kth element is selected 
assuming that the frame is circular (i.e., the end of list is connected to the beginning of 
the list).
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Systematic sampling is convenient to use, but it can give an unrealistic estimate when 
the elements in the frame are listed in a cyclical manner with respect to a survey vari-
able and the selection interval coincides with the listing cycle. For example, if one selects 
every 40th patient coming to a clinic and the average daily patient load is about 40, then 
the resulting sample would contain only those who came to the clinic at a certain time 
of the day. Such a sample may not be representative of the clinic patients. Moreover, 
even when the listing is randomly ordered, unlike SRS, different sets of elements may 
have unequal inclusion probabilities. For example, the probability of including both the 
ith and (i + k)th element is 1/k in a systematic sample, whereas the probability of includ-
ing both the ith and (i + k + 1)th element is zero. This situation complicates the variance 
calculation.

Another way of viewing systematic sampling is that it is equivalent to selecting one 
cluster from k systematically formed clusters of n elements each. The sampling variance 
(between clusters) cannot be estimated from the one cluster selected. Thus, variance 
estimation from a systematic sample requires special strategies.

A modifi cation to overcome these problems with systematic sampling is the so-called 
repeated systematic sampling. Instead of taking a systematic sample in one pass through 
the list, several smaller systematic samples are selected going down the list several times 

Example 6.9

Suppose that we are taking a 1-in-4 systematic sample from a population of 11 ele-
ments: A, B, C, D, E, F, G, H, I, J, and K. Four possible samples can be drawn using 
the ordinary systematic sampling scheme and 11 possible samples using the circular 
systematic sampling. The possible samples and their selection probabilities using the 
ordinary systematic sampling and circular systematic sampling are shown in Table 
6.2.

Ordinary systematic sampling does not guarantee equal probability sampling. For 
example, here the fourth sample has a different selection probability. Under the cir-
cular systematic sampling, each element can be a starting point and equal probability 
sampling is guaranteed in this scheme.

Table 6.2 Possible samples and selection probabilities taking 1-in-4 systematic samples from 
N = 11, using two different selection schemes.

 Ordinary Systematic Sampling Circular Systematic Sampling

    Selection  Selection
 Samples   Probability Samples Probability

1. A E I 3/11  1. A E I 3/11
2. B F J 3/11  2. B F J 3/11
3. C G K 3/11  3. C G K 3/11
4. D H  2/11  4 D H A 3/11
      5. E I B 3/11
      6. F J C 3/11
      7. G K D 3/11
      8. H A E 3/11
      9. I B F 3/11
     10. J C G 3/11
     11. K D H 3/11
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with a new starting point in each pass. This procedure not only guards against possible 
periodicity in the frame but also allows variance estimation directly from the data. The 
variance of an estimate from all subsamples can be estimated from the variability of 
the separate estimates from each subsample.

6.3.5   Stratifi ed Random Sampling

Stratifi cation is often used in complex sample designs. In a stratifi ed random sample 
design, the units in the sampling frame are fi rst divided into groups, called strata, and 
a separate SRS is taken in each stratum to form the total sample. The strata are formed 
to keep similar units together — for example, a female stratum and a male stratum. In 
this design, units need not have equal chances of being selected and some strata may be 
deliberately oversampled. For example, in the fi rst National Health and Nutrition 
Examination Survey (NHANES I), the elderly, persons in poverty areas, and women of 
childbearing age were oversampled to provide suffi cient numbers of these groups for in-
depth analysis (NCHS 1973). If an SRS had been used, it is likely that too few people in 
these groups would have been selected to allow any in-depth analysis of these groups.

Another advantage of stratifi cation is that it can reduce the variability of sample sta-
tistics over that of an SRS, thus reducing the sample size required for analysis. This 
reduction in variability occurs when the units in a stratum are similar, but there is varia-
tion across strata. Another way of saying this is that the reduction occurs when the 
variable used to form the strata is related to the variable being measured. Let us consider 
a small example that illustrates this point.

In this example, we wish to estimate the average weight of persons in the population. 
The population contains six persons: three females and three males. The weights of the 
females in the population are 110, 120, and 130 pounds, and the weights of the males 
are 160, 170, and 180 pounds. We shall form our estimate of the population average 
weight by taking a sample of size two without replacement.

If we use an SRS, the smallest possible estimate is 115 pounds (= [110 + 120]/2), and 
the largest possible estimate is 175 (= [170 + 180]/2). As an alternative, we could use a 
stratifi ed random sample where the strata are formed based on gender. If one person is 
randomly selected from each stratum, the smallest estimate is 135 pounds (= [110 + 
160]/2), and the largest estimate is 155 pounds (= [130 + 180]/2). The estimates from 
the stratifi ed sample approach have less variation — that is, have greater precision than 
the SRS approach in this case.

The formulation of the strata requires that information on the stratifi cation variables 
be available for the elements in the sampling frame. When such information is not avail-
able, stratifi cation is not possible, but we still can take advantage of stratifi cation by 
using the poststratifi cation method. For example, stratifi cation by race is usually desir-
able in social surveys but the racial identifi cation is often not available in the sampling 
frame. In this case we can attempt to take race into account in the analysis after the 
sample is selected. Chapter 15 will provide further discussion on this topic.

6.3.6   Cluster Sampling

Most of the methods of statistical analysis assume that the data were collected using an 
SRS. However, when we attempt to use an SRS in the collection of data, we often 
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encounter diffi culties. Suppose we wanted an SRS of 500 adults from a large city. First, 
a sampling frame is not readily available. Developing a list of all adults in the city is very 
costly and should be considered impractical. Even though we are able to select an SRS 
of 500 adults from a reasonably complete list, it would be expensive to send interviewers 
to sample persons scattered all over the city. A solution to these practical diffi culties is 
to sample people based on geographical areas — for example, census tracts. Most survey 
agencies and researchers use a multistage cluster sample design in this situation. First, 
a random sample of census tracts is selected and then neighborhood blocks within each 
selected tract are randomly selected. Within the selected neighborhood blocks a list of 
households can be prepared and a sample of households can be selected systematically 
from the list — say, every third household. Finally, within each of the selected house-
holds, an adult may be randomly chosen. In this example, the census tracks, neighbor-
hood blocks, and households are the clusters used as the sampling units.

Cluster sampling is widely used but it complicates statistical estimation and analysis, 
since the sampling method deviates from SRS. For example, an SRS of unequal-sized 
clusters leads to the elements in the smaller clusters being more likely to be in the sample 
than those in the larger clusters. Such complications are handled either by using a special 
selection method or by a special analytical method. We will discuss these methods in 
Chapter 15.

6.3.7   Problems Due to Unintended Sampling

In analyzing data it is imperative to understand the sample design, as well as how the 
design was actually executed in the fi eld. Deviations from the intended sample design 
are refl ected in the data. Even in a well-designed survey, it is usually not possible to 
collect data from all the units sampled because there is almost always some nonresponse. 
Hence, the respondents, a subset of the sampled persons, are self-selected from the 
sampled persons through some procedure which is usually unknown to the designer of 
the study. Since the respondents are no longer a random sample of the study population, 
there is concern that the data may be unusable because of nonresponse bias.

If the percentage of nonresponse is small — say, less than 5 to 10 percent — there 
is usually little concern because the bias, if any, is also likely to be small. If the non-
response is on the order of 20 to 30 percent, the possibility of a substantial bias exists. 
For example, assume that we wish to estimate the proportion of people without health 
insurance in our community. We select an SRS and fi nd that 20 percent of the respon-
dents were without health insurance. However, 1/4 of those selected to be in the sample 
did not respond. If we knew the proportion of those without health insurance among 
the nonrespondents, it would be easy to combine this value with that of the respondents 
to obtain the total sample estimate. The proportions of those without health insurance 
among the respondents and nonrespondents would be weighted by the corresponding 
proportion of respondents and nonrespondents in the sample.

For example, if none of these nonrespondents had health insurance, the total sample 
estimate would be 40 percent (= {20% × 0.75} + {100% × 0.25}), twice as large as the 
rate for the respondents only. If all of the nonrespondents had health insurance, then the 
total sample estimate becomes 15 percent (= {20% × 0.75} + {0% × 0.25}). Hence, 
although 20 percent of the respondents were without health insurance, the total sample 
estimate can range from 15 to 40 percent when 1/4 of the sample are nonrespondents.
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For nonresponse bias to occur, the nonrespondents must differ from the respondents 
with regard to the variable of interest. In the preceding example, it may be that many 
of the nonrespondents were unemployed homeless whereas few of the respondents were 
unemployed or homeless. In this case, the respondents and nonrespondents would likely 
differ with regard to health insurance coverage. If they do differ, there would be a large 
nonresponse bias. With larger percentages of nonresponse, the likelihood of a substan-
tial nonresponse bias is very high, and this makes the use of the data questionable. 
Unfortunately, many large surveys have a high percentage of nonresponse or do not 
mention the level of nonresponse. Data from these surveys are problematic.

Example 6.10

An example of a survey with poor response is the Nationwide Food Consumption 
Survey conducted in 1987–1988 for the U.S. Department of Agriculture. This survey, 
conducted once per decade, was to be the basis for policy decisions regarding food 
assistance programs. However, only about one-third of the persons who were selected 
for the sample participated, and, hence, the sample may not be representative of the 
U.S. population. An independent expert panel and the Government Accounting 
Offi ce of the U.S. Congress have concluded that information from this survey may 
be unusable (Government Accounting Offi ce 1991).

There is no easy solution to the nonresponse problem. The best approach is a preven-
tive one — that is, to exert every effort to obtain a high response rate. Even if you are 
unable to contact the sample person, perhaps a neighbor or family member can provide 
some basic demographic data about the person. If a sample person refuses to participate, 
again try to obtain some basic data about the person. If possible, try to obtain some 
information about the main topic of interest in the survey. The basic demographic data 
can be used to compare the respondents and nonrespondents. Even if there are no dif-
ferences between the two groups on the demographic variables, that does not necessarily 
guarantee the absence of nonresponse bias. However, it does eliminate the demographic 
variables as a cause of the potential nonresponse bias. If there is a difference, it may be 
possible to take those differences into account and create an adjusted estimator. The 
following calculations show one of many possible adjustment methods.

Suppose we found that there was a difference in the gender distribution between the 
respondents and nonrespondents. Sixty percent of the respondents were females and 40 
percent were males, whereas 30 percent of the nonrespondents were females and 70 
percent were males. If there were no difference in the proportions of females and males 
with health insurance, this difference in the gender distribution between the respondents 
and nonrespondents would be no problem. However, for this example, assume there was 
a difference. In the respondent group, 30 percent of the females were without health 
insurance compared to only 5 percent of the males. Figure 6.2 is a display of these per-
centages and of the calculations involved in creating an adjusted rate.

The corresponding percentages with health insurance are unknown for the non-
respondent group. However, if we assume that the female and male respondents’ per-
centages with health insurance hold in the nonrespondent group, we can obtain an 
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adjusted rate. The percentage of those without health insurance in the nonrespondent 
group under this assumption is found by weighting the proportions of females and males 
without health insurance by their proportions in the nonrespondent group — that is, 
{30% × 0.3} + {70% × 0.05}, which is 12.5 percent. We then use this value for the pro-
portion of nonrespondents without health insurance and combine it with the proportion 
of respondents without health insurance to obtain a sex-adjusted estimate of the propor-
tion of our community without health insurance. This adjusted estimated is 18.1 percent 
(= {75% × 0.20} + {25% × 0.125}).

The adjusted rate does not differ much from the rate for the respondents only. 
However, this adjusted rate was based on the assumption that the proportions of females 
and males without health insurance were the same for respondents and nonrespondents. 
If this assumption is false, which we cannot easily check, this adjusted estimate then is 
incorrect. Whatever method of adjustment is employed, an assumption similar to the 
above must be made at some stage in the adjustment process (Kalton 1983). Our message 
is to prevent nonresponse from occurring or to keep its rate of occurrence small.

The discussion so far has focused on unit nonresponse — that is, the observational 
unit did not participate in the survey. There is also item nonresponse, in which the 
sample person did not provide the requested information for some of the items in the 
survey. Just as there are no easy answers to unit nonresponse, item nonresponse or 
missing data also is a source of diffi culty for the data analyst. Again, if the percentage 
of item nonresponse is small — say, less than 5 to 10 percent — it probably will not 
have much of an effect on the data analysis. In this case, the observations with the 
missing values may be deleted from the analysis. As the percentage of missing data 
increases, there is increasing concern about the representativeness of the sample persons 
remaining in the analysis. Because of this concern, statisticians have developed methods 
for imputing or creating values for the missing data (Kalton 1983). By imputing values, 
it is no longer necessary to delete the sample persons with the missing data from the 
analysis. The imputation methods range from the very simple to the complex, depending 
on the amount of auxiliary data available.

As an example, suppose that in a survey to estimate the per capita expenditure for 
health care, we decided to substitute the respondents’ sample average for those with a 

Figure 6.2 Display of 
the percentages for the 
health insurance 
example and 
calculation of the 
adjusted rate.
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missing value on this variable. That is a reasonable imputation. However, since age is 
highly related to health care expenditures, if we know the age of the sample persons, a 
better imputation would be to use the average expenditure from respondents in the same 
age group. There are other variables that could be used with age that would be even 
better than using age alone — for example, the combination of age and health insurance 
status. The sample mean from the respondents in the same age and health insurance 
group should be an even better estimate of the missing value than the mean from the 
age group or the overall mean. In using any imputation method, we must remember that 
the number of observations is really the number of sample persons with no missing data 
for the analysis performed, not the number of sample persons. We must also realize that 
we are assuming that the mean of the group is a reasonable value to substitute for the 
missing value. Using the mean smoothes the data and likely reduces variability.

Other more complicated procedures are also available. However, none of these pro-
cedures guarantee that the value substituted for the missing data is correct. It is possible 
that the use of imputation procedures can lead to wrong conclusions being drawn from 
the data. Again, the best procedure for dealing with missing data is preventive — that 
is, make every effort to avoid missing data in the data collection process.

6.4   Designed Experiments
Designed experiments have been used in biostatistics in the evaluation of (1) the effi cacy 
and safety of drugs or medical procedures, (2) the effectiveness and cost of different 
health care delivery systems, and (3) the effect of exposure to possible carcinogens. In 
the following, we present the principles underlying such experiments. Limitations of 
experiments and ethical issues related to experiments, especially when applied to 
humans, are also raised. Let us consider a couple of examples to illustrate the essential 
points in the experimental design.

Example 6.11

The Hypertension Detection and Follow-up Program (HDFP 1979) was a 
community-based, clinical trial conducted in the early 1970s by the National Heart, 
Lung and Blood Institute (NHLBI) with cooperation of 14 clinical centers and other 
supporting groups. The purpose of the trial was to assess the effectiveness of treating 
hypertension, a major risk factor for several different forms of heart disease. For this 
trial, it was decided that the major outcome variable would be total mortality.

At the time of designing the HDFP trial, results of a Veterans Administration 
(VA) Cooperative Study were known. This study had already demonstrated the 
effectiveness of antihypertensive drugs in reducing morbidity and mortality due to 
hypertension among middle-aged men with sustained elevated blood pressure. 
However, the VA study included only a subset of the entire community. Applicability 
of its fi ndings to those with undetected hypertension in the community, to women 
and to minority persons was uncertain. Therefore, it was decided to perform a study, 
the HDFP study, in the general community. Instead of including only people who 
knew that they had high blood pressure, subjects were recruited by screening people 
in the community.



6.4.1   Comparison Groups and Randomization

A simple experiment may be conducted without any comparison group. For example, a 
newly developed AIDS education course was taught to a class of ninth graders in a high 
school for a semester. The level of knowledge regarding AIDS was tested before and 
after the course to assess the effect of the course on students’ knowledge. The difference 
in test scores between the pre- and posttests would be taken as the effect of the instruc-
tional program. However, it may be inappropriate to attribute the change in scores to 
the instructional program. The change may be entirely or partially due to some infl uence 
outside the AIDS course — for example, mass media coverage of AIDS-related infor-
mation. Therefore, we have to realize that when this simple experimental design is used, 
the outside infl uence, if any, is mixed with the effect of the course and it is not possible 
to separate them.

Thus, in studying the effect of an independent variable on a dependent variable, we 
have to be aware of the possible infl uence of an extraneous variable(s) on the dependent 
variable. When the effects of the independent variable and the extraneous variable 
cannot be separated, the variables are said to be confounded. In observational studies 

In this clinical trial, antihypertensive therapy was the independent or predictor 
variable and the mortality rate was the dependent or response variable. To determine 
the effectiveness of the antihypertensive therapy, a comparison group was required. 
Thus, the study was intended to have a treatment group — those who received the 
therapy — and a control group — those who did not receive the therapy. However, 
this classic experimental design could not be used. Since the antihypertensive therapy 
was already known to be effective, it could not ethically be withheld from the control 
group. Recognizing this, the HDFP investigators decided to compare a systematic 
antihypertensive therapy given to those in the treatment group (Stepped Care) to the 
therapy received from their usual sources of care for those in the control group 
(Regular Care). As a result, no one was denied treatment.

Example 6.12

In Chapter 3 we introduced a data set from the Digitalis Investigation Group trial. 
The primary objective of the DIG trial was to determine the effect of digoxin as the 
cause of mortality in patients with clinical heart failure who were in sinus rhythm 
and whose ejection fraction was ≤0.45. A total of 302 clinical centers in the United 
States and Canada enrolled 7788 patients between February 1991 and September 
1993 and follow-up continued until December 1995 (DIG 1995).

Eligible patients were recruited and randomized to either digoxin or placebo 
(dummy pill) using a random block size method (to be explained later) within each 
clinical center; 3889 to digoxin and 3899 to placebo. This large sample size was 
required to detect a 12 percent reduction in mortality by treatment and to take non-
compliance into account. The trial was double blinded (both investigators and 
patients were not informed about the group assignment). We discuss these essential 
feathers of an experimental design in this section.
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such as sample surveys, all variables are confounded with one another and the analytical 
task is to untangle the comingled infl uence of many variables that are measured at the 
same time. In experimental studies, the effects of extraneous variables are separated 
from the effect of the independent variable by adopting an appropriate design.

The basic tool for separating the infl uence of extraneous variables from that of the 
independent variable is the use of comparison groups. For example, giving the treatment 
to one of two equivalent groups of subjects and withholding it from the other group 
means that the observed difference in the outcome variable between the two groups can 
be attributed to the effect of the treatment. In this design, any extraneous variables 
would presumably infl uence both groups equally, and, thus, the difference between the 
two groups would not be infl uenced by the extraneous variables. The key to the suc-
cessful use of this design is that the groups being compared are really equivalent before 
the experiment begins.

Matching is one method that is used in an attempt to make groups equivalent. For 
example, subjects are often matched on age, gender, race, and other characteristics, and 
then one member of each matched pair receives the treatment and the other does not. 
However, it is diffi cult to match subjects on many variables, and also, the researcher 
may not know all the important variables that should be used in the matching pro-
cess. A method for dealing with these diffi culties with matching is the use of 
randomization.

Randomization is the random assignment of subjects to groups. By using randomiza-
tion, the researcher is attempting to (1) eliminate intentional or nonintentional selection 
bias — for example, the assignment of healthier subjects to the treatment group and 
sicker subjects to the control group; and (2) remove the effect of any extraneous vari-
ables. With large samples, the random assignment of subjects to groups should cause 
the distributions of the extraneous variables to be equivalent in each group, thus remov-
ing their effects.

6.4.2   Random Assignment

One way of randomly assigning subjects to groups is the use of the random sampling 
without replacement procedure discussed in the earlier section.

Example 6.13

Consider the case of randomly assigning 50 subjects to two groups. An SRS (without 
replacement) of 25 from the 50 sequentially numbered subjects is selected using a 
computer package (see Program Note 6.1 on the website):

 2  4  5  6 11 12 16 17 18 20
 21 25 16 27 30 31 32 33 35 36
 40 41 44 47 48

These subjects are assigned to the treatment group and the remaining 25 subjects 
form the control group. In many randomized experiments, subjects are assigned to 
the groups sequentially as soon as subjects are identifi ed, as in the HDFP trial. In 



The method of random allocation illustrated in Example 6.13 poses some problem 
when the subjects are to be randomized in sequence as they are recruited in a clinical 
trial because the total number of eligible patients is not known in advance. As a result, 
it is diffi cult to balance the size of comparison groups. For example, the sequence of 
letters T and C in Example 6.13 works fi ne if 50 eligible patients can be recruited in a 
clinical center. But if only 10 eligible patients are available, then there are 4 Ts and 
6 Cs in the fi rst 10 letters in the sequence, making the size of comparison groups 
unbalanced.

An alternative to the preceding method is a random block size method (or random 
permuted blocks method). This is the randomization method used in the DIG trial 
described in Example 6.12. We illustrate an example for the blocks of size 4. We can 
list all the different possible sequences of allocations of four successive patients contain-
ing two Ts and two Cs as follows:

1. T T C C
2. T C T C
3. T C C T
4. C T T C
5. C T C T
6. C C T T

Blocks are then chosen at random by selecting random numbers between 1 and 6. This 
could be done, for example, with a fair die or by using Table B1, ignoring the digits 7, 
8, 9, and 0. The fi rst fi ve eligible random digits from the fi rst row of Table B1 are 1, 1, 
4, 5, and 4. By choosing the previous corresponding blocks, we have the following 
sequence of allocations:

 T, T, C, C,  T, T, C, C,  C, T, T, C,  C, T, C, T,  C, T, T, C.

It may be possible for an investigator to discover the pattern when the block size is 
small. To alleviate this problem, the block size is often changed in as allocation proceeds. 
It will be diffi cult to discover a pattern of sequence when the block size is 10 or 
more.

that case, the preceding results can be put into the following sequence of letters T 
(treatment group) and C (control group) that can be used to show the assignment:

C T C T T T C C C C
T T C C C T T T C T
T C C C T T T C C T
T T T C T T C C C T
T C C T C C T T C C

If one were to assign 60 subjects to three groups, the fi rst random sample of 20 will 
be assigned to the fi rst group, the second random sample of 20 to the second group, 
and the remaining 20 subjects to the third group.
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6.4.3   Sample Size

The random assignment of subjects to groups does not guarantee the equivalence of the 
distributions of the extraneous variables in the groups. There must be a suffi ciently large 
number of subjects in each group for randomization to have a high probability of causing 
the distributions of the extraneous variables to be similar across groups. As discussed 
earlier, use of larger random samples decreases the sample-to-sample variability and 
increases our confi dence that the sample estimates are closer to the population parame-
ters. In the same way, a greater number of subjects in the treatment and control groups 
increase our confi dence that the two groups are equivalent with respect to all extraneous 
factors.

To make this point clearer, consider the following example. A sample of 10 adults is 
taken from the Second National Health and Nutrition Examination Survey (NHANES 
II) data fi le, and 5 of the 10 persons are randomly assigned to the treatment group, and 
the other 5 are assigned to the control group. The two groups are compared with respect 
to fi ve characteristics. The same procedure is repeated for sample sizes of 40, 60, and 
100, and the results are shown in Table 6.3.

Table 6.3 Comparison of treatment and control groups for different group sizes.

Characteristicsa Treatment Control Treatment Control

 (n1 = 5) (n2 = 5) (n1 = 20) (n2 = 20)

Percent male 60 20 60 35
Percent black 0 20 5 20
Mean years of education 12.6 11.2 12.9 13.0
Mean age 38.8 41.6 40.7 34.0
Percent smokers 60 40 27 23

 (n1 = 30) (n2 = 30) (n1 = 50) (n2 = 50)

Percent male 43 50 42 44
Percent black 17 10 16 16
Mean years of education 12.7 12.9 11.7 12.5
Mean age 39.7 40.2 42.1 42.5
Percent smokers 32 35 34 34
aObservations are weighted using the NHANES II sampling weights.

The treatment and control groups are not very similar when n is 10. As the sample 
size increases, the treatment and control groups become more similar. When n is 100, 
the two groups are very similar. It appears that at least 30 to 50 persons are needed in 
each of the treatment and control groups for them to be reasonably similar. The sample 
size considerations will be discussed further in Chapters 7 and 9.

In the HDFP clinical trial shown in Example 6.11, over 10,000 hypertensive persons 
were screened through community surveys and included in the study. These subjects 
were randomly assigned to either the Stepped Care or Regular Care groups. Because of 
this random assignment and the large number of subjects included in the trial, the 
Stepped Care and the Regular Care groups were very similar with respect to many 
important characteristics at the beginning of the trial. Table 6.4 is a demonstration of 
the similarities. The randomization and the suffi ciently large sample size also give us 
confi dence that these two groups were equivalent with respect to other characteristics 
that are not listed in Table 6.4.



The DIG trial shown in Example 6.12 also used a large sample size recruited by 
clinical centers in the United States and Canada. The recruited patients were assigned 
to either placebo or digoxin treatment by a random block size method just described. 
As shown in Figure 6.3, medical history of the subjects with respect to myocardial 
infarction, diabetes, and hypertension is about the same, providing assurance that these 
and other clinical conditions would not pose as confounding factors for the comparison 
of two experimental groups.

The sample size required for an experiment depends on three factors: (1) the amount 
of variation among the experimental subjects, (2) the magnitude of the effect to be 
detected, and (3) the level of confi dence associated with the study. When the experi-
mental subjects are similar, a smaller sample size can be used than when the subjects 
differ. For example, a laboratory experiment using genetically engineered mice does not 
require as large a sample size as the same experiment using mice trapped in the wild. 
There is less likelihood of extraneous variables existing in the study using the geneti-
cally engineered mice. Hence, a smaller sample should be acceptable, since there is less 
need to control for extraneous variables. The fact that the sample size for the experiment 
depends on the size of the effect to be detected is not surprising. Since it should be more 

Table 6.4 Comparison of Stepped Care and Regular Care participants by selected characteristics at 
entry to the hypertension detection and follow-up program.

Characteristics (Number of Participants) Stepped Care (5485) Regular Care (5455)

Mean age in years 50.8 50.8
Percent black men 19.4 19.9
Percent black women 24.5 24.8
Mean systolic blood pressure, mmHg 159.0 158.5
Mean diastolic blood pressure, mmHg 101.1 101.1
Mean pulse beats/minute 81.7 82.2
Mean serum cholesterol, mg/dL 235.0 235.4
Mean plasma glucose, mg/dL 178.5 178.9
Percent smoking >10 cigarettes/day 25.6 26.2
Percent with history of stroke 2.5 2.5
Percent with history of myocardial infarction 5.1 5.2
Percent with history diabetes 6.6 7.5
Percent taking antihypertension medication 26.3 25.7

Source: HDFP, 1979

Figure 6.3 Proportions 
of patients with 
previous myocardial 
infarction, diabetes, 
and hypertension for 
placebo and digoxin 
groups in the DIG trial.
Source: Digitalis 
Investigation Group, 
1995
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diffi cult to detect a small effect of the independent variable than a large effect, the 
sample size must refl ect this. This is one of the reasons that the HDFP trial and DIG 
trial used a large sample size. Both trials attempt to detect a relatively small difference 
between the treatment and control groups. The relation between the sample size and the 
confi dence associated with the study will be explored further in Chapters 7 and 8. 

6.4.4   Single- and Double-Blind Experiments

So far we have been concerned with the statistical aspects of the design of an experi-
ment. This means the use of comparison groups, the random assignment of subjects to 
the groups, and the need for an adequate number of subjects in the groups. An additional 
concern is the possible bias that can be introduced in an experiment. Let us consider 
some possible sources of bias and possible ways to avoid them.

In drug trials, particularly in those involving a placebo, the subjects are often blinded 
— that is, they are not informed whether they have received the active medication or a 
placebo. This is done because knowledge of which treatment has been provided may 
affect the subject’s response. For example, those assigned to the control group may lose 
interest, whereas those receiving the active medication, because of expectations of 
a positive result, may react more positively. Studies in which the treatment providers 
know but the subjects are unaware of the group assignment are called single-blind 
experiments.

In most drug trials, both the subjects and the treatment providers are unaware of the 
group assignment. The treatment providers are blinded because they also have expecta-
tions about the reaction to the treatment. These expectations may affect how the experi-
menter measures or interprets the results of the experiment. When both the subjects 
and the experimenters are unaware of the group assignment, it is called a double-blind 
experiment.

Example 6.14

Let us examine one double-blind, randomized experiment conducted by a Veterans 
Administration research team (Goldman et al. 1988). They used the experimental 
design shown in Figure 6.4 to determine whether antiplatelet therapies improve 
saphenous vein graft patency after coronary artery bypass grafting.

In this experimental design, there are four treatment groups (four regimens of 
drug therapy) and a control group (placebo). Both the patients and the doctors were 
blinded, and only the designers of the trial, who were not directly involved in patient 
treatment, knew the group assignment. A total of 772 consenting patients were ran-
domized, and postoperative treatment was started six hours after surgery and con-
tinued for one year.

As was to be expected, this experiment encountered problems in retaining 
subjects during the course of the experiment. The fi nal analysis was based on 502 
patients who underwent the late catheterization. These patients had a total of 1618 
grafts. Of the 270 patients not included in the fi nal analysis, 154 refused to undergo 
catheterization, 32 were lost to follow-up, 31 died during treatment, 42 had medical 



There are other types of precautions that must be taken to avoid potential biases. In 
addition to statistical aspects, the experiment designer must provide detailed procedures 
for handling experimental subjects, monitoring compliance of all participants, and col-
lecting data. For this purpose a study protocol must be developed, and the experimenter 
is responsible for adherence to the protocol by all participants. Similar to the problem 
of nonresponse in sample surveys, the integrity of experiments are often threatened by 
unexpected happenings such as the loss of subjects during the experiment and changes 
in the experimental environment. Steps must be taken to minimize such threats.

6.4.5   Blocking and Extraneous Variables

Thus far we have considered the simplest randomization, the random assignment of 
subjects to groups without any restriction. This design is known as a completely ran-
domized design. The role of this design in experimental design is the same as that of 
the simple random sample design in survey sampling. As was mentioned earlier, in 
completely randomized designs, we attempt to remove the effects of extraneous vari-
ables by randomization. However, a reasonably large sample size is required before we 
can have confi dence in the randomization process.

Another experimental design for eliminating the effects of extraneous variables 
known or thought to be related to the dependent variable uses blocking. Blocking means 
directly taking these extraneous variables into account in the design. For example, in a 
study of the effects of different diets on weight loss, subjects are often blocked or 

complications, and data on 11 patients were not available in the central laboratory 
(Goldman et al. 1989). Although we may expect that these problems are fairly evenly 
distributed among the groups because of the random assignment of subjects, the 
sample size was reduced considerably. This suggests that we needed to increase 
the initial sample size in anticipation of the loss of some subjects during the 
experiment.

Figure 6.4 Experimental design for Veterans Administration Cooperative Study on Effect of 
Antiplatelet Therapy.
Source: Goldman et al., 1988
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grouped into different initial weight categories. Within each block, the subjects are then 
randomly assigned to the different diets. We block based on initial weight because it is 
thought that weight loss may be related to the initial weight. Designs using blocking do 
not rely entirely on randomization to remove the effects of these important extraneous 
variables. Blocking guarantees that each diet has subjects with the same distribution of 
initial weights; randomization cannot guarantee this. Blocking in experiments is similar 
to stratifi cation in sample surveys. The experimental design that uses blocks to control 
the effect of one extraneous variable is called a randomized block design. This name 
indicates that randomization is performed separately within each block.

Blocking is also used for administrative convenience. The VA Cooperative Study 
discussed in the previous section had 11 participating hospitals located throughout the 
United States. Since the subjects were randomized separately at each site, each partici-
pating hospital was a block. In this case, the blocking was done for administrative 
convenience while also controlling for the variation among hospitals. 

In the previous section, we saw that the SRS design can be modifi ed and extended 
as required to meet the demands of a wide variety of sampling situations. The completely 
randomized experimental design can similarly be expanded to accommodate many dif-
ferent needs in experimentation. Only one factor is considered in a completely random-
ized design. When two or more factors are considered, a factorial design can be used. 
For example, a clinical trial testing two different drugs simultaneously can be conducted 
in a 2 by 2 or 22 factorial design. Two levels of drug A and two levels of drug B will 
form four experimental groups: both drug A and B, A only, B only, and control (no 
drug). Study subjects are randomly assigned to the four groups. From this design we 
can examine the main effects of A and B as well as the interaction of two drugs.

The randomized block design just examined can also be expanded to accommodate 
more than one independent variable or block on more than one extraneous variable. We 
will discuss further these more complex experimental designs in Chapter 12.

6.4.6   Limitations of Experiments

The results of an experiment apply to the population from which the experimental sub-
jects were selected. Sometimes this population may be very limited — for example, 
patients may be selected from only one hospital or from one clinic within the hospital. 
In situations like these, does this mean that we must perform similar experiments in 
many more hospitals to determine if the results can be generalized to a larger population 
— for example, to all patients with the condition being studied? From a statistical per-
spective, the answer is yes. However, if based on substantive reasons, we can argue that 
there is nothing unique about this hospital or clinic that should affect the experiment, 
then it may be possible to generalize the results to the larger population of all patients 
with the condition. This generalization is based on substantive reasoning, not on statisti-
cal principles.

For example, the results of the VA Cooperative Study may be valid only for male 
veterans. It certainly would be diffi cult to generalize the results to females without more 
information. It may be possible to generalize the results to all males who are known to 
have hypertension, but this requires careful scrutiny. We must know whether or not the 



VA medical treatment of hypertension is comparable to that received by males in the 
general population. Does the fact that the men served in the military cause any differ-
ence, compared to those who were not in the military, in the effect of the medical 
intervention? If differences are suspected, then we should not generalize beyond the VA 
system.

On the other hand, the results of the HDFP should apply more widely, since the sub-
jects were screened from random samples of residents in 14 different communities and 
then randomly assigned to the comparison groups. This use of accepted statistical prin-
ciples of random sampling from the target population and randomizing these subjects 
to comparison groups makes it reasonable to generalize the results.

Another limitation of an experiment stems from its dependency on the experimental 
conditions (Deming 1975). Often experiments take place in a highly controlled, artifi cial 
environment, and the observed results may be confounded with these factors. Dr. Lewis 
Thomas’s experience (Thomas 1984) is a case in point. While he was waiting to return 
home from Guam at the end of World War II, he conducted an experiment on several 
dozen rabbits left in a medical science animal house. He tested a mixed vaccine consist-
ing of heat-killed streptococci and a homogenate of normal rabbit heart tissue, and the 
test produced spectacular and unequivocal results. All the rabbits that received 
the mixture of streptococci and heart tissue became ill and died within two weeks. The 
histologic sections of their hearts showed the most violent and diffuse myocarditis he 
had ever seen. The control rabbits injected with streptococci alone or with heart tissue 
alone remained healthy and showed no cardiac lesions. Upon returning to the Rocke-
feller Institute, he replicated the experiment using the Rockefeller stock of rabbits. He 
repeated the experiment over and over, but he never saw a single sick rabbit. One expla-
nation for the spectacular results of the Guam experiment is that there may have been 
some type of a latent virus in the Guam rabbit colony. As Dr. Thomas said, “I had all 
the controls I needed. I wasn’t bright enough to realize that Guam itself might be a 
control.” 

As Dr. Thomas’s experience shows, we have to be careful not to deceive ourselves 
and extrapolate beyond our data. The experimental data consist of not only the observed 
difference between the treatment and control groups, but also the conditions and cir-
cumstances under which the experiment was conducted. These include the method of 
investigation, the time and place, and the duration of the test and other conditional 
factors. For example, in interpreting the results of drug trials, there is no statistical 
method by which to extrapolate the safety record of a drug beyond the period of the 
experiment, nor to a higher level of dosage, nor to other types of patients. The toxic 
effect of the medication may manifest itself only after a longer exposure, at higher levels 
of dosage or for other types of patients. Therefore, extrapolation of experimental results 
must be done with great care, if at all. Better than extrapolation is a replication of the 
study for different types of subjects under different conditions.

Implicit in the naming of experimental variables as being dependent and independent 
is the idea of cause and effect — that is, changes in the levels of the independent vari-
ables cause corresponding changes in the dependent variable. However, it is diffi cult to 
demonstrate a cause-and-effect relationship. It is sometimes possible to demonstrate this 
in very carefully designed experiments. However, in most situations in which statistics 
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are used, positive results do not mean a cause-and-effect relationship but only the exis-
tence of an association between the dependent and independent variables.

Finally, statistical principles of experimentation can sometimes be in confl ict with 
our cultural values and ethical standards. Experimenting, especially on human beings, 
can lead to many problems. If the experiment can potentially harm the subjects or 
impinge upon their privacy or individual rights, then serious ethical questions arise. The 
harm can be direct physical, psychological, or mental damage, or it may be the with-
holding of potential benefi ts. As was seen in the HDFP study, to avoid withholding the 
benefi ts of antihypertensive therapy, the study designers used the Regular Care group 
instead of a placebo group as the control group. When the potential direct harm is 
obvious, we cannot subject human beings to an experiment.

To protect human subjects from potential harm or from an invasion of privacy, an 
informed consent is required for experiments and even for interviews in sample surveys. 
This consent has to be voluntary. However, it is not diffi cult to recognize the possibility 
for pressuring patients to participate in a clinical trial. To prevent undue pressure being 
applied to patients or other potential study participants, all organizations receiving funds 
from the Federal government are required to have an institutional review committee 
(OSTP 1991). It is this committee’s task to evaluate the study protocol to see if it 
provides adequate safeguards for the rights of the study participants.

6.5   Variations in Study Designs
As just seen, the essential characteristics of an experiment are that the investigators 
initially randomly assign the study subjects to the treatment and control groups (parallel 
comparison groups), administer the treatment, and observe what happens prospectively. 
Such an experimental design is hard to use in practice due to ethical and other practical 
reasons. The following quasi-experimental designs attempt to emulate an experimental 
situation, accommodating certain practical constraints.

6.5.1   The Crossover Design

The crossover design uses one group of experimental subjects, and each level of 
treatment is given at different times to each subject. The simplest crossover uses two 
periods and two levels of treatments. To control the effect of the order of applying 
two treatments, subjects are often randomly assigned group A and group B. Subjects in 
group A receive treatment 1 and subjects in group B receive treatment 2 in the fi rst 
period. In the second period the treatments are switched. It is possible that a treatment 
effect in the fi rst period can carry residual effects to the second period. In order to 
minimize the carryover effect, a washout period is often established between the two 
treatment periods. Some studies have a run-in period before the fi rst treatment period 
begins, so as to wash out any residual effects of any previous medications. An obvious 
advantage of a crossover design is the cost saved by using a fewer subjects. This design, 
however, would require a long period of experimentation. The lack of a parallel com-
parison group and random assignment would make it diffi cult to distinguish the within-
subject variation from the between-subject variation and to control the confounding 
effects.



6.5.2   The Case-Control Design

The case-control design identifi es a set of subjects with a disease or certain condition 
(the cases) and another set without the disease (the controls). These two groups are 
compared with respect to a risk factor (the treatment). In this study the outcome is 
specifi ed fi rst, and the risk factor is assessed retrospectively. Since the subjects are not 
assigned to the case and control groups, the effects of confounding factors are not con-
trolled. To overcome this problem, the two groups are matched with respect to some 
confounders such as age and gender. Although the two groups may be comparable in 
terms of age and gender, the effect of other confounders still remain. Another drawback 
of the case-control design is that it cannot be used to measure the incidence or preva-
lence of the disease because of the retrospective assessment of the risk factor.

Example 6.15

A 2 × 2 crossover design was used to compare ibuprofen (usual prescribed treatment) 
and lysine acetyl salicylate (Aspergesic, over-the-counter medicine) in the treatment 
of rheumatoid arthritis (Hill et al. 1990). Thirty-six patients were randomly assigned 
to the two equal treatment order groups at entry. After two weeks on their fi rst treat-
ment, patients crossed over to the other treatment, and two weeks later, the trial 
ended. There was no run-in or wash-out period, but the trial was double-blinded. 
They used the double-dummy procedure where each patient always received a com-
bination of two pills, the appropriate active treatment plus a placebo that was indis-
tinguishable from the other active treatment. The treatment periods were of equal 
length and relatively short. At baseline a general medical examination was carried 
out, and the recorded baseline values of the two groups were found to be similar. At 
the end of each treatment period a clinic visit was made to assess grip strength, blood 
pressure, and so forth. During the treatment periods, patients recorded a pain assess-
ment score on a 1–5 scale (1 = no pain, 2 = mild pain, 3 = moderate pain, 4 = severe 
pain, 5 = unbearable pain). Five patients withdrew from the trial, one patient was 
considered noncompliant, and one patient failed to report his scores for the second 
period. The average pain scores for the 29 patents were analyzed.

Example 6.16

In January 1984 six cases of Legionnaires’ disease were reported to the health 
authority in Reading, United Kingdom (Anderson 1985). All of them became ill 
between December 15 and 19, 1983. After a thorough investigation, the authority 
discovered seven unreported cases. The cases had no obvious factor in common 
except for visiting the Reading town center just before their illness. A case-control 
study was conducted to compare exposure between the 13 cases and a selected set 
of 36 people without the disease (the controls). Frequencies of visiting the town 
center just before Christmas were high for both groups, but most of the cases and 
fewer controls visited the Butts Center shopping mall. This suggested that the Butts 
Center might be a source of the legionella bacterium. In their analysis of data, they 
matched the cases and controls with respect to age, sex, neighborhood, and mobility 
status. One case had one control, another case had two controls, and the remaining 
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6.5.3   The Cohort Study Design

In the cohort study design, study subjects are followed up through time to record inci-
dences of disease. The simplest approach is to select two groups of subjects at the 
baseline. One group consists of subjects who possess some special attribute that is 
thought to be a possible risk factor for a disease of interest, while the other group does 
not. For instance, a group of coal miners who are free of lung cancer and a group of 
lung cancer–free farmers are followed up several years to record the lung cancer inci-
dences. This is a prospective study design, mimicking conditions of an experiment, and 
thus we can measure incidence. However, in the cohort study design the study subjects 
are not assigned to the groups and confounding is not controlled. Similar to the case-
control study, the groups can be matched with respect to selected confounders, but the 
matching cannot provide protection against all possible confounders.

11 cases had three controls. In this investigation the case-control approach appears 
to be the only one possible. The investigation needed to be conducted quickly in 
fear of further infections. Other study designs may be impractical in this type of 
situation.

Example 6.17

In a cohort study of 34,387 menopausal women in Iowa, intakes of vitamin A, C, 
and E were assessed in 1986 (Kushi 1996). In the period up to the end of 1992, 879 
of these women were newly diagnosed with breast cancer. The investigators exam-
ined the effect of vitamin use and level of intake for each vitamin on breast cancer 
incidence. Since women were not randomly assigned to vitamin use and level of 
intake groups, confounding factors were not controlled effectively. However, this 
study provided valuable information for further investigation. Randomization might 
not be possible for ethical and practical reasons.

These alternative study designs are widely used in epidemiological studies because 
of ethical and practical reasons. But the analysis of data from these studies requires the 
use of special methods and the analytical results need to be interpreted recognizing the 
limitations of the study design used. The data from matched studies need to be analyzed 
taking into account the matching. These methods will be discussed in the subsequent 
chapters. Data from these studies will be used to illustrate the methods of analysis in 
subsequent chapters.

Conclusion
In this chapter we saw how to collect data using sample surveys and designed experi-
ments. We examined the use of a chance mechanism in drawing samples and assigning 
experimental subjects to comparison groups. We also presented some practical issues 
that cause more complicated sample designs to be used and experimental designs to be 
modifi ed. Regardless of the complexity of the sample design, as long as we know the 



selection probability, we can infer from the sample to the population. A requirement of 
a good experimental design is that it reduces the chance of extraneous variables being 
confounded with the experimental variables. Randomization and blocking are basic 
tools for preventing this confounding. When these tools are used appropriately, it is 
possible to analyze the data to determine whether or not it is likely that an association 
exists between the dependent variable and the independent variables. Analysis of data 
from complex surveys would require special considerations, which we will discuss in 
Chapter 15. Experimental data are analyzed using the designs described here in Chap-
ters 8 and 12. Even after performing the experiment appropriately, care must be used 
in interpreting the experimental results. We must not unduly extrapolate the fi ndings 
from our experiment, but recognize that replication may be necessary for the appropriate 
generalization to the target population.

EXERCISES

6.1 Choose the most appropriate response from the choices listed after each 
question.
a. To determine whether a given set of data is a random sample from a defi ned 

population, one must ___________.
 __ analyze the data.
 __ know the procedure used to select the sample.
 __ use a mathematical proof.
b. A simple random sample is a sample chosen in such a way that every unit 

in the population has a(n) ___________ chance of being selected into the 
sample.

 __ equal
 __ unequal
 __ known
c. In the random number table, Appendix Table B1, approximately what percent 

of numbers are 9 or 2?
 __ 20
 __ 10
 __ unknown
d. Sampling with replacement from a large population gives virtually the same 

result as sampling without replacement.
 __ true
 __ false
e. In a stratifi ed random sample, the selection probability for each element 

within a stratum is _____.
 __ equal.
 __ unequal.
 __ unknown.
f. A probability sample is a sample chosen in such a way that each possible 

sample has a(n) _________ chance of being selected.
 __ equal
 __ unequal
 __ known
 __ unknown
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6.2 If a population has 2000 members in it, how would you use Table B-1, the table 
of random numbers, to select a simple random sample of size 25? Assume that 
the 2000 members in the population have been assigned numbers from 0 to 
1999. Beginning with the fi rst row in Table B1, select the 25 subjects for the 
sample.

6.3 In the following situations, do you consider the selected sample to be a simple 
random sample? Provide your reasoning for your answer.
a. A college administrator wishes to investigate students’ attitudes concerning 

the college’s health services program. A 10 percent random sample is to be 
selected by distributing questionnaires to students whose student ID number 
ends with a 5.

b. A medical researcher randomly selected fi ve letters from the alphabet and 
abstracted data from the charts of patients whose surnames start with any 
of those fi ve letters.

6.4 In the NHANES II, 27 percent of the target sample did not undergo the health 
examination. In the examined sample, the weighted estimate of the percent 
overweight was 25.7 percent (NCHS 1992).
a. Assuming that these data were collected via an SRS, what is the range for 

the percent overweight in the target sample?
b. Should any portion of the population be excluded in the measurement of 

overweight?
6.5 Discuss how sampling can be used in the following situations by defi ning (1) 

the population, (2) the unit from which data will be obtained, (3) the unit to be 
used in sampling, and (4) the sample selection procedure:
a. A student is interested in estimating the total number of words in this 

book.
b. A city planner is interested in estimating the proportion of passenger cars 

that have only one occupant during rush hours.
c. A county public health offi cer is interested in estimating the proportion of 

dogs that have been vaccinated against rabies.
6.6 For each of the following situations discuss whether or not random sampling is 

used appropriately and why the use of random sampling is important:
a. A doctor selected every 20th fi le from medical charts arranged alphabeti-

cally to estimate the percent of patients who have not had any clinic visits 
during the past 24 months.

b. A city public health veterinarian randomly selected 50 out of 500 street 
corners and designated a resident at each corner to count the number of 
stray dogs for one week. He multiplied the number of stray dogs counted 
at the 50 corners by 10 as an estimate of the number of stray dogs in the 
city.

c. A hospital administrator reported to the board of directors that his 
extensive conversations with two randomly selected technicians 
revealed no evidence of support for a walkout by hospital technicians this 
year.

6.7 An epidemiologist wishes to estimate the average length of hospitalization for 
cancer patients discharged from the hospitals in her region of the country. There 
are 500 hospitals with the number of beds ranging from 30 to 1200 in the 
region.



a. Discuss what diffi culties the researcher might encounter in drawing a simple 
random sample.

b. Offer suggestions for drawing a random sample.
6.8 Discuss the advantages and disadvantages of the following sampling frames for 

a survey of the immunization levels of preschool children:
a. Telephone directory
b. The list of children in kindergarten
c. The list of registered voters

6.9 Discuss the interpretation of the following surveys:
a. A mail survey was conducted of 1000 U.S. executives and plant managers. 

After a month, 112 responses had been received. The report of the survey results 
stated that Japan, Germany, and South Korea were viewed as being better 
competitors than the U.S. in the world economy. Also one-third of the managers 
did not believe their own operations were making competitive improvements.

b. A weekly magazine reported that most American workers are satisfi ed with 
the amount of paid vacation they are allowed to take. This conclusion was based 
on the results of a telephone poll of 522 full-time employees (margin of error 
is plus or minus 4%; “Not sure” omitted). The question asked was “Should 
you have more time off or is the amount of vacation you have fair?”

 More time off             33%
 Current amount fair 62%

6.10 Choose the most appropriate response from the choices listed under each 
question:
a. Which of the following is not required in an experiment?
 __ designation of independent and dependent variables
 __ random selection of the subjects from the population
 __ use of a control group
 __ random assignment of the subjects to groups
b. The main purpose of randomization is to balance between experimental 

groups the effects of extraneous variables that are ____________________.
 __ known to the researcher.
 __ not known to the researcher.
 __ both known and unknown to the researcher.
c. The experimental groups obtained by randomization may fail to be equiva-

lent to each other, especially when _______________________________.
 __ the sample size is very small.
 __ blocking is not used.
 __ matching is not used.
d. Which, if any, of the following is an inappropriate analogy between random 

sampling and randomized experiments?
 __ simple random sampling–completely randomized experiment
 __ stratifi ed random sampling–randomized complete block design
 __ random selection–random assignment
e. A randomized experiment is intended to eliminate the effect of 

____________________.
 __ independent variable.
 __ confounded extraneous variables.
 __ dependent variable.
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f. If the number of subjects randomly assigned to experimental groups 
increases, then the treatment and control groups are likely to be 
_____________________.

 __ more similar to each other.
 __ less similar to each other.
 __ neither of the above.

6.11 A middle school principal wants to implement a newly developed health educa-
tion curriculum for 30 classes of 7th graders that are taught by 6 teachers. 
However, the available budget for teacher training and resource material is suf-
fi cient for implementing the new course in only half of the classes. A teacher 
suggests that an experiment can be designed to compare the effectiveness of 
the new and old curricula.
a. Design an experiment to make this comparison, explaining how you would 

carry out the random assignment of classes and what precautions you would 
take to minimize hidden bias.

b. How would you select teachers for the new curriculum?
6.12 To examine the effect of the seat belt laws on traffi c accident casualties, the 

National Highway Traffi c Safety Administration compared fatalities among 
those jurisdictions that were covered by seat belt laws (the Covered Group) with 
those jurisdictions that were not covered by seat belt laws (the Other Group). 
They found that among the Covered Group, 24 belt law jurisdictions, fatalities 
were 6.6 percent lower than the number forecasted from past trends. In the Other 
Group, observed fatalities were 2 percent above the forecasted level (Campbell 
and Campbell 1988).
a. Explain whether or not you attribute the difference between these two groups 

to seat belt laws.
b. Provide some possible extraneous variables that might have infl uenced the 

effect difference and explain why these variables may have had an effect.
6.13 A large-scale experiment was carried out in 1954 to test the effectiveness of the 

Salk poliomyelitis vaccine (Francis et al. 1955). After a considerable debate, 
the randomized placebo (double-blind) design was used in approximately half of 
the participating areas and the “observed control” design was used in the remain-
ing areas. In the latter areas, children in the second grade were vaccinated and 
children in the fi rst and third grades were considered as controls (no random 
assignment was used). In both areas, volunteers participated in the study, but polio 
cases were monitored among all children in participating areas. The following 
results were announced on April 12, 1955, at the University of Michigan:

 Study Polio Case Ratea (per 100,000)

Study Type and Group Subjects Total Paralytic Nonparalytic Fatal

Placebo Control Areas:
 Vaccinated 200,745 28 16 12 0
 Placebo 201,229 71 57 13 2
 Not inoculatedb 338,778 46 36 11 0
Observed Control Areas:
 Vaccinated 221,998 25 17  8 0
 Controls 725,173 54 46  8 2
 Not inoculatedc 123,605 44 35  9 0
aBased on confi rmed cases
bNonvolunteers in the participating areas
cSecond graders not inoculated
Source: Reference 19, Tables 2 and 3



a. Why was it necessary to use so many subjects in this trial?
b. What extraneous variables could have been confounded with the vaccination 

in the observed control areas?
6.14 To test whether or not oat bran cereal diet lowers serum lipid concentrations 

(as compared with a corn fl akes diet), an experiment was conducted (Anderson 
et al. 1990). In this experiment 12 men with undesirably high serum total-
cholesterol concentrations were randomly assigned to one of the two diets 
upon admission to the metabolic ward. After completing the fi rst diet for two 
weeks, the subjects were switched to the other diet for another two weeks. 
This is a crossover design in which each subject received both diets in sequence. 
Eight subjects were hospitalized in the metabolic ward for a continuous 
four-week period, and the remaining subjects were allowed a short leave of 
absence, ranging from 3 to 14 days, between diet regiments for family emergen-
cies or holidays. The results indicated that the oat bran cereal diet compared 
with the corn fl akes diet lowered serum total-cholesterol and serum LDL-
cholesterol concentrations signifi cantly by 5.4 percent and 8.5 percent, 
respectively.
a. Discuss how this crossover design is different from the two-group compari-

son design studied in this chapter. What are the advantages of a crossover 
design?

b. The nutritional effects of the fi rst diet may persist during the administration 
of the second diet. Is the carryover effect effectively controlled in this 
experiment?

c. Discuss any other factors that may have been confounded with the type of 
cereal.

6.15 To determine the effi cacy of six different antihypertensive drugs in lowering 
blood pressure, a large experiment was conducted at 15 clinics (Materson 
1993). After a washout phase lasting four to eight weeks (using a placebo 
without informing the subjects), a total of 1292 male veterans whose diastolic 
blood pressure was between 95 and 109  mmHg were randomly assigned in a 
double-blind manner to one of the six drugs or a placebo. Each medication 
was prepared in three dose levels (low, medium, and high). The average age of 
the subjects was 59; 48 percent were black, and 71 percent were already on 
antihypertensive treatment at screening. All medications were started at the 
lowest dose, and the dose was increased every two weeks, as required, until a 
diastolic blood pressure of less than 90  mmHg was reached without intolerance 
to the drug on two consecutive visits or until the maximal drug dose was 
reached.

The blood pressure measurement during treatment was taken as the mean of 
the blood pressures recorded during the last two visits. The following table 
shows the number of subjects assigned, the number that withdrew during the 
treatment and the results on reduction in diastolic blood pressure:
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a. Discuss why the patients were not informed about the use of a placebo during 
the initial washout period.

b. More than 10 percent of the subjects withdrew from the study during the 
treatment, and there were more withdrawals in some groups than in other 
groups. Discuss how the withdrawals may affect the experimental results.

c. Discuss how widely you can generalize the results of this experiment.
6.16 A randomized trial was conducted to test the effects of an educational program 

to reduce the use of psychoactive drugs in nursing homes. Six matched pairs 
of nursing homes were selected for this trial. The matching was based on the 
size of nursing home, type of ownership, and level of drug use. Professional 
staff and aides participated in an educational program at one randomly selected 
nursing home in each pair. At baseline, the drug use status was determined for 
all residents of the nursing homes (n = 823), and a blinded observer performed 
standardized clinical assessments of the residents who were taking psychoactive 
medications. After the fi ve-month program, drug use and patient clinical status 
were reassessed and the educational program was found to have reduced the 
use of psychoactive drugs in the nursing homes (Avorn et al. 1992).
a. How would you characterize the experimental design used in this study?
b. If the effectiveness of the educational program is related to the organizational 

and leadership types of the nursing home staff, is the effect of this con-
founder effectively controlled in this study? If not, how would you modify 
the experimental design?

c. Obviously not all the nursing homes that could be matched were included in 
this study. How might this limitation affect the study fi ndings?

d. Discuss to what extent the study fi ndings can be extrapolated to nursing 
homes in other states.

REFERENCES

Anderson, J. W., D. B. Spencer, C. C. Hamilton, et al. “Oat-Bran Cereal Lowers Serum Total and 
LDL Cholesterol in Hypercholesterolemic Men.” American Journal of Clinical Nutrition 
52:495–499, 1990.

Anderson, P., C. Bartlett, G. Cook, and M. Woodward. “Legionnaires Disease in Reading — 
Possible Association with a Cooling Tower.” Community Medicine 7:202–207, 1985.

Avorn, J., S. B. Soumerai, D. E. Everitt, et al. “A Randomized Trial of a Program to Reduce the 
Use of Psychoactive Drugs in Nursing Homes.” The New England Journal of Medicine 
327:168–173, 1992.

 Number Number Reduction in diastolic BP:

Experimental Group Assigned Withdrawn Mean Std % Success*

1. Hydrochlorothiazide  188  15 10 6 57
2. Atenlol  178  16 12 6 65
3. Captopril  188  23 10 7 54
4. Clonidine  178  13 12 6 65
5. Diltiazem  185  12 14 5 75
6. Prazosin  188  29 11 7 56
7. Placebo  187  29  5 7 33

Total 1292 137

*Proportion of patients reaching the target blood pressure (diastolic blood pressure 
<90  mmHg)
Source: Reference 22, Tables 2 and 3, Figure 1



Campbell, B. J., and F. A. Campbell. “Injury Reduction and Belt Use Associated with Occupant 
Restraint Laws.” In Graham, J. D. (ed.) Preventing Automobile Injury: New Findings from 
Evaluation Research, Chapter 2. Dover, MA: Auburn House Publishing Co., 1988.

Deming, W. E. “On Probability As a Basis For Action.” The American Statistician 29:146–152, 
1975.

Digitalis Investigation Group. “Rationale, Design, Implementation, and Baseline Characteristics 
of Patients in the DIG Trial: A Large, Simple, Long-Term Trial to Evaluate the Effect of Digi-
talis on Mortality in Heart Failure.” Controlled Clinical Trials 17:77–97, 1995.

Fienberg, S. E. “Randomization and Social Affairs: The 1970 Draft Lottery.” Science 171:255–
261, 1971.

Francis, T., Jr., R. F. Korns, R. B. Voight, et al. “An Evaluation of the 1954 Poliomyelitis Vaccine 
Trials: Summary Report.” American Journal of Public Health 45, Supplement:1–63, 1955.

Goldman, S., J. Copeland, T. Moritz, et al. “Improvement in Early Saphenous Vein Graft Patency 
After Coronary Artery Bypass Surgery with Antiplatelet Therapy: Results of a Veterans 
Administration Cooperative Study.” Circulation 77:1324–1332, 1988.

Goldman, S., J. Copeland, T. Moritz, et al. “Saphenous Vein Graft Patency 1 Year After Coronary 
Artery Bypass Surgery and Effects of Antiplatelet Therapy: Results of a Veterans Administra-
tion Cooperative Study.” Circulation 80:1190–1197, 1989.

Government Accounting Offi ce. “Nutrition Monitoring: Mismanagement of Nutrition Survey 
Has Resulted in Questionable Data.” GAO/RCED-91-117, 1991.

Hill, J., H. A. Bird, G. C. Fenn, C. E. Lee, M. Woodward, and V. Wright. “A Double Blind 
Crossover Study to Compare Lysine Acetyl Salicylate (Aspergesic) with Ibuprofen in the 
Treatment of Rheumatoid Arthritis.” Journal of Clinical Pharmacologic Therapeutics, 
15:205–211, 1990.

Hypertension Detection and Follow-up Program (HDFP) Cooperative Group. “Five-Year Find-
ings of the Hypertension Detection and Follow-up Program,” Journal of the American Medical 
Association 242:2562–2571, 1979.

Kalton, G. Compensating for Missing Survey Data. Research Report Series, Institute for Social 
Research, the University of Michigan, 1983.

Kushi, L. H., R. M. Fee, T. A. Sellers, W. Zheng, and A. R. Folsom. “Intake of Vitamins A, C, 
and E and Postmenopausal Breast Cancer. The Iowa Women’s Health Study.” American 
Journal of Epidemiology 144:165–174, 1996.

Materson, B. J., D. J. Reda, W. C. Cushman, et al. “Single-Drug Therapy for Hypertension in 
Men: A Comparison of Six Antihypertensive Agents with Placebo.” The New England Journal 
of Medicine 328:914–921, 1993.

National Center for Health Statistics: Plan and Operation of the Health and Nutrition Examination 
Survey, United States, 1971–73. Vital and Health Statistics. Series 1, No. 10a. DHEW Pub. 
No. (HSM) 73-1310, 1973.

National Center for Health Statistics. Health, United States, 1991 and Prevention Profi le. Hyatts-
ville, MD: Public Health Service. DHHS Pub. No. 92-1232, 1992.

The NHLBI Task Force on Blood Pressure Control in Children. “The Report of the Second Task 
Force on Blood Pressure Control in Children, 1987.” Pediatrics 79:1–25, 1987.

Offi ce of Science and Technology Policy (OSTP). “Federal Policy for the Protection of Human 
Subjects: Notices and Rules.” Federal Register 56:28003–28032, 1991.

Thomas, L. The Youngest Science: Notes of a Medicine Watcher. New York: Bantam Books, 
1984.

Tippett, L. H. C. “Random Sampling Numbers”. Tracks of Computers. No. 15. Ed. E. S. Pearson, 
Cambridge University Press, 1927.

Waksberg, J. “Sampling Methods for Random Digit Dialing.” Journal of the American Statistical 
Association 73:40–46, 1978.

References  167



This page intentionally left blank



Interval Estimation

Chapter Outline
7.1 Prediction, Confi dence, and Tolerance Intervals
7.2 Distribution-Free Intervals
7.3 Confi dence Intervals Based on the Normal Distribution
7.4 Confi dence Intervals for the Difference of Two Means and Proportions
7.5 Confi dence Interval and Sample Size
7.6 Confi dence Intervals for Other Measures
7.7 Prediction and Tolerance Intervals Based on the Normal Distribution

In Chapter 5 we saw that variation occurs when we use a sample instead of the entire 
population. For example, in the presentation of the binomial distribution, we saw that 
the sample estimates of the population proportion varied considerably from sample to 
sample. In this chapter, we present prediction, confi dence, and tolerance intervals, 
quantities that allow us to take the variation in sample results into account in describing 
the data. These intervals represent specifi c types of interval estimation — the provision 
of limits that are likely to contain either (1) the population parameter of interest or (2) 
future observations of the variable. Interval estimation thus provides more information 
about the population parameter than the point estimation approach that we met in 
Chapter 3. In that chapter, we provided a single value as the estimate of the population 
parameter without giving any information about the sampling variability of the estima-
tor. For example, knowledge of the value of the sample mean, a point estimate of the 
population mean, does not tell us anything about the variability of the sample mean. 
Interval estimation addresses this variability.

7.1   Prediction, Confi dence, and 
Tolerance Intervals

The material in this and the following section is based on material presented by 
Vardeman (1992) and Walsh (1962). To understand the difference between these three 
intervals (prediction, confi dence, and tolerance), consider the following. Dairies add 
vitamin D to milk for the purpose of fortifi cation. The recommended amount of vitamin 
D to be added to a quart of milk is 400  IUs (10  mg). If a dairy adds too much vitamin 
D, perhaps over 5000  IUs, the possibility exists that a consumer will develop hypervi-
taminosis D — that is, vitamin D toxicity.

A prediction interval focuses on a single observation of the variable — for example, 
the amount of vitamin D in the next bottle of milk. A confi dence interval focuses on a 
population parameter — for example, the mean or median amount of vitamin D per 
bottle in a population of bottles of milk. Thus, the prediction interval is of more interest 
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to the consumer of the next bottle of milk, whereas the confi dence interval is of more 
interest to the dairy. A tolerance interval provides limits such that there is a high level 
of confi dence that a large proportion of values of the variable will fall within them. For 
example, besides being interested in the mean, the dairy owner or a regulatory agency 
also wants to be confi dent that a large proportion of the bottles’ vitamin D contents are 
within a specifi ed tolerance of the value of 400  IUs. We begin our treatment of these 
intervals with distribution-free intervals.

7.2   Distribution-Free Intervals
When the method for forming the different intervals is independent of how the data are 
distributed, the resultant intervals are said to be distribution free. Distribution-free 
intervals are based on the rank order of the sample values, with the following notations 
for rank order. The smallest of the x values is indicated by x(1), the second smallest by 
x(2), and so on, to the largest value that is denoted by x(n). The x(i) are called order sta-
tistics, since the subscripts show the order of the values.

We shall use hypothetical data showing the amount of vitamin D in 30 bottles 
of milk selected at random from one dairy. The values are shown in rank order in 
Table 7.1.

Based on this sample, x(1) equals 289  IUs, x(2) is 326  IUs and so on to x(30), which 
equals 485  IUs.

Table 7.1 Values of vitamin D (IUs) in a hypothetical sample of 
30 bottles.

289 355 376 392 406 433
326 363 379 395 410 434
339 364 384 396 413 456
346 370 386 398 422 471
353 373 389 403 427 485

7.2.1   Prediction Interval

As a consumer of milk, our major concern about vitamin D is that the milk does not 
contain an amount of vitamin D that is toxic to us. We are not too concerned about there 
being too little vitamin D in the bottle. Based on the hypothetical sample of vitamin D 
contents in 30 bottles of milk, we can form a one-sided prediction interval — our 
concern focuses on the upper limit — for the amount of vitamin D in the bottle of milk 
that we are going to purchase.

A natural one-sided prediction interval in this case is from 0 to the maximum 
observed value of vitamin D (485  IUs) in the sample. The level of confi dence associated 
with this interval, from 0 to 485  IUs, is 96.8 percent (= 30/31). This value can be found 
from the consideration of the order statistics and the real number line. For example, we 
have the line

 |__1__|__2__|__3__|_________________|__30__|__31__
 0 x(1) x(2) x(3) .  .  .  .  . x(30)
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and there are 31 intervals along this line. The vertical marks (|) indicate the location of 
the order statistics along the line, and the numbers above the line between the |’s indicate 
the interval number. There are 31 intervals, and the next observation can fall into any 
one of the intervals. Of these 31 intervals, 30 have values less than the maximum value. 
Hence, we are 96.8 percent confi dent that the vitamin D content in the next bottle will 
be between zero and the observed maximum value.

Note that we used the word confi dence instead of probability here. We use confi dence 
because we are using the sample data as the basis of estimating the probability distribu-
tion of the vitamin D content. If we used the probability distribution of the vitamin D 
content instead of using its sample estimate, the empirical distribution function, we 
would use the word probability. In repeated sampling, we expect that 96.8 percent of 
the prediction intervals, ranging from zero to the observed maximum in each sample 
of size 30, would contain the next observed vitamin D content.

The use of the second largest value, x(29), as the upper limit of the interval results in 
a prediction confi dence level of 93.5 percent (= 29/31). An attraction of this interval is 
that it provides a slightly shorter interval with a maximum of 471  IUs, but we are slightly 
less confi dent about it. Based on either of these intervals, the consumer should not be 
worried about purchasing a bottle that has a value of vitamin D that would cause vitamin 
D poisoning.

For a two-sided interval, a natural interval would be from the minimum observed 
value, x(1), to the maximum observed value, x(30). In this case, the two-sided interval is 
from 289 to 485  IUs. The confi dence level associated with this prediction interval is 
93.5 percent (= 29/31). Of the 31 intervals just shown, there is one below the minimum 
value and one above the maximum value. Hence, there are 29 chances out of 31 that the 
next observed value will fall between the minimum and maximum values.

With a sample size of 30, it is not possible to have a distribution-free, two-sided, 95 
percent prediction interval. The smallest sample size that attains the 95 percent level is 
39. When n is 39, there are 40 intervals, and 2/40 equals 0.05. This calculation shows 
that it is easy to determine how large a sample is required to satisfy prediction interval 
requirements.

7.2.2   Confi dence Interval

The dairy wants to know, on average, how much vitamin D is being added to the milk. 
If the interval estimate for the central tendency differs much from 400  IUs, the dairy 
may have to change its process for adding vitamin D. One way of obtaining the interval 
estimate is to use a distribution-free confi dence interval.

Distribution-free confi dence intervals are used to provide information about popula-
tion parameters — for example, the median and other percentiles. There are two 
approaches to fi nding confi dence intervals for percentiles: (1) the use of order statistics 
and (2) the use of the normal approximation to the binomial distribution. The fi rst 
approach is generally used for smaller samples, whereas the second approach is used 
for larger samples.

Use of Order Statistics and the Binomial Distribution: The lower and upper limits 
of the (1 − a)100 percent confi dence interval for the pth percentile of X are the order 
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statistics x(j) and x(k), where the values of j and k, j less than k, are to be determined. 
The limits of the confi dence interval for the pth percentile of X are the values x(j) and 
x(k) that satisfy the following inequality:

 Pr{x( j) < pth percentile < x(k)} ≥ 1 − a

and this is equivalently

 Pr{x( j) ≥ pth percentile} + Pr{x(k) ≤ pth percentile} ≤ a

If we require that both terms in the sum be less than or equal to a /2, from the fi rst 
term, we have

 Pr{at most j − 1 observations < pth percentile} ≤ a /2.

This is a situation with two outcomes: an observation is less than the pth percentile, 
or it is greater than or equal to the pth percentile. The probability that an observation 
is less than the pth percentile is p. The variable of interest is the number of observations, 
out of the n, that are less than the pth percentile. Thus, this variable follows a binomial 
distribution with parameters n and p. Knowing the values of n and p enables us to fi nd 
the value of j because j must satisfy the following inequality:
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The inequality used to fi nd the value of k is
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Putting these two inequalities together means that the binomial sum from j to k − 1 
must be greater than or equal to 1 − a. Here we have dropped the requirement that the 
sums of the probabilities from 0 to j − 1 and from k to n both must be less than a /2. 
The values of j and k are found from the binomial table, Table B2, or by using a computer 
package such as SAS or Stata.

For example, suppose we want to fi nd a 95 percent confi dence interval for the median, 
the 50th percentile, for the vitamin D values from the dairy used in Table 7.1. The sample 
estimate of the median is the average of the 15th and 16th smallest values — that is, 
390.5  IUs (= [389 + 392]/2).

To fi nd the 95 percent confi dence interval for the median in the population of bottles 
of milk from the selected dairy, we use the binomial distribution. For this problem we 
need a binomial distribution with n = 30 and p = 0.5, shown in Table 7.2. Since Table 
B2 does not have values for n larger than 20, we used SAS to obtain the distribution. 
The order and observations from Table 7.1 are also shown in the last two columns in 
Table 7.2. There may be more than one pair of values of j and k that satisfy the require-
ment that the sum of the binomial probabilities from j to k − 1 is greater than or equal 
to 1 − a. To choose from among these pairs, we shall select the pair whose difference 
(k − j) is the smallest. In the special case of the median, we shall require that k equals 
n − j + 1; this requirement gives the same number of observations in both tails of the 
distribution.
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The sum of the probabilities from j to k − 1 must be greater than or equal to 0.95. 
Examination of the cumulative probabilities tells us that j is 10 and k is 21. The sum of 
the probabilities between 10 and 20 is 0.9572 (= 0.9786 − 0.0214). If j were 11 and k 
were 20, the sum of the probabilities between 11 and 19 is 0.9012, less than the required 
value of 0.95. Thus, the approximate 95 percent (really closer to 96%) confi dence inter-
val for the median is from 373  IUs (= x(10)) to 406  IUs (= x(21)). The use of distribution-
free intervals does not necessarily provide intervals that are symmetric about the sample 
estimator. For example, the sample median value, 390.5  IUs, is not in the exact middle 
of the confi dence interval.

Note that the confi dence interval for the median is much narrower than the approxi-
mate 95 percent prediction interval, from 289 to 485  IUs, for a single observation. As 
we saw in Chapter 3, there is much less variability associated with a mean or median 
than with a single observation, and this is additional confi rmation of that.

As we can observe from the preceding, the use of distribution-free intervals does not 
provide exactly 95 percent levels. The level of confi dence associated with these intervals 
is a function of the sample size as well as which order statistics are used in the creation 
of the interval.

It is also possible to create one-sided confi dence intervals for parameters. For example, 
if the goal were to create an upper one-sided confi dence interval for the median, we 
would fi nd the value of k such that

Table 7.2 Cumulative binomial distribution with n = 30 and 
p = 0.5 and sorted observations in Table 7.1.

x Pr (X £ x) No. Observation

 0 0.0000 1 289
 1 0.0000 2 326
 2 0.0000 3 339
 3 0.0000 4 346
 4 0.0000 5 353
 5 0.0002 6 355
 6 0.0007 7 363
 7 0.0026 8 364
 8 0.0081 9 370
 9 0.0214 10 373
10 0.0494 11 376
11 0.1002 12 379
12 0.1808 13 384
13 0.2923 14 386
14 0.4278 15 389
15 0.5722 16 392
16 0.7077 17 395
17 0.8192 18 396
18 0.8998 19 398
19 0.9506 20 403
20 0.9786 21 406
21 0.9919 22 410
22 0.9974 23 413
23 0.9993 24 422
24 0.9998 25 427
25 1.0000 26 433
26 1.0000 27 434
27 1.0000 28 456
28 1.0000 29 471
29 1.0000 30 485
30 1.0000
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for a p having the value of 0.50. The upper one-sided confi dence interval for the median 
is from 0 to x(k) where k’s value is found from the above inequality.

Use of the Normal Approximation to the Binomial: For larger sample sizes, the 
normal approximation to the binomial distribution can be used to fi nd the values of j 
and k. The sample size must be large enough to satisfy the requirements for the use of 
the normal approximation. Since p is 0.50, the sample size of 30 bottles from the dairy 
is large enough.

As before, we want to fi nd the value of j such that the probability of the binomial 
variable, Y, being less than or equal to j − 1 is less than or equal to a /2 — that is,

 Pr {Y ≤ j − 1} ≤ a /2.

Use of the continuity correction converts this to

 Pr {Y ≤ j − 0.5} ≤ a /2.

To convert Y to the standard normal variable, we must subtract np, the estimate of the 
mean, and divide by np p1−( ) , the estimate of the standard error. This yields
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This can be rewritten as

 
Pr

.
.Z

j np

np p
≤ − −

−( ){ } ≤0 5

1 2

α

If we change this inequality to equality — that is, the probability is equal to a /2 — we 
can fi nd a unique value for j. The value of the term on the right side of the inequality 
inside the brackets is simply za /2, and hence we can fi nd the value of j from the 
equation

 j np z np p− − = −( )0 5 12. α

or

 j z np p np= −( ) + +α 2 1 0 5. .

In the preceding example, p was 0.50, n was 30, and a was 0.05. Since the value of 
z0.025 is −1.96, we have

 j = − ( )( ) + + ( )1 96 30 0 5 0 5 0 5 30 0 5. . . . .

or j is 10.13. To ensure that the level of the confi dence interval is at least (1 − a)  *  100 
percent, we must round down the value of j to the next smaller integer, 10, and we round 
up the value of k, found following, to the next larger integer.

The value of k is found from the equation

 k z np p np= −( ) + +−1 2 1 0 5α .



Distribution-Free Intervals  175

which yields a k equal to 20.87, which is rounded to 21. Thus, the 95 percent confi dence 
interval is from 373  IUs (= x(10)) to 406  IUs (= x(21)). In this case, the binomial and the 
normal approximation approaches resulted in the same confi dence limits.

7.2.3   Tolerance Interval

As we said before, tolerance intervals are of most interest to the dairy or to a regulatory 
agency. The tolerance limits are values such that we have a high level of confi dence that 
a large proportion of the bottles have vitamin D contents located between the lower and 
upper tolerance limits. These upper and lower limits of the tolerance interval can be 
used in determining whether or not the process for adding vitamin D is under control. 
If the limits are too wide, the dairy may have to modify its process for adding vitamin 
D to the milk.

The dairy does not want to add too much vitamin D to the milk because of the pos-
sible problems for the consumer and the extra cost associated with using more vitamin 
D than required. At the same time, the dairy must add enough vitamin D to be in com-
pliance with truth in advertising legislation.

As with the prediction interval, it is reasonable to use the smallest and largest 
observed values for the lower and upper limits of the tolerance interval, although other 
values could be used. We also have to specify the proportion of the population, p, that 
we want to include within the tolerance interval. Given the tolerance interval limits and 
the proportion of values to be included within it, we can calculate the confi dence level, 
g, associated with the interval.

In symbols, the tolerance interval limits are the order statistics x(j) and x(k) such 
that

 Pr [Pr{X ≤ x(k)} − Pr{X ≤ x(j)} ≥ p] = g.

The quantity, Pr{X ≤ x(k)} − Pr{X ≤ x(j)}, is the proportion of the population values con-
tained in the tolerance interval for this sample. Let us call the above quantity Wkj. In 
symbols we then have Pr{Wkj ≥ p} = g. The variable Wkj is either less than p or greater 
than or equal to p. This is a binomial situation, and, therefore, we can use the same 
approach as in the confi dence interval section to fi nd the value of g. The value of g can 
be expressed in terms of the binomial summation as

 
γ =

−( )
−( )

=

− −
−∑ n

i n i
p p

i

k j
i n i!

! !
.

0

1

1

If we use the minimum, x(1), and the maximum, x(n), for the limits, k − j − 1 becomes 
n − 1 − 1, which equals n − 2. It is therefore easy to fi nd the value of this summation 
for i ranging from 0 to n − 2 because that sum is equal to 1 minus the binomial sum 
from n − 1 to n. In symbols, the value of g is

 1 − [pn] − [npn−1(1 − p)].

Suppose we want our tolerance interval to contain 95 percent of the observations. 
Let’s calculate the confi dence level associated with the tolerance interval of 289 to 
485  IUs. In this case, n is 30 and p is 0.95. The value of g is found by taking 1 − 0.9530 
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− 30(0.95)29(1 − 0.95), which equals 0.4465. There is not a high level of confi dence 
associated with this tolerance interval. This confi dence level is contrasted with the 0.935 
level associated with the prediction interval. It is not surprising that the confi dence level 
of the prediction interval is much higher than that of the tolerance interval because the 
prediction interval is based on the location of a single future value whereas the tolerance 
interval is based on the location of a large proportion of the population values.

The interval from 289 to 485  IUs is the widest interval we can have using the sample 
data since these are the minimum and maximum observed values. We can increase our 
confi dence by either (1) decreasing p, the proportion of the population to be included in 
the tolerance interval or (2) by taking a larger sample.

Let us reduce p to 90 percent. The confi dence level for this interval is increased to 
0.8162, a much more reasonable value. Instead of reducing p, let us increase the sample 
size from 30 to 60. The confi dence level associated with the increased sample size is 
0.8084, also a much more reasonable value. Table 7.3 shows the sample size required to 
have 90, 95, and 99 percent confi dence associated with tolerance intervals that have 80, 
90, 95, and 99 percent coverage of the distribution, based on the use of x(1) and x(n).

Table 7.3 Sample size required for the tolerance 
interval to have the indicated confi dence level for the 
specifi ed coverage proportions based on the use of x(1) 
and x(n).

Coverage Confi dence Level

Proportion 90% 95% 99%

0.80  18  22  31
0.90  38  46  64
0.95  77  93 130
0.99 388 473 662

From these calculations and the general formula for calculating, we can see the rela-
tionships between p, the values of k and j, n and g. We can investigate the values of 
these quantities before we have performed the study and can modify the proposed study 
design if we are not satisfi ed with the values of p and g.

A one-sided tolerance interval is sometimes of interest. Suppose that there was inter-
est in the upper one-sided tolerance interval. In this case, the tolerance interval ranges 
from 0 to x(n) and the confi dence associated with this interval is found by taking 1 − pn 
— that is, one minus the binomial term calculated for i equal to n.

7.3   Confi dence Intervals Based on the 
Normal Distribution

If the data are from a known probability distribution, knowledge of this distribution 
allows more informative (smaller) intervals to be constructed for the parameters of 
interest or for future values. We begin this presentation by showing how to create con-
fi dence intervals for a variety of population parameters, assuming that the data come 
from a normal distribution. The central limit theorem and the sampling distribution of 
statistics (e.g., sample mean) presented in Chapter 5 provide the rationale for interval 
estimation based on the normal distribution. Following the material on confi dence 



intervals, we show how to use the normal distribution in the creation of prediction and 
tolerance intervals. We begin the confi dence interval presentation with the population 
mean and follow it with the confi dence interval for the population proportion that can 
also be viewed as a mean.

7.3.1   Confi dence Interval for the Mean

In the preceding material, we saw how to construct a confi dence interval for the popula-
tion median. That confi dence interval gave information to the dairy about the amount 
of vitamin D being added to the milk. As an alternative to the median, a confi dence 
interval for the mean could have been used. To fi nd a confi dence interval for the mean, 
assuming that the data follow a specifi c distribution, we must know the sampling dis-
tribution of its estimator. We must also specify how confi dent we wish to be that the 
interval contains the population parameter. The sample mean is the estimator of the 
population mean, and the sampling distribution of the sample mean is easily found.

Since we are assuming the data follow a normal distribution, the sample mean — the 
average of the sample values — also follows a normal distribution. However, this 
assumption is not crucial. Even if the data are not normally distributed, the central limit 
theorem states that the sample mean, under appropriate conditions, will approximately 
follow a normal distribution.

To specify the normal distribution completely, we also have to provide the mean and 
variance of the sample mean. First we develop the confi dence interval for the mean 
assuming population variance is known and extend it to the situation where population 
variance is unknown and it is estimated from the sample.

Known Variance: In Chapter 5, we saw that the mean of the sample mean was m , 
the population mean, and its variance was s2/n. The standard deviation of the sample 
mean is thus s / n , and it is called the standard error of the sample mean (x–). The use 
of the word error is confusing, since no mistake has been made. However, it is the tra-
ditional term used in this context. The term standard error is used instead of standard 
deviation when we are discussing the variation in a sample statistic. The term standard 
deviation is usually reserved for discussion of the variation in the sample data them-
selves. Thus, the standard deviation measures the unit-to-unit variation, while the stan-
dard error measures the sample-to-sample variation.

We now address the issue of how confi dent we wish to be that the interval contains 
the population mean (m). From the material on the normal distribution in Chapter 5, we 
know that

 Pr {−1.96 < Z < 1.96} = 0.95

where Z is the standard normal variable. In terms of the sample mean, this is
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But we want an interval for m , not for Z. Therefore, we must perform some algebraic 
manipulations to convert this to an interval for m. First we multiply all three terms inside 
the braces by s / n . This yields
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We next subtract x– from all the expressions inside the braces, and this gives
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This interval is about −m ; to convert it to an interval about m , we must multiply each 
term in the brackets by −1. Before doing this, we must be aware of the effect of multi-
plying an inequality by a minus number. For example, we know that 3 is less than 4. 
However, −3 is greater than −4, so the result of multiplying both sides of an inequality 
by −1 changes the direction of the inequality. Therefore, we have
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We reorder the terms to have the smallest of the three quantities to the left — that 
is,
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The (1 − a)  *  100 percent confi dence interval limits for the population mean can be 
expressed as
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The result of these manipulations is an interval for m in terms of s, n, 1.96 (or 
some other z value), and x–. The sample mean, x–, is the only one of these quantities 
that varies from sample to sample. However, once we draw a sample, the interval 
is fi xed as the sample mean’s value, x–, is known. Since the interval will either con-
tain or not contain m , we no longer talk about the probability of the interval contain-
ing m.

Although we do not talk about the probability of an interval containing m , we 
do know that in repeated sampling, intervals of the preceding form will contain 
the parameter, m , 95 percent of the time. Thus, instead of discussing the probability of 
an interval containing m , we say that we are 95 percent confi dent that the interval 
from x n− ( )[ ]1 96. σ  to x n+ ( )[ ]1 96. σ  will contain m. Intervals of this type are 
therefore called confi dence intervals. This reason for the use of the word confi dence is 
the same as that discussed in the preceding distribution-free material. The limits of the 
confi dence interval usually have the form of the sample estimate plus or minus some 
distribution percentile — in this case, the normal distribution — times the standard 
error of the sample estimate.



Table 7.4 illustrates the concept of confi dence intervals. It shows the results of 
drawing 50 samples of size 60 from a normal distribution with a mean of 94 and a 
standard deviation of 11. These values are close to the mean and standard deviation of 
the systolic blood pressure variable for 5-year-old boys in the United States as reported 
by the NHLBI Task Force on Blood Pressure Control in Children (1987).

In this demonstration, 4 percent (2 out of 50 marked in the table) of the intervals did 
not contain the population mean, and 96 percent did. If we draw many more samples, 
the proportion of the intervals containing the mean will be 95 percent. This is the basis 
for the statement that we are 95 percent confi dent that the confi dence interval, based on 
our single sample, will contain the population mean.

If we use a different value for the standard normal variable, the level of confi dence 
changes accordingly. For example, if we had started with a value of 1.645, z0.95, instead 

Example 7.1

The 95 percent confi dence interval for the mean systolic blood pressure for 200 
patients can be found based on the dig200 data set introduced in Chapter 3. We 
assume that the standard deviation for this patient population is 20  mmHg. As the 
sample mean, x–, based on a sample size of 199 (one missing value) observations, 
was found to be 125.8  mmHg, the 95 percent confi dence interval for the population 
mean ranges from 125 8 1 96 20 199. .− ( )[ ]  to 125 8 1 96 20 199. .− ( )[ ]  — that is, 
from 123.0 to 128.6  mmHg.

Table 7.4 Simulation of 95% confi dence intervals for 50 samples of n = 60 from the normal 
distribution with m = 94 and s = 11 (standard error = 1.42).

Sample Mean Std 95% CI Sample Mean Std 95% CI

 1 94.75 10.25 (91.96, 97.54) 26 94.61 11.49 (91.82, 97.39)
 2 94.85 10.86 (92.06, 97.63) 27 92.79  9.36 (90.00, 95.58)
 3 94.71 10.09 (91.92, 97.50) 28 96.00 12.19 (93.22, 98.79)
 4 94.03 12.27 (91.24, 96.82) 29 95.99 11.36 (93.20, 98.78)
 5 93.77 10.05 (90.98, 96.56) 30 93.98 11.74 (91.19, 96.76)
 6 92.54  9.32 (89.76, 95.33) 31 95.36 13.08 (92.57, 98.15)
 7 93.40 12.07 (90.62, 96.19) 32 91.10  8.69 (88.31, 93.89)*
 8 93.97 11.02 (91.18, 96.75) 33 93.85 12.94 (91.06, 96.63)
 9 96.33  9.26 (93.54, 99.12) 34 96.01  9.63 (93.22, 98.79)
10 93.56 12.01 (90.78, 96.35) 35 95.20  8.94 (92.41, 97.99)
11 94.94 10.81 (92.15, 97.73) 36 95.64  9.41 (92.85, 98.43)
12 94.66 12.08 (91.88, 97.45) 37 94.74 10.31 (91.95, 97.53)
13 94.21 11.02 (91.42, 97.00) 38 93.52 10.30 (90.73, 96.31)
14 94.55 9.98 (91.76, 97.34) 39 92.92 10.27 (90.13, 95.71)
15 93.57 11.50 (90.79, 96.36) 40 95.08 10.07 (92.30, 97.87)
16 95.99 12.01 (93.20, 98.78) 41 93.88 10.53 (91.09, 96.66)
17 93.86 12.53 (91.08, 96.65) 42 95.38  9.98 (92.59, 98.17)
18 92.02 13.58 (89.23, 94.81) 43 94.38 11.65 (91.59, 97.17)
19 95.16 12.03 (92.38, 97.95) 44 91.55 10.63 (88.76, 94.33)
20 94.99 12.00 (92.20, 97.78) 45 95.41 12.79 (92.62, 98.20)
21 94.65 11.18 (91.86, 97.43) 46 92.40 10.57 (89.62, 95.19)
22 92.86 12.52 (90.07, 95.64) 47 96.00 11.45 (93.21, 98.78)
23 93.99 11.76 (91.20, 96.78) 48 95.39 10.56 (92.60, 98.18)
24 91.44 10.75 (88.65, 94.22) 49 97.69 10.89 (94.90, 100.47)*
25 96.07 11.89 (93.28, 98.86) 50 95.01 10.61 (92.22, 97.79)

*Does not contain 94

Confi dence Intervals Based on the Normal Distribution  179
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of 1.96, z0.975, the confi dence level would be 90 percent instead of 95 percent. The z0.95 
value is used with the 90 percent level because we want 5 percent of the values to be 
in each tail. The lower and upper limits for the 90 percent confi dence interval for the 
population mean for the data in the fi rst sample of 60 observations are 92.41 [= 94.75 − 
1.645(1.42)] and 97.09 [= 94.75 + 1.645(1.42)], respectively. This interval is narrower 
than the corresponding 95 percent confi dence interval of 91.96 to 97.54. This makes 
sense, since, if we wish to be more confi dent that the interval contains the population 
mean, the interval will have to be wider. The 99 percent confi dence interval uses z0.995, 
which is 2.576, and the corresponding interval is 91.09 [= 94.75 − 2.576(1.42)] to 98.41 
[= 94.75 + 2.576(1.42)].

The fi fty samples shown in Table 7.4 had sample means, based on 60 observations, 
ranging from a low of 91.1 to a high of 97.7. This is the amount of variation in sample 
means expected if the data came from the same normal population with a mean of 94 
and a standard deviation of 11. The Second National Task Force on Blood Pressure 
Control in Children (1987) had study means ranging from 85.6 (based on 181 values) 
to 103.5  mmHg (based on 61 values), far outside the range just shown. These extreme 
values suggest that these data do not come from the same population, and this then calls 
into question the Task Force’s combination of the data from these diverse studies.

The size of the confi dence interval is also affected by the sample size that appears 
in the s / n  term. Since n is in the denominator, increasing n decreases the size of the 
confi dence interval. For example, if we doubled the sample size from 60 to 120 in the 
preceding example, the standard error of the mean changes from 1 42 11 60. =( )  to 
1 004 11 120. =( ). Doubling the sample size reduces the confi dence interval to about 
71 percent ( = 1 2 ) of its former width. Thus, we know more about the location of the 
population mean, since the confi dence interval is shorter as the sample size increases.

The size of the confi dence interval is also a function of the value of s, but to change 
s means that we are considering a different population. However, if we are willing to 
consider homogeneous subgroups of the population, the value of the standard deviation 
for a subgroup should be less than that for the entire population. For example, instead 
of considering the blood pressure of 5-year-old boys, we consider the blood pressure of 
5-year-old boys grouped according to height intervals. The standard deviation of systolic 
blood pressure in the different height subgroups should be much less than the overall 
standard deviation.

Another factor affecting the size of the confi dence interval is whether it is a one-sided 
or a two-sided interval. If we are only concerned about higher blood pressure values, 
we could use an upper one-sided confi dence interval. The lower limit would be zero, or 
−∞ for a variable that had positive and negative values, and the upper limit is
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This is similar to the two-sided upper limit except for the use of z1−a instead of z1−a /2.

Unknown Variance: When the population variance, s2, is unknown, it is reasonable 
to substitute its sample estimator, s2, in the confi dence interval calculation. There is a 
problem in doing this, though. Although x n−( ) ( )μ σ  follows the standard normal 
distribution, x s n−( ) ( )μ  does not. In the fi rst expression, there is only one random 



variable, x–, whereas the second expression involves the ratio of two random variables, 
x– and s. We need to know the probability distribution for this ratio of random 
variables.

Fortunately, Gosset, who we encountered in Chapter 5, already discovered the dis-
tribution of x s n−( ) ( )μ . The distribution is called Student’s t — crediting Student, 
the pseudonym used by Gosset — or, more simply, the t distribution. For large values 
of n, sample values of s are very close to s, and, hence, the t distribution looks very 
much like the standard normal. However, for small values of n, the sample values of s 
vary considerably, and the t and standard normal distributions have different appear-
ances. Thus, the t distribution has one parameter, the number of independent observa-
tions used in the calculation of s. In Chapter 3, we saw that this value was n − 1, and 
we called this value the degrees of freedom. Hence, the parameter of the t distribution 
is the degrees of freedom associated with the calculation of the standard error. The 
degrees of freedom are shown as a subscript — that is, as tdf. For example, a t with 5 
degrees of freedom is written as t5.

Figure 7.1 shows the distributions of t1 and t5 compared with the standard normal 
distribution over the range of −3.8 to 3.8. As we can see from these plots, the t distribu-
tion with one degree of freedom, the lowest curve, is considerably fl atter — that is, there 
is more variability than for the standard normal distribution, the top curve in the fi gure. 
This is to be expected, since the sample mean divided by the sample standard deviation 
is more variable than the sample mean alone. As the degrees of freedom increase, the 
t distributions become closer and closer to the standard normal in appearance. The ten-
dency for the t to approach the standard normal distribution as the number of degrees 
of freedom increases can also be seen in Table 7.5, which shows selected percentiles for 
several t distributions and the standard normal distribution. A more complete t table is 
found in Appendix Table B5.

Now that we know the distribution of x s n−( ) ( )μ , we can form confi dence 
intervals for the mean even when the population variance is unknown. The form for 
the confi dence interval is similar to that preceding for the mean with known variance 
except that s replaces s and the t distribution is used instead of the standard normal 

Figure 7.1 
Distributions of t1 and t5 
compared with z 
distribution.
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distribution. Therefore, the lower and upper limits for the (1 − a)  *  100 percent confi -
dence interval for the mean when the variance is unknown are x t s nn− ( ){ }− −1 1 2, α  
and x t s nn+ ( ){ }− −1 1 2, α , respectively.

Let us calculate the 90 percent confi dence interval for the population mean of the 
systolic blood pressure for 5-year-old boys based on the fi rst sample data in Table 7.4 
(row 1). A 90 percent [= (1 − a)  *  100 percent] confi dence interval means that a is 0.10. 
Based on a sample of 60 observations, the sample mean was 94.75 and the sample stan-
dard deviation was 10.25  mmHg. Thus, we need the 95th (= 1 − a /2) percentile of a t 
distribution with 59 degrees of freedom. However, neither Table 7.5 nor Table B5 shows 
the percentiles for a t distribution with 59 degrees of freedom. Based on the small 
changes in the t distribution for larger degrees of freedom, there should be little error 
if we use the 95th percentile for a t60 distribution. Therefore, the lower and upper limits 
are approximately
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or 92.54 and 96.96  mmHg, respectively.

If we use a computer package (see Program Note 7.1 on the website) to fi nd the 95th 
percentile value for a t59 distribution, we fi nd its value is 1.6711. Hence, there is little 
error introduced in this example by using the percentiles from a t60 instead of a t59 
distribution.

7.3.2   Confi dence Interval for a Proportion

We are frequently exposed to the confi dence interval for a proportion. Most surveys 
about opinions or voting intentions today report the margin of error. This quantity is 
simply one half the width of the 95 percent confi dence interval for the proportion. 
Finding the confi dence interval for a proportion, p, can be based on either the binomial 
or normal distribution. The binomial distribution is generally used for smaller samples 
and it provides an exact interval whereas the normal distribution is used with larger 
samples and provides an approximate interval. Let us examine the exact interval fi rst.

Use of the Binomial Distribution: Suppose we wish to fi nd a confi dence interval 
for the proportion of restaurants that are in violation of local health ordinances. A simple 
random sample of 20 restaurants is selected, and, of those, four are found to have viola-
tions. The sample proportion, p, which is equal to 0.20 (= 4/20), is the point estimate 

Table 7.5 Selected percentiles for several t distributions and the standard 
normal distribution.

 Percentiles

Distribution 0.80 0.90 0.95 0.99

t1 1.376 3.078 6.314 31.821
t5 0.920 1.476 2.015 3.365
t10 0.879 1.372 1.813 2.764
t30 0.854 1.310 1.697 2.457
t60 0.848 1.296 1.671 2.390
t120 0.845 1.289 1.658 2.358
Standard normal 0.842 1.282 1.645 2.326



of p, the population proportion. How can we use this sample information to create the 
(1 − a)  *  100 percent confi dence interval for the population proportion?

This is a binomial situation, since there are only two outcomes for a restaurant — that 
is, a restaurant either does or does not have a violation. The binomial variable is the 
number of restaurants with a violation and we have observed its value to be 4 in this 
sample.

The limits of the confi dence interval for the proportion are those values that make 
this outcome appear to be unusual. Another way of stating this is that the lower limit 
is the proportion for which the probability of 4 or more restaurants is equal to a /2. 
Correspondingly, the upper limit is the proportion for which the probability of 4 or fewer 
restaurants is equal to a /2. The two charts in Appendix Table B6 can be used to fi nd 
the 95 and 99 percent confi dence intervals.

Example 7.2

Suppose that we want the 95 percent confi dence interval for p = 0.20 and n = 20. We 
use the fi rst chart (Confi dence Level 95 Percent) of Table B6, and, since the sample 
proportion is less than 0.50, we read across the bottom until we fi nd the sample pro-
portion value of 0.20. We then move up along the line corresponding to 0.20 until it 
intersects the fi rst curve for a sample size of 20. Since p is less than 0.50, we read 
the value of the lower limit from the left vertical axis; it is slightly less than 0.06. 
To fi nd the upper limit, we continue up the vertical line corresponding to 0.20 until 
we reach the second curve for a sample size of 20. We read the upper limit from the 
left vertical axis, and its value is slightly less than 0.44. The approximate 95 percent 
confi dence limits are 0.06 and 0.44. Note that this interval is not symmetric about 
the point estimation. If p is greater than 0.5, we locate p across the top and read the 
limits from the right vertical axis.

Another method of fi nding the upper and lower limits of a confi dence interval based 
on a binomial distribution is to fi nd these values by trial and error.

Example 7.3

Suppose that we wish to fi nd the 90 percent confi dence interval for p = 0.20 (x = 4) 
and n = 20. This means that a is 0.10 and a /2 is 0.05. We wish to fi nd the probability 
of being less than or equal to 4 and being greater than or equal to 4 for different 
binomial proportions. For the upper limit, we can try some value above 0.20, say, 
0.35 and calculate Pr (X ≤ x). If Pr (X ≤ x) is larger than a /2, then we will try a larger 
value of p — say, 0.4. We can try this process until Pr (X ≤ x) is close enough to 
a /2. For the lower limit, we try some value of p smaller than 0.20, say 0.1 and cal-
culate Pr (X ≥ x), which is 1 − Pr (X ≤ x − 1). If 1 − Pr (X ≤ x − 1) is smaller than 
a /2, then we try a smaller value of p — say, 0.07. Continue this process until 1 − Pr 
(X ≤ x − 1) is close enough to a /2. Computers can perform this iterative process 
quickly. An SAS program produced the 90 percent confi dence interval (0.0714, 
0.4010). An option of getting a binomial confi dence interval is available in most 
programs (see Program Note 7.2 on the website).
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Use of the Normal Approximation to the Binomial: Let us now consider the use of 
the normal approximation to the binomial distribution. The sample proportion, p, is the 
binomial variable, x, divided by a constant, the sample size. Since the normal distribu-
tion was shown in Chapter 5 to be a good approximation for the distribution of x when 
the sample size was large enough, it also serves as a good approximation to the distribu-
tion of p. The variance of p is expressed in terms of the population proportion, p, and 
it is p (1 − p)/n. Because p is unknown, we estimate the variance by substituting p for 
p in the formula.

The sample proportion can also be viewed as a mean as was discussed in Chapter 5. 
Therefore, the confi dence interval for a proportion has the same form as that of the 
mean, and the limits of the interval are
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The 1/(2n) is the continuity correction term required because a continuous distribution 
is used to approximate a discrete distribution. For large values of n, the term has little 
effect and many authors drop it from the presentation of the confi dence interval.

Example 7.4

The local health department is concerned about the protection of children against 
diphtheria, pertussis, and tetanus (DPT). To determine if there is a problem in the 
level of DPT immunization, the health department decides to estimate the proportion 
immunized by drawing a simple random sample of 150 children who are 5 years old. 
If the proportion of children in the community who are immunized against DPT is 
clearly less than 75 percent, the health department will mount a campaign to increase 
the immunization level. If the proportion is clearly greater than 75 percent, the health 
department will shift some resources from immunization to prenatal care. The 
department decides to use a 99 percent confi dence interval for the proportion to help 
it reach its decision.

Based on the sample, 86 families claimed that their child was immunized, and 54 
said their child was not immunized. There were 10 children for whom the immuniza-
tion status could not be determined. As was mentioned in Chapter 6, there are several 
approaches to dealing with the unknowns. Since there are only 10 unknowns, we 
shall ignore them in the calculations. Thus, the value of p is 0.614 (= 86/140), much 
lower than the target value of 0.75. If all 10 of the children with unknown status had 
been immunized, then p would have been 0.640, not much different from the value 
of 0.614, and still much less than the target value of 0.75.

Applying the preceding formula, the 99 percent confi dence interval ranges from 
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or from 0.504 to 0.724. Since the upper limit of the 99 percent confi dence interval 
is less than 0.75, the health department decides that it is highly unlikely that the 
proportion of 5-year-old children who are immunized is as large as 0.75. Therefore, 
the health department will mount a campaign to increase the level of DPT immuni-
zation in the community.



Let us use the normal approximation to fi nd the confi dence for the data in Example 
7.3. The confi dence interval for p based on p = 0.2 and n = 20 using the normal distribu-
tion is (0.0779, 0.3721) compared to (0.0714, 0.4010) based on the binomial distribution 
(Example 7.3). The former interval is symmetric, while the latter interval is not sym-
metric. The use of the normal distribution can give a negative lower limit when used 
with a small p and a small n. For this extreme case the binomial distribution is recom-
mended. The charts in Table B6 suggest that the normal approximation is satisfactory 
for a large n and can be used even for a relatively small n when p is close to 0.5.

7.3.3   Confi dence Intervals for Crude and Adjusted Rates

In Chapter 3, we presented crude, specifi c, and direct and indirect adjusted rates. 
However, we did not present any estimate for the variance or standard deviation of a 
rate, quantities that are necessary for the calculation of the confi dence interval. There-
fore, we begin this material with a section on how to estimate the variance of a rate.

Rates are usually based on the entire population. If this is the case, there is really no 
need to calculate their variances or confi dence intervals for them. However, we often 
view a population rate in some year as a sample in location or time. From this perspec-
tive, there is justifi cation for calculating variances and confi dence intervals. If the value 
of the rate is estimated from a sample, as is often done in epidemiology, then it is 
important to estimate the variance and the corresponding confi dence interval for the 
rate. If the rate is based on the occurrence of a very small number of events — for 
example, deaths — the rate may be unstable and it should not be used in this case. We 
shall say more about this later.

Variances of Crude and Adjusted Rates: The crude rate is calculated as the number 
of events in the population during the year divided by the midyear population. This rate 
is not really a proportion, but it is very similar to a proportion, and we shall treat it as 
if it were a proportion. The variance of a sample proportion, p, is p (1 − p)/n. Thus, the 
variance of a crude rate is approximated by the product of the rate (converted to a 
decimal value) and one minus the rate divided by the population total.

From the data on rates in Chapter 3, we saw that the crude death rate for American 
Indian/Alaskan Native males in 2002 was 439.6 per 100,000. The corresponding estimated 
2002 American Indian/Alaskan Native male population was 1,535,000. Thus the estimated 
standard error, the square root of the variance estimate, for this crude death rate is
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or 5.3 deaths per 100,000 population.

If the issue facing the health department was whether or not to add resources to 
the immunization program, not to shift any resources away from the program, a 
one-sided interval could have been used. The 99 percent upper one-sided interval 
uses z0.99 instead of z0.995 in its calculation and it ranges from 0 to 0.713. This interval 
also does not contain 0.75. Therefore, resources should be added to the immunization 
program.
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The direct age-adjusted rate is a sum of the age-specifi c rates, (sr)i’s, in the popula-
tion under study weighted by the age distribution, wi’s, in the standard population. In 
symbols, this is Σ[wi(sr) i], where wi is the proportion of the standard population in the 
ith age group and (sr)i is the age-specifi c rate in the ith age category. The age-specifi c 
rate is calculated as the number of events in the age category divided by the midyear 
population in that age category. Again, this rate is not a proportion, but it is very similar 
to a proportion. We shall approximate the variance of the age-specifi c rates by treating 
them as if they were proportions. Since the wi’s are from the standard population that 
is usually very large and stable, we shall treat the wi’s as constants as far as the variance 
calculation is concerned. Since the age-specifi c rates are independent of one another, 
the variance of the direct adjusted rate, that is, the variance of this sum, is simply the 
sum of the individual variances
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where ni is the number of persons in the ith age subgroup in the population under 
study.

Considering the U.S. mortality data as a sample in time, we can calculate the approxi-
mate variance of the direct age-adjusted death rate. The data to be used are the 2002 
U.S. male age-specifi c death rates along with the U.S. male population totals and the 
2000 U.S. population proportions by age from Table 3.14. Table 7.6 repeats the relevant 
data and shows the calculations. The entries in the last column are all quite small, less 
than 0.00000001, and therefore, only their sum is shown. The standard error of the direct 
age-adjusted mortality rate is 0.0000117 (= square root of variance). The direct age-
adjusted rate was 1013.7 deaths per 100,000 population, and the standard error of the 
rate is 1.2 deaths per 100,000. The magnitude of the standard error here is not unusual, 
and it shows why the sampling variation of the adjusted rate is often ignored in studies 
involving large population bases.

For the indirect method, the adjusted rate can be viewed as the observed crude rate 
in the population under study multiplied by a ratio. The ratio is the standard population’s 

Table 7.6 Calculation of the approximate variance for the age-adjusted death rate by the direct 
method for U.S. males in 2002.

 U.S. Male Age- U.S. Male U.S. Population
Age Specifi c Rates Population Proportiona

i (sr)i ni wi Σ[wi
2(sr)i(1 - (sr)i)/ni]

Under 1 0.007615 2,064,000 0.013818
1–4 0.000352 7,962,000 0.055317
5–14 0.000200 21,013,000 0.145565
15–24 0.001173 20,821,000 0.138645
25–34 0.001422 20,203,000 0.135573
35–44 0.002575 22,367,000 0.162613
45–54 0.005475 19,676,000 0.134834
55–64 0.011840 12,784,000 0.087242
65–74 0.028553 8,301,000 0.066037
75–84 0.067605 5,081,000 0.044842
85 & over 0.162545 1,390,000 0.015508

Total  141,661,000 1.000000 1.37 × 1010

aU.S. total population proportion in 2000 (the standard)



crude rate divided by the rate obtained by weighting the standard population’s age-
specifi c rates by the age distribution from the study population. This ratio is viewed as 
a constant in terms of approximating the variance. Hence, the approximation of the 
variance of the indirect adjusted rate is simply the square of the ratio multiplied by the 
variance of the study population’s crude rate.

Using the data from Chapter 3, the standard population’s (the 2000 U.S. population) 
crude rate was 854.0 deaths per 100,000 population. The combination of the standard 
population’s age-specifi c rates with the study population’s (the 2002 American Indian/
Alaskan Native male) age distribution yielded 413.6 deaths per 100,000 population. The 
crude rate for American Indian/Alaskan Native male was 439.6 deaths per 100,000 
population. Thus, the approximate standard error, the square root of the variance, of the 
indirect age-adjusted death rate is
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or 11 per 100,000.

Formation of the Confi dence Interval: To form the confi dence interval for a rate, 
we require knowledge of its sampling distribution. Since we are treating crude and 
specifi c rates as if they are proportions, the confi dence intervals for these rates will be 
based on the normal approximation as just shown for the proportion. Therefore, the 
confi dence interval for the population crude rate (q) is
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where cr is the value of the crude rate based on the observed sample.

For example, the 95 percent confi dence interval for the 2002 American Indian/
Alaskan Native male crude death rate is

 0.00439.6 − 1.96(0.0000534) < q < 0.00439.6 + 1.96(0.0000534)

or from 0.004291 to 0.004501. Thus, the confi dence interval for the crude death rate is 
from 429.1 to 450.1 deaths per 100,000 population.

The confi dence intervals for the rates from the direct and indirect methods of adjust-
ment have the same form as that of the crude rate. For example, the 95 percent confi -
dence interval for the indirect age-adjusted death rate for 2002 American Indian/Alaskan 
Native male is found by taking

 907.8 ± 1.96(11.0) = 907.8 ± 21.6

and thus the limits are from 886.2 to 929.4 deaths per 100,000 population.

Minimum Number of Events Required for a Stable Rate: As we just mentioned, rates 
based on a small number of occurrences of the event of interest may be unstable. To deal 
with this instability, a health agency for a small area often will combine its mortality data 
over several years. By using the estimated coeffi cient of variation, the estimated standard 
error of the estimate divided by the estimate and multiplied by 100 percent, we can deter-
mine when there are too few events for the crude rate to be stable.
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Recall that in Chapter 3 we said that if the coeffi cient of variation was large, the data 
had too much variability for the measure of central tendency to be very informative. 
Values of the coeffi cient of variation greater than 30 percent — others might use slightly 
larger or smaller values — are often considered to be large. We shall use this idea with 
the crude rate to determine how many events are required so that the rate is stable.

For example, the coeffi cient of variation for the 1986 crude mortality rate of Harris 
County is 0.904 percent (= [0.0000479/0.005296]  *  100). This rate, less than 1 percent, 
is very reliable from the coeffi cient of variation perspective. It turns out that the coeffi -
cient of variation of the crude rate can be approximated by (1 d )  *  100 percent, where 
d is the number of events. For example, the total number of deaths for Harris County 
in 1986 was 12,152 and (1/12152)  *  100 is 0.907 percent, essentially the same result as 
above.

Thus, we can use the approximation (1 d )  *  100 percent for the coeffi cient of 
variation. Setting the coeffi cient of variation to 20, 30, and 40 percent, yields 25, 12, 
and 7 events, respectively. If the crude rate is based on fewer than seven events, it cer-
tainly should not be reported. If we require that the coeffi cient of variation be less than 
20 percent, there must be at least 25 occurrences of the event for the crude rate to be 
reported.

7.4   Confi dence Interval for the Difference of 
Two Means and Proportions

We often wish to compare the mean or proportion from one population to that of another 
population. The confi dence interval for the difference of two means or proportions 
facilitates the comparison. As will be seen the following sections, the method of con-
structing the confi dence interval is different, depending on whether the two means or 
proportions are independent or not and depending on what assumptions are made.

7.4.1   Difference of Two Independent Means

Examples of comparing two independent means include the following. Is the mean 
change in blood pressure for men with mild to moderate hypertension the same for men 
taking different doses of an angiotensin-converting enzyme inhibitor? Is the mean 
length of stay in a psychiatric hospital equal for patients with the same diagnosis but 
under the care of two different psychiatrists? Given the following, there is an interest 
in the mean change in air pollution — specifi cally, in carbon monoxide — from 1991 
to 1992 for neighboring states A and B. There was no change in gasoline formulation 
in State A, whereas State B required on January 1, 1992, that gasoline must consist of 
10 percent ethanol during the November to March period.

One reason for interest in the confi dence interval for the difference of two means is 
that it can be used to address the question of the equality of the two means. If there is 
no difference in the two population means, the confi dence interval for their difference 
is likely to include zero.

Known Variances: The confi dence interval for the difference of two means has the 
same form as that for a single mean; that is, it is the difference of the sample means 



plus or minus some distribution percentile multiplied by the standard error of the dif-
ference of the sample means. Let’s convert these words to symbols. Suppose that we 
draw samples of sizes n1 and n2 from two independent populations. All the observations 
are assumed to be independent of one another — that is, the value of one observation 
does not affect the value of any other observation. The unknown population means are 
m1 and m2, the sample means are x–1 and x–2, and the known population variances are s1

2 
and s2

2, respectively. The variances of the sample means are s1
2/n1 and s2

2/n2, respec-
tively. Since the means are from two independent populations, the standard error of the 
difference of the sample means is the square root of the sum of the variances of the two 
sample means — that is,
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The central limit theorem implies that the difference of the sample means will 
approximately follow the normal distribution for reasonable sample sizes. Thus, we 
have
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Therefore, the (1 − a)  *  100 percent confi dence interval for the difference of population 
means, m1 − m2, is
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Example 7.5

Suppose we wish to construct a 95 percent confi dence interval for the effect of dif-
ferent doses of Ramipril, an angiotensin-converting enzyme converting inhibitor, 
used in treating high blood pressure. A study reported changes in diastolic blood 
pressure using the values at the end of a four-week run-in period as the baseline 
and measured blood pressure after two, four, and six weeks of treatment (Walter, 
Forthofer, and Witte 1987). We shall form a confi dence interval for the difference 
in mean decreases from baseline to two weeks after treatment was begun between 
doses of 1.25  mg and 5  mg of Ramipril. The sample mean decreases are 10.6 (x–1) and 
14.9  mmHg (x–2) for the 1.25 and 5  mg doses, respectively, and n1 and n2 are both 
equal to 53. Both s1 and s2 are assumed to be 9  mmHg. The 95 percent confi dence 
interval for m1 − m2 is calculated as follows:
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or ranging from −7.98 to −0.62. The value of 0 is not contained in this interval. Since 
the difference in mean decreases is negative, it appears that the 5  mg dose of 
Ramipril is associated with a greater decrease in diastolic blood pressure during the 
fi rst two weeks of treatment when considering only these two doses.
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Unknown but Equal Population Variances: If the variances are unknown but 
assumed to be equal, data from both samples can be combined to form an estimate of 
the common population variance. Use of the sample estimator of the variance calls for 
the use of the t instead of the normal distribution in the formation of the confi dence 
interval. The pooled estimator of the common variance, s2

p, is defi ned as
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and this can be rewritten as
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The pooled estimator is a weighted average of the two sample variances, weighted by 
the respective degrees of freedom associated with the individual sample variances and 
divided by sum of the degrees of freedom associated with each of the two sample 
variances.

Now that we have an estimator of s2, we can use it in estimating the standard error 
of the difference of the sample means, x–1 and x–2. Since we are assuming that the popula-
tion variances for the two groups are the same, the standard error of the difference of 
the sample means is
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and its estimator is
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The corresponding t statistic is
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and the (1 − a)  *  100 percent confi dence interval for (m1 − m2) is
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where n is the sum of n1 and n2.

Example 7.6

Suppose that we wish to calculate the 95 percent confi dence interval for the differ-
ence in the proportion of caloric intake that comes from fat for fi fth- and sixth-grade 
boys compared to seventh- and eighth-grade boys in suburban Houston. The sample 
data are shown in Table 7.7. The proportion of caloric intake that comes from fat is 
found by converting the grams of fat to calories by multiplying by nine (9 calories 
result from 1 gram of fat) and then dividing by the number of calories consumed.



The sample mean for the 14 fi fth- and sixth-grade boys is 0.329 compared to 0.353 
for the 19 seventh- and eighth-grade boys. These values of percent of intake from 
fat are slightly above the recommended value of 30 percent (Life Sciences Research 
Offi ce 1989). The corresponding standard deviations are 0.0895 and 0.0974, which 
support the assumption of equal variances.

The estimate of the pooled standard deviation is therefore

sp = ( ) + ( )
+ −

=13 0 0895 18 0 0974

14 19 2
0 094

2 2. .
. .

The estimate of the standard error of the difference of the sample means is

0 094 1 14 1 19 0 033. . .+ =

To fi nd the confi dence interval, we require t31, 0.975. This value is not shown in Table 
B5, but, based on the values for 29 and 30 degrees of freedom, an approximate value 
for it is 2.04. Therefore, the lower and upper limits are

[(0.329 − 0.353) − 2.04 (0.033)] and [(0.329 − 0.353) + 2.04 (0.033)]

or −0.092 and 0.044. Since zero is contained in the 95 percent confi dence interval, 
there does not appear to be a difference in the mean proportions of calories that come 
from fat for fi fth- and sixth-grade boys compared to seventh- and eighth-grade boys 
in suburban Houston.

Table 7.7 Total fat,a calories, and the proportion of calories from total fat for the 33 boys.

 Grades 7 and 8 Grades 5 and 6

Total Fat Calories Prop. from Fat Total Fat Calories Prop. from Fat

   567 1,823 0.311 1,197 3,277 0.365
   558 2,007 0.278 891 2,039 0.437
   297 1,053 0.282 495 2,000 0.248
1,818 4,322 0.421 756 1,781 0.424
   747 1,753 0.426 1,107 2,748 0.403
   927 2,685 0.345 792 2,348 0.337
   657 2,340 0.281 819 2,773 0.295
2,043 3,532 0.578 738 2,310 0.319
1,089 2,842 0.383 738 2,594 0.285
   621 2,074 0.299 882 1,898 0.465
   225 1,505 0.150 612 2,400 0.255
   783 2,330 0.336 252 2,011 0.125
1,035 2,436 0.425 702 1,645 0.427
1,089 3,076 0.354 387 1,723 0.225
   621 1,843 0.337
   666 2,301 0.289
1,116 2,546 0.438
   531 1,292 0.411
1,089 3,049 0.357
aTotal fat has been converted to calories by multiplying the number of grams by 9.

Unknown and Unequal Population Variances: If the population variances are dif-
ferent, this poses a problem. There is a procedure for obtaining an exact confi dence 
interval for the difference in the means when the population variances are unequal, but 
it is much more complex than the other methods in this book (Kendall and Stuart 1967). 
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Because of this complexity, most researchers use an approximate approach to the 
problem. The following shows one of the approximate approaches.

Since the population variances are unknown, we again use a t-like statistic. This 
statistic is
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The t distribution with the degrees of freedom shown next can be used to obtain the 
percentiles of the t’ statistic. The degrees of freedom value, df, is
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This value for the degrees of freedom was suggested by Satterthwaite (1946). It is 
unlikely to be an integer, and it should be rounded to the nearest integer.

The approximate (1 − a)  * 100 percent confi dence interval for the difference of two 
independent means when the population variances are unknown and unequal is

 (x– − x–2) − tdf,1−a /2sx–1−x–2
 < (m1 − m2) < (x–1 − x–2) + tdf,1−a /2sx

–
1−x

–
2

where the estimate of the standard error of the difference of the two sample means is
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Example 7.7

In Exercise 3.8, we presented survival times from Exercise Table 3.3 in Lee (1980) 
on 71 patients who had a diagnosis of either acute myeloblastic leukemia (AML) or 
acute lymphoblastic leukemia (ALL). In one part of the exercise, we asked for addi-
tional variables that should be considered before comparing the survival times of 
these two diagnostic groups of patients. One such variable is age. Let us examine 
these two groups to determine if there appears to be an age difference. If there is a 
difference, it must be taken into account in the interpretation of the data. To examine 
if there is a difference, we fi nd the 99 percent confi dence interval for the difference 
of the mean ages of the AML and ALL patients. Since we have no knowledge about 
the variation in the ages, we shall assume that the variances will be different. Table 
7.8 shows the ages and survival times for these 71 patients.

The sample mean age for the AML patients, x–1, is 49.86 and s1 is 16.51 based on 
the sample size, n1, of 51 patients. The sample mean, x–2, for the 20 ALL patients is 
36.65 years and s2 is 17.85. This is the information needed to calculate the confi dence 
interval. Let’s fi rst calculate the sample estimate of the standard error of the differ-
ence of the means:
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We next calculate the degrees of freedom, df, to be used and we fi nd it from
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This value is rounded to 33. The 99.5 percentile of the t distribution with 33 degrees 
of freedom is about midway between the value of 2.750 (30 degrees of freedom) and 
2.724 (35 degrees of freedom) in Appendix Table B5. We shall interpolate and use 
a value of 2.7344 for the 99.5 percentile of the t distribution with 33 degrees of 
freedom. Therefore, the approximate 99 percent confi dence interval for the differ-
ence of the mean ages is

(49.86 − 36.65) − 2.7344 (4.61) < m1 − m2 < (49.86 − 36.65) + 2.7344 (4.61)

or

0.60 < m1 − m2 < 25.82.

Since zero is not contained in this confi dence interval, there is an indication of a 
difference in the mean ages. If the survival patterns differ between patients with 
these two diagnoses, it may be due to a difference in the age of the patients.

How large would the confi dence interval have been if we had assumed that the 
unknown population variances were equal? Using the approach in the previous 
section, the pooled estimate of the standard deviation, sp, is
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This leads to an estimate of the standard error of the difference of the two means 
of

 
16 89

1

51

1

20
4 456. . .+ =

Thus the confi dence interval, using an approximation of 2.65 to the 99.5 percentile 
of the t distribution with 69 degrees of freedom, is

Table 7.8 Ages and survival times of the AML and ALL patients (age and survival times are in the 
same order).

AML Patients
 Age 20 25 26 26 27 27 28 28 31 33 33 33 34
 36 37 40 40 43 45 45 45 45 47 48 50 50
 51 52 53 53 56 57 59 59 60 60 61 61 61
 62 63 65 71 71 73 73 74 74 75 77 80

 Survival Time 18 31 31 31 36 01 09 39 20 04 45 36 12
  in Months 08 01 15 24 02 33 29 07 00 01 02 12 09
 01 01 09 05 27 01 13 01 05 01 03 04 01
 18 01 02 01 08 03 04 14 03 13 13 01

ALL Patients
 Age 18 19 21 22 26 27 28 28 28 28 34 36 37
 47 55 56 59 62 83 19

 Survival Time 16 25 01 22 12 12 74 01 16 09 21 09 64
  in Months 35 01 07 03 01 01 22

Confi dence Interval for the Difference of Two Means and Proportions  193



194  Interval Estimation

In practice, we usually know little about the magnitude of the population variances. 
This makes it diffi cult to decide which approach, equal or unequal variances, should be 
used. We recommend that the unequal variances approach be used in those situations 
when we have no knowledge about the variances and no reason to believe that they are 
equal. Fortunately, as we just saw, often there is little difference in the results of the 
two approaches. Some textbooks and computer packages recommend that we fi rst test 
to see if the two population variances are equal and then decide which procedure to use. 
Several studies have been conducted recently and conclude that this should not be done 
(Gans 1991; Markowski and Markowski 1990; Moser and Stevens 1992).

7.4.2   Difference of Two Dependent Means

Dependent means occur in a variety of situations. One situation of interest occurs when 
there is a preintervention measurement of some intervention and a postintervention 
measurement. Another dependent mean situation occurs when there is a matching or 
pairing of subjects with similar characteristics. One subject in the pair receives one type 
of treatment and the other member in the pair receives another type of treatment. Mea-
surements on the variable of interest are made on both members of the pair. In both of 
these situations, there is some relation between the values of the observations in a pair. 
For example, the preintervention measurement for a subject is likely to be correlated with 
the postintervention measurement on the same subject. If there is a nonzero correlation, 
this violates the assumption of independence of the observations. To deal with this rela-
tion (dependency), we form a new variable that is the difference of the observations in 
the pair. We then analyze the new variable, the difference of the paired observations.

Consider the blood pressure example just presented. Suppose that we focus on the 
1.25  mg dose of Ramipril. We have a value of the subject’s blood pressure at the end of 
a four-week run-in period and the corresponding value after two weeks of treatment for 
53 subjects. There are 106 measurements, but only 53 pairs of observations and only 53 
differences for analysis. The mean decrease in diastolic blood pressure after two weeks 
of treatment for the 53 subjects is 10.6  mmHg, and the sample standard deviation of the 
difference is 8.5  mmHg. The confi dence interval for this difference has the form of the 
confi dence interval for the mean from a single population. If the population variance is 
known, we use the normal distribution; otherwise we use the t distribution. We assumed 
that the population standard deviation was 9  mmHg previously, and we shall use that 
value here. Thus, the confi dence interval will use the normal distribution — that is,

(49.86 − 36.65) − 2.65 (4.456) < m1 − m2 < (49.86 − 36.65) + 2.65 (4.456)

or

1.20 < m1 − m2 < 25.02.

This interval is slightly narrower than the preceding confi dence interval found. 
However, both intervals lead to the same conclusion about the ages in the two diag-
nosis groups. For the use of a computer for this calculation, see Program Note 7.3 
on the website.
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where the subscript d denotes difference.

Let us calculate the 90 percent confi dence interval for the mean decrease in diastolic 
blood pressure. Table B4 shows that the 95th percentile of the standard normal is 1.645. 
Thus, the confi dence interval is
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which gives an interval ranging from 8.57 to 12.63  mmHg. Since zero is not contained 
in the interval, it appears that there is a decrease from the end of the run-in period to 
the end of the fi rst two weeks of treatment.

If we had ignored the relation between the pre- and postintervention values and used 
the approach for independent means, how would that have changed things? The mean 
difference between the pre- and postvalues does not change, but the standard error of 
the mean difference does change. We shall assume that the population variances are 
known and that s1, for the preintervention value, is 7  mmHg and s2 is 8  mmHg. The 
standard error of the differences, wrongly ignoring the correlation between the pre- and 
postmeasures, is then
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This is larger than the value of 9/√53
—

 (= 1.236) just found when taking the correlation 
into account. This larger value for the standard error of the difference (1.46 versus 1.236) 
makes the confi dence interval larger than it would be had the correct method been 
used.

This experiment was to examine the dose-response relation of Ramipril. It consisted 
of a comparison of the changes in the pre- and postintervention blood pressure 
values for three different doses of Ramipril. If the purpose had been different — 
for example, to determine whether or not the 1.25  mg dose of Ramipril had an 
effect — this type of design may not have been the most appropriate. One problem with 
this type of design — measurement, treatment, measurement — when used to establish 
the existence of an effect is that we have to assume that nothing else relevant to the 
subjects’ blood pressure values occurred during the treatment period. If this assumption 
is reasonable, then we can attribute the decrease to the treatment. However, if this 
assumption is questionable, then it is problematic to attribute the change to the treat-
ment. In this case, the patients received a placebo — here, a capsule that looked and 
tasted liked the medication to be taken later — during the four-week run-in period. 
There was little evidence of a placebo effect, a change that occurs because the subject 
believes that something has been done. A placebo effect, when it occurs, is real and 
may refl ect the power of the mind to affect disease conditions. This lack of a placebo 
effect here lends credibility to attributing the decrease to the medication, but it is no 
guarantee.
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7.4.3   Difference of Two Independent Proportions

In this section, we want to fi nd the (1 − a)  * 100 percent confi dence interval for the 
difference of two independent proportions — that is, p1 minus p2. We shall assume that 
the sample sizes are large enough so that it is appropriate to use the normal distribution 
as an approximation to the distribution of p1 minus p2. In this case, the confi dence 
interval for the difference of the two proportions is approximate. Its form is very similar 
to that for the difference of two independent means when the variances are not equal.

The variance of the difference of the two independent proportions is
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Since the population proportions are unknown, we shall substitute the sample propor-
tions, p1 and p2, for them in the variance formula. The (1 − a)  *  100 percent confi dence 
interval for p1 − p2 then is

 

p p z
p p

n

p p

n

p p z
p

1 2 1 2
1 1

1

2 2

2

1 2 1 2
1

1 1

1

−( ) − −( )
+ −( )

< −

< −( ) + −

− 1 2

−

α

α

π π

pp

n

p p

n
1

1

2 2

2

1( )
+ −( )

.

Because we are considering the difference of two proportions, the continuity correction 
terms cancel out in taking the difference.

Example 7.8

Holick et al. (1992) conducted a study of 13 milk processors in fi ve eastern states. 
They found that only 12 of 42 randomly selected samples of milk that they collected 
contained 80 to 120 percent of the amount of vitamin D stated on the label. Suppose 
that 10 milk processors in the Southwest are also studied and that 21 of 50 randomly 
selected samples of milk contained 80 to 120 percent of the amount of vitamin D 
stated on the label. Construct a 99 percent confi dence interval for the difference of 
proportions of milk that contain 80 to 120 percent of the amount of vitamin D stated 
on the label between these eastern and southwestern producers.

Since the sample sizes and the proportions are relatively large, the normal approxi-
mation can be used. The estimate of the standard error of the sample difference is
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The value of z0.995 is found from Table B4 to be 2.576. Therefore, the 99 percent 
confi dence interval is

(0.286 − 0.420) − 2.576 (0.0987) < p1 − p2 < (0.286 − 0.420) 
 + 2.576 (0.0987)

which is (−0.388, 0.120).



7.4.4   Difference of Two Dependent Proportions

Suppose that a sample of n subjects has been selected to examine the relationship 
between the presences of a particular attribute at two time points for the same individu-
als (paired observations). The situation could also be used to examine the relationship 
between two different attributes for the same individuals. The sample data for these 
situations can be arranged as follows:

Since zero is contained in the confi dence interval, there is little indication of a dif-
ference in the proportion of milk samples with vitamin D content within the 80 to 
120 percent range of the amount stated on the label between these eastern and south-
western milk producers.

 Attribute at Time

1 2 Number of Subjects

Present Present a
Present Absent b
Absent Present c
Absent Absent d

 Total n

Then the estimated proportion of subjects with the attribute at time 1 is p1 = (a + b)/n, 
and the estimated proportion with the attribute at time 2 is p2 = (a + c)/n. The difference 
between the two estimated proportions is
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Since the two population probabilities are dependent, we cannot use the same 
approach for estimating the standard error of the difference that we used in the previous 
section. Instead of showing the steps in the derivation of the formula, we simply present 
the formula for the estimated standard error (Fleiss 1981).
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.

The confi dence interval for the difference of two dependent proportions, pd (= p1 − p2), 
is then given by

 pd − z1−a /2SE(pd) < pd < pd + z1−a /2SE(pd).

Example 7.9

Suppose that 100 students took both biostatistics and epidemiology tests, and 18 
failed in biostatistics (p1 = 0.18) and 10 failed in epidemiology (p2 = 0.10). There is 
an 8 percentage point difference (pd = 0.08). The confi dence interval for the differ-
ence of these two failure rates cannot be constructed using the method in the previous 
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subsection because the two rates are dependent. We need additional information to 
assess the dependency. Nine students failed both tests (p12 = 0.09), and this refl ects 
the dependency. The dependency between p1 and p2 can be seen more clearly when 
the data are presented in a 2 by 2 table.

 Epidemiology

Biostatistics Failed Passed Total

Failed 9 (a)  9 (b)  18
Passed 1 (c) 81 (d)  82

Total 10 90 100 (n)

The marginal totals refl ect the two failure rates. The numbers in the diagonal cells 
(a, d) are concordant pairs of test scores (those who passed or failed both tests), and 
those in the off-diagonal cells (b, c) are discordant pairs (those who passed one test 
but failed the other). Important information for comparing the two dependent failure 
rates is contained in discordant pairs, as the estimated difference of the two propor-
tions and its estimated standard error are dependent on b and c.

Using the standard error equation, we have
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Then the 95 percent confi dence interval for the difference of these two dependent 
proportions is

0.08 − 1.96 (0.0306) < pd < 0.08 + 1.96 (0.0306)

or (0.0200, 0.1400). This interval does not include 0, suggesting that the failure rates 
of these two tests are signifi cantly different. However, this method is not recom-
mended for small frequencies and further discussion will follow in conjunction with 
hypothesis testing in the next chapter.

7.5   Confi dence Interval and Sample Size
One important point about the confi dence interval for the population mean is that its 
width can be calculated before the sample is selected. The half-width of the confi dence 
interval is
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When s and n are known, the width can be calculated. If the interval is viewed as being 
too wide to be informative, we can change one of the values used (z, n, or s) in calcu-
lating the width to see if we can reduce it to an acceptable value. The two most common 
ways of reducing its width are by decreasing our level of confi dence (reducing the z 
value) or by increasing the sample size (n); however, there are limits for both of these 
choices. Most researchers prefer to use at least the 95 percent level for the confi dence 
interval although the use of the 90 percent level is not uncommon. To drop below the 



90 percent level is usually unacceptable. Researchers may be able to increase the sample 
size somewhat, but the increase requires additional resources that are often limited.

Example 7.10

Suppose that we wish to estimate the mean systolic blood pressure of girls who are 
120 to 130  cm (approximately 4 feet to 4 feet 3 inches) tall. We assume that the 
standard deviation of the systolic blood pressure variable for girls in this height group 
is 7  mmHg. Given this information, how large a sample is required so that the half-
width of the 95 percent confi dence interval is no more than 3  mmHg wide?

The half-width of the confi dence interval can be equated to the specifi ed half-width 
— that is
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This equation can be solved for n, multiplying both sides by n  and squaring both 
sides, which gives
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Since n must be an integer, the next highest integer value, 21, is taken to be the value 
of n.

The formula for n, given a specifi ed half-width, d, for the (1 − a)  * 100 percent con-
fi dence interval is
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So far, we have been assuming that s is known; however, in practice, we seldom 
know the population standard deviation. Sometimes the literature or a pilot study pro-
vides an estimate of its value that we may use for s.

For the case of proportion, the sample size can be calculated by the following 
formula:
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In this formula p is the population proportion and p (1 − p)/n is the variance of binomial 
distribution as shown in Chapter 4. The population proportion is seldom known when 
calculating the sample size. Again, the literature or a pilot study may provide an esti-
mate. In cases when we have no information for p, we can use p = 0.5. This practice is 
based on the fact that p (1 − p) is the maximum when p = 0.5 and the calculated sample 
size will be suffi cient for any value of p.

The confi dence interval for the difference between two independent means, m1 and 
m2, can be used to determine the sample size required when there are two equal-size 
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experimental groups. We assume that the same known population variance is s2 and 
two equal random samples of size n are to be taken. Then the half-width of the confi -
dence interval for the difference of two means simplifi es to
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As before, let d be the half-width of the desired confi dence interval. Equating the pre-
ceding quantity to d and solving for n we have
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For the case of the difference of two independent proportions, the required sample 
size can be calculated by
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Example 7.11

A researcher wants to be 99 percent confi dent (z = 2.567) that the difference in the 
mean systolic blood pressure of boys and girls be estimated within plus and minus 
2  mmHg (d = 2). How large a sample size does the researcher need in each group? 
We will assume that the sample size is large enough that the normal distribution 
approximation can be used. We also assumed that the standard deviation of the sys-
tolic blood pressure for boys and girls are the same, and it is 8  mmHg. The required 
sample size is
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The required sample size is 211 in each group.

In the planning of a statistical study, the determination of sample size is not as simple 
as the preceding example may suggest. If you want a high level of confi dence and a 
small interval, a very large sample size is required. The diffi culty lies in deciding what 
level of confi dence to aim for within the limit imposed by available resources. The bal-
ancing of the level of confi dence against availability of resources may require an itera-
tive process until a solution is found that satisfi es both requirements.

7.6   Confi dence Intervals for Other Measures
We next consider confi dence intervals for the variance and the Pearson correlation coef-
fi cient. Interval estimation for other measures such as the odds ratio and regression 
coeffi cient will be discussed in subsequent chapters.



7.6.1   Confi dence Interval for the Variance

Besides being useful in describing the data, the variance is also frequently used in 
quality control situations. It is one way of stating how reliable the process under study 
is. For example, in Chapter 2 we presented data on the measurement of blood lead levels 
by different laboratories. We saw from that example that great variability in the mea-
surements made by laboratories exists, and the variance is one way to characterize that 
variability. Variability within laboratories can be due to different technicians, failure to 
calibrate the equipment, and so forth. It is critically important that measurements of the 
same sample within a laboratory have variability less than or equal to a prespecifi ed 
small amount. Thus, based on the sample variance for a laboratory for measuring blood 
lead, we wish to determine whether or not the laboratory’s variance is in compliance 
with the standards. The confi dence interval for the population variance provides one 
method of doing this.

To construct the confi dence interval for the population variance, we need to know 
the sampling distribution of its estimator, the sample variance, s2. The sampling distri-
bution of s2 can be examined by (1) taking a repeated random sample from a normal 
distribution, (2) calculating a sample variance from each sample, and (3) plotting a his-
togram of sample variances. When we take a repeated random sample of size 3, the 
distribution of sample variances looks like the black line in Figure 7.2. The distribution 
for df = 2 is very asymmetric with a long tail to the right, suggesting that there is tre-
mendous variability in the sample variances. This large variation is expected as each 
sample variance was based on only three observations. When we increase the sample 
size to 6 (df = 5), the distribution of sample variances is not so asymmetric and the tail 
to the right is much shorter than in the fi rst distribution. When we increase the sample 
size to 11 (df = 10), the distribution of sample variances is almost symmetric. We can 
see that the sampling distributions for the three samples sizes are very different; that 
is, they depend on the sample size.

It appears that the distribution of the sample variance does not match any of the 
probability distributions we have encountered so far. Fortunately, when the data come 
from a normal distribution, the distribution of the sample variance is known. The sample 
variance (s2), multiplied by (n − 1)/s 2, follows a chi-square (c2) distribution. Two 

Figure 7.2 Chi-square 
distributions with df = 
2, df = 5, and df = 10.
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eminent 19th-century French mathematicians, Laplace and Bienaymé, played important 
roles in the development of the chi-square distribution. Karl Pearson, an important 
British statistician previously encountered in connection with the correlation coeffi cient, 
popularized the use of the chi-square distribution in the early 20th century. As we just 
saw, the distribution of the sample variance depends of the sample size, actually on the 
number of independent observations (degrees of freedom) used to calculate s2. There-
fore, Appendix Table B7 shows percentiles of the chi-square distribution for different 
values of the degrees of freedom parameter.

To create a confi dence interval for the population variance, we begin with the prob-
ability statement
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This statement indicates that the confi dence interval will be symmetric in the sense that 
the probability of being less than the lower limit is the same as that of being greater 
than the upper limit. However, the confi dence limit will not be symmetric about s2. This 
probability statement is in terms of s2, however, and we want a statement about s2. To 
convert it to a statement about s2, we fi rst divide all three terms in the braces by (n − 1) 
s2. This yields
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The interval is now about 1/s2, not s2. Therefore, we next take the reciprocal of all three 
terms, which changes the direction of the inequalities. For example, we know that 3 is 
greater than 2, but the reciprocal of 3, which is 1/3 or 0.333, is less than the reciprocal 
of 2, which is 1/2 or 0.500. Thus, we have
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and reversing the directions of the inequalities to have the smallest term on the left, 
yields
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It is also possible to create one-sided confi dence intervals for the population variance. 
For example, the lower one-sided confi dence interval for the population variance is
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Example 7.12

Let’s apply this formula to an example. From 1988 to 1991, eight persons in Massa-
chusetts were identifi ed as having vitamin D intoxication due to receiving large doses 
of vitamin D3 in fortifi ed milk (Jacobus, Holick, and Shao 1992). The problem was 



traced to a local dairy that had tremendous variability in the amount of vitamin D 
added to individual bottles of milk. Homogenized whole milk showed the greatest 
variability based on measurements made in April and June 1991, with a low value 
of less than 40  IUs and a high of 232,565  IUs of vitamin D3 per quart. These values 
are contrasted with the requirement for at least 400  IUs (10  mg) to no more than 
500  IUs of vitamin D per quart of milk in Massachusetts.

The Food and Drug Administration (FDA) found poor compliance with the 
requirement for 400  IUs of vitamin D per quart of vitamin D fortifi ed milk in a 1988 
survey (Holick et al. 1992). Based on this poor compliance, the FDA urged that the 
problem be corrected; otherwise it would institute a regulatory program. Suppose 
that compliance is defi ned in terms of the mean and standard error of the mean 
vitamin D concentration in milk. The mean concentration should be 400  IUs with a 
variance of less than 1600  IUs. To determine if a milk producer is in compliance, a 
simple random sample of milk cartons from the producer is selected and the amount 
of vitamin D in the milk is ascertained. It is decided that if the 90 percent lower 
one-sided confi dence interval for the variance contains 1600  IUs, the process used 
by the producer to add vitamin D is said to be within the acceptable limits for vari-
ability. This is an approach for determining compliance that greatly favors the 
producer.

A random sample of 30 cartons is selected and the sample variance for the vitamin 
D in the milk is found to be 1700  IUs. The 90 percent confi dence interval uses c2

29,0.90, 
where the fi rst subscript is the degrees of freedom parameter and the second subscript 
is the percentile value. The value from Table B7 is 39.09. The lower limit is found 
from [29(1700)]/39.09, which gives the value of 1261.3. Since the 90 percent confi -
dence interval does contain 1600  IUs, the producer is said to be in compliance with 
the variability requirement. To fi nd that a producer is not in compliance requires a 
sample variance to be at least 2156.5.

A key assumption in calculating the confi dence interval for the population variance 
is that the data come from a normal distribution. If the data are from a very nonnormal 
distribution, the use of the preceding formula for calculating the confi dence interval can 
be very misleading.

To fi nd the confi dence interval for the population standard deviation, we take the 
square root of the variance’s confi dence interval limits. Thus, the lower limit of the 
confi dence interval for s in the above example is 35.5  IUs.

7.6.2   Confi dence Interval for the Pearson Correlation Coeffi cient

In Chapter 3, we presented r, the Pearson correlation coeffi cient, which is used in 
assessing the strength of the linear relation between two jointly normally distributed 
variables. We presented a formula for fi nding r, the sample Pearson correlation coeffi -
cient. We also found the correlation between systolic and diastolic blood pressures, 
based on the 12 adults in Example 3.18, to be 0.894, suggestive of a strong positive 
relation. Although this point estimate of r is informative, more information is provided 
by the interval estimate. For example, if the sampling variation of r were so large that 
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the 95 percent confi dence interval for r contains zero, we would not be impressed by 
the strength of the relation between total fat and protein.

It turns out that the sampling distribution of r is not easily characterized. However, 
the father of modern statistics, Ronald Fisher, showed that a transformation of r approxi-
mately follows a normal distribution. This transformation is

 z′ = 0.5[loge(1 + r) − loge(1 − r)]

and it provides the basis for the confi dence interval for r. The mean of z′ is [loge (1 + 
r) − loge (1 − r)] and its standard deviation, sz′, is 1 3n −( ) .  Note that for convenience, 
loge is often written as ln, and we shall do that following. Thus, we can employ the 
procedures we have just used for fi nding the confi dence interval for the transformed 
value of r — that is,

 z′ − z1−a /2sz′ < 0.5[ln(1 + r) − ln(1 − r)] < z′ + z1−a /2sz.

There is one simplifi cation we can make that allows us to have to take only one 
natural logarithm in the calculation instead of fi nding two natural logarithms. In the 
presentation of the geometric mean in Chapter 3, we saw that the sum of logarithms of 
two terms is the logarithm of the product of the terms — that is,

 ln x1 + ln x2 = ln(x1x2).

In the same way, the difference of logarithms of two terms is the logarithm of the quo-
tient of the terms — that is,
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Let us apply these formulas for fi nding the 95 percent confi dence interval for the 
correlation between systolic and diastolic blood pressure for 12 adults just mentioned. 
Since r is 0.894, z′ is
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The standard deviation of z′ is 1 12 3− ,  which is 0.3333. Thus the interval for 
(0.5)ln[(1 + r)/(1 − r)] is from 01.4415 − 1.96(0.3333) to 1.4415 + 1.96(0.3333) or from 
0.7882 to 2.0948.

To fi nd the confi dence interval for r, we fi rst perform the inverse transformation on 
twice the lower and upper limits of the interval just calculated. The inverse transforma-
tion of the natural logarithm, ln, is the exponential transformation. This means that

 exp(ln x) = x.

After obtaining the exponential of twice a limit, call it a, further manipulation leads to 
the following equation:
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The exponential of twice the lower limit — that is, two times 0.7882 — is the exponential 
of 1.5764, which is 4.83785, and this is the value used for a for the lower limit. The 
lower limit for r is

 

exp .

exp .

.

.
. .

2 0 7882 1

2 0 7882 1

4 8375 1

4 8375 1
0 657

( )[ ] −
( )[ ] +

= −
+

=

Similarly, the upper limit for r is
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Therefore, the 95 percent confi dence interval for the Pearson correlation coeffi cient 
between systolic and diastolic blood pressure in the population is from 0.657 to 0.970. 
The interval does not include 0. Thus, it is reasonable to conclude that there is a strong 
positive association between systolic and diastolic blood pressures among patients in 
the DIG clinical trial. These calculations are easily performed by a program (see 
Program Note 7.4 on the website). The preceding material also applies to the Spearman 
correlation coeffi cient for sample sizes greater than or equal to 10.

7.7   Prediction and Tolerance Intervals Based on 
the Normal Distribution

As we have seen, knowledge that the data follow a specifi c distribution can be used 
effectively in the creation of confi dence intervals. This knowledge can also be used in 
the formation of prediction and tolerance intervals, and this use is shown next.

7.7.1   Prediction Interval

The distribution-free method for forming intervals used specifi c observed values of the 
variable under study. In contrast, the formation of intervals based on the normal distri-
bution uses the sample estimates of its parameters: the mean and standard deviation. 
Assuming that the data follow the normal distribution, the prediction interval is formed 
by taking the sample mean plus or minus some value. This form is the same as that 
used in the construction of the confi dence interval for the population mean. However, 
we know that the prediction interval will be much wider than the confi dence interval, 
since the prediction interval focuses on a single future observation.

The confi dence interval for the mean, when the population variance is unknown, is
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The estimated standard error of the sample mean, s n ,  can also be expressed as 

s n2 1( )[ ].  The variance of a future observation is the sum of the variance of an obser-
vation about the sample mean and the variance of the sample mean itself, that is, s2 + 
s2/n. Thus, the estimated standard error of a future observation is s n2 1 1+( )[ ]  and 
the corresponding prediction interval is
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Let us calculate the prediction interval for the systolic blood pressure data just used 
in the calculation of the 90 percent confi dence interval for the mean. The sample mean 
was 94.75  mmHg, and the sample standard deviation was 10.25  mmHg, based on a 
sample size of 60. The value of t59,0.95 used in the 90 percent confi dence interval was 
1.671. The value of s n1 1+( )  is 10 335 10 25 1 1 60. . .= +[ ]( )  Therefore, the prediction 
interval is

 94.75 ± 1.671 (10.335)

and the lower and upper limits are 77.48 and 112.02  mmHg, respectively. These values 
are contrasted with 92.54 and 96.96  mmHg, limits of the confi dence interval for the 
mean. Thus, as expected, the 90 percent prediction interval for a single future observa-
tion is much wider than the corresponding 90 percent confi dence interval for the 
mean.

7.7.2   Tolerance Interval

The tolerance interval is also formed by taking the sample mean plus or minus some 
quantity, k, multiplied by the estimate of the standard deviation. Since the derivation of 
k is beyond the level of this book, we shall simply use its value found in Table B8. In 
symbols, the (1 − a)  *  100 percent tolerance interval containing p percent of the popula-
tion based on a sample of size n is

 x– ± kn,p,1−a s.

Let us use Table B8 to fi nd the 90 percent tolerance interval containing 95 percent 
of the systolic blood pressure values in the population based on the fi rst sample of 60 
observations from above. From Table B8 we fi nd that k60,0.95,0.90’s value is 2.248. There-
fore, the tolerance interval is

 94.75 ± 2.248 (10.25)

which gives limits of 71.71 and 117.79. One-sided prediction and tolerance intervals 
based on the normal distribution are also easy to construct.

Conclusion
In this chapter, the concept of interval estimation was introduced. We presented predic-
tion, confi dence, and tolerance intervals and explained their applications. We showed 
how distribution-free intervals and intervals based on the normal distribution were cal-
culated. The idea and use of confi dence intervals discussed in this chapter will be 
explored further to introduce methods of testing statistical hypotheses in the next two 
chapters. Parenthetically, it is worth pointing out that the idea of confi dence interval is 
often expressed as a margin of error in journalistic reporting, which refers to one-half 
of the width of a two-sided confi dence interval.

We also pointed out that characteristics — for example, size — of the intervals could 
be examined before actually conducting the experiment. If the characteristics of the 



interval are satisfactory, the investigator uses the proposed sample size. If the charac-
teristics are unsatisfactory, the design of the experiment, the topic of the next chapter, 
needs to be modifi ed.

EXERCISES

7.1 Assume that the AML patients shown in Exercise 3.7 can be considered a simple 
random sample of all AML patients.
a. Calculate the 95 percent confi dence interval for the population mean survival 

time after diagnosis for AML patients.
b. Interpret this confi dence interval so that someone who knows no statistics 

can understand it.
c. Calculate the approximate 95 percent confi dence interval for the median 

survival time. Compare the intervals for the population mean and median.
d. There are two methods for forming the tolerance interval. Use both methods 

to form the approximate 95 percent tolerance interval containing 90 percent 
of the survival times for the population of AML patients. Which method do 
you think is the more appropriate one to use here? Provide your rationale.

7.2 Calculate a 90 percent confi dence interval for the population median length of 
stay based on the data from the patient sample shown in Exercise 3.10. Is it 
appropriate to calculate a confi dence interval for the population mean based on 
these data? Support your answer.

7.3 Find a study from the health literature that uses confi dence intervals for one of 
the statistics covered in this chapter. Provide a reference for the study and briefl y 
explain how confi dence intervals were used.

7.4 The following table shows the average annual fatality rate per 100,000 workers 
based on the 1980–1988 period by state along with the state’s composite score 
on a scale created by the National Safe Workplace Institute (NSWI). The scale 
takes into account prevention and enforcement activities and compensation paid 
to the victim. The data are taken from the Public Citizen Health Research Group 
(1992).

 Fatalitya NSWIb  Fatality NSWI  Fatality NSWI
State Rate Score State Rate Score State Rate Score

CT 1.9 65 SC 6.7 26 LA 11.2 31
MA 2.4 73 VT 6.8 38 NE 11.3 27
NY 2.5 76 IL 6.9 76 NV 11.5 30
RI 3.3 59 NC 7.2 47 TX 11.7 72
NJ 3.4 80 WA 7.7 55 KY 11.9 32
AZ 4.1 40 IN 7.8 47 NM 12.0 14
MN 4.3 64 ME 7.8 67 AR 12.5 11
NH 4.5 56 TN 8.1 24 UT 13.5 26
OH 4.8 55 OK 8.7 53 ND 13.8 21
MI 5.3 63 AL 9.0 25 MS 14.6 25
MO 5.3 42 KS 9.1 15 SD 14.7 25
MD 5.7 46 IA 9.2 54 WV 16.2 47
DE 5.8 40 CO 9.3 52 ID 17.2 22
HI 6.0 25 FL 9.3 48 MT 21.6 28
PA 6.1 55 VA 9.9 60 WY 29.5 12
WI 6.3 58 GA 10.3 36 AK 33.1 59
CA 6.5 81 OR 11.0 63
aAverage annual fatality rate per 100,000 workers based on 1980–1988 data
bNational Safe Workplace Institute Score (116 is the maximum and a higher score is better)
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 During the 1980–1988 period, the National Institute of Occupational Safety and 
Health reported that there were 56,768 deaths in the workplace. The preceding 
rates are based on that number. The National Safety Council reported 105,500 
deaths for the same period. Do you think that there should be any relationship 
between the fatality rates and the NSWI scores? If you think that there is a 
nonzero correlation, will it be positive or negative? Explain your reasoning. 
Calculate the Pearson correlation coeffi cient for these data. Is there any reason 
to calculate a confi dence interval based on the correlation value you calculated? 
Why or why not?

7.5 There is some concern today about excessive intakes of vitamins and minerals, 
possibly leading to nutrient toxicity. For example, many persons take vitamin 
and mineral supplements. It is estimated that 35 percent of the adult U.S. popu-
lation consumes vitamin C in the form of supplements (LSRO 1989). Based on 
survey results, among users of vitamin C supplements, the median intake was 
333 percent of the recommended daily allowance. Suppose that you take a tablet 
that claims to contain 500  mg vitamin C. Which type of interval — prediction, 
confi dence, or tolerance — about the vitamin C content in the tablets is of most 
interest to you? Explain your reasoning.

7.6 In a test of a laboratory’s measurement of serum cholesterol, 15 samples 
containing the same known amount (190  mg/dL) of serum cholesterol are 
submitted for measurement as part of a larger batch of samples, one sample 
each day over a three-week period. Suppose that the following daily values 
in mg/dL for serum cholesterol for these 15 samples were reported from the 
laboratory:

180 190 197 199 210 187 192 199 214 237 188 197 208 220 239

 Assume that the variance for the measurement of serum cholesterol is supposed 
to be no larger than 100  mg/dL. Construct the 95 percent confi dence interval for 
this laboratory’s variance. Does 100  mg/dL fall within the confi dence interval? 
What might be an explanation for the pattern shown in the reported values?

7.7 The percentage of persons in the United States without health insurance in 1991 
was 14.1 percent, or approximately 35.5 million persons. The following data 
show the percent of persons without health insurance in 1991 by state (PCHRG 
1993) along with the 1990 population of the state (U.S. Bureau of the Census 
1991). The District of Columbia is treated as a state in this presentation. Cal-
culate the sample Pearson correlation coeffi cient between the state population 
total and its percent without health insurance. How can these counts be viewed 
as a sample? Calculate a 95 percent confi dence interval for the Pearson correla-
tion coeffi cient in the population. Does there appear to be a strong linear relation 
between these two variables? Provide at least one additional variable that may 
be related to the proportion without health insurance in each state and provide 
a rationale for your choice.



7.8 Calculate the mean state proportion of those without health insurance from data 
in Exercise 7.7. Is this number the same as the overall U.S. percentage? Explain 
how the state information can be used to obtain the overall U.S. percentage of 
14.1.

7.9 Suppose you are planning a simple random sample survey to estimate the mean 
family out-of-pocket expenditures for health care in your community during 
the last year. In 1990, the approximate per capita (not per family) out-of-pocket 
expenditure was $525 (NCHS 1992). From previous studies in the literature, 
you think that the population standard deviation for family out-of-pocket expen-
ditures is $500. You want the 90 percent confi dence interval for the community 
mean family out-of-pocket expenditures to be no wider than $100.
a. How many families do you require in the sample to satisfy your requirement 

for the width of the confi dence interval for the mean?
b. Do you believe that family out-of-pocket expenditures follow the normal 

distribution? Support your answer.

  Percent without   Percent without
State Populationa Health Insurance State Population Health Insurance

New England   East South Central
ME  1.23 11.1 KY 3.69 13.1
NH  1.11 10.1 TN 4.88 13.4
VT 0.56 12.7 AL 4.04 17.9
MA 6.02 10.9 MS 2.57 18.9
RI 1.00 10.2
CT 3.29  7.5 West South Central
   AR 2.35 15.7
Mid Atlantic  LA 4.22 20.7
NY 17.99 12.3 OK 3.15 18.2
NJ 7.73 10.8 TX 16.99 22.1
PA 11.88 7.8
   Mountain
East North Central  MT 0.80 12.7
OH 10.85 10.3 ID 1.01 17.8
IN 5.54 13.0 WY 0.45 11.3
IL 11.43 11.5 CO 3.29 10.1
MI 9.30  9.0 NM 1.52 21.5
WI 4.89  8.0 AZ 3.67 16.9
   UT 1.72 13.8
West North Central  NV 1.20 18.7
ND 0.64  7.6
SD 0.70  9.9 Pacifi c
NE 1.58  8.3 WA 4.87 10.4
KS 2.48 11.4 OR 2.84 14.2
MN 4.38  9.3 CA 29.76 18.7
IA 2.78  8.8 AK 0.55 13.2
MO 5.12 12.2 HI 1.11  7.0
South Atlantic
DE 0.67 13.2
MD 4.78 13.1
VA 6.19 16.3
WV 1.79 15.7
FL 12.94 18.6
NC 6.63 14.9
SC 3.49 13.2
GA 6.48 14.1
DC 0.61 25.7
aPopulation is expressed in millions
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c. Regardless of your answer, assume that you said that the family out-of-
pocket expenditures do not follow a normal distribution. Discuss why it is 
still appropriate to use the material based on the normal distribution in 
fi nding the confi dence interval for the population mean.

d. In the conduct of the survey, how would you overcome reliance on a 
person’s memory for out-of-pocket expenditures for health care for the past 
year?

7.10 In 1979, the Surgeon General’s Report on Health Promotion and Disease Pre-
vention and its follow-up in 1980 established health objectives for 1990. One 
of the objectives was that the proportion of 12- to 18-year-old adolescents 
who smoked should be reduced to below 6 percent (NCHS 1992). Suppose that 
you have monitored progress in your community toward this objective. In a 
survey conducted in 1983, you found that 17 of 90 12- to 18-year-old adolescents 
admitted that they were smokers. In your 1990 simple random sample survey, 
you found 11 of 85 12- to 18-year-old adolescents who admitted that they 
smoked.
a. Construct a 95 percent confi dence interval for the proportion of smokers 

among 12- to 18-year-old adolescents in your community. Is 6 percent con-
tained in the confi dence interval?

b. Construct a 99 percent confi dence interval for the difference in the propor-
tion of smokers among 12- to 18-year-old adolescents from 1983 to 1990. Do 
you believe that there is a difference in the proportion of smokers among the 
12- to 18-year-old adolescents between 1983 and 1990? Explain your 
answer.

c. Briefl y describe how you would conduct a simple random sample of 12- to 
18-year-old adolescents in your community. Do you have confi dence in the 
response to the question about smoking? Provide the rationale for your 
answer. What is a method that might improve the accuracy of the response 
to the smoking question?

7.11 Construct the 95 percent confi dence interval for the difference in the population 
mean survival times between the AML and ALL patients shown in Table 7.6. 
Since there appears to be a difference in mean ages between the AML and ALL 
patients, perhaps we should adjust for age. One way to do this is to calculate 
age-specifi c confi dence intervals. For example, calculate the confi dence interval 
for the difference in population mean survival times for AML and ALL patients 
who are less than or equal to 40 years old. Is the confi dence interval for those 
less than or equal to 40 years of age consistent with the confi dence interval 
which has ignored the ages? How else might we adjust for the age variable in 
the comparison of the AML and ALL patients?

7.12 Suppose we wish to investigate the claims of a weight loss clinic. We randomly 
select 20 individuals who have just entered the program, and we follow them 
for six weeks. The clinic claims that its members will lose on the average 10 
pounds during the fi rst six weeks of membership. The beginning weights and 
the weights after six weeks are shown following. Based on this sample of 20 
individuals, is the clinic’s claim plausible?



7.13 In a study of aplastic anemia patients, 16 of 41 patients on one treatment 
achieved complete or partial remission after three months of treatment com-
pared to 28 of 43 patients on another treatment (Frickhofen et al. 1991). Con-
struct a 99 percent confi dence interval on the difference in proportions that 
achieved complete or partial remission. Does there appear to be a difference in 
the population proportions of the patients who would achieve complete or 
partial remission on these two treatments?

7.14 In 1970, Japanese American women had a fertility rate (number of live births 
per 1000 women ages 15–44) of 51.2, considerably lower than the rate of 87.9 
for all U.S. women in this age group. Use the following data to calculate an 
age-adjusted fertility rate for Japanese American women and approximate the 
standard deviation of the age-adjusted rate.

 Beginning Weight  Beginning Weight
Person Weight at 6 Weeks Person Weight at 6 Weeks

 1 147 143 11 246 239
 2 163 151 12 218 222
 3 198 184 13 143 135
 4 261 245 14 129 124
 5 233 229 15 154 136
 6 227 220 16 166 159
 7 158 161 17 278 263
 8 154 147 18 228 205
 9 162 155 19 173 164
10 249 254 20 135 122

Age U.S. Age-Specifi c Fertility Rate Number of Japanese American Women

15–19 69.6 24,964
20–24 167.8 23,435
25–29 145.1 22,093
30–34 73.3 23,055
35–39 31.7 32,935
40–44 8.6 34,044

Source: U.S. Population Census, 1970, P(2)-1G and U.S. Vital Statistics, 1970
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Tests of Hypotheses

Chapter Outline
8.1 Preliminaries in Tests of Hypotheses
8.2 Testing Hypotheses about the Mean
8.3 Testing Hypotheses about the Proportion and Rates
8.4 Testing Hypotheses about the Variance
8.5 Testing Hypotheses about the Pearson Correlation Coeffi cient
8.6 Testing Hypotheses about the Difference of Two Means
8.7 Testing Hypotheses about the Difference of Two Proportions
8.8 Tests of Hypotheses and Sample Size
8.9 Statistical and Practical Signifi cance

In this chapter, we formally introduce the testing of hypotheses, defi ne key terms to 
help us succinctly communicate the ideas of hypothesis testing, and show how to 
conduct tests. The statistical ideas used in the tests of hypotheses share the same roots 
with those used in confi dence intervals presented in the previous chapter. Therefore, we 
do not repeat the details on the distributions of the test statistics that we presented in 
Chapter 7.

8.1   Preliminaries in Tests of Hypotheses
Hypothesis testing is a way of organizing and presenting evidence that helps us reach 
a decision. Although the confi dence interval and the test of hypothesis can be used to 
reach the same conclusion, their emphases are different. The confi dence interval pro-
vides limits that are likely to contain the parameter. These limits can also be used to 
test a hypothesis, but that is not necessarily the reason why they were created. The test 
of hypothesis aids in reaching a decision about whether or not we believe that the 
hypothesized value of the parameter is correct. The use of the test of hypothesis also 
provides additional information about the decision that is not provided with the confi -
dence interval. Example 8.1 illustrates the basic idea.

8

Example 8.1

Let us consider a situation associated with the decision to proceed with the marketing 
of a new drug for reducing cholesterol. This decision was reached because it is 
unlikely that the greater mean reduction of serum cholesterol observed in a sample 
of patients receiving a new drug, when compared to the reduction achieved for a 
sample of patients who received the standard treatment, was due to chance. Or the 
decision may be for the local health department to allocate more resources to an 
immunization campaign for childhood diseases. This decision was reached because, 
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We use another example to clarify these notions and to lead into the defi nitions used 
in tests of hypotheses.

based on the sample proportion immunized, it is unlikely that the proportion of 5-
year-old children in the community that have the required immunizations equals the 
targeted value of 95 percent.

There are negative outcomes associated with making a wrong decision, and these 
must be weighed carefully. If the decision to market the new drug is wrong — that 
is, it is not an improvement over the standard treatment — patients may pay more 
money for no additional benefi t or for a treatment that does not work. However, if 
the decision were not to market and the drug was better, patients would lose by not 
having access to a better treatment, and the company would lose because it did not 
realize the profi t from this drug. If the health department’s decision to conduct an 
immunization campaign is wrong — that is, the proportion of 5-year-old children 
immunized in the community is at least 95 percent — scarce resources would be 
misdirected. Other needy programs would not receive additional resources. However, 
if the decision were not to conduct the campaign when it was needed, there would 
be increased risk of unnecessary disease in preschool children.

Example 8.2

Suppose two diets are proposed for losing weight. We have 12 pairs of individuals, 
matched on age (±5 years), sex, initial weight (±10 pounds), and level of exercise. 
One member of the pair is assigned at random to diet 1 and the other member is 
assigned to diet 2. Individuals remain on their diets for six weeks and are then 
reweighed. We wish to determine whether or not the diets are equivalent from a 
weight loss perspective. Table 8.1 shows how the data — the weight losses for those 
on diets 1 and 2 and the within pair difference — may be presented.

There are several ways of analyzing these data. We demonstrate a very simple 
approach here and other approaches will be shown later. We shall examine the pro-
portion of pairs in which the person on diet 1 had the greater weight loss. If the diets 
do not differ with regards to weight loss, assuming there are no ties in weight loss, 
the proportion should be 0.50. Deviations from 0.50 suggest that there is a difference 
in the diets in terms of weight loss. If there are ties in the weight losses, the hypoth-
esis being tested is that the proportion of pairs in which the person on diet 1 had the 
greater weight loss is the same as the proportion of pairs in which the person on diet 
2 had the greater weight loss. Note that we have converted the hypothesis in words 
into something that we can deal with analytically.

Table 8.1 Weight losses (pounds) by diet for 12 pairs of individuals.

 Pairs

Diet 1 2 3 4 5 6 7 8 9 10 11 12

1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

2 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Difference d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12
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8.1.1   Terms Used in Hypothesis Testing

The statistical terms in hypothesis testing are defi ned, and their underlying concepts 
are explained following, based on Example 8.2.

Null and Alternative Hypotheses: The hypothesis being tested is called the null 
hypothesis and is denoted by H0. The null hypothesis is that p, the proportion of pairs 
in the population for which persons on diet 1 would show the greater weight loss, is 
0.50. The alternative hypothesis, denoted by Ha or H1, to the null hypothesis is that p is 
not equal to 0.50. In symbols, these hypotheses are

 H0: p = 0.50 and Ha: p ≠ 0.50.

We either reject or fail to reject the null hypothesis. If we reject the null hypothesis, we 
are expressing a belief that the alternative hypothesis is true. If there are ties in the 
weight losses, the alternative hypothesis is that the proportion of pairs in which the 
person on diet 1 had the greater weight loss is not equal to the proportion of pairs in 
which the person on diet 2 had the greater weight loss.

Type I and Type II Errors: If we reject the null hypothesis in favor of the alternative 
hypothesis, there are two possible outcomes. Either we have correctly rejected the null 
hypothesis or we have falsely rejected it. Falsely rejecting the null hypothesis is called 
a Type I error. In this example, the Type I error is claiming that the proportion of pairs 
for which diet 1 showed the greater weight loss is not equal to 0.50 when, in fact, it is 
0.50.

If we fail to reject the null hypothesis, again there are two possible outcomes. Either 
we have failed to reject the null hypothesis when it should have been rejected or we 
have correctly failed to reject the null hypothesis. Failing to reject the null hypothesis 
when it should have been rejected is called a Type II error. The Type II error in this 
example is claiming that the proportion of pairs for which diet 1 showed the greater 
weight loss is 0.50 when, in fact, the proportion is different from 0.50. Figure 8.1 shows 
these four possibilities. The probability of a Type I error is usually labeled a , and the 
probability of a Type II error is usually labeled b. Ideally we would like to keep both 
of these probabilities as small as possible, although we usually focus more on the Type 
I error and its probability.

Good                 Type II Error 

Type I Error               Good

_________________________________________________
Our Decision

about the
Null Hypothesis

Reality:Null Hypothesis Is 

True

True

False

False 
_________________________________________________

Figure 8.1 Possibilities 
associated with a test of 
hypothesis.

The Test Statistic: The test statistic, the basis for the test of hypothesis, is the number 
of pairs out of the 12 sample pairs for which those on diet 1 achieved the greater weight 
loss. Equivalently, the observed sample proportion of pairs for which those on diet 1 
achieved the greater weight loss, p, could be used. The test is based on the sign of the 
difference and, therefore, this particular test is called the sign test. Now that we know 
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what hypothesis is to be tested and what test statistic is to be used, we must specify the 
decision rule to be used.

8.1.2   Determination of the Decision Rule

The decision rule specifi es which values of the test statistic (or some function of it) will 
cause us to reject the null hypothesis in favor of the alternative hypothesis. The decision 
rule is based on the probabilities of the Type I and II errors. The probabilities of Type 
I and Type II errors are found from consideration of the distribution of the test statistic. 
In this example, the test statistic follows the binomial distribution. The binomial is used 
because there are only two outcomes: diet 1 is better or diet 2 is better (again ignoring 
the possibility of a tie in weight loss). We begin by assuming that the null hypothesis 
is true — that is, p is 0.50. Because we know that n is 12, we know both parameters of 
the binomial distribution. The probability distribution of the possible outcomes is shown 
in the following table and in Figure 8.2.

No. of Times Diet 1 Is Better Probability No. of Times Diet 1 Is Better Probability

0 0.0002  7 0.1934
1 0.0030  8 0.1208
2 0.0161  9 0.0537
3 0.0537 10 0.0161
4 0.1208 11 0.0030
5 0.1934 12 0.0002
6 0.2256

What values of the test statistic would cause us to reject the null hypothesis that p 
is 0.50 in favor of the alternative hypothesis? Large deviations from six pairs for which 
diet 1 was better — that is, large deviations from p of 0.50 — are suggestive that the 
diets have different effects. Thus, either very large or very small values of the test sta-
tistic would cause us to question the null hypothesis. As we can see from Figure 8.2, it 
is highly unlikely to observe either very large or very small values of the test statistic 
if p is really 0.50.

One- and Two-Sided Tests: The test we are considering is called a two-sided test, 
since either large or small values of the test statistic cause us to question the truth of 

Figure 8.2 Bar chart 
showing the binomial 
probability distribution 
for n = 12 and p = 0.5.
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the null hypothesis. A one-sided test occurs when only values in one direction cause us 
to question the null hypothesis. For example, if we were the developers of diet 1, we 
might only be interested in whether or not diet 1 was better than diet 2, not whether or 
not it was worse than diet 2. If this were the situation, the null hypothesis remains that 
p is equal to 0.50, but the alternative hypothesis becomes that p is greater than 0.50. In 
symbols, this is

 H0: p = 0.50 versus Ha: p > 0.50.

In this case, only large values of the test statistic would cause us to reject the null 
hypothesis in favor of the alternative hypothesis.

Use of a one-sided test makes it easier to detect departures from the null hypothesis 
in the indicated direction — that is, p greater than 0.50. However, the use of a one-sided 
test means that if the departure is in the other direction — that is, p is less than 0.50 — it 
won’t be detected.

Calculation of the Probabilities of Type I and Type II Errors: Suppose that we 
decide to reject the null hypothesis whenever we observe a test statistic of 0 or 12 pairs 
— that is, the values of 0 and 12 form the rejection or critical region. The values from 
1 to 11 then form the failure to reject or acceptance region. The probability of a Type I 
error, is thus the probability of observing 0 or 12 pairs in which diet 1 had the greater 
weight loss when p is actually 0.50. From the preceding probability mass function, we 
see that is 0.0004. That’s great! There is almost no chance of making this error, and 
this is almost as small as we can make it. Of course, we could decide never to reject the 
null hypothesis, and, then, there would be zero probability of a Type I error. That is 
unrealistic, however.

We are pleased with this decision rule because it has an extremely small probability 
of a Type I error. However, what is the value of b, the probability of a Type II error, 
associated with this decision rule? To be able to calculate b, we have to be more specifi c 
about the alternative hypothesis. The preceding alternative hypothesis is quite general 
in that it only says p is not equal to 0.50. However, just as we used a specifi c value, the 
value 0.50, for p in calculating the probability of a Type I error, we must specify a value 
of p other than 0.50 to be used in calculating the probability of a Type II error. We must 
move from the general alternative to a specifi c alternative hypothesis to be able to cal-
culate a value for b. This means that there is not merely one b associated with the 
decision rule; rather, there is a value of b corresponding to each alternative 
hypothesis.

What specifi c value of p should be used in the alternative hypothesis? We should 
have little interest in the alternative that p is 0.51 instead of the null hypothesis value 
of 0.50. The difference between 0.51 and 0.50 is of little practical interest. For all practi-
cal intent, if p is really 0.51, there is little difference in the diets. As the value of p 
departs more and more from 0.50, the ability to detect these departures becomes more 
important. We may not all agree at which point p differs enough from 0.50 to be impor-
tant. Some may say 0.60 is different enough, whereas others may say that p must be at 
least 0.70 for the difference to be important. Most would certainly agree that we should 
reject the equality of the diets if diet 1 provides for greater weight loss in 80 percent of 
the pairs.
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Let us assume that p is really 0.80, not 0.50, and fi nd the value for b. The binomial 
distribution for an n of 12 and a proportion of 0.80 is shown below.

No. of Times Diet 1 Is Better Probability No. of Times Diet 1 Is Better Probability

0 0.0000  7 0.0532
1 0.0000  8 0.1328
2 0.0000  9 0.2363
3 0.0001 10 0.2834
4 0.0005 11 0.2062
5 0.0033 12 0.0687
6 0.0155

Type II error is failing to reject the null hypothesis when it should be rejected. Since 
our decision rule is to reject only when we observe a test statistic of 0 or 12, we will 
fail to reject for the values of 1 through 11. The probability of 1 through 11 when p is 
actually 0.80 is 0.9313 (= 1 − 0.0000 − 0.0687). Therefore, use of this decision rule 
yields an a of 0.0004 and a b of 0.9313. The probability of the Type I error is very small, 
but the probability of the Type II error, corresponding to the value of 0.80 for p, is quite 
large.

8.1.3   Relationship of the Decision Rule, a and b
If we change our decision rule to reject the null hypothesis more often, we will increase 
a but decrease b — that is, there is an inverse relation between a and b. For example, 
if we increase the rejection region by including values 1 and 11 in addition to 0 and 12, 
the value of a becomes 0.0064 (= 0.0002 + 0.0030 + 0.0030 + 0.0002). These probabili-
ties are found from the probability distribution based on the value for p of 0.50. The 
new value for b, based on this expansion of the rejection region, and using 0.80 for p, 
is 0.7251 (= 1 − 0.2062 − 0.0687). The probability of a Type I error remains quite small, 
but the probability of a Type II error is still large.

If the decision rule is to reject for values of the test statistic of 0 to 2 and 10 to 12, 
then a’s value is increased to 0.0386 (= 2 [0.0161 + 0.0030 + 0.0002]) and the value of 
b is reduced to 0.4417 (= 1 − 0.0687 − 0.2062 − 0.2834). The probability of a Type I 
error is still reasonable, whereas, although the probability of Type II error is much 
smaller than previously, it is still quite large. However, a further change in the decision 
rule to include the values of the test statistic of 3 and 9 increases the value of a to 0.1460 
(= 0.0386 + 2[0.0537]), which is now becoming large.

What Are Reasonable Values for a and b? There are no absolute values that indicate 
that the probability of error is too large. It is a matter of personal choice, although con-
vention suggests that an a greater than 0.10 is unacceptable. Most investigators set a 
to 0.05, and some set it to 0.01. There is less guidance for the choice of b. It again is a 
matter of personal choice. However, the implications of the Type II error play a role in 
how large a b can be tolerated. A value of 0.20 for b is used frequently in the literature. 
Investigators often ignore the Type II error because (1) the hypothesis has been framed 
such that the Type I error is of much greater interest than the Type II error, or (2) it is 
often diffi cult to fi nd the value of b.

Ways to Decrease b Without Increasing a: We were in a bind when we left the 
example above. The value of b was too large and, if we tried to reduce it by further 
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enlargement of the rejection region, we made a too large. One way of decreasing b 
without increasing a is to change the alternative hypothesis or to increase the sample 
size.

(1) Changing Alternative Hypothesis: The specifi c alternative hypothesis that we had 
used previously in calculating b was that p was equal to 0.80. We selected the value 
of 0.80 because if diet 1 performed better for 80 percent of the pairs, we believed 
this indicated a very important difference between the diets. If we are willing to 
change what we consider to be a very important difference, we can reduce b. For 
example, by increasing the value of p in the alternative hypothesis from 0.80 to 0.90, 
b will decrease. However, this means that we no longer consider it to be important 
to detect that p was really 80 percent instead of the hypothesized 50 percent. We 
will focus on the test’s ability to detect a very large difference — that is, the dif-
ference between 0.90 and 0.50 — and not worry that the test has a small chance of 
detecting smaller differences.

The following shows the probability mass function for the binomial with a sample 
size of 12 and a proportion of 0.90.

No. of Times Diet 1 Is Better Probability No. of Times Diet 1 Is Better Probability

0 0.0000  7 0.0038
1 0.0000  8 0.0213
2 0.0000  9 0.0853
3 0.0000 10 0.2301
4 0.0000 11 0.3766
5 0.0001 12 0.2824
6 0.0004

If we again use the rejection region of 0 to 2 and 10 to 12, the probability of the Type 
I error is still 0.0386, since that was calculated based on p being 0.50. However, b is 
the probability of not rejecting that p is 0.50 when it is actually 0.90. This probability 
is the sum of the probabilities of the outcomes 3 through 9 in the preceding distribution, 
and that sum is 0.1109. Now both the values of a and b are reasonable.

By changing the alternative hypothesis, we have not changed the value of b for the 
alternative of p being 0.80. The b-value corresponding to a p of 0.80 and a rejection 
region of 0 to 2 and 10 to 12 remains 0.4417. What has changed is what we consider to 
be an important difference. If a lesser difference is considered to be important, the 
probability of the Type II error for that value of p can be calculated. Table 8.2 shows 

Table 8.2 Probability of Type II error and power for specifi c alternative 
hypotheses based on a rejection region of 0 to 2 and 10 to 12.

Alternative Hypothesis Probability of Type II Error Power

p = 0.55 0.9507 0.0493
p = 0.60 0.9137 0.0863
p = 0.65 0.8478 0.1522
p = 0.70 0.7470 0.2530
p = 0.75 0.5778 0.4222
p = 0.80 0.4416 0.5584
p = 0.85 0.2642 0.7358
p = 0.90 0.1109 0.8891
p = 0.95 0.0195 0.9805
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the values of the Type II errors for several values of the alternative hypothesis based on 
a rejection region of 0 to 2 and 10 to 12.

The probability of a Type II error decreases as the value of p used in the alternative 
hypothesis moves farther away from its value in the null hypothesis. This makes 
sense, since it should be easier to detect greater differences than smaller ones. As this 
table shows, there is a very high chance of failing to detect departures from 0.50 less 
than 0.30 to 0.35 in magnitude. The last column in Table 8.2 is power, the probability 
of rejecting the null hypothesis when it should be rejected — that is, when the alterna-
tive hypothesis is true. From the table we can see that power is 1 minus b. Power is 
often used in the literature when discussing the properties of a test statistic instead of 
using the probability of a Type II error. From the values in Table 8.2, it is possible to 
create a power curve — that is, to graph the values of power versus the values of p used 
in the alternative hypothesis. Figure 8.3 shows a portion of the power curve for values 
of p greater than 0.50. Statisticians use power curves to compare different test 
statistics.

Figure 8.3 Portion of 
the power curve for p 
values greater than 0.5.

The preceding trade-off as a way of reducing b may not be very satisfactory. We still 
may feel that 80 percent is very different from 50 percent. As an alternative, we could 
increase the sample size instead of changing the alternative hypothesis.

(2) Increasing the Sample Size: None of the calculations shown so far have required 
the observed sample data. All these calculations are preliminary to the actual col-
lection of the data. Therefore, if the probabilities of errors are too large, we can still 
change the experiment. As just mentioned, increasing the sample size is one way of 
decreasing the error probabilities, but doing this increases the resources required to 
perform the experiment. There is a trade-off between the sample size and the error 
probabilities.

Suppose we can afford to fi nd and follow 15 pairs instead of the 12 pairs we initially 
intended to use. We still use the binomial distribution in the calculation of the error 
probabilities where p remains 0.50, but now n is equal to 15. The binomial probability 
mass function with these parameters is shown next.
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No. of Times Diet 1 Is Better Probability No. of Times Diet 1 Is Better Probability

0 0.0000  8 0.1964
1 0.0005  9 0.1527
2 0.0032 10 0.0917
3 0.0139 11 0.0416
4 0.0416 12 0.0139
5 0.0917 13 0.0032
6 0.1527 14 0.0005
7 0.1964 15 0.0000

Let us use a rejection region of 0 to 3 and 12 to 15. If we do this, the probability of 
a Type I error is 0.0352 (= 2 [0.0005 + 0.0032 + 0.0139]). The probability of a Type II 
error, based on the alternative that p is 0.80, uses the binomial distribution with param-
eters 15 and 0.80 and this probability mass function is now shown.

No. of Times Diet 1 Is Better Probability No. of Times Diet 1 Is Better Probability

0 0.0000  8 0.0139
1 0.0000  9 0.0430
2 0.0000 10 0.1031
3 0.0000 11 0.1876
4 0.0000 12 0.2502
5 0.0001 13 0.2309
6 0.0007 14 0.1319
7 0.0034 15 0.0352

The probability of failing to reject a null hypothesis when it should be rejected — that 
is, of being in the acceptance region (values 4 to 11), when p is 0.80 — is 0.3518 
(= 0.0001 + 0.0007 + 0.0034 + 0.0139 + 0.0430 + 0.1031 + 0.1876). The probability of a 
Type I error, 0.0352, is similar to its preceding value, 0.0386, when we considered this 
same alternative hypothesis. The probability of a Type II error has decreased from 
0.4417 above when n was 12 to 0.3518 now for an n of 15. A further increase in the 
sample size can reduce b to a more acceptable level. For example, when n is 20, use of 
values 0 to 5 and 15 to 20 for the rejection region leads to an a of 0.0414 and a b of 
0.1958.

8.1.4   Conducting the Test

The procedure used in conducting a test begins with a specifi cation of the null and 
alternative hypotheses. In this example, they are

 H0: p = 0.50 versus Ha: p ≠ 0.50.

We must decide on the signifi cance level to be used in conducting the test. The signifi -
cance level is the probability of a Type I error that we are willing to accept. We use the 
conventional signifi cance level of 0.05 in this example.

Based on the preceding calculations, we have decided to increase the sample size to 
20. We will reject the null hypothesis if the value of the test statistic is from 0 to 5 or 
from 15 to 20. Use of this sample size and decision rule keeps the probability of a Type 
I error less than 0.05 and also keeps b reasonably small when considering large depar-
tures from the null hypothesis. With discrete data, the probability of a Type I error 
usually does not equal the signifi cance level exactly. The decision rule used with discrete 
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data is chosen so that it results in a probability of a Type I error being as close as pos-
sible to and less than the desired signifi cance level. The data are collected and shown 
in Table 8.3.

There are 13 pairs for which persons on diet 1 had the greater weight loss. As 13 
does not fall into the rejection region of 0 to 5 or 15 to 20, we fail to reject the null 
hypothesis in favor of the alternative hypothesis at the 0.05 signifi cance level. The 
observed result is not statistically signifi cant.

The p-value: Another statistic often reported is the p-value of the test, the probability 
of a Type I error associated with the smallest rejection region that includes the observed 
value of the test statistic. Another way of stating this is that the p-value is the level at 
which the observed result would just be statistically signifi cant. In this example, since 
we are conducting a two-sided test, the smallest rejection region including the observed 
result of 13 is the region from 0 to 7 and 13 to 20. Examination of Table B2 for an n of 
20 and a p of 0.50 yields a probability of being in this region of 0.2632 (= 2[0.0370 + 
0.0739] + 0.0414). The value of 0.0414 is the value associated with the region from 0 to 
5 and 15 to 20, and to that we have added the probabilities associated with the outcomes 
6, 7, 13, and 14. The p-value is thus 0.2632.

Some statisticians do not believe in the decision rule approach to testing hypotheses. 
They believe that the p-value provides information regardless of whether or not the 
hypothesis is rejected. The p-value tells how likely the observed result is, assuming that 
the null hypothesis is true. For example, these statisticians see little difference in p-
values of 0.05001 and 0.04999, although in the fi rst case we would fail to reject the null 
hypothesis at the 0.05 signifi cance level, whereas in the second case we would reject 
the null hypothesis. For these statisticians, the key information to be obtained from the 
study is that there is roughly 1 chance in 20 that we would have obtained the observed 
result if the null hypothesis were true. Using the p-value in this way is very 
reasonable.

Table 8.3 Weight losses (pounds) by diet for 20 pairs 
of individuals.

Pairs Diet 1 Diet 2 Difference

 1 9 7 2
 2 4 6 −2
 3 11 9 2
 4 7 12 −5
 5 −4 3 −7
 6 13 8 5
 7 6 5 1
 8 3 −1 4
 9 8 14 −6
10 10 8 2
11 8 6 2
12 9 8 1
13 14 15 −1
14 11 7 4
15 5 7 −2
16 −3 4 −7
17 6 −2 8
18 7 4 3
19 13 10 3
20 9 5 4



8.2   Testing Hypotheses about the Mean
Suppose we wish to analyze the Digoxin clinical trial data shown in Table 3.1. However, 
before performing the analyses, we wish to determine whether or not the population 
represented by the sample of 200 patients differs from the national adult population as 
far as systolic blood pressure is concerned. Therefore, we fi rst test the hypothesis that 
the mean systolic blood pressure for the patients in the Digoxin clinical trial is the same 
as the national average.

From the calculations in Chapter 3, we know that the sample mean, based on 199 
patients (one missing value), is 125.8  mmHg. Based on national data (Lee and Forthofer 
2006), we take the national average to be 122.3  mmHg. The test of hypothesis about 
the population mean, just like the confi dence interval, uses the normal distribution if 
the population variance is known or the t distribution if the variance is unknown. We 
fi rst assume that the variance is known.

8.2.1   Known Variance

In Chapter 7, when we formed the 95 percent confi dence interval for the population 
mean, we assumed that the population standard deviation was 20  mmHg or that the 
variance was 400  mmHg. We shall use that value in the test of hypothesis about the 
population mean. The null and alternative hypotheses are

 H0: m = m0 and Ha: m ≠ m0

where m0 is 122.3  mmHg in this example. To be able to compare the test results with 
the confi dence interval from Chapter 7, we conduct the test at the 0.05 signifi cance 
level.

The test statistic is z (= [x– − m0]/[s / n ]), the standard normal statistic. If the null 
hypothesis is true, z will follow the standard normal distribution. The rejection region 
is thus defi ned in terms of percentiles of the standard normal distribution. For a two-
sided alternative, if z is either less than or equal to za /2 or greater than or equal to z1−a /2, 
we reject the null hypothesis in favor of the alternative hypothesis. In symbols, this is
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If the test statistic is not in the rejection region — that is,

 za /2 < z < z1−a /2

we fail to reject the null hypothesis in favor of the alternative hypothesis. Let us calculate 
the test statistic for the systolic blood pressure. The z value is

 

125.8 122.3

20
2.47.

− =
199

Since 2.47 falls in the rejection region — that is, it is greater than 1.96 (= z1−0.025) or is 
less than −1.96 — we reject the null hypothesis. This situation is shown pictorially in 
Figure 8.4. The p-value for this test is the probability of observing a standard normal 
variable with either a value greater than 2.47 or less than −2.47. This probability is found 
to be 0.014.

Testing Hypotheses about the Mean  223



224  Tests of Hypotheses

Equivalence of Confi dence Intervals and Tests of Hypotheses: Recall that in 
Chapter 7 when we found the (1 − a) * 100 percent confi dence interval for the popula-
tion mean, we started with the expression
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We manipulated this expression, and we obtained the following expression:

 
x z

n
x z

n
− ( )< < + ( )− −1 2 1 2α α

σ μ σ
.

If we replace m in the middle portion of the preceding fi rst expression by m0, the middle 
portion is the z statistic for testing the hypothesis that m equals m0. Since the confi dence 
interval was derived from this test statistic, this means that if m0 is contained in the 
confi dence interval, then the corresponding z statistic must also be in the failure to reject 
(acceptance) region. If m0 is not in the confi dence interval, then the z statistic is in the 
rejection region — that is, it is less than or equal to −z1−a /2 or greater than or equal to 
z1−a /2.

In this case, the hypothesized value of 122.3  mmHg is not contained in the 95 percent 
confi dence interval for the population mean. We saw in Chapter 7 (Example 7.1) that 
the confi dence interval ranges from 123.0 to 128.6  mmHg. Therefore, we know that the 
test statistic will be in the rejection region, and, hence, we will reject the null hypothesis. 
In addition, using the same logic, from the confi dence interval, we know we would reject 
the null hypothesis for any m0 not in the range from 123.0 to 128.6  mmHg.

This same type of argument for the linkage of the test of hypothesis and the corre-
sponding confi dence interval can be used with the other tests of hypotheses presented 
in this chapter. Thus, the confi dence interval is also very useful from a test of hypothesis 
perspective. However, the confi dence interval does not provide the p-value of the test, 
also a useful statistic.

One-Sided Alternative Hypothesis: If we are concerned only when the patients have 
elevated blood pressure, the null and alternative hypotheses are

Figure 8.4 
Representation of the 
rejection and failure-to-
reject regions in terms 
of the standard normal 
statistic for a = 0.05.



 H0: m = m0 and Ha: m > m0.

The test statistic does not change, but the rejection region is a one-sided region now. 
We reject the null hypothesis in favor of the alternative hypothesis if z is greater than 
or equal to z1−a , or equivalently, if x– is greater than or equal to m0 + [z1−a (s / n )]. A 
one-sided rejection region is shown in Figure 8.5 in terms of the z test statistic.

Figure 8.5 
Representation of the 
rejection and failure-to-
reject regions for a 
one-sided alternative of 
greater than the mean 
for a = 0.05.
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If we are concerned only when the patient’s blood pressure is too low, the null and 
alternative hypotheses are

 H0: m = m0 and Ha: m < m0.

We now reject if z is less than or equal to za , or equivalently, if x– is less than or equal 
to m0 + [za (s / n )]. In this case, the rejection region in Figure 8.5 moves to the lower 
end of the distribution.

Power of the Test: Before collecting the data, suppose that we wanted to be confi dent 
that, if the systolic blood pressure of patients in the Digoxin clinical trial was substantially 
more than the national average, we could detect this higher mean blood pressure. By 
substantially more, we mean 3 percent or more above the national average of 122.3  mmHg. 
Thus, we wish to conclude that there is a difference between the study subjects and the 
national average if the study subjects have a population mean of 126.0  mmHg or more. 
The use of 3 percent is subjective and other values could be used.

The null and alternative hypotheses for this situation are

 H0: m = m0 and Ha: m > m0.

We use a signifi cance level of 0.01. Thus, the rejection region includes all z more than 
or equal to z0.99 — that is, z greater than or equal to 2.326. In terms of x– the rejection 
region includes all values of x– greater than or equal to
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Figure 8.6 shows the rejection and acceptance regions in terms of  x– as well as 
showing its distribution under the alternative hypothesis.
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The shaded area provides a feel for the size of the power — the probability of rejecting 
the null hypothesis when it should be rejected — of the test. Power is the proportion of 
the area under the alternative hypothesis curve that is in the rejection region — that is, 
greater than or equal to 125.6  mmHg.

Let us fi nd the power of the test and see if it agrees with our expectations about it 
based on Figure 8.6. Power is the probability of being in the rejection region — that is, 
of the sample mean being greater than or equal to 125.6  mmHg, assuming that the 
alternative hypothesis (m = 126.0) is true. To fi nd this probability, we convert 125.6 to 
a standard normal value by subtracting the mean of 126.0  mmHg and dividing by s / n. 
Thus, the z value is

 

125 6 126 0

20 199
0 28

. .
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The probability of a standard normal variable being greater than or equal to −0.28 is 
found from Table B4 to be 0.6103 (= 1 − 0.3897).

The power of the test is 61 percent. If this value is not large enough, there are several 
methods of increasing the power. One way is to increase the sample size. For example, 
let us increase the sample size to 600. Then the z value is
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The probability of a standard normal variable being greater than or equal to −0.49 is 
0.6879 (= 1 − 0.3121), almost 8 percent larger than the power associated with the sample 
size of 199.

As was discussed earlier, another way of changing the power is to change the signifi -
cance level. Let us decrease the signifi cance level to 0.05. Doing this reduces the size 
of the rejection region. All values of x– that are greater than or equal to

Figure 8.6 Rejection 
and acceptance regions 
of testing H0: m = 122.3 
versus Ha: m = 126.0 at 
the 0.01 signifi cance 
level.
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now are in the rejection region. Using this signifi cance level and still using a sample 
size of 199, the z value becomes
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The probability of a standard normal variable being greater than or equal to −1.06 is 
0.855, more than 80 percent, which is often used as the desired level for power in the 
literature.

Another way of increasing the power is to redefi ne what we consider to be a substan-
tial difference. If our emphasis were on detecting a blood pressure 5 percent more than 
the national average, instead of 3 percent more, we would have a higher power. As 5 
percent of 122.3  mmHg is 6.1  mmHg, the null and alternative hypotheses become

 H0: m = 122.3 and Ha: m = 128.4.

The z statistic becomes
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and the probability of a standard normal variable being more than or equal to −1.97 is 
0.976. The power associated with the alternative that m equals 126.0 has not changed, 
but our emphasis on what difference is important has changed. We have a much higher 
chance of detecting this greater difference, from 128.4 instead of from 126.0, between 
the null and alternative hypotheses.

Example 8.3

Let us consider another example of the calculation of power. Suppose that we have 
reason to suspect that the serum cholesterol level of male college students in a rural 
town is lower than the national average and we are planning a study to test this. The 
null and alternative hypotheses for the study are

H0: m = 188  mg/dL and Ha: m < 188  mg/dL.

We use a value of 30  mg/dL for the standard deviation of serum cholesterol level for 
male college students.

We must choose a specifi c value for the mean serum cholesterol level under the 
alternative hypothesis. We have selected the value of 170  mg/dL, a difference of 
18  mg/dL from the national mean, as an important difference that we wish to be able 
to detect. For this study, our initial plans call for a sample size of 50.

To fi nd the power, we must fi rst fi nd the acceptance and rejection regions. Let us 
perform the test at the 0.01 signifi cance level. Therefore, the rejection region consists 
of all values of z less than or equal to z0.01 (= −2.326). In terms of the sample mean, 
the rejection region consists of values of x– less than or equal to
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The key point about power is that calculations like in Example 8.3, or like those dis-
cussed in the material on confi dence intervals, should be performed before any data are 
collected. These calculations give some indication about whether or not it is worthwhile 
to conduct an experiment before the resources are actually expended.

8.2.2   Unknown Variance

If the variance is unknown, the t statistic is used in place of the z statistic — that is,
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in the test of the null hypothesis that the mean is the particular value m0. The rejection 
region for a two-sided alternative is (t ≤ tn−1,a /2) or (t ≥ tn−1,1−a /2).
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Figure 8.7 shows this situation.

Figure 8.7 Rejection and acceptance regions for testing H0: m = 94 versus Ha: m = 100 at the 0.05 
signifi cance level.

Once we know the boundary between the acceptance and rejection regions, we 
convert the boundary to a z value by subtracting the mean under the alternative 
hypothesis and dividing by the standard error. For this example, the z value is

z = − =178 132 170

30 50
1 92

.
. .

The power of the test is the probability of observing a z-statistic with a value less 
than or equal to 1.92. From Table B4, we fi nd the power to be 0.9726. This value is 
consistent with what we would have expected based on Figure 8.7. A study with 50 
male college students has an excellent chance of detecting a mean value 18  mg/dL 
below the national average.



Suppose that we did not know the value of s for the systolic blood pressure in the 
dig200 data or that we were uncomfortable in using the value of 20  mmHg for s. Then 
we would substitute s for s and use the t distribution in place of the z distribution. In 
this case, the value of the t statistic is
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To be consistent with the test shown above, we shall also perform this test at the 0.05 
signifi cance level. Therefore, t is compared to t198,0.025, which is −1.972, and to t198,0.975, 
which is 1.972. Since 2.71 is in the rejection region, we reject the null hypothesis in 
favor of the alternative. Not surprisingly, this result is very similar to that obtained when 
the z statistic was used. The results are similar because there was little difference 
between the values of s and s, and, since the sample size is large, the critical values of 
the t and normal distributions are also close in value. The t test for one mean can be 
performed by the computer (see Program Note 8.1 on the website).

8.3   Testing Hypotheses about the Proportion 
and Rates

In this section we focus on situations for which the use of the normal distribution as an 
approximation for the binomial distribution is appropriate. In general, these are situa-
tions in which the sample size is large.

Example 8.4

In Chapter 7 (Example 7.4) we considered the immunization level of 5-year-olds. 
The health department took a sample and, based on the sample, would decide whether 
or not to provide additional funds for an immunization campaign. In Example 7.4 
we examined both the 99 percent confi dence interval and a one-sided interval. Since 
the health department will provide additional funds if the proportion of immuniza-
tion is less than 75 percent, we consider a one-sided test here, considering the fol-
lowing null and alternative hypotheses

H0: p = p0 = 0.75 and Ha: p < p0 = 0.75.

The test statistic for this hypothesis is

z
p n

p p n
= − − ( )

−( )
π 0 1 2

1
.

If (p − p0) is positive, a positive sign is assigned to z; if the difference is negative, 
a minus sign is assigned to z. The rejection region consists of values of z less than 
or equal to za . This framework is very similar to that used with the population mean, 
the only difference being the use of the continuity correction with the proportion.

The sample proportion, p, had a value of 0.614 based on a sample size of 140. 
Thus, the calculation of z is

z = − − { }( )

−( )
=0 614 0 75 1 2 140

0 614 1 0 614 140
3 219

. .

. .
. .
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The same procedure applies to the test of crude and adjusted rates. Just as in Chapter 
7, we treat rates as if they were proportions. This treatment allows for a simple approxi-
mation to the variance of a rate and also gives a justifi cation for the use of the normal 
distribution as an approximation to the distribution of the rate. Thus, our test statistic 
has the same form as that used for the proportion.

Since ( p − p0) is negative, the test statistic’s value is −3.219. If the test is performed 
at the 0.01 signifi cance level, values of z less than or equal to −2.326 form the rejec-
tion region. Since z is less than −2.326, we reject the null hypothesis in favor of the 
alternative. The health department should devote more funds to an immunization 
effort. This conclusion agrees with that reached based on the confi dence interval 
approach in Chapter 7.

The continuity correction can be eliminated from the calculations for relatively 
large sample sizes because its effect will be minimal. For example, if we had ignored 
the continuity correction in this example, the value of the test statistic would be 
−3.306, not much different from −3.219. The computer can be used to analyze these 
data (see Program Note 8.2 on the website).

Example 8.5

Suppose that we wish to test, at the 0.05 signifi cance level, that the 2002 age-adjusted 
death rate for the American Indian/Alaskan Native male population, obtained by the 
indirect method of adjustment (using the 2002 U.S. age-specifi c death rates as the 
standard), is equal to the 2002 direct adjusted death rate for U.S. white male popula-
tion of 992.9 per 100,000 (NCHS 2004). The alternative hypothesis is that the rates 
differ. In symbols, the null and alternative hypotheses are

 H0: q = q0 = 0.009929 and Ha: q ≠ q0.

The test statistic, z, for this hypothesis is

(q̂ − q0)/(approximate standard error of q̂)

where q̂ is 907.8 per 100,000, the 2002 indirect age-adjusted death rate for the 
American Indian/Alaskan Native male population. In Chapter 7 we found the approx-
imation to the standard error of q̂ was 11 per 100,000. If this value of z is less than 
or equal to −1.96 (= z0.025) or greater than or equal to 1.96 (= z0.975), we reject the null 
hypothesis in favor of the alternative hypothesis. The value of z is

0 009078 0 009929

0 00011
7 74

. .

.
. .

− = −

Since −7.74 is in the rejection region, we reject the null hypothesis in favor of the 
alternative hypothesis at the 0.05 signifi cance level. There is suffi cient evidence to 
suggest that the indirect age-adjusted death rate for the American Indian/Alaskan 
Native male population is signifi cantly different from the U.S. white male rate. The 
p-value for this test is obtained by taking twice the probability that a z statistic is 
less than or equal to −7.74; the p-value is less than 0.00001.

As we have previously discussed, this test makes sense only if we view the 
American Indian/Alaskan Native population data as a sample in time or place.



The tests for the crude rate and for the adjusted rate obtained by the direct method 
of adjustment have the same form as the preceding.

8.4   Testing Hypotheses about the Variance
In Chapter 7 we saw that (n − 1)s2/s 2 followed the chi-square distribution with n − 1 
degrees of freedom. Therefore, we shall base the test of hypothesis about s2 on this 
statistic. The null and alternative hypotheses are

 H0: s2 = s0
2 and Ha: s2 ≠ s0

2.

We shall defi ne X2 to be equal to (n − 1) s2/s2. When X2 is greater than or 
equal to c2

n−1,1−a /2 or when X2 is less than or equal to c2
n−1,a /2, we reject H0 in favor 

of Ha.

For a one-sided alternative hypothesis, for example, Ha: s2 < s0
2, the rejection 

region is X 2 ≤ c 2n−1,a . If the alternative is Ha: s2 > s0
2, the rejection region is X 2 ≥ 

c 2n−1,1−a .

Example 8.6

Returning to the vitamin D in milk example discussed in Chapter 7, suppose we 
wish to test the hypothesis that the producer is in compliance with the requirement 
that the variance be less than 1600. We doubt that the producer is in compliance, 
and, therefore, we shall use the following null and alternative hypotheses:

H0: s2 = 1600 and Ha: s2 > 1600.

Since this is a one-sided test, we are implicitly saying that the null hypothesis is that 
the population variance is less than or equal to 1600 versus the alternative that the 
variance is greater than 1600. We shall perform the test at the 0.10 signifi cance level. 
Thus, the test statistic, X 2, which equals

n s−( )1 2

0
2σ

is compared to c 229,0.90. If X 2 is greater than or equal to 39.09, obtained from Table 
B7, we reject the null hypothesis in favor of the alternative hypothesis. Using the 
value of 1700 for s2 and 30 for n from Chapter 7, the value of X 2 is

29 1700

1600
30 81

( )
= . .

Since X 2 is not in the rejection region, we fail to reject the null hypothesis. There is 
not suffi cient evidence to suggest that the producer is not in compliance with the 
variance requirement. This is the same conclusion reached when the confi dence 
interval approach was used in Chapter 7. Figure 8.8 shows the rejection and accep-
tance regions for this test.
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As was mentioned in Chapter 7, the chi-square distribution begins to resemble the 
normal curve as the degrees of freedom becomes large. Figure 8.8 is a verifi cation of 
that fact. From this fi gure, we also see that the p-value for the test statistic is large — 
approximately 0.40.

8.5   Testing Hypotheses about the Pearson 
Correlation Coeffi cient

In Chapter 7, we saw that the z′ transformation, z′ = (1/2) ln[(1 + r)/(1 − r)], approxi-
mately followed a normal distribution with a mean of (1/2) ln[(1 + r)/(1 − r)] and a 
standard error of 1/ n − 3 . Therefore, to test the null hypothesis of H0: r = r0 versus 
an alternative hypothesis of Ha: r ≠ r0, we shall use the test statistic, l , defi ned as l = 
(z′ − z′0) n − 3  where z′0 is (1/2) ln[(1 + r0)/(1 − r0)]. If l is less than or equal to za /2 or 
greater than or equal to z1−a /2, we reject the null hypothesis in favor of the alternative 
hypothesis.

There is often interest as to whether or not the Pearson correlation coeffi cient is zero. 
If it is zero, then there is no linear association between the two variables. In this case, 
the test statistic simplifi es to

 λ = ′ −z n 3.

Figure 8.8 Rejection and acceptance regions for test of H0: s 2 = 1600 versus Ha: s 2 > 1600.

Example 8.7

Table 8.4 shows infant mortality rates for 1988 and total health expenditures as a 
percentage of gross domestic product in 1987 for selected 21 countries. It is thought 
that there should be some relation between these two variables. We translate these 
thoughts into the following null and alternative hypotheses:

H0: r = 0.00 and Ha: r ≠ 0.00.



This procedure can be used with the Spearman correlation coeffi cient for sample 
sizes greater than or equal to 10.

and the null hypothesis will be tested at the 0.10 signifi cance level. The rejection 
region consists of values of l that are less than or equal to −1.645 (= z0.05) or greater 
than or equal to 1.645.

Applying the formula from Chapter 3 to the data in Table 8.4, we fi nd a correla-
tion coeffi cient, r, to be −0.243. From this value z′ and l can be calculated:

′ = −
+( )( ) = −z 0 5

1 0 243

1 0 243
0 248.

.

.
.In  and

 λ = − − = −0 248 21 3 1 052. . .

Since l is not in the rejection regions, we fail to reject the null hypothesis. The p-
value of this test is 0.29 (twice of probability [z ≤ −1.052]). The correlation is not 
signifi cantly different from zero. Let us check whether we can draw the same conclu-
sion from the corresponding confi dence interval. Using the method discussed in 
Chapter 7, a 90 percent confi dence interval is (−0.562, 0.139) in which zero is 
included. The computer can be used to perform this test (see Program Note 8.3 on 
the website), and most programs give correlation coeffi cients and their associated 
p-values.

Table 8.4 1988 infant mortality rates and 1987 health expenditures as a percentage of gross 
domestic product for selected countries.a

Country 1988 Infant Mortality Rateb 1987 Health Expenditures as Percentage of GDP

Japan 4.8 6.8
Sweden 5.8 9.0
Finland 6.1 7.4
Netherlands 6.8 8.5
Switzerland 6.8 7.7
Canada 7.2 8.6
West Germany 7.5 8.2
Denmark 7.5 6.0
France 7.8 8.6
Spain 8.1 6.0
Austria 8.1 7.1
Norway 8.3 7.5
Australia 8.7 7.1
Ireland 8.9 7.4
United Kingdom 9.0 6.1
Belgium 9.2 7.2
Italy 9.3 6.9
United States 10.0 11.2
New Zealand 10.8 6.9
Greece 11.0 5.3
Portugal 13.1 6.4
aInfant mortality rates are from National Center for Health Statistics, 1992, Table 25, and health 
expenditures are from National Center for Health Statistics, 1991, Table 104.
bInfant mortality rates are deaths to infants under 1 year of age per 1000 live births.
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8.6   Testing Hypotheses about the Difference 
of Two Means

When we test hypotheses about the difference of two means, we need to fi rst check 
whether the two means come from independent samples or from a single sample. When 
the two means are calculated from the sample, they are dependent. The test procedures 
used are different depending on whether the means are independent or dependent.

8.6.1   Difference of Two Independent Means

We begin with the consideration of independent means under various assumptions. The 
fi rst test assumes that the variances are known, followed by the assumption that the 
variances are unknown but equal and then unknown and unequal. After these sections, 
we consider the difference of two dependent means.

Known Variances: The null hypothesis of interest for the difference of two indepen-
dent means is

 H0: m1 − m2 = Δ0

where Δ0 is the hypothesized difference of the two means. Usually Δ0 is zero — that is, 
we are testing that the means have the same value. The alternative hypothesis could be 
either

 Ha: m1 − m2 ≠ Δ0

or that the difference is greater (less) than Δ0. Regardless of the alternative hypothesis, 
when the variances are known, the test statistic is
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The rejection region for the two-sided alternative includes values of z less than or equal 
to za /2 or greater than or equal to z1−a /2. The rejection region for the greater than alterna-
tive includes values of z greater than or equal to z1−a and the rejection region for the less 
than alternative includes values of z less than or equal to za .

Example 8.8

We return to the Ramipril example from Chapter 7 and test the hypothesis that m1, 
the mean decrease in diastolic blood pressure associated with the 1.25  mg dose, is 
the same as m2, the mean decrease for the 5  mg dose. In practice, we should not ini-
tially focus on only two of the three doses; all three doses should be considered 
together at the start of the analysis. However, at this stage, we do not know how to 
analyze three means at one time — the topic of the next chapter. Therefore, we are 
temporarily ignoring the existence of the third dose (2.5  mg) of Ramipril that was 
used in the actual experiment.

As we expect that the higher dose of medication will have the greater effect, the 
null and alternative hypotheses are



Unknown but Equal Population Variances: The null and alternative hypotheses are 
the same as in the preceding section. However, the test statistic for the difference of two 
independent means, when the variances are unknown, changes to
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For a two-sided alternative hypothesis, the rejection region includes values of t less than 
or equal to tn−2,a /2 or greater than or equal to tn−2,1−a /2, where n is the sum of n1 and n2.

H0: m1 − m2 = 0 and Ha: m1 − m2 < 0.

We perform the test at the 0.05 signifi cance level; thus, if the test statistic is less than 
−1.645 (= z0.05), we shall reject the null hypothesis in favor of the alternative hypoth-
esis. The sample mean decreases, x–1 and x–2, are 10.6 and 14.9  mm  Hg, respectively, 
and both sample means are based on 53 observations. Both s1 and s2 are assumed 
to be 9  mmHg. Therefore, the value of z, the test statistic, is

z = −( ) −
+

= −10 6 14 9 0

81 53 81 53
2 46

. .
. .

Since the test statistic is less than −1.645, we reject the null hypothesis in favor 
of the alternative hypothesis. There appears to be a difference in the effects of the 
two doses of Ramipril with the higher dose being associated with the greater mean 
decrease in diastolic blood pressure at the 0.05 signifi cance level.

Example 8.9

Let us test, at the 0.05 signifi cance level, the hypothesis that there is no difference 
in the population mean proportions of total calories coming from fat for fi fth- and 
sixth-grade boys and seventh- and eighth-grade boys. The alternative hypothesis is 
that there is a difference — that is, that Δ0 is not zero. The rejection region includes 
values of t less than or equal to −2.04 (= t31,0.025) or greater than or equal to 2.04.

From Chapter 7, we know that x–1, the sample mean proportion for the 14 fi fth- and 
sixth-grade boys, is 0.329, and the corresponding value, x–2, for the 19 seventh- and 
eighth-grade boys is 0.353. The value of sp is 0.094. Therefore, the test statistic’s 
value is

 
t = −( ) −
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. .

.
. .

Since t is not in the rejection region, we fail to reject the null hypothesis. There does 
not appear to be a difference in the proportion of calories coming from fat at the 0.01 
signifi cance level.

The computer can be used to perform this test (see Program Note 8.4 on the 
website).
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Unknown and Unequal Population Variances: The test statistic for testing the null 
hypothesis of a specifi ed difference in the population means — that is,

 H0: m1− m2 = Δ0

assuming that the population variances are unequal, is given by
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The statistic t′ approximately follows the t distribution with degrees of freedom, df, 
given by
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For a two-sided alternative, if t′ is less than or equal to tdf,a /2 or greater than or equal to 
tdf,1−a /2, we reject the null hypothesis in favor of the alternative hypothesis. If the alterna-
tive hypothesis is

 Ha: m1 − m2 < Δ0,

the rejection region consists of values for t′ of less than or equal to tdf,a . If the alternative 
hypothesis is

 Ha: m1 − m2 > Δ 0,

the rejection region consists of values for t′ of greater than or equal to tdf,1−a .

Example 8.10

In Chapter 7, we examined the mean ages of the AML and ALL patients. Suppose 
we will consider that no difference in the population mean ages exists if the mean 
age of AML patients minus the mean age of ALL patients is less than or equal to 5 
years. Thus, the null and alternative hypotheses are

H0: m1 − m2 = 5 and Ha: m1 − m2 > 5.

We shall perform this test at the 0.01 signifi cance level, which means that we shall 
reject the null hypothesis in favor of the alternative hypothesis if t′ is greater than 
or equal to 2.446 (= t33,0.99). The degrees of freedom of 33 for the t value is obtained 
by
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Using the values for the sample means, standard deviations, and sample sizes from 
Chapter 7, we calculate t′ to be
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As we emphasized in Chapter 7, we seldom know much about the magnitude of the 
two variances. Therefore, in those situations in which we know little about the variances 
and have no reason to believe that they are equal, we recommend that the unequal vari-
ances assumption should be used.

8.6.2   Difference of Two Dependent Means

The test to be used in this section is the paired t test, one of the more well-known and 
widely used tests in statistics. The null hypothesis to be tested is that the mean differ-
ence of the paired observations has a specifi ed value — that is,

 H0: md = md0

where md0 is usually zero. The test statistic is
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The rejection region for a two-sided alternative hypothesis includes values of td less 
than or equal to tdf,a /2 or greater than or equal to tdf,1−a /2. The rejection region for the 
alternative of less than includes values of td that are less than or equal to tdf,a , and the 
rejection region for the alternative of greater than includes values of td that are greater 
than or equal to tdf,1−a .

Since t′ is less than 2.446, we fail to reject the null hypothesis. There is not suffi cient 
evidence to conclude that the difference in ages is greater than 5 years. Usually one 
would test the hypothesis of no difference instead of a difference of 5 years. However, 
by testing the difference of 5 years, we were able to demonstrate the calculations for 
a nonzero Δ0. The computer can be used to perform this test (see Program Note 8.5 
on the website).

Example 8.11

We use this method to examine the effect of the 1.25  mg level of Ramipril. We shall 
analyze the fi rst six weeks of observation of the subjects — four weeks of run-in 
followed by two weeks of treatment. The null hypothesis is that the mean difference 
in diastolic blood pressure between the value at the end of the run-in period and the 
value at the end of the fi rst treatment period is zero. The alternative hypothesis of 
interest is that there is an effect — that is, that the mean difference is greater than 
zero. In symbols, the hypotheses are

H0: md = 0 and Ha: md > 0.

We perform the test at the 0.10 signifi cance level. Thus, the rejection region includes 
values of td that are greater than or equal to 1.298 (= t52,0.90), using 52 degrees of 
freedom because there were 53 pairs of observations that are being analyzed.

From Chapter 7, we fi nd that the sample mean difference in diastolic blood pres-
sure after the two weeks of treatment was 10.6  mmHg for the 53 subjects. The sample 
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As we have discussed in Chapters 6 and 7, drawing any conclusion from this type 
of study design is very diffi cult. There are two concerns — the presence of extraneous 
factors and reversion to the mean — associated with this design. Without some control 
group, it is diffi cult to attribute any effects that are observed in the study group to the 
intervention because of the possibility of extraneous factors. In a tightly controlled 
experiment, the researcher may be able to remove all extraneous factors, but it is diffi -
cult. The presence of a control group is also useful in providing an estimate of the 
reversion-to-the-mean effect if such an effect exists. Thus, we are suggesting that the 
paired t test should be used with great caution — that is, in only those situations for 
which we believe that there are no extraneous factors and no reversion-to-the-mean 
effect. In other cases, we would randomly assign study subjects either to the control 
group or to the intervention group and compare the differences of the pre- and post-
measures for both groups.

If we are comfortable with the use of the paired t test, it can easily be performed by 
the computer (see Program Note 8.6 on the website).

8.7   Testing Hypotheses about the Difference 
of Two Proportions

As in the comparison of two means, when we test hypotheses about the difference of 
two proportions, we need to fi rst check whether the two proportions come from inde-
pendent samples or from a single sample. When two proportions come from a single 
sample or paired observations, they are dependent. The test procedures used are dif-
ferent depending on whether the proportions are independent or dependent.

8.7.1   Difference of Two Independent Proportions

As in Chapter 7, we are considering the case of two independent proportions. The null 
hypothesis is

 H0: p1 − p2 = Δ0

where Δ0 usually is taken to be zero. The test statistic for this hypothesis, assuming that 
the sample sizes are large enough for the use of the normal approximation to the bino-
mial to be appropriate, is

standard deviation of the differences was 8.5  mmHg. Based on these data, we can 
calculate the value of td, and it is
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Since td is greater than 1.298, we reject the null hypothesis in favor of the alternative 
hypothesis. It appears that there is a difference between the value of diastolic blood 
pressure at the end of the run-in period and the treatment period with the blood 
pressure at the end of the treatment period being signifi cantly less than that at the 
end of the run-in period. Note that we only said that there was a difference, but we 
did not attribute the difference to the medication.
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The rejection region for a two-sided alternative includes values of zpd that are less than 
or equal to za /2 or greater than or equal to z1−a /2. If the alternative is less than, the rejec-
tion region consists of values of zpd that are less than or equal to za ; if the alternative 
is greater than, the rejection region consists of values of zpd that are greater than or equal 
to z1−a .

Example 8.12

We test the hypothesis, at the 0.01 signifi cance level, that there is no difference in 
the proportions of milk that contain 80 to 120 percent of the amount of vitamin D 
stated on the label between the eastern and southwestern milk producers. The alter-
native hypothesis is that there is a difference. From Chapter 7, we fi nd the values of 
p1 and p2 are 0.286 and 0.420, respectively. Thus, the test statistic is
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0 286 1 0 286 42 0 420 1 0 420 50
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. .

. . . .
. 88.

Since zpd is not in the rejection region, we fail to reject the null hypothesis. The 
computer can be used to perform this test (see Program Note 8.7 on the website).

8.7.2   Difference of Two Dependent Proportions

In Chapter 7 we discussed the confi dence interval for the difference between two depen-
dent proportions, pd. Recall that the proportions of a particular attribute at two time 
points for the same individuals are not independent and the sample data for these situa-
tions is arranged as follows:

     Attribute at Time

1 2 Number of Subjects

Present Present a
Present Absent b
Absent Present c
Absent Absent d

 Total n

The estimated proportion of subjects with the attribute at time 1 is p1 = (a + b)/n, and 
the estimated proportion with the attribute at time 2 is p2 = (a + c)/n. The difference 
between the two estimated proportions is

 pd = p1 − p2 = (a + b)/n − (a + c)/n = (b − c)/n.

Here we want to test the difference of two dependent proportions. The null and alterna-
tive hypotheses in this situation are

 Ho: pd = Δ0 versus Ha: pd ≠ Δ0.

The test statistic, assuming the sample size is large enough for the normal approxima-
tion to the binomial to be appropriate, is
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where 1/n is the continuity correction suggested by Edwards (1948) and Δ0 is zero in 
most situations. Expression of the estimated standard error for the difference of two 
dependent proportions was given in Chapter 7, and we repeat it here:

Then the test statistic becomes
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This test is valid when the average of the discordant cell frequencies ([b + c]/2) is 5 
or more. When it is less than 5, a binomial test is recommended instead of the z-test. 
The binomial test can be done by restricting our attention to the (b + c) pairs. Under 
the null hypothesis the difference of the proportions conveniently follows a binomial 
distribution with p = 0.5 and sample size of (b + c).

Example 8.13

We use the same data from the biostatistics and epidemiology test in Example 7.9 
and the data were tabulated in a 2 by 2 table.

 Epidemiology

Biostatistics Failed Passed Total

Failed 9 (a)  9 (b) 18
Passed 1 (c) 81 (d) 82

Total 10 90 100 (n)

Let us test the null hypothesis that there is no difference between the failure rates 
in biostatistics (18 percent) and epidemiology (10 percent) against the two-sided 
alternative hypothesis that they are different. We use a signifi cance level of 0.05. The 
test statistic, zpd, is
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. .

Since 2.289 is larger than 1.96, we reject the null hypothesis, suggesting that the two 
failure rates are signifi cantly different. This result is consistent with the conclusion 
based on a 95 percent confi dence interval shown in Example 7.9. The p-value of this 
test is 0.022. If we conducted this test at the 0.01 signifi cance level, we could not 
reject the null hypothesis.

8.8   Tests of Hypotheses and Sample Size
We considered the sample size issue in the context of confi dence interval in Chapter 7. 
We now consider the sample size in the context of hypothesis testing. As seen in testing 
hypotheses, the decision rule is based on the probabilities of Type I and Type II errors 
and increasing the sample size is one way of decreasing the error probabilities. Thus, 



specifi cation of Type I and Type II errors leads to the determination of required sample 
size. We consider the sample size issue for three situations below.

Testing a Single Mean: The z-values specifying a for a m0 (null hypothesis and b 
for a m1 (alternative hypothesis) leads to the determination of n. The z value specifying 
the upper a percentage point of the normal distribution is
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Solving these two equations for n, eliminating x–, we get
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Note that the above formula includes the population standard deviation s. Thus, in 
addition to specifi cation of two error levels, we must have some idea of the underlying 
variability of a variable under consideration. The formula suggests that a larger sample 
size is required when the alternative hypothesis (m1) is closer to the null hypothesis (m0). 
While za is different depending on whether the test is specifi ed as one-sided or two-
sided, zb always refers to one side of the normal curve. Also note that zb carries the 
opposite sign of za .

Example 8.14

Let us consider an example. A researcher wants to determine a required sample size 
for a study to test whether male patients who do not exercise have elevated serum 
uric acid vales. The serum uric acid levels of males are known to be distributed 
normally with mean = 5.4  mg/100  mL and standard deviation of 1. The investigator 
wants to perform a one-sided test at the 5 percent signifi cance level. The null hypoth-
esis is that the population mean is 5.4. This indicates m0 = 5.4 and za = 1.645. He 
further specifi es that if the true difference is as much as 0.4  mg/100  mL, he wishes 
to risk 10 percent chance of failing to reject the null hypothesis. This indicates that 
m1 = 5.8 and zb = −0.28. Then the required sample is
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Testing a Single Proportion: As in the case of proportion, the specifi cation of a for 
a p0 and b for a p1 would lead to the following two equations, ignoring the continuity 
correction:
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Solving for n, eliminating p, we get
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Example 8.15

Consider the planning of a survey to fi nd out how smoking behavior changed while 
students were in college. A comprehensive survey four years ago found that 30 
percent of freshmen smoked. The investigator wants to know how many seniors to 
be sampled this year. He wants to perform a two-tailed test at the 0.05 level. This 
suggests that za = 1.96. The null hypothesis is p0 = 0.3. He also states that if the 
proportion is changed as much as 5 percentage points, then he wishes to risk 10 
percent chance of failing to reject the null hypothesis. This indicates p1 = 0.35 and 
zb = −1.28 (as mentioned earlier, one-tailed z value is used for zb). Then the required 
sample size is
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Testing the Difference of Two Means: The required sample size for testing the dif-
ference of two independent means can also be determined in a similar manner. We 
assume equal variance in two groups (s 2

1 = s 2
2) and an equal division of the sample size 

between the two groups (n1 = n2). Specifying a error for the null hypothesis (m1 − m2 
= Δ0), we have
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Specifying b error for the alternative hypothesis (m1 − m2 = Δ1), we have
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By solving these two equations for n1, eliminating (x–1 − x–2), we get
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Since Δ0 is zero in most application, the denominator is usually Δ1, the value specifi ed 
in the alternative hypothesis. Note that n1 is the sample size in each group and the total 
sample size for the study is 2n1.

Example 8.16

Let us consider a case of designing a clinical nutritional study of special diet regimen 
to lower blood pressure among hypertensive adult males (diastolic blood pressure 
over 90  mmHg). The investigator expects to demonstrate that the new diet would 
reduce diastolic blood pressure by 4  mmHg in three months. He is willing to risk a 



As discussed in Chapter 7, the determination of sample size for a study is not as 
simple as the preceding example may suggest. In practice, we seldom know the popula-
tion standard deviation, and we need to obtain an estimate of its value from the literature 
or from a pilot study. Setting the error levels low may lead to a very large sample size 
that can not possibly be carried out. The balancing of the error levels against availability 
of resources may require an iterative process until a satisfactory solution is found.

8.9   Statistical and Practical Signifi cance
We must not confuse statistical signifi cance with practical signifi cance. For example, 
in the diet study discussed earlier, if we had a large enough sample, an observed value 
for p of 0.51 could be signifi cantly different from the null hypothesis value of 0.50. 
However, this fi nding would be of little practical use. For a result to be important, it 
should be both statistically and practically signifi cant. The test determines statistical 
signifi cance, but the investigator must determine whether or not the observed difference 
is large enough to be practically signifi cant.

When reporting the results of a study, many researchers have simply indicated 
whether or not the result was statistically signifi cant and/or given only the p-value 
associated with the test statistic. This is useful information, but it is more informative 
to include the confi dence interval for the parameter as well.

In conclusion, while hypothesis tests are useful to check whether observed results 
are attributable to chance, estimates of effects should also be considered before conclu-
sions are drawn.

Conclusion
In this chapter we have introduced hypothesis testing and the associated terminology. 
A key point is that the calculation of the probabilities of errors should be conducted 
before the study is performed. By doing this, we can determine whether or not the study, 
as designed, can deliver answers to the question of interest with reasonable error levels. 
We also added to the material on confi dence intervals that was presented in Chapter 7, 
demonstrating the equivalence of the confi dence intervals to the test of hypothesis. We 
showed how to test hypotheses about the more common parameters used with normally 
distributed data and how to calculate power for a test of hypothesis about the mean when 
the population variance was known. In addition, we presented statistics to be used in 

Type I error of 5 percent and a Type II error of 10 percent for a one-sided test. 
NHANES III data show that the mean and standard deviation of diastolic blood 
pressure among hypertensive males are 95.4  mmHg and 5.6  mmHg. The required 
sample size in each group can be calculated by
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. .

The proposed study would need a total of 68 subjects, allocated randomly and equally 
between the treatment and the control group.
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the tests of hypotheses about the difference of two means and two proportions. This 
latter material prepares us for the analysis of variance, in which we extend the test of 
hypothesis to comparing two or more means. Finally, we pointed out that statistical 
signifi cance must not be confused with practical signifi cance.

EXERCISES

8.1 In the diet study with a sample size of 20 pairs, suppose that we used a rejection 
region of 0 to 4 and 16 to 20. The null and alternative hypotheses are the same 
as in the chapter, and we are still interested in the specifi c alternative that p is 
0.80. What are the values of a and b based on this decision rule? What is the 
power of the test for this specifi c alternative? We again observed 13 pairs favor-
ing diet 1. What is the p-value for this result?

8.2 Suppose that the null and alternative hypotheses in the diet study were

H0: p = 0.50 versus Ha: p > 0.50.

 Conduct the test at the 0.05 signifi cance level. What is the decision rule that 
you will use? What are the probabilities of Type I and Type II errors for a sample 
size of 20 pairs and the specifi c alternative that p is 0.80?

8.3 What specifi c alternative value for p do you think indicates an important dif-
ference in the diet study? Provide an example of another study for which the 
binomial distribution could be used. What value would you use for the specifi c 
alternative for p in your study? What is the rationale for your choice for p in 
this new study?

8.4 Complete Table 8.2 by providing the values of power for p ranging from 0.05 
to 0.50 in increments of 0.05. Graph the values of the power function versus 
the values of p for p ranging from 0.05 to 0.95. This graph is the power curve 
of the binomial test using the critical region of 0 to 2 and 10 to 12. What is the 
value of power when p is 0.50? Is there a specifi c name for this value? Describe 
the shape of the power curve. Discuss why the power curve, when the null 
hypothesis is p is equal to 0.50, must have this shape.

8.5 Frickhofen et al. (1991) performed a study on the effect of using cyclosporine 
in addition to antilymphocyte globulin and methylprednisolone in the treatment 
of aplastic anemia patients. There was a sample of 43 patients that received the 
cyclosporine in addition to the other treatment. Assume that the use of antilym-
phocyte globulin and methylprednisolone without cyclosporine results in com-
plete or partial remission in 40 percent of aplastic anemia patients at the end of 
three months of treatment. We wish to determine if the use of cyclosporine can 
increase signifi cantly the percentage of patients with complete or partial remis-
sion. What are the appropriate null and alternative hypotheses? Assume that 
the test is to be performed at the 0.01 signifi cance level. What is the decision 
rule to be used? What is the probability of a Type II error based on the sample 
size of 43 and your decision rule? Twenty-eight patients achieved complete or 
partial remission at the end of three months. Is this a statistically signifi cant 
result at the 0.01 level? What is the p-value of the test?

8.6 In a recent study, Hall (1989) examined the pulmonary functioning of 135 male 
Caucasian asbestos product workers. An earlier study had suggested that the 
development of clinical manifestations of the exposure to asbestos required a 



minimum of 20 years. Therefore, Hall partitioned his data set into two groups, 
one with less than 20 years of exposure to asbestos and the other with 20 or 
more years of exposure. Two of the variables used to examine pulmonary func-
tion are the forced vital capacity (FVC) measured in liters and the percent of 
the predicted FVC value where the prediction is based on age, height, sex, and 
race. Age is a particularly important variable to consider, since there is a strong 
positive correlation between FVC and age. The sample means and standard 
deviations of FVC and percent of the predicted FVC for each of the two groups 
are as follows:

 Length of Exposure

 <20 Years (n = 66) 20 Years (n = 69)

Variable Mean S.D. Mean S.D.

FVC (L) 5.19 0.78 4.27 0.63
% Predicted. FVC 104 9.7 45 12.8

 Choose the more appropriate of these two variables to use in a test of whether 
or not there is a difference in the means of the two exposure groups. Perform 
the test at the 0.05 signifi cance level. Explain your choice for which variable to 
use and also your choice of a one- or two-sided alternative hypothesis. What 
assumption did you make about the population variances? Does this study 
support the idea that there is a difference between those with less than 20 years 
of exposure and those with 20 or more years of exposure? What is the p-value 
of the test? What, if any, other variable should be taken into account in the 
analysis?

8.7 Kirklin et al. (1981) performed a study of infants less than 3 months old who 
underwent open heart surgery. There were 175 infants in their study based on 
data from 1967 to 1980. It was suggested that the survival probabilities improved 
over time. To examine this, the data were broken into two time periods. Test 
the hypothesis that there is a difference in the survival probabilities over these 
two time periods versus the alternative hypothesis of no difference over time 
at the 0.01 signifi cance level. Use the following hypothetical data, based on data 
presented in the study.

Date Probability of Survival Sample Size

Jan. 1967 to Dec. 1973 0.46  66
Jan. 1974 to July 1980 0.64 109

 Provide possible reasons why there might be a difference in the survival prob-
abilities over time.

8.8 Data from the National Institute of Occupational Safety and Health for the 
1980–88 period were used to obtain estimates of the annual workplace fatality 
rates by state (PCHRG 1992). The average annual state rates over the nine-year 
period are given in Exercise 7.4. There is tremendous variability in the rates, 
ranging from a low of 1.9 to a high of 33.1 deaths per 100,000 workers. Provide 
some possible reasons for this variability. For the state of your residence, test 
the hypothesis of no difference in the crude workplace fatality rate and the 
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national average of 7.2 per 100,000 workers. Exercise 7.7 gives the population 
total for your state. Perform this test against a two-sided alternative at the 0.05 
signifi cance level. What is the p-value of the test? Provide possible reasons why 
there is or is not evidence of a difference between your state and the national 
average.

8.9 In the study by Reisin et al. (1978) one of the goals was to observe the effect 
of weight loss without salt restriction on blood pressure. We shall focus on one 
of the intervention groups, the group that was on a weight reduction program 
and given no medication. The program consisted of a strict diet with caloric 
intake reduced to about 50 percent of the usual adult intake for a two-month 
period. Before examining the data for an effect on blood pressure, it is neces-
sary to determine whether or not the diet worked. The summary weight data 
for the sample of 24 patients was a mean reduction of 8.8 kilograms, and the 
standard deviation of the weight changes was 4.3 kilograms. This is a paired-t 
test situation for this single group. However, there was also a control group that 
was not part of the weight reduction effort. During the period when the study 
group lost an average of 8.8 kilograms, the control group showed an average 
decrease of only 0.7 kilograms. The results from the control group increase our 
confi dence in the use of the paired-t test here. Test the null hypothesis of no 
weight reduction versus the appropriate one-sided alternative hypothesis at the 
0.01 signifi cance level. Did the weight reduction program work?

8.10 There have been a number of drug recalls during 1993 because of the failure 
of the drugs to meet dissolution specifi cations, content uniformity specifi ca-
tions, or because of subpotency (PCHRG 1993). Three products from the Parke-
Davis Division of the Warner-Lambert Company were recalled. One of the 
products, Tedral, did not meet either the dissolution or content uniformity 
specifi cations.

  Suppose that the content uniformity specifi cation as expressed in terms of 
the variance. For example, say that the variance of the amount of phenobarbital 
in tablets was supposed to be less than or equal to 0.015 grams2. We selected a 
sample of 30 tablets and found the sample standard deviation of phenobarbital 
to be 0.14 grams. Test the appropriate hypothesis to determine, at the 0.10 level, 
whether there is compliance with the content uniformity specifi cation for the 
amount of phenobarbital in the tablets.

8.11 In Chapter 7, using data from Table 7.6, we saw that there was a statistically 
signifi cant (at the 0.01 level) difference in the mean ages of the AML and ALL 
patients. The difference in ages is important, particularly if the length of sur-
vival is strongly related to age. Calculate the sample Pearson correlation coef-
fi cient between age and length of survival based on all the patients in Table 7.6. 
Then test the null hypothesis, at the 0.05 level, that the population correlation 
coeffi cient is −0.30 versus the alternative hypothesis that the correlation is less 
(more negative) than −0.30. Here we are using −0.30 or more negative values 
to indicate a strong inverse correlation. Based on your analysis, is it necessary 
to control for the effect of age in the comparison of the length of survival of 
the AML and ALL patients?

8.12 In Exercise 7.10, we examined progress towards the Surgeon General’s goal of 
reducing the proportion of 12- to 18-year-old adolescents who smoked to below 
6 percent for a hypothetical community. We found that in 1990, of the 12- to 



18-year-olds in the sample, 11 of 85 admitted that they smoked. Test the hypoth-
esis that the hypothetical community has already attained the Surgeon General’s 
goal at the 0.05 signifi cance level. Should you use a one- or two-sided alterna-
tive hypothesis? Explain your reasoning.

8.13 Opponents of a national health system argue that it will lead to rationing of 
services, something that is viewed as being unacceptable to people in the United 
States. To determine how people in the United States really felt about rationing 
of services, the American Board of Family Practice had a survey conducted and 
some of the results are reported by Potter and Porter (1989). One question asked 
whether or not people would approve of rationing medical attention in the case 
of a terminal illness. Suppose that we have decided that there is substantial 
support for rationing if the proportion of the population who would approve of 
rationing in this case is 40 percent. In the sample of 1007 Americans, 34 percent 
supported rationing in the case of terminal illness. Test the hypothesis that the 
population proportion equals 40 percent versus the alternative hypothesis that 
it is less than 40 percent. Use the 0.01 signifi cance level. It is interesting to 
note that 43 percent of the physicians surveyed supported rationing in this 
situation.

8.14 Anderson et al. (1990) performed a study on the effects of oat bran on serum 
cholesterol for males with high or borderline high values of serum cholesterol. 
High values of serum cholesterol are greater than or equal to 240  mg/dL 
(6.20  mmol/L). We wish to use the data from the study to determine whether 
or not there is a linear relation between body mass index and serum cholesterol. 
The body mass index is defi ned as weight (in kilograms) divided by the square 
of height (in meters). The data are

Body Mass Index Serum Cholesterol Body Mass Index Serum Cholesterol

29.0 7.29 26.3 8.04
21.6 8.43 21.8 7.96
27.2 5.43 24.8 5.77
25.2 6.96 24.5 6.23
25.1 6.65 23.5 6.26
27.9 8.20 24.8 6.21
31.9 5.92 24.4 5.92

 Test the hypothesis of no correlation between body mass index and serum cho-
lesterol at the 0.10 level. Explain your choice of a one- or two-sided alternative 
hypothesis. What is the p-value of the test?

8.15 Exercise 7.6 shows 15 hypothetical serum cholesterol values. For these data, 
test the hypothesis that the population variance equals 100 (mg/dL)2 versus the 
alternative hypothesis that the population variance is greater than 100 (mg/dL)2. 
Perform the test at the 0.025 level. Discuss the results of this test in relation to 
the confi dence interval obtained in Exercise 7.6. Recall that this test requires 
that the cholesterol values follow a normal distribution. Examine the assump-
tion of normality of the cholesterol values.

8.16 For the same data from Exercise 7.6, test the hypothesis that the measuring 
process works — that is, test the hypothesis that the population mean of the 
values measured by this process equals 190 versus the alternative hypothesis 
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that the population mean is not equal to 190  mg/dL. Perform the test at the 0.02 
signifi cance level.

REFERENCES

Anderson, J. W., D. B. Spencer, C. C. Hamilton, et al. “Oat-Bran Cereal Lowers Serum Total and 
LDL Cholesterol in Hypercholesterolemic Men.” American Journal of Clinical Nutrition 
52:495–499, 1990.

Edwards, A. L. Note on the “Correction for Continuity” in Testing the Signifi cance of the Dif-
ference between Correlated Proportions. Psychometrika, 13:185–187, 1948.

Frickhofen, N., J. P. Kaltwasser, H. Schrezenmeier, et al. “Treatment of Aplastic Anemia with 
Antilymphocyte Globulin and Methylprednisolone with or without Cyclosporine.” The New 
England Journal of Medicine 324:1297–1304, 1991.

Hall, S. K. “Pulmonary Health Risk.” Journal of Environmental Health 52:165–167, 1989.

Kirklin, J. K., E. H. Blackstone, J. W. Kirklin, et al. “Intracardiac Surgery under 3 Months of 
Age: Incremental Risk Factors for Hospitality Mortality.” The American Journal of Cardiol-
ogy 48:500–506, 1981.

Lee, E. S., and R. N. Forthofer. Analyzing Complex Survey Data, Second Edition. Thousand 
Oaks, CA: Sage Publications, 2006. Chapter 6, data processed from National Center for Health 
Statistics. The Third National Health and Nutrition Examination Survey, Adult sample of 
Phase I, 1999–2000.

National Center for Health Statistics. Health, United States, 1990. Hyattsville, MD: Public Health 
Service. DHHS Pub. No. 91-1232, 1991.

National Center for Health Statistics. Health, United States, 1991 and Prevention Profi le. 
Hyattsville, MD: Public Health Service. DHHS Pub. No. 92-1232, 1992.

National Center for Health Statistics. Health, United States, 2004 with Chartbook on Trends in 
the Health of Americans. Hyattsville, MD: DHHS Pub. No. 2004-1232, 2004, Table 35.

Potter, C., and J. Porter. “American Perceptions of the British National Health Service: Five 
Myths.” Journal of Health Politics, Policy and Law 14:341–365, 1989.

Public Citizen Health Research Group (PCHRG). “Work-Related Injuries Reached Record Level 
Last Year.” Public Citizen Health Research Group Health Letter 8(12):1–3, 9, 1992.

Public Citizen Health Research Group (PCHRG). “Drug Recalls March 9–June 7, 1993.” Public 
Citizen Health Research Group Health Letter 9(7):9–10, 1993.

Reisin, E., R. Abel, M. Modan, et al. “Effect of Weight Loss without Salt Restriction on the 
Reduction of Blood Pressure in Overweight Hypertensive Patients.” The New England Journal 
of Medicine 298:1–6, 1978.



Nonparametric Tests

Chapter Outline
9.1 Why Nonparametric Tests?
9.2 The Sign Test
9.3 The Wilcoxon Signed Rank Test
9.4 The Wilcoxon Rank Sum Test
9.5 The Kruskal-Wallis Test
9.6 The Friedman Test

In this chapter we present several statistics for testing whether or not probability distri-
butions have the same medians. The use of these statistics does not require that the 
sample data follow any particular probability distribution, and, thus, there are no dis-
tributional parameters to be estimated. Because of these features, these tests are called 
distribution-free or nonparametric tests. We still assume that the data come from con-
tinuous distributions. We begin with justifi cation of using distribution-free methods.

9.1   Why Nonparametric Tests?
The methods studied in the previous chapter were mostly concerned with data from a 
normal distribution. In many situations the data may consist of a number of ordered 
categories such as a subjective rating of the amount of pain relief (none, a little, a lot, 
total) a patient perceives after receiving a treatment. In other cases the data may simply 
be the presence or absence of a condition. In such cases the investigator may be unwill-
ing to use a numerical scale but still wants to test a hypothesis related to the effect of 
a treatment or to the effects of two different treatments. The sign test discussed in this 
chapter can be used for situations with two outcomes. Other methods in this chapter 
are used with ordered data or with numerical data that do not follow the normal 
distribution.

The methods for testing the mean and proportion in the previous chapter are based 
on normality assumptions. If there is obvious nonnormality in the data, distribution-free 
methods can be used. In some cases we may suspect that the data do not follow the 
normal distribution, but we cannot determine the lack of normality for sure because the 
sample size is too small. Distribution-free methods can be used then and are also often 
used for small samples when the central limit theorem may not apply.

9.2   The Sign Test
The sign test is one of the oldest tests used in statistics. For example, in 1710, John 
Arbuthnot, a British physician and collaborator of Jonathan Swift, performed what was 
in effect a sign test on the sex ratio of births over an 82-year period (Stigler 1986).

9
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As we saw in the last chapter, the sign test can be used to compare different interven-
tions for matched pairs. Individuals were assigned to a pair based on age, sex, weight, 
and exercise level, and then one member within the pair was randomly assigned to diet 
1 and the other member assigned to diet 2. The sign test was then used to determine 
which of the two diets was more likely to be associated with the greater weight loss for 
each pair. Another way of stating this null hypothesis is that each difference of weight 
losses has a median of zero. The sign test can also be used with a single population — for 
example, in the comparison of multiple measurements made on the same individual or 
one set of measurements compared with some hypothesized value, as shown in the next 
examples.

As we saw in the last chapter, the p-value of the sign test can be exactly determined 
from the binomial distribution, or we can approximate the p-value by using the normal 
approximation to the binomial when the sample size is large.

Example 9.1

One problem often encountered in research designs involving pre- and posttest 
measurements is the reversion or regression toward the mean effect (Samuels 1991). 
Briefl y, persons scoring high on one test tend not to score as high on a subsequent 
test and low scorers on the fi rst test tend to score higher on the next test — that is, 
the test scores tend to revert toward the mean score. Reversion toward the mean is 
important because of its possible effect on test results (Davis 1976; Nesselroade, 
Stigler, and Baltes 1980).

We consider the caloric intake for 33 boys selected from a larger study 
(McPherson et al. 1990). Table 9.1 shows the caloric intake for the boys for the fi rst 
two of three randomly selected days during a two-week period. The more extreme 
— the seven highest and seven lowest — day 1 values are marked. We can examine 
whether or not there is reversion toward the mean. Based on the descriptive statistics 
shown in Table 9.1, it appears that there could be a reversion toward the mean effect 

Table 9.1 Two days of caloric intake for 33 boys enrolled in two middle schools outside 
of Houston.a

ID Day 1 Day 2 ID Day 1 Day 2 ID Day 1 Day 2

10 1,823 1,623 39 2,330 2,339 118 1,781L 1,844
11 2,007 1,748 40 2,436 2,189 120 2,748 2,104
13 1,053L 2,484 41 3,076H 2,431 127 2,348 2,122
14 4,322H 2,926 44 1,843 2,907 130 2,773H 3,236
16 1,753L 1,054 46 2,301 4,120 137 2,310 1,569
17 2,685 2,304 47 2,546 1,732 139 2,594 2,867
26 2,340 3,182 50 1,292L 810 141 1,898 1,236
27 3,532H 3,289 51 3,049H 2,573 145 2,400 2,554
30 2,842H 2,849 101 3,277H 2,185 148 2,011 1,566
32 2,074 3,312 105 2,039 1,905 149 1,645L 2,269
33 1,505L 1,925 107 2,000 1,797 150 1,723L 3,163

  Mean

 Number Day 1 Day 2
LLowest values 7 1,536 1,936
HHighest values 7 3,267 2,784
aSelected from a larger study by McPherson et al. (1990)



here. The seven lowest values had a mean of 1,536 calories on day 1 compared with 
a mean of 1,936 calories on day 2 — an increase. The seven highest values had a 
mean of 3,267 calories on day 1 compared with a mean of 2,784 calories on day 2 
— a decrease. However, we wish to go beyond a descriptive presentation of the 
sample in our consideration of the question. We wish to test a hypothesis about the 
population values.

If there is no reversion toward the mean effect here, of the boys with extreme day 
1 values, the proportion of those whose day 2 values move in the direction of the 
mean should be equal to 0.50 (ignoring the possibility that the day 1 and day 2 values 
are the same). If there is reversion toward the mean, the proportion should be greater 
than 0.50. The null and alternative hypotheses are therefore

H0: p = 0.50 versus Ha: p > 0.50.

If there are few ties (a subject has same values for day 1 and day 2) in the data, 
convention is that these observation pairs are dropped from the data. For example, 
if one out of the 14 boys had the same day 1 and day 2 values, the sample size for 
the binomial would then be 13 instead of 14, refl ecting the deletion of the tied pair. 
When there are many ties, indicating no difference in the day 1 and day 2 values, 
there is little reason to perform the test for the remaining untied pairs.

The population from which this sample is drawn consists of middle schools in a 
northern suburb of Houston. Although the population is limited, perhaps the results 
from this population can be generalized to boys in suburban middle schools through-
out the United States, not just to those in one suburb of Houston. As was mentioned 
in Chapter 6, this generalization does not fl ow from statistical properties because we 
did not sample this larger population, but it is based on substantive considerations. 
If there are differences in dietary practices between the one Houston suburb and 
others, this generalization to the larger population is then questionable.

We conduct the test of hypothesis at the 0.05 level. The test statistic is the number 
of boys with an extreme day 1 value whose day 2 value moves toward the mean, 
which is found to be 10 from the data. The critical region for the test can be found 
from the binomial distribution. For larger sample sizes, the normal approximation 
to the binomial can be used. We could use Table B2 to fi nd the probabilities for a 
binomial distribution with n = 14 and p = 0.50. We are interested only in the upper 
tail of the binomial distribution; therefore, we consider only values above the expected 
value of 7. Because we wish to perform the test at the 0.05 level, the rejection region 
consists of the values of 11 to 14. If 10 were included in the rejection region, the 
probability of Type I error would exceed the signifi cance level of 0.05. Ten of the 14 
boys with an extreme day 1 value had day 2 values that moved in the direction of 
the mean. Since 10 is not included in the rejection region, we fail to reject the null 
hypothesis in favor of the alternative at the 0.05 signifi cance level. Although we failed 
to reject the null hypothesis, the p-value of this result is 0.0898.

What is the power of the test — that is, what is the probability of rejecting the 
null hypothesis when it should be rejected? As we saw in Chapter 8, to fi nd a value 
for power, we must provide a specifi c alternative. Let us work with the alternative 
that p is 0.70. Then the power is easily found from Table B2 (n = 14, p = 0.3, for 
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x = 3, 2, 1, 0, which is equivalent to x = 11, 12, 13, 14 under p = 0.7). The power is 
0.3552 (= 0.1943 + 0.1134 + 0.0407 + 0.0068), not a large value.

It is even easier to perform the sign test using a computer program (see Program 
Note 9.1 on the website).

Example 9.2

Two major questions in interlaboratory testing programs are (1) whether or not the 
measuring instruments are properly calibrated and (2) whether or not the technicians 
are properly trained. The fi rst question concerns the validity or bias issue, and the 
second question deals with the reliability or precision issue. In Chapter 2 we looked 
at an interlaboratory testing program of the CDC. They distributed a blood sample 
to over 100 randomly selected laboratories throughout the country and asked to 
measure the lead concentration. The test samples were created to contain the lead 
concentration of exactly 41  mg/dL (Hunter 1980). The average reported by all par-
ticipating laboratories was 44  mg/dL with a large variability, ranging from 30 to 60. 
It appears that both the validity and reliability problems are present. The sign test 
can be used with the 100 measurements compared with the true value to examine 
the bias issue between laboratories. We consider the precision issue within one labo-
ratory in the following example.

Suppose that the same CDC sample was mixed in other samples in 13 consecutive 
days and the following measurements are recorded. The laboratory director wants 
to examine the bias issue (calibration of instruments) quickly — that is, whether or 
not these measurements differ signifi cantly from the true value of 41:

 45 43  40 44 49 36 51 46 35 50 41 38 47.

If the measuring instrument is properly calibrated, one would expect half the mea-
surements to be above the value of 41 and half to be below the value. If there is a 
bias problem, the proportion should be greater or less than 0.50. The null and alter-
native hypotheses are therefore

H0: p = 0.50 versus Ha: p ≠ 0.50.

In this case, 48 values are above 41 (underscored values) and four are below (8 
positives and 4 negatives). One value is exactly 41, and we cannot assign a sign. We 
drop this observation from the data following the usual practice and analyze twelve 
observations for which we can determine a positive or negative sign. Thus, the test 
statistic, the number of positive signs, has a value of 8. We conduct the sign test at 
the 0.50 level. The critical region for the test can be found from the binomial distri-
bution. For larger sample sizes, the normal approximation to the binomial can be 
used. We use Table B2 to fi nd the probabilities for a binomial distribution with 
n = 12 and p = 0.50. Since it is a two-tailed test, we need to look at both tails of 
the distribution. The p-value of this test is then twice of the probability that X is 8 
or more — that is, 2(0.1209 + 0.0537 + 0.0161 + 0.0029 + 0.0002), which gives 
0.39. As the p-value is greater than 0.05, we fail to reject the null hypothesis of no 
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The sign test is easy to perform as the test statistic is simply a count of the occur-
rences of some event — for example, a move toward the mean or a positive difference. 
The test can also be used with nonnumerical data — for example, in situations in which 
the outcome is that the subject does or does not feel better. The simplicity of the test is 
attractive, but with numeric data, in ignoring the magnitude of the values, the sign test 
does not use all the information in the data. The other tests in this chapter use more of 
the available information in the data.

9.3   The Wilcoxon Signed Rank Test
Another much more recently developed test that can be used to examine whether or not 
there is reversion toward the mean in the data in Example 9.1 is the Wilcoxon Signed 
Rank (WSR) test. An American statistician, Frank Wilcoxon, who worked in the chemi-
cal industry, developed this test in 1945. Unlike the sign test which can be used with 
nonnumeric data, the WSR test requires that the differences in the paired data come 
from a continuous distribution.

To apply the WSR test to examine whether or not there is reversion toward the mean, 
we prepare the data as follows: The data for the 14 boys with an extreme day 1 value 
are shown in Table 9.2. In this table, the differences between day 1 and day 2 values 
are shown as either a change in the direction of the mean (+) or away from the mean (−). 
If the day 1 and day 2 values for a boy are the same, then we cannot assign a sign, and 

difference in favor of the alternative hypothesis. There is no evidence that the early 
measurements are signifi cantly different from the true value of 41.

We must realize how much information the sign test discards — a value of 42 is 
treated exactly the same as a value of 50 or 51. If the data are normal, the t test makes 
better use of the data and gets more out of the data. There are also other nonpara-
metric tests that use more of the information in the data and those will be discussed 
in the following sections.

Table 9.2 Days 1 and 2 caloric intakes for the 14 boys with the more extreme caloric intakes on day 1.

   Change (+) Toward Change (-) Away from Rank

ID Day 1 Day 2 the Mean the Mean + -

 13 1,053 2,484 1,431  13
 14 4,322 2,926 1,396  12
 16 1,753 1,054  699  10
 27 3,532 3,289 243   3
 30 2,842 2,849   7   1
 33 1,505 1,925 420   4
 41 3,076 2,431 645   9
 50 1,292  810  482   7
 51 3,049 2,573 476   6
101 1,277 2,185 1,092  11
118 1,781 1,844 63   2
130 2,773 3,236  463   5
149 1,645 2,269 624   8
150 1,723 3,163 1,440  14
    Sum of Ranks 82 23
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such a pair would be excluded from the analysis. The absolute differences are ranked 
from smallest to largest, and the ranks are summed separately for those changes in the 
direction of mean and for those changes away from the mean. We use RWSR to represent 
the signed rank sum statistic for the positive differences — in this case, those changes 
toward the mean.

We now consider the logic behind the testing of RWSR. When there are n observations 
or pairs of data, the sum of the ranks is the sum of the integers from 1 to n and that 
sum is n(n + 1)/2. The average rank for an observation is therefore (n + 1)/2.

The null hypothesis is that the differences have a median of zero and the alternative 
hypothesis that the median is not equal to zero for a two-sided test or greater (or smaller) 
than zero for a one-sided test. If the null hypothesis is true, the distribution of the dif-
ferences will be symmetric, and there should be n/2 positive differences and n/2 nega-
tive differences. Therefore, if the null hypothesis is true, the sum of the ranks for positive 
(or negative) differences, RWSR, should be (n/2) times the average rank: (n/2)(n + 1)/2 
= n(n + 1)/4.

The test statistic is the sum of the ranks of positive (or negative) differences, RWSR. 
For a small sample, Table B9 (n < 30) provides boundaries for the critical region for the 
sum of the ranks of the positive (or negative) differences. To give an idea how these 
boundaries were determined, let us consider fi ve pairs of observations. The boundaries 
result from the enumeration of possible outcomes as shown in Table 9.3.

Table 9.3 Positive ranks for a sample of size 5 for 0, 1, and 2 positive ranks.

Number of Positive Ranks Possible Ranks Sum of Positive Ranks Sum of Negative Ranks

0  0 15
1 1 1 14
 2 2 13
 3 3 12
 4 4 11
 5 5 10
2 1, 2 3 12
 1, 3 4 11
 1, 4 5 10
 1, 5 6 9
 2, 3 5 10
 2, 4 6 9
 2, 5 7 8
 3, 4 7 8
 3, 5 8 7
 4, 5 9 6

In Table 9.3, there is no need to show the sum of ranks for 3, 4, and 5 positive ranks 
because their values are already shown under the sum of the negative rank column. For 
example, when there are 0 positive ranks, there are 5 negative ranks with a sum of 15. 
But the sum of 5 positive ranks must also be 15. When there is 1 positive rank, there 
are 4 negative ranks with the indicated sums. But these are also the sum for the possi-
bilities with 4 positive ranks. The same reasoning applies for 2 and 3 positive ranks.

Based on Table 9.3, we can form Table 9.4, which shows all the possible values of 
the sum and their relative frequency of occurrence. Using Table 9.4, we see that the 
smallest rejection region for a two-sided test is 0 or 15, and this gives the probability of 
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a Type I error of 0.062. Thus, in Table B9, there is no rejection region shown for a sample 
size of 5 and a signifi cance level of 0.05. If the test of interest were a one-sided test, 
then it would be possible to have a Type I error probability less than 0.05.

Table 9.4 All possible sums and their 
relative frequency.

Sum Frequency Relative Frequency

0 or 15 1 0.031
1 or 14 1 0.031
2 or 13 1 0.031
3 or 12 2 0.063
4 or 11 2 0.063
5 or 10 3 0.094
6 or 9 3 0.094
7 or 8 3 0.094

Example 9.3

Let us return to the data prepared for the 14 pairs in Table 9.2. We shall perform the 
test at the 0.05 signifi cance level, the same level used in the sign test. Since this is 
a one-sided test, we read the boundary above a ≤ 0.05 under one-sided comparisons 
shown at the bottom of the table, which is equivalent to a ≤ 0.10 under two-sided 
comparisons. Using the row n = 14, the critical values are (25, 80). Since our test 
statistic is 82, greater than 80, we reject the null hypothesis of no regression toward 
the mean in favor of the alternative that there is regression toward the mean.

This result is inconsistent with the result of the sign test in Example 9.1 and 
refl ects the greater power of the WSR test. This greater power is due to the use of 
more of the information in the data by the WSR test compared to the sign test. The 
WSR test incorporates the fact that the average rank for the four changes away from 
the mean is 5.75 (= [1 + 5 + 7 + 10]/4), less than the average rank of 7.50. This lower 
average rank of these four changes, along with the fact that there were only four 
changes away from the mean, caused the WSR test to be signifi cant. The sign test 
used only the number of changes toward the mean, not the ranks of these changes, 
and was not signifi cant. Although the sign test failed to reject the null hypothesis, 
its p-value of 0.0898 was not that different from 0.05.

In applying the WSR test, two types of ties can occur in the data. One type is that 
some observed values are the same as the hypothesized value or some paired observa-
tions are the same — that is, the differences are zero. If this type of tie occurs in an 
observational unit or pair, that unit or pair is deleted from the data set, and the sample 
size is reduced by one for every unit or pair deleted. Again, this procedure is appropriate 
when there are only a few ties in the data. If there are many ties of this type, there is 
little reason to perform the test.

The other type of tie occurs when two or more differences have exactly the same 
nonzero value. This has an impact on the ranking of the differences. In this case, con-
vention is that the differences are assigned the same rank. For example, if two differ-
ences were tied as the smallest value, each would receive the rank of 1.5, the average 
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of ranks 1 and 2. If three differences were tied as the smallest value, each would receive 
the rank of 2, the average of ranks 1, 2, and 3. If there are few ties in the differences, 
the rank sum can still be used as the test statistic; however, the results of the test 
are now approximate. If there are many ties, an adjustment for the ties must be made 
(Hollander and Wolfe 1973), or one of the methods in the next chapter should be 
used.

Example 9.4

Let us apply the WSR test to the data in Example 9.2. The 13 measurements, the 
deviations from the true value of 41, and ranks of absolute differences are as 
follows:

Measures: 45 43 40 44 49 36  51 46 35 50 41 38 47
Differences: +4 +2 −1 +3 +8 −5 +10 +5 −6 +9  0 −3 +6
Ranks:  5  2  1  3.5 10  6.5  12  6.5  8.5 11 —  3.5  8.5

Note that the average ranking procedure is used for the same values of absolute 
differences and the rank is not assigned to tenth observation.

Again the investigator wishes to test whether the repeated measurements are sig-
nifi cantly different from the value of 41 at the 0.05 signifi cance level. We delete one 
observation that has no rank. The test statistic (the sum of ranks for positive differ-
ences) is 58.5. Table B9 provides boundaries of the critical region. For n = 12 and 
a ≤ 0.05 under the two-sided comparison the boundaries are (13, 65). Since the test 
statistic is less than 65, we fail to reject the null hypothesis in favor of the alternative 
hypothesis at the 0.05 signifi cance level. This conclusion is consistent with the result 
of the sign test in Example 9.2.

For a large sample, the normal approximation is used. If there are at least 16 pairs 
of observations used in the calculations, RWSR will approximately follow a normal dis-
tribution. As we just saw, the expected value of RWSR, under the assumption that the null 
hypothesis is true, is n(n + 1)/4, and its variance can be shown to be n(n + 1)(2n + 1)/24. 
Therefore, the statistic
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approximately follows the standard normal distribution. The two vertical lines in the 
numerator indicate the absolute value of the difference — that is, regardless of the sign 
of the difference, it is now a positive value. The 0.5 term is the continuity correction 
term, required because the signed rank sum statistic is not a continuous variable.

Let us calculate the normal approximation to the pairs in Example 9.3. The expected 
value of RWSR is 52.5 (= [14][15]/4), and the standard error is 15.93 ( = ( )( )( )14 15 29 24 ). 
Therefore, the statistic’s value is
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What is the probability that Z is greater than 1.82? This probability is found from Table 
B4 to be 0.0344. This agrees very closely with the exact p-value of 0.0338. The exact 
p-value is based on 554 of the 16,384 possible signed rank sums having a value of 82 
or greater, applying the same logic illustrated in Tables 2 and 3 to the case n = 14. Thus, 
even though n is less than 16, the normal approximation worked quite well in this case. 
The WSR test can be performed by the computer (see Program Note 9.1 on the 
website).

The sign and Wilcoxon Signed Rank tests are both used most frequently in the com-
parison of paired data, although they can be used with a single population to test that 
the median has a specifi ed value. In the use of these tests with pre- and postintervention 
measurement designs, care must be taken to ensure that there are no extraneous factors 
that could have an impact during the study. Otherwise, the possibility of the confound-
ing of the extraneous factor with the intervention variable is raised. In addition, the 
research designer must consider whether or not reversion to the mean is a possibility. If 
extraneous factors or reversion to the mean cannot be ruled out, the research design 
should be augmented to include a control group to help account for the effect of these 
possibilities.

9.4   The Wilcoxon Rank Sum Test
Another test developed by Wilcoxon is the Wilcoxon Rank Sum (WRS) test. This test 
is used to determine whether or not the probability that a randomly selected observation 
from one population being greater than a randomly selected observation from another 
population is equal to 0.5. This test is sometimes referred to as the Mann-Whitney test 
after Mann and Whitney, who later independently developed a similar test procedure 
for unequal sample sizes. The WRS test also requires that the data come from indepen-
dent continuous distributions.

This test is appropriate for the following data situation. A nutritionist wishes to 
compare the proportion of calories from fat for boys in grades 5 and 6 and grades 7 and 
8 that are shown in Table 9.5. Preparation of data involves (1) the ranking of all the 
observed values in the two groups from smallest to largest and (2) summing the ranks 
separately in each group. The ranks of these values are also shown in the table. We have 
rounded the proportions to three decimal places, and as a result there is one tie in the 
data. The tied values were the 16th and 17th smallest observations and hence were 
assigned the rank of 16.5, the average of 16 and 17. We could have used the fourth 
decimal place to break the tie, but we chose not to because we wanted to demonstrate 
how to calculate the ranks when there was a tie. The test statistic, RWRS, is the sum of 
the ranks for the smaller sample (n1 = 14) — in this case, for the 14 fi fth- and sixth-grade 
boys. The total sample size n is 33 in this example.

If there were no differences in the magnitudes of the proportion of calories from fat 
variables in the two groups, the rank sum for the smaller sample would be the product 
of n1 and the average rank of the n observations in the two groups — that is, n1(n + 1)/2. 
For this example, the expected value of RWRS under the null hypothesis of no difference 
would be 238. If the calculated RWRS in Table 9.5 deviate greatly from 238 suggest that 
the null hypothesis of no difference in magnitudes should be rejected in favor of the 
alternative hypothesis that one group has larger values than the other. This test can be 
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done based on critical values shown in Table B10. In Table B10, the value 2a refers to 
the two-sided signifi cance level and N1 and N2, respectively, refer to the number of 
observations in the smaller and larger groups. For a one-sided test at a = 0.05, the page 
with 2a = 0.10 is used.

The critical regions, shown in Table B10, are determined in a similar manner to that 
for the Wilcoxon Signed Rank statistic. All possible arrangements of size n1 of n ranks 
are listed, and the sum of n1 ranks in each arrangement is found. The p-value of the 
RWRS is then determined. For a two-sided test, if RWRS is less than the expected sum, the 
p-value is twice the proportion of the rank sums that are less than or equal to the test 
statistic. If RWRS is greater than the expected sum, the p-value is twice the proportion 
of the rank sums that are greater than or equal to RWRS. For a lower tail, one-sided test, 
the p-value is the proportion of the rank sums that are less than or equal to RWRS. For 
an upper tail, one-sided test, the p-value is the proportion of the rank sums that are 
greater than or equal to RWRS.

As an example of determining the rejection region, consider a situation with four 
observations in each of two samples. The possible ranks are 1 through 8. Table 9.6 shows 
all possible arrangements of size 4 of these ranks, and Table 9.7 shows the relative fre-
quency of the rank sums.

For a two-sided test that is to be performed at the 0.05 signifi cance level, the rejection 
region consists of rank sums of 10 and 26. The probability of these two values is 0.0286, 
which is less than the 0.05 level. Including 11 and 25 in the rejection region increases 
the probability of the rejection region to 0.0571, which is greater than the 0.05 value. 
For a lower tail one-sided test to be performed at the 0.05 level, the rejection region is 

Table 9.5 Proportion of calories from fat for boys in grades 5–6 and 7–8.

 Grades 5–6 Grades 7–8

Proportion from Fat Rank Proportion from Fat Rank

0.365 21 0.311 13
0.437 30 0.278 6
0.248 4 0.282 8
0.424 26 0.421 25
0.403 23 0.426 28
0.337a 16.5 0.345 18
0.295 11 0.281 7
0.319 14 0.578 33
0.285 9 0.383 22
0.465 32 0.299 12
0.255 5 0.150 2
0.125 1 0.336 15
0.427 29 0.425 27
0.225 3 0.354 19
  0.337b 16.5
  0.289 10
  0.438 31
  0.411 24
  0.357 20

Sum of Ranks 224.5  336.5
aTo four decimals, the value is 0.3373.
bTo four decimals, the value is 0.3370.



10 and 11. It is not possible to perform the test at the 0.01 level because the probability 
of each rank sum in the Table 9.7 is greater than 0.01. The rejection region we have 
found here agrees with that shown in Table B10 (2a = 0.05, N1 = 4, N2 = 4), the critical 
region for the WRS test at the 0.05 signifi cance level.

Table 9.6 Listing of sets of size 4 from the ranks 1 to 8.

Set Sum of Ranks Set Sum of Ranks

1,2,3,4 10 2,3,4,5 14
1,2,3,5 11 2,3,4,6 15
1,2,3,6 12 2,3,4,7 16
1,2,3,7 13 2,3,4,8 17
1,2,3,8 14 2,3,5,6 16
1,2,4,5 12 2,3,5,7 17
1,2,4,6 13 2,3,5,8 18
1,2,4,7 14 2,3,6,7 18
1,2,4,8 15 2,3,6,8 19
1,2,5,6 14 2,3,7,8 20
1,2,5,7 15 2,4,5,6 17
1,2,5,8 16 2,4,5,7 18
1,2,6,7 16 2,4,5,8 19
1,2,6,8 17 2,4,6,7 19
1,2,7,8 18 2,4,6,8 20
1,3,4,5 13 2,4,7,8 21
1,3,4,6 14 2,5,6,7 20
1,3,4,7 15 2,5,6,8 21
1,3,4,8 16 2,5,7,8 22
1,3,5,6 15 2,6,7,8 23
1,3,5,7 16 3,4,5,6 18
1,3,5,8 17 3,4,5,7 19
1,3,6,7 17 3,4,5,8 20
1,3,6,8 18 3,4,6,7 20
1,3,7,8 19 3,4,6,8 21
1,4,5,6 16 3,4,7,8 22
1,4,5,7 17 3,5,6,7 21
1,4,5,8 18 3,5,6,8 22
1,4,6,7 18 3,5,7,8 23
1,4,6,8 19 3,6,7,8 24
1,4,7,8 20 4,5,6,7 22
1,5,6,7 19 4,5,6,8 23
1,5,6,8 20 4,5,7,8 24
1,5,7,8 21 4,6,7,8 25
1,6,7,8 22 5,6,7,8 26

Table 9.7 Frequency and relative frequency of the rank 
sums for two samples of four observations each.

Rank Sum Frequency Relative Frequency

10 or 26 1 0.0143
11 or 25 1 0.0143
12 or 24 2 0.0286
13 or 23 3 0.0429
14 or 22 5 0.0714
15 or 21 5 0.0714
16 or 20 7 0.1000
17 or 19 7 0.1000
18 8 0.1143
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Example 9.5

Now we return to the data regarding the proportion of calories coming from fat 
shown in Table 9.5. Let us perform the test of the null hypothesis of no difference 
in the magnitudes of the variable in the two independent populations at the 0.01 sig-
nifi cance level. The alternative hypothesis is that there is a difference in the magni-
tudes. Since this is a two-sided test, extremely large or small values of the test 
statistic will cause us to reject the null hypothesis. The test statistic is the rank sum 
of the smaller sample, which is 224.5. Since the test is being performed at the 0.01 
signifi cance level, we use Table B10 (2a = 0.01) with sample sizes of 14 and 19. The 
critical values are 168 and 308. If RWRS is less than or equal to 168 or greater than 
or equal to 308, we reject the null hypothesis in favor of the alternative hypothesis. 
Since RWRS is 224.5, a value not in the rejection region, we fail to reject the null 
hypothesis. Based on this test, there is no evidence that fi fth- and sixth-grade boys 
differ from seventh- and eighth-grade boys in terms of the proportion of calories 
coming from fat.

Computer programs can be used to perform the Mann-Whitney test (see Program 
Note 9.2 on the website).

Once we exceed the sample sizes shown in Table B10, or for both n1 and n2 greater 
than or equal to 8, we can use a normal distribution as an approximation for the distri-
bution of the RWRS statistic. As we just saw, the expected value of RWRS is expressed in 
terms of the sample sizes. Let n1 be the sample size of the smaller sample, n2 be the 
sample size of the other sample, and n be their sum. The mean and variance of RWRS, 
assuming that the null hypothesis is true, are n1(n + 1)/2 and n1n2(n + 1)/12, respectively. 
Therefore, the statistic
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approximately follows the standard normal distribution. The 0.5 term is the continuity 
correction term, required since the rank sum statistic is not a continuous variable.

Let us calculate the normal approximation for the data in Example 9.5. The expected 
value of RWRS is 238 (= 14[34]/2). The standard error is 27.453 ( = ∗ ∗14 19 34 12 ). 
Therefore, the statistic’s value is
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Since this is a two-sided test, the p-value is twice the probability that a standard normal 
variable is greater than 0.4735. Using linear interpolation in Table B4, we fi nd that

Pr {Z > 0.4735} = 0.3179

and hence the p-value is twice that, or 0.6358.

If there are many ties between the data in the two groups, an adjustment for the ties 
should be made (Hollander and Wolfe 1973) or a procedure in the next chapter should 
be used in the analysis of the data.



9.5   The Kruskal-Wallis Test
The Wilcoxon Rank Sum test is limited to the consideration of two populations. In this 
section, a method for the comparison of the locations (medians) from two or more popu-
lations is presented. This method, the Kruskal-Wallis (KW) test, a generalization of the 
Wilcoxon test, is named after the two prominent American statisticians who developed 
it in 1952. The KW test also requires that the data come from continuous probability 
distributions. The hypothesis being tested by the KW statistic is that all the medians 
are equal to one another, and the alternative hypothesis is that the medians are not all 
equal.

We fi rst introduce a data situation appropriate for this test. A study examined the 
effect of weight loss without salt restriction on blood pressure in overweight hyperten-
sive patients (Reisin et al. 1978). Patients in the study all weighed at least 10 percent 
above their ideal weight, and all were hypertensive. The patients either were not taking 
any medication or were on medication that had not reduced their blood pressure below 
140  mmHg systolic or 90  mmHg diastolic. Three groups of patients were formed. Group 
I consisted of patients who were not taking any antihypertensive medication and who 
were placed on a weight reduction program; Group II patients were also placed on a 
weight reduction program in addition to continuing their antihypertensive medication; 
and Group III patients simply continued with their antihypertensive medication. Patients 
already receiving medication were randomly assigned to Groups II or III. Patients were 
followed initially for two months, and the baseline value was the blood pressure reading 
at the end of the two-month period. Patients were then followed for four additional 
months. Changes in weight and blood pressure between Month 2 and Month 6 were 
measured.

Table 9.8 contains simulated values that are consistent with those reported in the 
study by Reisin et al. (1978). Besides using simulated values, the only data shown are 
from the female patients. We wish to determine whether or not there are differences in 
the median reductions in diastolic blood pressure in the populations of females from 
which these samples were drawn. To prepare the data for the test we rank all the simu-
lated values in three groups from the smallest to the largest value (1 through 39 in this 

Table 9.8 Simulated reductions (mmHg) in diastolic blood pressure for females from month two to 
month six of follow-up in each of the three treatment groups with ranks of simulated values and sums 
of ranks.

 Medication and
Only Weight Reduction Weight Reduction Only Medication
(n1 = 8) (n2 = 15) (n3 = 16)

Simulated Values
38  10  10  28 19 36 16 36  12 16 0 −12
 6   8  33   8 38 28 36 22  14 16 −10 4
 42 24 40 34 −20 −6 18 16
  6 16 30  −14 6 −16 6
Ranks of Simulated Values
36.5 15.5 15.5 28.5 25 34 21 34  17 21 7 4
10.5 13.5 31  13.5 36.5 28.5 34 26  18 21 5 8
 39 27 38 32   1  6 24 21
 10.5 21 30    3 10.5 2 10.5
Sums of Ranks
R1 = 164.5 R2 = 436.5 R3 = 179
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case) and sum the ranks separately in each group. Observations with the same value 
receive the same average rank as above. Table 9.8 also shows the ranks of the values 
and sums of ranks in each group.

It is possible, although not feasible for any reasonable sample sizes, to explore the 
rationale underlying this test by examining the sums of the ranks as we had done in the 
Wilcoxon tests. Since it is not feasible to determine the distribution of the rank sums, 
Kruskal and Wallis suggested that H, a statistic defi ned in terms of ni and Ri, the sample 
size and rank sum for the ith group, be used as the test statistic. The defi nition of H is
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where n is the sum of the group sample sizes and k is the number of groups. This statistic 
follows the chi-square distribution with (k − 1) degrees of freedom when the null hypoth-
esis is true. The statistic H follows the chi-square distribution because H can be shown 
to be proportional to the sample variance of the rank sums which follows a chi-square 
distribution. Thus, we reject the null hypothesis when the observed value of H is greater 
than c2

k-1,1-a , and we fail to reject the null hypothesis otherwise.

Example 9.6

Let us conduct the KW test for the weight loss data in Table 9.8. To calculate the test 
statistic H we need to use the rank sums for the three groups shown, and we must 
also choose the signifi cance level for the test. Let us perform the test at the 0.10 
signifi cance level.

We already have the information required to calculate H. The observed value of 
H is
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If the null hypothesis, equality of medians, is true, H follows the chi-square distribu-
tion with 2 degrees of freedom. Since 19.133 is greater than 4.61 (=c2

2, 0.90), we reject 
the null hypothesis in favor of the alternative. From Table B7, we see that the p-value 
of H is less than 0.005. There appears to be a difference in the effects of the different 
interventions on diastolic blood pressure. Weight reduction can play an important 
role in blood pressure reduction for overweight patients.

Computer programs can be used to perform the Kruskal-Wallis test (see Program Note 
9.3 on the website).

9.6   The Friedman Test
While the Kruskal-Wallis test is designed to compare k independent groups, the Fried-
man test is for comparing k dependent groups. The groups are no longer independent 
when matched samples are assigned to k comparison groups. Referring to the experi-
mental designs discussed in Chapter 6, the Kruskal-Wallis test is suitable for a com-
pletely randomized design, and the Friedman test is for a randomized block design. A 



distribution-free test for the randomized block design was given by Friedman (1937), 
and this test is a generalization of the sign test to more than two groups.

The Friedman test starts with ranking of observed values within blocks. The test 
statistic T suggested by Friedman is defi ned in terms of the sum of ranks for the ith 
comparison groups, Ri; the number of blocks, b; and the number of comparison groups, 
k, as follows:
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It is similar to H statistic for the Kruskal-Wallis test, but the ranking procedure is dif-
ferent. The ranking in the Friedman test is done separately within blocks recognizing 
the randomized block design, whereas the Kruskal-Wallis test is based on a single 
overall ranking refl ecting the completely randomized design. The T statistic follows the 
chi-square distribution with (k − 1) degrees of freedom when the null hypothesis is true. 
As in the case of H, we reject the null hypothesis when the observed value of T is greater 
than c2

k−1,1−a , and otherwise we fail to reject the null hypothesis.

Example 9.7

Effectiveness of insecticides is evaluated based on a randomized block design (Steel 
and Tome 1960). Four blocks of fi elds were used for this study. The numbers of living 
adult plum curculios emerging from separate caged areas of soil treated by fi ve dif-
ferent insecticides and a control (check) were counted. The data in this example are 
count data ranging from 0 to 217, and the assumptions of normality and equality of 
variance may be in doubt. Therefore, we decided to use the Friedman to test the null 
hypothesis at the 0.05 signifi cance level. Table 9.9 shows the data and the ranks 
within each block.

Based on the data in Table 9.9, the test statistic is calculated as follows:
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Since the test statistic of 19.5 is greater than the critical value of 11.07 (= c2
5,0.95), we 

reject the null hypothesis in favor of the alternative hypothesis that the treatment 
groups are different.

Table 9.9 The number of living adult plum curculios emerging from caged areas treated by 
different insecticides (the number in parentheses are ranks within each block).

 Insecticides

Block Lindane Dieldrin Aldrin EPN Chlordane Check

1 14 7 6 95 37 212
 (3) (2) (1) (5) (4) (6)
2  6 1 1 133 31 172
 (3) (1.5) (1.5) (5) (4) (6)
3  8 0 1 86 13 202
 (3) (1) (2) (5) (4) (6)
4 36 15 4 115 69 217
 (3) (2) (1) (5) (4) (6)

Sums of ranks 12 6.5 5.5  20 16  24
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Computer programs can be used to perform the Friedman test (see Program Note 
9.4 on the website).

Conclusion
In this chapter, we introduced several of the more frequently used nonparametric tests 
for continuous data. The nonparametric tests are attractive because they do not require 
an assumption of the normal distribution. Even when the data do come from normal 
distributions, these nonparametric tests do not sacrifi ce much power in comparison to 
tests based on the normality assumption. Although these tests were designed to be used 
with continuous data, they are often used with ordered data as well. Their use with 
ordered data can create problems as there are likely to be more ties for ordered data 
than for continuous data. In the next chapter, we introduce methods for testing hypoth-
eses about ordered or nominal data, as well as about continuous data that are grouped 
into categories.

EXERCISES

9.1 The following table below shows the annual average fatality rate per 100,000 
workers for each state, data originally introduced in Exercise 7.4. A state is 
placed into one of three groups according to the National Safe Workplace Insti-
tute (NSWI) score. Group 1 consists of states whose NSWI score was above 
55, group 2 consists of states with scores of 31 to 55, and group 3 consists of 
states with scores less than or equal to 30. In Exercise 7.4, we examined the 
correlation between the fatality rates and the NSWI scores. Here we wish to 
determine whether or not we believe that the median fatality rates for the three 
groups of states are the same.

State Fatality Rates per 100,000 Workers by the National Safe Workplace Institute Scores

NSWI Groups

 Low (£ 30) Middle (31 to 55) High (> 55)

State Rate Rank State Rate Rank State Rate Rank

AR 12.5 41 LA 11.2 35 NH 4.5 8
WY 29.5 49 KY 11.9 39 WI 6.3 16
NM 12.0 40 GA 10.3 33 RI 3.3 4
KS 9.1 28 VT 6.8 19 AK 33.1 50
ND 13.8 43 AZ 4.1 6 VA 9.9 32
ID 17.1 47 DE 5.8 13 MI 5.3 10.5
TN 8.1 25 MO 5.3 10.5 OR 11.0 34
HI 6.0 14 MD 5.7 12 MN 4.3 7
AL 9.0 27 NC 7.2 21 CT 1.9 1
MS 14.6 44 IN 7.8 23.5 ME 7.8 23.5
SD 14.7 45 WV 16.2 46 TX 11.7 38
SC 6.7 18 FL 9.3 30.5 MA 2.4 2
UT 13.5 42 CO 9.3 30.5 NY 2.5 3
NE 11.3 36 OK 8.7 26 IL 6.9 20
MT 21.6 48 IA 9.2 29 NJ 3.4 5
NV 11.5 37 OH 4.8 9 CA 6.5 17
   PA 6.1 15
   WA 7.7 22

Sum of Ranks  584   420   271



Percent Reduction in Pre- and Postproject FEV1/FVC Values by Level of Exposure to Asbestos 
and Silica-Containing Dusts

 Higer Exposure (n = 10) Lower Exposure (n = 13)

0.73 0.72 0.70 0.33 0.54 0.42 0.70 0.65 0.62 0.81
0.75 0.67 0.73 0.69 0.59 0.64 0.63 0.60 0.66 0.61
     0.68 0.76 0.65

 Is there any need to use a statistical test of hypothesis to determine whether or 
not the median fatality rates of these three groups of states are the same? If 
there is, what test would you use?

9.2 A study was conducted to determine the effect of short-term, low-level exposure 
of demolition workers to asbestos fi bers and silica-containing dusts (Kam 1989). 
Twenty-three demolition workers were exposed for 26 consecutive days during 
the destruction of a three-story building. The dependent variable is the percent 
reduction in the baseline value of the ratio of the forced expiratory volume in 
the fi rst second to the forced vital capacity (FEV1/FVC) compared to the same 
ratio at the end of the demolition project. None of the exposures to asbestos or 
silica were above the permissible values. The following table shows the data for 
the 23 workers, grouped according to the level of exposure to asbestos and 
silica.

 Test the hypothesis that there is no difference in the median percent reduction 
for those with the higher level of exposure compared to those with the lower 
level of exposure. Use a 5 percent signifi cance level.

9.3 A study was conducted to compare the effectiveness of the applied relaxation 
method and the applied relaxation method with biofeedback in patients with 
chronic low back pain (Strong, Cramond, and Mass 1989). Twenty female 
patients were randomly assigned to each treatment group, and the treatments 
were then provided. One of the dependent variables studied was the change in 
the pain rating index — based on the McGill Pain Questionnaire — between 
pre- and posttreatment. Patients were also followed for a longer period, but those 
results are not used in this exercise. The actual change data were not shown in 
the article, but the following table contains hypothetical changes for the two 
groups.

 Use the appropriate one or two-sided test for the null hypothesis of no difference 
in the median changes in pain rating between the two groups at the 0.10 signifi -
cance level. Provide the rationale for your choice of either the one-sided or 
two-sided test.

9.4 The following data are from the 1971 census for Hull, England (Goldstein 1982). 
The data show by ward, roughly equivalent to a census tract, the number 
of households per 1000 without a toilet and the corresponding incidence of 
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Hypothetical Data Showing the Changes in Pre- and Posttreatment Values of the McGill Pain 
Questionnaire for 40 Women Randomly Assigned to the Different Treatments

 Relaxation Only Relaxation with Biofeedback

10 11 21 18 16 16 15  9  2 19  9 12  7 14  4  2 11  8  9 11
 5 18 16 14 12 13 11 13 14 20  6 10  9  7  8 10  6 13  7  8
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infectious jaundice per 100,000 population reported between 1968 and 1973. 
Group the ward into three groups based on the rate of households without a 
toilet. Use the Kruskal-Wallis test to determine whether or not there is a differ-
ence in the median incidence of jaundice for the three groups at the 0.05 sig-
nifi cance level.

Ward Number of Toilets Jaundice Ward Number of Toilets Jaundice

 1 222 139 12 1 128
 2 258 479 13 276 263
 3 39 88 14 466 469
 4 389 589 15 443 339
 5 46 498 16 186 189
 6 385 400 17 54 198
 7 241 80 18 749 401
 8 629 286 19 133 317
 9 24 108 20 25 201
10 5 389 21 36 419
11 61 252

9.5 Exercise 9.4 provides an example of ecological data, data aggregated for a group 
of subjects. Care must be taken in the use of this type of data (Piantadosi, Byar, 
and Green 1988). For example, suppose in Exercise 9.4 there was a statistically 
signifi cant difference in the median incidence of jaundice for the three groups 
of wards. Is it appropriate to conclude that there is an association between the 
presence or absence of a toilet in a household and the occurrence of jaundice? 
Provide the rationale for your answer.

9.6 In the study on Ramipril introduced in Chapter 7, there was a four-week base-
line period during which patients took placebo tablets (Walter, Forthofer, and 
Witte 1987). Of the 160 patients involved in the study, 24 had previously taken 
medication for high blood pressure, but it had been greater than seven days 
since they had last taken their medication. These 24 patients had some expecta-
tion that medication works. We will examine hypothetical data based on the 
summary statistics reported to determine whether or not there is a placebo effect 
— a reduction in blood pressure values associated with taking the placebo — 
here. The hypothetical systolic blood pressure (SBP in mmHg) values are the 
following:

Patient Number Week 0 SBP Week 4 SBP Patient Number Week 0 SBP Week 4 SBP

 1 171 182 13 148 178
 2 172 167 14 182 166
 3 166 186 15 210 183
 4 181 175 16 171 164
 5 194 177 17 165 163
 6 200 200 18 201 175
 7 200 168 19 189 165
 8 181 178 20 197 174
 9 173 189 21 187 167
10 178 189 22 174 180
11 206 167 23 197 185
12 199 185 24 169 149



Letters: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Sum

RR: 1 2 1 1 3 2 3 1 3 3 2 2 3 2 2.5 3 3 2 39.5
RU: 3 3 3 2 1 3 2 3 1 1 3 3 2 3 2.5 2 2 3 42.5
UR: 2 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 1 1 26

 Use the sign test to test the hypothesis that the proportion of decreases in SBP 
between week 0 and week 4 is equal to 0.50 versus the alternative that the pro-
portion of decreases in SBP is greater than 0.50. Use the 0.05 signifi cance level. 
If there were reversion or regression to the mean here, would that affect our 
conclusion about the placebo effect? Test the hypothesis of no reversion to the 
mean at the 0.05 level.

9.7 Use the Wilcoxon Signed Rank test to test the hypothesis that the median 
change in SBP in Exercise 9.6 is zero versus the alternative hypothesis that the 
median change is greater than zero. Perform the test at the 0.05 level. Compare 
your results to those of the sign test. Do you think that there is a placebo 
effect here?

9.8 As an extension of Example 9.2, of the 13 measurements of lead concentration 
in the blood, 6 measurements were done in the morning, and the remaining 7 
measurements were done in the afternoon. The measurements were as 
follows:

 Mornings: 43 44 51 50 41 47
 Afternoons: 45 40 49 35 46 36 38

 Is there any evidence that the morning measurements are different from the 
afternoon measurements in the differences from the true value of 41? Test the 
null hypothesis of no difference at the 0.05 signifi cance level using the Wilcoxon 
Rank Sum test. Would you use a two-sample t test for this data? Why or 
why not?

9.9 A psychologist investigated the effect of three different patterns of reward (RR 
= full reinforcement, RU = reinforcement trial followed by unreinforcement 
trial, UR = unreinforcement trial followed by reinforcement trial) upon the 
extent of learning an opposing habit (Siegel 1956). Eighteen litters of rats, three 
in each litter, were trained under the three patterns of reward, and the three rats 
in each litter were randomly assigned to the three reinforcement patterns. The 
extent of learning was measured by counting the number of errors made in the 
trials to compare the three reward patterns. Because the count of errors is prob-
ably not an interval measure and the count data exhibits possible lack of homo-
geneity of variance, the error counts are ranked within each litter:

 What nonparametric test would you use for these data? Perform the test at the 
0.05 signifi cance level and interpret the test results

9.10 A group of researchers investigated the effectiveness of an educational interven-
tion designed to improve physicians’ knowledge of the costs of common medi-
cations and willingness to consider costs when prescribing (Korn et al. 2003). 
The researchers administered a written survey before and six months after 
the intervention. Physicians were asked to agree or disagree with the state -
ments about the relevance of cost for prescribing, using a 5-point Likert scale 
(1 = strongly agree; 2 = somewhat agree; 3 = neutral; 4 = somewhat disagree; 
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5 = strongly disagree). They used “the Wilcoxon matched-pairs signed-rank 
test” which measures the effect of intervention considering the nature of the 
data. A total of 109 pairs of pre- and postsurvey responses were analyzed and 
p-values were reported for selected questions.

Discuss how the Wilcoxon signed-rank test could have been applied to the 
data. How many zeros do you think the investigators had in the differences in 
the 5-point scale? How many tied ranks do you think they had? Do you think 
the test was appropriate for the data?
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Analysis of Categorical 
Data

Chapter Outline
10.1 The Goodness-of-Fit Test
10.2 The 2 by 2 Contingency Table
10.3 The r by c Contingency Table
10.4 Multiple 2 by 2 Contingency Tables

In this chapter, we present some additional nonparametric tests that are used with 
nominal, ordinal, and continuous data that have been grouped into categories. The data 
in this chapter are presented in the form of frequency or contingency tables. In Chapter 
3, we demonstrated how one- and two-way frequency tables could be used in data 
description. In this chapter, we show how frequency or contingency tables can be used 
in the test of whether or not the distribution of the variable of interest agrees with some 
hypothesized distribution or whether or not there is an association among two or more 
variables. For example, in the material on the normal distribution in Chapter 5, we 
examined the distribution of blood pressure. In this chapter, we show how to test the 
null hypothesis that the data follow a particular distribution. In Chapter 4, we considered 
the association between birth weight and the timing of the initiation of prenatal care. 
In this chapter, we show how to test the null hypothesis that an association exists 
between two discrete variables versus the alternative hypothesis that there is no associa-
tion. A goodness-of-fi t statistic is used to test these hypotheses, and it follows a chi-
square distribution if the null hypothesis is true.

10.1  The Goodness-of-Fit Test
The goodness-of-fi t test can be used to examine the fi t of a one-way frequency distribu-
tion for X, the variable of interest, to the distribution expected under the null hypothesis. 
This test, developed in 1900, is another contribution of Karl Pearson, also known for 
the Pearson correlation coeffi cient. The X variable is usually a discrete variable, but it 
could also be a continuous variable that has been grouped into categories.

To facilitate the presentation, we shall use the following symbols. Let Oi represent 
the number of sample observations at level i of X and Ei represent the expected number 
of observations at level i, assuming that the null hypothesis is true. The Ei are found by 
multiplying the population probability of level i, pi, by n, the total number of observa-
tions. Since the sum of the pi is one, the sum of the Ei is n.

A natural statistic for this comparison would seem to be the sum of the differences 
of Oi and Ei — that is, Σ(Oi − Ei). However, since both the Oi and the Ei sum to n, the 

10
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sum of their differences is always zero. Thus, this statistic is not very useful. However, 
the sum of the squares of the differences, Σ(Oi − Ei)

2, will be different from zero except 
when there is a perfect fi t. Squaring the differences is the same strategy used in defi ning 
the variance in Chapter 3.

One problem remains with Σ(Oi − Ei)
2. If the sample size is large, even very small 

differences in the observed and expected proportions at each level of X become large 
in terms of the Oi and Ei. Therefore, we must take the magnitude of the Oi and Ei into 
account. Pearson suggested dividing each squared difference by the expected number 
for that category and using the result, Σ(Oi − Ei)

2/Ei as the test statistic. It turns out that 
this statistic, for reasonably large values of Ei, follows the chi-square distribution. In 
the early 1920s, Sir Ronald A. Fisher showed that this statistic has k − 1 − m degrees 
of freedom, where k is the number of levels of the X variable and m is the number of 
estimated parameters. For the chi-square distribution to apply, no cell should have an 
expected count that is less than fi ve times the proportion of cells with Ei that are less 
than fi ve (Yamold 1970). For example, if k is 10 and two cells have expected counts less 
than fi ve, then no expected cell count should be less than one (= 5[2/10]). If some of 
the Ei are less than this minimum value, categories with small expected values may be 
combined with adjacent categories. The combinations of categories must make sense 
substantively; otherwise the categories should not be combined.

Note that the goodness-of-fi t test is a one-sided test. Only large values of the chi-
square test statistic will cause us to reject the null hypothesis of good agreement between 
the observed and expected counts in favor of the alternative hypothesis that the observed 
counts do not provide a good fi t to the expected counts. Small values of the test statistic 
support the null hypothesis.

We consider the following two examples: In the fi rst example, no parameter estima-
tion is required, and two parameters are estimated in the second example.

Example 10.1

(No Parameter Estimation Required): The study of genetics has led to the discovery 
and understanding of the role of heredity in many diseases — for example, in hemo-
philia, color-blindness, Tay-Sachs disease, phenylketonuria, and diabetes insipidus 
(Snyder 1970). The father of genetics, Abbe Gregor Mendel, presented his research 
on garden peas in 1865, but the importance of his results was not appreciated until 
1900. One of Mendel’s discoveries was the 1  :  2  :  1 ratio for the number of dominant, 
heterozygous, and recessive offspring from hybrid parents — that is, from parents 
with one dominant and one recessive gene.

Although doubts have been raised about Mendel’s data, we shall use data from 
one of his many experiments. Table 10.1 shows the number of offspring by type from 

Table 10.1 Mendel’s data on garden peas: 
number of smooth and wrinkled offspring 
from hybrid parents.

AA Aa aa Total

138 256 126 529



The goodness-of-fi t chi-square statistic can also be used to test the hypothesis that 
the data follow a particular probability distribution. Thus, it can be used to complement 
the graphical approaches — for example, the Poissonness and normal probability plots 
presented in Chapter 5. The test of hypothesis provides a number, the p-value, that can 
be used alone or together with the graphical approach, to help us decide whether or not 
we will reject or fail to reject the null hypothesis.

the crossbreeding of smooth seeds, (A), the dominant type, with wrinkled seeds, (a), 
the recessive type (Bishop, Fienberg, and Holland 1975). Dominant means that when 
there are both a smooth and a wrinkled gene present, the pea will be smooth. The 
pea will be wrinkled only when both genes are wrinkled.

The question of interest is whether or not this experiment supports Mendel’s theo-
retical ratio of 1  :  2  :  1. The null hypothesis is that the observed data are consistent 
with Mendel’s theory. The alternative hypothesis is that the data are not consistent 
with his theory. Let us test this hypothesis at the 0.10 signifi cance level.

We must fi rst calculate the expected cell counts for this one-way contingency 
table. Since the expected counts are based on the theoretical 1  :  2  :  1 ratio, the ratio 
tells us that we expect 1/4 of the observations to be AA, 2/4 to be Aa or aA, and 1/4 
to be aa. One-fourth of 529 is 132.25, and one-half of 529 is 264.5; therefore, the 
expected counts are 132.25, 264.5, and 132.25, respectively. The test statistic is

X 2
2 2 2138 132 25

132 25

265 264 5

264 5

126 132 25

132
= −( )

+ −( )
+ −( ).

.

.

.

.

.225
0 546= . .

This statistic follows the chi-square distribution if the null hypothesis is true. The 
number of degrees of freedom is k − 1 − m. In this example, the value of k is 3 for 
the three types of possible offspring. Since we did not estimate any parameters, m 
is 0. Therefore, there are 2 degrees of freedom. The critical value, c2

2,0.90, is 4.61. 
Since 0.546 is less than 4.61, we fail to reject the null hypothesis. It appears that 
these data support Mendel’s theoretical results.

Example 10.2

Two Parameters Estimated: Let us test the hypothesis, at the 0.01 signifi cance level, 
that the systolic blood pressure values for 150 typical 12-year-old boys in the United 
States, shown in Table 10.2, come from a normally distributed population. In testing 
the hypothesis that data are from a normally distributed population, we must specify 
the particular normal distribution. This specifi cation means that the values of the 
population mean and standard deviation are required. However, since we do not 
know these values for the systolic blood pressure variable for U.S. 12-year-old boys, 
we will estimate their values. Table 10.2 shows the sample estimates of the mean 
and standard deviation.

The goodness-of-fi t test is based on the variable of interest being discrete or being 
grouped into k categories. Therefore, we must group the systolic blood pressures into 
categories. We use ten categories, shown in Table 10.3.

The Goodness-of-Fit Test  271
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The expected values are found by converting the category boundaries to standard 
normal values and then fi nding the probability associated with each category. For 
example, the probability associated with the fi rst category, a systolic blood pressure 
less than 80.5  mmHg, is found in the following manner. First, 80.5 is converted to 
a standard normal value by subtracting the mean and dividing by the standard devia-
tion. Thus, 80.5 is converted to −2.165(= [80.5 − 107.45]/12.45). The probability that 
a standard normal variable is less than −2.165 is 0.0152. The expected number of 
observations is found by taking the product of n, 150, and the probability of being 
in the category. Thus, the expected number of observations in the fi rst category is 
2.28 (= 150[0.0152]).

The expected number of observations in the second category is found in the fol-
lowing manner. The upper boundary of the second category, 87.5, is converted to the 
standard normal value of −1.602 (= [87.5 − 107.45]/12.45). The probability that a 
standard normal variable is less than −1.602 is 0.0545. The probability of being in 
the second category is then 0.0393 (= 0.0545 − 0.0152). This probability is multiplied 
by 150 to get the expected count of 5.90 for the second category. The other expected 

Table 10.2 Systolic blood pressure values (mmHg) and their sample mean and 
standard deviation for 150 12-year-old boys.

Value Freq. Value Freq. Value Freq.

80 3 100 19 118 2
82 1 102 7 120 7
84 1 104 9 122 2
86 1 105 6 124 2
88 2 106 4 125 3
90 7 108 10 126 2
92 2 110 17 128 2
94 2 112 7 130 5
95 6 114 3 134 2
96 2 115 2 136 1
98 3 116 6 140 2

 Sample Mean = 107.45
Sample Standard Deviation =  12.45

Table 10.3 Number of boys observed and expecteda in 
the systolic blood pressure categories.

Systolic Blood Number

Pressure (mmHg) Observed Expected

≤80.5 3 2.28
80.51–87.5 3 5.90
87.51–94.5 13 14.18
94.51–101.5 30 25.10
101.51–108.5 36 32.57
108.51–115.5 29 31.13
115.51–122.5 17 21.83
122.51–129.5 9 11.26
129.51–136.5 7 4.28
≥136.5 3 1.47

Total 150 150.00
aExpected calculated assuming the data follow the N 
(107.45,12.45) distribution
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In dealing with continuous variables — for example, the blood pressure variable — 
we have to decide how many intervals and what interval boundaries should be used. In 
the preceding example, we used 10 intervals. Some research has been conducted on the 
relation between power considerations and the number and size of intervals, and, as we 
might expect, the number of intervals depends on the sample size. Table 10.4, based on 
a review by Cochran (1952), shows the suggested number of intervals to be used with 
a continuous variable. The size of the intervals may also vary. The intervals can be 
chosen so that the expected number of observations in each interval is approximately 
equal. Thus, some intervals may be much narrower than other intervals. For ease of 
computation, it is reasonable to choose the intervals so that the observed number of 
observations in each interval is approximately equal. These suggestions for the choice 
of the number and size of intervals differ from those used in Example 10.2, but the goals 
of the analyses are also different. In Example 10.2, the equal size intervals were used 
regardless the number of observations in each interval to determine whether or not it 
appears that the data follow a particular distribution.

cell counts are calculated in this same way. If the sum of the expected counts does 
not equal the number of observations, with allowance for rounding, an error has been 
made. Note that three cells have expected counts less than 5. For the chi-square dis-
tribution to apply, no cell should have an expected count less than 1.5 (= 5[3/10]). 
The expected count in the last cell is 1.47, a value that is very close to 1.5. The dif-
ference between 1.47 and 1.50 is so slight that we may choose to apply the chi-square 
distribution, or we could combine the last two categories and use only nine categories 
in the calculation of the test statistic. Whichever choice we choose should not have 
much impact on the value of the test statistic.

The calculation of the chi-square goodness-of-fi t statistic is

X 2
2 2 23 2 28

2 28

3 5 90

5 90

3 1 47

1 47
8 058= −( )

+ −( )
+ + −( )
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.
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. . . .

.
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The value of k, the number of categories, is 10 and m, the number of parameters 
estimated, is 2. Therefore, there are 7 degrees of freedom (= 10 − 1 − 2). The value 
of this test statistic is compared to 18.48 (= c2

7,0.99). Since 8.058 is less than 18.48, we 
fail to reject the null hypothesis. Based on this sample, there is no evidence to suggest 
that the systolic blood pressures of 12-year-old boys are not normally distributed.

Table 10.4 Guideline for the number of intervals to be used with a continuous variable.

Sample size 200 400 600 800 1000 1500 2000
Number of intervals  15  20  24  27   30    35   39

Source: Cochran, 1952

10.2  The 2 by 2 Contingency Table
In this section, we extend the use of the chi-square goodness-of-fi t test statistic to two-
way contingency tables. This extension allows a determination of whether or not there 
is an association between two variables. We begin the study of the association of two 
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discrete random variables with the simplest two-way table, the 2 by 2 contingency table. 
This statement by M. H. Doolittle in 1888 expresses the purpose of our analysis:

The general problem may be stated as follows: Having given the number of instances respec-
tively in which things are both thus and so, in which they are thus but not so, in which they 
are so but not thus, and in which they are neither thus nor so, it is required to eliminate the 
general quantitative relativity inhering in the mere thingness of the things, and to determine 
the special quantitative relativity subsisting between the thusness and the soness of the things 
(emphasis added; Goodman and Kruskal 1959).

A restatement of the purpose is that we wish to determine, at some signifi cance level, 
whether or not there is an association between the variables.

For example, is there is an association between the occurrence of iron defi ciency in 
women and their level of education? If we use two levels of education — for example, 
less than 12 years and greater than or equal to 12 years — the 2 by 2 table to use in 
this investigation would look like Table 10.5. The entries in the table, the nij, are the 
observed number of women in the ith row (level of education) and jth column (iron 
status) in the sample. The symbol ni⋅ represents the sum of the frequencies in the ith 
row, n⋅j is the sum of the frequencies in the jth column and n, the sample size, is the 
sum of the frequencies in the entire table.

Table 10.5 Iron status by level of education.

 Iron Status

Education Defi cient Acceptable Total

<12 Years n11 n12 n1.
≥12 Years n21 n22 n2.

Total n.1 n.2 n

There are several ways of answering the question about whether or not there is an 
association between these two variables. We begin with the approach from Chapter 7.

10.2.1   Comparing Two Independent Binomial Proportions

The 2 by 2 table is one way of presenting the data used in the calculation of two inde-
pendent binomial proportions. If there is no association between iron status and educa-
tion, then the probability of iron defi ciency for women with less than 12 years of 
education, p1, should equal the corresponding probability, p2, for women with 12 or 
more years of education. We can construct a confi dence interval for the difference of 
p1 and p2 using the method presented in Chapter 7. If the interval contains zero, there 
is no evidence of an association between iron status and education. The confi dence 
interval is based on the sample estimates of p1 and p2 and these are n11/n1⋅ and n21/n2⋅, 
respectively.

10.2.2   Expected Cell Counts Assuming No Association: 
Chi-Square Test

Let us fi rst consider fi rst two common situations when a 2 by 2 table can be formed. 
The two choices for data collection that are used most often in practice are (1) an SRS 
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of n observations and (2) stratifi ed samples of n1⋅ and n2⋅ observations. In the SRS case, 
the test for no association is a test of the independence of the row and column variables. 
In the stratifi ed sampling case, the test for no association is a test of the homogeneity 
of the proportions in the ith row with those in the jth row. Regardless of which of these 
two sample selection processes is used, the expected cell counts for the hypothesis of 
no association are calculated as shown below.

We use the symbol mij to represent the expected number of women in the ith row and 
jth column assuming that the null hypothesis is true. In the material on two-way tables, 
we are using n and m to represent the observed and expected cell counts instead of the 
O and E used in the previous section. For the null hypothesis of no association between 
iron status and education, the expected proportion of women with low iron status at 
each level of education, mi1/ni⋅, equals the overall proportion of iron defi cient women, 
n⋅1/n. This is equivalent to saying that the proportion of women with low iron status is 
the same for those with less than 12 years of education as for those who have at least 
12 years of education. Thus, when there is no association, the expected number of iron 
defi cient women at the ith level of education can be found from the following 
relationship:
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The same type of relation holds true for women with acceptable levels of iron. Therefore 
the general formula for the expected cell count, assuming no association, is
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We can use these observed and expected values to calculate the chi-square goodness-
of-fi t statistic to test the hypothesis of no association between the two variables. We 
often use a modifi ed version of the chi-square goodness-of-fi t statistic. The modifi ed 
form, called the Yates’ corrected chi-square after the British statistician, Frank Yates 
(1984), who suggested it, is
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The modifi cation consists of subtracting 0.5 from the absolute value of the difference 
of the observed and expected cell counts. The Yates’ corrected chi-square statistic can 
be calculated directly from the frequencies without calculating the expected counts. The 
easier-to-use formula is
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The p-value associated with the Yates’ corrected chi-square statistic agrees more 
closely with the p-value of the exact test statistic developed by Ronald Fisher (1935). 
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Some statisticians question the use of Fisher’s exact test in 2 by 2 tables when the data 
arise from either of the two sampling methods just discussed. They question the applica-
tion because Fisher’s test was developed based on both the row and column margins 
being fi xed in advance, a different sampling scheme than used in the two methods. 
Hence, they do not recommend the use of Yates’ (1984) correction, but we believe that 
Yates’ correction is appropriate.

Table 10.6 Hypothetical frequency data for iron status 
by education.

 Iron Status

Education Defi cient Acceptable Total

<12 Years 4 26 30
≥12 Years 4 66 70

Total 8 92 100

Example 10.3

Suppose that we select an SRS of 100 women 20 to 44 years old and we obtain 
information on their educational level and iron status. The hypothetical data, based 
on a report (Life Sciences Research Offi ce 1989), are shown in Table 10.6.

The estimated conditional probability of a woman being iron defi cient given that 
she has less than 12 years of education is 0.133 (= 4/30). This is contrasted to the 
estimated probability of 0.057 (= 4/70) for a woman with 12 or more years of educa-
tion. Using the procedure in Chapter 7, the 95 percent confi dence interval for the 
difference of p1 and p2 is found by

0 133 0 057
0 133 1 0 133

30

0 057 1 0 057

70
0 975. .

. . . .
.−( ) ± −( )

+ −( )
z

which yields an interval from −0.057 to 0.209. Since zero is contained in the interval 
for the difference, there is no evidence of an association between iron status and 
education based on this sample.

Based on these data, the expected values, assuming the independence of the row 
and column variables, are

   m11 = 30 (8)  / 100 =  2.4,
 m12 = 30 (92) / 100 = 27.6,
   m21 = 70 (8)  / 100 =  5.6,
   m22 = 70 (92) / 100 = 64.4,

 Total = 100.0.

The sum of the expected values in the fi rst row is 30, the fi rst row total. The sum 
of the expected values in the fi rst column is 8, the fi rst column total. Hence, once 
we calculate m11, we know m12’s value by subtracting m11 from 30. In the same way, 
we know m21’s value by subtracting m11 from 8. Since we now know m12’s value, we 
can also fi nd m22’s value by subtracting m12 from 92. Hence, once we calculate any 
cell’s expected value, the expected values of the other three cells are determined. 



The 2 by 2 Contingency Table  277

This means that there is only one degree of freedom associated with the test of no 
association for a 2 by 2 contingency table.

The expected cell frequency for the cell in the intersection of the fi rst row and 
fi rst column is 2.4. This is the only expected frequency less than 5, and, according 
to the guideline just given, the minimum acceptable value for an expected cell fre-
quency is 1.25 (= 5[1/4]). Since none of the expected frequencies are less than 1.25, 
we can use the chi-square test statistic.

Now that we have both the observed and expected cell counts, we can test the 
hypothesis of no association (independence) of iron status and education. We shall 
perform the test at the 0.05 signifi cance level using the Yates’ modifi ed chi-square 
procedure.

The calculated X 2
YC is compared to 3.84 (= c2

1,0.95). If X
2
YC is greater than 3.84, we 

reject the hypothesis of independence in favor of the alternative that there is some 
association between iron status and education. If X 2

YC is less than 3.84, we fail to 
reject the null hypothesis. The test statistic is

XYC
2

2 2

2
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Since X 2
YC is less than 3.84, we fail to reject the null hypothesis. Based on this sample, 

it does not appear that there is any association between iron status and education. 
Note that the uncorrected X 2 value is 1.656 and we would therefore draw the same 
conclusion.

The chi-square test can easily be performed using computer packages (see 
Program Note 10.1 on the website).

10.2.3   The Odds Ratio — a Measure of Association

A useful statistic for measuring the level of association in contingency tables is the odds 
ratio, q. For example, in Table 10.5, an estimator of the odds that a woman with less 
than a high school education is iron defi cient is n11/n12. The corresponding estimator of 
the odds that a woman with at least a high school education is iron defi cient is n21/n22. 
If there is no association between education and iron status, these two odds should be 
equal. If the odds are equal, their ratio equals one. A sample estimator of the odds ratio 
OR is

 

ˆ .θ = = =OR
n n

n n

n n

n n
11 12

21 22

11 22

21 12

Thus, if OR is far from one, it calls into question the assumption (hypothesis) of no 
association. If the estimated odds ratio is much less than one, this means that the 
denominator is much larger than the numerator — that is, the product of the off-diagonal 
cells in the 2 by 2 table is larger than the product of the diagonal cells. For Table 10.5, 
an odds ratio of less than one indicates that the proportion of women with 12 or more 
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years of education who are iron defi cient is greater than the corresponding proportion 
for women with fewer than 12 years of education. An odds ratio of greater than one 
indicates that women with fewer than 12 years of education have the greater proportion 
of iron defi ciency.

A problem with the estimated odds ratio occurs if any of the cell frequencies are 
zero. The estimated odds ratio is zero if n11 or n22 are zero, and it is undefi ned if n12 or 
n21 are zero. To avoid this problem, some statisticians base the calculation of the esti-
mated odds ratio on nij + 0.5 instead of the nij.

We have to realize that there is sampling variation associated with the sample esti-
mate of the odds ratio and this variation must be taken into account in interpreting the 
estimated odds ratio. Since the distribution of the natural logarithm of q, ln(q), con-
verges to the normal distribution for smaller sample sizes than the distribution of q 
itself, we shall focus on the confi dence interval for ln(q). After fi nding the confi dence 
interval for ln(q), we can transform it to a confi dence interval for q. The estimated 
standard error for the sample estimate of ln(q) (Agresti 1990) is

 
ˆ .σ ln OR( ) = + + +1 1 1 1

11 12 21 22n n n n

The (1 − a) * 100 percent confi dence interval for the ln(q) is

 ln(OR) ± z1−a /2ŝ ln(OR).

Example 10.4

The sample odds ratio for the data in Example 10.3 is 2.538 (= 4[66]/4[26]). This 
value seems to be different from one, and therefore it suggests that there is an asso-
ciation. However, we need to consider its confi dence interval.

The estimated standard error for the sample estimate of ln(q) is 0.7441, which is 
obtained from 1 4 1 26 1 4 1 66+ + +  The value of the natural logarithm of the 
sample odds ratio, ln(2.538), is 0.9314. Therefore, the 95 percent confi dence interval 
for ln(q) is 0.9314 ± 1.96 (0.7441), which ranges from −0.5270 to 2.3897. Taking the 
exponential of these limits provides the 95 percent confi dence interval for q and its 
limits are 0.5904 and 10.9104. The confi dence interval for the odds ratio is quite 
large and does include the value of one. Hence, there is no evidence that the null 
hypothesis should be rejected.

Program Note 10.1 on the website provides a demonstration of these calculations 
using computer programs.

All three approaches agree that there is no evidence of an association between iron 
status and education based on this hypothetical sample. These approaches will almost 
always agree about whether or not an association exists between two variables. The 
confi dence interval for the difference of the probabilities and the uncorrected chi-square 
statistic will always agree in their conclusions.
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10.2.4   Fisher’s Exact Test

The chi-square test of association just described relies on the test statistic having an 
approximate chi-square distribution. This approach is warranted when the expected cell 
counts are large. However, when very small cell counts (less than 5 times the proportion 
of cells with expected values less than 5) are involved, the use of chi-square distribution 
is no longer warranted. Fortunately, an alternative procedure suggested by Fisher is 
appropriate for such cases.

The basis of Fisher’s exact test is to consider all confi gurations of cell counts given 
both row and column totals are fi xed and to compute the probabilities of the observed 
confi guration and more extreme confi gurations occurring by chance. If the sum of these 
probabilities turns out to be very small, we conclude that it is unlikely that such a small 
value could have occurred by chance, and we then reject the hypothesis of association 
between the row and column variables. The probability of each confi guration is found 
from the hypergeometric distribution. This probability is based on the number of ways 
of observing an outcome conditional on fi xed margins. To calculate this probability, we 
must fi nd, using the notation in Table 10.5, the probability of selecting n11 elements from 
n1⋅ and n21 elements from n2⋅ given that the row margins are fi xed. This probability is 
found by determining the number of ways selecting n11 elements from n1⋅ and n21 from 
n2⋅ and dividing that number by the number of ways selecting n1 elements from n ele-
ments. In symbols, that is
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Example 10.5

In a small company, the records of promotion in the past year are to be examined 
for a possible association of gender and promotion. The records show the 
following:

 Promotion   Percent

Gender Yes No Total Promoted

Male 5 1  6 83.3
Female 1 4  5 20.0
Total 6 5 11

We want to test the hypothesis of no association between gender and promotion. 
We fi rst calculate the expected cell counts under the hypothesis of no association, 
and they are 3.27 for the (1,1) cell, 2.73 for the (1,2) cell, 2.73 for the (2,1) cell, and 
2.27 for the (2,2) cell. To use the chi-square test statistic, we require that none of the 
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expected values is less than fi ve times the proportion of cells with expectations less 
than fi ve. In this example, all the expected cell counts are less than fi ve. Therefore, 
the criterion is also fi ve (= 5[4/4]), and since all the expectations are less than this 
criterion, we cannot use the chi-square test here. However, we can use Fisher’s exact 
test here. Concentrating on (1,1) cell, we can calculate the probability of observed 
confi guration and a more extreme confi guration. The two confi gurations to be con-
sidered are

5 1 6

1 4 5

6 5 11

6 0 6

0 5 5

6 5 11

and

The combined p-value for these two confi gurations is

p value− = + = +6 5 6 5

11 5 1 1 4

6 5 6 5

11 5 0 0 5
0 0649 0 0

! ! ! !

! ! ! ! !

! ! ! !

! ! ! ! !
. . 0022 0 0671= . .

The calculated p-value suggests the observed frequencies are somewhat unexpected. 
However, if we are using the 0.05 level for the test of hypothesis, there is not suffi cient 
evidence to suggest an association between gender and promotion. Even if there were 
strong evidence of an association, it would not necessarily imply discrimination. There 
are many other variables that would need to be considered. For example, one important 
variable would be the date of last promotion. If all the women had been promoted the 
year before but none of the men, then our interpretation might change.

The calculation of Fisher’s exact test statistic for 2 by 2 tables, or for its extension to r by 
c tables (Mehta and Patel 1983), is quite involved, and the use of computer is recommended. 
Program Note 10.1 on the website also includes comments for the Fisher’s exact test.

10.2.5   The Analysis of Matched-Pairs Studies

Surprisingly, we can also use the 2 by 2 table in situations with more than two variables. 
For example, the 2 × 2 table can be used when we wish to determine whether or not 
there is a relationship between two variables while controlling for other variables. The 
matched-pair study is one example of this situation.

In the health fi eld we often wish to determine whether or not there is a relationship 
between disease status and a risk factor while controlling for variables that may affect 
the relationship. We may have some number of people with some disease of interest (the 
cases), and we select an equal number of people without the disease (the controls). In 
an effort to remove the effect of the extraneous variable(s), for each person in the disease 
group, we pair them with a person from the control group who is the best match on the 
extraneous variable(s). We present the paired data in a 2 by 2 table as follows where 
the entries in the table are the observed cell frequencies:

 Control Exposed
 to Risk Factor

Case Exposed to Risk Factor Yes No

Yes c1 d1

No d2 c2
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Pairs with the same exposure status for both case and control — the diagonal cells 
— are called concordant pairs (c1and c2), and pairs with different exposures — the off-
diagonal cells — are called discordant pairs (d1 and d2).

Let p be the probability that a discordant pair has an exposed case. Then, from the 
preceding table, p can be estimated by the following proportion,

 p̂ = d1/(d1 + d2).

Under the null hypothesis of no association between the risk factor and the disease, each 
discordant pair is just as likely to have a case exposed as to have a control exposed. 
Thus, the null hypothesis can be written as

 H0 : p = 1/2.

For large samples, we can use the normal approximation as discussed in Chapter 8. In 
this case the test statistic is
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Alternatively, we could use the chi-square test with 1 degree of freedom by squaring 
the z statistic and incorporating Yates’s correction for continuity. This chi-square test 
is referred as McNemar test (1947) for testing no association in a matched study of 
proportions — that is
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We can use this test when (d1 + d2) is large. However, this test is not recommended 
when (d1 + d2) is less than 10, since the normal approximation is invalid as discussed 
in Chapter 5. In that case a preferable testing procedure is the binomial test illustrated 
in Chapter 5, based on a binominal distribution with p = 0.5 and n =(d1 + d2). The same 
procedure was used for the sign test in Chapter 9. We also need to pay attention to the 
size of (d1 + d2) in relation to the size of (c1 + c2). When concordant pairs are predomi-
nant, there is little reason to analyze discordant pairs alone. The McNemar test is an 
approximate test and should be used with caution for a small data set with a relatively 
small number of discordant pairs.

Example 10.6

In Chapter 6 we discussed the case-control study design in which people with the 
disease under investigation (the cases) are compared with people who are free of the 
disease (the controls). A case-control study of presenile dementia by Forster et al. 
(1995) identifi ed 109 clinically diagnosed patients aged below 65 years from hospital 
records. Each case was individually paired with a community control of the same 
sex and age. Steps were taken to ascertain that the control did not suffer from demen-
tia. One of the risk factors explored in the study was family history of dementia. We 
wish to determine whether or not there is an association between the occurrence of 
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presenile dementia and a family history of dementia. The following table shows a 
crosstabulation of the 109 pairs by the presence or absence of family history of 
dementia:

10.3   The r by c Contingency Table
We now consider the more general situation where two classifi cation variables have 
more than two categories. First, we consider the situation where both variables are 
nominal followed by the situation when one of the variables is ordinal.

10.3.1   Testing Hypothesis of No Association

The same ideas used in the 2 by 2 table still apply to the r by c contingency table. If 
there is no association between a row variable and a column variable, the ratio of the 
expected cell frequency in the ith row and jth column, mij, to the ith row total, ni⋅, should 
equal the ratio of the jth column total, n⋅j, to the overall total. Thus, mij is still found 
from
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There are (r − 1)(c − 1) degrees of freedom for the r by c table because once we 
know the frequencies of any (r − 1)(c − 1) cells, we can fi nd the values of the other 
frequencies by subtraction from the row and column totals. The hypothesis of no asso-
ciation between the row and column variables is tested using the chi-square goodness-

 Family History of 

Family History of Dementia in Control

Dementia in Case Present Absent

Present  6 25
Absent 12 66

Since the cases were paired with the controls, information on the relationship between 
family history of dementia and disease comes from the 37 discordant pairs. Of these, 
25 pairs had an exposed case, twice more than the pairs with an exposed control. 
The McNemar test statistic is

X M
2

225 12 1

25 12
3 89= − −( )

+
= . .

Compared with 3.84 (= c2
1,0.95, using Table B7), this is just signifi cant at 0.05 level. 

Hence, there is evidence for an association between dementia and family history of 
the disease.



of-fi t statistic. Most statisticians perform no adjustment to the test statistic when used 
with tables other than the 2 by 2 table. If the test statistic is greater than the value of 
c2

(r−1)(c−1),1−a , we reject the hypothesis of no association in favor of the alternative that 
the row and column variables are related. If the test statistic is less than c2

(r−1)(c−1),1−a , we 
fail to reject the null hypothesis.

Example 10.7

The data in Table 10.7 are from a study in Los Angeles conducted to determine the 
knowledge and opinion of women about mammography. The study was a response 
to concern raised in the media about the potential radiation hazards of the long-term 
use of mammography (Berkanovic and Reeder 1979). Two issues the study addressed 
were (1) whether or not these articles had caused women to refuse the use of mam-
mography screening for breast cancer and (2) variables related to women’s opinions 
about mammography. A telephone interview was conducted with a sample of women 
and approximately 60 percent of the women had heard or read something about 
mammography. Table 10.7 shows the opinion about mammography for those women 
who had heard or read about it. This is a 2 by 3 table. The question of interest for 
this table is whether or not there is an association between the woman’s opinion about 
mammography screening and the variable knowing someone with breast cancer. We 
test this hypothesis at the 0.01 signifi cance level.

There are two (= [2 − 1][3 − 1]) degrees of freedom for this table. Knowing the 
frequencies for the (1,1) and (1,2) cells allows us to fi nd the value of the (1,3) cell by 
subtraction of the sum of the (1,1) and (1,2) frequencies from the total of the fi rst 
row. Knowledge of the frequencies in the fi rst row then allows us to fi nd the cell 
frequencies in the second row by subtraction from the column totals. For example, 
the frequency of the (2,1) cell is found by subtracting the frequency of the (1,1) cell 
from the total of the fi rst column. Similar logic applies to the calculation of expected 
counts. If we calculate the expected counts for any two cells, then the expected counts 
for the rest of the cells can be found by subtraction from the row and column totals. 
The expected counts are also shown in Table 10.7.

The value of the test statistic is found from
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Table 10.7 Frequency of women by opinion about mammography and whether or not they know 
someone with breast cancer (expected counts are in parentheses).

 Opinion

Know Someone with Breast Cancer Positive Neutral Negative Total

Yes 120 45 28 193
 (129.76) (39.52) (23.72)
No 77 15  8 100
 (67.24) (20.48) (12.28)

Total 197 60 36 293
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10.3.2   Testing Hypothesis of No Trend

The hypothesis of no association is very general, and it is a reasonable hypothesis to 
test with nominal variables. However, when a variable conveys more information than 
the category name, it is possible to test a more specifi c hypothesis that uses more of the 
information contained in the variable. For example, in Example 10.5, opinion is an 
ordinal variable that ranges from positive to neutral to negative, and the test for no 
association ignores this ordering. In 2 by c contingency tables, there is a test, a test for 
trends that takes the ordering of the column variable into account. There is also a method 
that can be used for r by c contingency tables (Semenya et al. 1983).

In the test for no association in Example 10.5, we examined the unconditional cell 
probabilities. We also could have focused on the conditional probabilities — for example, 
the probability of women who knew someone with breast cancer conditional on their 
opinion of mammography. In calculating the conditional probabilities in this fashion, 
we are not implying that the probability of women who knew someone with breast 
cancer depends on their opinion of mammography. We are calculating the conditional 
probabilities in this fashion simply to see if there is a trend in the probabilities of women 
who knew someone with breast cancer by opinion category. The sample estimates of 
these conditional probabilities are easily found. For the women who are positive about 
mammography, the estimated probability of a woman knowing someone with breast 
cancer is 0.609 (= 120/197). The corresponding values for the women with neutral and 
negative opinions are 0.750 and 0.778, respectively. If the estimates of these probabilities 
are related to the opinion category, this suggests that an association exists between the 
row and column variables.

We now consider the hypothesis of no linear trend. By no linear trend, we mean that 
the proportion of women who knew someone with breast cancer does not increase 
(decrease) consistently with the changes in opinion from positive to neutral to negative. 
To perform a test of this hypothesis, we assign a numerical score to the categories of 
the opinion variable. For example, it seems reasonable to assign a score of +1 to the 
positive category, 0 to the neutral level and −1 to the negative category. This assignment 
of scores assumes that the distance from positive to neutral is the same as the distance 
from neutral to negative. The assignment of scores is subjective and, in unusual situa-
tions, the scoring system used can have an impact on the test of hypothesis. However, 
in most cases, different reasonable scoring systems will lead to the same conclusion 
about the test of hypothesis.

Since 6.65 is less than 9.21 (= c2
2,0.99), we fail to reject the null hypothesis. There does 

not appear to be a statistically signifi cant association, at the 0.01 level, between 
opinion about mammography and whether or not someone with breast cancer was 
known.

We can use the computer to perform the test as shown in Program Note 10.2 on 
the website. The p-value is (1 − 0.9640) or 0.036. Although a p-value of 0.036 is sig-
nifi cant at the 0.05 level, the association is not statistically signifi cant at the 0.01 
level.



The hypothesis of no linear trend is basically a test of no correlation between the 
assigned scores and the conditional probabilities. Thus, the test statistic should look 
something like a correlation coeffi cient. The following notation is used in the representa-
tion of the test statistic. Let pj be the sample estimate of the conditional probabilities of 
women who knew someone with breast cancer and Sj be the score assigned to the jth 
opinion category, where j equals 1, 2, and 3 for positive, neutral, and negative. The 
unconditional sample estimate of the women who knew someone with breast cancer 
is p–, and q– is (1 − p–). Let S

–
 be the sample mean score.

The test statistic is
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The numerator of this statistic is the square of the numerator of the correlation coeffi -
cient between the conditional proportion and the assigned score. Hence, we can see that 
this statistic is a measure of the linear trend between these two variables. For suffi ciently 
large sample sizes, this statistic can be shown to follow the chi-square distribution with 
one degree of freedom if there is no linear trend. The sample size is suffi ciently large 
if, given the value of p–, it is larger than that shown in Table 5.7. Large values of X2 cause 
us to reject the null hypothesis of no linear trend in favor of the alternative hypothesis 
of a linear trend.

Example 10.8

Let us test the null hypothesis of no linear trend in the opinion about mammography 
data in Example 10.5 at the 0.01 signifi cance level. The overall proportion, p–, of 
women who knew someone with breast cancer is 0.659 (= 193/293). Hence, q– is 0.341. 
Since n is 293, much larger than the values in Table 6.7 for a proportion of 0.30 and 
0.35, we can use the test statistic just shown. The pj are 0.609, 0.750, and 0.778 for j 
values of 1, 2, and 3. S1 is +1, S2 is 0, and S3 is −1, and the values of the column 
totals, n⋅j, are 197, 60, and 36, respectively. The mean of the scores, S

–
, is found by
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The test statistic is
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This statistic is compared to 6.63 (= c2
1,0.99). Since 6.100 is less than 6.63, we fail 

to reject the null hypothesis of no linear trend. The p-value of this test statistic is 
found to be 0.0135. Although there is not a statistically signifi cant linear trend in 
these data at the 0.01 signifi cance level, there is a strong inverse relationship between 
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This test for trends is equivalent to creating a confi dence interval for the difference 
in means from two independent populations. In this example, the two independent 
populations are the women who did not know someone with breast cancer and those 
who did know someone with breast cancer.

The test for trends is particularly appropriate for 2 by c contingency tables when 
there is an ordering among the column categories. If a linear trend exists, it may be 
missed by the general test for association, whereas the trend test has a greater chance 
of detecting it. The general test for association could cause us to say that there is no 
relationship between the rows and columns when there actually was a linear trend.

10.4  Multiple 2 by 2 Contingency Tables
Most studies involve the analysis of more than two variables at one time. Often we are 
interested in the relation between an independent variable and the dependent variable, 
but there is an extraneous variable that must also be considered. For example, consider 
a study to determine if there is any association between the occurrence of upper respira-
tory infections (URI) of young children and outdoor air pollution. There are several 
variables that could affect the relationship between the occurrence of infections and 
outdoor air pollution. One variable is the quality of the indoor air. One easily obtained 
variable that partially addresses the indoor air quality is whether or not someone smokes 
in the home. This variable is likely to be related to the dependent variable, the occur-
rence of URI, and it may also be related to the independent variable. Hypothetical data 
for this situation are based on an article by Jaakkola et al. (1991) and are shown in Table 
10.8.

the conditional proportion of women who knew someone with breast cancer and their 
opinion about mammography. We know the relationship is inverse because the sign 
of the numerator, before squaring, is negative. The opinion about mammography is 
more likely to be neutral or negative as the proportion of women who knew someone 
with breast cancer increases.

For the use of computer for the preceding analysis, see Program Note 10.3 on 
the website.

Table 10.8 Number of 6-year-old Finnish children by respiratory status and pollution level with a 
control for passive smoke in the home.a

  Upper Respiratory
  Infection during 
  Previous 12 Months

Passive Smoke in the Home City Polluted Some None Total

Yes High 100  20 120
 Low 124  40 164
 Total 224  60 284

No High 128  62 190
 Low 166 119 285
 Total 294 181 475
aThe entries in the table are based on an article by Jaakkola, but the data are hypothetical.



10.4.1   Analyzing the Tables Separately

If we ignore the passive smoke variable, the X 2
YC for the combined table is 6.387, its 

p-value is 0.0115, and the estimate of the odds ratio is 1.524. There is a statistically 
signifi cant relationship at the 0.05 level between the outdoor pollution variable and 
the occurrence of URI. The estimated odds ratio of 1.524 means that the odds of URI 
during the previous 12 months is about 11/2 times greater in the city with high pollution 
than in the city with low pollution. However, this analysis has excluded the passive 
smoke variable, a variable that we wish to take into account.

One way of taking the passive smoke variable into account is to analyze each 2 by 
2 table separately. In this example, the X 2

YC statistic is 2.039 and its p-value is 0.1533 for 
homes in which someone smoked. The X 2

YC value is 3.645, and its p-value is 0.0562 for 
those without passive smoke in the home.

The corresponding estimates of the odds ratios for these two tables are 1.613 and 
1.480. The 95 percent confi dence intervals for the two odds ratios are from 0.887 to 
2.933 and from 1.007 to 2.171, respectively. The fi rst confi dence interval, a much wider 
interval than the second interval, includes the value of one that suggests that there is no 
relation between the two variables. The second interval barely misses including one. 
The second interval’s smaller size refl ects the larger sample size associated with the 
home in which there was no passive smoke. Neither of these tables has a statistically 
signifi cant association between the outdoor air pollution and the occurrence of URI at 
the 0.05 level based on the test statistics. The conclusion from the analyses of the sepa-
rate tables is different from that of the combined table.

A problem with the use of the separate tables is that the analyses are based on the 
smaller sample sizes associated with each subtable, not on the sample size of the com-
bined table. This makes it diffi cult to fi nd the presence of small but consistent trends 
across tables. A method for eliminating this problem is discussed in the next section. 
However, before presenting the method, we should also consider a problem that can 
occur when subtables are combined.

Besides ignoring the passive smoke variable, a potential problem in using the com-
bined table is that it can be misleading. For example, if the data are selected from a 
population that does not represent the target population, strange things can occur. 
Suppose that we want our results to apply to all children in Finland but that the children 
used in this study were sampled from those who had been hospitalized during the previ-
ous 12 months. If this were done, the population used in the study would not match the 
target population. Is that a problem? As we have said before, the decision on the gener-
alizability of the results to the target population depends on substantive considerations, 
not on statistical ideas. Let us assume that the sample data are those in Table 10.9.

In both of the subtables, the city with the lesser pollution had the greater proportion 
of children with no URI during the past 12 months. If we ignore the passive smoke 
variable, the combined table is Table 10.10.

In the combined table, the city with the greater outdoor pollution now has the greater 
proportion of children with no URI during the past 12 months — 0.624 compared to 
0.595 for the city with lesser pollution. This example points out that care must be exer-
cised in combining tables when the population from which the sample was drawn is not 
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representative of the target population. This was clearly pointed out in an article by 
Berkson in 1946.

10.4.2   The Cochran-Mantel-Haenszel Test

Two biostatisticians, Nathan Mantel and William Haenszel, developed a method in 1959 
for examining the relation between two categorical variables while controlling for 
another categorical variable (Mantel and Haenszel 1959). This method, similar to a 
method published by William Cochran in 1954, uses all the data in the combined table 
and produces one overall test statistic. The test is designed to detect the consistent effect 
of the independent variable on the dependent variable across the levels of the extraneous 
variable. Thus, this method should only be used when the estimated odds ratios in the 
subtables are similar to one another. One very attractive feature of this test is that it can 
be used with extremely small sample sizes. This test has also been generalized for 
application to three-way tables of size other than 2 by 2 by k (Landis, Heyman, and 
Koch 1978).

To facilitate the presentation of the test statistic, we shall use the following nota-
tion for the ith 2 by 2 contingency table, where i ranges from one to k, the number of 
levels of the extraneous variable. In our example, k is 2, since there are only two levels, 
presence or absence, of the passive smoke variable. The ith 2 by 2 table is shown 
here.

Table 10.9 Number of 6-year-old Finnish children by respiratory status and pollution level with a 
control for passive smoke in the home based on taking samples from a list of hospitalized children.a

  Upper Respiratory
  Infection during 
  Previous 12 Months

Passive Smoke in the Home City Polluted Some None Total

Yes High  35  40  75
 Low  60  80 140
 Total  95 120 215

No High 170 300 470
 Low  15  30  45
 Total 185 330 515
aHypothetical data

Table 10.10 Number of children with occurrence of upper 
respiratory infection by pollution status of city ignoring the 
passive smoke variable.

 Upper Respiratory 
 Infection during 
 Previous 12 Months

City Polluted Some None Total

High 205 340 545
Low  75 110 185

Total 280 450 730



The test statistic is based on an overall comparison of the observed and expected in 
the (1,1) cell in each of the k subtables. As we saw earlier in this chapter, under the 
hypothesis of no association between the row and column variables, there is only one 
degree of freedom associated with the table. Hence, we key on only one cell in the table 
and the choice of which cell is arbitrary. A statistic that could be used to examine 
whether or not there is an association is
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where Oi and Ei are the observed and expected values in the (1,1) cell in the ith subtable. 
This statistic is very similar to a standard normal variable where Ei is analogous to the 
hypothesized mean in the standard normal variable.

In terms of the entries in the ith table, Ei is defi ned as
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the product of the row total and the column total divided by the table’s sample size. The 
observed (1,1) cell frequency, Oi, is ai⋅ Vi, with a variance of Oi minus Ei, can be shown 
to be
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Because we are dealing with discrete variables, we should use the continuity correc-
tion with Z*. However, instead of using the continuity-corrected Z* statistic, we would 
prefer to use a chi-square statistic, since all the other tests associated with contingency 
tables use a chi-square statistic. This poses no problem, since the square of a standard 
normal variable follows a chi-square distribution with one degree of freedom. Thus, the 
statistic to be used to test the hypothesis of no association between air pollution and the 
occurrence of upper respiratory problems is the Cochran-Mantel-Haenszel chi-square 
statistic. Also called the Mantel-Haenszel statistic, it is defi ned by
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where O, E, and V are defi ned as the sums of the Oi, the Ei and the Vi over the k subtables. 
If X 2

CMH is greater than c2
1,1−a , we reject the hypothesis of no association between air 

pollution and the occurrence of upper respiratory infections. Otherwise we fail to reject 
the null hypothesis.

 Upper Respiratory Infection

Polluted City Some None Total

High ai bi ai + bi

Low ci di ci + di

Total ai + ci bi + di ni
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Example 10.9

Let us apply this method to the data in Table 10.8. Since the odds ratios in the two 
separate subtables were similar — 1.613 in homes with passive smoke and 1.480 in 
the other homes — we can use the X 2

CMH statistic. If the odds ratios had not been 
similar, the effect of the independent variable on the dependent variable is not con-
sistent across the levels of the extraneous variable. Hence, it would not make sense 
to use the CMH statistic to test for a consistent effect of the independent variable 
when we already know that such an effect does not exist. Since the values of our 
odds ratios are similar, we can test the hypothesis of no association (no consistent 
effect) of air pollution with the occurrence of URI while controlling for passive 
smoke status, and we shall perform the test at the 0.05 signifi cance level. From Table 
10.8 we see that O1 is 100 and O2 is 128 and their sum is 228. The expected values 
are calculated to be

E E1 2
120 224

284
94 65

190 294

475
117 60=

( )
= =

( )
=. .and

and their sum is 212.25. The variances are calculated to be

V V1 2 2
120 164 60 224

284 283
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190 285 181 294=
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and their sum is 38.53. Thus we have the pieces needed to calculate X 2
CMH and its 

value is

XCMH
2

2228 212 26 0 5

38 53
6 036= − −( )

=. .

.
. .

Since 6.036 is greater than 3.84 (= c2
1,0.95), we reject the hypothesis of no association. 

At the 0.05 level, we conclude that there is an association between air pollution and 
URI even after controlling for passive smoke in the home.

10.4.3   The Mantel-Haenszel Common Odds Ratio

Mantel and Haenszel also showed how to combine the data from the separate subtables 
to form a common odds ratio for the data. Again this should only be done when the 
estimated odds ratios in the subtables are similar. If the estimated odds ratios for the 
subtables are not similar — for example, some are less than one and some are greater 
than one — the common odds ratio would not be very useful. The relation between 
the independent and dependent variable would depend on the level of the extraneous 
variable, and the use of a common odds ratio would mask this. The Mantel-Haenszel 
estimator of the common odds ratio, q, is
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There are several approaches to fi nding an estimate of the variance of the Mantel-
Haenszel estimator of the common odds ratio (Letters 1993; Mehta and Walsh 1992), 
but they are quite involved and will not be presented here.

Example 10.10

For the air pollution data in Table 10.8, the Mantel-Haenszel estimate of common 
odds ratio is found from

ORMH =
( )[ ] + ( )[ ]
( )[ ] + ( )[ ]

=100 40 284 128 119 475

20 124 284 62 166 475
1.. .517

This value is similar to the individual odds ratios of 1.613 and 1.480 and also close 
to the value, 1.524, found from the overall table. The similarity of the values supports 
the fi nding that the passive smoke variable had little effect on the relation between 
air pollution and URI.

Program Note 10.4 on the website shows the commands used to perform the calcula-
tion shown in Examples 10.7 and 10.8. The standard error and confi dence intervals for 
the common odds ratio are also provided.

Conclusion
In this chapter, we introduced another nonparametric test — the chi-square goodness-
of-fi t test — and showed its use with one- and two-way contingency tables. We also 
showed two related methods — comparison of two binomial proportions and the calcula-
tion of the odds ratio — for determining, at some signifi cance level, whether or not there 
is a relation between two discrete variables with two levels each. The odds ratio is of 
particular interest as it is used extensively in epidemiologic research. We also presented 
the extension of the goodness-of-fi t test for no interaction to r by c contingency tables. 
Another test shown was the trend test, and it is of interest because it has a greater chance 
of detecting a linear relationship between a nominal and an ordinal variable than does 
the general chi-square test for no interaction. We also showed different ways for testing 
the hypothesis of no relationship between two discrete variables with two levels each 
in the matched-pairs situation. The Cochran-Mantel-Haenszel test and estimate of the 
common odds ratio were introduced for multiple 2 by 2 contingency tables. These pro-
cedures are also used extensively by epidemiologists. In the next chapter, we conclude 
the material on nonparametric procedures with the presentation of several nonparamet-
ric methods for the analysis of survival data.

EXERCISES

10.1 The following data are from one of the hospitals that participated in a study 
performed by the Veterans Administration Cooperative Duodenal Ulcer Study 
Group (Grizzle, Starmer, and Koch 1969). The data from 148 men show the 
severity of an undesirable side effect, the dumping syndrome, of surgery for 
duodenal ulcer for four surgical procedures. The procedures are the following: 
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A is drainage and vagotomy; B is 25 percent resection (antrectomy) and vagot-
omy; C is 50 percent resection (hemigastrectomy) and vagotomy; and D is 75 
percent resection.

 Severity of Dumping Syndrome

Surgery None Slight Moderate Total

A 23  7  2  32
B 23 10  5  38
C 20 13  5  38
D 24 10  6  40

Total 90 40 18 148

 Was the design used in this hospital a completely randomized design or a ran-
domized block design? Explain your answer. Test the hypothesis of no associa-
tion between the type of surgery and the severity of the side effect at the 0.05 
signifi cance level. Assuming that the procedures are equally effective, would 
you recommend any of the procedures over the others?

10.2 Test the hypothesis that the data from Gosset, shown in Table 5.4 and repeated 
here, come from a Poisson distribution at the 0.01 signifi cance level (Poisson 
probabilities are shown in Table 5.4).

Observed Frequency of Yeast Cells in 400 Squares

X  0  1  2  3 4 5 6 Total
Frequency 103 143 98 42 8 4 2 400

Degree of Improvement

Infi ltration Worse Same Slight Moderate Marked Total

0–7 11 27 42 53 11 144
8–15  7 15 16 13  1  52

Total 18 42 58 66 12 196

10.3 The following data, from an article by Cochran (1954), show the clinical change 
by degree of infi ltration — a measure of a type of skin damage — present at 
the beginning of the study for 196 leprosy patients who received 48 weeks of 
treatment.

 Test the hypothesis of no association between the degree of infi ltration and the 
clinical change at the 0.05 signifi cance level. Is this a test of independence or 
homogeneity? Explain your answer. Now assign scores from −1 to +3 for the 
clinical change categories worse to marked improvement and test the hypothesis 
of no linear trend at the 0.05 signifi cance level. Is there any difference in the 
results of the tests? Select another reasonable set of scores and perform the trend 
test again using the second set of scores. Is the result consistent with the result 
from the fi rst set of scores?

10.4 Mantel (1963) provided data from a study to determine whether or not there is 
any difference in the effectiveness of immediately injecting or waiting 90 



minutes before injecting penicillin in rabbits who have been given a lethal 
injection. An extraneous variable is the level of penicillin. The data are shown 
in the following table.

 Response

Penicillin Level Delay Cured Died Total

1/8 None 0 6 6
 90 minutes 0 5 5

1/4 None 3 3 6
 90 minutes 0 6 6

1/2 None 6 0 6
 90 minutes 2 4 6

1 None 5 1 6
 90 minutes 6 0 6

4 None 2 0 2
 90 minutes 5 0 5

 Is it appropriate to use the CMH statistic here to test the hypothesis of no asso-
ciation between the delay and response variables while controlling for the peni-
cillin level? Explain your answer. If you feel that it is appropriate to use the 
CMH statistic here, test, at the 0.01 signifi cance level, the hypothesis of no 
association between the delay and response variables while controlling for the 
penicillin level.

10.5 Your local health department conducts a course on food handling. To evaluate 
this course, you select an SRS of restaurants from the list of licensed restau-
rants. For these restaurants in your sample, you then search the list of violations 
found by the health department during the last two years as well as the list of 
restaurants with employees who have attended the course during the last two 
years. For the 86 sampled restaurants, the data can be presented as follows:

 Violation

Attended Course Yes No Total

Yes  9 28 37
No 36 13 49

Total 45 41 86

 Use an appropriate procedure to test the hypothesis of no association between 
course attendance and the occurrence of a violation at the 0.10 signifi cance 
level.

 Based on these data, discuss whether or not course attendance had any effect 
on the fi nding of a restaurant’s violation of the health code.

10.6 Cochran (1954) presented data on erythroblastosis foetalis, a sometimes fatal 
disease in newborn infants. The disease is caused by the presence of an anti-Rh 
antibody in the blood of an Rh+ baby. One treatment used for this disease is 
the transfusion of blood that is free of the anti-Rh antibody. In 179 cases in 
which this treatment was used in a Boston hospital, there were no infant deaths 
out of 42 cases when the donor was female compared to 27 deaths when the 
donor was male. One possible explanation for this surprising fi nding was that 
the male donors were used in the more severe cases. Therefore, the disease 
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severity was taken into account and the data are shown in the following 
table:

  Survival Status

Disease Severity Donor’s Sex Dead Alive Total

None M  2 21 23
 F  0 10 10

Mild M  2 40 42
 F  0 18 18

Moderate M  6 33 39
 F  0 10 10

Severe M 17 16 33
 F  0  4  4

Total  27 152 179

 Use the CMH statistic to test the hypothesis of no association between donor’s 
sex and the survival status of the infant at the 0.05 signifi cance level.

10.7 Group the blood pressure values shown in Table 10.2 into categories of <80, 
80–89, 90–99, 100–109, 110–119, 120–129, ≥130  mmHg. Based on this group-
ing, test the hypothesis that the systolic blood pressure of 12-year-old boys 
follows a normal distribution using the 0.05 signifi cance level. Compare your 
results to those based on the grouping shown in Table 10.3.

10.8 The following data show the relation between two types of media exposure and 
a person’s knowledge of cancer (Forthofer and Lehnen 1981).

 Based on these data, test the hypothesis of no association between newspapers 
and knowledge of cancer, ignoring the radio variable. Next, test the hypothesis 
of no association between radio and knowledge of cancer, ignoring the news-
paper variable. Which variable has the stronger association with the knowledge 
of cancer variable? Based on these data, would you feel comfortable recom-
mending one of these media over the other for the purpose of increasing the 
public’s knowledge of cancer? If your answer is yes, what assumptions are you 
making about the data? If your answer is no, provide your rationale for your 
answer.

10.9 Two pathologists each examined coded material from the same 100 tumors and 
classifi ed the material as malignant or benign. Pathologist A found that 18 are 
malignant, and pathologist B found 10 malignant cases. Both pathologists 
agreed on 8 cases as malignant. The investigator conducting the study is inter-
ested in determining the extent to which the pathologists differ in their assess-
ments of the tumor material. Form an appropriate 2 by 2 table and test the null 
hypothesis of no difference at the 0.05 signifi cance level.

 Media Exposure Knowledge of Cancer

Newspapers Radio Good Poor

Read Listen 168 138
 Do not listen 310 357

Do not read Listen  34  72
 Do not listen 156 494

Total  668 1061
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Analysis of 
Survival Data

Chapter Outline
11.1 Data Collection in Follow-up Studies
11.2 The Life-Table Method
11.3 The Product-Limit Method
11.4 Comparison of Two Survival Distributions

This chapter introduces methods for analyzing data collected from a longitudinal study 
in which a group of subjects are followed for a defi ned time period or until some speci-
fi ed event occurs. We frequently encounter such data in the health fi eld — for example, 
newly diagnosed cancer patients in a registry were followed annually until they died. 
Another example consists of smokers who completed a smoking cessation program and 
were then contacted every three months to fi nd out whether or not they had relapsed. 
The focus in these studies is the length of time from a meaningful starting point until 
the time at which either some well-defi ned event happens, such as death or relapse to a 
certain condition, or the study ends. The data from such studies are called survival data. 
We have previously encountered survival data in our consideration of the life table in 
Chapter 4. In this chapter, we will consider a special type of life table: the follow-up 
life table.

We fi rst discuss the collection and organization of the data. This discussion is fol-
lowed by the presentation of two related methods for analyzing survival data. The life-
table method is used for larger data sets, and the product-limit method is generally used 
for smaller data sets. We also show how the CMH test statistic from Chapter 10 can be 
used for comparing two survival distributions.

11.1   Data Collection in Follow-up Studies
Perhaps an example best illustrates the nature of the data required for a survival 
analysis.

11

Example 11.1

The California Tumor Registry (1963) identifi ed a total of 2711 females with ovarian 
cancer initially diagnosed between 1942 and 1956 in 37 hospitals in California. The 
follow-up system of the Central Registry was designed to identify deaths through 
the statewide vital registration system and to facilitate the follow-up activities of the 
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participating hospital registries. The Central Registry received yearly follow-up 
information on each case. The registry program served not only to furnish the infor-
mation essential for statistical study of cancer cases, but also to stimulate periodic 
medical checkups of the cancer patients. Based on the data accumulated in the 
Central Registry up to 1957, the researchers were able to analyze ovarian cancer 
patients who had been followed for up to 17 years.

In this data set, patients were observed for different lengths of time and not all 
of the patients had died by 1957. In addition, others could not be contacted — that 
is, they were lost to follow-up. Despite the different lengths of observation and the 
incomplete observations, it is possible to analyze the survival experience of these 
patients. An appropriate survival analysis is not restricted to those who had died, 
but it incorporates all the patients who entered the study. It is essential to include all 
those who entered the study because the exclusion of any patient from the analysis 
could introduce a selection bias as well as reducing the sample size.

The survival time cannot be calculated for those patients who were still alive at 
the closing date of the study or for those patients whose survival status was unknown. 
For these incomplete observations, the survival time is said to be censored. Those 
patients who were still alive at the closing date are known as withdrawn alive, and 
those patients whose status could not be assessed (because, for example, they moved 
away or refused to participate) are known as lost-to-follow-up.

To include the censored observations in the analysis, we calculate a censored 
survival time from the date of diagnosis to (1) the closing date of the study for those 
withdrawn alive and (2) the last known date of observation for the lost-to-follow-up. 
This allows the number of years from the date of diagnosis to the date of death or 
to the termination date to be calculated for each patient in the study.

By tabulating the uncensored and censored survival times of all 2711 female 
ovarian cancer patients by one-year intervals, we obtain the data shown in Table 11.1. 
Within the fi rst year after diagnosis, 1421 of 2711 patients had died and 68 were 
lost-to-follow-up. There were no patients in the category withdrawn alive since every 
patient was followed for at least one year. The last column of the table can be created 
by adding the total column entries from the bottom. This reverse cumulative total 
indicates the number of patients alive at the beginning of each interval. The entry 
in the fi rst row of this column is the total number of patients in the study. The other 
entries in this last column can also be found by subtracting the sum of the number 
of deaths, lost-to-follow-up, and withdrawn alive from the number of persons who 
started the previous interval. For example, the second entry in this column is 1222, 
which is determined by subtracting the sum of 1421, 68, and 0 from 2711, the number 
of subjects who began the previous interval.

The essential data items required for a survival analysis include di, the number 
of deaths; li, the number of patients lost-to-follow-up; wi, the number of patients 
withdrawn alive; and ni, the number of patients alive at the beginning of the ith 
interval. These data, presented in Table 11.1, are analyzed by the life-table method 
presented in the next section.
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11.2   The Life-Table Method
In Chapter 4, the population life table was introduced to illustrate the idea of probability 
and its connection to life expectancy. The estimated life expectancy is generally used 
as a descriptive statistic. To use the life-table technique as an analytical tool, we shall 
combine ideas from Chapter 5 on probability distributions with the life-table analysis 
framework.

In survival analysis, our focus is on the length of survival. Let X be a continuous 
random variable representing survival time. Consider a new function, the survival func-
tion, defi ned in symbols as

 S(x) = Pr(X > x).

This function is the probability that a subject survives beyond time x. Since F(x), the 
cdf, is defi ned as

 F(x) = Pr(X ≤ x)

the survival function is one minus the cdf — that is,

 S(x) = 1 − F(x).

It is more convenient to work with S(x) rather than F(x), since we usually talk about 
survival being greater than some value rather than being less than a value.

The idea of a survival function is contained in the population life table presented in 
Chapter 4. It is represented by the lx column, the number of survivors at the beginning 
of each age interval. Specifi cally, S(x) in the population life table is lx/l0. Recall that the 
lx column starts with l0, usually set at 100,000, and all subsequent lx values are derived 

Table 11.1 Survival times for ovarian cancer patients initially diagnosed 1942–1956, followed 
to 1957.

  Censored Number
Years after Death Lost Withdrawn  Entering Interval
Diagnosis di li wi Total ni

 0–1 1,421 68 0 1,489 2,711
 1–2 335 19 37 391 1,222
 2–3 132 17 84 233 831
 3–4 64 10 47 121 598
 4–5 44 12 48 104 477
 5–6 20 12 39 71 373
 6–7 19 10 35 64 302
 7–8 14 14 19 47 238
 8–9 7 10 25 42 191
 9–10 7 9 19 35 149
10–11 5 4 14 23 114
11–12 5 4 17 26 91
12–13 1 4 11 16 65
13–14 3 1 15 19 49
14–15 1 0 13 14 30
15–16 0 0 7 7 16
16–17 0 0 9 9 9

Source: California Tumor Registry, 1963
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by multiplying the conditional probability of surviving in an age interval by the number 
of those who have survived all previous age intervals.

To analyze the data in Table 11.1 by the life-table method, we shall estimate the sur-
vival distribution in the same manner. The results of these calculations are shown in 
Table 11.2. The fi rst two columns (the time interval and the number of deaths) are 
transferred from Table 11.1. The other columns show the results of the life-table 
analysis.

Table 11.2 Estimates of probabilities and standard errors for ovarian cancer patients.

     (6)
  (3) Conditional Probability Cumulative (7)
(1) (2) Exposed (4) (5) Probability Standard
Years after Deaths to Risk Dying Surviving Surviving Error
Diagnosis di n′i qi (1 − qi) Pi SE(Pi)

 0–1 1,421 2,677.0 0.531 0.469 1.000 0.0000
 1–2 335 1,194.0 0.281 0.719 0.469 0.0096
 2–3 132 780.5 0.169 0.831 0.338 0.0092
 3–4 64 569.5 0.112 0.888 0.280 0.0089
 4–5 44 447.0 0.098 0.902 0.249 0.0087
 5–6 20 347.5 0.058 0.942 0.224 0.0086
 6–7 19 279.5 0.068 0.932 0.212 0.0086
 7–8 14 221.5 0.063 0.937 0.197 0.0086
 8–9 7 173.5 0.040 0.960 0.185 0.0087
 9–10 7 135.0 0.052 0.948 0.177 0.0088
10–11 5 105.0 0.048 0.952 0.168 0.0090
11–12 5 80.5 0.062 0.938 0.160 0.0093
12–13 1 57.5 0.017 0.983 0.150 0.0097
13–14 3 41.0 0.073 0.927 0.147 0.0099
14–15 1 23.5 0.043 0.957 0.137 0.0109
15–16 0 12.5 0.000 1.000 0.131 0.0119
16–17 0 4.5 0.000 1.000 0.131 0.0119

The fi rst task is to estimate the conditional probability of dying for each interval of 
observation. When there is no censoring in an interval, the estimate of the probability 
of dying in the interval is simply the ratio of the number who died during the interval 
to the number alive at the beginning of the interval. However, it is not appropriate to 
use this ratio as the estimator of the probability of dying if censoring occurred in the 
interval. The use of this denominator, the number alive at the beginning of the interval, 
means that those who were lost-to-follow-up or withdrawn alive during the interval are 
treated as if they survived the entire interval. Thus, using this ratio when there is cen-
soring likely results in an underestimate of the probability of dying in the interval.

The problem with the censored individuals is that we do not know their actual length 
of survival during the interval. We do know that it is extremely unlikely that they all 
survived the entire interval. The assumption used most often in practice (although there 
are other more reasonable assumptions) is that the censored individuals survived to the 
midpoint of the interval. Under this assumption, we can calculate qi, an estimator of the 
conditional probability of dying during the ith interval, as follows:
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The denominator in the above equation is the effective number of subjects exposed to 
the risk of dying during the interval, denoted by n′i. Table 11.2 shows the estimated 
effective number of patients exposed to the risk of dying in column 3 and the estimate 
of the conditional probability of dying in column 4. The use of n′i implies that those 
patients who were lost or withdrawn were subjected to one half the risk of dying during 
the interval.

The estimator of the conditional probability of survival in the ith interval is one 
minus the estimator of the probability of dying, that is, 1 − qi. The result of this subtrac-
tion is shown in column 5.

Next, we calculate Pi, the sample estimator of the probability of surviving until the 
beginning of the ith interval. The set of the Pi are used to estimate the survival distribu-
tion S(x). By defi nition, P1 = 1, and the estimators of the other survival probabilities are 
calculated in the following manner:

 P2 = (1 − q1), P3 = (1 − q2) (1 − q1),  .  .  .

and in general

 Pi = (1 − qi−1)(1 − qi−2)  .  .  .  (1 − q1) = (1 − qi−1) Pi−1.

The results of these products are shown in column 6 of Table 11.2. From column 6, 
we see that the estimate of the one-year survival probability for ovarian cancer pati-
ents in California who were diagnosed during the 1942–1956 period was 0.47 and the 
estimate of the fi ve-year survival probability was 0.22. More recent statistics estimate 
the fi ve-year survival probability for ovarian cancer to be 0.39 for white females and 
0.38 for black females in the 1981–1986 period (National Cancer Institute 1990), 
suggesting some improvement in cancer treatment. However, this improvement may 
be due more to the early detection of ovarian cancer in recent years. Cancer-related 
statistics, including estimates of survival rates, are routinely provided by the 
National Cancer Institute’s SEER (Surveillance, Epidemiology, and End Results) 
program, which includes many population-based cancer registries throughout the 
United States.

Besides knowing the point estimate of a population survival probability, we also wish 
to have a confi dence interval for the survival probability. We shall assume that, in large 
samples, an estimated cumulative survival probability approximately follows a normal 
distribution. The variance of the estimated cumulative survival probability is estimated 
by
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The estimated standard errors (the square root of the estimated variance) of the Pi are 
shown in column 7 of Table 11.2.

Given these estimated standard errors plus the assumption of the approximate nor-
mality of the estimated survival probabilities, we can calculate confi dence intervals for 
the survival probabilities. The approximate (1 − a)*100 percent confi dence interval for 
a survival probability is given by

 Pi ± (z1−a /2) s.e.(Pi)].
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For example, an approximate 95 percent confi dence interval for the fi ve-year survival 
probability is

 0.224 − 1.96 (0.0086) to 0.224 + 1.96 (0.0086)

or from 0.207 to 0.241.

Although this procedure is adequate in most cases, there are other more complicated 
approaches to constructing a confi dence interval for Pi that cause the actual confi dence 
level to agree more closely with the nominal confi dence level, especially for small 
samples (Thomas and Grunkemeier 1975).

It is also possible to calculate the confi dence interval for the difference between two 
survival probabilities from different study groups — for example, the fi ve-year survival 
probability of ovarian cancer for white females and black females — by using the pro-
cedure discussed in Chapter 7.

Let us further explore the estimated survival distribution by creating Figure 11.1, the 
plot of the cumulative survival probabilities against the years after diagnosis. Although 
we have values of Pi for only the integer values of t, we have connected the points to 
show the shape of the survival distribution. It starts with survival probability of 1 at 
time 0 and drops quickly as time progresses, indicating a very high early mortality for 
ovarian cancer patients. Note that the survival curve does not descend all the way to 
zero, since some women survive more than 17 years.

The rapid decrease in the estimated survival curve suggests that the mean and 
the median survival times will be short. To verify this, let us estimate the mean and the 
median survival times from the estimated survival distribution. Since some of the 
women survive longer than the 17 years of the study, this complicates the estimation of 
the population mean survival time. Instead of estimating the population mean, we shall 
therefore estimate the mean restricted to the time frame of 17 years, the length of the 
study. This restricted value will thus underestimate the true unrestricted mean. If no 
patient survived longer than the time frame of the study, the following procedure pro-
vides an estimate of the unrestricted mean.

year after diagnosis

Figure 11.1 Estimated 
survival distribution of 
ovarian cancer patients.
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The sample mean, restricted to the 17-year time frame, is found by summing the 
number of years (or other unit of time) survived during each time interval and dividing 
this sum by the sample size. However, the process of determining the number of years 
survived in an interval is complicated by the deaths, losses, and withdrawals that 
occurred during the interval. Instead of directly attempting to calculate the years sur-
vived, we shall use the following method to deal with this complication.

We calculate the sample mean by forming a weighted average of the years provided 
by each interval. The weight used with each interval is the cumulative survival probabil-
ity associated with the interval. This approach deals with the complications mentioned 
above, since the probability takes the deaths, losses, and withdrawals into account. Since 
there are two cumulative survival probabilities associated with each interval — the 
probability at the beginning, Pi, and the probability at the end, Pi+1 — we use their 
average. Thus, the formula for the restricted sample mean is
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where k is the number of intervals and ai is the width of the ith interval.

This formula has an interesting geometrical interpretation: It provides an approxima-
tion to the area under the estimated survival curve. For example, consider a curve with 
three intervals (Figure 11.2). We are using rectangles to estimate the area under the 
curve. As we can see, some of the area under the curve is not included in the rectangles. 
However, this area is approximately offset by the areas included in the rectangles that 
are not under the curve. The formula for the area of a rectangle is the height multiplied 
by the width. In this case, the width is one unit or, in general, ai units, and the height 
is taken to be the average of the points at the beginning and end of the interval, that is, 
(Pi + Pi+1)/2. Hence, another way of interpreting the mean is that it is the area under the 
survival curve. We approximate this area by calculating the area of the rectangles that 
can be superimposed on the survival curve.

When the intervals are all of the same width — for example, a — then the formula 
can be simplifi ed to

Figure 11.2 Survival 
curve with rectangles 
superimposed.
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Because the intervals are all of width one in this example, the sample mean is simply 
the sum of the entries in column 6 of Table 11.2 minus one half of the fi rst and last 
entries in the column. This is

 (1.000 + 0.469 + 0.338 +  .  .  .  + 0.131) − 0.5(1.000 + 0.131)

which equals 3.92 years. This restricted mean survival time appears to be larger than 
what the fi rst-year survival probability might suggest. As we saw in Chapter 3, the mean 
can be affected by a few large observations, and that is the case here. The sample mean 
refl ects the presence of a few long-term survivors. Let us now calculate the median 
length of survival.

The median survival time is estimated in the following manner. First, we read down 
the list of estimated cumulative survival probabilities, column 6 in Table 11.2, until we 
fi nd the interval for which Pi is greater than or equal to 0.5 and Pi+1 is less than 0.5. In 
Table 11.2, this is the fi rst interval, since P1 is greater than 0.5 and P2 is less than 0.5. 
Thus, we know that the estimated median survival time is between 0 and 1 year. Since 
47 percent of the patients survived the fi rst year, we suspect that the estimated median 
survival time is much closer to one year than to zero years. To fi nd a more precise value, 
we shall use linear interpolation.

In using linear interpolation, we are assuming that the deaths occurred at a constant 
rate throughout the interval. This is the same assumption we made when we connected 
the survival probabilities in Figure 11.1. In using linear interpolation, we know that to 
reach the median, we only require a portion of the interval, not the entire interval. The 
portion that we need is simply the ratio of the difference of Pi and 0.5 to the length of 
the interval. In symbols, this is

 (Pi − 0.5) / (Pi − Pi+1).

We multiply this ratio by the width of the interval and add that to the survival time at 
the beginning of the interval. Replacing these words by symbols, the formula is
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where xi is the survival time at beginning of the interval and ai is the width of the 
interval. In this example, the sample median survival time is

Sample median = + −
−( ) =0 1
1 0 5

1 0 469
0 94

.

.
. .

The sample median survival time of about one year is much shorter than the estimated 
restricted mean survival time. As we just mentioned, the mean survival time is affected 
by a small number of long-term survivors. This is why the median is more often used 
with survival data.

The median can also be obtained from the plot of the estimated survival curve shown 
in Figure 11.1. We move up the vertical axis until we reach the survival probability value 
of 0.5. We then draw a line parallel to the time axis and mark where it intersects the 
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survival curve. We next draw a line, parallel to the vertical axis, from the intersection 
point to the time line. The sample median survival time is the value where the line 
intersects the time axis. Figure 11.3 shows the estimated survival curve plot with these 
lines used to fi nd the sample median drawn in the plot as well. The accuracy of the 
estimate of the median is limited by the scales used in plotting the survival curve. In 
Figure 11.3, the precision of the estimate is likely not to be high because of the scales 
used. It appears that the sample estimate of the median is approximately one year.

Another statistic often used in survival analysis is the hazard rate, which is also 
known as the life-table mortality rate, force of mortality, and instantaneous failure rate. 
It is used to measure the proneness to failure during a very short time interval. It is 
analogous to an age-specifi c death rate or interval-specifi c failure rate. It is the propor-
tion of subjects dying or failing in an interval per unit of time. The hazard rate is usually 
estimated by the following formula:
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The denominator of this formula uses the number of survivors — again assuming that 
death is occurring at a constant rate throughout the interval — at the midpoint of the 
interval. When the interval is very short, it makes little difference whether the number 
of survivors at the beginning or at the midpoint of the interval is used in the denomina-
tor. The sample hazard rates are calculated and shown in Table 11.3 for the fi rst 10 years 
of follow-up. The estimate of the fi rst year hazard or mortality rate is quite high with 
723 deaths per 1000 patients. The hazard is concentrated in the fi rst fi ve years after 
diagnosis and stabilizes at a low level after fi ve years of survival. The variance of the 
sample hazard rate is estimated by

Figure 11.3 Using the 
estimated survival 
curve to fi nd the 
median.

Table 11.3 Estimates of hazard rates and their standard errors.

Year Hazard Rate Standard Error Year Hazard Rate Standard Error

0–1 0.723 0.0179 5–6 0.059 0.0132
1–2 0.326 0.0176 6–7 0.070 0.0161
2–3 0.185 0.0160 7–8 0.065 0.0174
3–4 0.119 0.0149 8–9 0.041 0.0156
4–5 0.104 0.0156 9–10 0.053 0.0201
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The estimated standard errors (the square root of the estimated variance) of the sample 
hazard rates are calculated and shown in Table 11.3. If we assume that the sample hazard 
rates are asymptotically normally distributed, these sample standard errors can be used 
to calculate confi dence intervals for the population hazard rates. For example, the 95 
percent confi dence interval for the fi rst year hazard or mortality rate ranges from

 0.723 − 1.96(0.0179) to 0.723 + 1.96(0.0179)

or from 0.688 to 0.758.

These life table calculations can be performed by the computer (see Program Note 
11.1 on the website).

11.3   The Product-Limit Method
When we analyze a smaller data set — for example, a sample size less than 100 — the 
life-table method may not work very well because the grouping of survival times 
becomes problematic. Instead we use a method that is based on the actual survival time 
for each subject rather than grouping the subjects into intervals. The product-limit 
method, also known as the Kaplan-Meier method (Kaplan and Meier 1958), is used to 
estimate the cumulative survival probability from a small data set, without relying on 
groupings of survival times. As we can see following, the basic principles and compu-
tational procedures involved in the product-limit method are similar to the life-table 
method.

We start with an example.

Example 11.2

Suppose that 14 alcohol-dependent patients went through an intensive detoxifi cation 
treatment for four years from 1990 to 1993 at a small clinic. There was a follow-up 
contact every month to check on their drinking status. The data shown in Table 11.4 

Table 11.4 Status of 14 alcohol-dependent patients discharged from a clinic.

Patient Number Date of Discharge Date of Termination Follow-up Status Gender

 1 9001 9312 2 Still sober (withdrawn) 1 Female
 2 9003 9009 1 Relapsed 1 Female
 3 9005 9209 1 Relapsed 2 Male
 4 9009 9111 2 Lost-to-follow-up 2 Male
 5 9011 9306 1 Relapsed 1 Female
 6 9102 9312 2 Still sober (withdrawn) 1 Female
 7 9104 9211 1 Relapsed 1 Female
 8 9108 9304 1 Relapsed 1 Female
 9 9110 9202 1 Relapsed 2 Male
10 9203 9308 2 Lost-to-follow-up 2 Male
11 9207 9311 1 Relapsed 2 Male
12 9212 9310 1 Relapsed 1 Female
13 9303 9312 2 Still sober (withdrawn) 2 Male
14 9304 9310 1 Relapsed 2 Male



The fi rst step of analysis is to calculate the survival time, x, in months for all subjects, 
censored and uncensored, and arrange them in order from the smallest to the largest 
with the censoring status indicated. If an uncensored subject and a censored subject 
have survival times of the same length, the uncensored one precedes the corresponding 
censored observation. For the data shown in Table 11.4, the ordered list of alcohol-free 
times in months, with the censored observations marked by asterisks, is as follows:

 4, 6, 6, 9*, 10, 14*, 16, 17*, 19, 20, 28, 31, 34*, 47*.

The second step is to create a worksheet like that shown in Table 11.5. In Table 11.5, 
the column headings refer to death and survival. For this problem, death is equated with 
relapse and survival is remaining alcohol free. The fi rst three columns in the worksheet 
are created according to the following procedures.

1. List the uncensored alcohol-free times in order. These are 4, 6, 10, 16, 19, 20, 28, 
and 31. We shall refer to these times as x1, x2,  .  .  .  , x8, respectively.

2. Count the number of relapses at each xi. There is one relapse at each time unless 
there are ties. The numbers are 1, 2, 1, 1, 1, 1, 1, and 1.

3. Count the number of subjects who are at risk of relapse at xi. For example, when 
the survival time is 10 months, three people have already relapsed and one person 
was withdrawn. Thus, there are only 10 persons at risk of relapse at 10 months. 
The list of these numbers is 14, 13, 10, 8, 6, 5, 4, and 3.

The fourth and fi fth columns, estimates of the conditional probability of survival (1 
− qx) and the cumulative probability of survival (Px) are calculated next, followed by 
the calculation of estimated standard error of Px, shown in column 6. The estimator of 
the conditional probability of relapse is the number of relapses divided by the number 
at risk, that is, qx = dx/nx. The estimator of the conditional probability of survival is

were abstracted from the clinic patient records. The date of discharge and the date 
of termination are shown in year and month (9001 indicates 1990, January). The 
follow-up status is coded 2 if censored (withdrawn or lost-to-follow-up) and 1 if 
relapsed to drinking. Gender is coded 1 for females and 2 for males. The purpose of 
our study is to analyze the length of alcohol-free time among these 14 patients.

Table 11.5 Kaplan-Meier estimates of survival probabilities with standard errors.

   (4) (5)  (7)
(1) (2) (3) Conditional Cumulative (6) Approx.
Survival Number Number Probability Probability Standard Standard
Time of Deaths at Risk of Survival of Survival Error Error
xi dx nx (1 - qx) Px SE(Px) SE(Px)

 0 0 14 1.000 1.000 — —
 4 1 14 0.929 0.929 0.069 0.066
 6 2 13 0.846 0.786 0.110 0.101
10 1 10 0.900 0.707 0.124 0.121
16 1 8 0.875 0.619 0.136 0.135
19 1 6 0.833 0.516 0.148 0.146
20 1 5 0.800 0.412 0.150 0.141
28 1 4 0.750 0.309 0.144 0.128
31 1 3 0.667 0.206 0.127 0.106
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For example, 1 − q4 = (1 − 1/14) = 0.929 and 1 − q6 = (1 − 2/13) = 0.846. The estimator 
of the cumulative probability of survival is found from the estimators of the conditional 
probabilities of survival in the same way as in the life-table method — that is,
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The product symbol, Π, means that we multiply each term in the expression by one 
another for the indicated values of t. For example,
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We could have included 1 − q0 in the product, but since q0 is defi ned to be zero, its 
inclusion would not have changed the product.

As we have just seen, the censored observations have not been excluded from the 
analysis. They played a role in the determination of the number at risk at each time of 
relapse. If the censored observations were totally excluded from the analysis, the esti-
mate of the conditional survival probabilities for the uncensored observations would be 
different.

The variance of Px is estimated by
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The approximation shown in the preceding equation is much simpler to calculate, and 
it works reasonably well in most situations (Peto et al. 1977). Taking the square root of 
the variance, we obtain the estimated standard errors of the Px that are shown in column 
6. The approximate standard errors are shown in column 7. The approximate estimate 
of the standard error of P4 is 0.066, compared to the value of 0.069 obtained from the 
use of the fi rst expression for the sample variance.

Figure 11.4 graphically displays the estimated survival distribution shown in the fi fth 
column of Table 11.5. The plot includes a survival probability of 1 at time 0. The plot 
of the survival probabilities is referred to as a step function, since it looks like a stair 
step. It has this appearance because the probability of survival stays the same over a 
time period — this causes the horizontal lines — and then drops whenever there is 
another relapse — the vertical lines. However, long horizontal lines, showing no change 
in survival probability for a long period of time, should not be interpreted as a period 
with no risk, for these may occur because of a small number of subjects under observa-
tion during those time periods.

We can estimate the mean survival time from the survival distribution. Again, just as 
in the life-table method, if the largest survival time is a censored time, we are really esti-
mating a restricted mean. If the largest survival time is uncensored, then the survival 
probability will decrease to zero, and we will be estimating the unrestricted mean. As in 
the life table, the mean survival time is the area under the curve. We shall again use rect-



angles to approximate this area. Because of the step nature of the survival curve here, the 
rectangles are already formed for us. Unlike the life-table method, the widths of the inter-
vals here are usually different. The following formula shows the area of each rectangle 
being calculated as the product of the height of the rectangle, the estimated cumulative 
survival probability associated with xi, by the width, xi+1 minus xi. In symbols, this is
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where k is the number of distinct time points when someone relapsed, x0 is defi ned to 
be zero, and P0 is defi ned to be one.

For these data, the estimate of the restricted mean alcohol-free time, restricted to a 
31-month window, is given by

 x–r = 1(4 − 0) + 0.929(6 − 4) +  .  .  .  + 0.309(31 − 28) = 18.4.

This is an underestimate of the true mean alcohol-free time because we are restricted 
to the study timeframe and there were still people free of alcohol at the end of the 
study.

From Table 11.5, we can see that the sample median survival time, the point at which 
the cumulative survival probability is 0.5, occurs between the 19th and 20th months and 
is closer to month 19. We shall interpolate to fi nd the sample median in the same way 
as in the life-table method. From our data, the sample median survival time is found as 
follows:
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We should not use interpolation to fi nd the median if there is a large gap in time between 
the two survival times in which we will be using the interpolation.

The computer can be used to calculate the entries in Table 11.5 as well as the sample 
mean, the median, and the graph in Figure 11.4 (see Program Note 11.2 on the 
website).

Because the product-limit method is based on the ranking of individual survival 
times, it is cumbersome to apply with a large data set. We would not consider using it 

Figure 11.4 Survival 
distribution estimated 
by the product-limit 
method.
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with the ovarian cancer data from the California Tumor Registry that had over 2000 
observations. For a large data set, the life-table method simplifi es the calculation and 
gives results similar to the product-limit method.

So far we have focused on describing the survival experience of a single population. 
However, we are often interested in comparing the survival experiences of two or more 
groups of subjects who differ on some account — for example, patients who have 
received different therapies for cancer or patients who belong to different age or sex 
groups. The comparison of two survival distributions is the topic of the following 
section.

11.4   Comparison of Two Survival Distributions
When comparing the survival experience of two or more groups, the description of the 
differences in the estimated survival distributions and the plot of the survival curves 
are only the beginning of the analysis. In addition to these descriptive techniques, 
researchers require a statistical test to determine whether the observed differences are 
statistically signifi cant or due to chance variation.

In the analysis of survival data, we generally do not assume that the data follow any 
particular probability distribution. In the analysis, we also use the median survival time, 
rather than the mean, to summarize the survival experience. Because of these features, 
it seems as if a nonparametric test should be used when comparing survival distribu-
tions. If we know that the survival data follow a particular distribution, we should take 
advantage of that knowledge. There are parametric tests available that can be used when 
we know the probability distribution of the survival data (Lee 1992).

For small data sets with no censored observations, the Wilcoxon rank sum test (the 
Mann-Whitney test) can be used to test the null hypothesis of no difference in survival 
distributions for two independent samples. However, since survival time data usually 
contain censored observations, the Wilcoxon test cannot be directly applied. In this 
section, we show how the Cochran-Mantel-Haenszel (CMH) test statistic, described in 
Chapter 10, can be used in testing the hypothesis of no difference between two survival 
distributions (Mantel 1966). There are a number of other tests, extensions of the Wil-
coxon and other rank tests, that could be used as well, but the CMH test seems to 
perform as well, if not better, than these other tests.

11.4.1   The CMH Test

The key to the use of the CMH method with survival data is to realize that the data in 
each time interval can be formulated as a 2 by 2 table. The number of deaths and the 
number of survivors (the number exposed minus the number of deaths) for the two 
groups can be put in a 2 by 2 table for each time interval as shown next.

 Number of Deaths Number of Survivors Total

Group 1 d1i (n′1i − d1i) n′1i

Group 2 d2i (n′2i − d2i) n′2i

Total d.i (n’.i − d.i) n′.i



It can be shown that the time intervals are uncorrelated with one another, which allows 
us to use the CMH statistic here.

Let us consider an example.

Example 11.3

The Hypertension Detection and Follow-up Program examined the effect of serum 
creatinine on eight-year mortality among hypertensive persons under care (Shulman 
et al. 1989). We are interested in testing whether or not the survival experience of 
persons with a serum creatinine concentration less than 1.7  mg/dL at the time of 
screening is more favorable than those with a serum creatinine concentration greater 
than or equal to 1.7  mg/dL. The data for testing this hypothesis are shown in Table 
11.6.

Table 11.6 Sample sizes and numbers of deaths by year and level of serum creatinine concentration 
in the HDFP study.

 Serum Creatinine (mg/dL)

 <1.7 ≥1.7 Total

Year under Care d1i n’1i d2i n’2i di n’i

0–1 93 10,469.5 21 297.0 114 10,766.5
1–2 115 10,374.5 16 276.0 131 10,650.5
2–3 125 10,254.0 13 260.0 138 10,514.0
3–4 181 10,121.5 14 246.5 195 10,368.0
4–5 160 9,930.5 17 232.0 177 10,162.5
5–6 212 9,763.0 10 215.0 222 9,978.0
6–7 191 9,551.0 14 205.0 205 9,756.0
7–8 203 9,147.5 8 186.5 211 9,334.0

Total 1,270  113  1,393

First, we use the data in Example 11.3 to estimate the cumulative survival probabilities 
for the two groups, applying the methods discussed earlier. The estimated cumulative 
survival probabilities and their standard errors are shown in Table 11.7.

The estimated cumulative survival probabilities are also shown graphically in Figure 
11.5. The survival distribution appears to be more favorable for the hypertensive persons 

Table 11.7 Cumulative survival probabilities and standard errors by year and level of serum creatinine 
concentration in the HDFP study.

 Creatinine Level <1.7 Creatinine Level ≥1.7

Year under Care Survival Probability Standard Error Survival Probability Standard Error

0–1 1.0000 0 1.0000 0
1–2 0.9911 0.0009 0.9295 0.0148
2–3 0.9801 0.0014 0.8758 0.0191
3–4 0.9682 0.0017 0.8322 0.0216
4–5 0.9509 0.0021 0.7851 0.0238
5–6 0.9355 0.0024 0.7279 0.0258
6–7 0.9151 0.0027 0.6942 0.0267
7–8 0.8969 0.0028 0.6470 0.0277
8 0.8770 0.0032 0.6194 0.0282
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with a serum creatinine concentration less than 1.7  mg/dL than those with a serum 
creatinine concentration greater than or equal to 1.7  mg/dL. The two survival curves 
are consistently diverging, suggesting that the odds ratios in each time interval are 
similar to one another. Therefore, we do not have any problem using the CMH test to 
compare the two survival distributions.

To apply this test to the data in Table 11.6, we need to fi nd the expected number of 
deaths and the variance for the (1, 1) cell in each of the eight 2 by 2 tables. For example, 
the 2 by 2 table for the year 0–1 is shown next.

Creatinine Level Number of Deaths Number of Survivors Total

<1.7  mg/dL  93 10,376.5 10,469.5
≥1.7  mg/dL  21 276.0 297.0

Total 114 10,652.5 10,766.5

The expected number of deaths in the (1, 1) cell is the product of the total of the fi rst 
row and the fi rst column divided by the table total. Thus, the expected value is

 10469.5 (114) / 10766.5 = 110.86.

The estimated sample variance of the (1, 1) cell is the product of the four marginal 
totals divided by the square of the table total times the table total minus one. Thus, the 
sample variance is

10469 5 297 114 10652 5

10766 5 10766 5 1
3 03

2

. .

. .
. .

( )( )( )
−( )

=

Table 11.8 shows the expected number of deaths and the estimated variances for the 
eight (1, 1) cells based on the data in Table 11.6. The observed number of deaths in 
Group 1 (creatinine less than 1.7  mg/dL) is 1280 and the expected number of deaths is 
1361, suggesting that Group 1 has a favorable survival experience. We shall test the 
hypothesis of no difference in the survival distributions of the two groups at the 0.01 

Figure 11.5 Estimated 
survival distributions by 
level of serum 
creatinine 
concentration.



signifi cance level. The test statistic, X 2
CMH, is calculated based on the data in Tables 11.6 

and 11.8 as follows:

X
O E

V
CMH
2

20 5 1289 1361 07 0 5

30 65
211 80= − −( )

= − −( )
=. . .

.
. .

Since the test statistic is greater than 6.63 (= c2
1,0.99), we reject the null hypothesis and 

conclude that persons with a serum creatinine concentration less than 1.7  mg/dL had a 
more favorable survival distribution than those with a higher creatinine value at the 
time of screening.

11.4.2   The Normal Distribution Approach

The individual survival probabilities of the two groups can be compared using the 
method discussed in Chapter 8. But this approach has the disadvantage that it focuses 
on a particular point in time and does not use all the information in the data set. For 
example, the two-year survival probability of the group with serum creatinine level less 
than 1.7 is 98 percent compared with 88 percent for the group with serum creatinine 
level greater than or equal to 1.7. Let us test whether these probabilities are signifi cantly 
different at the 0.01 level. The test statistic for this comparison can be calculated from 
the data in Table 11.7 as follows:

z
p p

s e p s e p
= −

( )[ ] + ( )[ ]
= −

+
1 2

1
2

2
2 2

0 9801 0 8758

0 0014 0 0191. . . .

. .

. . 22
5 45= . .

The p-value for the calculated z statistic is 0.0001, which is statistically signifi cant. If 
after two years the survival experience changed, this test would not provide any infor-
mation about that change. One could use multiple tests but doing that has the disadvan-
tage of not yielding a single overall test.

11.4.3   The Log-Rank Test

The CMH test for the comparison of survival curves is often called the log-rank test 
because of the similarity of these two test statistics. Peto and Peto’s log-rank statistic is 
based on a set of scores derived from the logarithm of the survival function (Lee 1992; 
Peto and Peto 1972). Because of its complexity in calculation, researchers often use 
an approximate log-rank chi-square statistic that is easier to compute (Matthews and 
Farewell 1985, Chapter 7; Peto et al. 1977). Just as in the CMH approach, the approxi-

Table 11.8 Expected values and variances of the (1, 1) cells.

Year under Care Expected Value Variance

0–1 110.86 3.03
1–2 127.61 3.27
2–3 134.59 3.28
3–4 190.36 4.44
4–5 172.96 3.88
5–6 217.22 4.58
6–7 200.69 4.13
7–8 206.78 4.04

Total 1,361.07 30.65
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mate log rank test is based on the individual 2 by 2 tables, but it looks at the number 
of deaths and expected number of deaths for each group. The approximate log-rank 
statistic is calculated by

X
O E

E

O E

E
LR
2 1 1

2

1

2 2
2

2

= −( )
+ −( )

where O1 is the sum of the observed numbers of deaths across the time points in the 
(1, 1) cell and O2 is the corresponding sum for the (2, 1) cell. E1 and E2 are the corre-
sponding sums of the expected number of deaths. The approximate log-rank test statistic 
looks like the goodness-of-fi t chi-square statistic. Applying the approximate log-rank 
test chi-square procedure to the preceding data, we get

X LR
2

2 21280 1361 07

1361 07

113 31 93

31 93
210 66= −( )

+ −( )
=.

.

.

.
. .

It gives practically an identical result to the CMH chi-square value just shown. One 
advantage of the approximate log-rank test is that it can be extended to more than two 
group comparisons. The exact calculation of the statistic is more involved than we wish 
to present in this text, but different software packages often report the exact value.

11.4.4   Use of the CMH Approach with Small Data Sets

The CMH test statistic can also be used with a smaller data set along with the product-
limit method. Let us consider an example.

Example 11.4

We reexamine the data used in Table 11.4 in comparing the survival distributions of 
male and female patients at the 0.05 signifi cance level. The male and female survival 
distributions are shown in Figure 11.6. The median survival time for males is about 
20 months, and it is 16 months for females.

Figure 11.6 Estimated survival distributions by gender for the data in Table 11.4.



We wish to determine whether or not there is a signifi cant difference between these 
two distributions. The data and the calculation of the test statistic for making this 
comparison are shown in Table 11.9.

The fi rst column of the table shows the observed alcohol-free times (xi) with the 
censoring status and gender indicated. The second column is the total number of 
subjects under observation at time x. The third and fourth columns show, respec-
tively, the number of females (Group 1) and the number of males (Group 2) under 
observation at time x. The fi fth column shows the observed number of relapses at 
time x. The numbers of relapses at time x in Group 1 and in Group 2 are shown in 
columns 6 and 7, respectively.

The eighth column shows the expected number of relapses at time xi for females. 
It is calculated in the same manner as before. For example, at 6 months, two relapses 
are recorded. The proportion of females under observation at 6 months is 7/13. 
Therefore, the expected number of relapses for females is 2*(7/13), or 1.08. The 
variances of the observed numbers of relapses for females at time xi are shown in 
column 9. These calculations are performed only for the uncensored survival times. 
The values are next summed and the CMH chi-square statistic is calculated as 
follows:

X
O E

V
CMH
2

2 20 5 5 6 19 0 5

1 67
0 29= − −( )

= − −( )
=. . .

.
. .

Since the test statistic is smaller than 3.84 (= c2
1,0.95), we fail to reject the null 

hypothesis.

The approximate log-rank chi-square statistic gives

Table 11.9 Comparison of alcohol-free time distributions for females and males.

Survival  Number of Subjects Observed No. of Relapses

Time  Total Female Male Total Female Male Expected
(1)  (2) (3) (4) (5) (6) (7) Relapses Variance
xi  n’i n’1i n’2i di d1i d2i (8) (9)

4 M 14 7 7 1 0 1 0.50 0.25
6 MF 13 7 6 2 1 1 1.08 0.46
9* M 11 6 5 0 0 0 0 0
10 F 10 6 4 1 1 0 0.60 0.24
14* M 9 5 4 0 0 0 0 0
16 M 8 5 3 1 0 1 0.63 0.23
17* M 7 5 2 0 0 0 0 0
19 F 6 5 1 1 1 0 0.83 0.14
20 F 5 4 1 1 1 0 0.80 0.16
28 M 4 3 1 1 0 1 0.75 0.19
31 F 3 3 0 1 1 0 1.00 0.00
34* F 2 2 0 0 0 0 0 0
47* F 1 1 0 0 0 0 0 0

Total     9 5 4 6.19 1.67

*Censored observations

Comparison of Two Survival Distributions  315



316  Analysis of Survival Data

In Chapter 10, we indicated that the CMH test statistic should be used only when the 
odds ratios are similar across the subtables. The same idea applies here, and the plot of 
the two survival functions gives a rough way of assessing the validity of this assump-
tion. If the assumption is true, the plot of the two survival functions should be roughly 
parallel. If the lines representing the two survival functions cross one another, this defi -
nitely means that the assumption does not hold and the CMH test statistic should not 
be used. The reason for this is that one group has a better survival experience during 
part of the study period, and the other group has a better experience during another part 
of the period. Thus, it is diffi cult to say that one group has a better overall experience. 
The log-rank test also has the same requirement.

Comparison of two consistently different survival curves can be done by the com-
puter (see Program Note 11.3 on the website). Most statistics packages provide the 
log-rank chi-square and options for creating graphs of the survival functions.

Conclusion
In this chapter, we presented two methods for analyzing survival data: the life-table and 
product-limit methods. The life-table method is generally used for large data sets and 
the product-limit method for smaller data sets. In addition, we demonstrated the calcula-
tion of the sample median and restricted mean survival times. We also discussed why 
the median is preferred to the mean as a single summary statistic for use with survival 
data. We highly recommended the plotting of the survival distribution for a more com-
plete description of survival data. Finally, we showed the use of the Cochran-Mantel-
Haenszel test for comparing the equality of two survival distributions.

EXERCISES

11.1 In an effort to understand employment experience of nurses, personnel records 
of two large hospitals were reviewed (Benedict, Glasser, and Lee 1989). A total 
of 3221 nurses were hired during a 10-year period from 1970 to 1979 and 
employment records were reviewed 18 months beyond the end of 1979. In this 
cohort, only 780 nurses worked more than 33 months. The length of employ-
ment was presented by 3-month intervals as follows:

X LR
2

2 25 6 19

6 19

4 2 81

2 81
0 73= −( )

+ −( )
=.

.

.

.
. .

Computer programs provide the exact log-rank chi-square value of 0.84. Although 
the CMH chi-square value is smaller than the log-rank chi-square values (due mainly 
to the correction for continuity), we draw the same conclusion. Note that the CMH 
chi-square without the correction for continuity is 0.85.



a. Prepare a worksheet for a life-table analysis and estimate the cumulative 
survival probabilities, the restricted mean, and the median length of employ-
ment. Also estimate the probability of termination for each of the 
intervals.

b. Estimate the standard errors of (1) the estimated cumulative survival proba-
bilities and (2) the probability of termination for each interval.

c. Calculate 95% confi dence intervals for (1) the 24-month cumulative survival 
probability and (2) the probability of termination during the fi rst three 
months of employment.

d. What additional data, if any, do you need and what further analyses would 
you perform to assess the nursing employment situation?

11.2 The Hypertension Detection and Follow-up Program collected mortality data 
for eight years (Shulman et al. 1989). The following data show the survival 
experience of two subgroups formed by the level of serum creatinine 
concentration:

Month after Number Number Number at Beginning
Employment Terminated Censored of Interval

 0–3 582  0 3,221
 3–6 369  0
 6–9 247  0
 9–12 212  0
12–15 182  0
15–18 144  0
18–21 129  75
21–24  99  74
24–27  85  59
27–30  51  53
30–33  45  35
33+  0 780

 Serum Creatinine Concentration (mg/dL)

Year 2.00–2.49 ≥2.5

Care Alive Died Censored Alive Died Censored

0–1 78 3 0 72 8 0
1–2 75 4 0 64 8 0
2–3 71 6 0 56 3 0
3–4 65 3 0 53 3 0
4–5 62 5 0 50 8 0
5–6 57 4 0 42 3 0
6–7 53 2 0 39 5 0
7–8 51 3 3 34 1 1
8+ 45 0 45 32 0 32

a. Analyze the survival pattern of each group using the life-table method: 
Estimate the cumulative survival probabilities and their standard errors, and 
compare the survival curves of these two groups graphically.

b. If it is appropriate, determine whether or not the two survival distributions 
are equal at the 0.01 signifi cance level.

c. Comment on what factors may have confounded the preceding comparison 
and what further analyses you think are necessary before you can draw more 
defensible conclusions.
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11.3 The SHEP (Systolic Hypertension in the Elderly Program) Cooperative Research 
Group (1991) assessed the ability of antihypertensive drug treatment to reduce 
the risk of stroke (nonfatal and fatal) in a randomized, double-blind, placebo-
controlled experiment. A total of 4736 persons with systolic hypertension (sys-
tolic blood pressure 160  mmHg and above and diastolic blood pressure less than 
90  mmHg) were screened from 447,921 elderly persons aged 60 years and 
above. During the study period, 213 deaths occurred in the treatment group and 
242 deaths in the placebo group. The average follow-up period was 4.5 years. 
Total stroke was the primary end point and the following data were reported:

 Treatment Group Placebo Group

Year Number Started Strokes Lost Number Started Strokes Lost

0–1 2,365 28 0 2,371 34 0
1–2 2,316 22 0 2,308 42 0
2–3 2,264 21 0 2,229 22 2
3–4 2,153 18 0 2,193 34 2
4–5 1,438 13 5 1,393 24 1
5–6*   613  1 0   584  3 0

*The last stroke occurred during the 67th month of follow-up.

a. To analyze the above data by the life-table method, how would you set up 
the worksheet? It is obvious that there were censored observations other than 
the lost-to-follow-up, such as deaths and withdrawn alive. This can be seen 
since the difference in the number of persons starting one interval and the 
number starting the following interval decreased by more than the number 
of strokes in the interval. Would you include or exclude the data in the last 
reported interval?

b. If it is appropriate, test the hypothesis of the equality of the two survival 
distributions at the 0.05 signifi cance level.

11.4 A group of 31 patients diagnosed with lymphoma and presenting with clinical 
symptoms (“B” symptoms) was compared with another group of 33 lymphoma 
patients diagnosed without symptoms (“A” symptoms) (Mattews and Farewell 
1985, page 89). The recorded survival times (in months) for the 64 patients are 
as follows:

A symptoms:  3.2*  4.4*  6.2  9.0  9.9 14.4 15.8 18.5 27.6* 28.5 30.1*
 31.5* 32.2* 41.0 41.8* 44.5* 47.8* 50.6* 54.3* 55.0 60.0* 60.4*
 63.6* 63.7* 63.8* 66.1* 68.0* 68.7* 68.8* 70.9* 71.5* 75.3* 75.7*

B symptoms:  2.5  4.1  4.6  6.4  6.7  7.4  7.6  7.7  7.8  8.8 13.3
 13.4 18.3 19.7 21.9 24.7 27.5 29.7 30.1* 32.9 33.5 35.4*
 37.7* 40.9* 42.6* 45.4* 48.5 48.9* 60.4* 64.4* 66.4*

Asterisks indicate censored observations.

a. Estimate the survival probabilities, plot the survival curves, and determine 
whether the use of the CMH or log-rank test is appropriate in comparing the 
two survival curves.

b. Carry out the test at the 0.01 signifi cance level and interpret the results. How 
would you interpret the prolonged horizontal survival curve at the end of 
survival curves in both groups?



11.5 The following data were abstracted from the records of the neonatal intensive 
care unit (NICU) in a hospital during the month of February 1993 (day and 
24-hour clock time are used to describe the timing of events — e.g., 0102 indi-
cates the fi rst day of February, 2/AM):

No. Sex Born Last Observed Status

 1 Boy 0102 2210 Discharged
 2 Girl 0306 1722 Died
 3 Boy 0309 1517 Died
 4 Boy 0523 2609 Discharged
 5 Boy 0918 1001 Died
 6 Girl 1004 2411 Died
 7 Boy 1107 2512 Discharged
 8 Girl 1110 1815 Discharged
 9 Boy 1206 1408 Died
10 Girl 1307 2320 Died
11 Girl 1412 2823 Still in NICU
12 Boy 1500 1510 Died
13 Boy 1607 2220 Died
14 Girl 1819 2823 Still in NICU
15 Boy 1903 2009 Died
16 Boy 2009 2711 Discharged
17 Boy 2110 2823 Still in NICU
18 Girl 2208 2320 Died
19 Girl 2321 2823 Still in NICU
20 Girl 2323 2810 Discharged
21 Boy 2402 2823 Still in NICU
22 Girl 2509 2823 Still in NICU
23 Boy 2620 2823 Still in NICU
24 Girl 2701 2822 Died

a. Estimate the neonatal survival function for these NICU infants, estimate the 
median survival time, and form the 90 percent confi dence interval for the 
50-hour survival probability.

b. Plot the estimated neonatal survival functions separately for boys and girls 
and test the equality of the two survival distributions at the 0.10 signifi cance 
level.

11.6 Quality of care for colorectal cancer was evaluated by comparing the survival 
experience of patients in two types of health plans (fee-for-service and health 
maintenance organization) offered by the same health care provider (Vemon et 
al. 1992). The following data were generated from the reported survival 
curves:

Practice Survival Times in Months

Fee-for-  2  5 10 12* 14 14 16 18 23 26* 27 31
Service 34 37* 39 42* 46 47* 50 53*

HMO  4 10* 12 15 19 25 30* 35 38 43* 49 54*

Asterisks indicate censored observations.

a. Estimate the survival distributions by the product-limit method and graphi-
cally compare the survival curves.

b. Compare the equality of the survival distributions of the two medical ser-
vices at the 0.01 signifi cance level.
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11.7 From April 1, 1999, family physicians are required to refer all patients who have 
suspected breast cancer in the United Kingdom to a hospital to be seen within 
14 days of referral. Data from a cancer registry were used to examine whether 
the survival distributions of different length of delay groups (from referral to 
treatment) are different (Sainsbury, Johnston, and Haward 1999). Patients diag-
nosed with breast cancer during the 1986–1990 period were used for this analy-
sis. Of the 9488 patients registered, 5708 had information on dates of referral 
and treatment. It was stated that “survival curves were estimated by the Kaplan-
Meier method.” Based on a survival analysis of the following data, the authors 
concluded that “delays of more than 90 days are unlikely to have an impact on 
survival and that, if delays can be kept to within this time, efforts to shorten 
delays further should not have priority.”

 Number of Survivors at the Beginning of the Interval

 Delay Groups

Years of Survival <30 Days 30–59 Days 60–89 Days ≥90 Days

0–1 3,534 1,578 345 251
1–2 3,113 1,490 328 235
2–3 2,743 1,370 301 217
3–4 2,470 1,274 275 198
4–5 2,235 1,182 254 186
5–6 2,062 1,101 239 176
6–7 1,897 1,050 225 168
7–8 1,769    982 212 157
8+ 1,647    913 199 154

Assume that there were no censored observations.

a. More than one-half of the data were in the less than 30 days delay group. 
What are merits and demerits of splitting this group to <15 days and 15–29 
days groups?

b. Do you think that the Kaplan-Meier method was appropriate for this 
analysis?

c. Estimate the survival distributions for <30 days delay group and the ≥90 
days delay group, and test whether two survival distributions are signifi -
cantly different at the 0.05 level.

d. Do you think the author’s conclusions are supported by your analysis? Why 
or why not? What are possible confounders for the difference in survival 
distributions?
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Analysis of Variance

Chapter Outline
12.1 Assumptions for Use of the ANOVA
12.2 One-Way ANOVA
12.3 Multiple Comparisons
12.4 Two-Way ANOVA for the Randomized Block Design with m Replicates
12.5 Two-Way ANOVA with Interaction
12.6 Linear Model Representation of the ANOVA
12.7 ANOVA with Unequal Numbers of Observations in Subgroups

In Chapter 8, we used the t test for testing the equality of two population means based 
on data from two independent samples. In this chapter, we introduce a procedure for 
testing the equality of two or more means. The two experimental designs discussed in 
Chapter 6 — the completely randomized and the randomized block designs — will be 
considered.

The comparison of two or more means is based on partitioning the variation in the 
dependent variable into its components — hence, the method is called the analysis of 
variance (ANOVA). It was introduced by Sir Ronald A. Fisher and has been used in 
many fi elds of research. We begin this chapter with a presentation of the assumptions 
made when the ANOVA is used. This section is followed by an introduction to the one-
way ANOVA. In conjunction with this analysis, we present three methods used in mul-
tiple comparison analysis. These topics are followed by the analysis of the randomized 
block design, an example of a two-way ANOVA, and a two-way ANOVA with interac-
tion. We next provide a linear model representation of the ANOVA, followed by the use 
of the linear model with unequal group sizes.

12.1   Assumptions for Use of the ANOVA
The ANOVA is used to determine whether or not there is a statistically signifi cant dif-
ference among the population means of two or more groups. The theoretical basis of 
the ANOVA requires that the data being analyzed are independent and normally dis-
tributed. We must also assume that the population variances in each of the groups have 
the same value, s2. The ANOVA procedure works reasonably well if there are small 
departures from the normality assumption. However, if the variances are very different, 
there is concern about the signifi cance levels reported in the analysis (Scheffé 1959). 
This concern is consistent with the material presented in Chapters 7 and 8, where we 
saw different methods for comparing two means, depending on whether or not we 
assumed that the population variances were equal. One method for protecting against 
the effects of different values for the variances is to have approximately equal numbers 
of observations in each of the groups being analyzed. Another approach involves trans-

12
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formations of the dependent variable (Kleinbaum, Kupper, and Muller 1988; Lin and 
Vonesh 1989). One further assumption is that the groups being compared are the only 
groups of interest. This assumption means that the factors — the independent variables 
— are fi xed factors. Fixed and random factors and their implications are discussed later 
in this chapter, and further information is available elsewhere (Steel and Torrie 1980).

There are no fi rm rules for the number of observations required by the ANOVA. It 
is possible to perform power calculations or to use the size of confi dence intervals to 
estimate the required sample size. In general, we recommend that there be a minimum 
of 5 to 10 observations for each of the combinations of levels of the independent vari-
ables used in the analysis. For example, with two independent variables, if one has 3 
levels and the other independent variable has 4 levels, there are 12 combinations of 
levels.

12.2   One-Way ANOVA
In a one-way ANOVA, there is only one independent variable. The data to be analyzed 
are obtained from either (1) a random sample of subjects who belong to different groups 
— for example, different racial groups — or (2) an experiment in which the subjects 
are randomly assigned to one of several groups. The latter situation arises when we use 
the completely randomized design discussed in Chapter 6. In the completely randomized 
design, subjects are randomly allocated to groups and the groups represent the levels of 
the independent variable. Observations of the continuous variable of interest, the depen-
dent variable, are taken on the subjects and the subject’s group membership is also 
recorded. In the following example, we consider data from a completely randomized 
design, and we wish to determine whether or not there is a difference in mean age among 
three groups.

Example 12.1

Data shown in Table 12.1 are based on an article by Kimball et al. (1986) and can 
be analyzed using a one-way ANOVA. In the article, the authors wished to evaluate 
ventricular performance after surgical correction of congenital coarctation of the 
aorta. The ventricular performance was compared to that found in two control 
groups. Because of the possible roles that age and gender play on ventricular perfor-
mance, the authors wanted the age and sex distributions of the subjects who had 
undergone the surgery to be similar to those of the members of the two control 
groups. We wish to examine whether or not the authors were successful in obtaining 
groups that were similar on the age variable. The ages shown in Table 12.1 are 
hypothetical, based on the summary values reported by Kimball et al. In this example, 
the dependent variable is age, and the independent variable is the group to which the 
subjects belong.

The entries in Table 12.1 can be represented symbolically as yij, where the fi rst 
subscript indicates the subject’s group membership and the second subscript identi-
fi es the subject in the ith group. For example, y11 is 32 years old, y12 is 28 years old, 
y25 is 34 years old, y26 is 33 years old, and so on. The fi rst subscript ranges from 1 
to 3. When the fi rst subscript has the value of 1, the range of the second subscript is 
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In the following section, we show how the data in Example 12.1 can be analyzed.

12.2.1   Sums of Squares and Mean Squares

As was just mentioned, this method, the analysis of variance, is based on a partitioning 
of the variation in the dependent variable. In the one-way ANOVA, there are two pos-
sible sources of variation in the dependent variable. One source is variation among (or 
between) the groups — that is, the groups may have different means that vary about the 
overall mean. The other possible source is variation within the groups. Not all the sub-
jects in the same group will have exactly the same values, and the within-group variation 
refl ects this.

The null hypothesis being tested here is that the population group means are equal 
to one another. If this hypothesis is true, all the observations come, in effect, from the 
same population. Thus, any variation that remains among the group means really refl ects 
the random variation among the observations — that is, the within-groups variation. 
Thus, the adjusted among and within variations should be similar if the null hypothesis 
is true. If the null hypothesis is false, the adjusted among-groups variation should be 
larger than the adjusted within-group variation because it includes variation between the 
populations as well as the within-group variation. Thus, we can use the adjusted among- 
and within-group variations as the basis of a test of the equality of the group means.

We can represent the above idea in symbols as
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This equation shows the partitioning of the total variation in Y, the dependent variable, 
about its mean into an among (or between)-group component and a within-group com-
ponent. These sum of squares are called the total sum of squares corrected for the mean 
(SST), the among (or between)-group sum of squares (SSB) and the within-group sum 
of squares (SSW).

from 1 to 25, and this is also the case when the fi rst subscript is 2. When the fi rst 
subscript has the value of 3, the second subscript ranges from 1 to 18. In general, 
there are r groups and ni observations in the ith group. We also use the ⋅ notation 
introduced in Chapter 10. For example, yi. is a shorthand notation for Σj yij and y.. is 
shorthand for ΣiΣj yij. Thus, y1. represents the sum of all the ages for the subjects in 
the surgery group, and y.. is the sum of all the 68 ages in the sample. It follows that 
y–i. is the sample mean of the i-th group, and y–.. is the overall sample mean.

Table 12.1 Hypothetical ages for control and surgery subjects.

Group Ages

Surgery 32 28 22 25 20 20 28 28 20 29 22 37 18 29 22 32 21 34
 19 23 23 26 41 20 33
Control I 32 26 31 39 34 33 29 41 35 33 33 43 25 39 36 37 28 34
 27 45 22 29 51 28 35
Control II 31 35 26 28 22 29 27 21 22 27 24 44 21 25 27 18 27 36
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If we adjust these two components for the number of independent observations used 
in their calculations — that is, divide each component sum of squares by its degrees of 
freedom — we have the mean square among (or between) and the mean square within. 
The mean square between is
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where the second expression refl ects the fact that the terms in the parentheses do not 
vary with j. The mean square within is
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where n is the total number of observations — that is, the sum of the ni. The degrees of 
freedom for the mean square between, r − 1, comes from the calculation of the variation 
in r means. The degrees of freedom for the mean square within, n − r, is the result of 
summing the ni − 1 degrees of freedom associated with the ith group over the r groups.

The mean square within is particularly useful as it also provides an adjusted estimate 
of the variation within groups — that is, of s 2, the variance of the dependent variable. 
It is based on the assumption that the variance of the dependent variable is the same 
within each group. If there is no difference between the group means, then the mean 
square between also estimates s 2.

Example 12.2

For the data in Table 12.1, we have the following values of means and sums of 
squares. First, y–1⋅, the sample mean of the fi rst group, is 26.08, y–2⋅ is 33.80, and y–3⋅ 
is 27.22. The overall sample mean, y–⋅⋅, is 29.22 years. The sum of squares between is

SSB = 25(26.08 − 29.22)2 + 25(33.80 − 29.22)2 + 18(27.22 − 29.22)2 = 842.9.

The sum of squares within involves too many terms to show, but its sum of squares 
is 2660.8 and the total sum of squares (corrected) is 3503.7.

12.2.2   The F Statistic

The comparison of these two mean squares provides information about whether or not 
the null hypothesis is true. One way of comparing the mean squares is to take their 
difference. If the null hypothesis were true, then the difference would be zero. However, 
the probability distribution of the difference is not widely available. Another way of 
comparing the mean squares is to take the ratio of the mean square between to the mean 
square within. If the null hypothesis were true, the ratio would equal one. If the null 
hypothesis were false, the ratio would be larger than one. Fortunately, the probability 
distribution of the ratio has been worked out, and it is an F distribution with r − 1 and 
n − r degrees of freedom. Tables of the F distribution, named in honor of Sir Ronald 
Fisher, are shown in Appendix B11 for the 0.01, 0.05, and 0.10 signifi cance levels for 
values of the numerator ( f1) and denominator ( f2) degrees of freedom parameters.
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The F distribution has many different shapes, depending on the values of the degrees 
of freedom parameters. Figure 12.1 shows the shape of the F distribution for degrees of 
freedom pairs (1 and 20) and (5 and 20). We can see that the shapes are different, but 
most of the probability (area) is associated with values of F close to one.

There is also a relation between the t and F distributions that can be seen from the 
t and F tables. The relation is t2

k,1−a /2 is equal to F1,k,1−a . For example, when k is 10, t10,0.95 
is 1.8125, and its square is 3.2852. Examination of the F tables in Appendix B11 shows 
that F1,10,0.90 is 3.29. This equivalence when there are two groups leads us to think that 
there may be a relation between the ANOVA and t test approaches in the two-group 
situation.

12.2.3   The ANOVA Table

The preceding sums of squares and mean squares are usually presented in tabular 
format, as shown in Table 12.2.

Figure 12.1 Plot of the 
probability density 
functions of the F 
distribution for F1,20 
(solid line) and F5,20 
(broken line).

Table 12.2 Typical ANOVA table for a one-way analysis.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Between Groups r − 1 SSB  SSB/(r − 1) = MSB MSB/MSW
Within Groups n − r SSW SSW/(n − r) = MSW

Total (Corrected) n − 1 SST

The degrees of freedom and sums of squares associated with the between and within 
groups sum to the corresponding total values. If these values do not sum to the total, a 
mistake has been made in the calculations.

The F statistic is then used to test the null hypothesis that the group means are equal 
against the alternative hypothesis that the group means are not all equal. When the null 
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hypothesis is true, the F statistic follows an F distribution with r − 1 and n − r degrees 
of freedom. If the calculated F statistic is greater than Fr-1,n-r,1-a , found in Appendix Table 
B11, we reject the null hypothesis in favor of the alternative hypothesis at the a signifi -
cance level. If the calculated F statistic is less than this critical value, we do not have 
suffi cient evidence to reject the null hypothesis.

Example 12.3

Based on the sums of squares presented in Example 12.2, we can complete the 
ANOVA table for the ages shown in Table 12.1. Let us test the hypothesis of the 
equality of the mean ages at the 0.01 signifi cance level. Table 12.3 is the ANOVA 
table for the age data.

There are 68 observations in the three groups. Hence, there are 2 degrees of 
freedom for the factor (between groups), variable, 65 degrees of freedom for error 
(within groups), and 67 degrees of freedom for the total sum of squares. The table 
shows the sums of squares and mean squares as well as the F ratio. The exact critical 
value of this test is not shown in Table B11, but the closest value shown for F is 4.98 
for F2,60,0.99. From the table, we see that the exact F value for F2,65,0.99 is slightly less 
than 4.98.

The calculated F statistic (10.29) is greater than the approximate critical value of 
4.98. Therefore, we reject the equality of the mean ages in favor of the alternative 
hypothesis. It appears that the three groups differ on age. This fi nding means that it 
may be necessary to take age into account in the analysis of ventricular performance. 
The square root of the mean square for error is 6.395 ( = 40 9. ), and it is an estimate 
of s.

Computer packages can be used to perform the analysis of variance (see Program 
Note 12.1 on the website). The computer output shows the ANOVA table with the 
p-value associated with the F ratio along with group means and standard 
deviations.

Figure 12.2 shows box plots for the data in Table 12.1. The group means are rep-
resented by dots in the box. It appears that the difference is due mainly to the fi rst 
control group having a mean age that is much greater than the other two groups. 
When there is a statistically signifi cant difference among the group means, we can 
perform additional tests to see if we can determine the source of the differences in 
the means. The next section describes three approaches to this additional testing.

Table 12.3 ANOVA table for the ages shown in Table 12.1.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Between Groups  2  842.9 421.4 10.29
Within Groups 65 2660.8  40.9

Total (Corrected) 67 3503.7



12.3   Multiple Comparisons
If the overall F statistic from the ANOVA is statistically signifi cant, multiple compari-
sons procedures can be used in an attempt to discover the source of the signifi cant dif-
ferences among the group means. Most of these procedures are designed to examine 
the pairwise differences among group means, although there are more general proce-
dures. The comparison of the group means is accomplished through the presentation of 
confi dence intervals for pairwise differences of group means. The use of the multiple 
comparison procedures is generally not recommended when we fail to reject the null 
hypothesis. However, exceptions may occur when certain comparisons have been 
planned in the course of the experiment.

There are many different multiple comparison procedures, and we shall present three: 
the Tukey-Kramer method, Fisher’s least signifi cant difference (LSD) method, and 
Dunnett’s method. The Tukey-Kramer method is the recommended procedure when one 
wishes to estimate simultaneously all pairwise differences among the means in a one-
way ANOVA assuming that the variances are equal (Stoline 1981). We present the LSD 
method because it is frequently used in the literature. Dunnett’s procedure is used when 
we wish to compare several groups with a specifi c group selected before the data were 
obtained (or the control group designated in the design). For example, if there were 
several new treatments and a standard treatment, we would use Dunnett’s procedure to 
compare each of the new treatments with the standard. The multiple comparison pro-
cedures presented here use the mean square within as the estimator of s2. Before pre-
senting these methods, we shall discuss error rates associated with the methods.

12.3.1   Error Rates: Individual and Family

In the pairwise comparison of the group means, many confi dence intervals are formed. 
For example, when there are three groups, we form confi dence intervals for the differ-
ences of groups 1 and 2, groups 1 and 3, and groups 2 and 3. When there are r groups, 
there are rC2 confi dence intervals for the pairwise comparisons. Thus, we see that there 
are two probabilities of errors in multiple comparison procedures. One probability of 

Figure 12.2 Box plots for the data in Table 12.1.
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error is associated with each individual confi dence interval — the individual error rate. 
The other is associated with the rC2 intervals — the family of confi dence intervals — the 
family error rate. This is the rate that is usually of primary interest — the rate that we 
want to be less than or equal to a.

It is clear that if we use the t1−a /2 value in the creation of the confi dence intervals, the 
family error rate will be larger than a. If we wish to control the family error rate to be 
less than or equal to a , then we must use some value other (greater) than t1−a /2 in the 
calculation of the confi dence intervals.

12.3.2   The Tukey-Kramer Method

The Tukey-Kramer method focuses on the family error rate. It replaces tn−r,1−a /2 in the 
confi dence interval for the difference of two group means by qr n r, ,− −1 2α , where q is 
the upper a value from the studentized range distribution (r is equivalent to p in Table 
B12). Table B12 shows the upper a value from the studentized range distribution (at a 
= 0.01 and 0.05). Note that the q value takes the number of possible comparisons into 
account, since its value depends on r, the number of groups.

The confi dence interval for the difference of mi and mj is
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Example 12.4

Let us calculate the confi dence intervals for the three pairwise comparisons for the 
hypothetical age data shown in Table 12.1. We shall set the family error rate to be 
0.05. The value of q3,65,0.95 is not found in Table B12. Since there is little variation in 
the value of q as n − r changes from 40 to 60 to 120 in the table, we shall use 3.40 
(= q3,60,0.95) as an approximation to the desired value. The confi dence interval for the 
difference of groups 1 and 2 is
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which yields

−7.72 ± 4.35

and the interval ranges from −12.07 to −3.37. The corresponding interval for m1 − m3 
is −5.89 to 3.61, and the interval for m2 − m3 is from 1.83 to 11.33. Both of the intervals 
involving m2 fail to contain zero, suggesting that the fi rst control group differs sig-
nifi cantly from both the study group and the second control group.

12.3.3   Fisher’s Least Signifi cant Difference Method

Fisher’s LSD method focuses on the individual error rate. When the ni are all equal, 
there is a value — the least signifi cant difference — such that if any of the differences 
in sample means are greater than that value, the difference is statistically signifi cant. If 



a difference is greater than that value, the corresponding confi dence interval for the 
difference does not contain zero. If the number of sample observations differ across the 
groups, there is not a single least signifi cant difference.

The LSD confi dence interval looks like the ordinary confi dence interval for the dif-
ference of two means with one exception. The mean square within is used as the estima-
tor for the population variance instead of an estimator based on only data from the two 
groups being compared. The LSD confi dence interval for mi − mj is
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Example 12.5

Let us calculate the 0.05 individual error rate LSD confi dence interval for m1 − m2. 
We have
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which yields

−7.72 ± 3.62

and the interval ranges from −11.34 to −4.10. This interval is narrower than the cor-
responding Tukey-Kramer interval as it must be, since it is based on the individual 
error rate, not the family error rate used by the Tukey-Kramer procedure. The cor-
responding LSD interval for m1 − m3 ranges from −5.10 to 2.82, and the interval for 
m2 − m3 ranges from 2.62 to 10.54.

12.3.4   Dunnett’s Method

Dunnett’s method is used in situations when we wish to compare the means of several 
groups with the mean of another group that was selected in advance. For example, we 
may wish to compare the means of different dosage levels of a new medication with the 
mean of a placebo group. In our example, there are two control groups and one treat-
ment group. We wish to see if there is a difference between the two control groups and 
the treatment group (group 1). Thus, the comparisons of interest are m2 − m1 and 
m3 − m1.

The confi dence interval for mi − mj using Dunnett’s procedure is given by
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where the upper 0.005 and 0.025 levels of d are given in Table B13.
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These calculations can be performed by the computer packages in conjunction with 
analysis of variance (see Program Note 12.1 on the website).

12.4   Two-Way ANOVA for the Randomized Block 
Design with m Replicates

As discussed in Chapter 6, in many situations the same experiment is conducted in 
several sites or under different conditions. In these situations, the random allocation of 
subjects takes place separately at each site or for each condition. These experiments are 
using what is called a randomized block design. The random allocation of the subjects 
to the treatments is performed separately for each block (site or condition) because it is 
thought that there may be an effect of the blocks on the outcome variable. If the subjects 
were randomly assigned ignoring the blocks, as in a completely randomized design, 
there is a chance that the block effects might be confounded with the treatment effects. 
Hence the random assignment is done separately.

Example 12.6

Let us now calculate the confi dence intervals using a family error rate of 0.05 with 
Dunnett’s method for the data used in previous examples. For the comparison of the 
fi rst control group with the treatment group, we have
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where 2.27 is the value of d2,60,0.975, and this is used as an approximation to d2,65,0.975. 
This calculation yields

7.72 ± 4.11

and the interval ranges from 3.61 to 11.83. The corresponding interval for m3 − m1 
ranges from −3.35 to 5.63. The confi dence intervals using Dunnett’s procedure are 
narrower than those provided by the Tukey-Kramer method. This is reasonable, since 
we are doing fewer comparisons with Dunnett’s procedure. Based on these intervals, 
there is a statistically signifi cant difference between the fi rst control group and the 
treatment group but no signifi cant difference between the second control group and 
the treatment group.

Example 12.7

The data in Table 12.4 are from a randomized block design with fi ve replicates per 
cell. The data are the changes in weight for moderately overweight female employees 
who participated in weight reduction programs. The women worked at one of two 
company sites: either the headquarters or a manufacturing plant. At each site, after 
a semiannual health examination, the women were randomly given memberships to 
a diet clinic or to a health club or to both. There was a control for company site 
because it was thought that there may be a difference in the effects of the weight 



To analyze this data set, we will use a two-way ANOVA. The method of analysis is 
called two-way because there are now two independent variables: the blocking variable 
with c levels and the treatment variable with r levels. The total sum of squares of the 
dependent variable about its mean is now partitioned into a sum of squares between 
treatment groups, a sum of squares between blocks and the within-cells (error or resid-
ual) sum of squares. This partitioning, based on m observations per cell, is

 
y y cm y y rm y yijk i

i

r

k

m

j

c

j
j

− ⋅⋅⋅( ) = ⋅⋅ − ⋅⋅⋅( ) + ⋅ ⋅ − ⋅⋅⋅( )
===
∑∑∑ 2 2

111

2

===
∑∑ +

11

c

i

r

SSW .

The total variation of Y about its mean (SST) is partitioned into the sum of squares 
for the row or treatment variable (SSR), the sum of squares for the column or block 

reduction programs for those who were less physically active — the headquarters 
group — compared to the women in the plant. After the next health examination, 
weight reduction was measured.

In this table, data are classifi ed by program, the row variable, and site, the column 
variable. The type of intervention program is the treatment variable with three levels, 
and the site is considered to be the blocking variable with two levels. These two 
independent variables form six cells, and the cells all have the same number of 
observations. When there are the same numbers of observations in each cell, the 
design is said to be balanced. The analysis of unbalanced data is more complicated 
and will be discussed in the last section of this chapter.

The entries in Table 12.4 can be represented symbolically as yijk, where i is an 
indicator of the program (the row variable), j represents the site (the column vari-
able), and k indicates the subject number within the ith program and jth site. The 
fi rst subscript ranges from 1 to 3, the second subscript has the value 1 or 2, and the 
third subscript ranges from 1 to 5.

We continue to use the ⋅ notation. For example, y⋅1⋅ represents Σi Σk yi1k, the sum 
of weight losses for the female employees at the offi ce site. Using this notation, the 
sample mean of the ith level of the program variable is y–i⋅⋅, the sample mean of 
the jth level of the site variable is y–⋅j⋅, and the overall sample mean is y–⋅⋅⋅. These are 
the values of these sample means:

Table 12.4 Difference of pre- and postintervention weights (pounds) after 6 months of 
participation by intervention program at two sites.

Program Offi ce Site Factory Site

Diet Clinic 6 2 10 −1 8 3 15 4 8 6
 3 4 −2 6 −2 −4 6 8 −2 3
Both Programs 8 12 7 10 5 15 8 10 16 3

Program Means Site Means  Overall Mean

Diet 6.10 Offi ce 5.07 5.83
Exercise 2.00 Factory 6.60
Both 9.40

Two-Way ANOVA for the Randomized Block Design with m Replicates  333
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variable (SSC), and the within or residual sum of squares (SSW). SSW is found by 
subtracting the sum of SSR and SSC from SST. The value of SSR is

 SSR = 2(5)[(6.10 − 5.83)2 + (2.00 − 5.83)2 + (9.40 − 5.83)2] = 274.9.

The value of SSC is similarly found and is

 SSC = 3(5)[(5.07 − 5.83)2 + (6.60 − 5.83)2] = 17.56.

Too many terms are involved to show the calculation of SST, but its value is 768.2 and 
SSW, found by subtraction, is 475.7.

We use the same approach to the analysis in the two-way ANOVA as was used in 
the one-way ANOVA. To test the hypothesis of no difference in the treatments, we use 
the F statistic calculated as the ratio of the mean square for treatment to the residual 
mean square. If the null hypothesis of no difference in the treatment means, adjusted 
for the blocking variable, is true, this F statistic follows the F distribution. The mean 
square for treatments has r − 1 degrees of freedom, and the residual mean square has 
n − r − c + 1 [= n − (r − 1) − (c − 1) − 1] degrees of freedom. Thus, the F statistic for 
the treatment variable will follow an F distribution with r − 1 and n − r − c + 1 degrees 
of freedom if there is no difference in the treatment group means. In the same way, we 
could also test the null hypothesis of no difference in the block means. The F statistic 
associated with this hypothesis follows the F distribution with c − 1 and n − r − c + 1 
degrees of freedom if this null hypothesis is true. Usually, we are not as interested in 
the hypothesis about the block means as we are in the treatment group means.

The ANOVA table for a randomized block design with m replicates per cell is shown 
in Table 12.5. Let us perform the test of no treatment effect — that is, of no difference 
in the population means associated with the three interventions at the 0.05 signifi cance 
level. The analysis for the change in weight data is shown in Table 12.6. As the calculated 
F-value of 7.51 is greater than the critical value of 3.37 (= F2,26,0.95), we reject the null 
hypothesis and conclude that the intervention programs are signifi cantly different. 
Alternatively, we can make the decision based on the p-value associated with 7.51. Since 
the p-value of 0.003 is smaller than 0.05, we draw the same conclusions. We are not 
interested in the site difference.

Since there is a difference in the treatment group means at the 0.05 signifi cance level, 
we are interested in fi nding the source of the signifi cant differences among the group 
means. Applying the Tukey-Kramer method of multiple comparisons, we fi nd that 
the 95 confi dence intervals for (m2 − m1) is (−8.85, 0.65), (m3 − m1) is (−1.45, 8.05), and 
(m3 − m2) is (2.65, 12.15). It appears that using both types of intervention is more effec-
tive than the intervention using exercise only.

What would have happened had we ignored the site variable in the preceding analy-
sis? If we assume that we would have had the same assignment of the subjects to the 

Table 12.5 ANOVA table for a randomized block design.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Treatments r − 1 SSR SSR/(r − 1) = MSR MSR/MSW
Blocks c − 1 SSC SSC/(c − 1) = MSC MSC/MSW
Residual n − r − c + 1 SSW SSW/(n − r − c + 1) = MSW

Total (Corrected) n − 1 SST



different treatments, we can examine the effect of the use of the blocking variable. The 
residual sum of squares in the two-way ANOVA is less than or equal to the residual 
sum of squares in the corresponding one-way ANOVA, refl ecting the removal of the 
between blocks sum of squares. If the sum of squares between the blocks is large and 
its degrees of freedom are small, then the residual mean square is much smaller in the 
two-way ANOVA. This means that if the blocking variable is important, there is a 
greater chance of detecting a difference in the treatment group means using the two-way 
ANOVA than using the corresponding one-way ANOVA. The computer packages can 
be used to perform the preceding analysis including the multiple comparisons (see 
Program Note 12.2 on the website).

In the next section, we show a more general two-way analysis of variance that 
includes the interaction of the two independent variables.

12.5   Two-Way ANOVA with Interaction
In some instances, a researcher is interested in studying the effects of two factors. In 
these instances, the experimental subjects are randomly allocated to all combinations 
of levels of both factors. For example, if both the row and column factors have two levels 
each, then the subjects are randomly allocated to four groups. This type of experimental 
design is especially useful when we want to study the effects of each factor as well as 
the interaction effect of the factors with one another. Interaction exists when the differ-
ences in responses to the levels of one factor depend on the level of another factor. For 
example, in a study of byssinosis (brown-lung disease) in textile workers in North Caro-
lina (Higgins and Koch 1977), two variables of interest were whether or not the worker 
smoked and whether or not the worker was exposed to dust in the workplace. Both of 
these variables were important — that is, both smoking and being exposed were associ-
ated with a higher occurrence of byssinosis. In addition, if a worker smoked and also 
was exposed to the dust, the occurrence of byssinosis was much higher than would have 
been expected by simply adding the effects of the smoking and exposure variables. In 
this case, there is a synergistic effect — that is, an interaction of these two independent 
variables.

We have previously been concerned about interaction, although we did not use the 
term interaction when we considered the Cochran-Mantel-Haenszel procedure. We said 
that the procedure should not be used when the odds ratios were not consistent across 
the subtables. If the odds ratios are not consistent, this means that the relation between 
the dependent and independent variables depends on the levels of an extraneous or 
confounding variable — that is, there is interaction between the independent and extra-
neous variable. If the interaction exists, it does not make sense to talk about an overall 

Table 12.6 ANOVA table for weight change data from Table 12.4: Three intervention programs at 
two sites.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F p-value

Between Programs 2 274.9 137.4 7.51 0.003
Between Sites 1 17.6 17.6
Residual 26 475.7 18.3

TOTAL 29 768.2
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effect of the independent variable because its effect varies with the level of the extrane-
ous or confounding variable.

Example 12.8

The data in Table 12.7 are from a two-factor experiment in a health education teacher-
training program. Three new textbooks (factor A) were tested with two methods of 
instruction (factor B), and 36 trainees were randomly allocated to the six groups with 
six subjects per group. The trainees were tested before and after four weeks of 
instruction, and the increases in test scores were recorded as shown in the table. As 
in the randomized block design, data are classifi ed by textbook, the row factor, and 
method of instruction, the column factor. In this experiment, the random allocation 
of subjects was done simultaneously to all combinations of the two sets of levels, 
whereas the randomization took place separately in each block in the randomized 
block design.

Table 12.7 Increase in test scores after four weeks of instruction using three textbooks and two 
teaching methods.

 Method of Instruction

Textbook Lecture Discussion

1 30 43 12 18 22 16 36 34 15 18 40 45
2 21 26 10 14 17 16 33 31 28 15 29 26
3 42 30 18 10 21 18 41 46 19 23 38 48

The entries in this table are also represented symbolically by yijk as in the random-
ized block design with replicates. Several means again will be used in the analysis. 
The means here include the cell means (y–ij⋅), two sets of marginal means — row (y–i⋅⋅) 
and column (y–⋅j⋅) — and the overall mean (y–⋅⋅⋅). The values of these means are as 
follows:

 Methods of Instruction

Textbook Lecture Discussion Marginal Book Means

1 23.50 31.33 27.42
2 17.33 27.00 22.17
3 23.17 35.83 29.50

Marginal Method Means 21.33 31.39 26.36 (Overall Mean)

We analyze this data set using a two-way ANOVA with interaction. For the random-
ized block design, we used a two-way ANOVA, ignoring interaction. The researcher for 
this experiment could have used two separate completely randomized experiments (one-
way ANOVAs) — one to compare the three textbooks and the other to compare the two 
types of instructional methods. However, based on these two separate experiments, the 
researcher would not know whether any textbook works better with one instructional 
method than the other. The effects of the textbooks may differ across the instructional 
methods. Interaction measures the difference in the textbook effects across the two 



instructional methods. If the distribution of the mean increase in test scores for the three 
textbook types for those taught by lecture differs from the corresponding distribution 
for those taught by discussion, there is interaction. The average effects of textbooks 
across both types of instruction and the average instructional effects across all textbooks 
are measures of the main effects of the two independent variables.

If there is an interaction of the two independent variables, then usually the interaction 
terms are of more interest than the main effects of the two independent variables. This 
is because, if there is an interaction, the effect of one independent variable depends — it 
changes — as the level of the other independent variable changes. Hence, in our analysis, 
we must fi rst examine the test of hypothesis that there is no interaction before consider-
ing the test of no main effects of the independent variables.

If there is interaction, we can examine the cell means in an attempt to discover the 
nature of the interaction. If there is no evidence of an interaction, then we consider the 
hypotheses about the main effects. In this case, some statisticians would remove the 
interaction term from the analysis — that is, incorporate its sum of squares and degrees 
of freedom into the error term before calculating the F statistics for the main effects. 
The decision to incorporate or not to incorporate the nonsignifi cant interaction term 
into the error term usually has little effect on the results.

In order to include interaction in the analysis, the total sum of squares (SST) of the 
dependent variable about its mean is now partitioned into a sum of squares for the row 
factor R (SSR), a sum of squares for the column factor C (SSC), a sum of squares for 
interaction between factor R and factor C (SSRC), and the error sum of squares (SSE). 
As before, we shall use the symbols r and c for the numbers of levels for factors R and 
C, respectively, and use m to represent the number of replicates in each of the cells 
formed by the crosstabulation of factors R and C. This partitioning of the total sum of 
squares is expressed symbolically as
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The rest of the analytic approach is the same as before. The mean squares for the 
main effects and the interaction are calculated by dividing the sums of squares by 
appropriate degrees of freedom. The mean squares for factors R and C have r − 1 and 
c − 1 degrees of freedom, respectively. The mean square for interaction has (r − 1)(c − 1) 
degrees of freedom, and the error mean square has n − rc [= rc(m − 1)] degrees of 
freedom. The error mean square is then used as the denominator in the calculation of 
the F statistics for the two main effects and interaction. The ANOVA table for a two-
factor experimental design with interaction is shown in Table 12.8.

The calculations of the sums of squares, similar to those shown previously in the 
randomized block analysis, are not shown here but are summarized in Table 12.9.

Let us perform the tests of hypotheses at the 0.05 signifi cance level. The F statistic 
and its associated p-value for interaction indicate that there is no statistically signifi cant 
interaction of the two independent variables. Since this is the case, we can now examine 
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the F statistics associated with the hypotheses of no difference in the test score improve-
ment between the two methods of instruction and among the three textbooks. There is 
a statistically signifi cant effect for the methods of instruction — a p-value less than 0.05 
— but no signifi cant effect associated with the textbooks.

If we had removed the interaction term from the analysis after fi nding that it was not 
important, the error sum of squares would have been 3135.5 (= 35.7 + 3099.8), and there 
would have been 32 degrees of freedom associated with this error sum of squares. The 
error mean square would have been 97.98 instead of 103.3, and the F ratios for textbooks 
and methods of instruction would have been 1.75 and 9.29, respectively.

Let us explore further the preceding analytical results in relation to the cell means 
that were just calculated and are repeated here for our convenience. The lack of a sig-
nifi cant main effect for textbooks is refl ected in the marginal means for textbooks. The 
fi rst and third textbooks appear to be a little more effective than the second book, but 
the ANOVA results indicated that these differences are not statistically signifi cant. On 
the other hand, the discussion method was associated with a much greater increase — 
about 10 points — in test scores than the lecture method and this difference was statisti-
cally signifi cant. The lack of an interaction effect is refl ected in the cell means that are 
plotted in Figure 12.3.

Table 12.8 ANOVA table for a two-factor design with interaction.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Factor R r − 1 SSR SSR/(r − 1) = MSR MSR/MSE
Factor C c − 1 SSC SSC/(c − 1) = MSC MSC/MSE
Interaction (r − 1)(c − 1) SSRC SSRC/(r − 1)(c − 1) = MSRC MSRC/MSE
Error n − rc SSE SSE/(n − rc) = MSE

Total (Corrected) n − 1 SST

Table 12.9 ANOVA table for test score increase data in Table 12.6 by combinations of three textbooks 
and two methods of instruction.

Source DF SS MS F p-value

Textbooks 2 342.7 171.4 1.66 0.207
Methods of Instruction 1 910.0 910.0 8.81 0.006
Interaction 2 35.7 17.9 0.17 0.842
Error 30 3099.8 103.3

Total 35 4388.3

 Methods of Instruction

Textbook Lecture Discussion Marginal Book Means

1 23.50 31.33 27.42
2 17.33 27.00 22.17
3 23.17 35.83 29.50

Marginal Method Means 21.33 31.39 26.36 (Overall Mean)

Interaction measures the degree of similarity between the responses to factor A at 
different levels of factor B. The lines connecting the three cell means for the discussion 
method are roughly parallel with the lines connecting cell means for the lecture method, 



refl ecting the absence of interaction. If these two lines were not parallel or crossed each 
other, then the interaction effect would have been statistically signifi cant. If a signifi cant 
interaction is present, we need to examine the cell means carefully to draw appropriate 
conclusions. Computer packages can be used to conduct the preceding analysis (see 
Program Note 12.2 on the website).

12.6   Linear Model Representation of the ANOVA
As shown in the last two sections, a two-way ANOVA can be used with or without 
interaction, which suggests that we need to specify the model to be used in the analysis. 
The choice of a model is dependent on how the data are collected and how we consider 
each effect to be specifi ed. We consider this modeling aspect of ANOVA in this 
section.

In the ANOVA, we have partitioned the sum of squares of Y about its mean into 
within and between components in the completely randomized design or into treatment, 
blocks, and within components in the randomized block design. Underlying these parti-
tions are linear models that show the relation between the dependent variable and the 
independent — treatment and/or blocking — variables. In the following sections, we 
show these models as well as the model with interaction. From these models, we can 
also see that it is possible to extend the ANOVA method of analysis to include combina-
tions of the independent variables as well as including more than two independent 
variables.

12.6.1   The Completely Randomized Design

One representation of the linear model underlying the completely randomized design 
shows the dependent variable being equal to a constant plus a treatment effect plus 
individual variation — that is,

Figure 12.3 Plot of 
mean scores by 
methods of instruction 
on three textbooks (A = 
lecture method; B = 
discussion method).
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 yij = m + ai + eij

for i ranging from 1 to r and j going from 1 to ni. The value of the jth observation of 
the dependent variable at the ith treatment level is yij. There are r levels of the treatment 
variable and ni observations of Y at the ith treatment level. The constant is represented 
by m , and the effect of the ith treatment level is represented by a. i. Since not everyone 
who has received the ith level of treatment will have the same value of the dependent 
variable, this individual variation, the departure from the sum of m plus a. i, is represented 
by eij.

Note that this model can be rewritten as follows:

 yij = m + xij ai + eij

where xij is an indicator variable which has the value of 1 if the ijth subject has received 
the ith level of the treatment and 0 otherwise. The X variable here simply indicates which 
level of treatment the person has received. We do not use this representation of the model 
here, but we shall refer to it in the next chapter.

In this linear model, there are r + 1 population parameters — the constant m and the 
ra’s; however, there are only r different treatment levels or groups. Since we can only 
estimate the same number of parameters as there are groups, to obtain estimators for r 
of the parameters, we must make some assumption about them. The appendix on the 
linear model in Forthofer and Lehnen (1981) provides a presentation of a number of 
assumptions that we could make. In this book, we shall measure the effect of the treat-
ment levels from the effect of the rth treatment level. This means that ar is assumed to 
be zero.

Now let us rewrite the linear model in terms of the population means. The equation 
for the ith level becomes

 mi = m + ai

and the representation of the model for all r levels is

m1 = m + a1

m2 = m + a2

.  .  .

mr-1 = m + ar−1

mr = m.

From these equations, we can see that the constant term is the mean of the rth level, 
and the effect of the other levels — a1, a2,  .  .  .  , ar−1 — are measured from mr (or m). 
For example, using the fi rst of these equations to solve for a1, we have

 a1 = m1 − m = m1 − mr.

This equation makes it clear that we are measuring the effects of the fi rst level relative 
to the effect of the rth level, and the same is true for levels 2 through r − 1.

The sample estimator of the ith effect, âi, is obtained by substituting the sample 
means for the population means — that is,



 âi = y–i⋅ − y–r⋅⋅

and the estimator of m is simply y–r⋅.

The t test for comparing the means of two populations, assuming equal variances, 
also fi ts into the ANOVA framework. In this case, r is 2, and the preceding model still 
applies.

12.6.2   The Randomized Block Design with m Replicates

A linear model underlying the randomized block design has the dependent variable 
being equal to a constant plus the effect of the ith level of the treatment variable plus 
the jth block effect plus the individual variation term. In symbols, this is

 yijk = m + ai + bj + eijk

where i goes from 1 to r, j ranges from 1 to c, and k ranges from 1 to m.

Just as in the completely randomized situation, the effects of the levels of the treat-
ment variable are measured relative to the rth level of the treatment variable. In the 
same way, the effects of the levels of the blocking variable are measured relative to the 
cth level of the blocking variable. The defi nition of the parameters in terms of the mij is 
complicated and will not be shown for this model, but it will be shown for the model 
in the next section.

12.6.3   Two-Way ANOVA with Interaction

The model for this situation is similar to the preceding two-way ANOVA model, except 
that it includes the interaction term, denoted by bij, in the model. The model is

 yijk = m + ai + bj + abij + eijk

where i goes from 1 to r, j ranges from 1 to c, and k ranges from 1 to m.

The main effect terms in the model, the ai and the bj, again are all measured relative 
to their last level. The representation of this model in terms of the cell means, the mij, 
for the fi rst row is

m11 = m + a1 + b1 + ab11

m12 = m + a1 + b2 + ab12

.  .  .

m1c = m + a1.

Note that there is no bc term or any a b1c terms in the fi nal equation. Since the cth level 
is the reference level for the column variable, bc is taken to be zero. In addition, interac-
tion terms having either an r or a c as a subscript are reference levels, and these interac-
tion terms are also assumed to be zero. This pattern is repeated for the other rows except 
the last one.

m21 = m + a2 + b1 + ab21

m22 = m + a2 + b2 + ab22
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.  .  .

m2c = m + a2

.  .  .

mr1 = m + b1

mr2 = m + b2

.  .  .

mrc = m.

For the cells in the rth row, there is no ar effect shown, since the rth level is the refer-
ence level for the row variable and a. r is taken to be zero. There are also no abrj terms 
in the last row, since the rth level is also a reference level for the interaction terms.

Using these equations, we obtain the following defi nitions of the parameters (m , a , 
b, and ab) in terms of the cell means. For example, from the last equation, we see that 
the constant term in the model is simply the mean of the cell formed by the rth row and 
cth column — that is, m = mrc.

Once we have expressed m in terms of the cell means, we can fi nd the estimate of ai 
from the equation mic = m + ai. This gives the solution that ai = mic − mrc, where we have 
replaced mrc for m. This defi nition for a. i is reasonable, as it compares the mean of the 
cell in the ith row and cth column with the mean of the cell in the rth row and cth 
column. It is comparing a cell in the ith row with its reference cell in the rth row. The 
column effect, bj, is similarly defi ned as bj = mrj − mrc.

The defi nition of the interaction term is abij = (mij − mic) − (mrj − mrc). The rcth cell 
is the reference cell and the other parameters are defi ned in terms of it. The ijth interac-
tion parameter focuses on the difference of the jth and cth columns, and compares that 
difference for the ith and rth rows. If there is no interaction, the difference of the jth 
and cth columns is the same over all the rows.

12.7   ANOVA with Unequal Numbers of 
Observations in Subgroups

In the preceding discussion, we allowed the number of observations in each treatment 
to vary for the one-way ANOVA model, but we assumed an equal number of observa-
tions in each cell for the two-way ANOVA models. However, it is not always possible 
to have an equal number of observations on all treatment combinations. Even balanced 
designs often become unbalanced because people may drop out of the study or some of 
the data are missing. This imbalance in the size of subclasses introduces complications 
in the analysis. The main diffi culty is that there is no unique way of fi nding the sums-
of-squares corresponding to each main effect and each interaction.

One method of calculating the sums of squares is to consider the factors and 
interaction(s) sequentially. The effect of the fi rst factor entered into the model is calcu-
lated unconditionally, but the second factor is evaluated conditional upon whatever 
factor was entered fi rst. Using the notation used for conditional probability, the effect 
of the second factor (s) conditional on the fi rst factor ( f ) can be written as s|f. The par-



titioned sums of squares obtained by sequential fi tting are labeled as Type I SS in the 
computer output. The sequential sums of squares will add up to the total sum of 
squares.

One problem with the sequential approach is that the factors are treated differently 
depending on the order of entry, and effects of factors are diffi cult to interpret. An 
alternative approach is to consider the effect of each factor adjusted for all the other 
factors in the model. This approach produces adjusted sums of squares (called Type III 
SS) that do not add up to the total SS unless the data are balanced. The adjusted sums 
of squares are generally used when testing the effect of each factor (Maxwell and 
Delaney 1990). We will use this approach in examining an example following.

Computer packages provide Type III and Type I sums of squares by default. There 
are two other types of sums of squares, but they are generally of lesser interest. In cases 
where the interaction terms are unimportant and a main effect needs to be examined at 
each level of the other factors, Type I sums of squares are recommended (Nelder 
1977).

Table 12.10 Creatinine measurements (mg/dL) by sex and age group, DIG40.

Cell Sex Age Creatinine Measurements (mg/dL)

1,1 Male <56 1.600 1.300 1.159 1.307 1.886 1.034 0.900 1.398 1.307
1,2 Male ≥56 2.682 1.091 1.250 1.705 2.000 1.227 1.100 2.239 1.300 1.614
   1.200 1.455 1.489 1.700 1.307 1.200 1.273 1.300 1.659 1.261
   0.900
2,1 Female <56 1.386 0.900 1.000 1.148 1.170
2,2 Female ≥56 1.534 0.900 0.900 1.352 0.909

Example 12.9

Let us consider the data shown in Table 12.10. This table represents a cross-
classifi cation of creatinine measurements by sex and age (categorized into two 
groups: under 56 and 56 & over) for the 40 patients in DIG40 that was introduced 
in Chapter 3. The numbers of observations in the four cells are not equal, and, there-
fore, we will use the general linear models procedure for these unbalanced data.

Before analyzing the data by ANOVA, let us look at the cell means. These are 
shown here in a 2 by 2 table:

 Ages

Sex <56 ≥56 Difference

Male 1.3212 1.4739 −0.1527
Female 1.1236 1.1113  0.0123

Difference 0.1976 0.3626

The effect of the sex variable (difference between male and female) can be calculated 
at each level of the age variable. Likewise, the effect of the age variable can be seen 
in the difference between the two age groups at each level of the sex variable. The 
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It is usually necessary to use a computer package for performing a general linear 
models analysis (see Program Note 12.3 on the website).

Choosing an appropriate model for ANOVA is not straightforward, especially for an 
unbalanced data. As we saw in Chapter 6, it is important to strive for a balanced design 
to alleviate the complications in the analysis.

Table 12.11 ANOVA by the general linear models procedure for Table 12.10 (with interaction).

  Adjusted (Type III) Sequential SS
Source DF SS MS F P (Type I)

Sex  1 0.5519 0.5519 4.21 0.048 0.7124
Age  1 0.0407 0.0407 0.31 0.581 0.1042
Sex*Age  1 0.0427 0.0427 0.33 0.572 0.0427
Error 36 4.7247 0.1312   4.7247

Total 39 5.5839    5.5839

Table 12.12 ANOVA by general linear models procedure for Table 12.10 (without interaction).

  Adjusted (Type III) Sequential SS
Source DF SS MS F P (Type I)

Sex  1 0.5951 0.5951 4.62 0.038 0.7124
Age  1 0.1042 0.1042 0.81 0.374 0.1042
Error 37 4.7674 0.1288   4.7674

Total 39 5.5839    5.5839

effect of the sex variable is considerably larger than the age effect. The effects of the 
sex variable at two levels of age are in the same direction, although the effect of 
the sex variable is larger for the older age group, suggesting that the interaction of 
the sex and age variables on creatinine is likely to be nonsignifi cant.

Table 12.11 shows the results of ANOVA by the general linear models procedure. 
The model includes two main effects and the interaction of sex and age. Adjusted 
sums of squares are shown, and the analysis of variance is carried out based on Type 
III sums of squares to assess the effect of each term. Sequential sums of squares are 
shown in the last column. Note that sequential sum of squares of the last term listed 
in the model (the interaction term in this case) is the same as the Type III sum of 
squares for the factor because it is adjusted to all other factors in the model. The 
effect of the sex variable is signifi cant, while the effect of the age variable is not.

Since the interaction effect is unimportant, we dropped the interaction term from 
the model and repeated the analysis. The results are shown in Table 12.12. Note that 
the sequential sum of squares for age is the same as the adjusted sum of squares for 
the factor because it is the last term in the model. Note also that the sum of squares 
due to the interaction is now included in the error term. Again, the sex variable effect 
is signifi cant, while the age effect is not.



Conclusion
In this chapter we presented several basic models of analysis of variance. The one-way 
ANOVA is used to analyze data from a completely randomized experimental design. 
The two-way ANOVA can be used for a randomized block design as well as for a two-
factor design with interaction. To use these analytical methods properly, we must be 
aware of how the data were collected and make sure that the data meet the ANOVA 
assumptions. Finally, we discussed the problems and methods for analyzing unbalanced 
data. In the next chapter, we will expand the linear model to regression models.

EXERCISES

12.1 The data shown here, taken from Brogan and Kutner (1980), are the change in 
the maximal rate of urea synthesis (MRUS) level for cirrhotic patients who 
underwent either a standard operation (a nonselective shunt) or a new procedure 
(a selective shunt). The purpose of the operations was to improve liver function, 
measured by MRUS. A low value of MRUS is associated with poor liver func-
tion. Patients in the nonselective shunt group are divided into two groups based 
on the preoperative MRUS values (≤40 and >40).

Change in Maximal Rate of Urea Synthesis (MRUS)
Level (mg Urea N/hr/kg Body Weight) by Group

Group Change in MRUS Values

Selective Shunt  −3 20  −6  −5  −3  −3  −6 12
Nonselective Shunt I −18 −4 −18 −18  −6 −18
Nonselective Shunt II −24 −7 −15   4 −14  −8 −11

 Perform an analysis of variance of these data at the 0.05 signifi cance level to 
determine if there is a difference in the three groups. If there is a signifi cant 
difference, use an appropriate multiple comparison procedure to fi nd the source 
of the difference.

12.2 In Chapter 8, we used the t test to compare the proportion of caloric intake from 
fat for fi fth- and sixth-grade boys compared to seventh- and eighth-grade boys. 
The calculated t test statistic was −0.727 (Example 8.9). Perform a one-way 
ANOVA on these data in Table 7.7 and compare your results with the t test 
approach. How does the t statistic compare with the F statistic?

12.3 For the weight change data shown in Table 12.4, we were concerned about the 
level of physical activity of the women. Instead of using the site — headquarters 
or plant — as a way of controlling for physical activity, how else might we have 
controlled for the physical activity? Do you think that a control group — no 
intervention — should have been used? Explain your reasoning. Would you do 
anything to determine whether or not the women used the memberships? What, 
if any, other variables should be included in the analysis?

12.4 To investigate publication bias, 75 referees for one journal were randomly 
assigned to receive one of fi ve versions of a manuscript (Dickersin 1990). All 
versions were identical in the Introduction and Methods sections but varied in 
either the Results or Discussion sections. The fi rst and second groups received 
versions with either positive or negative results, respectively. The third and 
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fourth groups received versions with mixed results and either positive or nega-
tive discussion. The fi fth group was asked evaluate the manuscript on the basis 
of the Methods section, and no data were provided. The referees used a scale 
of 0 to 6 (low to high) to rate different aspects of the manuscript. The average 
scores for three aspects are shown here:

 No. of Mean Ratings

Manuscript Version Referees Methods Scientifi c Contribution Publication Merit

Positive Results 12 4.2 4.3 3.2
Negative Results 14 2.4 2.4 1.8
Mixed Results with 13 2.5 1.6 0.5
 Positive Discussion
Mixed Results with 14 2.7 1.7 1.4
 Negative Discussion
Methods Only 14 3.4 4.5 3.4

 State an appropriate linear model for this experiment using scientifi c contribu-
tion as the dependent variable. What are the null and alternative hypotheses of 
interest for this model? Assuming that the standard deviations for the scientifi c 
contribution score for the fi ve groups are 1.1, 0.9, 0.7, 0.8, and 1.1, respectively, 
perform an analysis of variance of these data at the 0.05 signifi cance level to 
determine if there is a bias in refereeing scientifi c papers for this journal. If 
there is a signifi cant difference, use an appropriate multiple comparison proce-
dure to fi nd the source of the bias. State your conclusions clearly.

12.5 In an investigation of the effect of smoking on work performance under differ-
ent lighting conditions in a large company, a random sample of nine male 
workers was selected from each of the three smoking status groups: nonsmok-
ers, moderate smokers, and heavy smokers. Each sample was randomly assigned 
to three working environments with different levels of lighting. The time to 
complete a standard assembling task was recorded in minutes. The sums of 
squares were as follows:

Source df SS MS F p-value

Smoking Status   84.90
Lighting Conditions  298.07
Interaction    2.81
Error   59.25

Total  445.03

 Perform an analysis of variance for these data to examine the interaction of the 
variables at the 0.05 signifi cance level. If there is no signifi cant interaction, test 
whether or not the smoking and lighting conditions variables have signifi cant 
effects on the workers’ performance and state your conclusions.

12.6 The midterm and fi nal test scores of 12 students in a class are recorded as 
follows:



 These are paired data. First, perform the paired t test (discussed in Chapter 8) 
to compare the two sets of test scores. Now perform a two-way ANOVA for the 
randomized block design with two replicates (an additive model), considering 
students as blocks, and compare your results with the paired t test approach. 
How does the t statistic compare with the F statistic for the test variable? Can 
you draw the same conclusion?

12.7 A randomized study was conducted to compare the effects of two intervention 
procedures (tracking with outreach and provider prompting) to raise immuniza-
tion in primary care clinics serving impoverished children (Rodewald et al. 
1999). The study used a 2 by 2 factorial design, and each intervention had two 
levels (1 = no intervention; 2 = intervention). After 18 months of intervention 
the immunization status was assessed. Two major outcome measures were the 
percentage of immunization and the number of days of delay in immunization. 
The authors claim that the two-way ANOVA was used to test for effects of each 
of the interventions on the outcome measures. They stated that the interaction 
was insignifi cant. The number of children allocated to each group was slightly 
different and the number of children who completed the assessment of the out-
comes also varied as shown here:

 Students

Test 1 2 3 4 5 6 7 8 9 10 11 12

Midterm 80 85 65 77 58 98 91 72 62 82 45 42
Final 78 90 72 80 71 92 93 70 73 85 60 61

 Treatment Groups Number Number Percent Mean Days
Prompting Outreach (Group) Allocated Completed Immunized of Delaya

1 1 (no intervention) 769 719 74.0 140.0
1 2 (outreach only) 715 630 95.1  76.5
2 1 (prompting only) 801 744 75.9 133.2
2 2 (both interventions) 732 648 95.1  69.1
aMean days of delay in immunization

 Discuss whether the two-way ANOVA was appropriate for the two major 
outcome measures shown. If you think the ANOVA is inappropriate for any of 
the outcome measures, what statistical method would you recommend? If you 
think the ANOVA is appropriate for any of outcome measure, would you accept 
the claim of no interaction based on these data? A considerable number of 
subjects were lost during the course of the study, and the number of dropouts 
varies between the four groups. Discuss how the differential loss of the subjects 
might impact the study outcome.
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Linear Regression

Chapter Outline
13.1 Simple Linear Regression
13.2 Inference about the Coeffi cients
13.3 Interval Estimation for mY |X and Y |X
13.4 Multiple Linear Regression

In this chapter we present methods for examining the relation between a response or 
dependent variable and one or more predictor or independent variables. The methods 
are based on the linear model introduced in Chapter 12. In linear regression, we examine 
the relation between a normally distributed response or dependent variable and one or 
more continuous predictor or independent variables. In a sense, linear regression is an 
extension of the correlation coeffi cient. Although linear regression was created for the 
examination of the relation between continuous variables, in practice, people often use 
the term linear regression even when continuous and discrete independent variables are 
used in the analysis.

Linear regression is one of the more frequently used techniques in statistics today. 
These methods are often used because problems, particularly those concerning humans, 
usually involve several independent variables. For example, in the creation of norms for 
lung functioning, age, race, and sex are taken into account. Linear regression is one 
approach that allows multiple independent variables to be used in the analysis. In the 
linear regression model, the dependent variable is the observed pulmonary function test 
value and age, race, and sex are the independent variables. When the dependent variable 
is a discrete variable as in the disease status (presence or absence), logistic regression 
(the topic of the next chapter) is used to consider many possible risk factors related to 
the disease.

13.1   Simple Linear Regression
Simple linear regression is used to examine the relation between a normally distributed 
dependent variable and a continuous independent variable. An example of a situation 
where simple linear regression is useful is the following.

Some physicians believe that there should be a standard — a value that only a small 
percentage of the population exceeds — for blood pressure in children (NHLBI Task 
Force 1987). When a standard is used, it is desirable that it be easy for the physician to 
quickly and accurately determine how the patient relates to the standard. Therefore, the 
standards should be based on a small number of variables that are easy to measure. 
Since it is known that blood pressure is related to maturation, the variables used in the 
development of the standard should, therefore, refl ect maturation. Two variables that are 
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related to maturation and are easy to measure are age and height. Of these two variables, 
height appears to be the more appropriate variable for the development of standards 
(Forthofer 1991; Gillum, Prineas, and Horibe 1982; Voors et al. 1977). Because of physi-
ological differences, the standards are developed separately for females and males. In 
the following, we shall focus on systolic blood pressure (SBP).

In developing the standards, we are going to assume that the mean SBP for girls 
increases by a constant amount for each one unit increase in height. The use of the mean 
instead of the individual SBP values refl ects the fact that there is variation in the SBP 
of girls of the same height. Not all the girls who are 50 inches tall have the same SBP 
value; their SBPs vary about the mean SBP of girls who are 50 inches tall. The assump-
tion of a constant increase in the mean SBP for each one unit increase in height is 
characteristic of a linear relation. Thus, in symbols, the relation between Y, the SBP 
variable, and X, the height variable, can be expressed as

mY |X = b0 + b1X

where
 
mY |X is the mean SBP for girls who are X units tall, b0 is a constant term, and b1 

is the coeffi cient of the height variable — that is, b1 is the increase in the mean SBP for 
each one unit change in height. The b0 coeffi cient is the Y intercept and b1 is the slope 
of the straight line.

In general, the X variable shown in the preceding expression may represent the 
square, the reciprocal, the logarithm, or some other nonlinear transformation of a vari-
able. This is acceptable in linear regression because the expression is really a linear 
combination of the bi’s, not of the independent variables.

The preceding equation is similar to the linear growth model in Chapter 3 and the 
linear model representation of ANOVA. In the ANOVA model, values of the X variables, 
1 or 0, indicate which effect should be added in the model. In the regression model, the 
values of the X variable are the individual observations of the continuous independent 
variable. The parameters in the ANOVA model are the effects of the different levels of 
the independent variable. In the regression model, the parameters are the Y-intercept 
and the slope of the line.

Figure 13.1 shows the graph of this simple linear regression equation. The ⊗ symbols 
show the values of the mean SBP for the different values of height that we are consider-
ing. As we can see, a straight line does indeed have a rate of increase in the mean SBP 
that is constant for each one unit increase in height. The � symbols show the projected 
values of the mean SBP, assuming that the relationship holds for very small height values 
as well. It is usually inappropriate to estimate the values of mY |X for values of X outside 
the range of observation. The point at which the projected line intersects the mY |X axis 
is b0. Since b1 is the amount of increase in mY |X for each one unit increase in X, the 
bracketed change in mY |X is 8 b1, since X has increased 8 units from x1 to x2. Note that if 
the regression line is fl at — that is, parallel to the X axis — this means that there is no 
change in mY |X regardless of how much X changes. Thus, if the regression line is fl at, 
then b1 is zero and there is no linear relation between mY |X and X.

If we wish to express this relationship in terms of individual observations, we must 
take the variation in SBP for each height into account. The model that does this is

yi = b0 + b1xi + ei
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where ei represents the difference between the mean SBP value at height xi and the SBP 
of the ith girl who is also xi units tall. The e term is also referred to as the residual or 
error term. Knowledge of b0 and b1 is necessary in developing the standards for SBP. 
However, we do not know them and we have to collect data to estimate these values.

13.1.1   Estimation of the Coeffi cients

There are a variety of ways of estimating b0 and b1. We must decide on what criterion 
we will use to fi nd the “best” estimators of these two coeffi cients. Possible criteria 
include minimization of the following:

1. The sum of the differences of yi and ŷi, where yi is the observed value of the SBP 
and ŷi is the estimated value of the SBP for the ith girl. The value of ŷi is found 
by substituting the estimates of b0 and b1 in the simple linear regression equation 
— that is, ŷi = b̂0 + xib̂1, where xi is the observed value of height for the ith girl.

2. The sum of the absolute differences of yi and ŷi.
3. The sum of the squared differences of yi and ŷi.

The fi rst criterion can be made to equal zero by setting b̂1 to zero and letting b̂0 equal 
to the sample mean. The use of the absolute value yields interesting estimators, but the 
testing of hypotheses is more diffi cult with these estimators. Based on considerations 
similar to those discussed in Chapter 3 in the presentation of the variance, we are going 
to use the third criterion to determine our “best” estimators.

Thus our estimators of the coeffi cients will be derived based on the minimization of 
the sum of squares of the differences of the observed and estimated values of SBP. In 
symbols, this is the minimization of

y yi i
i

−( )∑ ˆ .2

The use of this criterion provides estimators that are called least squares estimators 
because they minimize the sum of squares of the differences.

The least squares estimators of the coeffi cients are given by

Figure 13.1 Line 
showing the regression 
of mY|X on X.
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b̂0 = y– − b̂1x–.

The second formula for b̂1 is provided because it is easier to calculate. Let’s use these 
formulas to calculate the least squares estimates for the data in Table 13.1. The hypo-
thetical values of the SBP and height variables for the 50 girls are based on data from 
the NHANES II (Forthofer 1991).

The value of b̂1 is found from
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The calculation of b̂0 is easier to perform, and its value is found from

b̂0 = y– − b̂1x– = 101.5 − 0.7688(52.5) = 61.138.

Table 13.1 Hypothetical data — SBP and predicted SBPa (mmHg) and height (inches) for 50 girls.

 Predicted Predicted Predicted
SBP SBP Height SBP SBP Height SBP SBP Height

105 88.8 36 120 98.0 48 94 106.5 59
 90 89.6 37 114 98.8 49 88 107.3 60
 82 90.4 38 78 98.8 49 110 107.3 60
 96 90.4 38 116 99.6 50 124 107.3 60
 82 91.1 39 74 99.6 50  86 108.0 61
 74 91.1 39 80 100.3 51 120 108.0 61
104 91.9 40 98 101.1 52 112 108.8 62
100 91.9 40 90 101.9 53 100 109.6 63
 80 92.7 41 92 102.7 54 122 110.3 64
 98 93.4 42 80 102.7 54 122 110.3 64
 96 94.2 43 88 102.7 54 110 111.1 65
 86 95.0 44 104 103.4 55 124 111.1 65
 88 95.0 44 100 104.2 56 122 111.9 66
128 95.0 44 126 105.0 57 94 112.6 67
118 95.7 45 108 105.7 58 110 112.6 67
 90 96.5 46 106 106.5 59 140 114.2 69
108 98.0 48 98 106.5 59
aPredicted using the least squares estimates of the regression coeffi cients.

The estimated coeffi cient of the height variable is about 0.8, which means that there 
is an increase of 0.8  mmHg in SBP for an increase of 1 inch in height for girls between 
the heights of 36 and 69 inches. The estimate of the b0 coeffi cient is about 60  mmHg 
and that is the Y intercept. Based on projecting the regression line beyond the data values 
observed, the Y intercept gives the value of SBP for a girl 0 inches tall. However, it does 
not make sense to talk about the SBP for a girl 0 inches tall, and this shows one of the 
dangers of extrapolating the regression line beyond the observed data.
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Figure 13.2 is a plot of SBP versus height for the data shown in Table 13.1. From this 
plot, we can see that there is a slight tendency for the larger values of SBP to be associ-
ated with the larger values of height, but the relationship is not particularly strong. The 
path of the regression line is shown within the range of observations.

We can use the preceding estimates of the population coeffi cients in predicting SBP 
values for the hypothetical data shown in Table 13.1. For example, the predicted value 
of SBP for the fi rst observation in Table 13.1, a girl 36 inches tall, is

61.138 + 0.7688(36) = 88.82  mmHg.

The other predicted SBP values are found in the same way, and they are also shown in 
Table 13.1.

13.1.2   The Variance of Y|X
Before going forward with the use of the regression line in the development of the 
standards, we should examine whether or not the estimated regression line is an improve-
ment over simply using the sample mean as an estimate of the observed values. One 
way of obtaining a feel for this is to examine the sum of squares of deviations of Y from 
Ŷ — that is,
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If we subtract and add y– in this expression, we can rewrite this sum of squares as
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Figure 13.2 Plot of 
systolic blood pressure 
versus height for 50 
girls shown in Table 
13.1.
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and we have not changed the value of the sum of squares. However, this sum of squares 
can be rewritten as
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because the crossproduct terms, (yi − y–)( ŷi − y–), sum to zero. In regression terminology, 
the fi rst sum of squares is called the sum of squares about regression or the residual or 
error sum of squares. The second sum of squares, about the sample mean, is called the 
total sum of squares (corrected for the mean) and the third sum of squares is called the 
sum of squares due to regression. If we rewrite this equation, putting the total sum of 
squares (corrected for the mean) on the left side of the equal sign, we have
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This equation shows the partition of the total sum of squares into two components, the 
sum of squares about regression, and the sum of squares due to regression.

Figure 13.3 is a graph which shows the differences, (yi − y–), (yi − ŷi) and ( ŷi − y–), 
for one yi. In Figure 13.3, the regression line is shown as well as a horizontal line that 
shows the value of the sample mean. We have focused on the last point, the girl who is 
69 inches tall and who has an SBP of 140  mmHg. For this point, the deviation of the 
observed SBP of 140 from the sample mean of 101.5 can be partitioned into two com-
ponents. The fi rst component is the difference between the observed value and 114.2, 
the value predicted from the regression line. The second component is the difference 
between this predicted value and the sample mean. This partitioning cannot be done for 
many of the points, since, for example, the sample mean may be closer to the observed 
point than the regression line is.

Figure 13.3 An 
observed value in 
relation to the 
regression line and the 
sample mean.

Ideally, we would like the sum of squares about the regression line to be close to 
zero. From the last preceding equation, we see that the sum of the square deviations 



Simple Linear Regression  355

from the regression line must be less than or equal to the sum of the square deviations 
from the sample mean. However, the direct comparison of the sum of squares is not fair, 
since they are based on different degrees of freedom. The sum of squares about the 
sample mean has n − 1 degrees of freedom, as we discussed in the material about the 
variance. Since we estimated two coeffi cients in obtaining the least squares estimator 
of Y, there are thus n − 2 degrees of freedom associated with sum of squares about Ŷ. 
Thus, let us compare s2

Y with s2
Y |X — that is,
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If s2
Y |X is much less than s2

Y, then the regression was worthwhile; if not, then we should 
use the sample mean as there appears to be little linear relation between Y and X.

Let us calculate the sample variance of Y and the sample variance of Y, taking X into 
account. The sample variance of Y is
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and the sample variance of Y given X is
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Thus, s2
Y |X is less than s2

Y. The use of the height variable has reduced the sample variance 
from 260.827 to 210.772, about a 20 percent reduction. It appears that the inclusion of 
the height variable has allowed for somewhat better estimation of the SBP values.

13.1.3   The Coeffi cient of Determination (R2)

An additional way of examining whether or not the regression was helpful is to 
divide the sum of squares due to regression by the sum of squares about the mean — 
that is,
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If the regression line provides estimates of the SBP values that closely match the 
observed SBP values, this ratio will be close to one. If the regression line is close to the 
mean line, then this ratio will be close to zero. Hence, the ratio provides a measure that 
varies from 0 to 1, with 0 indicating no linear relation between Y and X, and 1 indicating 
a perfect linear relation between Y and X. This ratio is denoted by R2, and is called the 
coeffi cient of determination. It is a measure of how much of the variation in Y is 
accounted for by X. R2 is also the square of the sample Pearson correlation coeffi cient 
between Y and X.
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For the SBP example, the value of R2 is

12780 10117

12780
0 2084

− = . .

Approximately 21 percent of the variation in SBP is accounted for by height for girls 
between 36 to 69 inches tall. This is not an impressive amount. Almost 80 percent of 
the variation in SBP remains to be explained. Even though this measure of the relation 
between SBP and height is only 21 percent, it is larger than its corresponding value for 
the relation between SBP and age.

The derivation of the R2 term is based on a linear model that has both a b0 and a b1 
term. If the model does not include b0, then a different expression must be used to cal-
culate R2.

The sample Pearson correlation coeffi cient, r, is defi ned as
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If we square r, r2 is 0.2084, which agrees with R2, as it must.

Although, symbolically, R2 is the square of the sample Pearson correlation coeffi cient, 
R2 does not necessarily measure the strength of the linear association between Y and X. 
In correlation analysis, the observed pairs of values of Y and X are obtained by simple 
random sampling from a population. In correlation analysis, we don’t necessarily con-
sider one of the variables to be the dependent variable and the other the independent 
variable. The sample r simply measures the strength of the linear association between 
the two variables. In contrast, linear regression provides a formula that describes the 
linear relation between a dependent variable and an independent variable(s). To discover 
that relationship, we often use stratifi ed random sampling — that is, we select simple 
random samples of Y for specifi ed values of X; however, as Ranney and Thigpen (1981) 
show, the value of R2 depends on the range of the values of X used in the analysis, the 
number of repeated observations at given values of X, and the location of the X values. 
Hence, although symbolically R2 is the square of the correlation coeffi cient between two 
variables, it does not necessarily measure the strength of the linear association between 
the variables. It does refl ect how much of the variation in Y is accounted for by knowl-
edge of X. Korn and Simon provide more on the interpretation of R2 (Korn and Simon 
1991).

There is also a relation between the sample correlation coeffi cient and the estimator 
of b1. From Chapter 3, we had another form for r than the defi ning formula given above 
and it was
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As the preceding relation shows, if the correlation coeffi cient is zero, the slope coeffi -
cient is also zero and vice versa.

13.2   Inference about the Coeffi cients
The parametric approach to testing hypotheses about a parameter requires that we 
know the probability distribution of the sample estimator of the parameter. The standard 
approach to fi nding the probability distributions of the sample estimators of b0 and b1 
is based on the following assumptions.

13.2.1   Assumptions for Inference in Linear Regression

We assume that the yi’s are independent, normally distributed for each value of X, and 
that the normal distributions at the different values of X all have the same variance, s2. 
Figure 13.4 graphically shows these assumptions. The regression line, showing the relation 
between mY |X and X, is graphed as well as the distributions of Y at the selected values of 

Figure 13.4 
Distribution of Y at 
selected values of X.
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X. Note that Y is normally distributed at each of the selected X values and that the normal 
distributions have the same shapes — that is, the same variance, s2. The mean of the 
normal distribution, mY |X, is obtained from the regression equation and is b0 + b1X.

In the following, we shall consider the values of the X variable to be fi xed. There are 
two ways that X can be viewed as being fi xed. First, we may have used a stratifi ed 
sample, stratifi ed on height, to select girls with the heights shown in Table 13.1. Since 
we have chosen the values of the height variable, they are viewed as being fi xed. In a 
second way, we consider our results to be conditional on the observed values of X. The 
conditional approach is usually used with simple random samples in which both Y and 
X otherwise would be considered to be random variables. This is the conventional 
approach, and it means that the error or residual term, e , also follows a normal distribu-
tion with mean 0 and variance s2. Note that the least squares estimation of the regression 
coeffi cients did not require this specifi cation of the probability distribution of Y.

Before testing hypotheses about the regression coeffi cients, we should attempt to 
determine whether or not the assumptions just stated are true. We should also examine 
whether or not any single data point is exercising a large infl uence on the estimates of 
the regression coeffi cients. These two issues are discussed in the next section.

13.2.2   Regression Diagnostics

In our brief introduction to regression diagnostics — methods for examining the regres-
sion equation — we consider only two of the many methods that exist. More detail on 
other methods is given in Kleinbaum et al. (1998). The fi rst method we shall present 
involves plotting of the residuals. Plots are used in an attempt to determine whether or 
not the residuals or errors are normally distributed or to see if there are any patterns in 
the residuals. The second method tries to discover the existence of data points that play 
a major role in the estimation of the regression coeffi cients.

Residuals and Standardized Residuals: The sample estimator of ei is the residual 
ei, defi ned as the difference between yi and ŷi, and the ei can be used to examine the 
regression assumptions. Since we are used to dealing with standardized variables, 
people often consider a standardized residual, ei/sY |X, instead of ei itself. The standard-
ized residuals should approximately follow a standard normal distribution if the regres-
sion assumptions are met. Thus, values of the standardized residuals larger than 2.5 or 
less than −2.5 are unusual. Table 13.2 shows these residuals and a quantity called lever-
age (described in the next section) for the data in Table 13.1.

We use the standardized residuals in our examination of the normality assumption. 
Other residuals could also be used for this examination (Kleinbaum 1998). The normal 
scores of the standardized residuals are plotted in Figure 13.5. The normal scores plot 
looks reasonably straight; thus the assumption that the error term is normally distributed 
does not appear to be violated.

If this plot deviates suffi ciently from a straight line to cause us to question the 
assumption of normality, then it may be necessary to consider a transformation of the 
dependent variable. There are a number of mathematical functions which can be used 
to transform nonnormally distributed data to normality (Kleinbaum 1998; Lin and 
Vonesh 1989; Miller 1984).



It is also of interest to plot the standardized residuals against the values of the X 
variable(s). If any pattern is observed in this plot, it suggests that another term involving 
the X variable — for example, X 2, might be needed in the model. Figure 13.6 shows the 
plot of the standardized residuals versus the height variable. No pattern is immediately 
obvious from an examination of this plot. Again, there is no evidence to cause us to 
reject this model. If the data have been collected in time sequence, it is also useful to 
examine a plot of the residuals against time.

Leverage: The predicted values of Y are found from

b̂0 + b̂1X

Table 13.2 Residuals and leverage for the data in Table 13.1.

  Standardized Leverage   Standardized Leverage
Y Residual Residual hi Y Residual Residual hi

105 16.1848 1.16253 0.08041 92 −10.6532 −0.74143 0.02049
 90 0.4161 0.02977 0.07331 80 −22.6532 −1.57659 0.02049
 82 −8.3527 −0.59552 0.06665 88 −14.6532 −1.01982 0.02049
 96 5.6473 0.40264 0.06665 104 0.5781 0.04025 0.02138
 82 −9.1215 −0.64818 0.06044 100 −4.1907 −0.29199 0.02271
 74 −17.1215 −1.21667 0.06044 126 21.0405 1.46735 0.02449
104 12.1097 0.85790 0.05467 108 2.2717 0.15861 0.02671
100 8.1097 0.57452 0.05467 106 −0.4971 −0.03475 0.02937
 80 −12.6590 −0.89430 0.04934 98 −8.4971 −0.59407 0.02937
 98 4.5722 0.32218 0.04446 94 −12.4971 −0.87373 0.02937
 96 1.8034 0.12678 0.04002 88 −19.2658 −1.34912 0.03248
 86 −8.9654 −0.62897 0.03603 110 2.7342 0.19146 0.03248
 88 −6.9654 −0.48866 0.03603 124 16.7342 1.17184 0.03248
128 33.0346 2.31756 0.03603 86 −22.0346 −1.54585 0.03603
118 22.2658 1.55920 0.03248 120 11.9654 0.83944 0.03603
 90 −6.5029 −0.45465 0.02937 112 3.1966 0.22473 0.04002
108 9.9595 0.69457 0.02449 100 −9.5722 −0.67450 0.04446
120 21.9595 1.53144 0.02449 122 11.6590 0.82366 0.04934
114 15.1907 1.05843 0.02271 122 11.6590 0.82366 0.04934
 78 −20.8093 −1.44991 0.02271 110 −1.1097 −0.07862 0.05467
116 16.4219 1.14344 0.02138 124 12.8903 0.91320 0.05467
 74 −25.5781 −1.78096 0.02138 122 10.1215 0.71924 0.06044
 80 −20.3468 −1.41608 0.02049 94 −18.6473 −1.32950 0.06665
 98 −3.1156 −0.21679 0.02005 110 −2.6473 −0.18874 0.06665
 90 −11.8844 −0.82693 0.02005 140 25.8152 1.85426 0.08041

Figure 13.5 Normal 
scores plot of the 
standardized residuals 
from the linear 
regression of systolic 
blood pressure on 
height.
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where the estimators of b0 and b1 are linear combinations of the observed values of Y. 
Thus, the predicted values of Y are also linear combinations of the observed values of 
Y. An expression for the predicted value of yi refl ecting this relation is

ŷi = hi1 y1 + hi2 y2 +  .  .  .  + hii yi +  .  .  .  + hin yn

where hij is the coeffi cient of yj in the expression for ŷi. For simplicity, hii is denoted by 
hi. The effect of yi on its predicted value is denoted by hi and this effect is called lever-
age. Leverage shows how much change there is in the predicted value of yi per unit 
change in yi. The possible values of the hi are greater than or equal to zero and less than 
or equal to one. The average value of the leverages is the number of estimated coeffi -
cients in the regression equation divided by the sample size. In our problem, we esti-
mated two coeffi cients and there were 50 observations. Thus the average value of the 
leverages is 0.04 (= 2/50). If any of the leverages are large — some statisticians consider 
large to be greater than twice the average leverage and others say greater than three 
times the average — the points with these large leverages should be examined. Perhaps 
there was a mistake in recording the values or there is something unique about the points 
that should be examined. If there is nothing wrong or unusual with the points, it is useful 
to perform the regression again excluding these points. A comparison of the two regres-
sion equations can be made, and the effect of the excluded points can be observed.

In our problem, we can see from Table 13.2 that there are two points, the fi rst and 
the last, with the larger leverages. Both of these points had leverages slightly larger than 
twice the average leverage value. The fi rst girl had a large SBP value relative to her 
height, and the last girl had the highest SBP value. At this stage, we will assume that 
there was no error in recording or entering the data. We could perform the regression 
again and see if there is much difference in the results. However, since the leverages 
are only slightly larger than twice the average leverage, we shall not perform any addi-
tional regressions.

Based on these looks at the data, we have no reason to doubt the appropriateness of 
the regression assumptions and there do not appear to be any really unusual data points 
that would cause us concern. Therefore, it is appropriate to move into the inferential 
part of the analysis, that is, to test hypotheses and to form confi dence and prediction 
intervals. We begin the inferential stage with consideration of the slope coeffi cient.

Figure 13.6 Plot of 
standardized residuals 
versus height.



13.2.3   The Slope Coeffi cient

Even though there is an indication of a linear relation between SBP and height — that 
is, it appears that b1 is not zero — we do not know if b1 is statistically signifi cantly dif-
ferent from zero. To determine this, we must estimate the standard error of b̂1, which 
is used in both confi dence intervals and tests of hypotheses about b1. To form the con-
fi dence interval about b1 or to test a hypothesis about it, we also must know the probabil-
ity distribution of b̂1.

Since we are assuming that Y is normally distributed, this means that b̂1, a linear 
combination of the observed Y values, is also normally distributed. Therefore, to form 
a confi dence interval or to test a hypothesis about b1, we now need to know the standard 
error of its estimator. The standard error (s.e.) of b̂1 is
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and, because s is usually unknown, the standard error is estimated by substituting sY |X 
for s. From the above equation, we can see that the magnitude of the standard error 
depends on the variability in the X variable. Larger variability decreases the standard 
error of b̂1. Thus, we should be sure to include some values of X at the extremes of X 
over the range of interest.

To test the hypothesis that b1 is equal to b10 — that is,

H0: b1 = b10,

we use the statistic
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If s were known, the test statistic, using s instead of sY |X, would follow the standard 
normal distribution; however, s is usually unknown, and the test statistic using sY |X 

follows the t distribution with n − 2 degrees of freedom. The degrees of freedom param-
eter has the value of n − 2, since we have estimated two coeffi cients, b0 and b1.

If the alternative hypothesis is

Ha: b1 ≠ b10

the rejection region consists of values of t less than or equal to tn−2,a /2 or greater than or 
equal to tn−2,1−a /2.

The hypothesis usually of interest is that b10 is zero — that is, there is no linear rela-
tion between Y and X. If, however, our study is one attempting to replicate previous 
fi ndings, we may wish to determine if our slope coeffi cient is the same as that reported 
in the original work. Then b10 will be set equal to the previously reported value. Let us 
test the hypothesis that there is no linear relation between SBP and height versus the 
alternative hypothesis that there is some linear relation at the 0.05 signifi cance level.

The test statistic, t, is
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This value is compared with −2.01 (= t48,0.025) and 2.01 (= t48,0.975). Since 3.555 is greater 
than 2.01, we reject the hypothesis of no linear relation between SBP and height. The 
p-value of this test is approximately 0.001.

The (1 − a)*100 percent confi dence interval for b1 is formed by

b̂1 ± tn−2,1−a /2 * est. s.e. (b̂1)

which is
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The 95 percent confi dence interval for b1 is found using
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and this gives a confi dence interval from 0.3341 to 1.2035. The confi dence interval is 
consistent with the test given above. Since zero is not contained in the confi dence inter-
val for b1, there appears to be a linear relation between SBP and height. Since there is 
evidence to suggest that b1 is not zero, this also means that the correlation coeffi cient 
between Y and X is not zero.

13.2.4   The Y-intercept

It is also possible to form confi dence intervals and to test hypotheses about b0, although 
these are usually of less interest than those for b1. The location of the Y intercept is 
relatively unimportant compared to determining whether or not there is a relation 
between the dependent and independent variables. However, sometimes we wish to 
compare whether or not both our coeffi cients — slope and Y intercept — agree with 
those presented in the literature. In this case, we are interested in examining b0 as well 
as b1.

Since the estimator of b0 is also a linear combination of the observed values of the 
normally distributed dependent variable, b̂0 also follows a normal distribution. The 
standard error of b̂0 is estimated by
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The hypothesis of interest is
H0: b0 = b00



versus either a one- or two-sided alternative hypothesis. The test statistic for this hypoth-
esis is

t
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and this is compared to ±tn−2,1−a /2 for the two-sided alternative hypothesis. If the alterna-
tive hypothesis is that b0 is greater than b00, we reject the null hypothesis in favor of 
the alternative when t is greater than tn−2,1−a . If the alternative hypothesis is that b0 is 
less than b00, we reject the null hypothesis in favor of the alternative when t is less than 
−tn−2,1−a .

The (1 − a /2)*100 percent confi dence interval for b0 is given by
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Let us form the 99 percent confi dence interval for b0 for these SBP data. The 0.995 
value of the t distribution with 48 degrees of freedom is approximately 2.68. Therefore, 
the confi dence interval is found from the following calculations

61 14 2 68 14 52
142319

50 4506 5
61 14 30 93. . .

.
. .± ( )

( )
= ±

which gives an interval from 30.21 to 92.07, a wide interval.

13.2.5   An ANOVA Table Summary

Table 13.3 shows the information required to test the hypothesis of no relation between 
the dependent and independent variables in an ANOVA table similar to that used in 
Chapter 12. The test statistic for the hypothesis of no linear relation between the depen-
dent and independent variables is the F ratio, which is distributed as an F variable with 
1 and n − 2 degrees of freedom. Large values of the F ratio cause us to reject the null 
hypothesis of no linear relation in favor of the alternative hypothesis of a linear relation. 
The F statistic is the ratio of the mean square due to regression to the mean square about 
regression (mean square error or residual mean square). The degrees of freedom param-
eters for the F ratio come from the two mean squares involved in the ratio. The degrees 
of freedom due to regression is the number of parameters estimated minus one. The 
degrees of freedom associated with the about regression source of variation is the sample 
size minus the number of coeffi cients estimated in the regression model.

Table 13.3 An ANOVA table for the simple linear regression model.

 Degrees of Sum of
Source of Variation Freedom Squares Mean Square F Ratioa

Due to Regression 1 Σ(ŷi − y–)2 Σ(ŷi − y–)2/1 MSR/MSE
About Regression or Error n − 2 Σ(yi − ŷi)2 Σ(yi − ŷi)2/(n − 2)
Corrected Total n − 1 Σ(yi − y–)2

aMSR is the mean square due to regression, and MSE is the mean square error term.
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The ANOVA table for the SBP and height data is shown in Table 13.4. If we perform 
this test at the 0.05 signifi cance level, we will compare the calculated F ratio to F1,48,0.95, 
which is approximately 4.04. Since the calculated value, 12.63, is greater than the tabu-
lated value, 4.04, we reject the null hypothesis in favor of the alternative hypothesis. 
There appears to be a linear relation between SBP and height at the 0.05 signifi cance 
level.

Note that if we take the square root of 12.63, we obtain 3.554. With allowance for 
rounding, we have obtained the value of the t statistic calculated in the section for testing 
the hypothesis that b1 is zero. This equality is additional verifi cation of the relation, 
pointed out in Chapter 12, between the t and F statistics. An F statistic with 1 and n − p 
degrees of freedom is the square of the t statistic with n − p degrees of freedom. Exami-
nation of the t and F tables shows that t2

n−p,1−a /2 equals F1,n−p,1−a . Hence, we have two 
equivalent ways of testing whether or not the dependent and independent variables are 
linearly related at a given signifi cance level. As we shall see in the multiple regression 
material, the F statistic directly extends to simultaneously testing several variables, 
whereas the t can be used with only one variable at a time.

These calculations associated with regression analysis require much time, care, and 
effort. However, they can be quickly and accurately performed with computer packages 
(see Program Note 13.1 on the website).

13.3   Interval Estimation for mY|X and Y|X
Even though the relation between SBP and height is not impressive, we will continue 
with the idea of developing a height-based standard for SBP for children. We would be 
much more comfortable doing this if the relation between height and SBP were stronger. 
The height-based standards that we shall create are the SBP levels such that 95 percent 
of the girls of a given height have lower SBP and 5 percent have a higher SBP. This 
standard is not based on the occurrence of any disease or other undesirable property. 
When using a standard created in this manner, approximately 5 percent of the girls will 
be said to have undesirably high SBP, regardless of whether or not that is really a 
problem.

The standard will be based on a one-sided prediction interval for the SBP variable. 
Also of interest is the confi dence interval for the SBP variable and we shall consider 
the confi dence interval fi rst.

13.3.1   Confi dence Interval for mY |X

The regression line provides estimates of the mean of the dependent variable for differ-
ent values of the independent variable. How confi dent are we about these estimates or 

Table 13.4 ANOVA table for the regression of SBP on height.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Ratio

Due to Regression  1 2,663 2,663 12.63
About Regression or Error 48 10,117 210.77

Corrected Total 49 12,780



predicted values? The confi dence interval provides one way of answering this question. 
To create the confi dence interval, we require knowledge of the distribution of Ŷ and also 
an estimate of its standard error.

Since the predicted value of mY |X at a given value of x, say xk, is also a linear combina-
tion of normal values, it is normally distributed. Its standard error is estimated by
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The estimated standard error increases with increases in the distance between xk and x–, 
and there is a unique estimate of the standard error for each xk.

Because we are using sY |X to estimate s, we must use the t distribution in place of the 
normal in the formation of the confi dence interval. The confi dence interval for mY |X has 
the form

m̂Y |X ± tn−2,1−a /2est. s.e. (m̂Y |X).

Figure 13.7 shows the 95 percent confi dence interval for SBP as a function of height. 
As we can see from the graph, the confi dence interval widens as the values of height 
move away from the mean of the height variable. This is in accord with the expression 
for the confi dence interval, which has the term (xk − x–)2 in the numerator. We are thus 
less sure of our prediction for the extreme values of the independent variable. The con-
fi dence interval is about 17  mmHg wide for girls 35 or 70 inches tall and narrows to 
about 8  mmHg for girls about 50 to 55 inches tall.

Figure 13.7 Ninety-fi ve 
percent confi dence 
interval for mY|X.
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13.3.2   Prediction Interval for Y|X
In the preceding section, we saw how to form the confi dence interval for the mean of 
SBP for a height value. In this section, we shall form the prediction interval — the 
interval for a single observation. The prediction interval is of interest to a physician 
because the physician is examining a single person, not an entire community. How does 
the person’s SBP value relate to the standard?

As we saw in Chapter 7 in the material on intervals based on the normal distribution, 
the prediction interval is wider than the corresponding confi dence interval because we 
must add the individual variation about the mean to the mean’s variation. Similarly, the 
formula for the prediction interval based on the regression equation adds the individual 
variation to the mean’s variation. Thus, the estimated standard error for a single obser-
vation is
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The corresponding two-sided (1 − a)*100 percent prediction interval is

ŷk ± tn−2,1−a /2 est.  s.e. (ŷk).

Figure 13.8 shows the 95 percent prediction interval for the data in Table 13.1. The pre-
diction interval is much wider than the corresponding confi dence interval because of 
the addition of the individual variation in the standard error term. The prediction inter-
val here is about 60  mmHg wide. Note that most of the data points are within the pre-
diction interval band. Inclusion of the individual variation term has greatly reduced the 
effect of the (xk − x–)2 term in the estimated standard error in this example. The upper 

Figure 13.8 Ninety-fi ve 
percent prediction 
interval for yk.



and lower limits are essentially straight lines, in contrast to the shape of the upper and 
lower limits of the confi dence interval.

Software packages can be used to perform the calculations necessary to create the 
95 percent confi dence and prediction intervals (see Program Note 13.2 on the 
website).

Example 13.1

We apply the prediction interval to develop the standard for systolic blood pressure. 
Since we are only concerned about systolic blood pressures that may be too high, 
we shall use a one-sided prediction interval in the creation of the height-based stan-
dard for SBP for girls. The upper (1 − a)  *  100 percent prediction interval for SBP 
is found from

ŷk ± tn−2,1−a est. s.e.( ŷk).

Because the standard is the value such that 95 percent of the SBP values fall below 
it and 5 percent of the values are greater than it, we shall use the upper 95 percent 
prediction interval to obtain the standard.

The data shown in Figure 13.8 can be used to help create the height-based stan-
dards for SBP. The difference between the one- and two-sided interval is the use of 
tn−2,1−a in place of tn−2,1−a /2. Thus, the amount to be added to ŷk for the upper one-sided 
interval is simply 0.834 (= t48,0.95/t48,0.975) times the amount added for the two-sided 
interval. To fi nd the amount added for the two-sided interval, we subtract the pre-
dicted SBP value shown from the upper limit of the 95 percent prediction interval. 
For example, for a girl 35 inches tall, the amount added, using the two-sided interval, 
is found by subtracting 88.05 (predicted value) from 118.50 (upper limit of the two-
sided prediction interval). This yields a difference of 30.45  mmHg. If we multiply 
this difference by 0.834, we have the amount to add to the 88.05 value. Thus, the 
standard for a girl 35 inches tall is

0.834 (118.50 − 88.05) + 88.05 = 113.45  mmHg.

Table 13.5 shows these calculations and the height-based standards for SBP for girls. 
As just shown, the calculations in Table 13.5 consist of taking column 2 minus 

Table 13.5 Creation of height-based standards for SBP (mmHg) for girls.

xk Upper Limit of   Difference
(Inches) Prediction Interval ŷk Difference Times 0.834 Standard
(1) (2) (3) (4) (5) (6)

35 118.50 88.05 30.45 25.40 113.45
40 121.87 91.89 29.98 25.00 116.89
45 125.40 95.93 29.67 24.74 120.67
50 129.09 99.58 29.51 24.61 124.19
55 132.93 103.42 29.51 24.61 128.03
60 136.93 107.27 29.66 24.74 132.01
65 141.09 111.11 29.98 25.00 136.11
70 145.41 114.95 30.46 25.40 140.35
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So far we have focused on a single independent variable. In the next section, we 
consider multiple independent variables.

13.4   Multiple Linear Regression
For many chronic diseases, there is no one single cause associated with the occurrence 
of the disease. There are many factors, called risk factors, that play a role in the devel-
opment of the disease. In the study of the occurrence of air pollution, there are many 
factors — for example, wind, temperature, and time of day — that must be considered. 
In comparing mortality rates for hospitals, factors such as the mean age of the patients, 
severity of the diseases seen, and the percentage of patients admitted from the emer-
gency room must be taken into account in the analysis. As these examples suggest, it 
is uncommon for an analysis to include only one independent variable. Therefore, in 
this section we introduce multiple linear regression, a method for examining the relation 
between one normally distributed dependent variable and more than one continuous 
independent variable. We also extend the mode to include categorical independent 
variables.

13.4.1   The Multiple Linear Regression Model

The equation showing the hypothesized relation between the dependent and (p − 1) 
independent variables is

yi = b0 + b1x1i + b2 x2i +  .  .  .  + bp−1xp−1,i + ei.

The coeffi cient bi describes how much change there is in the dependent variable when 
the ith independent variable changes by one unit and the other independent variables 

column 3. This is stored in column 4. Column 5 contains 0.834 times column 4. The 
standard, column 6, is the sum of column 3 with column 5.

The upper one-sided prediction interval is one way of creating height-based stan-
dards for SBP. It has the advantage over simply using the observed 95th percentiles 
of the SBP at the different heights in that it does not require such a large sample size 
to achieve the same precision. If SBP is really linearly related to height, standards 
based on the prediction interval also smooth out random fl uctuations that may be 
found in considering each height separately.

The standards developed here are illustrative of the procedure. If one were going 
to develop standards, a larger sample size would be required. We would also prefer 
to use additional variables or another variable to increase the amount of variation in 
the SBP that is accounted for by the independent variable(s). In addition, as we just 
stated, the rationale for having standards for blood pressure in children is much 
weaker than that for having standards in adults. In adults, there is a direct linkage 
between high blood pressure and disease, whereas in children no such linkage exists. 
Additionally, the evidence that relatively high blood pressure in children carries over 
into adulthood is inconclusive. Use of the 95th percentile or other percentiles as the 
basis of a standard implies that some children will be identifi ed as having a problem 
when none may exist.



are held constant. Again, the key hypothesis is whether or not bi is equal to zero. If bi 
is equal to zero, we probably would drop the corresponding Xi from the equation because 
there is no linear relation between Xi and the dependent variable once the other inde-
pendent variables are taken into account.

The regression coeffi cients of ( p − 1) independent variables and the intercept can be 
estimated by the least squares method, the same approach we used in the simple model 
presented above. We are also making the same assumptions — independence, normality, 
and constant variance — about the dependent variable and the error term in this model 
as we did in the simple linear regression model. We can also partition the sums of 
squares for the multiple regression model similarly to the partition used in the simple 
linear regression situation. The corresponding ANOVA table is

Source DF Sum of Squares Mean Square F-ratio

Regression p − 1 ŷ y SSRi −( ) =∑ 2  SSR/(p − 1) = MSR MSR/MSE

Residual n − p y y SSEi i−( ) =∑ ˆ 2  SSE/(n − p) = MSE

Total n − 1 y yi −( )∑ 2

and the overall F ratio now tests the hypothesis that the p − 1 regression coeffi cients 
(excluding the intercept) are equal to zero.

A goal of multiple regression is to obtain a small set of independent variables that makes 
sense substantively and that does a reasonable job in accounting for the variation in the 
dependent variable. Often we have a large number of variables as candidates for the inde-
pendent variables, and our job is to reduce that larger set to a parsimonious set of variables. 
As we just saw, we do not want to retain a variable in the equation if it is not making a 
contribution. Inclusion of redundant or noncontributing variables increases the standard 
errors of the other variables and may also make it more diffi cult to discern the true rela-
tionship among the variables. A number of approaches have been developed to aid in the 
selection of the independent variables, and we show a few of these approaches.

The calculations and the details of multiple linear regression are much more than we 
can cover in this text. For more information on this topic, see books by Kleinbaum, 
Kupper, and Muller and by Draper and Smith, both excellent texts that focus on linear 
regression methods. We consider examples for the use of multiple linear regression 
based on NHANES III sample data that are shown in Table 13.6.

13.4.2   Specifi cation of a Multiple Regression Model

There are no fi rm sample size requirements for performing a multiple regression analy-
sis. However, a reasonable guideline is that the sample size should be at least 10 times 
as large as the number of independent variables to be used in the fi nal multiple linear 
regression equation. In our example, there are 50 observations, and we will probably 
use no more than three independent variables in the fi nal regression equation. Hence, 
our sample size meets the guideline, assuming that we do not add interaction terms or 
higher-order terms of the three independent variables.

Before beginning any formal analysis, it is highly recommend that we look at 
our data to see if we detect any possible problems or questionable data points. The 
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descriptive statistics, such as the minimum and maximum, along with different graphi-
cal procedures, such as the box plot, are certainly very useful. A simple examination 
of the data in Table 13.6 fi nds that there are two people with zero years of education. 
One of these people is 26 years old and the other is 79 years old. Is it possible that 
someone 26 years old didn’t go to school at all? It is possible but highly unlikely. Before 

Table 13.6 Adult (≥18 years of age) sample data from NHANES III, Phase II (1991–1994).

Row Racea Sexb Agec Educationd Heighte Weightf Smokeg SBPh BMIi

 1 1 1 28 16 68 160 7 111 24.33
 2 1 1 26 12 68 165 1 101 25.09
 3 2 2 31 15 68 175 1 120 26.61
 4 2 1 18 12 76 265 7 158 32.26
 5 1 1 50 17 67 145 1 125 22.71
 6 2 1 42 12 69 247 1 166 36.48
 7 1 2 20 12 66 156 7 114 25.18
 8 1 1 29 12 76 180 1 143 21.91
 9 1 2 35 12 63 166 2 111 29.41
10 1 1 47 16 66 169 1 133 27.28
11 1 2 20 14 69 120 7 95 17.72
12 1 2 33 16 68 133 7 113 20.22
13 4 1 24 13 71 185 7 128 25.80
14 1 1 28 14 72 150 1 110 20.34
15 1 2 32 8 61 126 1 117 23.81
16 2 1 21 10 68 190 1 112 28.89
17 1 1 28 17 71 150 7 110 20.92
18 1 2 60 12 61 130 7 117 24.56
19 1 1 55 12 66 215 2 142 34.70
20 1 2 74 12 65 130 7 105 21.63
21 1 2 38 16 68 126 7 94 19.16
22 1 1 26 14 66 160 2 131 25.82
23 1 1 52  9 74 328 2 128 42.11
24 1 2 25 16 69 125 7  93 18.46
25 1 2 24 12 67 133 1 103 20.83
26 1 2 26 16 59 105 1 114 21.21
27 1 2 51 13 64 119 7 130 20.43
28 2 2 29 16 62  98 7 105 17.92
29 4 1 26  0 64 150 7 117 25.75
30 1 2 60 12 64 175 1 124 30.04
31 1 1 22  9 70 190 1 122 27.26
32 1 2 19 12 65 125 7 112 20.80
33 3 1 39 12 73 210 1 135 27.71
34 3 2 77  4 62 138 7 150 25.24
35 1 1 39 12 73 230 2 125 30.34
36 1 1 40 11 69 170 1 126 25.10
37 1 2 44 13 62 115 7 99 21.03
38 3 2 27  9 61 140 7 114 26.45
39 1 1 29 14 73 220 7 139 29.03
40 1 2 78 11 63 110 7 150 19.49
41 1 1 62 13 65 208 7 112 34.61
42 1 1 22 10 71 125 1 127 17.43
43 1 2 37 11 64 176 7 125 30.21
44 1 1 38 17 72 195 7 136 26.45
45 3 1 22 12 65 140 7 108 23.30
46 3 1 79  0 61 125 2 156 23.62
47 1 2 24 12 62 146 7 108 26.70
48 1 2 32 13 67 141 2 105 22.08
49 1 1 42 16 70 192 7 121 27.55
50 1 1 42 14 68 185 7 126 28.13
a(1 = white, 2 = black, 3 = Hispanic, 4 = other); b(1 = male; 2 = female); cAge in years; dNumber of 
years of education; eHeight (inches); fWeight (pounds); g(1 = current smoker, 2 = never, 7 = 
previous); hSystolic blood pressure (mmHg); iBody mass index



using the education variable in any analysis, we should try to determine more about 
these values.

We consider building a model for SBP based on weight, age, and height. Before 
starting with the multiple regression analysis, it may be helpful to examine the relation-
ship among these variables using a scatterplot matrix shown in Figure 13.9. It is essen-
tially a grid of scatterplots for each pair of variables. Such a display is often useful in 
assessing the general relationships between the variables and in identifying possible 
outliers. The individual relationships of SBP to each of the explanatory variables shown 
in the fi rst column of the scatterplot matrix do not appear to be particularly impressive, 
apart perhaps from the weight variable.

Figure 13.9 Scatterplot 
matrix for systolic 
blood pressure, weight, 
age, and height.

Table 13.7 Correlations among systolic blood pressure, weight, age, and 
height for 50 adults in Table 13.6.

 Systolic Blood Pressure Weight Age

Weight 0.465
Age 0.393 −0.004
Height 0.214 0.636 −0.327
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It may also be helpful to examine the correlation among the variables under consid-
eration. The simple correlation coeffi cients among these variables can be represented 
in the format shown in Table 13.7. The correlation between SBP and weight is 0.465, 
the largest of the correlations between SBP and any of the variables. The correlation 
between height and weight is 0.636, the largest correlation in this table. It is clear from 
these estimates of the correlations among these three independent variables that they 
are not really independent of one another. We prefer the use of the term predictor vari-
ables, but the term independent variables is so widely accepted that it is unlikely to be 
changed.

In this multiple regression situation, we have three variables that are candidates for 
inclusion in the multiple linear regression equation to help account for the variation in 
SBP. As just mentioned, we wish to obtain a parsimonious set of independent variables 
that account for much of the variation in SBP. We shall use a stepwise regression pro-
cedure and an all possible regressions procedure to demonstrate two approaches to 
selecting the independent variables to be included in the fi nal regression model.
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There are many varieties of stepwise regression, and we shall consider forward step-
wise regression. In forward stepwise regression, independent variables are added to the 
equation in steps, one per each step. The fi rst variable to be added to the equation is the 
independent variable with the highest correlation with the dependent variable, provided 
that the correlation is high enough. The analyst provides the level that is used to deter-
mine whether or not the correlation is high enough. Instead of actually using the value 
of the correlation coeffi cient, the criterion for inclusion into the model is expressed in 
terms of the signifi cance levels of the F ratio for the test that the regression coeffi cient 
is zero.

After the fi rst variable is entered, the next variable to enter the model is the one that 
has the highest correlation with the residuals from the earlier model. This variable must 
also satisfy the signifi cance level of the F ratio requirement for inclusion. This process 
continues in this stepwise fashion, and an independent variable may be added or deleted 
at each step. An independent variable that had been added previously may be deleted 
from the model if, after the inclusion of other variables, it no longer meets the required 
F ratio.

Table 13.8 shows the results of applying the forward stepwise regression procedure 
to our example. In the stepwise output, we see that the weight variable is the independent 
variable that entered the model fi rst. It is highly signifi cant with a t-value of 3.64, and 
the R2 for the model is 21.61 percent. In the second step the age variable is added to the 
model. The default signifi cance level of the F ratio for adding or deleting a variable is 
0.15. The age variable is also highly signifi cant with a t-value of 3.42 and as a result the 
R2 value increased to 37.23 percent. Thus, this is the model selected by the forward 
stepwise process.

Table 13.8 Forward stepwise regression: 
Systolic blood pressure regressed on weight, 
age, and height.

Predictor Step 1 Step 2

Constant 92.50 77.18
Weight 0.177 0.177
 (t-value) (3.64) (4.04)
 (p-value) (0.001) (<0.001)
Age  0.41
 (t-value)  (3.42)
 (p-value)  (0.001)
 SY|X 15.1 13.7
 R2 21.61 37.23
 Adjusted R2 19.98 34.55
 Cp 11.8 2.3

In Table 13.8 there are four different statistics shown: R2, adjusted R2, Cp, and sY |X. 
Adjusted R2 is similar to R2, but it takes the number of variables in the equation into 
account. If a variable is added to the equation, but its associated F ratio is less than one, 
the adjusted R2 will decrease. In this sense, the adjusted R2 is a better measure than R2. 
One minor problem with adjusted R2 is that it can be slightly less than zero. The formula 
for calculating the adjusted R2 is

Adjusted R R
n
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p p
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where R2
p is the coeffi cient of determination for a model with p coeffi cients.

The statistic Cp was suggested by Mallows (1973) as a possible alternative criterion 
for selecting variables. It is defi ned as

C
SSE

s
n pp

p= − −( )
2

2

where s2 is the mean square error from the regression including all the independent 
variables under consideration and SSEp is the residual sum of squares for a model that 
includes a given subset of p − 1 independent variables. It is generally recommended that 
we choose the model where Cp fi rst approaches p.

The all possible regression procedure in effect considers all possible regressions 
with one independent variable, with two independent variables, with three indepen-
dent variables, and so on, and it provides a summary report of the results for the 
“best” models. “Best” here is defi ned in statistical terms, but the actual determina-
tion of what is best must use substantive knowledge as well as statistical measures. 
Table 13.9 shows the results of applying the all possible regression procedure to our 
example.

Table 13.9 All possible (best subsets) regression: Systolic blood pressure regressed on weight, age, 
and height.

Number of  Adjusted Variables Entered

Variables Entered R2 R2 Cp SY |X Weight Age Height

1 21.6 20.0 11.8 15.110 X
1 15.5 13.7 16.4 15.692  X
2 37.2 34.6 2.3 13.665 X X
2 28.6 25.6 8.7 14.573 X  X
3 37.7 33.6 4.0 13.764 X X X
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From the all possible regressions output, we see that the model including weight was 
the best model with one independent variable. The second best model, with only one 
independent variable, used the age variable. The best two-independent-variable model 
used weight and age. The second best model, with two independent variables, used 
weight and height. The only three-independent-variable model has the highest R2 value, 
but its adjusted R2 is less than that for the best two independent variable model. Thus, 
on statistical grounds, we should select the model with weight and age as independent 
variables. It has the highest adjusted R2 and the lowest value of sY|X. It also has Cp value 
closest to 2.

Again, these automatic selection procedures should be used with caution. We cannot 
treat the selected subset as containing the only variables that have an effect on the 
dependent variable. The excluded variables may still be important when different vari-
ables are in the model. Often it is necessary to force certain variables to be included in 
the model based on substantive considerations.

We also must realize that, since we are performing numerous tests, the p-values now 
only refl ect the relative importance of the variables instead of the actual signifi cance 
level associated with a variable.
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13.4.3   Parameter Estimates, ANOVA, and Diagnostics

Let us now proceed to the multiple regression analysis with the full three-independent-
variable model and compare it with the selected model that uses weight and age. Table 
13.10 shows the regression with the three independent variables. The main features of 
interest are the tests of hypotheses and the parameter estimates. In the ANOVA table 
the F ratio of 9.27 is the value of the test statistic for the hypothesis that all the coeffi -
cients are simultaneously zero. Since its associated p-value is <0.001, we reject the 
hypothesis in favor of the alternative hypothesis that at least one of the coeffi cients is 
not zero. In general, however, this overall test is of little real interest because it is 
unlikely that none of the independent variables are related to the response variable. Of 
greater interest is the examination of the regression coeffi cients to see which indepen-
dent variables are related to the response variable. In this model with the three inde-
pendent variables, weight and age are statistically signifi cant, but height is not, as shown 
by the t-values and the associated p-values. We should remove the statistically unimport-
ant variables from the model unless there is a substantive reason to retain them. In fi tting 
the model with the statistically unimportant variables eliminated, the estimated coeffi -
cients and standard errors will likely change in value due to the lack of independence 
of the predictor variables.

Table 13.10 also shows the sequential sum of squares. These sums of squares show 
the added contribution of the variables when they are entered in the order specifi ed in 
the model. The contribution of height is very small after weight and age are already 
in the model. The table also shows VIF (variance infl ation factor), and this term is dis-
cussed in the next section.

Table 13.10 Multiple regression analysis I: Systolic blood pressure regressed on weight, age, 
and height.

Predictor Coef SE Coef T p VIF

Constant 53.96 41.54 1.30 0.200
Weight 0.15435 0.05969 2.59 0.013 1.8
Age 0.4381 0.1319 3.32 0.002 1.2
Height 0.3845 0.6725 0.57 0.570 2.0

S = 13.76 R − Sq = 37.7%  R − Sq(adj) = 33.6%

Analysis of Variance:

Source DF SS MS F p

Regression 3 5,266.5 1,755.5 9.27 <0.001
Residual Error 46 8,714.4 189.4
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Height 1 61.9

Table 13.11 shows the multiple regression analysis of the model selected by the vari-
able selection procedures. In this model, the coeffi cients for the weight and age variables 
are highly signifi cant with the t-values of 4.04 and 3.42, respectively, and an F ratio for 
the overall test of the model is 13.94. The estimated coeffi cient for the weight variable 
(0.177) increased slightly from its value in the three-independent-variable model (0.154), 
and its standard error has decreased to 0.044 from 0.060 in the previous model. Inclu-



sion of an unnecessary term in the three-independent-variable model has caused the 
increase in the estimated standard errors and thus makes it harder to discern the signifi -
cance of any of the independent variables.

The R2 statistic indicates that the selected model is not able to account for the 
great majority of the variation in SBP. Much work needs to be done to discover 
these additional sources of variation before standards are created. It is likely that the 
effects of weight and age would be altered if we include other variables that have 
not been considered in the current models. A key message is that conclusions drawn 
about the importance of independent variables depend on the model that is being 
considered.

Having arrived at a fi nal multiple regression model for the data set, it is important 
to go further and check the assumptions we made in selecting the important variables. 
Most useful at this stage is an examination of residuals from the fi tted model. Among 
many regression diagnostics now available in computer packages, the following graphic 
plots are often used.

(1) A normal probability plot of the residuals: In creating the regression model, 
we assume that the errors (ei) are distributed normally. After the systematic variation 
associated with the independent variables in the model has been removed from the data, 
the residuals should therefore resemble a sample from a normal distribution. The normal 
probability plot of standardized residuals is shown in Figure 13.10. The points appear 
to lie along a line with the exception of the one large residual value, giving support to 
the normality assumption. If the normality assumption does not appear to be valid, then 
we may need to transform the response variable. However, transformations are not 
innocuous and must be done with care (Kleinbaum et al. 1998).

(2) A plot of the residuals against the fi tted values: Figure 13.11 shows the stan-
dardized residuals plotted against the estimated values of the dependent variable with 
a useful reference line at zero. There is no strong pattern shown in the plot although the 
larger residuals in absolute value show a tendency to occur with estimated systolic blood 
pressure values over 130. If the trend were stronger, the equal variance assumption might 
be invalid and a transformation of the response variable might be required. If any clear 
patterns are shown in this plot, it raises concerns.

Table 13.11 Multiple regression analysis II: Systolic blood pressure regressed on weight and age.

Predictor Coef SE Coef T p VIF

Constant 77.185 8.668 8.91 <0.001
Weight 0.17727 0.04391 4.04 <0.001 1.0
Age 0.4064 0.1189 3.42 0.001 1.0

S = 13.66 R − Sq = 37.2%  R − Sq(adj) = 34.6%

ANOVA table:

Source DF SS MS F p

Regression 2 5,204.5 2,602.3 13.94 <0.001
Residual Error 47 8,776.3 186.7
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
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(3) A plot of residuals against each independent variable in the model: This plot 
helps in determining whether or not there may be a nonlinear relationship between the 
response variable and the independent variable used in the plot. Figure 13.12 shows the 
plot of residuals with the weight variable, and Figure 13.13 is a plot of the standardized 
residuals with the age variable. Neither plot shows the existence of any pattern. The 
presence of a curvilinear relationship, for example, would suggest that a higher-order 
term such as a quadratic term in the independent variable may be needed.

13.4.4   Multicollinearity Problems

In a multiple regression situation, it is not uncommon to have independent variables that 
are interrelated to a certain extent especially when survey data are used. Multicollinear-
ity occurs when an explanatory variable is strongly related to a linear combination of 
the other independent variables. Multicollinearity does not violate the assumptions of 
the model, but it does increase the variance of the regression coeffi cients. This increase 
means that the parameter estimates are less reliable. Severe multicollinearity also makes 
determining the importance of a given explanatory variable diffi cult because the effects 
of explanatory variables are confounded.

Figure 13.10 Normal 
probability plot of the 
standardized residuals.

Figure 13.11 Plot of 
standardized residual 
versus the fi tted value.



Recognizing multicollinearity among a set of explanatory variables is not necessarily 
easy. Obviously, we can simply examine the scatterplot matrix or the correlations 
between these variables, but we may miss more subtle forms of multicollinearity. An 
alternative and more useful approach is to examine what are known as the variance 
infl ation factors (VIF) of the explanatory variables. The VIF for the jth independent 
variable is given by

VIF
R

j
j

=
−
1

1 2

where R2
j is the R2 from the regression of the jth explanatory variable on the remaining 

explanatory variables. The VIF of an explanatory variable indicates the strength of the 
linear relationship between the variable and the remaining explanatory variables. A 
rough rule of thumb is that the VIFs greater than 10 give some cause for concern.

Now let us review the multiple regression results shown in Tables 13.10 and 13.11. 
The VIFs shown in these tables are all less than 10, indicating that the multicollinearity 
does not pose a serious problem for those models. As a demonstration for a severe mul-
ticollinearity, we added to the model shown in Table 13.10 another independent variable 

Figure 13.12 Plot of 
the standardized 
residual versus the 
weight variable.

Figure 13.13 Plot of 
the standardized 
residual versus the age 
variable.
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that is closed associated with weight and height. Table 13.12 shows the multiple regres-
sion analysis of SBP on weight, age, height, and the body mass index (BMI) defi ned as 
your weight in kilograms divided by the square of your height in meters. The VIFs for 
weight, height, and BMI are all greater than 10 in Table 13.12. More important, the 
variances of the regression coeffi cients for weight and height increased, and these vari-
ables are no longer statistically signifi cant. The effect of weight on SBP shown in the 
earlier model cannot be demonstrated if we add BMI. A solution to a severe multicol-
linearity is to delete one of correlated variables. If we drop the BMI variable, we would 
eliminate the extreme multicollinearity.

Table 13.12 Multiple regression analysis III: Systolic blood pressure versus weight, age, height, body 
mass index.

Predictor Coef SE Coef T p VIF

Constant 105.2 154.4 0.68 0.499
Weight 0.3052 0.4413 0.69 0.493 97.6
Age 0.4364 0.1333 3.27 0.002 1.2
Height −0.354 2.246 −0.16 0.875 22.3
BMI −1.040 3.016 −0.34 0.732 60.9

S = 13.90 R − Sq = 37.8%  R − Sq(adj) = 32.3%

Analysis of Variance:

Source DF SS MS F p

Regression 4 5,289.4 1,322.4 6.85 <0.001
Residual Error 45 8,691.4 193.1
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Height 1 61.9
BMI 1 23.0

 Indicator 
 Variables

Category x1 x2

Never Smoked 0 0 (reference)
Current Smoker 1 0
Previous Smoker 0 1

13.4.5   Extending the Regression Model: Dummy Variables

So far we limited our analysis to continuous independent variables. As we discussed 
briefl y in the previous chapter in conjunction with unbalanced ANOVA models, the 
independent variables can be categorical as well as continuous. It is easy to incorporate 
categorical explanatory variables into a multiple regression equation, provided we code 
the categorical variables with care. Let us consider the smoking status variable shown 
in Table 13.6. It has three levels: current smoker, never smoked, and previous smoker. 
Let us consider the never smoked category the baseline level and measure the effects 
of being a current smoker or a previous smoker from the never smoked level. We will 
then create two indicator variables to represent smoking status. The fi rst indicator vari-
able will have the value of 1 if the person is a current smoker and a value of 0 otherwise. 
The second indicator will have the value of 1 if the person is a former smoker and 0 
otherwise. If the person has never smoked, both the indicator variables are 0.



The number of indicator variables we need to represent a categorical variable is one less 
than the number of categories, corresponding to the degrees of freedom for the 
variable.

To demonstrate the use of an indicator variable into a regression analysis, we added 
the gender variable (female = 0; male = 1) to the multiple regression model shown in 
Table 13.11. The regression analysis of systolic blood pressure on weight, age, and gender 
is shown in Table 13.13. The gender variable accounted for some variation in SBP, 
although it did not quite reach statistical signifi cance at the 0.05 level. The estimated 
regression equation is

SBP = 81.218 + 0.117 (weight) + 0.430 (age) + 8.990 (sex).

The predicted SBP for females with weight of 100  lbs and age of 50 is

81.218 + 0.117(100) + 0.430(50) + 8.990(0) = 114.418.

The predicted SBP for males with the same weight and age is

81.218 + 0.117(100) + 0.430(50) + 8.990(1) = 123.408.

The predicted value for males is 8.990  mmHg higher than the predicted value for 
females. In other words, the regression coeffi cient for sex represents the difference in 
the mean SBP between the indicated category (coded as 1, males in this case) and the 
reference category (coded as 0, females in this case), holding the other independent 
variables constant.

Multiple regression analysis is a very useful technique. It becomes even more useful 
through its ability to incorporate categorical predictor variables along with continuous 
predictor variables. If only categorical explanatory variables are used, we have the 
analysis of variance situation. All of these situations — linear regression, ANOVA, and 
multiple linear regression with a mixture of continuous and discrete predictor variables 
— fi t under the rubric of the General Linear Model (GLM).

See Program Note 13.3 on the website for conducting multiple regression analysis 
including the use of variable selection procedures and residual plots.

Table 13.13 Multiple regression analysis IV: Systolic blood pressure versus weight, age, sex 
(dummy variable).

Predictor Coef SE Coef T p VIF

Constant 81.218 8.689 9.35 <0.001
Weight 0.11749 0.05287 2.22 0.031 1.5
Age 0.4295 0.1162 3.69 0.001 1.0
Sex 8.990 4.685 1.92 0.061 1.5

S = 13.29 R − Sq = 41.9%  R − Sq(adj) = 38.1%

Analysis of Variance:

Source DF SS MS F p

Regression 3 5,854.8 1,951.6 11.05 <0.001
Residual Error 46 8,126.1 176.7
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Sex 1 650.3
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Conclusion
In this chapter, we showed how to examine the relation between a normally distributed 
dependent variable and a continuous independent variable via linear regression analysis. 
We also demonstrated how this method could be extended to include many independent 
variables. We further expanded the linear regression model to include discrete predictor 
variables. These discrete predictor variables are incorporated through binary coding. 
Often we wish to use the linear regression or ANOVA idea, but the dependent variable 
is a binary variable — for example, the occurrence of a disease. In this case, the logistic 
regression method, discussed in the next chapter, can be used.

EXERCISES

13.1 Restenosis — narrowing of the blood vessels — frequently occurs after coro-
nary angioplasty, but accurate prediction of which individuals will have this 
problem is problematic. In a study by Simons et al. (1993), the authors hypoth-
esized that restenosis is more likely to occur if activated smooth-muscle cells 
in coronary lesions at the time of surgery are present. They used the number of 
reactive nuclei in the coronary lesions as an indicator of the presence of the 
activated smooth-muscle cells. The number of reactive nuclei in the lesions and 
the degree of stenosis at follow-up for 16 patients who underwent a second 
angiography are shown here.

 Degree of Stenosis Number of Reactive Nuclei
Patient (%) at Follow-up at Initial Surgery

 1 28 5
 2 15 3
 3 22 2
 4 93 10
 5 60 12
 6 90 25
 7 42 8
 8 53 3
 9 72 15
10 0 13
11 79 17
12 28 0
13 82 13
14 28 14
15 100 17
16 21 1

 Are you suspicious of any of these data points? If so, why? Does there appear 
to be a linear relation between the degree of stenosis and the number of reactive 
nuclei? If there is, describe the relation. Are there any points that have a large 
infl uence on the estimated regression line? If there are, eliminate the point with 
the greatest leverage and refi t the equation. Is there much difference between 
the two regression equations? Are there any points that have a large standard-
ized residual? Explain why the residuals are large for these points. Do you think 
that Simons et al. have a promising lead for predicting which patients will 
undergo restenosis?

13.2 Use the following data (NCHS 2005) to determine whether or not there is a 
linear relation between the U.S. national health expenditures as a percent of 
gross domestic product (GDP) and time.



 What is your predicted value for national health expenditures as a percent of 
GDP for 2010? What is the 95 percent confi dence interval for your estimate? 
What data have you used as the basis of your predictions? What assumptions 
have you made?

13.3 The estimated age-adjusted percent of persons 18 years of age and over who 
smoke cigarettes are shown below for females and males for selected years 
(NCHS 2005).

 National Health Expenditures  National Health Expenditures
Year as Percentage of GDP Year as Percentage of GDP

1960 5.1 1999 13.2
1970 7.0 2000 13.3
1980 8.8 2001 14.1
1990 12.0 2002 14.9
1995 13.4
1997 13.1
1998 13.2

 Estimated Age-Adjusted
 Percent Smoking 
 Cigarettes

Year Female Male

1965 33.7 51.2
1974 32.2 42.8
1979 30.1 37.0
1985 27.9 32.2
1990 22.9 28.0
1995 22.7 26.5
1998 22.1 25.9
1999 21.6 25.2
2000 21.1 25.2
2001 20.7 24.6
2002 20.0 24.6
2003 19.4 23.7

 Describe the linear relation between the estimated age-adjusted percent smoking 
and time for females and males separately. How much of the variation in the 
percents is accounted for by time for females and for males? Do females and 
males appear to have the same rate of decrease in the estimated age-adjusted 
percent smoking? Provide an estimate when the age-adjusted percent of males 
who smoke will equal the corresponding percent for females. What assumption(s) 
have you made in coming up with the estimate of this time point? Do you think 
this assumption is reasonable? Explain your answer.

13.4 Use the data in Table 13.1 to construct height-based standards for systolic blood 
pressure for girls. In constructing these standards, you should be concerned 
about values that may be too low as well as too high.

13.5 Anderson et al. (Anderson 1990) provide serum cholesterol and body mass 
index (BMI) values for subjects who participated in a study to examine the 
effects of oat-bran cereal on serum cholesterol. The values of serum cholesterol 
and BMI for the 12 subjects included in the analysis are shown next.
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 Plot serum cholesterol versus BMI. Calculate the correlation coeffi cient between 
serum cholesterol and BMI. Regress serum cholesterol on BMI. Does there 
appear to be any linear relation between these two variables? Form a new vari-
able that is BMI minus its mean. Square this new variable. Include this new 
independent variable in the regression equation along with the BMI variable. 
Does there appear to be any linear relation between these two independent 
variables and serum cholesterol? Why do you think that we suggested that this 
new variable be added to the regression equation?

13.6 The following data are a sample of observations from the NHANES II. We wish 
to determine whether or not diastolic blood pressure (DBP) of adults can be 
predicted based on knowledge of the person’s body mass index (BMI — weight 
in kilograms divided by the square of height in meters), age, sex (females coded 
as 0 and males coded as 1), smoking status (not currently a smoker is coded 
as 0 and currently a smoker is coded as 1), race (0 represents nonblack and 1 
represents black), years of education, poverty status (household income 
expressed as a multiple of the poverty level for households of the same size), 
and vitamin status (0 indicates not taking supplements and 1 indicates taking 
supplements).

  Select an appropriate multiple regression model that shows the relation 
between DBP and the set or a subset of the independent variables shown here. 
Note that the independent variables include both continuous and discrete vari-
ables. Provide an interpretation of the estimated regression coeffi cients for each 
discrete independent variable used in the model. From these independent vari-
ables, are we able to do a good job of predicting DBP? What other independent 
variables, if any, should be included to improve the prediction of DBP?

 Serum cholesterol
Subject (mmol/L) BMI

 1 7.29 29.0
 2 8.04 26.3
 3 8.43 21.6
 4 7.96 21.8
 5 5.43 27.2
 6 5.77 24.8
 7 6.96 25.2
 8 6.23 24.5
 9 6.65 25.1
10 6.26 23.5
11 8.20 27.9
12 6.21 24.8

Vitamin      Poverty  Smoking
Status BMI Sex Race Education Age Index DBP Status

1 18.46 0 0 13 24 1.93 50 0
0 32.98 1 0 14 24 3.97 98 0
1 29.48 1 0 12 39 1.71 80 1
1 19.20 0 0 12 29 1.62 62 1
0 24.76 0 0 12 45 5.49 90 0
1 20.60 0 0 14 24 4.78 70 0
0 24.80 1 0 8 65 3.63 80 0
1 24.24 0 0 12 25 4.55 56 1
0 29.95 1 0 16 24 2.77 90 0



13.7 Find an article from a health-related journal that used a multiple regression 
analysis and review it thoroughly. Is the multiple regression model an appropri-
ate choice of analysis? Would you conduct the analysis or interpret the result 
differently? Did your article report all the necessary analytical results that 
would convince you to accept the author’s conclusions?

13.8 The following data set consists of infant mortality rates (IMR) for 50 states in 
1997–1998, along with the following eight potential explanatory variables 
(NCHS 2004).

1. Low birthweight: Percent of live births with weight less than 2500 grams, 
1997–1999

2. Vaccination: Percent of children 19–35 months of age vaccinated against 
selected diseases, 1998

3. Medicaid expenditures as percent of total personal health care expenditures, 
1998

Vitamin      Poverty  Smoking
Status BMI Sex Race Education Age Index DBP Status

0 21.80 1 0 17 29 2.15 78 0
0 23.19 1 0 13 29 1.09 56 0
0 28.34 0 0 12 18 1.71 78 0
0 22.00 1 0 12 28 5.49 70 1
0 24.60 1 0  8 65 3.35 70 1
1 21.83 0 0 16 26 0.77 74 0
0 30.50 0 0  3 73 1.10 70 0
1 19.63 0 0 13 33 5.48 62 1
0 27.92 0 0 12 65 3.83 78 0
1 26.77 1 0 12 59 3.57 90 0
1 21.02 1 0 15 21 1.25 64 0
1 19.40 0 0 16 26 3.25 70 0
0 31.12 0 0 12 58 1.91 100 0
0 20.68 0 0  7 57 4.63 74 0
0 22.48 0 0 12 28 1.75 75 0
0 24.89 0 0 14 23 3.25 74 0
1 21.08 0 0 12 56 5.04 68 0
1 23.67 1 0 14 23 4.47 86 1
1 28.19 1 0 12 24 3.38 82 1
0 22.09 0 1  7 58 1.73 80 0
0 23.46 1 0 14 66 5.12 70 0
1 21.11 1 0 13 18 0.64 70 1
1 21.35 0 1 12 20 0.26 60 1
0 20.36 0 1 14 23 2.85 78 0
1 25.00 0 1  4 36 0.72 80 0
1 20.47 0 0 17 37 3.97 88 1
0 24.73 0 1  8 44 1.36 82 0
0 27.87 0 0 12 50 3.31 70 1
0 28.22 1 0 15 50 3.41 112 0
0 26.05 1 0 13 33 5.85 80 0
0 24.51 0 0 12 42 3.17 92 0
1 28.09 0 1 16 46 2.39 92 0
1 18.85 0 1 11 36 1.62 56 1
0 25.99 0 1 12 74 1.40 80 0
1 23.47 1 0 16 35 1.97 96 1
0 26.57 0 0 12 55 6.11 86 0
0 25.09 1 0 12 33 2.15 104 1
0 30.78 0 0 12 38 1.37 74 0
0 28.89 1 0 14 49 1.82 90 1
1 23.82 1 0 17 35 2.85 70 0
0 28.29 1 0 12 62 6.89 60 0
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4. Prenatal care: Percent of live births with prenatal care started in the fi rst 
trimester, 1998

5. Uninsured: Percent of people under 65 years of age without health insurance, 
1998

6. Hospital care: Per capita expenditure in dollars for hospital care, 1998
7. Personal care: Per capita expenditure for personal health care, 1998
8. Personal care: Per capita expenditure for personal health care, 1996

 States are grouped in regions and the region can be another potential explana-
tory variable(s). Build an appropriate multiple regression model that would 
show the relationship between infant mortality rate and a subset of the potential 
explanatory variables (fi ve or fewer considering the total number of observa-
tions). Apply different criteria for selecting a subset and see whether different 
criteria give different results. Check whether various assumptions are met in 
your fi nal model. Interpret your analytical results, taking into account that these 
variables are measurements made at the state level. Do you think all relevant 
explanatory variables are represented in your model?

  Low      Personal

  Birth   Prenatal  Hospital Care

State IMR Weight Vaccination Medicaid Care Uninsured Care 1998 1996

East (New England & Mideast)
CT 6.8 7.56 90 17.5 88.8 14.3 1,478 4,656 4,250
ME 5.3 5.93 86 21.1 89.0 14.6 1,501 4,025 3,512
MA 5.1 6.99 87 19.3 89.3 11.6 1,807 4,810 4,347
NH 4.5 5.91 82 15.6 90.0 12.5 1,234 3,840 3,441
RI 6.5 7.43 86 21.6 90.1 7.6 1,626 4,497 3,978
VT 6.7 6.15 86 18.0 87.8 11.0 1,328 3,654 3,273
DE 6.5 8.01 82 12.5 81.4 17.1 1,581 5,258 3,847
MD 6.6 7.83 85 12.7 80.9 18.9 1,486 3,848 3,573
NJ 7.5 7.69 83 14.0 84.6 18.0 1,481 4,197 4,009
NY 8.5 7.96 78 31.5 82.6 19.7 1,769 4,706 4,346
PA 8.1 7.84 78 16.3 80.2 12.1 1,599 4,168 3,791
Midwest (Great Lakes & Plains)
IL 8.2 7.84 78 14.8 84.1 16.6 1,558 3,801 3,535
ID 7.8 7.78 78 12.0 85.7 16.1 1,413 3,566 3,196
MI 7.0 6.53 78 14.9 84.3 14.9 1,489 3,676 3,457
OH 6.5 6.31 82 15.6 87.5 11.7 1,437 3,747 3,542
WI 7.6 7.01 82 13.4 85.7 13.2 1,377 3,845 3,476
IA 5.9 5.92 82 15.4 84.4 10.9 1,520 3,765 3,368
KS 7.6 7.75 85 10.8 86.4 12.2 1,428 3,707 3,412
MN 7.8 6.75 76 15.4 84.1 10.3 1,254 3,986 3,614
MO 6.8 6.31 79 14.4 85.6 12.1 1,566 3,754 3,390
NE 7.4 5.75 74 14.4 82.7 10.2 1,507 3,627 3,287
ND 8.4 8.57 79 13.8 83.2 16.5 1,741 3,881 3,540
SD 7.3 8.09 79 13.4 83.8 16.3 1,534 3,650 3,253
South (Southeast & Southwest)
AL 8.7 8.68 80 13.0 86.5 19.5 1,432 3,630 3,422
AR 8.6 8.82 77 15.5 87.8 21.7 1,430 3,540 3,177
FL 9.2 8.84 83 10.4 84.5 21.1 1,371 4,046 3,774
GA 9.2 9.52 88 12.2 80.9 19.4 1,329 3,505 3,291
KY 7.7 7.80 80 16.9 85.2 16.0 1,479 3,711 3,300
LA 8.3 8.12 82 19.1 83.6 21.3 1,601 3,742 4,396
MS 10.0 9.28 82 15.8 82.6 22.9 1,551 3,474 3,145
NC 7.3 8.06 82 16.9 86.3 17.0 1,373 3,535 3,232
SC 10.5 10.18 84 16.6 80.7 17.4 1,480 3,529 3,131
TN 8.4 9.01 82 17.4 84.0 14.3 1,375 3,808 3,569
VA 9.0 8.62 73  9.9 77.5 15.8 1,286 3,284 3,009
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Logistic and 
Proportional Hazards 
Regression

Chapter Outline
14.1 Simple Logistic Regression
14.2 Multiple Logistic Regression
14.3 Ordered Logistic Regression
14.4 Conditional Logistic Regression
14.5 Introduction to Proportional Hazard Regression

In this chapter we present logistic regression, a method for examining the relationship 
between a dependent variable with two levels and one or more independent variables. 
Logistic regression represents another application of the linear model idea used in the two 
previous chapters. We also provide an introduction to proportional hazards regression (or 
Cox’s regression). Proportional hazards regression is an extension of the survival analysis 
method presented in Chapter 11, and it also uses the linear model approach.

14.1   Simple Logistic Regression
Joseph Berkson did much to advance the use of logistics in the 1940s and 1950s (Berkson 
1944; 1951). However, it was D. R. Cox (1969) who popularized the logit transformation 
for modeling binary data. Since the 1980s, logistic regression has become one of the 
more widely used analysis techniques in public health and the biomedical sciences 
because it allows for an examination of the relation between disease status (presence or 
absence) and a set of possible risk factors for the disease based on data from cross-
sectional, case-control, or cohort studies.

Let’s consider a simple example to introduce the topic because it allows us to show 
the logistic regression in terms of statistics that we already know.

14

Example 14.1

Suppose that we wish to determine whether or not there is a relationship between a 
male’s pulmonary function test (PFT) results and air pollution level at his residence 
— lead in the air serving as a proxy for overall air pollution. The data for this situa-
tion are shown in Table 14.1 (Forthofer and Lehnen 1981).
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We cannot use ordinary linear regression for this situation because the dependent 
variable — PFT results categorized as normal or nonnormal — has only two levels, 
and, hence, the assumption of a continuous and normally distributed dependent vari-
able does not hold. We can use categorical data analysis, since the independent 
variable, lead level categorized as low or high, is discrete. More generally, if there 
were several independent variables, some of which were continuous, then the cate-
gorical data approach would no longer be appropriate.

One categorical data approach is to compare the odds of having a normal PFT 
between those exposed to low and those exposed to high levels of air pollution — that 
is, to calculate the odds ratio and then test the hypothesis that the odds ratio is equal 
to one. In the following, we shall consider the relation between logistic regression 
and the odds ratio.

In logistic regression the underlying model is that the natural logarithm, written 
as ln, of the odds of a normal (or nonnormal) PFT is a linear function of a constant 
and the effect of lead pollution. The logarithm of the odds is also referred to as the 
log odds or logit. In this example, a larger logit value indicates a more favorable 
outcome because it indicates a greater proportion of males having a normal PFT. 
Hence those with low exposures to lead (logit = 2.964) have a more favorable 
outcome than those with higher exposure to lead (logit = 2.104) for this sample.

This model is

ln
π
π

i

i

thcons t i lead pollution effect1

2
( ) = +tan

where pi1 is the probability of a normal PFT and pi2 is the probability of a nonnormal 
PFT for the ith lead level. The ratio of pi1 to pi2 is the odds of a normal PFT for the 
ith level of lead.

Substituting symbols for all the terms in the preceding equation yields
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(14.1)

where m represents the constant and ai is the effect of the ith level of lead. This model 
has the same structure that we used in the ANOVA where we are measuring the 
effect of the levels of a variable from a reference level. For the lead variable, we 
consider the high level of pollution to be the reference level. This means that a2 is 

Table 14.1 Pulmonary function test results by ambient air pollution.

 Pollution (Lead) Level

Pulmonary Function Test Results Low High

Normal 368 82
Abnormal 19 10

Total 387 92

Proportions Normal 0.9509 0.8913
Odds (normal) 19.367 8.200
Logits (normal) 2.964 2.104
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14.1.1   Proportion, Odds, and Logit

Before proceeding with the extension of the logistic regression model to multiple inde-
pendent variables, it is helpful to examine the relationship between probabilities (pi), 
odds [oi = pi/(1 − pi)] and logits [li = ln(oi)] shown in Table 14.2.

Note that when the probability is 0.5, the odds equal 1 or are even. As the probabilities 
increase toward 1, the odds increase quite rapidly. As the probabilities decrease toward 
0, the odds also approach 0. When the odds equal 1, the logit is 0. As the odds decrease 
below 1, the logit takes a negative value, approaching negative infi nity. As the odds 
increase above 1, the logit takes a positive value, approaching positive infi nity.

The relationship between probabilities and logits is graphically shown in Figure 14.1. 
The relationship is essentially linear for probabilities between 0.3 and 0.7 and nonlinear 

taken to be 0 and that m is the logit for the high lead level as can be seen from the 
following two equations:
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It is clear from the second of these two equations that m is the logit of a normal PFT 
for those exposed to the high lead pollution level. If we subtract the second equation 
from the fi rst, we see that a1 is simply the difference of the two logits — that is,
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Since the difference of two logarithms is the logarithm of the ratio, we have
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Thus, a1 is the natural logarithm of the odds ratio, and this is one of the reasons that 
logistic regression is so useful. In this example, the estimate of a1 is 0.860 and the 
estimate of m is 2.104. If we take the exponential of the estimate of a1, we obtain the 
value 2.362, the estimated odds ratio. This value is much greater than one, and it 
strongly supports the idea that those with the lower lead exposure have the greater 
proportion of a normal PFT. The estimate of the constant term is the logit for the 
high level of lead, and the exponential of the estimate of m is 8.2, the odds of a normal 
PFT result for those with high lead exposures. Thus the logistic regression model 
leads to parameters that are readily interpretable.

Table 14.2 A comparison of probabilities, odds, and log odds (logits).

Probabilities (p i) 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
Odds (oi) 0.01 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 99.00
Logits (li) −4.59 −2.20 −1.39 −0.85 −0.41 0.00 0.41 0.85 1.39 2.20 4.59
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for lower and greater probabilities. A unit change in the logit results in greater differ-
ences in probabilities at levels in the middle than at high and low levels.

Manipulating the formula for the odds allows us to express probabilities in terms of 
odds
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Since oi = exp(li), we can also express probabilities in terms of logits
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This expression for the probability is one that is often seen in the literature when dealing 
with logistic regression.

14.1.2   Estimation of Parameters

Example 14.1 showed that the estimation of parameters for the case where both the 
outcome variable and the exposure variable have two levels is quite simple. However, 
the estimation of parameters in logistic regression becomes more complex when we 
incorporate continuous independent variables and discrete variables with multiple levels 
in the model.

It turns out that the least squares estimation procedure doesn’t yield the best estimates 
for the parameters in logistic regression. Instead of least squares, logistic regression 
uses the maximum likelihood procedure to obtain the parameter estimates. The maximum 
likelihood approach fi nds estimates of the model parameters that have the greatest likeli-
hood of producing the observed data. The estimation procedure usually begins with the 
least squares estimates of coeffi cients and then uses an iterative algorithm to succes-
sively fi nd new sets of coeffi cients that have higher likelihood of producing the observed 
data. Computer programs typically show the number of iterations required to fi nd the 
estimated coeffi cients with the greatest likelihood. However, it is beyond the scope of 

Figure 14.1 Plot of 
probabilities versus 
logits.
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this book to provide the details of the estimation. For more information on logistic 
regression, see the excellent book by Hosmer and Lemeshow (1999a).

14.1.3   Computer Output

The following two examples are applications of logistic regression with a single inde-
pendent variable. In the fi rst example, the independent variable has only two levels, 
whereas in the second example, the independent variable is continuous.

Example 14.2

Table 14.3 presents a summary of the computer output for a logistic regression analy-
sis of the data used in Example 14.1 (see Program Note 14.1 on the website).

The estimates for the intercept and the effect of the low lead level are 2.104 and 
0.860, respectively. These estimates are the same as in Example 14.1. Table 14.3 also 
shows the standard errors for the coeffi cients, test statistics, p-value, and confi dence 
interval for the odds ratio. These will be explained in the next section.

Table 14.3 Estimates resulting from the fi tted logit model for the PFT data in Table 14.1.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept 2.104 0.335 6.28 <0.001 — —
Lead (low) 0.860 0.409 2.10 0.036 2.362 (1.06, 5.27)

Likelihood ratio: chi-square = 4.025, df = 1, p-value = 0.045

Example 14.3

We want to explore the relationship between diabetes (presence or absence) and body 
mass index (BMI) using individuals from the DIG200 dataset. In the DIG200 dataset, 
BMI is a continuous variable and will serve as the independent variable. The sym-
bolic representation of this model is

ln
π

π
β β

1
0 1 1−( ) = + x

where x1 represents the value of the BMI. For simplicity we rounded the values of 
BMI to the nearest whole number. The results of fi tting the logistic regression model 
are shown in Table 14.4. See Program Note 14.1 on the website for fi tting this 
model.

The fi tted logit model is

ln
ˆ

ˆ
. . .

π
π1

3 034 0 075 1−( ) = − + x

In the following example, we consider the case with a continuous covariate in the 
model.
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14.1.4   Statistical Inference

In this section we are interested in examining if a signifi cant relationship exists between 
the dependent variable and independent variable(s) contained in the logistic model. The 
two tests commonly used in the tests of hypotheses in logistic regression are the Wald 
test and the likelihood ratio test (LRT). We are interested in testing the null hypothesis 
that the coeffi cient of the independent variable is equal to zero versus the alternative 
hypothesis that the coeffi cient is nonzero — that is,

 H0: b1 = 0 versus Ha: b1 ≠ 0.

We begin with the Wald test.

The test statistic for the Wald test is obtained by dividing the maximum likelihood 
estimate (MLE) of the slope parameter b̂1 by the estimate of its standard error, se 
(b̂1). Under the null hypothesis, this ratio follows a standard normal distribution.

This estimated equation means that for a 1  kg/m2 increase in BMI, the log odds of 
having diabetes increases by 0.075 units. However, a 5  kg/m2 increase in BMI may 
be more meaningful than a change of 1  kg/m2. A 5  kg/m2 increase in BMI increases 
the log odds by 0.375 (= 5 * 0.075) units. The estimated change in the odds is easily 
calculated by exp(0.375) = 1.45. This value means that the estimated odds of diabetes 
increases by 45 percent for every 5  kg/m2 increase in BMI.

Table 14.4 Estimates resulting from the logistic regression analysis of diabetes on body mass 
index, DIG200.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept −3.034 0.893 −3.40 0.001 — —
BMI 0.075 0.032 2.35 0.019 1.08 (1.01, 1.15)

 Log-Likelihood: Intercept only −116.652
  BMI term added −113.851

Likelihood ratio: chi-square = 5.602, df = 1, p-value = 0.018

Example 14.4

Let us reexamine the material from Example 14.2. As shown in Table 14.3, the value 
of b̂1 is 0.860 and se (b̂1) is 0.409. Therefore, the Wald test statistic is calculated as 
follows:

ˆ

ˆ
.

.
. .

β
β
1

1

0 860

0 409
2 10

se( )
= =

If the null hypothesis is true, this statistic follows the standard normal distribution. 
The p-value for this test is 0.036 [= 2  *  Prob(Z > 2.10)], suggesting that b1 is signifi -
cantly different from zero at the 0.05 level. These values are shown in Table 14.3.

We can use the confi dence interval for the odds ratio to determine whether or not 
the odds ratio equals one. If the confi dence interval does not contain one, then we 
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The LRT is used to test the hypothesis that an independent variable is zero. The LRT 
test statistic is

 
χLR

2 2= − ln
Likelihood of the reduced model

Likelihood of the full modeel
⎛
⎝

⎞
⎠  (14.4)

a quantity that follows the chi-square distribution under the null hypothesis. The degrees 
of freedom for the chi-square distribution is the difference between the number of 
parameters in the full model and the number of parameters in the reduced model. In the 
simple case of only one covariate in the model, the null hypothesis is that the covariate’s 
coeffi cient is equal to zero. Although the Wald test’s p-values are commonly reported, 
we recommend the use of the p-values from the likelihood ratio test (Hauck and Donner 
1977; Jennings 1986). The following example demonstrates the use of the LRT.

conclude that the odds ratio is statistically signifi cant. The use of the confi dence 
interval is equivalent to testing the hypothesis that b1 = 0. The 100 * (1 − a) percent 
confi dence interval for the odds ratio [exp(b1)] is calculated by

[exp{b̂1 − z1−a /2 ⋅ se(b̂1)}, exp{b̂, + z1−a /2 ⋅ se(b̂1)}].

Using the estimates in Table 14.3, the 95 percent confi dence interval for the odds 
ratio is

[exp{0.860 − 1.96 * (0.409)}, exp{0.860 + 1.96 * (0.409)}]

or from 1.059 to 5.269. Since the interval does not contain one, the odds ratio is 
considered to be statistically signifi cant at the 0.05 level. Note that the confi dence 
interval for the odds ratio is not symmetric around the sample estimate. We also did 
not use the usual approach and base the confi dence interval on the estimated odds 
ratio itself and its estimated standard error because the estimated odds ratio does not 
follow a normal distribution.

Example 14.5

Let us revisit the results of the logistic model for the BMI data shown Table 14.4 in 
Example 14.3. We wish to determine whether or not there is a signifi cant relationship 
between the independent variable BMI and the presence or absence of diabetes. We 
shall test the hypothesis of no relationship at the 0.05 level. In symbols, the hypo-
thesis is

H0  :  b1 = 0 versus Ha  :  b1 ≠ 0.

We begin with the model containing only the constant term and compare it to a 
model containing both the constant and the BMI variable. The log of the likelihood 
for the constant only model is −116.652, and the log of the likelihood for the model 
with the BMI variable is −113.851. The test statistic is found by applying Equation 
(14.4) — that is,

X 2
LR = −2[ln(likelihood of reduced model) − ln(likelihood of full model)]
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14.2   Multiple Logistic Regression
Regression models are useful because they help us explore the relationships between a 
dependent or response variable and one or more independent or predictor variables of 
interest. In particular, logistic regression models allow medical researchers to help clini-
cians in the choice of an appropriate treatment strategy for individual patients.

14.2.1   Model and Assumptions

In the previous section we introduced the simple logistic regression model with only 
one independent variable. For multiple logistic regression with k independent variables, 
x1, x2,  .  .  .  , xk, the model, taking the form of Equation (14.3), is

 
π β β β β

β β β β
= + + + +( )

+ + + + +( )
exp . . .

exp . . .
.0 1 1 2 2

0 1 1 2 21

x x x

x x x
k k

k k

 (14.5)

By obtaining estimates for the betas in the linear combination, b0 + b1x1 +  .  .  .  + bkxk, 
we can calculate the estimated or predicted probability of the outcome of interest.

We present two examples here. The fi rst example includes discrete independent 
variables only, whereas the second example has both discrete and continuous indepen-
dent variables.

= −2   *  [−116.652 − (−113.851)] = −2  *  (−2.801), which is 5.602. There is one degree 
of freedom for this test of hypothesis because the full model contains only one 
covariate and the reduced model does not contain any covariates. In this case, the 
p-value for a chi-square value of 5.602 with one degree of freedom is 0.018. There-
fore, we reject the null hypothesis and conclude that b1 is signifi cantly different from 
zero — that is, the occurrence of diabetes is related to the BMI variable at the 0.05 
level.

Example 14.6

We reconsider Example 14.1 and now introduce a covariate. In the example, we found 
a signifi cant lead effect, a fi nding that is somewhat surprising, since lead has not 
been shown to have a negative impact on the respiratory system in other studies. 
However, during the period 1974–1975 when this study was performed, automobile 
emissions were a major source of lead pollution. Thus, a possible explanation for this 
fi nding is that lead pollution is serving as a proxy for nitrogen dioxide or other pol-
lutants that have adverse respiratory effects. Another possible explanation is that we 
have not controlled for possible confounding variables. Smoking status is a key vari-
able that has been ignored in the analysis so far. Table 14.5 shows the smoking status 
by lead level and PFT result.

We begin by considering a model containing the main effects of lead and smoking. 
Because smoking status contains four levels, we must create three dummy variables 
in order to obtain a symbolic representation of this model. The dummy variables can 
be expressed as shown in Table 14.6.



We will use the heavy smoking status as the reference category and measure the 
effects of the other smoking categories from it. Thus, the dummy variable D1 is 1 
when the smoking status is light and 0 otherwise, D2 is 1 when the smoking status 
is former and 0 otherwise, and D3 1 when the smoking status is never and 0 other-
wise. Statistical software packages can create these dummy variables for the user 
(see Program Note 14.2 on the website for more details).

Therefore, the estimated logit can be expressed as
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The estimated values of the logit model’s parameters are the following:
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The addition of the smoking variable has not changed the parameter estimates much. 
The estimate of the constant was previously 2.104 (versus 2.18 now), and the previous 
estimate of the low lead effect was 0.860 (versus 0.84 now).

In this situation, the estimate of b1 is the natural logarithm of the odds ratio if the 
high and low lead levels had contained the same distributions of the smoking status 
variable. Examination of Table 14.5 shows that the distributions of the smoking status 
variable are similar for the high and low lead levels. Hence it is not surprising that 
the estimates of the odds ratio for high lead levels compared to low lead levels are 
approximately the same for the simple model shown in Table 14.3 and the model 
shown in Table 14.7. Individuals in residences with low lead levels are 2.3 times more 
likely to have normal PFT results compared to individuals in residences with high 
lead levels after adjusting for smoking status.

Table 14.5 Pulmonary function test (PFT) results by smoking status and lead exposure.

 Smoking PFT Results  Proportions Odds Logits
Lead Level Status Normal Abnormal Total Normal (normal) (normal)

Low Heavy 84 3 87 0.9655 28.000 3.332
 Light 75 6 81 0.9260 12.500 2.526
 Former 49 6 55 0.8910 8.167 2.100
 Never 160 4 164 0.9756 40.000 3.689
High Heavy 16 3 19 0.8421 5.333 1.674
 Light 21 2 23 0.9130 10.500 2.351
 Former 12 2 14 0.8571 6.000 1.792
 Never 33 3 36 0.9167 11.000 2.398

Table 14.6 Dummy variables for the smoking status variable.

 Smoking Status D1 D2 D3

Smoking status 0 Heavy 0 0 0
Smoking status 1 Light 1 0 0
Smoking status 2 Former 0 1 0
Smoking status 3 Never 0 0 1
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There is no suggestion that the effect of any of the three levels of the smoking 
variables differ from the effect of the heavy smoking level. The 95 percent confi dence 
intervals for the odds ratios of the smoking effects all contain one, and none of the 
Wald statistics suggest statistical signifi cance at the 0.05 level. The likelihood ratio 
test statistic shown in the output is used to test the hypothesis that all four model 
coeffi cients (the lead effect and the three smoking effects) are simultaneously equal 
to zero. We reject this hypothesis at the 0.05 level. The lead variable still appears to 
be related to the PFT variable. We will explain the other two test statistics later in 
this chapter.

Table 14.7 Estimates for the logit model parameters and odds ratio for the data in Table 14.5.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept 2.178 0.510 4.27 <0.0001 — —
Lead (low) 0.837 0.414 2.03 0.043 2.31 (1.03, 5.20)
Smoke 1a −0.289 0.562 −0.51 0.607 0.75 (0.25, 2.25)
Smoke 2b −0.767 0.567 −1.35 0.176 0.46 (0.15, 1.41)
Smoke 3c 0.508 0.572 0.89 0.375 1.66 (0.54, 5.10)

Likelihood ratio: chi-square = 9.914, df = 4, p-value = 0.042
Goodness of fi t tests: Pearson chi-square = 2.276, df = 3, p-value = 0.517

 Deviance chi-square = 2.256, df = 3, p-value = 0.521
alight smoker; bformer smoker; cnever smoked

Example 14.7

Suppose that we would like to develop a logistic regression model to predict diabetes 
using BMI, treatment, and race using the DIG200 dataset. The literature suggests 
that individuals with larger values of BMI, who are on a placebo, and who are non-
white are more likely to have diabetes. As we did in Example 14.3, we rounded the 
values of BMI to the nearest whole number. Table 14.8 shows information about the 
three predictor variables and the presence or absence of diabetes.

We will consider the placebo level of the treatment variable to be the reference 
level and measure the effect of the digoxin treatment from it. We will also consider 

Table 14.8 Patient characteristics by diabetes 
status, DIG200.

  Diabetes

Characteristics Yes No

Mean BMIa ± SDb 28.0 ± 5.5 26.1 ± 4.6
Range  (18 − 43) (15 − 45)
Treatment: Placebo 34  66
 Digoxin 20  80
Race: White 42 131
 Nonwhite 12  15
aBMI—Body Mass Index rounded to the nearest whole 
number
bSD—Standard Deviation



the white race to be the reference level and measure the nonwhite effect from it. The 
results of the logistic regression analysis are shown in Table 14.9 (see Program Note 
14.3 on the website).

The fi tted logit model is

ln
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ˆ
. . . . .

π
π1

2 948 0 081 0 796 0 9041 2 3−( ) = − + − +x x x

From Table 14.9, we see that the odds of having diabetes is higher for larger values 
of BMI even after adjusting for treatment and race. The estimated adjusted odds 
ratios are greater than one for the BMI and race variables, whereas the adjusted odds 
ratio is below one for the treatment variable. This indicates that patients receiving 
digoxin are less likely (specifi cally 45 percent less likely) to have diabetes compared 
to patients on the placebo after adjusting for BMI and race.

All three of the independent variables are statistically signifi cant at the 0.05 level. 
The likelihood ratio chi-square statistic (= 15.47 with three degrees of freedom) 
suggests that the three coeffi cients associated with the independent variables are not 
simultaneously equal to zero at the 0.05 level.

The probability of diabetes given an individual’s BMI, treatment group, and race 
can also be estimated based on the estimated model parameters using Equation 
(14.5)
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As an example let us consider calculating the probability of having diabetes given a 
patient with a BMI of 24  kg/m2, on digoxin treatment, and being of a nonwhite race. 
The calculation is

ˆ
exp . . . .

exp . .
π = − + ( ) − ( ) + ( )[ ]

+ − +
2 948 0 081 24 0 796 1 0 0904 1

1 2 948 0 0881 24 0 796 1 0 904 1
0 290
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=

. .
. .

Therefore, the odds of diabetes given a patient with a BMI of 24  kg/m2, on digoxin 
treatment, and being nonwhite is [0.290/(1 − 0.290)] = 0.408. We explain the other 
two test statistics in the following sections.

Table 14.9 Logistic regression analysis of diabetes on BMI, treatment, and race, DIG200.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept −2.948 0.914 −3.22 0.001
BMI (kg/m2) 0.081 0.033 2.45 0.014 1.08 (1.02, 1.16)
Treatment (digoxin) −0.796 0.339 −2.35 0.019 0.45 (0.23, 0.88)
Race (nonwhite) 0.904 0.440 2.05 0.040 2.47 (1.04, 5.85)

Likelihood ratio: chi-square = 15.471, df = 3, p-value = 0.001

Goodness of fi t tests: Pearson chi-square = 44.485, df = 57, p-value = 0.886
 Deviance chi-square = 57.816, df = 57, p-value = 0.445
 H-L chi-square = 2.532, df = 8, p-value = 0.960
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14.2.2   Residuals

In logistic regression, we can get a feel for how well the model agrees with the data by 
comparing the observed and predicted logits or probabilities for all possible covariate 
patterns. For example, in Example 14.6 the eight possible covariate patterns are listed 
again in Table 14.10 along with observed and predicted logits and probabilities. The 
observed logits and probabilities come from Table 14.5.

Table 14.10 List of covariate patterns for PFT data in Example 14.6.

Covariate Lead Smoking Logit Probability

Pattern Level Status Observed Predicted Observed Predicted

(i) xi D1i D2i D3i li l̂i pi p̂i

1 1 0 0 0 3.332 3.015 0.9655 0.9532
2 1 1 0 0 2.526 2.726 0.9260 0.9385
3 1 0 1 0 2.100 2.248 0.8910 0.9045
4 1 0 0 1 3.689 3.523 0.9756 0.9713
5 0 0 0 0 1.674 2.178 0.8421 0.8982
6 0 1 0 0 2.351 1.889 0.9130 0.8686
7 0 0 1 0 1.789 1.411 0.8571 0.8038
8 0 0 0 1 2.398 2.686 0.9167 0.9362

In multiple linear regression, the residuals provided useful information about possi-
ble problems with the model. We can also use the residuals in logistic regression to 
examine the fi t of the logistic model. Two common forms of residuals used in logistic 
regression are Pearson residuals and deviance residuals. These residuals are useful for 
identifying outlying and infl uential points (Pregibon 1981). The Pearson residual is 
defi ned as

 
r

y n

n
i

i i i

i i i

= −
−( )
ˆ

ˆ ˆ

π
π π1

where ni is the number of observations with the ith covariate pattern, yi is the number 
of observations with the outcome of interest among ni observations, and p̂i is the pre-
dicted probability of the outcome of interest for the ith covariate pattern. The form of 
the Pearson residual is familiar — dividing the difference in the observed and predicted 
cell counts by the standard error of the observed count. We did the same calculations 
in converting statistics to a standard normal variable. Note that we can also express the 
numerator of ri as yi − ŷi, where ŷi is equal to ni p̂i.

Some recommend a slightly different form of the Pearson residual. For example, 
according to Collett (2003), a better procedure is to divide the raw residual, yi − ŷi, by 
its standard error, se(yi − ŷi). This standard error is complicated to derive, but it is used 
in many of the logistic regression programs. Residuals based on the se(yi − ŷi) are known 
as the standardized Pearson residuals.

The deviance residual is defi ned as
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where sgn is plus if the quantity in the parenthesis is positive and negative if the quantity 
is negative.



Since there are only eight covariate patterns for the PFT data in Example 14.6, we 
can easily show the Pearson and deviance residuals in Table 14.11 (see Program Note 
14.2 on the website).

14.2.3   Goodness-of-Fit Statistics

We can also use the residuals in testing the goodness of fi t of the model. A Pearson test 
statistic can be calculated by summing the squares of the residuals, that is, Σr2

i. A similar 
test statistic based on the deviance residuals is then Σd2

i. If the model fi ts, both of these 
statistics follow a chi-square distribution with degrees of freedom equal to number of 
covariate patterns minus the number of parameters in the model plus one.

Let’s now test the goodness of fi t of the model. The null and alternative hypotheses 
are

 H0: the model fi ts the data versus H â: the model does not fi t the data.

Because we estimated four parameters in the model and there are eight covariate pat-
terns, there are three degrees of freedom for the chi-square test. If we test the hypothesis 
that the model fi ts at the 0.05 level, a value of the test statistic greater than 7.81 is 
required to reject the null hypothesis. Since both test statistics (values of 2.28 and 2.25 
for the Pearson statistic and the deviance statistic, respectively) are smaller than this 
critical value, we fail to reject the hypothesis that the model fi ts.

In logistic situations with continuous independent variables, it is likely that the 
number of distinct covariate patterns will be close to the number of observations. The 
next example considers this situation.

Table 14.11 Pearson and deviance residuals for the 
multiple logistic regression model from Example 14.6.

 Residual

Covariate Pattern Pearson Deviance

1 0.54 0.57
2 −0.47 −0.46
3 −0.34 −0.34
4 0.33 0.34
5 −0.81 −0.75
6 0.63 0.67
7 0.50 0.52
8 −0.48 −0.46

Sum of Squares 2.28 2.25

Example 14.8

We are going to plot the Pearson and deviance residuals by individual for the multiple 
logistic regression model considered for the diabetes data in Example 14.7 (see 
Program Note 14.3 on the website).

Since these residuals have, in effect, been divided by their standard errors — it 
is hard to see that this statement applies to the deviance residuals, but it does — 
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residuals that have a value greater than two are of interest. Residuals with a value 
greater than two could result because of a coding error or simply represent a rare 
occurrence. We are looking for any patterns in the residuals, similar to the analysis 
of residuals in multiple linear regression. Since there don’t appear to be any large 
residuals in Figure 14.2 or Figure 14.3, it does not appear that any of the observations 
require further inspection. If there were large residuals, we could try other plots such 
as the residuals versus the independent variables as well as doing univariate analysis 
on the original data looking for anomalies.
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Figure 14.2 Pearson residual by subject for the data in Example 14.7.

Figure 14.3 Deviance residual by subject for the data in Example 4.7.



In some cases, particularly those with continuous independent variables, we prefer 
not to use the Pearson and deviance chi-square statistics to test the fi t of the model. In 
these cases, we believe that other tests — for example, the Hosmer-Lemeshow (H-L) 
goodness-of-fi t test — have better statistical properties (Hosmer and Lemeshow 1999a). 
The H-L procedure groups the data into g categories where g is usually 10. The group-
ing is based on the values of the predicted probabilities from the model. In one approach, 
the data are grouped into equal-sized ordered categories with the fi rst category having 
the subjects with the smallest estimated probabilities and so forth to the last group con-
taining the subjects with the largest estimated probabilities. In another approach sug-
gested by Hosmer and Lemeshow, the categories are formed by specifi c cutpoints — for 
examples, 0.10, 0.20,  .  .  .  , 0.90. The fi rst group contains all subjects with predicted 
probabilities less than or equal to 0.10, the second group contains all subjects with pre-
dicted probabilities greater than 0.10 and less than or equal to 0.20 and so on, to the last 
group that contains all the subjects with predicted probabilities greater than 0.90. The 
H-L test statistic is defi ned as
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where n′k is the number of covariate patterns in the kth group, ok is the number of subjects 
with the condition of interest in the n′k covariate patterns, and p–k is the average predicted 
probability in the kth group. Based on extensive simulations, the H-L statistic follows 
the chi-square distribution with g − 2 degrees of freedom.

Let’s now test the goodness-of-fi t of the logistic model used in Example 14.7 at the 
0.05 level. We will use the fi rst method of grouping — that is, dividing the data into 10 
equal-sized categories. As shown in Table 14.9, the H-L test statistic is 2.532 with 8 
degrees of freedom. Since the H-L statistic is less than the critical value of 15.51, we 
fail to reject the goodness of fi t of the model at the 0.05 level.

14.2.4   The ROC Curve

Another measure of how well a logistic regression model performs can be obtained by 
examining the area under the receiver operating characteristic (ROC) curve, originally 
presented in Chapter 4, for that model. Recall that the ROC curve is created by plotting 
1-specifi city against sensitivity at different cutoff points for determining a positive or 
negative test result. In the logistic model, the sensitivity and specifi city can be evaluated 
at different levels of predicted probabilities by comparing the predicted classifi cation 
with the observed classifi cation of the dependent variable. The area under the ROC curve 
provides a measure of the discriminative ability of the logistic model. Hosmer and 
Lemeshow (1999a) suggest the following guidelines for assessing the discriminatory 
power of the model:

If the area under the ROC curve (AUROC) is 0.5, the model does not discriminate.
If 0.5 < AUROC < 0.7, the model has poor to fair discrimination.
If 0.7 < AUROC < 0.8, the model has acceptable discrimination.
If 0.8 ≤ AUROC < 0.9, the model has excellent discrimination.
If AUROC ≤ 0.9 — a very rare outcome — the model has outstanding 

discrimination.
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Example 14.9

Let’s consider the logistic regression model including lead levels and smoking status 
as predictors of the PFT results shown in Example 14.6 to see how we create the 
ROC curve. As shown in Table 14.10, there are eight predicted probabilities in this 
example and we can evaluate sensitivity and specifi city at eight different cutoff 
points. At the lowest predicted probability of 0.8038 (high lead level and former 
smoker), the predicted PFT status is determined to be “normal” if the predicted 
probabilities are greater than or equal to 0.8038. The 2 by 2 table shown here can be 
formed from the cross-tabulation of the data in Table 14.5 by the predicted and 
observed PFT status. Sensitivity and specifi city are calculated from the table using 
the procedure explained in Chapter 4:

Predicted Observed PFT Status

PFT Status Normal Abnormal

Normal 450 29 Sensitivity = 450/450 = 1.00
Abnormal  0  0 Specifi city = 0/29      = 0.00

Total 450 29

Similarly, we can evaluate sensitivity and specifi city at the second lowest predicted 
probability of 0.8686 (high lead level and light smoker) as follows:

Predicted Observed PFT Status

PFT Status Normal Abnormal

Normal 438 27 Sensitivity = 438/450 = 0.973
Abnormal  12  2 Specifi city = 2/29 = 0.069

Total 450 29

For the rest of the cutoff points the sensitivity and specifi city are

Cutoff Point Sensitivity Specifi city

0.8982 0.927 0.138
0.9045 0.891 0.241
0.9363 0.782 0.448
0.9385 0.709 0.552
0.9532 0.542 0.759
0.9713 0.356 0.862
1.0000 0.000 1.000

From these data the ROC curve can be plotted. We can use a computer program to 
create the ROC curve and calculate AUROC, as shown in Figure 14.4 (see Program 
Note 14.2 on the website).

AUROC can be interpreted as the likelihood that an individual who has a non-
normal PFT result will have a higher predicted probability of having a nonnormal 
PFT than an individual who does not have a nonnormal PFT result (Pregibon 1981). 
The AUROC value for this example is approximately 0.68, a value suggesting poor 
to fair discrimination.



Many programs also report a pseudo-R2. Statisticians tend to give less attention to 
this measure because it may suggest the model has poor explanatory power, whereas 
other measures such as the AUROC suggest good discriminatory power. The goodness-
of-fi t tests, the examination of residuals, and the AUROC are three tools with good 
acceptance by statisticians for examining multiple logistic regression models.

We have provided a few of the numerous diagnostic tools available to the researcher 
for examining the logistic regression model. The use of additional plots and many other 
statistics shown in Chapter 13 for examining the fi t of the model carry over to logistic 
regression. To learn more about the application of these other tools, the reader is encour-
aged to check other sources on logistic regression (Hosmer and Lemeshow 1999; Pregi-
bon 1981). However, we should not automatically delete those subjects identifi ed using 
these diagnostic methods. Any elimination of subjects must be done very carefully and 
be based on substantive considerations as well as on diagnostic methods.

14.3   Ordered Logistic Regression
In previous sections, we introduced logistic regression models that have a dependent 
variable with a dichotomous outcome. However, more complicated forms of logistic 
regression are also available, and we begin this section by considering an ordinal-
dependent variable with more than two levels.
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Figure 14.4 Plot of ROC curve for the logistic regression model in Example 14.6.

Example 14.10

Let us examine the perceived health status reported in the National Health and Nutri-
tion Examination Survey. The health status is reported as “excellent,” “very good,” 
“good,” “fair,” and “poor.” Based on an NHANES III Phase II adult sample, 23.0 
percent of U.S. adults reported that their health status is “excellent,” 30.3 percent 
“very good,” 31.3 percent “good,” and 15.5 percent for the “fair or poor” categories 
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combined. We want to determine whether or not there is a relationship between 
health status and the use of vitamin or mineral supplements (1 = use, 0 = nonuse) 
and education refl ected by the number of years of schooling. Note that if a relation-
ship exists, it does not necessarily imply any causal relationship between the vari-
ables we are labeling as independent and the variable we are labeling as dependent. 
It may be that supplement use is a function of health status, or it could be that health 
status is a function of supplement use or there could be a mixture of relationships. 
We can’t tell from these data the direction of the relationship even if a relationship 
actually exists.

Given the relatively small number of people in the fair and poor categories we 
have combined them into one category. Hence, we are now working with four ordered 
health status categories. Let’s start our investigation by looking at health status and 
supplement use. Before examining the relationship between these two variables, we 
must decide how to handle this ordinal health status variable. Since there are four 
levels, there are really only three pieces of independent information. This means that 
we could create three independent functions that would contain all the information 
in the health status variable. One such set of functions is the following:

Pr (excellent) versus Pr (all other levels)

Pr (excellent plus very good) versus (good plus fair or poor)

Pr (excellent plus very good plus good) versus (fair or poor).

Given the sample values just mentioned for the probabilities of the various health 
status states, we would expect the fi rst function to be much less than one, the second 
function to be close to one, and the third function to be much greater than one. If 
we take the natural logarithm of the three functions, we would expect the fi rst to be 
negative, the second close to zero, and the third to be positive.

We could then perform three separate binary logistic regressions to examine the 
relationships to supplement use. A logistic model that could be used to examine the 
relationship is

ln (health-status functioni) = constanti + effect of supplement usei.

However, if the effect of supplement use on health status is consistent for these three 
functions, we could estimate this “average” effect of supplement use by considering 
a single model that included the supplement use effect plus three separate constant 
terms. In effect, this model is

ln (health-status functioni) = constanti + effect of supplement use.

This representation refl ects the idea that the regression lines for the different outcome 
functions are parallel to each other but that they have different intercepts. Table 14.12 
shows basic data for this analysis and for checking of the assumption of a consistent 
effect of supplement use — that is, the odds ratios for each of the health status func-
tions with supplement use are similar. This assumption is called the proportional 
odds assumption.

Since the odds ratios of 1.19, 1.36, and 1.51 are reasonably similar, we can con-
clude that the proportional odds assumption seems to be acceptable. We see that 



those taking vitamin or mineral supplements are more likely to feel better about their 
health and vice versa. Given that the proportional odds assumption seems to hold, 
we can estimate the common odds ratio that summarizes the effect.

Note that it is not uncommon for an ordered logistic regression model not to satisfy 
the proportionality assumption (or parallel regression assumption). If this assump-
tion is not satisfi ed, other alternative models should be considered, such as the mul-
tinomial logistic model (Hosmer and Lemeshow 1999a).

Table 14.13 shows the results of ordered logistic regression analysis (see Program 
Note 14.4 on the website). The top panel shows the ordered logistic regression of 
health status on supplement use based on the reduced model that assumes the equality 
of the supplement coeffi cients for the three health-status variables. In this example, 
the equality of the supplement coeffi cients is another way of saying that the lines are 
parallel or that the odds are proportional for the three health-status variables.

In examining the results, we fi rst look at the test for the goodness of fi t of the 
model. In this case, the goodness-of-fi t test examines whether or not the three coef-
fi cients for supplement use in the full model are all equal. Based on the goodness-
of-fi t values from the Pearson and deviance tests, we fail to reject the equality of the 
coeffi cients (or that the lines are parallel or that the odds are proportional), a result 
we expected, since the preceding three odds ratios were fairly similar.

The maximum likelihood estimates of coeffi cients include the three intercepts 
and the common supplement effect. The intercepts don’t hold much interest for us, 
but their values are consistent with the expected pattern mentioned above (negative, 
close to zero, and positive). The estimated coeffi cient for vitamin use is 0.2835, and 
the corresponding estimated odds ratio is 1.33. This is the estimated common odds 
ratio for healthier status, comparing those taking supplements with those not taking 
supplements. The 95 percent confi dence interval for the common odds ratio, the p-
value for the test that the coeffi cient for supplement use is zero, and the g statistic 
(follows a chi-square distribution) all suggest that there is a signifi cant relationship 
between supplement use and health status at the 0.05 level.

The preceding analysis could be done using the CMH method presented in 
Chapter 10. But the ordered logistic regression model allows us to include continuous 

Table 14.12 Perceived health status by use and nonuse of vitamin or mineral supplements, 
NHANES, Phase II adult subsample (n = 988).

 Perceived Health Status

Vitamin Use Excellent Very Good Good Fair or Poor Total

User 105 139 127 53 424
Nonuser 122 160 182 100 564

Total 227 299 309 153 988a

 (28.0%) (30.3%) (31.3%) (15.5%) (100.1%)

Comparisons I II III

 105 319 244 180 371  53
 122 442 282 282 464 100
Odds Ratio 1.19 1.36 1.51
aExcluding cases with missing values
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In general, if the outcome variable is ordered and has g categories, we can form 
(g − 1) independent functions from the outcome variable. The proportional odds model 
assumes that the odds ratio across all (g − 1) cut-points is the same. Applying the same 
approach as previously, the proportional odds model for the j = 1, 2,  .  .  .  , g − 1 functions 
and p explanatory variables is
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explanatory variables. The results of the logistic regression of health status on supple-
ment use and the number of years of schooling are shown in the bottom panel of 
Table 14.13. First, our attention is called to goodness-of-fi t statistics. Since the 
Pearson and deviance residual statistics are larger than the degrees of freedom, the 
key fi nding here is that this model does not provide a good fi t to the data. Given that 
the model does not fi t, there is little reason to place much emphasis on the parameter 
estimates. However, note that the supplement variable’s effect has been greatly 
reduced when the years of schooling variable is considered. As just stated, it is dif-
fi cult using data from a point in time to examine relationships over time. In this 
situa tion, it is even not clear what variable should be used as the response or depen-
dent variable.

Table 14.13 Ordered logistic regression analysis of perceived health status on use of vitamin or 
mineral supplements and years of schooling, NHANES III, Phase II adult subsample (n = 988).

Model I (health status on vitamin use)
Predictor Coef SE Coef Z p Odds Ratio 95% CI Lower Upper
Constant (1) −1.3384 0.0923 −14.49 <0.001 — —
Constant (2) 0.0063 0.0808 0.08 0.938 — —
Constant (3) 1.5808 0.0993 15.92 <0.001 — —
Vitamin use 0.2835 0.1160 2.44 0.015 1.33 (1.06, 1.67)

Log-likelihood = −1332.777
 Test that all slopes are zero: G = 6.004, DF = 1, p-Value = 0.014

Pseudo R-Square = 0.002

Goodness-of-Fit Tests:
 Pearson Chi-Square = 1.354, df = 2, p-Value = 0.508
 Deviance Chi-Square = 1.357, df = 2, p-Value = 0.507

Model II (health status on vitamin use and years of schooling)
Predictor Coef SE Coef Z p Odds Ratio 95% CI Lower Upper
Constant (1) −4.4268 0.2768 −15.99 <0.001 — —
Constant (2) −2.9434 0.2586 −11.38 <0.001 — —
Constant (3) −1.1679 0.2452 −4.76 <0.001 — —
Vitamin use 0.0425 0.1192 0.36 0.722 1.04 (0.83, 1.32)
Schooling 0.2476 0.0205 12.08 <0.001 1.28 (1.23, 1.33)

Score test for the proportional odds assumption:
 Chi-Square = 1.594, df = 4, p-Value = 0.810

Log-likelihood = −1254.178
 Test that all slopes are zero: G = 163.202, DF = 2, p-Value = <0.001

Pseudo R-Square = 0.061

Goodness-of-Fit Tests:
 Pearson Chi-Square = 130.426, df = 100, p-Value = 0.022
 Deviance Chi-Square = 119.519, df = 100, p-Value = 0.089



The functions used as the dependent variables are the logits of being in the g category 
or lower versus being in higher categories.

14.4   Conditional Logistic Regression
Data from matched studies can also be analyzed by a logistic regression approach. As 
discussed in Chapter 6, matching is a way of balancing certain characteristics between 
two groups. If matching is used in the design phase of a study, a treatment is given to 
one member of a matched pair and a placebo is given to the other. In case-control studies, 
a case with a particular outcome is matched to a control without the outcome of interest 
and an examination of a possible relationship to an exposure is assessed retrospectively. 
Matching can be one to one or one to several controls.

One way of analyzing matched studies is conditional logistic regression, a method 
illustrated in the following example.

Example 14.11

The DIG200 data set contains 27 subjects with cardiovascular disease (CVD) — 
cases who can be perfectly matched to 27 subjects without CVD — controls based 
on age, sex, and race. The matched data are shown in Table 14.14.

Table 14.14 Twenty-seven controls and matched cases of cardiovascular disease, DIG200.

 Control (without CVD) Case (with CVD)

Set Age Sex Race SBP MI Set Age Sex Race SBP MI

 1 43 1 1 120 1  1 43 1 1 90 0
 2 45 1 1 122 0  2 45 1 1 160 1
 3 46 1 1  96 1  3 46 1 1 110 1
 4 47 2 1 120 0  4 47 2 1 116 0
 5 49 1 1 140 0  5 49 1 1 122 1
 6 50 1 1 148 1  6 50 1 1 140 0
 7 51 2 1 124 1  7 51 2 1  95 0
 8 54 1 1 120 1  8 54 1 1 106 0
 9 57 1 1 136 0  9 57 1 1 140 1
10 58 2 2 100 0 10 58 2 2 100 1
11 59 1 1 100 1 11 59 1 1 100 0
12 60 1 1 102 1 12 60 1 1 140 1
13 63 1 1 105 0 13 63 1 1 114 0
14 64 1 1 150 1 14 64 1 1 130 0
15 65 1 1 132 0 15 65 1 1 130 1
16 66 1 1 130 1 16 66 1 1 160 0
17 67 1 1 130 1 17 67 1 1 130 1
18 68 2 1 144 1 18 68 2 1 152 1
19 69 1 1 130 0 19 69 1 1 116 0
20 70 1 1 150 1 20 70 1 1 110 0
21 71 1 1  90 0 21 71 1 1  90 0
22 72 2 1 140 0 22 72 2 1 155 0
23 73 1 1 140 1 23 73 1 1 150 0
24 74 1 1 100 1 24 74 1 1 140 1
25 76 1 1 140 0 25 76 1 1 130 0
26 79 1 1 130 0 26 79 1 1 150 1
27 80 2 1 118 1 27 80 2 1 165 0
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in Chapter 10 (Section 10.2.5), the relationship can be summarized in the following 
2 by 2 table:
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Relevant information for the analysis of this table is contained in discordant cells (d1 
and d2), and we used the McNemar chi-square test to test the hypothesis of no rela-
tionship between CVD and MI. For the preceding table, the McNemar test statistic 
is

X
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The p-value for this test statistic is 0.454. If we ignore the correction for continuity, 
the test statistic is 1.00 with p-value of 0.317. There is no statistically signifi cant 
relationship between CVD and prior MI — that is, a previous MI is not predictive 
of the occurrence of CVD. The odds ratio for the preceding table is d1/d2 = 6/10 = 
0.6 and the corresponding 95 percent confi dence interval is (0.179, 1.82). Since the 
confi dence interval contains the value of 1, there does not appear to be a signifi cant 
relationship.

Conditional logistic regression offers an alternative method of analysis for matched 
studies. For example, if we wish to examine whether or not there may be a relation-
ship between the occurrence of CVD (1 = yes, 0 = no) and MI (1 = yes, 0 = no), we 
will focus on the difference of the variables within each of the 27 pairs because of 
the matching. The idea of focusing on the differences is similar to the use of differ-
ences in the paired t test. The CVD difference is always equal to +1 by defi nition. 
The difference in the MI variable can have the value of +1, 0, or −1 and this differ-
ence variable is now treated as a continuous variable by the computer software. We 
can use ordinary logistic regression using the differences as the variables. Since we 
are using differences, there is no need to include the constant term in the analysis.

The fi rst panel of Table 14.15 shows the results of the logistic regression analyses 
of the presence and absence of cardiovascular disease on prior myocardial infarction 
(see Program Note 14.5 on the website).

The estimated coeffi cient is −0.5108 (se = 0.5164), which gives the estimated odds 
ratio as exp(−0.5108) = 0.6. The 95 percent confi dence interval is found from the 
exp(−0.5108 ± 1.96 * 0.5164) or (0.22, 1.65). The odds ratio is exactly the same as 
found from the 2 by 2 table. The test results also turn out to be very similar to those 
obtained from the 2 by 2 table. The p-value for McNemar test was 0.317 compared 
to 0.3147 from the likelihood ratio test for the conditional logistic regression and to 
0.323 based on the normal test. Note that we entered the data for 54 observations 
(27 pairs), but we could have entered just the 16 discordant pairs and obtained the 
same results, since data for concordant pairs do not contribute anything to the 
analysis.

 Prior MI in Controls

Prior MI in Cases Yes No Total

Yes  5 (c1) 6 (d1) 11
No 10 (d2) 6 (c2) 16

Total 15 12 27



For a simple situation like in the above 2 by 2 table, there is really no need to use 
the conditional logistic regression model. However, the conditional logistic model is 
very useful for more complicated situations where multiple predictor variables 
(including continuous variables) are used or for predictor variables with more than 
two levels. In the case of a discrete variable, such as the smoking variable in Table 
14.5, we use three dummy variables like those shown in Table 14.6 to show the 
smoking status of a person. But now in our conditional logistic regression model, we 
are subtracting the smoking status of the control from that of the case. This means 
that we are now creating three new difference variables having either the value of 
+1, 0 or −1. Each of these three difference variables refl ecting the smoking status 
would then be entered into the model and treated as if they were continuous 
variables.

In the model shown in the lower panel in Table 14.15, we entered two predictor 
variables (prior MI and systolic blood pressure). The results show that the estimated 
coeffi cient for MI changed slightly. The estimated odds ratio for prior MI adjusted 
for systolic blood pressure is 0.52, and its confi dence interval still includes one. The 
normal test for prior MI has a p-value of 0.242, and the p-value for the two-degree-
of-freedom test of hypothesis that both the prior MI coeffi cient and the SBP coeffi -
cient are simultaneously zero is 0.368. Hence we may conclude that prior MI appears 
to have no statistically signifi cant effect on CVD, whether or not we adjust for 
SBP.

Table 14.15 Conditional logistic regression analysis of matched cases of cardiovascular disease on 
prior myocardial infarction and systolic pressure, 57 pairs from DIG200.

Model I (CVD on prior MI)
Conditional (fi xed-effects) logistic regression Number of obs = 54
   LR chi2 (1)  =  1.01
   Prob > chi2  =  0.3147
Log likelihood = −18.209631  Pseudo R2  =  0.0270

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Prior MI −0.5108 0.5164 −0.99 0.323 0.600 (0.218, 1.651)

Model II (CVD on prior MI and systolic blood pressure)
Conditional (fi xed-effects) logistic regression Number of obs = 54
   LR chi2 (2)  =  2.00
   Prob > chi2  =  0.3683
Log likelihood = −17.716158  Pseudo R2  =  0.0534

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Prior MI −0.6496 0.5546 −1.17 0.242 0.522 (0.176, 1.549)
SBP  0.0187 0.0195  0.96 0.337 1.019 (0.981, 1.059)

14.5   Introduction to Proportional 
Hazard Regression

The proportional hazards model introduced by D. R. Cox (1972) is an extension of the 
material in Chapter 11, and the Cox approach has become the most widely used regres-
sion model in survival analysis. In Chapter 11, we introduced the hazard function, 
defi ned as the probability of failure during an interval of time divided by the size of the 
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interval. Cox’s regression allows the examination of the possible relationship between 
the hazard function and a set of independent variables. We use the following example 
in the introduction of the Cox model.

Example 14.12

The DIG200 data set was introduced in Chapter 3 as part of the digoxin trial. Mor-
tality was monitored and the number of days to death or to the end of the trial for 
those who were still living. Mortality and the number of days of survival for 200 
subjects in the DIG200 dataset are shown in Table 14.16, along with age and BMI 
rounded to the whole number.

Table 14.16 Survival data for 200 subjects in the Digoxin trial, DIG200.

 Placebo Group Digoxin Group

  Days to    Days to
ID Death Death Age BMI Death Death Age BMI

  1 0 631 70 26 1 627 45 33
  2 0 1,166 74 30 0 1,501 66 29
  3 1 1,025 65 26 1 431 62 27
  4 0 1,508 51 30 1 149 63 23
  5 0 1,727 73 28 0 1,335 72 22
  6 0 1,167 52 30 1 620 31 27
  7 0 1,117 62 29 0 1,157 58 23
  8 0 1,544 70 23 0 1,215 55 21
  9 0 1,578 52 31 1 1,216 74 26
 10 0 1,192 62 22 1 165 28 29
 11 1 1,075 65 28 0 880 57 28
 12 0 1,052 66 28 0 1,518 63 29
 13 1 338 71 33 1 586 69 27
 14 0 1,131 58 27 0 1,181 60 23
 15 0 1,173 50 27 0 1,136 47 31
 16 0 1,432 29 41 0 1,475 79 38
 17 0 1,432 68 28 1 169 73 27
 18 0 970 46 22 0 1,194 58 26
 20 0 1,279 71 21 0 879 71 26
 21 1 940 70 19 1 562 63 30
 22 0 1,328 57 24 0 1,697 61 23
 23 0 1,454 51 20 0 1,591 63 28
 24 1 1,516 72 27 0 1,523 58 28
 25 0 1,598 84 32 1 415 50 32
 26 0 1,355 57 27 0 1,542 66 33
 27 0 1,013 59 18 0 1,353 61 27
 28 1 901 52 24 0 1,390 77 27
 29 1 50 63 20 0 1,060 71 27
 30 0 1,726 50 26 0 1,748 73 27
 31 0 1,188 46 26 0 1,559 57 26
 32 1 825 68 25 0 1,034 68 24
 33 1 33 79 30 0 1,680 51 26
 34 0 1,501 88 33 1 300 65 24
 35 0 1,318 54 31 1 644 56 26
 36 1 538 53 34 1 132 66 27
 37 1 629 79 27 0 1,528 60 27
 38 1 1,359 76 31 1 951 67 26
 39 1 374 78 23 0 969 49 15
 40 0 887 69 36 0 958 53 26
 41 1 790 63 25 0 989 66 29
 42 1 966 55 27 0 1,566 66 32
 43 0 1,250 60 30 0 1,157 45 24



Table 14.16 Continued

 Placebo Group Digoxin Group

  Days to    Days to
ID Death Death Age BMI Death Death Age BMI

 44 0 1,192 55 20 1 949 68 21
 45 0 1,108 51 22 0 537 73 22
 46 1 1,176 55 22 0 1,279 49 27
 47 0 1,160 71 25 0 1,629 57 24
 48 1 8 72 23 0 1,277 60 22
 49 1 609 69 22 0 1,342 77 22
 50 0 1,649 79 19 1 943 72 23
 51 1 609 64 21 0 1,626 66 27
 52 0 1,374 74 36 0 1,147 42 24
 53 0 1,168 78 43 0 867 52 24
 54 1 1,268 68 26 0 1,144 54 27
 55 0 871 71 22 0 1,152 65 29
 56 0 1,516 65 27 1 295 46 36
 57 0 1,090 44 26 1 447 67 30
 58 1 1,007 62 25 1 511 75 26
 59 0 1,391 65 29 0 899 54 27
 60 1 547 61 32 0 1,622 58 28
 61 1 531 52 25 1 1,567 66 24
 62 1 848 64 27 0 1,328 57 24
 63 1 305 57 19 0 1,203 61 26
 64 1 392 69 25 1 229 65 28
 65 0 1,500 76 30 1 1,003 80 25
 66 1 1,464 50 34 1 335 77 27
 67 0 982 68 27 1 543 46 29
 68 0 1,259 54 22 1 1,004 70 19
 69 0 1,125 42 24 1 10 35 26
 70 0 1,508 43 29 0 895 69 20
 71 0 1,559 55 19 0 984 63 21
 72 1 299 67 24 0 872 71 23
 73 0 1,405 56 35 0 881 53 25
 74 0 1,489 47 23 0 1,598 58 29
 75 0 1,012 57 23 0 947 80 27
 76 1 270 56 20 0 1,588 70 29
 77 0 1,298 64 18 0 1,116 38 31
 78 0 1,567 81 23 0 1,587 68 25
 79 0 873 75 23 1 636 50 24
 80 1 1,553 69 22 0 344 54 23
 81 0 1,340 43 21 0 1,097 67 33
 82 1 340 69 24 1 970 65 45
 83 1 188 81 38 0 1,341 76 40
 84 0 1,522 59 27 0 1,339 75 38
 85 0 1,504 77 24 0 898 59 22
 86 1 59 74 29 0 975 47 32
 87 1 1,254 67 22 0 1,131 70 37
 88 0 949 53 27 0 1,486 49 23
 89 0 1,553 76 25 0 1,570 79 27
 90 1 895 46 21 1 477 45 27
 91 0 1,270 68 28 0 1,287 67 20
 92 0 1,228 55 23 0 1,678 37 27
 93 1 1,298 83 26 0 1,585 67 34
 94 1 1,144 59 25 0 1,350 70 24
 95 0 1,669 69 32 0 1,166 69 22
 96 0 1,262 61 28 1 1,032 68 24
 97 1 253 55 26 1 681 34 20
 98 1 495 46 27 0 42 48 30
 99 0 1,180 54 32 0 538 60 24
100 1 346 45 23 0 1,612 77 28

Death: 1 = died, 0 = survived; BMI is rounded to the whole number
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In the DIG200 dataset, there are 72 deaths: 40 deaths in the placebo group and 
32 deaths in the treatment group. To compare survival experience of the two groups, 
we can use the methods discussed in Chapter 11. As explained in Chapter 11, we 
need to treat those subjects who were still living at the end of the follow-up period 
as censored observations. Figure 14.5 shows the Kaplan-Meier survival curves by 
treatment group.

The Kaplan-Meier curves do not show a noticeable difference in the survival 
experience between the placebo and treatment group, although survival appears to 
favor the treatment group slightly after 1200 days. In addition, the hazard plots shown 
in Figure 14.6 do not show an appreciable difference between the two groups except 
for later time periods.

Descriptive statistics in Table 14.17 show slightly better survival probabilities for 
the treatment group. However, the p-value of the log-rank test for comparing the two 
survival distributions is 0.398, indicating that there is no statistically signifi cant 
benefi t to being treated with digoxin.

The Cox proportional hazards regression model offers an alternative method to 
compare the survival experience of the two groups. The model focuses on the hazards 
in the two groups. Let h0 (t) be the hazard at time t for the placebo group and h1 (t) 
be the hazard at time t for the digoxin group. Then the ratio of these two hazards, 
the hazard ratio, can be modeled under the assumption that it is constant at all sur-
vival times, t. It implies that

h t

h t
1

0

( )
( )

= φ.

The hazard function in the denominator is called the baseline hazard. We already 
encountered this proportional hazards assumption in applying the CMH and log rank 

Figure 14.5 Kaplan-Meier curves for digoxon and placebo groups, DIG200.



tests in Chapter 11. Since the Cox procedure is based on this assumption, it behooves 
us to examine this assumption. Based on the plot of the hazard rates in Figure 14.6, 
it appears as if the ratio of the rates is a constant at least as far out as 1300 days. 
After that, the ratio changes slightly from around one to less than one. We can sepa-
rate our investigation into two parts, before and after 1300 days, if we want to be 
safe. If we limit the analysis to the fi rst 1300 days, the log-rank test chi-square value 
is 0.0062 with a p-value of 0.938. We conclude that there is no difference in survival 
between the placebo and digoxin groups. There is one death in the digoxin group 
and four deaths in the placebo group after 1300 days. For purposes of demonstration, 
we will simply consider the entire follow-up period in our analysis.

Since hazards are always positive, we can substitute eb where b is a parameter 
with no restrictions (can be positive, zero, or negative) for the quantity f. Using this 
notation, we can express Cox’s regression model as

ln
h t

h t
x1

0
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Figure 14.6 Hazard rate plot for digoxin and placebo groups, DIG200.

Table 14.17 Descriptive analysis of survival for digoxin and placebo groups, DIG200.

Descriptor Digoxin Group (n = 100) Placebo Group (n = 100)

Number of Deaths 32 40
Survival Probabilities at
 360 days 0.909 0.880
 900 days 0.763 0.749
 1440 days 0.660 0.583
Survival Percentiles
 25th 949 days 895 days
 50th — 1553 days

Log Rank Test Chi-square 0.715
 p-value 0.398
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where x is an indicator variable (0 if an individual received a placebo or 1 if an 
individual received the digoxin treatment). Note that this linear model has no inter-
cept term unlike the general regression model. No intercept is necessary here because 
we are only concerned with estimating the hazard ratio.

Just as when using the Kaplan-Meier procedure, in the Cox regression model we 
also must specify the censored observations — that is, those who were still living at 
the end of follow-up period, when entering the data for analysis. The results of fi tting 
this model to the survival data for the two groups are shown in Table 14.18 (Model 
I). (see Program Note 14.6 on the website.) The estimated coeffi cient is −0.2007 
with standard error of 0.2377. The estimated hazard ratio is exp(−0.2007) = 0.82, 
suggesting that the hazard is 18 percent lower for the treatment group. This is con-
sistent with the slightly favorable survival probabilities for the treatment group 
shown previously. The 95 percent confi dence interval for the estimated hazard ratio 
is exp(0.2007 ± 1.96 * 0.2377), or (0.51, 1.30). Since the confi dence interval contains 
the value of one, there is not suffi cient evidence to conclude that the use of digoxin 
lowers the risk of dying. Finally, notice that the p-values for the Wald test statistic 
(0.399) and likelihood ratio test statistic (0.397) are very close to the p-value for the 
log rank test (0.398), and they all cause us to fail to reject the null hypothesis of no 
treatment effect.

The Cox model allows us to incorporate additional predictor variables besides the 
treatment variable. To demonstrate the inclusion of additional variables, we next 
carry out Cox’s regression analyses of survival experience in DIG200 considering 
treatment status and two continuous variables, age and body mass index. Model II 
in Table 14.18 considers treatment group status and age as predictor variables. Model 
III includes treatment group status, age, and body mass index in the model. Since 
the digoxin trial randomly allocated patients into the two groups, we do not expect 
that incorporation of age and BMI would change the difference in survival between 

Table 14.18 The fi t of the proportional hazards regression of survival on digoxin treatment, age, and 
body mass index: DIG200.

Model I (survival on digoxin treatment)
     LR chi2 (1) = 0.72
Log likelihood = −353.81122    Prob > chi2 = 0.3972

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.2007 0.2377 −0.84 0.399 0.8182 (0.5134, 1.3037)

Model II (survival on digoxin treatment and age)
     LR chi2 (2) = 0.82
Log likelihood = −353.76215    Prob > chi2 = 0.6653

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.2015 0.2378 −0.85 0.397 0.8175 (0.5130, 1.3029)
Age −0.0033 0.0105 −0.31 0.754 0.9967 (0.9765, 1.0174)

Model III (survival on digoxin treatment, age, and body mass index)
     LR chi2 (3) = 0.93
Log likelihood = −353.70398    Prob > chi2 = 0.8178

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.1980 0.2380 −0.83 0.405 0.8204 (0.5146, 1.3080)
Age −0.0031 0.0106 −0.29 0.771 0.9969 (0.9765, 1.0178)
BMI −0.0085 0.0249 −0.34 0.735 0.9916 (0.9443, 1.0413)



treatment and control groups. We are considering these two additional models to 
illustrate the usefulness of the Cox approach.

In Model II, the estimated hazard ratio for digoxin treatment, for a fi xed age, is 
0.82, which is the same as the unadjusted hazard ratio in Model I. The estimated 
hazard ratio for age, in the same group, is 1.00, suggesting that age variable does not 
make any difference at all. The comparison in the two likelihood values suggests 
there is no signifi cant age effect. Similarly, in Model III, addition of body mass index 
to the model does not make a difference. The estimated hazard ratio for digoxin 
treatment, holding age and BMI constant, is still 0.82.

In general, the proportional hazards model considering k independent variables is 
expressed in terms of the hazard function

 h t h t x x xk k( ) = ( ) ⋅ + + +( )0 1 1 2 2exp . . .β β β

where h0(t) is referred to as the baseline hazard and is multiplied by the exponential of 
the k independent variables. This model can also be expressed as
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The natural log of the hazard ratio is linearly related to the sum of the k independent 
variables. This equation is similar to the formula for the logit model we used in logistic 
regression. Independent variables may be discrete or continuous. Discrete independent 
variables with more than two levels require dummy coding as in the general regression 
model. For more detailed treatment of proportional hazards regression, we refer to more 
advanced books (Collett 1994; Cox and Oakes 1984; Hosmer and Lemeshow 1999a).

Conclusion
In this chapter, we showed that logistic regression is a part of the larger general linear 
model approach for analyzing data. Logistic regression is an important method, particu-
larly in epidemiology, as it allows the investigator to examine the relation between a 
binary dependent variable and a set of continuous and discrete independent variables. 
The interpretation of the model parameters in terms of the odds and odds ratios is a key 
attraction of the logistic regression procedure. Many of the diagnostic procedures used 
to examine the appropriateness and fi t of the multiple linear regression model have also 
been adapted to logistic regression, making it an even more attractive method. We also 
briefl y introduced the Cox’s proportional hazards model as a method that goes beyond 
the survival analysis methods in Chapter 11. This model allows us to examine multiple 
factors to determine whether or not there appears to be an association with the length 
of survival.

This chapter provides an introduction to both of these topics. It is not meant to be 
exhaustive, particularly regarding the presentation of the proportional hazards model. 
Interested readers are encouraged to avail themselves of several books that focus on 
these topics.
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EXERCISES

14.1 Data from an article by Madsen (1976) are used here to examine the relation 
between survival status — less than 10 years or greater than or equal to 10 
years — and the type of operation — extensive (total removal of the ovaries 
and the uterus) and not extensive — for 299 patients with cancer of the ovary. 
Other factors could be included — for example, stage of the tumor, whether or 
not radiation was used, and whether or not the tumor had spread — in a logistic 
regression analysis. However, we begin our consideration with only the one 
independent variable. The data are

 Survival Status

Type of Operation <10 years ≥10 years

Extensive 29 122
Not Extensive 20 28

 In a logistic regression analysis — using the logit for >10 years of survival and 
the not extensive type of operation as the base level — the estimates of the 
constant term and the regression coeffi cient for the type of operation (extensive) 
are 0.3365 and 0.3920, respectively. Provide an interpretation for these esti-
mates. Demonstrate that your interpretations are correct by relating these esti-
mates to the preceding table.

14.2 Based on DIG200, investigate how previous myocardial infarction (MI) is 
related to age, race, sex, and BMI. Summarize the computer output in a table 
and interpret the results. Explain the odd ratios for each independent variable. 
What is the predicted proportion of having had an MI for a nonwhite female 
60 years of age with a BMI of 30?

14.3 The story of the Donner party, stranded in the Sierra Nevada in the winter of 
1846–1847, illustrates the hardship of the pioneers’ journey to California. Of 
the 83 members of the Donner party, only 45 survived to reach California. The 
following data represent sex, age, and survival status of adult members (15 years 
of age and older).

Person Sex Age Status Person Sex Age Status

 1 M 62 died 23 M 32 survived
 2 F 45 died 24 F 23 survived
 3 M 56 died 25 M 30 died
 4 F 45 died 26 F 19 survived
 5 M 20 survived 27 M 30 died
 6 M 25 died 28 M 30 survived
 7 M 28 died 29 F 30 survived
 8 F 32 survived 30 M 57 died
 9 F 25 survived 31 F 47 died
10 M 24 died 32 F 20 survived
11 M 28 died 33 M 18 survived
12 M 25 died 34 F 15 survived
13 M 51 survived 35 F 22 survived
14 F 40 survived 36 M 23 died
15 M 35 died 37 M 25 died
16 M 28 survived 38 M 23 died
17 F 25 died 39 M 18 survived
18 F 50 died 40 M 46 survived
19 M 15 died 41 M 25 survived
20 F 23 survived 42 M 60 died
21 M 28 survived 43 M 25 died
22 F 75 died

Source: http://members.aol.com/DanMRosen/donner/survivor.htm



 Run a logistic regression analysis using sex and age as predictor variables for 
survival and interpret the results. How does a female’s odds of survival compare 
with a male’s odds while controlling for age? How does a 45-year-old person’s 
odds of survival compare with a 15-year-old person’s odds while controlling for 
sex?

14.4 Woodward et al. (1995) investigated prevalence of coronary heart diseases 
(CHD) in men. Prevalent CHD was defi ned on a four-point graded scale in 
decreasing order of severity: myocardial infarction (MI), angina grade II, 
angina grade I, no CHD. One of several risk factors examined was parental 
history of CHD before age 60. The data are

Parental History CHD Categories

of CHD MI Angina II Angina I No CHD Total

Present 104 17  45  830  996
Absent 192 30 122 3,376 3,720
Total 296 47 167 4,206 4,716

 Number of 
 Gun Owners

Case Control Odds Ratio (95% CI)

174 139 1.6 (1.2 − 2.2)

 Odds Ratio (95% CI)

Variable Crude Adjusted

Gun ownership 1.6 (1.2 − 2.2) 2.7 (1.6 − 4.4)
Home rented 5.9 (3.8 − 9.2) 4.4 (2.3 − 8.2)
Lived alone 3.4 (2.2 − 5.1) 3.7 (2.1 − 6.6)
Domestic violence 7.9 (5.0 − 12.7) 4.4 (2.2 − 8.8)
Any household member arrested 4.4 (3.0 − 6.0) 2.5 (1.6 − 4.1)
Any member used illicit drugs 9.0 (5.4 − 15.0) 5.7 (2.6 − 12.6)

 Analyze the data using an ordered logistic regression model treating the CHD 
categories as levels of an ordinal dependent variable and parental history of 
CHD as the independent variable. If the proportional odds assumption is satis-
fi ed, summarize the results and interpret the fi ndings. What is the predicted 
risk of CHD for a person with no CHD?

14.5 Kellermann et al. (1993) investigated the effect of gun ownership on homicide 
in the home using a retrospective matched-pairs design. They compared 388 
cases of homicides with control subjects matched according to neighborhood, 
sex, race, and age range. They presented the following information in the 
article:

 Is it possible to verify that the reported crude odds ratio is correct? If yes, verify 
it. If not, what information is lacking? For a multivariate analysis, the following 
information is shown:

 Explain what statistical method is used to calculate the adjusted odds ratios and 
their confi dence intervals. How would you interpret the adjusted odds ratio of 
2.7 for gun ownership?
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14.6 A case-control study of presenile dementia was introduced in Chapter 10 
(Example 10.6). Each dementia case was individually paired with a community 
control of the same sex and age, and family history of dementia was ascertained 
in both groups, retrospectively. The following cross-tabulation of the 109 pairs 
by the presence or absence of family history of dementia was analyzed. Based 
on the McNemar chi-square test statistic, we concluded that there is evidence 
for an association between dementia and family history of the disease:

 Family History of 

Family History of Dementia in Control

Dementia in Case Present Absent

Present  6 25
Absent 12 66

 Control (without Dementia) Case (with Dementia)

Set Dementiaa Historyb Set Dementiaa Historyb

 1 0 1  1 1 0
 2 0 1  2 1 0
 3 0 1  3 1 0
 4 0 1  4 1 0
 5 0 1  5 1 0
 6 0 1  6 1 0
 7 0 1  7 1 0
 8 0 1  8 1 0
 9 0 1  9 1 0
10 0 1 10 1 0
11 0 1 11 1 0
12 0 1 12 1 0
13 0 0 13 1 1
14 0 0 14 1 1
15 0 0 15 1 1
16 0 0 16 1 1
17 0 0 17 1 1
18 0 0 18 1 1
19 0 0 19 1 1
20 0 0 20 1 1
21 0 0 21 1 1
22 0 0 22 1 1
23 0 0 23 1 1
24 0 0 24 1 1
25 0 0 25 1 1
26 0 0 26 1 1
27 0 0 27 1 1
28 0 0 28 1 1
29 0 0 29 1 1
30 0 0 30 1 1
31 0 0 31 1 1
32 0 0 32 1 1
33 0 0 33 1 1
34 0 0 34 1 1
35 0 0 35 1 1
36 0 0 36 1 1
37 0 0 37 1 1
aCodes: 0 = without dementia; 1 = with dementia
bCodes: 0 = without history; 1 = with history

 The following table shows the data for the 37 discordant pairs. Analyze the data 
using the conditional logistic regression approach and see whether the same 
conclusion can be drawn.



A symptoms:  3.2*  4.4*  6.2  9.0  9.9 14.4 15.8 18.5 27.6* 28.5 30.1*
 31.5* 32.2* 41.0 41.8* 44.5* 47.8* 50.6* 54.3* 55.0 60.0* 60.4*
 63.6* 63.7* 63.8* 66.1* 68.0* 68.7* 68.8* 70.9* 71.5* 75.3* 75.7*

B symptoms:  2.5  4.1  4.6  6.4  6.7  7.4  7.6  7.7  7.8  8.8 13.3
 13.4 18.3 19.7 21.9 24.7 27.5 29.7 30.1* 32.9 33.5 35.4*
 37.7* 40.9* 42.6* 45.4* 48.5 48.9* 60.4* 64.4* 66.4*

Asterisks indicate censored observations.

14.7 The survival of 64 lymphoma patients was analyzed for two different symptom 
groups (A and B) in Exercise 11.4. The survival times (in months) for the two 
symptom groups is shown here:

 Analyze the data using Cox’s regression method and see whether the same 
conclusion can be drawn as in Exercise 11.4. Do you think that the proportional 
hazards assumption is acceptable in your analysis?
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Analysis of Survey Data

Chapter Outline
15.1 Introduction to Design-Based Inference
15.2 Components of Design-Based Analysis
15.3 Strategies for Variance Estimation
15.4 Strategies for Analysis
15.5 Some Analytic Examples

All of the statistical methods we have discussed so far are based on the assumption that 
the data were obtained by simple random sampling with replacement. As we discussed 
in Chapter 6, simple random sampling can be very expensive, if not infeasible, to imple-
ment in community surveys. Consequently, survey statisticians often use alternative 
sample selection methods that use such design features as stratifi cation, clustering, and 
unequal selection probabilities. Some of these features were briefl y discussed in Chapter 
6. Sample designs that use some of these more advanced design features are referred as 
complex sample designs. These complex designs require adjustments in the methods of 
analysis to account for the differences from simple random sampling. Once these adjust-
ments are made, all the analytic methods discussed in this book can be used with 
complex survey data. We introduce several different ways of making these adjustments 
in this chapter, with a focus on two specifi c topics: the use of sample weights and the 
calculation of estimated variances of parameter estimates based on complex sample 
designs.

Our treatment of the material in this chapter differs from the treatment in the other 
chapters in that we provide few formulas here. Instead, we attempt to provide the reader 
with a feel for the different approaches. We also provide some examples pointing out 
how ignoring the sample design in the analysis can yield very misleading conclusions. 
We follow this nonformulaic path because of the mathematical complexity of the pro-
cedures. In addition, we do not go into detail about procedures for addressing two 
important problems in the analysis of survey data — nonresponse and missing data. 
There are several approaches for dealing with these problems (Levy and Lemeshow 
1999; Little and Rubin 2002), but they all make assumptions about the data that are 
diffi cult to check. We cannot stress too highly the importance of reducing nonresponse 
in surveys. Even after reading this chapter, we think the reader will need to work with 
a survey statistician when carrying out the analysis of survey data.

15.1   Introduction to Design-Based Inference
There are two general approaches for dealing with the analytic complexities in survey 
data and these can be loosely grouped under the headings of “design-based” and “model-
based.” We are presenting only the design-based approach because it is the standard 
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way of analyzing complex surveys, although the model-based approach also has many 
supporters. Several sources discuss the model-based approach (Korn and Graubard 
1999; Lee and Forthofer 2006; Lohr 1999).

The design-based approach requires that the sample design be taken into account in 
the calculation of estimates of parameters and their variances. As we just mentioned, a 
key feature of the complex sample design is the sample weight, which is based on the 
probability of selection of the units in the sample. The calculation of the estimated vari-
ance for a parameter estimate from complex survey data usually cannot be done through 
applying a simple formula. The following special procedures are used.

15.2   Components of Design-Based Analysis
As just mentioned, most community surveys utilize complex sample designs to facilitate 
the conduct of the surveys. As a result of using stratifi cation and clustering, the selection 
probabilities of units are unequal. In some surveys, unequal selection probabilities are 
used intentionally to achieve certain survey objectives. For example, the elderly, chil-
dren, and women of childbearing ages are often oversampled to obtain a suffi cient 
number of people in those categories for detailed analysis.

15.2.1   Sample Weights

The weight is used to account for differential representation of sample observations. 
The weight is defi ned as the inverse of selection probability for each observation. Let 
us explore the concept of the sample weight in the simple random sampling situation. 
Suppose that an SRS of n = 100 households was selected from a population of N = 1000 
households to estimate the total medical expenditure for a year for the population. The 
selection probability of each sample observation is n/N = 0.1, and the sample weight is 
therefore 10 (= N/n). The sample weights add up to N. If the average annual medical 
expenditure for the sample (y–) was found to be $2000, then the estimated total medical 
expenditure for the population would be N y– = $2,000,000. Another way of writing the 
estimate is
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or the weighted total of sample observations. Since the weight is the same for all sample 
observations in simple random sampling, we don’t need to weight each observation 
separately.

The situation is slightly different with a disproportionate stratifi ed random sample 
design. Suppose the population of 1000 households consists of two strata: 200 (N1) 
households with at least one senior citizen and 800 (N2) households without any seniors. 
Suppose further that 50 households were randomly selected from each stratum. The 
selection probability in the fi rst stratum is 50/200 and the weight is 4 (= N1/n1). In the 
second stratum the selection probability is 50/800 and the weight is 16. If the average 
medical expenditure for the fi rst and second stratum were found to be $5000 (y–1) and 
$1250 (y–2), respectively, then the estimated total medical expenditure for the population 
would be $2,000,000 (= N1y–1 + N2 y–2= 200{1250} + 800{5000}). The following relation-
ship shows the role of the weight in estimation:
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Although we have used SRS and stratifi ed sample designs to introduce the sample 
weights, the same concept extends to more complex designs. When each observation in 
the sample has a different weight (wi), the estimates for the population can be obtained 
using the following general estimator:

 
population estimate = ∑w yi i .

This procedure applies to all sample designs.

In survey analysis, the weight is often modifi ed further by poststratifi cation adjust-
ments discussed in the following sections.

15.2.2   Poststratifi cation

In the health fi eld, many of the variables of interest vary by, for example, a person’s age, 
sex, and race. If we knew these variables before we carried out the survey, we could 
use them to create a stratifi ed design that would take these variables into account. 
Unfortunately, we often don’t know the values of these variables before the survey, and 
this fact prevents us from using a stratifi ed sample design.

However, we still wish to take these variables into account in the analysis. We do 
this by adjusting the sample distributions so that they match their population distribu-
tions for these variables. We accomplish this matching by using a technique called 
poststratifi cation that adjusts the sample weights after (post) the sample data have been 
collected.

The following example shows how poststratifi cation adjustment is created for the 
different categories.

Example 15.1

A telephone survey was conducted in a community to estimate the average amount 
spent on food per household in a week. Telephone surveys are popular because they 
are quick and easy to perform. Unfortunately, they exclude the small percentage of 
the households without a landline telephone, and this exclusion could introduce some 
small degree of bias in the results. With the increasing use of cell phones, the poten-
tial for bias in telephone surveys is increasing unless cell phone numbers are also 
included. Given the goal of this survey, one desirable stratifi cation variable would 
be household size because larger households likely spend more than smaller house-
holds. Since information on household size was not readily available before the 
survey was conducted, we could not stratify on this variable in the survey design.

The survey failed to obtain responses from 12 percent of the households. It was 
thought that these nonrespondents were more likely to be living in smaller house-
holds, and this idea is supported by the data shown in Table 15.1. These data show 
the distribution of sample households by household size and the corresponding dis-
tribution from a previous study involving household size in the community. Smaller 
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Multiplying the sample weight by the poststratifi cation adjustment factors causes the 
weighted sample distribution to match the population distribution for the variables used 
in the poststratifi cation.

15.2.3   The Design Effect

In Chapter 6 we demonstrated in one example that a stratifi ed sample could provide a 
more precise — have smaller sampling variance — estimator for the sample mean than 
a simple random sample of the same sample size. In this section we provide a measure, 
the design effect, for comparing a sample design to a simple random sample design with 
replacement. To introduce this idea, we will begin by comparing simple random sam-
pling without replacement to simple random sampling with replacement.

In Chapters 7 and 8, we used s2/n as the estimator for the variance of the sample 
mean ( x–) and s n  as the estimator for the standard error for data resulting from 

households are indeed underrepresented in the sample and this suggests the average 
food expenditure would be overestimated unless we make an adjustment for house-
hold size. Table 15.1 shows the procedure of poststratifi cation adjustment.

The postratifi cation adjustment for single-person households is to multiply the 
number of single-person households by 1.138, refl ecting that this category of house-
holds is underrepresented by 14 percent. This adjustment is equivalent to multiplying 
the sample weights by the same factor. The adjusted number of households for this 
category is then 71.7 (= 63{1.138}); for the rest of household size categories the 
adjusted numbers are 98.3, 51.7, 48.9, and 33.4. The distribution of these adjusted 
numbers of household by household size now matches the distribution in the popula-
tion. The average food expenditure based on these adjusted numbers of households 
is $67.00, compared with the unadjusted average of $71.08. As expected, the adjusted 
average is lower than the unadjusted estimate.

We have not addressed the nonresponders directly through the poststratifi cation 
adjustment. Given that the nonresponse rate was only 12 percent, it is unlikely that 
the average food expenditure estimate would change much if the nonresponders were 
included. However, it would be good to do more follow-up with a sample of the 
nonresponders in an effort to determine if they differed drastically from the 
responders.

Table 15.1 Poststratifi cation adjustments by household size for a telephone survey.

Number of Number of    Average
Persons in Households Sample Population Adjustment Food
Household in Sample Distribution Distribution Weighta Expenditure

1 63 0.2072 0.2358 1.13803 $38
2 81 0.2664 0.3234 1.21396 52
3 63 0.2072 0.1700 0.82046 78
4 52 0.1711 0.1608 0.93980 98
5+ 45 0.1480 0.1100 0.74324 111
aPopulation distribution divided by sample distribution



simple random sampling with replacement. When simple random sampling without 
replacement is used, the formula for the estimated variance is
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The term (1 − n/N), called the fi nite population correction (FPC), adjusts the formula 
to take into account that we are no longer sampling from an infi nite population. Use of 
this term decreases the magnitude of the variance estimate. For samples from large 
populations, the FPC is approximately one, and it can be ignored in these cases.

The ratio of the sampling variance of SRSWOR to that of SRSWR is the FPC, and 
it refl ects the effect of using SRSWOR compared to using SRSWR. This ratio comparing 
the variance of some statistic from any particular sample design to that of SRSWR is 
called the design effect for that statistic. It is used to assess the loss or gain in precision 
of sample estimates from the sample design used. A design effect less than one indicates 
that fewer observations are needed to achieve the same precision as SRSWR whereas a 
design effect greater than one implies that more observations may be needed to yield 
the same precision. Extending this concept to sample size, the effective sample size of 
a design is the size of a simple random sample with replacement that would have pro-
duced the same estimated sample variance for the estimator under consideration. The 
effective sample size is the actual sample size of the design being used divided by the 
design effect.

The design effect can be examined theoretically for some simple sample designs. As 
was just mentioned, we pointed out in Chapter 6 that stratifi ed random sampling often 
produces smaller sampling variance than SRS. Cluster sampling will lead to a greater 
sampling variability when the sampling units are similar within clusters. The intraclass 
correlation coeffi cient (ICC) is used to assess the variability within the clusters. The 
ICC is the Pearson correlation coeffi cient based on all possible pairs of observations 
within a cluster.

The design effect of single-stage cluster sample design with equal size clusters is

 1 + (M − 1)ICC

where M is the size of each cluster. Given this design, the ICC ranges from −1/(M − 1) 
to 1. When ICC is positive, the design effect will be greater than one. If the clusters 
were formed at random, then ICC = 0; when all the units within each cluster have the 
same value, then ICC = 1 and the design effect is the same as the size of the cluster. 
Most clusters used in community surveys consist of houses in the same area, and these 
generally yield positive ICCs for many survey variables such as socioeconomic and 
some demographic characteristics.

Since the determination of the design effect requires that we have an estimate of the 
sample variance for a given design, this calculation is usually not a simple task for a 
complex sample design. The complexity of the design often means that we cannot use 
the variance estimating formulas presented in previous chapters; rather, special tech-
niques that utilize unfamiliar strategies are required. The next section presents several 
strategies for estimating sampling variance for statistics from complex sample 
designs.
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15.3   Strategies for Variance Estimation
The estimation of the sampling variance of a survey statistic is complicated not only by 
the complexity of the sample design but also by the form of the statistic. Even with an 
SRS design, the variance for some sample statistics requires nonstandard estimating 
techniques. For example, the sampling variance of sample median was not covered in 
previous chapters. Moreover, the variance estimator for a weighted statistic is compli-
cated because both the numerator and denominator are random variables. We will 
present several techniques for estimating sampling variances: (1) from complex samples 
and (2) for nonlinear statistics. These techniques include replicated sampling, balanced 
repeated replication, jackknife repeated replication, and the linearization method (Taylor 
series approximation).

15.3.1   Replicated Sampling: A General Method

The replicated sampling method requires the selection of a set of subsamples from the 
population with each subsample being drawn independently following the same sample 
selection design. Then an estimate is calculated for each subsample, and the sampling 
variance of the overall estimate based on all the subsamples can be estimated from the 
variability of these independent subsample estimates. The repeated systematic sampling 
discussed in Chapter 6 represents this strategy.

The standard error of the mean (u–) of t replicate estimates, u1, u2,  .  .  .  , u1 of the 
parameter U can be estimated by
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(15.2)

This estimator can be applied to any sample statistic obtained from independent repli-
cates for any sample design.

In applying this estimator, ten replicates are recommended by Deming (1960) and a 
minimum of four by Sudman (1976) for descriptive statistics. An approximate estimate 
of the standard error can be calculated by dividing the range in the replicate estimates 
by the number of replicates when the number of replicates is between 3 and 13 (Kish 
1965). However, because this estimator with t replicates is based on t − 1 degrees of 
freedom, a larger number of replicates may be needed for analytic studies, perhaps 20 
to 30 (Kalton 1983).

Example 15.2

In this artifi cial example, we demonstrate the use of replicated sampling for the 
estimation of the sample variance of a statistic. In this case, we are going to estimate 
the population proportion of male births and the sample variance of this statistic 
based on replicated samples. Instead of collecting actual data, we will use the random 
digits in Table B1 to create our replicated samples. In our simulation process, we are 
going to assume that the population proportion of male births is 0.5. We will take 
10 replicated samples of size 40 using the fi rst eight 5-digit-columns of lines 1 



The chief advantage of replicated sampling is the ease in estimation of the standard 
errors for complex sample designs. This strategy is especially useful in systematic 
sampling, since there is no way to estimate the standard error of an estimator from a 
systematic sample with only one replicate. Replicated systematic sampling can easily 
be implemented by randomly selecting multiple starting points. In applying Equation 
(15.2), the sample statistic for the full sample is generally used instead of the mean of 
replicate estimates when sample weights are present.

However, replicated sampling is diffi cult to implement in multistage cluster sampling 
designs and is seldom used in large-scale surveys. Instead, the replicated sampling idea 
can be applied in the data analysis stage where pseudo-replication methods for variance 
estimation are used. The next two sections present two such methods.

15.3.2   Balanced Repeated Replication

The balanced repeated replication (BRR) method represents an application of the repli-
cated sample idea to a paired selection design in which two primary sampling units 
(PSU) are sampled from each stratum. The paired selection design is often used to 
simplify the calculation of variance within a large number of strata. The variance 

through 10. Table 15.2 shows the number and proportion of boys with estimates of 
the standard error by three different methods.

For the full sample of 400 — combining the data from the 10 separate samples 
— the proportion of boys is 0.512 and its standard error is 0.025 based on simple 
random sampling. The standard error estimated from the 10 replicate estimates using 
Equation (15.2) is 0.022. An approximate estimate can also be obtained by taking 
the range in replicate estimates divided by the number of replicates. This value is 
0.025 ([0.650 − 0.400]/10). Of course replicated sampling is not needed for estimat-
ing standard errors for a simple random sample design. But this strategy also works 
for complex sample designs.

Table 15.2 Estimation of standard errors for the proportion of boys from 10 replicated samples of 
size 40.

Replicate n Number of Boys Proportion of Boys Standard Error

Full sample 400 205 0.512 0.025a

 1 40 21 0.525
 2 40 16 0.400
 3 40 21 0.525
 4 40 20 0.500
 5 40 20 0.500
 6 40 17 0.425
 7 40 21 0.525
 8 40 26 0.650
 9 40 24 0.600
10 40 19 0.475 0.022b

   (0.650 − 0.400)/10     =     0.025c

aBased on SRS
bBased on Equation (15.2)
cBased on the range in replicate proportions divided by the number of replicates
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between two units within a stratum is one-half of the squared difference between the 
units. McCarthy (1966) originally proposed the BRR method for the National Center 
for Health Statistics for analyzing the National Health Examination Survey that used a 
paired selection design.

To apply the replicated sampling idea, half-sample replicates are created by taking 
one PSU from each stratum. From the paired selection design, we can create only two 
half-sample replicates. Since the estimate of standard error based on two replicates is 
unstable, we repeat the process of forming half-sample replicates in such a way that 
replicates are independent of each other (Plackett and Burman 1946).

Replicate estimates, u1, u2,  .  .  .  , ut, for a sample statistic are calculated by doubling 
the sample weights, since each replicate contains one-half of the total observations. Then 
the standard error of the statistic (u–) for the full sample can be calculated by

 
u u ti

i

t

−( )
=
∑ 2

1

.

Since this process involves so much manipulation of the data, it is usually necessary to 
use specialized computer software created to carry out the BRR approach.

15.3.3   Jackknife Repeated Replication

Another replication-based procedure is called the jackknife repeated replication method 
(JRR). This procedure creates pseudo-replicates by deleting one unit from the sample, 
then calculating the sample statistic of interest. That unit is put back into the sample, 
another unit is deleted and the statistic is calculated, and so on. The estimate of the 
variance is then based on the variation in these sample statistics. The term jackknife 
may be used because this procedure can be used for a variety of purposes. The idea of 
jackknifi ng was introduced by Quenouille in 1949 in the estimation of bias for a sample 
estimator. Frankel (1971) fi rst applied the jackknife procedure to the computation of 
sampling variance in complex surveys, using it in a manner similar to the BRR method. 
The following example illustrates the principle of jackknifi ng.

Example 15.3

We consider a small data set — the ages of the fi rst 10 patients in DIG40 shown in 
Table 3.1. Assuming that these data are from a simple random sample, the sample 
mean is 58.2 and the sample median is 59.5. If we ignore the FPC, the estimated 
standard error of the sample mean is 4.27. These statistics are shown in Table 15.3 
along with the 10 observations. We next estimate the standard error of the sample 
mean by the jackknife procedure.

We create a jackknife replicate by deleting the fi rst observation (age 55) and cal-
culate the mean for the replicate, which gives 58.56, as shown in the table. By deleting 
the second observation (age 78) we get the second jackknife replicate estimate of 56. 
Repeating the same procedure we have 10 replicate estimates, y– (1), y

–
(2),  .  .  .  , y

–
(10). Let 

the mean of the replicate estimates be y y ni=( )( )∑ , and this value is 58.2,  



For a complex sample design, the JRR method is generally applied at the PSU level. 
The JRR method is not restricted to a paired selection design but is applicable to any 
number of PSUs per stratum. Let us consider a situation with L strata. If uhi is the esti-
mate of the parameter U from the hth stratum and ith replicate, nh is the number of 
sampled PSUs in the hth stratum, and rh be the number of replicates formed in the hth 
stratum, then the standard error is estimated by
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If each of the PSUs in the hth stratum is removed to form a replicate, rh is the same 
as nh in each stratum, but the formation of nh replicates in the hth stratum is not required. 
When the number of strata is large and nh is two or more, we can reduce the computa-
tional burden by using only one replicate in each stratum. However, a suffi cient number 

which is the same as the sample mean. The standard error can be estimated by

n y y ni−( ) −( )( )1
2Σ ,  which equals 4.27. The standard error estimated from repli-

cate estimates is the same as the estimate obtained directly from the sample, sug-
gesting the jackknife procedure works.

The jackknife procedure also allows us to estimate the standard error for the 
median. The fi rst replicate estimate for the median is based on the nine observations 
remaining after deleting the fi rst observation as before. Deleting each observation in 
turn allows us to determine ten replicate estimates of the median as shown in Table 
15.3. The mean of the replicate medians is 59.9. Using the same formula shown above, 
we can estimate the standard error of the median and this value is 5.27.

Table 15.3 Estimation of standard error by the 
jackknife procedure for the mean and median age for 
10 patients in DIG40.

  Jackknife Replicate
  Estimates

Patient Age Mean Median

 1 55 58.56 60
 2 78 56.00 59
 3 50 59.11 60
 4 60 58.00 59
 5 31 61.22 60
 6 70 56.89 59
 7 46 59.56 65
 8 59 58.11 59
 9 68 57.11 59
10 65 57.44 59

Mean 58.2 58.2 59.9
Median 59.5

Standard error estimates for the mean:
 From the sample 4.27
 From jackknife replicates 4.27
Standard error estimate for the median:
 From jackknife replicates 5.27
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of replicates must be used in analytic studies to ensure that there are adequate degrees 
of freedom.

15.3.4   Linearization Method

A completely different approach from the pseudo-replication methods for estimating 
variances from complex survey designs follows a more mathematical approach. This 
mathematical approach, called Taylor series linearization, is used in statistics to obtain 
a linear approximation to nonlinear functions. The beauty of the Taylor series is that 
many nonlinear functions are approximated quite well by only the fi rst few terms of the 
series. This approach has gained wide acceptance in the analysis of weighted data from 
complex surveys because many of the statistics that we estimate, including regression 
coeffi cients, are nonlinear, and their estimated variances are also nonlinear. This 
approach to variance estimation has several other names in the literature, including the 
linearization method and the delta method. A brief presentation of the Taylor series 
approach and an example is presented in Appendix A.

The following example demonstrates how the linearization works for the calculation 
of sampling variance of a ratio estimate.

Example 15.4

We consider a small sample for this illustration. A simple random sample of eight 
health departments was selected from 60 (N ) rural counties to estimate the total 
number of professional workers with a master of public health degree. It is known 
that the 60 health departments employ a total of 1150 (Y) professional workers. The 
sample data shown in Table 15.4 are the number of professional workers (yi) and the 
number of professional workers with an MPH degree (xi).

Based on the sample data on the number of workers with an MPH degree, we can 
estimate the total number of professional workers with an MPH degree, that is 630 
(= N x– = 60  *  10.5). The variance of this estimate is V̂ar(N x–) = N 2V̂ar( x– ) as shown 
in Chapter 4. Using Equation 15.1 for V̂ar(x– ), the estimated standard error of this 
estimate is
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Table 15.4 Numbers of professional workers and professionals with an MPH degree for 8 sample 
health departments.

Health Department Number of Professional Workers (yi) Number of Workers with MPH (xi)

1 21 14
2 18 8
3 9 3
4 13 6
5 15 8
6 22 13
7 30 17
8 27 15
Mean 19.375 10.5



Since the total number of professional workers for the population is known and x 
and y are highly correlated, we prefer to use a ratio estimate. The ratio estimate of 
the total number of professional workers with an MPH is
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19 375
1150 623 

The standard error calculation for the ratio estimate is complicated because both 
the numerator and denominator of the ratio are random variables. The linearization 
method can provide an approximation. Using Stata we obtained the following results 
(see Program Note 15.1 on the website):

Ratio Estimate Std. Err. [95% Conf. Interval] Deff

totxmph/prof 623.2258 29.92157 552.4725  693.9791 1

The estimated standard error for the ratio estimate is 29.9, which is much smaller 
than that obtained by simple random sample estimator (97.3), suggesting that the 
ratio estimate is the preferred method of estimation for this case.

The Taylor series approximation is applied to PSU totals within strata — that is, the 
variance estimate is a weighted combination of the variation across PSUs within the 
same stratum. This calculation is complex but can require much less computing time 
than the replication methods just discussed. This method can be applied to any statistic 
that is expressed mathematically — for example, the mean and the regression coeffi cient. 
But it cannot be used with nonfunctional statistics such as the median and other 
percentiles.

15.4   Strategies for Analysis
We introduce the Third National Health and Nutrition Examination Survey (NHANES 
III) here to illustrate the methods of survey data analysis. NHANES III, sponsored by 
NCHS (1994), collected information on a variety of health-related subjects from a large 
number of individuals through personal interviews and medical examinations. Its sample 
design was complex to accommodate the practical constraints of cost and survey require-
ments, resulting in a stratifi ed, multistage, probability cluster sample of eligible persons 
in households. The PSUs were counties or small groups of contiguous counties and a 
total of 2812 PSUs were divided into 47 strata based on demographic characteristics. 
Thirteen of the 47 strata contained one large urban county, and these urban PSUs were 
automatically included in the sample. Two PSUs were sampled from each of the remain-
ing 34 strata. The subsequent hierarchical sampling units included census enumeration 
districts, clusters of households, households, and eligible persons. Preschool children, 
the aged, and the poor were oversampled to provide suffi cient numbers of persons in 
these subgroups. The NHANES III was conducted in two phases. The 13 large urban 
counties were rearranged into 21 survey sites, subdividing some large counties. Combin-
ing with nonurban PSUs, 89 survey sites were randomly divided into two sets: 44 sites 
were surveyed in 1988–1991 (Phase I) and the remaining 45 sites in 1991–1994 (Phase 
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II). Each phase sample can be considered an independent sample, and the combined 
sample can be used for a large-scale analysis.

We chose to use the Phase II adult sample (17 years of age and over) of 
NHANES III. It included 9920 observations that are arranged in 23 pseudo-strata 
with 2 pseudo-PSUs in each stratum. The sample weight contained in the public-use 
micro data fi les is the expansion weight (inverse of selection probability adjusted 
for nonresponse and poststratifi cation). We created a working data fi le by selecting 
variables and calculating new variables such as body mass index. The expansion weight 
was converted to the relative weight by dividing the expansion weight by the average 
weight.

15.4.1   Preliminary Analysis

Survey data analysis begins with a preliminary exploration to see whether the data are 
suitable for a meaningful analysis. One important consideration in the preliminary 
examination of sample survey data is to examine whether there is a suffi cient number 
of observations available in the various subgroups to support the proposed analysis. 
Based on the unweighted tabulations, the analyst determines whether sample sizes are 
large enough and whether categories of the variables need to be collapsed. The 
unweighted tabulations also give the number of the observations with missing values 
and those with extreme values, which could indicate either measurement errors or errors 
of transcription.

It is also necessary to examine if all the PSUs have a suffi cient number of observa-
tions to support the planned analysis. Some PSUs may contain only a few or no obser-
vations because of nonresponse and exclusion of missing values. If necessary, the PSUs 
with none or only a few observations may be combined with an adjacent PSU within 
the same stratum. If a stratum contains only a single PSU as a result of combining PSUs, 
it may be combined with an adjacent stratum. However, collapsing too many PSUs and 
strata is not recommended because the resultant design may now differ substantially 
from the original design.

The number of observations that is needed in each PSU is dependent on the type of 
analysis planned. The required number is larger for analytic studies than for estimation 
of descriptive statistics. A general guideline is that the number should be large enough 
to estimate the intra-PSU variance for a given estimate.

The fi rst step in a preliminary analysis is to explore the distributions of key variables. 
The tabulations may point out the need for refi ning operational defi nitions of variables 
and for combining categories of certain variables. Based on summary statistics, one 
may discern interesting patterns in the distributions of certain variables in the sample. 
After analyzing the variables one at a time, we can use standard graphs and SRS-based 
statistical methods to examine relations among variables. However given the importance 
of sampling weights in survey data, any preliminary analysis ignoring the weights may 
fail to uncover important aspects of the data.

One way to conduct a preliminary analysis taking weights into account is to select 
a subsample of manageable size with the probability of selection proportional to the 
magnitude of the weights (PPS). The PPS subsample can be explored with the regular 



descriptive and graphic methods, since the weights are now refl ected in the selection of 
the subsample.

Example 15.5

For a preliminary analysis, we generated a PPS sample of 1000 from the 9920 persons 
in the adult fi le of Phase II of NHANES III. We fi rst sorted the total sample by 
stratum and PSU and then selected a PPS subsample systematically using a skipping 
interval of 9.92 on the scale of cumulative relative weights. The sorting by stratum 
and PSU preserved in essence the integrity of the original sample design.

Table 15.5 demonstrates the use of our PPS subsample analyzed by conventional 
statistical methods. In this demonstration, we selected several variables that are 
likely to be most affected by the weights. Because of oversampling of the elderly and 
ethnic minorities, the weighted estimates are different from the unweighted estimates 
for mean age and percent Hispanic. The weights also make a difference for vitamin 
use and systolic blood pressure as well as for the correlation between body mass 
index and systolic blood pressure. The subsample estimates, although not weighted, 
are very close to the weighted estimates in the total sample, supporting the use of a 
PPS subsample for preliminary analysis.

Table 15.5 Comparison of sample statistics based on the PPS subsample and the total sample, 
NHANES III, Phase II (adults 17 years of age and older).

 Sample Statistics

 Mean Percent Mean Percent Correlation
Sample Age Hispanic SBPa Vitamin Use BMIb & SBP

PPS subsample (n = 1000)
 Unweighted 42.9 5.9 122.2 43.0 0.235
Total sample (n = 9920)
 Weighted 43.6 5.4 122.3 42.9 0.243
 Unweighted 46.9 26.1 125.9 38.4 0.153
aSystolic blood pressure
bBody mass index

15.4.2   Subpopulation Analysis

When we analyze the data from a simple random sampling design, it is customary to 
perform some specifi c subdomain analysis — that is, to analyze separately, for example, 
different age groups or different sexes. However we have to be careful how we carry 
out this practice with complex survey data. Elimination of observations outside the 
specifi c group of interest — say, Hispanics, for example — does not alter the sample 
weights for Hispanics, but it can complicate the calculation of variances. For example, 
selecting Hispanics for analysis may mean that there are a small number or even no 
observations in some PSUs. As a result, several PSUs and, possibly, even strata might 
have to be combined to be able to calculate the variances. However, the sample structure 
resulting from these combinations may no longer resemble the original sample design. 
Thus, selecting out observations from a complex survey sample may lead to an incorrect 
estimation of variance (Korn and Graubard 1999, Section 5.4). The correct estimation 
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of variance requires keeping the entire data set in the analysis and assigning weights of 
zero to observations outside the group of interest.

Example 15.6

Let us consider the case of estimating the mean BMI for African Americans from 
Phase II of NHANES III. For illustration purposes, we attempted to select only 
African Americans from the sample, but we could not carry out the analysis because 
the computer program we were using detected PSUs with no observations. A tabula-
tion of African Americans by stratum and PSU showed that only one PSU remained 
in the 13th and 15th strata. After collapsing these two strata with adjacent strata 
(arbitrarily with the 14th and 16th stratum, respectively), we obtained the mean BMI 
of 27.25 with the design effect of 2.78.

The subpopulation analysis using the entire sample and assigning weights of zero 
to non–African American observations produced the same sample mean BMI of 
27.25, but the design effect was now 1.07, a much smaller value. For the use of sub-
population analysis, see Program Note 15.2 on the website.

15.5   Some Analytic Examples
This section presents various examples based on Phase II of NHANES III data. The 
emphasis is on the demonstration of the effects of incorporating the sample weights and 
the design features on the analysis, rather than examining substantive research ques-
tions. We begin with descriptive analysis followed by contingency table analysis and 
regression analysis.

15.5.1   Descriptive Analysis

In descriptive analysis of survey data, the sample weights are used, and the standard 
errors for the estimates are calculated using one of the methods discussed that incorpo-
rate strata and PSUs. When the sample size is small, the FPC is also incorporated in 
the calculation of the standard errors. The method of calculating confi dence intervals 
follows the same principles shown in Chapter 7. However, the degrees of freedom in 
the complex sample design are the number of PSUs sampled minus the number of strata 
used instead of n − 1. In certain circumstances, the determination of the degrees of 
freedom differs from this general rule (Korn and Graubard 1999, Section 5.2).

Example 15.7

We calculated sample means and proportions for selected variables from Phase II of 
NHANES III. We incorporated the sample weights, strata, and PSUs in the analysis, 
but the FPC was not necessary because the sample size was 9920. Table 15.6 shows 
the weighted and unweighted estimates and the standard errors, 95 percent confi -
dence intervals, and the design effects for the weighted estimates.
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15.5.2   Contingency Table Analysis

In Chapter 10, we used the Pearson chi-square statistic to test the null hypothesis 
of independence in a contingency table under the assumption that data came from an 
SRS. For the analysis of a two-way table based on complex survey data, the test proce-
dure needs to be changed to account for the survey design. Several different test statis-
tics have been proposed. Koch et al. (1975) proposed the use of the Wald statistic and 
it has been used widely. The Wald statistic is usually converted to an F statistic 
to determine the p-value. In the F statistic, the numerator degrees of freedom are 
tied to the dimension of the table and the denominator degrees of freedom refl ect the 
survey design.

We illustrate the use of Wald statistic based on a 2 by 2 table examining the gender 
difference in prevalence of asthma based on data from Phase II of NHANES III. We 
fi rst look at the unweighted tabulation of asthma by sex shown in Table 15.7. Ignoring 
the sample design, the prevalence rates for males and females are 6.1 and 7.6 percent, 
respectively. The Pearson chi-square value and the associated p-value shown in the table 
mean that the difference between the two prevalence rates is statistically signifi cant at 

The differences between the weighted and unweighted estimates are large for 
several variables. The weighted mean age is about 3.5 years smaller than the 
unweighted mean refl ecting the oversampling of the elderly. The weighted proportion 
of blacks is over 60 percent smaller than the unweighted proportion and the weighted 
proportion of Hispanics is nearly 80 percent smaller than the unweighted, refl ecting 
the oversampling of these two ethnic groups. The weighted mean years of education 
is nearly two years greater than the unweighted mean, refl ecting that the oversampled 
elderly and/or minority groups have lower years of schooling. The weighted percent 
of vitamin use is also somewhat greater than the unweighted estimate.

The standard errors for the weighted estimates were calculated by the lineariza-
tion method. The design effects shown in the last column suggest that the estimated 
standard errors are considerably greater than those calculated under the assumption 
of simple random sampling. The 95 percent confi dence intervals for the weighted 
estimates were calculated using the t value of 2.0687 based on 23 (= 46 PSUs − 23 
strata) degrees of freedom. See Program Note 15.3 for this descriptive analysis.

Table 15.6 Descriptive statistics for selected variables: adult sample, Phase II of NHANES III 
(n = 9920).

 Unweighted Weighted Standard Confi dence Design
Variable Statistics Statistics Error Interval Effect

Mean age (years) 46.9 43.6 0.57 (42.4, 44.7) 10.31
Percent Black 29.8 11.2 0.97 (9.2, 13.3) 9.42
Percent Hispanic 26.1 5.4 0.71 (4.0, 6.9) 9.68
Mean years of education* 10.9 12.3 0.12 (12.1, 12.6) 15.01
Mean SBP (mmHg)* 125.9 122.3 0.39 (121.4, 123.0) 4.20
Mean BMI* 26.4 25.9 0.12 (25.7, 26.2) 5.00
Percent vitamin use* 38.4 43.0 1.22 (40.4, 45.5) 5.98
Percent smoker* 46.2 51.1 1.16 (48.7, 53.5) 5.28

*A small number of missing values were imputed.
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the 0.01 level. However, we know this conclusion could be misleading because we did 
not account for the sample design in the calculation of the test statistic.

Let us now look at weighted cell proportions shown in Table 15.8. Under the null 
hypothesis of independence, the estimated expected proportion in cell (1, 1) is (p1)(p1). 
Let q̂ = p11 − (p1)(p1). Then Wald chi-square is defi ned as

 X 2
w = q̂ 2/V̂(q̂).

We can fi nd V̂(q̂ ) by using one of the methods discussed in previous section. The Wald 
test statistic, X 2

w, approximately follows a chi-square distribution with one degree of 
freedom.

For the weighted proportions in Table 15.8, q̂ = −0.0034786 and its variance is 
0.000003674 (calculated using the linearization method). The Wald chi-square is
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and the associated p-value is 0.070. A more accurate p-value can be obtained from 
F(1, 23) = 3.2941 with p-value of 0.083. Taking into account the sample design, 
the gender difference in prevalence of asthma is statistically insignifi cant at the 
0.05 level.

Rao and Scott (1984) offered another test procedure for contingency table analysis 
of complex surveys. This procedure adjusts a different chi-square test statistic and again 
uses an F statistic with noninteger degrees of freedom to determine the appropriate 
p-value. Some software packages implemented the Rao-Scott corrected statistic as the 
default procedure. In most situations, the Wald statistic and the Rao-Scott statistic lead 
to the same conclusion.

Table 15.7 Unweighted tabulation of asthma by sex: Phase II, NAHNES III.

Asthma Male Female Total

Present (Percent)  264 (6.1)  421 (7.6)  685 (6.9)
Absent 4085 5150 9235

Total 4349 5571 9920

 Chi-square (1): 8.397
  p-value: 0.004

Table 15.8 Weighted proportions for asthma by sex, Phase II, 
NAHNES III.

Asthma Male Female Total

Present 0.0341 (p11) 0.0445 (p12) 0.0786 (p1⋅)
Absent 0.4440 (p21) 0.4775 (p22) 0.9214 (p2⋅)
Total 0.4781 (p⋅1) 0.5219 (p⋅2) 1.0000 (p⋅⋅)

Wald statistics: Chi-square: 3.2941
 F (1, 23): 3.2941
 p-value: 0.0826
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Example 15.8

Table 15.9 presents analysis of a 2 by 3 contingency table using data from Phase II 
of NHANES III. In this analysis, the association between vitamin use and years of 
education is examined with education coded into three categories (1 = less than 12 
years of education; 2 = 12 years; 3 = more than 12 years). The weighted percent of 
vitamin users by the level of education varies from 33 percent in the fi rst level of 
education to 52 percent in the third level of education. The confi dence intervals for 
these percentages are also shown. Both the Wald and the Rao-Scott statistics are 
shown in this table and we draw the same conclusion from both.

We next examined the relation between the use of vitamins and the level of educa-
tion for the Hispanic population. Here we used a subpopulation analysis based on 
the entire sample. The results are shown in Table 15.10. The estimated overall pro-
portion of vitamin users among Hispanics is 31 percent, considerably lower than the 
overall value of 43 percent shown in Table 15.8. The Wald test statistic in Table 15.10 
also shows there is a statistically signifi cant relation between education and use of 
vitamins among Hispanics.

See Program Note 15.4 for this analysis.

Table 15.9 Percent of vitamin use by levels of education among U.S. adults, Phase II, NHANES III 
(n = 9920).

 Less than H.S. H.S. Graduate Some College Total

Percent 33.4 39.8 51.67 43.0
Confi dence Interval [30.1, 36.9] [36.2, 43.5] [47.6, 55.7] [40.4,.45.5]

 Wald Statistic: Chi-square (2):  51.99
  F (2, 22):  24.87
  p-value:  <0.0001

 Rao-Scott Statistic: Uncorrected chi-square (2): 234.10
  Design-based F (1.63, 37.46):  30.28
  p-value:  <0.0001

Table 15.10 Percent of vitamin use by levels of education for Hispanic population, Phase II, 
NHANES III (n = 2593).

 Less than H.S. H.S. Graduate Some College Total

Percent 26.2 32.7 44.1 30.9
Confi dence Interval [22.1, 30.7] [28.8, 36.9] [36.9, 51.58] [27.1, 34.9]

Wald Statistic:   Chi-square (2):   47.16
 F (2, 22): 22.56
 p-value: <0.0001

15.5.3   Linear and Logistic Regression Analysis

In Chapter 13, we used ordinary least squares (OLS) estimation to obtain estimates of 
the regression coeffi cients or the effects in the linear model assuming simple random 
sampling. However, using the OLS method with data from a complex sample design 
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will result in biased estimates of model parameters and their variances. Thus, confi dence 
intervals and tests of hypotheses may be misleading.

The most widely used method of estimation for complex survey data when using the 
general linear model is the design-weighted least squares (DWLS) method. The DWLS 
approach is slightly different from the weighted least squares (WLS) method for unequal 
variances that derives the weights from an assumed covariance structure. In the DWLS 
approach, the weights come from the sampling design, and the variance/covariance is 
estimated using one of the methods discussed in the previous section. This approach is 
supported by most of the software for complex survey data analysis. Several sources 
provide a more detailed discussion of regression analysis of complex survey data (Korn 
and Graubard 1999, Section 3.5; Lohr 1999, Chapter 11).

Since these methods use the PSU total rather than the individual value as the basis 
for the variance computation, the degrees of freedom for this design again equal d, the 
number of PSUs minus the number of strata. For the test of hypothesis we need to take 
into account the number of parameters being tested. For example, for an F test, the 
numerator degrees of freedom is the number of parameters being tested (q) and the 
denominator degrees of freedom is d − q + 1.

Example 15.9

We conducted a general linear model analysis of systolic blood pressure on height, 
weight, age, sex (male = 0), and vitamin use (user = 1) using the same NHANES III 
data. We did not include any interaction terms in this example, although their inclu-
sion would undoubtedly have increased the R-square. Imputed values were not used 
in this analysis. The results are shown in Table 15.11. See Program Note 15.5 on 
the website for the analysis.

These results can be interpreted in the same manner as in Chapter 13. The 
R-square is 39 percent and the F statistic for the overall ANOVA is signifi cant. There 
are fi ve degrees of freedom for the numerator in the overall F, since fi ve independent 
variables are included in the model. There are 19 (= 46 − 23 − 5 + 1, based on the 
numbers of PSUs, strata and independent variables in the model) (Korn and Graubard 
1999) degrees of freedom for the denominator in the overall F ratio. All fi ve explana-
tory variables are also individually statistically signifi cant.

Table 15.11 Multiple regression analysis of systolic blood pressure on selected variables for U.S. 
adults, Phase II, NHANES III. (n = 9235).

 Regression
Variable Coeffi cient Standard Error t p > |t| Design Effect

Height −0.4009 0.1023 −3.92 0.001 3.39
Weight 0.0917 0.0048 19.11 <0.001 1.06
Age 0.6004 0.0132 45.58 <0.001 1.67
Sex 4.0293 0.6546 6.16 <0.001 2.44
Vitamin use −1.1961 0.4194 −2.85 0.009 1.85
Intercept 106.2809 6.7653 15.71 <0.001 3.96

Model statistics F (5,19): 937.30
 p-value: <0.0001
 R-squared: 0.393
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In Chapter 14, we presented the logistic regression model and the maximum likeli-
hood estimation procedure. We can also modify this estimation approach to use logistic 
regression with complex survey data. The modifi ed estimation approach that incorpo-
rates the sampling weights is generally known as pseudo or weighted maximum likeli-
hood estimation (Chambless and Boyle 1985; Roberts, Rao, and Kumar 1987). The 
variance/covariance matrix of the estimated coeffi cients is calculated by one of the 
methods discussed in the previous section. As discussed earlier, the degrees of freedom 
associated with this covariance matrix are the number of PSUs minus the number of 
strata. Because of all these changes to the standard approach, we use the adjusted Wald 
test statistic instead of the likelihood-ratio statistic in determining whether or not the 
model parameters, excluding the constant term, are simultaneously equal to zero.

The selection and inclusion of appropriate predictor variables for a logistic regression 
model can be done similarly to the process for linear regression. When analyzing a large 
survey data set, the preliminary analysis strategy described in the earlier section is very 
useful in preparing for a logistic regression analysis.

Example 15.10

Based on Phase II of NHANES III, we performed a logistic regression analysis of 
vitamin use on two categorical explanatory variables: sex (1 = male; 0 = female) and 
education (less than 12 years of education; 12 years; more than 12 years). Two 
dummy variables are created for the education variable: edu1 = 1 if 12 years of edu-
cation and 0 otherwise; edu2 = 1 if more than 12 years and 0 otherwise; the less 
than 12 year category is the reference category. The results are shown in Table 15.12 
(see Program Note 15.6 for this analysis).

The log-likelihood ratio is not shown because the pseudo likelihood is used and 
an F statistic derived from the modifi ed Wald statistic is shown. The numerator 
degrees of freedom for this statistic is 3 (based on the number of independent vari-
ables) and the denominator degrees of freedom is 21 (= 46 − 23 − 3 + 1, based the 
numbers of PSUs, strata, and independent variables) (Korn and Graubard 1999). The 
small p-value suggests that the main effects model is a signifi cant improvement over 
the null model. The estimated design effects suggest that the variances of the beta 
coeffi cients are roughly twice as large as those calculated under the assumption of 
simple random sampling. Despite the increased standard errors, the beta coeffi cients 
for gender and education levels are signifi cant.

Table 15.12 Logistic regression analysis of vitamin use on sex and levels of education among U.S. 
adults, Phase II, NHANES III (n = 9920).

 Estimated Standard   Design Odds Confi dence
Variable Coeffi cient Error t p > |t| Effect Ratio Interval

Male −0.4998 0.0584 −8.56 <0.001 1.96 0.61 [0.54, 0.68]
Edu1 0.2497 0.0864 2.89 0.008 2.45 1.28 [1.07, 1.53]
Edu2 0.7724 0.0888 8.69 <0.001 2.84 2.16 [1.80, 2.60]
Constant −0.4527 0.0773 −5.86 <0.001 2.82

Model statistics F (3, 21): 63.61
 p-value <0.0001
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Conclusion
In this chapter, we discussed issues associated with complex sample surveys focusing 
on design-based statistical inference. We summarized the two key complications that 
arise in the analysis of data from complex sample surveys: the need to include sample 
weights and the need to take the sample design into account in calculating the sampling 
variance of weighted statistics. We presented several different approaches to the calcula-
tion of the sample variances. Practically all statistical methods discussed in previous 
chapters can be applied to complex survey data with some modifi cations. For the analy-
sis of a specifi c subgroup, we pointed out that the entire sample is used although we set 
the weights to zero for the observations outside the subgroup. Statistical programs for 
complex surveys are now readily available, but one needs to guard against misuse of 
the programs. For a proper analysis, one must understand the sample design and conduct 
a thorough preliminary examination of data. We conclude this chapter by again empha-
sizing the need to reduce nonresponse and to study some of the nonrespondents if 
possible.

EXERCISES

15.1 The following data represent a small subset of a large telephone survey. The 
sample design was intended to be an equal probability sample on each phone 
number. Within each selected household one adult was sampled using the 
Kish selection table (Kish 1949). Some households may have more than one 
phone number and these households are more likely to be selected in random 
digit dialing. Therefore, selection probability is unequal for individual 
respondents.

The rest of the results can be interpreted in the same way as in Chapter 14. The 
estimated odds ratio for males is 0.61, meaning that, after adjusting for education, 
the odds of taking vitamins for a male is 61 percent of the odds that a female uses 
vitamins. The 95 percent confi dence interval provides a test of whether or not the 
odds ratio is equal to one. The odds ratio for the third level of education suggests 
that persons with some college education are twice as likely to take vitamins than 
those with less than 12 years of education for the same gender. None of the 95% 
confi dence intervals include one, suggesting that all the effects are signifi cant at the 
0.05 level. As in regular logistic regression analysis, we may combine the estimated 
beta coeffi cients to make specifi c statements. For example, the estimated odds ratio 
for males with some college education compared with females with less than 12 years 
of education can be obtained by exp(−0.4998 + 0.7724) = 1.31. Since we have not 
included any interaction effects in the model, the resulting odds ratio of 1.31 can be 
interpreted as indicating that the odds of taking vitamins for males with some college 
education is 31 percent higher than the odds for females with less than 12 years of 
education.



 Develop the sample weight for each respondent, calculate the weighted percent-
age of smokers, and compare with the unweighted percentage. How would you 
interpret the weighted and unweighted percentages?

15.2 A community mental health survey was conducted using 10 replicated samples 
selected by systematic sampling from a geographically ordered list of residential 
electric hookups (Lee et al. 1986). The total sample size was 3058, and each 
replicate contained about 300 respondents. The replicated samples were selected 
to facilitate the scheduling and interim analysis of data during a long period of 
screening and interviewing, not for estimating the standard errors. Because one 
adult was randomly selected from each household, the number of adults in each 
household became the sample weight for each observation. This weight was 
then adjusted for nonresponse and poststratifi cation and the adjusted weights 
were used in the analysis. The prevalences of any mental disorders during the 
past six months and the odds ratios for sex differences in the six-month preva-
lence rates of mental disorders are shown here for the full sample and the 10 
replicates.

 Number Number Smoking  Number Number Smoking
Household of Adults of Phones Status Household of Adults of Phones Status

 1 3 1 yes 11 4 2 no
 2 2 1 no 12 1 1 no
 3 4 1 no 13 2 1 no
 4 2 1 no 14 3 1 yes
 5 2 1 no 15 1 1 no
 6 5 2 no 16 3 1 no
 7 4 1 yes 17 2 1 no
 8 2 1 no 18 2 1 yes
 9 3 1 yes 19 3 1 no
10 2 1 no 20 2 1 yes

Replicate Prevalence Rate Odds Ratio

Full sample 17.17 0.990
 1 12.81 0.826
 2 17.37 0.844
 3 17.87 1.057
 4 17.64 0.638
 5 16.65 0.728
 6 18.17 1.027
 7 14.69 1.598
 8 17.93 1.300
 9 17.86 0.923
10 18.91 1.111

 Estimate the standard errors for the prevalence rate and the odds ratio based on 
replicate estimates. Is the approximate standard error based on the range in 
replicate estimates satisfactory?

15.3 From Phase II of NHANES III, the percent of adults taking vitamin or mineral 
supplements was estimated to be 43.0 percent with a standard error of 1.22 
percent. The design effect of this estimate was 5.98 and the sample size was 
9920. What size sample would be required to estimate the same quantity with 
a standard error of 2 percent using a simple random sampling design?

Exercises  441
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15.4 Read the article by Gold et al. (1995). Describe how their sample was designed 
and selected. What was the nonresponse rate? Describe also the method of 
analysis. Did they account for the sampling design in their analysis? If you fi nd 
any problems, how would you rectify the problems?

15.5 Using the data fi le extracted from the adult sample in the Phase II of NHANES 
III (available on the web), explore one of the following research questions and 
prepare a brief report describing and interpreting your analysis:
a. Are more educated adults taller than less educated people?
b. Does the prevalence rate of asthma vary by region?
c. Does the use of antacids vary by smoking status (current, previous, and never 

smoked)?
15.6 Read the article by Flegal et al. (1995), and prepare a critical review of it. Is the 

purpose and design of the survey properly integrated in the analysis and conclu-
sion? Is the model specifi ed appropriately? Do you think the analysis is done 
properly? Would you do any part of the analysis differently?

15.7 Select another research question from Exercise 15.5. Conduct the analysis with 
and without incorporating the weight and design features and compare the 
results. How would you describe the consequence of not accounting for the 
weight and design features in the complex survey analysis?
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Appendix A:
Review of Basic 
Mathematical Concepts

It is essential to know basic mathematical concepts to understand the statistical ideas 
and methods presented in this book. Appendix A reviews some basic mathematical 
concepts to help some students understand the use of mathematical concepts utilized in 
discussing statistical methods. The material presented here follows the order that topics 
are encountered in the text chapters.

CHAPTER 3

3.1  The Logic of Logarithms
To understand what we mean by logarithm, consider some positive number y. The base 
10 logarithm of x is y, where y satisfi es the relation that 10y is equal to x. For example, 
the base 10 logarithm of 10, often written as log10(10) or abbreviated as log(x), is 1 
because 101 is 10. The value of log10(100) is 2 because 102 equals 100. The value of 
log10(1000) is 3 because 103, equal to 10 * 10 * 10, is 1000. Therefore, base 10 logarithms 
of numbers between 10 and 100 will be between 1 and 2, base 10 logarithms of numbers 
between 100 and 1000 will be between 2 and 3. In the same way, the logarithms of 
numbers between 1 and 10 will be between 0 and 1. Numbers less than 1 have a nega-
tive logarithm. For example, the base 10 logarithm of 0.1 (= 1 / 10 = 10−1) is −1. By 
expressing the numbers 1, 10, 100, and 0.1 as 100, 101, 102, and 10−1, we get an idea about 
why the number system we use is base 10 and why the base 10 logarithms are referred 
to as the common logarithms.

3.2  Properties of Logarithms
Given positive numbers x and y, the number n, and that a is any positive real number 
with the exception that a ≠ 1, then the following properties of logarithms hold:

(1) loga(xy) = logax + logay
(2) loga(x/y) = logax − logay
(3) logax

n = n log ax

A
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3.3   Natural Logarithms
Logarithms with a base of e, where the number e is an irrational number approximately 
equal to 2.71828, are called the natural logarithms and are written in an abbreviated 
notation as ln(x) which is equivalent to loge(x). Therefore loge(7) is equivalent to writing 
ln(7).

3.4   Conversion between Bases
Now that you are familiar with logarithms having a base of 10, consider the following 
general expression, loga(x), which is read as the base a logarithm of x where x is any 
positive number and a is a positive real number where a ≠ 1. The following theorem 
can be found in most algebra books:

If x is any positive number and if a and b are positive real numbers where a ≠ 1 and 
b ≠ 1, then

log
log

log
.a

b

b

x
x

a
( ) =

( )
( )

We can use this result to evaluate logarithms with different bases using the base 10 
logarithm that is available on most calculators or computer software programs. As an 

example, we write the following expression log2(x) as log

log
10

10 2
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3.5   Exponential Function
An exponential function has the form y = ax, where a > 0. Consider the expression an 
where a ≠ 0 then an = {a  ⋅  a  ⋅  a  ⋅  K  ⋅  a} so that a is multiplied by itself n − 1 times. In 
this case, n is called the exponent and a is referred to as the base of the exponent. 
Exponents have the following properties:

If we consider m and n to be integers and the real numbers a ≠ 0 and b ≠ 0, then

(1) am an = am + n

(2) am/an = am − n

(3) (am)n = am n

(4) (ab)m = am bm

(5) (a/b)m = am/bm

(6) a−n = (1/a)n, this can be inferred from (2) if m = 0 resulting in am = 1.



If a is a positive real number and n ≠ 0, then the nth root of a is denoted as a1/n. This 
can also be expressed as an . However if n is an even number and a is a negative 
number, then a1/n is not a real number.

Example A.1

Consider the following example to help understand the usefulness of the exponential 
function. Epidemics are usually characterized by individuals in a population who 
are susceptible to some kind of infection, such as the fl u. Susceptible individuals 
have never been infected and also have no immunity against infection. Assume that 
the number of individuals susceptible to fl u infection during a fl u epidemic decreases 
exponentially according to y = y0e

−ct, where y0 is the base population at time 0, c is 
the rate of infection and t represents time. If a fl u epidemic enters a population of 
20,000 with an infection rate of 0.01 per day, then the number of individuals suscep-
tible to the fl u at time t is given by

 y = 20,000e−0.01*t, where t is time in days.

(a) Find the number of individuals susceptible at the beginning of the epidemic.

Since the beginning of the epidemic is at time t = 0, the number susceptible is

y = 20,000e−0.01*(0) = 20,000e(0) = 20,000.

(b)  Approximately how many individuals are susceptible after 10 days?

At time t = 10, the number susceptible is

y = 20,000e−0.01*(10) = 20,000e(−0.1) ≈ 18,096.

(c) After how many days will half of the population be infected with the fl u?

Half of 20,000 is 10,000, so

10,000 = 20,000e−0.01*t.

Dividing both sides by 20,000,

10,000/20,000 = (20,000/20,000)e−0.01*t

and taking the natural logarithm of both sides, we have

ln(0.5) = ln(e−0.01*t).

By evaluating the natural logarithm of the right side, which gives

ln(0.5) = −0.01 * t

and fi nally solving for t, we have

t = ln(0.5)/(−0.01) ≈ 69 days.

Exponential Function  447
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CHAPTER 4

4.1   Factorials
We denote the product of 3  ⋅  2  ⋅  1 by the symbol 3!, which is read “3 factorial.” For any 
natural number n,

 n! = n(n − 1)(n − 2)  .  .  .  1.

In general, n! = n(n − 1)!. Then the following should be true: 1! = 1(0!). Since this 
statement is true if and only if 0! is equal to 1, we defi ne 0! = 1.

4.2   Permutations
If we choose two of three objects (A B C), we have the following six arrangements: AB, 
AC, BA, BC, CA, and CB. There are 3 choices for the fi rst position and 2 choices 
for the second position. Thus, 3 * 2 = 6. Each arrangement is called a permutation. 
The number of permutations of 3 objects taken 2 at a time is 6. We denote this as 
P(3, 2) = 6. In general,

 P(N, n) = N(N − 1)(N − 2)  ⋅  ⋅  ⋅  (N − n + 1).

By multiplying and dividing by (N − n)!, we get

 
P N n

N

N n
,( ) =

−( )
!

.

If n = N, we have P(N, N) = N!. Note that the order of arrangement is important in per-
mutation (order is not ignored).

4.3   Combinations
If we ignore the order of arrangement in permutation, then any such selection is called a 
combination. The number of combinations of 3 objects taken 2 at a time is 3, including 

AB, AC, and BC. We denote this by 
3
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combination, there are P(n, n) = n! ways of arranging the objects in that combination. 
Hence, we have
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CHAPTER 15

15.1   Taylor Series Expansion
The Taylor series expansion has been used in statistics to obtain an approximation to a 
nonlinear function, and then the variance of the function is based on the Taylor series 
approximation to the function. Often the approximation provides a reasonable estimate 
to the function, and sometimes the approximation is even a linear function. This idea 



of variance estimation has several names in the literature, including the linearization 
and the delta method.

The Taylor series expansion for a function of x variable, f(x), evaluated at the mean 
or expected value of x, written as E(x), is

 f(x) = f [E(x)] + f ′[E(x)][x − E(x)] + f ″[E(x)][x − E(x)]2/2! +  .  .  .

where f ′ and f ″ are the fi rst and second derivatives of the function. The variance of f(x) 
is V[ f(x)] = E[ f 2(x)] − E2[ f(x)] by defi nition, and using the fi rst order of Taylor series 
expansion, we have

 V[ f(x)] = {f ′[E(x)]}2V(x) +  .  .  .

The same ideas carry over to functions of more than one random variable. In the case 
of a function of two variances, the Taylor series expansion yields
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If we defi ne the following new variable at the observational unit level,
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then we can calculate the variance directly from ti without calculating the covariance. 
The new variable is called linearized value of f(x1,x2).

Example A.2

Let us apply this idea to a ratio estimate shown in Example 15.5. The ratio estimate 
of the total number of professional workers with an MPH was 623 using the follow-
ing estimator:
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1150 623

The function is the ratio, x– / y–, and the derivatives with respect to x– and y– are
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and .

The linearized values can then be calculated by

t x yi i= −1

19 375

10 5

19 3752.

.

.
.

For example, the linearized value for the fi rst observation is

ti = −
( )

=14

19 375

10 5 21

19 375
0 35193

2.

.

.
. .

The rest of linearized values are shown here.

Taylor Series Expansion  449
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For a complex survey, the above can be extended to the case of c random variables 
with the sample weight (wi). Woodruff (1971) showed that the approximate variance of 
q = f(x1,x2,.  .  .,xc) is

V V w
f

y
yi

i
ij

ˆ .θ( ) ≅ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥∑∑

This method of approximation is applied to PSU totals within the stratum. That is, the 
variance estimate is a weighted combination of the variation across PSUs within the 
same stratum.

REFERENCE

Woodruff, R. S. “A Simple Method for Approximating the Variance of a Complicated Estimate.” 
Journal of American Statistical Association 66:411–414, 1971.

The standard error can be calculated by

Y t t
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We have the same result as shown in Example 15.5.

 Number of Professional Number of Workers with Linearized
Health Department Workers (yi) MPH (xi) Values (ti)

1 21 14 0.135193
2 18 8 −0.090572
3 9 3 −0.096899
4 13 6 −0.053944
5 15 8 −0.006660
6 22 13 0.055609
7 30 17 0.038293
8 27 15 0.018980

Mean 19.375 10.5
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Table B1 Random Digitsa

Line

 1 17174 75908 43306 77061 97755 26780 07446 34836 47656 22475
 2 26580 68460 18051 95528 78196 91824 10696 09283 06525 13596
 3 24041 33800 09976 36785 11529 19948 21497 94665 54600 51793
 4 74838 79323 43962 50531 30826 76623 04007 72395 03544 37575
 5 72862 50965 29962 37114 73007 36615 83463 01021 56940 56615
 6 82274 94537 52039 68725 06163 47388 62564 46097 71644 00108
 7 77568 89168 04043 31926 83333 99957 22204 96361 79770 42561
 8 17802 16697 96288 24603 36345 17063 05251 68206 71113 19390
 9 10271 06180 39740 01903 01539 59476 83991 07954 83098 01486
10 07780 55451 05276 87719 42723 33685 66024 14236 96801 45797
11 05751 92219 44689 92084 10025 73998 12863 55026 09230 05881
12 14324 44563 13269 88172 47751 64408 86355 16960 72794 30842
13 12869 51161 96952 01895 35785 40807 88980 56656 88839 94521
14 36891 94679 18832 02471 98216 51769 57593 52247 65271 73641
15 22899 37988 68991 28990 87701 99578 06381 33877 45714 45227
16 58556 91925 66542 12852 57203 25725 19844 92696 56861 51882
17 08520 26078 78485 74072 60421 89379 55514 92898 17894 67682
18 31466 97330 39266 06800 32679 37443 53245 81738 73843 64176
19 43780 49375 20055 79095 79987 96005 44296 29004 25059 95752
20 15875 68956 37126 69074 68076 85098 23707 03965 52477 52517
21 22002 20395 72174 70897 00337 70238 19154 77878 33456 89624
22 28968 92168 79825 50945 99479 03121 43217 97297 47547 12201
23 19446 40211 48163 91237 78166 00421 09652 37508 75560 48279
24 98339 39146 76425 55658 60259 59368 49751 44492 99846 07142
25 42746 66199 44160 87627 31369 59756 91765 64760 46878 57467
26 25544 61063 35953 30319 61982 24629 78600 70075 64922 65913
27 22776 62299 05281 92046 98422 95316 20720 90877 01922 32294
28 22578 20732 18421 77419 75391 20665 60627 29382 37782 13163
29 51580 99897 58983 01745 37488 56543 99580 74823 80339 31931
30 63403 94610 23839 69171 52030 91661 18486 83805 62578 67212
31 77353 80198 26674 72839 09944 51278 99333 97341 87588 01655
32 68849 86194 61771 39583 40760 54492 14279 85621 67459 82681
33 50190 86021 96163 18245 58245 41974 05243 66966 07246 09569
34 91239 72671 10759 17927 38958 40672 06409 21979 87813 11939
35 23457 17487 93379 41738 87628 28721 07582 36969 09161 66801
36 60016 28539 40587 27737 50626 22101 74564 65628 11076 75953
37 37076 96887 07002 14535 70186 84065 57590 94324 14132 25879
38 66454 08589 05977 82951 77907 88931 44828 24952 68021 48766
39 14921 18264 69297 84783 83152 82360 46620 53243 56694 17183
40 79201 63127 02632 42083 23715 95916 66794 52598 84195 45420
41 73735 41872 55392 78688 46013 78470 12915 41744 27769 83002
42 67931 75825 80931 07475 06189 88500 36417 35724 65641 35527
43 40580 67626 06630 79770 08154 12159 11322 84871 53591 77690
44 44858 33801 13691 54744 55641 36758 96949 26400 00505 59016
45 84835 40044 86334 34812 35222 20327 71467 37874 51288 95802
46 88089 35765 87473 22457 56445 18890 60892 53132 87424 71714
47 64102 14894 13441 06584 23270 04518 94560 81582 69858 42800
48 62020 92065 06863 58852 84988 81613 53313 58765 27750 71533
49 36121 29901 65962 49271 09970 00719 72935 35598 53014 50036
50 73007 65445 42898 86105 55352 37128 56141 11222 16718 25885
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Table B1 Continued

Line

51 32220 61646 87732 07598 05465 68584 64790 56416 21824 61643
52 12782 34043 30801 64642 62329 85019 22481 70105 38254 57186
53 66400 03051 40583 75130 88348 50303 03657 47252 18090 35891
54 76763 78376 40249 52103 36769 53552 55846 61963 86763 67257
55 11767 46380 25290 59073 91662 89160 94869 71368 90732 33583
56 61292 87282 79921 20936 56304 81358 94966 54748 25865 48333
57 64169 56790 91323 29070 49567 86422 13878 42058 53470 22312
58 86741 20680 18422 64127 88381 27590 99659 47854 12163 41801
59 23215 07774 49216 77376 83893 37631 44332 54941 11038 09157
60 72324 05050 52212 82330 10707 92439 33220 11634 35942 09534
61 18209 60272 95944 64495 09247 61000 52564 99690 52055 70716
62 26568 12545 07291 30737 11449 36252 70323 80141 17833 48502
63 66895 34490 95682 44956 39491 54269 07867 84505 05578 91088
64 28908 21020 84646 17475 40539 62981 93042 38181 35279 21843
65 03091 10135 85594 86222 36342 07903 97933 53548 56768 77881
66 69948 54947 28724 33966 90529 16339 40152 06517 18221 53248
67 80774 71613 41590 18430 99863 70872 41549 89671 63628 82167
68 84702 95823 83712 55061 89773 63242 97952 24027 95176 95129
69 18067 54980 38542 86549 43966 92989 87768 16267 47616 63546
70 76825 11257 34842 26130 91870 37116 90770 42369 09614 16645
71 59759 28041 48498 94968 02759 29884 87231 17899 21157 91094
72 67377 59310 86243 30374 18340 58630 21092 62426 37022 40022
73 86655 18980 13739 12234 50705 68189 02212 64653 39716 29953
74 84073 53993 78016 77751 31457 18155 97944 27295 90526 57958
75 58999 77251 84274 15777 66045 84364 62165 24700 00055 06668
76 11308 03979 68271 51776 55915 67970 52691 19073 82178 66031
77 24585 78224 96506 77936 97772 65814 46162 58603 24666 49133
78 22369 34622 75780 67276 06726 07734 48849 60918 83256 17099
79 24914 45155 66234 00460 86700 72578 57617 82212 50104 34094
80 88320 48338 70689 05856 91247 29214 21807 77100 74896 24592
81 69848 33544 50065 69910 15783 76852 25025 37762 49049 21666
82 77987 45152 89425 81350 10697 90522 10496 86753 75366 83410
83 97709 78833 69516 05969 98796 60938 90201 99875 37430 87145
84 05209 88924 10458 20004 65788 91299 41139 76993 47040 15777
85 68616 23573 66693 83674 34890 57000 07586 39661 23774 50682
86 18260 40283 35008 94377 47286 93322 68092 92858 99829 59997
87 29121 89864 44444 03931 34222 49057 49713 50972 23191 29933
88 36834 59756 46105 01156 40367 50950 43614 70178 93359 77431
89 10757 21796 12219 39415 32020 04178 69733 83093 58039 74845
90 99465 88838 45530 96133 66529 57600 52060 98052 72613 32354
91 59157 66024 86610 70068 29879 30664 87190 98772 76243 62043
92 63489 17951 66279 69460 03659 53135 79535 05034 26052 75480
93 08723 61325 57652 18876 08976 51276 12793 60467 11655 04069
94 75883 23261 03050 36180 38486 47570 72493 92403 06412 10039
95 95560 45085 03464 79493 25121 04125 86957 16042 63551 40774
96 81329 74272 70097 05615 91212 73956 43022 64078 77377 14160
97 13536 31170 91648 67487 95149 17890 50223 82906 59466 01721
98 28778 55892 59449 53815 84565 62568 79771 00793 19324 10150
99 39757 44482 21115 01607 93177 26324 66403 91660 62073 34237
00 54595 87336 08030 30633 83752 04706 96494 71064 19061 84919
aGenerated from MINITAB.



Table B2 Binomial Probabilitiesa

 p

n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

 2  0 .9801 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500
  1 .0198 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
  2 .0001 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

 3  0 .9703 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
  1 .0294 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
  2 .0003 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
  3  .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

 4  0 .9606 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
  1 .0388 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500
  2 .0006 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
  3  .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
  4   .0001 .0005 .0016 .0039 .0018 .0150 .0256 .0410 .0625

 5  0 .9510 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313
  1 .0480 .2036 .3281 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1563
  2 .0010 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
  3  .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
  4   .0005 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1563
  5    .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0313

 6  0 .9415 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
  1 .0571 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
  2 .0014 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
  3  .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125
  4  .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344
  5   .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938
  6     .0001 .0002 .0007 .0018 .0041 .0083 .0156

 7  0 .9321 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
  1 .0659 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
  2 .0020 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
  3  .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
  4  .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734
  5   .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
  6    .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
  7       .0002 .0006 .0016 .0037 .0078

 8  0 .9227 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
  1 .0746 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313
  2 .0026 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
  3 .0001 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
  4  .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734
  5   .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
  6    .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
  7     .0001 .0004 .0012 .0033 .0079 .0164 .0313
  8       .0001 .0002 .0007 .0017 .0039

 9  0 .9135 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020
  1 .0830 .2985 .3874 .3679 .3020 .2253 .1557 .1004 .0605 .0039 .0176
  2 .0034 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
  3 .0001 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
  4  .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461
  5   .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
  6   .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
  7     .0003 .0012 .0039 .0098 .0212 .0407 .0703
  8      .0001 .0004 .0013 .0035 .0083 .0176
  9        .0001 .0003 .0008 .0020

10  0 .9044 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
  1 .0914 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
  2 .0042 .0746 .1937 .2759 .3020 .2816 .2335 .757 .1209 .0763 .0439
  3 .0001 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
  4  .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051
  5  .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
  6   .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
  7    .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
  8     .0001 .0004 .0014 .0043 .0106 .0229 .0439
  9       .0001 .0005 .0016 .0042 .0098
 10         .0001 .0003 .0010

(continued)



Appendix B: Statistical Tables  455

Table B2 Continued

 p

n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

11  0 .8953 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005
  1 .0995 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054
  2 .0050 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269
  3 .0002 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806
  4  .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611
  5  .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256
  6   .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256
  7    .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611
  8     .0002 .0011 .0037 .0102 .0234 .0462 .0806
  9      .0001 .0005 .0018 .0052 .0126 .0269
 10        .0002 .0007 .0021 .0054
 11          .0002 .0005

12  0 .8864 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
  1 .1074 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
  2 .0060 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
  3 .0002 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
  4  .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1209
  5  .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
  6   .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
  7    .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934
  8    .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1209
  9     .0001 .0004 .0015 .0048 .0125 .0277 .0537
 10       .0002 .0008 .0025 .0068 .0161
 11        .0001 .0003 .0010 .0029
 12          .0001 .0002

13  0 .8775 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001
  1 .1152 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016
  2 .0070 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095
  3 .0003 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349
  4  .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873
  5  .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571
  6   .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095
  7   .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095
  8    .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571
  9     .0002 .0009 .0034 .0101 .0243 .0495 .0873
 10      .0001 .0006 .0022 .0065 .0162 .0349
 11       .0001 .0003 .0012 .0036 .0095
 12         .0001 .0005 .0016
 13           .0001

14  0 .8687 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001
  1 .1229 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009
  2 .0081 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056
  3 .0003 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222
  4  .0037 .0349 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611
  5  .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222
  6   .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833
  7   .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095
  8    .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833
  9     .0003 .0018 .0066 .0183 .0408 .0762 .1222
 10      .0003 .0014 .0049 .0136 .0312 .0611
 11       .0002 .0010 .0033 .0093 .0222
 12        .0001 .0006 .0019 .0056
 13         .0001 .0002 .0009
 14           .0001

(continued)
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Table B2 Continued

 p

n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

15  0 .8601 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001
  1 .1303 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
  2 .0092 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
  3 .0004 .0308 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
  4  .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417
  5  .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
  6   .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
  7   .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
  8    .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
  9    .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527
 10     .0001 .0007 .0030 .0096 .0245 .0515 .0916
 11      .0001 .0006 .0024 .0074 .0191 .0417
 12       .0001 .0004 .0016 .0052 .0139
 13        .0001 .0003 .0010 .0032
 14          .0001 .0005
 15

16  0 .8515 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001
  1 .1376 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002
  2 .0104 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018
  3 .0005 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085
  4  .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278
  5  .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667
  6  .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222
  7   .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746
  8   .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964
  9    .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746
 10     .0002 .0014 .0056 .0167 .0392 .0755 .1222
 11      .0002 .0013 .0049 .0142 .0337 .0667
 12       .0002 .0011 .0040 .0115 .0278
 13        .0002 .0008 .0029 .0085
 14         .0001 .0005 .0018
 15           .0002
 16

17  0 .8429 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002
  1 .1447 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001
  2 .0117 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010
  3 .0006 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052
  4  .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182
  5  .0010 .0175 .0668 .1361 .1914 .2081 .1849 .1379 .0875 .0472
  6  .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .0944
  7   .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484
  8   .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855
  9    .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855
 10     .0004 .0025 .0095 .0263 .0571 .1008 .1484
 11     .0001 .0005 .0026 .0090 .0242 .0525 .0944
 12      .0001 .0006 .0024 .0081 .0215 .0472
 13       .0001 .0005 .0021 .0068 .0182
 14        .0001 .0004 .0016 .0052
 15         .0001 .0003 .0010
 16           .0001
 17

(continued)
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Table B2 Continued

 p

n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

18  0 .8345 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001
  1 .1517 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001
  2 .0130 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006
  3 .0007 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031
  4  .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117
  5  .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327
  6  .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708
  7   .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214
  8   .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669
  9    .0004 .0033 .0139 .0386 .0794 .2844 .1694 .1855
 10    .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669
 11     .0001 .0010 .0046 .0151 .0374 .0742 .1214
 12      .0002 .0012 .0047 .0145 .0354 .0708
 13       .0002 .0012 .0045 .0134 .0327
 14        .0002 .0011 .0039 .0117
 15         .0002 .0009 .0031
 16          .0001 .0006
 17           .0001
 18

19  0 .8262 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001
  1 .1586 .3774 .2852 .1259 .0685 .0268 .0093 .0029 .0008 .0002
  2 .0144 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003
  3 .0008 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018
  4  .0112 .0798 .1714 .2182 .2023 .1491 .0909 .0467 .0203 .0074
  5  .0018 .0266 .0907 .1637 .2023 .1916 .1468 .0933 .0497 .0222
  6  .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518
  7   .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961
  8   .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442
  9    .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762
 10    .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762
 11     .0003 .0018 .0077 .0233 .0532 .0970 .1442
 12      .0004 .0022 .0083 .0237 .0529 .0961
 13      .0001 .0005 .0024 .0085 .0233 .0518
 14       .0001 .0006 .0024 .0082 .0222
 15        .0001 .0005 .0022 .0074
 16         .0001 .0005 .0018
 17          .0001 .0003
 18
 19

20  0 .8179 .3585 .1216 .0388 .0115 .0032 .0008 .0002
  1 .1652 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001
  2 .0159 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
  3 .0010 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0124 .0040 .0011
  4  .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046
  5  .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
  6  .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
  7   .0020 .0160 .0546 .1124 .1643 .1844 .1659 .1221 .0739
  8   .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
  9   .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602
 10    .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
 11     .0005 .0030 .0120 .0336 .0710 .1185 .1602
 12     .0001 .0008 .0039 .0136 .0355 .0727 .1201
 13      .0002 .0010 .0045 .0146 .0366 .0739
 14       .0002 .0012 .0049 .0150 .0370
 15        .0003 .0013 .0049 .0148
 16         .0003 .0013 .0046
 17          .0002 .0011
 18           .0002
 19
aCalculated by MINITAB.
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Table B3 Poisson Probabilitiesa

 m

x .2 .4 .6 .8 1.0 1.2 1.4 1.6 x

 0 .818731 .670320 .548812 .449329 .367879 .301194 .246597 .201896  0
 1 .163746 .268128 .329287 .359463 .367879 .361433 .345236 .323034  1
 2 .016375 .053626 .098786 .143785 .183940 .216860 .241665 .258428  2
 3 .001092 .007150 .019757 .038343 .061313 .086744 .112777 .137828  3
 4 .000055 .000715 .002964 .007669 .015328 .026023 .039472 .055131  4
 5 .000002 .000057 .000356 .001227 .003066 .006246 .011052 .017642  5
 6  .000004 .000036 .000164 .000511 .001249 .002579 .004705  6
 7   .000003 .000019 .000073 .000214 .000516 .001075  7
 8    .000002 .000009 .000032 .000090 .000215  8
 9     .000001 .000004 .000014 .000038  9
10      .000001 .000002 .000006 10
11        .000001 11

 m

x 1.8 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x

 0 .165299 .135335 .082085 .049787 .030197 .018316 .011109 .006738  0
 1 .297538 .270671 .205213 .149361 .105691 .073263 .049990 .033690  1
 2 .267784 .270671 .256516 .224042 .184959 .146525 .112479 .084224  2
 3 .160671 .180447 .213763 .224042 .215785 .195367 .168718 .140374  3
 4 .072302 .090224 .133602 .168031 .188812 .195367 .189808 .175467  4
 5 .026029 .036089 .066801 .100819 .132169 .156293 .170827 .175467  5
 6 .007809 .012030 .027834 .050409 .077098 .104196 .128120 .146223  6
 7 .002008 .003437 .009941 .021604 .038549 .059540 .082363 .104445  7
 8 .000452 .000859 .003106 .008102 .016865 .029770 .046329 .065278  8
 9 .000090 .000191 .000863 .002701 .006559 .013231 .023165 .036266  9
10 .000016 .000038 .000216 .000810 .002296 .005292 .010424 .018133 10
11 .000003 .000007 .000049 .000221 .000730 .001925 .004264 .008242 11
12  .000001 .000010 .000055 .000213 .000642 .001599 .003434 12
13   .000002 .000013 .000057 .000197 .000554 .001321 13
14    .000003 .000014 .000056 .000178 .000472 14
15    .000001 .000003 .000015 .000053 .000157 15
16     .000001 .000004 .000015 .000049 16
17      .000001 .000004 .000014 17
18       .000001 .000004 18
19        .000001 19

(continued)
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Table B3 Continued

 m

x 5.5 6.0 6.5 7.0 8.0 9.0 10.0 11.0 x

 0 .004087 .002479 .001503 .000912 .000335 .000123 .000045 .000017  0
 1 .022477 .014873 .009772 .006383 .002684 .001111 .000454 .000184  1
 2 .061812 .044618 .031760 .022341 .010735 .004998 .002270 .001010  2
 3 .113323 .089235 .068814 .052129 .028626 .014994 .007567 .003705  3
 4 .155819 .133853 .111822 .091226 .057252 .033737 .018917 .010189  4
 5 .171401 .160623 .145369 .127717 .091604 .060727 .037833 .022415  5
 6 .157117 .160623 .157483 .149003 .122138 .091090 .063055 .041095  6
 7 .123449 .137677 .146234 .149003 .139587 .117116 .090079 .064577  7
 8 .084871 .103258 .118815 .130377 .139587 .131756 .112599 .088794  8
 9 .051866 .068838 .085811 .101405 .124077 .131756 .125110 .108526  9
10 .028526 .041303 .055777 .070983 .099262 .118580 .125110 .119378 10
11 .014263 .022529 .032959 .045171 .072190 .097020 .113736 .119378 11
12 .006537 .011264 .017853 .026350 .048127 .072765 .094780 .109430 12
13 .002766 .005199 .008926 .014188 .029616 .050376 .072908 .092595 13
14 .001087 .002228 .004144 .007094 .016924 .032384 .052077 .072753 14
15 .000398 .000891 .001796 .003311 .009026 .019431 .034718 .053352 15
16 .000137 .000334 .000730 .001448 .004513 .010930 .021699 .036680 16
17 .000044 .000118 .000279 .000596 .002124 .005786 .012764 .023734 17
18 .000014 .000039 .000101 .000232 .000944 .002893 .007091 .014504 18
19 .000004 .000012 .000034 .000085 .000397 .001370 .003732 .008397 19
20 .000001 .000004 .000011 .000030 .000159 .000617 .001866 .004618 20
21  .000001 .00003 .000010 .000061 .000264 .000889 .002419 21
22   .000001 .000003 .000022 .000108 .000404 .001210 22
23    .000001 .000008 .000042 .000176 .000578 23
24     .000003 .000016 .000073 .000265 24
25     .000001 .000006 .000029 .000117 25
26      .000002 .000011 .000049 26
27      .000001 .000004 .000020 27
28       .000001 .000008 28
29       .000001 .000003 29
30        .000001 30

(continued)
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Table B3 Continued

 m

x 12.0 13.0 14.0 15.0 16.0 17.0 x

 0 .000006 .000002 .000001     0
 1 .000074 .000029 .000012 .000005 .000002 .000001  1
 2 .000442 .000191 .000081 .000034 .000014 .000006  2
 3 .001770 .000828 .000380 .000172 .000077 .000034  3
 4 .005309 .002690 .001331 .000645 .000307 .000144  4
 5 .012741 .006994 .003727 .001936 .000983 .000490  5
 6 .025481 .015153 .008696 .004839 .002622 .001388  6
 7 .043682 .028141 .017392 .010370 .005994 .003371  7
 8 .065523 .045730 .030436 .019444 .011988 .007163  8
 9 .087364 .066054 .047344 .032407 .021311 .013529  9
10 .104837 .085870 .066282 .048611 .034098 .023000 10
11 .114368 .101483 .084359 .066287 .049597 .035545 11
12 .114368 .109940 .098418 .082859 .066129 .050355 12
13 .105570 .109940 .105989 .095607 .081389 .065849 13
14 .090489 .102087 .105989 .102436 .093016 .079960 14
15 .072391 .088475 .098923 .102436 .099218 .090621 15
16 .054293 .071886 .086558 .096034 .099218 .096285 16
17 .038325 .054972 .071283 .084736 .093381 .096285 17
18 .025550 .039702 .055442 .070613 .083006 .090936 18
19 .016137 .027164 .040852 .055747 .069899 .081363 19
20 .009682 .017657 .028597 .041810 .055920 .069159 20
21 .005533 .010930 .019064 .029865 .042605 .055986 21
22 .003018 .006459 .012132 .020362 .030986 .043262 22
23 .001574 .003651 .007385 .013280 .021555 .031976 23
24 .000787 .001977 .004308 .008300 .014370 .022650 24
25 .000378 .001028 .002412 .004980 .009197 .015402 25
26 .000174 .000514 .001299 .002873 .005660 .010070 26
27 .000078 .000248 .000674 .001596 .003354 .006341 27
28 .000033 .000115 .000337 .000855 .001917 .003850 28
29 .000014 .000052 .000163 .000442 .001057 .002257 29
30 .000005 .000022 .000076 .000221 .000564 .001279 30
31 .000002 .000009 .000034 .000107 .000291 .000701 31
32 .000001 .000004 .000015 .000050 .000146 .000373 32
33  .000001 .000006 .000023 .000071 .000192 33
34  .000001 .000003 .000010 .000033 .000096 34
35   .000001 .000004 .000015 .000047 35
36    .000002 .000007 .000022 36
37    .000001 .000003 .000010 37
38     .000001 .000005 38
39     .000001 .000002 39
40      .000001 40
aCalculated by MINITAB.
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Table B4 Cumulative Distribution Function for Standard Normal Distributiona

z .09 .08 .07 .06 .05 .04 0.3 .02 .01 .00

−3.7 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
−3.6 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002
−3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
−3.4 .0002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003
−3.3 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005
−3.2 .0005 .0005 .0005 .0006 .0006 .0006 .0006 .0006 .0007 .0007
−3.1 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010
−3.0 .0010 .0010 .0011 .0011 .00011 .0012 .0012 .0013 .0013 .0013
−2.9 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0018 .0018 .0019
−2.8 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026
−2.7 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035
−2.6 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047
−2.5 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062
−2.4 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082
−2.3 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107
−2.2 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139
−2.1 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179
−2.0 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228
−1.9 .0233 0.239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287
−1.8 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359
−1.7 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446
−1.6 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548
−1.5 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668
−1.4 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808
−1.3 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968
−1.2 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151
−1.1 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357
−1.0 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587
−0.9 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841
−0.8 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119
−0.7 .2148 .2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420
−0.6 .2451 .2483 .2514 .2546 .2578 .2611 .2643 .2676 .2709 .2743
−0.5 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085
−0.4 .3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446
−0.3 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821
−0.2 .3859 .3897 .3936 .3974 .4013 .4052 .4090 .4129 .4168 .4207
−0.1 .4247 .4286 .4325 .4364 .4404 .4443 .4483 .4522 .4562 .4602
−0.0 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000

(continued)
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Table B4 Continued

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.7 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
aCalculated by MINITAB.
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Table B5 Critical Values for the t Distributiona

 Probabilites between ± t values (two-sided)

df .50 .60 .70 .80 .90 .95 .98 .99

 1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657
 2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925
 3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841
 4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604
 5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032
 6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707
 7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499
 8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355
 9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250
 10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169
 11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106
 12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055
 13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012
 14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977
 15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947
 16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921
 17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898
 18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878
 19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861
 20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845
 21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831
 22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819
 23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807
 24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797
 25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787
 26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779
 27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771
 28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763
 29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756
 30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750
 35 0.682 0.852 1.052 1.306 1.690 2.030 2.438 2.724
 40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704
 45 0.680 0.850 1.049 1.301 1.679 2.014 2.412 2.690
 50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678
 55 0.679 0.848 1.046 1.297 1.673 2.004 2.396 2.668
 60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660
 65 0.678 0.847 1.045 1.295 1.669 1.997 2.385 2.654
 70 0.678 0.847 1.044 1.294 1.667 1.994 2.381 2.648
 75 0.678 0.846 1.044 1.293 1.665 1.992 2.377 2.643
 80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639
 90 0.677 0.846 1.042 1.291 1.662 1.987 2.369 2.632
100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626
150 0.676 0.844 1.040 1.287 1.655 1.976 2.351 2.609
200 0.676 0.843 1.039 1.286 1.653 1.972 2.345 2.601
500 0.675 0.842 1.038 1.283 1.648 1.965 2.334 2.586
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581
∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576

 .75 .80 .85 .90 .95 .975 .99 .995

 Probability below t value (one-sided)
aCalculated by MINITAB.
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Table B6 Graphs for Binomial Confi dence Interval

Source: Reprinted from “Biometrika Tables for Statisticians,” 3rd ed., Vol. 1, Table 41, Bentley 
House, London; 1966, with the permission of the Biometrika Trustees. Use the bottom axis with the 
left axis and the top axis with the right axis.
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Table B7 Critical Values for the Chi-Square (c2) Distribution.a

 Probability below table value

df .005 .01 .025 .05 .10 .90 .95 .975 .99 .995

 1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.64 7.88
 2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.60
 3 0.07 0.12 0.22 0.35 0.58 6.25 7.82 9.35 11.35 12.84
 4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86
 5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75
 6 0.68 0.87 1.24 1.64 2.20 10.65 12.59 14.45 16.81 18.55
 7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
 8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.54 20.09 21.96
 9 1.74 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.86 15.99 18.31 20.48 23.21 24.19
11 2.60 3.05 3.82 4.57 5.58 17.28 19.67 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.69 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72
18 6.27 7.02 8.23 9.39 10.87 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 35.56 38.88 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.20 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 60.28
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
45 24.31 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 73.17
50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49
55 31.74 33.57 36.40 38.96 42.06 68.80 73.31 77.38 82.29 85.75
60 35.54 37.49 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.96
65 39.38 41.44 44.60 47.45 50.88 79.97 84.82 89.18 94.42 98.10
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.42 104.21
75 47.21 49.48 52.94 56.05 59.80 91.06 96.22 100.84 106.39 110.29
80 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30
100 67.33 70.07 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.18
120 83.85 86.92 91.57 95.71 100.62 140.23 146.57 152.21 158.95 163.65
140 100.66 104.03 109.14 113.66 119.03 161.83 168.61 174.65 181.84 186.85
160 117.68 121.35 126.87 131.76 137.55 183.31 190.52 196.92 204.54 209.84
180 134.88 138.82 144.74 149.97 156.15 204.70 212.30 219.05 227.06 232.62
200 152.24 156.43 162.73 168.28 174.84 226.02 234.00 241.06 249.46 255.28
aCalculated by MINITAB.
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Table B8 Factors, k, for Two-Sided Tolerance Limits for Normal Distributions.

 1 - a = 0.75 1 - a = 0.90

n Π: 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

  2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227
  3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309
  4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149
  5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879
  6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188
  7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750
  8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446
  9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220
  10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046
  11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906
  12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792
  13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697
  14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615
  15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545
  16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484
  17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430
  18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382
  19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339
  20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300
  21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264
  22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232
  23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203
  24 1.322 1.891 2.252 2.959 3.778 1.462 2.089 2.489 3.270 4.176
  25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151
  26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127
  27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106
  30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049
  35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974
  40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917
  45 1.262 1.805 2.150 2.826 3.609 1.354 1.935 2.306 3.030 3.871
  50 1.255 1.794 2.138 2.809 3.588 1.340 1.916 2.284 3.001 3.833
  55 1.249 1.785 2.127 2.795 3.571 1.329 1.901 2.265 2.976 3.801
  60 1.243 1.778 2.118 2.784 3.556 1.320 1.887 2.248 2.955 3.774
  65 1.239 1.771 2.110 2.773 3.543 1.312 1.875 2.235 2.937 3.751
  70 1.235 1.765 2.104 2.764 3.531 1.304 1.865 2.222 2.920 3.730
  75 1.231 1.760 2.098 2.757 3.521 1.298 1.856 2.211 2.906 3.712
  80 1.228 1.756 2.092 2.749 3.512 1.292 1.848 2.202 2.894 3.696
  85 1.225 1.752 2.087 2.743 3.504 1.287 1.841 2.193 2.882 3.682
  90 1.223 1.748 2.083 2.737 3.497 1.283 1.834 2.185 2.872 3.669
  95 1.220 1.745 2.079 2.732 3.490 1.278 1.828 2.178 2.863 3.657
 100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 2.172 2.854 3.646
 110 1.214 1.736 2.069 2.719 3.473 1.268 1.813 2.160 2.839 3.626
 120 1.211 1.732 2.063 2.712 3.464 1.262 1.804 2.150 2.826 3.610
 130 1.208 1.728 2.059 2.705 3.456 1.257 1.797 2.141 2.814 3.595
 140 1.206 1.724 2.054 2.700 3.449 1.252 1.791 2.134 2.804 3.582
 150 1.204 1.721 2.051 2.695 3.443 1.248 1.785 2.127 2.795 3.571
 160 1.202 1.718 2.047 2.691 3.437 1.245 1.780 2.121 2.787 3.561
 170 1.200 1.716 2.044 2.687 3.432 1.242 1.775 2.116 2.780 3.552
 180 1.198 1.713 2.042 2.683 3.427 1.239 1.771 2.111 2.774 3.543
 190 1.197 1.711 2.039 2.680 3.423 1.236 1.767 2.106 2.768 3.536
 200 1.195 1.709 2.037 2.677 3.419 1.234 1.764 2.102 2.762 3.529
 250 1.190 1.702 2.028 2.665 3.404 1.224 1.750 2.085 2.740 3.501
 300 1.186 1.696 2.021 2.656 3.393 1.217 1.740 2.073 2.725 3.481
 400 1.181 1.688 2.012 2.644 3.378 1.207 1.726 2.057 2.703 3.453
 500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434
 600 1.175 1.680 2.002 2.631 3.360 1.196 1.710 2.038 2.678 3.421
 700 1.173 1.677 1.998 2.626 3.355 1.192 1.705 2.032 2.670 3.411
 800 1.171 1.675 1.996 2.623 3.350 1.189 1.701 2.027 2.663 3.402
 900 1.170 1.673 1.993 2.620 3.347 1.187 1.697 2.023 2.658 3.396
1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390
∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

(continued)
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Table B8 Continued

 1 - a = 0.95 1 - a = 0.99

n Π: 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

  2 22.858 32.019 37.674 48.430 60.573 114.363 160.193 188.491 242.300 303.054
  3 5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616
  4 3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383
  5 3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015
  6 2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548
  7 2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142
  8 2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234
  9 2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600
 10 1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129
 11 1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766
 12 1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477
 13 1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240
 14 1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043
 15 1.735 2.480 2.954 3.878 4.949 2.060 2.954 3.507 4.605 5.876
 16 1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732
 17 1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607
 18 1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497
 19 1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399
 20 1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312
 21 1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234
 22 1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163
 23 1.570 2.244 2.673 3.512 4.484 1.785 2.551 3.040 3.993 5.098
 24 1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039
 25 1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985
 26 1.534 2.193 2.612 3.432 4.382 1.727 2.469 2.941 3.865 4.935
 27 1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888
 30 1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768
 35 1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611
 40 1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 4.493
 45 1.414 2.021 2.408 3.165 4.042 1.539 2.200 2.621 3.444 4.399
 50 1.396 1.996 2.379 3.126 3.993 1.512 2.162 2.576 3.385 4.323
 55 1.382 1.976 2.354 3.094 3.951 1.490 2.130 2.538 3.335 4.260
 60 1.369 1.958 2.333 3.066 3.916 1.471 2.103 2.506 3.293 4.206
 65 1.359 1.943 2.315 3.042 3.886 1.455 2.080 2.478 3.257 4.160
 70 1.349 1.929 2.299 3.021 3.859 1.440 2.060 2.454 3.225 4.120
 75 1.341 1.917 2.285 3.002 3.835 1.428 2.042 2.433 3.197 4.084
 80 1.334 1.907 2.272 2.986 3.814 1.417 2.026 2.414 3.173 4.053
 85 1.327 1.897 2.261 2.971 3.795 1.407 2.012 2.397 3.150 4.024
  90 1.321 1.889 2.251 2.958 3.778 1.398 1.999 2.382 3.130 3.999
  95 1.315 1.881 2.241 2.945 3.763 1.390 1.987 2.368 3.112 3.976
 100 1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954
 110 1.302 1.861 2.218 2.915 3.723 1.369 1.958 2.333 3.066 3.917
 120 1.294 1.850 2.205 2.898 3.702 1.358 1.942 2.314 3.041 3.885
 130 1.288 1.841 2.194 2.883 3.683 1.349 1.928 2.298 3.019 3.857
 140 1.282 1.833 2.184 2.870 3.666 1.340 1.916 2.283 3.000 3.833
 150 1.277 1.825 2.175 2.859 3.652 1.332 1.905 2.270 2.983 3.811
 160 1.272 1.819 2.167 2.848 3.638 1.326 1.896 2.259 2.968 3.792
 170 1.268 1.813 2.160 2.839 3.527 1.320 1.887 2.248 2.955 3.774
 180 1.264 1.808 2.154 2.831 3.616 1.314 1.879 2.239 2.942 3.759
 190 1.261 1.803 2.148 2.823 3.606 1.309 1.872 2.230 2.931 3.744
 200 1.258 1.798 2.143 2.816 3.597 1.304 1.865 2.222 2.921 3.731
 250 1.245 1.780 2.121 2.788 3.561 1.286 1.389 2.191 2.880 3.678
 300 1.236 1.767 2.106 2.767 3.535 1.273 1.820 2.169 2.850 3.641 
 400 1.223 1.749 2.084 2.739 3.499 1.255 1.794 2.138 2.809 3.589
 500 1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555
 600 1.209 1.729 2.060 2.707 3.458 1.234 1.764 2.102 2.763 3.530
 700 1.204 1.722 2.052 2.697 3.445 1.227 1.755 2.091 2.748 3.511
 800 1.201 1.717 2.046 2.688 3.434 1.222 1.747 2.082 2.736 3.495
 900 1.198 1.712 2.040 2.682 3.426 1.218 1.741 2.075 2.726 3.483
1000 1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472
∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

Source: Abstracted from C. Eisenhart, M. W. Hastay, and W. A. Wallis, “Techniques of Statistical 
Analysis,” Table 2.1, pp. 102–107. McGraw-Hill, New York, 1947
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Table B9 Critical Values for Wilcoxon Signed Rank Test.a

Two-sided Comparisons

n a £ 0.10 a £ 0.05 a £ 0.02 a £ 0.01

5 0, 15
6 2, 19 0, 21
7 3, 25 2, 26 0, 28
8 5, 31 3, 33 1, 35 0, 36
9 8, 37 5, 40 3, 42 1, 44
10 10, 45 8, 47 5, 50 3, 52
11 13, 53 10, 56 7, 59 5, 61
12 17, 61 13, 65 9, 69 7, 71
13 21, 70 17, 74 12, 79 9, 82
14 25, 80 21, 84 15, 90 12, 93
15 30, 90 25, 95 19,101 15,105
16 35,101 29,107 23,113 19,117
17 41,112 34,119 28,125 23,130
18 47,124 40,131 32,139 27,144
19 53,137 46,144 37,153 33,158
20 60,150 52,158 43,167 37,173
21 67,164 58,173 49,182 42,189
22 75,178 66,187 55,198 48,205
23 83,193 73,203 62,214 54,222
24 91,209 81,210 69,231 61,239
25 100,225 89,236 76,249 68,257
26 110,241 98,253 84,267 75,276
27 119,259 107,271 93,285 83,295
28 130,276 114,278 101,305 91,315
29 140,295 126,309 122,313 100,335
30 151,314 137,328 132,333 109,356

One-sided Comparisons

n a ≤ 0.05 a ≤ 0.025 a ≤ 0.01 a ≤ 0.005
aExtracted from “Critical Values and Probability Levels for the Wilcoxon 
Rank Sum Test and the Wilcoxon Signed Rank Test,” by Frank Wilcoxon, S. 
K. Katti, and Roberta A. Wilcox, Selected Tables in Mathematical Statistics, 
Vol. 1, 1973, Table II, pp. 237–259, by permission of the American 
Mathematics Society.
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Table B10 Critical Values for Wilcoxon Rank Sum Test.a

N2\N1 3 4 5 6 7 8 9 10 11 12 13 14 15

Two-sided: a £ 0.10  One-sided: a £ 0.05

 3 — 10, 22 16, 29 23, 37 30, 47 39, 57 48, 69 59, 81 71, 94 83,109 97,124 112,140 127,158
 4 6, 18 11, 25 17, 33 24, 42 32, 52 41, 63 51, 75 62, 88 74,102 87,117 101,133 116,150 132,168
 5 7, 20 12, 28 19, 36 26, 46 34, 57 44, 68 54, 81 66, 94 78,109 91,125 106,141 121,159 138,177
 6 8, 22 13, 31 20, 40 28, 50 36, 62 46, 74 57, 87 69,101 82,116 95,133 110,150 126,168 143,187
 7 8, 25 14, 34 21, 44 29, 55 39, 66 49, 79 60, 93 72,108 85,124 99,141 115,158 131,177 148,197
 8 9, 27 15, 37 23, 47 31, 59 41, 71 51, 85 63, 99 75,115 89,131 104,148 119,167 136,186 153,207
 9 9, 30 16, 40 24, 51 33, 63 43, 76 54, 90 66,105 79,121 93,138 108,156 124,178 141,195 159,216
10 10, 32 17, 43 26, 54 35, 67 45, 81 56, 96 69,111 82,128 97,145 112,164 128,184 146,204 164,226
11 11, 34 18, 46 27, 58 37, 71 47, 86 59,101 72,117 86,134 100,153 116,172 133,192 151,231 170,235
12 11, 37 19, 49 28, 62 38, 76 49, 91 62,106 75,123 89,141 104,160 120,180 138,200 156,222 175,245
13 12, 39 20, 52 30, 65 40, 80 52, 95 64,112 78,129 92,148 108,167 125,187 142,209 161,231 181,254
14 13, 41 21, 55 31, 69 42, 84 54,100 67,117 81,135 96,154 112,174 129,195 147,217 166,240 186,264
15 13, 44 22, 58 33, 72 44, 88 56,105 69,123 84,141 99,161 116,181 133,203 152,225 171,249 192,273
16 14, 46 24, 60 34, 76 46, 92 58,110 72,128 87,147 103,167 120,188 138,210 156,234 176,258 197,283
17 15, 48 25, 63 35, 80 47, 97 61,114 75,133 90,153 106,174 123,196 142,218 161,242 182,266 203,292
18 15, 51 26, 66 37, 83 49,101 63,119 77,139 93,159 110,180 127,203 146,226 166,250 187,275 208,302
19 16, 53 27, 69 38, 87 51,105 65,124 80,144 96,165 113,187 131,210 150,234 171,258 192,284 214,311
20 17, 55 28, 72 40, 90 53,109 67,129 83,149 99,171 117,193 135,217 155,241 175,267 197,293 220,320
21 17, 58 29, 75 41, 94 55,113 69,134 85,155 102,177 120,200 139,224 159,249 180,275 202,302 225,330
22 18, 60 30, 78 43, 97 57,117 72,138 88,160 105,183 123,207 143,231 163,257 185,283 207,311 231,339
23 19, 62 31, 81 44,101 58,122 74,143 90,166 108,189 127,213 147,238 168,264 189,292 212,320 236,349
24 19, 65 32, 84 45,105 60,126 76,148 93,171 111,195 130,220 151,245 172,272 194,300 218,328 242,358
25 20, 67 33, 87 47,108 62,130 78,153 96,176 114,201 134,226 155,252 176,280 199,308 223,337 248,367
26 21, 69 34, 90 48,112 64,134 81,157 98,182 117,207 137,233 158,260 181,287 204,316 228,346 253,377
27 21, 72 35, 93 50,115 66,138 83,162 101,187 120,213 141,239 162,267 185,295 208,325 233,355 259,386
28 22, 74 36, 96 51,119 67,143 85,167 104,192 123,219 144,246 166,274 189,303 213,333 238,364 264,396
29 23, 76 37, 99 53,122 69,147 87,172 106,198 127,224 148,252 170,281 194,310 218,341 243,373 270,405
30 23, 79 38,102 54,126 71,151 89,177 109,203 130,230 151,259 174,288 198,318 223,349 249,381 276,414
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Two-sided: a £ 0.05  One-sided: a £ 0.025

 3 — — 15, 30 22, 38 29, 48 38, 58 47, 70 58, 82 70, 96 82,110 95,126 110,142 125,160
 4 — 10, 26 16, 34 23, 43 31, 53 40, 64 49, 77 60, 90 72,104 85,119 99,135 114,152 130,170
 5 6, 21 11, 29 17, 38 24, 48 33, 58 42, 70 52, 83 63, 97 75,112 89,127 103,144 118,162 134,181
 6 7, 23 12, 32 18, 42 26, 52 34, 64 44, 76 55, 89 66,104 79,119 92,136 107,153 122,172 139,191
 7 7, 26 13, 35 20, 45 27, 57 36, 69 46, 82 57, 96 69,111 82,127 96,144 111,162 127,181 144,201
 8 8, 28 14, 38 21, 49 29, 61 38, 74 49, 87 60,102 72,118 85,135 100,152 115,171 131,191 149,211
 9 8, 31 14, 42 22, 53 31, 65 40, 79 51, 93 62,109 75,125 89,142 104,160 119,180 136,200 154,221
10 9, 33 15, 45 23, 57 32, 70 42, 84 53, 99 65,115 78,132 92,150 107,169 124,188 141,209 159,231
11 9, 36 16, 48 24, 61 34, 74 44, 89 55,105 68,121 81,139 96,157 111,177 128,197 145,219 164,241
12 10, 38 17, 51 26, 64 35, 79 46, 94 58,110 71,127 84,146 99,165 115,185 132,206 150,228 169,251
13 10, 41 18, 54 27, 68 37, 83 48, 99 60,116 73,143 88,152 103,172 119,193 136,215 155,237 174,261
14 11, 43 19, 57 28, 72 38, 88 50,104 62,122 76,140 91,159 106,180 123,201 141,223 160,246 179,271
15 11, 46 20, 60 29, 76 40, 92 52,109 65,127 79,146 94,166 110,187 127,209 145,232 164,256 184,281
16 12, 48 21, 63 30, 80 42, 96 54,114 67,133 82,152 97,173 113,195 131,217 150,240 169,265 190,290
17 12, 51 21, 67 32, 83 43,101 56,119 70,138 84,159 100,180 117,202 135,225 154,249 174,274 195,300
18 13, 53 22, 70 33, 87 45,105 58,124 72,144 87,165 103,187 121,209 139,233 158,258 179,283 200,310
19 13, 56 23, 73 34, 91 46,110 60,129 74,150 90,171 107,193 124,217 143,241 163,266 183,293 205,320
20 14, 58 24, 76 35, 95 48,114 62,134 77,155 93,177 110,200 128,224 147,249 167,275 188,302 210,330
21 14, 61 25, 79 37, 98 50,118 64,139 79,161 95,184 113,207 131,232 151,257 171,284 193,311 216,339
22 15, 63 26, 82 38,102 51,123 66,144 81,167 98,190 116,214 135,239 155,265 176,292 198,320 221,349
23 15, 66 27, 85 39,106 53,127 68,149 84,172 101,196 119,221 139,246 159,273 180,301 203,329 226,359
24 16, 68 27, 89 40,110 54,132 70,154 86,178 104,202 122,228 142,254 163,281 185,309 207,339 231,369
25 16, 71 28, 92 42,113 56,136 72,159 89,183 107,208 126,234 146,261 167,289 189,318 212,348 237,378
26 17, 73 29, 95 43,117 58,140 74,164 91,189 109,215 129,241 149,269 171,297 193,327 217,357 242,388
27 17, 76 30, 98 44,121 59,145 76,169 93,195 112,221 132,248 153,276 175,305 198,335 222,366 247,398
28 18, 78 31,101 45,125 61,149 78,174 96,200 115,227 135,255 156,284 179,313 202,344 227,375 252,408
29 19, 80 32,104 47,128 63,153 80,179 98,206 118,233 138,262 160,291 183,321 207,352 232,384 258,417
30 19, 83 33,107 48,132 64,158 82,184 101,211 121,239 142,268 164,298 187,329 211,361 236,394 263,427

(continued)
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N2\N1 3 4 5 6 7 8 9 10 11 12 13 14 15

 Two-sided: a £ 0.02  One-sided: a £ 0.01

 3 — — — — 28, 49 36, 60 46, 71 56, 84 67, 98 80,112 93,128 107,145 123,162
 4 — — 15, 35 22, 44 29, 55 38, 66 48, 78 58, 92 70,106 83,121 96,138 111,155 127,173
 5 — 10, 30 16, 39 23, 49 31, 60 40, 72 50, 85 61, 99 73,114 86,130 100,147 115,165 131,184
 6 — 11, 33 17, 43 24, 54 32, 66 42, 78 52, 92 63,107 75,123 89,139 103,157 118,176 135,195
 7 6, 27 11, 37 18, 47 25, 59 34, 71 43, 85 54, 99 66,114 78,131 92,148 107,166 122,186 139,206
 8 6, 30 12, 40 19, 51 27, 63 35, 77 45, 91 56,106 68,122 81,139 95,157 111,175 127,195 144,216
 9 7, 32 13, 43 20, 55 28, 68 37, 82 47, 97 59,112 71,129 84,147 99,165 114,185 131,205 148,227
10 7, 35 13, 47 21, 59 29, 73 39, 87 49,103 61,119 74,136 88,154 102,174 118,194 135,215 153,237
11 7, 38 14, 50 22, 63 30, 78 40, 93 51,109 63,126 77,143 91,162 106,182 122,203 139,225 157,248
12 8, 40 15, 53 23, 67 32, 82 42, 98 53,115 66,132 79,151 94,170 109,191 126,212 143,235 162,258
13 8, 43 15, 57 24, 71 33, 87 44,103 56,120 68,139 82,158 97,178 113,199 130,221 148,244 167,268
14 8, 46 16, 60 25, 75 34, 92 45,109 58,126 71,145 85,165 100,186 116,208 134,230 152,254 171,279
15 9, 48 17, 63 26, 79 36, 96 47,114 60,132 73,152 88,172 103,194 120,216 138,239 156,264 176,289
16 9, 51 17, 67 27, 83 37,101 49,119 62,138 76,158 91,179 107,201 124,224 142,248 161,273 181,299
17 10, 53 18, 70 28, 87 39,105 51,124 64,144 78,165 93,187 110,209 127,233 146,257 165,283 186,309
18 10, 56 19, 73 29, 91 40,110 52,130 66,150 81,171 96,194 113,217 131,241 150,266 170,292 190,320
19 10, 59 19, 77 30, 95 41,115 54,135 68,156 83,178 99,201 116,225 134,250 154,275 174,302 195,330
20 11, 61 20, 80 31, 99 43,119 56,140 70,162 85,185 102,208 119,233 138,258 158,284 178,312 200,340
21 11, 64 21, 83 32,103 44,124 58,145 72,168 88,191 105,215 123,240 142,266 162,293 183,321 205,350
22 11, 67 21, 87 33,107 45,129 59,151 74,174 90,198 108,222 126,248 145,275 166,302 187,331 210,360
23 12, 69 22, 90 34,111 47,133 61,156 76,180 93,204 110,230 129,256 149,283 170,311 192,340 214,371
24 12, 72 23, 93 35,115 48,138 63,161 78,186 95,211 113,237 132,264 153,291 174,320 196,350 219,381
25 13, 74 23, 97 36,119 50,142 64,167 81,191 98,217 116,244 136,271 156,300 178,329 200,360 224,391
26 13, 77 24,100 37,123 51,147 66,172 83,197 100,224 119,251 139,279 160,308 182,338 205,369 229,401
27 13, 80 25,103 38,127 52,152 68,177 85,203 103,230 122,258 142,287 163,317 186,347 209,379 234,411
28 14, 82 26,106 39,131 54,156 70,182 87,209 105,237 125,265 145,295 167,325 190,356 214,388 239,421
29 14, 85 26,110 40,135 55,161 71,188 89,215 108,243 128,272 149,302 171,333 194,365 218,398 243,432
30 15, 87 27,113 41,139 56,166 73,193 91,221 110,250 131,279 152,310 174,342 198,374 223,407 248,442
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Two-sided: a £ 0.01  One-sided: a £ 0.005

 3 — — — — — — 45, 72 55, 85 66, 99 79,113 92,129 106,146 122,163
 4 — — — 21, 45 28, 56 37, 67 46, 80 57, 93 68,108 81,123 94,140 109,157 125,175
 5 — — 15, 40 22, 50 29, 62 38, 74 48, 87 59,101 71,116 84,132 98,149 112,168 128,187
 6 — 10, 34 16, 44 23, 55 31, 67 40, 80 50, 94 61,109 73,125 87,141 101,159 116,178 132,198
 7 — 10, 38 16, 49 24, 60 32, 73 42, 86 52,101 64,116 76,133 90,150 104,169 120,188 136,209
 8 — 11, 41 17, 53 25, 65 34, 78 43, 93 54,108 66,124 79,141 93,159 108,178 123,199 140,220
 9 6, 33 11, 45 18, 57 26, 70 35, 84 45, 99 56,115 68,132 82,149 96,168 111,188 127,209 144,231
10 6, 36 12, 48 19, 61 27, 75 37, 89 47,105 58,122 71,139 84,158 99,177 115,197 131,219 149,241
11 6, 39 12, 52 20, 65 28, 80 38, 95 49,111 61,128 73,147 87,166 102,186 118,207 135,229 153,252
12 7, 41 13, 55 21, 69 30, 84 40,100 51,117 63,135 96,154 90,174 105,195 122,216 139,239 157,263
13 7, 44 13, 59 22, 73 31, 89 41,106 53,123 65,142 79,161 93,182 109,203 125,226 143,249 162,273
14 7, 47 14, 62 22, 78 32, 94 43,111 54,130 67,149 81,169 96,190 112,212 129,235 147,259 166,284
15 8, 49 15, 65 23, 82 33, 99 44,117 56,136 69,156 84,176 99,198 115,221 133,244 151,269 171,294
16 8, 52 15, 69 24, 86 34,104 46,122 58,142 72,162 86,184 102,206 119,229 136,254 155,279 175,305
17 8, 55 16, 72 25, 90 36,108 47,128 60,148 74,169 89,191 105,214 122,238 140,263 159,289 180,315
18 8, 58 16, 76 26, 94 37,113 49,133 62,154 76,176 92,198 108,222 125,247 144,272 163,299 184,326
19 9, 60 17, 79 27, 98 38,118 50,139 64,160 78,183 94,206 111,230 129,255 148,281 168,308 189,336
20 9, 63 18, 82 28,102 39,123 52,144 66,166 81,189 97,213 114,238 132,264 151,291 172,318 193,347
21 9, 66 18, 86 29,106 40,128 53,150 68,172 83,196 99,221 117,246 136,272 155,300 176,328 198,357
22 10, 68 19, 89 29,111 42,132 55,155 70,178 85,203 102,228 120,254 139,281 159,309 180,338 202,368
23 10, 71 19, 93 30,115 43,137 57,160 71,185 88,209 105,235 123,262 142,290 163,318 184,348 207,378
24 10, 74 20, 96 30,119 44,142 58,166 78,191 90,216 107,243 126,270 146,298 166,328 188,358 211,389
25 11, 76 20,100 32,123 45,147 60,171 75,197 92,223 110,250 129,278 149,307 170,337 192,368 216,399
26 11, 79 21,103 33,127 46,152 61,177 77,203 94,230 113,257 132,286 152,316 174,346 197,377 220,410
27 11, 82 22,106 34,131 48,156 63,182 79,209 97,236 115,265 135,294 156,324 178,355 201,387 225,420
28 11, 85 22,110 35,135 49,161 64,188 81,215 99,243 118,272 138,302 159,333 182,364 205,397 229,431
29 12, 87 23,113 36,139 50,166 66,193 83,221 101,250 121,279 141,310 163,341 185,375 209,407 234,441
30 12, 90 23,117 37,143 51,171 68,198 85,227 103,257 123,287 144,318 166,350 189,383 213,417 239,451
aExtracted from “Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and Wilcoxon Signed Rank Test,” by Frank Wilcoxon, S. K. Katti, and Roberta A. 
Wilcox, Selected Tables in Mathematical Statistics, Vol. 1, 1973, Table I, pp. 177–235, by permission of the American Mathematics Society.
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Table B11 Critical Values for the F Distributiona

F.90

df in the df in the numerator

denominator 1 2 3 4 5 6 8 10 20 50 100

 1 39.86 49.50 53.59 55.83 57.24 58.20 59.44 60.19 61.74 62.69 63.01
 2 8.53 9.00 9.16 9.24 9.29 9.33 9.37 9.39 9.44 9.47 9.48
 3 5.54 5.46 5.39 5.34 5.31 5.28 5.25 5.23 5.18 5.15 5.14
 4 4.54 4.32 4.19 4.11 4.05 4.01 3.95 3.92 3.84 3.80 3.78
 5 4.06 3.78 3.62 3.52 3.45 3.40 3.34 3.30 3.21 3.15 3.13

 6 3.78 3.46 3.29 3.18 3.11 3.05 2.98 2.94 2.84 2.77 2.75
 7 3.59 3.26 3.07 2.96 2.88 2.83 2.75 2.70 2.59 2.52 2.50
 8 3.46 3.11 2.92 2.81 2.73 2.67 2.59 2.54 2.42 2.35 2.32
 9 3.36 3.01 2.81 2.69 2.61 2.55 2.47 2.42 2.30 2.22 2.19
 10 3.29 2.92 2.73 2.61 2.52 2.46 2.38 2.32 2.20 2.12 2.09

 11 3.23 2.86 2.66 2.54 2.45 2.39 2.30 2.25 2.12 2.04 2.01
 12 3.18 2.81 2.61 2.48 2.39 2.33 2.24 2.19 2.06 1.97 1.94
 13 3.14 2.76 2.56 2.43 2.35 2.28 2.20 2.14 2.01 1.92 1.88
 14 3.10 2.73 2.52 2.39 2.31 2.24 2.15 2.10 1.96 1.87 1.83
 15 3.07 2.70 2.49 2.36 2.27 2.21 2.12 2.06 1.92 1.83 1.79

 16 3.05 2.67 2.46 2.33 2.24 2.18 2.09 2.03 1.89 1.79 1.76
 17 3.03 2.64 2.44 2.31 2.22 2.15 2.06 2.00 1.86 1.76 1.73
 18 3.01 2.62 2.42 2.29 2.20 2.13 2.04 1.98 1.84 1.74 1.70
 19 2.99 2.61 2.40 2.27 2.18 2.11 2.02 1.96 1.81 1.71 1.67
 20 2.97 2.59 2.38 2.25 2.16 2.09 2.00 1.94 1.79 1.69 1.65

 21 2.96 2.57 2.36 2.23 2.14 2.08 1.98 1.92 1.78 1.67 1.63
 22 2.95 2.56 2.35 2.22 2.13 2.06 1.97 1.90 1.76 1.65 1.61
 23 2.94 2.55 2.34 2.21 2.11 2.05 1.95 1.89 1.74 1.64 1.59
 24 2.93 2.54 2.33 2.19 2.10 2.04 1.94 1.88 1.73 1.62 1.58
 25 2.92 2.53 2.32 2.18 2.09 2.02 1.93 1.87 1.72 1.61 1.56

 26 2.91 2.52 2.31 2.17 2.08 2.01 1.92 1.86 1.71 1.59 1.55
 27 2.90 2.51 2.30 2.17 2.07 2.00 1.91 1.85 1.70 1.58 1.54
 28 2.89 2.50 2.29 2.16 2.06 2.00 1.90 1.84 1.69 1.57 1.53
 29 2.89 2.50 2.28 2.15 2.06 1.99 1.89 1.83 1.68 1.56 1.52
 30 2.88 2.49 2.28 2.14 2.05 1.98 1.88 1.82 1.67 1.55 1.51

 40 2.84 2.44 2.23 2.09 2.00 1.93 1.83 1.76 1.61 1.48 1.43
 50 2.81 2.41 2.20 2.06 1.97 1.90 1.80 1.73 1.57 1.44 1.39
 60 2.79 2.39 2.18 2.04 1.95 1.87 1.77 1.71 1.54 1.41 1.36
 100 2.76 2.36 2.14 2.00 1.91 1.83 1.73 1.66 1.49 1.35 1.29
 200 2.73 2.33 2.11 1.97 1.88 1.80 1.70 1.63 1.46 1.31 1.24
 1000 2.71 2.31 2.09 1.95 1.85 1.78 1.68 1.61 1.43 1.27 1.20

(continued)



Appendix B: Statistical Tables  475

Table B11 Continued

F.95

df in the df in the numerator

denominator 1 2 3 4 5 6 8 10 20 50 100

 1 161.5 199.5 215.7 224.6 230.2 234.0 238.9 241.9 248.0 251.8 253.0
 2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.40 19.45 19.48 19.49
 3 10.13 9.55 9.28 9.12 9.01 8.94 8.85 8.79 8.66 8.58 8.55
 4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.96 5.80 5.70 5.66
 5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.74 4.56 4.44 4.41

 6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.06 3.87 3.75 3.71
 7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.64 3.44 3.32 3.27
 8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.35 3.15 3.02 2.97
 9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.14 2.94 2.80 2.76
 10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.98 2.77 2.64 2.59

 11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.85 2.65 2.51 2.46
 12 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.75 2.54 2.40 2.35
 13 4.67 3.81 3.41 3.18 3.03 2.92 2.77 2.67 2.46 2.31 2.26
 14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.60 2.39 2.24 2.19
 15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.54 2.33 2.18 2.12

 16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.49 2.28 2.12 2.07
 17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.45 2.23 2.08 2.02
 18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.41 2.19 2.04 1.98
 19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.38 2.16 2.00 1.94
 20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.35 2.12 1.97 1.91

 21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.32 2.10 1.94 1.88
 22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.30 2.07 1.91 1.85
 23 4.28 3.42 3.03 2.80 2.64 2.53 2.37 2.27 2.05 1.88 1.82
 24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.25 2.03 1.86 1.80
 25 4.24 3.39 2.99 2.76 2.60 2.49 2.34 2.24 2.01 1.84 1.78

 26 4.23 3.37 2.98 2.74 2.59 2.47 2.32 2.22 1.99 1.82 1.76
 27 4.21 3.35 2.96 2.73 2.57 2.46 2.31 2.20 1.97 1.81 1.74
 28 4.20 3.34 2.95 2.71 2.56 2.45 2.29 2.19 1.96 1.79 1.73
 29 4.18 3.33 2.93 2.70 2.55 2.43 2.28 2.18 1.94 1.77 1.71
 30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.16 1.93 1.76 1.70

 40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.08 1.84 1.66 1.59
 50 4.03 3.18 2.79 2.56 2.40 2.29 2.13 2.03 1.78 1.60 1.52
 60 4.00 3.15 2.76 2.53 2.37 2.25 2.10 1.99 1.75 1.56 1.48
 100 3.94 3.09 2.70 2.46 2.31 2.19 2.03 1.93 1.68 1.48 1.39
 200 3.89 3.04 2.65 2.42 2.26 2.14 1.98 1.88 1.62 1.41 1.32
 1000 3.85 3.00 2.61 2.38 2.22 2.11 1.95 1.84 1.58 1.36 1.26

(continued)
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Table B11 Continued

F.99

df in the df in the numerator

denominator 1 2 3 4 5 6 8 10 20 50 100

 1 4052 4500 5403 5625 5764 5859 5981 6056 6209 6302 6334
 2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.40 99.45 99.48 99.49
 3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.23 26.69 26.35 26.24
 4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.55 14.02 13.69 13.58
 5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 10.05 9.55 9.24 9.13

 6 13.75 10.92 9.78 9.15 8.75 8.47 8.10 7.87 7.40 7.09 6.99
 7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.62 6.16 5.86 5.75
 8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.81 5.36 5.07 4.96
 9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.26 4.81 4.52 4.41
 10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.85 4.41 4.12 4.01

 11 9.65 7.21 6.22 5.67 5.32 5.07 4.74 4.54 4.10 3.81 3.71
 12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.30 3.86 3.57 3.47
 13 9.07 6.70 5.74 5.21 4.86 4.62 4.30 4.10 3.66 3.38 3.27
 14 8.86 6.51 5.56 5.04 4.69 4.46 4.14 3.94 3.51 3.22 3.11
 15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.80 3.37 3.08 2.98

 16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.69 3.26 2.97 2.86
 17 8.40 6.11 5.19 4.67 4.34 4.10 3.79 3.59 3.16 2.87 2.76
 18 8.29 6.01 5.09 4.58 4.25 4.01 3.71 3.51 3.08 2.78 2.68
 19 8.19 5.93 5.01 4.50 4.17 3.94 3.63 3.43 3.00 2.71 2.60
 20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.37 2.94 2.64 2.54

 21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.31 2.88 2.58 2.48
 22 7.95 5.72 4.82 4.31 3.99 3.76 3.45 3.26 2.83 2.53 2.42
 23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.21 2.78 2.48 2.37
 24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.17 2.74 2.44 2.33
 25 7.77 5.57 4.68 4.18 3.85 3.63 3.32 3.13 2.70 2.40 2.29

 26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 3.09 2.66 2.36 2.25
 27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 3.06 2.63 2.33 2.22
 28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 3.03 2.60 2.30 2.19
 29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 3.00 2.57 2.27 2.16
 30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.98 2.55 2.25 2.13

 40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.80 2.37 2.06 1.94
 50 7.17 5.06 4.20 3.72 3.41 3.19 2.89 2.70 2.27 1.95 1.82
 60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.63 2.20 1.88 1.75
 100 6.90 4.82 3.98 3.51 3.21 2.99 2.69 2.50 2.07 1.74 1.60
 200 6.76 4.71 3.88 3.41 3.11 2.89 2.60 2.41 1.97 1.63 1.48
 1000 6.66 4.63 3.80 3.34 3.04 2.82 2.53 2.34 1.90 1.54 1.38
aCalculated by MINITAB.
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Table B12 Upper Percentage Points of the Studentized Range.
 

q
x x

S
a

max min

x

== --

Error p = number of treatment means         Error
df a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 a df

 5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 .05 5
 .01 5.70 6.97 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 .01
 6 .05 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59 .05 6
 .01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54 .01
 7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.09 7.17 .05 7
 .01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65 .01
 8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 .05 8
 .01 4.74 5.63 6.20 6.63 6.96 7.24 7.47 7.68 7.87 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 .01
 9 .05 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 .05 9
 .01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.32 7.49 7.65 7.78 7.91 8.03 8.13 8.23 8.32 8.41 8.49 8.57 .01
 10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11 6.20 6.27 6.34 6.40 6.47 .05 10
 .01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.48 7.60 7.71 7.81 7.91 7.99 8.07 8.15 8.22 .01
 11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.99 6.06 6.14 6.20 6.26 6.33 .05 11
 .01 4.39 5.14 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95 .01
 12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.62 5.71 5.80 5.88 5.95 6.03 6.09 6.15 6.21 .05 12
 .01 4.32 5.04 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73 .01
 13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 6.00 6.05 6.11 .05 13
 .01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19 7.27 7.34 7.42 7.48 7.55 .01
 14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.72 5.79 5.83 5.92 5.97 6.03 .05 14
 .01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05 7.12 7.20 7.27 7.33 7.39 .01
 15 .05 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.58 5.65 5.72 5.79 5.85 5.90 5.96 .05 15
 .01 4.17 4.83 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26 .01

(continued)
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Error p = number of treatment means         Error
df a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 a df

 16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.72 5.79 5.84 5.90 .05 16
 .01 4.13 4.78 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15 .01
 17 .05 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.55 5.61 5.68 5.74 5.79 5.84 .05 17
 .01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 6.80 6.87 6.94 7.00 7.05 .01
 18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 .05 18
 .01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65 6.72 6.79 6.85 6.91 6.96 .01
 19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 5.53 5.59 5.65 5.70 5.75 .05 19
 .01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89 .01
 20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 .05 20
 .01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.76 6.82 .01
 24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.50 5.54 5.59 .05 24
 .01 3.96 4.54 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61 .01
 30 .05 2.89 3.49 3.84 4.10 4.30 4.46 4.60 4.72 4.83 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.48 .05 30
 .01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41 .01
 40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.91 4.98 5.05 5.11 5.16 5.22 5.27 5.31 5.36 .05 40
 .01 3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69 5.77 5.84 5.90 5.96 6.02 6.07 6.12 6.17 6.21 .01
 60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.16 5.20 5.24 .05 60
 .01 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79 5.84 5.89 5.93 5.98 6.02 .01
120 .05 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.48 4.56 4.64 4.72 4.78 4.84 4.90 4.95 5.00 5.05 5.09 5.13 .05 120
 .01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 5.83 .01
∞ .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 .05 ∞
 .01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 .01

Source: This table is extracted from Table 29, “Biometrika Tables for Statisticians,” 3rd Ed. Vol. I, London, Bentley House, 1966, with the permission of the Biometrika Trustees. 
The original work appeared in a paper by J. M. May, Extended and corrected tables of the upper percentage points of the “Studentized” range. Biometrika 39, 192–193 (1952)
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Table B13 t for Comparisons Between p Treatment Means and a Control for a Joint Confi dence Coeffi cient of p = 0.95 and p = 0.99

 One-Sided Comparisons Two-Sided Comparisons

Error  p = number of treatment means, excluding control Error  p = number of treatment means, excluding control

df P 1 2 3 4 5 6 7 8 9 df P 1 2 3 4 5 6 7 8 9

 5 .95 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30  5 .95 2.57 3.03 3.39 3.66 3.88 4.06 4.22 4.36 4.49
 .99 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03  .99 4.03 4.63 5.09 5.44 5.73 5.97 6.18 6.36 6.53
 6 .95 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12  6 .95 2.45 2.86 3.18 3.41 3.60 3.75 3.88 4.00 4.11
 .99 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59  .99 3.71 4.22 4.60 4.88 5.11 5.30 5.47 5.61 5.74
 7 .95 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01  7 .95 2.36 2.75 3.04 3.24 3.41 3.54 3.66 3.76 3.86
 .99 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30  .99 3.50 3.95 4.28 4.52 4.71 4.87 5.01 5.13 5.24
 8 .95 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92  8 .95 2.31 2.67 2.94 3.13 3.28 3.40 3.51 3.60 3.68
 .99 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09  .99 3.36 3.77 4.06 4.27 4.44 4.58 4.70 4.81 4.90
 9 .95 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86  9 .95 2.26 2.61 2.86 3.04 3.18 3.29 3.39 3.48 3.55
 .99 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94  .99 3.25 3.63 3.90 4.09 4.24 4.37 4.48 4.57 4.65
 10 .95 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81  10 .95 2.23 2.57 2.81 2.97 3.11 3.21 3.31 3.39 3.46
 .99 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83  .99 3.17 3.53 3.78 3.95 4.10 4.21 4.31 4.40 4.47
 11 .95 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77  11 .95 2.20 2.53 2.76 2.92 3.05 3.15 3.24 3.31 3.38
 .99 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74  .99 3.11 3.45 3.68 3.85 3.98 4.09 4.18 4.26 4.33
 12 .95 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74  12 .95 2.18 2.50 2.72 2.88 3.00 3.10 3.18 3.25 3.32
 .99 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67  .99 3.05 3.39 3.61 3.76 3.89 3.99 4.08 4.15 4.22
 13 .95 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71  13 .95 2.16 2.48 2.69 2.84 2.96 3.06 3.14 3.21 3.27
 .99 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61  .99 3.01 3.33 3.54 3.69 3.81 3.91 3.99 4.06 4.13
 14 .95 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69  14 .95 2.14 2.46 2.67 2.81 2.93 3.02 3.10 3.17 3.23
 .99 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56  .99 2.98 3.29 3.49 3.64 3.75 3.84 3.92 3.99 4.05

(continued)
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Table B13 Continued

 One-Sided Comparisons Two-Sided Comparisons

Error  p = number of treatment means, excluding control Error  p = number of treatment means, excluding control

df P 1 2 3 4 5 6 7 8 9 df P 1 2 3 4 5 6 7 8 9

 15 .95 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67  15 .95 2.13 2.44 2.64 2.79 2.90 2.99 3.07 3.13 3.19
 .99 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52  .99 2.95 3.25 3.45 3.59 3.70 3.79 3.86 3.93 3.99
 16 .95 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65  16 .95 2.12 2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16
 .99 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48  .99 2.92 3.22 3.41 3.55 3.65 3.74 3.82 3.88 3.93
 17 .95 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64  17 .95 2.11 2.41 2.61 2.75 2.85 2.94 3.01 3.08 3.13
 .99 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45  .99 2.90 3.19 3.38 3.51 3.62 3.70 3.77 3.83 3.89
 18 .95 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62  18 .95 2.10 2.40 2.59 2.73 2.84 2.92 2.99 3.05 3.11
 .99 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42  .99 2.88 3.17 3.35 3.48 3.58 3.67 3.74 3.80 3.85
 19 .95 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61  19 .95 2.09 2.39 2.58 2.72 2.82 2.90 2.97 3.04 3.09
 .99 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40  .99 2.86 3.15 3.33 3.46 3.55 3.64 3.70 3.76 3.81
 20 .95 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60  20 .95 2.09 2.38 2.57 2.70 2.81 2.89 2.96 3.02 3.07
 .99 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38  .99 2.85 3.13 3.31 3.43 3.53 3.61 3.67 3.73 3.78
 24 .95 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57  24 .95 2.06 2.35 2.53 2.66 2.76 2.84 2.91 2.96 3.01
 .99 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31  .99 2.80 3.07 3.24 3.36 3.45 3.52 3.58 3.64 3.69
 30 .95 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54  30 .95 2.04 2.32 2.50 2.62 2.72 2.79 2.86 2.91 2.96
 .99 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24  .99 2.75 3.01 3.17 3.28 3.37 3.44 3.50 3.55 3.59
 40 .95 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51  40 .95 2.02 2.29 2.47 2.58 2.67 2.75 2.81 2.86 2.90
 .99 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18  .99 2.70 2.95 3.10 3.21 3.29 3.36 3.41 3.46 3.50
 60 .95 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48  60 .95 2.00 2.27 2.43 2.55 2.63 2.70 2.76 2.81 2.85
 .99 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12  .99 2.66 2.90 3.04 3.14 3.22 3.28 3.33 3.38 3.42
120 .95 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 120 .95 1.98 2.24 2.40 2.51 2.59 2.66 2.71 2.76 2.80
 .99 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06  .99 2.62 2.84 2.98 3.08 3.15 3.21 3.25 3.30 3.33
∞ .95 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 ∞ .95 1.96 2.21 2.37 2.47 2.55 2.62 2.67 2.71 2.75
 .99 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00  .99 2.58 2.79 2.92 3.01 3.08 3.14 3.18 3.22 3.25

Source: This table is reproduced from Dunett, C. W. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096–1121 (1955). 
Reprinted with permission from the Journal of the American Statistical Association. Copyright 1955 by the American Statistical Association. All rights reserved



Appendix C:
Selected Governmental 
Sources of 
Biostatistical Data

Three types of data collections are described here: (1) a population census, (2) a vital 
statistics system, and (3) sample surveys. In addition, (4) the sources of the data used 
in U.S. life tables are described. To understand the data resulting from these collection 
mechanisms, it is essential to be familiar with some defi nitions and the organization of 
the data collection systems.

I.   Population Census Data
The census is a counting of the entire population at a specifi ed time. In the United States, 
it occurs once every 10 years as required by the Constitution, and the latest census was 
taken on April 1, 2000. The U.S. Census attempts to count people in the place where 
they spend most of their time. Most people are counted at their legal residence, but 
college students, military personnel, prison inmates, and residents of long-term institu-
tions are assigned to the location of the institutions.

The information available from the U.S. Census is derived from two types of ques-
tionnaires. The questions on the short form are intended for everybody in every housing 
unit, and the form includes such basic data items as age, sex, race, marital status, prop-
erty value or rent, and number of rooms. The long form is intended for persons in 
sampled housing units and includes, in addition to the basic items, income, education, 
occupation, employment, and detailed housing characteristics. Data are tabulated for 
the nation and by two types of geographic areas: administrative areas (states, congres-
sional districts, counties, cities, towns, etc.) and statistical areas (census regions, met-
ropolitan areas, urbanized areas, census tracts, enumeration districts, block groups, 
etc.).

The tabulated census data are made available in several different forms: printed 
publications and electronic data fi les. To access the data, it is necessary to consult docu-
mentation for the data media of your choosing. The racial classifi cation in the 2000 
census data needs special attention since multiple choices of racial categories were 
allowed. The Census Bureau modifi ed the race data and produced the Modifi ed Race 
Summary File.

C



The census data are used for a variety of purposes: by the federal, state, and local 
governments for political apportionment and allocation of federal funds for planning 
and management of public programs; by demographers to analyze population changes 
and the makeup of the nation’s population; by social scientists to study social and eco-
nomic characteristics of the nation’s population; and by statisticians to design sample 
surveys for the nation and local communities. The census data, most importantly, 
provide the denominator data for the assessment of social and health events occurring 
in the population — for example, in calculating the birth and death rates.

Postcensal population estimates are available from the Census Bureau. The postcen-
sal estimates are made for the resident population as of July 1 of each year. These data 
are available from the U.S. Census Bureau website at www.census.gov.

II.   Vital Statistics
Vital statistics are produced from registered vital events including births, deaths, fetal 
deaths, marriages, and divorces. The scope and organization of vital events registration 
system varies from one country to another. In the United States, the registration of vital 
events has been the responsibility of the states primarily and of a few cities. The federal 
government’s involvement is to set reporting standards and to compile statistics for the 
nation. Each state is divided into local registration districts (counties, cities, other civil 
divisions) and a local registrar is appointed for each district. The vital records are per-
manently fi led primarily in the state vital statistics offi ce. The local and state vital reg-
istration activities are usually housed in public health agencies. The National Center for 
Health Statistics (NCHS) receives processed data from 50 states and other local vital 
registration offi ces.

Vital events are required to be registered with the registrar of the local district in 
which the event occurs. The reporting of births is the direct responsibility of the profes-
sional attendant at birth, generally a physician or midwife. Deaths are reported by the 
funeral directors or person acting as such. Marriage licenses issued by town or county 
clerks, and divorce and annulment records fi led with the clerks or court offi cial provide 
the data for marriage and divorce statistics. The data items on these legal certifi cates 
determine the contents of vital statistics reports. These certifi cates are revised periodi-
cally to refl ect the changing needs of users of the vital statistics.

Vital statistics are compiled at the local, state, and federal levels. Data are available 
in printed reports and also on electronic fi les. Data are tabulated either by place of 
occurrence or by place of residence. Data by place of residence from the local vital sta-
tistics reports are often incomplete because the events for residents may have occurred 
outside the local registration districts and may not be included in the local data base.

What uses are made of vital statistics? In addition to calculating the birth and death 
rates, we obtain such well-known indicators of public health as the infant mortality rate 
and life expectancy from vital statistics. Much epidemiological research is based on an 
analysis of deaths classifi ed by cause and contributing factors which comes from the 
vital statistics. Birth data are used by local health departments for planning and evalu-
ation of immunization programs and by public health researchers to study trends in 
low-birth-weight infants, teenage birth, midwife delivery, and prenatal care.
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There are several special data fi les that are useful for biostatistical use, including 
multiple cause-of-death data fi le, linked birth/infant mortality data fi le, and the Com-
pressed Mortality File (CMF). Multiple cause data give information on diseases that 
are a factor in death whether or not they are the underlying cause of death and associ-
ated other diseases and injuries (for more information, see www.cdc.gov/nchs/products/
elec_prods/subject/mortmcd.htm). National linked fi les of live births and infant deaths 
are especially useful for epidemiologic research on infant mortality (for more informa-
tion, see www.cdc.gov/nchs/linked.htm). The CMF is a county-level national mortality 
and population data base. This data fi le is especially useful to epidemiologists and 
demographers, since mortality data and population data are available in the same fi le 
(for more information, see www.cdc.gov/nchs/products/elec_prods/subject/mcompres.
htm).

III.   Sample Surveys
To supplement the census and vital statistics, several important continuous sample 
surveys have been added to the statistics programs of the Census Bureau and the NCHS. 
Unlike the census and vital statistics, data are gathered from only a small sample of 
people. The sample is selected using a complex statistical design. To interpret the sample 
survey data appropriately, we must understand the sample design and the survey 
instrument.

The Current Population Survey (CPS) is a monthly survey conducted by the Census 
Bureau for the Department of Labor. It is the main source of current information on the 
labor force in the United States. The unemployment rate that is announced every month 
is estimated from this survey. In addition, it collects current information on many other 
population characteristics. The data from this survey are published in the Current Popu-
lation Reports which include several series: Population Characteristics (P-20); Popula-
tion Estimates and Projections (P-25); Consumer Income (P-60); and other subject 
matter areas. Public use tapes are also available (for more information, see www.census.
gov).

The NCHS is responsible for two major national surveys: the National Health Inter-
view Survey (NHIS) and the National Health and Nutrition Examination Survey 
(NHANES). The sampling design and the estimation procedures used in these surveys 
are similar to the CPS. Because of the complex sample design, analysis of data from 
these surveys is complicated (see Chapter 15). These two surveys are described follow-
ing. There are several other smaller surveys conducted by the NCHS, including the 
National Survey of Family Growth, the National Hospital Discharge Survey, the National 
Ambulatory Medical Care Survey, the National Nursing Home Survey and the National 
Natality and Mortality Surveys.

The NHIS, conducted annually since 1960, is a principal source of information on 
the health of the noninstitutionalized civilian population of the United States. The data 
are obtained through personal interviews covering a wide range of topics: demographic 
characteristics, physician visits, acute and chronic health conditions, long-term limita-
tion of physical activity, and short-stay hospitalization. Some specifi c health topics such 
as aging, health insurance, alcohol use, and dental care are included as supplements in 

Sample Surveys  483



different years of the NHIS. The data from this survey are published in the Vital and 
Health Statistics Reports (Series 10) and data tapes are also available (for more informa-
tion, see www.cdc.gov/nchs/nhis.htm).

The NHANES, conducted periodically, is a comprehensive examination of the health 
and nutrition status of the U.S. noninstitutionalized civilian population. The data are 
collected by interview as well as direct physical and dental examinations, tests, and 
measurements performed on the sample person. Among the many items included are 
anthropometric measurements, medical history, hearing test, vision test, blood test, and 
a dietary inventory. Several health examination surveys have been conducted since 
1960; the two most recent surveys are the Hispanic HANES (conducted in 1982–1984 
for three major Hispanic subgroups: Mexican Americans in fi ve southwestern states; 
Cubans in Dade County, Florida; and Puerto Ricans in the New York City area) and 
NHANES III (conducted in 1988–1994).

Beginning in 1999, the survey has been conducted continuously. With the continuous 
survey, new topics have been included. These include cardiorespiratory fi tness, physical 
functioning, lower extremity disease, full body scan (DXA) for body fat as well as bone 
density, and tuberculosis infection. The data from health examination surveys are pub-
lished in the Vital and Health Statistics Reports (Series 11). Electronic data fi les are 
also available (for more information, see www.cdc.gov/nchs/nhanes.htm).

IV.   Life Tables
Life tables have been published periodically by the federal government since the mid-
19th century. The fi rst federally prepared life tables appeared in the report of the 1850 
Census. Life tables prior to 1900 were based on mortality and population statistics 
compiled from census enumerations. The accuracy of these life tables was questioned, 
since mortality statistics derived chiefl y from census enumeration were subject to con-
siderable underenumeration. The year 1900 is the fi rst year in which the federal govern-
ment began an annual collection of mortality statistics based on registered deaths. Since 
then life tables have been constructed based on registered deaths and the enumerated 
population. Prior to 1930, life tables were limited to those states that were included in 
the death registration area. Until 1946, the offi cial life tables were prepared by the United 
States Bureau of the Census. All subsequent tables have been prepared by the United 
States Public Health Service (initially by the Nation’s Offi ce of Vital Statistics and later 
by the NCHS).

Life tables provide an essential tool in a variety of fi elds. Life insurance companies 
largely base their calculations of insurance premiums on life tables. Demographers rely 
on life tables in making population projections, in estimating the volume of net migra-
tion and in computing certain fertility measures. In law cases involving compensation 
for injuries or deaths, life tables are used as a basis for adjudicating the monetary value 
of a life. Personnel managers and planners employ life tables to schedule retirement and 
pension programs and to predict probable needs for employee replacement. Applications 
are numerous in public health planning and management, clinical research, and studies 
dealing with survivorship.

There are three series of life tables prepared and published by the NCHS (for further 
information, visit www.cdc.gov/nchs):
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1. Decennial life tables. These are complete life tables, meaning that life table values 
are computed for single years of age. These are based on decennial census data and the 
deaths occurring over three calendar years around the census year. The advantage of 
using a three-year average of deaths is to reduce the possible abnormalities in mortality 
patterns that may exist in a single calendar year. The decennial life tables are prepared 
for the United States and for the 50 individual states and the District of Columbia. This 
series also includes life tables by major causes of death; these tables are known as mul-
tiple decrement life tables.

2. Annual life tables. These are based on complete counts of deaths occurring during 
the calendar year and on midyear postcensal population estimates provided by U.S. 
Bureau of Census. From 1945 to 1996, the annual tables were abridged life tables, 
meaning that life table values are computed for age intervals instead of single years of 
age, except for the fi rst year of life. The set of age intervals used are 0–1, 1–5, 5–10, 
10–15,  .  .  .  , 80–85, and 85 or over. Beginning with 1997 mortality data, complete life 
tables are constructed using a new methodology (Anderson 1999) and extended the ages 
to 100 years of age. Vital statistics for old ages are supplemented by Medicare data. 
These are prepared for the United States total population by gender and race.

3. Preliminary annual life tables. Preliminary life tables, based on a sample of death 
records, are published annually before the fi nal annual life tables become available. This 
series has been published annually since 1958. Only a 10 percent sample of registered 
deaths was used to construct an abridged table for early years. Preliminary tables are 
now based on a substantial sample (approximately 90 percent) to construct complete 
life tables for the total United States population only. These are published in the Monthly 
Vital Statistics Report.
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Appendix D:
Solutions to Selected 
Exercises

Chapter 1
1.2 The change was made to protect the privacy of the adolescent in answering 

sensitive questions. The estimate of the proportion increased slightly im-
mediately after the change, suggesting the earlier values were probably 
underestimated.

1.3 No, the difference in the infant mortality between Pennsylvania and Louisiana 
may be due to the difference in the racial/ethnic composition of the two states. 
The race-specifi c rates were indeed lower in Louisiana than in Pennsylvania. 
The proportion of blacks in Louisiana was suffi ciently greater than that in 
Pennsylvania to make the overall rate higher than the overall rate in 
Pennsylvania.

Chapter 2
2.2 Not necessarily, as the choice of scale is dependent on the intended use of the 

variable. For example, we know that those completing high school have more 
economic opportunities than those that didn’t and the same is true for those 
completing college. Hence, there is a greater difference between 11 and 12 years 
of education than between 10 and 11 years, and the same is true for the differ-
ence between 15 and 16 years compared to 13 and 14 or 14 and 15.

2.4 Counting the beats for 60 seconds may be considered too time-consuming. On 
the other hand, counting for 20 seconds or 15 seconds and multiplying by 3 or 
4 may be unreliable. Counting for 30 seconds and multiplying by 2 may be a 
good compromise.

2.7 Age recorded in census is considered to be more accurate than that reported in 
death certifi cate which was reported by grieving relatives and other informants. 
In order to alleviate some of these disagreements, the age-specifi c death rates 
are usually calculated by fi ve-year age groups.

Chapter 3
3.2 The actual expenditures increased, whereas the infl ation-adjusted expenditures 

decreased. The trend in the infl ated-adjusted expenditures would provide a more 

D
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realistic assessment of the food stamp program because it takes into account 
the decrease in the purchasing power of the dollar.

3.6 b. A/C  1  0 Total
  1  8 20 28
  0  8 10 18
 Total 16 30 46
c. A (28) B (28) C (16)

3.9 Since the total number of hospitals by type is not available, it is not possible to 
calculate the mean occupancy rate.

3.12 a. Mean = 747,482,813.3, CV = 344.1 percent
b. Median = 105, geometric mean = 541,170
c. The geometric mean, 5.4 × 105, seems to capture the sense of the data better 

than the mean or median.
3.14 b.  The adjusted correlation between the new variables (protein/calories and 

total fat/calories) is 0.094; the adjusted correlation better characterizes the 
strength of the relationship; the unadjusted correlation of 0.648 is due to the 
fact that both protein and total fat are related to calories.

Chapter 4
4.2 a. 0.685

b. 0.524
c. (0.426) * (0.524) = 0.223
d. (0.372 − 0.223)/(1 − 0.524) = 0.313

4.5 1 − {1 − (1 − 0.99) * (0.2)}120 = 0.214
4.8 a. 82,607/97,196 = 0.850

b. (91,188 − 82,607)/98,672 = 0.087

Chapter 5
5.1 a. (1 − 0.8593) = 0.1407

b. At least 10 persons or less than 2 with p = 0.0388
c. Virtually zero

5.3 0.0146; 0.6057 (= 0.7073 − 0.1016)
5.6 Probability is 0.0116 (= 1 − 0.9884); would investigate further.
5.10 z = −1.3441; Pr (x < 7) = 0.0895; yes, we believe the data are normally distrib-

uted; can be verifi ed by a normal probability plot.

Chapter 6
6.2 Read 25 four-digit random numbers and, if any random numbers are 2000 or 

greater, subtract a multiple of 2000 to obtain numbers less than 2000. Eliminate 
duplicates and draw additional random numbers to replace the number 
eliminated.

6.5 a.  The population consists of all the pages in the book; the pages can be ran-
domly sampled and number of words counted on the selected pages would 
constitute the data.

b.  All moving passenger cars during the one-week period can be considered as 
the population. The population can be framed in two dimensions: time and 



space. Passing cars can be observed at randomly selected locations at ran-
domly selected times and the total number of cars and the number with only 
the driver can be observed.

c. The population consists of all the dogs in the county. Households in the 
county can be sampled in three stages: census tracts, blocks, and households. 
The number of the dogs found in the sample households and the number of 
dogs that have been vaccinated against rabies can then be recorded.

6.8 a.  Some people have unlisted telephone numbers and others do not have tele-
phones. People who have recently moved into the community are also not 
listed. Thus, these groups are unrepresented in the sample. The advantage 
is that the frame, although incomplete, is already compiled.

6.11 a. 30 classes can be randomly allocated to two curricula.
b. A simple random allocation of six teachers to two curricula may not be 

appropriate; instead, teachers can be matched based on teaching experience 
before randomly allocating one member of each pair to the new curriculum 
and the other member to the old curriculum.

6.14 a.  Fewer subjects would be needed compared with the two-group comparison 
design.

b.  The random assignment of subjects to the initial diet presumably balanced 
the sequencing effect but it might not be adequate because of the small 
sample size.

c. The carry-over effect is ineffectively controlled by not allowing a wash-out 
period and the granting of a leave to some subjects.

6.16 a. Randomized block design
b. The effect of organizational and leadership types is not controlled effectively, 

although the matching may have reduced the effect of this confounder.

Chapter 7
7.1 a.  Sample mean = 11.94; sample standard error = 1.75; the 95 percent confi -

dence interval = (8.42, 15.46).
c. Sample median = 8; the 95 percent confi dence interval = {3 (19th observa-

tion), 12 (32nd observation)}.
d. The 95 percent tolerance interval to cover 90 percent of observation, based 

on normal distribution = 11.94 ± 1.992(12.5) = (0, 36.84); based on distribu-
tion-free method, the interval (0, 45) gives 96.9 percent confi dence level to 
cover 90 percent of observations; the latter method is more appropriate, since 
the data are not distributed normally (distribution is skewed to the right).

7.4 Would expect a negative correlation because those states that have the higher 
workplace safety score should have the lower fatality rates. r = −0.435. Since 
the data are based on population values, there is no need to calculate a confi -
dence interval. However, if we viewed these data as a sample in time, then the 
formation of a confi dence interval is appropriate. The 95 percent confi dence 
interval = (−0.636, −0.178); a signifi cant negative correlation exists, since the 
confi dence interval does not include zero.

7.7 Correlation = 0.145; these data may be viewed as a sample in time; the 95 
percent confi dence interval = (−0.136, 0.404); no signifi cant linear relation 
exists, since the confi dence interval includes zero; region of the country, perhaps 
refl ecting the unemployment levels, may play a role.
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7.10 a. (0.052, 0.206)
b. Difference (1990 − 1983) = −0.06; confi dence interval = (−0.202, 0.082); no 

difference, since the confi dence interval includes zero.
7.13 Difference = −0.261; 99 percent confi dence interval = (−0.532, 0.010); no dif-

ference, since the confi dence interval includes zero, although a 95 percent con-
fi dence interval would not include zero.

Chapter 8
8.2 The decision rule is to reject the null hypothesis when the number of pairs 

favoring diet 1 is 14 to 20 with s = 0.0577 and b = 0.0867.
8.6 The percent predicted FVC is used, since it is adjusted for age, height, sex, and 

race. H0: m1 = m2; Ha: m1 > m2. One-sided test is used to refl ect the expected effect 
of asbestos on pulmonary function; assuming unknown and unequal population 
variances, t′ = 30.27 with df = 126.5; p-value is virtually zero; reject the null 
hypothesis, suggesting that those with less than 20 year exposure have signifi -
cantly larger forced vital capacity than those with 20 or more years of 
exposure.

8.9 H0: md = 0, Ha: md < 0; td = −10.03, which is smaller than t23,0.01 = −2.50; reject 
the null hypothesis, suggesting that the weight reduction program worked.

8.12 H0: p = 0.06; Ha: p < 0.06 (one-sided test); z = 1.745, which is larger than 
z0.95 = 1.645; reject the null hypothesis, suggesting that there is evidence for 
the community’s attainment of the goal.

8.14 r = −0.243; H0: r = 0; Ha: r ≠ 0; l = −0.8224, which is not smaller than z0.05 = 
−1.645; fail to reject the null hypothesis, no evidence for nonzero correlation; 
p = 0.21.

8.16 H0: m = 190; Ha: m ≠ 190; t = 3.039, which is larger than t14,0.01 = 2.6245; 
reject H0.

Chapter 9
9.1 Medians are 12.25 for group 1, 7.75 for group 2 and 5.80 for group 3; average 

ranks are 36.5 for group 1, 23.3 for group 2 and 16.9 for group 3; the Kruskal-
Wallis test is appropriate to use; the test statistics H = 15.3, df = 2 and p = 0.001, 
indicating the medians are signifi cantly different.

9.4 Divide into three groups based on the toilet rate (1 to 61), (133 to 276) and 
(385 to 749), with 9 observations in group 1, 6 in group 2, and 6 in group 3; 
since H = 6.67 with p = 0.036, we reject H0.

9.7 The results by the Wilcoxon signed rank test are consistent with that obtained 
by the sign test in Exercise 9.6, although the p-value is slightly smaller with the 
Wilcoxon signed rank test than with the sign test.

Chapter 10
10.3 Note that there are 2 out of 10 cells with expected counts less than 5, but the 

smallest expected count (3.18) is greater than 1 [= 5 * (2/10)] and the chi-square 
test is valid; X2 = 6.66, df = 4, p = 0.1423, we fail to reject the null hypothesis 
at the 0.05 signifi cance level; This is a test of independence because it appears 



that the subjects were selected at random, not by degree of infi ltration. By 
assigning scores of −1, 0, 1, 2, and 3, we calculate X2 = 6.67, df = 1, p = 0.0098; 
we reject the null hypothesis of no trend; by assigning scores of −1, 0, 0.5, 1, 
and 1.5, we calculate X2 = 6.36, df = 1, p = 0.0117; we again reject the null 
hypothesis of no trend.

10.5 X2 = 20.41, df = 1, p < 0.0001, we reject the null hypothesis; the proportion of 
violation is nearly three times higher for the nonattendees (73.5 percent) than 
the attendees (24.3 percent). Without more information, we cannot draw any 
conclusion about the effect of attending the course. Our interpretation depends 
on whether the course was attended before or after the violation was found.

10.8 X2 = 103.3, df = 1, p < 0.0001, ignoring the radio variable, signifi cant; 
X2 = 24.65, df = 1, p < 0.0001, ignoring the newspaper variable, signifi cant. 
The newspaper variable seems to have the stronger association. However, it is 
diffi cult to recommend one media over the other, since these two media vari-
ables, in combination, appear to be related with the knowledge of cancer. Addi-
tionally, since people were not randomly assigned to the four levels of media, 
to use these results about knowledge of cancer, we must assume that the people 
in each of the four levels of the media initially had the same knowledge of 
cancer. Without such an assumption, it is diffi cult to attribute the status of 
cancer knowledge to the different media.

Chapter 11
11.2 a.  For the group with serum creatinine concentration 2.00–2.49  mg/dL, the 

fi ve-year survival probability is 0.731 with standard error of 0.050; for the 
group with serum creatinine concentration 2.5  mg/dL or more, the fi ve-year 
survival probability is 0.583 with a standard error of 0.058.

b. Despite the considerable difference in the fi ve-year survival probabilities, 
the two survival distributions are not signifi cantly different at the 0.01 level, 
with X2

CMH = 3.73 and p = 0.0535, refl ecting the small sample size.
11.6 Median for the fee-for-service group = 28.8 month; median for HMO = 29.5; 

the two survival distributions are not signifi cantly different.

Chapter 12
12.2 F = 0.51, p = 0.479, no signifi cant difference; the test results are the same as 

those obtained using the t-test, with the same p-value; F1, n − 1,1 − a = t2
n − 1,1 − a /2.

12.5 Degrees of freedoms are 2, 2, 4 and 18 for smoking status, lighting conditions, 
interaction, and error, respectively; F = 0.213 for interaction, which is not sig-
nifi cant; F = 12.896 for smoking status, signifi cant; F = 45.276 for lighting 
conditions, signifi cant.

Chapter 13
13.1 The zero value for the degree of stenosis in the 10th observation is suspicious, 

which appears to be a missing value rather than 0 percent of stenosis; the zero 
value for the number of reactive nuclei at initial survey in the 12th observation 
is also suspicious, but it may well be a reasonable value, because there are other 
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smaller numbers such as 1 and 2; the scatter plot seems to suggest that there is 
a very weak linear relationship; a regression analysis yields b̂0 = 22.2, b̂1 = 2.90, 
F = 10.04, p = 0.007; the 10th observation had the largest standardized residual 
and the 6th observation had the greatest leverage almost three times greater 
than the average leverage; eliminating the 6th observation, b̂0 = 21.2 and b̂1 = 
3.05.

13.4 Eliminating the two largest blood pressure values (14th and 50th observations) 
and the two smallest values (22nd and 27th observations), b̂0 = 63.1, b̂1 = 0.726 
and R2 = 23.4 percent.

13.5 r = −0.138; b̂0 = 8.53, b̂1 = −0.063, R2 = 1.9 percent, F = 0.19 and p = 0.669; 
by adding the new variable, b̂0 = 8.13, b̂1 = −0.067, b̂2 = 0.110 (new variable), 
R2 = 37.8 percent, F = 2.73 and p = 0.118; the new variable captured the nonlinear 
effect of BMI on serum cholesterol.

Chapter 14
14.1 The exponential of 0.392 is 1.48 (odds ratio), suggesting that those with the 

extensive operation have the greater proportion of surviving less than 10 years; 
this result is consistent with the data in the table, which shows that 51.4 percent 
[= 129/(129 + 122)] of patients with the extensive operation survived less than 
10 years, whereas 41.7 percent [= 20/(20 + 28)] of patients with the not extensive 
operation survived less than 10 years.

14.3 Coding female = 1 and male = 0 for the sex variable, and died = 0 and survived 
= 1 for the survival status, the fi tted logistic regression model yields: logit 
(p̂) = 1.57 − 0.07 (age) + 1.33 (sex). Exp (1.33) = 3.78 indicates a woman’s odds 
of survival is nearly 4 times the odds of survival for a man holding age constant. 
Exp [−0.07 * (40 − 15)] = 0.17 suggests that a 45-year-old person’s odds of sur-
vival is about 1/5 of the odds of 15-year-old person of the same sex.

Chapter 15
15.1 The weight is the number of adults in the households with one phone and for 

the households with two phones is 1/2 of the number of adults; the weighted 
percent (35.8) means that 35.8 percent of adults in the community are smokers; 
the unweighted percent (30.0) means that 30 percent of telephone locations in 
the community have at least one smoker.

15.2 The standard errors for the prevalence rate and the odds ratio are 0.59 and 0.090, 
respectively; the standard errors based on the range are 0.61 and 0.096, 
respectively.
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for difference of two dependent proportions, 197–198
for difference of two independent means, 188–194
for difference of two independent proportions, 

196–197
for difference of two means and proportions, 188–198
distribution-free, 171–175
formation of, 187–188
normal approximation to binomial and, 184–185
normal distribution, 176–188
one-sided, 173, 202
for other measures, 200–205
for Pearson correlation coeffi cient, 203–205
for proportions, 182–185
sample size and, 198–200
for variance, 201–203

Consistencies, 17
Contingency table analysis, 435–437
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Continuity correction, 174, 289
Continuous random variables, 71
Conversion between bases, 445
Coronary heart disease (CHD), 417
Correction for continuity, 128
Correlation coeffi cients, 60–64

calculating, 61–62
Pearson, 60–62
Spearman rank, 63–64

Cox regression model, 414
CPS. See Current Population Survey
Crossover design, 158
Crosstabulation, 23t
Crude rates

confi dence intervals for, 185–188
variances of, 185–187

Cumulative binomial distribution, 173t
Cumulative distribution function, 107, 108f, 460t-461t

of standard normal distribution, 119, 120f
Current Population Survey (CPS), 483
Cutoff points, 402

D

Data, 2–4
analyzing, 5
in bar charts, 28
clinical trial, 14
collection in follow-up studies, 297–299
common problems, 14
continuous, 11
design and, 4–5
graphical representation, 22–39
importance of, 2
interpreting, 4
negatively skewed, 36
nominal, 11
numerical representation of, 9–10
ordinal, 11
positively skewed, 36
reliability and validity of, 11–13
replication of, 6
tabular representation, 22–39
types of, 11

Death rates
age-specifi c, 49t, 55t, 93
crude, 53, 54

Decision rule, 216–218
α and β and, 218–221

Denominators, 52
Descriptive analysis, 434–435
Descriptive methods, 21–22
Design, 135–137

data and, 4–5
effect, 424–425
variations in, 158–160

Design-based analysis
components of, 422–426
design effect, 424–425
sample weights, 422–423

Design-based inference, 421–422
Design-weighted least squares (DWLS), 438
Deviance residuals, 398

by subject, 400f
Diabetes, 30, 396–398
Diagnosis Related Groups (DRGs), 67
Diagnostics, 374–376
Diets, 214–215
DIG. See Digitalis Investigation Group
DIG40, 38
DIG200, 22, 31, 35f, 407–409, 410–415, 416

basic patient characteristics in, 22t
Digitalis Investigation Group (DIG), 21, 149, 153
Digoxin, 21
Discrete random variables, 71
Disease status, 82t

risk factors and, 280
Distribution

binomial, 103–110
normal, 51, 116–124
Poisson, 110–116, 125
probability, 72

Distribution-free intervals, 170–176
confi dence, 171–175
prediction, 170–171
tolerance, 175–176

Doolittle, M.H., 274
Dot plots, 37–39

for blood pressure, 37f
Double-blind experiments, 154
Double-dummy procedure, 159
Draft lottery, 136
DRGs. See Diagnosis Related Groups
Drug trials, 154
Dunnett’s method, 331–332
DWLS. See Design-weighted least squares
DXA. See Full body scan

E

Education, measuring, 18
Empirical distribution function, 122–123
Epidemiology, 80–84

predicted value negative in, 81–84
predicted value positive in, 81–84
rates and probabilities, 80–81
sensitivity in, 81–84
specifi city in, 81–84

Equal size intervals, in histograms, 35
Error rates

family, 329–330
individual, 329–330
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Error sum of squares (SSE), 337
Estimators

of conditional probabilities, 301
least square, 351
odds ratio, 277–278
pooled, 190

Expected values, in life table, 96–99
Experimental design, 5, 137–138, 148–158

blocking in, 155–156
comparison groups and randomization, 149–150
conditions of, 157
double-blind, 154
extraneous variables in, 155–156
limitations of, 156–158
sample size, 152–155
single-blind, 154

Exponential function, 445–446
Exponential growth, 58–59

population, 58–59

F

F distribution, 473t-475t
F statistic, 326–327, 328
Factorials, 448

design, 156
Failure-to-reject regions, 225f
Finite population correction (FPC), 425
Fisher, Ronald A., 270
Fisher’s exact test, 276, 279–280

basis of, 279
Fisher’s least signifi cant difference method, 330–331
Follow-up studies, data collection in, 297–299
FPC. See Finite population correction
Frauds, 17
Frequency tables, 23–24, 114f

one-way, 23
rank sum, 259t
two-way, 23–24

Friedman test, 262–264
Full body scan (DXA), 484

G

Gauss, Carl, 116
Gaussian distribution. See Normal distribution
GDP. See Gross domestic products
Gender, 77, 78–79

survival distribution by, 314
General Linear Model (GLM), 379
Geometric growth, 57–58
Geometric means, 42–45

arithmetic means v., 43
GLM. See General Linear Model
Goodness-of-fi t test, 269–273

chi-square statistic, 271

Gosset, W.S., 114, 181, 292
Graphical representation, 22–39
Graunt, John, 91
Gross domestic products (GDP), 24
Growth

exponential, 58–59
geometric, 57–58
linear, 55–57

H

Haenszel, William, 288
Halley, Edmund, 91
Hazard rates, 305

plots, 413f
standard errors and, 305t

Hazard ratios, 412
HDFP. See Hypertension Detection and Follow-up Program
Hinges, 47
Histograms, 30–35

blood pressure, 33–34, 35f
equal size intervals in, 35
intervals in, 31, 32t

Homicide, 417
Hypertension Detection and Follow-up Program (HDFP), 

148, 152, 157, 311, 317
Hypotheses

alternative, 215
changing alternative, 219
conducting tests, 221–222
decision rule and, 216–218
equivalence of confi dence intervals and, 224–225
of no linear trend, 284–286
null, 215, 254
one-side alternative, 224–225
one-sided tests, 216–217
preliminaries in tests of, 213–222
statistical and practical signifi cance of, 243
test statistics, 215–216
testing, about difference of two means, 234–238
testing, about difference of two proportions, 238–240
testing, about mean, 223–229
testing, about Pearson correlation coeffi cient, 232–238
testing, about proportion and rates, 229–230
testing, about variance, 231–232
testing, of no association, 282–284
testing, of no trend, 284–286
tests of, and sample size, 240–243
two-sided tests, 216–217
type I errors, 215
type II errors, 215

I

ICC. See Intraclass correlation coeffi cient
Incidence, 80
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Inconsistencies, 15
Independent events, 77–80
Infant mortality rate, 52, 233t, 383–384
Inference, design-based, 421–422
Inference about coeffi cients, 357–364

ANOVA table summary, 363–364
assumptions for, 357–358
regression diagnostics, 358–360
slope coeffi cient, 361–362
Y-intercept, 361–362

Infi ltration, 292
Informed consent, 158
Insecticides, 263
Instrument calibration, 252–253
Interaction, two-way ANOVA with, 335–339
Interlaboratory testing programs, 252–253
Interquartile range, 46
Intersections, 85, 94
Interval estimation, 169

for μY |X, 364–368
for Y |X, 364–368

Interval scale, in histograms, 31, 32t
Interval scales, 10–11
Intervals, 178. See also Confi dence intervals; 

Distribution-free intervals; Prediction 
intervals

in histograms, 31, 32t
one-sided, 180
probability calculation for, 121–122
two-sided, 180

Intervention procedures, 347
Intraclass correlation coeffi cient (ICC), 425
Inverse transformation, 204
Iron levels, 275
Irregular patterns, 15

J

Jackknife repeated replication, 428–430
Jittering, 39
Joint confi dence coeffi cients, 478t-479t
Journal of the Royal Statistical Society, 21

K

Kaplan-Meier estimates, 307t, 412, 414
Kennedy, Galvin, 21
Kruskal-Wallis (KW) test, 261–262
KW test. See Kruskal-Wallis

L

Lead concentrations, 267
Least squares estimators, 351
Legionnaires’ disease, 159
Leverage, 359t

Life table, 484–485
abridged, 92t
annual, 485
decennial, 485
expected values in, 96–99
fi rst four columns in, 93–96
preliminary annual, 485
probability and, 91–99
survival studies and, 299–306
uses of, 92

Likelihood ratio test (LRT), 392, 393
Line graphs, 24–27, 65

scales of, 25
Linear growth, 55–57
Linear model representation of ANOVA, 339–342
Linear regression. See also Regression

analysis of, 437–440
assumptions for inference in, 357–358
multiple, 368–380
simple, 349–357

Linearization method, 430–431
Log odds, 388
Logarithmic scale, 43
Logarithmic transformation, 44
Logarithms, 31

conversion between bases, 445
logic of, 445
natural, 204, 445
properties of, 445

Logistic regression
analysis of, 437–440
conditional, 407–409
multiple, 394–403
ordered, 403–407
simple, 387–394

Log-rank test, comparison of survival distributions, 
313–314

Lost-to-follow up, 298
LRT. See Likelihood ratio test
Lymphoma, 318–319, 419

M

m replicates, randomized block design with, 
341

Mammography, 283
Mantel, Nathan, 288, 292
Mantel-Haenszel common odds ratio, 290–291
Mass function

binomial, 127f
Poisson probability, 112
probability, 105, 107t

Matched-pairs studies, 280–282
Maximum likelihood procedure, 390
Maximum values, 32, 39
McGill Pain Questionnaire, 265
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Mean, 40–42, 98
arithmetic, 43
binomial distribution, 107–110
difference of two dependent, 194–195, 237–238
difference of two independent, 188–194, 234–237
extreme values and, 42
geometric, 42–45
Poisson distribution, 113–114
sample, 40, 62, 303
square error, 373
squares, 325–326
survival times, 302, 308–309
testing hypothesis about, 223–229
testing single, 241
testing two, 242–243

Measurements
monitoring, 16
post-test, 250
pre-test, 250
reliability and validity of, 12

Median, 40–42, 98
extreme values and, 42
sample, 304
survival curves and, 305f
survival times, 302, 304

Mental health, 441
Minimum values, 32, 39
MINITAB, 137
Missing values, 14
Mode, 40–42

calculating, 42
Multicolinearity problems, 376–378
Multiple comparisons procedures, 329–333

Dunnet’s method, 331–332
Fisher’s LSD method, 330–331
Turkey-Kramer method, 330, 334

Multiple linear regression, 368–380
dummy variables and, 378–380
goodness-of-fi t statistics and, 399–401
model, 368–369
multicolinearity problems, 376–378
parameter estimates, ANOVA, and diagnostics in, 

374–376
ROC curve and, 403
specifi cation of, 369–374

Multiple logistic regression, 394–403
model and assumptions, 394–398
residuals, 398–399

N

National Cancer Institute, 301
National Center for Health Statistics, 19, 482
National Health and Nutrition Examination Survey 

(NHANES), 144, 152, 370, 431, 433, 437, 441–442, 
483, 484

National Health Interview Survey (NHIS), 483
National Institute of Occupational Safety and Health, 245
National Safe Workplace Institute (NSWI), 207, 264
Negatively skewed data, 36
NHANES. See National Health and Nutrition Examination 

Survey
NHIS. See National Health Interview Survey
No parameter estimation, 270–271
Nominal scales, 10
Nonparametric tests, 249
Nonresponse, 145–146

item, 147
unit, 147

Normal distribution, 51, 116–124
comparison of survival distributions, 313
confi dence intervals based on, 176–188
prediction intervals based on, 205–206
standard, 118–119, 120, 121
tolerance intervals based on, 206
tolerance limits, 466t-467t

Normal probabilities, 116–124
calculation of, 119–122
plot, 122–124, 376f

NSWI. See National Safe Workplace Institute
Null hypothesis, 215, 285
Numerical representation, of data, 9–10

O

Obesity, age and, 29
Observations, 10
Odds ratio, 277–278, 287

cell frequencies and, 278
Mantel-Haenszel common, 290–291
sample estimator of, 277–278

OLS. See Ordinary least squares
One-sided tests, 216–217
Ordered logistic regression, 403–407
Ordinal scales, 10
Ordinary least squares (OLS), 437

P

Parameters, 41, 72, 139
estimates, 374–376, 390–392

Passive smoke variable, 287
Patient characteristics, 24
PDF. See Probability density function
Pearson correlation coeffi cient, 60–62, 68, 200, 

356
confi dence interval for, 203–205

Pearson residuals, 398
standardized, 398
by subject, 400f

Percentiles, 45–46
Permutation, 448
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Pertussis, 115, 131
PFT. See Pulmonary function test
Physical activity, 345
Placebos, 154
Playfair, William, 21
Point estimation, 169
Poisson distributions, 110–116, 125

approximations to, 126–131
mass, 130f
mean and variance of, 113–114

Poisson probabilities, 111–113, 458t-459t
fi nding, 114–116
mass function, 112

Poissonless plot, 115
Pooled estimators, 190
Populations

exponential growth of, 58–59
growth, 90–91
stationary, 97, 98

Positively skewed data, 36
Poststratifi cation, 423–424
Power curve, 220f
Predicted value negative, in epidemiology, 81–84
Predicted value positive, in epidemiology, 81–84
Prediction intervals, 169–170

distribution-free, 170–171
normal distribution, 205–206
for Y |X, 366–368

Prevalence, 80
Probability, 99, 171

addition rule for, 73–75
binomial, 103–107, 111f
of births by trimester, 76t
calculating, 73–80
calculating for intervals, 121–122
conditional, 75–77, 78, 93, 95
cumulative distribution function, 107
defi ned, 71–72
distribution, 72
of dying, 95–96
epidemiology and, 80–81
life table and, 91–99
mass function, 105, 107t
plots, 126f, 375
Poisson, 111–113
randomized response technique and, 79–80
sampling, 140
in sampling, 87–89
simulation and, 89–91
survival, 94
of type I errors, 217–218
of type II errors, 217–218
unconditional cell, 284

Probability density function (PDF), 116–117, 117
normal, 117, 118f
plot of, 327f

Problems, common data, 14
Product-limit method, 306–310

survival distribution estimated by, 309f
Proportional hazard regression, 409–415
Proportions

confi dence intervals for, 182–185
difference of two dependent, 239–243
difference of two independent, 196–197
in simple logistic regression, 389–390
testing hypotheses about, 229–230
testing hypotheses about difference of two, 

238–240
testing single, 241
variance of, 109

Public Citizen, 109
Pulmonary function test (PFT), 387, 402
p-value, 222–223, 250, 373

Q

Quality of care, 319
Questionnaires, reliability and validity of, 12

R

r by c contingency table, 282–286
testing hypothesis of no association, 282–284

Race, 23t, 72t
Radio estimates, 430
Ramipril, 194, 195, 234, 266
Random assignment, in experiments, 150–151
Random block size method, 151
Random digit dialing (RDD), 140
Random digits, 452t-453t
random numbers, generation of, 136–137
Randomization, 149–150
Randomized block design, 156, 336

with m replicates, 341
two-way ANOVA for, 332–335

Randomized response technique, 13–14
probability and, 79–80

Range, 45–46
Rank sums, frequency and relative frequency of, 

259t
Rao, C.R., 2
Rates, 51–55, 186. See also Adjusted rates; Crude rates; 

Death rates; Error rates; Hazard rates; Infant 
mortality rate

defi ned, 52
epidemiology and, 80–81
specifi c, 53, 81
stable, 187–188
testing hypotheses about, 229–230
vital, 52

Ratio scales, 10, 11
Ratios, 51–55



500  Index

RDD. See Random digit dialing
Receiver Operating Characteristic (ROC), 84

curve, 401–403
Regression, 351f, 354f. See also Linear regression

diagnostics, 358–360
dummy variables and, 378–380
stepwise, 372
sum of squares about, 354
sum of squares due to, 354

Regular Care group, 158
Rejection regions, 225f, 226f, 232, 258

for two-sided alternatives, 239
Relative frequency, of rank sums, 259t
Reliability, 11–13

defi ned, 11
of measurements, 12
of questionnaires, 12

Replacement
sampling with, 87–88
sampling without, 88–89

Replication, 6
Residual sum of squares, 354
Residuals, 358, 359t. See also Standardized residuals

deviance, 398
multiple logistic regression, 398–399
Pearson, 398
plots, 375, 376

Restenosis, 380
Reward patterns, 267
Risk factors, disease status and, 280
ROC. See Receiver Operating Characteristic
Run-in period, 158

S

Sample designs, 138–148
Sample size, 46, 220, 254f, 260

confi dence intervals and, 198–200
for experiments, 152–155
hypotheses tests and, 240–243

Sample surveys, 137–138, 483–484
Sample weights, 422–423
Sampling, 138–148. See also Simple random sampling; 

Systematic sampling
frame, 139–140
probability, 87–89, 140
with replacement, 87–88
without replacement, 88–89
replicated, 426–427
systematic, 142–144
unintended, 145–148

Scatter plots, 38–39, 63f
for blood pressure, 38f
matrix, 39f

Scatterplot matrix, 371f
Selection bias, 139

Selective Service, 136
Sensitive questions, 13
Sensitivity, in epidemiology, 81–84
Sex, 23t
Sign test, 249–253

uses of, 250
Simple linear regression, 349–357

coeffi cient of determination, 355–357
estimation of coeffi cients in, 351–353
variance of Y |X in, 353–355

Simple logistic regression, 387–394
estimation of parameters, 390–392
proportion, odds, and logit in, 389–390
statistical interference and, 392–394

Simple random sampling (SRS), 89, 141–142, 150
Simulation, probability estimation and, 89–91
Single-blind experiments, 154
Slope coeffi cient, 361–362
Smokers, 104, 346, 381, 394–396
SMR. See Standardized mortality ratio
Spearman rank correlation coeffi cient, 63–64
Specifi city, in epidemiology, 81–84
Squares

mean, 325–326
sums of, 325–326, 337

SSC. See Sum of squares for column factor C
SSE. See Error sum of squares
SSR. See Sum of squares for row factor R
SSRC. See Sum of squares for interaction between factor R 

and factor C
SST. See Total sum of squares
Stable rates, 187–188
Standard deviation, 48–51, 119, 177
Standard error, 177

estimated, 301–302
hazard rates and, 305t

Standard normal curve, 122f
Standard normal distribution

cumulative distribution function of, 119, 120f
percentiles of, 121
transforming to, 118–119

Standardized mortality ratio (SMR), 55
Standardized residuals, 358, 359f

plot of, 360f, 376f, 377f
Stationary population, 97, 98
Statistical interference, 392–394
Statistical methods, 7
Statistical tables, 451–479
Statistics, 41, 72
Stem-and-leaf plots, 35–36

to compare SBP, 36
Stepwise regression, 372
Strata, 144
Stratifi cation, 144
Stratifi ed random sampling, 144
Student’s t. See t distribution
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Subgroups, ANOVA, 342–345
Sum of squares, 325–326, 337

due to regression, 354
about regression, 354
residual, 354
total, 354
type I, 343
type III, 343

Sum of squares for column factor C (SSC), 337
Sum of squares for interaction between factor R and factor 

C (SSRC), 337
Sum of squares for row factor R (SSR), 337
Summation symbol, 74
Surveys, telephone, 140
Survival curve, 303f

median and, 305f
Survival distribution

CMH test, 313, 314–316
comparisons of, 310–316
estimated by product-limit method, 309f
estimated by serum creatinine concentration, 312f
by gender, 314f
log-rank test, 313–314
normal distribution approach to, 313

Survival studies
follow-up, 297–299
product-limit method, 306–310

Survival time, 298
mean, 302, 308–309
median, 302, 304

Symmetric distribution, 36
Systematic sampling, 142–144

circular, 142
repeated, 143

T

t distribution, 181, 192
critical values for, 462t

Tabular representation, 22–39
Taylor series expansion, 448–450
Test statistics, 215–216, 254, 289
Thomas, Lewis, 157
Tippett, 136–137
Tolerance intervals, 169–170

distribution-free, 175–176
normal distribution, 206

Total sum of squares (SST), 337
Turkey-Kramer method, 330, 334
Two parameter estimation, 271–273
Two-by-two contingency table, 273–282

analyzing separately, 287–288
comparing independent binomial proportions, 274
expected cell counts assuming no association, 274–277
Fisher’s exact test and, 279–280
matched-pairs studies and, 280–282

multiple, 286–291
odds ratio and, 277–278

Two-sided tests, 216–217
Type I errors, 215

probabilities of, 217–218
Type II errors, 215

probabilities of, 217–218

U

Unconditional cell probabilities, 284
Upper respiratory infections (URI), 286, 287
URI. See Upper respiratory infections

V

Validity, 11–13
defi ned, 13
of measurements, 12
of questionnaires, 12

Variability, 45–51
Variables, 10

confounded, 149–150
continuous, 273
continuous random, 71
dependent, 138
discrete independent, 415
discrete random, 71
dummy, 378–380
extraneous, 155–156
independent, 78, 138, 371
indicator, 379
large differences in values, 16
predictor, 371, 439
scales used with, 10–11

Variance, 48–51, 234
of adjusted rates, 185–187
binomial distribution, 107–110, 199–200
changing, 50
coeffi cients of, 51
confi dence intervals for, 201–203
of crude rates, 185–187
known, 177, 223–228
Poisson distribution, 113–114
population, 49, 192, 201–202
of proportions, 109
sample, 61
unknown, 180–182, 228–229
unknown but equal population, 190–194, 235
unknown but unequal population variance, 

236–237
of Y |X, 353–355

Variance estimation, 426–431
jackknife repeated replication, 428–430
linearization method, 430–431
replicated sampling, 426–427
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Variance infl ation factors (VIF), 377
Veterans Administration Cooperative Duodenal Ulcer 

Study Gruop, 291
VIF. See Variance infl ation factors
Vital statistics, 482–483

W

Washout period, 158
Weighted least squares (WLS), 438
Wilcoxon Rank Sum (WRS) test, 257–262

critical values for, 469t-472t
Wilcoxon Signed Rank (WSR) test, 253–257, 267, 

468t
ties in, 255

Withdrawn alive, 298
Worksheets, 307

WRS test. See Wilcoxon Rank Sum test
WSR test. See Wilcoxon Signed Rank test

Y

Yates’ correction, 275, 276
Y-intercept, 362–363
Y |X

interval estimation for, 364–368
prediction intervals for, 366–368
simple linear regression and, 353–355
variance of, 353–355

Z

z value, 117, 227
versus t value, 181–182


